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SUMMARY 

 

A novel imaging technology, digital breast tomosynthesis (DBT), is a technique 

that overcomes the tissue superposition limitation of conventional mammography by 

acquiring a limited number of X-ray projections from a narrow angular range, and 

combining these projections to reconstruct a pseudo-3D image. The emergence of DBT 

as a potential replacement or adjunct to mammographic screening mandates that solutions 

be found to two of its major limitations, namely X-ray scatter and mono-energetic 

reconstruction methods. A multi-faceted software-based approach to enhance the image 

quality of DBT imaging has the potential to increase the sensitivity and specificity of 

breast cancer detection and diagnosis. A scatter correction (SC) algorithm and a spectral 

reconstruction (SR) algorithm are both ready for implementation and clinical evaluation 

in a DBT system and exhibit the potential to improve image quality. A principal 

component analysis (PCA) based model of breast shape and a PCA model of X-ray 

scatter optimize the SC algorithm for the clinical realm. In addition, a comprehensive 

dosimetric characterization of a FDA approved DBT system has also been performed, 

and the feasibility of a new dual-spectrum, single-acquisition DBT imaging technique has 

also been evaluated.  
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CHAPTER 1 

INTRODUCTION 

 

 This thesis documents the development of methods aimed at improving the image 

quality of a novel imaging technology, digital breast tomosynthesis (DBT), as well as 

understanding its dosimetric characteristics and exploring its potential for dual spectrum 

imaging. This chapter describes DBT, its potential role in breast cancer imaging, and the 

challenges DBT faces in becoming a replacement or adjunct to conventional 

mammography as a screening examination, including the current lack of X-ray scatter 

reduction methods and the detriments of conventional reconstruction methods.  

1.1 General Background 

 Breast cancer is the second most prevalent cancer in women, behind only skin 

cancer, in the US. The rate of breast cancer incidence among women in North America is 

the highest in the world and has increased from one in 20 in 1960 to one in eight in 

2006.1 The American Cancer Society estimates that in 2010, over 207,000 new cases of 

invasive breast cancer were diagnosed, and that almost 40,000 women died as a result of 

this disease.2 This type of cancer is responsible for 3% of all female deaths and is the 

second leading cause of cancer-related death in women (second only to lung cancer).3 

The 5-year patient survival rate is as high as 98% when breast cancer is diagnosed early 

and as low as 26% when diagnosis occurs at a late stage after the onset of metastasis.4 As 

early diagnosis of breast cancer is the key to a lower mortality rate, annual screening 

mammography has been recommended for asymptomatic women over the age of 40.3 

During a screening mammogram examination, two X-ray projection images are acquired 

of each patient’s breasts: the cranio-caudal (CC) view in which the breast is compressed 

horizontally and the medio-lateral oblique (MLO) view in which the breast is compressed 
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at approximately a seventy degree angle. A radiologist, ideally specializing in breast 

imaging, interprets, or “reads”, all four mammograms searching for abnormal features. 

These features are separated into inconclusive and benign findings; the former could be 

associated with breast cancer while the latter is a feature that is not part of the normal 

breast tissue (e.g. intramammary lymph nodes) but that is not associated with breast 

cancer.  

 If the screening examination is normal (no findings or benign findings only), the 

patient is to return in one year for her next annual screening. The presence of 

inconclusive findings dictates that additional imaging is required in the form of a 

diagnostic work-up, which leads to greater patient discomfort and anxiety and higher 

resulting radiation dose to the patient. The radiologist then studies the screening and 

diagnostic images to determine if the original inconclusive finding(s) could be indicative 

of breast cancer or a false alarm. In the case of a false alarm, the patient is sent home with 

the recommendation that she return for her next annual screening mammogram. 

However, if the interpreting radiologist determines that the inconclusive finding(s) could 

actually be breast cancer, the patient is then to undergo a biopsy or a six-month follow-up 

examination. The sensitivity of screening mammography for breast cancer (proportion of 

cancer cases identified out of all true cancer cases) is 78.7%, while the specificity for 

breast cancer (proportion of healthy cases identified out of all true healthy cases) is 

89.5% .5 In addition, the recall rate (proportion of patients subject to a diagnostic work-

up) is 10.9% and the positive predictive value of screening mammography is 4.4%.6 

Thus, more than one out of five cancers are missed during screening; while for each 

patient who actually has breast cancer and who is recalled for the diagnostic work-up, 

nineteen healthy women are recalled and subjected to what is ultimately determined to be 

unnecessary additional imaging.  

 One major factor impacting the performance of breast cancer screening is 2D 

mammography’s greatest limitation: tissue superposition.7-9 Both screen film and digital 
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mammography are X-ray projection studies that produce a two-dimensional (2D) 

radiograph of the three-dimensional (3D) breast. Dense glandular tissue located above 

and/or below a lesion can occlude or otherwise reduce the visibility of the lesion on the 

mammogram, and two or more normal features separated in the vertical plane can appear 

to be a lesion. The former reduces the sensitivity of the study while the latter reduces the 

specificity. In fact, it has been suggested that tissue superposition alone is responsible for 

25% of all mammography recalls.10 

1.2 Digital Breast Tomosynthesis Imaging 

Breast tomosynthesis imaging is a technique that overcomes the tissue 

superposition issue by acquiring a limited number of X-ray projections from a narrow 

angular range, and combining these projections to reconstruct a pseudo-3D image.11 This 

can provide greater detail about the structure of the tissue and has been shown to reduce 

the masking effects of tissue superposition.12-22 The geometry of DBT imaging is very 

similar to that used in standard mammography, with the difference being that the X-ray 

tube rotates around the compressed breast, acquiring projections at pre-determined X-ray 

tube positions (Figure 1.1). During the acquisitions, the detector can either be static or 

rotate by an amount not necessarily equal to the rotation of the X-ray tube.23, 24 The set of 

projections is then used to reconstruct the 3D volume. Several reports on laboratory 

findings12-18 and clinical studies10, 25-30 have suggested that DBT could increase sensitivity 

and/or specificity as compared to mammography.10, 25-30 DBT imaging has been in 

clinical use in Europe and has been FDA approved in the US. It is expected that DBT will 

be quickly adopted by the radiology community to enhance early detection and diagnosis 

of breast cancer, with the potential for it to eventually replace mammography as the sole 

technology used for breast cancer screening of the general population.10, 31, 32 
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Figure 1.1 – The geometry of digital breast tomosynthesis (DBT) imaging resembles that 
of mammography, with the difference being that the X-ray tube rotates around the 
compressed breast and acquires projections over a limited angular range. These 
projections are then combined into a pseudo-3D image. Some DBT systems utilize a 
rotating detector such as the one depicted here.  
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 As of this writing, only one DBT system has been approved by the FDA for 

clinical use in the U.S.: the Selenia Dimensions (Hologic Inc., Bedford, MA). While 

previous studies have investigated the normalized mean glandular dose for DBT overall, 

the comprehensive dosimetric characterization study outlined in chapter 3 of this thesis 

investigates the dosimetry characteristics of this specific tomosynthesis system. It takes 

into account the specific X-ray spectra and acquisition protocols automatically chosen by 

the system, and details the absolute mean glandular dose values for breasts of differing 

thickness and glandular composition. In addition, the Selenia Dimensions is also able to 

perform full field digital mammography (FFDM), which allows for a direct comparison 

of dose resulting from FFDM and DBT. The dosimetric characterization of DBT 

acquisitions by this system also allow for the investigation of novel acquisition 

techniques, such as that proposed in chapter 6 of this thesis.  

However, there are at least five other systems currently in development that could 

arrive in the clinic over the next several years.33 Some of these DBT systems incorporate 

design aspects to differentiate them from the geometry shown in Figure 1.1. For instance, 

some systems replace the conventional X-ray tube with a carbon nanotube array to avoid 

focal spot blurring due to X-ray tube motion.34-40  Such a system could also potentially 

shorten total acquisition time. Another DBT system incorporates a scanning slit photon 

counting detector and a collimated X-ray fan beam, resulting in low scatter signal and 

electronic noise and high quantum efficiency.41-43 Others have proposed a DBT system in 

which the X-ray tube is not limited to a single movement plane during acquisition. There 

are designs in which the X-ray source and detector move in circular paths parallel to each 

other,44 and also those which incorporate an arc-and-line CT scan to improve the 

resolution quality of the DBT acquisition45. Research has also been performed on systems 

in which the X-ray source moves in two arcs normal to each other to cover a portion of a 

spherical surface above the imaged breast, to improve image quality by sampling the 

frequency domain to a greater extent. 46, 47  
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1.3 Approach - Novel Software-Based Solutions 

 The emergence of DBT as a potential replacement or adjunct to mammographic 

screening mandates that solutions be found to two of its major limitations, namely X-ray 

scatter and mono-energetic reconstruction methods. All the previously described 

tomosynthesis systems that incorporate a full-field detector lack X-ray scatter reduction 

measures, be it in software or hardware, leading to the inclusion of the entirety of the X-

ray scatter signal in the tomosynthesis projections. In mammography, an anti-scatter grid 

focused on the fixed X-ray source lowers the ratio of the number of scattered X-rays 

incident on the detector to that of the number of incident primary (non-scattered) X-rays, 

or the scatter-to-primary ratio (SPR). In DBT, multiple projections are acquired as the X-

ray source rotates around the breast, which prevents the use of such an anti-scatter grid 

due to the severe cut-off of primary X-rays by the grid in the non-normal projections. It 

has previously been shown that in DBT the SPR can be as high as 1.6, depending on, in 

decreasing order of importance, breast thickness, projection angle, breast tissue type, and 

breast size.20 It has also been shown that if the scatter X-rays are not removed or 

otherwise accounted for before tomosynthesis reconstruction, the resulting volume 

exhibits cupping artifacts and a reduction in the accuracy of reconstruction values of up 

to 28%.48-50 Wu et al. also found that inclusion of the scatter signal led to reductions in 

the signal-difference-to-noise ratio (SDNR) of  up to 60%, and in the contrast of lesions 

of up to 30%.49 

 To reduce the impact of scattered X-rays in tomosynthesis, I investigated the 

feasibility of a software-based X-ray scatter correction algorithm, centered on Monte 

Carlo (MC) simulations of a DBT system, which is applied to the acquired tomosynthesis 

projections before reconstruction. This approach was devised by Dr. Ioannis 

Sechopoulos, and is based on pre-computed MC simulations of the scatter signal in 

acquired tomosynthesis projections.20 Once a map of the scatter signal in a projection of a 

standard shaped breast is identified, it undergoes deformation and registration to match 
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the image of the patient breast. This is then used to determine the primary signal of the 

acquired projection. These estimated primary images are then to be used in the 

reconstruction process, in place of the acquired projections. 

 A software-based approach allows for the solution to be implemented without 

necessitating the addition or modification of any hardware to DBT systems that have 

already been FDA-approved. This approach also does not modify the image acquisition 

process itself in any way; therefore there is no increase in resulting radiation dose to the 

patient, nor is there any change in acquisition time. This would prevent the patient from 

being subjected to any additional discomfort or pain. I have optimized and applied this 

algorithm to DBT acquisitions of both phantoms and patients, and have studied the 

resulting image reconstructions. In chapter 2 of this thesis, I describe this algorithm in 

further detail and also present a study comparing the image quality of the original 

uncorrected reconstructions to that of the scatter corrected reconstructions. I have 

determined that this approach holds great potential to improve the clinical performance of 

DBT. 

 This X-ray scatter correction algorithm did require further research to bring it 

closer to use in the clinical realm. In chapter 7 of this thesis, I describe the development 

of a model of the scatter images of homogenous clinically-encountered breasts of various 

sizes to optimize the application of the scatter map in the scatter correction algorithm. 

This scatter model will be used to generate a set of scatter maps which can then be used 

in the algorithm to scatter correct any acquired DBT image without the need for a pre-

computed library of MC simulations that encompasses the range of breast shapes and 

sizes that may be encountered clinically. 

 The reconstruction of the pseudo-3D image from the set of projections of a DBT 

acquisition is a crucial step which is limited by the false assumption of current 

reconstruction methods that the energies of X-rays used in the acquisition beam are 

identical, and thus all undergo the same attenuation as they pass through the breast tissue. 
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The three main types of reconstruction algorithms all suffer from this same limitation.15 

This mono-energetic assumption is adequate for applications such as computed 

tomography (CT), which utilizes a heavily filtered, high energy X-ray beam. However, 

X-ray beams typically used in DBT imaging include a wider and lower range of energies 

(Figure 1.2), making them more susceptible to beam hardening. The distribution of X-ray 

energies that reaches the image detector differs greatly from that of the beam entering the 

breast after undergoing attenuation in the tissue. The only way to account for this 

phenomenon is to reconstruct the DBT 3D images using a revolutionary spectral 

reconstruction algorithm, such as the one developed by Dr. Sechopoulos, Dr. James 

Nagy, and Dr. Julianne Chung that takes into account the distribution of X-ray energies 

present in the beam and the different attenuation that X-rays of different energies 

undergo.51 

 
 
 

Figure 1.2 – Typical X-ray spectra used in BT imaging, upon entering (black) and 
exiting (green) the imaged breast. Both spectra are normalized to an area of unity.  The 
variation in spectrum throughout the breast is apparent. The blue dashed line depicts the 
linear attenuation coefficient of breast tissue, which can be seen to vary considerably with 
X-ray energy. 
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 This spectral reconstruction algorithm takes as input the distribution of X-ray 

energies, or X-ray spectrum, present in the beam which allows for a better representation 

of the true physical processes of a DBT acquisition. The algorithm reconstructs a pseudo-

3D image that is a more accurate representation of the breast, and offers the potential to 

allow for new image acquisition techniques, such as DBT acquisition with varying X-ray 

beams. This may result in an increase in early breast cancer detection and a reduction in 

unnecessary additional procedures to investigate false positives. 

 In chapter 6, I describe the optimization and testing of a new implementation of 

the spectral reconstruction, collaboration of our group and Dr. James Nagy’s group, 

targeted for graphics processing units (GPUs). This GPU implementation, developed in 

C++ using OpenCL libraries, greatly shortens the computational time, to clinically 

feasible limits, and is fully detailed in Bustamante et al.52 This completed and optimized 

algorithm implementation was used to reconstruct patient DBT acquisitions, and the 

image quality of the reconstructions was evaluated and compared to that of mono-

energetic reconstructions of the same dataset. In addition, I explored a novel dual-

spectrum, single-acquisition imaging technique, possible only with the spectral 

reconstruction, which has the potential to improve image quality and/or reduce the 

resulting radiation dose to the patient.  

 I believe that this dual-faceted approach to improving the image quality of DBT 

images, firstly by correcting for X-ray scatter and secondly by reconstructing the 3D 

image using a more physically appropriate method, is very innovative. A scatter 

correction algorithm centered on an analytical model of X-ray scatter and primary images 

is novel and distinct from anything that has been previously attempted. In addition, the  

comprehensive analysis of the range and variation in the size of patient breasts in both the 

cranio-caudal and medio-lateral oblique views during mammographic and DBT imaging, 

described in chapter 4, will prove useful in future research in dosimetry, image 

registration and computer-aided diagnosis. The spectral reconstruction method is novel 
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and distinct from all current mono-energetic reconstruction methods for DBT imaging. In 

addition, the dual-spectrum single-acquisition DBT technique has, to my knowledge, not 

yet been attempted.  

 This thesis in total documents the successful completion of the development, 

optimization, and testing of the scatter correction and spectral reconstruction algorithms. 

These provide improved DBT image quality, are ready for implementation and clinical 

evaluation in a DBT system, and have the potential to increase the sensitivity and 

specificity of breast cancer detection and diagnosis with breast tomosynthesis. The 

feasibility of a new dual-spectrum, single-acquisition, DBT imaging technique has also 

been evaluated and found to demonstrate great potential in improving image quality 

while reducing patient dose.  
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CHAPTER 2 

A SOFTWARE-BASED X-RAY SCATTER CORRECTION METHOD 

FOR BREAST TOMOSYNTHESIS 

 

 In this chapter, I present a software-based scatter correction method for digital 

breast tomosynthesis (DBT) imaging, and an investigation into its impact on the image 

quality of tomosynthesis reconstructions of both phantoms and patients.  

 A Monte Carlo (MC) simulation of X-ray scatter was developed and used to 

generate maps of the scatter-to-primary ratio (SPR) of a number of homogeneous 

standard-shaped breasts of varying sizes. Dimension-matched SPR maps were then 

deformed and registered to DBT acquisition projections, allowing for the estimation of 

the primary X-ray signal. Noise filtering of the estimated projections was then performed 

to reduce the impact of the quantum noise of the X-ray scatter. This process was tested on 

acquisitions of a tomosynthesis phantom and on acquisitions of patients. The image 

quality of the reconstructions of the scatter-corrected and uncorrected projections was 

analyzed. 

 The reconstructions of the scatter-corrected projections demonstrated superior 

image quality. Some embedded microcalcifications in the tomosynthesis phantoms were 

visible only in the scatter-corrected reconstructions. The visibility of the findings in 

patient images was also improved by the application of the scatter correction algorithm. 

The spatial resolution of the images was not adversely affected. This software-based 

scatter correction algorithm exhibits great potential in improving the image quality of 

DBT acquisitions of both phantoms and patients. 
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2.1 Significance 

 Digital breast tomosynthesis (DBT) imaging11 is emerging as a potentially 

feasible replacement or adjunct to standard mammography for the screening and 

diagnosis of breast cancer. This imaging method allows for the generation of pseudo-

three-dimensional (3D) images of the breast, which can provide greater detail about the 

structure of the tissue, and overcomes one of the main limitations of mammography, that 

is the compression of information of a 3D structure into a two-dimensional image. In 

DBT, multiple low dose projections of the breast are acquired over a limited angular 

range; these projections are then used to calculate a pseudo-3D reconstruction of the 

imaged tissue.11, 19, 53 Preliminary studies have shown that DBT has the potential to 

improve on the clinical performance of breast cancer screening and/or diagnosis.25-28   

 Current tomosynthesis systems, including the Selenia Dimensions (Hologic Inc., 

Bedford, MA) used in this study, lack X-ray scatter reduction measures, be it in software 

or hardware, leading to the inclusion of the entirety of the X-ray scatter signal in the 

tomosynthesis projections. In mammography, an anti-scatter grid oriented towards the 

fixed X-ray source lowers the ratio of the number of scattered X-rays incident on the 

detector to that of the number of incident primary (non-scattered) X-rays, or the scatter-

to-primary ratio (SPR). In DBT, multiple projections are acquired as the X-ray source 

rotates around the breast, which prevents the use of an anti-scatter grid due to the severe 

cut-off of primary X-rays by the grid in the non-normal projections. Therefore, as we 

have previously shown, in DBT the SPR can be as high as 1.6.20 It has also been shown 

that if the scatter X-rays are not removed or otherwise accounted for before 

tomosynthesis reconstruction, the resulting volume exhibits cupping artifacts, reduced 

accuracy in reconstruction values, and reduced contrast. 48-50  

 Here we present a software-based X-ray scatter correction algorithm that is 

applied to the acquired tomosynthesis projections before reconstruction. The strength of 
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this algorithm lies in a pre-computed “library” of SPR maps for homogeneous standard-

shaped breasts of various sizes that can be used to scatter-correct any acquired patient 

DBT image without performing a case-specific and time-intensive Monte Carlo (MC) 

simulation. We have applied this method to tomosynthesis acquisitions of both phantoms 

and patient data, and studied the resulting image reconstructions. By comparing the 

image quality of the original uncorrected reconstructions to that of the scatter corrected 

reconstructions, we have determined the effectiveness of our method and its ability to 

potentially improve the clinical performance of DBT when its use is widespread. 

2.2 Materials and Methods 

 The scatter correction algorithm is comprised of four distinct steps: retrieval of a 

previously computed Monte Carlo (MC) simulation of a SPR map of a geometrically 

similar DBT acquisition, registration of the SPR map to the acquired breast projections, 

removal of the low-frequency scatter signal, and noise filtering of the projections. The 

retrieved SPR images are computed from a MC simulation implemented in C++ based on 

the Geant4 Monte Carlo simulation toolkit,54, 55 similar to that used in Sechopoulos et 

al.19-21 The simulations generate two images, comprised of the incident scattered and 

primary X-ray energy, which are combined to form a scatter-to-primary (SPR) map. This 

SPR map is then deformed and registered to the acquired breast projections. The 

registered SPR map and the original projection are used to estimate the primary signal, 

henceforth known as a scatter corrected projection. Lastly, the scatter corrected 

projections undergo noise filtration and three dimensional (3D) reconstruction.  

 This procedure was tested on multiple tomosynthesis projection sets acquired by a 

clinically approved breast digital tomosynthesis system (Selenia Dimensions, Hologic 

Inc., Bedford, MA) installed at Emory University. The first tests were performed on 

images of a heterogeneous background Model 020 BR3D tomosynthesis phantom (CIRS 

Inc., Norfolk, VA), including a “target” plate with representations of embedded spheroid 
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masses, fibers, and microcalcification clusters. Subsequently, as a preliminary study, the 

scatter correction algorithm was performed on acquisitions from two distinct patients, one 

in which a mass is present, and one in which microcalcifications are present. Given the 

limited number of cases included in this study, only SPR maps with geometry matching 

these cases were generated from the MC simulation. In the future, a comprehensive 

library of SPR maps of standard shaped breasts can be assembled, and the corresponding 

SPR maps would be selected. After correction, all cases were reconstructed using the 

Maximum Likelihood-Expectation Maximization (MLEM) reconstruction algorithm,53 

although any reconstruction algorithm could be used. 

2.2.1 Monte Carlo Simulations 

 We developed our C++ implementation of MC simulations to match the 

acquisition geometry of the Selenia Dimensions system for the cranio-caudal (CC) view. 

The system acquires 15 projections over a 15 degree angular range, with the X-ray tube 

positioned directly perpendicular to the image detector for the middle (tomosynthesis 

angle = 0 deg) projection. The simulation includes the X-ray source, the image detector, 

the breast support plate, and the breast compression paddle. The X-ray tube is modeled as 

a point source with the center of rotation located at the surface of the detector. Complete 

details of the system have been previously published in Ren et al.56 The source to imager 

distance (SID) for the center projection is set at 70 cm (Figure 2.1). The detector 

measures 24 x 29 cm, with a pixel pitch of 70 µm. For each test case, the following 

parameters are determined from the system and the center projection: X-ray tube voltage 

(automatically selected by the system), compressed breast thickness (Th) (displayed by 

the system), chest-to-nipple distance (CND), and length along the chest wall (LCW) 

(both from the center projection). The compressed breast is modeled as a truncated semi-

ellipsoid of a homogenous 50%/50% mixture of adipose and glandular tissue positioned 

at the chest wall edge of the detector with dimensions similar to the case to be corrected 
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(Figure 2.2). When simulating breast phantoms as opposed to patients’ breasts, the breast 

model is altered such that it has constant thickness at the outer edge, away from the chest 

wall, to match the straight edges of the phantoms.   
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Figure 2.1 – The breast tomosynthesis system acquires 15 projections (of which only 3 
are shown here), spaced evenly, from -7.5 degrees to +7.5 degrees of the central line 
perpendicular to the image detector plane, located at the edge of the detector next to the 
chest wall 
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Figure 2.2 – Monte Carlo simulations of the breast in the CC view and system geometry 
include the image detector, measuring 24 x 28 cm, with 7.0 mm pixels, the support plate, 
the compressed breast, and the compression paddle. The breast parameters of chest-to-
nipple distance (CND), length along the chest wall (LCW), and compressed breast 
thickness (Th, not depicted) are determined for each case and input as parameters to the 
simulation. The compressed breast depicted here has curved edges opposite the chest 
wall, resembling patient breasts. For the simulations for the tomosynthesis phantom, the 
simulated breast model had straight edges. 
 
 
 
 For each test case, we performed simulations of five hundred million (5.0x108) 

mono-energetic X-rays emitted from the X-ray tube towards the detector for each energy 

level from 10.0 keV to the maximum energy level of the spectrum selected by the 

tomosynthesis system, in 0.5 keV steps. Each photon that arrives at the detector face was 

recorded as a primary X-ray, or as a scatter X-ray if it experienced at least one Rayleigh 
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and/or Compton scattering event. Since it is known that X-ray scatter varies slowly over 

the detector, a pixel pitch of 0.7 mm was used in the MC simulations to decrease the 

simulation time. The simulated scatter mono-energetic images were combined into 

estimated scatter spectral images using X-ray spectrum models calculated according to 

the method described by Boone et al57 and noise was reduced using the method described 

by Colijn and Beekman.58 To obtain noise-less X-ray primary images, raytracing59 was 

performed to determine the pathlength of each ray from the source to each pixel on the 

image detector. The pathlengths of the rays through each material in the simulation, 

combined with the attenuation coefficients for each material60 and X-ray energy were 

used to calculate the estimated primary spectral images. This allows for the calculation of 

a scatter-to-primary (SPR) map, which depicts the ratio of the scatter signal to the 

primary signal on a pixel by pixel basis, for each tomosynthesis acquisition projection. 

As a final step, the SPR map is resampled to the pixel pitch of the imaging system (140 

µm). 

2.2.2 Deformation and Registration of Scatter-to-Primary Map 

 In the next step of our scatter correction algorithm, the SPR maps obtained from 

MC simulations are deformed and registered to the acquired projections to match the 

breast tissue edge. This is crucial as the MC simulation utilizes a standardized breast 

shape, so its results have to be matched to the shape of the actual breast images that are 

being corrected. The small variability of the X-ray scatter signal with glandular fraction 

and breast size20 allows for the use of a SPR map of a homogeneous standard-shaped 

breast of similar, but not equal, size to the one being corrected, after registration to the 

edges of the acquired image. In this way, a time-consuming MC simulation does not have 

to be performed for each DBT case acquired.  

 To perform the registration, the simulated scatter and primary X-ray images are 

combined to generate a total estimate (Te) of the acquired projection (Tacq). The edge of 
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the breast and the chest wall in Tacq is located by thresholding, using Roberts cross 

gradient operators, and edge thinning. 61-63 Points along the edge and chest wall are 

chosen, defining an outer border. For each of these outer points, an inner point is defined 

1 cm inwards, parallel to the image gradient, of the breast tissue projection. The outer and 

inner borders of the breast and the center of mass are used in a thin-plate spline 

interpolation registration of Te to Tacq in order to determine the transformation (R) 

necessary to match the shape and position of the of these two breast images.64 This 

transformation, consisting of a deformation and rotation and translation, is then applied to 

the SPR map to generate a registered SPR map (R{SPR}).  

 For any signal T that consists of the sum of a scatter signal (S) and a primary 

signal (P), it is known that S, SPR, and T are related according to the equation: 

ܵ ൌ ܶ ቀ ௌ௉ோ
ଵାௌ௉ோ

ቁ     (Equation 2.1) 

 In this application, as the scatter signal in tomosynthesis has been shown 

previously to be composed primarily of low frequency signal, Tacq needs to be low-pass 

filtered before it is used in Equation 2.1. Therefore, a low-pass filtered version of Tacq 

(Tacq-LP) is used to calculate the registered estimated scatter images (Se) using the 

following equation:  

ܵ௘ ൌ ௔ܶ௖௤ି௅௉ ቀ
ோሼௌ௉ோሽ

ଵାோሼௌ௉ோሽ
ቁ    (Equation 2.2) 

 The final registered primary X-ray estimates (Pe) are then calculated by 

subtracting Se from Tacq.  

2.2.3 Noise Filtration and Image Reconstruction 

 Before reconstructing the breast tomosynthesis image, the Pe images undergo 

noise-filtering to reduce the impact of the quantum noise of the scattered X-rays, since 

the previous steps only correct for the low-frequency offset from the scatter signal. For 

this, a 3x3 pixel kernel adaptive means filter is utilized, with a minimum variance level 
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0.25 times the noise variance level measured from tomosynthesis image acquisitions of 

matched thickness phantoms representative of homogenous 50%/50% glandular/adipose 

tissue (CIRS Model 082).65  

 Finally, the DBT reconstruction is performed using the noise filtered Pe. For this 

study, the maximum likelihood expectation maximization (MLEM) iterative method 

described by Wu et al was used, as this method has been shown to be very effective at 

balancing the image quality of both masses and microcalcifications.15, 53 However, the 

corrected projections resulting from our method can be used for reconstruction with any 

algorithm. 

2.2.4 Image Quality Comparison 

 In order to determine the benefits realized by the scatter correction algorithm, the 

complete process described above was performed on acquisitions of a phantom and 

patient cases, and the image quality of the resulting scatter-corrected reconstructed 3D 

images was compared to that of the original, uncorrected reconstructions using image 

contrast metrics such as maximum signal difference, signal-difference to-noise ratio, and 

integrated mass signal. In addition, to better understand the impact that each portion of 

the scatter correction algorithm has on the reconstructed image quality, reconstructions of 

the phantom projections after undergoing only the X-ray scatter quantum noise filtration 

(TF) were also obtained and evaluated. The datasets are all reconstructed to image stacks 

of 0.14 mm x 0.14 mm x 1.0 mm voxels. 

 The patient case datasets were acquired for an unrelated IRB-approved clinical 

study from which the images were released for use in other research projects. For the 

phantom cases, the CIRS Model 020 BR3D Tomosynthesis phantom was utilized, 

consisting of 1 cm thick slabs of a heterogeneous 50%/50% mixture of adipose and 

glandular tissue. This phantom represents real tissue better than a homogenous phantom, 

and tests tomosynthesis’ ability to suppress tissue superposition. One of the 1 cm thick 
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slabs, the “target slab”, has embedded spheroid tumor masses, fibers, and 

microcalcification clusters of differing sizes (Figure 2.3). Phantoms measuring 5 cm and 

8 cm thick were imaged, with the target plate located at heights of 3 cm and 5 cm, 

respectively, and the image quality of the 3D images was evaluated using three metrics. 
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Figure 2.3 – (a) The CIRS Model 082 Breast Mammography Phantom, representing a 
50/50 heterogeneous mixture of glandular and adipose tissue contains three types of 
embedded targets of varying sizes: (b) spheroid masses, (c) fibers, and (d) 
microcalcification clusters. 
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 The maximum signal-difference (SD) and signal-difference to noise ratio (SDNR) 

of the spheroid mass targets were calculated by measuring the maximum and minimum 

signal of a region of interest (ROI) centered on each mass and the noise of a designated 

area of background signal in the focal plane. The circular ROI around the spheroid mass 

was chosen such that its diameter spanned 60 voxels and encompassed each mass 

entirely. Therefore, the SD and SDNR were calculated as follows: 

ܦܵ ൌ  ௠௜௡      (3)ܫ ௠௔௫െܫ

ܴܰܦܵ  ൌ ூ೘ೌೣି ூ೘೔೙
ఙಳಸ

,     (4) 

where Imax is the maximum voxel value in the ROI, Imin is the minimum voxel value in the 

ROI, and σBG is the standard deviation of voxel values in the background area, which is a 

fixed circular region with a diameter of 25 voxels in the focal plane, chosen for its 

homogeneity.  

 Another quantitative measure of the image quality of the spheroid mass targets is 

the gray level signal profile measured in the direction perpendicular to the chest wall. 

From this profile, the integrated mass signal (IMS) was calculated for each mass. We 

define IMS as the area under the signal profile curve above the signal at the edge of the 

mass itself, where the minimum gray levels are found (Figure 2.4). The IMS therefore 

represents the combined signal difference of the mass itself from its immediate 

surroundings.  
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Figure 2.4 – (a) To measure the Integrated Mass Signal (IMS), between the mass edges, 
gray level signal profiles of each of the spheroid masses were taken in the direction 
perpendicular to the chest wall. (b) The gray level signal is offset from the minimum 
signal level of the profile, which is found at the edge of the spheroid mass. The IMS is 
the area (grey) under the offset profile curve. 
 
 
 
 To determine if the scatter correction algorithm has a significant impact on the 

image contrast of the spheroid masses, the Wilcoxon signed-rank test was used. The test 

was applied to the SD, SDNR, and IMS for all masses in both the 5 cm and 8 cm thick 

phantoms, to compare differences in each measure between the original reconstructions 

and either test case: (i) the reconstructions of the scatter corrected projections or (ii) the 

reconstructions of noise filtered-only projections. In both cases, the null hypothesis is that 

the median difference of the image contrast measurement, across the masses, between the 

original reconstruction and the test case is zero. The Wilcoxon signed-rank test was 

chosen over a paired t-test as the distribution of differences could not be assumed to be 

normally distributed.  

 To ensure that the resolution of the DBT reconstructions was not compromised by 

the noise filtration process, the modulation transfer function (MTF) of the projections 

before and after undergoing filtering was measured. The line response function (LRF) of 

the projections of the system was measured using a TX-5 tungsten edge (Scanditronix 

Wellhöfer, Schwarzenbruck, Germany), following the method of Kyprianou et al.66 The 
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MTF was calculated by taking the Fourier transform of the LRF.67 These projections then 

underwent noise filtration with the filter’s variance parameter set to 1, 0.5, and 0.25 times 

the noise variance level, the lowest level (0.25x) being the actual level used in the noise 

filtration process. The MTF of the noise filtered projections was compared to that of the 

unfiltered projections.  

2.3 Results 

2.3.1. Scatter Correction of Phantom Images 

 Reconstructed slices of the focal plane of the target plate of the 5 cm and 8 cm 

thick phantoms are shown in Figure 2.5 and Figure 2.6, respectively. Figure 2.5(a) 

depicts the reconstruction of the original uncorrected projections (O), while Figure 2.5(b) 

shows a zoomed-in view of the second largest of the spheroid masses (M2) and Figure 

2.5(c) shows a zoomed-in view of the 4th largest microcalcification cluster (C4). Figure 

2.5(d) - Figure 2.5(f) depict the same ROIs, respectively, of the reconstruction of the 

noise filtered TF projection set (F) , while Figure 2.5(g) - Figure 2.5(i) depict the same 

ROIs, respectively, of the reconstruction of the fully scatter corrected projection set (C) 

of the 5 cm thick phantom. All images are displayed with equal window width but 

different window levels. In Figure 2.5(i), white arrows point to two microcalcifications of 

the C4 set which can be clearly seen in the C reconstruction, but not in the O 

reconstruction (Figure 2.5(c)) and to a lesser extent in the F reconstruction (Figure 

2.5(i)). Figure 2.6 depicts similar views of the three reconstructions of the 8 cm thick 

phantom, with the zoomed in views centered on the fourth largest spheroid mass (M4) 

and C4. In Figure 2.6(i), white arrows point to two microcalcifications of the C4 set 

which, like in the 5 cm phantom, can be clearly seen in the C reconstruction, but not in 

the O reconstruction (Figure 2.6(c)) and to a lesser extent in the F reconstruction (Figure 

2.6(f)). 
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Figure 2.5 – (a) Uncorrected in-plane slice of the focal plane of the embedded target 
plate located at the center of the 5 cm thick heterogeneous phantom, with marked regions 
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of interest (ROI). (b) Uncorrected zoomed-in view of the ROI centered on the second 
largest of the spheroid masses (M2). (c) Uncorrected zoomed-in view of the ROI centered 
on the fourth largest microcalcification cluster (C4). White arrows point to 
microcalcifications that are present, but not visible. (d) Scatter corrected slice of the 
embedded target plate of the 5cm thick phantom, with boxed ROIs. (e) Scatter corrected 
zoomed-in view of the ROI centered on M2. The SDNR of this mass exhibited a 65% 
increase following scatter correction. (f) Scatter corrected zoomed-in view of the ROI 
centered on C4. White arrows point to microcalcifications not visible in (c) that are 
visible here. These images are displayed with equal window width but different window 
levels. 
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Figure 2.6 – (a) Uncorrected in-plane slice of target plate at center of 8 cm thick 
phantom, with boxed ROIs. (b) Uncorrected zoomed-in view of the ROI centered on the 
fourth largest spheroid mass (M4). (c) Uncorrected zoomed-in view of the ROI centered 
on C4. White arrows point to microcalcifications that are present, but not visible. (d) 
Scatter corrected slice of target plate of the 8cm thick phantom, with boxed ROIs. (e) 
Scatter corrected zoomed-in view of the ROI centered on M4. The SDNR of this mass 
exhibited a 26% increase following scatter correction. (f) Scatter corrected zoomed-in 
view of the ROI centered on C4. White arrows point to microcalcifications not visible in 
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(c) that are visible here. These images are displayed with equal window width but 
different window levels. 
 
  

 Quantitative analysis of the reconstructions of the O, F, and C sets revealed that 

the scatter correction algorithm improves the SD (Table 2.1), the SDNR (Table 2.2), and 

the IMS (Table 2.3) of the spheroid masses located in the target plate. The C 

reconstructions of the 5 cm thick phantom exhibited a 60%-66% improvement in SD and 

SDNR across the four largest spheroid masses (M1-M4). The C reconstructions of the 8 

cm thick phantom exhibited a more modest improvement (17%-32%) in SD and SDNR. 

The improvements in both metrics were statistically significant (SD: Wilcoxon’s W=0, p 

< 0.01, n=8; SDNR: W=0, p < 0.01). Note that the C/O ratio of SD is very similar to the 

C/O ratio of SDNR because the measured noise of the C reconstructions approaches that 

of the O reconstructions. Although in most cases noise filtering only improves image 

quality, the fully scatter-corrected reconstructions exhibit the greatest improvement in 

both SD and SDNR. The C reconstructions also demonstrate improvements of 15-62% in 

IMS (W=0, p < 0.01), whereas the F reconstructions exhibit decreased IMS 

measurements (W=0, p < 0.01). This can also be seen in the offset signal profiles 

displayed Figure 2.7, from which the IMS is calculated. Note also that the C/O ratios of 

IMS measurements for all four spheroid masses of the 8 cm thick phantoms are greater 

than the corresponding C/O ratio of IMS for the 5 cm thick phantom. The two smallest 

masses (M5 and M6) cannot be clearly seen in any of the reconstructions, and therefore 

were excluded from the analysis.  
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Table 2.1 – Ratio of Maximum Signal Difference (SD) of Spheroid Masses in 
Heterogeneous Tomosynthesis Phantom between the original reconstructions (O) and the 
noise-filtered-only (F) and scatter-corrected (C) reconstructions. Wilcoxon signed-rank 
test applied across masses M1-M4 in both phantoms revealed that the differences seen in 
SD between the C reconstructions and the O reconstructions was significant (Wilcoxon’s 
W=0, p < 0.01, n=8), while the differences in SD between the F reconstructions and the 
O reconstructions was not (W=14, p > 0.2). 

Table 2.1 
Phantom 

Thickness 
(cm) 

Reconstruction 
Set M1 M2 M3 M4 

5 F/O Ratio 1.10 1.15 1.09 1.19 

5 C/O Ratio 1.60 1.65 1.66 1.65 

8 F/O Ratio 0.75 0.83 0.82 0.78 

8 C/O Ratio 1.17 1.31 1.32 1.26 

 

 
Table 2.2 – Ratio of Signal-Difference to Noise Ratio (SDNR) of Spheroid Masses in 
Heterogeneous Tomosynthesis Phantom between the original reconstructions (O) and the 
noise-filtered-only (F) and scatter-corrected (C) reconstructions. The differences seen in 
SDNR between the C reconstructions and the O reconstructions and between the F and O 
reconstructions were both significant (Wilcoxon’s W=0, p < 0.01). 

Table 2.2 
Phantom 

Thickness 
(cm) 

Reconstruction 
Set M1 M2 M3 M4 

5 F/O Ratio 1.46 1.53 1.46 1.59 

5 C/O Ratio 1.60 1.65 1.66 1.65 

8 F/O Ratio 1.13 1.24 1.23 1.17 

8 C/O Ratio 1.17 1.31 1.32 1.26 
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Table 2.3 – Ratio of Integrated Mass Signal (IMS) of Spheroid Masses in Heterogeneous 
Tomosynthesis Phantom between the original reconstructions (O) and the noise-filtered-
only (F) and scatter-corrected (C) reconstructions. The differences seen in IMS between 
the C reconstructions and the O reconstructions and between the F and O reconstructions 
were both significant (Wilcoxon’s W=0, p < 0.01). 

Table 2.3 
Phantom 

Thickness 
(cm) 

Reconstruction 
Set M1 M2 M3 M4 

5 F/O Ratio 0.85 0.75 0.88 0.91 

5 C/O Ratio 1.19 1.15 1.22 1.29 

8 F/O Ratio 0.79 0.90 0.93 0.83 

8 C/O Ratio 1.26 1.28 1.62 1.30 
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Figure 2.7 – Offset Gray Level Signal Profiles of Spheroid Masses measured from 
Original (O), Filtered (F), and Scatter Corrected (C) reconstructions – The signal profiles, 
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measured in the direction perpendicular to the chest wall, of the masses M1-M4 of the 
target plate of the  5 cm thick phantom can be seen in (a), (b), (c), and (d), respectively, 
while those  of the 8 cm thick phantom can be seen in (e), (f), (g), and (h). The area under 
the profile curve, or Integrated Mass Signal (IMS), of the C reconstructions (grey) is 
greater than that of the O reconstructions (black), which in turn is greater than that of the 
F reconstructions (dashed black). This suggests that the masses are easiest to distinguish 
from their surroundings in the C reconstructions. 
 
 
 
 The MTF of the central projection of a DBT acquisition was computed and can be 

seen in Figure 2.8. The MTF of the system’s projections did not differ before and after 

four degrees of noise filtration was applied to the projections (Figure 2.8). Thus, the noise 

filtration did not alter the resolution of the Selenia Dimensions system. 

 
 

 
Figure 2.8 - Comparison of MTF before and after noise filtration - The MTF of the 
projections in the direction parallel to the X-ray tube movement before and after 
undergoing differing levels of noise filtration. The filter’s variance parameter was set to 
0.25, 0.5, and 1.0 times the noise variance level. 
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2.3.2 Scatter Correction of Patient Cases  

 In-plane views of the O and C reconstructions of the first patient case (Patient A), 

centered around a mass anterior to the nipple, are displayed in Figure 2.9(a) and Figure 

2.9(b), respectively. In-plane views of the O and C reconstructions of the second patient 

case (Patient B), centered on microcalcifications at two different depths, are displayed in 

Figure 2.10. Figure 2.10(a) and Figure 2.10(b) depict the O and C sets, respectively, of 

three microcalcifications located near the X-ray tube side of the breast while Figure 

2.10(c) and Figure 2.10(d) depict the same of a single larger microcalcification located 

near the detector side of the breast. These images are also displayed with equal window 

width but different window levels. 

 
 

 
Figure 2.9 – (a) ROI of uncorrected central slice of a mass in Patient A image. (b) 
Identical ROI of the same slice, following scatter correction of the projections. These 
images are displayed with equal window width but different window levels. 
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Figure 2.10 - (a) ROI of uncorrected central slice of a microcalcification cluster in 
Patient B image. White arrow points to the smallest lesion seen in the entire image stack. 
(b) Identical ROI of the same slice of (a), following scatter correction of the projections. 
White arrow points to the smallest lesion, more visible after the correction. (c) ROI of 
uncorrected central slice of a large microcalcification of Patient B in a focal plane 
separate from (a). (d) Identical ROI of the same slice of (c), following scatter correction 
of the projections. These images are displayed with equal window width but different 
window levels. 
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2.4 Discussion 

 In this study, we presented a Monte Carlo simulation-based scatter correction 

algorithm for breast tomosynthesis and compared the image quality of both phantom and 

patient reconstructions before and after the acquired projections were scatter corrected. 

Contrast enhancement can be seen in the image reconstructions of the phantoms of 

differing thicknesses shown in Figure 2.5 and Figure 2.6, where the swirl patterns of the 

heterogeneous mixture of 50/50 glandular/adipose tissue are more distinguished in the 

scatter corrected images. The zoomed-in views of the embedded spheroid masses in 

Figure 2.5 and Figure 2.6, and the improvements in SDNR shown in Table 2.2 and the 

improvements in IMS shown in Table 2.3, 

Phantom 
Thickness 

(cm) 

Reconstruction 
Set M1 M2 M3 M4 

5 F/O Ratio 1.10 1.15 1.09 1.19 

5 C/O Ratio 1.60 1.65 1.66 1.65 

8 F/O Ratio 0.75 0.83 0.82 0.78 

8 C/O Ratio 1.17 1.31 1.32 1.26 

 

 
Table  both statistically significant, also support this conclusion.  While the scatter 

corrected reconstructions of the 8 cm thick phantom do not exhibit greater improvements 

in SDNR than those of the 5 cm thick phantom, they do exhibit greater improvements in 

IMS. As DBT is not a quantitative imaging technique, we do not believe that the SDNR 

values of the reconstructed images can be reliably compared between different-sized 

images acquired with differing X-ray spectra. Instead we propose that the IMS, calculated 

from the offset gray level signal profiles seen in Figure 2.7, allows for a better 

comparison of the visibility of the spheroid masses between different reconstructions of 



 37

the same set of projections. In addition, the zoomed in views of the C4 microcalcification 

group in Figure 2.5 and Figure 2.6 (white arrows) show that at least two of the 

microcalcifications can be clearly seen in the scatter corrected reconstructions but not in 

the original uncorrected set. The fibers also exhibit improved contrast after scatter 

correction, as they are easier to detect in both phantoms. Improvement in the visibility 

and detail of the lesions in the patient images were also seen, with no introduction of 

artifacts. 

 To determine if the noise filtering used to reduce the impact of the scatter X-rays 

quantum noise negatively impacts image resolution, we computed and compared the 

MTF of the central projection. The MTF was not reduced after the central projection 

underwent various degrees of noise filtration (Figure 2.7). Thus, we believe that there is 

no change in the spatial resolution of the images following the application of our scatter 

correction algorithm.  

 Examination of the patient images also reveals improvements in image quality. 

The mass in the Patient A image is brighter and more easily identifiable in the scatter 

corrected reconstructions and greater detail is also visible inside the mass itself (Figure 

2.9). After scatter correction, the microcalcifications in the Patient B images shown in 

Figure 2.10 are also brighter and easier to visualize. In particular, the topmost lesion in 

Figure 2.10(b) underwent the greatest improvement, which is very encouraging as it is 

also the smallest lesion. 

 The improvements in image quality realized by the scatter correction algorithm 

can not only aid clinicians in breast cancer diagnosis and screening, but it could open 

avenues for new breast tomosynthesis acquisition techniques. Recent studies have 

suggested that reduced compression of breast tissue to alleviate pain during 

tomosynthesis imaging might be possible without compromising image quality and 

without increasing patient dose.68, 69 We have performed preliminary studies to evaluate 

the feasibility of reduced breast compression in breast tomosynthesis with adjustment of 
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acquisition parameters to maintain or lower tissue dose and have found that image quality 

might be affected by the increased X-ray scatter signal due to the increased tissue 

thickness and the change in X-ray spectrum. Subsequent application of the scatter 

correction algorithm showed great promise in restoring or even enhancing the image 

quality of the reduced compression acquisitions.  

 Lastly, this method has been tested extensively on CC views of multiple 

phantoms and of multiple patient cases acquired by the clinical prototype installed at 

Emory University. We anticipate no problems in adapting the Monte Carlo simulation 

geometry to match other tomosynthesis systems or a finalized clinical system. However, 

we would like to consider improving the representation of the simulated breast tissue. 

Here, we have used the cut out center of a semi-ellipsoid, generating a symmetrically 

rounded edge of the breast tissue. In reality, compression of breast tissue probably does 

not confer such a perfect symmetry to the tissue edge, and could affect the scatter 

estimates in that region. In addition, work is currently under way to expand the method to 

accommodate the medio-lateral oblique (MLO) view of DBT systems. While the MC 

simulation can generate SPR maps of projections acquired in the MLO view, 

enhancement of the deformation and registration process is required in order to account 

for the pectoralis muscle included in these projections. We have also shown the potential 

benefits of this scatter correction method on two distinct clinical acquisitions to 

demonstrate the possible improvements in image quality on a mass and on 

microcalcifications. Also, while this is a small sample size, this study does suggest that 

further investigation of the scatter correction algorithm’s ability to improve the image 

quality of clinical images is warranted. In chapter 5, the effectiveness of this method on 

clinical DBT acquisitions that contain glandular masses and microcalcifications is 

explored to a greater degree. The impact of the algorithm on clinical detection will also 

need to be evaluated in the future.  
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 To bring this method to the clinical realm, the development of an extensive library 

of scatter maps of breasts of varying sizes and shapes and its use in the algorithm detailed 

here is also described in chapter 5. In addition, a computational model of scatter maps 

that can be used to quickly produce a patient-matched map is detailed in chapter 7. The 

presented algorithm, not including MC simulation time, can be applied in a matter of 

seconds, which would allow for a seamless inclusion of this technique in clinical DBT. In 

addition, further work on the noise filtering would include extensively testing multiple 

variance levels and kernel sizes for use in the adaptive means filter. Our parameters for 

the noise filtration were chosen once a noticeable improvement in noise level, with 

minimal impact on sharpness, was observed. Other noise filters might also offer further 

improvement. 

2.5 Conclusion  

 The software-based scatter correction algorithm presented here was successfully 

implemented and tested on digital breast tomosynthesis acquisitions of both phantoms 

and patients. We found measurable improvements in the image quality of the scatter 

corrected reconstructions of phantoms of two sizes. The application of this method to the 

reconstructions of the patient images also improved the image quality, including that of 

actionable findings in a clinical setting. This study has demonstrated the feasibility of a 

software approach to scatter reduction in DBT and could lead to both improved clinical 

performance of DBT and faster widespread adoption of this technology. 

 The promising results of this study also solidify the scatter correction algorithm as 

the first step towards the goal of this thesis, which is to improve the image quality of 

DBT imaging.  
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CHAPTER 3 

CLINICAL DIGITAL BREAST TOMOSYNTHESIS SYSTEM: 

DOSIMETRIC CHARACTERIZATION 

 

 This chapter presents a comprehensive characterization of the dosimetric 

properties of a clinical DBT system for the acquisition of mammographic and 

tomosynthesis images.  

 Compressible water/oil mixture phantoms were created and imaged using a 

Hologic Selenia Dimensions system in both DBT and full field digital mammography 

(FFDM) mode. Empirical measurements of the X-ray tube output were performed with a 

dosimeter to measure the air kerma for the range of tube current-exposure time product 

settings and to develop models of the automatically selected X-ray spectra. A Monte 

Carlo simulation of the system was developed and used in conjunction with the AEC-

chosen settings and spectra models to compute and compare the mean glandular dose 

resulting from both imaging modalities for breasts of varying size and glandular 

compositions.  

 The resulting glandular dose of DBT and FFDM acquisitions is detailed further in 

this chapter but it is noteworthy that for the 2D/3D fusion imaging performed by the 

Selenia Dimensions system, the resulting mean glandular dose for a 5 cm thick, 50% 

glandular breast is 2.50 mGy, which is below the MQSA limit for a two view screening 

mammography study. 

3.1 Significance 

 The Selenia Dimensions (Hologic Inc., Bedford, MA) DBT system, approved by 

the FDA for clinical use, is able to perform both full field digital mammography (FFDM) 

and DBT. Previous studies have investigated the normalized mean glandular dose, 
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defined as the mean glandular dose per unit reference exposure or air kerma, resulting 

from DBT overall as an imaging modality.19, 21, 70, 71 These studies provide relative dose 

coefficients with units of mean glandular dose per unit reference exposure or air kerma 

for a number of X-ray spectra. In this study, we investigate the dosimetry characteristics 

of a specific tomosynthesis system, taking into account the specific X-ray spectra and 

acquisition protocols automatically chosen by the system to obtain absolute mean 

glandular dose values for each breast of specific thickness and composition. In addition, 

the dual imaging functionality of the system allows for a direct comparison of dose 

resulting from FFDM and DBT. Given the potential for use of this system and the DBT 

modality for screening of the general population, we believe that in-depth knowledge of 

its dosimetric behavior is essential.  

 The purpose of our study was to comprehensively characterize the dosimetric 

properties of a clinical digital breast tomosynthesis system for the acquisition of 

mammographic and tomosynthesis images.  

3.2 Materials and Methods 

 To characterize the radiation dose delivered to an imaged breast, the automatic 

exposure control (AEC) of the DBT system was used to select the X-ray spectrum and X-

ray exposure settings for both FFDM and DBT acquisitions of breast phantoms of 

varying sizes and adipose/glandular compositions. Empirical measurements using a 

dosimeter were performed to determine the half value layers of the selected X-ray spectra 

and to measure the air kerma at the breast support plate for different tube current-

exposure time product settings. A Monte Carlo simulation of the Selenia Dimensions 

system was developed and used to compute the normalized mean glandular dose resulting 

from both mammography (DgNFFDM) and tomosynthesis (DgNDBT) acquisitions of breasts 

of sizes and compositions matching those of our phantoms. Finally, the mean glandular 



 42

dose was estimated by combining these results with the tube current-exposure time 

product settings chosen by the AEC.  

3.2.1 Digital Breast Tomosynthesis System 

 When performing a DBT acquisition, the system acquires 15 projections over a 15 

degree angular range (from -7.5 to +7.5 degrees).  For the central projection 

(tomosynthesis angle = 0 deg), the source-to-imager distance (SID) is 70 cm, with a 2.5 

cm air gap between the detector and the breast support plate (Figure 3.1). The isocenter 

of the X-ray tube rotation is located at the central ray of the central projection, on the 

surface of the detector. The image detector measures 24 cm x 29 cm and rotates about an 

axis located on the surface of the detector and orthogonal to the chest wall. The system 

utilizes a tungsten target, with additional aluminum filtration for performing DBT 

acquisitions and either rhodium or silver filtration for performing FFDM acquisitions. 

Compression of the breast is achieved with a 3 mm thick compression paddle. Details of 

this system were previously published by Ren et al.72 
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Figure 3.1– The Hologic Selenia Dimensions system acquires 15 projections, spaced 
evenly, over a 15 degree angular range with the center projection (tomosynthesis angle = 
0 deg) perpendicular to the image detector plane. The source-to-imager distance (SID) is 
70 cm, with a 2.5 cm airgap between detector and the breast support plate. The image 
detector measures 24 cm x 28 cm. (Image not to scale). 
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 Under clinical conditions, in fully automated mode, the system determines the 

tube voltage, the tube current-exposure time product, and, for FFDM acquisitions only, 

the filter. To determine the X-ray tube voltage and, in FFDM mode only, the filter 

material, the system uses the thickness of the compressed breast. To determine the tube 

current-exposure time product, a single low-dose scout exposure is performed before 

image acquisition and the signal at the detector is analyzed. For a DBT acquisition, this 

scout exposure is performed with the tube in the -7.5 degrees position.  

3.2.1 Automatic Exposure Control Selections 

 In order to determine the range of X-ray tube voltages and tube current-exposure 

time products the AEC would choose when imaging breasts of varying thicknesses and 

compositions, compressible phantoms of distilled water/olive oil mixtures in malleable 

plastic containers were made and imaged in the cranio-caudal (CC) view. These materials 

were chosen since water and olive oil are good analogs for breast glandular and adipose 

tissues, respectively.73, 74 Both DBT and FFDM acquisitions were performed for each 

phantom at least three times, and the observed settings were averaged. These phantoms 

were made to simulate clinically encountered breasts, and ranged from 2 cm to 8 cm 

thick, in 1 cm steps, when compressed. The thickness was determined by both checking 

the system readout and measuring the separation between the compression paddle and the 

support plate using calipers. The glandular fraction of these phantoms was fixed at 0% 

(100% olive oil), 14.3%, 25%, 50%, 75%, and 100% (100% water). The 14.3% glandular 

compressible phantom was included as it has been recently shown by Yaffe et al75 that 

this is the glandular fraction of an average breast. In addition, while the study by Yaffe et 

al75 also found that patient breasts rarely have glandular fractions above 45%, phantoms 

with glandularity up to 100% were included to allow for comparison with previously 

published studies. Acquisitions were also performed with a commercial 50% glandular 

mammography phantom (Model 082, CIRS Inc., Norfolk, VA), and the AEC chosen 
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settings compared to those recorded for the 50% glandular compressible oil/water 

phantoms of selected thicknesses. The X-ray tube voltage, filter selection, and tube 

current-exposure time product chosen for each phantom was recorded, and are heretofore 

referred to as a designated X-ray spectrum. The inclusion of the filter section was 

necessary as the system selects either rhodium or silver as added filtration in the X-ray 

tube when performing FFDM acquisitions and aluminum as added filtration when 

performing DBT acquisitions. 

3.2.2 X-Ray Tube Output Characterization 

 The X-ray source of the tested system uses a tungsten target and either a 50 µm 

thick rhodium or silver filter for FFDM acquisitions and a 0.7 mm thick aluminum filter 

for DBT acquisitions. The X-ray spectra can vary between 20 kVp and 49 kVp, as either 

selected by the AEC or manually.72 

 Each of the designated X-ray spectra, a combination of added filtration selection 

and tube voltage, observed to have been chosen for either a DBT or FFDM acquisition of 

the phantoms was modeled according to the method described by Boone et al,57 and 

matched to the first half value layer (HVL) determined empirically by measuring the X-

ray tube output using a calibrated ACCU-DOSE dosimeter (Radcal Corp, Monrovia, CA) 

and a dedicated mammography ionization chamber (Model 10X6-6M, Radcal Corp, 

Monrovia, CA). The ionization chamber was placed on the breast support plate at the 

central ray of the zero angle projection, which is the location for the reference air kerma 

used by the Monte Carlo simulations, and the air kerma measurement was recorded for a 

single acquisition with the tube current-exposure time product set at 100 mAs. 

Subsequently, additional thicknesses of aluminum (99.5% minimum, Model Number 

1901017, Unfors Instruments, Inc., Hopkinton, MA) were added at the output port of the 

X-ray tube, and the exposure was measured again with each thickness. For accuracy in 

these and all subsequent measurements, three measurements were performed for each 
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thickness of aluminum and the results averaged. The HVL of the X-ray spectral models 

was matched to the measured HVL by varying the thickness of the modeled filter of the 

X-ray tube. The expected air kerma for each additional thickness of aluminum was 

calculated from these models and compared to that measured by the dosimeter. In 

addition, to determine the relationships between the tube current-exposure time product 

and air kerma, measurements were also taken for each X-ray spectrum using at least three 

different tube current- exposure time product settings.  

 All measurements for the tomosynthesis X-ray spectra were performed with the 

X-ray tube locked in the central projection position for all 15 projections, since this is the 

definition of the reference air kerma used by this study’s Monte Carlo simulation to 

normalize its glandular dose output. The reference air kerma was defined in this manner 

to simplify its measurement, avoiding the need to locate the central ray for each 

tomosynthesis projections.19 

3.2.3 Monte Carlo Simulations 

 A Monte Carlo simulation was developed and implemented in C++, based on the 

Geant4 Monte Carlo simulation toolkit,54, 55 similar to those described in Sechopoulos et 

al.19-21 In this study, only the FFDM and DBT cranio-caudal (CC) views were studied. 

The simulation also includes the breast to be imaged, with the previously described 

varying glandular fractions, a chest to nipple distance of 10 cm, a skin thickness of 0.4 

cm, and compressed to thicknesses matching the compressible phantoms. Breasts of a 

single chest-to-nipple distance were simulated since previous studies have shown that 

both the normalized glandular dose for the central projection, and the mean of the relative 

glandular dose (RGD) for a complete symmetric tomosynthesis acquisition, especially in 

the CC view and for the limited angular range used by this system (± 7.5°), do not vary 

substantially with breast size.19 In addition, the AEC selected the same acquisition 

protocols for breast phantoms of the same thickness and composition but different size. 



 47

  Within each simulation, 1 million (106) X-rays of the same energy, from 5 keV to 

the maximum energy level of the spectrum selected by the AEC, in 0.5 keV steps, are 

emitted and tracked, and each energy deposition in the breast glandular tissue is recorded, 

according to the method of Boone et al76 and Wilkinson and Heggie.77 The 

monochromatic results are then combined as described by Boone et al78 using the 

developed spectrum models to obtain the normalized mean glandular dose (both DgNFFDM 

and DgNDBT) in units of milliGray per milliGray air kerma.  

 The previously determined relationships between the tube current-exposure time 

product and air kerma and the recorded imaging techniques chosen by the AEC were 

used to calculate the total air kerma used for each size and glandularity of breast imaged. 

Finally, this was combined with DgNFFDM and DgNDBT to calculate the mean glandular 

dose to the breast for each imaging modality.  

3.3 Results 

3.3.1 Automatic Exposure Control Selections 

 The imaging techniques, comprising X-ray tube voltage and tube current-

exposure time product, chosen by the AEC for each compressible phantom are shown in 

Table 3.1 and Table 3.2 for DBT and FFDM, respectively. A total of 14 distinct X-ray 

spectra were observed to have been chosen by the AEC, one for each compressed 

phantom thickness for each imaging modality.  

In most cases, the AEC called for higher tube current-exposure time product 

settings with increasing phantom thickness and increasing glandular fraction, as expected. 

However, certain observed measurements do not fit these trends. Those for the DBT 

acquisitions of the 8.0 cm thick phantoms with glandular fractions of 1%, 14.3%, 25%, 

and 50% were lower than those of the 7.0 cm thick phantoms. That for the 3.0 cm 

phantoms with 100% glandular fraction was lower than those for the phantom of the 
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same thickness with 75% glandular fraction and for the 100% glandular 2.0 cm thick 

phantom. These inconsistencies remained even with repeated measurement. It was 

verified that the system readout for compressed breast thickness agreed with the caliper 

measurements in all cases.  

 
 

Table 3.1- AEC SELECTIONS for DBT – The X-ray Tube Voltage and Tube Current-
Exposure Time Product Settings Determined By the Automatic Exposure Control for 
Digital Breast Tomosynthesis. Note that the values shown here are the total tube current-
exposure time product for all 15 projections. For DBT, this system always uses an 
aluminum filter. 

Table 3.1 Tube Current- Exposure Time Product (mAs) 
  Glandular Fraction (%) 

Breast Thickness 
(cm) 

Tube Voltage 
(kVp) 1 14.3 25 50 75 100 

2 26 31.0 31.0 31.7 31.3 33.0 46.3 
3 28 33.0 33.0 33.0 34.0 37.7 35.7 
4 29 45.0 45.0 45.0 45.0 49.0 65.3 
5 31 51.0 51.0 51.0 52.0 66.0 73.0 
6 33 60.0 60.0 60.0 60.0 71.7 87.0 
7 35 72.0 72.0 72.0 72.0 87.3 106.3 
8 38 69.0 69.0 69.0 69.0 89.0 111.7 
 
 
 

Table 3.2 - AEC SELECTIONS for FFDM – The X-ray Tube Voltage and Tube Current-
Exposure Time Product Settings Determined By the Automatic Exposure Control for Full 
Field Digital Mammography 

Table 3.2 Tube Current-Exposure Time Product (mAs) 
   Glandular Fraction (%) 

Breast 
Thickness 

(cm) 

Tube 
Voltage 
(kVp) 

Filter 
(Rh/Ag) 1 14.3 25 50 75 100 

2 25 Rh 29.0 30.3 38.0 39.3 44.0 60.3 
3 26 Rh 32.0 36.0 52.0 58.0 67.0 65.3 
4 28 Rh 33.7 42.7 49.0 71.3 84.3 117.3 
5 29 Rh 51.7 64.0 79.0 114.0 170.7 200.3 
6 31 Rh 78.3 89.0 90.7 150.3 216.0 315.0 
7 30 Ag 78.7 101.0 128.0 159.0 269.3 383.0 
8 32 Ag 88.0 102.0 128.7 164.3 299.7 468.7 
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 Settings chosen by the AEC for the 50% glandular compressible phantoms 

matched closely those chosen for the Model 082 50% glandular commercial 

mammography phantom for thicknesses of 2.0 cm, 4.0 cm, 6.0 cm, and 8.0 cm for both 

the DBT and FFDM modes (Table 3.3).  

 
 
Table 3.3 – AEC Selections for Phantoms – Comparison of the Tube Current-Exposure 
Time Product Settings for Digital Breast Tomosynthesis and Full Field Digital 
Mammography between the CIRS Model 082 50% Glandular Phantom and the 50% 
Glandular Compressible Phantom. Note that the X-ray spectra selections by the AEC 
were identical, in terms of tube voltage, for phantoms of the same thickness. 

Table 3.3 Tube Current- Exposure Time Product (mAs) 
Imaging 
Modality 

(DBT/FFDM) 

Breast 
Thickness 

(cm) 

Tube 
Voltage 
(kVp) 

CIRS Model 082 
Phantom (mAs) 

50 % Glandular 
Compressible Phantom 

(mAs) 
DBT 2 26 32.0 31.3 

 4 29 45.0 45.0 
 6 33 60.33 60.0 
 8 38 69.33 69.0 

FFDM 2 25 39.67 39.33 
 4 28 71.67 71.33 
 6 31 151.0 150.33 
 8 32 166.33 164.33 

 
 

3.3.2 X-ray Tube Output Characterization 

 The calculated expected change in air kerma of the developed X-ray spectrum 

models deviated by less than 4% from the measured air kerma changes recorded with the 

dosimeter when additional thicknesses of aluminum were placed under the X-ray tube 

output port. This comparison is shown for two example spectra: a 30 kVp W/Al 

tube/filter combination selected for DBT, and a 25 kVp W/Rh tube/filter combination 

selected for FFDM in Figure 3.2. The relationships between air kerma and tube current-

exposure time product were found to be linear for all the designated X-ray spectra chosen 

by the AEC system with R2 values greater than 0.99). 
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Figure 3.2 – X-ray Spectra Models – Two of the developed X-ray spectra models are 
shown here: a 35 kVp W/Al tube/filter combination selected for DBT, and a 25 kVp 
W/Rh tube/filter combination selected for FFDM. The calculated estimated air kerma 
agreed well with the measured air kerma (R2 > 0.99).  
 
 

3.3.3 Monte Carlo Simulations 

 The results for the normalized mean glandular dose for DBT (DgNDBT) and for 

FFDM (DgNFFDM) are shown in Table 3.4 and Table 3.5 respectively. As can be expected, 

both DgNDBT and DgNFFDM decrease with increasing glandularity and with increasing 

breast thickness in general. There is one exception of note, the phantoms measuring 8.0 

cm thick exhibit a DgNDBT greater than that of the 7.0 cm thick phantoms of the same 

glandular fraction. However this can be attributed to the different X-ray spectra chosen 

by the AEC for phantoms of differing thicknesses.   
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Table 3.4 - DgNDBT MC Results 
Table 3.4 Normalized Mean Glandular Dose (mGy/mGy air kerma) 

 Glandular Fraction (%) 
Breast Thickness 

(cm) 1 14.3 25 50 75 100 

2 4.05 3.90 3.78 3.52 3.28 3.06 
3 3.44 3.27 3.14 2.87 2.64 2.42 
4 3.25 3.08 2.95 2.68 2.44 2.22 
5 3.05 2.88 2.75 2.48 2.25 2.05 
6 2.89 2.72 2.60 2.34 2.12 1.92 
7 2.75 2.59 2.47 2.22 2.01 1.82 
8 2.79 2.63 2.51 2.26 2.04 1.85 

 
 
 
Table 3.5 - DgNFFDM Monte Carlo Results 

Table 3.5 Normalized Mean Glandular Dose (mGy/mGy air kerma) 
 Glandular Fraction (%) 

Breast Thickness 
(cm) 1 14.3 25 50 75 100 

2 4.23 4.07 3.95 3.68 3.42 3.19 
3 3.89 4.07 3.56 3.25 2.98 2.73 
4 3.46 3.27 3.12 2.81 2.55 2.31 
5 3.15 2.95 2.81 2.51 2.26 2.03 
6 2.87 2.68 2.55 2.26 2.02 1.81 
7 2.66 2.49 2.36 2.09 1.87 1.68 
8 2.54 2.37 2.24 1.98 1.77 1.59 

 
 
 
  Calculations of the total mean glandular dose for both DBT (MGDDBT) and 

FFDM (MGDFFDM), are shown in Table 3.6 and Table 3.7 respectively. Both MGDDBT 

and MGDFFDM generally decrease with increasing glandularity and increase with breast 

thickness (Figure 3.3).   
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Table 3.6 - MGDDBT Calculated Results 
Table 3.6 MGDDBT (mGy) 

 Glandular Fraction (%) 
Breast Thickness 

(cm) 1 14.3 25 50 75 100 

2 0.764 0.735 0.727 0.670 0.657 0.857 
3 0.813 0.774 0.744 0.703 0.721 0.624 
4 1.21 1.14 1.10 0.994 0.989 1.22 
5 1.56 1.48 1.41 1.30 1.51 1.52 
6 2.07 2.12 2.18 2.10 2.43 2.85 
7 2.76 2.60 2.48 2.23 2.45 2.71 
8 3.26 3.07 2.93 2.64 3.08 3.52 

 
 
 
Table 3.7 - MGDFFDM Calculated Results 

Table 3.7 MGDFFDM (mGy) 
 Glandular Fraction (%) 

Breast Thickness 
(cm) 1 14.3 25 50 75 100 

2 0.309 0.313 0.389 0.376 0.395 0.516 
3 0.392 0.461 0.581 0.592 0.627 0.560 
4 0.455 0.544 0.595 0.779 0.832 1.05 
5 0.660 0.775 0.920 1.20 1.63 1.73 
6 1.09 1.16 1.12 1.68 2.17 2.85 
7 1.22 1.48 1.79 1.99 3.03 3.88 
8 1.53 1.66 2.00 2.28 3.74 5.26 
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Figure 3.3 – Mean Glandular Dose vs Breast Thickness – Both MGDDBT and MGDFFDM 
increased with thickness and with glandular fraction for most breasts. 
 
 
 
 The ratio of MGDDBT to MGDFFDM is shown in Table 3.8. For most of the breast 

phantom sizes in this study, a single-view DBT acquisition results in a mean glandular 

dose of less than 2 times that of a single-view FFDM acquisition. However, there are 

notable exceptions, including two breasts of 14.3% glandular fraction: those of thickness 

2.0 and 4.0 cm.  
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Table 3.8 – Ratio of MGDDBT (from Table 3.7) to MGDFFDM (from Table 3.6) 
Table 3.8 MGDDBT/MGDFFDM 

 Glandular Fraction (%) 
Breast Thickness 

(cm) 1 14.3 25 50 75 100 

2 2.45 2.35 1.87 1.76 1.65 1.65 
3 2.08 1.67 1.28 1.19 1.14 1.11 
4 2.63 2.11 1.86 1.27 1.19 1.16 
5 2.36 1.88 1.53 1.08 0.930 0.880 
6 1.90 1.83 1.95 1.25 1.12 1.00 
7 2.26 1.76 1.39 1.12 0.810 0.700 
8 2.13 1.85 1.47 1.16 0.820 0.670 

 
 
 

3.4 Discussion 

 The results of this study reveal that for the breast phantoms representing the most 

commonly clinically encountered breasts (2.0-8.0 cm, 1%-50% glandular fraction), a CC 

view acquisition can result in a mean glandular dose of 0.309 mGy to 2.28 mGy for 

FFDM and of 0.670 mGy to 3.26 mGy for DBT. Furthermore, for the breast phantom 

representing the “average” breast (5.0 cm thick, 50% glandular fraction),79, 80 the mean 

glandular dose for the FFDM and DBT acquisitions are 1.20 mGy and 1.30 mGy, 

respectively; resulting in a difference of only 8% between the two modalities, and a 

fusion 2D/3D imaging study results in a mean glandular dose of 2.499 mGy. Hendrick et 

al. reported that the mean glandular dose for the 5 cm to 6 cm thick breasts included in 

the American College of Radiology Imaging Network’s Digital Mammographic Imaging 

Screen Trial (DMIST)81 ranged from 2.06 mGy to 3.01 mGy.81 Therefore, the Hologic 

Selenia Dimensions system, in either FFDM or DBT mode results in a considerably 

lower mean glandular dose than those used in DMIST, and the combined FFDM/DBT 

study results in a dose comparable to that of a FFDM only acquisition in DMIST. For the 

breast phantom that represents the average breast from a recent study (thickness = 6.0 cm, 

glandular fraction = 14.3%),75 a CC view acquisition results in a mean glandular dose of 

1.16 mGy for FFDM and 2.12 mGy for DBT, a difference of 83%. Thus, a combined 
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FFDM/DBT breast imaging study of this breast using the Selenia Dimensions system 

results in a mean glandular dose of 3.28 mGy, 2.8 times that of a single-view FFDM and 

slightly higher than the FFDM dose range reported in DMIST for the 5 cm to 6 cm thick 

breasts. 

 For some of the thicker, denser (i.e. a glandular fraction of 75% and 100%), 

breasts, a DBT acquisition will actually result in a lower mean glandular dose – as low as 

67% as much radiation dose as a FFDM acquisition. However, this is a result of the fact 

that the tube current-exposure time product chosen by the AEC for a FFDM acquisition 

of these clinically improbable breasts is very high, ranging from 269 mAs to 469 mAs, 

resulting in a much higher MGDFFDM.  

 While previous studies have explored the normalized dosimetry of digital breast 

tomosynthesis and its comparison to digital mammography,19, 21 providing dose 

conversion coefficients in units of dose per reference exposure/air kerma, this study 

provides a detailed characterization of the dosimetry in absolute terms, including taking 

into consideration the acquisition protocols automatically selected by the AEC for 

different breasts. In addition, the combination of measurements of the system’s X-ray 

tube air kerma output, observation of the system’s automated selections of X-ray spectra 

and tube current time-exposure time products for breast phantoms of varying sizes and 

tissue compositions, and  system-specific Monte Carlo simulations to determine the 

resulting dose to the patient distinguish this work from those studies. To the best of our 

knowledge, this approach has not been previously used to characterize the dosimetry of 

any DBT system, although it has been used in the dosimetry of a dedicated breast 

Computed Tomography system.74 It should also be noted that while in this experiment we 

are probing the AEC behavior, its exact size and location is not important, as long as the 

breast phantom is located in the standard mammography position for the compressed 

breast (central to the detector at the chest-wall edge).   
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 Although this has yet to be proven possible, if in the future a single-view DBT 

acquisition replaces the current two-view FFDM screening exam, as has been discussed 

as a possibility,25, 27, 82, 83 this would result in a mean glandular dose savings, as the 

former results in a mean glandular dose of less than 2 times that of a single-view FFDM 

acquisition in most clinically encountered breasts (Table 3.3). Furthermore, if screening 

with DBT results in a reduction in recall rate, as has been suggested by previously 

published studies,25-28, 84 this could result in a reduction in population dose, since there 

would be a reduction in diagnostic work-up mammographic acquisitions, which often 

require acquisition of four to six additional views.  

 The results of this study are limited to providing the mean glandular dose 

delivered to homogeneous phantoms representing breasts of various glandular fractions. 

Future studies could include recording the AEC selections for both FFDM and DBT 

acquisitions of the same patient, followed by a comparison of the resulting mean 

glandular doses with an assumption of the glandular fraction of the patient breast. The 

use of homogeneous phantoms could also be a limitation, since in clinical conditions, the 

AEC settings are based on the signal towards the center of the detector, and therefore 

what is normally the densest part of the breast. Thus, a homogeneous phantom results in 

the AEC settings normally used for a breast with an overall lower glandular fraction; 

however, this would not affect the MGDDBT/MGDFFDM ratios found. In addition, this 

study investigated the resulting dose to the breast from CC view DBT and FFDM 

acquisitions and future studies of the resulting dose from medio-lateral oblique (MLO) 

images are needed. To perform this study for the MLO view, a realistic depiction of the 

portion of the pectoralis muscle present within the compressed tissue and in the field of 

view would need to be incorporated into the breast phantom to include its effect on the 

AEC’s selected acquisition protocol. We are not aware of any reports on how much 

muscle tissue should be included in the different sized breast phantoms to represent 

clinically encountered conditions, nor of a reasonable material to mimic its attenuation 
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properties. Furthermore, although reports have included partial data on compressed 

thicknesses for the same breast in the CC and MLO views,85, 86 a comprehensive study on 

this relationship still needs to be performed. Finally, it should be noted that mean 

glandular dose does not communicate the large variation in local dose deposition, which, 

as shown by Sechopoulos et al,74 can vary from 15-400% of the mean glandular dose. 

3.5 Conclusion  

 This dosimetric characterization of a clinical DBT system is an important 

contribution to the field of knowledge, and has major implications for patient care. In 

addition, comprehension of a dosimetry study and the resultant dose of this particular 

imaging system in both FFDM and DBT mode are critical objectives of this thesis, as the 

improvement of DBT image quality must be achieved without the compromise of 

radiation dose.  
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CHAPTER 4 

OBJECTIVE MODELS OF COMPRESSED BREAST SHAPES 

UNDERGOING MAMMOGRAPHY 

 

 In this chapter I present models of compressed breasts undergoing mammography 

based on objective analysis, that are capable of accurately representing breast shapes in 

acquired clinical images and generating new, clinically realistic shapes. 

 An automated edge detection algorithm was used to catalogue the breast shapes of 

clinically acquired CC and MLO view mammograms from a large database of digital 

mammography images. Principal component analysis (PCA) was performed on these 

shapes to reduce the information contained within the shapes to a small number of 

linearly independent variables. The breast shape models, one of each view, were 

developed from the identified principal components, and their ability to reproduce the 

shape of breasts from an independent set of mammograms not used in the PCA, was 

assessed both visually and quantitatively.  

 The PCA breast shape models of the CC and MLO mammographic views were 

found to be able to both reproduce breast shapes with strong fidelity and generate new 

clinically realistic shapes. Visual examination of modeled breast shapes confirmed these 

results. The models were also used to generate CC and MLO view mammogram breast 

shapes, using the mean PCA parameter values of these distributions and randomly 

generated values based on the fitted Gaussian distributions, which resemble clinically 

encountered breasts.  

 The PCA models of breast shapes in both mammographic views successfully 

reproduce analyzed breast shapes and generate new clinically relevant shapes. This work 

can aid in research applications which incorporate breast shape modeling, such as X-ray 

scatter correction, dosimetry, and image registration. 
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4.1 Significance 

 According to the American Cancer Society, over 287,000 new cases of breast 

cancer were estimated to be diagnosed in 2011.87 Currently, screening mammography is 

regarded as the most effective tool for early breast cancer detection and diagnosis. 

Standard mammography is a low-cost, fast, non-invasive X-ray study that involves 

relatively low doses of ionizing radiation, but has room for improvement in performance, 

demonstrating a sensitivity and specificity of 83.5% and 90.9%, respectively.88  

 A large amount of the continued research being performed to improve the clinical 

performance of breast imaging requires the simulation of realistic patient breast models, 

and this has become an entire research area in itself.89-96 Research on breast imaging 

dosimetry,19, 21, 71, 76, 78, 97-101, lesion detectability,102-104, technique optimization,105, 106 

image registration,107 image texture108 and X-ray scatter correction109 has been performed 

using software breast models, representing both uncompressed and compressed breasts. 

In most studies involving a model of the compressed breast, only the cranio-caudal (CC) 

view has been simulated, with the breast represented as a semi-circle or semi-ellipse. In a 

few studies, models of the breast compressed for the medio-lateral oblique (MLO) view 

have been used, but the models were subjectively derived.19-21, 110, 111 Although these 

models have proved appropriate, the development of more sophisticated models that 

better represent not only the “average” breast shape but also attempt to include the span 

of clinically realistic breast shape variations would be useful in many of the areas of 

research listed above that use software breast models.  

 Here we present models for the breast shape when compressed for both the CC 

and MLO views of mammography that leverage principal component analysis (PCA) to 

accurately reproduce breast shapes and to generate new, clinically realistic shapes. 
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4.2 Materials and Methods 

 These models of mammogram breast shape were developed in three distinct steps. 

First we assembled a large database of clinically acquired cranio-caudal (CC) and medio-

lateral oblique (MLO) view mammograms and systematically catalogued the breast 

shapes. Then we performed principal component analysis (PCA) on these shapes to 

condense the information down to a reduced number of linearly independent variables. 

And finally we tested the models’ ability to estimate the shape of breasts from 

mammograms that were not used in the PCA.  

4.2.1 Mammogram Database 

 We have an anonymized database of 477 paired CC and MLO view digital 

mammograms. This database was previously compiled in our institution and as the 

anonymization process is irreversible, no further IRB oversight is necessary. These were 

acquired using a Senographe 2000D digital mammography system (GE Healthcare, UK) 

that utilizes an X-ray tube with molybdenum and rhodium targets with added 

molybdenum and rhodium filtration. The system has a 19.14 x 22.94 cm indirect detector 

with a pixel pitch of 100 μm.  

 This database was divided into 377 images of each view to be used in the 

formation of the PCA model, and 100 images of each view to be used for testing.  

4.2.2 Automated Edge Detection 

 Each mammogram was automatically thresholded to obtain a binary image, Yb, 

separating tissue from open field.112 The extraneous tissue, i.e. tissue not part of the 

breast under examination, was removed to isolate only the breast tissue in the image via 

the extraction of connected components.112 This was accomplished by repeated iterations 

of image dilation with a dilation structure B and image intersection with Yb: 

௞ܻ  ൌ   ሺ ௞ܻିଵ ْ ሻܤ ת ௕ܻ    (Equation 4.1) 
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We chose the midpoint of the length along the chest wall of the mammogram as a starting 

point for a 5x5 pixel initial guess and a 10x10 structure was chosen for B. The extraction 

was considered complete when Yk = Yk-1. Using this isolated binary image of the breast, 

the edge was then located by using Roberts cross gradient operators, and edge thinning.62, 

63, 112 The edge is extended to the chest wall, if needed, to form a set of points that depict 

the breast shape in the mammogram. This set was then uniformly sampled to generate a 

subset of 100 (x,y) coordinate points, in terms of distance rather than pixel index, for use 

in the PCA. This is very similar to a process we previously used to register breast shapes 

for digital tomosynthesis images.109 For the purposes of this study, the automation of the 

breast tissue isolation and edge detection allows for many images to be processed quickly 

without requiring user input and subjective analysis of the images.  

 To validate the automated edge detection, a radiologist enrolled in a 

mammography fellowship evaluated the generated edges of 100 CC view mammograms 

and 100 MLO view mammograms, all of which were randomly selected from the 

database. Each mammogram was shown side by side with a view of the generated edge 

overlaid onto the mammogram, allowing the radiologist to simultaneously view the edge 

and the original image. . 

4.2.3 Principal Component Analysis 

 The subset of points that delineate the shape of the breast in the mammogram can 

be defined as 100 correlated observations which we can reduce using PCA to a smaller 

set of linearly independent variables that encapsulates most of the information contained 

within the datapoints.113, 114 PCA has been used in innumerable applications, including in 

image registration.115-117 To perform the analysis, we formed the vector xi as follows for 

each image i: 

࢏࢞   ൌ   ሾݔଵ, ,ଶݔ ,ଷݔ … , ,ଵ଴଴ݔ ,ଵݕ ,ଶݕ ,ଷݕ … , ଵ଴଴ሿ்ݕ   (Equation 4.2) 
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where the (x,y) pairs are the pixel coordinates that define the breast shape, in cm. We then 

formed a square covariance matrix, cov(X), from the mean-centered x vectors: 

ሻࢄሺݒ݋ܿ  ൌ   ∑ ሺ࢞ ି ࢏࢞ഥሻሺ࢞ ି ࢏࢞ഥሻ೅ಿ
೔సభ

ேିଵ
    (Equation 4.3) 

where N is the total number of images processed and ࢞ഥ is the mean of the x vectors. The 

principal components of the dataset are then represented by the eigenvectors ej, which 

can be obtained by solving the eigenvalue problem: 

࢐ࢋሻࢄሺݒ݋ܿ ൌ  (Equation 4.4)     ࢐ࢋ௝ݒ

where the associated eigenvalues (vj) also represent the variance of each principal 

component. For each view (CC and MLO), the n principal components with the greatest 

vj were selected and their respective ej assembled into a 100 x n principal component 

matrix E. This matrix can be used to describe, to a high degree of accuracy, any of the 

breast edges xi that were used in the PCA and forms the basis of our breast shape model. 

The PCA parameter vector ri for image i can be calculated as follows: 

࢏࢘ ൌ ሺࡱࢀࡱሻି૚ࢀࡱሺ࢏࢞  െ  ҧሻ    (Equation 4.5)ݔ

Initial validation of the model was done by visually comparing the original breast edge of 

several mammograms from the foundational database to that estimated from its PCA 

parameters in ri. An estimate of the original breast edge, ࢞෥࢏, was calculated as follows: 

࢏෥࢞  ൌ   ҧݔ ൅ ∑ ௡ ࢐,࢏࢘
௝ୀଵ   (Equation 4.6)     ࢐ࢋ

where n is the number of principal components chosen for E.  

 Histograms of the first six PCA parameters obtained for each of the breast shapes 

in the foundational database were generated, and each one was fitted with a Gaussian 

distribution.  

 All PCA analysis was performed using MATLAB® R2011b (MathWorks, 

Natick, MA). 

4.2.4 PCA Model Testing 
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 To test the PCA models of breast shape, we utilized 100 CC view and 100 MLO 

view mammograms that were not included in the PCA. Each test mammogram m 

underwent automated edge detection as described above to generate a subset of points 

that depict a test edge tm. Using the view-specific principal component matrix, ECC or 

EMLO, we calculated the PCA parameter vector, rm, of each test edge, and the modeled 

edge ࢚෤࢓ as follows: 

࢓࢘ ൌ ሺࡱࢀࡱሻି૚ࢀࡱሺ࢓࢚ െ  ҧሻ   (Equation 4.7)ݔ

࢓෤࢚  ൌ   ҧݔ ൅ ∑ ௡ ࢐,࢓࢘
௝ୀଵ  (Equation 4.8)   ࢐ࢋ

 The accuracy of ࢚෤࢓ was assessed by calculating the average distance error (ADE) 

between it and the original edge, ࢓࢘. ADE was calculated as follows:  

ADE  ൌ   ሺ்್׫ ௒್ሻି ሺ்್ת ௒್ሻ
଴.ହሺ௅ೝା ௅೟ሻ

   (Equation 4.9) 

where Tb is a binary image, depicting the PCA modeled breast shape, created by shape 

filling an image of ࢚෤࢓, Yb is the binary image of the original mammogram, and Lr and Lt 

are the lengths of the modeled edge and the original edge, respectively. Thus, this metric 

is formed by dividing the area that lies in between the edges formed by the modeled and 

original breast shapes by the average of the two edge lengths (Figure 4.1). A paired t-test 

was performed on the ADE values of each tested image between the PCA models 

generated with differing number of principal components.  
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Figure 4.1 – Average Distance Error Calculation – The automatically generated breast 
edge (red) and the PCA modeled edge (white) are shown here on the left for a CC view 
mammogram. The image shown on the right represents ሺ࢈ࢀ ሻ࢈ࢅ ׫ െ ሺ࢈ࢀ  ሻ, where࢈ࢅ ת
Tb and Yb are binary images depicting the PCA modeled breast shape and the original 
mammogram respectively. The area of the region in white shown in the right image is 
divided by the average of the length of the two edges to obtain the ADE. 
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4.2.5 PCA Parameter Characterization 

 To understand how the value of each PCA parameter affects the breast shape in 

the 6-component model, we generated novel shapes using selected values based on the 

mean and standard deviation of the fitted Gaussian probability distributions of the 

parameter histograms. For this, each parameter was varied individually, with the selection 

of five values ranging from its mean minus two standard deviations (µ - 2σ) to µ + 2σ 

while the other parameters were held constant at their mean values. In this way, the effect 

of each parameter when its values span approximately 95% of the modeled clinically 

relevant range can be visualized. 

4.2.6 PCA Parameters and Breast Size 

 We examined the relationship between breast size in the mammogram, both in 

terms of breast area and compressed breast thickness, and each of the calculated PCA 

parameter values from both rm and ri. The thickness was retrieved from the mammogram 

database, and the breast shape area was calculated from the binary image, Yb, of the 

original mammogram.   

4.3 Results 

4.3.1 Automated Edge Detection 

 Our automated edge detection algorithm proved very successful in isolating the 

breast tissue under examination from extraneous tissue present in the mammogram, and 

delineating a set of points that form the shape of the breast. Two examples each of CC 

view and MLO view breast shapes from the mammogram database (that used for the 

PCA) can be seen in Figure 4.2. The delineated breast edges are overlaid on the images in 

white. The radiologist enlisted in the validation study determined that all 200 
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automatically generated edges presented, evenly distributed between the two views, are 

successful representations of the breast shape edge.  

 
 
 

 

Figure 4.1 – Breast Edges – Shown here, in white, are edges generated by our automated 
edge detection algorithm on CC view (top) and MLO view mammograms (bottom). The 
extraneous tissue seen at the bottom of the CC view mammograms was excluded by our 
algorithm.  
 
 

4.3.2 Principal Component Analysis 

 Our PCA of the CC and MLO view mammograms revealed that 93.3% and 

85.4%, respectively, of the variance in the database images is contained in the first two 
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principal components, that 99.2% and 98.0% of the variance is contained in the first six 

principal components (Table 4.1). We have included the eigenvectors of the first six 

principal components of both models in the Supplemental Materials. 

 
 
Table 4.1 – Percentage of total variance contained in the first six principal components – 
Shown here is the variance contained within each individual component and the 
cumulative variance contained within each component and its predecessors.   

Table 4.1 Percentage of Total Variance 
Principal 

Component Cranio Caudal View/Cumulative (%) Medio-lateral Oblique 
View/Cumulative (%) 

α 74.8/74.8 62.3/62.3 

β 18.5/93.3 23.1/85.4 

γ 3.54/96.8 6.72/92.1 

δ 1.03/97.9 3.13/95.2 

ε 0.72/98.6 1.83/97.1 

ζ 0.54/99.2 0.87/98.0 

 
 

4.3.3 PCA Model Testing 

 The 2-component models produced reasonable recreations of breast shapes of 

mammograms from the testing set; three examples of breast shapes of each view are 

shown in Figure 4.3 (white outline), along with their ADEs. The upper left image depicts 

a CC-view mammogram for which the 2-component model generates a breast shape with 

a very low ADE that is similar to that of the 6-component model (0.88 mm to 0.79 mm, 

respectively). However, as can be seen in the upper right image, for some cases the 2-

component model does not recreate the breast shape accurately, resulting in a higher 

ADE (7.15 mm). Visual inspection and the ADE values of the 4-component and 6-

component PCA models for each view revealed that such models generate more accurate 

representations that include intricacies of some breast shapes. Test edges generated by the 
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6-component models can also be seen in Figure 4.3 (red outline). Some breast shapes are 

recaptured to a much greater degree by the 6-component model, such as the middle and 

right images shown in both rows in Figure 4.3. Table 4.2 shows the mean and maximum 

ADE for the breast shapes generated with the 2-, 4- and 6-component models for both the 

CC and MLO views.  

 
 
Table 4.2 – Average Distance Error – The mean ADEs of the 2-component PCA model 
breast shapes was 2.99 mm for the CC view and 4.63 mm for the MLO view, but the 6-
component model produced more accurate shapes on average and in the worst cases 
(maximum).  

Table 4.2 Average Distance Error (ADE) 
 2-Component Model 

(mm) 
4-Component Model 

(mm) 
6-Component Model 

(mm) 

View Mean Maximum Mean Maximum Mean Maximum 

CC 2.99 7.80 1.47 3.92 0.90 1.94 

MLO 4.63 13.6 2.14 6.25 1.43 4.49 
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Figure 4.2 – Modeled breast shapes using 2 and 6 principal components – Shown here 
are breast shapes generated from 6-component PCA models (red) of the CC (top) and 
MLO (bottom) views overlaid on the shapes generated by 2-component models (white) 
and their respective ADEs. In some cases, the 2-component model generates adequate 
breast shape representations (left, top and bottom). However, in other cases (middle and 
right) a model with a greater number of components is needed to recapture the intricacies 
of the breast shapes.  
 
 
 
 We also compared the performance of the models with differing number of 

components by examining a box-and-whisker plot of the ADEs of each model (Figure 

4.4). As can be seen, for every percentile mark (10th, 25th, median/50th, 75th, and 90th), 
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models with more components exhibited lower ADEs than those of the same view with 

fewer components. Thus, as expected, models with more components consistently 

perform better. For each view, paired t-tests were performed between the ADE values for 

each PCA model, and all p-values were found to be less than 0.025.  

 
 
 

 

Figure 4.3 – Box-Whisker Plot of Average Distance Error – PCA models with more 
components consistently performed better than those of the same view with fewer 
components, exhibiting not only lower means but also lower ADEs for the 10th, 25th, 
50th/median, 75th, and 90th percentiles. Shown here are the models of the CC-view (left) 
and MLO-view (right) with components numbering from 2-6. All differences in paired 
ADE values of the PCA models with different number of principal components were 
statistically significant (p<0.025).    
 
 
 
 Histograms of the six PCA parameters for each view were fitted with Gaussian 

distributions and are shown in Figure 4.5, along with the mean and standard deviation of 

each fit.  
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Figure 4.4 – PCA Parameter Distributions – The distributions of the first six PCA 
parameters (α, β, γ, δ, ε, ζ) of the PCA Breast Shape Models for both the CC (left) and 
MLO (right) views can be fitted with Gaussian distributions. The mean and standard 
deviation of each fit is also shown for each parameter. 
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4.3.4 Novel Breast Shape Generation 

The 6-component objective PCA breast shape models presented here were also used to 

generate novel breast shapes, i.e. shapes that are clinically relevant but which were not 

derived from a clinical mammogram. This was achieved by using the view-specific 

principal component matrix, ECC or EMLO, and selected values for the PCA parameter 

vector rm = [α, β, γ, δ, ε, ζ]. First we generated the models’ average breast shapes by 

using the mean values of the PCA parameters (Figure 4.6, top). It should be noted that 

this “average” breast shape in the CC view results in a shape that is similar to, but not 

quite, a semi-ellipse, with a chest wall-to-nipple distance of 10.1 cm and a distance along 

the chest wall of 20.2 cm, and a calculated area of 144 cm2. This size corresponds well 

with the mean equivalent radius of 10 cm and the mean equivalent area of 157.3 cm2 

determined by Boone et al. from 82 patient CC mammograms.80 

 We also generated a random PCA parameter set, using the fitted Gaussian 

probability distributions of the parameter histograms, and generated a random clinically 

relevant breast shape for each view (Figure 4.6, bottom).  
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Figure 4.5 – Novel Breast Shapes Generated by the 6-component PCA Model – These 
breast shapes were generated by the selection of a set of values for the PCA data vector 
rm. The top CC and MLO view modeled breasts were generated using the mean values of 
the Gaussian fits for each principal component, so they represent an “average” breast 
shape. The bottom breast shapes were generated using randomly generated values from 
the Gaussian distributions for each principal component. 
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4.3.5 PCA Parameter Characterization 

 Figure 4.7 (CC view) and Figure 4.8 (MLO view) show how the breast shape 

model varies when the six PCA parameters are varied individually. As can be seen, the 

first PCA parameter, α, is the greatest determinant of the overall size and shape of the 

breast for both the CC and MLO view models, while the subsequent five parameters (β, γ, 

δ, ε, ζ) adjust different detailed shape features of the breast.  
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Figure 4.6 – Varying PCA parameters of the 6-component CC view model – Shown here 
are CC view breast shapes generated by varying each of the six PCA parameters (α, β, γ, 
δ, ε, ζ) individually. Each parameter was set to the mean (μ) value from the fitted 
Gaussian distributions shown in Figure 5, as well as μ +/- one standard deviation (σ), and 
μ +/- 2σ. The arrows indicate the overall direction in which that portion of the breast 
shape shifts as each parameter is increased. Within each panel, the average breast (in 
which all the values are set to their mean) is shown in solid black.  
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Figure 4.7 – Varying PCA parameters of the 6-component MLO view model - Shown 
here are MLO view breast shapes generated by varying each of the six PCA parameters 
(α, β, γ, δ, ε, ζ) individually. The process by which this was accomplished is the same as 
in Figure 7. The arrows indicate the overall direction in which that portion of the breast 
shape shifts as each parameter is increased. Within each panel, the average breast (in 
which all the values are set to their mean) is shown in solid black. 
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4.3.6 PCA Parameters and Breast Size 

A strong relationship was found between the first PCA parameter, α, for both views and 

the breast area (Figure 4.9, left). However, there was no apparent relationship between 

the α parameter and the compressed breast thicknesses in either view (Figure 4.9, right). 

None of the other PCA parameters were found to correlate strongly with either measure 

of breast size in either view.  

 
 

 

Figure 4.8 – Relationship Between α and Breast Size – For both the CC (top) and MLO 
(bottom) views, a strong relationship was found between α and the breast area (left). 
However, for the compressed breast thickness (right), there was no strong correlation 
found.  
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4.4 Discussion 

 In this study, we developed objective models of the compressed breast shape in 

the CC and MLO mammographic views using Principal Component Analysis (PCA) and 

tested the models’ ability to both recreate breast shapes that were not part of the original 

analysis and to create novel clinically relevant breast shapes. Visual examination and 

quantitative analysis in the form of the average distance error (ADE) revealed that the 2-6 

principal component models of breast shape presented here show great promise and could 

become useful tools for breast imaging applications, both for analyzing acquired images 

and for generating realistic breast shapes. However, the number of components to include 

in the PCA model depends on the application. In the generation of realistic breast shapes, 

the use of a high number of components should not be onerous and it would provide the 

greatest variability and detail in clinically-relevant shapes, so all 6 components could be 

included. However, for other applications it is possible that the inclusion of more 

components could introduce high complexity, making the use of a greater number of 

components unfeasible. For these cases, using only a 3- or 4-component model could still 

result in acceptable representations of the breast, given the low ADE values found (Table 

4.2, Figure 4.4). In fact, the 2-component models generate a shape that resembles a breast 

undergoing mammography (Figure 4.3, white) in both the CC and MLO view, and 

recaptures the general curvature and closed edge of the breast, which might be sufficient 

for some applications.  

 Evaluation of each individual PCA parameter (Figure 4.7, 4.8) shows that the first 

PCA parameter, α, determines to a great extent the size of the breast shape in the modeled 

mammogram. We also found that α is strongly correlated with the breast shape area, but 

not compressed breast thickness. The relationships shown in Figure 4.9 can be a starting 

point for the user to generate new, clinically relevant breast shapes with control of the 

size of the generated breasts.  
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 We have used the models presented here to characterize the breast shapes seen in 

almost 500 mammograms each of the CC and MLO views. As revealed by the ADE 

results (Table 4.2, Figure 4.4), our models have reduced the complexities of breast shapes 

to a small number of parameters; using just 2 to 6 values, we can describe to a great 

extent the breast shapes in the original mammograms. The use of the presented models to 

generate novel, clinically relevant breast shapes could aid research in 3D breast software 

phantoms by simplifying the mathematical representation of the breast shape. In addition, 

we have previously developed a software-based scatter correction algorithm for digital 

breast tomosynthesis imaging (DBT) that utilizes Monte Carlo X-ray simulations of 

standardized breast shapes, so the PCA models developed here facilitate the scatter 

correction algorithm’s application to clinically encountered breasts.109 We have 

performed preliminary testing with the central angle X-ray projection images of DBT 

imaging, and results have also been promising but a larger database of clinical images is 

required for further testing. In addition, this model forms the basis for a PCA based breast 

volume model, detailed in chapter 5, to be used for DBT simulations. And lastly, 

dosimetric characterization of breast imaging systems that are also based on Monte Carlo 

simulations could leverage our PCA model’s ability to randomly generate breasts of 

different clinically relevant shapes quickly.19, 74, 118 

 It is also important to note that the PCA models developed here, and the 

methodology we have employed, can be used independently of our automated edge 

detection algorithm. Any user-defined breast edge representation can be used in 

conjunction with our model to expand the basis of the model or to characterize a breast 

shape by condensing information down to a few principal components. There have been 

several other methods proposed to automatically segment or detect the breast boundaries 

in mammograms.119-122 

 Limitations of this study include the lack of including an automated nipple 

detection and removal algorithm, so that the model of the breast shape would not be 
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affected by its presence. In addition, inclusion of an automated pectoralis detection 

algorithm, especially in the MLO view, such as that proposed by Kowk et al.,123 and its 

inclusion as another edge in the (x,y) coordinate pair  vector for the PCA could allow for 

this image feature to also be included. Other future work would include the expansion of 

the PCA with more mammograms, allowing for the study of PCA parameter variability 

with patient characteristics (e.g. age, glandular density), and for the investigation of 

constraining their values to generate corresponding CC and MLO view mammograms.  

4.5 Conclusion 

 The objective PCA models of breast shape presented here show great promise and 

could become useful tools for breast imaging applications, both for analyzing acquired 

images and for generating realistic breast shapes. Testing of the models’ ability to 

replicate clinical breast shapes encountered in an independent database were successful, 

and the ease of generating random, clinically realistic breast shapes with the models was 

shown.  

 The ability to characterize a breast shape using just a few parameters is of great 

utility in many applications, but pertaining to this thesis, it is a major contribution 

towards bringing the X-ray scatter correction algorithm for DBT, described in chapter 2, 

to the clinical realm.  
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CHAPTER 5 

PCA MODEL-BASED X-RAY SCATTER MAP LIBRARY 

 

 In this chapter I present a study on the use of a library of DBT X-ray scatter 

images, derived from the PCA model of breast shapes presented in chapter 4, with the 

scatter correction algorithm, described in chapter 2. I also investigate the effect this has 

on clinical DBT acquisitions that contain glandular masses and microcalcifications. 

 The PCA-based mammography breast shape model for the CC view was extended 

to DBT and used to generate compressed breast volumes that span most of the range of 

clinically encountered breast shapes and sizes. MC simulations of these breast volumes 

undergoing DBT were then performed to form a library of CC-view X-ray scatter maps. 

The application of the X-ray scatter algorithm using this library was evaluated in an 

observer study. While only one in four observers preferred the scatter corrected DBT 

images as a whole, all observers exhibited a preference for the SC images when the lesion 

examined was a glandular mass. When the lesion examined consisted of 

microcalcification clusters, the observers exhibited a preference for the uncorrected 

images.  

5.1 Significance 

 As detailed in chapter 2, current tomosynthesis systems, including the Selenia 

Dimensions (Hologic Inc., Bedford, MA) used in this study, lack X-ray scatter reduction 

measures, be it in software or hardware. This leads to the inclusion of the entirety of the 

X-ray scatter signal in the tomosynthesis projections, unlike in mammography, where an 

anti-scatter grid oriented towards the fixed X-ray source lowers the ratio of the number of 

scattered X-rays incident on the detector to that of the number of incident primary (non-

scattered) X-rays, or the scatter-to-primary ratio (SPR). Therefore, as has been previously 
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shown, in DBT the SPR can be as high as 1.6,20 resulting in reconstruction artifacts and 

reduced contrast. 48-50 I have previously described a software-based X-ray scatter 

correction algorithm that is applied to the acquired tomosynthesis projections before 

reconstruction in chapter 2 that has shown great potential in improving image quality.  

 The study presented in this chapter leverages the fact that in DBT, the compressed 

breast is positioned in the same manner as in full field digital mammography (FFDM). In 

the case of the Selenia Dimensions system, the FFDM and DBT acquisition occur during 

the same breast compression. Thus, the principal component analysis (PCA) models of 

breast shapes undergoing mammography described in chapter 4 can be extended to 

models of 3D breast volumes undergoing DBT acquisition.  

 Here I present a study on the incorporation of PCA models of breast volumes into 

a software-based X-ray scatter correction algorithm, to reduce execution time. The 

incorporation of the PCA models allows for the possibility of using a pre-computed 

library of X-ray scatter maps, thereby eliminating the need to perform a case-specific and 

time-intensive Monte Carlo (MC) simulation with each new patient. The improved scatter 

correction algorithm was applied to 40 patient cases, and four radiologists were recruited 

for an observer study. The results of this study suggest that the incorporation of an X-ray 

scatter map library and the scatter correction algorithm overall exhibit the potential to 

improve the image quality of lesions that consist of masses but not of microcalcification 

clusters and to improve the clinical performance of DBT when its use is widespread. 

5.2 Materials and Methods 

 The study presented here expands upon a previously developed software-based 

scatter reduction algorithm for DBT imaging by incorporating a pre-computed library of 

scatter maps. These maps, along with primary signal maps, are generated from MC 

simulations that utilize voxelized breast volumes created by an objective PCA model of 

breast shape. The MC simulations are implemented in C++, based on the Geant4 Monte 
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Carlo simulation toolkit,54, 55 and are similar to those used by Feng et al109 and 

Sechopoulos et al.19-21 The scatter and primary images are combined into a scatter-to-

primary ratio (SPR) map which is then registered to the acquired breast projections. The 

low-frequency scatter signal is then removed from the projections, which are 

subsequently noise filtered, as described in section 2.2 Lastly, the scatter corrected 

projections undergo filtered backprojection (FBP) 3D reconstruction.  

 This procedure was tested on 40 patient tomosynthesis acquisition sets, previously 

classified as BIRADS 4 or 5, that were acquired by the Selenia Dimensions DBT system. 

For the observer study, the radiologists were asked to evaluate the original and scatter 

corrected images for conspicuity of the lesions and detail of the features relevant to 

diagnosis.  

5.2.1 Model of Breast Volume Undergoing Digital Breast Tomosynthesis 

 This study utilizes the objective PCA model of breast volumes undergoing cranio-

caudal (CC) view FFDM described in chapter 4. As the image of the compressed breast 

shape undergoing mammography is identical to the central angle (0 degrees) projection of 

the compressed breast shape undergoing DBT, the mammography model forms the basis 

for the DBT model. The 3D breast volume (3DV) is built using the 2D breast shape 

(2DS) generated by the model from chapter 4 and an estimated curvature of the 

compressed breast volume. A script was written in IDL 8.0 (Exelis VIS, Boulder, CO) 

that generates a binary image stack that represents the modeled breast volume with a 

given compressed thickness (Th).  

 First, the 2DS is eroded to account for the magnification owing to the distance of 

half of Th, as the image of the 2DS is assumed to be that of the central slice of the 

voxelized breast volume. Building upon this central slice, two parabolic fits, one for the 

slices of the 3DV above and one for the slices below the central slice, are applied to 

represent the extent to which the 2DS is eroded. This erosion is necessary as the 
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curvature of the compressed breast is assumed such that the breast tissue extends furthest 

from the chest wall at the center, and is closer to the chest wall at the top and bottom 

(Figure 5.1). The parabolic fit below the center of the breast volume leads to slices in 

which the breast shape is eroded to a lesser degree than those above the center. This is a 

reasonable assumption to generate realistic breast volumes in which tissue distribution, as 

viewed laterally, is affected by gravity, which can be seen in Figure 5.1(b).  
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Figure 5.1 – Generation of the 3D Breast Volume from a 2D Breast Shape – (A) A top 
down view of the central slice of the volume generated from the PCA model breast shape 
of which the 4 principal components α, β, γ, and δ were each set to the indicated linear 
combinations of the component-specific mean (μ) and standard deviation (σ). (B) The 
side view of the 6cm breast volume from (A). Note that the curvature of the breast differs 
above and below the center slice. The red horizontal line indicates the slice location of 
the image shown in (A).  
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At the outset of this study, a 3DV library large enough to encompass the range of 

most clinically encountered breasts was desired. To create this library, the principal 

components of the 4-component PCA model were selected according to the values in 

Table 5.1. The mean (μ) and standard deviation (σ) of each principal component, as 

detailed in chapter 4, was used for these selections. As the first component, α, has been 

shown to be the greatest determinant of the breast shape and size, 5 values of α were 

chosen. For the other three components, only 3 values were chosen. Th was chosen to 

span the range from 2 cm to 8 cm, in 2 cm steps. Thus, a total of 540 distinct 3DVs were 

generated from the PCA model of breast volume undergoing DBT acquisition.  

 
 
Table 5.2 – Selected Values for Principal Components of Library – To determine the 
input values to the PCA breast shape model, the mean (μ) and standard deviation (σ) of 
each component were used. 

Table 5.1 Selected Values For Principal Components of Library 
Principal 

Component 
Number of 

Values μ σ Selected Values 

α 5 -3.185 15.78 

μ + 2σ 
μ + σ 
μ 

μ - σ 
μ - 2σ 

β 3 -0.296 8.225 
μ + 2σ 
μ 

μ - 2σ 

γ 3 -0.0654 3.658 
μ + 2σ 
μ 

μ - 2σ 

δ 3 -0.1286 1.994 
μ + 2σ 
μ 

μ - 2σ 
 
 

5.2.2 X-Ray Scatter Map Library 

 A voxelized version of the X-ray scatter MC simulation used by Feng et al109 and 

described in chapter 2 was used to generate scatter image sets of all 540 3DVs from the 

PCA breast volume model undergoing DBT. The simulation is implemented in C++ and 
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matches the acquisition geometry of the Selenia Dimensions system for the CC view. The 

system acquires 15 projections over a 15 degree angular range, with the X-ray tube 

positioned directly perpendicular to the image detector for the central angle 

(tomosynthesis angle = 0 deg) projection. The detector measures 24 x 29 cm, with a pixel 

pitch of 70 µm. Complete details of the system have been previously published in Ren et 

al.56 Thus, the MC simulated X-ray scatter map set of each 3DV consists of 15 scatter 

maps, one from each acquisition angle.  

 The glandular fraction of the breast for all simulations was set to 14.3%, which 

has previously been shown to be the population average.75 This is a reasonable 

assumption as it has been shown that scatter varies to a minimal extent with glandular 

fraction.20 Since it is known that X-ray scatter varies slowly over the detector, a pixel 

pitch of 0.7 mm was used in the MC simulations to decrease the simulation time by 

reducing the noise in the results.  

5.2.3 X-Ray Scatter Correction 

 We obtained 40 patient cranio-caudal view DBT images classified as BIRADS 4 

or 5. These images contained lesions, previously identified by a radiologist, evenly 

divided between masses and microcalcification clusters. The patient case datasets were 

acquired for an unrelated IRB-approved clinical study from which the images were 

released for use in other research projects.  

 The central angle projection of each acquisition set was subjected to the 

automated edge detection (section 4.2.2) and the PCA (section 4.2.3) previously 

described to obtain the PCA parameter vector racq, which consists of the four principal 

components [α, β, γ, δ], of each image. From the scatter map library, the MC-simulated 

scatter map set of the 3DV with the closest matching PCA parameter vector was chosen.  

 To obtain noise-less X-ray primary images, raytracing59 was performed to 

determine the pathlength of each ray from the source to each pixel on the image detector. 
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The pathlengths of the rays through each material in the simulation, combined with the 

attenuation coefficients for each material60 and X-ray energy were used to calculate the 

estimated primary images. This allows for the calculation of a scatter-to-primary (SPR) 

map, which depicts the ratio of the scatter signal to the primary signal on a pixel by pixel 

basis, for each tomosynthesis acquisition projection. As a final step, the SPR map is 

resampled to the pixel pitch of the imaging system in DBT acquisition mode (140 µm). 

 The selected scatter map set and raytraced primary images were then used in the 

X-ray scatter correction algorithm described in chapter 2 to remove the scatter signal 

from the tomosynthesis acquisitions. The original (O) and scatter corrected (SC) images 

then underwent 3D reconstruction using the FBP reconstruction of the Selenia 

Dimensions system. 

5.2.4 Observer Study 

 For this study, volumetric regions of interest (ROIs) centered on the lesion were 

isolated from O and SC reconstructions described above. Four radiologists experienced in 

breast imaging were recruited for this observer study. Each observer was presented with 

the O and SC DBT images side by side, randomized in both order and presentation, such 

as those depicted in Figure 5.2. The images are presented with comparable window width 

and level and observers could scroll through the volume stack. In addition, the overall 

brightness and contrast could be adjusted by the observer. Three observers completed the 

study in a single one hour session, while the other observer performed the study in two 

half hour sessions. The DBT reconstructions were displayed using the ImageJ image 

processing software (NIH, Bethesda, MD) on a DICOM calibrated124, 125 5 megapixel 

high-resolution flat-panel gray-scale dual-head display (DOME C5i, Planar Systems, 

Beaverton, OR). 

 Observers were asked to indicate their preference for either the left or right image 

on a scale from -5 (left) to +5 (right), with 0 indicating no preference, based on the 
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conspicuity of the lesion and the detail conferred by the image features. Ratings were 

normalized such that a preference for the O image is negative, whilst a preference for the 

SC image is positive. These ratings were then averaged to determine if each clinician 

exhibited a preference for either the O or SC images.  
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 Figure 5.2 – Scatter Correction Observer Study – Shown here are two distinct DBT 
patient images. Observers were presented with these images, which consist of regions of 
interest centered on lesions, such as a glandular mass (top) and microcalcification clusters 
(bottom, arrow). 
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5.3 Results 

5.3.1 X-Ray Scatter Map Library 

 The addition of the breast volume PCA model and the X-ray scatter map library to 

the scatter correction algorithm successfully reduced the execution time of the algorithm 

from hours to minutes. After all 40 patient cases were subjected to the automated edge 

detection and PCA, it was discovered that the initial library of 3DVs generated in section 

5.2.1 was insufficient in terms of range and granularity. For Th, 39 of the 40 patient 

images spanned the range of 2 cm to 8 cm, but it was determined that a smaller step size 

of 1 cm is required. One patient case had a Th of 9 cm. Additional 3DVs were generated 

to match those patient cases and additional MC simulations were performed.  It was 

determined that a library would need to consist of scatter map sets of 3DVs characterized 

by the principal component values listed in Table 5.2. As a total of 16,087 scatter maps 

sets would be needed to complete this library for the CC view for this specific DBT 

system, an estimated 210,000 hours of computing time and 120 gigabytes of storage 

space would be required.  
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Table 5.2 – Range and Granularity of Principal Components of Library – Shown here are 
the values for the PCA breast shape model required for a fully developed X-ray scatter 
map library. The mean (μ) and standard deviation (σ) of each component were used to 
determine the values. 

Table 5.2 Range and Granularity of Principal Components of Library 
Principal 

Component 
Number of 

Values μ σ Selected Values 

α 7 -3.1852 15.7792 

μ + 4σ 
μ + 3σ 
μ + 2σ 
μ + σ 
μ 

μ - σ 
μ - 2σ 

β 7 -0.2959 8.2254 

μ + 4σ 
μ + 3σ 
μ + 2σ 
μ + σ 
μ 

μ - σ 
μ - 2σ 

γ 7 -0.0654 3.6579 

μ + 4σ 
μ + 3σ 
μ + 2σ 
μ + σ 
μ 

μ - σ 
μ - 2σ 

δ 7 -0.1286 1.9939 

μ + 3σ 
μ + 2σ 
μ + σ 
μ 

μ - σ 
μ - 2σ 
μ - 3σ 

 
 
 

5.3.2 Observer Study 

 The combined total mean score for all images and observers is 0.169±0.37 (p > 

0.39), which indicates that overall, there is no preference for either the O or SC images 

(Table 5.3). The combined mean score given for images that contained a soft tissue mass 

is 1.06±0.45 (p < 0.0001), with every observer averaging positive scores for these 

images. However, when the lesion in the image consists of microcalcification clusters, 
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the combined mean score given to these images is -0.725±0.51 (p < 0.009), which 

indicates that for these lesions the observers prefer the O images.  

 Also of note is that one radiologist, Observer A, consistently prefers the SC 

images, with a total mean score of 1.575±0.45 (p < 0.002), and positive mean scores for 

masses and microcalcifications.  

 
 
Table 5.3 – Observer Study Results – Shown here are the mean scores for each observer 
for the images with a glandular mass, microcalcification clusters, and the combined case 
total, as well as the total for all observers. Positive scores indicate a preference for the 
scatter corrected images, while negative scores indicate a preference for the uncorrected 
images. 

Table 5.3 Observer Study Results 

Observer Mean Total Score Mean Mass Score Mean Microcalcification 
Score 

A 1.575 2.6 0.55 
B -0.175 0.05 -0.4 
C -0.375 0.55 -1.3 
D -0.35 1.05 -1.75 

Combined 0.169 1.06 -0.725 
 
 
 

5.4 Discussion 

 The study presented in this chapter shows that a library of X-ray scatter maps 

computed from MC simulations that incorporate compressed breast volumes generated by 

a PCA model can be successfully integrated into a DBT scatter correction algorithm, 

which can reduce the processing time by two orders of magnitude. In addition, the 

incorporation of the PCA model from chapter 4 into the algorithm, and the testing on 40 

DBT patient cases, led to the delineation of the parameter space that such a library must 

cover (Table 5.2). Thus, a total of 16,087 scatter map sets would be needed to complete 

this library for CC view DBT.  

 The required expansion of the initial scatter map library from section 5.2.2 

suggests that the PCA model of breast shape detailed in chapter 4 may need to be 
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expanded or revised. Firstly, the mammographic images that formed the basis of that 

model measure 19.14 x 22.94 cm, while the detector of the Selenia Dimensions measures 

24 x 29 cm. It is possible that the breadth of the FFDM foundation database of the PCA 

model is limited by the detector size of the Senographe 2000D (GE Healthcare, UK) 

mammography system. These cases have a mean Th=5.91 cm and the average calculated 

value of the first principal component, α, which was shown to be the greatest 

determination of 2DS size, is more than one standard deviation greater than the mean 

(average(α) = μ + 1.04σ) from the PCA model. An expansion of the set of foundation 

images of the PCA model could be performed in the future by including mammograms 

and central angle DBT projections acquired by the Selenia Dimensions system.  

 The observer study with the O and SC reconstructions reveals that the scatter 

correction algorithm has the potential to improve the conspicuity and image quality of 

masses in DBT images. The contrast enhancement of masses conferred by the algorithm 

was also previously shown in phantoms by Feng et al,109 and is detailed in chapter 2. The 

observers’ preference for the O reconstructions when presented with images depicting 

microcalcification clusters could be due to the fact that the paired images were displayed 

with comparable windows in small ROIs. In addition, microcalcifications already exhibit 

high contrast in the O reconstructions, and could be also obscured by contrast-enhanced 

glandular tissue in the SC reconstructions. It is important to note that this study is limited 

to conspicuity of lesions, small ROIs, and to BIRADS 4 and 5 images. A larger observer 

detection study that includes negative patient cases, and in which the observers are asked 

to evaluate the reconstructions as a whole, would need to be performed to better evaluate 

the clinical impact of the algorithm. 

 And finally, this study focused on CC view DBT images. A similar study would 

need to be performed to accommodate the medio-lateral oblique (MLO) view. A PCA 

model of breast shapes undergoing MLO mammographic imaging is already complete, 

and is detailed in chapter 4.   
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5.5 Conclusion 

 The incorporation of the CC view PCA model of breast shape into the scatter 

correction algorithm has improved the efficiency of the algorithm and provided insight 

into the size and range required of a pre-computed CC view X-ray scatter map library. 

The observer study presented in this chapter is also the first test of the scatter correction 

algorithm with patient images and human observers, and demonstrates the potential it has 

to improve the clinical performance of DBT.  
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CHAPTER 6 

SPECTRAL RECONSTRUCTION ALGORITHM 

 

 This chapter describes the optimization and testing of a novel spectral 

reconstruction method and the feasibility of using this method with a new tube voltage-

switching DBT acquisition technique. The spectral reconstruction (SR) algorithm 

incorporates the varying attenuation properties of the full spectrum of X-ray energies 

generated by the X-ray tube and used to acquire the tomosynthesis projections.  

 The SR algorithm was tested by using it to reconstruct images of a breast 

tomosynthesis phantom and patient images. The image quality of the SR phantom and 

patient images was higher than that demonstrated by MLEM reconstructions. The tissue 

patterns of the heterogeneous tomosynthesis phantom were more clearly defined and 

beam hardening artifacts were greatly reduced. The images reconstructed with the SR 

algorithm also demonstrated an increase in SDNR. This study demonstrates that the SR 

algorithm has the potential to greatly enhance the image quality of breast tomosynthesis 

images and reduce reconstruction artifacts. The algorithm also offers the potential to 

allow for new image acquisition techniques, such as DBT acquisition with varying X-ray 

beams, which could allow for a reduction in patient dose. This may result in an increase 

in early breast cancer detection and a reduction in unnecessary additional procedures to 

investigate false positives. 

6.1 Significance 

 Conventional DBT reconstruction algorithms are based on an underlying 

assumption that the energy of every X-ray that are incident on the detector is identical. 

This includes the most commonly used reconstruction algorithms: filtered backprojection 

(FBP), or iterative methods such as simultaneous iterative reconstruction technique 
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(SIRT) and maximum likelihood expectation maximization method (MLEM).15, 126 This 

is also true of novel reconstruction algorithms that have been proposed for DBT with 

varying levels of testing, success, and development, including regularization methods 

such as total variation regularization,127, 128  total p variation regularization,129-131 joint 

entropy regularization,132, 133 and adaptive diffusion regularization.134 Even iterative 

methods such as iterative penalized maximum likelihood,135 iterative maximum a 

posteriori statistical reconstruction,136 and Bayesian inference137 are also based on this 

same underlying assumption.  

 While this mono-energetic assumption is adequate for imaging applications which 

utilize a high energy X-ray beam with heavy filtering, such as computed tomography 

(CT), the beams typically used in DBT imaging are comprised of X-rays of a wider and 

lower range of energies. Beam hardening is thus a much greater concern, as the 

distribution of X-ray energies that are incident on the image detector differs greatly from 

that of the beam entering the breast. The only way to account for this phenomenon is to 

reconstruct the DBT 3D images using a revolutionary spectral reconstruction (SR) 

algorithm, such as the one developed by a collaboration of our group and Dr. James 

Nagy’s group that takes into account the distribution of X-ray energies present in the 

beam and the different attenuation that X-rays of different energies undergo.51 This 

algorithm was then expanded upon by Bustamante et al, by generalizing the mathematical 

model for material decomposition of the reconstruction volume.52  

 In this study, a GPU implementation of this algorithm, is optimized and tested 

with DBT patient images. In addition, the spectral reconstruction algorithm was modified 

to reconstruct images from a dual-spectrum single-acquisition of DBT projections; that is 

a set of projections acquired using two different X-ray spectra. This has the potential to 

improve image quality or reduce radiation dose without compromising image quality. It 

has previously been shown that the use of a second, higher energy X-ray spectrum to 
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acquire half of the DBT projections would result in a lower total radiation dose to the 

imaged breast,19 which is a very important consideration.  

6.2 Materials and Methods 

 The SR algorithm described here incorporates a spectral model for the X-ray 

source and a statistical model for the reconstructed volume. The projected images are 

then estimated using this model of the volume and by modeling the nonlinear energy 

transmission radiography process. A gradient descent search algorithm is then used to 

calculate the best solution for the reconstruction volume. A GPU implementation of this 

algorithm, developed in C++ with OpenCL libraries, was first optimized for 

reconstruction of images acquired by the Selenia Dimensions (Hologic Inc., Bedford, 

MA) DBT system. The SR algorithm was then used to reconstruct images of a 

heterogeneous breast tomosynthesis phantom, and the image quality of the 

reconstructions was evaluated. Subsequently, a simulated dual-spectrum single-

acquisition imaging method was tested on a phantom. The dual-spectrum images were 

reconstructed using the SR algorithm and the image quality of the reconstructions was 

also evaluated. Finally, leveraging the results of the dosimetric characterization of the 

Selenia Dimensions detailed in chapter 3, the resulting radiation dose of the dual-

spectrum single-acquisition imaging method was calculated.  
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6.2.1 Spectral Reconstruction Algorithm 

 In DBT imaging and computed tomography, the imaged 3D volume, or breast 

tissue in this case, may be discretized into a regular grid of N voxels while the acquired 

projections are discretized into a regular grid of M pixels. The voxels are described by a 

multimaterial model which incorporating the linear attenuation coefficient and weight 

fraction of each material. Under the assumption that the densities of all materials are 

similar, the linear attenuation coefficient μ(e,j) for each X-ray energy e of a single voxel j 

composed of D distinct materials can be approximated as: 

( ) ( ) ( )
1

,
D

m m
m

e j w j c eμ
=

≈ ∗∑    (Equation 6.1) 

where wm(j) represents the weight fraction in voxel j of the mth material, and cm(e) are the  

linear attenuation coefficients for the mth material at X-ray energy e. Then for each 

acquisition projection angle, we compute the sum of the monochromatic X-ray traces 

over all energies to obtain an estimate of the projection b for acquisition angle θ: 
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where  a(i,j) represents the length of the ray that passes through voxel j and is incident 

upon pixel i, Ψ(e) is the energy fluence, and ηθ represents additive noise and X-ray 

scatter. A gradient descent search algorithm is then used to minimize the error between 

the estimate b and the acquired projection by updating the weight fractions wm(j) of all 

voxels in the volume. Full details of the algorithm can be found in Chung et al and 

Bustamante et al.51, 52 

6.2.2 Spectral Reconstruction of Phantom Images 

 DBT image projections of a 5 cm thick heterogeneous Model 020 BR3D breast 

tomosynthesis phantom (CIRS Inc., Norfolk, VA) were acquired using the Selenia 

Dimensions, and reconstructed using the SR algorithm and using a mono-energetic 
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maximum likelihood expectation maximization (MLEM) reconstruction algorithm.53 The 

phantom consists of 1 cm thick slabs of a heterogeneous 50%/50% mixture of adipose 

and glandular tissue. This phantom represents real tissue better than a homogenous 

phantom, and tests tomosynthesis’ ability to suppress tissue superposition. The 1cm thick 

slab located at the center of the phantom, the “target slab”, has embedded spheroid tumor 

masses, fibers, and microcalcification clusters of differing sizes (Figure 6.1). 

 In addition, two distinct patient cases were also reconstructed using both methods. 

The patient case datasets were acquired for an unrelated IRB-approved clinical study 

from which the images were released for use in other research projects. The datasets are 

all reconstructed to image stacks of 0.14 mm x 0.14 mm x 1.0 mm voxels. 

 Image quality was assessed by comparing the SR and MLEM reconstructions, in 

terms of the swirl patterns of the two distinct materials in the phantom, and the presence 

of beam hardening artifacts caused by microcalcification clusters. Quantitative analysis 

was performed by measuring and comparing the signal difference to noise ratio (SDNR) 

of three spherical glandular masses embedded in the target plate of the phantom.  

  All reconstructions using the SR algorithm were performed on a Tesla C2070 

GPU (NVidia Corp., Santa Clara, CA), while the MLEM reconstructions, implemented as 

a distributed computing task in IDL 8.0 (Exelis VIS, Boulder, CO), were performed on a 

22-node computing cluster. 
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Figure 6.1 – (a) The CIRS Model 082 Breast Mammography Phantom, representing a 
50/50 heterogeneous mixture of glandular and adipose tissue contains three types of 
embedded targets of varying sizes: (b) spheroid masses, (c) fibers, and (d) 
microcalcification clusters. 
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6.2.3 Simulated Dual-Spectrum Acquisition 

 As DBT systems are currently unable to perform X-ray tube voltage switching, 

two separate DBT acquisitions, with distinct X-ray energy spectra, were performed of 

another 5 cm thick heterogeneous breast tomosynthesis phantom. The phantom consists 

of a custom 1 cm thick 100% adipose plate in the center with slots for customizable 

targets. For this study, targets of differing glandular fractions and targets containing 

microcalcification clusters were used. Two 1cm thick slabs of the CIRS Model 082 

phantom are placed above and below the target plate to complete the phantom. This 

phantom was then imaged once with the Selenia Dimension’s AEC designed X-ray tube 

voltage and tube current-exposure time product. These projections form the Base set. The 

second acquisition was performed with a manual selection of a higher tube voltage with 

added filtration (.254 mm Cu), and a tube current-exposure time product that produced a 

similar signal at an ROI located at the center of the phantom in the central angle DBT 

projection.  These projections form the High Energy set.  

 The two X-ray spectra  used for the Base and High Energy acquisitions were 

modeled according to the method described by Boone et al,57 and detailed in section 3.2.2 

of this thesis. These spectra models are inputs into the SR algorithm. The exposure, in 

mR, output by the X-ray tube for each spectrum was measured using a calibrated ACCU-

DOSE dosimeter (Radcal Corp, Monrovia, CA) and a dedicated mammography 

ionization chamber (Model 10X6-6M, Radcal Corp, Monrovia, CA).  

 The simulated dual-spectrum single-acquisition (DS) set of projections was then 

formed by combining alternating projections from the Base set and the High Energy set. 

Eight projections were selected from the Base set, including the central angle projection, 

and seven were selected from the High Energy set. The Base and DS sets of projections 

underwent reconstruction using the SR algorithm, while the Base set also underwent 
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filtered back projection (FBP) reconstruction, as this is the default method of the Selenia 

Dimensions system. The SDNR of targets of differing glandular fractions was assessed.   

6.2.4 Dual Spectrum Dosimetry 

 The resulting radiation dose of the simulated dual-spectrum acquisition and of the 

Base acquisition was calculated following the method detailed in chapter 3. Monte Carlo 

(MC) simulations were performed to determine the normalized mean glandular dose, on a 

per projection basis, in units of milliGray per milliGray air kerma for both the Base 

acquisition (DgNB) and the High Energy acquisition (DgNHE). For the Base acquisition, 

the entrance exposure measured by the dosimeter was used in conjunction with the DgNB 

to calculate the total mean glandular dose (MGDB). For the total mean glandular dose of 

the DS acquisition (MGDDS), the total mean glandular dose was calculated on a per 

projection basis using both DgNB and DgNHE. 

6.3 Results 

6.3.1 Spectral Reconstruction of Phantom Images 

 The image quality of the reconstructions generated by the SR algorithm is higher 

than that exhibited by images generated by the MLEM reconstruction algorithm. This can 

be seen in both the phantom images and the patient images. In the case of the phantom 

images, visual inspection reveals that the heterogeneous glandular/adipose tissue swirl 

patterns are more clearly defined in the SR images (Figure 6.2).  
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Figure 6.2 – Reconstructions of Phantom Images – (A) Center slice of the MLEM 
reconstruction of the phantom images. (B) Center slice of the SR reconstruction of the 
phantom images. Microcalcification clusters (left), fibers (middle), and glandular masses 
(right) can be seem in the phantom. These images are shown with comparable window 
widths but different levels. 
 
 
 



 105

 Quantitative analysis of the embedded spheroid masses in the reconstructions 

reveals that SDNR of the masses is higher in the SR images than in the MLEM images 

(Table 6.1). The average improvement in SDNR is 71% (p = 0.02). The smallest 

embedded mass visible, C, in particular, is much easier to distinguish in the SR images 

(Figure 6.3A). The fibers are also easier to identify in the SR images (Figure 6.3B). And 

the beam hardening artifacts seen in the MLEM reconstructions are greatly reduced in the 

SR images (Figure 6.3C). 

 
 
Table 6.1 – Signal Difference to Noise Ratio of Glandular Masses – Comparison of the 
image quality of the spherical embedded masses in the phantom between the spectral 
reconstruction (SR) images and the maximum likelihood estimation maximization 
(MLEM) images. 

Table 6.1 Signal Difference to Noise Ratio of Glandular Masses 

 SDNR 

Embedded 
Glandular Mass MLEM SR SR/MLEM 

A 1.83 3.33 1.82 

B 1.33 2.33 1.75 

C 3.00 4.67 1.56 

 



 106

 
Figure 6.3 – ROIs of Reconstructions of Phantom Images – Zoomed in views of the 
smallest embedded glandular mass D (A), a fiber (B), and a group of microcalcification 
clusters (C) of the central slices of the MLEM (left) and SR (right) reconstructions. These 
images are shown with comparable window widths but different levels. 
 
 
 
 The image quality of the reconstructed patient images generated by the SR 

algorithm is also higher than that exhibited by images generated by the MLEM 

reconstruction algorithm. Visual inspection revealed that the microcalcifications were 

easier to distinguish in the SR images, and that the beam hardening artifacts in the 

direction of the X-ray tube motion are diminished in the SR images (Figure 6.4). 
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Figure 6.4 – ROIs of Reconstructions of Patient Images – Shown here are regions of 
interest of two patient images in which microcalcification clusters are present. In the first 
case (A), image contrast in higher, and the microcalcification (white arrow) is easier to 
distinguish in the SR images (right) than in the MLEM reconstructions (left). In the 
second case (B), the beam hardening artifact produced by the mono-energetic MLEM 
reconstruction (left) is greatly reduced in the SR image (right). These images are shown 
with comparable window widths but different levels. 
 

6.3.2 Spectral Reconstruction of Dual-Spectrum Images 

 The two X-ray spectra used for the Base and High Energy acquisitions are 

described in Table 6.2, and their models are shown in Figure 6.5. 
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Table 6.2 – X-ray Tube Voltage and Tube Current-Exposure Time Products – These are 
the settings chosen for the DBT acquisitions in the dual-spectrum study 

Table 6.2 X-ray Tube Voltage and Tube Current-Exposure Time Products 

Acquisition Tube Voltage 
(kVp) 

Total Tube 
Current-Exposure 

Time Product 
(mAs) 

Added Filtration Entrance 
Exposure (mR) 

Base 31 54 None 544 

High Energy 49 30 Cu 
(0.254 mm ) 37.8 

 
 

 

 
Figure 6.5 – Modeled X-ray Spectra - Depicted here is the relative fluence of the two X-
ray spectra described in Table 6.1, the 31 kVp (red) and the 49 kVP (blue) with added Cu 
filtration.  
 
 
 
 The image quality of the DS reconstructions is slightly lower than that observed 

in the SR reconstructions, which in turn is comparable to that of the system’s FBP 

reconstructions. The SDNR of the targets of multiple glandular fractions is shown in 

Table 6.3. The average change in SDNR between the FBP and SR images is -8.18 ± 

11.6% (p>0.52), while the average change in SDNR between the SR and DS images is -

16.0 ± 9.25% (p>0.08). Center slices of the FBP reconstruction, the SR reconstruction of 
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the Base set of projections, and the SR reconstruction of the DS set are shown in Figure 

6.6. Zoomed in views of a group of microcalcification clusters show that the beam-

hardening artifacts visible in the FBP images are absent from the SR Base images and SR 

DS images (Figure 6.7). 

 
 
Table 6.3 – Signal Difference to Noise Ratio of Dual Spectrum Images – Comparison of 
the image quality of the targets of differing glandular fractions in the phantom between 
the filtered backprojection (FBP) reconstructions, and the spectral reconstructions of the 
Base set of projections and the simulated dual-spectrum (DS) set. 

Table 6.3 Signal Difference to Noise Ratio of Dual Spectrum Images 

 SDNR 

Target 
Glandular 

Fraction (%) 
FBP Base DS 

0 0.31 0.33 0.44 

20 1.31 1.29 1.15 

40 2.61 1.38 1.72 

60 2.98 2.56 2.16 

80 3.32 2.38 1.67 

100 3.35 4.50 3.46 
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Figure 6.6 – DBT Reconstructions of the Simulated Dual Spectrum Acquisition – Center 
slices of the FBP reconstructions (left) and the SR reconstructions of the Base set of 
projections(middle), and the SR reconstructions of the DS set (right) are shown here. The 
image quality of the DS reconstructions is comparable to that of the Base set. These 
images are shown with comparable window widths but different levels. 
 
 

 
Figure 6.7 – Zoomed-In Views of the DBT Reconstructions – These are zoomed in 
views of the images shown in Figure 6.6, centered on a group of microcalcification 
clusters. Beam hardening artifacts around the microcalcifications can be seen in the FBP 
reconstructions (left). However, neither the SR reconstructions of the Base set of 
projections (middle), nor the SR reconstructions of the DS set (right) exhibit such 
artifacts. The image quality of the DS reconstructions is comparable to that of the Base 
set. These images are shown with comparable window widths but different levels. 
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6.3.3 Dual-Spectrum Dosimetry 

 The calculated MGDB is 1.12 mGy, while the MGDDS would be 0.73 mGy, a 35% 

reduction in dose (Table 6.4). 

Table 6.4 – Radiation Dose Resulting from Dual-Spectrum Imaging – the normalized 
mean glandular dose (DgN) and breast skin entrance exposure are used to calculate the 
total mean glandular dose (MGD) of each type of acquisition 

Table 6.4 Radiation Dose Resulting from Dual-Spectrum Imaging 

Acquisition Tube Voltage 
(kVp) 

DgN (mGy/mGy 
air kerma) 

Entrance 
Exposure (mR) MGD (mGy) 

Base 31 54 544 1.12 

High Energy 49 30 37.8 0.325 

Dual Spectrum 31/49 - 308 0.73 

 
 
 

6.4 Discussion 

 The results of this study suggest that the SR algorithm has the potential to offer 

improved DBT image quality over a mono-energetic reconstruction such as MLEM, as 

illustrated by the statistically significant improvements in SDNR of the embedded 

spherical masses in the phantom images. Visual inspection of the phantom images and 

the patient images also supports this conclusion. The heterogeneous swirl patterns of the 

phantom appear more distinguished in the SR images in Figure 6.2. The SR images of 

microcalcification clusters in the phantom also exhibit reduced beam-hardening artifacts, 

as can be seen in Figure 6.3C. The contrast of the smallest glandular mass visible, as seen 

in Figure 6.3A also appears to be enhanced in the SR images.  

 The patient images also appear to exhibit improved contrast in the SR images, as 

displayed in Figure 6.4. Also evident in those images is the reduction of beam-hardening 

artifacts around microcalcifications. This artifact reduction is achievable due to the poly-

energetic nature of this method. Due to the small number of patient images presented in 
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this study, future work would need to include an observer study to compare a larger 

number of SR and MLEM images. It is also not yet clear how the SR algorithm would 

impact clinical performance. In addition, the GPU implementation of the SR algorithm is 

very efficient, as all of the images presented in this chapter were reconstructed within 

minutes, which is important in the clinical realm.   

 This study also reveals that dual-spectrum single-acquisition DBT imaging is 

feasible, as such a technique could reduce patient dose by a nontrivial amount without 

compromising image quality.  This dose reduction is realized because the projections 

acquired with the higher energy spectrum result in a much lower entrance skin exposure 

to achieve the same signal at the detector.  However, it appears that the SR algorithm in 

this case offers lower image quality than the FBP reconstruction of the Selenia 

Dimensions system. This could be explained by the proprietary post-processing 

performed by the machine that is unavailable to the public. In addition, the lower 

quantum efficiency of the detector at higher energies could be contributing to the lower 

SDNR for the higher energy projections. 

 It is important to note that this dual-spectrum feasibility study is also limited to 

just two different X-ray spectra. Future work would need to be performed to optimize the 

different spectra to be used, in terms of both tube voltage and added filtration. The 

subsequent differences in patient dose would also need to be evaluated when optimizing 

the spectra. Following that, an observer study or a clinical imaging trial would need to be 

performed to determine the impact on detection and diagnosis of breast cancer of this 

new acquisition and reconstruction method. It should be noted that if this dual-spectra 

acquisition method is shown to be successful, for it to be translated to clinical use, DBT 

systems would have to include the capability to execute fast, automated tube voltage 

switching during the projection acquisition process, but technology to this effect can be 

easily implemented by the tomosynthesis system manufacturers, so this acquisition 

method is clinically relevant.  
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 In addition, further follow-up work would be to investigate the possibility of 

harnessing the ability of the SR algorithm to handle projections acquired with two 

different X-ray spectra to perform contrast enhanced breast tomosynthesis (CEBT) with 

the acquisition of a single set of DBT projections. Currently, CEBT is proposed to be 

performed either by temporal subtraction (acquiring one DBT projection set before and 

one after injection of the contrast agent and then subtracting the resulting reconstructions) 

or by dual energy (acquiring both DBT projection sets after injection, but one with a low 

energy X-ray spectrum and another with a high energy X-ray spectrum and then 

subtracting the reconstructions).138, 139 In either case, two complete DBT acquisitions are 

performed, with the resulting increase in radiation dose and, in the case of temporal 

subtraction, with tissue mis-registration issues. With the adequate modification of our SR 

algorithm, it may be possible to obtain an iodine-only image reconstruction from a single 

set of projections, again intermittently varying the X-ray spectrum used for each so as to 

obtain half of the projections with a low energy spectrum and half with a high energy 

one. This revolutionary method to perform CEBT would result in a lower radiation dose 

and in eliminated mis-registration artifacts compared to the currently investigated 

methods. 

6.5 Conclusion 

 The spectral reconstruction algorithm described here exhibits the potential to 

improve the image quality of DBT acquisitions over mono-energetic reconstruction 

methods, and to allow for dual spectrum DBT imaging with minimal impact to image 

quality but with a drastic reduction in dose. If these gains are confirmed in large-scale 

observer studies, acquisition of DBT images with alternating spectra would be greatly 

beneficial for a screening technology.  
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CHAPTER 7 

X-RAY SCATTER MAP 2DPCA MODEL 

 

 In this chapter I present a study to develop a DBT X-ray scatter map model based 

on two dimensional principal component analysis (2DPCA) for use in the scatter 

correction algorithm described in chapter 2. This algorithm was expanded in chapter 5 by 

the replacement of patient specific Monte Carlo (MC) simulations with a library of 

scatter maps. The development of a scatter map model eliminates the high capacity 

storage requirements of a library and may reduce the initial requirement of large 

computing time to generate the scatter map library. 

 The ability of the 2DPCA model to generate novel scatter maps was tested by the 

generation of a scatter map that is not part of the analysis. Comparison of the modeled 

scatter map with the MC simulated scatter map demonstrates that the model exhibits the 

potential to serve as the X-ray scatter map generation method for the scatter correction 

algorithm. 

7.1 Significance 

 As previously stated in this thesis, current tomosynthesis systems, including the 

Selenia Dimensions (Hologic Inc., Bedford, MA) used in this study, lack X-ray scatter 

reduction measures, be it in software or hardware. This leads to the inclusion of the 

entirety of the X-ray scatter signal in the tomosynthesis projections, which is expressed in 

the higher ratio of the number of scattered X-rays incident on the detector to that of the 

number of incident primary (non-scattered) X-rays, or the scatter-to-primary ratio (SPR). 

I have previously described a software-based X-ray scatter correction algorithm that is 

applied to the acquired tomosynthesis projections before reconstruction in chapter 2 that 
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has shown great potential in improving image quality. In chapter 5, this algorithm was 

expanded by incorporating an X-ray scatter map library. 

 Here I present a study on the incorporation of a model of X-ray scatter into the 

scatter correction algorithm, both to reduce computation time and to eliminate the need 

for the high capacity storage of a scatter map library. This model is based on a two 

dimensional principal component analysis (2DPCA) of a database of X-ray scatter maps 

of simulated breast volumes of differing shape and size.  

 The 2DPCA model demonstrates the potential to act as a substitute for the library 

of X-ray scatter maps in the scatter correction algorithm. With this improvement, the 

optimized scatter correction algorithm is complete and ready large scale clinical 

evaluation. 

7.2 Materials and Methods 

 The 2DPCA-based model was developed in three steps. First, a library of cranio-

caudal (CC) view DBT scatter maps was assembled. Then 2DPCA was performed on 

these scatter maps to condense the information in the images down to a reduced number 

of linearly independent variable vectors. And finally, testing of the 2DPCA model’s 

ability to estimate scatter maps that were not part of the library was performed. 

7.2.1 X-ray Scatter Map Library 

 X-ray scatter maps of 3D breast volumes (3DV) undergoing DBT were computed 

to form a scatter map library. The 3DVs are built using the 2D breast shape (2DS) 

generated by the 4-component PCA model from chapter 4 and an estimated curvature of 

the compressed breast volume. A script was written in IDL 8.0 (Exelis VIS, Boulder, CO) 

that generates a binary image stack that represents the modeled breast volume with a 

given compressed thickness. The process of creating a 3DV from PCA model-generated 

2DS is fully described in section 5.2.1.  
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 Each 3DV can thus be described by the four principal components α, β, γ, δ, and 

the compressed breast thickness Th. The scatter map library used in this study consists of 

3DVs characterized by the principal component values in Table 7.1. The mean (μ) and 

standard deviation (σ) of each principal component, as detailed in chapter 4, was used for 

these selections. As the first component, α, has been shown to be the greatest determinant 

of the breast shape and size, 5 values of α were chosen. For the other three components, 

only 3 values were chosen. Th was chosen to span the range from 2 cm to 8 cm, in 2 cm 

steps. Thus, a total of 540 distinct 3DVs were generated from the PCA model of breast 

volume undergoing DBT acquisition.  

 
 
Table 7.3 – Selected Values for Principal Components of the Breast Shape – To 
determine the input values to the PCA breast shape model, the mean (μ) and standard 
deviation (σ) of each component were used. 

Table 7.1 Selected Values For Principal Components of Library 
Principal 

Component 
Number of 

Values μ σ Selected Values 

α 5 -3.1852 15.7792 

μ + 2σ 
μ + σ 
μ 

μ - σ 
μ - 2σ 

β 3 -0.2959 8.2254 
μ + 2σ 
μ 

μ - 2σ 

γ 3 -0.0654 3.6579 
μ + 2σ 
μ 

μ - 2σ 

δ 3 -0.1286 1.9939 
μ + 2σ 
μ 

μ - 2σ 
 
 
 

 Subsequently, a library of 540 X-ray scatter map sets was generated using the X-

ray scatter MC simulation described in chapter 5, which is a voxelized version of that 

used by Feng et al.109 The simulation is implemented in C++ and is based on the Geant4 

Monte Carlo simulation toolkit,54, 55 and matches the acquisition geometry of the Selenia 



 117

Dimensions system for the CC view. The image detector measures 24 x 29 cm, with a 

pixel pitch of 70 µm, but since it is known that X-ray scatter varies slowly over the 

detector, a pixel pitch of 7.0 mm was used in the MC simulations to decrease the 

simulation time by reducing the noise in the results. The glandular fraction of the breast 

for all simulations was set to 14.3%, which has previously been shown to be the 

population average.75 This is a reasonable assumption as it has been shown that scatter 

varies to a minimal extent with glandular fraction.20  

7.2.2 Two Dimensional Principal Component Analysis 

 Each X-ray scatter map from the library can be defined as a m x n matrix of 

correlated observations which we can reduce using 2DPCA to a smaller set of linearly 

independent vectors of variables that encapsulates most of the information contained 

within the datapoints. 2D PCA has previously been used in imaging applications such as 

facial recognition.140, 141 To perform the analysis, the m x (n+6) matrix Xi is formed by 

concatenating to each scatter map i a m x 6 matrix Pi of the parameter vector pi, which is 

comprised of the four principal components α, β, γ, δ, the compressed breast thickness 

Th, and acquisition angle θ. This is done to associate the 3DV parameters and θ to each 

scatter map. 

࢏ࡼ  ൌ  
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    (Equation 7.1) 

 Then (n+6) x (n+6) covariance matrix, cov(X), is then formed from the mean-

centered X matrices: 

ሻࢄሺݒ݋ܿ  ൌ   ∑ ሺࢄ ି ࢏ࢄഥሻ೅ሺࢄ ି ࢏ࢄഥሻಿ
೔సభ

ேିଵ
  (Equation 7.2) 
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where N is the total number of images processed and ࢄഥ is the mean of the X matrices. 

The principal components of the dataset are then represented by the eigenvectors ej, 

which can be obtained by solving the eigenvalue problem: 

࢐ࢋሻࢄሺݒ݋ܿ ൌ  (Equation 7.3)     ࢐ࢋ௝ݒ

where the associated eigenvalues (vj) also represent the variance of each principal 

component. The k principal components with the greatest vj were selected and their 

respective ej assembled into a n x k principal component matrix U. This matrix can be 

used to describe any of the scatter maps that were used in the 2DPCA, and forms the 

basis of the scatter map model. The m x k image feature matrix Vi for image i can be 

calculated as follows: 

࢏ࢂ ൌ  (Equation 7.4)     ࢁ࢏ࢄ

Initial validation of the model was done by comparing the mean absolute error (MAE) 

between each scatter map from the library and its corresponding estimate from the 

2DPCA model. The estimate is obtained by first calculating  ࢄ෩࢏ as follows: 

࢏෩ࢄ  ൌ     (Equation 7.5)      ࢀࢁ࢏ࢂ 

Following this calculation, the scatter map estimate and estimated parameter vector ࢖෥࢏are 

extracted from ࢄ෩࢏.  

 All 2DPCA analysis was performed using MATLAB® R2011b (MathWorks, 

Natick, MA).  

7.2.3 X-Ray Scatter Map Model 

 Generation of a novel scatter map from the model is initiated by the selection of 

the target parameter vector t, which consists of the target 3DV parameters [α, β, γ, δ, Th] 

and θ. The closest matching scatter map from the library is identified by searching for the 

minimum root mean square error (RMSE) between t and the parameter vectors in the 

library. The image feature matrix Vj of this scatter map j, calculated using Equation 7.4, is 

then chosen for the initial guess to a targeted brute force search.  
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 In each iteration, the search varies the image feature matrix Vtest by individually 

varying each of the k image feature vectors that comprise it. We can then calculate the 

(m+6) x n matrix Yi as follows: 

࢏ࢅ  ൌ  (Equation 7.6)    ࢀࢁ࢚࢙ࢋ࢚ࢂ 

Following this calculation, the resulting parameter vector pj is extracted from Yi, and 

compared to t. The output scatter map is extracted from the Yi that exhibits the minimum 

RMSE between pj and t. 

 Testing of the model was performed by the generation of two novel 3DVs that are 

not part of the scatter map library, and performing MC simulations to obtain the scatter 

map sets of the test 3DVs. The test 3DV parameters are then used to initiate a search 

from the 2DPCA model, and finally the true scatter maps are compared to the 2DPCA 

model output by comparing the signal profiles and by calculating the MAE between the 

maps. 

7.1 Results  

7.3.1 Two Dimensional Principal Component Analysis 

 The 2DPCA of the X-ray scatter maps revealed that 98.7% of the variance is 

contained in the first six principal components (Table 7.2).  
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Table 7.2 – Percentage of total variance contained in the first six principal components of 
the 2D Principal Component Analysis – Shown here is the variance contained within 
each individual component and the cumulative variance contained within each 
component and its predecessors.   

Table 7.2 Percentage of Total Variance 
of 2DPCA 

Principal 
Component # 

Individual 
Component/Cumulative (%) 

1 50.1/50.1 

2 22.7/72.8 

3 15.2/88.0 

4 5.6/93.6 

5 3.4/97.0 

6 1.7/98.7 

 
 
 
 However, during the initial validation testing it was found that a minimum of 15 

principal components were required to recapture the scatter maps from the library without 

artifacts. Using a selection of k=15 principal component vectors for the U matrix, 

validation testing showed that the average MAE between each scatter map from the 

library and its corresponding estimate from the 2DPCA model is 0.0024% (SE 

=0.00033%). 

7.3.2 X-Ray Scatter Map Model 

 The 2DPCA model successfully generated novel X-ray scatter maps of two 3DVs 

that were not part of the library (Table 7.3), and therefore not used in the analysis . This 

process required less than 30 minutes for each 3DV. Visual examination reveals that the 

modeled scatter maps are very similar in appearance to the MC simulated scatter maps 

(Figure 7.1A-B, Figure 7.2A-B). In addition, signal level profiles drawn through the 

center of the scatter maps appears to be very similar up to the point furthest from the 
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chest wall where X-rays pass through breast tissue (i.e. not open field), as can be seen in 

Figure 7.1C and in Figure 7.2C. Since these maps will be used to reduce the scatter signal 

in the breast projection before reconstruction, any error in the scatter map generation in 

the open field is not of concern. The MAEs inside the breast shapes of the novel X-ray 

scatter maps are 2.2% and 2.5%.  

 
 
Table 7.3 –3D Breast Test Volumes – Comparison of the image quality of the spherical 
embedded masses in the phantom between the spectral reconstruction (SR) images and 
the maximum likelihood estimation maximization (MLEM) images. 

Table 7.3 3D Breast Test Volumes 

Parameter Test Volume A Test Volume B 

α μ + 1.5σ μ + σ 

β μ + 2σ μ + σ 

γ μ - 2σ μ - σ 

δ μ μ + 2σ 

Th 4 cm 6 cm 

θ -0.003 deg -0.003 deg 
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Figure 7.1 – Novel Scatter Map of Test Volume A – An X-ray scatter map of Test 
Volume A (delineated in Table 7.3) is shown in (A) and the corresponding scatter map 
generated by the 2DPCA model is shown in (B). The MAE inside the breast shape of the 
modeled scatter map is 2.2%. The graph in (C) depicts the signal profile through the 
center of the both the Monte Carlo simulated (black) scatter map and the corresponding 
scatter map generated by the 2DPCA model (grey). The profiles are very similar inside 
the breast tissue up to the furthest distance from the chest wall (dashed black line).  
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Figure 7.3 – Novel Scatter Map of Test Volume B – An X-ray scatter map of Test 
Volume B (delineated in Table 7.3) is shown in (A) and the corresponding scatter map 
generated by the 2DPCA model is shown in (B). The MAE inside the breast shape of the 
modeled scatter map is 2.5%. The graph in (C) depicts the signal profile through the 
center of the both the Monte Carlo simulated (black) scatter map and the corresponding 
scatter map generated by the 2DPCA model (grey). The profiles are very similar inside 
the breast tissue up to the furthest distance from the chest wall (dashed black line).  
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7.4 Discussion 

 The study presented in this chapter shows that a 2DPCA model of X-ray scatter 

maps exhibits the potential to predict the x-ray scatter signal distribution in DBT 

imaging. Following the incorporation of this model into the DBT scatter correction 

algorithm, in a hypothetical clinical setting, the central angle projection of the patient 

image is subjected to the automated edge detection (section 4.2.2) and the PCA (section 

4.2.3) previously described to obtain the patient 3DV parameters α, β, γ, δ. The readout 

from the DBT system provides Th, and the 2DPCA model described here can then be 

used to generate the X-ray scatter map set for use in the scatter correction algorithm 

described in chapter 2. This CC view model requires less than 1 GB of data storage, as 

compared 120 gigabytes for the scatter map library presented in chapter 5. There is also a 

one-time initial computation requirement of 210,000 hours associated with the library. In 

addition, a medio-lateral oblique (MLO) view 2DPCA model would have similar 

requirements to the model presented here, while a MLO view scatter map library could 

more than double the computation time and storage requirements of the library presented 

in chapter 5.  

 Currently, the 2DPCA model is built upon a library of 540 scatter map sets, which 

is the same library created in section 5.2.2. This library was found to be insufficient in 

terms of range and granularity to cover the majority of breast shapes and sizes 

encountered clinically, as detailed in section 5.3.1. The required expansion of that 

preliminary scatter map library,, suggests that the 2DPCA model described here could 

also benefit from an expanded library. Work is currently underway to do so by including 

mammograms and central angle DBT projections acquired by the Selenia Dimensions 

system. 

 Finally, this study focused on CC view DBT images. A similar study would need 

to be performed to accommodate the MLO view. A PCA model of breast shapes 

undergoing MLO mammographic imaging is already complete, and is detailed in chapter 
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4. A MLO view X-ray scatter map library, similar to the CC view library detailed in 

chapter 5, would need to be built, tested and then analyzed following the method 

described in section 5.2.3 to generate a second 2DPCA model.  

 The 2PDCA model could also benefit from the incorporation of an improved 

search algorithm in terms of both efficiency and accuracy. The current targeted brute 

force method searches only the parameter space close to the closest matching scatter map 

in the library. A gradient descent search algorithm was tested but did not converge 

successfully. Ongoing work to incorporate a brute force approach with heuristics could 

potentially eliminate large portions of the parameter space to search.  

7.5 Conclusion 

 The 2DPCA scatter map model presented in this chapter exhibits the potential to 

improve the SC algorithm by eliminating the computing time needed for patient specific 

MC simulations and the high storage space requirements of a X-ray scatter map library, 

as detailed in chapter 5.  
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CHAPTER 8 

CONCLUSION 

 This thesis documents a multi-faceted, software-based approach to enhance the 

image quality of DBT imaging. The successful completion of the development, 

optimization, and testing of the scatter correction (SC) and spectral reconstruction (SR) 

algorithms result in improved DBT image quality. They are both ready for 

implementation and clinical evaluation in a DBT system, and have the potential to 

increase the sensitivity and specificity of breast cancer detection and diagnosis with 

breast tomosynthesis. In addition, a comprehensive dosimetric characterization of the 

Selenia Dimensions (Hologic Inc., Bedford, MA) DBT system has also been performed, 

and the feasibility of a new dual-spectrum, single-acquisition, DBT imaging technique 

has also been evaluated.  

 The software-based SC algorithm presented in chapter 2 was successfully 

implemented and tested on DBT acquisitions of both phantoms and patients. Measurable 

improvements in the image quality of the phantoms images were found and the 

application of this method to patient images also demonstrated improvement in image 

quality. The incorporation of the cranio-caudal (CC) view principal component analysis 

(PCA) model of breast shape, presented in chapter 4, into the SC algorithm has improved 

the efficiency of the algorithm and provided the size and range required of a pre-

computed CC view X-ray scatter map library, as described in chapter 5. The observer 

study, also detailed in chapter 5 is also the first test of the SC algorithm with patient 

images and human observers, and demonstrates the potential it has to improve the clinical 

performance of DBT. Subsequently, the 2DPCA X-ray scatter map model detailed in 

chapter 7 exhibits the potential to further improve the SC algorithm by eliminating the 

storage space needed for the scatter map library.  
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 The SR algorithm detailed in chapter 6 exhibits the potential to improve the image 

quality of DBT acquisitions over mono-energetic reconstruction methods, and to allow 

for dual spectrum DBT imaging with minimal impact to image quality but with a drastic 

reduction in dose. Acquisition of DBT images with alternating spectra could be greatly 

beneficial for a screening technology. 

 Beyond the SC and SR algorithms, other beneficial outcomes of the work 

presented in this thesis include the objective PCA models of breast shape presented in 

chapter 4 and the dosimetric characterization of a clinical DBT system presented in 

chapter 3. The PCA models of breast shape demonstrate the potential to be useful tools 

for various breast imaging applications, both for analyzing acquired images and for 

generating realistic breast shapes. The ability to characterize a breast shape using just a 

few parameters could be great utility in many applications. The dosimetry study is an 

important contribution to the field of knowledge, and has major implications for patient 

care. In addition, comprehension of the dosimetric characteristics of this particular 

imaging system in both FFDM and DBT mode are critical objectives of this dissertation, 

as the improvement of DBT image quality must be achieved without compromising 

radiation dose.  
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