
A DIVERSITY-BASED FRAMEWORK FOR DYNAMIC
PASSWORD POLICY GENERATION

A Thesis
Presented to

The Academic Faculty

by

Shukun Yang

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2016

Copyright c© 2016 by Shukun Yang

A DIVERSITY-BASED FRAMEWORK FOR DYNAMIC
PASSWORD POLICY GENERATION

Approved by:

Professor Raheem Beyah, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor John Copeland
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Henry Owen
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 1 April 2016

To my parents Leijia Xin and Huacong Yang,

without whom none of my achievements would be possible.

Thank you for your unconditional love and support.

ACKNOWLEDGEMENTS

Foremost, I want to thank my advisor, Professor Raheem Beyah, for constant guid-

ance, support and trust. His ideas and suggestions have significantly inspired and

encouraged me over the entire course of my graduate research. He has also taught me

various soft skills that I would benefit from for life. I am fortunate to have worked

with such a great advisor.

I would like to thank Professor John Copeland and Professor Henry Owen for

serving as my thesis reading committee. I also want to thank all the members in the

Communications Assurance and Performance (CAP) Group, especially Shouling Ji,

Weiqing Li, Xiaojing Liao, and Qinchen Gu, who have been there for me whenever I

encountered roadblocks. Last but not least, I want to thank my family and friends

for their continuous support, understanding, and company.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . ix

I INTRODUCTION . 1

II LITERATURE REVIEW . 4

2.1 Terminology . 4

2.2 Password Cracking . 4

2.3 Password Strength Measurement . 6

2.4 Password Security Evaluation . 9

2.5 Password Management . 10

2.6 Password Protection . 10

III COMMERCIAL PASSWORD CHECKERS 12

3.1 Datasets, Checkers, and Crackers . 12

3.2 Threat Model: Take Your Checker, Crack Your Passwords 14

IV DYNAMIC PASSWORD POLICY GENERATOR 21

4.1 Overview . 21

4.2 Two Modes: Explore and Exploit 22

4.3 Usability Analysis . 24

4.4 Passwords Evaluation . 27

4.5 Prevention and Detection of Misuse 31

V PASSWORD DIVERSITY . 33

5.1 Password Similarity Measure . 34

5.2 Weights Selection . 36

5.3 Diversity-based Metric: Graph Model and Communities 38

v

5.4 Evaluation of the Diversity Measure 39

5.4.1 Attacking without Metric Details 41

5.4.2 Attacking with Metric Details 42

5.4.3 Attack on Passwords from User-study 44

VI CONCLUSION . 46

APPENDIX A — MECHANICAL TURK USER STUDY DOCU-
MENTS . 48

REFERENCES . 52

vi

LIST OF TABLES

1 Datasets. 12

2 Percentage of “Strong” Passwords. 13

3 Cross-Site Password Cracking (Bloomberg’s Password Checker). . . . 13

4 Password Cracking (QQ’s Password Checker). 18

5 Password Cracking (Target’s Password Checker). 18

6 Password Cracking (Twitter’s Password Checker). 19

7 Password Cracking (Yahoo’s Password Checker). 19

8 Password Cracking (12306’s Password Checker). 19

9 Password Policy Requirement Types. 21

10 Mechanical Turk User Study. 25

11 Cracking Evaluation on Mturk Passwords 30

12 Mturk Dataset Evaluation. 30

13 Password Attributes. 33

14 Diversity-based Password Security Metric. 39

15 Cracking Results of the Mturk Dataset. 39

16 Cross-site Diversity-based Cracking 43

17 Selection Attack . 44

vii

LIST OF FIGURES

1 Attack-based Evaluation Model . 13

2 Intra-site Password Cracking (Bloomberg and QQ Password Checkers). 14

3 Dynamic Password Policy Generator 23

4 Mturk Password Analysis. 28

5 Weights Model . 38

6 Attack-based Evaluation . 39

7 Diversity-based Cracking. 40

8 Instructions. 49

9 Registration with DPPG. 49

10 Registration with QQ’s checker. 50

11 Login Pages. 51

viii

SUMMARY

To keep password users from creating simple and common passwords, major

websites and applications provide a password-strength measure, namely a password

checker that displays instant password strength ratings in levels e.g., “strong”, “mod-

erate”, and “weak”. While critical requirements for a password checker to be strin-

gent have prevailed in the study of password security, we find that regardless of the

stringency, such static checkers can leak information and actually help the adversary

enhance the performance of their attacks. To address this weakness, we propose and

devise the Dynamic Password Policy Generator, namely DPPG, to be an effective and

usable alternative to the existing password strength checker. DPPG aims to enforce

an evenly-distributed password space and generate dynamic policies for users to cre-

ate passwords that are diverse and contribute to the overall security of the password

database. Since DPPG is modular and can function with different underlying metrics

for policy generation, we further introduce a diversity-based password security metric

that evaluates the security of a password database in terms of password space and

distribution. The metric is useful as a countermeasure to well-crafted offline cracking

algorithms and theoretically illustrates why DPPG works well.

ix

CHAPTER I

INTRODUCTION

Text-based passwords have been used widely in both online and offline applications

for decades. Since passwords are personal and portable, they are not likely to be

replaced in the foreseeable future [49]. However, the phenomenon that people choose

simple passwords and reuse common passwords [38] has raised great security con-

cerns as such passwords are vulnerable to offline cracking attacks. To make things

worse, a number of password leakage incidents [5, 7, 10, 3] have happened recently

and frequently. Large datasets of leaked passwords can greatly enhance the attack-

ers’ capability in conducting training-based password attacks, thus posing significant

threats on password security.

The most direct and pervasive protective mechanism used by major websites and

applications is the password strength checker [39], which evaluates the strength of

passwords proactively during user registration. While the goal is to guide users to

create strong passwords, in previous work [108, 23, 55], the lack of accuracy and

consistency in the strength feedback has been widely observed and examined. That

is, existing checkers do not demonstrate effective or uniform characterization of strong

passwords. Furthermore, the space for the rules and policies of the checkers to be

stringent is very limited as researchers have shown that the complexity of a password

is a trade-off with the usability [113]. Therefore, password strength checkers simply

cannot demand users to create passwords that are too complex.

On the other hand, the password strength checker itself can be a vulnerability,

which has not been studied in previous research. By defining a set of password cre-

ation policies and showing users password strength scores, password checkers can exert

1

a strong bias on the password characteristics, especially when the policies and scoring

mechanisms remain static. The passwords registered to a database are largely similar

to the specific password patterns enforced by the associated checker. Although pass-

word checkers vary among websites, they inevitably rely on similar rules that focus

on specific password properties (e.g., length, number of digits and special characters).

When rules are relatively relaxed, password users may create simple passwords fol-

lowing a common distribution. When rules are relatively demanding, the password

distribution is closely correlated to the scoring metrics and can be inferred. Since

the password checkers are publicly available, attackers can easily make use of the

password checkers to learn the password characteristics distribution that is shaped

by the password checkers.

Our main contributions in this thesis are summarized as follows.

• In Chapter 3, we evaluate the impact of misusing current commercial password

strength checkers from the attacker’s perspective and explore the possibility and

potential to leverage the checkers in offline cracking attacks. Using an attack-

based model, we show that the password checkers are effective for attackers to

facilitate password cracking. With a certain amount of computational power,

the attacker can compromise more passwords with a specific rating with the

help of the strength checkers. This implies that the static policies and scoring

mechanisms used by the password strength checkers exert bias on the password

characteristics distribution. Passwords with the same rating follow an obvious

pattern which can be exploited by the attacker to refine the training data.

• In Chapter 4, to propose a countermeasure to protect the information on pass-

word distribution and to reduce the efficacy of well-crafted training-based at-

tacks, we devise the Dynamic Password Policy Generator, namely DPPG, which

generates dynamic password policies for users. Each new user obtains a different

password policy to follow, which is generated in real-time from the server based

2

on but not reflecting the current password distribution. The policies thus are

not static and a user does not know what policies others receive. DPPG works

to even out the password distribution in the database and expand the password

space. Since the policies users receive are dynamic, and unpredictable, the ad-

versary cannot use them to infer the characteristics of the password database

or select password training data.

• To further understand the password distribution and evaluate the threats posed

by the exposure of the password distribution of a leaked dataset, we introduce

the concept of password diversity and propose a diversity-based metric to mea-

sure the security of a password dataset in Chapter 5. The metric considers

an aggregation of password properties to analyze the password characteristics

distribution within a dataset. It assigns a higher security score to a password

dataset with a more uniform password distribution. The metric serves as the

underlying mechanism used in DPPG to generate dynamic policies and aims

to minimize biased password distributions and to expand the usable password

space. Since the training-based attacks become powerful due to strong similar-

ities between the training and target passwords, it is meaningful to study such

a metric.

3

CHAPTER II

LITERATURE REVIEW

In this chapter, we clarify the terminology used throughout the thesis and summarize

the related work in major domains of password security research.

2.1 Terminology

Within the domain of password cracking research, we use training-free to refer to

cracking algorithms that do not need input passwords data and generate guesses in-

dependently. Training-free algorithms can quickly compromise simple and common

passwords, e.g., dictionary words. We use training-based on the other hand to

denote algorithms that require training data, which work better to crack more com-

plicated passwords with human textual patterns. When studying similarity, we use

password characteristics, attributes, and properties interchangeably to refer to

password length, number of character types, structure, and etc. We use password

space to denote the variability of passwords with a set of constraints e.g., for pass-

words that are 10 characters long and contain only numerical digits, the password

space has two dimensions with a size of 1010. We define password distribution

in terms of password attributes in a dataset, such as the appearance frequencies of

certain characters, character types and etc. In Chapter 5, we detect communities

of passwords based on their similarity and password distribution can be approxi-

mated by the distribution of communities.

2.2 Password Cracking

John the Ripper is a popular commercial offline password cracking application and

has been widely used in password security research. It has different modes such as

4

Single, Wordlist, Incremental, and Markov mode. Single mode performs mangling

on auxiliary information, typically the usernames associated with the passwords;

Wordlist mode is an efficient dictionary attack with optional mangling rules; and

Incremental mode uses smart brute-forcing and attempt to exhaust the entire pass-

word space given enough time. The only training-based algorithm lies in the Markov

mode, which trains a given password dataset to extract characteristic information

and build Markov chains to generate password guesses. As shown in the previous

literature [19, 55], training-based algorithms, in most scenarios, have much better

cracking performance than training-free algorithms. In this thesis, we only consider

the Markov mode and denote it as JtR.

In [109], Weir et al. proposed a training-based password cracking algorithm using

Probabilistic Context-Free Grammars, namely PCFG. The algorithm first surveys the

structural distribution from a training dataset. The password structure is generated

by replacing each character in the passwords with its character type. In PCFG, 3

character types are considered which are, L that stands for lower-case or upper-case

alphabet, D that stands for numerical digit, and S that stands for special character.

In this thesis, we further use L and U to represent lower-case and upper-case alpha-

bets separately. For example, “Pwd@1” has a structure of “ULLSD”. By using the

structural distribution, PCFG then applies mangling rules to the structures in the

decreasing order of likelihood and generates guesses.

Taking another approach, in [75], Narayanan and Shmatikov proposed to use stan-

dard Markov modeling techniques to drastically reduce the password search space and

designed the first Markov model-based algorithm. Markov-based cracking algorithm

extracts information from the training dataset to construct Markov Chains which can

enumerate the password search space efficiently based on the prior knowledge. In [24],

Castelluccia et al. improved the Markov model and proposed to build an n-gram

based Markov model to generate password guesses, However, the algorithm in [75, 24]

5

cannot generate password guesses in the decreasing order of likelihood. To address

this limitation, Dürmuth et al. further proposed an improved Markov-based pass-

word cracking algorithm, namely Ordered Markov ENumerator in [34] which makes

guesses in the decreasing order of likelihood. We denote it as OMEN for short. Fur-

thermore, they also extended OMEN to OMEN+ and consider users’ social profiles

during password cracking.

2.3 Password Strength Measurement

The trade off between usability and stringency of the password requirements has also

been explored extensively. In [89], Shay et al. found that users struggle with new and

complex password requirements. In [71], Mazurek et al. measured the strength of

passwords created by over 25K university students, faculty, and staff. They found that

users who expressed annoyance with complex password creation policies tend to create

more vulnerable passwords. Reporting the same issue, Shay et al. in [89] conducted

a survey of 470 CMU computer users to find that users struggle with new password

requirements, especially the complex ones. These work report the issues that while

complex password creation policies might enhance the security of passwords, general

usability is compensated. Therefore it is meaningful to ensure the proper level of

complexity in password policies. In [66], Li et al. conduct an empirical analysis of

Chinese web passwords. According to their statistical results, user-chosen passwords

have explicit regional differences. In [17], Bonneau analyzed an anonymized corpus of

70M Yahoo! passwords. He estimated that passwords provide fewer than 10 bits of

security against an online, trawling attack, and only about 20 bits of security against

an optimal offline dictionary attack. He also found that graphical feedback during

the password selection process makes little difference in improving password security,

and seemingly distant language communities choose the same weak passwords.

Traditional password strength metric has been found ineffective through previous

6

work. In [108], Weir et al. evaluated various traditional metric, e.g., NIST entropy,

for password creation policies by attacking leaked passwords using their PCFG based

cracking algorithm. They found that the NIST entropy and other conventional met-

ric are not effective for password security, and proposed new PCFG cracking-based

password creation policies. Another work employing the password cracking idea to

measure password strength is [59], where Kelley et al. analyzed 12K passwords col-

lected under seven composition policies via an online study. They also concluded that

the effectiveness of using entropy as a measure of password guessability is very limited.

In [70], Ma et al. conducted a study of probabilistic password models. They proposed

a probability-threshold graph model to capture the probability threshold distribution

in log scale versus the percentage of passwords above the threshold.

Although interesting proposals have been made to replace traditional metric, the

new approaches are still based on the complexity of individual passwords without

considering the overall password distribution of a password database. Similarity be-

tween individual passwords and how it could affect the security of passwords in bulk

are not studied.

The existing password checkers have also been studied in a variety of ways, but

mainly in terms of their accuracies and effectiveness in indicating the strength of indi-

vidual passwords. In [23], Carnavalet and Mannan studied existing password checkers

by analyzing feedback from 11 commercial checkers on passwords in various datasets.

They found significant inconsistencies among different checkers, which may confuse

users. Ji et al. in [55] further conducted attack-based analysis on commercial check-

ers to find that many of them provide inaccurate and misleading feedback. Ur et

al., in [104], also studied the effect of strength checkers on password creation. They

found that password resistance could only increase when the checkers score passwords

stringently. To suggest a different approach than traditional checkers, Castelluccia

et al. presented adaptive password strength meter that estimate password strength

7

using Markov models [24]. They also proposed a secure implementation of the pre-

sented concept. However, the checker solely relies on n-gram which does not consider

structural and other information. In [53], Houshmand and Aggarwal proposed a tool,

named Analyzer and Modifier for Passwords (AMP), to help users choose stronger

passwords. AMP first estimates a password’s crackability based on the PCFG cracking

model, and then modifies the weak password slightly to meet the security require-

ment. Komanduri et al. implemented another tool, namely Telepathwords, to help

users create strong passwords [62]. As a user creates a password, Telepathwords pre-

vents weak passwords by making realtime predictions of the next character that the

user will type. In [42], Forget et al. also developed a tool, namely Persuasive Text

Passwords (PTP), which leverages the persuasive technology principle to influence

users in creating more secure passwords without sacrificing usability. Schmidt and

Jaeger evaluated the security of automated strengthening of passwords [87]. They

found that passwords that were strengthened are still susceptible to modern cracks,

provided that the adversary knows the strengthening algorithm. The work most re-

lated to this thesis is [83], where Schechter et al. proposed to prevent users from

creating popular passwords using a bloom filter. However, the filter only recognizes

popular passwords rather than having the capability to identify popular password

patterns.

Again, extensive studies have shown that password checkers lack the accuracy in

reflecting the proper strength levels of passwords, and new strength checkers adopting

more rigorous algorithms are observed to have better effectiveness. However, not much

focus has been put on protecting the security of password distributional information.

According to Kerckhoffs’s principle, an attacker can learn the system and optimize the

attack. In this thesis, we set aside evaluating the effectiveness of password checkers,

and study the possibility of such checkers leaking crucial passwords distributional

information. We also propose a new mechanism to render dynamic policies that

8

minimize the attacker’s ability to learn the system.

2.4 Password Security Evaluation

In [38], Florêncio and Herley conducted a large scale study of password habits. Several

interesting facts are found in the study such as on average a user has 6.5 passwords,

and each of which is shared across 3.9 different sites. Similar to [38], Gaw and Felten

studied the password reuse phenomenon [45]. Based on a study of 49 undergraduate

students, they concluded that the majority of users have three or fewer passwords

and their passwords are reused twice. Stobert and Biddle also studied user behavior

in managing multiple passwords [93]. They found that many users reuse and write

down passwords. In [19], Bonneau et al. evaluated two decades of text-password

alternatives. They found that many alternatives fail to consider a sufficiently wide

range of real world constraints, and thus text-passwords will still be the dominat-

ing authentication method in the foreseeable future. Schmidt and Jaeger evaluated

the security of automated strengthening of passwords [87]. They found that pass-

words that were strengthened are still susceptible to modern cracks, provided that

the adversary knows the strengthening algorithm.

As summarized above, the password reuse phenomenon is pervasive and concern-

ing. This means that a user who reuses a password frequently will have the same

password in many password databases. If the number of such users are large, dif-

ferent password databases will resemble each other thus sharing a common password

distribution. Therefore, it is meaningful to study how the password distribution will

affect the security of password databases.

In [36], Fahl et al. presented a study on the ecological validity of password stud-

ies, which can help researchers design proper user study settings. In [47], Haque

et al. investigated the issue of user comfort from the viewpoint of psychometrics

by developing a questionnaire. Kuo et al. evaluated human selection of mnemonic

9

phrase-based passwords [65]. They concluded that user-generated mnemonic pass-

words are slightly more resistant. In [20], Bonneau and Schechter challenged the

conventional wisdom that users cannot remember cryptographically-strong secrets.

Through a study, they demonstrated that users can learn randomly-assigned 56-bit

codes. In [27], Chiasson et al. presented a usability study of two recent password

managers PwdHash and Password Multiplier. Their findings suggest that ordinary

users would be reluctant to use these managers. Jeyaraman and Topkara proposed

and evaluated an automatic memorable mnemonics generation system for a given

password based on a text-corpus [54]. Their results show that automatic mnemonic

generation is a promising technique to improve the usability of text-password sys-

tems. In [88], Shay et al. evaluated the usability of system-assigned passphrases.

They found that system-assigned passphrases and passwords have similar entropy

with respect to the examined usability metric.

2.5 Password Management

In [117], Yee and Sitaker designed Passpet for password management. In [16], Bojinov

et al. introduced Kamouflage, a new architecture to build theft-resistant password

managers. Florêncio et al. studied how to manage a portfolio of passwords in [41].

Molloy and Li evaluated the security of GridCode, a one-time password system [74].

In [44], Gasti and Rasmussen studied the security of password manager database

formats. Another recent study on password managers is [67], where Li et al. found

that it is still a challenge for existing password managers to be secure. In [91], Silver

et al. studied the security of popular password managers.

2.6 Password Protection

In [57], Juels and Rivest proposed Honeywords to improve the security of hashed

passwords. Florêncio and Herley studied how to securely enter passwords on a spy-

ware infected machine in [37]. They proposed three countermeasures using passwords

10

embedding in random keystrokes and a shared-secret proxy. In [64], Kumar et al.

proposed to reduce shoulder-surfing by using gaze-based password entry. In [48],

Hart presented a phishing resistant password ceremony, PhorceField. To protect user

accounts from password database leaks, Kontaxis et al. proposed SAuth [63]. In [68],

Liu et al. designed and implemented ScreenPass, which significantly improves the

security of passwords on touchscreen devices. For improving users’ password man-

agement, Kim et al. introduced YourPassword. In [95], Stock and Johns proposed

an alternative password manager design. In [28], Cox et al. presented SpanDex for

secure password tracking in Android. In [72], McCarney et al. proposed Tapas, an

authentication approach offering encrypted storage of passwords and theft-resistance.

11

CHAPTER III

COMMERCIAL PASSWORD CHECKERS

Most of the existing research only evaluates the effectiveness and helpfulness of the

password strength checkers. The fact that the checkers are based on unchanged

policies which indirectly bias the password characteristics distribution has not been

studied. Furthermore, due to the exposure of the policies and scoring mechanisms [23,

55, 56], careful attackers can utilize the password checkers to mount more powerful

attacks on passwords with high strength ratings.

3.1 Datasets, Checkers, and Crackers

Table 1 lists the 5 datasets that add up to around 81 million passwords. The datasets

are leaked from several incidents [29, 70] where attackers acquire passwords by online

attacking techniques. Although the password data were leaked illegally, it has been

once made publicly available and used widely in password research for benevolent

purposes. In our study, we use the passwords for research only without attempting

to verify them.

To obtain a collection of usable password strength checkers and cracking algo-

rithms, we conduct our experiments with PARS [55]. Bloomberg is a popular English

business and news forum and QQ is a well-known Chinese portal providing numerous

web services. According to evaluations in [55, 56], they provide relatively accurate

Table 1: Datasets.
Name Size Language Site Type

Renren 4.7M Chinese renren.com/ social networks
LinkedIn 5.4M English linkedin.com/ professional networks
Tianya 31M Chinese tianya.cn/ Internet forum
Rockyou 32.6M English rockyou.com/ game
Gamigo 6.3M German en.gamigo.com/ game

12

Table 2: Percentage of “Strong” Passwords.

checker Gamigo Renren LinkedIn Rockyou Tianya

Bloomberg-Train 0.05% 6.30% 0.31% 0.72% 0.44%
Bloomberg-Test 0.05% 6.27% 0.31% 0.72% 0.44%

QQ-Train 12.44% 22.20% 1.75% 2.56% 5.20%
QQ-Test 12.44% 22.12% 1.74% 2.56% 5.20%

Figure 1: Attack-based Evaluation Model

Table 3: Cross-Site Password Cracking (Bloomberg’s Password Checker).

Training Renren LinkedIn Rockyou

Algorithms JtR OMEN PCFG JtR OMEN PCFG JtR OMEN PCFG

NS S NS S NS S NS S NS S NS S NS S NS S NS S

Renren - - - - - - 3.57% 7.17% 2.59% 7.17% 2.43% 10.97% 1.75% 15.32% 1.13% 19.22% 0.29% 11.34%

LinkedIn 0.23% 1.94% 0.05% 1.14% 0.01% 10.49% - - - - - - 0.66% 5.87% 0.41% 7.98% 0.03% 14.29%

Rockyou 1.09% 6.90% 0.26% 4.30% 0.08% 18.59% 10.00% 17.37% 6.22% 15.54% 6.91% 21.57% - - - - - -

Tianya 1.43% 4.81% 0.73% 4.78% 0.01% 9.77% 2.83% 5.46% 2.82% 6.70% 1.87% 11.89% 1.14% 5.41% 1.00% 6.93% 0.16% 11.28%

Gamigo 0.67% 4.37% 0.36% 3.46% 0.00% 20.41% 4.74% 12.76% 4.80% 15.13% 6.62% 24.30% 2.13% 11.48% 1.15% 15.37% 0.24% 25.15%

Training Tianya Gamigo

Algorithms JtR OMEN PCFG JtR OMEN PCFG

NS S NS S NS S NS S NS S NS S

Renren 1.69% 16.21% 0.80% 16.31% 0.07% 9.24% 0.15% 6.00% 0.01% 1.58% 0.12% 7.74%

LinkedIn 0.17% 3.24% 0.05% 0.85% 0.01% 9.04% 0.03% 6.48% 0.01% 1.17% 0.12% 11.47%

Rockyou 0.86% 8.84% 0.12% 1.85% 0.06% 10.79% 0.57% 15.53% 0.01% 2.70% 0.32% 19.96%

Tianya - - - - - - 0.07% 4.53% 0.02% 1.36% 0.07% 5.75%

Gamigo 0.55% 5.65% 0.06% 1.94% 0.00% 16.28% 0.18% 13.00% 0.00% 3.77% 0.06% 22.24%

and consistent feedback to users. There are 4 levels of password strength in both

password checkers to make them comparable, and the highest rating is “strong” in

common.

We use three state-of-the-art password cracking algorithms, JtR (John the Ripper-

Markov) [9], OMEN (Ordered Markov ENumerator) [34], and PCFG (Probabilistic

Context-free Grammar) [109], which have relatively optimal performance in password

cracking as shown consistently in previous research literature.

13

(a) Bloomberg

(b) QQ

Figure 2: Intra-site Password Cracking (Bloomberg and QQ Password Checkers).

3.2 Threat Model: Take Your Checker, Crack Your Pass-
words

From an attacker’s perspective, we evaluate quantitatively how existing commercial

password checkers can be used to enhance offline password attacks. We are particu-

larly interested in the pool of “strong” passwords because intuitively users trust the

strength feedback and create passwords that have better ratings.

In our threat model, we assume an attacker aims to crack a target set of password

hashes leaked from a website which uses a password strength checker. This means

that the hashed passwords can have different strength ratings1. We also assume

the attacker has access to the checker and obtained another dataset of plain text

passwords leaked from other websites as prior knowledge, which is used to train the

password crackers. Since the attacker does not know the correlation between the plain

text and the hashed passwords, a straightforward strategy is to assume a common

1In general, strength checkers can accept passwords of any ratings from “weak” to “strong”, but
there are only several ratings available.

14

distribution in both datasets and use all the plain text passwords to train the cracking

model. However, the target passwords might have been created mostly by users who

trust the strength feedback from the checker and create passwords only if they are

labelled as “strong”. Then, the target passwords are reasonably dissimilar from the

training passwords which come from other sources. Therefore, to compromise such

biased target passwords, the attacker will likely have better cracking results if the

training passwords are also “strong”.

In our experiment, the objective is to see if more “strong” passwords in the target

dataset can be compromised when the attacker uses the password strength checker to

select training data. Figure 1 summarizes the evaluation process. First, we randomly

select 50% of the passwords from a dataset in Table 1 to be the Nonselective Training

dataset. Then, we apply a password strength checker in Table 2 to score each password

in the Nonselective Training dataset, and select only those passwords labelled as

“strong” to make up the the Selective Training dataset. From the other 50% of the

passwords, we apply the same checker selection method to build the Testing dataset.

Finally, we use Nonselective Training and Selective Training datasets separately, as

input to JtR, OMEN, and PCFG, to crack the Testing dataset.

In Table 2, we show the percentages of selected passwords from the datasets, e.g.,

Bloomberg-Train and Bloomberg-Test indicate the percentages of “strong” passwords

marked by Bloomberg’s checker in the datasets from which we sample training and

testing data, respectively. Since we randomly divide an original dataset into halves,

the distributions of “strong” passwords in both halves are approximately the same.

To conduct a comprehensive and comparable evaluation, we perform passwords

cracking in both Intra-site and Cross-site scenarios. In Intra-site cracking, the train-

ing data and target data come from the same original dataset and in Cross-site

cracking, the training data is from a different dataset. To make the comparison fair,

we limit each cracking session to 10 billion passwords guesses uniformly. We present

15

intra-site cracking results of Renren, LinkedIn, Rockyou, and Tianya in Figure 2, and

cross-site cracking results with Bloomberg’s password checker in Table 3.

In Figure 2, the intra-site results show that Selective Training enable all the

cracking algorithms to compromise much more “strong” passwords than Nonselective

Training. Figure 2 (a) shows the cracking scenario where the passwords are selected by

Bloomberg’s checker. The performance gain of using Selective Training is significant.

Specifically, regarding PCFG, with Nonselective Training, it can only crack 0.07%,

4.58%, 0.22%, and 0.01% of the passwords in the target data from Renren, LinkedIn,

Rockyou, and Tianya, respectively, whereas with Selective Training, it can crack

31.15%, 15.40%, 24.78%, and 14.37%, respectively.

Figure 2 (b) shows the cracking scenario where QQ’s checker is used. Although

Selective Training can boost the cracking capability uniformly, the performance gain

is smaller compared to that with Bloomberg’s checker. For Tianya, we see that the

cracking results of Nonselective Training and Selective Training are almost the same

when JtR and PCFG are in use. The likely reason for this phenomenon is that

QQ’s checker is not as stringent as Bloomberg’s, thus having less bias on the selected

“strong” passwords. Another interesting observation is that PCFG, in Figure 2 (a)

and (b) has very different performance. It shows much more performance gain when

Bloomberg’s checker is used. Due to PCFG’s nature, this confirms that Bloomberg’s

checker is more stringent on password structure than QQ’s checker.

In Table 3, we show the results of cross-site cracking with Bloomberg’s password

checker. Surprisingly, we see that the cracking performance with Selective Training

is uniformly and significantly better without exception. Gamigo, as a typical dataset

with German linguistic patterns, is also subjective to a greater cracking enhancement

when the adversary uses the checkers to select training data from a Chinese or English

dataset e.g., a performance gain of up to 24% is observed when training from Rockyou

16

and cracking with PCFG. This means that regardless of where attackers obtain pass-

words for training, they can always improve their cracking capability drastically by

using the password checker associated with the target data to make a good selection

of training data 2.

Our attack-based evaluation is meaningful in the following ways. We do not

make assumptions on what datasets the attacker possesses. We show that as long

as the corresponding password checker of the target dataset exists, the attacker can

successfully crack more passwords in the target dataset that are labelled as “strong”.

In our experiment, Nonselective Training represents the original dataset that the

attacker has, without applying any selection. This makes sense as the attacker will

not have prior knowledge of how to select the training data simply because the target

dataset is hashed. When the password checker is available, it provides information

for the attacker about the target dataset, thus enabling them to select training data

accordingly. Therefore, it is meaningful to compare the cracking performance with

and without the password checker.

The testing dataset represents the target dataset that attackers aim to compro-

mise, which in our case is limited to only passwords rated “strong” by the password

checkers. This can be applied to passwords of any ratings, e.g., “moderate”, “weak”.

Although we do not have Bloomberg or QQ’s password datasets, by using their check-

ers to sample data from the available datasets, we can regard the selected data as

their fair representatives.

To better understand how the adversary can leverage commercial password strength

checkers, we conduct attack-based evaluation in Figure 6 on more password strength

checkers in PARS [55]. In Figure 4, 5, 6, 7, and 8, we show the results of evaluating

QQ, Target, Twitter, Yahoo! and 12306.cn’s password strength checkers, respectively,

2Of course, as previous work has shown, choosing a training dataset that has similar characteris-
tics as the target dataset is also important to optimize cracking (e.g., choose a Chinese dataset for
training if the target dataset is likely Chinese).

17

Table 4: Password Cracking (QQ’s Password Checker).

Training Renren LinkedIn Rockyou

Algorithms JtR OMEN PCFG JtR OMEN PCFG JtR OMEN PCFG

NS S NS S NS S NS S NS S NS S NS S NS S NS S

Renren 0.22% 1.85% 0.70% 3.78% 7.24% 6.73% 3.10%5.64% 5.87% 9.29% 7.64% 7.57% 0.58% 4.64% 2.43% 6.59% 7.51% 7.51%

LinkedIn 0.20% 2.12% 0.61% 4.11% 6.88% 8.22% 3.77%7.96% 7.69% 14.74% 9.36% 11.20%0.63% 5.98% 2.45% 7.90% 7.33% 10.79%

Rockyou 4.15%37.80%5.28%13.48%28.32%31.57%3.29%5.76% 6.19% 9.58% 7.81% 9.56% 1.19% 6.85% 3.30% 7.99% 6.55% 10.18%

Tianya 0.45% 3.53% 1.49% 7.81% 11.17%15.50%5.63%9.76%11.31%17.87%16.17%19.97%2.01%10.78%7.10%17.50%11.90%21.20%

Gamigo 0.37% 0.85% 0.43% 1.44% 0.79% 1.58% 0.46%0.80% 0.99% 1.58% 1.08% 1.86% 0.25% 0.87% 0.51% 1.33% 0.69% 2.04%

Training Tianya Gamigo

Algorithms JtR OMEN PCFG JtR OMEN PCFG

NS S NS S NS S NS S NS S NS S

Renren 0.05% 0.16% 0.07% 0.67% 6.51% 5.65% 0.74%1.84%2.08% 9.16% 7.30% 7.15%

LinkedIn 0.06% 0.28% 0.06% 0.72% 6.32% 6.40% 0.63%1.61%1.26% 8.86% 6.95% 6.76%

Rockyou 0.91% 2.57% 0.89% 6.95% 5.75% 7.48% 0.73%1.68%1.55% 7.36% 6.21% 6.05%

Tianya 0.14% 0.44% 0.16% 1.68% 9.89%10.90%1.07%2.36%2.28%12.58%11.27%10.98%

Gamigo 50.07%50.21%1.59%20.69%0.84% 1.85% 0.11%0.32%0.25% 1.08% 0.59% 0.53%

Table 5: Password Cracking (Target’s Password Checker).

Training Renren LinkedIn Rockyou

Algorithms JtR OMEN PCFG JtR OMEN PCFG JtR OMEN PCFG

NS S NS S NS S NS S NS S NS S NS S NS S NS S

Gamigo 0.00% 0.09% 0.14% 3.33% 11.39% 10.00% 0.00% 0.23% 1.32% 8.16% 11.95% 13.89% 0.00% 0.08% 0.38% 8.97% 12.65% 14.11%

LinkedIn 0.00% 0.02% 0.03% 1.11% 3.89% 3.78% 0.00% 0.36% 0.95% 6.11% 4.29% 7.45% 0.00% 0.02% 0.09% 3.49% 4.48% 6.52%

Renren 0.00% 0.22% 0.49% 6.69% 8.74% 8.85% 0.00% 0.11% 1.24% 7.45% 9.23% 10.79% 0.00% 0.00% 0.59% 8.15% 9.55% 11.17%

Rockyou 0.00% 0.06% 0.16% 2.43% 6.51% 5.81% 0.00% 0.14% 0.90% 5.52% 7.00% 8.47% 0.00% 0.06% 0.43% 8.07% 7.43% 8.47%

Tianya 0.01% 0.13% 0.25% 1.64% 1.55% 1.08% 0.00% 0.06% 0.35% 1.83% 1.02% 1.41% 0.00% 0.02% 0.22% 2.18% 1.13% 1.41%

Training Tianya Gamigo

Algorithms JtR OMEN PCFG JtR OMEN PCFG

NS S NS S NS S NS S NS S NS S

Gamigo 0.00% 0.01% 0.04% 1.57% 7.64% 12.88% 0.00% 1.26% 0.46% 10.84% 12.13% 14.46%

LinkedIn 0.00% 0.01% 0.00% 0.55% 2.66% 4.52% 0.00% 0.22% 0.04% 2.41% 4.15% 5.18%

Renren 0.05% 0.70% 0.32% 6.69% 5.83% 10.79% 0.00% 0.65% 0.11% 5.83% 9.01% 10.36%

Rockyou 0.00% 0.01% 0.02% 1.22% 4.22% 7.11% 0.00% 0.42% 0.12% 4.31% 6.82% 7.74%

Tianya 0.01% 0.44% 0.18% 7.23% 1.83% 3.13% 0.01% 0.23% 0.15% 1.47% 0.96% 1.30%

which are consistent with out observation and conclusions.

Remarks. In this chapter, we conduct a comprehensive evaluation to study the

feasibility and effectiveness for attackers to use existing commercial password strength

checkers to launch more powerful attacks. The results are surprising that commercial

password checkers can actually significantly help attackers compromise more “strong”

passwords rated by the password strength checkers. This means that if the users trust

a password strength checker and always creates “strong” passwords, their accounts are

18

Table 6: Password Cracking (Twitter’s Password Checker).

Training Renren LinkedIn Rockyou

Algorithms JtR OMEN PCFG JtR OMEN PCFG JtR OMEN PCFG

NS S NS S NS S NS S NS S NS S NS S NS S NS S

Gamigo 0.14% 0.91% 0.16% 1.71% 1.07% 11.45% 0.90% 3.54% 2.16% 6.97% 3.68% 14.39% 0.47% 3.15% 1.09% 5.65% 1.05% 14.81%

LinkedIn 0.12% 1.24% 0.05% 0.97% 0.03% 9.12% 1.58% 6.85% 3.03% 11.97% 4.51% 14.44% 0.30% 3.39% 0.37% 3.50% 0.04% 11.93%

Renren 8.15% 17.99% 12.32% 24.15% 0.07% 19.19% 1.03% 2.77% 1.57% 4.33% 1.65% 7.30% 0.52% 7.47% 0.78% 10.54% 0.20% 6.97%

Rockyou 0.21% 1.56% 0.17% 2.12% 0.04% 10.35% 2.01% 5.28% 2.98% 8.46% 4.83% 13.43% 1.09% 6.14% 2.10% 8.82% 0.12% 13.70%

Tianya 0.59% 2.00% 0.53% 3.15% 0.01% 6.27% 1.10% 2.53% 1.78% 3.98% 1.25% 7.84% 0.47% 2.52% 0.72% 3.02% 0.11% 7.05%

Training Tianya Gamigo

Algorithms JtR OMEN PCFG JtR OMEN PCFG

NS S NS S NS S NS S NS S NS S

Gamigo 0.04% 1.07% 0.00% 0.51% 0.82% 8.49% 0.02% 4.54% 0.29% 2.34% 0.04% 14.91%

LinkedIn 0.09% 1.83% 0.04% 0.37% 0.02% 5.82% 0.00% 3.96% 0.02% 0.27% 0.11% 10.87%

Renren 0.75% 8.57% 0.62% 8.68% 0.05% 6.01% 0.00% 2.08% 0.03% 0.25% 0.07% 5.55%

Rockyou 0.20% 1.95% 0.08% 0.85% 0.03% 5.30% 0.01% 3.49% 0.09% 0.32% 0.19% 11.80%

Tianya 1.00% 5.22% 0.62% 5.29% 0.02% 9.33% 0.01% 1.91% 0.05% 0.22% 0.04% 5.46%

Table 7: Password Cracking (Yahoo’s Password Checker).

Training Renren LinkedIn Rockyou

Algorithms JtR OMEN PCFG JtR OMEN PCFG JtR OMEN PCFG

NS S NS S NS S NS S NS S NS S NS S NS S NS S

Gamigo 1.23% 6.47% 1.09% 8.03% 8.55% 8.07% 5.97% 8.83% 7.28% 10.80% 8.89% 8.68% 2.04% 8.39% 3.49% 9.46% 8.85% 8.71%

LinkedIn 1.12% 7.81% 0.91% 8.89% 7.86% 9.77% 7.38% 12.39% 8.85% 15.74% 9.95% 11.44% 2.12% 10.98% 3.32% 11.27% 8.35% 11.35%

Renren 8.19%22.32%9.03%27.74%14.69%22.22%13.93%18.97%14.08%19.25%15.99%16.50% 6.64% 20.82% 8.12% 18.54%15.08%18.51%

Rockyou 4.69%18.72%3.42%19.75%16.73%22.66%18.58%24.19%18.17%25.16%20.54%24.18%10.01%26.32%13.15%29.37%17.76%27.06%

Tianya 1.24% 3.59% 1.10% 4.14% 2.14% 3.24% 2.44% 3.50% 2.69% 3.99% 2.49% 3.60% 1.10% 3.53% 1.42% 3.77% 1.97% 4.16%

Training Tianya Gamigo

Algorithms JtR OMEN PCFG JtR OMEN PCFG

NS S NS S NS S NS S NS S NS S

Gamigo 0.41% 1.98% 0.11% 0.89% 7.51% 6.04% 3.02% 5.22% 2.55%10.48% 8.57% 8.38%

LinkedIn 0.41% 2.43% 0.09% 0.90% 6.89% 6.52% 3.00% 5.41% 1.53% 9.54% 7.87% 7.61%

Renren 2.87%10.19%1.26% 7.37% 12.01%11.31%7.32%11.40%3.55%14.48%14.29%13.19%

Rockyou 1.93% 7.61% 0.40% 2.44% 13.03%11.25%8.76%13.21%3.98%16.77%16.71%16.24%

Tianya 1.42% 3.33% 3.67%46.36% 2.21% 4.25% 1.00% 2.06% 0.72% 2.74% 1.67% 1.43%

Table 8: Password Cracking (12306’s Password Checker).

Training Renren LinkedIn Rockyou

Algorithms JtR OMEN PCFG JtR OMEN PCFG JtR OMEN PCFG

NS S NS S NS S NS S NS S NS S NS S NS S NS S

Gamigo 1.78%24.57%1.17% 6.76% 0.00%32.19%6.02%33.66%7.43%32.37%16.40%38.33%6.39%33.54% 7.43% 31.08%0.12%40.54%

LinkedIn 0.41%12.59%0.28% 2.74% 0.00%16.44%2.17%22.72%4.30%24.84% 8.06% 23.59%1.98%17.60% 2.08% 13.19%0.01%22.51%

Renren 4.25%30.10%4.62%15.09%0.00%26.91%7.58%27.60%7.66%24.72% 9.55% 31.99%8.26%29.57% 9.10% 24.41%0.15%33.51%

Rockyou 2.23%24.20%1.26% 8.57% 0.00%25.94%7.28%27.71%7.40%25.60%11.48%30.01%9.17%31.42%10.68%30.78%0.02%31.52%

Tianya 1.61%17.38%1.78% 6.65% 0.00%13.36%2.23%15.96%3.16%12.53% 4.79% 18.51%2.58%15.91% 2.90% 11.06%0.03%21.57%

Training Tianya Gamigo

Algorithms JtR OMEN PCFG JtR OMEN PCFG

NS S NS S NS S NS S NS S NS S

Gamigo 1.29%22.17%0.43% 8.72% 0.00%36.00%1.35%35.20%1.11%19.66%0.06%35.57%

LinkedIn 0.31%12.13%0.11% 3.48% 0.00%19.34%0.16%19.01%0.24% 6.55% 0.03%18.00%

Renren 5.46%31.99%4.55%21.23%0.00%33.43%0.91%26.84%0.91%13.04%0.08%24.34%

Rockyou 1.73%21.75%0.00% 9.02% 0.00%28.73%1.25%28.01%0.68%14.65%0.09%27.02%

Tianya 3.60%25.29%0.00%22.90%0.00%26.69%0.23%14.30%0.40% 4.26% 0.02%11.41%

19

still more vulnerable to training-based attacks when the adversary obtains the checker.

Since the training-based crackers only become more powerful when the training data

is more similar to the target data, in our evaluation model, the Selective Training

data is more similar to the Testing data, which further implies that the checkers

exert bias on the selected passwords. Due to the nature that password policies and

scoring mechanisms are static, the password distribution is consistently biased. Such

bias, while not necessarily enforcing good password strength, poses significant threats

on the overall password dataset security. Therefore, it is meaningful to address this

limitation of the password strength checkers, and investigate how to enhance overall

password data security.

20

CHAPTER IV

DYNAMIC PASSWORD POLICY GENERATOR

One could argue that a potential solution to the password checker limitations is to

have better web technologies to hide the policies and detect malignant password

strength querying. However, it can result in delay in strength feedback and high

false-positive rates in detection. Further, it does not resolve the fundamental bias

in password distribution. Therefore, we take another approach to the problem and

explore the feasibility of providing dynamic password policies to users. Considering

usability, rather than forcing all users to create extremely complex passwords, we focus

on the overall strength of the password dataset and ensure that the passwords created

by the users have diversity (i.e., cover the vast majority of the entire password space

uniformly). In this chapter, we propose the Dynamic Password Policy Generator,

namely DPPG, as an alternative to traditional password strength checkers.

4.1 Overview

DPPG is a diversity-based and database-aware application that generates password

creation policies dynamically for the users. Instead of purely focusing on the com-

plexity of candidate passwords, DPPG enforces a baseline complexity on the pass-

words (e.g., more than 6 characters long) to protect them from simple attacks, e.g.,

Table 9: Password Policy Requirement Types.

Type Description
Length use a range of password length

Composition use a number of different character types
Alternation use a number of character type transitions
Good Chars include specific characters
Bad Chars exclude specific characters
Structure use a specific structure

21

dictionary, brute-forcing. However, more focus is put on protecting the password dis-

tribution within a database by preventing aggregation of similar passwords that form

a characteristically biased distribution. As long as a candidate password meets the

policy, it is accepted and no additional strength feedback is provided. The policies are

generated to search for candidate passwords that balance the password characteristics

distribution. The underlying diversity-based metric implemented in DPPG is further

elaborated in Chapter 5.

In Figure 3, we show how DPPG works. Initially, system administrators can place

complex or random passwords as seeds in the password database. The seeds can form

a white list to inject certain desired password characteristics, e.g., structures, n-grams.

Based on the seeds, DPPG can start to generate password policies to users. Since

dynamically generating policies requires necessary computational time depending on

the number of existing passwords, to avoid delay in responding to users’ requests, a

policy queue is used to store policies as a buffer each time when a batch of policies

are created. When the size of the policy queue reduces below a threshold, e.g., 25%,

DPPG is signalled to generate new policies.

4.2 Two Modes: Explore and Exploit

In order to intelligently generate password policies based on the current password

distribution, DPPG maintains a global characteristics frequency map and a history of

generated password policies1 that can approximate the current password distribution.

There are two modes for DPPG to expand the usable password space and balance

the current password distribution.

The exploration mode mainly aims to expand the password space by actively

introducing new characteristics based on the global characteristics frequency map.

Before an incoming password is hashed, DPPG extracts its characteristics and stores

1No plain text passwords are stored.

22

Figure 3: Dynamic Password Policy Generator

the metadata in the frequency map, which keeps tracks of the overall distribution of

password attributes e.g., frequency of structures, characters, and denotes the current

password space. In exploration mode, DPPG creates policies that require users to

be more “creative” in making a password e,g., using the character “(” which is not

usual even in special characters. In this way, the passwords can cover a larger textual

search space than the regular human linguistic patterns. Initially when there are

not many passwords, a random mechanism is adjusted to launch the exploration

mode more often to aggressively enlarge the password space. When the password

characteristics distribution is relatively uniform as observed from the exploitation

mode, the exploration mode is also evoked to introduce new characteristics.

Since purely expanding the password space is equivalent to making random pass-

words, DPPG also relies on another major component. The exploitation mode

aims to enhance password diversity and balance the current password distribution,

with the help of the password policy history. Since passwords are hashed in the

23

database, DPPG stores previously generated password policies to approximate cur-

rent password distributions and analyze the password diversity through the metric

and algorithm discussed in Chapter 5. DPPG then identifies password characteristics

that exist in the database with low appearance frequencies, and generate policies that

require such characteristics. Therefore, DPPG creates policies that are usable and

balance the password distribution by temporarily increasing the frequencies of less

common password attributes.

Based on the two modes, DPPG determines the critical characteristics require-

ments, but only renders the final policies after passing them to the usability control

module. In our implementation, there are 6 types of requirements that can form

a policy as shown in Table 9, and the usability control module is evoked to ensure

that the final policies contain only a reasonable number of requirements and are in

different formats as shown in examples below.

Include the character(s): ‘v’, ‘Z’

Avoid the character(s): a, s, e

Use the structure: LLLLLUUS

Number of characters: 8 to 12 (inclusively)

Number of character types: 4

Number of alternations: 3 to 4 (inclusively)

Include the character(s): ‘?’, ‘U’, ‘)’

4.3 Usability Analysis

The usability of DPPG can translate into the ability for users to follow the policies

and maintain the passwords they create. In this chapter, we test DPPG on real users

and collect passwords for further analysis.

Recruitment. After our protocol was approved by the Institutional Review

Board (IRB), we conducted a usability test of DPPG on Amazon Mechanical Turk [1].

24

Table 10: Mechanical Turk User Study.

DPPG
Times 0 1 2 3
Session 0 2 3 4 2 3 4 2 3 4

74 3 0 1 1 1 2 1 1 1
% 91.36% 4.94% 2.47% 1.23%

QQ Checker
Times 0 1 2 3
Session 0 2 3 4 2 3 4 2 3 4

75 2 0 1 2 1 3 0 0 0
% 92.59% 3.70% 3.70% 0.00%

We restricted the participants to a qualification type that requires at least 95% of

approval rate, and 500 approved tasks. We excluded minors and only included English

speakers. Our recruitment statement on Mechanical Turk is attached in the appendix.

Protocol. Our approach is to test if users who create their passwords by DPPG

policies can successfully remember them for a reasonable time period. We also require

the same participants to create passwords using QQ’s password strength checker as

the control group. The participants are not informed of the purpose of our study

or anything introduced in this thesis. Each participant who accepts our human in-

telligence task (HIT) on Amazon Mechanical Turk is asked to access our web server

with registration and login services. Participants are asked to complete 4 sessions

of experiments which are separated by time intervals of 24 hours, 48 hours, and 72

hours to finish the entire study.

In the first session, the participant is directed to visit two artificial websites to

register two accounts with usernames and passwords, following a DPPG policy and

using QQ’s checker, respectively. Then the participant simply concludes the session

by logging into the accounts with the credentials they just created. For the rest of the

sessions, participants simply return to our web interface during the time specified at

the end of each previous session and logged into the accounts with their credentials.

All participants are informed in the beginning of the study that forgetting their

passwords during the study was fine and would not penalize them. If they did forget

their passwords, they were prompted to make new ones.

25

Due to our task requirements, participants are involved for 6-7 days to attend

all sessions. The total in-session time is around 12 minutes. We paid $1.5 to each

participant who completed all sessions in time. In order to collect more passwords

for further analysis, we made the tasks on mechanical turk viewable to all qualified

users who can attempt using DPPG before deciding to join the study. We also hosted

standalone sessions purely to collect passwords from users. Although passwords are

stored in plain text for future analysis, they are not visible to DPPG which only

approximates password distribution by the history of policies. We present the details

of the user-study documents e.g., consent form, session screen shots in the appendix.

Results. After we conducted our study on Amazon Mechanical Turk for 1.5

months, there are 115 users who accepted our study and 81 of them finished 4 sessions

completely. Since we do not keep track of participants’ email addresses for privacy

reasons, we do not explicitly survey those who dropped out of the study. We show

the results based on the records of these 81 participants in Table 10, where Times

denotes the number of sessions where participants failed to log in with the correct

passwords after some trials, and Session denotes the indices of the sessions where users

re-created passwords. The column with 0 in times and session indicates participants

who logged in all sessions successfully. From the results, we see that 74 participants

out of 81 consecutively succeeded in logging into our sessions with the right passwords

they created according to the policies thus demonstrating the ability to remember the

passwords up to a week. Of the 7 participants who forgot their passwords in at least

one session, 4, 2, and 1 of them had to re-create their passwords in exactly 1, 2, and

3 sessions, respectively. Most of the participants who had to re-create passwords in

one session did it in session 2 and if the participant successfully logs in in session 2,

it is almost certain for them to pass the rest of the sessions. QQ’s checker as the

control group shows very similar statistics but is slightly better. This demonstrates

that policies generated dynamically from DPPG are usable, in terms of the ability of

26

users to maintain the passwords.

Furthermore, the passwords from DPPG and QQ’s checker share 54 out of 90 pass-

words in common. Since password policies from DPPG are dynamic, unpredictable

and in various templates, a more likely explanation for this phenomenon is that about

half of the users reused passwords created with DPPG for the QQ’ checker. Although

reusing passwords is a bad practice, this implies that users either reuse the passwords

to get strong strength feedback in QQ’s checker, or to better maintain the passwords.

In a final survey, we further obtain subjective feedback on the usability of DPPG

and QQ’s checker. When asked about the ease in following the policies or strength

feedback, 63.75% and 73.75% of participants thought DPPG and QQ’s checker, re-

spectively were above average. In addition, 65.43% and 61.73% thought DPPG and

QQ’s checker, respectively enable them to make more secure passwords. Finally,

77.78% of participants indicate the passwords they created with DPPG are drastically

different from their other passwords and the rest indicated the passwords are some-

what similar but not the same. This shows that DPPG helps reduce the frequency

of reusing passwords because users are unlikely to leverage their other passwords to

satisfy the dynamic policies.

4.4 Passwords Evaluation

Using a total of 467 passwords collected from our usability study and other standalone

sessions, which we denote as the Mturk dataset, we provide a statistical analysis of

the password characteristics. In order to have a comparison with passwords created

without DPPG, we randomly sampled the same number of passwords from datasets

shown in Table 1 to form other testing datasets.

To compare the password space in the testing datasets, we conduct a character

distribution analysis shown in Figure 4 (a). We assign each unique character existing

in a testing dataset with a number ordered by its appearance frequency. From the

27

(a) Character Distribution

(b) Structure Distribution

Figure 4: Mturk Password Analysis.

plot, we see that the Mturk dataset contains more unique characters in its passwords

than any of the other testing datasets. The character distribution of the Mturk

dataset is also more uniform than the other datasets, suggesting that DPPG can

expand the password space while also enforcing a balanced password distribution.

In Figure 4 (b), we conduct a similar analysis on the password structure. Again,

the Mturk dataset demonstrates the largest variety of password structures among all

the testing datasets and a fairly balanced distribution. Such diversity in password

28

structure is meaningful and implies that a structure-based cracking algorithm like

PCFG will be less efficient in cracking the datasets, because all structures are almost

equally likely.

To further compare the security of the Mturk dataset and other testing datasets,

we employ an attack-based analysis using the datasets in Table 1 excluding the data

in the testing datasets for training to crack the Mturk and other testing datasets

with 10 billion guesses. To eliminate the bias due to a small sample size of the testing

data, we re-sample testing datasets and crack them in 10 repeated sessions to obtain

the average cracking rates. Table 11 shows the partial cracking results of Mturk,

LinkedIn, and Renren datasets, and the full results are in the appendix. As we see,

compared to other testing datasets, the Mturk dataset is much less vulnerable to the

attacks. This is consistent with the results in Figure 4. It also shows that passwords

created with DPPG policies are more diverse and dissimilar to other passwords, thus

being more secure from training-based cracking.

One interesting observation is that although the LinkedIn dataset has a very

close structure distribution with Mturk dataset in Figure 4 (b), and also a sub-

optimal character distribution in Figure 4 (a), it is still noticeably more vulnerable

to cracking than the Mturk dataset. Since the performance of the training-based

cracking algorithms mainly depends on the training data as shown in previous work,

it means that our training datasets are much more similar to the LinkedIn target

sample than to the Mturk dataset.

In Table 12, we show more results on cracking analysis on the Mturk dataset and

the samples from datasets shown in Table 1. We see that cracking performance on

the Mturk dataset is much worse than the other datasets, which is consistent with

results shown in Figure 4 and conclusions in this section.

29

Table 11: Cracking Evaluation on Mturk Passwords

JtR Gamigo LinkedIn Renren Rockyou Tianya
Mturk 4.93% 7.92% 7.49% 7.49% 7.28%

LinkedIn Sample 22.27% 26.34% 19.49% 23.98% 11.35%
Renren Sample 59.31% 63.60% 71.52% 67.02% 68.95%

OMEN Gamigo LinkedIn Renren Rockyou Tianya
Mturk 5.35% 7.49% 7.49% 7.71% 6.00%

LinkedIn Sample 11.35% 24.84% 11.13% 21.20% 3.64%
Renren Sample 41.97% 56.75% 62.96% 60.17% 53.10%

PCFG Gamigo LinkedIn Renren Rockyou Tianya
Mturk 2.57% 3.43% 3.00% 3.43% 4.71%

LinkedIn Sample 17.77% 19.91% 17.99% 19.06% 17.13%
Renren Sample 28.91% 30.62% 50.54% 44.11% 52.46%

Table 12: Mturk Dataset Evaluation.
JtR Gamigo LinkedIn Renren Rockyou Tianya

Mturk 4.93% 7.92% 7.49% 7.49% 7.28%
Gamigo Sample 16.06% 17.34% 14.56% 17.34% 9.85%
LinkedIn Sample 22.27% 26.34% 19.49% 23.98% 11.35%
Renren Sample 59.31% 63.60% 71.52% 67.02% 68.95%

Rockyou Sample 57.82% 62.10% 54.39% 64.03% 46.68%
Tianya Sample 57.17% 62.53% 71.73% 65.31% 73.88%

OMEN Gamigo LinkedIn Renren Rockyou Tianya
Mturk 5.35% 7.49% 7.49% 7.71% 6.00%

Gamigo Sample 13.06% 17.13% 9.42% 16.92% 4.28%
LinkedIn Sample 11.35% 24.84% 11.13% 21.20% 3.64%
Renren Sample 41.97% 56.75% 62.96% 60.17% 53.10%

Rockyou Sample 42.18% 53.53% 41.97% 62.74% 20.34%
Tianya Sample 45.40% 57.39% 65.10% 62.53% 62.31%

PCFG Gamigo LinkedIn Renren Rockyou Tianya
Mturk 2.57% 3.43% 3.00% 3.43% 4.71%

Gamigo Sample 10.49% 10.92% 10.71% 12.85% 11.13%
LinkedIn Sample 17.77% 19.91% 17.99% 19.06% 17.13%
Renren Sample 28.91% 30.62% 50.54% 44.11% 52.46%

Rockyou Sample 40.90% 38.54% 43.25% 47.97% 41.11%
Tianya Sample 25.48% 26.98% 43.04% 42.40% 59.96%

30

4.5 Prevention and Detection of Misuse

While DPPG aims to protect users’ passwords, it is important to understand how

it can be misused and leveraged by the adversary. It would be no surprise if the

adversary can eventually hack the server of DPPG and obtain crucial information on

the password distribution. In this section, we discuss the security of DPPG and the

impact of possible misuse.

First we assume the adversary seeks to obtain crucial information on the password

distribution by monitoring the dynamic password policies. Since the policies are

designed to request diverse passwords that are dissimilar to the existing passwords,

they only reflect password characteristics that are rare or absent, which is not useful

information for cracking. In fact, the general password space is approximately infinite,

and the usable passwords created by people only take a smart part of it. Therefore,

the adversary cannot infer the current password distribution from the policies. The

adversary may try to record the password policies they see by not submitting a

password during registration so as to learn what policies other users might follow.

For unfulfilled password policies, DPPG is designed to expire such policies within

a short period of time, by artificially creating dummy passwords according to the

policies. Such dummy passwords can be selected from leaked password data.

Next, we consider the scenario where the adversary can hack into the hosting

server and obtain subsets of password hashes and the metadata used in DPPG. The

most sensitive information from the generator is the global frequency map, which

stores the appearance frequencies of password characteristics. While the dynamic

policies presented to users reveal password characteristics not in the database, the

metadata that is leaked may expose the characteristics in the database. However,

the global frequency map will ideally present a nearly uniform distribution because

DPPG tries to constantly balance the current distribution. The adversary is likely

to see password structures with similar possibilities as shown in Figure 4, and has

31

to enumerate all possible cases. Furthermore, no semantic or positional information

is stored in the map. Therefore, the adversary can only leverage this information

minimally and will still need to put a significant amount of effort in cracking the

password hashes. This scenario is further discussed in Chapter 5.4 when we evaluate

the cracking performance on diverse passwords.

Remarks. To the best of our knowledge, DPPG is the first password policy

generator that can generate password policies dynamically according to the current

password distribution. Since no password strength feedback is returned and the poli-

cies generated by DPPG are dynamic and unpredictable, the attacker will find it

extremely difficult, if not impossible, to learn the system or the inner password distri-

bution. The policies themselves are in different formats and only contain information

that is ideally contrary to the distribution in the database, because DPPG always

tries to balance the current distribution and expanding password space. Through the

characteristics analysis and the attack-based evaluation, we further verify that pass-

word datasets created with DPPG are diverse and relatively robust to training-based

cracking attacks. Furthermore, the usability of DPPG is not sacrificed for dynamic

policies according to our user study, which makes DPPG practical to use. Therefore,

DPPG can be a more secure alternative to current password strength checkers in terms

of protecting password distribution information and preventing crafted training-based

offline attack.

32

CHAPTER V

PASSWORD DIVERSITY

In this chapter, we propose to measure the strength of a password dataset in terms

of password distribution, by evaluating the password diversity in the dataset.

We define password diversity as within a password dataset, how dissimilar pass-

words are with each other regarding a specific set of characteristics. For example,

“forgetme886 ” and “iloveyou775 ” are very similar even though they don’t share many

common characters. They are similar because they both have 11 characters; they con-

tain only lower-case English alphabets and numerical digits; and they are composed

by 8 letters followed by 3 digits. If password length, types of characters and structure

are the characteristics of individual passwords used to determine similarity, we can

claim these two passwords are very similar. However, it is also interesting to point

out that, if we want to consider more sophisticated characteristic such as semantics,

the actual meaning of words in the passwords can conversely make them less similar.

Therefore, the similarity should be a conglomerate measure of all password properties

of interest, rather than a measure of a single or typical attribute.

In a password dataset, the distribution of such characteristics can then be used

to describe the diversity of the passwords. If the distribution is closer to a uniform

Table 13: Password Attributes.
Attribute Type Weight Function
Length absolute w1 f1

pij

Comp absolute w2 f2
pij

Alt absolute w3 f3
pij

CompFreq absolute w4,w5,w6,w7 f4
pij

,f5
pij

,f6
pij

,f7
pij

LCS relative w8 f8
pij

LDist relative w9 f9
pij

Alt-Str absolute w10 f10
pij

LCS-Str relative w11 f11
pij

LDist-Str relative w12 f12
pij

33

distribution, the passwords are less similar to each other and the password dataset

is more diverse. In this chapter, we will quantify password similarity and provide a

systematic way to measure the dataset-wise diversity.

5.1 Password Similarity Measure

To quantify password similarity, we first clarify the characteristics that are consid-

ered in our measure in Table 13. The type of attributes is absolute if the attribute

is independent and contribute to restraining the password space, or relative if it is

dependent of both passwords that are in comparison and does not affect the password

space. The weight of each attribute is its weight in the password similarity quantifi-

cation. The function associated with each attribute, is a normalized measure of the

difference between such attributes in two passwords, pi and pj, when quantifying

their similarity. The choices of attributes are elaborated as follows.

Length is the number of characters in a password. Almost all password policies

and strength checkers enforce a minimum length limit due to brute-force attack.

f 1
pij

= 1− |length of pi − length of pj|
max{length of pi, length of pj}

(1)

Comp is the number of different character types used in the password. L, U, D, and S

represent lower-case characters, upper-case characters, numerical digits, and special

characters, respectively. In password policies and checkers, Comp is also a popular

measure. In previous analysis [113], it is shown that requiring more character types

reduces usability of the passwords.

f 2
pij

= 1− |comp of pi − comp of pj|
4

(2)

Alt is short for alternation, which means the number of character switches in a pass-

word normalized by the password length. For example, “pssS55” has 3 alternations

at “p-s”, “s-S”, and “S-5” and 2 structural alternations at “s-S”, and “S-5”. It is

meaningful to consider alternation in that it relates to both semantic and structural

34

information about the password. Furthermore, alternation is another strong factor in

limiting the usability of a password. DPPG limits the alternations in the policies it

generates to make them more usable.

f 3
pij

= 1− | alt of pi
length of pi − 1

− alt of pj
length of pj − 1

| (3)

CompFreq is the character type appearance frequency.

f 4−7
pij

= 1− |CompFreq in pi − CompFreq in pj| (4)

LCS stands for longest common substring, which is a relative attribute. For a pair of

passwords in comparison, we regard the length of the longest common substring as a

shared attribute.

f 8
pij

= 1− LCS(pi, pj)

min{length of pi, length of pj}
(5)

LDist is Levenshtein Distance, which calculates the minimum number of character

changes, through insertion, modification, and deletion, that are needed to transform

one password to another.

f 9
pij

= 1− LevenshteinDistance(pi, pj)

max{length of pi, length of pj}
(6)

We use S(pi) to indicate the structure of pi, and Alt-Str, LCS-Str, and LDist-Str

in Table 13 to account for structural information when quantifying the similarity of

two passwords.

f 10
pij

= 1− | alt of S(pi)

length of pi − 1
− alt of S(pj)

length of pj − 1
| (7)

f 11
pij

= 1− LCS(S(pi), S(pj))

min{length of pi, length of pj}
(8)

f 12
pij

= 1− LevenshteinDistance(S(pi), S(pj))

max{length of pi, length of pj}
(9)

35

We further define the similarity score as

Dpij =

√√√√ 12∑
k=1

(fk
pij

)2 × wk ,

12∑
k=1

wk = 1.

To the best of our knowledge, our quantification of the password similarity is the

first attempt to provide a comparable measure on how similar two passwords are with

regards to various primitive attributes of the passwords. Different from [108] and [24]

where only structure and n-gram, respectively is considered, our quantification takes

into account a vector of password attributes and has the flexibility to allow weight

adjustment for better performance. By assigning different weights to the password

characteristics, researchers can put more focus on the evaluation of specific attributes.

This is also potentially helpful when new attack models/algorithms emerge based on

a composite of the password characteristics. We use 1
12

for all weights by default to

consider all attributes equally for the purpose of this thesis, and we discuss further

on weights selection in the next section. More sophisticated password attributes, e.g.,

semantics, positions of characters can be added to the quantification of password

similarity thus making the approach extensible. Based on this quantification, we

further propose a metric and a systematic way to measure the diversity of a password

dataset.

5.2 Weights Selection

The weights of different password attributes are important factors in the quantifica-

tion and provide flexibility for system administrators or password researchers. For

example, if one wants to evaluate the strength of a password dataset typically against

PCFG, the weights of the structure-related attributes e.g., Alt-Str, LCS-Str, and

LDist-Str can be adjusted to higher values while still taking into account other less

relevant attributes; if they want to evaluate the strength typically against a Markov

attack model like OMEN, the weight of the attribute n-gram can be increased ac-

cordingly; or if they want to treat each attribute equally, equal weights i.e., 1
12

, can

36

be assigned to the attributes.

The careful selection of the proper weight values can be studied using sophisti-

cated machine learning techniques and would be itself an interesting and meaningful

research topic. For the purpose of this thesis, we do not delve into very complicated

models to try to obtain an absolutely optimal set of weights. Instead, we propose a

simple and intuitive way that solves the problem to learn a reasonable selection of

the weights shown in Figure 5.

We first initialize the weights vector W, with each element valued at 0.5, which

means all attributes in the similarity vector Vpij are equally considered. Then we

need some “ground truth” that tells us if two passwords are really similar. Utilizing

the state-of-the-art cracking algorithms and leaked password datasets, intuitively, we

claim that the passwords cracked by the algorithms are similar to the passwords used

to train the algorithms.

From a leaked password dataset, we randomly select a portion of the passwords

as training data denoted as set T, and use the remaining passwords as target data.

Then we crack the target data with PCFG, OMEN, and JtR using the same training

data and limiting the guess number of each algorithm to 10 billion. We aggregate

the cracked passwords into a set denoted as P, and the “ground truth” is thus that

all training passwords in T are similar to all cracked passwords in P. Finally we form

a bipartite graph between the two sets and each pair of passwords maintain an edge

with a computed similarity vector.

In the final step, we traverse each edge in the bipartite graph and evaluate each

similarity vector. For each similarity vector, we sort the attribute values and increase

the weights of the top 4 attributes by 1
2×|P| , and decrease those of the bottom 4

attributes by 1
2×|P| . Therefore, we obtain an adjusted weight vector with reasonable

values.

37

Figure 5: Weights Model

5.3 Diversity-based Metric: Graph Model and Communities

To evaluate the diversity of a sizeable password dataset, we propose to group pass-

words into communities based on our similarity quantification. A password com-

munity contains passwords that have higher similarity with each other, than with

passwords in other communities. When password datasets are large, the password

diversity can then be represented by the number of communities detected, and the

sizes of the communities.

Conceptually and computationally, we connect passwords in a graph model which

enables us to analyze the similarities among the passwords. Each password dataset

can be built into a graph, with nodes being the passwords, and edges being their

relations weighted by the pairwise similarity score quantified in the previous section.

For a password dataset, we can compute a similarity score for each pair of passwords

and obtain a weighted complete graph.

The password graph preserves the similarities among the passwords and is con-

venient for further analysis of password diversity. Since community detection on a

complete graph results in overwhelming time and space complexity, we further make

the graph sparser by cutting edges that have weights less than a threshold, which is

38

Figure 6: Attack-based Evaluation

Table 14: Diversity-based Password Security Metric.

Dataset Std/Mean DivScore Dataset Std/Mean DivScore
Renren 1.63 0.61 Sample 1.97 0.51
Tianya 1.40 0.71 Sample 1.87 0.53
Rockyou 1.27 0.79 Sample 2.03 0.49
LinkedIn 1.11 0.90 Sample 2.23 0.45
Gamigo 0.44 2.27 Sample 2.28 0.44

- - - Mturk 0.38 2.61

by default the mean value of all weights. Then we use a simple, light-weight, and

efficient algorithm, the Louvain Method [15], to detect communities in the passwords

graph. Finally, we calculate the diversity-based password dataset score DivScore by

dividing the mean value of the sizes of detected communities by the standard devi-

ation of the sizes. We show that DivScore can serve as an indicator of the overall

security of a password dataset in the next section. The diversity-based metric also

serves as a critical component in the exploitation mode of DPPG. By analyzing the

password policy history and using passwords from leaked datasets, DPPG simulates

the stored hashed passwords and evaluate the current password diversity to determine

the new policy requirements balancing the password distribution.

5.4 Evaluation of the Diversity Measure

Table 15: Cracking Results of the Mturk Dataset.

Training: Gamigo LinkedIn Renren Rockyou Tianya
JtR 6.42% 9.85% 7.71% 8.14% 6.85%

OMEN 7.49% 8.57% 7.49% 7.28% 6.00%
PCFG 1.93% 1.71% 1.71% 2.14% 1.93%

39

Figure 7: Diversity-based Cracking.

40

To evaluate the robustness of our metric, we look at both its effectiveness in pro-

tecting passwords from cracking models, and its possibility to leak important pass-

word distribution information like existing commercial strength checkers discussed in

Chapter 3.

5.4.1 Attacking without Metric Details

In Figure 6, we describe the attack model to test if our proposed diversity-based

measure can protect password datasets. We randomly select 50% of passwords from

datasets shown in Table 1 and use them to train the cracking algorithms. From the

other half of the passwords, we construct a password graph and run the Louvain

Method to detect communities. Based on the number of communities and sizes of

communities, we randomly select a fixed number of passwords from each of the com-

munities as the selected samples. In our experiment setup, in each dataset we detect

5 communities. To make the selected sample size non-trivial, we randomly select

20000 passwords from each of the communities and thus obtaining 100000 passwords

in each selected sample.

Finally, from the same password data we use to build the graph model, we ran-

domly select 100000 passwords to form the random samples. Therefore, we obtain

a selected sample that is based on our diversity-based metric, and a random sample

that has statistically the same password distribution with the original dataset. We

crack these two samples separately, with 10 billion guesses.

In the left part of Table 14, we show the diversity scores computed with the

diversity metric of the 5 datasets. Ranked by the scores in ascending order, we

see that Renren has the lowest diversity score while Gamigo has the highest. This

suggests that Gamigo has a relatively more uniform distribution than other datasets

and Renren has the most unbalanced distribution.

In Figure 7, we show the cracking results of the attack model. RS denotes the

41

random samples and SS-I denotes the selected sample from the password communities.

For all datasets, the random samples have more cracked passwords than the selected

sample. The selected sample is formed with regards to the diversity metric which aims

to eliminate bias on the dataset and make the password distribution more uniform.

Therefore, the selected sample is less vulnerable to algorithms trained with biased

password distribution.

Furthermore, we see in Figure 6 that the general cracking rates for the datasets

tend to follow an order of the ranking in Table 14. Renren, Tianya, and Rockyou

have the highest cracking rates by JtR at 71.63%, 71.86%, and 66.38%, respectively,

which are drastically higher than that in LinkedIn and Gamigo. This is consistent

to statistics shown in Table 14 where Renren, Tianya, and Rockyou have similar

diversity scores that are the lowest. Gamigo, having the highest diversity score, does

have the lowest cracking rates with regards to all the cracking algorithms. Therefore,

Figure 6 and Table 14 show consistent results, which means our diversity-based metric

can provide effective and accurate indication on the security of passwords dataset.

5.4.2 Attacking with Metric Details

To examine if our metric has the same limitations as password strength checkers in

Chapter 3, we conduct the same evaluation illustrated in Figure 1. We use the training

data in Section 5.4.1 as nonselective training and the selected sample (SS-I in Figure

3) as the testing data. Assuming the attacker can obtain complete details of our

metric including the weight values, and apply it to select training data by detection

communities, we draw random samples from each of the communities to build the

Selective Training dataset in the same way as we build the selected sample in Section

5.4.1. In this set up, we ensure the cracking evaluation results are comparable and

we place them in the same figure denoted as SS-II.

From Figure 6, we see that PCFG has better cracking performance consistently

42

when trained with nonselective training, which implies the selective training does not

introduce a similar structural distribution to the cracker. However, it is interesting

that OMEN shows the exact opposite case with better performance when trained

with nonselective training. JtR on the other hand, does not break the tie consistently

either. The cracking rates of each scenario are generally very close with the Nonselec-

tive and Selective training, which is different from the obvious contrast observed in

password strength checkers in Figure 2. The phenomenon shows that selective train-

ing in this case, may or may not enhance training-based cracking attack, and does

not reveal useful password distribution to the adversary. This is reasonable because

our diversity metric aims to balance the password distribution and eliminate possible

bias. Therefore, it is not of typical interest for the adversary to leverage our diversity

metric to enhance cracking.

In Table 16 and Table 17, we show the full results of cracking analysis conducted

in Section 5.4.1 and Section 5.4.2, respectively.

Table 16: Cross-site Diversity-based Cracking
Training Gamigo LinkedIn Renren Rockyou Tianya

JtR RS SS RS SS RS SS RS SS RS SS
Gamigo 18.78% 13.96% 20.68% 0.00% 17.13% 15.74% 20.60% 0.00% 12.98% 0.00%
LinkedIn 25.29% 21.50% 28.95% 25.03% 21.64% 22.61% 26.86% 25.74% 15.84% 19.70%
Renren 59.11% 44.48% 64.78% 48.66% 71.63% 54.45% 67.40% 52.40% 68.61% 49.14%

Rockyou 59.72% 43.49% 63.31% 47.15% 57.80% 45.76% 66.38% 54.30% 47.48% 38.23%
Tianya 56.68% 28.16% 61.58% 30.13% 68.83% 34.59% 63.92% 31.15% 71.86% 58.51%

Training Gamigo LinkedIn Renren Rockyou Tianya
OMEN RS SS RS SS RS SS RS SS RS SS
Gamigo 12.65% 9.19% 17.81% 12.79% 11.18% 11.91% 18.08% 14.16% 5.16% 9.75%
LinkedIn 12.83% 12.19% 24.63% 19.85% 12.86% 16.91% 22.61% 20.86% 5.12% 14.00%
Renren 42.37% 26.14% 55.82% 35.34% 64.50% 44.85% 61.65% 40.63% 53.75% 33.52%

Rockyou 42.42% 28.23% 55.44% 36.46% 43.66% 32.93% 64.08% 47.08% 20.11% 23.61%
Tianya 44.53% 19.55% 57.43% 25.85% 65.76% 31.17% 60.89% 27.69% 62.91% 29.80%

Training Gamigo LinkedIn Renren Rockyou Tianya
PCFG RS SS RS SS RS SS RS SS RS SS

Gamigo 12.92% 4.84% 13.42% 5.66% 13.79% 6.77% 15.05% 8.81% 13.44% 8.77%
LinkedIn 17.93% 8.50% 19.86% 9.24% 19.30% 11.07% 20.86% 13.65% 18.34% 14.37%
Renren 29.94% 20.53% 30.75% 20.95% 49.92% 32.90% 44.58% 29.59% 52.45% 34.13%

Rockyou 42.89% 23.04% 41.01% 22.01% 44.76% 25.17% 49.38% 31.29% 43.28% 28.11%
Tianya 25.01% 13.79% 28.08% 15.37% 42.80% 22.15% 41.28% 20.95% 58.01% 28.48%

43

Table 17: Selection Attack
JtR Gamigo LinkedIn Renren Rockyou Tianya

Gamigo 15.14% 15.44% 15.98% 16.98% 14.41%
LinkedIn 23.53% 26.75% 25.39% 27.34% 21.71%
Renren 46.54% 49.77% 56.20% 52.90% 50.48%

Rockyou 44.17% 50.75% 50.65% 56.42% 42.83%
Tianya 30.12% 29.51% 57.50% 31.21% 58.16%
OMEN Gamigo LinkedIn Renren Rockyou Tianya
Gamigo 12.22% 13.14% 11.95% 13.70% 9.17%
LinkedIn 15.95% 22.71% 18.19% 20.99% 13.51%
Renren 31.76% 38.24% 49.42% 41.84% 36.08%

Rockyou 28.79% 41.67% 39.67% 49.73% 24.95%
Tianya 24.80% 26.31% 31.48% 26.94% 37.74%
PCFG Gamigo LinkedIn Renren Rockyou Tianya

Gamigo 2.69% 3.66% 3.55% 3.99% 3.06%
LinkedIn 4.53% 6.75% 5.97% 6.88% 5.11%
Renren 14.09% 16.83% 23.78% 19.43% 18.95%

Rockyou 15.36% 17.37% 19.01% 20.45% 16.64%
Tianya 9.21% 11.27% 13.59% 12.19% 13.90%

5.4.3 Attack on Passwords from User-study

Since the password diversity metric is used as an underlying implementation of the

exploitation mode in DPPG, it is interesting to test the metric and the passwords

created with DPPG in the same experiment. In Table 15, we show the results of

using the selective training in Section 5.4.2 to crack the Mturk dataset in Section 4.3,

which is comparable to the partial results in Table 11. We observe the same incon-

sistencies again in the results of both tables. Further, in the right part of Table 14,

we show that the Mturk dataset has a higher DivScore than other sample datasets.

When trained with random samples from original password datasets, PCFG can crack

more passwords consistently of Mturk dataset and OMEN shows the opposite. The

performance gain of OMEN in all scenarios are noticeable but insignificant. There-

fore, passwords created with DPPG do not share common distribution with other

passwords created using the similar diversity-based algorithm and thus are relatively

secure even if the diversity metric is obtained by the adversary.

Remarks. In this section, to explore the security of password characteristics

distribution, we define password diversity. To the best of our knowledge, this is the

first attempt to quantify the diversity of passwords using various password attributes.

44

Based on password diversity, we propose a useful password security metric to evaluate

the password dataset security. Our metric is different from traditional max-likelihood

or min-entropy metrics which depends on specific rules that relate to individual pass-

word strength. Instead, the metric focuses more on the security of the password

distribution contributed by each individual password. Through several attack-based

evaluations, we show that the diversity metric while improving the security of pass-

word dataset, does not leak crucial information that significantly helps the attacker.

The diversity-based metric also serves as a key component in DPPG in Chapter 4.

Although DPPG uses the policy history to approximate password distribution, it still

maintains accurate metadata with the global frequency map and cracking evaluation

on the Mturk dataset is consistent with our assumptions.

45

CHAPTER VI

CONCLUSION

In this thesis, we study the password space and distribution to understand password

dataset security better. Due to the limitation of existing strength measuring mecha-

nisms, we propose a new and usable alternative based on an effective diversity metric

to better protect passwords from offline cracking attacks.

We start by identifying issues with the existing commercial password strength

checkers and evaluate them from the adversarial perspective. While previous work has

analyzed the consistency and accuracy of the checkers, much effort has not been spent

on their limitations of biasing and leaking password distributions to the adversary.

Through our evaluation, we find that password strength checkers are effective in

helping attackers mount more powerful attacks. The reason is that password strength

checkers rely on static scoring policies that exert bias on the password distribution.

The checkers can be leveraged by the attackers easily to select training data that are

similar to the target passwords.

To propose an effective alternative that addresses the limitations of password

strength checkers, we implement DPPG to generate dynamic policies for users, which

is based on a password diversity metric and the current password distribution. To

the best of our knowledge, DPPG is the first dynamic password policy generator

that provides unpredictable dynamic policies and enforces usability control. Through

exploration and exploitation modes, DPPG can expand the password space and bal-

ance password characteristics distribution which increase the overall security of the

password dataset. Through a usability study, we test DPPG in practice and collect

passwords for further analysis. Experiments are also conducted to show that the

46

collected passwords are more diverse in their attributes and have good security.

To study the password distribution and its security impact, we define the con-

cept of password diversity. To the best of our knowledge, this is the first attempt to

define and quantify password diversity considering a vector of password attributes.

The quantification is extensible and can be adjusted with different weight values

to shift the focus of measurement. To provide a way to analyze the password di-

versity of a dataset, we propose the diversity-based password security metric which

is a key component for DPPG to generate effective policies. We also evaluate the

metric from an adversarial perspective using it to sample data for an attack-based

evaluation. Through cracking experiments in different setups, we conclude that the

metric is effective in evaluating the security of password datasets and thus can serve

as an effective start to evaluate password dataset security with regards to password

diversity.

47

APPENDIX A

MECHANICAL TURK USER STUDY DOCUMENTS

In this appendix, we present documents relevant to our user study conducted on

Amazon Mechanical Turk. Screenshots of the registration and login pages are also

included.

Recruitment Statement.

We are conducting an experiment which requires you to create and

maintain two user accounts (username and password) on two different

websites. The websites are made up only to help you distinguish the two

accounts. By going to the access link below, you will start a 4-session

experiment with us. Each session is seperated from another by a time

interval. At the end of each session, we will let you know what time you

should return for the next session. Upon completing the last session, you

will receive a pay code. Please copy and paste it into the box below to

receive payment for participation. The entire process has a span of 6-7

days but your in-session participation time will only be around 12

minutes in total, because we ask you to come back to the sessions after

some time. Compensation is only offered after you completed all 4

sessions in time.

48

Figure 8: Instructions.

Figure 9: Registration with DPPG.

49

Figure 10: Registration with QQ’s checker.

50

Figure 11: Login Pages.

51

REFERENCES

[1] “Amazon mechanical turk,” https://www.mturk.com/.

[2] “Diversity-based password security metric and policy generation,” Anonymous
for now.

[3] “Gmail password leakage,” http://lifehacker.com/5-million-gmail-passwords-
leaked-check-yours-now-1632983265.

[4] “Hashcat v0.47,” http://hashcat.net/hashcat/.

[5] “http://www.adeptus-mechanicus.com/codex/jtrhcmkv/jtrhcmkv.php,”

[6] “http://www.darkreading.com/attacks-and-breaches/yahoo-hack-leaks-
453000-voice-passwords/d/d-id/1105289?,”

[7] “http://www.zdnet.com/blog/security/chinese-hacker-arrested-for-leaking-6-
million-logins/11064,”

[8] “John the ripper 1.7.9-jumbo-7,” http://www.openwall.com/john/.

[9] “John the ripper-bleeding-jumbo,” https://github.com/magnumripper/JohnTheRipper.

[10] “Yahoo! password leakege,” http://www.cnet.com/news/yahoos-password-leak-
what-you-need-to-know-faq/.

[11] Abdalla, M., Bresson, E., Chevassut, O., Möller, B., and
Pointcheval, D., “Provably secure password-based authentication in tls,”
ASIACCS, 2006.

[12] Akpulat, M., Bicakci, K., and Cil, U., “Revisiting graphical passwords
for augmenting, not replacing, text passwords,” ACSAC, 2013.

[13] Amico, M. D., Michiardi, P., and Roudier, Y., “Password strength: An
empirical analysis,” Infocom, 2010.

[14] Argyros, G. and Kiayias, A., “I forgot your password: Randomness attacks
against php applications,” USENIX, 2012.

[15] Blondel, V., Guillaume, J., Lambiotte, R., and Lefebvre, E., “Fast
unfolding of communities in large networks,” Statistical Mechanics: Theory and
Experiment, 2008.

[16] Bojinov, H., Bursztein, E., Boyen, X., and Boneh, D., “Kamouflage:
Loss-resistant password management,” ESORICS, 2010.

52

[17] Bonneau, J., “The science of guessing: Analyzing an anonymized corpus of
70 million passwords,” S&P, 2012.

[18] Bonneau, J., “Guessing human-chosen secrets,” Doctoral, Dissertation.

[19] Bonneau, J., Herley, C., Oorschot, P. C., and Stajano, F., “The
quest to replace passwords: A framework for comparative evaluation of web
authentication schemes,” S&P, 2012.

[20] Bonneau, J. and Schechter, S., “Towards reliable storage of 56-bit secrets
in human memory,” USENIX, 2014.

[21] Burr, W. E., Dodson, D. F., and Polk, W. T., “Electronic authentication
guideline,” NIST, 2006.

[22] Camenisch, J., Lysyanskaya, A., and Neven, G., “Practical yet univer-
sally composable two-server password-authenticated secret sharing,” CCS, 2012.

[23] Carnavalet, X. C. and Mannan, M., “From very weak to very strong:
Analyzing password-strength meters,” NDSS, 2014.

[24] Castelluccia, C., Dürmuth, M., and Perito, D., “Adaptive passwords-
strength meters from markov models,” NDSS, 2012.

[25] Chiasson, S., Biddle, R., and Oorschot, P. C. V., “A second look at the
usability of click-based graphical passwords,” SOUPS, 2007.

[26] Chiasson, S., Forget, A., Stobert, E., Oorschot, P. C. V., and Bid-
dle, R., “Multiple password interference in text passwords and click-based
graphical passwords,” CCS, 2009.

[27] Chiasson, S., Oorschot, P. C. V., and Biddle, R., “A usability study
and critique of two password managers,” USENIX, 2006.

[28] Cox, L. P., Gilbert, P., Lawler, G., Pistol, V., Razeen, A., Wu, B.,
and Cheemalapati, S., “Spandex: Secure password tracking for android,”
USENIX, 2014.

[29] Das, A., Bonneau, J., Caesar, M., Borisov, N., and Wang, X., “The
tangled web of password reuse,” NDSS, 2014.

[30] Dirik, A. E., Memon, N., and Birget, J.-C., “Modeling user choice in the
passpoints graphical password scheme,” SOUPS, 2007.

[31] Dunphy, P., Heiner, A. P., and Asokan, N., “A closer look at recognition-
based grpahical passwords on mobile devices,” SOUPS, 10.

[32] Dunphy, P., Nicholson, J., and Olivier, P., “Securing passfaces for de-
scription,” SOUPS, 2008.

53

[33] Dunphy, P. and Olivier, P., “On automated image choice for secure and
usable graphical passwords,” ACSAC, 2012.

[34] Dürmuth, M., Chaabane, A., Perito, D., and Castelluccia, C.,
“When privacy meets security: Leveraging personal information for password
cracking,” CoRR abs/1304.6584, 2013.

[35] Egelman, S., Sotirakopoulos, A., Muslukhov, I., Beznosov, K., and
Herley, C., “Does my password go up to eleven? the impact of password
meters on password selection,” CHI, 2013.

[36] Fahl, S., Harbach, M., Acar, Y., and Smith, M., “On the ecological
validity of a password study,” SOUPS, 2013.

[37] Florêncio, D. and Herley, C., “Klassp: Entering passwords on a spyware
infected machine using a shared-secret proxy,” ACSAC, 2006.

[38] Florêncio, D. and Herley, C., “A large-scale study of web password
habits,” WWW, 2007.

[39] Florêncio, D. and Herley, C., “Where do security policies come from,”
SOUPS, 2010.

[40] Florêncio, D., Herley, C., and Coskun, B., “Do strong web passwords
accomplish anything,” HotSec, 2007.

[41] Florêncio, D., Herley, C., and Oorschot, P. C. V., “Password portfo-
lios and the finite-effort user: Sustainably managing large numbers of accounts,”
USENIX, 2014.

[42] Forget, A., Chiasson, S., Oorschot, P. C. V., and Biddle, R., “Im-
proving text passwords through persuasion,” SOUPS, 2008.

[43] Gao, H., Guo, X., Chen, X., Wang, L., and Liu, X., “Yagp: Yet another
graphical password strategy,” ACSAC, 2008.

[44] Gasti, P. and Rasmussen, K. B., “On the security of password manager
database formats,” ESORICS, 2012.

[45] Gaw, S. and Felten, E. W., “Password management strategies for online
accounts,” SOUPS, 2006.

[46] Golofit, K., “Click passwords under investigation,” ESORICS, 2007.

[47] Haque, S. M. T., Scielzo, S., and Wright, M., “Applying psychometrics
to measure user comfort when constructing a strong password,” SOUPS, 2014.

[48] Hart, M., Castille, C., Harpalani, M., Toohill, J., and Johnson, R.,
“Phorcefield: A phish-proof password ceremony,” ACSAC, 2011.

54

[49] Herley, C., Oorschot, P. C., and Patrick, A. S., “Passwords: If we’re
so smart, why are we still using them?,” FC, 2009.

[50] Hlywa, M., Biddle, R., and Patrick, A. S., “Facing the facts about image
type in recognition-based graphical passwords,” ACSAC, 2011.

[51] Horst, T. W. and Seamons, K. E., “Simple authentication for the web,”
SECURECOMM, 2007.

[52] Horst, T. W. and Seamons, K. E., “pwdarmor: Protecting conventional
password-based authentications,” ACSAC, 2008.

[53] Houshmand, S. and Aggarwal, S., “Building better passwords using prob-
abilistic techniques,” ACSAC, 2012.

[54] Jeyaraman, S. and Topkara, U., “Have the cake and eat it too - infusing
usability into text-password based authentication systems,” ACSAC, 2005.

[55] Ji, S., Yang, S., and Beyah, R., “Pars: A uniform and open-source password
analysis and research system,” ACSAC, 2015.

[56] Ji., S., Yang, S., Hu, X., Han, W., Li, Z., and Beyah, R., “Zero-sum
password cracking game: A large-scale empirical study on the crackability, cor-
relation, and security of passwords,” Dependable and Secure Computing, IEEE
Transactions on, 2015.

[57] Juels, A. and Rivest, R. L., “Honeywords: Making password-cracking de-
tectable,” CCS, 2013.

[58] Just, M. and Aspinall, D., “Personal choice and challenge questions: A
security and usability assessment,” SOUPS, 2009.

[59] Kelley, P. G., Komanduri, S., Mazurek, M. L., Shay, R., Vidas, T.,
Bauer, L., Christin, N., Cranor, L. F., and López, J., “Guess again
(and again and again): Measuring password strength by simulating password-
cracking algorithms,” S&P, 2012.

[60] Keyboard dic, “https://sites.google.com/site/reusablesec/home/custom-
wordlists,”

[61] Kim, T. H.-J., Stuart, H. C., Hsiao, H.-C., Lin, Y.-H., Zhang, L.,
Dabbish, L., and Kiesler, S., “Yourpassword: Applying feedback loops to
improve security behavior of managing multiple passwords,” ASIACCS, 2014.

[62] Komanduri, S., R.Shay, Cranor, L. F., Herley, C., and Schechte,
S., “Telepathwords: Preventing weak passwords by reading users’ minds,”
USENIX, 2014.

55

[63] Kontaxis, G., Athanasopoulos, E., Portokalidis, G., and Keromytis,
A. D., “Sauth: Protecting user accounts from password database leaks,” CCS,
2013.

[64] Kumar, M., Garfinkel, T., Boneh, D., and Winograd, T., “Reducing
shoulder-surfing by using gaze-based password entry,” SOUPS, 2007.

[65] Kuo, C., Romanosky, S., and Cranor, L. F., “Human selection of
mnemonic phrase-based passwords,” SOUPS, 2006.

[66] Li, Z., Han, W., and Xu, W., “A large-scale empirical analysis on chinese
web passwords,” Usenix Security, 2014.

[67] Li, Z., He, W., Akhawe, D., and Song, D., “The emperor’s new password
manager: Security analysis of web-based password managers,” USENIX, 2014.

[68] Liu, D., Cuervo, E., Pistol, V., Scudellari, R., and Cox, L. P.,
“Screenpass: Secure password entry on touchscreen devices,” MobiSys, 2013.

[69] Luca, A. D., Denzel, M., and Hussmann, H., “Look into my eyes! can you
guess my password?,” SOUPS, 2009.

[70] Ma, J., Yang, W., Luo, M., and Li, N., “A study of probilistic password
models,” S&P, 2014.

[71] Mazurek, M. L., Komanduri, S., Vidas, T., Bauer, L., Christin, N.,
Cranor, L. F., Kelley, P. G., Shay, R., and Ur, B., “Measuring password
guessability for an entire university,” CCS, 2013.

[72] McCarney, D., Barrera, D., Clark, J., Chiasson, S., and Oorschot,
P. C. V., “Tapas: Design, implementation, and usability evaluation of a pass-
word manager,” ACSAC, 2012.

[73] McCune, J. M., Perrig, A., and Reiter, M. K., “Safe passage for pass-
words and other sensitive data,” NDSS, 2009.

[74] Molloy, I. and Li, N., “Attack on the gridcode one-time password,” ASI-
ACCS, 2011.

[75] Narayanan, A. and Shmatikov, V., “Fast dictionary attacks on passwords
using time-space tradeoff,” CCS, 2005.

[76] Polakis, I., Lancini, M., Kontaxis, G., Maggi, F., Ioannidis, S.,
Keromytis, A. D., and Zanero, S., “All your face are belong to us: Breaking
facebook’s social authentication,” ACSAC, 2012.

[77] Rabkin, A., “Personal knowledge questions for fallback authentication: Secu-
rity questions in the era of facebook,” SOUPS, 2008.

56

[78] Ross, B., Jackson, C., Miyake, N., Boneh, D., and Mitchell, J. C.,
“Stronger password authentication using browser extensions,” USENIX, 2005.

[79] Salehi-Abari, A., Thorpe, J., and Oorschot, P. C. V., “On purely
automated attacks and click-based graphical passwords,” ACSAC, 2008.

[80] Sayegh, A. A. and El-Hadidi, M. T., “A modified secure remote pass-
word (srp) protocol for key initialization and exchange in bluetooth systems,”
SECURECOMM, 2005.

[81] Schaub, F., Walch, M., Könings, B., and Weber, M., “Exploring the
design space of graphical passwords on smartphones,” SOUPS, 2013.

[82] Schechter, S., Brush, A. J. B., and Egelman, S., “It’s no secret: Mea-
suring the security and reliability of authentication via ‘secret’ questions,” S&P,
2009.

[83] Schechter, S., Herley, C., and Mitzenmacher, M., “Popularity is ev-
erything: A new approach to protecting passwords from statistical-guessing
attacks,” USENIX HotSec’10, 2010.

[84] Schechter, S., Herley, C., and Mitzenmacher, M., “Popularity is ev-
erything: A new approach to protecting passwords from statistical-guessing
attacks,” HotSec, 2010.

[85] Schechter, S. and Reeder, R. W., “1 + 1 = you: Measuring the com-
prehensibility of metaphors for configuring backup authentication,” SOUPS,
2009.

[86] Schechter, S. E., Dhamija, R., Ozment, A., and Fischer, I., “The
emperor’s new security indicators: An evaluation of website authentication and
the effect of role playing on usability studies,” S&P, 2007.

[87] Schmidt, D. and Jaeger, T., “Pitfalls in the automated strenghting of pass-
words,” ACSAC, 2013.

[88] Shay, R., Kelley, P. G., Komanduri, S., Mazurek, M. L., Ur, B., Vi-
das, T., Bauer, L., Christin, N., and Cranor, L. F., “Correct horse bat-
tery staple: Exploring the usability of system-assigned passphrases,” SOUPS,
2012.

[89] Shay, R., Komanduri, S., Kelley, P. G., Leon, P. G., Mazurek, M. L.,
Bauer, L., Christin, N., and Crano, L. F., “Encountering stronger pass-
word requirements: User attitudes and behaviors,” SOUPS, 2010.

[90] Shirvanian, M., Jarecki, S., Saxena, N., and Nathan, N., “Two-factor
authentication resilient to server compromise using mix-bandwidth devices,”
NDSS, 2014.

57

[91] Silver, D., Jana, S., Boneh, D., Chen, E., and Jackson, C., “Password
managers: Attacks and defenses,” USENIX, 2014.

[92] Stobert, E. and Biddle, R., “Memory retrieval and graphical passwords,”
SOUPS, 2013.

[93] Stobert, E. and Biddle, R., “The password life cycle: User behaviour in
managing passwords,” SOUPS, 2014.

[94] Stobert, E., Forget, A., and Chiasson, S., “Exploring usability effects of
increasing security in click-based graphical passwords,” ACSAC, 2010.

[95] Stock, B. and Johns, M., “Protecting users against xss-based password man-
ager abuse,” ASIACCS, 2014.

[96] Sun, H.-M., Chen, Y.-H., Fang, C.-C., and Chang, S.-Y., “Passmap: A
map based graphical-password authentication system,” ASIACCS, 2012.

[97] Suo, X., Zhu, Y., and Owen, G. S., “Graphical passwords: A survey,”
ACSAC, 2005.

[98] Tannous, A., Trostle, J., Hassan, M., McLaughlin, S. E., and
Jaeger, T., “New side channels targeted at passwords,” ACSAC, 2008.

[99] Tari, F., Ozok, A. A., and Holden, S. H., “A comparison of perceived
and real shoulder-surfing risks between alphanumeric and graphical passwords,”
SOUPS, 2006.

[100] Thorpe, J., MacRae, B., and Salehi-Abari, A., “Usability and security
evaluation of geopass: a geographic location-password scheme,” SOUPS, 2013.

[101] Thorpe, J. and Oorschot, P. C. V., “Human-seeded attacks and expliting
hot-spots in graphical passwords,” USENIX, 2007.

[102] Tian, J., Qu, C., Xu, W., and Wang, S., “Kinwrite: Handwriting-based
authentication using kinect,” NDSS, 2013.

[103] Uellenbeck, S., Dürmuth, M., Wolf, C., and Holz, T., “Quantifying
the security of graphical passwords: The case of android unlock patterns,” CCS,
2013.

[104] Ur, B., Kelley, P. G., Komanduri, S., Lee, J., Maass, M., Mazurek,
M. L., Passaro, T., Shay, R., Vidas, T., Bauer, L., Christin, N., and
Cranor, L. F., “How does your password measure up? the effect of strength
meters on password creation,” USENIX, 2012.

[105] Veras, R., Collins, C., and Thorpe, J., “On the semantic patterns of
passwords and their security impact,” NDSS, 2014.

58

[106] Wang, L., Ohta, K., and Kunihiro, N., “Password recovery attack on
authentication protocol md4(password —— challenge),” ASIACCS, 2008.

[107] Wang, Z., Jing, J., and Li, L., “Time evolving graphical password for secur-
ing mobile devices,” ASIACCS, 2013.

[108] Weir, M., Aggarwal, S., Collins, M., and Stern, H., “Testing metrics
for password creation policies by attacking large sets of revealed passwords,”
CCS, 2010.

[109] Weir, M., Aggarwal, S., Medeiros, B., and Glodek, B., “Password
cracking using probabilistic context-free grammars,” S&P, 2009.

[110] Wiedenbeck, S., Birget, J.-C., and Brodskiy, A., “Authentication using
graphical passwords: Effects of tolerance and image choice,” SOUPS, 2005.

[111] Wimberly, H. and Liebrock, L. M., “Using fingerprint authentication to
reduce system security: An empirical study,” S&P, 2011.

[112] Wright, N., Patrick, A. S., and Biddle, R., “Do you see your password?
applying recognition to textual passwords,” SOUPS, 2013.

[113] Yan, J., Blackwell, A., and Anderson, R., “Password memorability and
security: Empirical results,” S&P, 2004.

[114] Yan, Q., Han, J., Li, Y., Zhou, J., and Deng, R. H., “Designing leakage-
resilient password entry on touchscreen mobile devices,” ASIACCS, 2013.

[115] Yang, Y., Deng, R. H., and Bao, F., “Fortifying password authentication
in integrated healthcare delivery systems,” ASIACCS, 2006.

[116] Yazdi, S. H., “Analyzing password strength and efficient password cracking,”
Theses,, Treatise.

[117] Yee, K.-P. and Sitaker, K., “Passpet: Convenient password management
and phishing protection,” SOUPS, 2006.

[118] Zakaria, N. H., Griffiths, D., Brostoff, S., and Yan, J., “Shoulder
surfing defence for recall-based graphical passwords,” SOUPS, 2011.

[119] Zhang, Y., Monrose, F., and Reiter, M. K., “The security of modern
password expiration: An algorithmic framework and empirical analysis,” CCS,
2010.

59

