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SUMMARY

Multiple-input multiple output (MIMO) wireless systems have become a widespread

technology in many different forms and in various application areas because of the rich

benefits they serve. For example, deploying multiple antennas at both sides of a wireless

communication system improves the system performance and increases the information

rates. The users in a wireless network can cooperate with each other and establish a

multiple-input multiple-out wireless system that result in enhanced rates and improved

reliability. The performance of a wireless sensor network becomes significantly better by the

cooperation of the individual nodes to perform distributed and/or collaborative processing

to complete some given task, which, again, results in a multiple-input-multiple output

wireless system. Due to their potential applications, the MIMO systems will be an important

part of future communication systems.

In this dissertation, we study a number of important issues that arise in multiple-input

multiple-out wireless systems. We first deal with a MIMO antenna system and study two

problems: (i) the performance of the MIMO system with antenna subset selection and (ii)

joint source-channel coding for MIMO systems. Antenna subset selection reduces the im-

plementation cost of a MIMO antenna system by allowing a reduction in the number of

required RF chains that would otherwise be needed for a full-complexity system. In this

dissertation, we specifically investigate the performance of receive antenna selection and de-

rive Chernoff upper bounds on the pairwise error probability for the energy-based selection.

We consider three different situations: (i) selection over an independently and identically

distributed MIMO fading channel, (ii) selection over correlated fading channel where the

subchannels among the antenna pairs are correlated, and (iii) selection for a space-time

coded orthogonal frequency multiplexing system. In all cases, explicit upper bounds are

derived and it is shown that using the energy-based antenna selection, one can achieve the

same diversity order as that attained by a full-complexity MIMO system. The resulting
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upper bounds are used to design optimal space-time codes for the the MIMO system using

antenna selection. We then look into the joint source-channel coding problem for a MIMO

antenna system and develop a turbo-coded multiple description code for multiple antenna

transmission. Multiple description codes generate a number of correlated streams of some

signal to be transmitted over preferably independent on-off type channels so that upon the

reception of all or a subset of the streams, one can attain acceptable level of reconstruction

qualities. Motivated by the observation that independently fading channels intrinsically in-

habit in MIMO antenna systems, we propose the use of MDC over MIMO wireless channels.

We show via simulations that by the proposed iterative joint source-channel decoding that

exchanges the extrinsic information between the source code and the channel code, we can

achieve better reconstruction quality than that can be achieved by the single-description

codes at same rate.

In the rest of the dissertation, we deal with a network of wireless nodes having single

antennas. We study two problems: (i) channel coding for user cooperation diversity in

wireless networks, and (ii) distributed detection in wireless sensor networks. Cooperative

diversity refers to the spatial diversity obtained by a virtual MIMO antenna system consist-

ing of a number of geographically separated mobile single-antenna nodes that can cooperate

between each other. Channel coding even for simple cooperative networks is a widely open

problem. In this dissertation, we develop a turbo-code based distributed channel code for

a three-terminal wireless relay channel where a source node is assisted by a relay node for

communication with the destination node. We consider a full-duplex relay that employs a

simple decode-and-forward method. Both the source and the relay nodes use turbo codes,

and due to the full-duplex transmission, the destination node observes the superposition of

the transmitted signals. We propose an iterative turbo decoding algorithm that exploits

the information arriving from both the source and relay nodes. Simulation results show

that with the proposed scheme, one can perform very close to the capacity of a wireless

relay channel. In addition, the proposed scheme can readily be extended to multiple re-

lay networks. We next consider the binary distributed detection problem in wireless sensor

xv



networks where spatially distributed sensor nodes make individual observations, locally pro-

cess their observations and transmit some related information through a noisy channel to

a fusion center where a final decision is made. We consider two network configurations:

(i) parallel network where each sensor node transmits the data to a fusion center, and (ii)

serial network where the sensor nodes constitute a serially connected multi-hop network

and the individual sensor nodes base their decisions on their own observations as well as

on the signal received from its ascending node. We consider detection strategies based on

single-bit and multiple-bit decisions. We derive expressions for the detection and false alarm

rates that is used for designing the optimal detection rules (thresholds) at all sensor nodes.

Observing that determining the optimal designs might be formidable even for small-scale

networks, we propose an analog approach to the distributed detection in wireless sensor net-

works where each sensor nodes simply amplifies-and-forwards its observation (or sufficient

statistics) to the fusion center. This method requires very simple processing at the local

sensor and the optimal design reduces to a suitable power allocation across sensor nodes.

Numerical examples indicate that the analog approach is superior to the digital approach

in most cases.
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CHAPTER I

INTRODUCTION

In this chapter, we briefly summarize the necessary background for several topics that will

be considered in the dissertation. Since we deal with wireless systems, we first present

the typical characteristics of wireless channels in Section 1.1. In Section 1.2, we discuss

the use of antenna diversity over fading channels and also present the space-time codes

and turbo coded modulation for multiple antenna transmission. Section 1.3 describes a

diversity method that can be obtained by user cooperation in the presence of multiple

users. In Section 1.4, we summarize the multiple description coding which can be imagined

as a method that provides source diversity. Section 1.5 explains the distributed detection

problem, and finally Section 1.6 summarizes the contribution of the dissertation.

1.1 Fading Channels

There are various physical mediums through which the information may be exchanged.

Regardless of which transmission medium is used, “non-ideal” communication channel cor-

rupts the transmitted signals via many possible mechanisms such as noise, attenuation,

fading and interference from other users. In the simplest case, the received signal is affected

only by additive ambient noise modelled as a white Gaussian process, resulting in additive

white Gaussian noise (AWGN) channel.

In wireless communications, the information is transmitted via propagation of electro-

magnetic waves. Several mechanisms like reflection, refraction and scattering are effective

in the propagation process. Due to these three main mechanisms, the transmitted signal is

received via multiple paths. In general, this multipath propagation medium is time varying,

therefore, it is reasonable to characterize the time varying nature of the multi-path propa-

gation channels using statistical techniques. The time varying channel impulse response of

a typical wireless channel to a pulse at time t−τ can be expressed as (in low-pass equivalent
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form)

c(τ, t) =
∑

n

αn(t)e−j2πfcτn(t)δ(τ − τn(t))

where fc is the carrier frequency, and αn(t) and τn(t) are the attenuation factor and the

propagation delay for the nth path, respectively. If there are a large number of multipaths in

the medium, which is a typical case for a mobile subscriber generally surrounded by many

scatterers, by applying the law of large numbers, we conclude that the channel impulse

response at time t is Gaussian distributed for each delay τ . Thus, the channel impulse

response is a Gaussian process. If it is a zero-mean Gaussian process, then the envelope is

Rayleigh distributed and the phase is uniformly distributed in the interval (0, 2π). That is,

the envelope

R = |c(τ, t)|

has the probability density function (p.d.f.) of

pR(r) =
2r

Ω
e−r2/Ω, r ≥ 0

where Ω = E(R2) is the signal power.

Since the wireless environment is characterized by a statistical process, the correlation

functions and power spectral densities are the useful tools to express these characteristics.

We assume that c(τ, t) is a wide sense stationary process in the t-variable, and that the

random processes for different path delays, τ , are uncorrelated. These assumptions yield

to the classical wide sense stationary uncorrelated-scattering channel model. The average

power output of the channel as a function of the time delay, τ , is then defined by the delay

power spectrum, φc(τ). The range of values of τ over which φc(τ) is essentially non-zero is

called the multipath spread of the channel and denoted by Tm. A similar characterization

is obtained in the frequency domain starting with the time varying transfer function of

the channel. The same assumptions lead to the spaced-frequency spaced-time correlation

function of the channel, Φc(∆f ;∆t), which provides a measure of the frequency coherence

of the channel. The coherence bandwidth of the channel, (∆f)c, is defined as the maximum
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spacing ∆f between frequencies at which two sinusoids are affected by approximately the

same complex gain, i.e., Φc(∆f ; 0) ≈ Φc(0; 0), and is approximately given by

(∆f)c ≈
1

Tm
.

Similarly, the coherence time of the channel, Tc, is defined as the maximum spacing ∆t be-

tween instants at which two impulses are affected by approximately the same complex gain,

i.e., Φc(0;∆t) ≈ Φc(0; 0). In addition, we define the Doppler spread, Bd, as the maximum

frequency shift due to the variations in the channel or the relative motion of the transmitter

and receiver. An approximate value for Bd is given by Bd ≈ 1
Tc

.

Suppose that we transmit digital information over the channel by modulating the basic

pulse at a rate 1/T , where T is the symbol duration. Then, the bandwidth of the pulse is

approximately W ≈ 1/T . If the bandwidth of the signal is much smaller than the coherence

bandwidth of the channel, i.e., W ≪ (∆f)c, then all the frequency components in the pulse

are affected by the same attenuation and phase shift during the transmission of one symbol.

Hence, the channel is said to be frequency non-selective. Conversely, if the bandwidth of the

signal W is larger than the coherence bandwidth, (∆f)c, the pulse is subject to different

complex gains across the frequency band and of the symbol and the channel is said to be

frequency selective.

In this dissertation, we mainly consider the transmission of digital signals over frequency

non-selective slowly fading channels. For this channel, if the low-pass transmitted signal is

ŝ(t), the received equivalent low-pass signal in the signaling interval is

y(t) = αe−jφŝ(t) + z(t), 0 ≤ t ≤ T

where z(t) represents the complex valued zero-mean white Gaussian noise process (with

variance N0/2 per dimension), α is the Rayleigh distributed attenuation and φ is the uni-

formly distributed phase shift due to the channel. Let us assume that fading is sufficiently

slow and the phase shift φ can be estimated from the received signal without any error,

then the channel is described by

y(t) = αŝ(t) + z
′
(t)
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where z
′
(t) is also white Gaussian.

To see how fading deteriorates the system performance, let us consider the use of binary

phase shift keying (BPSK) modulation over a Rayleigh fading channel [125]. The average

bit error probability over a frequency non-selective fading channel is given by

Pb,fading =
1

2

(

1 −
√

γ̄b

1 + γ̄b

)

≈ Eb

4N0
(1)

where γ̄b = Eb
N0

E[α2] is the average SNR, Eb is the energy in the transmitted pulse ŝ(t)

and E[.] denotes the expectation operator. On the other hand, the bit error probability for

BPSK modulation over AWGN channel is given by

Pb,AWGN = Q(
√

2Eb/N0)

6
1

2
exp

(−Eb

N0

)

(2)

From (1) and (2) , it is clear that while the error probability decreases exponentially with

SNR for the AWGN channel, it decreases only inversely for the Rayleigh fading channel

case. Therefore, fading degrades the performance of a wireless communication system sig-

nificantly.

In order to combat fading, the receiver is typically provided with multiple replicas of

the transmitted signal so that it can use these replicas to extract the transmitted informa-

tion [124, 153]. The transmitted information will be recovered with high probability since

all the replicas will not typically fade simultaneously. This method is called diversity and

it is one of the most effective techniques for combating multi-path fading. There are many

diversity techniques including temporal, frequency and space diversity techniques. In the

next section, we elaborate on spatial (antenna) diversity that can be obtained by employing

multiple antenna elements at the transmitter and/or receiver.

1.2 Antenna Diversity

Assume that the receiver is equipped with L antennas that are sufficiently separated so that

the signals received from each antenna element are (almost) independent from each other.
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Figure 1: Model of a digital communication system with diversity.

Note that this system can be viewed as a single-input multiple-output (SIMO) wireless

system. A block diagram of such a system is shown in Figure 1. The signals from different

diversity branches are combined with a diversity combiner. The combiner simply uses the

information received from the different branches and forms the decision variable. One way

of combining is to weight the signals received from each diversity branch using the complex

conjugates of the corresponding channel gains and add them up. This combiner is called

maximal ratio combiner and the signal to noise ratio at the output is the sum of signal to

noise ratios of individual branches. This combining scheme is optimal, however, it is only

applicable when the channel estimates are available. There are also various other possible

combining schemes. For example, in equal gain combining, the signals from each branch are

added after co-phasing. In switched diversity, the combiner switches between the branches

such that if the signal to noise ratio drops below a threshold value in the current branch, it

selects another branch with SNR larger than the threshold.

In this dissertation our main interest will be the selection diversity combining in which

the branches are all monitored and the branch with the strongest signal level is selected at

any one time. As described later, while this method is a suboptimal one, it reduces the

implementation complexity significantly while retaining the diversity order of system.
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1.2.1 Multiple-Input Multiple-Output Antennas and Space-Time Codes

Antenna diversity at the receiver side is well-known and has been widely implemented in

many communication systems such as in cellular networks. However, it is also possible to

deploy multiple antennas at transmitter side, leading to a multiple-input multiple-output

(MIMO) antenna system. Consider, for example, a mobile communication system where we

have M transmit and N receive antennas. Figure 2 displays such a wireless link. For each

channel use, the signal si(t), i = 1, · · · ,M, is transmitted from ith antenna element. The

signal at each receive antenna is a noisy superposition of the M transmitted signals, i.e.,

xi =

M
∑

k=1

hi,ksk + wi

where hi,k is the path gain from kth transmit antenna to ith receive antenna and wi is the

additive Gaussian noise at the ith receive antenna. The channel capacity of such a multiple

antenna system in the presence of Gaussian noise is determined by [164] and [48,49], where

it is shown that for a fading channel where the sub-channels between each pair of transmit

and receive antennas are independent Rayleigh distributed and each use of the channel

corresponds to an independent realization of channel transfer function, the average channel

capacity scales linearly with the the number of the transmit antennas (as long as the number

of antenna elements at the receiver is grater than or equal to the number of antenna elements

at the transmitter) provided that exact channel state information is available at the receiver.

These information theoretic results led to the development of so-called “space-time

codes” [163]. These coding schemes propose the joint design of coding and modulation along

with transmit and receive diversity. To accomplish this, space-time trellis codes, space-time

block codes and turbo coded modulation systems have been developed [149–151, 160, 163].

Several space-time coding schemes for multiple antenna transmission have also been pro-

posed in [2, 73,141,144,154,161,162, 182]

In [163], the multi-antenna performance criteria for designing space-time codes are de-

rived under the assumption that the fading is quasi-static and frequency non-selective. Two

performance measures based on the matrices constructed from the pairs of code sequences

have been developed: the rank criterion and the determinant criterion. Let us denote the
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Figure 2: A wireless link comprising M transmit and N receive antennas.
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where c is the transmitted codeword and e is the decoded codeword such that

c = c1
1 c2

1 ... cM
1 c1

2 c2
2 ... cM

2 ... c1
l c2

l ... cM
l

and

e = e1
1 e2

1 ... eM
1 e1

2 e2
2 ... eM

2 ... e1
l e2

l ... eM
l .

Define A(c,e) = B(c,e)B(c,e)H . Here, cm
k denotes the signal transmitted from mth an-

tenna element at time k. The minimum rank of B(c,e) for any codeword pair determines

the diversity gain while the minimum determinant of the A(c,e) determines the coding

gain. Using these criteria, the authors design trellis codes with performance within 2 − 3

dB of the outage capacity at a frame error rate of 0.1.

The space-time coding schemes mentioned so far assume the availability of channel state

information at the receiver. However, estimating the fading coefficients between each pair

7



of transmit and receive antenna elements becomes difficult, if not impossible, if the fading

is fast or a large number of antenna elements are used. For such cases, it is necessary to

develop modulation techniques that do not need the channel state information. Assuming

that no channel state information is available at the transmitter and the receiver, Hochwald

et. al. present the information theoretic limits of multi antenna systems for Rayleigh block

fading channels and demonstrate that the capacity achieving signals are orthogonal to each

other with respect to time across transmit antennas [84, 109]. The resulting constellations

are called unitary space-time constellations. Such constellations have been designed and

shown to perform well for fast fading scenarios [8, 85]. Other recently proposed methods

that do not require the estimation of the channel state information include differential space-

time modulation schemes [86, 89, 159]. These schemes can be considered as extensions of

the standard differential phase-shift keying, where the transmitted signals are space-time

symbols in the form of complex matrices.

A natural drawback of the multiple antenna systems is the increased complexity due

to the need for multiple RF chains. Therefore, there is a considerable effort in exploring

multiple input multiple output (MIMO) systems that significantly reduce this complexity,

but still provide similar capacity and performance improvements. A promising technique

to achieve this goal is to select a subset of antennas at the transmitter and/or receiver

[5–7] [62, 113, 135]. For example, for the case of single antenna selection at the receiver,

assuming that the fading is slow, the received signal power can be monitored periodically,

and only the signal of the receive antenna observing the largest instantaneous SNR can be

fed to the RF chain for processing. Thus significant reduction in hardware costs can be

attained while reaping the benefits of MIMO signaling.

Antenna subset selection for MIMO systems has been investigated by many researchers

[62–64, 66, 82, 98, 113, 117, 135, 181]. For example, the capacity of MIMO systems with an-

tenna selection (only at the receiver) is considered in [113]. The selection is based on the

capacity, i.e., those antennas that achieve the largest capacity are selected. The authors

evaluate upper bounds on the capacity of the system and conclude that one can achieve a

capacity very close to that of the full-complexity system as long as the number of antennas
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selected is greater than or equal to the number of transmit antennas. In [62] and [135],

transmit antenna selection is studied for systems where limited feedback on the channel

state information is available to the transmitter. In these systems, channel capacity is used

as the optimality criterion and the selection is performed by an exhaustive search. Gorokhov

proposes a suboptimal selection algorithm in [66] that decreases the computational com-

plexity significantly. An antenna selection method seeking the minimization of the error

rate using linear receivers is considered in [82]. These studies indicate that antenna subset

selection attains an acceptable performance while reducing the implementation costs.

1.2.2 Turbo Codes and Turbo-Coded Modulation for Multiple Antenna Trans-

mission

Turbo coding is a way of constructing powerful codes from two or more component codes,

which are generally convolutional codes. It is distinguished with its excellent performance at

very low signal to noise ratios, i.e., within 1 dB of the channel capacity [16,17]. The main

idea in turbo codes is to concatenate two recursive systematic convolutional encoders in

parallel using an interleaver as shown in Figure 3. The information sequence is partitioned

into blocks of size Ni. The input to the first encoder is the information sequence itself while

the input to the second one is an interleaved version. The bits from the systematic block,

first and second parity blocks are then multiplexed to produce the encoded sequence (see

Figure 3). The kth element of the encoded sequence is thus defined as sk = (ss
k, s

1p
k , s2p

k ). In

addition to parallel concatenation, one can also use a serial of convolutional encoders [14],

and instead of using convolutional codes, one can use linear block codes [15]. And as shown

in [36], we can concatenate more than two component codes in parallel.

In Figure 4, we depict the block diagram of the iterative turbo decoder. Since the op-

timum decoding algorithm has a very high complexity, a suboptimum iterative decoding

algorithm is employed. In the iterative decoding of the turbo codes, the maximum a posteri-

ori (MAP) algorithm proposed in [9] is employed. In the figure, the two central units, MAP,

denote the Maximum A-posteriori Probability decoders associated with the two component

encoders. In the first iteration, the first MAP decoder computes the log-likelihood ratio
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Figure 3: Rate 1/3 turbo code with component encoders (5, 7)octal .

(LLR) of transmitted bits

Γ(dk) = log
Pr(dk = 1|xs, x1p)

Pr(dk = 0|xs, x1p)

using the received sequence xs and x1p where, for an additive white Gaussian noise channel

and binary phase shift keying modulation scheme, the kth element of the received sequence

R is given as

Rk = (xs
k, x

1p
k , x2p

k ) = (2ss
k − 1 + ns

k, 2s
1p
k − 1 + n1p

k , 2s2p
k − 1 + n2p

k ).

This overall LLR can be written as the sum of three components: LLR of the uncoded bit

dk at the decoder input, an a-priori term, and another information that does not depend on

decoder input ss, which is called as extrinsic information. This extrinsic information, L1e,

is passed to the second MAP decoder as an a-priori probability and together with xs and

x2p, MAP decoding unit computes the log-likelihood ratio again. The extrinsic information

from the second decoder is then fed back to the first decoder and the iterations proceed as

the extrinsic information is exchanged between the decoders until a desired performance is

achieved at which point a final decision is made based on the final log-likelihood ratio of

each information bit. Note that in all these operations, all the likelihood ratio sequences and

received sequences are suitably reordered and delayed. The iterative decoding algorithm
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Figure 4: Block diagram of iterative turbo decoding.

is a sub-optimum algorithm, but empirical evidence suggests that this algorithm performs

remarkably well and converges to the optimal decoding solution with high probability [17].

For the details of the iterative turbo decoding, see [77,127].

In the Turbo coding scheme of Figure 3, the over all code rate is 1/3, which is too low

for many applications. Using different rate component convolutional encoders and certain

puncturing schemes, one can obtain higher rate turbo codes. Nevertheless, in general, turbo

codes are low rate codes and require a considerable bandwidth expansion. In this case, turbo

coded modulation scheme is a suitable alternative. In turbo coded modulation, a turbo code

is concatenated with a higher order modulation scheme. There are various approaches for

turbo coded modulation [13,60,128]. For example, the block diagram of the scheme in [60]

is shown in Figure 5. In this scheme, the turbo coded bits are partitioned and directly

mapped to a signal point in the constellation. The decoding of turbo coded modulation can

also be accomplished using the suboptimum iterative decoding algorithm. In this case, we

first compute the log-likelihood of the transmitted bits and then use these likelihood values

as if they are the likelihoods of the observations from a BPSK modulation scheme over an

AWGN channel in the iterative turbo decoding process [60].

The turbo coded modulation above can be employed for multiple antenna transmission

[151]. In this case, after the data is partitioned into blocks of Ni bits and encoded by a

binary turbo encoder, the resulting turbo-code stream are first set partitioned by a serial-

to-parallel converter which results in parallel streams for each transmit antenna. Then, the

11



serial 

parallel
to

serial 

parallel
toring

punctu−
constellation

mapping

to a
input bits

systematic part

parity part

symbol
channel
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bits of each partition are mapped to the signal constellation and transmitted using different

antennas. Since the transmission take place simultaneously at each antenna, one can attain

high spectral efficiencies.

1.3 Cooperative Diversity

In the previous section, we assumed that at both sides of the communication system there

are multiple antenna elements. On the other hand, because of the limited sizes of the

portable devices, it might not be possible to deploy more than one antenna at the mobile

nodes. Assume that there are a number of mobile users that are equipped with single

antennas. If one user, say UA, wants to communicate with another user UB , the diversity

order that can be achieved in the absence of any cooperation from other users is just 1,

i.e., there is no diversity gain. However, assume that there is genie node UC who knows

the signal transmitted by UA,1 and wishes to help UA. In this case, UA and UC can

cooperate to attain the performance of a double-transmit single-receive antenna system,

providing a diversity order of 2. This diversity technique is referred to as the user cooperative

diversity [138–140,152].

In a wireless medium, noting that the transmissions for wireless relaying occur at dif-

ferent spatial locations, it is shown by Laneman et al. that one can obtain a distributed

spatial diversity using relays [99, 101]. Valenti et. al. study a similar system where macro

1Since the channel between UA and UC is noisy, this may not be feasible, but for the time being, assume
that the information transmitted from UA can be recovered at UC without errors
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diversity can be obtained using relay terminals [171]. A simple coding scheme that achieves

user cooperative diversity is presented in [90] where Hunter and Nosratinia consider a user

cooperative scheme for two nodes each of which employs a rate compatible punctured con-

volutional code. If the node receives the other’s data without error, it forwards the partner’s

bits to the base station, and otherwise, it transmits its own bits. Since the base station

observes the data stream from independently fading channels, one can achieve spatial di-

versity.

The simplest system that can attain the cooperative diversity is perhaps the three-

terminal relay channel introduced by [172]. In compliance with the above example, UA

becomes the source node, UB becomes the destination node and UC becomes the relay node.

The capacity of the relay channel is investigated by El Gamal and Cover in [32,33], and it is

shown that the information rate in a relay channel is higher than that is attained by a direct

transmission from UA to UB . While there has been some efforts to design coding schemes

for the relay channel to attain this capacity, the code design problem for the relay channels

needs further investigation. In this dissertation we will propose a distributed channel coding

method that can perform very close to the capacity limits of the relay channel.

1.4 Multiple Description Coding

A particular source coding method, known as multiple description coding (MDC), can be

viewed as a joint source – channel coding technique. MDC generates multiple bitstreams,

also called descriptions, of a source so that various quality levels of reconstruction can be

obtained from any subset of the descriptions. The descriptions are transmitted over inde-

pendent channels with the hope that upon the reception of all or some of the descriptions,

a superior or an acceptable quality reconstruction is possible. This can be accomplished by

introducing a certain amount of correlation between the individual descriptions. In an ideal

transform coding, the aim is to represent the signal as efficiently as possible by removing

all the redundancy. However, in that case, it is difficult to estimate the parts that are lost

from those that remain. Introducing redundancy among the transform domain coefficients

can provide robustness against such losses.
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There are various methods of implementing MDC. A practical approach, known as mul-

tiple description scalar quantization (MDSQ), uses a pair of scalar quantizers that generates

two indices (descriptions) of a source sample [170]. The quantization levels and index as-

signment are designed such that if only one index is received, the quantizer functions as

a coarse quantizer, but if both indices are received, it functions as a fine quantizer. An-

other MDC scheme uses correlating transforms: Multiple Description Transform Coding

(MDTC) [68,69,180]. In [180], a rotation matrix was applied to create pairwise correlation

between the uncorrelated variables obtained using the Karhunuen-Loeve transform. This

method is studied in a generalized framework in [68] and [120]. Other techniques of multi-

ple description coding uses the lapped orthogonal transform framework [31] and projections

onto convex sets framework [29].

Although there are various ways of multiple description encoding schemes [29,31,68,170],

in this disseration, in order to produce two correlated descriptions of the source samples,

we will consider the use of multiple description scalar quantization (MDSQ) introduced

in [170] and Multiple Description Coding using pairwise correlating transforms (MDTC)

first proposed by [180]. In this and the following subsections, we will briefly describe the

MDSQ and MDTC, respectively.

1.4.1 Multiple Description Scalar Quantization

The block diagram of the MDSQ is shown in Figure 6. As depicted, each source sample is

input to a cascade connection of a quantizer block q(·) and index assignment block a(·).

Let X denote a stationary and ergodic random process with zero mean and variance

σ2
X that generates our source symbols. The encoder of an MDSQ operates as follows:

First, the source sample is mapped to an index l using an N -level quantizer q(·) which is

defined using a threshold vector t = (t0, t1, · · · , tN ) such that q(x) = i if x ∈ [ti−1, ti), i =

1, 2, · · · , N . Quantization is followed by an index assignment a(·) by which each index

l is mapped to a pair of indices (i, j) ∈ J where J ⊆ I1 × I2 and the individual indices

i ∈ I1 = {1, 2, · · · ,M1} and j ∈ I2 = {1, 2, · · · ,M2}. We are considering balanced MDSQ’s,

therefore we assume M1 = M2 = M where M is the number of indices for each description.
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Figure 6: Block diagram for the MDSQ.

In this case, the rate is R = log2(M) bpss (bit per source sample) for each description. The

MDSQ is mainly devised for an “on-off” channel model, however, it was shown in [183] that

one can apply the multiple description quantizer for Rayleigh fading channels as well.

The generation of the indices is an important task in the design of MDSQ schemes.

In [170], for on-off channels, design algorithms to generate good index assignments resulting

in the optimum (exponential side and central distortion) decay rates have been presented.

An example of an index assignment obtained using these techniques is illustrated in Table 1.

The numbers in the table entries correspond to the cells of a quantizer, which are numbered

1, 2, · · · , N , in increasing order from left to right. The coordinates of the entry in which l is

located is assigned to the quantizer cell l. For example, for the index assignment depicted

on Table 1.b, if the source symbol lies in the interval corresponding to the 13th quantizer

cell, then the index pair (5, 6) is transmitted. We note that an index assignment scheme

obtained with the techniques of [170] consists of (2k+1) diagonals, k = 1/2, 1, 2, · · · , 2R−2

and the redundancy can be controlled by varying the number of the non central-diagonals

covered by the index assignment. In general, the amount of correlation between the indices

(i, j) decreases as the number of diagonals in the index assignment is increased. For a given

index assignment scheme, it is easy to compute the conditional probabilities P (i|j) or P (j|i)

using the threshold values of the quantization and input statistics.

1.4.2 Multiple Description Transform Coding

A different technique for multiple description coding was proposed in [180] by Wang et. al.

and [70]. This method makes use of linear transforms to introduce correlations between the
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Table 1: Examples of MDSQ index assignment for R = 3 b/s, M1 = M2 = 8.

i/j 1 2 3 4 5 6 7 8
1 1 2
2 3 4
3 5 6
4 7 8
5 9 10
6 11 12
7 13 14
8 15

i/j 1 2 3 4 5 6 7 8
1 1 2
2 3 4 6
3 5 7 8
4 9 10 11
5 12 14
6 13 15 16
7 17 18 20
8 7 19 21

(a) (b)
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Figure 7: Block diagram for the MDTC.

pairs of random variables. Unlike MDSQ where a scalar source sample is described by the

indices produced by two separate quantizers, MDTC generates multiple streams of a pair of

uncorrelated source samples (or transform coefficients), first by creating some redundancy

within the pairs using a correlating transform and then quantizing the resulting pair. Such

correlation reinforces the robustness against coefficient losses, since one can estimate the lost

coefficients from those that are received using the correlation. Consider the transmission

of a pair of samples X = (X1,X2)
T ∈ C that denote the source descriptions that are

independent real-valued random variables. The block diagram of the MDTC is depicted

in Figure 7. In the figure, [·]∆ represents the quantization operator that quantizes the

samples to the nearest multiple of ∆. We note that the quantization is performed before

the transform, T , since quantization after the continuous transform, i.e., Y∆ = [Tx]∆,

results in non-square partition cells that are suboptimal [70]. Therefore, the source pairs

are first quantized and then using a discrete version of the continuous transform, T̂ , the

output vectors (Y1, Y2)
T are calculated. The discrete transform T̂ is achieved in two steps:

first, the continuous transform T is represented by a product of upper- and lower-triangular

matrices, e.g., using LDU decomposition, and second, the transformation is performed with
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intermediate roundings as

T̂ (x) = [T1[T2[T3x]∆]∆]∆

We can adjust the entries of the transform matrix to achieve any desired redundancy, or

ρ, which is defined to be the additional rate in excess of the minimum average rate R∗

that achieves the minimum average distortion in redundancy rate distortion (RRD) curve.

Simple analysis gives [70]

ρ =
1

4
log

(a2
11σ

2
1 + a2

12σ
2
2)(a

2
21σ

2
1 + a2

22σ
2
2)

σ2
1σ

2
2

For brevity, we will not go into the details of the MDTC, instead, we refer the interested

reader to [70]. Here, we wish to focus on the computation of conditional probabilities, i.e.,

the probability of second description given the first description, P (Yk2|Yk1), (k1, k2) ∈ Ck1,k2,

where Ck1,k2 is the set that is mapped to (k1, k2)∆. The probability of x ∈ Ck1,k2, pk1,k2, is

given by

P ((Y1, Y2) = (k1, k2)∆) = pk1,k2 =

∫

Ck1,k2

fx1,x2(x1, x2)dx1dx2 (3)

The conditional probability of one of the descriptions given the other follows as

P (Y2 = K2∆|Y1 = K1∆) =
pK1,K2
∑

l pK1,l

If the source pairs x = (x1, x2)
T have zero mean Gaussian components with variance σ2

1

and σ2
2 , respectively, then the expression in (3) have a closed form expression in terms of

standard error function

pk1,k2
=

1

4
(erf((j1 +

1

2
)∆/

√

2σ2
1) − erf((j1 − 1

2
)∆/

√

2σ2
1)·

(erf((j2 +
1

2
)∆/

√

2σ2
2) − erf((j2 − 1

2
)∆/

√

2σ2
2))

where (j1, j2) : T̂ ((j1, j2)∆) = (k1, k2)∆. We will later show in Chapter 5 how the condi-

tional probabilities can be utilized in the decoding to improve the performance by making

use of the residual information due to correlation between the multiple descriptions.

1.5 Distributed Detection

The detection of an event based on noisy observations is a standard problem in statistics,

communications and radar signal processing. For example, in radar detection theory, the
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detection problem is to make a decision whether there is a signal of interest present in

the noisy observations or not. This is nothing but a binary hypothesis-testing problem

where there are two possible states of nature (null hypothesis H0, alternative hypothesis

H1) associated with two different probability distributions on the observation space. At

the end of the statistical test, a false alarm occurs if the underlying hypothesis is H0 while

the test chooses H1, a detection occurs if the underlying hypothesis is H1 and the test also

chooses in H1, and a missed detection occurs if the test result is H0 while the underlying

hypothesis is H1. The probabilities of these occurrences is central in designing the optimal

detection rules in the detection theory.

In this dissertation, we deal with the detection problem in a network of spatially sep-

arated sensor nodes, which is referred to as distributed detection. In distributed detection,

each sensor sends a summary of its observation to a fusion center where a global decision is

made. In classical multisensor detection, such as in the case of radar and sonar applications,

it is assumed that all local sensors can communicate all their data to the central proces-

sor in which case optimal detection can be performed. However, in typical wireless sensor

networks, because of the bandwidth and energy limitations as well as the presence of noisy

channels, such centralized detection is not feasible. Therefore, instead of transmitting the

raw data, it is more appropriate to perform a local detection process at each sensor node

and then send the local decisions (possibly consisting of a few bits) to the fusion center.

The fusion center, after collecting all decisions from all sensors, performs a final decision on

the hypothesis under investigation.

Several distributed detection algorithms have been investigated in the literature [39,

83, 91, 119, 121, 129, 130, 155–158, 167]. In this section, we summarize a few of these algo-

rithms. Optimal distributed detection algorithms have been focused on optimality under

the Neyman-Pearson and Bayesian detection criteria, which lead in standard situations to

likelihood ratio tests at the individual sensors and at the fusion center. The optimum dis-

tributed signal detection methods under these criteria satisfy a set of coupled constraints. In

nonparametric detection, the classical requirement of parametric statistical models for the

signal and noise observations is relaxed and the competing composite hypotheses are stated
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in terms of statistical models for the observations that are not tied down by probability

density function models from specific parametric families. Distributed detection meth-

ods based primarily on signs and ranks of observations have been investigated [91,110,133].

These algorithms, in many cases, provide constant false-alarm rate (CFAR) that is indepen-

dent of the exact noise distribution assuming a symmetric distribution. Viswanathan and

Ansari [176] studied distributed nonparametric detection that uses Wilcoxon signed-rank

test statistics while Nasipuri and Tantaratana [3] used the Wilcoxon statistics to generate

multi-bit sensor decisions. Han et al. [78] studied the sign detector and the dead-zone de-

tector in a distributed context. Some generalizations of the sign and dead-zone detector

have been studied by Al-Ibrahim and Varshney [112] and by Hussaini et al. [44]. Blum [18]

showed that nonparametric detection based on signs and ranks can be constructed to pro-

vide locally most powerful (LMP) performance under a given nominal model for distributed

signal detection problems.

CFAR detection is generally based on parametric models with an unknown clutter-plus-

noise power parameter, which is often encountered in radar and sonar applications. CFAR

techniques determine a new threshold setting for each cell probed to achieve a constant

false-alarm probability. The threshold is determined using a set of reference observations,

typically obtained from a nearby cell in space. Several distributed CFAR methods have

been proposed in [6, 10,11,168].

Robust detection deals with the robustness against uncertainties in the statistical models

used for detection design [91,97,110,123]. A basic principle of robust detection is to design

optimum detectors based on certain least favorable models. Veeravalli et al. [179] considered

minimax robustness for distributed detection networks both with and without fusion centers.

An asymptotic version of this problem is considered in [43].

In all the above methods, the detectors are fixed sample-size. In sequential distributed

detection, the number of observations used is a random quantity that depends on the

observations themselves [91]. As soon as enough data is collected to meet a given reliability

requirement, a decision is finalized. This is important in time-critical applications and

when data acquisition is costly. Sequential detection can be conducted either at the fusion
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center or at the individual sensors. In the former, the nodes pass their local decisions

to the fusion center, which performs a sequential test [88, 174, 177]. In the latter, the

sensors can perform local sequential test without the need for a fusion center [40, 178].

Another version of running sequential detection is referred to as quickest detection where

the detection of an abrupt change at an unknown time is desired [40,132,175]. More recently,

a capacity-constraint distributed detection algorithms have been investigated [42,111,148].

Chamberland and Veeravalli [94] showed that under certain conditions, for an N -sensor

network with a capacity constraint of N bits per time unit, having each sensor transmitting

one bit is optimum. Thomopoulos and Zhang investigates the distributed detection in

the case of non-ideal channels [165]. In [42], Duman and Salehi consider the distributed

detection over multi access channels where the fusion center gathers the decisions from local

sensors via a multi-access channel.

All the aforementioned algorithms assume that the sensor decision statistics, either

quantized or at full precision, can be transmitted error-free to the fusion center. Even though

this assumption is valid in traditional sensor networks such as radars and sonar [122], it

is impractical in wireless sensor networks where wireless links are subject to fading and

interference. Furthermore, due to bandwidth and energy constraints, the use of powerful

error correction codes is not viable. Recently, Chen et al. introduced channel-based decision

fusion for a parallel network of sensors linked with fading channels [24, 25, 119]. Assuming

parallel configuration, the authors incorporate the effect of fading in the detection process,

and derive optimal fusion rules and some alternative fusion rules based on diversity combin-

ing techniques. In [105], a similar decision fusion for a multihop transmission is considered.

While the performance of the decision fusion based on some suboptimal methods are eval-

uated in these work, the optimality of the decision rules at local sensors and at the fusion

center, and optimal designs are not considered. Recently, Chen and Willet have sown that

optimal local decisions that minimize the error probability at the fusion center becomes a

likelihood-ratio test (LRT) under some particular constraints on the fusion rule [26].
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1.6 Contributions of the Dissertation

In Chapter 2, we study antenna subset selection for systems with MIMO antenna antennas.

Assuming that (i) the channel is characterized by quasi-static Rayleigh flat fading, and

the sub-channels fade independently, (ii) the channel state information (CSI) is exactly

known at the receiver, (iii) the selection is available only at the receiver, and it is based on

the instantaneous signal-to-noise ratio at each receive antenna, and (iv) space-time codes

are used at the transmitter, we analyze the system performance by deriving explicit upper

bounds on the pairwise error probability (PEP). The performance analysis shows that (i) by

selecting the set of antennas that observe the largest instantaneous signal-to-noise ratio, one

can achieve the same diversity gain as the one obtained by using all the receive antennas,

provided that the underlying space-time code has full spatial diversity, and (ii) in the case

of rank-deficient space-time codes, the diversity gain may be dramatically reduced when

antenna selection is used. In addition, based on the upper bounds derived, we describe

code design principles suitable for antenna selection. Specifically, for systems with two

transmit antennas, we design space-time codes that perform better than the known ones

when antenna selection is employed. We present numerical examples and simulation results

that validate our analysis and code design principles.

We note that in Chapter 2, antenna selection for multiple antenna transmission systems

is studied under the assumption that the subchannels between antenna pairs fade indepen-

dently. In Chapter 3, we consider the performance of such systems when the subchannels

experience correlated fading. We again assume that the channel state information is avail-

able only at the receiver, and the antenna selection is performed only at the receiver, and

the selection is based on the instantaneous received signal power. We quantify the effects

of channel correlation on the diversity and coding gain when the receiver system uses all or

a subset of the antennas. Theoretical results indicate that the correlations in the channel

does not degrade the diversity order provided that the channel is full-rank. However, it

does result in some performance loss in the coding gain. Furthermore, for non-full-rank

channels, the diversity order of the system degrades significantly and is determined by the

rank of the channel correlation matrix.
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The wireless channels in Chapters 2 and 3 are modeled as a frequency flat fading channel.

In an effort to increase the transmission rate, one needs to reduce the symbol duration

which may result in frequency selective fading. In such cases, orthogonal frequency division

multiplexing can be employed to increase the symbol duration to convert the frequency

selective fading channel to a flat fading one. Chapter 4 deals with the antenna selection for

space-time coded orthogonal frequency division multiplexing (OFDM) systems that employ

multiple transmit and receive antennas. Assuming the CSI is known at the receiver, the

selection is based on the instantaneous signal-to-noise ratio at each receive antenna averaged

over all carrier frequencies. We again analyze the performance of such systems and derive

closed-form upper bounds on the PEP. It turns out that it is difficult to make remarks about

the diversity order since the expressions are not simple. However, for the special case of

double transmit diversity over a channel order of two, we explicitly show that (i) with single

antenna selection out of N = 2 receive antennas, and (ii) with the selection of N−1 antennas

out of N receive antennas, one can attain the same diversity order as that attained by the

full-complexity system. For other cases, numerical results indicate that diversity order is

preserved with antenna selection. Therefore, the proposed antenna selection technique can

be used to reduce the implementation cost of the multiple-input multiple-output OFDM

systems while resulting in no degradation in the asymptotic performance of the system.

In Chapter 5, we propose a joint source-channel coding scheme for wireless communica-

tion systems with multiple transmit and receive antennas. The source coder is realized by a

multiple description encoder that generates multiple bit streams of the same source. Each

description is then separately turbo coded and transmitted using multiple antennas. For

the receiver, we describe a suitable iterative joint source-channel decoding technique that

exploits the correlations between the descriptions. Extensive numerical results illustrate

that the performance of the proposed system is superior to its single description counter

parts. The proposed scheme can be imagined as a combination of two different diversity

schemes: (i) the source diversity provided by the multiple correlated descriptions and (ii)

the channel diversity provied by the MIMO antenna system.

Chapter 6 deals with coding for wireless relay channels. We propose a turbo coded
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modulation technique for fading relay channels. According to this scheme, the source sends

turbo coded bits to the relay and the destination, while the relay, which has full-duplex

capability, forwards simultaneously the estimate for the previous turbo coded block to the

destination after decoding and re-encoding while it is receiving the signals transmitted from

the relay node. The destination observes the superposition of the transmitted codewords

and uses an iterative soft-input soft-output decoding algorithm to estimate the transmitted

information. Various decoding schemes are presented and compared to each other and also

to the previous results. The performance of the system is within 1 − 2 dB of capacity at a

bit error rate of 10−5. While the proposed scheme is presented for the case of a single relay

node, it can readily be generalized to multiple relay case.

In Chapter 7, we address the binary distributed detection problem for wireless sensor

networks. Contrary to the assumption that the links between the sensor nodes are noiseless,

we assume that the links are subject to multi-path fading and therefore, the transmitted

signals from the local sensors are received corrupted at the destination sensor nodes. Several

detection strategies for different network configurations are analyzed and their performance

are compared to each other. We classify two main approaches: (i) digital approach where

the sensor nodes first make a local decision (consisting of a single bit or multiple bits) and

then transmit those decisions to the destination nodes, (ii) analog approach where the lo-

cally observed data or the sufficient statistics is directly transmitted to destination node.

Two network configurations are considered: serial and parallel. The resulting analysis is

used for optimizing the distributed detection schemes for sensor networks interconnected

with fading links. It turns out that the optimal designs for the digital approach becomes

impractical because of the computational burden of the exhaustive search required to de-

termine thresholds at all sensor nodes. In the analog approach, we analyze the detection

performance according to Neyman-Pearson lemma and show that the optimal design reduces

to determination of optimal power allocation scheme. This approach alleviates the design

problem since one only needs to determine a global decision rule for the fusion center and

a suitable power allocation for the local sensors which can easily be found analytically or

via numerical optimization techniques. Furthermore, the simulation results illustrate that
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for a given energy budget, the analog approach has a better detection performance than a

system where only one-bit decisions are allowed. In this chapter, we also propose the use

of sequential detection for wireless sensor networks under consideration.
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CHAPTER II

ANTENNA SUBSET SELECTION FOR MULTIPLE

ANTENNA TRANSMISSION

In this chapter, we will study the performance of receive antenna selection for a system

equipped with MIMO antennas. This chapter deals with the case of independently and iden-

tically distributed fading among the subchannels between transmit-receive antenna pairs.

The organization of the chapter is as follows: In Section 2.1 we summarize the related work.

Section 2.2 describes the multiple antenna channel model, and summarizes important re-

sults on pairwise error probability. In Section 2.3, we compute the upper bounds on pairwise

error probability for space-time codes when antenna selection is employed for both full-rank

and rank-deficient space-time codes. In Section 2.4, we derive a tighter upper bound for

systems with double transmit antenna diversity. We consider the space-time code design

with antenna selection in Section 2.5. In Section 2.6, we present several numerical examples

and simulation results that validate our analysis and the new code design principles. We

provide the conclusions in Section 2.7.

2.1 Introduction

Deploying multiple antennas to the wireless systems increases the implementation cost and

complexity due to the need for multiple RF chains. Recently, there has been a consider-

able effort in exploring multiple input multiple output (MIMO) systems that significantly

reduce this complexity, but at the same time provide similar capacity and performance

improvements. A promising technique to achieve this goal is to select a subset of antennas

at the transmitter and/or receiver [62,113,135]. To see how antenna selection can be used,

consider the case of single antenna selection at the receiver when there are say 10 antenna

elements. Assuming that the fading is slow, the received signal power can be monitored

periodically, and only the signal of the receive antenna observing the largest instantaneous

25



SNR can be fed to the RF chain for processing. Thus we need only one RF chains and

significant reduction in hardware costs can be attained while reaping the benefits of MIMO

signaling.

The capacity of MIMO systems with antenna selection (only at the receiver) is considered

in [113]. The selection is based on the capacity, i.e., those antennas that achieve the

largest instantaneous capacity are selected. The authors evaluate upper bounds on the

capacity of the system and conclude that one can achieve a capacity very close to that of

the full-complexity system as long as the number of antennas selected is greater than or

equal to the number of transmit antennas. In [62] and [135], transmit antenna selection

is studied for systems where limited feedback on the channel state information is available

to the transmitter. In these systems, channel capacity is used as the optimality criterion

and the selection is performed by an exhaustive search. Gorokhov proposes a suboptimal

selection algorithm in [66] that decreases the computational complexity significantly. An

antenna selection method seeking the minimization of the error rate using linear receivers

is considered in [82].

In [65], the authors considered the use of antenna selection in conjunction with orthogo-

nal space-time block codes. They present antenna selection algorithms for cases when exact

channel knowledge or statistical channel knowledge is available. For the case of exact chan-

nel knowledge, the expressions for the average SNR and the outage capacity improvement

are derived assuming that the selection criterion used is the maximization of the channel

Frobenius-norm. This selection criterion is equivalent to minimizing the error probability

for the case of space-time block codes. Using the outage probability analysis, the authors

hint that the diversity gain is preserved for this system. However, they do not explicitly

provide an analysis that includes the evaluation of the pairwise error probability for the

system with antenna selection. Furthermore, these results are valid only for orthogonal

space-time codes and cannot be directly applied to the case of more general space-time

codes. In [57], Ghrayeb and Duman present an approximate analysis for the pairwise error

probability of the space-time coding system using antenna selection. They show that the
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diversity order available is maintained. However, this analysis is based on several approxi-

mations. Thus, it is not an explicit proof. Other work on antenna selection is also reported

in [63,64,98,117,181].

In this chapter, we present a comprehensive theoretical performance analysis for MIMO

systems over quasi-static Rayleigh fading channels that use antenna selection at the receiver.

We base our selection criterion on the maximization of the received signal power. Under

certain cases this selection criterion may be optimal in the sense that it may achieve the

maximum channel capacity, e.g, for the case of single antenna selection at the receiver. The

pairwise error probability (PEP) will be central in our approach. We calculate the diversity

and coding gains by computing upper bounds on the PEP. For the case of single antenna

selection, we present a performance analysis based on the PEP, and demonstrate that

the diversity gain with antenna selection is preserved for space-time codes with full spatial

diversity. Since it is essential to employ full-rank space-time codes to make sure the diversity

order is not reduced with antenna selection, it may be beneficial to use full-rank full-rate

space-time code designs recently proposed in [51, 52, 108]. We also study the performance

bounds when the space-time codes do not achieve full spatial diversity, and show that the

diversity gain degrades substantially when antenna selection is employed compared to the

full-complexity system. Furthermore, we present the pairwise error probability analysis

when more than one antenna is selected, and generalize our results. We also compute

tighter upper bounds on the pairwise error probability for the case of double transmit

diversity systems.

An immediate consequence of the performance analysis is the development of code design

principles for space-time codes suitable for the systems employing antenna selection. Based

on the bounds on the pairwise error probability we propose two simple design criteria.

In particular for double transmit and double receive diversity systems, we design space-

time codes that perform better than the known ones when antenna selection is used. For

example, we design a 2 bits/sec/Hz 8-state space-time code for two transmit antennas

employing 4−ary Phase Shift Keying (PSK) modulation. We show that, while achieving

the same performance with 8-state code in [163] for the full-complexity system, the new
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code provides about 0.7 dB performance improvement when antenna selection is employed

at the receiver.

2.2 Channel and Signal Model

We consider a single user communication system where the transmitter has M antennas

and the receiver has N antennas. Each receive antenna observes a noisy superposition of

the M transmitted signals corrupted by Rayleigh flat fading. The sub-channels between

the transmit/receive antenna pairs are assumed to be independent identically distributed

(i.i.d.). The signal at the nth receive antenna element at time t, xtn, is given by

xtn =
√

ρ/M

M
∑

m=1

hnmstm + wtn, t = 1, 2, · · · , l (4)

where hnm is the complex-valued channel gain from the mth transmit antenna to the nth

receive antenna, and wtn is the additive noise at the nth receive antenna. Both hnm and wtn

∼ CN (0, 1). The transmitted signals, stm, can be chosen from any signal constellation. We

assume that the average energy of the transmitted signal at time t is normalized to unity

over M antennas so that ρ is the expected signal-to-noise ratio at each receive antenna. We

can rewrite (4) in vector form as

X =

√

ρ

M
HS + W (5)

where X is the N×l received signal vector, S is the M×l transmitted signal vector, H is the

N × M channel transfer matrix, and W is the N × l additive white Gaussian noise vector.

We assume that the CSI, i.e., H, is known at the receiver, but not at the transmitter.

The PEP conditioned on H is given by [163]

P (S → Ŝ|H) =
1

2
erfc

(
√

ρ

4M
‖ HS− HŜ ‖

)

(6)

≤ exp
(

− ρ

4M
‖ HS− HŜ ‖2

)

. (7)

Defining the codeword difference matrix B = S − Ŝ and A = BBH , and denoting tr{·} as
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the trace operator, we can write

‖ HB ‖2 = tr{HBBHHH}

= tr{HAHH}

=

N
∑

n=1

M
∑

m=1

λm|βnm|2 (8)

where the last equality follows by using the eigenvalue decomposition A = UΛUH with Λ

being a diagonal matrix whose entries (λm) are the eigenvalues of A, and β = HU where

βnm are independent Gaussian random variables. The average PEP for a Rayleigh fading

channel is obtained by averaging the conditional PEP over the statistics of H resulting in

P (S → Ŝ) = EH{P (S → Ŝ|H)}

≤
( ρ

4M

)−Nr
(

r
∏

m=1

λm

)−N

(9)

where r = rank(A) = rank(B). From this expression, we see that the diversity gain of the

coded system is Nr and that the coding gain is (
∏r

m=1 λm)1/r.

2.3 Upper Bounds on PEP with Antenna Selection

In this section, we derive upper bounds on the pairwise error probability for the Rayleigh

fading channel. We start with the case when only one antenna is selected, and then gener-

alize the results to the selection of more than one antenna at the receiver.

2.3.1 Pairwise Error Probability

We first consider the case when only one antenna is selected at the receiver. The upper

bound on the conditional PEP in (7) is then given by

P (S → Ŝ|r̂) ≤ exp
(

− ρ

4M
r̂BBH r̂H

)

where r̂ is the row of H having the maximum Frobenius-2 norm. In order to obtain the

average PEP, we simply evaluate the expected value of this upper bound with respect to

the distribution of r̂. That is,

P (S → Ŝ) ≤ E
R̂
{exp(− ρ

4M
rBBHrH)}

=

∫

CM

exp
(

− ρ

4M
rBBHrH

)

f
R̂

(r)dr
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where CM is the M -dimensional complex space and f
R̂

(r) denotes the probability den-

sity function (pdf) of r̂. In order to compute f
R̂

(r), we introduce the auxiliary event

F = {nth row has the largest norm}. Then, we can write

f
R̂

(r) = fRn(r|F)

=
P (F|Rn = r)fRn(r)

P (F)

=
P (‖r1‖2 < ‖r‖2, · · · , ‖rn−1‖2 < ‖r‖2, ‖rn+1‖2 < ‖r‖2, · · · , ‖rN‖2 < ‖r‖2)fRn(r)

P (F)

=
P (‖r1‖2 < ‖r‖2)N−1fRn(r)

P (F)
(10)

where we use Bayes’ rule, and the fact that the ri’s are independent identically distributed.

Since all rows have the same statistics, we have

P (F) =
1

N
. (11)

Furthermore, using the statistics of H, we can say that the squared norm of each row,

(i.e., ‖ri‖2 =
∑M

m=1 |him|2, i ∈ {1, · · · , N}), is a Chi-square random variable of order 2M ,

χ2(2M). Hence, we can write

P (‖ri‖2 < ‖r‖2) = 1 − e−‖r‖2
M−1
∑

m=0

‖r‖2m

m!
. (12)

Finally, the term, fRn(r) in (10), is the unconditional pdf of the nth row, which is simply

fRn(r) =
1

πM
exp(−‖r‖2). (13)

Substituting (11), (12) and (13) into (10), we obtain the desired pdf as

f
R̂

(r) = N

(

1 − e−‖r‖2
M−1
∑

m=0

‖r‖2m

m!

)(N−1)
1

πM
e−‖r‖2

.

Hence, the upper bound on the average PEP follows as

P (S → Ŝ) ≤ N

∫

CM

e−
ρ

4M
rBBHrH

(

1 − e−‖r‖2
M−1
∑

m=0

‖r‖2m

m!

)(N−1)
1

πM
e−‖r‖2

dr.

We can further simplify this expression by using the singular value decomposition of BBH =

UΛUH and by applying the change of variable z = rU as

P (S → Ŝ) ≤ N

∫

CM

e−
ρ

4M

∑M
i=1 λi|zi|2

(

1 − e−‖z‖2
M−1
∑

m=0

‖z‖2m

m!

)(N−1)
1

πM
e−‖z‖2

dz. (14)
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It is not easy to evaluate the integral in (14) to obtain a closed form expression. However,

it is possible to further upper bound this expression to simplify the analysis as we will show

in the next section.

2.3.2 Simplified Upper Bounds on the PEP for Single Antenna Selection

In this section, we will derive simple expressions for the upper bounds on the PEP. In

Section 2.3.2.1, we will consider the case when the space-time codes achieve full-spatial

diversity, i.e., the rank of the codeword difference matrices, B, is M for all codeword

pairs. For such codes, we will show that the diversity order achieved with antenna selection

is the same as that of the full-complexity system. Then, in Section 2.3.2.2, we perform

approximate analysis of the PEP for rank-deficient space-time codes, and show that the

diversity order is dramatically reduced with antenna selection.

2.3.2.1 Full-rank Space-time Codes with Antenna Selection

Let us simplify (14) by the change of variables zi = σie
jθi , which yields

P (S → Ŝ) ≤ 2MN

∫ ∞

0
· · ·
∫ ∞

0
e−

ρ
4M

∑M
i=1 λiσ

2
i

(

1 − e−(σ2
1+···+σ2

M )×

M−1
∑

m=0

(

σ2
1 + · · · + σ2

M

)m

m!

)(N−1)

e−(σ2
1+···+σ2

M )σ1 · · · σMdσ1 · · · dσM .

(15)

We would like to find a simpler expression or bound that directly provides information

about the diversity order and coding gain with antenna selection. To this end, we need

following auxiliary lemma:

Lemma 1: Define

g(v) = 1 − e−v
M−1
∑

m=0

vm

m!
.

Then,

g(v) ≤ vM

M !
for v > 0.

Proof: Observing that g(v) is the incomplete Gamma function, the proof follows easily,
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i.e.,

g(v) =
1

(M − 1)!

∫ v

0
uM−1e−udu ≤ 1

(M − 1)!

∫ v

0
uM−1du =

vM

M !
�

Since the the value of the integrand in (15) is always greater than zero, we can fur-

ther upper bound the right hand side of (14) by substituting vM

M ! in place of g(v) with

v = σ2
1 + · · · + σ2

M to obtain

P (S → Ŝ) ≤ 2MN

(M !)N−1

∫ ∞

0
· · ·
∫ ∞

0
e−

ρ
4M

∑M
i=1 λiσ

2
i
(

σ2
1 + · · · + σ2

M

)M(N−1)×

e−(σ2
1+···+σ2

M )σ1σ2 · · · σMdσ1dσ2 · · · dσM .

(16)

Let vi = σ2
i , we then obtain

P (S → Ŝ) ≤ N

(M !)N−1

∫ ∞

0
· · ·
∫ ∞

0
e−

∑M
i=1(

ρ
4M

λi+1)vi
(

v1 + · · · + vM

)M(N−1)
dv1dv2 · · · dvM .

(17)

We note that

(v1 + · · · + vM )M(N−1) =

(

M
∑

i=1

vi

)MN−M

=

M
∑

i1=1

· · ·
M
∑

iMN−M =1

vi1 · · · viMN−M
(18)

where the indices ik in vik , k ∈ {1, · · · ,MN−M}, take values from the set J = {1, · · · ,M}.

Assume the subscript index j appears lj times among the subscripts of the term vi1 · · · viMN−M

in (18). Then,

vi1 · · · viMN−M
=

MN−M
∏

k=1

vik

=

M
∏

j=1

(vj)
lj (19)

such that
∑M

j=1 lj = MN − M. Using (18) and (19) in (17), and changing the order of

integration and summation, we obtain

P (S → Ŝ) ≤ N

(M !)N−1

M
∑

i1=1

· · ·
M
∑

iMN−M=1

(

∫

∞

0

· · ·
∫

∞

0

e−
∑

M
i=1(

ρ
4M

λi+1)vi

M
∏

i=1

(vi)
lidv1dv2 · · ·dvM

)

.

(20)
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Using
∫ ∞

0
xme−axdx =

m!

am+1

(20) simplifies to

P (S → Ŝ) ≤ N

(M !)N−1

M
∑

i1=1

· · ·
M
∑

iMN−M =1

l1! · · · lM !

(1 + ρλ1

4M )l1+1 · · · (1 + ρλM
4M )lM +1

. (21)

For high SNR, it follows that

P (S → Ŝ) ≤ N

(M !)N−1

M
∑

i1=1

· · ·
M
∑

iMN−M =1

l1! · · · lM !

λl1+1
1 · · ·λlM+1

M (ρ/4M)
∑M

i=1(li+1)
. (22)

Since
∑M

li=1(li + 1) = MN , we finally arrive at

P (S → Ŝ) ≤





N

(M !)N−1

1
∏M

i=1 λi

M
∑

i1=1

· · ·
M
∑

iMN−M =1

l1! · · · lM !

λl1
1 · · ·λlM

M





( ρ

4M

)−MN
. (23)

Inequality (23) clearly shows that a diversity advantage of MN can be achieved when

only one antenna is selected based on the instantaneous SNR at the receiver. This diversity

gain is equal to the diversity order of the system that uses all the antenna elements in the

decoding. However, we note again that this is the case only if the space-time code has

full spatial diversity. Although the diversity order is preserved, there will be a loss in the

amount of coding gain with antenna selection. We will consider this loss later in more detail

when we specifically study the case with two transmit antennas.

2.3.2.2 Rank-deficient Space-time Codes with Antenna Selection

In the analysis of the previous section, we assumed that the eigenvalues λi, i = 1, 2, · · · ,M ,

of the matrix BBH were all non-zero. In this case, rank(B) = rank(BBH) = M and the

maximum diversity advantage, MN , is achieved. When the codeword difference matrix is

rank-deficient, i.e., rank(B) = r < M , the diversity gain obtained for the system using all

the antenna elements is Nr. On the other hand, with antenna selection based on the largest

SNR observed, the diversity gain degrades dramatically as we will demonstrate shortly.

Assume that there are r non-zero eigenvalues, λ1, · · · , λr. The analysis for rank-deficient

space-time codes follows the same lines as (15) – (21); thus, we will not repeat it. However,

it differs following (21) since some of the eigenvalues vanish in this expression. When the
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SNR is high, with the assumption that λi = 0 for i ∈ {r + 1, · · · ,M}, we can write (from

(21))

P (S → Ŝ) ≤ N

(M !)N−1

1
∏r

i=1 λi





M
∑

i1=1

· · ·
M
∑

iMN−M =1

l1! · · · lM !

λl1
1 · · ·λlr

r

( ρ

4M

)−
∑r

i=1 li





( ρ

4M

)−r
.

(24)

Recall that
∑M

i=1 li = MN − M , and therefore, 0 ≤∑r
i=1 li ≤ MN − M. In (24), the term

in the square brackets is a function of ρ/4M . Note that there certainly exist i1, · · · , iMN−M

such that
∑r

i=1 li = 0. We can re-group the terms in (24) to arrive at

P (S → Ŝ) ≤ N

(M !)N−1

1
∏r

i=1 λi





MN−M
∑

j=0

ξj

( ρ

4M

)−j





( ρ

4M

)−r
(25)

where j =
∑r

i=1 li, and ξj , is the sum of the terms multiplying
( ρ

4M

)−
∑r

i=1 li with the

same exponents. For sufficiently high SNR, the terms with
( ρ

4M

)−j
goes to 0 whenever

∑r
i=1 li > 0. Thus, we get

P (S → Ŝ) ≤ N

(M !)N−1

1
∏r

i=1 λi
ξ0

( ρ

4M

)−r
. (26)

This expression suggests a diversity order of r as opposed to MN . However since this is

only an upper bound on the PEP, we need further analysis. Recall that we have used the

Chernoff bound to obtain these upper bounds. We now approximate the PEP with the help

of a lower bound on the bound in (14).

First, we note the following simple result.

Lemma 2: If g(v) is as defined in Lemma 1,

g(v) ≥ e−vvM

M !

Proof:

g(v) = 1 − e−v
M−1
∑

m=0

vm

m!

= e−v

(

ev −
M−1
∑

m=0

vm

m!

)

= e−v

( ∞
∑

m=M

vm

m!

)

≥ e−vvM

M !
. � (27)
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Using this bound on g(v) in (15) with v = σ2
1 + · · · + σ2

M , we obtain

P (S → Ŝ) ≈ 2MN

(M !)N−1

∫ ∞

0
· · ·
∫ ∞

0
e−

ρ
4M

∑r
i=1 λiσ2

i e−N(σ2
1+···+σ2

M )

×
(

σ2
1 + · · · + σ2

M

)M(N−1)
σ1σ2 · · · σMdσ1dσ2 · · · dσM .

(28)

Evaluation of the above integration results in

P (S → Ŝ) ≈ N

(M !)N−1

M
∑

i1=1

· · ·
M
∑

iMN−M =1

l1! · · · lM !

(N + ρλ1

4M )l1+1 · · · (N + ρλM
4M )lM+1

. (29)

Assuming that λi = 0 for i ∈ {r + 1, · · · ,M}, for high SNR, we can write,

P (S → Ŝ) ≈ N

(M !)N−1NMN

1
∏r

i=1 λi





M
∑

i1=1

· · ·
M
∑

iMN−M=1

l1! · · · lM !

λl1
1 · · ·λlr

r

( ρ

4MN

)

−

∑ r
i=1 li





( ρ

4MN

)

−r

.

(30)

With similar arguments used to obtain (26), we arrive at

P (S → Ŝ) ≈ N

(M !)N−1NMN−r

1
∏r

i=1 λi
ξ′0
( ρ

4M

)−r
. (31)

From (26) and (31), we observe that the Chernoff bound on the PEP is squeezed between

two curves that have the same order in the exponent of ρ, which is r = rank(B). Since the

Chernoff bound is tight in the exponential sense, i.e., PEP = K ∗Chernoff Bound + O(1),

where K is a constant that does not depend on the SNR, the slopes of the exact PEP

plot and the Chernoff bound plot will have the same slopes on a log-log scale. Hence, we

conclude that the diversity gain of the system with antenna selection is only r, contrary

to the case of the full-complexity system where the diversity gain is Nr. Therefore, to

exploit the diversity gain promised by MIMO systems when antenna selection is employed,

space-time codes with full spatial diversity should be employed.

2.3.3 Upper Bound for any M and N when L > 1 Antennas are Selected

In this section, we will extend the performance analysis presented in the previous sections

to the more general case of L > 1. For the full spatial diversity system, since selecting

a single receive antenna results in full diversity, we expect that the diversity obtained by
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selecting L out of N antennas will be the same. However, the coding gain may be different.

Also, for a rank-deficient system, it will be interesting to observe the effect of the number

of antennas selected at the receiver on the overall diversity order achieved.

Let us denote the rows of H with the largest L norms by r̂1, r̂2, · · · , r̂L. Similar to the

case of single antenna selection, let us introduce an event

F ′ = {ri1 , · · · , riL have the largest norms among all the rows}.

We also define another auxiliary event

Al = {ithl row has the minimum norm among ri1, · · · , riL}.

Then, we can obtain the joint pdf for the rows having the largest norms as follows:

fR̂1,··· ,R̂L
(r1, · · · , rL) = fRi1

,··· ,RiL
(r1, · · · , rL|F ′)

(1)
=

L
∑

l=1

fRi1
,··· ,RiL

(r1, · · · , rL|F ′
,Al)P (Al)

(2)
=

L
∑

l=1

P (F ′,Al|Ri1 = r1, · · · ,RiL
= rL)fRi1

,··· ,RiL
(r1, · · · , rL)P (Al)

P (F ′,Al)

(3)
=

C(N, L)

L

L
∑

l=1

P (‖riL+1‖2
< ‖rl‖2

, · · · , ‖riN
‖2

< ‖rl‖2)
L
∏

j=1

fRij
(rj)IRl

(r1, · · · , rL)

=
N !

(N − L)!L!L





L
∑

l=1

[

1 − e
−‖rl‖

2
M−1
∑

m=0

‖rl‖2m

m!

]N−L

IRl
(r1, · · · , rL)





e−(‖r1‖
2+···+‖rL‖2)

πML

(32)

where (1) follows because of the total probability theorem, (2) follows because of Bayes’

rule, and (3) follows because of the facts that P (F ,Al) = 1/C(N,L) and P (Al) = 1/L.

IRl
(r1, · · · , rL) is the indicator function

IRl
(r1, · · · , rL) =











1 if (r1, · · · , rL) ∈ Rl

0 else

where the region Rl is defined as

Rl = {r1, · · · , rL : ‖rl‖ < ‖rk‖, k = 1, · · · , l − 1, l + 1, · · · , L}

The pairwise error probability can thus be obtained by averaging the conditional pairwise
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error probability over this pdf

P (S → Ŝ) ≤
L
∑

l=1

∫

Rl

e−
ρ

4M
‖H̃B‖2 N !

(N − L)!L!L

[

1 − e−‖rl‖2
M−1
∑

m=0

‖rl‖2m

m!

]N−L

×

1

πML
e−(‖r1‖2+···+‖rL‖2)dr1 · · · drL

(33)

However, the exact evaluation of (33) over this region is quite difficult. Instead, for its

analytic tractability, we will evaluate the integral throughout the whole space which results

in a looser upper bound. We also note that because of the symmetry of the pdf, the integral

over Rl for each l will have the same value. We now consider the evaluation of the integral

in the lth term. Before we proceed further, we note that

‖H̃B‖2 = tr{H̃BBHH̃H}

= tr{H̃UΛ(H̃U)H}

=

M
∑

i=1

λi‖ci‖2

(34)

where we used the eigenvalue decomposition of BBH . Here, ci is the ith column of H̃U.

Using standard integration techniques, the lth term of (33) can be re-written as

Il =
N !

(N − L)!L!L

∫ ∞

0
· · ·
∫ ∞

0
e−

ρ
4M

(

λ1(u11+···+uL1)+···+λM (u1M +···+uLM )
)

×
(

1 − e−(ul1+···+ulM )
M−1
∑

k=0

(ul1 + · · · + ulM )k

k!

)N−L

e−(u11+···+ulM )du11 · · · duLM .

(35)

After some manipulations, we obtain

Il =
N !

(N − L)!L!L

∫ ∞

0
· · ·
∫ ∞

0
e−

ρ
4M

∑M
i=1 λi(

∑L
d=1,d6=l udi)e−(

∑M
i=1

∑L
d=1,d6=l udi)

M
∏

i=1

L
∏

d=1,d6=l

dudi

×
∫ ∞

0
· · ·
∫ ∞

0
e−

ρ
4M

∑M
i=1 λiuli

(

1 − e−(ul1+···+ulM ) ×

M−1
∑

k=0

(ul1 + · · · + ulM)k

k!

)N−L

e−(ul1+···+ulM )dul1 · · · dulM

(36)

Denote the first integral in this expression by I(1)
l and the second integral by I(2)

l . The
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result of the first integral, I(1)
l , is

I(1)
l =

(

1
∏M

i=1 1 + ρλi

4M

)L−1

. (37)

The second integral is very similar to the one that we obtained for the case of single antenna

selection and can be evaluated as described in Section 2.3.2. Using Lemma 1 in (36), we

can upper bound I(2)
l , as

I(2)
l ≤ 1

(M !)N−L





M
∑

i1=1

· · ·
M
∑

iMN−ML=1

l1! · · · lM !

λl1+1
1 · · · λlM+1

M





( ρ

4M

)−M(N−L+1)
(38)

Using these results, we obtain

Il ≤ N !

(N − L)!L!L(M !)N−L

(

1
∏M

i=1 1 + ρλi

4M

)L−1




M
∑

i1=1

· · ·
M
∑

iMN′
−M =1

l1! · · · lM !

λ
l1+1
1 · · ·λlM+1

M





(

ρ

4M

)−M(N−L+1)

.

(39)

Note that this resulting bound is independent of l. Hence, substituting (39) into (33), and

performing simple algebraic manipulations for the high SNR region, we finally arrive at

P (S → Ŝ) ≤ N !

(N − L)!L!(M !)N−L

1
(

∏M
i=1 λi

)L





M
∑

i1=1

· · ·
M
∑

iMN−ML=1

l1! · · · lM !

λ
l1
1 · · ·λlM

M





(

ρ

4M

)−MN

. (40)

The inequality in (40) clearly indicates that the diversity order is MN when a selection

of L antennas out of N antennas is made available at the receiver and the space-time code

achieve full spatial diversity. Note also that this expression reduces to the expression in (23)

when L = 1, and takes the same value as the full-complexity system for L = N . Clearly,

(23) is also an upper bound on the PEP for the case under consideration. However, the

bound in (40) is tighter than (23) and provides a better assessment of the coding gain of

the system.

For rank-deficient space-time codes, the analysis is very similar to the case when L = 1,

which is described in Section 2.3.2.2. Hence, we will not repeat these steps. If we have

r < M non-zero eigenvalues, one can obtain the upper bound on the PEP as

P (S → Ŝ) ≤ N !

(N − L)!L!(M !)N−L

1

(
∏r

i=1 λi)
L

ξ′′0
( ρ

4M

)−Lr
. (41)
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Similarly, the lower bound on the Chernoff bound (an approximation to the PEP) is

given by (using (31)),

P (S → Ŝ) ≈ N !

(N − L)!L!(M !)N−L (
∏r

i=1 λi)
L (N − L + 1)MN−r

ξ′′′0

( ρ

4M

)−Lr
. (42)

In (41) and (42), ξ′′0 and ξ′′′0 are the coefficients that can be computed in a similar fashion

to that used to compute ξ0 and ξ′0 in (26) and (31), respectively. The upper bound in (41)

and the approximation in (42) obtained for the rank-deficient space-time codes indicate

that the diversity order is Lr. To verify this approximation, we have conducted extensive

simulations, and we have observed that the diversity gain is exactly Lr for this case as the

expression suggests. These results indicate that, with antenna selection, the diversity order

that can be obtained when the underlying space-time code is rank-deficient is only Lr while

the diversity order of the full-complexity system is Nr.

Such a degradation in the achievable diversity order may be somewhat counterintuitive

since one might have expected the results to be Nr as opposed to Lr as an extension of the

full-rank space-time case. To explain this further, let us consider a space-time code with

rank r < M . Such a code will achieve full spatial diversity for a system with r transmit

antennas. Assume this code is used for a system having M transmit antennas, which can

be trivially done by transmitting the same (dummy) symbols from the additional M − r

antennas. Hence, these antennas will not give the receiver any useful information that will

improve the diversity gain of the system. However, when we perform antenna selection, the

channel gains from these antennas may enforce the selection of a “bad” subset of receive

antennas, which will degrade the performance of the system severely. Even if this is the

case for a fraction of time, asymptotic behavior of the PEP will depend on these falsified

selections resulting in the reduced diversity order.

Clearly the performance with antenna selection will improve if we do not use the channel

coefficients from the last M −r antennas for selection, in which case a diversity order of Nr

will be achieved. However this means that the spatial structure of the underlying space-time

code has to be used in the selection process. For this example, this is simple. However, in

general it is not an easy task even for simple non full-rank space-time codes.
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2.4 Tighter Upper Bounds for Systems with Two Transmit

Antennas

Although the analysis in the previous section accurately predicts the diversity order, the

upper bounds derived are not very tight. In this section, we will evaluate the exact value of

the bound given in (14) to obtain a tighter bound for the case of double transmit antenna

diversity. For M = 2, (14) reduces to

P (S → Ŝ) ≤ N

∫

C2

e−
ρ
8
(λ1|ẑ1|2+λ2|ẑ2|2)

(

1 − e−(|ẑ1|2+|ẑ2|2)(1 + (|ẑ1|2 + |ẑ1|2))
)(N−1)

×

1

π2
e−(|ẑ1|2+|ẑ2|2)dẑ1dẑ2

(43)

Replacing the complex valued integration variables ẑ1 and ẑ2 with ẑ1 = σ1e
jθ1 and

ẑ2 = σ2e
jθ2 , we arrive at

P (S → Ŝ) ≤ 4N

∫ ∞

0

∫ ∞

0
e−

ρ
8
(λ1σ2

1+λ2σ2
2)
(

1 − e−(σ2
1+σ2

2)(1 + (σ2
1 + σ2

2))
)(N−1)

×

e−(σ2
1+σ2

2)σ1σ2dσ1dσ2

(44)

since
∫ ∫

dθ2dθ2 = 4π2 and the integrand does not depend on θ1 or θ2. By a change of

variables in (44) with σ1 = y cos θ and σ2 = y sin θ, we obtain

P (S → Ŝ) ≤ 4N

∫ π/2

0

∫ ∞

0
e−

ρy2

8
(λ1 cos2 θ+λ2 sin2 θ)

(

1 − e−y2 − e−y2
y2
)(N−1)

e−y2
y2 cos θ sin θydydθ

(45)

Assuming λ1 6= λ2, integrating with respect to θ results in

P (S → Ŝ) ≤ 4N

∫ ∞

0

(

1 − e−y2 − e−y2
y2
)(N−1)

e−y2
y
e−ρ/8y2λ1 − e−ρ/8y2λ2

ρ/4(λ2 − λ1)
dy. (46)

We can further simplify (46) by replacing e−y2
= x to obtain

P (S → Ŝ) ≤ 8N

(λ2 − λ1)ρ

∫ 1

0
(1 + x log(x/e))(N−1)

(

xρλ1/8 − xρλ2/8
)

dx. (47)

When the eigenvalues are equal, i.e., λ1 = λ2 = λ, the upper bound is given by

P (S → Ŝ) ≤ N

∫ 1

0
(1 + x log(x/e))(N−1)

(

xρλ/8
)

log(x)dx (48)

We can simplify (47) or (48) by using a binomial expansion and integrating each term

separately to obtain the following closed-form expression (see Appendix A)
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P (S → Ŝ) ≤ N

N−1
∑

n=0

(

N − 1

n

)

(−1)n
(

1

anbn
+

n (an + bn)

a2
nb2

n

+
n(n − 1)

(

a2
n + anbn + b2

n

)

a3
nb3

n

+ · · · + n! (an
n + · · · + bn

n)

an+1
n bn+1

n

)

(49)

where an and bn are defined as in the Appendix. Although (49) is a closed-form expression,

it is not very simple. We now present the upper bounds for several specific cases in the

following examples.

Example 1: M = 2 and N = 2, 3, 4

It is easy to show that, for M = 2 and N = 2,

P (S → Ŝ) ≤ 2

[

a2 + b2 + (a − 1)(b − 1) − 1

a2b2(a − 1)(b − 1)

]

, (50)

where a = 2 + ρλ1/8 and b = 2 + ρλ2/8. When the SNR is high, assuming λ1, λ2 > 0, we

can write

P (S → Ŝ) ≤ 2

[

λ2
1 + λ2

2 + λ1λ2

λ3
1λ

3
2

]

(ρ/8)−4 . (51)

It is worth comparing this result with the upper bound for the full-complexity system in

which all the antennas are used in the decoding process. In [163], the PEP for this system

is given

Pe,no sel ≤
1

λ2
1λ

2
2

(ρ/8)−4 . (52)

Comparing (52) and (51), we observe that the diversity advantage of both systems are

the same. That is, the antenna selection based on the SNR observed does not degrade the

diversity advantage of the system. On the other hand, there is some loss in the coding

advantage if we perform antenna selection. Comparing the upper bounds, we see that if

M = N = 2, and L = 1, the loss is approximately given by (in dB)

Csel/Cno sel = 10 log10 2

[

1 +
λ1

λ2
+

λ2

λ1

]

. (53)

It is clear that (53) reaches its minimum value when the eigenvalues, λi, i = 1, 2, associated

with the codeword difference matrices, are equal to each other. This result can be used as
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an additional criterion to optimize the design of space-time codes for systems using antenna

selection.

When we have N = 3, we obtain the upper bound as:

P (S → Ŝ) ≤ 6
(3a+1)b5+(3a2+7a+2)b4+(3a3+7a2+2a)b3+(3a4+7a3+2a2

−6a−2)b2+(3a5+7a4+2a3
−6a2

−5a−1)b+a5+2a4
−2a2

−a

(a−1)(b−1)a2b2(a+1)3(b+1)3
,

(54)

where a = 2 + ρλ1/8 and b = 2 + ρλ2/8. When the SNR is high, the bound is given by

P (S → Ŝ) ≤ 18
λ4

1 + λ3
1λ2 + · · · + λ4

2

λ5
1λ

5
2

(ρ/8)−6.

Similarly for N=4, the upper bound for high SNRs (keeping only the highest order

terms) is given as

P (S → Ŝ) ≤ 360
λ6

1 + λ5
1λ2 + · · · + λ6

2

λ7
1λ

7
2

(ρ/8)−8. �

Example 2: M = 2, N = 3 and L = 2 antennas selected.

Assume that there are 2 transmit and 3 receive antennas and 2 are selected based on

the SNRs observed. The expression (33) can be rewritten as

P (S → Ŝ) ≤ 3

∫

‖r2‖<‖r1‖
e−

ρ
8
tr{H̃UΛ(H̃U)H}

[

1 − e−‖r2‖2
(1 + ‖r2‖2)

] 1

π4
e−(‖r1‖2+‖r2‖2)dr1dr2

(55)

where BBH = UΛUH . Let H̃U =







β1

β2






=







β11 β12

β21 β22






. Then ‖ri‖ = ‖βi‖, i = 1, 2.

Transforming the integral into polar coordinates with βij = σije
θij , we get

P (S → Ŝ) ≤ 3

∫∫∫∫

e−
ρ
8
(λ1(σ2

11+σ2
21)+λ2(σ2

12+σ2
22))
[

1 − e−(σ2
21+σ2

22)(1 + σ2
21 + σ2

22)
]

×

1

π4
e−(σ2

11+σ2
12+σ2

21+σ2
22)σ11σ12σ21σ22dσ11dσ12dσ21dσ22

(∫ 2π

0
dθ

)4

.

(56)

Unfortunately, exact evaluation of the integral over the region

R =
{

σ11 > 0, σ12 > 0, σ21 > 0, σ22 > 0 : σ2
11 + σ2

12 > σ2
21 + σ2

22

}

as indicated previously, is quite difficult. However, we can evaluate the integral over the

whole space. After some manipulations, we obtain (assuming λ2 > λ1)

P (S → Ŝ) ≤ 24

ρ(λ2 − λ1)(1 + ρλ1/8)(1 + ρλ2/8)

∫ 1

0
(1 + x log x/e)

(

xρλ1/8 − xρλ2/8
)

dx.

(57)
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Note that the integral in this expression is very similar to the integral obtained for the case

M = N = 2 and L = 1. Using the previous results, we arrive at the following upper bound

for high SNRs:

P (S → Ŝ) ≤ 3

[

λ2
1 + λ2

2 + λ1λ2

λ4
1λ

4
2

]

(ρ/8)−6 . � (58)

2.5 Space-time Code Design With Antenna Selection

For the full-complexity system, two design criteria based on the upper bound on PEP have

been proposed in [163]: to maximize the diversity gain, the minimum of the ranks of the

codeword difference matrices, B, and to maximize the coding gain, the minimum of the

determinants of the matrices BBH should be maximized. The bounds developed in the

previous sections can be used to develop similar criteria for the design of space-time codes

for use with antenna selection at the receiver. We propose the following:

• To achieve the maximum diversity gain MN , the underlying space-time code should

be full-rank, i.e., rank(B) = M.

• To achieve the maximum coding gain, the value of the coefficient in (23) must be

minimized for all codeword pairs.

The rank criterion imposes a significant constraint on the design of space-time codes

when they will be used on MIMO systems employing antenna selection. The trade-off

between the diversity advantage and the transmission rate becomes more essential for such

an application. Hence, the recently proposed full-rank and full-rate space-time code design

techniques (i.e., [17–19] [51, 52, 108]) may be viable alternatives for systems with antenna

selection.

Clearly, instead of (23), we can also use the tighter bounds developed for specific M,N

and L. For example, for the case of double transmit diversity, (51) can be used. In this

case, we should generate the code that maximizes the coding gain that is defined as the

minimum of

Gain =

√

λ3
1λ

3
2

2
(

λ2
1 + λ2

2 + λ1λ2

)
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Table 2: Comparison of known and new 4-PSK space-time codes with theoretical coding
gains. GM: Generator Matrix, FC: full-complexity system, S: system with antenna selection.

States GM [163] Gains GM [12] Gains GM New Gains Improvement
(FC/S) (FC/S) (FC/S) over [163]

0 2 2 2 1 0

0 1 2 0 2 2
√

2 2 1 2
√

2 1.51 dB
4 2 0 1.63 1 0 1.66 2 2 1.67 0.09 dB

1 0 3 1 0 2

0 2 2 2 2 1

0 1
√

12 0 1
√

12 2 0
√

12 0 dB
8 2 0 2.56 2 0 2.56 0 2 3.13 0.88 dB

1 0 1 0 3 2
2 2 2 2 3 2

0 2 1 2 0 2

0 1
√

12 2 0
√

20 2 2
√

20 1.11 dB
16 2 0 4.07 2 1 3.25 3 0 4.12 0.04 dB

1 2 0 2 0 3
0 2 0 2 1 2
2 0 2 0 1 0

over all codeword pairs for the case of M = N = 2.

Let us give several examples using a systematic code search technique similar to the

method presented in [12]. We first transform the trellis representation of the code into

generator matrix form, and then perform an exhaustive search systematically using the

generator matrix. For brevity, we refer the reader to [12] for the details of the method.

Here, we briefly present our search results. Some of the known codes (the generator matrix

forms) together with new codes using 4, 8 and 16 state trellises are shown in Table 2.

In Table 2, we included the coding gains for both the full-complexity system and the

system with antenna selection. Two notes are in order: first, the codes designed (by the

proposed method) for the system with antenna selection performs better than known codes

when they are used with antenna selection. This is because already existing codes are

designed for the full-complexity system, not for systems with antenna selection. Second,

the proposed codes, which are designed for the system with antenna selection, also provide

improved (or, at least the same) coding gains for the full-complexity system compared to the

known codes. That is, the new design criteria do not conflict with those of full-complexity

systems, they only impose additional constraints.
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2.6 Examples

In this section, we present several numerical examples and simulation results to clarify the

theoretical analysis performed. We consider three cases, i.e., upper bounds on the PEP,

space-time code design with antenna selection, and the case of rank-deficient space-time

codes separately.

2.6.1 Theoretical Upper Bounds on PEP

We now evaluate the bounds given in Section 2.3.2.1 and 2.3.2.2 for several codeword pairs

that are selected from the codes developed in [163]. We also provide the actual frame error

rates (FER) for the space-time codes considered.

In Figures 8 and 9, we present the PEP bounds for the system with M = 2, N = 3, and

L = 1, 2. We select the codeword pairs from the 2 bits/sec/Hz 8−state space-time trellis

codes using 4−PSK modulation (with M = 2). This code provides a diversity advantage of

6 [163], i.e., full spatial diversity. The two codewords considered differ in three consecutive

symbols. The following observations are in order: (i) the simulated PEPs and the PEPs

obtained numerically exactly match for both the full-complexity system and the one using

antenna selection, (ii) for L = 2, the Chernoff bound obtained by integration of the bound

over the whole space (evaluated analytically) rather than over the support of the actual pdf

(evaluated numerically) are very close to each other (differing by 0.8 dB for this example),

(iii) for both the cases of L = 1 and L = 2, the upper bound and the approximations to the

Chernoff bound are very tight at high SNR, and finally (iv) the performance of the system

with optimal selection (that maximizes capacity) is only slightly superior to the selection

we considered, i.e., optimal selection performs only slightly better for L = 2.

The actual frame error rate comparisons for M = N = 2 antennas are provided in Figure

10 (see the solid lines). In this example, we present the simulation results (as opposed to the

theoretical results) for the space-time trellis code considered in the previous example. The

channel is assumed to be constant for a period of 130 transmissions. We observe that the

slopes of the FER plots are the same, implying that both systems achieve the same diversity

advantage. There is about a 2 dB loss in coding gain as a result of not fully exploiting the
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Figure 8: PEP comparison between the full-complexity system and the system using single
receive antenna observing maximum average SNR, M = 2, N = 3, L = 1. The codeword
pairs are from 2 bits/sec/Hz space-time trellis code using 4-PSK, 8-state trellis [3].
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Figure 9: PEP comparison between the full-complexity system and the system using single
receive antenna observing maximum average SNR, M = 2, N = 3, L = 2. The codeword
pairs are from 2 bits/sec/Hz space-time trellis code using 4-PSK, 8-state trellis [3].
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Figure 10: FER comparison between (i) (solid lines) the new code and the known space-
time trellis code in [3] when M=2, N=2, the 2 bits/sec/Hz space-time trellis code using
4-PSK, 8-state trellis, and (ii) (dashed lines) the full-complexity system and the system
using antenna selection when M=3 and N=2, rank=2.

receive antenna elements. However, the cost is significantly reduced.

2.6.2 Space-Time Codes with Antenna Selection

In Figure 10, we also present a performance comparison between the space-time code de-

signed in [163] and the code we designed for the system with antenna selection. Both

space-time codes achieve 2 bits/sec/Hz and they use an 8−state trellis with 4−PSK mod-

ulation. The coding gains of both codes for the full-complexity system are the same, i.e.,

the gains are
√

12, and therefore, they have the same performance. However, for the sys-

tem with antenna selection, we observe a significant improvement with the new space-time

code. The improvement predicted by the theoretical coding gains shown in Table 2 is 0.88

dB which is very close to the 0.7 dB improvement observed by the simulations.

2.6.3 Effect of Rank-deficiency on the Performance

With antenna selection, we showed that the diversity order is preserved provided that

the underlying space-time code achieves full spatial diversity. However, the upper bound

analysis for rank-deficient space-time codes has revealed that the diversity order is expected
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to degrade dramatically. To illustrate this point further, in Figure 11, we depict the bounds

on PEP together with the exact values of PEP obtained by simulations when M = N = 2

and the space-time code is rank-deficient, i.e., the codeword difference matrix has rank

1. We observe from the slopes of the exact PEP that the diversity gain is only r = 1

for antenna selection system while it is r = 2 for the full-complexity system. The bounds

obtained for the system employing antenna selection also have the same asymptotic slopes

as the exact value of the PEP. However, these bounds are not as tight as the ones for the

full-rank space-time code presented earlier.

For M = 3 and N = 3, Figure 12 depicts the PEP bounds for a codeword pair from a

rank-deficient space-time code. We present two cases in this figure: (i) selection of a single

antenna (ii) selection of 2 antennas. We present exact PEP (obtained through simulations)

as well as the bounds we derived for all cases. We observe from these plots that: (i) The

diversity order with antenna selection is given by Lr, i.e., the achievable diversity orders

are 2 and 4 with L = 1 and L = 2, respectively, (ii) the optimal selection (that maximizes

the capacity) performs slightly better than the selection based on energy for L = 2, and

finally, (iii) the bounds become tighter as L increases (i.e., as we select more antennas), and

become looser as r decreases, (i.e., the rank of the codeword difference matrix reduces).

The frame error rates for a rank-deficient space-time code whose codeword difference

matrices of rank-2 are shown in Figure 10 (see dashed lines). In this example, M = 3 and

the maximum diversity order for the full-complexity system with N = 2 receive antennas is

2 × N = 4, which can be seen from the solid line in the figure. The dotted-line shows the

frame error rate when L = 1. We observe that diversity gain in this case is the same as that

would be obtained if we had used only one receive antenna, i.e., it is 2. However, there is

a 3 dB improvement in the coding gain over the system with only one receive antenna.

2.7 Chapter Summary

We investigated antenna selection for a MIMO wireless system using space-time coding. We

considered the case when the fading is iid, only the receiver knows the CSI and antenna
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Figure 11: Bounds for rank-deficient space-time code. PEP comparison between the full-
complexity system and the system using single receive antenna observing maximum average
SNR, M = 2, N = 2. For rank-deficient code, rank(B) = 1.
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Figure 12: PEP for rank-deficient space-time code: M = 3, N = 3 and L = 1 or 2. For
the codeword pairs, rank(B) = 2.
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selection (based on received signal power) is performed only at the receiver. We have ana-

lytically shown that the diversity gain does not change and hence, we can exploit the full

diversity advantage promised by the MIMO system that uses all available antenna elements,

provided that the space-time code employed has full spatial diversity. For rank-deficient

systems, we have shown that the diversity gain with antenna selection deteriorates signif-

icantly compared to the full-complexity one. Furthermore, for double transmit diversity,

we computed tighter upper bounds in closed form. We have also determined guidelines for

optimal space-time code design with antenna selection, and presented several simple codes

for the case of two transmit antennas. We have also provided extensive numerical examples,

and simulation results, and observed that the results are in agreement with the theoretical

analysis.
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CHAPTER III

PERFORMANCE OF MIMO ANTENNA SELECTION

FOR CORRELATED FADING CHANNELS

In Chapter 2, antenna selection for multiple antenna transmission systems has been studied

under the assumption that the subchannels between antenna pairs fade independently. In

this chapter, we consider the performance of such systems when the subchannels experience

correlated fading. We again consider the energy-based antenna selection. We analyze the

system performance and quantify the effects of channel correlations on the diversity and

coding gain when the receiver selects a subset of the antennas. The organization of the

chapter is as follows: In the next section, we briefly summarize related work on receive

antenna selection for correlated fading channels. In Section 3.2, we describe the correlation

models we consider. In Section 3.3, we derive the PEP the bounds for the system using

receive antenna selection. We study the performance in the case of rank-deficient space-

time codes in Section 3.4. Section 3.5 summarizes the space-time code design criteria for

the correlated fading case. The numerical results validating the analysis are illustrated in

Section 3.6. Finally, we summarize our results in Section 3.7.

3.1 Introduction

Most of the work on multiple antenna systems make the assumption that the subchannels

between transmit/receive antenna pairs experience independent and identically distributed

(iid) fading [3,4,11–13] [49, 73, 95, 151, 163]. A more realistic assumption, however, is that

the fades are not independent, because of insufficient spacing between antenna elements,

placement of scatterers, etc. [145]. The nonzero correlation between subchannels may sig-

nificantly reduce the capacity as shown in [30]. The effect of such correlations on the

system performance is studied in [22] and [169]. The recent work on correlated fading

includes [28, 87, 93, 147]. Hong et al. investigate the design and performance of spatial
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multiplexing for MIMO correlated fading channels in [87]. In [93], Ivrlac et al. study the

effects of fading correlations and transmitter channel knowledge on the capacity and cutoff

rate for MIMO systems, and in [28], Chiani et al. derive closed form expression for the

characteristic functions for MIMO system capacity for correlated fading case. Smith et al.

also study the capacity of MIMO systems, but they focus on semicorrelated flat fading [147].

The effects of subchannel correlation when antenna subset selection is employed have

interesting implications. For instance, in [62], Gore et al. consider the capacity of MIMO

systems with antenna selection when the channel is rank-deficient, and show that a larger

capacity can be achieved by using a “good” subset of transmit antennas (i.e., by using those

antennas that result in a full-rank channel). In [135], following the work in [62], Sandhu

et al. propose an efficient method to find the optimal subset of antennas. Another line of

work investigates antenna selection based on error probability [61,64]. In [64] and [61], Gore

et al. assume that the channel statistics change very slowly and that the selected antenna

subset remain same over the transmission period. To develop the criteria for selection,

the authors derive bounds on average pairwise error probabilities for the full-complexity

system over correlated fading that depend on the channel covariance matrix and select the

subset of antennas that minimize those bounds. Note that in these studies, error probability

for a system using antenna selection is not formulated at all. Only the error probability

expressions for the full-complexity system is considered.

In the previous chapter, we studied the performance of the received-power based antenna

selection for MIMO systems when the subchannels undergo (independent) quasi-static fad-

ing. The case when correlations exist among the subchannels is the topic of this chapter.

Our goal is, assuming the presence of transmit or receive correlation, to show whether one

can achieve a similar asymptotic performance as the full-complexity system does.
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3.2 System Model and Pairwise Error Probability

We consider a system equipped with M transmit and N receive antennas. We denote by

H the N × M channel transfer matrix

H =













h11 · · · h1M

...
. . .

...

hN1 · · · hNM













.

The channel is modeled as a flat Rayleigh fading (i.e., hnm ∼ CN (0, 1)) that remains

constant over a block of t symbols and changes independently from one block to the next.

The received signal matrix XN×t is given by

X =

√

ρ

M
HS + W (59)

where S is the M × t transmitted signal matrix (selected from a space-time codeword

alphabet), and W is the N × t additive white Gaussian noise matrix. The average energy

of the transmitted signal is normalized to unity over M antennas so that ρ is the expected

signal-to-noise ratio at each receive antenna. We assume that channel state information

(CSI), i.e., H, is known at the receiver, but not at the transmitter.

The assumption of independently and identically distributed (iid) fading is typically

made to model the channel [163]. However, in real time propagation, the presence of local

scatterers around the transmitter and the receiver induces correlations among subchannels

that can be modeled as H = R
1/2
(r) HwR

1/2
(t) where R(r) = R

1/2
(r) R

H/2
(r) is the receive covariance

matrix, R(t) = R
1/2
(t) R

H/2
(t) is the transmit covariance matrix, and Hw is a matrix with iid

CN (0, 1) entries [145]1. In general, one can classify four different types of fading correlations:

uncorrelated, semicorrelated, semicorrelated type-2, and fully-correlated fading [93]. In this

chapter, we consider semicorrelated fading channels for which there exist either receive

correlation or transmit correlation. It has been shown that urban radio is well approximated

by semicorrelated fading channel models.

Throughout this chapter, we assume the presence of either transmit correlation or re-

ceiver correlation. We next describe these correlation models.

1(.)H denote the Hermitian transpose
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3.2.1 Transmit Correlation

Let us assume that the receiver is surrounded by many scatterers while the transmitter

is placed high enough that there are not many scatterers in its vicinity. Assume also

that the antenna spacing at the receiver is sufficiently large so that fading associated with

each receive antenna is (almost) independent [145]. In such a set-up, each antenna at the

receiver observes correlated fading gains from the transmitter antennas. Explicitly, each

row (denoted by ri) of the channel gain matrix is a circularly symmetric complex Gaussian

distributed vector with covariance matrix

R(t) = E{rH
i ri}

and all the rows are independent and identically distributed, i.e., R(r) is the N ×N identity

matrix. We assume that the complex correlation coefficient between hij and hik is rjk. Then

R(t) =



















1 r12 · · · r1M

r⋆
12 1 · · · r2M

...
...

. . .
...

r⋆
1M r⋆

2M · · · 1



















,

where (·)⋆ denotes the complex-conjugation.

The PEP for a full-rank channel2, assuming maximum likelihood decoding at the re-

ceiver, is given by [61]

P (S → Ŝ) ≤ 1

|R(t)|N |Λ|N
( ρ

4M

)−MN
(60)

where λm are the nonzero eigenvalues of ∆∆H and r = rank(∆∆H) with ∆ = S − Ŝ

denoting the codeword difference matrix. If rank(∆) = r < M , i.e., a rank-deficient space-

time code, we can show also that

P (S → Ŝ) ≤ 1

|R(t)|N (
∏r

m=1 λm)N

( ρ

4M

)−Nr
. (61)

From (60) (resp. (61)), we conclude that the diversity of the multiple antenna system

over correlated fading is the same as that obtained for the uncorrelated fading channel. The

2Low-rank (full-rank) channels refer to channels with singular (non-singular) covariance matrices within
this manuscript.
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Inequalities (60) and (61) also reveal that there is some loss in coding gain depending on

the correlation structure. Note that these results are valid when the channel is full-rank,

i.e., the covariance matrix of the channel is nonsingular.

3.2.2 Receive Correlation

Now, we exchange the roles of the transmitter and the receiver, that is, the transmitter is

now in a richly scattering environment while the receiver is not. In this case, the correlations

exist only among the subchannels from a certain transmit antenna to all receive antennas.

Mathematically, the columns of H, ci, are iid circularly symmetric complex Gaussian with

an N × N correlation matrix

R(r) = E{cic
H
i }.

Letting rij be the complex correlation coefficient between hki and hkj , we have

R(r) =



















1 r12 · · · r1N

r⋆
12 1 · · · r2N

...
...

. . .
...

r⋆
1N r⋆

2N · · · 1



















.

The PEP bound for the this case can be expressed as (as ρ → ∞)

P (S → Ŝ) ≤ 1

|R(r)|M |Λ|N
( ρ

4M

)−MN
(62)

if the space-time code is full-rank. For a rank-deficient space-time code, we have

P (S → Ŝ) ≤ 1

|R(r)|M (
∏r

m=1 λm)N

( ρ

4M

)−Nr
. (63)

The Inequality (62) (resp. ((63)) is the analogous of (60) (resp. (61)) for the case of

receive correlation. Once again, we note that the diversity of the multiple antenna system

over correlated fading is the same as that obtained for the uncorrelated fading channel.

The Inequalities in (60) and (62) indicate that the fading correlations can not improve

the system performance. This can be seen by observing |R(t)| ≤ 1 or |R(r)| ≤ 1 that

follows from the Hadamard’s Inequality [34]. The equality is satisfied only if the correlation
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matrices are identity, which is the case for iid fading. Hence, the system performance will

be the best for iid fading, and it will get worse as correlations occur among the subchannels.

To explain further, let us consider a MIMO system with M = 2 and N = 2 antennas.

The correlation matrix takes the form3 R =







1 r12

r⋆
12 1






, and hence |R| = 1 − |r12|2. The

coding gain loss (in dB) is then given by −5 log10(1 − |r12|2). There is no loss if r12 = 0,

i.e., iid fading case, and the loss increases as the correlation coefficient increases, e.g., we

observe about 0.6 dB loss for |r12| = 0.5 and 3.6 dB loss for |r12| = 0.9 due to correlations.

We will comment on the effects of fading correlations later in Section 3.6.

3.3 Error Probability Analysis with Antenna Selection

In this section, we present the PEP analysis for systems employing antenna selection. First,

we consider the case where a single antenna is selected. Then, we generalize our analysis to

the case where more than one antennas are selected.

3.3.1 PEP Analysis with Single Antenna Selection

3.3.1.1 Transmit Correlation

If only one antenna is selected out of the N receive antennas, the selection rule is reduced

to choosing the antenna element that observes the largest instantaneous SNR , i.e.,

i⋆ = argmaxi=1,··· ,N |hi1|2 + · · · + |hiM |2.

In this case, the Chernoff bound on the PEP can be expressed as

P (S → Ŝ) ≤ N

∫

e−
ρ

4M
‖r∆‖2

FZ(‖r‖2)N−1fR(r)dr

= N

∫

e−
ρ

4M
‖r∆‖2

FZ(‖r‖2)N−1 1

πM |R(t)|
e
−rR−1

(t)
rH

dr, (64)

where FZ(·) is the cumulative distribution function (cdf) of Z = rrH . Using the Singular

Value Decomposition (SVD) ∆∆H = UΛUH in (64), and then letting β = rU, we obtain

P (S → Ŝ) ≤ N

∫

e−
ρ

4M
βΛβ

H

FZ(‖β‖2)N−1 1

πM |R(t)|
e
−βUHR−1

(t)
Uβ

H

dβ

=
N

πM |R(t)|

∫

e
−β

(

ρ
4M

Λ+UHR−1
(t)

U
)

β
H

FZ(‖β‖2)N−1dβ. (65)

3We denote by R the transmit or receive correlation matrix, i.e. R(t) or R(r)
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To find the FZ(·), we need to evaluate the probability

FZ(a) = P{Z ≤ a} = P{|hi1|2 + · · · + |hiM |2 ≤ a} (66)

=

∫

C
fRi(r)dr (67)

=
1

πM |R(t)|

∫

C
e
−rR−1

(t)
rH

dr, (68)

where C is the region
{

hi1, · · · , hiM , : |hi1|2 + · · · + |hiM |2 ≤ a
}

. Using the SVD of R(t) =

VMVH in (68), and the routine integration tools, we obtain

FZ(a) =
1

|M|

∫

u1+···+uM≤a
e−(µ−1

1 u1+···+µ−1
M uM )du1 · · · duM . (69)

The evaluation of this integral results in

FZ(a) = 1 −
M
∑

j=1

kje
−µ−1

j a (70)

where

kj =
µM−1

j
∏M

i=1,i6=j µj − µi

, j = 1, · · · ,M. (71)

Substituting (70) in (65) and simplifying the resulting expression, we arrive at

P (S → Ŝ) ≤ N
∏M

j=1 µj

∫

e−(λ′
1u1+···+λ′

M uM)



1 −
M
∑

j=1

kje
−u1+···+uM

µj





(N−1)

du1 · · · duM ,

(72)

where λ′
i, i = 1, · · · ,M are the eigenvalues of Λ′ = ρ

4M Λ + ζ with ζ = UHR−1
(t) U. For

specific values of N , (72) can easily be evaluated. In fact, a closed form expression for any

values of M,N can also be obtained. In terms of Λ′ and µj , the final result can be expressed

as

P (S → Ŝ) ≤ N
∏M

j=1 µj

N−1
∑

l=0

C(N −1, l)(−1)l





M
∑

j1=1

· · ·
M
∑

jl=1

kj1 · · · kjl

∣

∣Λ′ + (µ−1
j1

+ · · · + µ−1
jl

)IM

∣

∣

−1



 .

(73)

Unfortunately, for the general case, the closed form expression does not give much insight

about the effect of the correlation on the system performance. Therefore, in what follows,

we will present a few special cases. We will also provide some numerical results later in

Section 3.6.
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Example 1: For M = 2, the cdf in (70) is given by

FZ(a) = 1 − µ2

µ2 − µ1
e−µ−1

2 a − µ1

µ1 − µ2
e−µ−1

1 a, for µ1 6= µ2.

Using the cdf, the Chernoff bound in (73) for M = N = 2 can be simplified to

P (S → Ŝ) ≤ 2

µ1µ2

[

1

|Λ′| −
µ1/(µ1 − µ2)

|Λ′ + I/µ1|
− µ2/(µ2 − µ1)

|Λ′ + I/µ2|

]

. (74)

For high SNR and full-rank space-time codes, i.e., ρ → ∞, and rank(∆) = M , we can

further simplify the expression as

P (S → Ŝ) ≤ 2

(µ1µ2)2
1

(λ1λ2)2

( ρ

4M

)−4
. (75)

Hence, the diversity order remains the same as that of the full-complexity system while

there is some loss in the coding gain that depends on the determinant of the correlation

matrix.

If the underlying space-time code is rank-deficient, i.e., rank(∆) = 1 < M , then we

have

P (S → Ŝ) ≤ 2

(µ1µ2)λ1

( ρ

4M

)−1
. (76)

This result implies that for rank-deficient space-time codes, antenna selection degrade the

diversity order significantly, i.e., the diversity order with selection is 1 while it is Nr = 2

with the full-complexity system. �

Example 2: When M = 3, assuming that µi 6= µj, for i 6= j, i, j = 1, 2, 3, we have

FZ(a) = 1− µ2
3

(µ3 − µ2)(µ3 − µ1)
e−µ−1

3 a− µ2
2

(µ2 − µ3)(µ2 − µ1)
e−µ−1

2 a− µ2
1

(µ1 − µ2)(µ1 − µ3)
e−µ−1

1 a

When the space-time code is full-rank, the bound for M = 3 and N = 2 is given by

P (S → Ŝ) ≤ 2

µ1µ2µ3

[

1

|Λ′| −
µ2

1/(µ1 − µ2)(µ1 − µ3)

|Λ′ + I/µ1|
− µ2

2/(µ2 − µ1)(µ2 − µ3)

|Λ′ + I/µ2|

−µ2
3/(µ3 − µ1)(µ3 − µ2)

|Λ′ + I/µ3|

]

.

(77)

At high SNR, this bound can be approximated by

P (S → Ŝ) ≤ 2

(µ1µ2µ3)2
g(λ1, λ2, λ3)

(λ1λ2λ3)2

( ρ

4M

)−6
, (78)
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where g(·) is a function that depends only on λi, i = 1, 2, 3. Thus, the diversity order is

equal to MN = 6, which is equal to the diversity order of the full-complexity system. On

the other hand, we can obtain Chernoff bounds, if rank(∆) = 1 < M , as

P (S → Ŝ) ≤ ξ1(ζ, R(t))
( ρ

4M

)−1
, (79)

and if rank(∆) = 2 < M , as

P (S → Ŝ) ≤ ξ2(ζ, R(t))
( ρ

4M

)−2
, (80)

where ξ1(·) and ξ2(·) depend only on ζ and R(t), but not ρ. These bounds indicate the

degradation in the diversity order due to antenna selection when we have low-rank space-

time codes. �

We note that if some of the eigenvalues of R(t) are identical, we can evaluate the integral

in (69) as well. We also note that the above results are valid only if R(t) is nonsingular.

3.3.1.2 Receive Correlation

For this case, we will need the PEP

P (S → Ŝ) ≤
∫

CM

exp
(

− ρ

4M
r∆∆HrH

)

f
R̂

(r)dr, (81)

where f
R̂

(r) is the pdf of the row of H with the maximum norm. Using a similar analysis

as in Chapter 2, we obtain this pdf as

f
R̂

(r) = NPr(‖r1‖2 < ‖r‖2, · · · , ‖rn−1‖2 < ‖r‖2, ‖rn+1‖2 < ‖r‖2, · · · , ‖rN‖2 < ‖r‖2)fRn(r),

(82)

where fRn(r) is the marginal distribution of any row of H, i.e.,

fRn(r) =

∫

fH(r1, · · · , rn−1, rn+1, · · · , rN )dr1 · · · drn−1drn+1 · · · drN ,

and Pr(·) is the probability given by

Pr(·) =

∫

Ω
fH(r1, · · · , rn−1, rn+1, · · · , rN )dr1 · · · drn−1drn+1 · · · drN

where Ω is the region

Ω =
{

ri : ‖ri‖2 < ‖r‖2, i = 1, · · · , n − 1, n + 1, · · · , N
}

.
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Unlike the case of the transmit correlation where it is possible to obtain simpler expressions

for the PEP, further simplification does not seem to be warranted. However, we can perform

numerical calculations to evaluate the PEP given by (81), which we will do in Section 3.6.

3.3.2 Selection of More Than One Antenna

For this case, since the receive correlation model does not allow a mathematically tractable

analysis, we will study only the case of fading correlation at the transmitter side. For fading

correlation at the receiver side, we will resort to numerical simulations.

3.3.2.1 Transmit Correlation

We now obtain the bounds on the PEP for the case when L out of N antennas are selected.

Using a similar line of argument as in Chapter 2, we arrive at

P (S → Ŝ) ≤
L
∑

l=1

∫

Rl

e−
ρ

4M
‖H̃∆‖2 N !

(N − L)!L!L



1 −
M
∑

j=1

k
−‖rl‖2/µj

j





N−L

×

1

πML|R(t)|L
e
−(r1R−1

(t)
rH
1 +···+rLR−1

(t)
rH

L )
dr1 · · · drL,

(83)

which can be re-written as

P (S → Ŝ) ≤
L
∑

l=1

∫

Rl

e
−
∑L

j=1 rj

(

ρ
4M

Λ+UHR−1
(t)

U
)

rH
j

N !

(N − L)!L!L



1 −
M
∑

j=1

kje
−‖rl‖2/µj





N−L

×

1

πML|R(t)|L
dr1 · · · drL,

(84)

where the region Rl is defined as

Rl = {r1, · · · , rL : ‖rl‖ < ‖rk‖, k = 1, · · · , l − 1, l + 1, · · · , L} ,

and H̃ is the L×M matrix formed by deleting the rows of H corresponding to the antennas

that are not selected.

Analytical evaluation of this integral over Rl is a formidable task. Integrating over

the whole space, although resulting in a looser bound, yields a mathematically tractable
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analysis. In this case, integration over Rl will not depend on l and the analysis results in

the following upper bound

P (S → Ŝ) ≤ N !

(N − L)!L!

1

|R(t)|L|Λ′|L−1

(

N−L
∑

l=0

C(N − L, l)(−1)l ×




M
∑

j1=1

· · ·
M
∑

jl=1

kj1 · · · kjl

∣

∣

∣
Λ′ + (µ−1

j1
+ · · · + µ−1

jl
)IM

∣

∣

∣

−1







 .

(85)

Since further simplification of this expression is not analytically tractable, we have to resort

to numerical examples to present the system performance. However, it is possible to obtain

simpler expressions for special cases as shown in the next example.

Example 3: When M = N = 3 and L = 2, the bound in (85) can be written as

P (S → Ŝ) ≤ 3

(µ1µ2µ3)2|Λ′|

[

1

|Λ′|−
µ2

1/(µ1 − µ2)(µ1 − µ3)

|Λ′ + I/µ1|
− µ2

2/(µ2 − µ1)(µ2 − µ3)

|Λ′ + I/µ2|

−µ2
3/(µ3 − µ1)(µ3 − µ2)

|Λ′ + I/µ3|

]

.

(86)

At high SNR, we can further simplify this bound using (78) to obtain

P (S → Ŝ) ≤ 3

(µ1µ2µ3)2|Λ′|

[

g(λ1, λ2, λ3)

µ1µ2µ3(λ1λ2λ3)2

( ρ

4M

)−6
]

. (87)

Finally, letting ρ → ∞, we arrive at

P (S → Ŝ) ≤ 3g(λ1, λ2, λ3)

(µ1µ2µ3)3(λ1λ2λ3)3

( ρ

4M

)−9
. (88)

Hence, the diversity order of the system using antenna selection is MN = 9, which is equal

to the diversity order achieved by the full-complexity system.

For rank-1 and rank-2 space-time codes, i.e., rank(∆) = 1 or 2, the asymptotic perfor-

mance is given by, respectively,

P (S → Ŝ) ≤ ξ′1(ζ, R(t))
( ρ

4M

)−2
, (89)

and

P (S → Ŝ) ≤ ξ′2(ζ, R(t))
( ρ

4M

)−4
, (90)

where ξ′1(·) and ξ′2(·) can be obtained in a similar fashion as ξ1(·) and ξ2(·). The expres-

sions in (89) and (90) indicate that the diversity order with antenna selection is degraded

significantly when the space-time code is rank-deficient. �
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3.4 Performance of MIMO systems with Antenna Selec-

tion over Non-Full-Rank Channels

Note that in the above analysis, we considered a positive definite correlation matrix R for the

channel model, that is, all eigenvalues of R are assumed to be positive. Since the covariance

matrix was nonsingular, the pdf could easily be written and the analysis in the previous

sections followed. However, when we have a singular covariance matrix for a multivariate

Gaussian vector, it is not possible to write a density function [4]. Therefore, we are in need

of different methods to study the non-full-rank channels.

Let us consider the transmit correlation. We use the SVD of R(t) to pose an equivalent

problem,

R(t) = VMVH (91)

= VM1/2M1/2VH (92)

= QQH . (93)

Note that R(t) may be singular in which case some of the eigenvalues may be zero. Now,

we can model an MIMO system that is statistically equivalent to the one given in (59) as

X′ =
√

ρ/MH′S′ + W′, (94)

where S′ = QHS. H′ and W′ channel transfer matrix and additive white Gaussian noise

vector with iid CN (0, 1) entries, respectively. By statistical equivalence, we mean that the

error rate performance for the two systems are the same. The Chernoff bound on the PEP

for the equivalent full-complexity system can be obtained as [163]

P (S′ → Ŝ′) ≤ 1

|I + ρ/4MQH∆∆HQ|N
. (95)

For high SNR, this bound can be approximated by

P (S′ → Ŝ′) ≤ 1

|QH∆∆HQ|N+

( ρ

4M

)−Nr
(96)

where r = rank(QH∆∆HQ), and |A|+ denotes the product of the nonzero eigenvalues of

A. Note that if the space-time code is full-rank, i.e., rank(∆) = M , then

rank(QH∆) = rank(QH) = rank(Q).
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This last equality formally states that when some or all of the subchannels are correlated

such that the correlation coefficients have unit magnitude, the diversity gain of the MIMO

system is reduced to Nr where r is the rank of the covariance matrix of the channel.

The extension of these arguments to the case of MIMO antenna selection is not trivial.

Consider, for example, the selection criteria for the equivalent system

r′⋆ = argmaxr′i,i=1,··· ,Nr′iQ
HQr′Hi . (97)

It is clear that rather than using the power captured by the receive antennas, we use a

weighted power-sum metric that takes the structure of the correlation into account. As we

mentioned, due to the inherent problems in expressing the pdf of the low-rank multivariate

Gaussian, a complete analysis for this case is not analytically tractable. Therefore, we resort

to Monte-Carlo simulations to assess the performance of the system over low-rank channels.

One might expect to observe a severe reduction in the diversity order as it is the case for

the iid fading case (recall that the diversity gain of the MIMO system with selection over

independent fading Lr where L is the number of the antennas selected and r is the rank

of the underlying space-time code). As we will demonstrate shortly, the selection under

the assumption of fully correlated fading achieves the same diversity advantages as that

achieved by the full-complexity system, as long as the space-time code is full-rank.

3.5 Space-Time Code Design with Antenna Selection Un-

der Correlated Fading

For the full-complexity system over an iid quasi-static fading channel, Tarokh et al. have

proposed two design criteria based on the upper bounds on the PEP [163]: rank and

determinant criteria. The space-time code design principles for correlated fading channels,

on the other hand, have not been studied in detail yet. Nevertheless, several precoding

techniques have been studied for MIMO systems to deal with correlated fading channels

[21, 58, 87, 116, 134]. In [87], for example, Hong et al. propose several precoding schemes

to improve the performance of spatial multiplexing systems, but their approach is not

applicable for general space-time coding schemes.

The bounds derived in the previous sections for correlated fading channels can be used
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Figure 13: PEP vs. SNR for single antenna selection for MIMO channel with transmit
correlation. Simulation parameters are: M = N = 2, rc = 0.54 + 0.72j.

to develop space-time codes. The asymptotic analysis for both the full-complexity system

and the system with antenna selection has shown that the effect of correlations on the PEP

can be abstracted as a multiplicative term in the Chernoff bounds; namely, the asymptotic

PEP is scaled by the determinant of the correlation matrix. This implies that the criteria

for designing space-time codes for iid MIMO fading channels directly apply to the case of

correlated MIMO fading channels. In addition, the PEP bounds derived in Section 3.3.1.1

or 3.3.2.1, e.g., Inequalities (75),(78) and (87), can be used to design the space-time codes

that have the largest coding gains for MIMO systems with energy-based antenna selection.

3.6 Examples

In the previous sections, we have theoretically analyzed the performance and derived sev-

eral bounds on the PEP. We now evaluate those bounds for several codeword pairs that

are selected from the codes developed in [163]. We present the effect of fading correla-

tion (including the case of both full-rank nonfull-rank space-time codes), and compare the

performance of the system against that of the same system over uncorrelated fading.

In Figures 13–14, we compare the PEP bounds for full-complexity system and the one
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using antenna selection for the case of transmit correlation. In these figures, the performance

of a full-rank code (solid lines) and a rank-deficient code (dashed lines) is presented. Figure

13 illustrates the results for the case of double-transmit and the double-receive antenna

system when rc = 0.54 + 0.72j. The full-rank space-time codeword pairs are selected from

the 2 bits/sec/Hz 8−state space-time trellis codes using 4−PSK modulation (with M = 2).

This code provides a diversity advantage of 6 [163], i.e., full spatial diversity. The two

codewords considered differ in three consecutive symbols. For comparison purposes, we

also present the PEP bounds when there is no correlation, i.e., iid fading. We observe

that even for a high level of correlation, i.e., |rc| = 0.9, although there is some loss in

the coding gain, the diversity orders of both the full-complexity system and the system

using antenna selection are the same. The Chernoff bound evaluated using (74) is also

plotted, and it is about 2 dB away from the exact PEP. From the PEP curves obtained for

rank-deficient space-time codeword pairs, we observe that (i) the performance of the full-

complexity system under correlated fading and iid fading is very close to each other, while

the performance of the system with antenna selection is superior when there is correlated

fading, and (ii) the diversity order is reduced when antenna selection is performed.

The PEP for the case of M = 3 transmit and N = 2 receive antennas is presented in

Figure 14. We assume that the channel correlation matrix is given by

R(t) =













1 0.6 0.4

0.6 1 0.45

0.4 0.45 1













(98)

For this correlation structure, we observe that the loss in the coding gain due to antenna

selection is about 4 dB for the case of both iid fading and correlated fading. We note that

the Chernoff bound (77) for the system with antenna selection is about 2 dB away from

the exact PEP. The bound, on the other hand, is not as strict as this when the space-time

code is rank deficient, i.e., it is about 6 dB away from the exact PEP.

In Figure 15, we plot the Chernoff bounds on the PEP for the full-complexity system

and the system with antenna selection for various values of the correlation coefficient. We

observe an increasing loss in the coding gain as the strength of the correlation increases
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Figure 14: PEP vs. SNR for single antenna selection for MIMO channel with transmit
correlation. Simulation parameters are: M = 3, N = 2.

while the diversity of the system remains the same. The performance of the antenna se-

lection system when rc = r12 = 0.5 is very close (within 0.6dB) to that when rc = 0, i.e.,

independent fading. However, for channels having higher correlation, we observe degrada-

tion of at least 2 dB for |rc| ≥ 0.8 at a BER of 10−5. Note from the slopes of the PEP

curves that the diversity of the system remains the same for various correlation levels in

the channel.

The performance of a system over a fading channel with receive correlation is presented

in Figure 16. We use the same correlation matrix given by (98). We use Monte-Carlo

integration of (81) to obtain the PEP curves for the system using antenna selection. We

present the performance for both a rank-deficient space-time code and a full-rank space-time

codes. The conclusions on the diversity orders and the coding gains for this fading model

is similar to the previous results. In addition, we note that (i) performing optimal selection

that maximizes the instantaneous channel capacity gives very similar performance as that

obtained by SNR-based selection provided that the space-time code is full-rank, (ii) and if

the space-time code is rank deficient, one can obtain a lower PEP by using capacity-based

criterion for selection; however, the diversity order achieved with optimal selection is the
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Figure 15: SNR vs. PEP for different rc values

same as that achieved by SNR-based selection.

In Figure 17, we present the FER results for various rc when the 2 bits/s/Hz space-time

code in [163] that employs 8-state trellis and 4-PSK is used. A performance degradation of

about 0.5-dB (resp. 3.8 dB) is observed for this case when the correlation increases from

0 to 0.5 (resp. 3.8 dB), which is almost the same as expected from the theoretical results.

The diversity order remains the same with antenna selection even under heavy correlation.

However, for low-rank channels, e.g., |rc| = 1, we observe significant loss in the diversity

gain.

In Figures 18 and 19, we present the effect of low-rank channels on the performance of

MIMO systems with antenna selection. We first consider the transmit fading correlation

(See Figure 18). We assume M = 3 and rank(R(t)) = 1, i.e., the branches are correlated

having a correlation coefficient of magnitude-1. The following observations are in order:

(i) The diversity order achieved by the full-complexity system can also be achieved by the

system using antenna selection. Recall that if the space-time code were rank-deficient, the

diversity order achieved with antenna selection could significantly decrease; however, when

the channel is rank-deficient, we can still obtain the same diversity order with antenna

selection; (ii) As the number of receive antennas, N , increases, the diversity order increases
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Figure 18: PEP vs. SNR for transmit correlation when the channel-rank = 1, i.e.,
rankR(t) = 1. Simulation parameters are M = 3, N = 2, 3, 4.

accordingly (for both full-complexity system and the system using antenna selection), but

we experience more and more coding gain loss.

Figure 19 shows the Chernoff bounds on the PEP for a system with M = 2 transmit

antennas and N = 3 and N = 4 receive antennas. L = 2 antennas are selected for systems

using antenna selection. We plot the PEPs also for the optimal selection that maximizes

the instantaneous channel capacity. To show the effect of rank-deficiency in the space-

time code, we provide the PEPs for a rank-1 space-time code as well. From the plots, the

following observations are made: (i) For a low-rank channel with a correlation matrix of

rank-r, the diversity order remains as Mr, where r = rank(Rr), as we increase the number

of receive antennas; (ii) For the full-rank space-time code, the performance of optimal

selection is either very close to that of the SNR-based selection or it is slightly worse, i.e,

SNR-based selection performs about 0.7 dB better than optimal selection for N = 4; (iii) For

rank-deficient space-time codes over low-rank channels, optimal selection achieve the same

diversity order as that achieved by the full-complexity system, but SNR-based selection

experiences some loss in the diversity gain.
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Figure 19: PEP vs. SNR for receive correlation when the channel-rank = 2, i.e.,
rankR(r) = 2. Simulation parameters are M = 2, N = 3, 4, L = 2.

3.7 Chapter Summary

We analyzed the performance of MIMO systems with antenna selection under correlated fad-

ing channels. We considered a semicorrelated fading channel model assuming the presence of

transmit or receive correlation. We derived closed-form expressions for the Chernoff-bounds

on the PEP for the case of transmit correlation while the analysis for receive correlation did

not allow for closed form solutions. The analysis and numerical examples for the system

employing antenna selection has shown that the correlation between subchannels degrade

the coding gain of the system but does not effect the diversity advantage as long as the

channel is full-rank. For low-rank space-time codes, however, there may be considerable

loss in the diversity order when antenna selection is performed.
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CHAPTER IV

ANTENNA SELECTION FOR SPACE-TIME CODED

OFDM SYSTEMS

In this chapter, we study the receive antenna selection for space-time coded orthogonal fre-

quency division multiplexing (OFDM) systems that employ multiple transmit and receive

antennas. We derive explicit closed-form upper bounds on the pairwise error probability

(PEP). The organization of this chapter is as follows: In the next section, we summarize the

related work on OFDM systems with MIMO antennas. Section 4.2 introduces the channel

model and summarizes the necessary background. In Section 4.3, we present the perfor-

mance analysis for MIMO-OFDM systems using the antenna selection. The simulation

results justifying the theoretical analysis are presented in Section 4.5. Finally, we conclude

the chapter in Section 4.6.

4.1 Introduction

Most of the space-time codes have been proposed for flat-fading channels [151,163], however,

many wireless channels are frequency-selective, which complicates the system design. This is

even the case for single transmit-single receive antenna systems. In an effort to simplify the

signaling for frequency-selective fading channels, orthogonal frequency division multiplexing

(OFDM) technique, which transforms the frequency-selective fading channel into a flat-

fading one, can be used. By suitable incorporation of MIMO signaling (i.e., space-time

coding) and OFDM, one can obtain great flexibility to design space-time codes for such

channels and achieve very high rates

The first space-time coded OFDM scheme has been proposed in [1] where the authors

argue that the diversity and coding gain of the MIMO system is preserved with OFDM

signaling compared to the flat fading case. In [20], the capacity of an OFDM-based MIMO

system is studied. The performance analysis of a space-time coded OFDM system in terms
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of its pairwise error probability is presented in [107] where the diversity or the coding gains

are quantified using the Chernoff bound and it is shown that the maximum diversity order

is the product of the number of transmit and receive antennas and the order of the channel.

Various space-time coded OFDM schemes have also been proposed in [19,104,106,114,115].

The improvement in the performance using MIMO technology comes with an increased

cost due to the necessity of multiple RF chains used for implementation, which is also the

case for MIMO-OFDM systems. While MIMO antenna selection has been studied exten-

sively in the recent literature [57, 65, 113], most of these work assume flat-fading channels.

Recently, antenna selection technique has also been proposed for frequency-selective chan-

nels in [72], and in the context of space-time coded OFDM in [47, 143, 166]. The work

in [166] studies an adaptive antenna selection scheme for multiple antenna systems using

adaptive modulation and OFDM. In [143], Shao et al. study the error-rate performance of

MIMO-OFDM using a capacity-based antenna selection. Although MIMO-OFDM systems

will be an important part in future communication systems, the work on antenna selection

for MIMO-OFDM systems is still very limited.

A general error probability analysis for MIMO-OFDM systems using antenna selection

is quite difficult. For instance, the selection criteria may be quite complicated due to the

large number of the subchannels between antenna pairs and the multitones related to each

subchannel. In this chapter, we consider the energy-based antenna selection technique for

such systems. We study the performance of the system by explicitly deriving upper bounds

on the pairwise error probability. This chapter can be imagined as the extension to results

of Chapter 2 where we presented the performance of a single carrier MIMO system over a

flat-fading channel using a similar criteria. This chapter derives a more general expression

for the Chernoff bound on the pairwise error probability, which reduces to the previous

result when the order of the channel and the number of carrier frequencies are set to 1. It

turns out that it is difficult to make remarks about the diversity order since the expressions

are not simple. However, for the special case of double transmit diversity, we explicitly

show that (i) with single antenna selection out of N = 2 receive antennas, and (ii) with the

selection of N − 1 antennas out of N receive antennas, one can attain the same diversity
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order as that attained by the full-complexity system. For some other cases, we illustrate

via numerical results that diversity order is preserved with antenna selection. The proposed

antenna selection technique can be used to reduce the implementation cost of the multiple-

input multiple-output OFDM systems while resulting in no degradation in the asymptotic

performance of the system.

Notation: Throughout the chapter, we denote the Kronecker product by ⊗, the Hermi-

tian transpose of A by AH , the K × K identity matrix by IK , and the trace operator by

tr(·).

4.2 Channel and Signal Model

We consider a wireless link equipped with M transmit and N receive antennas (see Fig-

ure 20). OFDM is used to transmit symbols output by a space-time code (STC). We

adopt the signal model from [107] and briefly summarize the necessary parts here. Each

STC codeword spans P time slots, i.e., P OFDM words. Each OFDM symbol is assumed

to consist of K subcarriers. Hence, MK symbols are transmitted simultaneously at each

channel use. At the receiver, we perform matched filtering, sampling and IDFT to obtain

the discrete-time received signal

y[p, k] = H[p, k]S[p, k] + n[p, k] , k = 0, · · · ,K − 1, p = 1, · · · , P (99)

where H ∈ CM×N , S[p, k] and y[p, k] are channel gain matrix, transmitted signal vector,

and received signal vector, respectively, at the pth time slot and kth subcarrier. n[p, k] is the

additive circularly symmetric complex Gaussian noise with zero mean and unit variance.

We assume that the channel gains are constant during each OFDM word while changing

from one OFDM word to another, and that the subchannels between antenna pairs experi-

ence independent fading. The complex time domain impulse response from jth transmit to

ith receive antenna, hij , can be described by a tapped-delay line

hij(t, τ) =

Lf
∑

l=1

αi,j(l, t)δ

(

τ − nl

K∆f

)

where αi,j(l, t) is the complex amplitude of the lth nonzero tap that has a delay of nl/(K∆f ),

∆f is the frequency spacing between OFDM subcarriers, and nl is an integer that depends
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Figure 20: MIMO-OFDM system: We have M transmit antennas and N receive antennas.
Each OFDM word consists of MK STC symbols, and they are transmitted simultaneously
during one time slot. si(p, k) denotes the symbol transmitted from ith transmit antenna at
time slot p and subcarrier k. Each STC codeword spans P time slots, and hence consists of
PMK symbols.

on the channel delay profile. Considering widesense stationary uncorrelated scattering (WS-

SUS) with a band-limited Doppler power spectrum, we have the frequency response at time

t as

Hij(t, f) =

Lf
∑

l=1

αi,j(l, t) exp

(

−j2πf
nl

K∆f

)

. (100)

For OFDM systems that have proper cyclic extension, proper sample timing and tolerable

leakage, the (i, j)th entry of the channel gain matrix in (99) is given by [107]

Hi,j[p, k] = Hi,j(pT, k∆f )

=

Lf
∑

l=1

αi,j(l; pT )e−j2πknl/K

= hH
i,j(p)wf (k) (101)

where hi,j(p) = [αi,j(1; pT ), · · · , αi,j(Lf ; pT )]H is Lf × 1 vector for the non-zero taps and

wf (k) is the corresponding DFT coefficients. Using Karhunen-Loève (KL) expansion, the

time- and band-limited random process αi,j(l; t), t ∈ [0, PT ] can be approximated by

αi,j(l; t) ≃
fdPT
∑

n=−fdPT

βi,j(l, n)ej2πnt/(PT ) (102)

= βH
i,j(l)wt(p) (103)

where βi,j(l) = [βi,j(l,−fdPT ), · · · , βi,j(l, fdPT )]HLt×1 is a complex vector with βi,j(l, n)

circularly symmetric complex Gaussian random variables, Lt = ⌈2fdPT+1⌉ is the number of
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significant eigenvalues in the KL-expansion, and wt(p) is the corresponding DFT coefficient

vector. Using (103), we can rewrite (101) as

Hi,j[p, k] = gH
i,jW

′
t(p)wf (k) (104)

where gi,j = [βH
i,j(1), · · · ,βH

i,j(Lf )]HLtLf×1 and W′
t(p) = ILf

⊗ wt(p).

We next consider the pairwise error probability (PEP) for the space-time coded OFDM

system described by Equation (99). With perfect CSI at the receiver, the maximum likeli-

hood (ML) decoding rule is given by

Ŝ = argmin
S

N
∑

i=1

P
∑

p=1

K−1
∑

k=0

∣

∣

∣

∣

∣

∣

yi[p, k] −
M
∑

j=1

Hi,j[p, k]sj [p, k]

∣

∣

∣

∣

∣

∣

2

. (105)

Using the Chernoff bound, the PEP conditioned on H can be upper bounded by [107]

P (S → Ŝ|H) ≤ exp

(

−d2(S, Ŝ)ρ

8M

)

(106)

where ρ is the total transmitted signal power, and d2(S, Ŝ) is the Euclidean distance given

by

d2(S, Ŝ) =

N
∑

i=1

ḡH
i Dḡi (107)

where

D =







P
∑

p=1

K−1
∑

k=0

Wt(p)Wf (k)e[p, k]eH [p, k]WH
f (k)WH

t (p)







and ḡi = [gH
i,1, · · · ,gH

i,M ]HML×1, Wf (k) = IM ⊗ wf (k), Wt(p) = IM ⊗ W′
t(p), e[p, k] =

S[p, k]− Ŝ[p, k], and L = LtLf . By averaging the conditional PEP in (106) over the channel

distribution, one can obtain the average PEP as

P (S → Ŝ) ≤





1
∏r

j=1

(

1 + λiρ
8M

)





N

(108)

where r = rank(D) and λi, i = 1, · · · , r, are the eigenvalues of D. Noting that min
S,Ŝ r ≤

min{ML,Deff}, where Deff is the effective length of the space-time code [137], the maxi-

mum diversity gain using the MIMO-OFDM over an Lth order channel is NML.
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4.3 Performance Analysis for MIMO-OFDM using An-

tenna Selection

In this section, we derive performance bounds for the space-time coded OFDM system with

receive antenna selection. We assume that the CSI is exactly available at the receiver, and

thus the antennas that observe the larger instantaneous SNR are selected for decoding,

that is ξi =
∑

k,p

∑M
j=1 |Hi,j[p, k]|2 are computed for each i, i = 1, · · · , N , and the antennas

that correspond to larger ξi are selected. Assuming that Lr out of N receive antennas are

selected, the Chernoff bound on the average PEP can be expressed as

P (S → Ŝ) ≤ EHe−
ρ

8M

∑Lr
i=1 ḡH

i Dḡi . (109)

In order to evaluate (109), we need to evaluate the joint probability density function (pdf)

of the channel coefficients corresponding to the selected antennas. Using a technique similar

to the one in Chapter 2, we define two auxiliary events:

1. F = {ḡH
i1
D0ḡi1 , · · · , ḡH

iLr
D0ḡiLr

have the largest values among all antennas}

2. Al =
{

ḡH
il
D0ḡil is the minimum of ḡH

ij
D0ḡij j = 1, · · · , Lr } where

D0 =







P
∑

p=1

K−1
∑

k=0

Wt(p)Wf (k)WH
f (k)WH

t (p)







ML×ML

(110)

= IM ⊗
P
∑

p=1

K−1
∑

k=0

W′
t(p)wf (k)wH

f (k)W′H
t (p). (111)

Equation (111) follows by using the properties of the Kronecker product. For simplicity,

we rewrite (111) as D0 = IM ⊗ D′
0. Note that ḡH

i D0ḡi in these expressions quantifies the

amount of received power at the ith receive antenna.

Now let us denote by ˆ̄g1, · · · , ˆ̄gLr the coefficient vectors associated with the antennas

that have the largest SNRs. We can obtain the joint pdf for these vectors as
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fˆ̄g1,··· ,ˆ̄gLr
(x1, · · · ,xLr ) = fḡi1

,··· ,ḡiLr
(x1, · · · ,xLr |F) (112)

=

Lr
∑

l=1

fḡi1
,··· ,ḡiLr

(x1, · · · ,xL|F ,Al)P (Al) (113)

=

Lr
∑

l=1

P (F ,Al|ḡi1 = x1, · · · , ḡiLr
= xLr )fḡi1

,··· ,ḡiLr
(x1, · · · ,xLr )P (Al)

P (F ,Al)
(114)

=

(

N
Lr

)

Lr

Lr
∑

l=1

P (ḡH
iLr+1

D0ḡiLr+1 < x
H
l D0xl, · · · , ḡ

H
iN

D0ḡiN
< x

H
l D0xl)

Lr
∏

j=1

fḡij
(xj)IRl

(r1, · · · , rL)(115)

=
N !

(N − Lr)!Lr!Lr

(

Lr
∑

l=1

[

F (xH
l D0xl)

]N−Lr

IRl
(r1, · · · , rL)

)

e−(‖x1‖
2+···+‖xLr

‖2)

πMLLr
. (116)

We note that (113) follows using the total probability theorem, (114) follows using

the Bayes’ rule, and (115) follows because P (F ,Al) = 1/
(

N
Lr

)

and P (Al) = 1/Lr, where

(n
k

)

= n!/((n − k)!k!). IRl
(r1, · · · , rL) is the indicator function

IRl
(r1, · · · , rL) =











1 if (x1, · · · ,xLr) ∈ Gl

0 else

where the region Gl is defined as

Gl =
{

x1, · · · ,xLr : xH
l D0xl < xH

k D0xk, k = 1, · · · , Lr, k 6= l
}

.

F (·) is the cumulative distribution function (cdf) of Z = zHD0z where z is ML×1 circularly

symmetric complex Gaussian random vector with zero mean and unit variance.

By averaging the conditional pairwise error probability (109) over the pdf given in (116),

the pairwise error probability can be obtained as

P (S → Ŝ) ≤
Lr
∑

l=1

∫

Gl

e
−

ρ
8M

∑Lr
i=1 ḡH

i Dḡi
N !

(N − Lr)!Lr!Lr
F (ḡH

l D0ḡl)
N−Lr

1

πMLLr
e
−(‖ḡ1‖

2+···+‖ḡLr
‖2)

dḡ1 · · · dḡLr

=

∫

G1

e
− ρ

8M

∑Lr
i=1 ḡH

i Dḡi
N !

(N − Lr)!Lr !
F (ḡH

1 D0ḡ1)
N−Lr

1

πMLLr
e
−(‖ḡ1‖

2+···+‖ḡLr
‖2)

dḡ1 · · · dḡLr (117)

where (117) follows by observing that the integration over the region Gl gives the same result

for different l. The evaluation of the integral over G1 is analytically formidable; however, it

is possible to compute it by relaxation of the integral region to overall space, which results

in a slightly looser upper bound:

P (S → Ŝ) ≤
∫

CLr

e
− ρ

8M

∑Lr
i=1 ḡH

i Dḡi
N !

(N − Lr)!Lr !
F (ḡH

1 D0ḡ1)
N−Lr

1

πMLLr
e
−(‖ḡ1‖

2+···+‖ḡLr
‖2)

dḡ1 · · · dḡLr .

(118)
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By standard integration tools, (118) can be simplified to

P (S → Ŝ) ≤
∣

∣

∣

ρ

8M
D + IML

∣

∣

∣

−(Lr−1) N !

(N − Lr)!Lr!πML
IC (119)

where

IC =

∫

C
e−ḡH

1 ( ρ
8M

D+IML)ḡ1F (ḡH
1 D0ḡ1)

N−Lrdḡ1. (120)

In order to evaluate (120), we need to compute F (·). Observing that Z = zH(IM ⊗D′
0)z,

and using the SVD D′H
0 = UΛUH , where Λ = diag{λ1, · · · , λL}, we have Z = zH(IM ⊗

U)(IM ⊗Λ)(IM ⊗UH)z. Letting zi = [ziL−L+1, · · · , ziL]T , i = 1, · · · ,M be L× 1 segments

from z, and defining βH
i = zH

i U, we have

Z = λ1|β1|2 + · · · + λL|βL|2 + · · · + λ1|βML−L+1|2 + · · · + λL|βML|2 (121)

where βj is the jth entry of β = [βH
1 , · · · ,βH

M ]H . By regrouping the summation in (121),

we finally obtain

Z = λ1(|β1|2 + |β1+L|2 + · · · + |βML−L+1|2) + · · · + λL(|βL|2 + |β2L|2 · · · + βML|2) (122)

Since βj are iid circularly symmetric complex Gaussian with zero-mean and unit-variance,

χj = |βj |2 + |βj+L|2 + · · · + |βML−L+j |2 has a Chi-square distribution with 2M degrees of

freedom, e.g., χj ∼ χ2(2M). Thus, the characteristic function of Z follows as

φZ(s) =

L
∏

j=1

1

(1 − λjs)M
(123)

=
∏

j

1

(1 − λjs)Mlj
(124)

=
∑

j

Mlj
∑

i=1

Aj,i

(1 − λjs)i
(125)

where in (124) it is assumed that λj is repeated lj times, and in (125), we use partial fraction

expansion and Aji can be computed by

Aj,Mlj−i =
1

(−λj)ii!

∂i

∂si

[

(1 − λjs)
Mlj

∏

k

1

(1 − λks)Mlk

]∣

∣

∣

∣

∣

s=1/λj

. (126)

Inverse transforming the characteristic function (125) yields the pdf for Z

fZ(z) =
∑

j

Mlj
∑

i=1

Aj,i
1

(i − 1)!λi
j

zi−1e−z/λj (127)
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i fi(·)
1 tr(B̃)

2 tr(B̃)2 + tr(B̃2)

3 tr(B̃)3 + 3tr(B̃)tr(B̃2) + 2tr(B̃3)

4 tr(B̃)4 + 8tr(B̃)tr(B̃3) + 3tr(B̃2)2 + 6tr(B̃)2tr(B̃2) − 17tr(B̃4)

Table 3: The function fi(·) for i = 1, 2, 3, and 4.

and finally, the cdf can be obtained as

FZ(a) = 1 −
∑

j

Mlj
∑

i=1

Aj,ie
−a/λj

i−1
∑

k=0

ak

λk
j k!

. (128)

Substituting (128) into (120), then regrouping the terms and using the binomial expansion

for the cdf, and then changing the order of integration and summation, we finally arrive at

IC =

N−Lr
∑

l=0







N − Lr

l






(−1)l

∑

j1

Mlj1
∑

i1

· · ·
∑

jl

Mljl
∑

il

Aj1,i1 · · ·Ajl,il

i1−1
∑

k1

· · ·
il−1
∑

kl

1

k1! · · · kl!λ
k1
j1

· · ·λkl
jl

∫

e
−ḡH

1

(

ρ
8M

D+D0(λ−1
j1

+···+λ−1
jl

)+IML

)

ḡ1(ḡH
1 D0ḡ1)

(k1+···+kl)dḡ1.

(129)

To evaluate (129), we need the following lemma:

Lemma: For any K × K Hermitian matrix A, and positive definite Hermitian matrix

B, we have
∫

C
(zHAz)ie−zHBzdz =

πK

|B|fi(tr(B̃), · · · , tr(B̃i)) (130)

where B̃ = AB−1, and fi(·) is a function that can be evaluated for any i. Some fi are

presented in Table 3.

Proof : See Appendix B.1.

Letting B = ρ
8M D+D0(λ

−1
j1

+ · · ·+λ−1
jl

)+IML, and B̃ = D0B
−1, and using the lemma,

we can rewrite (129) as

IC =

N−Lr
∑

l=0







N − Lr

l






(−1)l

∑

j1

Mlj1
∑

i1

· · ·
∑

jl

Mljl
∑

il

Aj1,i1 · · ·Ajl,il

i1−1
∑

k1

· · ·
il−1
∑

kl

1

k1! · · · kl!λ
k1
j1

· · ·λkl
jl

πML

|B| fk1+···+kl
(tr(B̃), · · · , tr(B̃k1+···+kl))

(131)
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Hence, substituting (131) in (119), we finally arrive at the upper bound on the PEP

P (S → Ŝ) ≤
∣

∣

∣

ρ

8M
D + IML

∣

∣

∣

−(Lr−1) N !

(N − Lr)!Lr!

N−Lr
∑

l=0







N − Lr

l






(−1)l

∑

j1

Mlj1
∑

i1

· · ·

∑

jl

Mljl
∑

il

i1−1
∑

k1

· · ·
il−1
∑

kl

Aj1,i1 · · ·Ajl,il

k1! · · · kl!λ
k1
j1

· · ·λkl
jl

1

|B|fk1+···+kl
(tr(B̃), · · · , tr(B̃k1+···+kl)).

(132)

The bound in (132) is in closed-from in the sense that the functions fk and the coefficients

Aj,is in (126) can be evaluated in closed-form. Further simplification of the bound to obtain

an insightful expression seems to be formidable except for some specific cases. Therefore in

the next section, we will resort to numerical techniques to illustrate the performance of the

bound. We note that this expression reduces to the same equation obtained for the case of

antenna selection system over a flat-fading channel without OFDM (i.e., L = K = 1, see

Chapter 2). We illustrate the above result for special cases in the following section.

4.4 Simplified Bounds

Case 1: We consider the case of single antenna selection, Lr = 1, when M = N = L = 2.

Hence, (132) reduces to

P (S → Ŝ) ≤ 2

[

1
∣

∣

ρ
8M D + I4

∣

∣

− A1,1 + A1,2(1 + tr(D0B
−1
1 )/λ1)

∣

∣

ρ
8M D + D0/λ1 + I4

∣

∣

−A2,1 + A2,2(1 + tr(D0B
−1
2 )/λ2)

∣

∣

ρ
8M D + D0/λ2 + I4

∣

∣

] (133)

where Bj = ρ
8M D + D0/λj + I4, Aj,1 = (−1)jλj

2λ1λ2
(λ1−λ2)3

, Aj,2 =
λ2

j

(λ1−λ2)2
, j ∈ {1, 2},

and λj are eigenvalues of D0. We resorted to symbolic toolbox of MATLAB c© in order to

simplify (133). For full-rank matrices D and D0, explicitly writing down the determinants

and simplifying the expressions in (133) and letting ρ → ∞, we obtain the asymptotic

performance as

P (S → Ŝ) ≤ 2G
( ρ

8M

)−8
(134)

where G is a constant that depends only on the eigenvalues of D and D0. The expressions

obtained in the intermediate steps are very lengthy and therefore omitted here. From
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(134), we observe that the maximum achievable diversity order with antenna selection is

the same as that achieved by the full-complexity system, i.e., MNL = 8. We note that this

expression can be obtained when D and D0 are full-rank. Recall that D and D0 depends on

the channel profiles and hence, full-diversity when antenna selection is used can be obtained

if the channel exhibits full-rank D and D0. �

Case 2: Assume M = L = 2, and Lr = N − 1. The full-complexity system with these

parameters achieve a diversity order of MLN = 4N . The PEP for antenna selection can

be computed by using Eqns. (119), (120), and the results of Example 1 :

P (S → Ŝ) ≤ N
∣

∣

∣

ρ

8M
D + IML

∣

∣

∣

−(N−2)
· G
( ρ

8M

)−2ML
(135)

≤ N
( ρ

8M

)−ML(N−2)
|D|−(N−2)

∣

∣

∣

∣

I4 +
8M

ρ
D−1

∣

∣

∣

∣

· G
( ρ

8M

)−2ML
. (136)

For high SNR, using |In + ǫA| ≈ 1 + ǫtr{A} (See Appendix B.2) and letting ρ → ∞, we

finally arrive at the asymptotic PEP bound

P (S → Ŝ) ≤ N |D|−(N−2) G
( ρ

8M

)−4N
. (137)

Clearly, the diversity is retained with antenna selection in this case as well. �

Case 3: For our last example, let M = L = 2, N = 3, and Lr = 1. After some algebra,

the PEP in (132) can be expressed as

P (S → Ŝ) ≤ N(N − 1)

2

{

1

|B0|
+

b1

|B1|
+

b2

|B2|
− 2c1

|C1|
− 2c2

|C2|
+

2e

|E|

}

(138)

where B0 = ρ
8M D + I4, Bj = ρ

8M D + 2/λjD0 + I4, Cj = ρ
8M D + 1/λjD0 + I4, E =

ρ
8M D + (1/λ1 + 1/λj)D0 + I4, bj = (Aj,1 + Aj,2)

2 + 2(Aj,1 + Aj,2)Aj,2/λjtr(D0B
−1
j ) +

A2
j,2/λ

2
j (tr((D0B

−1
j )2) + (tr(D0B

−1
j ))2), cj = (Aj,1 + Aj,2) + Aj,2/λjtr(D0C

−1
j ), and e =

(A1,1 + A1,2)(A2,1 + A2,2) + ((A1,1 + A1,2)A2,2/λ2 + (A2,1 + A2,2)A1,2/λ1)tr(D0E
−1) +

A1,2A2,2/λ1λ2(tr((D0E
−1)2) + (tr(D0E

−1))2), for j = 1, 2. Further simplification of this

expression is not analytically tractable, however as shown in the next section, the slopes of

the PEP in (138) and that for the full-complexity system are the same indicating similar

diversity advantages at high SNR. �
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Figure 21: PEP for full-complexity MIMO-OFDM system and MIMO-OFDM with single
antenna selection. K = 4, 8, P = 2, L = 2, M = 2, N = 2.

4.5 Numerical Examples

In this section, we provide several numerical examples to illustrate the performance of the

antenna selection for MIMO-OFDM systems. We numerically evaluate the PEP bounds

derived in the previous section and compare the performance of system with and without

antenna selection.

Figure 21 depicts the PEP curves for both full-complexity MIMO-OFDM system and

the one using antenna selection. We consider a frequency-selective channel with two taps,

i.e., Lf = 2. K = 4, or 8 carriers are used and each STC codeword spans P = 2 time

slots. The PEP results in this plot are for M = 2 transmit and N = 2 receive antennas.

The PEP for system using antenna selection is obtained numerically using (133). The PEP

results show that the selection introduces a coding gain loss of about 4 dB when K = 4

and 3 dB when K = 8 with respect to the full-complexity system, while the diversity gain

of 8 is retained. In this example, the space-time codeword pairs are selected such that

rank(D0) = rank(D) = 4 = ML, i.e., full-rank STC-OFDM.
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Figure 22: PEP for full-complexity MIMO-OFDM system and MIMO-OFDM with single
antenna selection. K = 4, 16, P = 2, L = 2, M = 2, N = 3, Lr = 1 or 2.

Figure 22 illustrates the PEP for a different case. The parameters for this example are

K = 4, or 16, P = 2 and M = L = 2 and N = 3. We use (135) and (138) to evaluate

the PEP for Lr = 1 and Lr = 2, respectively. The slopes of the curves indicate that the

diversity order remains the same as the full-complexity OFDM system when we perform

antenna selection. However, the loss in the coding gain is about 5 dB when Lr = 1 and

2 dB when Lr = 2. As expected, we also observe that the performance of both the full-

complexity system and the one with antenna selection improves as the number of the tones

in the OFDM system increases.

We next consider a MIMO-OFDM system with M = 3 transmit antennas. The PEP can

be computed by (132). Further simplification of this expression is formidable, however, the

slopes of the PEP plots in log-log scale (See Figure 23) clearly indicates that the diversity

gain of the system using antenna selection and the one with full-complexity is the same.

These numerical examples hint that the antenna selection is a viable technique to reduce

the complexity while retaining the diversity advantage of the MIMO-OFDM system.

We finally present in Figure 24 the word error rate (WER) for the MIMO-OFDM system
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Figure 23: PEP for full-complexity MIMO-OFDM system and MIMO-OFDM with single
antenna selection. K = 4, 16, P = 2, L = 2, M = 3, N = 2.

using space-time trellis codes. The error rates are evaluated via simulation of a MIMO-

OFDM system described in [1]. We assume that K = 6, P = 2, and L = 2. The channel

state estimation might be unreliable with P = 2, however we consider the ideal case where

the CSI is exactly known at the receiver; hence the results shown below will indicate the

ultimate performance of this MIMO-OFDM system with antenna selection. The codes are

selected from 2-space-time codes employing 8, 16, 32, and 64−state trellises [27, 163].In

order to achieve full-diversity MIMO-OFDM, one needs to select the codebook such that

the effective distance, Deff , of the code is larger than or equal to ML = 4. For the

code using 8−state trellis, the effective length is Deff = 2 < ML, and for 16−state and

32−state trellis codes, Deff = 3 < ML, and for 64−state trellis code, Deff = 4 = ML.

From the slopes of WER curves for the full-complexity system and the system using antenna

selection, the following observations are in order: (i) the best diversity order (for both the

full-complexity system and the one using antenna selection) can be achieved by the 64−state

code, which has Deff = 4 = ML, i.e., we have full-rank D, (ii) for the space-time code

using 16− and 32−state trellises, the diversity order of the full-complexity system and the
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Figure 24: WER for full-complexity MIMO-OFDM system and MIMO-OFDM with an-
tenna selection. K = 6, P = 2, M = N = 2, L = 2. 2 b/s/Hz space-time codes with 8, 16,
32 and 64 state trellises are used.

one using antenna selection is slightly less than that of the systems using 64−state trellis

code. Also, the slopes of the WER curves for the system using antenna selection and for

the full-complexity system are the same although Deff = 3 < ML, (iii) and finally, the

diversity order of the system using 8−state trellis code is considerably less than that of

the others. These observations hint that the diversity order of the system degrade if the

underlying space-time code has an effective length that is less than ML. Hence, one needs

to use the space-time codes having large effective distances to achieve the best asymptotic

performance.

4.6 Chapter Summary

We have studied the MIMO-OFDM system with antenna selection. We derived Chernoff

bounds for such systems and used these bounds to quantify the coding gain and the diversity

gain of the system using antenna selection. The general expression does not provide useful

insight into the asymptotic performance. However, for a system with two transmit antennas,
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we show explicitly that with single antenna selection out of N = 2 receive antennas, and

with the selection of N −1 antennas out of N antennas, one can attain the spatial diversity

order of the full-complexity system. For some other cases, numerical results demonstrate

that diversity order of the MIMO-OFDM system with antenna selection is retained as well.

Simulation results for an actual MIMO-OFDM system using antenna selection indicate that

if the effective distance of the underlying space-time code is greater than or equal to ML, the

spatial diversity order of the full-complexity system can be achieved with antenna selection,

however, if the effective length is less than ML, then there may be some loss in the diversity

order with antenna selection.
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CHAPTER V

TURBO CODED MULTIPLE DESCRIPTION CODING

FOR MIMO ANTENNAS

The previous chapters dealt with the performance of a reduced-complexity MIMO antenna

system. In this chapter, we study a different problem: joint-source-channel coding for

MIMO antenna systems. In particular, our focus will be on the use of Multiple Description

Codes (MDCs) over MIMO antenna systems and we will propose a turbo-coded MDC

scheme for such systems. The organization of the chapter is organized as follows: In the

next section, we give a brief motivation to use MDC for MIMO antenna systems. In Section

5.2, we describe the transmission system involving MDC, multiple antenna link, and the

turbo coded modulation for systems employing antenna diversity. In Section 5.3, we propose

a suitable joint source-channel decoding algorithm based on turbo decoding concepts. We

present numerical examples in Section 5.4 and summarize our conclusions in Section 5.5.

5.1 Introduction

The traditional design of a communication system makes use of the Shannon’s source-

channel separation theorem [142]. That is, source and channel coders are designed sep-

arately. However, for (practical) multimedia communications over wireless channels, the

assumptions held in the separation theorem (e.g., infinite delay and complexity) are not

directly applicable, which implies that the joint design of channel and source coding may

achieve a better performance. Therefore, joint source-channel codecs have taken consider-

able attention and various methods have already been developed [45,46,67,76,136].

A particular source coding method, known as multiple description coding (MDC), can

be viewed as a joint source – channel coding technique. MDC generates multiple bitstreams,

also called descriptions, of a source so that various quality levels of reconstruction can be
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obtained from any subset of the descriptions. The descriptions are transmitted over inde-

pendent channels with the hope that upon the reception of all or some of the descriptions,

a superior or an acceptable quality reconstruction is possible. This can be accomplished by

introducing a certain amount of correlation between the individual descriptions.

The MDC has been extensively studied for “on-off” channels, such as the Internet,

assuming that there exists multiple independent channels that either provide error-free

transmission or experience total failure. However, this assumption is not suited to wire-

less channels. Such impairments as fading and multipath propagation cannot simply be

abstracted as “on-off” type channel. With this motivation, Yang and Vaishampayan [183]

show that the performance of an MDSQ-based system dominates that of a channel-code

based system for delay-constrained slow-fading channels. Other attempts on the use of

multiple description coding for wireless systems are made in [7,96]. In [7], the authors pro-

pose the transmission of multiple descriptions over a wireless link using multiple transmit

and receive antennas. Another recent approach makes use of the dependencies in descrip-

tions [146]; in this work, Sirinavasan considers the transmission of multiple descriptions

over a noisy channel, and proposes an iterative decoding algorithm based on turbo coding

concepts, which exploits the correlation between the descriptions.

Noting that MDC requires multiple independent paths, we naturally consider multiple

antenna systems where we can obtain multiple independently fading channels. Deploying

multiple antennas has long been known to be an effective technique to provide spatial

diversity for combating the destructive effects of multipath fading. It has also recently

been shown that using multiple antennas can enhance the capacity of the wireless channels

dramatically [164]. To exploit this capacity, various coded modulation techniques, which

are known as space-time codes, have been proposed [151,163]. Such coding schemes promise

practical high-rate communications over wireless channels. Our main objective is to assess

the usability and performance of MDC with these methods, since MDC can be effectively

used for transmitting multimedia information such as speech, image and video.

With this motivation, we propose a joint source-channel coding scheme that combines

multiple description coding with the space-time turbo coded modulation (TCM). Each
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description obtained with MDC is independently turbo coded and transmitted via multiple

antennas over the wireless channel. At the decoder, we employ an iterative joint source-

channel decoding (JSCD) technique in which we exploit the correlation (induced by the

multiple description code) among the descriptions by exchanging the information between

the source and channel codes. We compare the performance (in terms of bit error rates

and mean square error distortions) obtained by the joint source-channel decoding and the

decoding where the correlation between the descriptions are not taken into account. We also

compare the performance of the multiple description coding system with the conventional

single description system with the same data rate, and we observe that the joint source-

channel decoder outperforms the other decoder. Furthermore, the simulations show that

the system using the multiple description coding performs significantly better than the one

that uses only a single description for moderate levels of signal-to-noise ratios. At high

signal to noise ratios, the latter system performs better in terms of the mean square error

distortion.

5.2 The Transmission System

Assume that we want to transmit the output of a source (such as speech data or image data)

over a wireless link using a joint-source channel encoder using MDC. The block diagram

of the encoder, the components of which will be explained in more detail in the following

subsections, is given in Figure 25.

5.2.1 Multiple Description Coding Schemes: MDSQ and MDTC

In our turbo coded system, we may use a variety of multiple description encoding schemes [69,

170] to produce two descriptions of the source samples. In this work, we will consider the use

of multiple description scalar quantization (MDSQ) and Multiple Description Coding using

pairwise correlating transforms (MDTC). These schemes are illustrated in some details in

Chapter 1.

It is noteworthy to emphasize the distinct ways that the correlation is created between

the descriptions for MDSQ and MDTC. In the case of MDSQ, the correlation between

the descriptions are induced by the index assignment and number of diagonals that are
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Figure 25: Block diagram for the encoder.

occupied. With MDTC, one can obtain a well-defined correlation between the descriptions

by using correlation matrices. It is also easier to provide a smooth tradeoff between the

correlation introduced by MDC and the performance improvement by JSCD that uses this

correlation. MDTC is a technique that enables one to control the amount of correlation as

desired through linear transformation.

5.2.2 Space-Time Turbo Coded Modulation with MDC

As shown in Figure 25, the output of the MDC (MDSQ or MDTC) is channel coded using

a turbo code and the encoded bits are then interleaved, passed through a serial to parallel

converter, and mapped to a signal constellation. The signal sequences corresponding to

different descriptions are transmitted from different antenna elements.

The interleavers prior to signal mapping are used to decorrelate the log-likelihoods of

the consecutive bits being transmitted and hence, to distribute the burst errors due to a

deeply faded block over the entire frame. We note that there are a total of five different

interleavers in the encoder: two for scrambling the encoded bits from each description (π3

and π4), two for the turbo encoders (π1 and π2) and one acting over one of the descriptions

from MDC (π).

5.2.3 Multiple Antenna Link Model

We assume that there are m antennas at the transmitter and n antennas at the receiver.

Each propagation coefficient between antenna pairs is supposed to be a zero mean complex

Gaussian random variable, i.e., Rayleigh fading. Also, we assume that the channel is block
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fading for which propagation coefficients remain constant during the coherence time of the

channel, i.e., during L symbol periods, and they are independent from one block to the

next. At time t, the received signal at the jth receive antenna, xj(t), can be written as

xj(t) =

√

ρ

M

m
∑

i=1

hijci(t) + wj(t), t = 1, ..., L, n = 1, ..., r

where the path gains hij and the noise samples wj(t) are independent, zero-mean and unit

variance circularly symmetric complex Gaussian random variables. The transmitted signals

ci(t) can be chosen from an arbitrary signal constellation. The average energy of transmitted

signal at time t is normalized to unity over m antennas so that ρ is the expected signal to

noise ratio at each receiver antenna.

5.3 Joint Source-Channel Decoding of the MDC with TCM

In this section, we will present a suboptimal joint source-channel decoding algorithm for

the above system adopted from [53]. The correlation introduced by the multiple description

encoder will be exploited via iterative decoding process that passes extrinsic information

between the channel decoder and source decoder.

The block diagram of the receiver is given in Figure 26. There are two turbo decoding

blocks associated with the two turbo encoders. Decoding of any of the turbo coded modula-

tion schemes is similar to the decoding algorithm given in [41,60,151]. We first compute the

log-likelihoods of the transmitted bits, and then use them in the standard iterative turbo

decoding as if they are the log-likelihoods of the observation from a BPSK modulation over

an additive white Gaussian noise channel. The decoding of the individual turbo codes is

performed as usual. That is, the two maximum a posteriori (MAP) decoders exchange the

extrinsic information between each other at each step of the iterations. However, additional

extrinsic information is also exchanged between the turbo decoders, which will be made

clear shortly.

Assume that the size of the constellation is 2Rc , and denote the set of constellation

points with ci, i = 1, · · · , 2Rc . Then each constellation point corresponds to Rc bits

and the received signal vector at time t, xtj , j = 1, 2, · · · , n, corresponds to mRc bits,

e = (e1, · · · , em, em+1, · · · , emRc). The bits (e1, · · · , emRc/2) are the encoded bits of one
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Figure 26: Block diagram for the iterative joint source-channel decoding of combined
multiple description coding and space-time turbo coded modulation scheme.

description and the bits (emRc/2+1, · · · , emRc) are encoded bits of the other description.

Based on the bit block (e(i−1)Rc+1, · · · , eiRc), the signal ci is selected and transmitted from

ith transmit antenna . Using the similar derivation in [151], we obtain the log-likelihood of

the lth bit in e

Λ(el) = log
Pr(el = 1|X)

Pr(el = 1|X)

The log-likelihood values Λ(e1), · · · , Λ(emRc
2

) are used by the turbo decoder I and Λ(emRc
2

+1),

· · · , Λ(emRc) are used by the turbo decoder II. Both turbo decoders are run in alteration and

each of them generates the extrinsic information about the input bits, {bi
l}, l = 1, · · · , R,

i ∈ {1, 2}, corresponding to associated description.

For each of the turbo decoders in Figure 26, if the correlation between descriptions

is not considered, the iterative decoding of each turbo code is performed using standard

forward and backward recursion relations described in [127], and the extrinsic information

for both the “present” constituent decoder, Dp, and the “former” constituent decoder, Df ,

denoted by Pe(dk = z|Dp) and Pe(dk = z|Df ), respectively, are computed. The bit dk is the

information bit for the transition from step (k − 1) to step k and its a priori probability,

which is exchanged between the constituent decoders, is the key to the success of the turbo

decoding. At each iteration, the extrinsic information Pe(dk = z|Df ) from one of the

constituent decoders is used as the a priori probability of dk in the current MAP decoder.

Assuming that the extrinsic probabilities from the constituent convolutional decoders are

independent, we can write the extrinsic probabilities about the bits in the first description
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as [54]

Pe{b1
l = z|TD1} = KPe{b1

l = z|D0}Pe{b1
l = z|D1}

where z ∈ {0, 1} and TD1,D0,D1 implies the extrinsic probabilities are from turbo decoder

I, MAP decoders 0 and 1, respectively. K is a normalization factor. Similarly, for the

second turbo decoder,

Pe{b2
l = z|TD2} = KPe{b1

2 = z|D2}Pe{b2
l = z|D3}

When the descriptions are considered independently, both turbo decoders are run as de-

scribed above and the extrinsic probabilities due to the constituent decoders are the only

information that is exchanged between the MAP decoders D0/D1 or D2/D3.

In order to exploit the correlation between the descriptions of the MDC, we need to ex-

change the additional extrinsic information obtained using the source a priori probabilities.

We now focus on the transfer of information between the turbo decoders I and II. Since the

correlation between descriptions is introduced in the index level, we should perform this

transfer in the index level. The extrinsic probabilities of the MDC indices vi, i = 1, 2, for

the first or second description can be computed from the extrinsic probabilities of the bits

constituting that description as:

Pe(v
i = I) =

R
∏

l=1

Pe(b
i
l |TDi), i ∈ {1, 2}, I = 1, 2, · · · ,M1

where bi
l is the lth bit in the binary representation of the index for the ith description

and we assume that the bits bi
1, · · · , bi

R are independent. Given the probabilities for one

description, the extrinsic probabilities of the other description can be calculated using the

a priori statistics of the source as

Pe(v
i = J |TDi′) =

M1
∑

k=1

P (vi = J |vi′ = k)Pe(v
i′ = k|TDi′),

i, i′ ∈ {1, 2}, J = 1, 2, · · · ,M1

(139)

where the conditional probabilities of the indices P (vi = I|vi′ = J) can easily be computed

using the source p.d.f., threshold vector and the index assignment. We can now compute
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the extrinsic probabilities for the information bits constituting this description (index) as

Pe(b
i
r = z|TDp) =

∑

k:bi
r(k)=z

Pe(v
i = k|TDi′), z ∈ {0, 1},

k = 1, · · · ,M1, i ∈ {1, 2}, r = 1, · · · , R

(140)

where Pe(·|TDp) is extrinsic probability obtained using the extrinsic information from the

former turbo decoder TDi′ and the a priori source statistics, and bi
r(k) is the rth bit of

the index k in the ith description. This probability (i.e., information from the former

turbo decoder) is used as an additional extrinsic information in the current turbo decoder.

To achieve this, reverse and backward recursion relations of the MAP algorithm for the

constituent convolutional decoders are modified as shown in [54] such that the a priori

information for dk is obtained using both the extrinsic information from the constituent

MAP decoder and the additional information from the other turbo decoder.

We are now able to describe how the individual components of the joint source-channel

decoder are connected together. As shown in Figure 26, the component decoders D0 or

D1 in turbo decoder I (D2 or D3 in turbo decoder II) takes the log-likelihood values of

the corresponding systematic and parity bits computed by the log-likelihood computation

block, the extrinsic information from the other decoder D1 or D0 ( D3 or D2) within

the same turbo decoder, and also, takes the additional extrinsic information from turbo

decoder II (turbo decoder I) as computed using (140) , and then uses the MAP decoding

algorithm with the modified decoding to compute the new extrinsic information about the

bits in the corresponding description. At each iteration, the related extrinsic information

is passed between the individual MAP decoders, and between the turbo decoders I and II.

The iterations proceed as the extrinsic information is exchanged between the decoders until

a desired performance is achieved at which point a final decision is made based on the final

log-likelihood ratio of information bits. Note that in all these operations, all the likelihood

ratio sequences and received sequences are suitably reordered and delayed.

After stopping the iterations, the final decision for the transmitted indices is made using

(i∗, j∗) = arg max
(i,j)∈J

P (i, j) = arg max
(i,j)∈J

P (i|j)P (j)

= arg max
(i,j)∈J

P (j|i)P (i)

(141)
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where P (i) and P (j) are the probabilities of the first and second indices of the MDSQ,

respectively, which are computed using the final log-likelihoods of the constituting bit se-

quences. Hence, we select the indices that maximize the joint probability of the possible

index pairs in the MDSQ scheme and based on the decoded index pairs, the transmitted

source sample is reconstructed at the receiver.

5.4 Examples

In this section, we present the performance of the proposed scheme using several simula-

tions. The information bits are generated either using the MDSQ or MDTC with natural

binary code assignment where we use the binary representations of the indices. The turbo

codes in the system consists of two recursive systematic convolutional codes described by

the feedforward and feedback generating polynomials (gn, gd). We assume that the inter-

leaver is pseudorandom, and choose gn and gd to be 5octal and 7octal, respectively, for both

turbo codes. We obtain a rate 1/2 code by puncturing the parity bits periodically. The

encoded bits are multiplexed and then interleaved using pseudo random interleavers. In our

examples, we use QPSK modulation at each transmit antenna, and we employ two transmit

antennas, each of which is used to transmit the sequences due to one of the descriptions.

We present the results for a receiver with a single antenna element. We use the iterative

decoding algorithm with 8 iterations.

In order to show the effectiveness of the joint source-channel decoding algorithm for

the proposed scheme, we first present the iterative decoding results obtained by using two

correlated binary sources, ui
k, i ∈ 1, 2 and k = 1, 2, · · · , where the correlation is created in

the following way:

• Generate the i.i.d. bit sequence u1
k such that P (u1

k = 0) = P (u1
k = 1) = 1/2.

• Construct the sequence u2
k using u2

k = u1
k ⊕ ek where P (ek = 0) = 1 − p and P (ek =

1) = p, and ⊕ is modulo 2 addition.

A measure of correlation between u1 and u2 can be defined in terms of entropy as [34]

ρ = 1 − H(u2|u1)

H(u1)
= 1 − plog2(p) − (1 − p)log2(1 − p)
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From this expression, it is clear that, if p < 1/2 decreases, the correlation between the two

sequence increases.

For this case, the extrinsic information exchanged between the turbo decoders is simply

Λe(u
p
k|TDp) = log

{

(1 − p)Pe(u
f
k = 1|TDf ) + pPe(u

f
k = 0|TDf )

}

{

(1 − p)Pe(u
f
k = 0|TDf ) + pPe(u

f
k = 1|TDf )

}

where the subscripts and superscripts p and f are used to denote the “former” or “present”

iteration steps at which the extrinsic probabilities Pe(uk|TD) from the constituent turbo

decoders are obtained.

In Figure 27, we present the bit error rate results for the input scenario described

above. The size of the interleavers in the turbo codes are 1300. The path is assumed to be

constant for a period of 130 symbols. We observe that the joint source-channel decoding

algorithm taking the source correlation into account outperforms the standard iterative

decoding where we do not exchange between the turbo decoders. At a BER of 10−4, the

joint source-channel decoding provides about 2.7 dB gain when p = 0.1 and about 0.5 dB

gain when p = 0.2 over the standard decoding. These results imply that when the amount

of correlation between the source sequences is large, then using the extrinsic information

due to the correlation improves the performance dramatically. If the correlation between

the sequences is reduced, the performance improvement is also reduced, however, we can

still expect some gain in exploiting this correlation.

Next, we present the performance results for the combined multiple description coding

and space-time turbo coded modulation scheme. First, we will consider the use of MDSQ.

5.4.1 Case 1: MDSQ

In the following examples, we will introduce the correlation between the transmitted in-

formation sequences using various MDSQ schemes. We will also compare the results of

iterative decoding of multiple descriptions to the conventional single description schemes

where we employ a single scalar quantization (with a rate equal to the total rate of the

MDSQ scheme) to generate our information sequence and transmit them using the same

space-time turbo coded modulation scheme. We note that the source sample delay for the
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Figure 27: Bit error rate vs. SNR for the joint source-channel turbo decoding of correlated
sources. Turbo code block size is 1300, m=2 transmit and n=1 receive antennas.

case of the single description based system equals half of the sample delay for the case of

MDC based system since we want to keep the interleaver sizes (and hence, complexities of

the turbo codes) in both cases almost similar. We also include performance comparisons

with a single description scheme using TCM with the same delay but employing single an-

tenna. For this case, the signals are selected from a larger constellation to provide the same

spectral efficiency.

In Figure 28, we present the bit error rate comparison between the joint source-channel

decoding algorithm with the standard turbo decoding. In this example, we use MDSQ

with M1 = M2 = 8 (i.e., R = 3 bpss/description) and using the index assignment scheme

given in Table 1.b (Chapter 1). We also plot the bit error rate for a single description

quantization scheme using 64-level uniform quantization (i.e., the rate is 2R bpss). The

channel is a Rayleigh block fading channel where the path gains are constant for a period

of 150 transmissions. The interleaver size in turbo codes is 1500 bits. We employ one

receive and two transmit antennas. We see that applying the joint source channel-decoding

algorithm improves the performance by about 0.5 dB at a bit error rate of 10−4 compared

to the case of no joint decoding. We further note that the system using a single description
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Figure 28: BER vs. SNR for the MDSQ with index assignment shown in Table 1. Turbo
code block size is 1500, m=2 transmit and m=1 receive antennas. The block size for m = 1
is 3000.

quantizer at a rate of 6 bpss and the same space-time turbo coded modulation scheme is

inferior to the system employing MDSQ. We obtain about 1.5 dB performance improvement

at a bit error rate of 10−4 by using MDSQ system and the joint source-channel decoding.

In this figure, we also plot the bit error rate of a single transmit antenna system (m = 1)

using TCM with an interleaver size of 3000 bits, so that the delays are the same with the

MDC based scheme. The transmitted signals ci are selected from 16−PSK constellation.

We observe that the system using the MDC scheme with 2 transmit antenna outperforms

the single description scheme with a single transmit antenna, e.g., by about 3 dB at a bit

error rate of 10−4.

The performance in terms of square error distortion for the MDC system with joint

source-channel decoding and the single description systems (with 1 or 2 transmit antennas)

is presented in Figure 29. For this case, we present the mean square error distortions for

two different MDSQ index assignments, which are provided in Table 1 (Chapter 1). We

apply the joint source-channel decoding algorithm. We observe that the MSE distortion

obtained using the MDSQ scheme is less than the systems with a single description finer

quantizer for a wide range of SNR levels, i.e., from 8 dB to about 15 dB. For larger SNRs,
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Figure 29: MSE vs. SNR for the MDSQ with index assignment shown in Table 1. Turbo
code block size is 1500, m=2 transmit and n=1 receive antennas. The block size for m = 1
antenna is 3000.

we observe this is the other way around. We conclude that most of the errors during the

transmission are corrected by the iterative decoding at the high SNR values and the MSE

distortion at these SNRs is mainly due to the quantization error, which is, as expected, less

for the single description system employing a finer quantizer.

In Figures 30 and 31, we present the similar performance comparison for MSE distor-

tions for the systems with R = 4 and R = 5 bps, respectively. For both cases, the MDC

based system with/wothout joint source-channel decoding outperforms the single descrip-

tion based systems for SNR values less than about 17 dB. For larger SNR values, the single

description quantization based system achieves smaller values of MSE distortion. However,

we observe that increasing the rate from R = 3 bpss to R = 5 bpss reduces the performance

gap (in terms of MSE distortion) between the MDC based system and single description

based system.

In Figure 32, we present the comparison between a turbo coded MDC scheme and an

uncoded MDC scheme with multiple antennas. For the uncoded scheme, the descriptions

are mapped to constellations without any explicit channel coding. In order to make a fair

comparison in terms of spectral efficiency, we use a higher rate MDC for the uncoded case.
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Figure 30: MSE distortion vs. SNR or the MDSQ with M1 = M2 = 16. Turbo code block
size is 1500, n=1 receive and m=2 transmit antennas. The block size for m = 1 antenna is
3000.
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Figure 31: MSE distortion vs. SNR for the MDSQ with M1 = M2 = 32. Turbo code block
size is 1500, m=2 transmit and n=1 receive antennas. The block size for m = 1 antenna is
3000.
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Figure 32: MSE vs. SNR for the turbo coded MDSQ and uncoded MDSQ. Turbo code
block size is 1500 and r = 3/4, m = 2 transmit and n = 1 receive antennas. For fair
comparison, uncoded MDSQ uses R = 4 bps/desc while TC MDSQ uses R = 3 bps/desc.

We also use a symbol interleaver for the uncoded MDC such that both systems will have

equal interleaving delay. The coded case uses R = 3 bps/desc and a rate 3/4 turbo code

while the uncoded case uses R = 4 bps/desc. In this example, we see that the the turbo

coded MDC outperforms the uncoded system for SNR values between 16 − 34 dB. For

example, at a MSE distortion of 10−2, the performance improvement is about 6 dB. For

larger SNR values, the uncoded MDSQ converges to a smaller MSE distortion since the

source code rate is higher than that for the coded case.

5.4.2 Case 2: MDTC

In this part, we will present the turbo coded MDC results when MDTC is used as the

multiple description encoder. In the following graphs, we show the mean square error

distortion. In our simulations, we use transforms that give balanced rates, i.e., T is such

that the descriptions have equal rates. A balanced-rate transform has the form, for any

nonzero α

Tα =







α (2α)−1

−α (2α)−1
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In Figure 33 and 34 are shown the MSE distortion plots for α = 1.2 and α = 1.79 for which

the redundancy, ρ, is 0.78 and 1.34 bps, respectively. The basic rate is approximately 4

bps for each component of the input pairs and the pairs have independent components with

σ2
1 = 1 and σ2

2 = 0.25. Fixed length codewords are used to represent the MDTC outputs.

The distortion for MDTC plots are evaluated using an equally weighted averaging operation

over the individual distortions for each component. An initial observation from the plots is

that the MSE distortion graphs have similar patterns as in the case of MDSQ based system,

that is, for low and high SNR region, the MDTC based systems with JSCD and without joint

decoding shows the same performance characteristics. Within the intermediate values of

SNR, i.e. from 10 to 17 dBs, JSCD improves the performance by about 0.7 dB at both values

of α: although we introduce more redundancy, or correlation, the performance improvement

with JSCD is not augmented. However, the improvement in the case of MDTC is slightly

more than that in the case of MDSQ, which is mainly due to well-define correlation structure

induced by the linear transform.

To this end, we presented the results for a Gaussian source. In a variety of multimedia

applications, we encounter source samples that are Laplacian distributed. In order to assess

the performance of our system for a Laplacian source, we conducted similar experiments

and observed that the system performs similarly for Laplacian distributed inputs.

The amount of correlation between the descriptions is an effective factor on the perfor-

mance improvement in the iterative JSCD. It is noteworthy to emphasize the distinct ways

that the correlation is created between the descriptions for MDSQ and MDTC. Recall that

in the case of MDSQ, the correlation between the descriptions are induced by the index

assignment and number of diagonals that are occupied. With MDTC, one can obtain a

more well-defined correlation between the descriptions. It is also easier to provide a smooth

tradeoff between the correlation introduced by MDC and the performance improvement

by JSCD that uses this correlation. MDTC is a technique that enables one to control the

amount of correlation as desired through linear transformation.
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Figure 33: MSE vs. SNR for the MDTC with α = 1.2. Turbo code block size is 1500,
m=2 transmit and m=1 receive antennas. The block size for m = 1 is 3000.
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5.5 Chapter Summary

We proposed a turbo coded multiple description coding scheme suitable for multimedia

transmission over a wireless link with multiple transmit and receive antennas. We described

a suitable iterative joint source-channel decoding algorithm that exploits the correlation

between these descriptions. The simulation results show that the performance of the turbo

coded MDC system with joint source-channel decoding is superior to the performance of

the decoding without joint decoding, and the MDC system provides less distortion than a

conventional single description system having the same code rate for moderate SNR values.
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CHAPTER VI

TURBO CODES FOR WIRELESS RELAY CHANNELS

In the previous chapters, we studied MIMO systems with multiple transmit and receive

antennas. In this chapter, we will deal with another form of MIMO system due to the

presence of multiple users that communicate and cooperate with each other. We restrict

our work work on the three-terminal wireless relay channel and the case where each node

is equipped with a single antenna. We propose a turbo code-based distributed channel

code for this system. The organization of the chapter is as follows: In the next section, we

provide a summary of previous work related to channel coding for multiterminal networks.

In Section 6.2, we describe the relay channel being considered. The turbo code for the relay

channel is described in Section 6.3. The iterative decoding methods are explained in Section

6.4. In Section 6.5, we illustrate the system performance via simulations, and finally, in

Section 6.6, we conclude the chapter.

6.1 Introduction

The relay channel, which is proposed by Van Der Meulen in 1971 [172], is a channel with

three-terminals. The block diagram of such a channel is depicted in Figure 35. This channel

can be represented using four finite sets: X ,XR,Y,YR, and a set of conditional probabilities

p(·, ·|x, xR) on Y × YR for each (x, xR) ∈ X × XR. Here, x is the original information to

be transmitted to the destination. The relay captures the signal yR and transmits a causal

signal depending on the current and previously received signals. The receiver observes

the superposition of the signals transmitted from the source and the relay. This channel

combines a broadcast channel (X → Y, Y1) and a multiaccess channel (X,X1 → Y ).

El Gamal and Cover investigate the capacity of the relay channel in [33], and derive the

capacity expressions for Gaussian relay channel and some discrete relay channels, and also

compute lower and upper bounds for achievable rates for the general relay channel. With
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Figure 35: Three-terminal relay channel

the recent advances in wireless networking, an increased interest arose for relay systems

[79, 100, 171]. The capacity of wireless relaying is studied in [56, 74, 75, 118, 126]. In [74],

Madsen evaluates the capacity of relay channel assuming that the nodes operate in either full

duplex or time/frequency division duplex modes. Madsen and Zhang later consolidate these

results in [75], and propose that relay channel signaling is superior to traditional multihop

protocols, and one can achieve a larger capacity by using power allocation. Reznik et al.

determines the capacity of a degraded Gaussian relay channel with multiple relay stages.

The capacity of the wireless relay networks is investigated in [56].

In addition to the information theoretical results, there has also been some research on

signaling techniques and coding for the relay channel. Typical strategies for relaying include

amplify-and-forward(AF) or decode-and-forward(DF) techniques [100, 102]. Any coding

scheme may use these strategies in the relay node. In general, DF technique outperforms

the other [102]. A simplistic method for relay channel coding is the one for which we assume

no direct transmission from source to destination. In such cases, one can use multi-hop

transmissions in which AF or DF is employed at the relays. The performance of multi-hop

systems is studied in [79–81]. From capacity perspective, however, this strategy is inferior

to the one that also utilizes the direct transmission from source to destination [74].

In the classical relay channel, the nodes are assumed to be capable of transmitting and

receiving simultaneously at the same time slot and in the same frequency band. However,

for some systems, this assumption is not practical, therefore, the source and relay nodes may

use orthogonal subchannels for transmission and reception, e.g., time sharing. This model

avoids the interference between the source and the relay nodes during the transmission of

relay, but it can not achieve the capacity promised by the relay channel [74]: One needs to
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transmit simultaneously from the source and relay.

Noting that the transmissions for wireless relaying occur at different spatial locations,

one can obtain a distributed spatial diversity using relays [101]. Cooperative diversity in [99],

for example, can achieve spatial diversity with multiple relays by using the techniques

described therein. A similar system is also studied in [171] where macro diversity can be

obtained using relay terminals. Another cooperative diversity technique based on relaying

is the user cooperative diversity [90, 138–140, 152]. Based on the channel conditions, each

node cooperates with other nodes to either act as a relay for them or to transmit its own

data.

An interesting coding strategy for relay channels is proposed by Zhao and Valenti [184].

Both the source and the relay nodes use a recursive systematic convolutional (RSC) code

so that the destination receives both codes in parallel, which results in a distributed turbo

code. The relay node uses decode-and-forward technique along with time sharing, however,

it first interleaves the decoded stream, hence seeks interleaver gain just like conventional

turbo codes. Essentially, the turbo code is embedded in the relay channel. The critical

assumption here is that the link between the source and relay is reliable. Although this

might be correct for some cases, it might not be a realistic assumption for many other cases.

Most coding techniques mentioned above for relay systems assume that the source and

the relay nodes uses time sharing to transmit their data. However, from information theory,

we know that the capacity can be achieved by simultaneously transmitting from the source

and the relay. In this chapter, we propose turbo-based coding schemes for the relay channel

where the source and relay transmissions are performed simultaneously. The source broad-

casts a turbo coded block to the relay and destination. The relay decodes and re-encodes

the block from the source and forwards them to the destination node. Meanwhile, the source

transmits its fresh information block. Hence at the receiver, we observe the superposition

of fresh information from the source node and the estimation of the previous block from

the relay node. We employ iterative decoding techniques that exploit the information from

both the source and relay. Simulation results indicate that we can achieve the relay capacity

within 1 dB at a BER of 10−5.
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Table 4: Signal and link parameters for the wireless relay channel at time n.

s[n] the signal transmitted from source node

sR[n] the signal transmitted from relay node

yR[n] received signal at the relay

y[n] received signal at the destination

hij [n] the complex channel gain from node j to node i

P the power of the signals from the source node

PR the power of the signals from relay node

6.2 System Model

The block diagram of a wireless relay channel is depicted in Figure 36. To represent the

input-output relation, we define the signal and link parameters in Table 4. Then, for the

input-output relation at the relay node, we have

yR[n] =
√

Ph21s[n] + wR[n] (142)

while at the destination node, we have

y[n] =
√

Ph31[n]s[n] +
√

PRh32[n]sR[n] + w[n] (143)

where wR[n] and w[n] denote the zero mean additive white Gaussian noise at the relay node

and at the destination node, respectively. We assume that the channels are independently

and identically distributed Rayleigh fading, i.e., hji are zero mean circularly symmetric

complex Gaussian random variables and are independent for different (j, i) pairs. We define

signal-to-noise ratio as SNR = P/N0, where N0 is the one-sided power spectral density of

the additive Gaussian noise.

Note that because of simultaneous transmission from the source node and the relay

node, the destination observes a noisy superposition of s[n] and sR[n]. We assume that

these signals are selected from a BPSK constellation. The transmission from the relay and

destination nodes take place in blocks, and we assume that the relay node waits until all the

bits (or symbols) in each block is received after which it decodes-and-forwards the estimated

block to the destination node.
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Figure 36: Block diagram for the wireless relay channel

6.3 Turbo Codes for Relay Channels

Consider a block of N message bits, u = [u0, . . . , uN−1], to be transmitted to the destination

node. We employ identical block codes of rate-Rc at both relay node and the source node,

hence, there are totally N/Rc bits being transmitted at each block from both nodes. The

transmission take place as follows (for the lth block): The message bits are turbo coded and

mapped to BPSK symbols, and then broadcast to the relay node and the destination node.

The relay node receives the bits in the lth block. Meanwhile, it transmits its estimate for the

(l − 1)th block after decoding and re-encoding. Note that at the first block, the relay node

does not transmit any signal, therefore, for this block, the destination node observes only

a direct transmission from the source node. Similarly, after the last block is transmitted

from the source node, the relay will forward the estimate for this block at the next block

slot at which the source does not transmit. We note that this transmission scheme can be

imagined as an instance of the block Markov-encoding scheme.

It is straightforward to generate variations of the proposed scheme. For example, one

can use different turbo codes at the relay and source nodes. Instead of turbo codes, one can

employ convolutional (recursive or nonrecursive) codes as well. Various puncturing schemes

can be applied at the relay and source nodes to change the code rate. In this chapter, since

turbo codes are powerful codes, we will focus on the performance of the basic turbo coded

scheme described above.

We note that a related scheme is proposed by Zhao and Valenti in [184] where they
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develop a distributed turbo code for relay channels. Such a code is generated by replacing

one of the RSC encoder to the source and the other to the relay node. They assume a

half-duplex relay channel, so the transmission takes place in two phases. In the first time

slot, the source broadcasts to the relay and destination the systematic and one parity bit

sequence. In the second slot, the relay decodes the information bits, interleaves and then

re-encodes with its RSC encoder, and finally transmits only the parity bit sequence. The

overall encoder behaves like a rate-1/3 turbo code. The receiver uses a standard iterative

decoding to decode the turbo code. Note that this scheme divides the time slot into two

phases which significantly reduces the spectral efficiency. To benefit from the capacity

increase with the relay node, one needs to make simultaneous transmission from the source

and he relay nodes as we propose here.

6.4 Decoding

We next describe an iterative decoding method for the destination node. Since the relay

node uses a standard iterative turbo decoder which is well-known in the literature, [16,128]

(See also Chapter 1), we focus on the details of the decoding at the destination node.

Upon the reception of lth block, y(l) = [y(l)[0], . . . , y(l)[N/Rc − 1]], the decoder captures

information about two turbo code blocks: one which is the current transmitted block due to

fresh information block, and the other which is sent from the relay node and is an estimate

for the previous information block. Hence, the decoder can generate the soft information

for both of these blocks. For two consecutive blocks, this implies that, at the first block,

one can obtain some information about that block (due to direct transmission from the

source node to the destination node), and at the next block, it can update the information

about that block by processing additional information received from the relay node. One

can use different methods to combine the two information. For the case of identical turbo

codes at the source and relay nodes, one can simply add the associated extrinsic information

obtained using the different nodes, as will be made clear shortly.

The decoding is performed in two steps: Consider the lth block. First, we evaluate

the log-likelihoods of the message bits in the current block and the estimated bits of the
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previous block received from the relay node. Next, we obtain the soft information on the

bits in the (l − 1)th block by combining the soft information due to the transmission (i)

from the relay node at the lth block and (ii) from the source node at the (l − 1)th block.

Hard decision is made using this final soft output.

After the lth block is received, the log-likelihoods of the ith bit, b(l)[i], from the source

node is computed as

Λ(b(l)[i]) =
P (b(l)[i] = 1|y(l)[i])

P (b(l)[i] = 0|y(l)[i])
(144)

=

∑

s[i],sR[i]:b[i]=1 P (s[i], sR[i]|y[i])
∑

s[i],sR[i]:b[i]=0 P (s[i], sR[i]|y[i])
(145)

=

∑

s[i],sR[i]:b[i]=1 f(y[i]|s[i], sR[i])P (s[i], sR[i])
∑

s[i],sR[i]:b[i]=0 f(y[i]|s[i], sR[i])P (s[i], sR[i])
(146)

=

∑

s[i],sR[i]:b[i]=1 f(y[i]|s[i], sR[i])
∑

s[i],sR[i]:b[i]=0 f(y[i]|s[i], sR[i])
(147)

=

∑

sR[i] e
−|y[i]−

√
Ph31−

√
PRh32sR[i]|2/N0

∑

sR[i] e
−|y[i]+

√
Ph31−

√
PRh32sR[i]|2/N0

(148)

where in (146), we assume that the signals s[i] and sR[i] are equally likely and independent

from each other. Note that we drop the superscript ((·)(l)) for brevity. In a similar way, the

log-likelihood ratio for the ith (estimated) bit from the relay node, b̂(l−1), can be obtained

as

Λ(b̂
(l−1)
R [i]) =

P (b̂
(l−1)
R [i] = 1|y(l)[i])

P (b̂
(l−1)
R [i] = 0|y(l)[i])

(149)

=

∑

s[i] e
−|y[i]−

√
Ph31s[i]−

√
PRh32|2/N0

∑

s[i] e
−|y[i]−

√
Ph31s[i]+

√
PRh32sR[i]|2/N0

(150)

Assuming that the log-likelihood ratios Λ(b̂(l−1)) and Λ(b(l−1)) are independent, we can

combine the two information simply by adding them up

Λf (b(l−1)) = Λ(b̂(l−1)) + Λ(b(l−1))

Finally, we feed this final log-likelihood ratio to the turbo decoder assuming that they are

the log-likelihoods of the encoded bits as if they are obtained for a system using BPSK

modulation over AWGN channel. This iterative decoding method is clearly suboptimal,
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however, as shown by the simulations, we can attain very close to the capacity limits with

this decoding method.

6.4.1 Improved Decoder

The iterative decoding method described above can be improved by a simple modification.

Recall that in (146), we assumed sR[i] and s[i] were transmitted equally likely. However, us-

ing previous transmitted block, we already obtain the log-likelihood ratios for these signals.

Hence, we can make use of those likelihood values in the computation of Λ(bl) in (146). In

this case, the likelihood for b(l)[i] becomes

Λ(b(l)[i]) =

∑

sR[i] P (s
(l)
R [i])e−|y[i]−

√
Ph31−

√
PRh32sR[i]|2/N0

∑

sR[i] P (s
(l)
R [i])e−|y[i]+

√
Ph31−

√
PRh32sR[i]|2/N0

(151)

P (s
(l)
R ) = P (b(l−1)[i]), and the likelihood for b

(l)
R [i] becomes

Λ(b
(l−1)
R [i]) =

∑

s[i] P (s(l)[i])e−|y[i]−
√

Ph31s[i]−
√

PRh32|2/N0

∑

s[i] P (s(l)[i])e−|y[i]−
√

Ph31s[i]+
√

PRh32|2/N0
(152)

where P (s(l)[i]) = P (b(l)[i]) can be computed using (151). Note that the likelihood compu-

tation of the bits in the fresh information block proceeds that of the bits coming from the

relay nodes. This is because we have access to the probability of the bit transmitted from

the relay node since it is an estimate of the bit in the previous fresh information block.

After evaluating the likelihood of the bit in the current block using (151), we can use this

soft information to improve the likelihood value of the bit arriving from the relay node.

6.4.2 Relation to Backward Decoding

We can obtain a better decoder if we assume that all transmitted blocks are available at

the destination node. If we wait until all the blocks are received, we can use a backward

decoding algorithm based on the successive cancelation method. Let us explain this in an

abstract form: Consider three blocks A,B,C, each having N/Rc bits, are transmitted by

the source and Â, B̂, Ĉ are transmitted by the relay. The receiver observes the sequence of

blocks A,B + Â, C + B̂, Ĉ (one needs 4 slots). With backward decoding, we first decode

Cd = Ĉ, then subtract the effect of Cd from C + B̂, and then decode Bd = B̂, and continue

112



in this way until decoding all the blocks down to the first one. Of course, this decoding

is much less practical since the delay will be much higher (e.g., for the example above, we

have to wait until we receive all 4 blocks), and the decoding complexity and the memory

requirements will be huge. The decoding proposed in the Sections 6.4 and 6.4.1 require a

delay of only 2 blocks for any number of total transmitted turbo code blocks, and hence

incur much less complexity.

The decoding method we propose is in fact resembling to the backward decoding. The

difference is that we start to decode just after we receive the second block from the source

node, and exploit the information coming from the consecutive blocks in an iterative manner,

starting from the very first block. Hence, we expect the performance to be very close the

optimal one.

6.5 Simulations

In this section, we will illustrate the performance of the system using numerical simulations.

We employ a turbo code consisting of two rate-1/2 recursive systematic convolutional codes

with (gn, gd) = (37, 21)octal , therefore the overall code rate at each node is Rc = 1/3. We

assume a block length of N = 3000 bits. We consider two scenarios: (i) The link from the

source node to the relay node is ideal, so the decoding at the relay node is error-free, while

the relay-destination link and the direct link have equal variance. (ii) The relay node is

located such that the source-relay link and the relay-destination link are 6 dB better than

the direct link. In all cases, we assume that the channel is a fast Rayleigh fading channel.

We set the transmission power at the source and relay nodes equal to each other, e.g.,

P = PR.

We first study the Scenario 1. Figures 37 and 38 illustrate the bit error rates for the

proposed scheme and compare the performance with the direct transmission approach. For

the direct transmission, we assume that the same turbo code is employed, and for a fair

comparison, we set the transmission power Pdirect = 2P . For the proposed scheme, we

depict the performance for both decoding scheme described earlier. The simulation results

show that at both code rates, the use of a relay node significantly improves the performance.
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Figure 37: BER vs. SNR when the source-relay link is ideal and the relay-destination link
has the same quality as the direct link. Simulation parameters: Turbo code block size, N=
3000, Rc = 1/3.

For example, for Rc = 1/3, we have about 3 dB gain using the basic iterative decoder, and

3.5 dB gain using the improved decoder at a bit error rate of 10−5 compared to the direct

transmission.

In Figure 39, we plot the bit error rate when the turbo code block size is 64000 bits.

We observe that as the block size increases, the performance improves significantly. For

example, with the improved decoder, we can attain a bit error rate of 10−5 at a signal-to-

noise ratio of −2.3 dB. We note that the minimum SNR required to attain 1/2 bits/channel

use for this case is about −3.5 dB. Hence, we are only 1.2 dB away from this limit. This

clearly shows that the proposed turbo coding scheme for the relay channel is very promising.

In Figures 40 and 41, we study the second scenario, i.e., both the source-relay and the

relay-destination links are fast fading and have 6 dB more power than the direct link. For

this case, we also plot the bit error rate obtained with a multi hop transmission scheme.

For these set of curves, the following comments are in order: (i) The worst performance is

obtained using a direct transmission link. This emphasizes the significance of a relay node.

(ii) Multi-hop transmission is about 0.5 − 1 dB better than the direct transmission. (iii)
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Figure 38: BER vs. SNR when the source-relay link is ideal and the relay-destination link
has the same quality as the direct link. Simulation parameters: Turbo code block size, N=
3000, Rc = 1/2.

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR /bit [dB]

B
E

R

Direct transmission
Relay channel
Relay channel, improved decoder

Figure 39: BER vs. SNR when the source-relay link is ideal and the relay-destination link
has the same quality as the direct link. Simulation parameters: Turbo code block size, N=
64000, Rc = 1/2.
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Figure 40: BER vs. SNR when the source-relay link the relay-destination link are both
6 dB better than the direct link. Simulation parameters: Turbo code block size, N= 3000,
Rc = 1/3.

The best performance is obtained by the turbo coding scheme we proposed. It is clear that

in order to achieve better performance, the relay and the source node should cooperate.

While the performance of the proposed scheme is significantly superior to the alternative

schemes, we are still 2 − 3 dB away from the capacity. We believe that this gap can be

reduced by suitable design of the component codes at the source and relay nodes, and

in addition to that, by using the more complex decoding methods such as the backward

decoding algorithm. The disadvantage in these scheme is the increase in the delay and

complexity. This is in accordance with the Shannon coding theorem [34], since in order to

achieve the capacity, one generally requires infinite code length and delay.

6.6 Chapter Summary

We presented a turbo coding scheme for wireless relay channels in which the relay node has

full-duplex capability. We described suitable decoding algorithms and showed that with

the proposed decoding, the system performs within 1 − 2 dB of the capacity limits. The

turbo code based scheme performs superior to its alternatives of direct transmission and

the multihop transmission. While we considered a single-relay node, the scheme can readily
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Figure 41: BER vs. SNR when the source-relay link the relay-destination link are both
6 dB better than the direct link. Simulation parameters: Turbo code block size, N= 3000,
Rc = 1/2.

be generalized to the case of multiple relay nodes. In this case, the resulting scheme will be

similar to a multiple component turbo codes.
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CHAPTER VII

PARALLEL AND SERIAL DISTRIBUTED DETECTION

FOR WIRELESS SENSOR NETWORKS

In this chapter, we study several distributed detection strategies in wireless sensor networks.

Our contributions will be in three folds. First, we consider the distributed detection in

fading environments, that is, we assume noisy channels between sensor nodes, which is quite

different from the traditional distributed detection schemes that assume error-free reception

of locally transmitted signals. Second, for various strategies, we derive the false alarm and

detection probabilities which are then used for performance assessment and decision-rule

optimization. Third, we introduce an analog approach to distributed detection problem

and analyze its performance. The organization of this chapter is as follows: In the next

section, we give a summary of distributed detection in wireless sensor networks. In Section

7.2, we analyze the performance of distributed detection when the local sensors perform a

single-bit local decision. We consider two main topologies: a parallel network and a serial

network. Section 7.3 deals with the case that multiple-bit local decisions are transmitted to

the fusion center. In Section 7.4, we study an analog scheme where local decision statistics

are transmitted without any local processing. Section 7.5 proposes the use of sequential

detection in WSNs over noisy fading channels. Numerical examples are illustrated in Section

7.6. Finally, the we sumamrize our results in Section 7.7.

7.1 Introduction

Wireless sensor networks (WSNs) is an emerging technology that experiences a pervasive

trend in many application areas including environment monitoring, health, security and

surveillance, and robotic exploration [92]. Networks of sensor systems allow for many dis-

tributed processing and cooperative communication techniques including distributed data

compression [148], tracking and classification [37], and distributed detection [91,130][4,5]. In
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this chapter, we focus on distributed detection that are specially tailored for wireless sensor

networks. In distributed detection, each sensor sends its observation to the fusion center

where a global decision is made. Because of the bandwidth and energy limitations, instead

of transmitting the raw data, each sensor generally performs a local detection process and

sends its decision (possibly consisting of a few bits) to the fusion center. The fusion center

collects all decisions from all sensors and performs a final decision on the hypothesis under

investigation.

The research studies on distributed detection generally assume error-free transmission

between the sensor nodes and the fusion center [122,130]. This assumption might be viable

in traditional radar or sonar networks. However, in sensor networks which are constructed

by battery-limited low-power tiny devices, the assumption of error-free transmission is not

wise since such transmissions will require powerful error correction coding and very complex

signal processing algorithms.

There are three major topologies that are considered in distributed detection: paral-

lel, serial, and tree configuration [130], and several distributed detection algorithms have

been investigated for such configurations [91, 119, 129, 130]. Optimal distributed detection

algorithms have been focused on optimality under the Neyman-Pearson and Bayesian detec-

tion criteria. Under the assumption of conditionally independent observations, the optimal

fusion rules are given by likelihood ratio (LR) tests at the individual sensors and at the

fusion center [122]. If the observations at different sensor nodes are correlated (depen-

dent), the optimal fusion rules become intractable: they do not reduce to LR tests [39,103].

Distributed detection algorithms have also been investigated under several communication-

constraints [94, 111, 148]. Chamberland and Veeravalli [94] showed that under certain con-

ditions, for an N -sensor network with a capacity constraint of N bits per time unit, having

each sensor transmitting one bit is optimum. Thomopoulos and Zhang investigates the

distributed detection in the case of non-ideal channels [165]. In [42], Duman and Salehi

consider the distributed detection over multi access channels where the fusion center gath-

ers the decisions from local sensors via a multi-access channel.

Recently, Chen et al. proposed a channel-based decision fusion for a parallel network
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of sensors linked with fading channels [24, 25, 119]. Assuming parallel configuration, the

authors incorporate the effect of fading in the detection process, and derive optimal fusion

rules and some alternative fusion rules based on diversity combining techniques. In [105],

a similar decision fusion for a multihop transmission is considered. While the performance

of the decision fusion based on some suboptimal methods are evaluated in these work, the

optimality of the decision rules at local sensors and at the fusion center, and optimal designs

are not considered. Recently, Chen and Willet have sown that optimal local decisions that

minimize the error probability at the fusion center becomes a likelihood-ratio test (LRT)

under some particular constraints on the fusion rule [26].

Because of the hard-energy limitations in a sensor network, it is generally preferable to

perform a local processing on the raw observed data and transmit the compressed data to

the fusion center. For point-to-point communications, however, it is well-known that an

uncoded analog transmission is the optimal choice to transmit the data over an additive

Gaussian noise channel [50,55]. In fact, such a scheme is very desirable in a delay-sensitive

transmission since as soon as the data is observed it is transmitted to the destination.

In a wireless network with multiple nodes, it is not clear which way is a better choice.

For a distributed estimation scheme, the performance of analog and digital approaches

are compared in [35]. To the best of author’s knowledge, the performance of distributed

detection with analog data gathering has not been investigated yet.

In this chapter, we present a comprehensive work that addresses the problem of energy-

efficient distributed detection in wireless sensor networks in which the links between the

sensor nodes are subject to fading. We analyze the performance of different detection

strategies and develop design tools required for optimizing their detection performance. We

classify two main strategies: (i) the digital approach where the sensors make their local

decisions first and then forward these decisions to the associated destination nodes, and

(ii) the analog approach where the locally observed samples are directly transmitted by

means of analog waveforms. For each scheme, we study the performance of serial and

parallel networks. For the former approach, we first study the distributed detection with

single-bit local decisions and then look at the problem of multiple-bit sensor decisions. We

120



observe that multiple-bit sensor decisions provide better detection performance. In the

analog approach, it is seen that the fusion of received analog samples gives results that

are very similar to those obtained by a centralized decoder. For this case, we develop the

optimal power allocation scheme that provides the best detection performance according

to NP-lemma. While our analysis models the local samples as Gaussian random variables,

the results for any other source distribution can be obtained with our formulation either

analytically or numerically. Numerical results indicate that the detection performance with

the analog approach is superior to the digital approach for a given power-budget. Hence,

the analog approach is more efficient for distributed detection over fading channels. The

simulation results also indicate that a two-bit decision strategy in a parallel network provide

better detection capability compared to its single-bit counterpart.

7.2 Distributed Detection with Single-Bit Local Decisions

Consider the detection of a binary event by the help of a network of distributed sensors.

We initially assume that the local sensors are allowed to produce a single-bit decision, i.e.,

one level quantization, based on their observations. We will later generalize this scheme

to the case of multiple bit decisions and to the case where the observed data itself or a

sufficient statistics is transmitted using analog waveforms. We study two different network

configurations: (i) a serial network, and (ii) a parallel network. The block diagrams for these

configurations are depicted in Figures 42 and 43. Let us first consider the serial network.

7.2.1 Serial Configuration

In the serial network of N sensors shown in Figure 42, let yj denote the observation or a

sufficient statistics at the jth sensor node Sj. Also denote by uj ∈ {0, 1} the binary decision

at Sj. A binary modulation scheme is used for transmitting the decisions from Sj−1 to Sj .

Assuming frequency flat fading and additive noise at each link, the received signal at Sj ,

denoted by rj−1, is given by

rj−1 =
√

ρj−1gj−1sj−1 + nj−1 (153)
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Figure 42: Serial configuration for distributed detection for wireless sensor networks with
fading channels

where gj−1 is the complex-valued channel gain between Sj−1 and Sj , nj−1 is the additive

white Gaussian noise at Sj, and ρj−1 is the transmitter power gain at Sj−1. We assume nj

∼ CN (0, 1)1, and they are independent and identically distributed (iid) for j = 1, · · · , N−1.

We assume a quasi-static fading channel and so the channel state information (CSI), i.e.,

gj−1, can be estimated at Sj and can be forwarded to the fusion center with a control

channel. It is possible to perform power allocation according to some optimality criterion,

which becomes computationally complex for the digital approach considered in this section.

Instead, we assume that each sensor transmits at the same power level, and hence, we set

ρj−1 = ρ, for j = 2, . . . , N . Thus, we derive the optimal detection rules for a uniform power

allocation scheme.

The decision at the jth stage is based on the observation, yj, and the received signal

rj−1. We assume that the observations and the received signals at the sensors are statis-

tically independent conditioned on the hypothesis. That is, yj and rj−1 are conditionally

independent.

We define the false alarm and detection probabilities at Sj as PF,j = Pr(uj = 1|H0),

PD,j = Pr(uj = 1|H1). Our goal is to derive fusion rules based on the Neyman-Pearson

lemma, that is, for a prescribed bound on the global false alarm rate, PF,N , we wish to find

the decision rules that maximize the global detection rate, PD,N .

1CN (0, 1) denotes the circularly symmetric zero mean and unit variance Complex Gaussian random

variable whose density is given by pn(z) = 1
π
e−|z|2
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7.2.1.1 Decision Fusion Rule and Error Probabilities

According to Neyman-Pearson lemma, the optimal decision rules at each stage reduces to

LR tests, where the LR at the jth stage can be computed using the received signal rj−1 and

the observation yj:

Γ(yj, rj−1) =
L(yj, rj−1|H1, gj−1)

L(yj, rj−1|H0, gj−1)
=

p(yj |H1)p(rj−1|H1, gj−1)

p(yj |H0)p(rj−1|H0, gj−1)
(154)

where

p(rj−1|H1, gj−1) = PD,j−1pn(rj−1 −
√

ρgj−1s
1) + (1 − PD,j−1)pn(rj−1 −

√
ρgj−1s

0),(155)

p(rj−1|H0, gj−1) = PF,j−1pn(rj−1 −
√

ρgj−1s
1) + (1 − PF,j−1)pn(rj−1 −

√
ρgj−1s

0).(156)

Let Λ(yj) = p(yj |H1)/p(yj |H0), and Υ(rj−1) = p(rj−1|H1, gj−1)/p(rj−1|H0, gj−1). Assum-

ing binary phase shift keying (BPSK) modulation, we can rewrite Υ(rj−1) as

Υ(rj−1) =
PD,j−1ξj−1 + 1 − PD,j−1

PF,j−1ξj−1 + 1 − PF,j−1
(157)

where ξj−1 = exp
(

4
√

ρℜ{rj−1g
∗
j−1}

)

. Using (154) and (157), the LR test at the jth node

is given by

Λ(yj)Υ(rj−1)

H1

≷

H0

t (158)

where t is a threshold to be determined. For simplicity, it is convenient to use the log-

likelihood ratios, Γ∗(yj, rj−1) = log(Γ(yj , rj−1)), Λ∗(yj) = log(Λ(yj)) and Υ∗(rj−1) =

log(Υ(rj−1)), and hence, we can rewrite the LR test (158) as

Γ∗(yj , rj−1) = Λ∗(yj) + Υ∗(rj−1)

H1

≷

H0

t∗ (159)

where t∗ = log(t). For the first stage, we have Υ∗(rj−1) = 0. Although it is straightforward

to implement the fusion rule described by (159), note that it requires the exact knowledge

of the channel gain gj−1 and the false alarm & detection probabilities at the previous stage.

False Alarm and Detection Probabilities
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We next derive the false alarm and detection probabilities to evaluate the performance

of the decision fusion rule in (159). At the jth stage, the false alarm probability is given by

PF,j = PF,j−1 Pr (Λ∗(yj) + Υ∗
1(rj−1) > t∗|H0) + (1−PF,j−1) Pr (Λ∗(yj) + Υ∗

0(rj−1) > t∗|H0)

(160)

where

Υ∗
1(rj−1) = log

PD,j−1e
4ρ|gj−1|2+4

√
ρn′

j−1 + 1 − PD,j−1

PF,j−1e
4ρ|gj−1|2+4

√
ρn′

j−1 + 1 − PF,j−1

,

Υ∗
0(rj−1) = log

PD,j−1e
−4ρ|gj−1|2+4

√
ρn′

j−1 + 1 − PD,j−1

PF,j−1e
−4ρ|gj−1|2+4

√
ρn′

j−1 + 1 − PF,j−1

,

with n′
j−1 ∼ C(0, |gj−1|2/2). Let Γ∗

i = Λ∗ + Υ∗
i (For brevity, we drop yj and rj−1). Denote

the cumulative distributions of Γ∗
i , Λ∗ under H1 and H0 as FΓ∗

i,1
(·), FΛ∗

1
(·) and FΓ∗

i,0
(·),

FΛ∗
0
(·), respectively. Also denote the density functions of Υ∗

1 and Υ∗
0 as fΥ∗

1
(·) and fΥ∗

0
(·),

respectively. Using probability theory [5], we can show that

fΥ∗
k
(y) =

(PD,j−1 − PF,j−1)e
y

(PD,j−1 − PF,j−1ey)((1 − PF,j−1)ey − (1 − PD,j−1))

1
√

16πρ|gj−1|2
×

exp

(

−
(

log
(1 − PF,j−1)e

y − (1 − PD,j−1)

PD,j−1 − PF,j−1ey
− (2k − 1)4ρ|gj−1|2

)2

/16ρ|gj−1|2
)

(161)

for log
1−PD,j−1

1−PF,j−1
< y < log

PD,j−1

PF,j−1
. Due to the assumption of conditional independence of yj

and rj−1, FΓ∗
i,k

, i, k ∈ {0, 1}, can be expressed as

FΓ∗
i,k

(a) =

∫ log
PD,j−1
PF,j−1

log
1−PD,j−1
1−PF,j−1

fΥ∗
i
(y)FΛ∗

k
(a − y)dy. (162)

Using (162) in (160), we finally obtain

PF,j = 1 −
∫ log

PD,j−1
PF,j−1

log
1−PD,j−1
1−PF,j−1

(PF,j−1fΥ∗
1
(y) + (1 − PF,j−1)fΥ∗

0
(y))FΛ∗

0
(t∗ − y)dy. (163)

Similarly, the detection probability can be computed using

PD,j = 1 −
∫ log

PD,j−1
PF,j−1

log
1−PD,j−1
1−PF,j−1

(PD,j−1fΥ∗
1
(y) + (1 − PD,j−1)fΥ∗

0
(y))FΛ∗

1
(t∗ − y)dy. (164)

Hence, if the distribution of the observations yj is known, using Equations (161), (163)

and (164), we can compute the PD,j recursively, provided that the PF,j−1 are specified. A
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simplistic approach is to set the false alarm rates PF,j at all stages the same, however, in

that case, one can not guarantee the maximization of PD,N , the global detection probability.

According to Neyman-Pearson lemma, for a given upper bound on PF,N , we need to make

an exhaustive search over all PF,j, j = 1, · · · , N − 1 in order to find those that maximize

the global detection probability PD,N . Since an analytical solution is not feasible; we resort

to numerical search procedures to determine the decision fusion rules, which is usually the

case for distributed detection problems.

7.2.1.2 Optimality of LR-based Decision Fusion

So far, we used the LR-based decision fusion rule without considering its optimality. If the

channels between the consecutive sensors are error-free, that is, each sensor node can pass

its decision to the next one without error, Viswanathan and Thomopoulos have shown that

the optimality can be achieved using Neyman-Pearson test at each stage [131]. Here, we

investigate the optimality under fading channels for the proposed fusion rule.

Consider the decision fusion at the last two stages. At the final node SN , we have the

log-likelihood ratio Γ∗(yN , rN−1) = Λ∗(yN ) + Υ∗(rN−1). Let PD = PD,N−1, PF = PF,N−1,

and Λ∗ = Λ∗(yN ). We can rearrange (163) and (164) to obtain

1 − PF,N =

∫ log
PD
PF

log
1−PD
1−PF

(PF fΥ∗
1
(y) + (1 − PF )fΥ∗

0
(y))FΛ∗

0
(t∗ − y)dy, (165)

1 − PD,N =

∫ log
PD
PF

log
1−PD
1−PF

(PDfΥ∗
1
(y) + (1 − PD)fΥ∗

0
(y))FΛ∗

1
(t∗ − y)dy. (166)

Integration of (165) and (166) by parts gives

1 − PF,N = FΛ∗
0
(t∗ − log

PD

PF
) −

∫ log
PD
PF

log
1−PD
1−PF

(PF FΥ∗
1
(y) + (1 − PF )FΥ∗

0
(y))fΛ∗

0
(t∗ − y)dy(167)

1 − PD,N = FΛ∗
1
(t∗ − log

PD

PF
) −

∫ log
PD
PF

log
1−PD
1−PF

(PDFΥ∗
1
(y) + (1 − PD)FΥ∗

0
(y))fΛ∗

1
(t∗ − y)dy(168)

where FΥ∗
k

is the cumulative distribution of Υ∗
k, k = 0, 1. It is required for some fixed PF,N

and PF,N−1 that the PD,N be a monotonic increasing function of PD,N−1 so that the global

detection probability takes larger values as PD,N−1 is increased. The necessary conditions

satisfying this requirement can be obtained by taking the derivative of (167) and (168) with
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respect to PD:

d(1 − PF,N)

PD
=

(

dt∗

dPD
− 1

PD

)

fΛ∗
0
(t∗ − log

PD

PF
) − PF

dU1,0

PD
− (1 − PF )

dU0,0

PD
(169)

d(1 − PD,N )

PD
=

(

dt∗

dPD
− 1

PD

)

fΛ∗
1
(t∗ − log

PD

PF
) + U1,1 − U0,1 − PD

dU1,1

PD
− (1 − PD)

dU0,1

PD

(170)

where Uk,j =
∫ log

PD
PF

log
1−PD
1−PF

FΥ∗
k
(y)fΛ∗

j
(t∗ − y)dy. Note that if PD,N−1 is changed, to keep PF,N

at some fixed value, the threshold t∗ at SN needs to be changed as well. The required

expression for t∗ can be obtained by equating (169) to 0,

(

dt∗

dPD
− 1

PD

)

fΛ∗
0
(t∗ − log

PD

PF
) = PF

dU1,0

PD
+ (1 − PF )

dU0,0

PD
. (171)

Substituting (171) in (170), we finally arrive at

d(1 − PD,N )

PD
=

(

PF
dU1,0

PD
+ (1 − PF )

dU0,0

PD

)

fΛ∗
1
(t∗ − log PD

PF
)

fΛ∗
0
(t∗ − log PD

PF
)

+ U1,1 − U0,1

− PD
dU1,1

PD
− (1 − PD)

dU0,1

PD
.

(172)

It is usually required that PD > PF , which implies that U1,1−U0,1 < 0. To have
dPD,N

PD
> 0,

a sufficient condition is then given by

fΛ∗
1
(t∗ − log PD

PF
)

fΛ∗
0
(t∗ − log PD

PF
)
≤

PD
dU1,1

PD
+ (1 − PD)

dU0,1

PD

PF
dU1,0

PD
+ (1 − PF )

dU0,0

PD

(173)

We observe that the left hand side of (173) is the likelihood ratio of the likelihood ratio.

In [173], it is shown that the likelihood ratio of a likelihood ratio is the likelihood ratio

itself. Hence, the condition in (173) can be reduced to

t∗ − log
PD

PF
≤ log

PD
dU1,1

PD
+ (1 − PD)

dU0,1

PD

PF
dU1,0

PD
+ (1 − PF )

dU0,0

PD

(174)

We can evaluate
dUk,j

PD
using the Leibniz’s’ formula [71], however, the resulting expression

does not allow for a closed form expression for the sufficiency condition in (174). Neverthe-

less, it is clear that at as long as the threshold t∗ satisfies (174), we guarantee that PD,N is

an increasing function of PD and hence, global optimality is achieved by Neyman-Pearson

test at each stage. In Section 7.6, we present several numerical results that show that LR-

based decision fusion is optimal in the sense that the detection probability increases as the

number of sensors in the serial detection process increases.
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Wireless channels 

S1 Sj

yN
yny1
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uju1 uN

r1 rj rN
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Figure 43: Parallel configuration of a sensor system for distributed detection over fading
channels

7.2.2 Parallel Configuration

In Figure 43, we depict the block diagram of a parallel network of N sensors. In a similar

manner to serial network, the local sensor observation yj is first mapped to a local binary

decision denoted by uj ∈ {0, 1}, which is then transmitted to the fusion center, S0 using a

binary modulation scheme. Again assuming frequency flat fading and additive noise channel

between the local sensor and the fusion center, the signal received from Sj is given by

rj =
√

ρjgjsj + nj (175)

where the signal and channel parameters are as described in Section 7.2.1.

The decision at the fusion center is based on the received signals, r = [r1, r2, · · · , rN ]. We

assume that both the observations uj and the received signals rj are statistically independent

for j = 1, · · · , N conditioned on the hypothesis. The false alarm and detection probabilities

at Sj, j = 0, · · · , N, are defined as PF,j = Pr(uj = 1|H0), PD,j = Pr(uj = 1|H1). In this

case, the fusion rule based on the Neyman-Pearson lemma can be stated as follows: for a

prescribed bound on the global false alarm rate, PF,0, find the decision rules both at the

local sensors and at the fusion center that maximize the global detection rate, PD,0.
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7.2.2.1 Decision Fusion Rule and Error Probabilities

According to Neyman-Pearson lemma, the optimal decision rules at S0 reduces to the like-

lihood ratio test

Γ(r) =
L(r|H1,g)

L(r|H0,g)
=

N
∏

j=1

p(rj|H1, gj)

p(rj|H0, gj)

H1

≷

H0

t0 (176)

where

p(rj|H1, gj) = PD,jpn(r
(1)
j ) + (1 − PD,j)pn(r

(0)
j ),

and

p(rj |H0, gj) = PF,jpn(r
(1)
j ) + (1 − PF,j)pn(r

(0)
j ),

with r
(k)
j = rj −

√
ρgjs

k. Let Υ(rj) = p(rj|H1, gj)/p(rj |H0, gj). With binary phase shift

keying (BPSK) modulation, we can simplify Υ(rj) to

Υ(rj) =
PD,jξj + 1 − PD,j

PF,jξj + 1 − PF,j
(177)

where ξj = exp
(

4
√

ρℜ{rjg
∗
j }
)

. Substituting (177) into (176), the LR test at the fusion

center can be obtained as

N
∏

j=1

Υ(rj)

H1

≷

H0

t0 (178)

where t0 is a threshold to be determined. Taking the logarithm of both sides, we equivalently

have

N
∑

j=1

Υ∗(rj)

H1

≷

H0

t∗0 (179)

where Υ∗(rj) = log(Υ(rj)), and t∗0 = log(t0). Note that the fusion rule described by (179)

requires (i) the exact knowledge of the channel gain gj and (ii) the false alarm & detection

probabilities at the local sensors. We assume quasistatic fading where the channel remains

constant for a long period. In that case, the CSI can be estimated at the fusion center using

a training sequence.
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False Alarm and Detection Probabilities

In order to assess the performance of the decision fusion rule in (179), and to develop

optimal thresholds, we need to derive the false alarm and detection probabilities. At the

fusion center, the false alarm probability is given by

PF,0 = Pr





N
∑

j=1

Υ∗(rj) > t∗0|H0



 . (180)

Noting that we have 2N different possible decision vectors u = [u1, · · · , uN ], and using the

total probability theorem [5], we have

PF,0 =

2N−1
∑

k=0

Pr(u = uk|H0)Pr





N
∑

j=1

Υ∗(rj) > t∗0|u = uk,H0



 (181)

where Pr(u = uk|H0) =
∏N

i=1,u=uk
P ui

F,i(1 − PF,i)
1−ui , uk = bin(k,N), and bin(k,N) is the

binary vector representation of k using N bits, e.g., [0, 0, 1, 1] = bin(3, 4). Substituting (177)

into (181), using rj = (2uj − 1)
√

ρgj + nj, and observing that Pr (· |u = uk,H0) in (181) is

independent of the underlying hypothesis H0, we can express (181) as

PF,0 =
2N−1
∑

k=0

Pr(u = uk|H0)Pr





N
∑

j=1

Υ∗
uj

(n′
j) > t∗0|u = uk



 (182)

where

Υ∗
uj

(n′
j) = log

PD,je
(2uj−1)4ρ|gj |2+4

√
ρn′

j + 1 − PD,j

PF,je
(2uj−1)4ρ|gj |2+4

√
ρn′

j + 1 − PF,j

,

with n′
j ∼ C(0, |gj |2/2)2. Let Γ∗

uk
=
∑N

j=1 Υ∗
uj

(n′
j), and denote the cumulative distribution

of Γ∗
uk

by FΓ∗
uk

(·). Then we can rewrite (182) as

PF,0 = 1 −
2N−1
∑

k=0

Pr(u = uk|H0)FΓ∗
uk

(t∗0). (183)

We can show that the probability density of Υ∗
uj

(n′
j) is given by (161) with k = uj. In a

similar fashion, the cumulative distribution can be obtained as

FΥ∗
uj

(a) =























0 a < log
1−PD,j

1−PF,j

Q
((

(2uj − 1)4ρ|gj |2 − (1−PF,j)e
a−(1−PD,j)

PD,j−PF,jea

)

/4|gj |
√

ρ
)

log
1−PD,j

1−PF,j
< a < log

PD,j

PF,j

1 a > log
PD,j

PF,j

(184)

2C(0, σ2) denotes the zero-mean Gaussian distribution with variance σ2
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Hence, using (161), (184), and the fact that Υ∗
uj

(n′
j) are independent for j = 1, · · · , N , we

obtain FΥ∗
uj

(.) as

FΓ∗
uk

(t∗0) =

∫ BN−1

AN−1

· · ·
∫ B1

A1

fΥ∗
u1

(y1)

N−1
∏

j=2

fΥ∗
u1

(yj − yj−1)FΥ∗
uN

(t∗0 − yN−1)dy1 · · · dyN−1

(185)

where Ak =
∑k

j=1 log
1−PD,j

1−PF,j
and Bk =

∑k
j=1 log

PD,j

PF,j
. Using (185) and (183), with the

knowledge of the detection and false alarm probabilities at the local sensors, we can finally

evaluate the global false alarm probability, PF,0. Similarly, the detection probability can be

computed as

PD,0 = 1 −
2N−1
∑

k=0

Pr(u = uk|H1)FΓ∗
uk

(t∗0). (186)

where Pr(u = uk|H1) =
∏N

i=1,u=uk
P ui

D,i(1 − PD,i)
1−ui .

Although the fusion center uses a likelihood ratio test, determining the actual parameters

for the best detection is a formidable task. This is because, according to NP-lemma, one

needs to make an exhaustive search over all PF,i and PD,i to determine t∗0 so that for some

PF,0 ≤ α, PD,0 is maximized. Since analytical solution is not tractable, the optimal solution

can be found for only small values of N . From (183) and (186) it is clear that the complexity

increases with N .

7.2.2.2 Decision Rule Design for Parallel Detection

So far, we have not specified the detection rule at the local sensors. In the absence of errors

in the transmissions from local sensors to the fusion center, it can be shown that the optimal

tests at the local sensors are also LR tests. If the links are subject to fading and additive

noise, while the optimal fusion rule according to NP-lemma reduces to a likelihood-ratio test

at the fusion center, the optimal tests at the local sensors are not easy to derive. However,

one still needs some detection rule, and so, without claiming any optimality, we propose the

use of LR test also at the local sensors. The numerical examples in Section 7.6 will justify

that the detection in this fashion performs remarkably well.

130



The LR test at the local sensors is given by

Λ∗(yj) = log
p(yj|H1)

p(yj|H0)

H1

≷

H0

t∗j (187)

Assume that the distribution of the observations yj is known, and let Fi(·) denote the

cumulative distribution of Λ(yj)
∗ under the hypothesis Hi, i = 0, 1. Then, we can express

the false alarm and detection probabilities at Sj as PF,j = 1−F0(t
∗
j ) and PD,j = 1−F1(t

∗
j),

respectively. Hence, the design of the detection rules reduces to the determination of the

thresholds t∗j that maximize the PD,0 for some fixed PF,0.

As usual in distributed detection problems, an analytical solution is not feasible; there-

fore, we resort to numerical search procedures to determine the decision fusion rules. A

simplistic approach is to set the thresholds at all sensor nodes the same, however, in that

case, one can not guarantee the maximization of the global detection probability.

7.3 Distributed Detection with Multiple-Bit Decisions Trans-

mitted over Fading Channels

Thus far, we allowed transmission of only one bit per sensor to the fusion center. In

fact, making single-bit decisions is optimal under certain scenarios whenever they can be

available at the fusion center without any error [94]. Nevertheless, under fading and noisy

channel assumptions, making multiple-bit decisions and sending more than one bit to the

fusion center, although sacrificing from bandwidth and power, might significantly improve

the detection probability. In this section, we will investigate the analysis and performance

of multiple-bit sensor decisions. We first discuss the two-bit decisions and then generalize

the scheme to the multiple-bit decision rules. The ultimate goal is to determine the best

(possibly) multiple-bit decision rules that provide the optimal power/performance tradeoff.

7.3.1 Local Decisions with two bits

Consider the parallel configuration in Figure 43. When local sensors select one of the

hypotheses using Neyman-Pearson lemma, each of them compares the likelihood ratio with

a single threshold and makes a positive or negative decision which is the only statistics
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transferred to fusion center. This is similar to a two-level quantization problem. Increasing

the number of levels at local sensors certainly improves the performance at the fusion center

because it provides more information about the likelihood ratio. Assume now that we have

two more regions to make the decision in addition to those originally used in single-bit

decision. Then we generate two bits using the following likelihood ratio test

Λi(yi) =
p(yi|H1)

p(yi|H0)
∈



































(τ
(1)
i ,∞) decide H1, or set ui = 11

(τ
(2)
i , τ

(1)
i ] set ui = 10

(τ
(3)
i , τ

(2)
i ] set ui = 01

(−∞, τ
(3)
i ] decide H0, or set ui = 00

(188)

That is, we make a decision only if the likelihood ratio of the observed signal is sufficiently

large (or small). If the likelihood ratio is within the interval (τ
(3)
i , τ

(1)
i ), then we avoid

making a certain decision and, instead, we inform the fusion center with the most likely

decision. For example, when the likelihood ratio is within the interval (τ
(2)
i , τ

(1)
i ), then H1

is more likely to be observed but the value of the likelihood ratio is not in the range for

making a clear choice. This uncertainty is delivered to the fusion center by sending two

bits (10). Similarly, if Λi(yi) ∈ (τ
(3)
i , τ

(2)
i ], H0 is more likely but with some uncertainty and

so we send (01) to the fusion center. This approach certainly prevents the propagation of

ambiguous or less reliable decisions to the fusion center.

The received signal vector r, with binary modulation, is a 2 × N matrix whose entries

are independently and identically distributed conditioned on the channel state information.

Its conditional density given H1 is given by

p(r|H1,h) =
N
∏

i=1

p(ri0, ri1|H1, hi0, hi1) (189)

=

N
∏

i=1

[

PD,ipn(ri0 − hi0s
1
i )pn(ri1 − hi1s

1
i ) + PM,ipn(ri0 − hi0s

0
i )pn(ri1 − hi1s

0
i )+

P10,ipn(ri0 − hi0s
1
i )pn(ri1 − hi1s

0
i ) + P01,ipn(ri0 − hi0s

0
i )pn(ri1 − hi1s

1
i )
]

(190)

A similar expression can be written for the pdf under H0. The likelihood ratio is given by

Λ(r|h) =
p(r|H1,h)

p(r|H0,h)
(191)
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Taking the logarithm of both sides, the right hand side of (191) can be expressed as the sum

of log-likelihood ratios due to the received signal from individual local sensors, and hence,

it is possible to obtain the distribution function of the global likelihood ratio test, whereby

we determine the global detection and false alarm probabilities. We can then utilize the

Neyman-Pearson lemma to make a search for the optimal thresholds. The search space

for multiple-bit sensor decision is larger than that for single-bit decision; nevertheless, the

detection probability can be improved significantly as shown by the simulation results in

Section 7.6.

It is also possible to use a higher order modulation scheme to minimize the delay. For the

example above, two-bit decisions can be transmitted by a 4-QAM (Quadrature Amplitude

Modulation) or 4-PSK modulation scheme. The analysis is very similar to the case of

single-bit decisions transmitted by BPSK modulation.

7.3.2 A General Multi-bit Decision Method

The above technique can readily be generalized to other cases. In the sequel, we study a more

general problem to find optimal number of the decision bits (i.e., number of quantization

levels) at each sensor. Assume, for example, the kth sensor node generates a bk-bit decision

and employs 2bk -ary modulation to transmit its decision to the fusion center. Let τ
(k)
1 <

τ
(k)
2 . . . < τ2bk−1 be thresholds at node k, and let the observation samples, yk, k = 1, . . . , N

are confined to the interval [τmin, τmax]. The signal s
(k)
l is transmitted whenever yk ∈

(τ
(k)
l−1, τ

(k)
l ], l = 1, . . . , 2bk . Note that τ

(k)
0 = τmin and τ

(k)

2bk
= τmax. For signals that take any

value in the real line, we have τmin = −∞ and τmax = ∞.

The likelihood ratio test can be expressed as

Λ(r) =

N
∑

k=1

log

∑2bk

l=1 P
(1)
k,l pn(rk −√

ρgks
(k)
l )

∑2bk

l=1 P
(0)
k,l pn(rk −√

ρgks
(k)
l )

(192)

where P
(m)
k,l = Pr(yk ∈ (τ

(k)
l−1, τ

(k)
l ]|Hm). The false alarm and detection rates follow as

PF,0 = Pr(Γ(r) > t∗0|H0) (193)

PD,0 = Pr(Γ(r) > t∗0|H1). (194)
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Finally, we can write the optimization problem for the best multiple bit decision rules as

max PD,0

s.t. PF,0 ≤ α

N
∑

k=1

bk = Ntotal

τmin ≤ τ
(k)
l ≤ τmax, k = 1, . . . , N, l = 1, . . . , 2bk . (195)

The optimization in (195) is not a convex problem over the set of thresholds and the

number of decision bits. Therefore, it is very difficult to solve the problem using standard

optimization tools. Instead, one can employ exhaustive search methods to determine the

optimal number of bits and the thresholds, which is a formidable task. A suboptimal

method is to restrict the search over only the set of bk values satisfying the total bid budget

constraint and using locally most optimal decision thresholds at each node for that bk value.

In Section 7.6, we will present some examples to illustrate the performance of distributed

detection with this approach.

7.4 Distributed Detection with Analog Data Gathering

In the previous sections, we investigated the optimal threshold design in Neyman-Pearson

sense, and show that the search for the optimal designs does not allow for tractable solutions

even in the case of conditionally independent observations. In this section, we will follow a

promising approach that (i) incorporates the channel statistics with the detection scheme

and (ii) requires much less complexity than those that solely rely on the costly error cor-

rection mechanisms for improved reliability. We propose a distributed detection technique

based on analog transmission of the local observations (or the sufficient statistics in case of

multiple observations) to the fusion center. In this method, each sensor node first generates

a sufficient statistics, and then employs a linear analog modulation scheme, such as Double

Side Band (DSB), to transmit its real-valued data to the fusion center. That is, the local

data is simply amplified-and-forwarded; there is no local processing, quantization or coding

performed at the local sensor. We will refer to this method as analog approach. This ap-

proach has several advantages over its counterpart the digital approach where a quantized
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version (local decisions consisting of a few bits) is forwarded to the fusion center. In the

digital approach, one needs to determine optimal decision rules for both the local sensors

and the fusion center, which is computationally impractical even for a network with a few

sensor nodes. However, the proposed detection scheme requires only the determination of a

single decision rule at the fusion center, and possibly the computation of the optimal power

allocation gains which can be pursued either analytically or numerically with much less

complexity than that required for the digital approach. Another advantage of the analog

approach is that it can readily be employed for cases where there exists correlation between

the sensor observations.

7.4.1 Analog Signaling

We consider the parallel topology shown in Figure 43. The sensor node Sk employs an

amplify-and-forward technique to transmit its statistics yk; there is no quantization or

coding on yk. We consider a linear analog communication scheme such as double side-band

(DSB)3 modulation where the transmitted signal at Sk is given by [59]

xk(t) =
√

ρkyk cos(2πfck
t), 0 ≤ t ≤ Ts

where ρk is the power gain, gk is the channel gain and fck
is the carrier frequency, and the

transmit power is P = ρkȳ
2
k. The received signal (after coherent detection) can be expressed

as

rk =
√

ρk
√

gkyk + nk

where nk is the zero mean additive white Gaussian noise (AWGN) with variance ξ2
k. Letting

y = [y1, . . . , yK ], A = diag{√ρ1, . . . ,
√

ρK}, G = diag{√g1, . . . ,
√

gK}, n = [n1, . . . , nK ],

and r = [r1, . . . , rK ], we equivalently have

r = AGy + n

Note that the channel noise covariance matrix is given by Cn = diag{ξ2
1 , . . . , ξ2

K}. We

assume that, conditioned on Hk, y ∼ N (µk,Cy,k) with µk = [µk,1, . . . , µk,K]. With the

signal model above, we have r ∼ N (Dµk,DCy,kD
T + Cn) where D = AG.

3One can also employ a single-side band modulation which will be more efficient in terms of bandwidth
expansion. The related analysis for this case follows similarly.
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Not that according to this analog scheme, one does not need to define a local decision

criterion and leaves the final decision to the fusion center that will make a decision based

on the corrupted version of local statistics.

7.4.2 Neyman-Pearson Detection

The optimal detection under Neyman-Pearson criterion reduces to the likelihood ratio test

given by

Γ(r) =
f(r|H1,A,G)

f(r|H0,A,G)

H1

≷

H0

t0. (196)

where f(v) = (2π|Σ|)−1/2 exp(−1
2(v−µ)TΣ−1(v−µ)) is the multivariate Gaussian density

function with µ the mean vector and Σ the covariance matrix. Substituting f(·) into (196)

and after some manipulations, we have4

Γ∗(r) = −1

2
rT (Σ−1

1 −Σ−1
0 )r+rT (Σ−1

1 Dµ1−Σ−1
0 Dµ0)−

1

2
(µT

1 DT Σ−1
1 Dµ1−µT

0 DΣ−1
0 Dµ0)

H1

≷

H0

t∗0

(197)

where t∗0 = log t0 + 1
2 log |Σ1|

|Σ0|
, and Σk = AGCy,kGA + Cn. From (197), the false alarm

and detection probabilities follows as

PF,0 = Pr(Γ∗(r) > t∗0|H0) (198)

and

PD,0 = Pr(Γ∗(r) > t∗0|H1), (199)

respectively. We note that Γ∗(r) assumes a quadratic Gaussian form and its density can

be evaluated using the probability theory [5]. However, the resulting expressions are quite

lengthy and do not provide useful insight. Rather, we consider a simpler case where Σ1 =

Σ0 = Σo, i.e., the covariance matrix of y are identical under both hypothesis, e.g., Cy,1 =

Cy,0 = Co. Thus, the quadratic term in (197) disappears and Γ∗(r) reduces to a linear

4It is convenient to express likelihood ratios in logarithmic form
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combination of Gaussian random variables. The mean and the variance of Γ∗(·) conditioned

on Hk is then given by

µΓ∗,k = (−1)k
1

2
(µ1 − µ0)

TDT Σ−1
o D(µ1 − µ0) (200)

σ2
Γ∗,k = (µ1 − µ0)

T DTΣ−1
o D(µ1 − µ0) (201)

Finally, the false alarm and detection probabilities in (198) and (199) boils down to

PF,0 = Q

(

t∗0 − µΓ∗,0

σΓ∗,0

)

(202)

and

PD,0 = Q

(

t∗0 − µΓ∗,1

σΓ∗,1

)

, (203)

respectively, where Q(x) = 1/
√

2π
∫∞
x e−t2/2dt. According to NP-lemma, the threshold

t∗0 can be determined for any prespecified size α, and with this threshold, the detection

probability (a.k.a. power) is given by

PD,0 = Q

(

Q−1(α) −
√

(µ1 − µ0)
T DΣ−1

o D(µ1 − µ0)

)

(204)

From (204), the receiver operating characteristics (ROC) curves for the detection scheme

can readily be obtained for a fixed power allocation scheme A and channel gain matrix

G. Also note that expressions on the size and the power of the proposed detection scheme

reduce to those for the centralized detection if we set D = IK and Cn = 0K .

7.4.3 Optimal Power Allocation

Observe that the detection rate attained by the likelihood ratio test depends on the power

allocation gains ρ = [ρ1, . . . , ρK ], which implies that one can obtain larger PD,0 by suitable

power allocation. In this section, we solve for the optimal power gains that attain the

maximal PD,0 for a given total power budget, PT . Recall that the average transmit power at

node k is given by ρkȳ
2
k where, for equally likely hypotheses, we have ȳ2

k = [Co]k,k + (µ2
1,k +

µ2
0,k)/2 with [Co]k,k denoting the kth diagonal entry of Co. Let Py = max{ȳ2

1 . . . , ȳ2
K}.

Hence, the constraint on average of the total power transmitted from all K sensors is given

by
K
∑

k=1

ρk ≤ PT /Py.
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Note that Q(x) is a monotonically decreasing function, therefore, to maximize PD,0 we

need to maximize (µ1−µ0)
TDΣ−1

o D(µ1−µ0), or minimize −(µ1−µ0)
TDΣ−1

o D(µ1−µ0).

Therefore, the optimization problem can be cast as

min −(µ1 − µ0)
T DΣ−1

o D(µ1 − µ0)

s.t.
∑K

k=1 ρk ≤ PT /Py. (205)

which can be simplified to

min −(µ1 − µ0)
T (Co + Λ−1)−1(µ1 − µ0)

s.t.
∑K

k=1 ρk ≤ PT /Py. (206)

where Λ = diag{ρ1g1/ξ
2
1 , . . . , ρKgK/ξ2

K}. This optimization is convex over ρ1, . . . , ρK . Al-

though a closed form solution to the problem may not be analytically feasible for a general

Co, one can use interior point methods or gradient-based methods to solve for the optimal

power gain set [23]. We will illustrate several numerical examples in Section 7.6 for this

case.

A closed form solution exists when the observations at the local sensor nodes are uncor-

related in which case the covariance matrix Co is diagonal, i.e., Co = diag{σ2
1 , . . . , σ

2
K}. In

this case, the optimization in (206) reduces to

min −∑K
k=1 ∆2

k
ρkgk

ρkgkσ2
k+ξ2

k

s.t.
∑K

k=1 ρk ≤ PT /Py. (207)

for which the Lagrangian cost function follows as

J(λ,ρ) = −
K
∑

k=1

∆2
k

ρkgk

ρkgkσ
2
k + ξ2

k

+ λ

(

K
∑

k=1

ρk − PT /Py

)

(208)

and ∆k = µ1,k − µ0,k. The KKT conditions are given by

−∆2
k

gkξ
2
k

(ρkgkσ2
k + ξ2

k)2
+ λ = 0

K
∑

k=1

ρk = PT /Py (209)
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Without loss of generality, assume that g1∆
2
1/ξ

2
1 > g2∆

2
2/ξ

2
2 > . . . > gN∆2

N/ξ2
N , and define

a(L) =

√
gL∆L

ξL

PT /Py +
∑L

k=1
ξ2
k

gkσ2
k

∑L
k=1

∆kξk√
gkσ2

k

(210)

Next determine the unique L1 such that a(L1) > 1 and a(L1 + 1) < 1. If a(k) ≥ 1 for

∀k, k = 1, . . . ,K, then set L1 = K. By the KKT conditions in (209), we can finally write

the optimal power gains as

ρopt
j =



















∆jξj√
gjσ2

j

PT /Py+
∑L1

k=1

ξ2k
gkσ2

k
∑L1

k=1
∆kξk
gkσ2

k

j = 1, . . . , L1

0 j = L1 + 1, . . . ,K

(211)

From (211), the optimal power gains are determined in two steps: First, enumerate the

sensor nodes in a descending order with respect to their channel signal-no-noise ratios, and

then determine L1 which, in effect, specifies a signal-to-noise ratio threshold. Second, set

the power gains ρj as in (211). It is seen that according to the optimal power allocation,

some of the sensors are not allowed to transmit if the signal-to-noise ratio for that node is

below some threshold.

We note that instead of performing optimal power allocation, one can employ subopti-

mal methods to distribute the power, e.g., using identical power gains at all sensor nodes;

though one does not guarantee the best detection performance with such schemes. How-

ever, as shown by the numerical examples, even with uniform power allocation, one can

attain detection performance comparable to that obtained with the optimal power gains.

Furthermore, at high signal-to-noise ratios, the detection rate given by (204) can be shown

to converge to

PD,0 ≈ Q

(

Q−1(α) −
√

(µ1 − µ0)
TC−1

o (µ1 − µ0)

)

(212)

which is exactly the detection rate attained by the centralized detector.

7.5 Sequential Distributed Detection

The distributed detection procedures discussed so far operate with a fixed number of ob-

servations, and based on that the decision rules are predetermined, e.g., fixed sample size

detector. Alternatively, in sequential detection, the number of observations for reaching
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the decision is random and they are based on the observations themselves [91]. We illus-

trate the sequential method with a simple example. Consider the binary hypothesis testing

problem for which an infinite sequence of iid random observations Y1, Y2, . . . , can be gener-

ated. After taking the ith observation, a sequential test is performed to find the probability

π = P (Y1, · · · , Yi), i = 1, 2, . . ., and stop taking observations as soon as a desired clarity

level is achieved. It is desirable to minimize the number of observations to reduce the cost

of taking the observations and the delay for the final decision. Hence, we wish to achieve

an optimal trade-off between the cost of observations and decisions quality.

The idea of sequential detection can be deployed in the area of distributed detection [88,

112,132,177,178]. In this context, the sequential test can be made either at the fusion center

based on the decisions received from the local sensors [88,177], or at the local sensors that act

as a team using a coupled objective function without interaction of a fusion center [40,178].

In this section, we will primarily investigate the former one, but in cases where the links

between the local sensors and the fusion center are subject to multipath fading. Contrary

to the previous work on distributed sequential detection that assumed error-free links, we

incorporate the effect of fading and noise in the detection process and determine how the

average number of required sequential tests and the detection capability is effected. We

assume that (i) the observations are conditionally independent from sensor to sensor, and

they are also iid at each sensor, (ii) local sensors are not allowed to communicate with each

other, and (iii) there is not feedback from the fusion center except for the “stop” signal

to inform the local sensors that a decision is made. The second assumption entails that

the decision at each sensor will depend only on its own observations. Second and third

assumptions together imply that local sensors may perform a sequential-like detection until

the “stop” signal is heard. Based on the available information pattern at each sensor, the

following scenarios are considered:

1. At time i, nth local sensor has access to observations yn,i = (yn,1, yn,2, . . . , yn,i), and

the fusion center has access to the received signals (r1,1, r1,2, . . . , r1,i, . . . , rN,1, . . . , rN,i)

and the associated channel gains h = (h1,1, · · · , hN,i).
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2. At time i, nth local sensor has access only to the current observation yn,i and its

previous decisions, (un,1, . . . , un,i−1), while the fusion center has access to the same

information as in Case 1.

3. At time i, nth local sensor has access to the same information as in Case 2, while the

fusion center has access only to the current received signal, (r1,i, . . . , rN,i), and the

associated channel gains. As a simple modification, we will also study the case when

previous global decisions are also available.

While the idea of sequential processing in the distributed detection framework best suits to

the parallel configuration, it can also be applied in the serial and hierarchical configurations.

We leave the analysis for these configurations as future research.

We now describe a sequential detection method for channel-based distributed detection

in a parallel network. We study Case 1 since this scheme intuitively outperforms the others,

and the other cases are special cases of Case 1. The sequential-like decision to be performed

at nth sensor at time i uses the likelihood ratio test

Λn,i(yn,i) =
p(yn,1, . . . , yn,i|H1)

p(yn,1, . . . , yn,i|H0)
=

i
∏

k=1

p(yn,k|H1)

p(yn,k|H0)
(213)

> τi decide H1, set uni = 1

= τi decide H1 with probability εi

< τi decide H0 ,set uni = 0

(214)

and the sequential test at the fusion center uses the probability

πi = P (H1|r11, . . . , rNi,h) (215)

which is computed iteratively until νth step where ν = mini{πi : πi /∈ (πL, πU )}, and

0 ≤ πL < πU ≤ 1 are two thresholds determined by the distributions of the observations. If

πν ≥ πU , H1 is chosen, otherwise, H0 is chosen. Using the Bayes’ rule, the iterations can

be expressed as

πi =
Liπi−1

Liπi−1 + (1 − πi−1)
(216)

where Li =
∏N

n=1 L(n)(rni|πi−1, hni) with L(n)(rni|πi−1, hni) being the conditional likelihood

ratio between H0 and H1 based on rni. π0 is set to the prior probability of H1. From this

result, we arrive at the conclusion that for the optimal sequential distributed detection, each
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local sensor node performs a likelihood ratio test using (214) and the fusion center performs

a sequential test using (216). The thresholds at each sensor and at the local sensor can

be determined through exhaustive search, which becomes very complicated because of the

consideration of fading in the decision rule. The determination of thresholds at each sensor

depending on the channel realizations h is prohibitively complicated for the sensor nodes.

We can pursue robust design method for these thresholds in which the channel realizations

will not be used directly. For example, for Rayleigh fading, we select the average magnitude

of the channel to compute all thresholds.

Figure 44(a) illustrates a sequential test for detecting DC-level in additive Gaussian

noise. A parallel distributed detection network having N = 2 and N = 10 local sensors is

employed. The detection and false alarm rates are assumed constant at 0.6915 and 0.3085,

respectively, at each local sensor at any instant. The posterior probabilities are averaged

over the channel statistics: πi,ave = Eg(πi). The dashed lines depict πi under H0, and the

solid lines depict πi under H1. We observe that, at 10 dB, when the thresholds are πU = 0.9

and πL = 0.1, we need 6 iterations to make the decision with N = 2 local sensors, while

we need only 3 iterations with N = 10 local sensors. As SNR is increased, we need less

iterations to reach a decision, e.g., only 2 iterations is sufficient for N = 10 at 20 dB. Based

on the initial experiments, channel-based sequential distributed detection for wireless sensor

networks is very promising in managing performance/energy tradeoff.
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Figure 44: (a) Posterior probabilities πi sequentially computed using (216) when ρ = 10, 20
dB with N = 2, 10 local sensors. PD,ni = 0.6915 and PFA,ni = 0.3085 at nth local sensor at
time i; (b) Time division in sequential distributed detection.
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In the above discussion, all N sensors send their observations or decisions every time

unit until a satisfactory threshold is achieved. In other words, at every time unit, all N

observations/decisions are transmitted to the fusion center. In wireless sensor networks, N

can be in the order of hundreds of thousands. Nevertheless, not all N observations/decisions

are needed to meet the decision threshold. Therefore, in the above design, there will be

redundant information that unnecessarily consumes energy at the local sensors as well as at

the fusion center. To overcome this problem, we propose a time-division technique where not

all sensors transmit their observations/decisions every time unit (See Figure 44(b)). Instead,

N1 sensors send their decisions at time unit t1, other N2 sensors send their decisions at time

unit t2, other N3 sensors send their decisions at time unit t3, ..., other Ni sensors send their

decisions at time unit ti, where
i
∑

j=1

Nj = N. (217)

The challenge is to find the optimum [N1, N2, ..., Ni] vector that maximizes the detection

probability while minimizing the consumed energy given the fading channels between the

sensors and the fusion center. As an example, assume we have 1000 sensors. If we know

beforehand that 6500 observations are needed before the fusion center reaches a satisfactory

decision. Then, if all 1000 sensor send every time unit, then there will be 500 redundant

observations, which implies 500 unnecessary transmissions and 500 unnecessary process-

ing tasks. Instead, if we subgroup the sensors into groups of 200 sensors each, then there

will be 100 redundant observations/transmissions/processing. Similarly, if we subgroup the

sensors into groups with 100 sensors in each, then there will be no redundant observa-

tions/transmissions/processing. Nevertheless, the latter case requires 65 time units while

the former requires 33 time units to reach the satisfactory decision. This compromise of

energy-performance and delay is a key problem that will be investigated as part of the

future work.

7.6 Simulation Results

We devote this section to present several numerical examples for the analysis performed

in the previous sections. We illustrate the performance of different detection strategies
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and compare their performance. In the following examples, we consider the detection of a

DC-level signal in additive white Gaussian noise:

yk =











m + νk H1

νk H0

(218)

where νk ∼ N (0, σ2
k) is iid for k = 1, . . . ,K, and hence Co = diag{σ2

1 , . . . , σ
2
K}. Each sensor

node observes a signal that is either noise or noise plus some DC-level and transmits their

summary on the observation to the fusion center.

We first illustrate the performance of the serial and parallel detection through numerical

simulations (see Figure 45). We consider the case of single bit decision. Figure 45.a and

Figure 45.b depict the receiver operating characteristics (ROC) for ρ = 1 and ρ = 3,

respectively. The sensor nodes use BPSK modulated signals ±1 to transmit their decisions.

For the serial detection, by using the expressions (e.g., (163) and (164)) developed in Section

7.2.2.1, we obtain the best detection probability PD,N for a given PF,N by an exhaustive

search over PF,j, j = 1, · · · , N − 1. We used the numerical integration routine QUADL in

MATLAB c©. In the optimization process, we observed that the best PD,N can always be

achieved when the threshold is within the interval defined by the sufficiency condition in

(174). For the parallel scheme, identical thresholds are assumed at local sensors. For the case

of Rayleigh fading, we compute the average probabilities of the false alarm and detection.

We observe that when N = 2, the serial fusion structure achieves slightly better detection

performance than the parallel fusion does for both values of ρ = 0 and ρ = 3. When the

number of sensors is increased to N = 8, it is seen that the parallel distributed detection is

superior to the serial one. For all cases in this figure, we also observe that the performance

degradation due to the noise channel is significant with respect to the performance of the

centralized detection which assumes the availability of noise-free observations at the fusion

center.

Next, we illustrate the optimal threshold design for the parallel decision fusion. We

assume that the local sensors employ LR tests to perform detection and use BPSK modu-

lated signals ±1 to transmit their decisions. By using the expressions (e.g., (183)– (186))
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Figure 45: ROC-curves for DC-level detection problem using serial and parallel networks.
Simulation parameters: DC-level m = 1, N = 2 or 8 sensors, (a) ρ = 0 dB and (b) ρ = 4.77
dB, Rayleigh fading channel.

developed in Section 7.2.2, we obtain the optimal5 threshold values ti, i = 1, · · · , N by

an exhaustive search. We used the numerical integration routine QUADL in MATLAB c©.

In Figures 46.a and 46.b, we illustrate the ROC curves for parallel distributed detection

with N = 2 local sensors. The false alarm and detection probabilities are averaged over the

channel distribution, e.g., PF,0 = Eg{PF,0|g}. We consider 4 detection schemes: (i) ideal

local detectors6 , i.e., PD,j = 1, PF,j = 0, (ii) LR tests at all sensors with different local

thresholds, (iii) LR tests with the same local thresholds, and (iv) LR tests with all thresh-

olds set to 0, i.e., t∗j = 0. For the cases (ii) and (iii), we perform an exhaustive search to

determine the best threshold sets. We observe that the performance with the first scheme is

superior to the LR test based detection schemes. This is expected since in the first scheme,

the errors associated with the distributed detection are introduced during the transmission

of the local decisions. When the local detectors employ LR tests, the best detection prob-

ability is obtained when we do not put any constraint on the thresholds (Case (ii)) and

perform the search over all possible threshold sets. This search is computationally very

complex. If we limit the search such that each local sensor use the same threshold (Case

5The optimality of the thresholds is in the sense that they maximize PD,0 for some fixed PF,0.
6By ideal detector, it is implied that the detection error probabilities are 0.
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Figure 46: Optimal ROC-curves for DC-level detection problem with a parallel network.
Simulation parameters: DC-level m = 1, N = 2 sensors, (a) ρ = 0 and (b) ρ = 4.77 dB,
Rayleigh fading channel

(iii)), the computation burden is much less, but we observe some performance degradation.

The performance is worst for the heuristic detection where threshold is set to 0 at each local

sensor node (Case (iv)).

The performance of multiple-bit decision and its comparison with the performance of

single-bit decision is depicted in Figures 47-49. In Figure 47, we consider the case of two-bit

decisions transmitted by BPSK signals as described in Section 7.3.1. For a fair comparison,

we scale the transmission power for the two-bit decision scheme by 2. In Figure 47, we plot

the ROC curves for three different schemes when ρ = 10 dB: (i) N ∈ {2, 10} local sensors

sending single-bit decisions at 10 dB/bit, (ii) N ∈ {2, 10} local sensors sending two-bit

decisions at 5 dB/bit, and (iii) N ∈ {1, 5} local sensors sending two-bit decisions at 10

dB/bit. All three cases use the same amount of transmit power. We observe that if we

employ N = 2 sensors, the detection performance obtained by the two-bit sensor decisions is

superior to that obtained by the single-bit sensor decisions. When N is increased to 10, we

observe that the two schemes perform similarly. The results in case (iii) is very promising

in that even if we employ N = 1 or N = 5 sensors with two-bit decisions at each of them,

the detection probability of the distributed detection is improved significantly and superior

to single-bit decision. We note that this performance improvement is achieved by using
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the same total power as the other schemes but utilizing only half as many local sensors.

These results hint that the two-bit sensor decisions (transmitted with binary signaling)

are promising in providing better detection performance compared to the single-bit sensor

decisions under the same total power constraint.
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Figure 47: Comparison of ROC for distributed detection based on one-bit and two-bit
sensor decisions. ρ = 10 dB/bit for all schemes

We next illustrate the distributed detection for different multi-bit decision schemes de-

scribed in Section 7.3.2. In Figure 48, for a network of two sensor nodes, we compare the

detection performance between three different schemes where a total of NT = 2, 3 or 4

bits are allowed. Since the search for optimal thresholds is not practical, we use a fixed

threshold scheme. Specifically, for the DC-level problem at hand, we set τl = m/2 + lδ,

l = −(2bk−1−1), . . . , 0, 1, (2bk−1−1), where δ = m/2bk and bk denotes the number of bits for

the decision at node k. We preferred to use this threshold scheme since this one provided the

best detection performance among various other threshold schemes we simulated. Figure

48.a depicts the ROC curves for the case where the links between the local nodes and the

fusion center have similar fading levels whereas 48.b depicts the case when the one of the

links is severely fading. For NT = 2, the only possible scheme is to make single-bit decisions

at both sensor nodes. For NT = 3, we may have two cases: (b1, b2) = (1, 2) or (2, 1), and

for NT = 4, we have (b1, b2) = (1, 3), (2, 2), or (3, 1). From both figures, we observe that

in all cases, detection performance with single-bit decisions is superior to other schemes.
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When the links have similar quality, it is seen that different bit assignment schemes provide

similar quality for a given total bit budget. On the other hand, if one of the link is severely

fading, the best PD,0 for a fixed NT is attained when more bits are assigned for the sensor

node whose fading gain is smaller. For example, in Figure 48.b, for NT = 3 and NT = 4, the

schemes with (b1, b2) = (2, 1) and (b1, b2) = (3, 1), respectively, detects better than those

with other bit assignments with the same NT .
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Figure 48: Comparison of ROC for distributed detection based on multi-bit and single-bit
sensor decisions. N = 2 and ρ = 1 for all schemes. (a) |g1| = 0.8, |g2| = 0.7, (b) |g1| = 0.1,
|g2| = 1.01

In Figure 49, we illustrate the performance of multi-bit decision with N = 8 sensor

nodes. Since there are many ways to assign the number of decision bits (e.g., different

quantization schemes at each sensor node), we plot the ROC for three different schemes:

(i) single-bit decision at all sensor nodes, (ii) single or two-bit decisions where a two-bit

decision is made at a sensor node whose channel SNR is less than some pre-specified value

and a single-bit decision is made otherwise, and (iii) two-bit decisions at all sensor nodes.

we again observe that the best performance is obtained with a single-bit decision rule at

each sensor node.

We note for the results in Figures 48 and 49 that they are obtained for a fixed threshold

scheme. However, the specific result for the proposed threshold scheme is in compliance

with the conclusion in [94] where from an information theoretical perspective, it is shown
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that for an N -sensor network with a capacity constraint of N bits per time unit, having

each sensor transmitting one bit is optimum.
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Figure 49: Comparison of ROC for distributed detection based on multi-bit and single-bit
sensor decisions. N = 8 and ρ = 1 for all schemes.

We next study the performance of distributed detection with analog data gathering.

We also compare its performance with the digital approach under the same total transmit

power. According to NP-lemma, the optimal detection with the linear analog transmission

of yk is attained by the optimal power allocation given by (211). In the digital approach, a

single-bit decision is obtained locally by a likelihood ratio test

Λ(yk) = log
p(yk|H1)

p(yk|H0)











> tk H1, send +1

≤ tk H0, send −1
(219)

for which the false alarm and detection rates at the local sensor follow as

PF,k = Q
(

(tk + m2/σ2
k)/(m/σk)

)

and

PD,k = Q
(

(tk − m2/σ2
k)/(m/σk)

)

,

respectively. The signal received by the fusion center is given by rk =
√

ρkgkuk + nk,

k = 1, . . . ,K where uk ∈ {−1, 1} is the local decision at node k, and ρk = ρ is the transmit
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power gain.7 The total transmit power is PT = Kρ. The final decision is made at the fusion

center by another likelihood ratio test

Γ(r) = log
p(r|H1,g)

p(r|H0,g)

H1

≷

H0

t0. (220)

To illustrate the comparison between the optimal analog- vs. digital-based detection,

since networks of a larger number of sensor nodes do not allow for an analytical results, we

first study the detection performance with a single sensor node. For K = 1, the global false

alarm and detection rates for the digital approach described by the tests (219) and (220)

are given by

PF,0 = PF,1Q

(

t′0 −
√

ρ1g1

ξ1

)

+ (1 − PF,1)Q

(

t′0 +
√

ρ1g1

ξ1

)

(221)

PD,0 = PD,1Q

(

t′0 −
√

ρ1g1

ξ1

)

+ (1 − PD,1)Q

(

t′0 +
√

ρ1g1

ξ1

)

(222)

where

t′0 =
ξ2
1√

4ρ1g1
log

(1 − PF,1)t0 − (1 − PD,1)

PD,1 − PF,1t0
.

For the best detection performance according to Neyman-Pearson criterion, we need to find

threshold pairs (t1, t0) for which PF,0 = α and PD,0 is maximized. The determination of

(t1, t0)-pair even for this simple case is analytically infeasible. Instead, we resort to a nu-

merical procedure where an exhaustive search for t1 over the interval [−W,W ] is performed.

For numerical reasons, we first obtain the uniformly-spaced L samples in this interval, e.g.,

tl[n] = 2Wn/L, n = −L/2, . . . , L/2. To find the threshold pair for a specified α, we obtain

t0 for all tl[n] using (221) with the bisection method, and then calculate PD,0 using (222).

Finally, we select the threshold tl[n] that corresponds to the maximum PD,0. It is clear

that the procedure for the determination of the optimal threshold pairs is very tedious and

the complexity increases very rapidly as K increases. For K > 1, a rather simplistic, but

a suboptimal method is to employ the same thresholds at all local sensor nodes. However,

this choice does not guarantee the maximal detection rates.

7The notation for for the channel gain is slightly changed to make the comparison between the analog
and digital schemes fairly.
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In Figure 50, we depict the ROC curves for K = 1 at the channel signal-to-noise ratios

of ρ = 1 and ρ = 10 (which corresponds to PT = 1 and PT = 10, respectively, for the analog

approach). The simulation parameters are m = 1, σ2
1 = 1, ξ2

1 = 1. For the digital approach,

the performance of two detection rules are considered: (i) t1 = 0 for all α, and (ii) optimum

t1 obtained for each α using the exhaustive search procedure described above. It is seen

that for ρ = 1, the detection rates with the analog approach is uniformly higher than both

digital approaches. For ρ = 10, the digital approach with optimal threshold attains better

detection rates than the analog approaches does; however, the performance difference is

negligibly small. We note that the cost of computing the optimal thresholds even for this

simple case is very high. However, the analog approach is based on a simple amplify-and-

forward technique and can achieve detection rates very close to that of the optimal scheme.

We also observe that as the signal-to-noise ratio is increased, the detection performance at

the fusion center for both schemes merges to the one that can be attained by the centralized

detection. Another interesting observation is that at ρ = 10, the ROC curve for the digital

approach with t0 = 0 has a piece-wise linear form which bends at PF,0 = 0.31 where the

PD,0 coincides with that of the digital approach using the optimal threshold.
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Figure 50: Comparison of ROC for distributed detection based on the digital and analog
approaches. The simulation parameters: ρ = 1 or 10, σ2

1 = 1, m = 1, ξ2
1 = 1, g1 = 0.7.
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Next, we illustrate the results when K = 2 and K = 8 in Figures 51.a and 51.b,

respectively. We assume that σ2
k = 1, and ξ2

k = 1, for k = 1, . . . ,K. The channel

gains, which are the realizations of a Rayleigh random variable, are g = [0.1 0.9] and

g = [1.07 0.50 0.94 1.27 1.06 0.71 0.79 0.67] for K = 2 and K = 8, respectively. For the

digital approach, determining the optimal threshold vector t = [t1, . . . , tK ] is impractical

because of the computational burden of the search over a set of LK K−tuples; therefore,

we set tk = 0. From the ROC curves in Figures 51.a and 51.b, the following observations

are in order: (i) For all cases under consideration, the detection performance of the analog

approach with optimal power allocation is superior to the detection performance of the

digital approach. Furthermore, the detection rates with the uniform power allocation is

either higher than or very similar to those attained by the digital approach. (ii) As the

transmit power in increased, the ROC curves for the analog approach converges to those

of the centralized detection. (iii) For the analog approach at high signal-to-noise ratios,

optimal and uniform power allocation schemes result in nearly same detection rates. These

results indicate that the analog transmission-based detection is a promising technique for

distributed detection applications in sensor networks.
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Figure 51: Comparison of ROC for distributed detection based on the digital and analog
approaches. The simulation parameters: ρ = 1 or 10, σ2

k = 1, m = 1, ξ2
k = 1, a) (Left)

K = 2, g = [0.1 0.9], b) (Right) K = 8, g = [1.07 0.50 0.94 1.27 1.06 0.71 0.79 0.67].

Figures 52.a and 52.b plot the miss probability (PM,0 = 1−PD,0) vs. signal-to-noise ratio
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for K = 1, 2, 4, 8 and 16 sensor nodes. The channel fading is Rayleigh distributed and the

probability of miss is obtained by averaging over the channel statistics. We observe in both

figures that, at high signal-to-noise ratios, the miss probability with K sensors converges

to a lower bound that coincides with the miss probability of the centralized detection, as

expected. On the other hand, for PT /K < 10 dB, we see that the slopes of PM vs. PT /K

plots increases as K increases, which indicates that significant diversity (along with the

increased sample-size) can be attained by distributed detection when the channels between

the sensor nodes are subject to independent fading.
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Figure 52: Miss Probability vs. PT /K. PM,0 is averaged over the channel statistics. The
simulation parameters: σ2

k = 1, m = 1, ξ2
k = 1. a) (Left) PF,0 = 0.2, and b) (Right)

PF,0 = 0.3

So far, we studied examples for which the observations at the local sensor nodes are

assumed to be independent from each other, e.g., Co is diagonal. While the digital approach

does not allow for simple solutions to the case of conditionally dependent observations, the

analog approach does. In the next example, we assume that the covariance matrix has a

block circulant form given by

[Co]i,j = ρ|j−i|
c , ρc ≤ 1 (223)

and the mean of yk is given by µk = e−(k−1)/10, k = 1, . . . ,K, e.g., the observation signal-

to-noise ratio decreases exponentially from sensor node k = 1 to sensor node K. Figure 53

illustrates the ROC curves for K = 8. We observe that as the correlation between the
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observations of the sensor nodes increases, the detection performance for both the central-

ized detection and the distributed detection schemes degrade significantly. For example,

for the centralized detector with PF,0 = 0.2, the PD,0 decreases to 0.563 from 0.86 while ρc

increases from 0.1 to 0.9; meanwhile for the distributed detection scheme at ρ = 10, the

PD,0 decreases to 0.559 from 0.83 (see Figure 53.b). It is also seen that at higher levels

of correlation, the detection rates attained by the analog-based detection scheme are very

close to those of the centralized detector for both ρ = 1 and ρ = 10. This hints that the

intersensor correlations can be exploited to have better detection rates by the proposed

detection scheme.
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Figure 53: ROC when Co is given by (223). The simulation parameters: K = 8, ρc =
0.1(thick lines) and ρc = 0.9, σ2

k = 1, ξ2
k = 1, a) (Left) ρ = 1 (PT = 8) and b) (Right)

ρ = 10 (PT = 80).

7.7 Chapter Summary

We investigated the distributed detection problem in WSN under the assumption of fading

channels. Various schemes are analyzed and the optimal design of distributed detectors

for each scheme are studied. We derive the LR-based optimal fusion rules that incorpo-

rate fading in the distributed detection problem. Analog data gathering for the distributed

detection problem is proposed. We show that with analog approach, the detection per-

formance can be optimized by a suitable power allocation. In the digital approach, the
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optimal decision rule amounts to determine the local thresholds and the global threshold to

be employed for the LR test. We observe that multiple-bit sensors decisions help improve

the detection performance with the same transmit power when transmitted by BPSK mod-

ulation. If multi-bit decisions are transmitted with M-ary modulation schemes, simulation

results indicate that transmitting one bit with BPSK has a better detection performance.

The results on the use of sequential detection over fading channels show that for large net-

works, sequential detection can be very efficient compared to fixed-sample size distributed

detector.
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CHAPTER VIII

CONCLUSIONS

MIMO communications is currently being implemented in many telecommunication systems

and the next generation wireless infrastructures are expected to enjoy the benefits of MIMO

communications to its ultimate extent. In this dissertation we dealt with several issues

arose in the application of MIMO sysems in wireless communications. In Chapters 2–4, we

consolidated the performance analysis for a MIMO antenna system using receive antenna

selection. In particular, we studied three schemes (i) space-time coding over iid MIMO

fading channel, (ii) space-time coding over spatially correlated MIMO fading channel , and

(iii) MIMO-OFDM systems. We derived explicit closed-form upper bounds on the pairwise

error probabilities for the scenarios being considered, and showed that, for each case, one

can retain the asymptotical performance gain with an energy-based antenna selection. The

resulting analysis is also used for designing optimum space-time codes for MIMO systems

using antenna selection.

In Chapter 5, we dealt with the joint-source channel coding for a MIMO antenna sys-

tem. We proposed a turbo-coded multiple description coding scheme for multiple antenna

transmission. This scheme is suitable for end-to-end transmission of some real valued sig-

nal through a MIMO wireless channel. We showed by simulations that by transmitting

correlated streams over an iid fading MIMO channel, we can attain less mean-square er-

ror distortion than that attained by the single-description coding. This scheme is a way

to exploit the correlation between the streams that arrives at the receiver through inde-

pendently fading channels. The proposed iterative decoding method achieves this by an

extrinsic information exchange between the source decoder and channel decoder.

In Chapters 2-5, our assumption was that the transmitters and/or receivers were equipped

with multiple antenna elements. However, because of the limited size of the mobile units,

it may not be possible to deploy more than one antenna. In this case, it is still possible
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to benefit from spatial diversity provided that the individual nodes cooperative with each

other. In Chapter 6, we proposed a distributed turbo code for a wireless relay channel where

the relay node assists the source node to attain such cooperative diversity. We assumed a

full-duplex relay node which can simultaneously transmit (the previous block it decoded)

and receive (the fresh block from the source). Hence, the information from the source to

the destination node can be transmitted in contiguous blocks. We proposed an iterative

decoding method and showed that with this scheme, it is possible to get within 1-dB of the

capacity limits of the relay channel.

In the last chapter of the dissertation, we investigated distributed detection strategies for

wireless sensor networks in which the links between the sensor nodes are noisy and fading.

We categorized two main approaches: (i) digital approach where the local sensors makes a

local decision consisting of a few bits, and (ii) analog approach where the decision statistics

or observations are transmitted using a linear analog transmission scheme. For each case

being considered, we derived expressions for detection and false alarm probabilities, which

are then used for performance assessment and design optimization. We compared the

performance of these strategies via simulations. The advantage of the analog approach is

that the optimal design is much simpler than that for the digital approach. Furthermore, in

many cases, the detection performance is superior with the analog approach. For the digital

approach, it turns out that three is trade-off between the number of bits allocated for local

decisions and the detection performance. Finally, we note that the sequential detection in

wireless sensor networks is a viable method for energy-efficient detection.
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APPENDIX A

UPPER BOUND IN CLOSED FORM FOR M = 2 AND

ANY N WHEN L = 1

Applying the binomial expansion in (47), we obtain

P (S → Ŝ) ≤ 8N

(λ2 − λ1)ρ

N−1
∑

n=0

C(N − 1, n)

∫ 1

0
logn(x/e)

(

xn+ρλ1/8 − xn+ρλ2/8
)

dx (224)

Letting x/e = u and then log(u) = t, we obtain

P (S → Ŝ) ≤ 8N

(λ2 − λ1)ρ

N−1
∑

n=0

C(N−1, n)

[

e
n+1+ρλ1/8

∫ −1

−∞

t
n
e

t(n+1+ρλ1/8) − e
n+1+ρλ2/8

∫ −1

−∞

t
n
e

t(n+1+ρλ2/8)
dt

]

(225)

Now, consider

In =

∫ −1

−∞
tneatdt

Integration by parts gives us

In = (−1)n
e−a

a
− n

a
In−1

Solving this recurrent equation for In with the initial value of I0 = e−a

a , we get

In = (−1)n
e−a

a

[

1 +
n

a
+

n(n − 1)

a2
+ · · · + n!

an

]

(226)

Using a = n + 1 + ρλ1/8 and b = n + 1 + ρλ2/8 in (225) along with (226), the closed form

expression is obtained as

P (S → Ŝ) ≤ 8N

(λ2 − λ1) ρ

N−1
∑

n=0

C(N − 1, n)(−1)n
{(

1

an
+

n

a2
n

+
n(n − 1)

a3
n

+ · · · n!

an+1
n

)

−
(

1

bn
+

n

b2
n

+
n(n − 1)

b3
n

+ · · · n!

bn+1
n

)}

(227)

Further simplification can be made after regrouping the terms in the summation and

then using xn − yn = (x − y)(xn−1 + xn−2y + · · · + yn−1) :
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P (S → Ŝ) ≤ N

N−1
∑

n=0

(

N − 1

n

)

(−1)n
(

1

anbn
+

n (an + bn)

a2
nb2

n

+
n(n − 1)

(

a2
n + anbn + b2

n

)

a3
nb3

n

+ · · · + n! (an
n + · · · + bn

n)

an+1
n bn+1

n

)
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APPENDIX B

PROOFS FOR LEMMA AND APPROXIMATION

B.1 Proof of Lemma

Let Ic =
∫

C(z
HAz)ie−zHBzdz. First, assume that A is non-singular, e.g., λi > 0, i =

1, · · · ,K. Then,

Ic =

∫

C
(zHΛz)ie−zH B̂zdz (228)

=
1

|Λ|

∫

C
(vHv)ie−vHB̄vdv (229)

=
1

|Λ|

∫

C
(vHv)ie−vHΓvdv (230)

=
πK

|Λ|

∫ ∞

0
· · ·
∫ ∞

0
(u1 + · · · + uK)ie−(γ1u1+···+γKuK)du1 · · · dK (231)

=
πK

|Λ|
∑

l1

· · ·
∑

lK

i!

l1! · · · lK !

∫ ∞

0
· · ·
∫ ∞

0
ul1

1 · · · ulK
K e−(γ1u1+···+γKuK)du1 · · · dK (232)

=
πK

|Λ|
∑

l1

· · ·
∑

lK

i!

γl1+1
1 · · · γlK+1

K

(233)

=
πK

|Λ||B̄|
∑

l1

· · ·
∑

lK

i!

γl1
1 · · · γlK

K

(234)

=
πK

|B|fi(tr(B̄
−1), · · · , tr(B̄−i)) (235)

=
πK

|B|fi(tr(AB−1), · · · , tr((AB−1)i)) (236)

where (228) follows by the SVD A = UΛUH , and B̂ = UHBU, (229) follows by the

change of variable v = Λ1/2z, and B̄ = Λ−1/2B̂Λ−1/2, (230) follows by the SVD B̄ =

VΓVH , (231) follows by converting the integral to the polar coordinates, (232) follows by

the binomial expansion and then changing the order of integration and summation (note

that the nested summation includes the (l1, · · · , lK) K-tuples for which
∑K

k=1 lK = i), (233)

follows by
∫∞
0 une−au = n!/an+1, (234) follows by

∏K
k=1 γk = |B̄|, (235) follows by |B̄| =

|Λ|−1|B|, and regrouping the terms in the summation and using the fact that
∑K

k=1 γj
k =
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tr(B̄−j), and finally (236) follows by B̄−1 = Λ1/2UHB−1UΛ1/2, and noting that tr(B̄−j) =

tr(Λ1/2UHB−1UΛ1/2 · · ·Λ1/2UHB−1UΛ1/2) = tr(AB−1 · · ·AB−1) = tr((AB−1)j).

If A is singular, we have Λ = diag(λ1, · · · , λr, 0, · · · , 0), i.e., some of the eigenvalues will

be 0s. Therefore, we can not use the change of variable z = Λ−1/2v and the set of equations

after (228) are not valid. Let A′ = A + ǫIK for any ǫ > 0, and define

I ′c =

∫

C
(zHA′z)ie−zHBzdz (237)

=

∫

C
(zHΛ′z)ie−zHB̂zdz (238)

where Λ′ = Λ + ǫIK . Since Λ′ is non-singular, we can now proceed to obtain

I ′c =
πK

|B|fi(tr(A
′B−1), · · · , tr((A′B−1)i)) (239)

Taking the limit, we finally arrive at the desired result

lim
ǫ→0

I ′c =
πK

|B| lim
ǫ→0

fi(tr(A
′B−1), · · · , tr((A′B−1)i)) (240)

=
πK

|B|fi(tr(AB−1), · · · , tr((AB−1)i)) (241)

= Ic (242)

A proof for the special case of i = 1 can also be obtained using the results of [38] for

which f1(tr(AB−1)) = tr(AB−1). �

B.2 Approximation

Note that if λk, k = 1, . . . , n, are the eigenvalues of the n×n matrix A, then the eigenvalues

of cA and cIn+A are given by cλk and c+λk, k = 1, . . . , n, respectively. Using the equalities

|A| =
∏n

k=1 λk and tr(A) =
∑n

k=1 λk, we have

|In + ǫA| =
n
∏

k=1

(1 + ǫλk) = 1 + ǫ
n
∑

k=1

λk + O(ǫ2) (243)

≈ 1 + ǫtr(A)

where in (244), we omit the higher order terms O(ǫ2). �
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