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SUMMARY

There has been much effort on understanding the behavior of functional differential

equations, e.g, equations with delays, in particular when the delays have complicated for-

mats. Developing the general theory for equations with involved delays is a challenging

task. This work is dedicated to studying the invariant objects of equations with delay per-

turbations, for example, the delay-related parts are led by small parameters, or the delays

are small.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Functional Differential Equations

Many causes in the natural sciences take some time to generate effects. If one incorporates

these delays in the models, one is led to descriptions of systems in which the derivatives

of states are functions of the states at previous times. These are commonly called delay

differential equations (DDEs). DDEs arise naturally in models from electrodynamics, con-

trol theory, biology, neuroscience, and economics, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and

references therein.

When the delay is a positive constant h, one can start with a function defined on r´h, 0s

as the initial condition and integrate forward. Note that the natural phase space is the space

of continuous functions defined on r´h, 0s, which is infinite-dimensional. There is a rather

satisfactory theory of existence and uniqueness and even a qualitative theory for this case,

see [3, 11, 12, 13].

However, equations from many real-life applications require non-constant delays, e.g.,

the delay may depend on time, the state at current time, a segment on the trajectory (state-

dependent delay). In some cases, the delay involve integration (distributed delay), or it

is defined implicitly. Moreover, the delays do not have to be literally delays, they can be

negative, the so-called advances, where the derivatives of states depend on the states at

some future times. Sometimes several delays are involved in one equation, with different

forms. The mathematical theory for these kinds of functional differential equations (FDEs)

in general has complications, and there is still a lot to explore.
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1.2 Invariant Objects

Invariant objects are important landmarks in dynamical systems which govern the behavior

of the solutions. Solutions start on the invariant objects will stay there for all time. Exam-

ples of invariant objects include periodic orbits, invariant tori, stable manifolds, unstable

manifolds, center manifolds, etc.

There has been many interests in studying the invariant objects both in theory and prac-

tice. The parameterization method, developed in [14, 15, 16, 17] attracts attention thanks

to its advantages proven in theoretical as well as numerical study.

1.3 Goal and Methodology

The goal of this work is to study the effect of delay-related singular perturbations. These

singular perturbations will produce a lot of new solutions which are not present prior to

perturbations. At the same time, some solutions in the unperturbed equations will persist,

and indeed, will guide our understanding of the perturbed systems. More precisely, we start

with ordinary differential equations (ODEs) or partial differential equations (PDEs) which

have some invariant objects, and show that when the delay-related perturbations satisfy

some conditions, the invariant objects will persist. We allow the delays to admit various

complicated forms, or to be advances, as long as the conditions are satisfied. In particular,

we analyze equations with implicitly defined small delays appearing in electrodynamics.

Our approach relies on the parameterization method and functional analysis. We deal

with functional equations coming from the parameterization method and construct their

solutions using tools from functional analysis. We provide results in “a posteriori” format:

given an approximate solution of the functional equation, which has some good condition

numbers, we prove that there is a true solution close to the approximate one. Thus, our re-

sult can be used to validate approximate solutions produced even by non-rigorous methods,

e.g. formal power expansions in the delay, or the results of numerical computations. The
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proofs are constructive and lead to practical algorithms.

A philosophy similar to that of this thesis has also been used in other papers. [18, 19,

20] develop functional equations for quasi-periodic solutions in several contexts and study

them using KAM theory.

This thesis is based on a series of joint works with Dr. Joan Gimeno and Dr. Rafael de

la Llave.

1.4 Prospectives

The results and proofs here are suitable for computer-assisted proofs. One can find with

confidence the size of the perturbative parameter which ensures that the invariant objects

are preserved.

The methods introduced here constitute a powerful toolkit that we hope can produce

results in other problems. For example, we expect to get persistence and higher regularity

of the center manifolds for state-dependent delay equations (SDDEs), which is essential

for applications of the center manifold reduction to bifurcation theory [5]. We can also

study more dynamical objects, like hyperbolic sets, under delay perturbations. Of course,

removing the perturbative setting remains a long term goal, but this seems to pass through

refining the theory of existence and regularity of [21]. Similar ideas can be used to in-

vestigate effects of localized perturbations of dynamical systems on their invariant objects

(center manifold, normally hyperbolic invariant manifold).

1.5 Organization

In Chapter 2, we study an SDDE resulting from adding a state-dependent delay perturba-

tion to a planar ODE, which is based on [22]. There we study stable periodic orbits and

their stable foliations. Chapter 3, based on [23], investigates FDEs with some delays or

advances which are close to ODEs or evolutionary PDEs with periodic orbits. Numerical

implementation of results in Chapter 2 is explained in Chapter 4 [24].
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CHAPTER 2

LIMIT CYCLES AND ISOCHRONS FOR FDES NEAR A PLANAR ODE

In the case where the delay in an equation is not a constant and depends on the state, one

needs to consider state-dependent delay equations (SDDEs). In contrast with the constant

delay case, more challenges present when developing the mathematical theory of SDDEs.

The paper [21] made important progress for the appropriate phase space for SDDEs. We

refer to [4] for a very comprehensive survey of the mathematical theory and the applica-

tions.

In this chapter, we consider a simple model (two-dimensional ODE with a limit cycle)

and show that all solutions close to the limit cycle present in this model persist (in some

appropriate sense) when we add a state-dependent delay perturbation. Models of the form

considered here (see equation (2.4)) appear in several concrete problems in the natural

sciences (circuits, neuroscience, and population dynamics), where small delay effects are

added, see [4].

The result is subtle to formulate since the perturbation of adding a state-dependent

delay is very singular, it changes the nature of the equation: the unperturbed case is finite-

dimensional while the perturbed case is infinite-dimensional. The basic idea is that we

establish the existence of some finite-dimensional families of solutions (in the phase space

of the SDDE), which resemble (in an appropriate sense) the solutions of the original ODE.

This allows to establish many other properties (e.g. dependence on parameters) which may

be false for solutions of SDDEs in general.

The method of proof bypasses the theory of SDDEs based on the evolution operator.

We consider the class of functions of time that have a well defined behavior (e.g. peri-

odic, or asymptotic to periodic) and derive functional equations which impose that they are

solutions of the SDDE. These functional equations are studied using functional analysis
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methods. The method of proof also leads to algorithms which have been implemented, see

Chapter 4.

One advantage of the method presented is that it allows to obtain smooth dependence

on parameters for the periodic solutions and their slow stable manifolds without studying

the smoothness of the flow (which seems to be problematic for SDDEs, for now the op-

timal result on smoothness of the flow is C1). Therefore, one can obtain higher than C1

dependence on parameters.

We hope that the method can be extended in several directions. For example, we hope to

produce higher dimensional families, families with other behaviors, and to consider more

complicated models. The conjectural picture is that in SDDEs, even if the dynamics in

a full Banach space of solutions is problematic, one can find a very rich set of solutions

organized in families. The families may not fit together well and may leave gaps, so that a

general theory may have problems [25].

2.1 Overview of the Method

It is known that in a neighborhood of a limit cycle of a 2-dimensional ODE, we can find

K : Tˆr´1, 1s Ñ R2, and ω0 and λ0 in such a way that for any θ, s, the function given by

xptq “ Kpθ ` ω0t, se
λ0tq (2.1)

solves the ODE, see [26]. The fact that all the functions of the form equation (2.1) are

solutions of the original ODE is equivalent to a functional equation forK, ω0 and λ0, which

we call “invariance equation” (2.6). Efficient methods to study the resulting functional

equation were presented in [26]. We will, henceforth, assume that K, ω0, λ0 are known.

Similarly, for the perturbed case, when we impose that for fixed θ, s the function of the

form

xptq “ K ˝W pθ ` ωt, seλtq (2.2)

5



is a solution of our delay differential equation, we obtain a functional equation for W , ω,

λ (see equation (2.8)). Note that the unknowns in equation (2.8) are the embedding W and

the numbers ω, λ.

Our goal will be to solve equation (2.8) using techniques of functional analysis. The

equation is rather degenerate and our treatment has several steps. We first find some asymp-

totic expansions in powers of s to a finite order, and then, we formulate a fixed point prob-

lem for the remainder. Due to the delay, information at previous times is needed. We

anticipate a technical problem is that the domain of definition of the unknown have to

depend on the details of the unknown. Similar problems appear in the theory of center

manifolds [27]. Here we have to resort to cut-offs and extensions. After this process, we

get a prepared equation, equation (2.9), which has the same format as equation (2.8), and

agrees with equation (2.8) in a neighborhood. Solutions of the prepared equation which

stay in the neighborhood will be solutions of the original problem.

The main result of this chapter is Theorem 7, which establishes that with respect to

some condition numbers of the problem, verified for small enough ε, given an approxi-

mate solution of the extended invariance equation equation (2.9), one obtain a true solution

nearby (“a posteriori” format). Then as a corollary, Theorem 10 answers the question of

smooth dependence on parameters.

As in the case of center manifolds, the family of solutions found to the original problem

may depend on the extension considered.

2.2 Formulation of the Problem

We consider an ordinary differential equation in the plane

9xptq “ X0pxptqq, (2.3)

6



where xptq P R2, X0 : R2 Ñ R2 is analytic. We assume above equation (2.3) admits a limit

cycle. Clearly, there is a two dimensional family of solutions to this ODE. This family can

be parameterized e.g. by the initial conditions, but as we will see, there are more efficient

parameterizations near the limit cycle.

We study an SDDE that is a “small” modification of equation (2.3) in which we add

some small term for the derivative that depends on some previous time. Adding some

dependence on the solution at previous times, arises naturally in many problems. Limit

cycles appear in feedback loops and if the feedback loops have a delayed effect, which

depends on the present state, to incorporate them in the model, we are led to:

9xptq “ Xpxptq, εxpt´ rpxptqqqq, 0 ď ε ! 1. (2.4)

Where xptq P R2, X : R2 ˆ R2 Ñ R2 is analytic, the state-dependent delay function

r : R2 Ñ r0, hs is as smooth as we need. The equation (2.4) is formally a perturbation of

equation (2.3) with Xpx, 0q “ X0pxq.

We can rewrite equation (2.4) as

9xptq “ Xpxptq, 0q ` εP pxptq, xpt´ rpxptqqq, εq, (2.5)

where we define

εP pxptq, xpt´ rpxptqqq, εq “ Xpxptq, εxpt´ rpxptqqqq ´Xpxptq, 0q.

We will find a two dimensional family of solutions of equation (2.4), which resembles

the two-dimensional family of solutions of equation (2.3). This is a much simpler problem

than developing a general theory of existence of solutions for an SDDE, which is a rather

difficult. Nevertheless, persistence of some family of solutions is of physical interest.

Since the perturbed problem is infinite-dimensional, the precise meaning of the contin-

7



uation of the unperturbed solutions into solutions of the perturbed problem is somewhat

subtle.

2.2.1 Limit cycles and isochrons for ODEs

Under our assumption, there exists a limit cycle (stable periodic orbit) in the unperturbed

equation (2.3). In a neighborhood of the limit cycle, points have asymptotic phases (see

[28, 29]). The points sharing the same asymptotic phase as point p on the limit cycle is the

stable manifold for point p. The stable manifold of the limit cycle is foliated by the stable

manifolds for points on the limit cycle (sometimes referred as stable foliations). The stable

manifolds for points on the limit cycle are also called isochrons in the biology literature,

see [28, 29].

According to [26], we can find a parameterization of the limit cycle and the isochrons

in a neighborhood of the limit cycle. More precisely, there exists real numbers ω0 ą 0,

λ0 ă 0, and an analytic local diffeomorphism K : Tˆ r´1, 1s Ñ R2, such that

X0pKpθ, sqq “ DKpθ, sq

¨

˚

˝

ω0

λ0s

˛

‹

‚

, (2.6)

whereK is periodic in θ, i.e. Kpθ`1, sq “ Kpθ, sq. Saying thatK solves equation (2.6) is

equivalent to saying that for fixed parameters θ and s, the function xptq “ Kpθ`ω0t, se
λ0tq

solves equation (2.3) for all t such that |seλ0t| ă 1. Notice that when s “ 0, Kpθ, 0q

parameterizes the limit cycle, and for a fixed θ with varying s, we get the local stable

manifold of the point Kpθ, 0q.

Note that geometrically, K can be viewed as a change of coordinates, under which the

original vector field is equivalent to the vector field X 1
0pθ, sq “ pω0, λ0sq in the space T ˆ

r´1, 1s. We could have started with this vector field X 1
0 and then added some perturbation

to it. However, to keep contact with applications, we decided not to do this.

Remark 1. As pointed out in [26], the K solving equation (2.6) can never be unique. If
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Kpθ, sq is a solution of equation (2.6), then for any θ0, b ‰ 0, Kpθ ` θ0, bsq will also be a

solution of equation (2.6). [26] also shows that this is the only source of non-uniqueness.

We will call such b scaling factor, and such θ0 phase shift. Note that by using a different b,

we can change the domain of K. However, no matter how the domain changes, s has to lie

in a finite interval.

In this chapter, for the equation after perturbation (2.4), we will show that if ε is small

enough, the limit cycle and its isochrons for the unperturbed equation persist as limit cycle

and its slow stable manifolds of the delayed model. We will use the name isochrons to

denote the slow stable manifolds and distinguish them from the infinite dimensional stable

manifolds similar to the one established in [12]. Meanwhile, we will find a parameterization

of them. More precisely, we will find ω ą 0, λ ă 0, and W which maps a subset of Tˆ R

to a subset of Tˆ R, such that for small s, K ˝W pθ, sq gives us a parameterization of the

limit cycle as well as its isochrons in a neighborhood. We assume that W can be lifted to a

function from R2 to R2 (we will use the same letter to denote the function before and after

the lift) which satisfies the periodicity condition:

W pθ ` 1, sq “ W pθ, sq ` p 1
0 q . (2.7)

We remark that K ˝W being a parameterization of the limit cycle and its isochrons is

the same as for given θ, and s in the domain of W , xptq “ K ˝W pθ ` ωt, seλtq solving

equation (2.4) for t ě 0.

2.2.2 The invariance equation and the prepared invariance equation

Substitute xptq “ K ˝W pθ ` ωt, seλtq into equation (2.5), let t “ 0, use the fact that DK

is invertible, we get that xptq “ K ˝W pθ`ωt, seλtq solves equation (2.4) if and only if W

9



satisfies

DW pθ, sq

¨

˚

˝

ω

λs

˛

‹

‚

“

¨

˚

˝

ω0

λ0W2pθ, sq

˛

‹

‚

` εY pW pθ, sq,ĂW pθ, sq, εq, (2.8)

where W2pθ, sq is the second component of W pθ, sq, ĂW is the term caused by the delay:

ĂW pθ, sq “ W pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq,

and

Y pW pθ, sq,ĂW pθ, sq, εq “ pDKpW pθ, sqqq´1P pKpW pθ, sqq, KpĂW pθ, sqq, εq.

Note that even if ĂW is typographically convenient, ĂW is a very complicated function of

W , it involves several compositions.

Now we need to look at equation (2.8) more closely and specify the domain and range

of W . One cannot define W on T ˆ r´b, bs, where b ą 0 is a constant. Indeed, ob-

serving the second component in expression of ĂW , se´λr˝KpW pθ,sqq, one will note that

|se´λr˝KpW pθ,sqq| ą |s|. This will drive us out of the domain of W since the second com-

ponent of W lies in a finite interval. Therefore, W has to be defined for all s on the real

line. So we let W : Tˆ RÑ Tˆ R. There is another technical issue as pointed out in the

following Remark 2.

Remark 2. When ε is small, we expect W to be close to the identity map. Then for s far

from 0, W pθ, sq does not lie in the domain of K, thus the invariance equation is not well

defined.

Similar to the study of center manifolds. We will use cut-off functions to resolve the

above issues.

We will transform our original equation (2.8) into a well-defined equation of the same
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format:

DW pθ, sq

¨

˚

˝

ω

λs

˛

‹

‚

“

¨

˚

˝

ω0

λ0W2pθ, sq

˛

‹

‚

` εY pW pθ, sq,ĂW pθ, sq, εq, (2.9)

where Y is defined on pTˆRq2 ˆR`, and r ˝K is defined on TˆR, with slight abuse of

notation, we still denote the term caused by the delay as ĂW :

ĂW pθ, sq “ W pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq.

We follow standard practice in the theory of center manifolds of differential equations,

see [27], and introduce the extensions:

• For r ˝K which is defined only on Tˆr´1, 1s, we define a function r ˝K on TˆR,

which agrees with r ˝K on Tˆ r´1
2
, 1

2
s, and is zero outside of Tˆ r´1, 1s.

• For Y : pT ˆ r´1, 1sq2 ˆ R` Ñ R2, we define Y : pT ˆ Rq2 ˆ R` Ñ R2, which

agrees with Y on the set pTˆr´1
2
, 1

2
sq2ˆR`, and is zero outside pTˆr´1, 1sq2ˆR`.

To achieve above extensions, let φ : RÑ r0, 1s be a C8 cut-off function:

φpxq “

$

’

’

&

’

’

%

1 if |x| ď 1
2
,

0 if |x| ą 1.

(2.10)

We define

r ˝Kpθ, sq “ r ˝Kpθ, sqφpsq,

and,

Y pW pθ, sq,ĂW pθ, sq, εq “ Y pW pθ, sq,ĂW pθ, sq, εqφpW2pθ, sqqφpĂW2pθ, sqq.

After these extensions, equation (2.8) is turned into the well-defined equation (2.9).

Note that, Y , r ˝K defined above have bounded derivatives in their domains up to any

11



order.

Remark 3. In the definition of cut-off function, one can let φ to vanish for |x| ą c1 where

the constant c1 ă 1, and let φ “ 1 for |x| ď c2 where the constant c2 ă c1.

Remark 4. The use of the cut-off function here is very similar to the use of cut-offs in the

study of center manifolds in the literature, if we choose a different cut-off function φ, we

will possibly end up with a different W , which solves equation (2.9) with the new cut-off

function φ.

Remark 5. If instead of having a stable periodic orbit, the unperturbed ODE has an un-

stable periodic orbit, then λ0 in equation (2.6) is positive. Analogous results to Theorems 6

and 7 will give us the parameterization of the periodic orbit and the unstable manifold for

small ε. The same proof, only with minor modifications, will work. At the same time, the

invariance equation (2.8) will be well-defined for a suitably chosen domain for W , we do

not need to do extensions. Similarly, the idea here will also work for advanced equations,

which have the same format as equation (2.4), with r : R2 Ñ r´h, 0s. We omit the details

for these cases.

2.2.3 Representation of the unknown function

In order to study the functional equation equation (2.9), we consider W of the form

W pθ, sq “
N´1
ÿ

j“0

W j
pθqsj `Wą

pθ, sq (2.11)

solving equation (2.9). WhereW 0pθq is the zeroth order term in s,W jpθqsj is the j-th order

term in s, Wąpθ, sq is of order at least N in s. W j : T Ñ T ˆ R, and Wą : T ˆ R Ñ

T ˆ R. As we will see, the truncation number N could be chosen as any integer larger

than 1 to obtain the main result of this chapter. From now on, we will use superscripts

to denote corresponding orders, and subscripts, as we did before, to denote corresponding

components.
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We consider lifts ofW 0pθq,W jpθq, andWąpθ, sq, which will be functions from R or R2

to R2. We will not distinguish notations for the functions before or after lifts. According to

the periodicity condition for W in equation (2.7), the lifted functions satisfy the following

periodicity conditions:

W 0
pθ ` 1q “ W 0

pθq ` p 1
0 q , (2.12)

W j
pθ ` 1q “ W j

pθq, (2.13)

Wą
pθ ` 1, sq “ Wą

pθ, sq. (2.14)

Based on the form of W in equation (2.11), we can match coefficients of different pow-

ers of s in the invariance equation (2.9). Thus, the invariance equation (2.9) is equivalent

to a sequence of equations. As we will see, the equations for W 0 and W 1 are special. The

equation for W 0 is very nonlinear, the equation for W 1 is a relative eigenvector equation.

The equations for W j’s are all similar. The equation for Wą is hard to study, it has 2 vari-

ables. As we will see later, for small enough ε, Wą is the only case where we need the

cut-off.

2.2.3.1 Invariance equation for zero order term

Matching zero order terms of s in equation (2.9), we obtain the equation for the unknowns

ω and W 0:

ω
d

dθ
W 0
pθq ´

¨

˚

˝

ω0

λ0W
0
2 pθq

˛

‹

‚

“ εY pW 0
pθq,ĂW 0

pθ;ωq, εq, (2.15)

where

ĂW 0
pθ;ωq “ W 0

`

θ ´ ωr ˝KpW 0
pθqq

˘

is the function caused by delay.
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2.2.3.2 Invariance equation for first order term

Equating the coefficients of s1 in equation (2.9), we obtain the equation for the unknowns

λ and W 1:

ω
d

dθ
W 1
pθq ` λW 1

pθq ´

¨

˚

˝

0

λ0W
1
2 pθq

˛

‹

‚

“ εY
1
pθ, λ,W 0,W 1, εq, (2.16)

where Y
1
pθ, λ,W 0,W 1, εq is the coefficient of s in Y . Y

1
pθ, λ,W 0,W 1, εq is linear inW 1.

We will specify it later in equation (2.44).

2.2.3.3 Invariance equation for the j-th order term

For 2 ď j ď N ´ 1, matching the coefficients of sj , the equation for the unknown W j is:

ω
d

dθ
W j
pθq ` λjW j

pθq ´

¨

˚

˝

0

λ0W
j
2 pθq

˛

‹

‚

“ εY
j
pθ, λ,W 0,W j, εq `Rj

pθq, (2.17)

where Y
j
pθ, λ,W 0,W j, εq is the coefficient of sj in Y . Y

j
pθ, λ,W 0,W j, εq is linear in

W j , which will be specified in equation (2.56), and Rj is a function of θ which depends

only on W 0, W 1,. . . , W j´1.

Having W 0, . . . ,WN´1, we are ready to consider Wą.

2.2.3.4 Invariance equation for higher order term

Note that Wąpθ, sq solves the equation:

pωBθ ` sλBsqW
ą
pθ, sq ´

¨

˚

˝

0

λ0W
ą
2 pθ, sq

˛

‹

‚

“ εY ąpWą, θ, s, εq (2.18)
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where Y ąpWą, θ, s, εq is the term of order at least N in s of Y , which will be specified

later in equation (2.64).

2.3 Main Results

2.3.1 Results for prepared equations

Under the assumption that the map Y : pT ˆ Rq2 ˆ R` Ñ R2 has bounded derivatives up

to any order, r ˝K : Tˆ RÑ r0, hs has bounded derivatives up to any order, we have:

Theorem 6 (Zero Order). For any given integer L ą 0, there is ε0 ą 0 such that when

0 ď ε ă ε0, there exist an ω ą 0 and an L times differentiable map W 0 : TÑ TˆR, with

L-th derivative Lipschitz, which solve equation (2.15).

Moreover, for initial guess ω0, andW 0,0pθq satisfying the periodicity condition equation

(2.12). If they satisfy the invariance equation (2.15) with error E0pθq, then there exist

unique ω, W 0pθq (satisfying the periodic condition equation (2.12)) closed by solving the

same equation exactly, with

}W 0,0
´W 0

}Cl ďC}E
0
}

1´ l
L

C0 , 0 ď l ă L (2.19)

|ω0
´ ω| ďC}E0

}C0 , (2.20)

for some constantC, whereC may depend on ε, ω0, λ0, l, L, and prior bound for }W 0,0}L`Lip.

In fact, W 0 has derivatives up to any order.

Moreover,

Theorem 7 (All Orders). For any given integers N ě 2, and L ě 2 ` N , there is ε0 ą 0

such that when 0 ď ε ă ε0, there exist ω ą 0, λ ă 0, and W : TˆRÑ TˆR of the form

W pθ, sq “
N´1
ÿ

j“0

W j
pθqsj `Wą

pθ, sq (2.21)
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which solve the equation (2.9) in a neighborhood of s “ 0.

Where W 0 : T Ñ T ˆ R is L times differentiable with Lipschitz L-th derivative. For

1 ď j ď N ´ 1, W j : TÑ TˆR is pL´ 1q times differentiable with Lipschitz pL´ 1q-th

derivative, and Wą is of order at least N in s and is jointly pL´2´Nq times differentiable

in θ and s, with pL´ 2´Nq-th derivative Lipschitz.

Moreover, if ω0, W 0,0pθq, λ0, W 1,0pθq, W j,0pθq, and Wą,0pθ, sq satisfy the invariance

equations (2.15), (2.16), (2.17), and (2.18), with errorsE0pθq, E1pθq, Ejpθq, andEąpθ, sq,

respectively, then there are ω, W 0pθq, λ, W 1pθq, W 1pθq, and Wąpθ, sq which solve equa-

tions (2.15), (2.16), (2.17), and (2.18). Therefore, equation (2.9) is solved by ω, λ, and

W pθ, sq of above form (2.21). For 0 ď l ď L´ 2´N , we have

}W pθ, sq ´
N´1
ÿ

j“0

W j,0
pθqsj ´Wą,0

pθ, sq}Cl

ď Cp
N´1
ÿ

j“0

}Ej
}C0 |s|j ` }Eą}0,N |s|

N
q
1´ l

pL´2´Nq ,

(2.22)

|ω ´ ω0
| ď Cp}E0

}C0q,

|λ´ λ0
| ď Cp}E1

}C0q, (2.23)

for some constant C depending on ε, ω0, λ0, N , l, L, prior bounds for }W 0,0}L`Lip,

}W j,0}L´1`Lip, j “ 1, . . . , N ´ 1, and derivatives of Wą,0.

Remark 8. In Theorem 6, W 0pθq is unique up to a phase shift.

Remark 9. The above theorems are in a posteriori format. The main input needed are

some functions that satisfy the invariance equations approximately. This can be numerical

computations (that indeed produce good approximate solutions) or Lindstedt series, see for

example [30].

Notice that with these Theorems, we do not need to analyze the procedure used to
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produce the approximate solutions. The only thing that we need to establish is that the

solutions produced satisfy the invariance equations up to small errors.

The a posteriori format of the theorem leads to automatic Hölder dependence of the

solution W 0 on ε and Y .

It suffices to observe that if we consider W 0 solving the invariance equation for some

ε1, Y1, it will solve the invariance equation for ε2, Y2 up to an error which is bounded in the

C l norm by C p|ε1 ´ ε2| ` }Y1 ´ Y2}C0q
1´ l

L

Our approach leads very easily to smooth dependence on parameters.

Theorem 10. Consider a family of functions Yη, rη as above, where η lies in an open

interval I Ă R. Assume that Yη and rη are smooth in their inputs as well as in η, with

bounded derivatives.

Then for any positive integer L, there is a small enough positive ε0 such that when

ε ă ε0, for each η P I we can find ωη, W 0
η solving equation (2.15).

Furthermore, the W 0
η pθq is jointly CL`Lip in η, θ.

Theorem 11. Under the same assumption as in Theorem 10, for any given integers N ě 2,

and L ě 2`N , there is a small enough positive ε0 such that when ε ă ε0, for each η P I ,

we can find ωη, W 0
η , λη, W j

η , j “ 1, . . . , N ´ 1, and Wą
η pθ, sq, which solve the invariance

equations (2.15), (2.16), (2.17), and (2.18).

Furthermore, W 0
η pθq is jointly CL`Lip in η, θ; W j

η pθq, j “ 1, . . . , N ´ 1, are jointly

CL´1`Lip in η, θ; Wą
η pθ, sq is jointly CL´2´N`Lip in η, θ, and s.

Note that the regularity conclusions of Theorem 10 can be interpreted in a more func-

tional form as the mapping that to η associates W 0
η is C``Lip when the space of embedding

W is given the CL´` topology. Similar interpretation can be made for Theorem 11. This

functional point of view is consistent with the point of view of RFDE where the phase

space is infinite dimensional.
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2.3.2 Results for original problem in a neighborhood of the limit cycle

Note that to find the low order terms, W j (j “ 1, . . . , N ´ 1), for small ε, the extensions

are not needed. Heuristically, the low order terms are infinitesimals. Hence, to compute

them, it suffices to know the expansion of the vector field.

More precisely, if we take the initial guess for zero order term as W 0,0pθq “ p θ0 q, the

error is of order ε. Then by Theorem 6, the true solution W 0 is within a distance of order ε

from W 0,0pθq. Therefore, with ε being small enough, we have supθPT |W
0
2 pθq| ă

1
2
, we are

reduced to the case without extension:

r ˝KpW 0
pθqq “ r ˝KpW 0

pθqq,

Y pW 0
pθq,ĂW 0

pθ;ωq, εq “ Y pW 0
pθq,ĂW 0

pθ;ωq, εq,

where,

ĂW 0
pθ;ωq “ W 0

pθ ´ ωr ˝KpW 0
pθqqq.

Then we can rewrite the invariance equation for W 0, equation (2.15), as:

ω
d

dθ
W 0
pθq ´

¨

˚

˝

ω0

λ0W
0
2 pθq

˛

‹

‚

“ εY pW 0
pθq,ĂW 0

pθ;ωq, εq. (2.24)

Similar arguments apply for the equations for W 1 and W j’s (2 ď j ď N ´ 1) if we

look at expressions of Y
1

in equation (2.44), Y
j

in equation (2.56), and form of Rj .

We can find 0 ă s0 ă
1
2
, such that W pT ˆ r´s0, s0sq Ă T ˆ r´1

2
, 1

2
s, and ĂW pT ˆ

r´s0, s0sq Ă T ˆ r´1
2
, 1

2
s. Therefore, the original problem is solved in a neighborhood of

the limit cycle by applying the results in section 2.3.1.

For the original problem in section 2.2, we have

Corollary 12 (Limit Cycle). When ε ă ε0 in Theorem 6 is so small that supθPT |W
0
2 pθq| ă

1
2
, equation (2.4) admits a limit cycle close to the limit cycle of the unperturbed equation.
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If ω, W 0 solve the invariance equation (2.24), then K ˝W 0pθq gives a parameterization of

the limit cycle of equation (2.4), i.e. for any θ, K ˝W 0pθ ` ωtq solves equation (2.4) for

all t.

We can also find a 2-parameter family of solutions close to the limit cycle:

Corollary 13 (Isochrons). For small ε as in Corollary 12, there are isochrons for the limit

cycle of equation (2.4). If ω, λ, and W : T ˆ R Ñ T ˆ R solve the extended invariance

equation (2.9), then there exists 0 ă s0 ă
1
2
, such that K ˝ W pθ, sq, |s| ď s0 gives a

parameterization of the limit cycle with its isochrons in a neighborhood, i.e. for any θ, and

s, with |s| ď s0, K ˝W pθ ` ωt, seλtq solves equation (2.4) for all t ě 0.

One can formulate dependence on parameters results using Theorems 10 and 11. The

cut-offs and extensions should be carried out in a way that preserves the smoothness with

respect to parameters, which can be done by applying the bump functions in the same

way for all the elements in the family. Note that only the higher order term Wą requires

extension. We omit the precise formulations here.

2.3.3 Comparison with results on RFDEs based on time evolution

The persistence of a periodic solution under perturbation for retarded functional differential

equation (RFDE) is presented in Chapter 10 of [12], notably Theorem 4.1. In this section,

we present some remarks that can help the specialists to compare our results with those

obtainable considering the time evolution of RFDEs.

The set up presented there does not seem to apply to our case since the phase space

considered in [12] is the space of continuous functions on an interval, namely, C0r´h, 0s,

and they require differentiability properties of the equation which are not satisfied in our

case. Note also that we can obtain smooth dependence on parameters (see Theorem 10).

Obtaining such smooth dependence using the methods based on the evolutionary approach

would require obtaining regularity of the evolution operator, which does not seem to be

available.
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More precisely, if we employ the notation xt as a function defined on r´h, 0s, with

xtpsq “ xpt` sq

for s P r´h, 0s, we can write our SDDE equation (2.4) as

9xptq “ F pxt, εq,

where we define F pφ, εq :“ Xpφp0q, εφp´rpφp0qqqq. For ε “ 0, we have an ODE, which

can be viewed as a delay equation, with a non-degenerate periodic orbit (see [12]). How-

ever, above F cannot be continuously differentiable in φ if φ is only continuous. This

obstructs application of Theorem 4.1 for RFDE in [12].

It is very interesting to study whether a similar method to the one in [12] can be ex-

tended to our case with some variations of the phase space (solution manifold, see [21]).

However, since only C1 regularity of the evolution has been proved ([21]), (higher regu-

larity of the evolution in SDDE seems problematic), one cannot hope to obtain more than

C1 dependence on parameters. On the other hand, the method in this chapter allows to get

rather straightforwardly higher smoothness with respect to parameters. See Theorem 10.

We mention that some progress in continuation of periodic orbits is in [31, 32].

Considering RFDEs as evolutions in infinite dimensional phase spaces, [12] establishes

the existence of infinite-dimensional strong stable manifolds for periodic orbits correspond-

ing to the Floquet multipliers smaller than a number.

Again, we remark that there are some technical issues of regularity of evolutions in the

phase space of SDDE to define stable manifolds and even stability. We hope that these

regularity issues of the evolution can be made precise (using techniques as in [21, 33, 34]).

Nevertheless, there is a very fundamental difference between the manifolds we consider

and those in [12].

If we consider the unperturbed ODE as an RFDE in an infinite-dimensional phase space,
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the Floquet multipliers are 1 with multiplicity 1, exp pλ0
ω0
q with multiplicity 1, and 0 (with

infinite multiplicity). With C1-smoothness of the evolution as in [21], under small pertur-

bation, the new Floquet multipliers are closed by (one exactly 1, one close to exppλ0
ω0
q and

infinitely many near 0).

The theory developed in [12] attaches an infinite-dimensional manifold to the most

stable part of the spectrum in the case of RFDEs. That is the strong stable manifold.

Although the stability for all the solutions in a neighborhood of the limit cycle is out

of the scope of the present paper, heuristically, the manifold that we consider here, in the

infinite-dimensional phase space, is attached to the least stable Floquet multiplier, hence it

is a slow stable manifold from the infinite-dimensional point of view.

We think that the finite-dimensional manifold we obtain is more practically relevant

than the strong stable manifold. We expect that infinitely many modes will die out very fast

and, therefore, be hard to observe. All the solutions of the full problem will be asymptot-

ically similar to the solutions we consider. In summary, solutions close to the limit cycle

will converge to the limit cycle tangent to the slow stable manifolds described here. One

problem to make all this precise is that the evolution is only known to be C1.

Our motivation is to obtain solutions which resemble solutions of the ODE, in accor-

dance with the physical intuition that the solutions in the perturbed problem – in spite of

the singular nature of the perturbation – look similar to those of the unperturbed problem

(this is the reason why relativity and its delays were hard to discover).

One of the features of the formalism in this chapter is that it allows to describe in a

unified way the solutions of the SDDE in an infinite-dimensional space and the solutions

of the unperturbed finite-dimensional ODE.

Of course in this chapter, we only deal with models of a very special kind, (we indeed

have the hope that the range of applicability of the method can be expanded; the models

considered here are a proof of concept) but we obtain rather smooth invariant manifolds and

smooth dependence on parameters with high degree of differentiability. Furthermore, the
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proof presented here leads to algorithms to compute the limit cycles and their manifolds.

These algorithms are practical and have been implemented, see Chapter 4.

It is also interesting to investigate whether evolution based methods lead to computa-

tional algorithms [35] and compare them with the algorithms based on functional equations.

2.4 Overview of the Proof

In equation (2.15), ω and W 0 are the unknowns. Under a choice of the phase, we define

an operator such that its fixed point solves equation (2.15). We will show that when ε is

small enough, the operator is a “C0” contraction and maps a CL`Lip ball to itself. Then one

obtains the existence of the fixed point pω,W 0q, and that W 0 in the fixed point has some

regularity. Therefore, equation (2.15) is solved.

In equation (2.16), λ andW 1 are the unknowns. We will impose an appropriate normal-

ization when defining the operator to make sure the solution is uniquely found, and that W

is close to the identity map with appropriate scaling factor. Then similar to above case, for

small enough ε, this operator has a fixed point pλ,W 1q in which W 1 has some regularity.

In equation (2.17), W j is the only unknown. We define an operator which is a contrac-

tion for small enough ε. The operator has a fixed point with certain regularity solving the

equation.

In equation (2.18), Wą is an unknown function of 2 variables. We will define an op-

erator on a function space with a weighted norm, then prove that for small ε, this operator

has a fixed point in this function space, which solves the equation (2.18).

We emphasize again that for small enough ε, the equation for Wą is the only place

where extension is needed. (Recall section 2.3.2)

There are finitely many smallness conditions for ε, so there are ε’s which satisfy all the

smallness conditions.

Same idea will be used for proving the smooth dependence on parameters.
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2.5 Proof of the Main Results

2.5.1 Zero order solution

In this section, we prove our first result, Theorem 6.

Recall equation (2.15), invariance equation for ω and W 0, which is obtained by setting

s “ 0 in equation (2.9).

Componentwise, W 0 “ pW 0
1 ,W

0
2 q, and Y “ pY 1, Y 2q, we have the equations as:

ω
d

dθ
W 0

1 pθq ´ ω0 “ εY 1pW
0
pθq,ĂW 0

pθ;ωq, εq, (2.25)

and

ω
d

dθ
W 0

2 pθq ´ λ0W
0
2 pθq “ εY 2pW

0
pθq,ĂW 0

pθ;ωq, εq. (2.26)

Taking periodicity condition equation (2.12) into account, we define an operator Γ0 as

follows:

Γ0

¨

˚

˚

˚

˚

˝

a

Z1

Z2

˛

‹

‹

‹

‹

‚

pθq “

¨

˚

˚

˚

˚

˝

Γ0
1pa, Zq

Γ0
2pa, Zqpθq

Γ0
3pa, Zqpθq

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

ω0 ` ε
ş1

0
Y 1pZpθq, rZpθ; aq, εqdθ

1
Γ0
1pa,Zq

`

ω0θ ` ε
şθ

0
Y 1pZpσq, rZpσ; aq, εqdσ

˘

ε
ş8

0
eλ0tY 2pZpθ ´ atq, rZpθ ´ at; aq, εqdt

˛

‹

‹

‹

‹

‚

,

(2.27)

Notice that if Γ0 has a fixed point pa˚, Z˚q, then equation (2.15) are solved by ω “ a˚

and W 0 “ Z˚, at the same time, periodic condition equation (2.12) is satisfied.

Remark 14. As we can see, the operator Γ0 depends on ε, however, to simplify the expres-

sion, we do not include ε in the notation of the operator Γ0.
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Remark 15. Similar to Remark 1, we will not have uniqueness of the solution to invariance

equation (2.15). Once we have a solutionW 0pθq to the equation, for any θ0 ‰ 0,W 0pθ`θ0q

will also solve the equation, which is called phase shift. This is indeed the only source of

non-uniqueness.

By considering the operator equation (2.27), we fix a phase by Γ0
2pa, Zqp0q “ 0.

For the domain of Γ0, we consider the closed interval I0 “ ta : |a ´ ω0| ď
ω0

2
u. For

fixed positive integer L and positive constant B0, define a subset of the space of functions

which are L times differentiable, with Lipschitz L-th derivative as follows (see more details

about regularity properties in Section A):

C L`Lip
0 “ tf | f : TÑ Tˆ R, f can be lifted to a function from R to R2,

still denoted as f,which satisfies fpθ ` 1q “ fpθq ` p 1
0 q ,

f1p0q “ 0, }f}L`Lip ď B0
u, (2.28)

where

}f}L`Lip “ max
i“1,2,k“0,...,L

#

sup
θPr0,1s

}f
pkq
i pθq}, Lippf

pLq
i q

+

.

Define D0 “ I0 ˆ C L`Lip
0 , then Γ0 is defined on D0. We have the following:

Lemma 16. There exists ε0 ą 0, such that when ε ă ε0, Γ0pD0q Ă D0.

Proof. For pa, Zq P D0, by assumption, we have that Y 1pZpθq, rZpθ; aq, εq is bounded by

a constant which is independent of choice of pa, Zq in D0. Then, one can choose ε small

enough such that Γ0
1pa, Zq “ ω0 ` ε

ş1

0
Y 1pZpθq, rZpθ; aq, εqdθ is in I0.

Now consider Γ0
2pa, Zqpθq “

1
Γ0
1pa,Zq

`

ω0θ ` ε
şθ

0
Y 1pZpσq, rZpσ; aq, εqdσ

˘

. First we

observe that

Γ0
2pa, Zqpθ ` 1q “ Γ0

2pa, Zqpθq ` 1.
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Then we need to check bounds for the derivatives

d

dθ
Γ0

2pa, Zqpθq “
1

Γ0
1pa, Zq

`

ω0 ` εY 1pZpθq, rZpθ; aq, εq
˘

.

By Faá di Bruno’s formula in Lemma 86, for 2 ď n ď L, dn

dθn
Γ0

2pa, Zqpθq will be a poly-

nomial of a common factor ε
Γ0
1pa,Zq

, each term will contain products of derivatives of Y 1,

Z, and r ˝K up to order pn ´ 1q. By assumption on Y 1 and r ˝K, for pa, Zq P D0, if we

chooseB0 to be larger than 2, then for small enough ε, Γ0
2pa, Zqpθq on r0, 1s has derivatives

up to order L bounded by B0 and L ´ th derivative Lipschitz with Lipschitz constant less

than B0.

For Γ0
3pa, Zqpθq “ ε

ş8

0
eλ0tY 2pZpθ ´ atq, rZpθ ´ at; aq, εqdt. It satisfies

Γ0
3pa, Zqpθ ` 1q “ Γ0

3pa, Zqpθq.

To establish bounds for the derivatives of Γ0
3pa, Zqpθq, we apply a similar argument as

above. Notice that for n ď L, Bn

Bθn
Y 2pZpθ´ atq, rZpθ´ at; aq, εq will be a polynomial with

each term a product of derivatives of Y 2, Z, and r ˝K up to order n. With regularity of Y 2,

and r ˝K, for pa, Zq P D0, | B
n

Bθn
Y 2pZpθ ´ atq, rZpθ ´ atq, εq| will be bounded. Therefore,

for small enough ε, Γ0
3pa, Zq has derivatives up to order L bounded by B0 and its L ´ th

derivative is Lipschitz with Lipschitz constant less than B0.

If we take ε0 such that above conditions are satisfied at the same time, then for ε ă ε0,

we have Γ0pD0q Ă D0.

We now define a distance on D0, which is essentially C0 distance. Under this distance,

the space D0 is complete. For pa, Zq and pa1, Z 1q in D0,

dppa, Zq, pa1, Z 1qq– |a´ a1| ` }Z ´ Z 1}, (2.29)
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where

}Z ´ Z 1} “ max

"

sup
θ
|Z1pθq ´ Z

1
1pθq|, sup

θ
|Z2pθq ´ Z

1
2pθq|

*

. (2.30)

Lemma 17. There exists ε0 ą 0, such that when ε ă ε0, under above choice of distance

equation (3.22) on D0, the operator Γ0 is a contraction.

Proof. We will show that for ε small enough, (the explicit form of smallness conditions

will become clear along the proof), we can find a constant µ0 ă 1 such that for distance

defined in equation (3.22)

dpΓ0
pa, Zq,Γ0

pa1, Z 1qq ă µ0 ¨ dppa, Zq, pa
1, Z 1qq. (2.31)

Note that

dpΓ0
pa, Zq,Γ0

pa1, Z 1qq “
ˇ

ˇΓ0
1pa, Zq ´ Γ0

1pa
1, Z 1q

ˇ

ˇ

` }pΓ0
2pa, Zq,Γ

0
3pa, Zqq ´ pΓ

0
2pa

1, Z 1q,Γ0
3pa

1, Z 1qq}

(2.32)

More explicitly, above distance is

ε

ˇ

ˇ

ˇ

ˇ

ż 1

0

Y 1pZpθq, rZpθ; aq, εqdθ ´

ż 1

0

Y 1pZ
1
pθq, rZ 1pθ; a1q, εqdθ

ˇ

ˇ

ˇ

ˇ

`max

"

sup
θ

∣∣∣∣ 1

Γ0
1pa, Zq

`

ω0θ ` ε

ż θ

0

Y 1pZpσq, rZpσ; aq, εqdσ
˘

´
1

Γ0
1pa

1, Z 1q

`

ω0θ ` ε

ż θ

0

Y 1pZ
1
pσq, rZ 1pσ; a1q, εqdσ

˘

∣∣∣∣,
ε sup

θ

∣∣∣∣ż 8
0

eλ0tY 2pZpθ ´ atq, rZpθ ´ at; aq, εqdt

´

ż 8

0

eλ0tY 2pZ
1
pθ ´ a1tq, rZ 1pθ ´ a1t; a1q, εqdt

∣∣∣∣*
(2.33)

Now we consider each term of above expression equation (2.33). Note that in the above

expression, it suffices to take the supremums for θ P r0, 1s, which follows from periodicity
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condition equation (2.12). By adding and subtracting terms, we have

ˇ

ˇ

ˇ
Y 1pZpθq, rZpθ; aq, εq ´ Y 1pZ

1
pθq, rZ 1pθ; a1q, εq

ˇ

ˇ

ˇ

“
ˇ

ˇY 1pZpθq, Zpθ ´ ar ˝KpZpθqqq, εq ´ Y 1pZ
1
pθq, Z 1pθ ´ a1r ˝KpZ 1pθqqq, εq

ˇ

ˇ

ď
ˇ

ˇY 1pZpθq, Zpθ ´ ar ˝KpZpθqqq, εq ´ Y 1pZ
1
pθq, Zpθ ´ ar ˝KpZpθqqq, εq

ˇ

ˇ

`
ˇ

ˇY 1pZ
1
pθq, Zpθ ´ ar ˝KpZpθqqq, εq ´ Y 1pZ

1
pθq, Z 1pθ ´ ar ˝KpZpθqqq, εq

ˇ

ˇ

`
ˇ

ˇY 1pZ
1
pθq, Z 1pθ ´ ar ˝KpZpθqqq, εq ´ Y 1pZ

1
pθq, Z 1pθ ´ a1r ˝KpZpθqqq, εq

ˇ

ˇ

`
ˇ

ˇY 1pZ
1
pθq, Z 1pθ ´ a1r ˝KpZpθqqq, εq ´ Y 1pZ

1
pθq, Z 1pθ ´ a1r ˝KpZ 1pθqqq, εq

ˇ

ˇ .

By the mean value theorem, and the fact that pa, Zq and pa1, Z 1q are in D0, we have

ˇ

ˇY 1pZpθq, rZpθ; aq, εq ´ Y 1pZ
1
pθq, rZ 1pθ; a1q, εq

ˇ

ˇ

ď 2}DY 1}}Z ´ Z
1
} ` }DY 1}}DZ

1
}}r ˝K}|a´ a1|

` |DY 1}}DZ
1
}|a1|}Dpr ˝Kq}}Z ´ Z 1}

ď }DY 1}
`

2`B0
|a1|}Dpr ˝Kq}

˘

}Z ´ Z 1}

` }DY 1}B
0
}r ˝K}|a´ a1|.

(2.34)

Where the norms are supremum norms on R or R2 (defined as above in equation (2.30)),

and

}DY 1} “ maxt}D1Y 1}, }D2Y 1}u, (2.35)

where }DiY 1}, i “ 1, 2, is the supremum of the operator norm corresponding to the infinity

norm defined on R2.

By equation (2.34),

ˇ

ˇΓ0
1pa, Zq ´ Γ0

1pa
1, Z 1q

ˇ

ˇ ď ε}DY 1}
`

2`B0
|a1|}Dpr ˝Kq}

˘

}Z ´ Z 1}

` εB0
}DY 1}}r ˝K}|a´ a

1
|

(2.36)

Now consider the first component of the maximum, for θ P r0, 1s in equation (2.33), by
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adding and subtracting terms, we have:

ˇ

ˇΓ0
2pa, Zq ´ Γ0

2pa
1, Z 1q

ˇ

ˇ

ď
ε

|Γ0
1pa, Zq|

ż 1

0

ˇ

ˇ

ˇ
Y 1pZpθq, rZpθq, εqdθ ´ Y 1pZ

1
pθq, rZ 1pθq, εq

ˇ

ˇ

ˇ
dθ

`

ε
ş1

0

ˇ

ˇ

ˇ
Y 1pZ

1pθq, rZ 1pθ; a1q, εq
ˇ

ˇ

ˇ
dθ

|Γ0
1pa, ZqΓ

0
1pa

1, Z 1q|

ˇ

ˇΓ0
1pa, Zq ´ Γ0

1pa
1, Z 1q

ˇ

ˇ

`
|ω0|

|Γ0
1pa, ZqΓ

0
1pa

1, Z 1q|

ˇ

ˇΓ0
1pa, Zq ´ Γ0

1pa
1, Z 1q

ˇ

ˇ

ď
ε

|Γ0
1pa, Zq|

ż 1

0

ˇ

ˇ

ˇ
Y 1pZpθq, rZpθq, εqdθ ´ Y 1pZ

1
pθq, rZ 1pθq, εq

ˇ

ˇ

ˇ
dθ

`
|ω0| ` ε}Y 1}

|Γ0
1pa, ZqΓ

0
1pa

1, Z 1q|

ˇ

ˇΓ0
1pa, Zq ´ Γ0

1pa
1, Z 1q

ˇ

ˇ .

(2.37)

By equation (2.34) and equation (2.36), with Γ0
1pa, Zq, Γ0

1pa
1, Z 1q P I0, we have,

ˇ

ˇΓ0
2pa, Zq ´ Γ0

2pa
1, Z 1q

ˇ

ˇ

ď
ε|ω0| ` ε

2}Y 1} ` ε|Γ
0
1pa

1, Z 1q|

|Γ0
1pa, ZqΓ

0
1pa

1, Z 1q|

ˆ

}DY 1}B
0
}r ˝K}|a´ a1|

` }DY 1}
`

2`B0
|a1|}Dpr ˝Kq}

˘

}Z ´ Z 1}

˙

(2.38)

For the third term, similar to before, we add and subtract terms, then use the mean value

theorem to get the estimate

ˇ

ˇ

ˇ
Y 2pZpθ ´ atq, rZpθ ´ at; aq, εq ´ Y 2pZ

1
pθ ´ a1tq, rZ 1pθ ´ a1t; a1q, εq

ˇ

ˇ

ˇ

ď 2}DY 2}}Z ´ Z
1
} ` 2t}DY 2}}DZ

1
}|a´ a1| ` }DY 2}}DZ

1
}}r ˝K}|a´ a1|

` }DY 2}}DZ
1
}|a1|}Dpr ˝Kq}}Z ´ Z 1}

` t}DY 2}}DZ
1
}

2
|a1|}Dpr ˝Kq}|a´ a1|

ď }DY 2}
`

2`B0
|a1|}Dpr ˝Kq}

˘

}Z ´ Z 1}

`B0
}DY 2}}r ˝K}|a´ a

1
| ` tB0

}DY 2}
`

2`B0
|a1|}Dpr ˝Kq}

˘

|a´ a1|.

(2.39)
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Where }DY 2} is defined similarly to equation (2.35). Then,

ˇ

ˇΓ0
3pa, Zq,´Γ0

3pa
1, Z 1q

ˇ

ˇ

ď ε}DY 2}B
0
` 1

λ2
0

p2`B0
|a1|}Dpr ˝Kq}q ´

}r ˝K}

λ0

˘

|a´ a1|

´
ε

λ0

}DY 2}
`

2`B0
|a1|}Dpr ˝Kq}

˘

}Z ´ Z 1}.

(2.40)

With above estimates for each terms equation (2.36), equation (2.38), and equation

(2.40), we have that for the distance defined in equation (3.22), d
`

Γ0pa, Zq,Γ0pa1, Z 1q
˘

is smaller than the sums of the right hand sides of equation (2.36), equation (2.38), and

equation (2.40). More precisely,

d
`

Γ0
pω, Zq,Γ0

pω2, Z
1
q
˘

ď c1|a´ a
1
| ` c2}Z ´ Z

1
}

Where

c1 “ εB0
}r ˝K}

ˆ

}DY 1}
`

1`
|ω0| ` ε}Y 1} ` |Γ

0
1pa

1, Z 1q|

|Γ0
1pa, ZqΓ

0
1pa

1, Z 1q|

˘

´
}DY 2}

λ0

˙

` ε
B0

λ2
0

}DY 2}
`

2`B0
|a1|}Dpr ˝Kq}

˘

and

c2 “ ε
`

2`B0
|a1|}Dpr ˝Kq}

˘

ˆ

}DY 1}
`

1`
|ω0| ` ε}Y 1} ` |Γ

0
1pa

1, Z 1q|

|Γ0
1pa, ZqΓ

0
1pa

1, Z 1q|

˘

´
}DY 2}

λ0

˙

.

Since a, a1, Γ0
1pa, Zq, and Γ0

1pa
1, Z 1q are all in I0, we have

c1 ď εB0
}r ˝K}

ˆ

}DY 1}
`

1`
4|ω0| ` 4ε}Y 1} ` 6|ω0|

|ω0|
2

˘

´
}DY 2}

λ0

˙

` ε
B0

λ2
0

}DY 2}
`

2`B0
|a1|}Dpr ˝Kq}

˘

,
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and

c2 ď ε
`

2`B0
|a1|}Dpr ˝Kq}

˘

ˆ

}DY 1}
`

1`
4|ω0| ` 4ε}Y 1} ` 6|ω0|

|ω0|
2

˘

´
}DY 2}

λ0

˙

Because c1 and c2 are bounded by ε multiplied by some constants, they can be as small as

we want when ε is small. Therefore, for sufficiently small ε, we can find a constant µ0 ă 1,

such that equation (2.31) is true, Γ0 is a contraction.

Taking any initial guess pω0,W 0,0pθqq P D0. For example, one can take ω “ ω0,

W 0,0pθq “ p θ0 q. Iterations of this initial guess under Γ0 will have a limit by Lemma 17.

Then Lemma 16 and Lemma 92 ensure that the limit is in D0. Therefore, we have a fixed

point of Γ0 in D0, that is, there exist ω ą 0 and W 0 in C L`Lip
0 such that equation (2.15)

is solved. Moreover, by the contraction argument, we know that the solution is unique.

Therefore, ω is unique, W 0 is unique in the C L`Lip
0 space for the fixed phase W 0

1 p0q “ 0.

Now we prove the a posteriori estimation part of Theorem 6. Since Γ0 is a contraction

on D0, we know that

d
`

pω0,W 0,0
q, pω,W 0

q
˘

“ lim
kÑ8

d
`

pω0,W 0,0
q, pΓ0

q
k
pω0,W 0,0

q
˘

ď

8
ÿ

k“0

pµ0q
kd
`

pω0,W 0,0
q,Γ0

pω0,W 0,0
q
˘

ď
1

1´ µ0

d
`

pω0,W 0,0
q,Γ0

pω0,W 0,0
q
˘

. (2.41)

It remains to estimate d
`

pω0,W 0,0q,Γ0pω0,W 0,0q
˘

by }E0}, where the norm is the maxi-

mum norm defined in equation (2.30). We have

E0
pθq “ ω0 d

dθ
W 0,0

pθq ´

¨

˚

˝

ω0

λ0W
0,0
2 pθq

˛

‹

‚

´ εY pW 0,0
pθq,ĂW 0,0

pθ;ω0
q, εq,
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that is,

¨

˚

˝

E0
1pθq

E0
2pθq

˛

‹

‚

“

¨

˚

˝

ω0 d
dθ
W 0,0

1 pθq ´ ω0 ´ εY 1pW
0,0pθq,ĂW 0,0pθ;ω0q, εq

ω0 d
dθ
W 0,0

2 pθq ´ λ0W
0,0
2 pθq ´ εY 2pW

0,0pθq,ĂW 0,0pθ;ω0q, εq

˛

‹

‚

,

and,

d
`

pω0,W 0,0
q,Γ0

pω0,W 0,0
q
˘

ď

ˇ

ˇ

ˇ

ˇ

ω0 ` ε

ż 1

0

Y 1pW
0,0
pθq,ĂW 0,0

pθ;ω0
q, εqdθ ´ ω0

ˇ

ˇ

ˇ

ˇ

` sup
θ

ˇ

ˇ

ˇ

ˇ

1

Γ0
1pω

0,W 0q

`

ω0θ ` ε

ż θ

0

Y 1pW
0,0
pσq,ĂW 0,0

pσ;ω0
q, εqdσ

˘

´W 0,0
1 pθq

ˇ

ˇ

ˇ

ˇ

` sup
θ

ˇ

ˇ

ˇ

ˇ

ε

ż 8

0

eλ0tY 2pW
0,0
pθ ´ ω0tq,ĂW 0,0

pθ ´ ω0t;ω0
q, εqdt´W 0,0

2 pθq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż 1

0

E0
1pθqdθ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż 8

0

eλ0tE0
2pθ ´ ω

0tqdt

ˇ

ˇ

ˇ

ˇ

`
1

|Γ0
1pω

0,W 0q|

ˆ
ˇ

ˇ

ˇ

ˇ

ż θ

0

E0
1pσqdσ

ˇ

ˇ

ˇ

ˇ

` }W 0,0
1 }

ˇ

ˇ

ˇ

ˇ

ż 1

0

E0
1pθqdθ

ˇ

ˇ

ˇ

ˇ

˙

ď p1`
2B0

|ω0|
q

ˇ

ˇ

ˇ

ˇ

ż 1

0

E0
1pθqdθ

ˇ

ˇ

ˇ

ˇ

`
2

|ω0|

ˇ

ˇ

ˇ

ˇ

ż θ

0

E0
1pσqdσ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż 8

0

eλ0tE0
2pθ ´ ω

0tqdt

ˇ

ˇ

ˇ

ˇ

For θ P r0, 1s, we have

d
`

pω0,W 0,0
q,Γ0

pω0,W 0,0
q
˘

ď

ˆ

1`
2` 2B0

|ω0|

˙

}E0
1} ´

1

λ0

}E0
2}.

Combine this with the inequality equation (2.41), we have

d
`

pω0,W 0,0
q, pω,W 0

q
˘

ď
1

1´ µ0

„ˆ

1`
2` 2B0

|ω0|

˙

}E0
1}C0 ´

1

λ0

}E0
2}C0



. (2.42)

By definition of the norm, equation (2.20) and l “ 0 case of equation (2.19) are true for a

constant C, which depends on ε, B0, ω0, λ0.
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For other values of l, one can use interpolation inequality in Lemma 91, to get

}W 0,0
1 ´W 0

1 }Cl ď cpl, Lq}W 0,0
1 ´W 0

1 }
1´ l

L

C0 }W 0,0
1 ´W 0

1 }
l
L

CL

ď cpl, Lq}W 0,0
1 ´W 0

1 }
1´ l

L

C0 p2B0
q
l
L .

(2.43)

Similar estimates can be done for the second component, this finishes the proof of the

estimations in theorem 6.

For solution of the equation (2.15), note that K ˝W 0pθ`ωtq solves the equation (2.4):

d

dt
K ˝W 0

pθ ` ωtq “ XpK ˝W 0
pθ ` ωtq, K ˝W 0

pθ ` ωpt´ rpK ˝W 0
pθ ` ωtqqqqq.

If W 0 is L times differentiable, then right hand side of above equation is L times differen-

tiable, so is the left hand side. Using the fact that K is an analytic local diffeomorphism,

one can conclude that W 0 is (L+1) times differentiable. A bootstrap argument can be used

to see W 0 is differentiable up to any order.

2.5.2 Proof of Theorem 7

With Theorem 6, ω and W 0 are known to us. To prove Theorem 7, we have to consider the

equations for the first order term, j-th order term, and then higher order term in s. We will

obtain λ, W 1 solving the first order equation (2.16), W j solving equation (2.17), and then

Wą which solves equation (2.18).

2.5.2.1 First-order Equation

Recall that for the first order term, we got an invariance equation (2.16), see also below:

ω
d

dθ
W 1
pθq ` λW 1

pθq ´

¨

˚

˝

0

λ0W
1
2 pθq

˛

‹

‚

“ εY
1
pθ, λ,W 0,W 1, εq,

32



where

Y
1
pθ, λ,W 0,W 1, εq “ ApθqW 1

pθq `Bpθ;λqW 1
pθ ´ ωr ˝KpW 0

pθqqq, (2.44)

Apθq “ ´ωD2Y pW
0
pθq,ĂW 0

pθq, εqDW 0
pθ ´ ωr ˝KpW 0

pθqqqDpr ˝KqpW 0
pθqq

`D1Y pW
0
pθq,ĂW 0

pθq, εq, (2.45)

and

Bpθ;λq “ e´λr˝KpW
0pθqqD2Y pW

0
pθq,ĂW 0

pθq, εq.

Note that in the expression of A and B above, we suppressed the ω in the expression of

ĂW 0. We do this to simplify the notation, since ω is already known from Theorem 6.

Remark 18. Since Y
1
pθ, λ,W 0,W 1, εq in equation (2.44) is linear in W 1, equation (2.16)

for W 1, is linear and homogenous in W 1. Hence if W 1pθq solves equation (2.16), so does

any scalar multiple of W 1pθq.

Componentwise, we have the following two equations:

ω
d

dθ
W 1

1 pθq ` λW
1
1 pθq “ εY

1

1pθ, λ,W
0,W 1, εq, (2.46)

ω
d

dθ
W 1

2 pθq ` pλ´ λ0qW
1
2 pθq “ εY

1

2pθ, λ,W
0,W 1, εq. (2.47)

As already pointed out, for the unperturbed case, W could be chosen as the identity

map. So after adding a small perturbation, W 1pθq « p 0
1 q. We will be able to find a unique

W 1 close to p 0
1 q solving above equation (2.16), by considering the following normalization:

ż 1

0

W 1
2 pθqdθ “ 1. (2.48)

Remark 19. It is natural to choose above normalization equation (2.48), since under small

perturbation, we have W 1pθq « p 0
1 q. Meanwhile, one can show that λ does not depend on
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the choice of normalization as long as
ş1

0
W 1

2 pθqdθ ‰ 0.

From now on, sinceW 0 is already known to us, we will omitW 0 from Y
1
pθ, λ,W 0,W 1, εq,

and denote it as Y
1
pθ, λ,W 1, εq. We define an operator Γ1 as follows:

Γ1

¨

˚

˚

˚

˚

˝

b

F1

F2

˛

‹

‹

‹

‹

‚

pθq “

¨

˚

˚

˚

˚

˝

Γ1
1pb, F q

Γ1
2pb, F qpθq

Γ1
3pb, F qpθq

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

λ0 ` ε
ş1

0
Y

1

2pθ, b, F, εqdθ

´ε
ş8

0
ebtY

1

1pθ ` ωt, b, F, εqdt

Cpb, F q ` ε
ω

şθ

0
Y

1

2pσ, b, F,εq ´ p
ş1

0
Y

1

2pθ, b, F, εqdθqF2pσqdσ

˛

‹

‹

‹

‹

‚

,

(2.49)

where

Cpb, F q “ 1´
ε

ω

ż 1

0

ż θ

0

Y
1

2pσ, b, F, εqdσdθ

`
ε

ω
p

ż 1

0

Y
1

2pθ, b, F, εqdθq

ż 1

0

ż θ

0

F2pσqdσdθ

(2.50)

is a constant chosen to ensure that Γ1
3pb, F q also satisfies the normalization condition equa-

tion (2.48), i.e.
ş1

0
Γ1

3pb, F qpθqdθ “ 1.

Similar to previous section, section 2.5.1, for the domain of Γ1, we consider the closed

interval I1 “ tb : |b´ λ0| ď
|λ0|

3
u, as well as the function space

C L´1`Lip
1 “ tf | f : TÑ Tˆ R, f can be lifted to a function from R to R2,

still denoted as f,which satisfies fpθ ` 1q “ fpθq,

}f}L´1`Lip ď B1, and
ż 1

0

f2pθqdθ “ 1u,

where

}f}L´1`Lip “ max
i“1,2,k“0,...,L´1

#

sup
θPr0,1s

}f
pkq
i pθq},Lippf

pL´1q
i q

+

,

L is the same as in Theorem 6, and B1 is a positive constant.

34



Let D1 – I1 ˆ C L´1`Lip
1 be the domain of Γ1. We have the following:

Lemma 20. If ε is small enough, Γ1pD1q Ă D1.

Proof. Since Y
1

2pθ, b, F, εq is bounded, for small ε, we have Γ1
1pb, F q P I

1.

Now consider Γ1
2pb, F qpθq, we first have to show that

Γ1
2pb, F qpθ ` 1q “ Γ1

2pb, F qpθq.

This follows from the fact that Y
1

1pθ ` 1, b, F, εq “ Y
1

1pθ, b, F, εq, which is true by period-

icity of W 0 as in equation (2.12), of F , and of r ˝K with respect to its first component.

Now we check dn

dθn
Γ1

2pb, F qpθq, 0 ď n ď L´ 1, is bounded. Notice that

dn

dθn
Γ1

2pb, F qpθq “ ´ε

ż 8

0

ebt
Bn

Bθn
Y

1

1pθ ` ωt, b, F, εqdt.

By dominated convergence theorem, it suffices to check that Bn

Bθn
Y

1

1pθ ` ωt, b, F, εq is

bounded. Using Faà di Bruno’s formula in Lemma 86, boundedness of Bn

Bθn
Y

1

1pθ`ωt, b, F, εq

is ensured by assumptions on Y , r ˝K, and W 0, as well as F P C L´1`Lip
1 . Then for

ε small enough, the derivatives can be bounded by B1. Bound for Lipschitz constant of

dL´1

dθL´1 Γ1
2pb, F qpθq also follows.

For Γ1
3pb, F qpθq, we first show that it is periodic. Notice that

d

dθ
Γ1

3pb, F qpθq “
ε

ω
Y

1

2pθ, b, F, εq ´
ε

ω

ˆ
ż 1

0

Y
1

2pθ, b, F, εqdθ

˙

F2pθq (2.51)

is periodic. Hence, to show periodicity of Γ1
3pb, F qpθq, it suffices to see that Γ1

3pb, F qp0q “

Γ1
3pb, F qp1q, which is true because

ş1

0
F2pθqdθ “ 1. The choice of the constant Cpb, F q

ensures that the normalization condition
ş1

0
Γ1

3pb, F qpθqdθ “ 1 is also verified.

Taking derivatives of equation (2.51), we have for 2 ď n ď L´ 1

dn

dθn
Γ1

3pb, F qpθq “
ε

ω

ˆ

dpn´1q

dθpn´1q
Y

1

2pθ, b, F, εq ´

ˆ
ż 1

0

Y
1

2pθ, b, F, εqdθ

˙

dpn´1q

dθpn´1q
F2pθq

˙

,
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which will be ε
ω

multiplied by bounded functions due to the assumptions on Y , r ˝K, and

W 0, as well as F P C L´1`Lip
1 . When ε is small, they will all be bounded by B1. Similar

for Lipschitz constant of dL´1

dθL´1 Γ1
3pb, F qpθq.

Hence for ε small enough, where the smallness condition depends on bounds of the

derivatives of Y , r ˝K, B0, and B1, but not on the specific choice of pb, F q P D1, we have

that pΓ1
2pb, F q,Γ

1
3pb, F qq P C L´1`Lip

1 . This finishes the proof.

Recall the distance introduced in equation (3.22):

dppa, Zq, pa1, Z 1qq “ |a´ a1| ` }Z ´ Z 1},

where

}Z ´ Z 1} “ max

"

sup
θ
|Z1pθq ´ Z

1
1pθq|, sup

θ
|Z2pθq ´ Z

1
2pθq|

*

.

Lemma 21. Under above definition of distance on D1, for small enough ε, Γ1 is a contrac-

tion.

Proof. We will show that for ε small enough, we can find a constant 0 ă µ1 ă 1 such that

dpΓ1
pb, F q,Γ1

pb1, F 1qq ă µ1 ¨ dppb, F q, pb
1, F 1qq. (2.52)
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Note that

dpΓ1
pb, F q,Γ1

pb1, F 1qq

ď ε

ˇ

ˇ

ˇ

ˇ

ż 1

0

Y
1

2pθ, b, F, εq ´ Y
1

2pθ, b
1, F 1, εqdθ

ˇ

ˇ

ˇ

ˇ

` ε sup
θ

ˇ

ˇ

ˇ

ˇ

ż 8

0

ebtY
1

1pθ ` ωt, b, F, εq ´ e
b1tY

1

1pθ ` ωt, b
1, F 1, εqdt

ˇ

ˇ

ˇ

ˇ

`
ε

|ω|
sup
θ

ˇ

ˇ

ˇ

ˇ

ż θ

0

Y
1

2pσ, b, F, εq ´
`

ż 1

0

Y
1

2pθ, b, F, εqdθ
˘

F2pσqdσ

´

ż θ

0

Y
1

2pσ, b
1, F 1, εq `

`

ż 1

0

Y
1

2pθ, b
1, F 1, εqdθ

˘

F 12pσqdσ

ˇ

ˇ

ˇ

ˇ

` |CpF, bq ´ CpF 1, b1q|

(2.53)

As before, we will consider each term of the right hand side of the above inequality

equation (2.53).

Recall that Y
1

has the form equation (2.44)

Y
1
pθ, λ,W 1, εq “ ApθqW 1

pθq `Bpθ;λqW 1
pθ ´ ωr ˝KpW 0

pθqqq.

If we use notation:

Apθq “

¨

˚

˝

A11pθq A12pθq

A21pθq A22pθq

˛

‹

‚

, Bpθ;λq “

¨

˚

˝

B11pθ;λq B12pθ;λq

B21pθ;λq B22pθ;λq

˛

‹

‚

,

then

Y
1

1pθ, λ,W
1, εq “A11pθqW

1
1 pθq ` A12pθqW

1
2 pθq

`B11pθ;λqW
1
1 pθ ´ ωr ˝KpW

0
pθqqq

`B12pθ;λqW
1
2 pθ ´ ωr ˝KpW

0
pθqqq,
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and

Y
1

2pθ, λ,W
1, εq “A21pθqW

1
1 pθq ` A22pθqW

1
2 pθq

`B21pθ;λqW
1
1 pθ ´ ωr ˝KpW

0
pθqqq

`B22pθ;λqW
1
2 pθ ´ ωr ˝KpW

0
pθqqq.

We estimate

|Bpθ; bq| ď e´
4
3
λ0}r˝K}}D2Y },

and

|Bpθ; bq ´Bpθ; b1q| ď }D2Y }e
´ 4

3
λ0}r˝K}}r ˝K}|b´ b1|.

Also, if we define }A} “ maxθ }Apθq}, where }Apθq} is the operator norm correspond-

ing to the maximum norm } ¨ } defined in equation (2.30). Then,

|Y
1

1pθ, b, F, εq ´ Y
1

1pθ, b
1, F 1, εq|

ď }A}}F ´ F 1} ` }Bpθ; bq}}F ´ F 1} ` }Bpθ; bq ´Bpθ; b1q}}F 1}

ď p}A} ` e´
4
3
λ0}r˝K}}D2Y }q}F ´ F

1
} `B1

}D2Y }e
´ 4

3
λ0}r˝K}}r ˝K}|b´ b1|,

and similarly,

|Y
1

2pθ, b, F, εq ´ Y
1

2pθ, b
1, F 1, εq|

ď p}A} ` e´
4
3
λ0}r˝K}}D2Y }q}F ´ F

1
} `B1

}D2Y }e
´ 4

3
λ0}r˝K}}r ˝K}|b´ b1|.

Note also that

|Y
1

1pθ, b, F, εq| ď B1
p}A} ` e´

4
3
λ0}r˝K}}D2Y }q,
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similarly,

|Y
1

2pθ, b, F, εq| ď B1
p}A} ` e´

4
3
λ0}r˝K}}D2Y }q.

Now for the first term in equation (2.53), we have

ˇ

ˇΓ1
1pb, F q ´ Γ1

1pb
1, F 1q

ˇ

ˇ ď εp}A} ` e´
4
3
λ0}r˝K}}D2Y }q}F ´ F

1
}

` εB1
}D2Y }e

´ 4
3
λ0}r˝K}}r ˝K}|b´ b1|.

For the second term in equation (2.53), we have for all θ,

ˇ

ˇΓ1
2pb, F q ´ Γ1

2pb
1, F 1q

ˇ

ˇ ď

´
3ε

2λ0

p}A} ` e´
4
3
λ0}r˝K}}D2Y }q}F ´ F

1
}

´
3B1ε

2λ0

ˆ

e´
4
3
λ0}r˝K}}D2Y }

`

}r ˝K} ´
3

2λ0

˘

´
3

2λ0

}A}

˙

|b´ b1|

For the third term in equation (2.53), we have

ˇ

ˇΓ1
3pb, F q ´ Γ1

3pb
1, F 1q

ˇ

ˇ ď
ε

|ω|
p1` 2B1

qp}A} ` e´
4
3
λ0}r˝K}}D2Y }q}F ´ F

1
}

`
B1ε

|ω|
p1`B1

q}D2Y }e
´ 4

3
λ0}r˝K}}r ˝K}|b´ b1|

Similar holds for the last part in equation (2.53),

|CpF, bq ´ CpF 1, b1q| ď
ε

|ω|
p1` 2B1

qp}A} ` e´
4
3
λ0}r˝K}}D2Y }q}F ´ F

1
}

`
B1ε

|ω|
p1`B1

q}D2Y }e
´ 4

3
λ0}r˝K}}r ˝K}|b´ b1|

Combine all the estimations above, we can find constants c1, c2 such that,

dpΓ1
pb, F q,Γ1

pb1, F 1qq ď εpc1|b´ b
1
| ` c2}F ´ F

1
}q.
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Therefore, for small enough ε, we have that Γ1 is a contraction, i.e., we can find a constant

µ1 such that equation (2.52) is true.

Taking any initial guess pλ0,W 1,0q P D1, we could take λ0 “ λ0 and W 1,0pθq “ p 0
1 q,

the sequence pΓ1qnpλ0,W 1,0q has a limit in D1, which we denote by pλ,W 1q. pλ,W 1q

is the fixed point of operator Γ1, hence it solves equation (2.16). Since the operator is

a contraction, λ is unique, W 1 is unique in C0 sense under the normalization condition

equation (2.48).

Similar to what we have done in estimation equation (2.41) in section 2.5.1, notice that

d
`

pλ0,W 1,0
q, pλ,W 1

q
˘

ď
1

1´ µ1

d
`

pλ0,W 1,0
q,Γ1

pλ0,W 1,0
q
˘

. (2.54)

We will estimate d
`

pλ0,W 1,0q,Γ1pλ0,W 1,0q
˘

by }E1}. If we write E1pθq in matrix

form, we have

¨

˚

˝

E1
1pθq

E1
2pθq

˛

‹

‚

“

¨

˚

˝

ω d
dθ
W 1,0

1 pθq ` λ0W 1,0
1 pθq ´ εY

1

1pθ, λ
0,W 1,0, εq

ω d
dθ
W 1,0

2 pθq ` pλ0 ´ λ0qW
1,0
2 pθq ´ εY

1

2pθ, λ
0,W 1,0, εq

˛

‹

‚

.
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Therefore,

d
`

pλ0,W 1,0
q,Γ1

pλ0,W 1,0
q
˘

ď|λ0 ` ε

ż 1

0

Y
1

2pθ, λ
0,W 1,0, εqdθ ´ λ0

|

` sup
θ

ˇ

ˇ

ˇ

ˇ

W 1,0
1 pθq ` ε

ż 8

0

eλ
0tY

1

1pθ ` ωt, λ
0,W 1,0, εqdt

ˇ

ˇ

ˇ

ˇ

` sup
θ

ˇ

ˇ

ˇ

ˇ

Cpλ0,W 1,0
q `

ε

ω

ż θ

0

Y
1

2pσ, λ
0,W 1,0,εq

´

ˆ
ż 1

0

Y
1

2pθ, λ
0,W 1,0, εqdθ

˙

W 1,0
2 pσqdσ ´W 1,0

2 pθq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż 1

0

E1
2pθqdθ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż 8

0

eλ
0tE1

1pθ ` ωtqdt

ˇ

ˇ

ˇ

ˇ

`
2` 2B1

|ω|
}E1

2}

ď
1

|λ0|
}E1

1} `

ˆ

1`
2` 2B1

|ω|

˙

}E1
2}

ď
3

2|λ0|
}E1

1} `

ˆ

1`
4` 4B1

ω0

˙

}E1
2}.

Then

d
`

pλ0,W 1,0
q, pλ,W 1

q
˘

ď
1

1´ µ1

„

3

2|λ0|
}E1

1} `

ˆ

1`
4` 4B1

ω0

˙

}E1
2}



. (2.55)

Therefore, we can find a constant C, depending on ε,B1, ω0 and λ0 such that |λ´λ0| ď

C}E1}. This proves equation (2.23).

2.5.2.2 Equation for jth order terms

For each j ě 2, we can proceed in a similar manner to find W j . With ω, λ, W 0, and W 1

known, equations for W j’s are easier to analyze.

Remark 22. As we will see, for theoretical result, we can stop at order 1 and start to deal

with the higher order term. We include here the discussion forW j’s for numerical interests.

Assume now that we have already obtained W 0, . . . ,W j´1, and ω, λ, we are going

to find W jpθq. To obtain the invariance equation satisfied by W j , mentioned in equation
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(2.17). We consider the j-th order term in equation (2.9). Note that there are only two terms

in the coefficient of sj in ĂW pθ, sq which contain W j:

´ωDW 0
pθ ´ ωr ˝KpW 0

pθqqqDpr ˝KqpW 0
pθqqW j

pθq,

and

e´λjr˝KpW
0pθqqW j

pθ ´ ωr ˝KpW 0
pθqqq.

Therefore, Y
j

is of the form:

Y
j
pθ, λ,W 0,W j, εq “ ApθqW j

pθq `BjpθqW
j
pθ ´ ωr ˝KpW 0

pθqqq, (2.56)

where Apθq is the same as in equation (2.45),

Apθq “ ´ωD2Y pW
0
pθq,ĂW pθq, εqDW 0

pθ ´ ωr ˝KpW 0
pθqqDpr ˝KqpW 0

pθqq

`D1Y pW
0
pθq,ĂW pθq, εq,

and

Bjpθq :“ e´λjr˝KpW
0pθqqD2Y pW

0
pθq,ĂW 0

pθq, εq.

We also note that Rjpθq will be some expression in the derivatives of Y evaluated at

pW 0pθq,ĂW pθq, εq, multiplied with W 0, . . . ,W j´1. Therefore, Rjpθq will have the same

regularity asW j´1. We will show inductively by the following argument thatW j is pL´1q

times differentiable with pL´ 1q-th derivative Lipschitz.

From now on, we will write Y
j

as Y
j
pθ,W j, εq, for that λ and W 0 are known to us.

Componentwisely, W j should satisfy

ω
d

dθ
W j

1 pθq ` λjW
j
1 pθq “ εY

j

1pθ,W
j, εq `Rj

1pθq, (2.57)

ω
d

dθ
W j

2 pθq ` pλj ´ λ0qW
j
2 pθq “ εY

j

2pθ,W
j, εq `Rj

2pθq. (2.58)
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Consider functions in the space

C L´1`Lip
j “ tf | f : TÑ Tˆ R, f can be lifted to a function from R to R2,

still denoted as f,which satisfies fpθ ` 1q “ fpθq,

}f}L´1`Lip ď Bj
u,

where Bj’s are positive constants, and

}f}L´1`Lip “ max
i“1,2,k“0,...,L´1

t sup
θPr0,1s

}f
pkq
i pθq}, Lippf

pL´1q
i qu.

Similar to what we have done above, define an operator on space C L´1`Lip
j :

ΓjpGqpθq “

¨

˚

˝

´ε
ş8

0
eλjt

´

Y
j

1pθ ` ωt,G, εq `R
j
1pθ ` ωtq

¯

dt

´ε
ş8

0
epλj´λ0qt

´

Y
j

2pθ ` ωt,G, εq `R
j
2pθ ` ωtq

¯

dt

˛

‹

‚

(2.59)

Assume that we have already obtained W k in C L´1`Lip
k for k “ 0, . . . , j ´ 1, we have

the following:

Lemma 23. For small enough ε, we have ΓjpC L´1`Lip
j q Ă C L´1`Lip

j .

This follows from λ ă 0 and pλj´λ0q ă 0 for j ě 2 and the regularity ofW 0, . . . ,W j ,

Y
j
, and Rj . Moreover, we have ε in front of the expression. Since this is very similar to

the analysis of W 0 and W 1, we will omit the detailed proof here.

We also know that Γj is a C0 contraction for small ε.

Lemma 24. For small enough ε, Γj is a contraction in C0 distance.

This follows easily from that λ ă 0 and pλj ´ λ0q ă 0 for j ě 2, and Y
j

is linear in

W j .

If we define norm as before

}G} “ maxtsup
θ
|G1pθq|, sup

θ
|G2pθq|u,
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above lemma tells us that, if ε is small enough, then one can find 0 ă µj ă 1, such that

}ΓpGq ´ ΓpG1q} ď µj}G´G
1
}.

Taking any initial guess W j,0 P C L´1`Lip
j , we would take W j,0pθq “ p 0

0 q, the sequence

pΓjqnpW j,0q has a limit in C L´1`Lip
j , we denote it by W j . W j is the fixed point of operator

Γj , so it solves equation (2.17). W j is close to the initial guess, and is unique in the sense

of C0 by the contraction argument. We will see quantitative estimates below.

We know that

}W j
´W j,0

} ď
1

1´ µj
}W j,0

´ ΓjpW j,0
q}. (2.60)

With similar argument as in the error estimation of W 0 and W 1, we have

|W j,0
1 pθq ´ Γj1pW

j,0
qpθq| ď ´

1

jλ
}Ej

1},

|W j,0
2 pθq ´ Γj2pW

j,0
qpθq| ď ´

1

jλ´ λ0

}Ej
2}.

Therefore, we have

}W j
´W j,0

} ď
1

1´ µj

ˆ

´
1

jλ
}Ej

1} ´
1

jλ´ λ0

}Ej
2}

˙

ď C}Ej
}. (2.61)

We stress that above C depends on j, ε, λ, Bj , and the SDDE, however, it does not depend

on the choice of W j,0 in space C L´1`Lip
j .

2.5.2.3 Equation of Higher Order Term

Now we have already found ω, λ, W 0, . . . ,WN´1. It remains to consider the higher order

term. We will solve equation (2.18) locally in this section, which will establish the existence

in Theorem 7. From now on, we will write:

W pθ, sq “ Wď
pθ, sq `Wą

pθ, sq, (2.62)
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where Wďpθ, sq “
řN´1
j“0 W jpθqsj . To make the analysis feasible, we do a cut-off to the

equation satisfied by Wą in equation (2.18):

pωBθ ` sλBsqW
ą
pθ, sq “

¨

˚

˝

0

λ0W
ą
2 pθ, sq

˛

‹

‚

` εY ąpWą, θ, s, εqφpsq, (2.63)

where

Y ąpWą, θ, s, εq “ Y pW pθ, sq,ĂW pθ, sq, εq ´
N´1
ÿ

i“0

Y
i
pθqsi, (2.64)

Y
i
pθq “

1

i!

Bi

Bsi
pY pW pθ, sq,ĂW pθ, sq, εqq

ˇ

ˇ

ˇ

ˇ

s“0

,

and recall the C8 cut-off function φ : RÑ r0, 1s introduced in equation (2.10):

φpxq “

$

’

’

&

’

’

%

1 if |x| ď 1
2
,

0 if |x| ą 1.

Remark 25. A cut-off is needed in our method. We note that similar to before, the bound-

aries for the cut-off function above (1
2

and 1) could be changed to any positive numbers

a1 ă a2.

Adding a cut-off is not too restrictive. Indeed, we only get local results for the original

problem near the limit cycle. Since we have used extensions to get the prepared equation

(2.9), what happens for s with large absolute value will not matter.

Now let cptq “ pθ ` ωt, seλtq be the characteristics, we define an operator:

ΓąpHqpθ, sq “ ´ε

ż 8

0

¨

˚

˝

1 0

0 e´λ0t

˛

‹

‚

Y ąpH, cptq, εqφpseλtqdt. (2.65)

If there is a fixed point of Γą which has some regularity, it will solve the modified

invariance equation (2.63). For the domain of Γą, assuming that Lą is a positive integer,
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we consider Dą, the space of functions H : TˆRÑ TˆR, where BlθB
m
s Hipθ, sq, i “ 1, 2,

exists if l `m ď Lą, with } ¨ }Lą,N norm bounded by a constant B:

}H}Lą,N :“ max
l`mďLą,i“1,2

$

’

’

&

’

’

%

suppθ,sqPTˆR |B
l
θB
m
s Hipθ, sq||s|

´pN´mq if m ď N,

suppθ,sqPTˆR |B
l
θB
m
s Hipθ, sq| if m ą N.

(2.66)

Using the notation introduced in (6.38), we have

ĂW pθ, sq “ W pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq

“ Wď
pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq

`Wą
pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq.

We define

ĂWą
pθ, sq “ Wą

pθ ´ ωr ˝KppWď
`Wą

qpθ, sqq, se´λr˝KppW
ď`Wąqpθ,sqq

q. (2.67)

Lemma 26. If ε is small enough, ΓąpDąq Ă Dą.

Proof. For H P Dą, we need to prove that for i “ 1, 2, and l`m ď Lą, BlθB
m
s Γąi pHqpθ, sq

exists, and that }ΓąpHq}Lą,N is bounded by B. Using definition in equation (2.67)

rHpθ, sq “ Hpθ ´ ωr ˝KppWď
`Hqpθ, sqq, se´λr˝KppW

ď`Hqpθ,sqq
q

We first claim that for }H}Lą,N ď B, we can find constant C, which does not depend

on the choice of H , such that for l `m ď Lą, i “ 1, 2, pθ, sq P rTˆ r´1, 1s:

$

’

’

&

’

’

%

|BlθB
m
s
rHipθ, sq| ď C|s|pN´mq if m ď N,

|BlθB
m
s
rHipθ, sq| ď C if m ą N.

(2.68)
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Note that within the proof of this lemma, C may vary from line to line. Finally, we will

take C to be the maximum of all C’s appeared in this proof.

To prove above claim, notice that }H}Lą,N ď B implies that

$

’

’

&

’

’

%

|BlθB
m
s Hipθ, sq| ď B|s|pN´mq if m ď N,

|BlθB
m
s Hipθ, sq| ď B if m ą N.

for l `m ď Lą, i “ 1, 2, and pθ, sq P Tˆ R. Then

| rHipθ, sq| ď B|s|Ne´λNr˝KppW
ď`Hqpθ,sqq.

By boundedness of r ˝K, we have that | rHipθ, sq| ď C|s|N . Note that

B

Bθ
rHipθ, sq “ BθHi

´

θ ´ ωr ˝KppWď
`Hqpθ, sqq, se´λr˝KppW

ď`Hqpθ,sqq
¯

¨

¨
`

1´ ωDpr ˝KqppWď
`Hqpθ, sqqBθpW

ď
`Hqpθ, sq

˘

`BsHi

´

θ ´ ωr ˝KppWď
`Hqpθ, sqq, se´λr˝KppW

ď`Hqpθ,sqq
¯

¨

¨sp´λqDpr ˝KqppWď
`Hqpθ, sqqBθpW

ď
`Hqpθ, sqe´λr˝KppW

ď`Hqpθ,sqq

Then, we have

ˇ

ˇ

ˇ

ˇ

B

Bθ
rHipθ, sq

ˇ

ˇ

ˇ

ˇ

ďB|s|Ne´λN}r˝K}p1` |ω|}Dpr ˝Kq}}BθpW
ď
`Hq}

`B|s|N´1e´λpN´1q}r˝K}
|s||λ|}Dpr ˝Kq}e´λ}r˝K}}BθpW

ď
`Hq}.

By boundedness of Wď, H , r ˝K, and their derivatives, we have

ˇ

ˇ

ˇ

ˇ

B

Bθ
rHipθ, sq

ˇ

ˇ

ˇ

ˇ

ď C|s|N .

Above C depends on B, but it will not depend on the choice of H P Dą.
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Similarly,

B

Bs
rHipθ, sq “ BθHipθ ´ ωr ˝KppW

ď
`Hqpθ, sqq, se´λr˝KppW

ď`Hqpθ,sqq
q¨

¨p´ωqDpr ˝KqppWď
`Hqpθ, sqqBspW

ď
`Hqpθ, sq

`BsHipθ ´ ωr ˝KppW
ď
`Hqpθ, sqq, se´λr˝KppW

ď`Hqpθ,sqq
q¨

¨
`

1` sp´λqDpr ˝KqppWď
`Hqpθ, sqqBspW

ď
`Hqpθ, sq

˘

e´λr˝KppW
ď`Hqpθ,sqq.

Then,

ˇ

ˇ

ˇ

ˇ

B

Bs
rHipθ, sq

ˇ

ˇ

ˇ

ˇ

ďB|s|N´1e´λpN´1q}r˝K}
´

1` |s||λ|}Dpr ˝Kq}e´λ}r˝K}}BspW
ď
`Hq}

¯

`B|s|Ne´λN}r˝K}|ω|}Dpr ˝Kq}}BspW
ď
`Hq}.

Since we have |s| ď 1, regularity of Wď and H ,

ˇ

ˇ

ˇ

ˇ

B

Bs
rHipθ, sq

ˇ

ˇ

ˇ

ˇ

ď C|s|N´1.

The C will not depend on the choice of H as long as }H}Lą,N ď B. The proof of the claim

is then finished by induction.

Now we observe that we can bound the integrand in the operator Γą.

Claim: There exists a constantC, such that }Y pH, θ, s, εqφpsq}Lą,N ď C when }H}Lą,N ď

B.

Note that by definition of the cut-off function φ, it suffices to consider s P r´1, 1s.

Y ąpH, θ, s, εq “ Y ppWď
`Hqpθ, sq, ČpWď `Hqpθ, sq, εq ´

N´1
ÿ

i“0

Y
i
pθqsi,

where

Y
i
pθq “

1

i!

Bi

Bsi
pY ppWď

`Hqpθ, sq, ČpWď `Hqpθ, sq, εqq

ˇ

ˇ

ˇ

ˇ

s“0

.
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One can add and subtract terms in above expression,

Y ąpH, θ, s, εq “Y ppWď
`Hqpθ, sq, ČpWď `Hqpθ, sq, εq

´ Y pWď
pθ, sq,ĄWďpθ, s,Hq, εq

` Y pWď
pθ, sq,ĄWďpθ, s,Hq, εq

´ Y pWď
pθ, sq,Wď

pθ ´ ωr ˝KpWď
pθ, sqq, se´λr˝KpW

ďpθ,sqq
q, εq

` Y pWď
pθ, sq,Wď

pθ ´ ωr ˝KpWď
pθ, sqq, se´λr˝KpW

ďpθ,sqq
q, εq

´

N´1
ÿ

i“0

Y
i
pθqsi,

(2.69)

where we used the notation

ĄWďpθ, s;Hq “ Wď
pθ ´ ωr ˝KppWď

`Hqpθ, sqq, se´λr˝KppW
ď`Hqpθ,sqq

q.

We group the first two lines, the two lines in the middle, and the last two lines in equation

(2.69), and denote them as `1, `2, and `3, respectively. Then for `1:

`1 “

ż 1

0

D1Y pp1´ tqW
ď
pθ, sq ` tpWď

`Hqpθ, sq, ČpWď `Hqpθ, sq, εqHpθ, sqdt

`

ż 1

0

D2Y pW
ď
pθ, sq, p1´ tqĄWďpθ, s;Hq ` t ČpWď `Hqpθ, sq, εq rHpθ, sqdt

By the regularity of Y and Wď, }H}Lą,N ď B, and that rH satisfies equation (2.68), we

know that }`1φpsq}Lą,N ď C.

Similarly, `2 is

ż 1

0

D2Y pW
ď
pθ, sq,Wď

pθ ´ ωr ˝KppWď
` tHqpθ, sqq, se´λr˝KppW

ď`tHqpθ,sqq
q, εq¨

rBθW
ď
p¨qp´ωqDpr ˝Kqp¨q ` BsW

ď
p¨qse´λr˝Kp¨qDpr ˝Kqp¨qp´λqsHpθ, sqdt,
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we have that }`2φpsq}Lą,N ď C.

For `3, notice that
řN´1
i“0 Y

i
pθqsi is the Taylor expansion at s “ 0 for

Y pWď
pθ, sq,Wď

pθ ´ ωr ˝KpWď
pθ, sqq, se´λr˝KpW

ďpθ,sqq
q, εq, (2.70)

According to Taylor’s Formula with remainder, see [36], we just need to show that for

m ď N

BN´m

BsN´m
Bl

Bθl
Bm

Bsm
(2.70),

and for m ą N ,
Bm

Bsm
Bl

Bθl
p`3q,

are bounded for all θ, |s| ď 1, and l`m ď Lą. This is true if we assume that the lower order

term has more regularity, more precisely, L´ 1 ě Lą`N . We will take Lą “ L´ 1´N

to optimize regularity. Therefore, we have }`3φpsq}Lą,N ď C, and the claim is proved.

Hence, according to equation (2.65), if m ď N , for small ε, we have that

|B
l
θB
m
s Γąi pHqpθ, sq| ď ε

ˇ

ˇ

ˇ

ˇ

ż 8

0

e´λ0tC|s|N´meλpN´mqteλmtdt

ˇ

ˇ

ˇ

ˇ

ď B|s|N´m, (2.71)

if m ą N , for small ε, we have that

|B
l
θB
m
s Γąi pHqpθ, sq| ď ε

ˇ

ˇ

ˇ

ˇ

ż 8

0

e´λ0tCeλmtdt

ˇ

ˇ

ˇ

ˇ

ď B, (2.72)

Therefore, for small ε, }Γąi pHq}Lą,N ď B when }H}Lą,N ď B.

Lemma 27. If ε is small enough, Γą is a contraction in } ¨ }0,N .
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Proof. Recall that }H}0,N “ suppθ,sqPTˆR |Hpθ, sq||s|
´N . We consider

ΓąpHqpθ, sq ´ ΓąpH 1
qpθ, sq

“ ´ε

ż 8

0

¨

˚

˝

1 0

0 e´λ0t

˛

‹

‚

pY ąpH, cptq, εq ´ Y ąpH 1, cptq, εqqφpseλtqdt (2.73)

Given the low order terms, denote W “ Wď `H and W 1 “ Wď `H 1, we have

Y ąpH, cptq, εq ´ Y ąpH 1, cptq, εq

“ Y pW pcptqq,ĂW pcptqq, εq ´ Y pW 1
pcptqq, ĂW 1pcptqq, εq. (2.74)

Note that for all θ and s,

|W pθ, sq ´W 1
pθ, sq| “ |Hpθ, sq ´H 1

pθ, sq| ď }H ´H 1
}0,N |s|

N . (2.75)
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Then for ĂW pθ, sq ´ ĂW 1pθ, sq, by adding and subtracting terms, we have for all θ and s,

|ĂW pθ, sq ´ ĂW 1pθ, sq| “

ˇ

ˇ

ˇ

ˇ

W pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq

´W 1
pθ ´ ωr ˝KpW 1

pθ, sqq, se´λr˝KpW
1pθ,sqq

q

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

W pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq

´W 1
pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

W 1
pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq

´W 1
pθ ´ ωr ˝KpW 1

pθ, sqq, se´λr˝KpW pθ,sqqq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

W 1
pθ ´ ωr ˝KpW 1

pθ, sqq, se´λr˝KpW pθ,sqqq

´W 1
pθ ´ ωr ˝KpW 1

pθ, sqq, se´λr˝KpW
1pθ,sqq

q

ˇ

ˇ

ˇ

ˇ

ďM1}H ´H
1
}0,N |s|

N ,

where

M1 “ e´λN}r˝K} ` p}DWď
} `Bq}Dpr ˝Kq}p|ω| ` |λ||s|e´λ}r˝K}q.

Then,

|ΓąpHqpθ, sq ´ ΓąpH 1
qpθ, sq| ď ε}H ´H 1

}0,N |s|
N

ż 8

0

epλN´λ0qtMφpseλtqdt,

where

M “ }D1Y } ` }D2Y }M1.

Now, notice that by definition of D1, we have that λ P r4λ0
3
, 2λ0

3
s, then λN ´ λ0 ă 0 if
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N ě 2. Under this assumption, we have for all θ, s,

|ΓąpHqpθ, sq ´ ΓąpH 1
qpθ, sq| ď ´

εM

λN ´ λ0

}H ´H 1
}0,N |s|

N .

If ε is small enough, we have for all θ, s,

|ΓąpHqpθ, sq ´ ΓąpH 1
qpθ, sq| ď µ}H ´H 1

}0,N |s|
N .

Hence for small enough ε,

}ΓąpHq ´ ΓąpH 1
q}0,N ď µ}H ´H 1

}0,N ,

Γą is a contraction. Note that the smallness condition for ε depends on N , Bj , j “

0, . . . , N ´ 1, B, ω0, λ0, Y , and r ˝K.

Now for any initial guess Wă,0, the sequence pΓąqnpWą,0q, in the function space Dą,

will converge pointwise to a function Wą, which is the fixed point of Γą. By Lemma 92,

we know that Wą is pLą ´ 1q times differentiable, with pLą ´ 1q-th derivative Lipschitz.

It remains to do the error analysis in this case. Notice that

Eąpθ, sq “ pωBθ ` sλBsqW
ą,0
pθ, sq ´

¨

˚

˝

0

λ0W
ą,0
2 pθ, sq

˛

‹

‚

´ εY ąpWą,0, θ, s, εqφpsq,

along the characteristics, we have

Eąpcptqq “ pωBθ ` se
λtλBsqW

ą,0
pcptqq ´

¨

˚

˝

0

λ0W
ą,0
2 pcptqq

˛

‹

‚

´ εY ąpWą,0, cptq, εqφpseλtq.
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Hence,

ΓąpWą,0
qpθ, sq ´Wą,0

pθ, sq “

ż 8

0

¨

˚

˝

1 0

0 e´λ0t

˛

‹

‚

Eąpcptqqdt.

The proof of Lemma 26 implies that }Eą}0,N is bounded, therefore, for the maximum

norm,
›

›ΓąpWą,0
q ´Wą,0

›

› ď
1

λ0 ´ λN
}Eą}0,N |s|

N ,

and then

}Wą
´Wą,0

} ď
1

1´ µ

›

›ΓąpWą,0
q ´Wą,0

›

› ď
1

p1´ µqpλ0 ´ λNq
}Eą}0,N |s|

N . (2.76)

Combining error estimations in equation (2.42),equation (2.55), equation (2.61), and

equation (2.76), we see that the l “ 0 case of equation (2.22) is proved. Inequalities in

equation (2.22) for l ‰ 0 is obtained using interpolation inequalities.

2.5.3 Proof of Theorem 10 and Theorem 11

The proofs of Theorem 10 and Theorem 11 are obtained by considering the functions

W j
η pθq as functions of two variables η and θ, denoted as W̃ jpη, θq. We can straightforwardly

lift the operators Γ0, Γ1, and Γj defined in equation (2.27), equation (3.15), and equation

(2.59) to operators acting on functions of two variables. We denote these operators acting

on two-variable functions by Γ̃0, Γ̃1, and Γ̃j , respectively. At the same time, we lift the

operator Γą to an operator acting on functions of three variables, denoted as Γ̃ą.

To prove Theorem 10, given a function W̃ 0pη, θq of the variables η, θ, we treat η as a

parameter and take into account that now, Y and r depend also on η, in a smooth way.

We use the same strategy as in the proof of Theorem 6. We first show the propagated

bounds property, similar to Lemma 16, and then, show that the operator is a contraction

under a C0-type distance, similar to Lemma 17. The distance here is quite analogue to the
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distance defined in equation (3.22). It is given by the sum of the C0 distance of the two-

variable functions and the difference between the frequencies. Then, the desired result,

Theorem 10 follows by an application of Lemma 92.

In order to get the propagated bounds property, the key is to show that if }W̃ }L`Lip ď

B̃0, for ε ă ε0, we have that the CL`Lip norms of the function components of Γ̃0pW̃ q

are also bounded by B̃0. This proof is rather straightforward and identical to the proof as

before. More precisely, we apply Faá di Bruno formula in Lemma 86, and observe that

the derivatives of order up to L of the function components of Γ̃pW̃ 0q, are polynomials

in the derivatives of W̃ 0 of order up to L whose coefficients are derivatives of Y , r and

combinatorial constants. Similarly, we can estimate the Lipschitz constants because upper

bounds for the Lipschitz constants satisfy an analogue of Faá di Bruno formula.

To obtain the proof of the contraction, we just need to observe that the proof of the

contraction in Lemma 17 only uses very few properties of Y and r. The properties hold

uniformly for all η. Hence, one can obtain the contraction in the uniform norm on both

variables.

Analogous arguments as above for the operators Γ̃j and Γ̃ą, using similar methods as

in Sections 2.5.2.1, 2.5.2.2, 2.5.2.3, complete the proof for Theorem 11.
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CHAPTER 3

PERIODIC ORBITS IN FDES CLOSE TO AN ODE OR AN EVOLUTIONARY

PDE

Periodic orbits are important landmarks in dynamical systems. There has been interest

in studying periodic orbits in DDEs, see [37, 38, 31, 39]. Some studies in the setting of

SDDEs are in [40, 32, 34, 41]. Some numerical works are in [42, 43, 44].

In this Chapter, we first present a systematic approach to the study of periodic orbits of

FDEs which are singular perturbations of smooth ODEs in Rn.

We formulate functional equations satisfied by parameterizations of the periodic orbits

and their frequencies in appropriate spaces of smooth functions. We solve the functional

equations using a fixed point approach, and obtain existence of smooth solutions and de-

pendence on parameters with high regularity.

Then, using a similar but more elaborate proof, we get results on periodic orbits for

equations with small delays, which have applications in electrodynamics.

Finally, we extend the results to perturbations of PDEs. We can consider PDEs which

have good forward (but not backward) evolutions such as parabolic equations as well as

some ill-posed equations (e.g. Boussinesq equation in water waves, which even if ill posed,

admits many physically interesting solutions).

We note that results on persistence of non-degenerate periodic orbits and dependence

on parameters for FDEs with constant delays was proven by studying the evolution oper-

ator, see [12, 45], and [46]. This method is difficult to apply to SDDEs for example, for

regularities higher than C1, since one would need to extend the regularity theory of the evo-

lution [21] to higher regularities. The paper [47] also studies functional equations satisfied

by periodic orbits, but treats them using topological methods, which do not allow to study

regularity. See also the excellent surveys [48, 49].
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3.1 Formulation of the Problem

Consider an n-dimensional ODE

9xptq “ fpxptqq, (3.1)

where, for the moment, f : Rn Ñ Rn is a C8 vector field (later we will assume less

regularity).

We assume that equation (3.1) has a periodic orbit with frequency ω0 ‰ 0. The exis-

tence of periodic solutions for ODEs will not be discussed here. (We note however that

the same methods discussed here can be used to produce periodic solutions of the ODEs

perturbatively.)

We consider singular perturbation of equation (3.1) to FDEs with parameter γ :

9xptq “ fpxptqq ` εP pxt, γq, (3.2)

where P : Rr´h, hs ˆ O Ñ Rn, h is a positive constant. Rr´h, hs is a space of regular

functions from r´h, hs to Rn. The precise regularity of the functions in Rr´h, hs will be

specified later. The “history segment” xt P Rr´h, hs is defined as xtpsq “ xpt ` sq for

s P r´h, hs. And γ P O is a parameter, where O is a bounded open set in Rm. Note that

we allow our history segments to involve also the future, so that the theory we will develop

applies not just to delay equations but to equations that involve the future.

In many treatments of delay equations it is customary to think of Rr´h, hs as the phase

space in which one sets initial conditions and defines an evolution. For example, in the case

of constant delay equations, it is customary to impose initial conditions in C0r´h, 0s, with

constant h being the delay. Nevertheless, in the case of SDDEs, this space includes many

functions which cannot satisfy the equations and, therefore, have no physical meaning. As

it will be clear later, our treatment bypasses the consideration of the evolution defined by
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the FDE, so that we will not think of Rr´h, hs as the phase space of the evolution.

Under nondegeneracy condition on the periodic orbit of equation (3.1) and some mild

assumptions on P , see more details in the definition of P in (3.4) and assumptions (H2.1),

(H3.1), (H2.2), and (H3.2), we show that for small enough ε, there exists periodic orbit for

FDE (3.2). We also show that the periodic orbits for equation (3.2) depend on γ smoothly.

From now on, we will identify the periodic orbit for FDE (3.2) in a function space with

a periodic function having values in Rn. Under this identification, we will see that the

periodic orbit for FDE (3.2) is close to the periodic orbit for equation (3.1) for small ε.

3.2 Parameterization of Periodic Orbits

Let K0 : T Ñ Rn be a parameterization of the periodic orbit of equation (3.1), where

T “ R{Z. This means that for any fixed θ, xptq “ K0pθ ` ω0tq solves equation (3.1).

Equivalently, K0 satisfies the functional equation (invariance equation):

ω0DK0pθq “ fpK0pθqq. (3.3)

Note that such K0 is unique up to a phase shift. In this case, K0 is C8 since f is C8.

We aim to find K : T Ñ Rn and ω ą 0, such that for any θ, xptq “ Kpθ ` ωtq solves

equation (3.2). And we say such K parameterizes the periodic orbit of FDE (3.2).

The expression xptq “ Kpθ ` ωtq solving equation (3.2) is equivalent to K satisfying

the functional equation:

ωDKpθq “ fpKpθqq ` εPpK,ω, γ, θq, (3.4)

where PpK,ω, γ, θq results from substituting xptq “ Kpθ ` ωtq into P pxt, γq in equation

(3.2) and letting t “ 0. See Sections 3.5, 3.6, and 3.7 for explicit formulations of P in

some specific examples.

The equation (3.4) will be the centerpiece of our treatment. We will see that, using
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different methods of analysis, we can give results on existence of solutions of (3.4). Note

that this analysis produces periodic solutions of (3.2) without discussing a general theory

of existence and dependence on parameters of the solutions for FDEs.

3.3 Main Results

3.3.1 Assumptions

For a given θ0 P T, let Φpθ; θ0q be the fundamental solution of the variational equation of

the ODE (3.1), i.e.,

ω0
d

dθ
Φpθ; θ0q “ DfpK0pθqqΦpθ; θ0q, Φpθ0; θ0q “ Id. (3.5)

We need to assume that the periodic orbit of (3.1) is nondegenerate, that is, we impose

the following assumption on Φpθ0 ` 1; θ0q:

(H1) Φpθ0 ` 1; θ0q has a simple eigenvalue 1 whose eigenspace is generated by DK0pθ0q.

Note that, because of the existence and uniqueness of the solutions of (3.5), and the

periodicity of K0, we have that

Φpθ2; θ0q “ Φpθ2; θ1qΦpθ1; θ0q;

Φpθ1 ` 1; θ0 ` 1q “ Φpθ1; θ0q.

As a consequence,

Φpθ0 ` 1; θ0q “ Φpθ0 ` 1; 1qΦp1; 0qΦp0; θ0q “ Φp0; θ0q
´1Φp1; 0qΦp0; θ0q.

So that the spectrum of Φpθ0`1; θ0q, commonly called the Floquet multipliers, is indepen-

dent of the starting point θ0.

Under assumption (H1), there exists an pn´1q-dimensional linear space Eθ0 at K0pθ0q,
`

the spectral complement of SpantDK0pθ0qu, corresponding to the eigenvalues of Φpθ0 `
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1; θ0q other than 1, Rn “ Eθ0‘SpantDK0pθ0qu
˘

, on which the matrix rId´ Φpθ0 ` 1; θ0qs

is invertible. We denote the projections onto SpantDK0pθ0qu and Eθ0 as ΠJθ0 and ΠKθ0 ,

respectively.

Remark 28. An equivalent formulation of (H1) in terms of functional analysis is (H1’).

Define the operator L : C1pT,Rnq Ñ C0pT,Rnq:

L pvqpθq “ ω0Dvpθq ´DfpK0pθqqvpθq.

(H1’) RangepL q is of co-dimension 1, RangepL q ‘ SpantDK0u “ C0pT,Rnq.

The proofs of the Theorems in the next section imply the equivalence of (H1) and (H1’).

To show the persistence of periodic orbit for a fixed γ P O, the following assumptions

on P are crucial. The assumption (H2.1) is about smoothness of P and expresses that

P maps C``Lip balls around zero into C`´1`Lip balls around zero (see Definition 84 for

C``Lip spaces). (H3.1) is about Lipschitz property of P in C0 for smooth K’s. These

properties are verified in the examples we study in Sections 3.5 and 3.6. For example,

when the functional P is evaluation on xpt ´ rpxptqqq, the regularity is a consequence

of the fact that we can control the C` norm of f ˝ g by the C` norm of f, g. (We can

even loose a derivative). The C0 Lipschitz property results from the mean value theorem

(}f ˝ g1 ´ f ˝ g2}C0 ď }f}C1}g1 ´ g2}C0).

In the following, ` is an arbitrarily fixed positive integer.

Let Uρ be the ball of radius ρ in the space C``LippT,Rnq centered at K0, and let Bδ be

the interval in R with radius δ centered at ω0.

(H2.1) If K P Uρ and ω P Bδ, then PpK,ω, γ, ¨q : TÑ Rn is C`´1`Lip, with

}PpK,ω, γ, ¨q}C`´1`Lip ď φρ,δ,
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where φρ,δ is a positive constant that may depend on ρ and δ. See (A.1) for definition

of C``Lip norm.

(H3.1) For K, K 1 P Uρ, and ω, ω1 P Bδ, there exists constant αρ,δ ą 0, such that for all

θ P T,

|PpK,ω, γ, θq ´PpK 1, ω1, γ, θq| ď αρ,δ max t|ω ´ ω1|, }K ´K 1
}u , (3.6)

where }K ´K 1} is the C0-norm of K ´K 1 under the Euclidean distance on Rn.

To show that the periodic orbits of the FDE (3.2) depend on the parameter γ smoothly,

one needs to consider K, as a function of θ and γ, and ω as a function of γ. (H2.2) and

(H3.2) are similar to (H2.1) and (H3.1), respectively. Note that we have slightly abused the

notations K and ω.

We let Uρ be the ball of radius ρ in the space C``LippTˆO,Rnq centered at K0, and let

Bδ be the ball in C``LippO,Rq with radius δ centered at constant function ω0.

(H2.2) If K P Uρ and ω P Bδ, then PpK,ω, ¨, ¨q : TˆO Ñ Rn is C``Lip in γ, and C`´1`Lip

in θ, with

}PpK,ω, ¨, θq}C``Lip ď φρ,δ,

}PpK,ω, γ, ¨q}C`´1`Lip ď φρ,δ,

where φρ,δ is a positive constant.

(H3.2) For K, K 1 P Uρ and ω, ω1 P Bδ, there exists constant αρ,δ ą 0, such that for all

θ P T and γ P O,

|PpK,ω, γ, θq ´PpK 1, ω1, γ, θq| ď αρ,δ max t}ω ´ ω1}, }K ´K 1
}u ,

where }ω ´ ω1} is the C0-norm of ω ´ ω1.
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Remark 29. Note that our results work exactly the same if the perturbation depends on ε,

i.e. we have P pxt, γ, εq instead of P pxt, γq in (3.2). We can get PpK,ω, γ, ε, θq in this

case. We need assumptions on P to hold uniformly in ε for all small ε.

More specifically, (H2.1), (H3.1) can be reformulated as:

(H2.1’) If K P Uρ and ω P Bδ, then PpK,ω, γ, ε, ¨q : TÑ Rn is C`´1`Lip, with

}PpK,ω, γ, ε, ¨q}C`´1`Lip ď φρ,δpεq.

Function φρ,δ satisfies that εφρ,δpεq converges to zero as εÑ 0.

(H3.1’) For K, K 1 P Uρ, and ω, ω1 P Bδ, there exists positive function αρ,δ, such that for all

θ P T,

|PpK,ω, γ, ε, θq ´PpK 1, ω1, γ, ε, θq| ď αρ,δpεqmax t|ω ´ ω1|, }K ´K 1
}u ,

function αρ,δ satisfies that εαρ,δpεq converges to zero as εÑ 0.

The assumptions similar to (H2.2), (H3.2) can be formulated similarly.

Remark 30. The assumptions we use are similar to assumptions in invariant manifold

theory. For example in [50], the (H2.1) is called propagated bounds.

Remark 31. We call attention to the fact that in Section 3.7 we will weaken substantially

the assumption (H3.1) to be able to deal with equations with small delays.

3.3.2 Main theorems

Let N denote the set of positive numbers.

Theorem 32 (Persistence). For a given ` P N, assume that f in (3.2) is C``Lip, and that

(H1), (H2.1), and (H3.1) are satisfied for a given γ P O. Then, there exists ε0 ą 0, such
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that when ε ă ε0, the FDE (3.2) has a periodic orbit, which is parameterized by a C``Lip

map K : TÑ Rn. The smallness condition of ε0 depends on `, f , and P .

The frequency ω for the periodic orbit of equation (3.2) is close to ω0, the frequency of

the periodic orbit of equation (3.1). }K ´ K0}C` is small under a suitable choice of the

phases.

Theorem 33 (Smooth Dependence on Parameter). For a given ` P N, assume that f in

(3.2) is C``Lip, and that (H1), (H2.2), and (H3.2) are satisfied. Then, there is ε0 ą 0, such

that if ε ă ε0, one can find Kγpθq which parameterizes the periodic orbit of FDE (3.2)

persisted from the periodic orbit of (3.1). The smallness condition of ε0 depends on `, f ,

and P .

Kγ has frequency ωγ . Kγpθq is jointly C``Lip in θ and γ, ωγ is C``Lip in γ.

3.3.3 Some comments on the Theorems 32 and 33

Remark 34. One physically important case where assumption (H1) fails is when there is

a conserved quantity (for example, the energy in mechanical systems). We are not able to

deal with this case by the method of this Chapter, but we hope to come back to this problem.

Remark 35. Note that K will not be unique. If Kpθq parameterizes the periodic orbit,

then for any given θ1, Kpθ`θ1q also parameterizes the periodic orbit, with a shifted phase.

Hence, in Theorem 32, the smallness of }K´K0}C`´1 is interpreted under a suitable choice

of the phases.

This is the only source of non-uniqueness since the proofs of Theorems 32 and 33

are based on contraction mapping argument, the parameterizations we found are locally

unique up to phase shifts.

Remark 36. The smallness of ε depends on `, hence, the method cannot get a C8 result

directly. Note, however, that in some cases, e.g. state-dependent delay perturbations in

equation (3.28), one can bootstrap the regularity from C1 to C8.
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Remark 37. Our results apply to several types of FDEs, especially to many DDEs, see

Sections 3.5 and 3.6. We only need that (H1), (H2.1), (H2.2), (H3.1), and (H3.2) are

satisfied. Indeed, we allow several terms in the equation which may involve forward and

backward delays.

Remark 38. Our method allows to bypass the propagation of discontinuity in DDEs. More-

over, it has no restriction on the relation between the period of the periodic orbits and the

size of the delay.

Remark 39. The proofs we present are constructive, hence they can be implemented nu-

merically. Indeed, we formulate the problem as a fixed point of a contractive operator,

which concatenates several elementary operators. Implementations of these elementary

operators for a 2D model are addressed in a numerical toolkit developed in [24].

The proofs, based on fixed point approach, also lead to results in an a posteriori format,

which state that if there is an approximate solution (satisfying some mild assumptions), then

there is a true solution which is close to the approximate one. See more details in Section

3.4.5.

Remark 40. A posteriori theorems justify asymptotic expansions where solutions are writ-

ten as formal expansions in terms of the small parameters, see [51, 30]. Truncations of the

formal power series provide approximate solutions. The a posteriori theorem shows that

there is one true solution close by.

A posteriori theorems are also the base of computer-assisted proofs. Numerical meth-

ods produce approximate solutions. If one can estimate rigorously the error and the non-

degeneracy conditions, then one has established the existence of the solution. The verifica-

tion of the error in the approximation is a finite (but long) calculation which can be done

using computers taking care of round-off and truncation. Some cases where computer-

assisted proofs have been used in constant delay equations for periodic orbits and unstable

manifolds are [52, 53].
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3.4 Proofs

The proofs of Theorems 32 and 33 are based on fixed point approach. We will provide the

detailed proof of Theorem 32. The proof of Theorem 33 follows in the same manner by

adding the parameters in the unknowns, see Section 3.4.6.

The proof consist of several steps. First, we define an operator in an appropriate space

of smooth functions. Then, we show that (i) the operator maps a ball in this space into itself

(Section 3.4.3); (ii) the operator is a contraction in a C0 type of distance (Section 3.4.4).

The existence of fixed point in desired space is hence ensured using a generalization of

contraction mapping [50].

3.4.1 Invariance equations

In this section, we reformulate the invariance equation (3.4). Since we expect that the solu-

tions K,ω will be small perturbations of the unperturbed ones, it is natural to reformulate

(3.4) as an equation for the corrections from the unperturbed ones. In Section 3.4.2, we

will manipulate the equation for the corrections into a fixed point problem.

Let

Kpθq– K0pθq ` pKpθq,

ω – ω0 ` pω,

(3.7)

where pK : TÑ Rn and pω P R are corrections to the parameterization and frequency of the

periodic orbit of the unperturbed equation. Our goal is to find pK and pω so that K and ω

satisfy the functional equation (3.4).

Using the notation in (3.7) and the invariance equation (3.3) for K0 and ω0, we are led

to the following functional equation for pK and pω,

ω0D pKpθq ´DfpK0pθqq pKpθq “ Bε
p pK, pω, γ, θq ´ pωDK0pθq, (3.8)
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where

Bε
p pK, pω, γ, θq– Npθ, pKq ` εPpK,ω, γ, θq ´ pωD pKpθq, (3.9)

Npθ, pKq– fpK0pθq ` pKpθqq ´ fpK0pθqq ´DfpK0pθqq pKpθq.

The basic idea for this regrouping is that since K and ω are expected to be close to K0

and ω0 respectively, we only need to find the corrections.

3.4.2 The operator

Recall Φpθ; θ0q introduced in (3.5) as the flow of the variational equations. Using the

variation of parameters formula, equation (3.8) for pK and pω is equivalent to:

pKpθq “ Φpθ; θ0q

"

u0 `
1

ω0

ż θ

θ0

Φps; θ0q
´1
`

Bε
p pK, pω, γ, sq ´ pωDK0psq

˘

ds

*

, (3.10)

where the initial condition pKpθ0q “ u0 is to be found imposing that pK is periodic. This

will be discussed in the Section 3.4.2.1.

We can think of (3.10) as a fixed point equation. The right hand side is an operator in

pK, see Section 3.4.2.3. We start with a given pK, choose pω following Section 3.4.2.1 and

we substitute them in right hand side of (3.10).

3.4.2.1 Periodicity Condition

Since the right hand side of equation (3.8) is periodic, pK is periodic if and only if pKpθ0q “

pKpθ0 ` 1q, i.e.,

rId´ Φpθ0 ` 1; θ0qsu0 “
1

ω0

Φpθ0 ` 1; θ0q

ż θ0`1

θ0

Φps; θ0q
´1Bε

p pK, pω, γ, sqds

´
pω

ω0

Φpθ0 ` 1; θ0q

ż θ0`1

θ0

Φps; θ0q
´1DK0psqds. (3.11)
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Since K0 solves (3.3), and Φ satisfies (3.5), we have

Φps; θ0qDK0pθ0q “ DK0psq.

Then, the periodicity condition (3.11) becomes

rId´ Φpθ0 ` 1; θ0qsu0 “
1

ω0

ż θ0`1

θ0

Φpθ0 ` 1; sqBε
p pK, pω, γ, sqds

´
pω

ω0

DK0pθ0q. (3.12)

One is able to solve for u0 if the right hand side of equation (3.12) is in the range of

Id´Φpθ0`1; θ0q. Thanks to assumption (H1), this can be achieved by choosing the correct

pω. The choice of pω is unique.

3.4.2.2 Spaces

Let a ą 0 and define interval Ia “ r´a, as, let

Bβ “

!

g : TÑ Rn
ˇ

ˇ g is C``Lip,
›

›

›

di

dθi
gpθq

›

›

›
ď βi, i “ 0, 1, . . . , `,

Lip
´ d`

dθ`
gpθq

¯

ď βLip
`

)

,

(3.13)

where β “ pβ0, β1, . . . , β`, β
Lip
` q. The constants a, βi, i “ 0, 1, . . . , `, and βLip

` will be

chosen in the proof.

3.4.2.3 Definition of the Operator

Define the operator Γε on Ia ˆBβ ,

Γεppω, pKq “

¨

˚

˝

Γε1ppω, pKq

Γε2ppω, pKq

˛

‹

‚

. (3.14)
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Componentwise,

Γε1ppω, pKq “
x
şθ0`1

θ0
ΠJθ0Φpθ0 ` 1; sqBεp pK, pω, γ, sqds,DK0pθ0qy

|DK0pθ0q|
2 , (3.15)

where x¨, ¨y is the standard inner product on Rn.

Γε2ppω, pKqpθq “ Φpθ; θ0qu0 (3.16)

`
1

ω0

ż θ

θ0

Φpθ; sq
`

Bε
p pK, pω, γ, sq ´ Γε1ppω, pKqDK0psq

˘

ds,

where u0 P E satisfies

rId´ Φpθ0 ` 1; θ0qsu0 “
1

ω0

ż θ0`1

θ0

Φpθ0 ` 1; sqBε
p pK, pω, γ, sqds

´
Γε1ppω, pKq

ω0

DK0pθ0q (3.17)

“
1

ω0

ż θ0`1

θ0

ΠKθ0Φpθ0 ` 1; sqBε
p pK, pω, γ, sqds.

Remark 41. The definition of Γε1ppω, pKq ensures the right hand side of (3.17) to be in the

range of Id ´ Φpθ0 ` 1; θ0q. Since the kernel of Id ´ Φpθ0 ` 1; θ0q is SpantDK0pθ0qu,

equation (3.17) has infinitely many solutions, all of them are the same up to constant mul-

tiples of DK0pθ0q. In the definition of the operator Γε, we have chosen the solution for

equation (3.17) which lies in the space E. If we choose a different u0 solving (3.17), we

will get another parameterization of the periodic orbit corresponding to a different phase,

see Remark 35.

Our goal is to find the fixed point ppω˚, pK˚q of the operator Γε in a ball Ia ˆBβ , which

will solve the equation (3.8). Hence ω “ ω0 ` pω˚ and K “ K0 ` pK˚ satisfy (3.4), K

parameterizes the periodic orbit of (3.2) with frequency ω.

To this end, under the assumptions (H1), (H2.1) and (H2.2), we show in Section 3.4.3
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that for small ε, we can choose a and β so that Γε maps Ia ˆBβ back into itself.

In Section 3.4.4 we show that Γε is a contraction in a C0-like distance. The desired

result of existence of a locally unique fixed point follows from a fixed point result in the

literature that we have collected as Lemma 92.

3.4.3 Propagated bounds for Γε

In this section, we will prove the following Lemma.

Lemma 42. Assume ε is small enough, then a and β can be chosen such that Γε : IaˆBβ Ñ

Ia ˆBβ .

Proof. Note that

}Npθ, pKq} ď
1

2
LippDfq} pK}2,

where } ¨ } means C0-norm. Indeed, here and later in this proof we only need the Lipschitz

constant of Dfpxq in a neighborhood of the periodic orbit of the unperturbed ODE, i.e.

K0pTq.

Using the integration by parts formula, for θ P rθ0, θ0 ` 1s, we have

ˇ

ˇ

ˇ

ˇ

ż θ

θ0

Φpθ0 ` 1; sqpωD pKpsqds

ˇ

ˇ

ˇ

ˇ

ď

´

2}Φpθ0 ` 1; θq} `
›

›

›

d

dθ
Φpθ0 ` 1; θq

›

›

›

¯

|pω|} pK}.

where

}Φpθ0 ` 1; θq}– max
θPrθ0,θ0`1s

|Φpθ0 ` 1; θq|,

and
›

›

›

›

d

dθ
Φpθ0 ` 1; θq

›

›

›

›

– max
θPrθ0,θ0`1s

ˇ

ˇ

ˇ

ˇ

d

dθ
Φpθ0 ` 1; θq

ˇ

ˇ

ˇ

ˇ

,

and | ¨ | denotes the operator norm of the matrix. We will use similar conventions for norms

from now on.
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Since ppω, pKq P Ia ˆBβ , we have

|Γε1ppω, pKq| ď
}ΠJθ0}

ˇ

ˇDK0pθ0q
ˇ

ˇ

”

}Φpθ0 ` 1; sq}
´1

2
LippDfqβ2

0 ` ε}PpK,ω, γ, θq}
¯

`

´

2}Φpθ0 ` 1; θq} `
›

›

›

d

dθ
Φpθ0 ` 1; θq

›

›

›

¯

aβ0

ı

, (3.18)

and,

}Γε2ppω, pKq} ď }Φpθ; θ0q}M
”

}Φpθ0 ` 1; sq}p
1

2
LippDfqβ2

0 ` ε}PpK,ω, γ, θq}q

`

´

2}Φpθ0 ` 1; θq} `
›

›

›

d

dθ
Φpθ0 ` 1; θq

›

›

›

¯

aβ0

ı

`
1

ω0

”

}Φpθ; sq}p
1

2
LippDfqβ2

0 ` ε}PpK,ω, γ, θq}q (3.19)

`

´

2}Φpθ; θ0q} `

›

›

›

d

ds
Φpθ; sq

›

›

›

¯

aβ0

ı

`
}Φpθ; sq}

ω0

›

›

›
DK0psq

›

›

›
|Γε1ppω, pKq|,

where

}Φpθ; sq}– max
θPrθ0,θ0`1s

max
sPrθ0,θs

|Φpθ; sq| ,

›

›

›

›

d

ds
Φpθ; sq

›

›

›

›

– max
θPrθ0,θ0`1s

max
sPrθ0,θs

ˇ

ˇ

ˇ

ˇ

d

ds
Φpθ; sq

ˇ

ˇ

ˇ

ˇ

,

and

M –
}rId´ Φpθ0 ` 1; θ0qs

´1}}ΠKθ0}

ω0

. (3.20)

We have used rId ´ Φpθ0 ` 1; θ0qs
´1 to denote the inverse of rId ´ Φpθ0 ` 1; θ0qs in the

pn´ 1q-dimensional space Eθ0 introduced in Section 3.3.1.

Note that for the right hand sides of the inequalities (3.18) and (3.19) above, each term

is either quadratic in a, β0 or has a factor ε. Under smallness assumptions of a, β0, and ε,

we will have |Γε1ppω, pKq| ď a and }Γε2ppω, pKq} ď β0.

Now we consider the derivatives of Γε2ppω, pKq.
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The first derivative d
dθ

Γε2ppω, pKqpθq has the expression:

´ d

dθ
Φpθ; θ0q

¯!

u0 `
1

ω0

ż θ

θ0

Φps; θ0q
´1
`

Bε
p pK, pω, γ, sq ´ Γε1ppω, pKqDK0psq

˘

ds
)

`
1

ω0

!

Bε
p pK, pω, γ, θq ´ Γε1ppω, pKqDK0pθq

)

.

Recall that Φpθ; θ0q solves equation (3.5). Therefore,

›

›

›

d

dθ
Γε2ppω, pKq

›

›

›
ď

1

ω0

}DfpK0pθqq}}Γ
ε
2ppω,

pKq} `
|Γε1ppω, pKq|

Lip
pDfqω0

›

›

›
DK0pθq

›

›

›

`
1

ω0

´1

2
LippDfq} pK}2 ` ε}PpK,ω, γ, θq} ` |pω|

›

›

›
D pKpθq

›

›

›

¯

ď
1

ω0

}DfpK0pθqq}β0 `
a

ω0

›

›

›
DK0pθq

›

›

›

`
1

ω0

´1

2
LippDfqβ2

0 ` ε}PpK,ω, γ, θq} ` aβ1

¯

.

If ε, a, and β0 are small enough, we can choose β1 to ensure that
›

›

›

d
dθ

Γε2ppω, pKq
›

›

›
ď β1.

Now we proceed inductively, for n ě 2, dn

dθn
Γε2ppω, pKq is an expression involving Φ,

K0, and their derivatives up to order n, as well as Bε and its derivatives up to order n ´ 1.

Within this expression, K0 and its derivatives are always multiplied by the small factor

Γε1ppω, pKq, which has absolute value bounded by constant a. It remains to consider Bε and

its derivatives.

Recall the definition of Bε in (3.9), we now consider the three terms in Bε separately:

• For derivatives of Npθ, pKq, we use the Faa di Bruno formula. The j-th derivative of

N is an expression which contains derivatives of f up to order j ` 1, derivatives of

pK up to order j. All the terms in derivatives of N can be controlled taking advantage

of the fact that N is of order at least 2 in pK.

• Derivatives of P are bounded thanks to the assumption (H2.1). Moreover, note that

in Bε, P has the perturbation parameter ε as its coefficient. Hence, this term is less

crucial.
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• For the last term, pωD pKpθq, its j-th derivative is pωDj`1
pKpθq. All are under control

since |pω| ă a. Notice that the pn ´ 1q-th derivative of this term is pωDn
pKpθq, which

is the only place that Dn
pKpθq appears.

Taking all the terms above into consideration and using the triangle inequality, we ob-

tain bounds
›

›

›

›

dn

dθn
Γε2ppω, pKq

›

›

›

›

ď Pnpa, β0, . . . , βn´1q ` αβn, (3.21)

where for each n, Pn is a polynomial expression with positive coefficients, and α ă 1.

The coefficients of Pn are combinatorial numbers multiplied by derivatives of K0, P , f ,

and Φpθ; θ0q. Therefore, we can choose recursively the βi’s such that right hand side of

inequality (3.21) is bounded by βn.

Similar estimation can be obtained for the Lipschitz constant of d`

dθ`
Γε2ppω, pKq. Hence,

we can choose a, β such that Γε : Ia ˆBβ Ñ Ia ˆBβ .

Remark 43. Note that for ε sufficiently small, we can choose constant a and each compo-

nent of β to be as small as we want.

Remark 44. Note that Ia ˆBβ Ă RˆCpT,Rnq is compact and convex, and it is obvious

that Γε : IaˆBβ Ñ IaˆBβ is continuous, so one could apply Schauder’s fixed point The-

orem to obtain existence of the fixed point. Indeed, weaker assumptions than assumption

(H3.1) on P could also suffice to ensure continuity of Γε.

We will later prove that Γε is a contraction inC0 topology, which will give local unique-

ness of the fixed point and a posteriori estimates on the difference between an initial guess

and the fixed point.

In principle, the Banach contraction theorem provides estimates of the difference in C0

norm, but, taking into account the propagated bounds, we can use interpolation inequalities

(Lemma 91 ) to obtain estimates in norms with higher regularity. See Section 3.4.5.
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3.4.4 Contraction properties of Γε

Define C0-type distance on Ia ˆBβ:

d
´

ppω, pKq, ppω1, pK 1
q

¯

– max
!

|pω ´ pω1|, } pK ´ pK 1
}

)

. (3.22)

Lemma 45. For small enough ε, a, and β0 (as in β), the operator in (3.14) is a contraction

on Ia ˆBβ with distance (3.22), i.e., there exists 0 ă µ ă 1, such that

d
´

Γεppω, pKq,Γεppω1, pK 1
q

¯

ă µ ¨ d
´

ppω, pKq, ppω1, pK 1
q

¯

. (3.23)

Proof. The proof of this lemma consists basically in adding and subtracting and estimating

by the mean value theorem.

We first list some useful inequalities for proving this lemma:

}Npθ, pKq ´Npθ, pK 1
q} ď

1

2
LippDfq

`

} pK} ` } pK 1
}
˘

} pK ´ pK 1
},

where LippDfq is still interpreted as the Lipschitz constant of Dfpxq in a neighborhood of

the periodic orbit of the unperturbed ODE, as in the proof of Lemma 42.

For θ P rθ0, θ0 ` 1s,

ˇ

ˇ

ˇ

ˇ

ż θ

θ0

Φpθ0 ` 1; sqpωD pKpsqds´

ż θ

θ0

Φpθ0 ` 1; sqpω1D pK 1
psqds

ˇ

ˇ

ˇ

ˇ

ď

ˆ

2}Φpθ0 ` 1; θq} `
›

›

›

d

dθ
Φpθ0 ` 1; θq

›

›

›

˙

´

} pK}|pω ´ pω1| ` |pω1|} pK ´ pK 1
}

¯

.

Define

ω1 “ ω0 ` pω1, K 1
“ K0 ` pK 1,

similar to (3.7).

73



By assumption (H3.1),

|PpK,ω, γ, θq ´PpK 1, ω1, γ, θq| ď αρ,δ max t|ω ´ ω1|, }K ´K 1
}u .

Then,

|Γε1ppω, pKq ´ Γε1ppω
1, pK 1

q| (3.24)

ď

}ΠJθ0}
´

2}Φpθ0 ` 1; θq} `
›

›

d
dθ

Φpθ0 ` 1; θq
›

›

¯

ˇ

ˇDK0pθ0q
ˇ

ˇ

pβ0|pω ´ pω1| ` a} pK ´ pK 1
}q

`
}ΠJθ0}}Φpθ0 ` 1; θq}

ˇ

ˇDK0pθ0q
ˇ

ˇ

”

β0 LippDfq} pK ´ pK 1
} ` εαρ,δd

`

ppω, pKq, ppω1, pK 1
q
˘

ı

.

The initial conditions in both cases are:

u0 “
1

ω0

rId´ Φpθ0 ` 1; θ0qs
´1

ż θ0`1

θ0

ΠKθ0Φpθ0 ` 1; sqBε
p pK, pω, γ, sqds;

u10 “
1

ω0

rId´ Φpθ0 ` 1; θ0qs
´1

ż θ0`1

θ0

ΠKθ0Φpθ0 ` 1; sqBε
p pK 1, pω1, γ, sqds.

As before, rId´Φpθ0`1; θ0qs
´1 denotes the inverse of rId´Φpθ0`1; θ0qs in the pn´1q-

dimensional space Eθ0 introduced in Section 3.3.1.

Therefore,

|u0´u
1
0| (3.25)

ďM
´

2}Φpθ0 ` 1; θq} `
›

›

›

d

dθ
Φpθ0 ` 1; θq

›

›

›

¯

`

β0|pω ´ pω1| ` a} pK ´ pK 1
}
˘

`M}Φpθ0 ` 1; θq}
”

β0 LippDfq} pK ´ pK 1
} ` εαρ,δd

`

ppω, pKq, ppω1, pK 1
q
˘

ı

,
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where M is defined as in (3.20). Therefore,

}Γε2ppω, pKq´Γε2ppω
1, pK 1

q} (3.26)

ď}Φpθ; θ0q}|u0 ´ u
1
0| `

}Φpθ; sq}

ω0

}DK0pθq}|Γ
ε
1ppω,

pKq ´ Γε1ppω
1, pK 1

q|

`
}Φpθ; θ0q} `

›

›

d
ds

Φpθ; sq
›

›` 1

ω0

`

β0|pω ´ pω1| ` a} pK ´ pK 1
}
˘

`
}Φpθ; sq}

ω0

”

β0 LippDfq} pK ´ pK 1
} ` εαρ,δd

`

ppω, pKq, ppω1, pK 1
q
˘

ı

.

Combining (3.24), (3.25), and (3.24), if ε is sufficiently small, a and β0 are chosen to be

sufficiently small, we can find µ such that (3.23) is true, Γε is a contraction.

3.4.5 Conclusion of the proof of Theorem 32

There exists a fixed point ppω˚, pK˚q of contraction Γε. According to Arzela-Ascoli Theorem

(see Lemma 92 in Appendix), ppω˚, pK˚q P Ia ˆBβ , hence is a solution of the functional

equation (3.8) with desired regularity. Then, K “ K0` pK˚ gives a parameterization of the

periodic orbit of (3.28).

The proof based on fixed point approach leads to a posteriori type of results. Suppose

we start with initial guess ppω0, pK0q for ppω, pKq, since Γε is contractive, see equation (3.23),

we have

d
´

ppω0, pK0
q, ppω˚, pK˚

q

¯

ă
1

1´ µ
d
´

ppω0, pK0
q,Γεppω0, pK0

q

¯

. (3.27)

Therefore, if we have a good choice of initial guess such that the error in the fixed point

equation, d
`

ppω0, pK0q,Γεppω0, pK0q
˘

, is small, then we know the fixed point is close to the

initial guess.

Using interpolation inequalities in Lemma 91, we also have

} pK0
´ pK˚

}Cm ď C} pK0
´ pK˚

}
1´m

`

C0

for 0 ď m ď `, where the constant C depends on m, `, and β. In particular, the distance
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between the initial guess ppω0, pK0q “ p0, 0q and the fixed point ppω˚, pK˚q is of order ε,

therefore, } pK˚}Cm is small for 0 ď m ď `. This finishes the proof of Theorem 32.

3.4.6 Comments on proof of Theorem 33

A very similar method proves Theorem 33. Now we view pω as a function of γ, and pK as

a function of θ and γ. Define operator rΓε of the same format as in (3.15) and (3.16) on the

space I ˆ F , where I contains C``Lip functions from set O to R and F contains C``Lip

functions from TˆO to Rn, with bounded derivatives similar to (3.13). We can then prove

that for small enough ε, and suitable choices for bounds of derivatives, rΓε maps I ˆ F

to itself using assumption (H2.2), and is a contraction in C0 norm, taking advantage of

assumption (H3.2). Therefore, there exists a fixed point for rΓε in the space I ˆ F solving

equation (3.8). Same as above, Theorem 33 is proved.

3.5 Delay Perturbation to Autonomous ODE

In this section we show how several concrete examples fit into our general result, Theo-

rem 32 and Theorem 33. In all the cases, we will show how to construct the operators P

and to verify the properties in assumptions (H2) and (H3) (see 3.3.1).

3.5.1 State-dependent delay perturbation

An important class of equations that one can consider is DDEs with state-dependent delays

(backward or forward or mixed):

9xptq “ fpxptqq ` εP
´

xptq, x
`

t´ rpxptqq
˘

, γ
¯

, (3.28)

where P : Rn ˆ Rn ˆ O Ñ Rn is a C8 map, r : Rn Ñ r´h, hs is C8, h is a positive

constant.
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Note that in this case, the operator P is,

PpK,ω, γ, θq “ P pKpθq, rKpθq, γq (3.29)

where rKpθq– Kpθ ´ ωrpKpθqqq is caused by the delay.

Remark 46. Note that the operator P involves the composition operator, whose differen-

tiability properties are very complicated (See [54] for a systematic study). Hence, using the

standard strategy of studying variational equations etc. to study regularity of the evolution

will be rather complicated. Indeed, it will be hard to go beyond the first derivative.

On the other hand, the present strategy, only requires much simpler results. We only

need to get bounds on the derivatives of P assuming bounds on the derivatives of K.

Applying the composition Lemma 87 repeatedly, we know that P above satisfies

(H2.1). With the standard adding and subtracting terms method, one gets that P satis-

fies (H3.1). Similarly, P satisfies (H2.2) and (H3.2). Thus, Theorems 32 and 33 can be

applied.

Note also that for the above equation (3.28), we are able to prove that the operator Γε is

a contraction under C`´1`Lip norm in the second component, by using Lemma 90.

We may improve the regularity conclusion of Theorem 32 for this case. Indeed, once

we have that the parameterizationK of the periodic orbit isC1 in θ, we can use the standard

bootstrapping argument to conclude higher regularity of K based on the smoothness of the

equation, see Remark 50.

We can also consider more general state-dependent delays:

9xptq “ fpxptqq ` εP
´

xptq, x
`

t´ r pxt, γq
˘

, γ
¯

, (3.30)

where r : Rr´h, hs ˆO Ñ R, positive constant h is an upper bound for |r|.
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In this case,

PpK,ω, γ, θq “ P
`

Kpθq, K
`

θ ´ ωrpKθ,ω, γq
˘

, γ
˘

, (3.31)

where Kθ,ω : r´h, hs Ñ Rn is defined by

Kθ,ωpsq– Kpθ ` ωsq. (3.32)

If r is chosen such that (H2) and (H3) are verified, Theorems 32 and 33 can be applied.

3.5.2 Distributed delay perturbation

Our results apply to models with distributed delays as well

9xptq “ fpxptqq ` εP
´

xptq,

ż 0

´r

xtpsqdµpsq, γ
¯

, (3.33)

where P : RnˆRnˆO Ñ Rn is aC8 map, r is a constant, and µ is a signed Borel measure.

In this case,

PpK,ω, γ, θq “ P

ˆ

Kpθq,

ż 0

´r

Kθ,ωpsqdµpsq, γ

˙

, (3.34)

where Kθ,ω is defined in (3.32).

Above P verifies (H2), since we only care about derivatives with respect to θ. It is not

hard to see that (H3) is also satisfied in this case. Therefore, Theorems 32 and 33 apply.

3.5.3 Remarks on further applicability of Theorem 32

Remark 47. It is straightforward to see that our results could be applied to systems similar

to above systems with multiple forward or backward delays.

Remark 48. In some applications, the delays are defined by some implicit relations from

the full trajectory.
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Theorems 32 and 33 can be applied if we can justify (H2.1), (H3.1), (H2.2), and (H3.2).

Notice that we only need to justify these hypothesis when pK lies in ball in a space of

differentiable functions. In such a case, we can often use the implicit function theorem.

Remark 49. The results so far do not include the models in which the perturbation is just

adding a small delay. This small delay perturbation is more singular and seems to require

extra assumptions and slightly different proofs. The extension of the results to the small

delay case is done in Section 3.7.

Remark 50. In the case of state dependent delay or distributed delay with a smooth f and

r, it is automatic to show that if K is C`, the right hand side of (3.4) is C`, hence, looking

at the left hand side of (3.4), K is C``1. The bootstrap stops only when we do not have any

more regularity of f , P , or r.

So, in case that f , P , and r are C8, we obtain that the K is C8.

One natural question that deserves more study is whether in the case that f , P , and r

are analytic, theK is analytic. The remarkable paper [40] contains obstructions that equa-

tions with time dependent delays – heuristically better behaved than the ones considered

here, may fail to have analytic solutions. In view of these results, it is natural to conjecture

that the periodic solutions produced here, could fail to be analytic even if f , P , and r are

analytic.

3.6 Delay Perturbation to Non-Autonomous Periodic ODE

Time periodic systems appear in many problems in physics, for example, see Section 3.8.

And when there are conserved quantities in the ODE systems, periodic orbits cannot satisfy

the assumption (H1). These are the motivations to consider a non-autonomous ODE:

9xptq “ fpxptq, tq, (3.35)

79



where f : Rn ˆ 1
ω0
TÑ Rn (f is periodic in t with period 1

ω0
). Add the perturbation:

9xptq “ fpxptq, tq ` εP pxt, γq, (3.36)

Using the standard method of adding an extra variable to equation (3.35) to make it

autonomous, we see that we can reduce the problem to the previous case. The autonomous

equation corresponding to (3.35) is

¨

˚

˝

9xptq

9τptq

˛

‹

‚

“ gpx, τq–

¨

˚

˝

fpx, τq

1

˛

‹

‚

. (3.37)

Denote Ψ as the solution of the variational equation for the periodic orbit of (3.37):

ω0
d

dθ
Ψpθ; θ0q “ Dg

ˆ

K0pθq,
θ

ω0

˙

Ψpθ; θ0q, Ψpθ0; θ0q “ Id. (3.38)

Since

Dg

ˆ

K0pθq,
θ

ω0

˙

“

¨

˚

˝

D1f
´

K0pθq,
θ
ω0

¯

D2f
´

K0pθq,
θ
ω0

¯

0 0

˛

‹

‚

,

we have

Ψpθ; θ0q “

¨

˚

˝

Φpθ; θ0q ˚

0 1

˛

‹

‚

, (3.39)

where

ω0
d

dθ
Φpθ; θ0q “ D1f

ˆ

K0pθq,
θ

ω0

˙

Φpθ; θ0q. (3.40)

If Ψ satisfies assumption (H1), then 1 is not an eigenvalue of Φpθ0 ` 1; θ0q.

Equivalently, we could start the discussion in this section directly with the following

assumption on Φ defined in (3.40):

(H1”) 1 is not an eigenvalue of Φpθ0 ` 1; θ0q.

Under either assumption (H1) on Ψ or assumption (H1”) on Φ, we are able to solve the
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invariance equation (3.4) without adjusting the frequency. More precisely, (3.4) becomes:

ω0DKpθq “ f

ˆ

Kpθq,
θ

ω0

˙

` εPpK,ω0, γ, θq, (3.41)

Let K “ K0 ` pK as in (3.7), we are led to

ω0D pKpθq ´D1f

ˆ

K0pθq,
θ

ω0

˙

pKpθq “ Bε
pθ, ω0, pK, γq, (3.42)

where

Bε
pθ, ω0, pK, γq– Npθ, pKq ` εPpK,ω0, γ, θq,

Npθ, pKq– f

ˆ

Kpθq,
θ

ω0

˙

´ f

ˆ

K0pθq,
θ

ω0

˙

´D1f

ˆ

K0pθq,
θ

ω0

˙

pKpθq.

Now we can define an operator Υε on the space Bβ (see (3.13)) very similar to the

second component of Γε introduced in section 3.4.2.

Υε
p pKqpθq– Φpθ; θ0qu0 `

1

ω0

ż θ

θ0

Φpθ; sqBε
ps, ω0, pK, γqds, (3.43)

where

u0 “
1

ω0

rId´ Φpθ0 ` 1; θ0qs
´1

ż θ0`1

θ0

Φpθ0 ` 1; sqBε
ps, ω0, pK, γqds. (3.44)

We have employed that, in the periodic case, the matrix rId´ Φpθ0 ` 1; θ0qs is invertible.

Under the assumption that P satisfies (H2.1), (H3.1), (H2.2) and (H3.2), we can prove

that Υε has a fixed point pK˚ P Bβ by proving Υε : Bβ Ñ Bβ (similar to Lemma 42) and

Υε is a contraction (similar to Lemma 45). The periodic orbit of (3.36) is parameterized by

K “ K0` pK˚. The analysis of the operator Υε in (3.43) is actually simpler that the analysis

presented for the operator Γε in (3.14) because we do not need to adjust the frequency.
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Remark 51. Similarly, we can also consider a non-autonomous perturbation P pt, xt, γq,

we need that P to be periodic in t with the same period 1
ω0

.

3.7 The Case of Small Delays

Many problems in the literature lead to equations of the form:

y1ptq “ gpypt´ εrqq

y1ptq “ fpypt´ εrq, tq

(3.45)

where r could be either a constant, an explicit function of t, a function of yptq, or yt, or

an implicit function, and may depend on ε; and f is periodic of period 1 in t. Indeed,

our results apply also to variants of (3.45) with perturbations involving several forward or

backward delays.

In problems which present feedback loops, the feedback takes some time to start acting.

The problems (3.45) correspond to the feedback taking a short time to start acting.

Equations of the form (3.45) play an important role in electrodynamics, where the small

parameter ε “ 1
c

is the inverse of the speed of light and the delay r is a functional that

depends on the trajectory. Given the physical importance of electrodynamics, we devote

Section 3.8 to give more details and to show that it can be studied applying the main result

of this section, Theorem 53.

Introducing a small delay to the ODE is a very singular perturbation, since the phase

space becomes infinite dimensional. The limit is mathematically harder because the effect

of a small delay is similar to adding an extra term containing the derivative ypt ´ εrq «

yptq ` εy1ptqr. This shows that, heuristically, the perturbation is of the same order as the

equation.

Remark 52. In the physical literature, one can find the use of higher order expansions to

obtain heuristically even higher order equations, see [55]. As a general theory for all the
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solutions of the equations, these theories have severe paradoxes (e.g. preacceleration). The

results of this section show, however that the non-degenerate periodic solutions produced

in many of these expansions, since they are very approximate solutions of the invariance

equation, approximate true periodic solutions of the full system.

As a reflection of the extra difficulty of the small delay problem compared with the

previous ones, the main result of this section, Theorem 53, requires a more delicate proof

than Theorem 32 and we need stronger regularity to obtain the C0 contraction.

An important mathematical paper on the singular problem of small delay is [51]. We

also point out that, there is a considerable literature in the formal study of 1
c

limit in electro-

dynamics and in gravity [56, 57, 58, 59]. Many famous consequences of relativity theory

(e.g. the precession of the perihelion of Mercury) are only studied by formal perturbations.

Formal expansions of periodic and quasiperiodic solutions for small delays were con-

sidered in [30]. The results of this section establish that the formal expansions of periodic

orbits obtained in [30] correspond to true periodic orbits and are asymptotic to the true

periodic solutions in a very strong sense.

In this section, we establish results on persistence of periodic orbits for the models in

(3.45), see Theorem 53. As we will see, when we perform the detailed discussion, we will

not be able to reduce Theorem 53 to be a particular case of Theorem 32. The proof of

Theorem 53 will be very similar to that of Theorem 32 and which is based on the study of

operator Γε very similar to those in (3.14). Nevertheless, the analysis of the operator Γε in

the current case will require to take advantage of an extra cancellation.

3.7.1 Formulation of the results

Our main result for the small delay problem (3.45) is as follows. Without specifying the

delay functional r, we will use rpω,K, εq to denote the expression after substituting Kpθ`

ωtq into r and letting t “ 0.

Theorem 53. For integer ` ě 3, assume that the function g (resp. f ) in (3.45) is C``Lip.
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Assume that for ε “ 0, the ordinary differential equation y1 “ gpyq has a periodic orbit

satisfying (H1).(resp. y1 “ fpy, tq has a periodic orbit satisfying (H1”) ). We denote by K0

the parameterization of this periodic orbit with frequency ω0.

Recall that Uρ is the ball of radius ρ in C``LippT,Rnq centered at K0, and Bδ is the

interval with radius δ centered at ω0.

Recall distance d defined in (3.22). Assume that the delay functional r satisfies

}rpω,K, εq}C`´1`LippT,Rnq ď φρ,δpεq @K P Uρ, ω P Bδ (3.46)

for some φρ,δpεq ą 0, with εφρ,δpεq Ñ 0 as ε Ñ 0. And for any K1, K2 P Uρ, ω1, ω2 P Bδ,

there is αρ,δpεq ą 0, with εαρ,δpεq Ñ 0 as εÑ 0, such that

}rpω1, K1, εq ´ rpω2, K2, εq}C0 ď αρ,δpεqd
`

pω1, K1q, pω2, K2q
˘

. (3.47)

Then, there exists ε0 ą 0 such that for ε ă ε0, the problem (3.45) admits a periodic

solution. There is a C``Lip parameterization K of the periodic orbit which is close to K0

in the sense of C`.

Remark 54. As before, the requirements of smallness in ε for Theorem 53 depend on the

regularity considered.

In many applied situations, the g and f considered are C8 or even analytic. (for

example in the electrodynamics applications considered in Section 3.8). In such a case, we

can consider any ` by assuming ε is small enough.

This allows us to obtain the a posteriori estimates in more regular spaces as ε goes to

zero.

Hence, the formal power series in [30] are asymptotic in the strong sense that the error

in the truncation is bounded by a power of ε, where a stronger norm can be used for smaller

ε.
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We leave for the reader the formulation of a corresponding result for the smooth depen-

dence on parameters similar to Theorem 33. The proof requires only small modifications

from discussion in Section 3.7.2, see comments in Section 3.4.6.

The proof of Theorem 53 will be given in Section 3.7.2. We first find the operator in

this case. Then for the operator, we prove Lemma 42 in Section 3.7.2.1, and prove Lemma

45 in Section 3.7.2.2. The existence of fixed point of the operator is thus established. As it

turns out, the analysis of the operator requires more care than in the case of Theorem 32.

3.7.2 Existence of fixed point

The equations (3.45) can be rearranged as

y1ptq “ gpyptqq ` rgpypt´ εrqq ´ gpyptqqs

“ gpyptqq ´ ε

ż 1

0

“

Dg
`

ypt´ sεrq
˘

Dypt´ sεrqr
‰

ds

y1ptq “ fpt, yptqq ` rfpt, ypt´ εrqq ´ fpt, yptqqs

“ fpt, yptqq ´ ε

ż 1

0

“

D1f
`

ypt´ sεrq, t
˘

Dypt´ sεrqr
‰

ds

(3.48)

For typographical convenience, we will discuss only the autonomous case, which is the

most complicated. We refer the reader to Section 3.6 to see how the discussion simplifies

in the periodic case (the most relevant case for applications to electrodynamics).

Note that (3.48) is in the form of (3.2), with the operator P defined as

P pytq– ´

ż 1

0

“

Dg
`

ypt´ sεrq
˘

Dypt´ sεrqr
‰

ds. (3.49)

Then,

PpK,ω, γ, θq– ´

ż 1

0

“

Dg
`

Kpθ ´ εsωrq
˘

DKpθ ´ εsωrqωr
‰

ds, (3.50)

where the r’s are rpω,K, εq, the delay functional evaluated on the periodic orbit.
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We define operator Γε in the same way as in Section 3.4, substituting the expression of

P in (3.50) into the general formula in (3.14).

In this section, we will proceed as before and show Lemmas 42 and 45 are true for the

resulting operator Γε with P defined in (3.50).

Lemma 42 is proven in this case, same as above, by noticing P satisfies assumption

(H2.1). The proof for Lemma 45 is slightly different from before. In Section 3.4, we only

needed to take advantage of the Lipschitz property of the operator P (assumption (H3.1)).

In the present case, we will have to take into account that the operator Γε involves not only

P , but also an integral, which has nice properties that compensate the bad properties of

P .

3.7.2.1 Propagated bounds

We observe that ifK P Uρ and ω P Bδ, by the assumption (3.46), rpω,K, εq is in aC`´1`Lip

ball of size φρ,δpεq and, using the estimates on composition, Lemma 87, so is Kpt´ εsωrq.

If g P C``Lip, then Dg P C`´1`Lip and we conclude that Dg ˝Kpt´ εsωrq is contained in

a C`´1`Lip ball.

We also have that if K is in a C``Lip ball, DKpt´ εsωrqωr is in a C`´1`Lip ball whose

size is a function of ρ and φρ,δpεq.

Putting it all together we obtain that (H2.1) is true for P defined in (3.50). Therefore,

Lemma 42 is proven in this case.

3.7.2.2 Contraction in C0

Before estimating Γεppω, pKq´Γεppω1, pK 1q, we estimate PpK,ω, γ, θq´PpK 1, ω1, γ, θq (we

denote by r, r1 the two delay terms corresponding to ω,K, and ω1, K 1 respectively).

As usual, adding and subtracting, we obtain that the difference in the integrands in P ,

Dg
`

Kpθ ´ εsωrq
˘

DKpθ ´ εsωrqωr ´Dg
`

K 1
pθ ´ εsω1r1q

˘

DK 1
pθ ´ εsω1r1qω1r1
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can be written as a sum of 8 differences in which only one of the objects changes, see (3.51)

below. As it turns out, 7 of them will be straightforward to estimate and only one of them

will require some effort. We give the details.

rDg
`

Kpθ ´ εsωrq
˘

´Dg
`

K 1
pθ ´ εsωrq

˘

sDKpθ ´ εsωrqωr

` rDg
`

K 1
pθ ´ εsωrq

˘

´Dg
`

K 1
pθ ´ εsω1rq

˘

sDKpθ ´ εsωrqωr

` rDg
`

K 1
pθ ´ εsω1rq

˘

´Dg
`

K 1
pθ ´ εsω1r1q

˘

sDKpθ ´ εsωrqωr

`Dg
`

K 1
pθ ´ εsω1r1q

˘

rDK ´DK 1
spθ ´ εsωrqωr

`Dg
`

K 1
pθ ´ εsω1r1q

˘

rDK 1
pθ ´ εsωrq ´DK 1

pθ ´ εsω1rqsωr

`Dg
`

K 1
pθ ´ εsω1r1q

˘

rDK 1
pθ ´ εsω1rq ´DK 1

pθ ´ εsω1r1qsωr

`Dg
`

K 1
pθ ´ εsω1r1q

˘

DK 1
pθ ´ εsω1r1qpω ´ ω1qr

`Dg
`

K 1
pθ ´ εsω1r1q

˘

DK 1
pθ ´ εsω1r1qω1pr ´ r1q

(3.51)

All the terms except for the 4th term are straightforward to estimate in C0 by some

constant multiple of d
`

ppω, pKq, ppω1, pK 1q
˘

, keeping in mind bounds on the C``Lip norms of

g, K, K 1, and r
`

see assumption (3.46)
˘

, and the assumption (3.47). We consider the first

term for an example, the rest is similar.

}rDg
`

Kpθ ´ εsωrq
˘

´Dg
`

K 1
pθ ´ εsωrq

˘

sDKpθ ´ εsωrqωr}C0

ď ω}D2g}}DK}}r}C0} pK ´ pK 1
}C0

(3.52)

Observe the form of the operator Γε in (3.14). Note that if we have a bound of

ż θ

θ0

Φpθ; sq
`

PpK,ω, γ, sq ´PpK 1, ω1, γ, sq
˘

ds.

by a multiple of d
`

ppω, pKq, ppω1, pK 1q
˘

, we prove Lemma 45.
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All terms except the 4th one in (3.51) are controlled using estimates similar to (3.52).

Hence, to complete the proof, we just need to estimate the part coming from the 4th term

in (3.51). We will take advantage of the integral which is an operator that improves the

bounds.

We use integration by parts to get:

ż θ

θ0

Φpθ; sq

ż 1

0

Dg
`

K 1
ps´ ετω1r1q

˘

rDK ´DK 1
sps´ ετωrqωrdτds

“

ż 1

0

ż θ

θ0

Φpθ; sqDgp¨q
ωr

1´ ετω dr
ds

p1´ ετω
dr

ds
qrDK ´DK 1

sps´ ετωrqdsdτ

“

ż 1

0

”

Φpθ; sqDgp¨q
ωr

1´ ετω dr
ds

rK ´K 1
sps´ ετωrq

ˇ

ˇ

s“θ

s“θ0

´

ż θ

θ0

d

ds

´

Φpθ; sqDgp¨q
ωr

1´ ετω dr
ds

¯

rK ´K 1
sps´ ετωrqds

ı

dτ

The C0 norm of the above expression is bounded by a multiple of }K ´ K 1}C0 ď

d
`

ppω, pKq, ppω1, pK 1q
˘

, we have proved Lemma 45 in this case. The proof of Theorem 53 is

finished.

Remark 55. Note that we need to differentiate r along the periodic orbit twice in the above

expression, that is why we required ` ě 3 in Theorem 53, so that rpω,K, εq is more than

C2.

3.8 Delays Implicitly Defined by the Solution. Applications to Electrodynamics

In this section, we show how to deal with delays that depend implicitly on the solution. The

main motivation is electrodynamics, so we deal with this case in detail, but we formulate a

more general mathematical result in Section 3.8.3.

We point out that implicitly defined delays appear naturally in other problems in which

the delay of the effect is related to the state of the system. As we indicate later, the explicit

state dependent delays appeared in (3.28) are often approximations of implicitly defined

delays. One corollary of our treatment is a justification of the fact that the periodic solutions
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of this approximation are an approximation to the true periodic solutions.

3.8.1 Motivation from electrodynamics

One of the original motivations for the whole field of delay equations was the study of

forces in electrodynamics. The forces among charged particles, depend on the positions of

the particles. Since the signals from a particle take time to reach another particle, this leads

to a delay equation. Notice that the delay depends on the position (at a previous time) so

that the delay is obtained by an implicit equation on the trajectory. This formulation was

proposed very explicitly in [1], which we will follow.

Remark 56. An alternative description of electrodynamics uses the concept of fields. One

problem of the concept of fields is to explain why particles do not interact with their own

fields. We refer to [60] for a very lucid physical discussion of the paradoxes faced by a

coherent formulation of classical electrodynamics.

Remark 57. Many Physicists object to [1] that it does not make clear what is the phase

space and what are the initial conditions.

In this Chaper, we show that one does not need to answer these question to construct a

theory of periodic solutions. We hope that similar results hold for other types of solutions.

So that one can have a systematic theory of many solutions that resemble the classical ones.

Of course, it should also be possible to construct other solutions that are completely

different from those of the systems without delays.

Remark 58. Even if one can have a rich theory of perturbative solutions, It is not clear

that these solutions fit together in a smooth manifold. The paper [30] develops asymptotic

expansions, which suggests that the resulting solutions may be difficult to fit together in a

manifold.

We speculate that this may give a way to reconcile the successes of predictive me-

chanics [58] with the no-interaction theorems [25]. It could well happen that the results
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of predictive mechanics apply to the abundant solutions we construct, but, according to

the no-interaction theorem, this set cannot be all the initial conditions. Of course, these

speculations are far from being theorems.

3.8.2 Mathematical formulation

If we consider (time-dependent) external and magnetic fields as prescribed, the equations

of a system of N particles in R3 are, denoting by qiptq the position of the i-th particle.

q2i ptq “ Aextpt, qiptq, q
1
iptqq `

ÿ

j‰i

Ai,j
`

qiptq, q
1
iptq, qjpt´ τijq, q

1
jpt´ τijq

˘

(3.53)

where the time delay is defined implicitly by (c is the speed of light)

τijptq “
1

c

ˇ

ˇqiptq ´ qjpt´ τijptqq
ˇ

ˇ. (3.54)

For more explicit expressions, we refer to [1, 61, 3]. We just remark that (3.53) is the usual

equation of acceleration equals force divided by the mass. The relativistic mass has some

complicated expression depending on the velocity.

The term Aext denotes the external force. The terms Aij correspond to the Coulomb and

Lorenz forces of the fields obtained from Liénard–Wiechert potentials. This is a standard

calculation which is classical in electrodynamics, see [56, 62, 63]. Roughly, they are the

Coulomb and Ampere (electric and magnetic) forces at previous times but some derivative

terms appear.

We observe that (3.53) is in the form imposed by the principle of relativity, and that

any force which is relativistically invariant should have the form (3.53) with, of course,

different expressions for the terms Aij . Hence, the treatment discussed here should apply

not only to electrodynamics but also to any forces subject to the rules of special relativity.

The exact form of the equations does not play an important role here. We point out

some properties that play a role:
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1. The expressions defining the forces are algebraic expressions. They have singulari-

ties when there are collisions (qiptq “ qjptq for some i ‰ j) or when some particle

reach the speed of light (|q1iptq| “ c for some i).

2. The delays τij as in (3.54) are subtle. The expression of τij involve a small parameter

ε– 1{c, and the delays can be approximated in first order as:

τijptq “ ε
ˇ

ˇqiptq ´ qjptq
ˇ

ˇ`Opε2
q. (3.55)

Keeping only the first order approximation in (3.55) makes (3.53) an SDDE, but with

(3.54), the delay depends implicitly on the trajectory.

Note that it is not true that τij “ τji even if this symmetry is true in the first order

approximation (3.55).

3. In the case that τij “ 0 and that the external forces are autonomous, the energy is

conserved. This has two consequences:

• In the autonomous case, the periodic orbits do not satisfy the hypothesis (H1).

Hence, we will only make precise statements in the case of time periodic exter-

nal fields. In this case (very well studied in accelerator physics, plasma, etc.),

there are many examples of periodic orbits satisfying assumption (H1”), so that

the results presented here are not vacuous.

• If the external potential and external magnetic fields are bounded, the periodic

orbits of finite energy and away from collisions satisfy |q1iptq| ď ξ1c
`

where

ξ1 P p0, 1q
˘

and |qiptq ´ qjptq| ě ξ2 ą 0, i ‰ j. We will assume these two

properties.

Denoting yptq – pq1ptq, . . . , qNptq, q
1
1ptq, . . . q

1
Nptqq, we can write the equation (3.53)

in the form of (3.45) with the delays being implicitly defined. Note that there areNpN´1q

delays in total.
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Remark 59. Even if we formulate the result for the retarded potentials, we point out that

the mathematical treatment of Maxwell equations admits also advanced potentials.

It is customary to take only the retarded potentials because of “physical reasons” which

are relegated to footnotes in most classical electrodynamics books. More detailed discus-

sions appear in [61, 60]. Note, that selecting only retarded potentials breaks, even at the

classical level, the time-reversibility present in Maxwell’s and Newton’s equations. Math-

ematically any combination of advanced and retarded potentials would make sense from

Maxwell equations. Indeed, [64] proposes a theory with half advanced and half retarded

potentials.

We do not want to enter now into the physical arguments, which should be decided by

experiment (we are not aware of explicit experimentation of these points). We just point out

that the mathematical theory here and the asymptotic expansions [30] applies to retarded,

advanced, or combination of advanced and retarded potentials.

3.8.3 Mathematical results for electrodynamics

In this section, we will collect the ideas we have been establishing and formulate our main

result for the model (3.53). Note that we formulate the result only for periodic external

fields, since when the external fields are time-independent, energy is conserved which pre-

vents periodic orbits from satisfying assumption (H1).

We will assume that there exists 0 ă ξ1 ă 1, and ξ2 ą 0, such that for all t:

|q1jptq| ď ξ1c

|qiptq ´ qjptq| ě ξ2

(3.56)

Note that (3.56) implies that the internal forces and the masses are analytic around the

trajectory. Therefore, the regularity assumptions for the equation concern only the external

fields.

Theorem 60. Denote ε “ 1{c. Consider the model (3.53) with the delays defined in (3.54).
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Assume that for ε “ 0, the resulting time periodic ODE has periodic solution satisfying

hypothesis (H1”) as well as (3.56). Assume that the external fields Aext are C``Lip.

Then, for small enough ε, we can find a C``Lip periodic solution of (3.53).

Similarly, in the case that the external fields are jointlyC``Lip in time, position, velocity,

and in a parameter γ, the periodic solutions are jointly C``Lip as functions of the variable

of the parameterization and the parameter γ.

The proof follows the steps of Theorem 53 once we have the estimates on delays (3.46)

and (3.47), which will be discussed in the next section.

Remark 61. Since the fully relativistic equations are cumbersome to handle, there are

many approximations in the literature. [65, 66, 67, 68, 69] approximate the relativistic

equations up to Opc´mq. Theorem 60 ensures that the non-degenerate periodic orbits of

the case when c “ 8 persist in these models. Furthermore, due to the a posteriori format

of Theorem 60, we obtain that these periodic orbits are Opc´mq close to periodic orbits of

the relativistic model.

3.8.4 Some preliminary results on the regularity of the delay

In this section, we study (3.54) as an equation for τijptq when we prescribe the trajectories

qi and qj . This makes precise the notion that the delay is a functional of the whole trajectory.

In the following proposition, we collect the proofs of estimates that establish (3.46)

and (3.47). Both follow rather straightforwardly from considering (3.54) as a contraction

mapping.

Proposition 62. Let qi and qj be continuously differentiable trajectories that satisfy (3.56).

Then, for each t P R, we can find a unique τijptq ą 0 solving (3.54).

Moreover:

If the trajectories qi and qj are C``Lip, then the τij is C``Lip. There is an explicit

expression

}τij}C``Lip ď φp}qi}C``Lip , }qj}C``Lip , ξ1, ξ2q. (3.57)
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Let qi, qj, q̄i, and q̄j be trajectories satisfying (3.56). Denote by τij and τ̄ij the solutions

of (3.54) corresponding to qi, qj and to q̄i, q̄j , respectively. Then we have:

}τij ´ τ̄ij}C0 ď Cpξ1, ξ2q p}qi ´ q̄i}C0 ` }qj ´ q̄j}C0q . (3.58)

Proof. Fix t and, hence, qiptq.

We treat (3.54) as a fixed point problem for the – long named – unknown τijptq with the

functions qi, qj as well as the number t fixed.

The first part of the asumption (3.56) implies that the RHS of (3.54), as a function of

τijptq has derivative with modulus bounded by ξ1 ă 1. Hence, we can apply the contraction

mapping principle. This establishes existence and uniqueness.

Moreover, we can apply the implicit function theorem and obtain that τijptq is as differ-

entiable on t as the RHS of (3.54). Furthermore, we can get expressions for dk

dtk
τijptq which

are algebraic expressions involving derivatives with respect to t of qiptq, qjptq up to order

k, and derivatives of τijptq up to order k ´ 1. The exact combinatorial formulas are very

well known. Using recurrence in the order of derivatives, we obtain (3.57).

To prove (3.58), we observe that since the contraction we used before is uniform in t,

we can consider the RHS of (3.54) as a contraction in C0.

We evaluate the RHS of (3.54) corresponding to q̄i and q̄j on τij , note that

q̄ip¨q ´ q̄jp¨ ´ τijp¨qq “ pq̄ip¨q ´ qip¨qq ` pqjp¨ ´ τijp¨qq ´ q̄jp¨ ´ τijp¨qq

` pqip¨q ´ qjp¨ ´ τijp¨qqq .

Hence,

›

›

›

›

1

c

ˇ

ˇq̄ip¨q ´ q̄jp¨ ´ τijp¨qq
ˇ

ˇ´ τijp¨q

›

›

›

›

C0

ď
1

c
}qi ´ q̄i}C0 `

1

c
}qj ´ q̄j}C0

From this, (3.58) follows from the Banach contraction mapping.
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Remark 63. Notice that the delays τij’s contain small factor 1
c
, so are the right hands of

the inequalities (3.57) and (3.58), as we can see in the proof above. We can view τij –
1
c
rij

to fit in the case of small delays.

3.9 The Case of Hyperbolic Periodic Orbits

Our main result Theorems 32 and 33 are based on the assumption (H1), which is automat-

ically satisfied when the periodic orbit of the unperturbed equation is hyperbolic. Hence,

the main results of this section can be viewed as corollaries of Theorems 32 and 33. In fact,

we need slightly stronger assumptions in the regularity in this section.

In this section, we will introduce an operator, see (3.63), which is slightly different from

the one introduced in Section 3.4.2.

Even if the operator considered in this section requires more regularity in the finite

dimensional case, it generalizes our results to perturbations of PDEs, see Section 3.10,

to perturbations of Delay Differential Equations, and to other solutions that we will not

discuss here (quasi-periodic, normally hyperbolic manifolds). We also note that the cor-

rections needed in this section can be independent of the period. This makes it possible to

develop a theory of aperiodic hyperbolic sets. We hope to come back to this problem.

3.9.1 Dynamical definition of hyperbolic periodic orbits

It is a standard notion that a periodic orbit of the ODE 9x “ fpxq is hyperbolic when the

following strengthening of (H1) holds.

With the same notation as in Section 3.3.1, we say that a periodic orbit is hyperbolic if:

(H1.1) Φpθ0 ` 1; θ0q has a simple eigenvalue 1 whose eigenspace is generated by DK0pθ0q.

Moreover, all the other eigenvalues of Φpθ0 ` 1; θ0q have modulus different from 1.

The assumption (H1.1) is equivalent to the following evolutionary formulation (H1.1’)

in terms of invariant decompositions. In the finite dimensional case, this formulation is
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easily obtained by taking the stable and unstable spaces of the monodromy matrix and

propagating them by the variational equations. In the infinite dimensional cases, similar

formulations are obtained using semi-group theory under appropriate spectral assumptions.

(H1.1’) For every θ P T there is a decomposition

Rn
“ Es

θ ‘ E
u
θ ‘ E

c
θ, Ec

θ “ SpantDK0pθqu, (3.59)

depending continuously on θ such that Es
θ is forward invariant, Eu

θ is backward in-

variant under the variational equation. Moreover, the forward semiflow (resp. back-

ward semiflow) of the variational equation is contractive on Es
θ (resp. Eu

θ ).

More explicitly, we can find families of linear operators

tU s
θ ptquθPT,tPR` , U s

θ ptq : E
s
θ Ñ Es

θ`ω0t
t P R`,

tUu
θ ptquθPT,tPR´ , Uu

θ ptq : E
u
θ Ñ Eu

θ`ω0t
t P R´,

satisfying for all θ P T

BtU
σ
θ ptq “ DfpK0pω0t` θqqU

σ
θ ptq σ P ts, uu

Uσ
θ p0q “ Id

ˇ

ˇ

Eσθ
,

(3.60)

and

Uσ
θ pt` τq “ Uσ

ω0t`θ
pτq. (3.61)

Moreover, there exist C ą 0, µs ą 0, µu ą 0 such that

}U s
θ ptq} ď Ce´µst t ě 0,

}Uu
θ ptq} ď Ce´µu|t| t ď 0.

(3.62)

We can also define an evolution operator U c
θ ptq in the Ec direction. Note that U c

θ p1q “
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Id|Ecθ .

3.9.2 Main result in hyperbolic case

The first result in this case is that Theorem 32 is true if assumption (H1) is changed to as-

sumption (H1.1) or (H1.1’), and assumption (H2.1) is strengthened to (H2.1.1) as follows:

(H2.1.1) If K P Uρ and ω P Bδ, then PpK,ω, γ, ¨q : TÑ Rn is C``Lip, with

}PpK,ω, γ, ¨q}C``Lip ď φρ,δ,

where φρ,δ is a positive constant that may depend on ρ and δ.

Recall that Uρ is the ball of radius ρ in the space C``LippT,Rnq centered at K0, and Bδ is

the interval in R with radius δ centered at ω0.

The second result is that the results in Theorem 33 is true if assumption (H1) is substi-

tuted by assumption (H1.1) or (H1.1’), and assumption (H2.2) is strengthened to (H2.2.1)

as follows:

(H2.2.1) If K P Uρ and ω P Bδ, then PpK,ω, ¨, ¨q : TˆO Ñ Rn is C``Lip, with

}PpK,ω, ¨, ¨q}C``Lip ď φρ,δ,

where φρ,δ is a positive constant that may depend on ρ and δ.

Recall that Uρ is the ball of radius ρ in the space C``LippT ˆ O,Rnq centered at K0, and

Bδ is the ball in C``LippO,Rq with radius δ centered at constant function ω0.

Remark 64. We emphasize that the results in this section are weaker than Theorem 32

and Theorem 33, however, we want to introduce a different operator in the proof which

has applications in ill-posed PDEs, see Section 3.10. Modification of the operator will be

useful in the study of other dynamical objects.
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3.9.3 Proof

We proceed as in Section 3.4.2 and manipulate (3.8) as a fixed point problem taking advan-

tage of the geometric structures assumed in (H1.1’).

Given the decomposition as (3.59),we define projections Πs
θ,Π

u
θ ,Π

c
θ over the spaces

Es
θ , E

u
θ , E

c
θ . We also use the notation

pKσ
pθq– Πσ

θ
pKpθq, σ P ts, uu.

Taking projections along the spaces of the decomposition, using the variation of parameters

formula, and taking the initial conditions to infinity (this procedure is standard since [70]),

we see that (3.8) implies

pω “ ω0

xΠc
θ0

ş

1
ω0
0 U c

θ0`ω0t
p 1
ω0
´ tqBεp pK, pω, γ, θ0 ` ω0tqdt,DK0pθ0qy

|DK0pθ0q|
2 ,

pKs
pθq “

ż 0

´8

U s
θ`ω0t

p´tqΠs
θ`ω0t

Bε
p pK, pω, γ, θ0 ` ω0tq dt,

pKu
pθq “ ´

ż 8

0

Uu
θ`ω0t

p´tqΠu
θ`ω0t

Bε
p pK, pω, γ, θ0 ` ω0tq dt.

(3.63)

Define the right hand side of (3.63) as an operator of ppω, pKs, pKuq, one can get lemmas

which are similar to Lemmas 42 and 45. Hence we can get a fixed point of the operator in

this case.

When the solutions of (3.63) are smooth enough and decay fast enough that we can

take derivatives inside of the integral sign (which will be the case of the fixed points that

we produce), it is possible to show, taking derivatives of both sides of (3.63) and reversing

the algebra that the well behaved fixed points of (3.63) indeed are solutions of (3.8).

The remarkable aspect of (3.63) is that we only need U s
θ for positive times, and Uu

θ

for negative times. Hence, the assumed bounds (3.62) imply that the indefinite integrals

in (3.63) converge uniformly in the C``Lip sense. At the same time, we pay the price of
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requiring one more derivative of P while using this operator.

Another important feature of the operator (3.63) is that it does not require many as-

sumptions on the long term evolution of the solutions (in Section 3.4.2 we use heavily that

the solutions we seek are periodic). This makes it possible to use analogues of (3.63) in

several other problems. We hope to come back to these questions in the near future.

3.10 Evolutionary Equations with Delays

In this section we extend the results on ODEs in the previous sections to PDEs and other

evolutionary equations (e.g. equations involving fractional operators or integral operators).

The key observation is that, the previous treatments of periodic solutions do not use

much that the functions we are seeking take values in a finite dimensional space. For

example, the Lemma 92 is valid for functions taking values in Banach spaces. Hence, we

will show that the methods developed in the previous sections can be applied without much

change to a wide class of PDEs.

Indeed, since one of the points of the previous theory was to avoid the discussion of the

evolutions, the theory applies easily to PDEs using only very simple results on the evolution

of the PDE.

Remark 65. In this section, we will not discuss the existence of periodic solutions of evo-

lutionary equations before adding the delays. There is already a large literature in this

area.

We point, however that in studying the periodic solutions of a PDE (which lie in an

infinite dimensional space), it is natural to consider the periodic solutions of a finite di-

mensional truncation (e.g. a Galerkin approximation). The problem of going from the

periodic solutions of a finite dimensional problem to the periodic solutions in an infinite

dimensional space, has some similarity with the problems dealt with in the first parts of

this Chaper.
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A framework that systematizes the passing from periodic solutions of the Galerkin ap-

proximations to periodic solutions of the PDEs is in [71]. The methods of [71] have some

points in common with the methods used in this Chapter. It bypasses the study of evolution-

ary equations and just studies the functional equations satisfied by a parametrization of a

periodic orbit. The methods in [71] lead to computer-assisted proofs that have been im-

plemented in [72, 73]. Since the methods of [71] and this Chapter have points in common,

one can hope to combine them and go from a periodic solution of Galerkin truncation of

the PDE to a periodic solution of the delay perturbation of the PDE.

3.10.1 Formulation of the problem and preliminary results

We use the standard set up of evolutionary equations (see [74, 75]).

Consider problem of the form

Btuptq “ F puptqq ` εP puptq, ut; γq, (3.64)

where uptq, is the unknown and lies in a space X consisting of functions on a domain Ω.

The points in Ω will be given the coordinate x, so that we can also consider upt, xq as a

function on Rˆ Ω.

The function spaceX encodes regularity properties of the functions as well as boundary

conditions. In particular, changing the boundary conditions, changes the space X and

therefore, the functional analysis properties (e.g. spectra) of the operators acting on it.

The operator F is a (possibly nonlinear) differential (or fractional differential etc.)

operator.

As before (and contrary to the standard use in PDEs where ut denotes partial derivative),

we use ut to denote a segment of the solution, which can be related with history or future.

For s P r´h, hs, utpsq “ upt` sq, so that ut P Rpr´h, hs, Xq, a space of regular functions

on r´h, hs with values in X . To denote derivatives with respect to time we will always use
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Btu.

We consider P : X ˆRpr´h, hs, Xq ˆ Rm Ñ X .

It is useful to think heuristically of

Btuptq “ F puptqq (3.65)

as a differential equation in X and indeed, our results will be based on this heuristic prin-

ciple. To make sense of this heuristic principle we have to overcome the problem that in

the interesting applications (see e.g. Section 3.10.3), F is highly discontinuous (involving

derivatives) and not defined everywhere so that the standard tools for smooth ODEs do not

apply, but this is a well studied problem.

A research program which became specially prominent in the 60’s shows that one can

recover many of the results (existence, dependence on initial conditions, etc.) for the equa-

tion (3.65) by assuming functional analysis properties of the operator F , see [74, 76, 77,

75, 78, 79, 80]. Of course, the verification of the functional analysis assumptions in con-

crete examples, requires some hard analysis. One of the subtle points of this program is

that the notion of solutions may be redefined to be weak or mild solutions.

Even if we will use the language and some material from the above program, we will

take a different point of view.

• We will not be interested in the theory of existence and well-posedness for ALL the

possible initial conditions.

• Indeed, because we are not going to discuss the initial value problems, we can con-

sider situations where the set of initial conditions for the delay problems are not clear.

Nevertheless, we can get existence of smooth solutions.

• Since we are only aiming to produce some particular solutions, one gets stronger

results by taking more reduced spaces so that the solutions are more regular and can

be understood in the classical sense. In particular, in all the cases we will consider,
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the functions and their derivatives will be bounded. (This happens, e.g. if X is a

Sobolev space of high enough order.)

This is in contrast with the general theory of existence and uniqueness, where the

figure of merit is considering a more general space of initial conditions.

• A more elaborate set-up for existence of evolutions that includes also FDEs is in

[81]. In this Chapter, however, we will avoid discussing the evolution of the FDEs

and need only some results on the evolution of the PDE.

3.10.2 Overview of the method

Roughly, we will formulate analogues of the operator Γε in (3.15) and (3.16) as well as the

operator in (3.63) and verify that similar contraction argument can be carried out.

The requirements of the above program on the theory of existence are very mild. The

operator Γε only requires the existence of solutions of the variational equation for finite

time. The operators formulated in (3.63) only require the existence of partial evolutions

(forward and backward evolutions in complementary spaces), which allows to consider ill-

posed equations, see Section 3.10.5. Moreover, the smoothness requirements on the delay

terms are very mild.

3.10.3 Examples

In this section, we will present some examples which are representative of the results we

establish and which have appeared in applications.

Even if we hope that this section can serve as motivation, from the purely logical point

of view, it can be skipped. Of course, our results apply to many more models and this

section is not meant to be an exhaustive list but to provide some intuition.
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3.10.3.1 Delay Perturbations

One example of delay perturbation which considers long range interaction is

P puptq, ut; γq “

ż

Rd
Kpx, yq ¨ upt, xq ¨ upt´

1

c
|x´ y|, yqdy. (3.66)

This models a situation in which the position x interacts with position y with a strength

Kpx, yq, with the interaction taking some time (proportional to the distance) to propagate.

In (3.66) we have denoted by c the speed of propagation of the signal, which is assumed to

be constant.

Note that the interaction term could be more general than quadratic, and may involve

higher spacial derivatives thanks to the smoothing property of solutions. Meanwhile, the

speed of propagation of the signal may not be constant (the propagation of signals may

depend on their strength).

Another example

P puptq, ut; γq “

ż 8

0

Gps, upt´ s, xqq ds, (3.67)

treating non-local interaction, is very typical in the modeling of materials with memory

effects (for example thixotropic materials) where the properties of the materials depend on

the history. The effect of the previous state at present time often decrease when the time

delay grows. This is reflected on the function Gps, uq decreasing when s (the delay in the

effect) increases.

Of course, the mathematical theory that will be developed accommodates more com-

plicated effects such as G depending on spatial derivatives of u.

There are many other P puptq, ut; γq that we can consider. We only need P to sat-

isfy some assumptions on regularity and Lipschitz property, see (H2.1*), (H3.1*), and

(H2.1.1*), where we actually allow loss of regularity in the space variable.
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In the coming sections, we see examples of unperturbed equations (3.65).

3.10.3.2 Parabolic equations

Consider the equation for u : Rˆ Rd Ñ R:

Btu “ ∆u`Npx, u,∇uq

upt, xq “ upt, x` eq @e P Zd
(3.68)

with N vanishing to quadratic order. For simplicity, we have imposed periodic boundary

conditions in space.

Notice that we have not imposed initial conditions at t “ 0 in example (3.68). Indeed,

the initial conditions needed require some thought.

As we will see, our treatment overcomes other possible complications not mentioned

explicitly so far. We mention them because they are natural in modeling and eliminating

them from the literature may be motivated by the need to have a more mathematically

treatable problem.

Let us just mention briefly some small modifications.

• The unknown u could take values in Rd. Note that considering systems rather than

scalar equations makes a big difference in some PDE treatments (based on maximum

principle), but it is not an issue in our case.

• The papers [82, 83] consider damped wave equations with a delay. From the func-

tional analysis point of view, the damped wave equations are similar to (3.68).
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3.10.3.3 Kuramoto-Sivashinsky equations

The model below is called the Kuramoto-Sivashinsky equation.

Btu “ ∆u`∆2u` µBxpu
2
q

upt, xq “ upt, x` eq @e P Zd
(3.69)

The Kuramoto-Sivashinsky equations appear as amplitude equations for many prob-

lems arising in a variety of applications (water waves, chemical reactions, interactive pop-

ulations, etc.).

From the mathematical point of view, when d “ 1 (reduction of models with more

variables), the equation is known to have an inertial manifold (all the solutions converge

to a finite dimensional manifold), which can be analyzed by finite dimensional methods.

The equation (3.69) is known to have many periodic solutions. A very large number was

identified by non-rigorous, but reliable methods in [84]. Rigorous periodic solutions have

been established in many papers, including bifurcations in [85, 86]. From the point of

view of this Chapter, it is interesting to note that [73, 72] use computer assisted proofs to

establish the existence of periodic orbits.

The equations discussed in the previous two sections are parabolic PDEs so that indeed,

the evolution is well defined and the solutions gain smoothness. The linearized operator

Φ that enters in (3.15) and (3.16) is also smoothing. Of course, for large solutions, there

could be finite time blow ups, but we are in the regime of periodic solutions, which are well

behaved.

3.10.3.4 The Boussinesq equations in long wave approximation for water waves

In this section we present some physical equations that are ill-posed in the sense that it

is impossible to define an evolution for every initial condition. On the other hand, these

equations may possess many interesting and physically relevant solutions.
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Since one of the main ideas of our treatment of FDEs is to bypass the evolution, we

obtain results on delay perturbations of ill-posed equations. This indeed highlights the

difference of the present method with the methods in evolution equations.

The material of this section is somewhat more sophisticated than the rest of the Chapter

and does not affect any of the other results.

Consider the equation for u : RˆRÑ R, derived in [87], as a long wave approximation

for water waves.

B
2
t u “ µB4

xu` B
2
xu` pu

2
qx upt, x` 1q “ upt, xq (3.70)

This equation (3.70) can be written as an evolution equation of the form (3.65) as fol-

lows:

Btu “ v

Btv “ µB4
xu` B

2
xu` pu

2
qx

upt, x` 1q “ upt, xq; vpt, x` 1q “ vpt, xq

(3.71)

The linear part of the evolution is

Btu “ v

Btv “ µB4
xu` B

2
xu

(3.72)

Equations similar to (3.70) have also appeared in other contexts. In water wave the-

ory, µ ą 0, which leads to (3.70) being ill-posed. Indeed, consider the linear part of the

equation, the coefficient of the k-th Fourier mode ûk satisfies d
dt2
ûk “ pµk

4´ k2qûk, which

leads to exponentially growing solutions either in the future or in the past.

Nevertheless, it is well known that the Boussinesq equation contains many physically

interesting solutions, including traveling waves and other periodic and quasi-periodic solu-

tions that are not traveling waves. Notably, it contains a finite dimensional manifold (local
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center manifold) which is locally invariant and on which solutions can be defined till they

leave the local center manifold [88, 89, 90]. In particular, the periodic and quasi-periodic

solutions in the local center manifold are defined for all times.

For our purposes, the Boussinesq equation (3.70) is Hamiltonian, so that all the periodic

solutions have monodromy with eigenvalues 1 – corresponding to the conservation of the

energy – which make them unsuitable for the present version of our theory. Hence, we will

consider, for u : R ˆ Rd Ñ R, mainly time periodic perturbations of higher dimensional

version of (3.70), which following the notation in [90], we write as:

$

’

’

’

’

&

’

’

’

’

%

Btθ “ ω

B2
t u “ µ∆2u`∆u`N1pθ, xq `N2pθ, xqu`N3pθ, x, u,∇u,∆uq,

t P R, θ P T, x P Td,

(3.73)

The model (3.73) can be a long wave approximation of a water wave model perturbed

periodically. These are physically sensible long wave approximations of a water wave

subject to periodic forcing (e.g. waves in the ocean subject to tides or water waves in a

vibrating table – Faraday experiment).

The result of [90] implies, under very mild regularity assumptions on N1, N2, N3, that

there is a finite dimensional local center manifold of (3.73) which is locally invariant.

This local center manifold is modeled on TˆRn. The periodic solutions in the manifold

are defined for all time. For specific forms of N , it is possible to prove the existence of

periodic orbits of (3.73), which are non-degenerate in the center manifold.

A natural space to consider (3.71) is pu, vq P X – Hr ˆHr´1 for sufficiently large r.

Even if it is impossible to define an evolution of the linear part (3.72) in the full space X ,

it is easy to show using Fourier analysis that there are two complementary spaces in which

one can define the evolution forwards and backwards. A remarkable result in [89, 90] is

that this splitting with partial evolution operators persists in the linearization near periodic

orbits, provided that they stay close to the origin.
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3.10.4 Result for well-posed PDE

The Theorem 66 will be our main result for well-posed PDEs. Essentially, the assumptions

of the theorem are that we can formulate the functional equation in (3.15) and (3.16) and

that the delay term prossesses enough regularity so that the argument we used to prove

Theorem 32 goes through unchanged.

Therefore, the proof of Theorem 66 is a trivial walk-through. On the other hand, the

fact that the assumptions are satisfied in the cases (3.68), (3.69) for some choices of spaces

X is not trivial and will be discussed in Section 3.10.4.5. Of course, similar verifications

can be done in other models.

The only subtlety is that we will use the two spaces approach of [78]. (See also [91,

92] for a more streamlined and refined version.) This allows to consider perturbations

which are unbounded but of lower order than the evolution operator. For example in (3.68),

the nonlinearity involves the first derivatives taking advantage of the fact that the main

evolution operator is of second order. In the case of (3.69), since the linear term is a fourth

order elliptic operator, the nonlinearity could involve terms of order up to three. As we will

see, the two space approach also allows to lower the regularity requirements of the delay

term. (See hypotheses in Theorem 66.)

3.10.4.1 The two spaces approach

The basic idea of the two spaces approach is that we study the evolution equation using

two spaces X, Y consisting of functions with different regularity. In applications to PDEs,

often X “ Hr`k, Y “ Hr with Hr the standard Sobolev spaces or the product of these

spaces. In our case, we will take r large enough so that the solutions are classical, and

the space Hr enjoys properties that it is a Banach algebra and the composition operator is

smooth.

Differential operators, which are unbounded from a space to itself become bounded

from X to Y . Then, the main evolution operator, smooths things out, such that it maps Y
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toX in a bounded way. Of course, the bound of the evolution as an operator from the rough

space Y to the smooth space X depends on the time that the evolution has been acting and

becomes singular as the time goes to zero, but we assume that there are bounds for the

negative powers, which ensures integrability.

3.10.4.2 Setup of the result

Consider the evolutionary PDE (3.65). Let X, Y be Banach spaces consisting of smooth

enough functions satisfying the boundary conditions imposed on (3.65). We will assume

that Y consists of less smooth functions, such that F is a differentiable map from space X

to space Y . One consequence is that X has a compact embedding into Y .

Let K0 : T Ñ X be a parameterization of the periodic orbit of (3.65). As in Sec-

tion 3.4.1, we use the notation Kpθq “ K0pθq ` pKpθq with pK : T Ñ X , and we derive

formally the equation (3.74).

ω0D pKpθq ´DF pK0pθqq pKpθq “ Bε
pK,ω, γ, θq ´ pωDK0pθq, (3.74)

where

Bε
pK,ω, γ, θq– Npθ, pKq ` εPpK,ω, γ, θq ´ pωD pKpθq, (3.75)

Npθ, pKq– F pK0pθq ` pKpθqq ´F pK0pθqq ´DF pK0pθqq pKpθq.

3.10.4.3 Statement of the result

We first formulate an abstract result, Theorem 66, whose proof is almost identical to the

proof of Theorem 32. The deep result is to verify that the hypotheses of Theorem 66 hold

in examples of interest. In Section 3.10.4.5, we show that the examples in Section 3.10.3

verify the hypotheses. We leave the verification in other models of interest to the readers.

Theorem 66. Assume that when ε “ 0, the equation (3.64) has a periodic orbit which
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satisfies:

• The linearized equation around the periodic orbit admits a solution. That is, for any

θ0 P T and θ0 ă θ P T, there is an operator Φpθ; θ0q mapping from Y to X solving

ω0
d

dθ
Φpθ; θ0q “ DF pK0pθqqΦpθ; θ0q; (3.76)

• – 1 P SpecpΦp1; 0q, Xq is a simple eigenvalue.

– The spectral projection on SpecpΦp1; 0q, Xqzt1u in X is bounded.

• The family of operators Φ is smoothing in the sense that it satisfies

}Φpt; θ0q}Y,X ď Cpt´ θ0q
´α 0 ă α ă 1, (3.77)

where } ¨ }Y,X is the norm of an operator mapping from Y to X , C is a constant.

We also need the following two assumptions on the delay perturbation. Let ` ą 0 be an

integer. Denote the ball of radius ρ in the space C``LippT, Xq centered at K0 as Uρ, and

the interval in R centered at ω0 with radius δ as Bδ.

(H2.1*) If K P Uρ and ω P Bδ, then PpK,ω, γ, ¨q : TÑ Y is C`´1`Lip, with

}PpK,ω, γ, ¨q}C`´1`LippT,Y q ď φρ,δ,

where φρ,δ is a positive constant that may depend on ρ and δ.

(H3.1*) For K, K 1 P Uρ, and ω, ω1 P Bδ, there exists constant αρ,δ ą 0, such that for all

θ P T,

}PpK,ω, γ, θq´PpK 1, ω1, γ, θq}Y ď αρ,δ max
 

|ω ´ ω1|, }K ´K 1
}C0pT,Xq

(

.
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Then, for small enough ε, the equation (3.64) has a periodic orbit, which is parameter-

ized by a C``Lip map K : TÑ X . Moreover, K is close to K0 in the sense of C`pT, Xq.

The proof of Theorem 66 is very easy. It suffices to observe that, thanks to the hypothe-

ses of the theorem, the operator Γε, defined in the same way as before, sends a ball in the

space RˆC``LippT, Xq to itself and that in this ball, Γε is a contraction under the norm of

Rˆ C0pT, Xq. Then, we apply Lemma 92.

Similar to before, one can get smooth dependence on parameters result.

3.10.4.4 Some remarks

Remark 67. The assumption that equation (3.76) admits solutions with the bounds in

(3.77) is rather nontrivial and its verification in concrete examples requires PDE tech-

niques.

Remark 68. Thanks to (3.77), Φp1; 0q is bounded from Y to X and, hence compact from

Y to Y . Therefore, the spectrum away from zero is characterized by the existence of finite

dimensional eigenspaces.

However, for an operator A acting on two spaces X Ă Y , there is no relation of

SpecpA,Xq and SpecpA, Y q in general.

Remark 69. In our case, for the operator Φp1; 0q, its point spectrum in space X agrees

with its point spectrum in space Y . This is not hard to see from the eigenvector equation

and the smoothing effect of the operator Φp1; 0q.

3.10.4.5 Verification of the assumptions of Theorem 66 in some examples

For the parabolic equations (3.68) and (3.69), a very elegant formalism is developed in

[78]. The case (3.69) will be simpler than (3.68) since the linearized operator being higher

order leads to stronger smoothing properties of the evolution.

The space Y will be Hr, a Sobolev space of high enough order. We emphasize once

again that for our purposes, the results are stronger if the space is more restrictive.
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The semigroup theory tells us that we can solve the equation (3.76) and that the solution

is smoothing in the sense that

}Φpθ; θ0q}Hr, Hr`a ď Cpaq|θ ´ θ0|
´a. (3.78)

3.10.5 Result for ill-posed PDE

In this section, we show how one can get existence of periodic solutions for delay pertur-

bations of ill-posed PDEs.

We just need to assume that the linearized equation admits partial evolutions (one evo-

lution forward in time and another one backward in time) defined in complementary spaces.

If these evolutions are smoothing, the methods of Section 3.9 apply without change.

Again the deeper part is to show that the concrete examples satisfy the assumptions.

In the case of the periodically forced Boussinesq equation (3.73) with a periodic solution

which is hyperbolic, we will show that the periodic solution persists under delay perturba-

tion. The assumption that (3.73) has a hyperbolic periodic orbit is a non-trivial – but easily

verifiable in concrete models – assumption. We note that the time independent Boussinesq

equation (3.70) does not have hyperbolic periodic orbits due to energy conservation. Our

results require delicate regularity properties of the periodic orbits, which are verified for all

the bounded small solutions in [90].

Since the partial evolutions involve smoothing properties, we still use the two spaces

approach summarized in Section 3.10.4.1. We have used the same set up as [90] to help the

reader check for the applications.

Remark 70. When the non-linear terms N in (3.73) are analytic, the periodic orbits are

analytic. As mentioned in Remark 50, we do not expect that the periodic orbits of the

perturbed equations are analytic. So, we follow [90] and deduce the regularity of the

periodic orbits from the Cr regularity of the center manifold.
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3.10.5.1 Abstract setup for the study of ill-posed equations

We will assume that there is a periodic solution of the evolution equation (3.73), which

satisfies the following Definition 71. Definition 71 can be verified for the linear part of

(3.73), and is shown to be stable under perturbations (which can be unbounded) in [89, 90].

(Related notions of splittings and their stability using a different functional analysis set up

appear also in [93, 94]. We have found that the two spaces approach is more concrete and

easier to adapt to the delay case.)

Definition 71 is motivated by an analogue of hyperbolicity for ill-posed equations. We

do not assume that the linearized equations define an evolution such as Φ, but we assume

that there are two evolutions (one in the future and one in the past) defined in complemen-

tary spaces. This is enough to follow the set up introduced in Section 3.9 and formulate a

fixed point equation for the periodic orbit of the perturbed equation.

Let us make some remarks about some subtle technical points.

‚ We assume that when these evolutions are defined, they are smoothing. That is, they

take functions of a certain degree of differentiability (in x) and map them into functions

with more derivatives. As shown in [89, 90], this allows to show that these structures are

stable under perturbations, which can be unbounded but are of lower order. This generality

is important in the treatment of examples such as (3.70) since it allows to show that the

periodic solutions constructed in the above papers satisfy Definition 71.

‚ It is important to note that Definition 71 only needs to be applied to the periodic orbits

of the problem without the delay. In this section the unperturbed problem will be a PDE,

which is exactly the case discussed in [89, 90]. As in Section 3.9, the invariant splitting

will be used to set up a functional equation and it will remain fixed, so that once we verify

the existence in the unperturbed case, it does not get updated.

‚ Both [89, 90] consider situations more general than periodic orbits. The paper [89]

considers quasi-periodic orbits and [90] considers bounded orbits. In the case of quasi-

periodic (in particular periodic) orbits, it is natural in the examples considered to assume
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that the bundles are analytic. For orbits with a time-dependence more complicated than

periodic, it is natural to assume only finite regularity. In this Section we have adopted the

definition in [89], which includes analyticity, since it applies to the examples we have in

mind. Notice, however that the solutions of the delay equation will only be shown to be

finitely differentiable and depend regularly on parameters in finite differentiable topologies.

Indeed, we do not expect that the solutions of the delay problem will be analytic. See

Remark 50.

Definition 71. Let X Ă Y be two Banach spaces. We say that an embedding K0 : Tρ Ñ X

is spectrally nondegenerate if for every θ in T, we can find splittings:

X “ Xs
θ ‘X

c
θ ‘X

u
θ

Y “ Y s
θ ‘ Y

c
θ ‘ Y

u
θ

(3.79)

with associated bounded projections on X and Y . (We will abuse the notation and use

Πs,c,u
θ to denote the projections as maps in LpX,Xq or in LpY, Y q.) The projections depend

analytically on θ P Tρ – tz P C{Z : |Im z| ă ρu, and have continuous extensions to the

closure of Tρ. Spaces Xs,c,u
θ and Y s,c,u

θ have the following properties.

• We can find families of operators

U s
θ ptq : Y

s
θ Ñ Xs

θ`ω0t
, t ą 0,

Uu
θ ptq : Y

u
θ Ñ Xu

θ`ω0t
, t ă 0,

U c
θ ptq : Y

c
θ Ñ Xc

θ`ω0t
, t P R.

• The operators U s,c,u
θ ptq are cocycles over the rotation satisfying

U s,c,u
θ`ω0t

pτqU s,c,u
θ ptq “ U s,c,u

θ pτ ` tq. (3.80)

• The operators U s,c,u
θ ptq are smoothing in the time direction where they can be defined
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and they satisfy assumptions in the quantitative rates. There exist constants α1, α2 P

r0, 1q, β1, β2, β
`
3 , β

´
3 ą 0 with β1 ą β´3 , and β2 ą β`3 , and C ą 1, independent of θ,

such that the evolution operators satisfy the following rate conditions:

}U s
θ ptq}ρ,Y,X ď Ce´β1tt´α1 , t ą 0, (3.81)

}Uu
θ ptq}ρ,Y,X ď Ce´β2|t||t|´α2 , t ă 0, (3.82)

and

}U c
θ ptq}ρ,Y,X ď Ceβ

`
3 t, t ě 0,

}U c
θ ptq}ρ,Y,X ď Ceβ

´
3 |t|, t ď 0.

(3.83)

• The operators U s,c,u
θ ptq are solutions of the variational equations in the sense that

U s
θ ptq “ Id`

ż t

0

DF s
pK0pθ ` ω0τqqU

s
θ pτqdτ, t ą 0,

Uu
θ ptq “ Id`

ż t

0

DF u
pK0pθ ` ω0τqqU

u
θ pτqdτ, t ă 0,

U c
θ ptq “ Id`

ż t

0

DF c
pK0pθ ` ω0τqqU

c
θ pτqdτ, t P R.

(3.84)

In this Section, we will also need:

• The space Xc is unidimensional and it is spanned by the direction of the evolution

along the periodic orbit.

Recall that Uρ Ă C``LippT, Xq is the ball of radius ρ centered at K0, and Bδ Ă R is

the interval centered at ω0 with radius δ. Compared with the hypothesis for well-posed

equations in (H2.1*), we make similar but slightly stronger assumption on the delay term:

(H2.1.1*) If K P Uρ and ω P Bδ, then PpK,ω, γ, ¨q : TÑ Y is C``Lip, with

}PpK,ω, γ, ¨q}C``LippT,Y q ď φρ,δ
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where φρ,δ is a positive constant that may depend on ρ and δ.

3.10.5.2 Statement of the result

Theorem 72. Assume that we have an evolution equation (3.65) that admits a periodic

solution satisfying Definition 71, and that we perturb by delay terms satisfying assumptions

(H2.1.1*) and (H3.1*).

Then, for sufficiently small ε, the equation (3.64) has a periodic solution of frequency

ω, which is parameterized by a C``Lip map K : TÑ X . Moreover, K is close to K0 in the

sense of C`pT, Xq.

The proof of Theorem 72 follows the same line as in Section 3.9.3. We work with the

fixed point equation (3.63). Using that we have evolution U c
θ and partial evolutions U s

θ and

Uu
θ for the linearized equations satisfying Definition 71, we can find solution to equation

(3.63), with pω P R and pKs, pKu P C``LippT, Xq.

As we have discussed, the regularity properties are verified for concrete examples in

[90] for the time-perturbed Boussinesq equation (3.73).
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CHAPTER 4

NUMERICAL COMPUTATION OF LIMIT CYCLES AND ISOCHRONS FOR

FDES NEAR A PLANAR ODE

We present algorithms and their implementation for the results discussed in Chapter 2.

Namely, we compute limit cycles and their isochrons (slow stable manifolds) for SDDEs

perturbed from a planar ODE.

The numerical methods developed here, produce an approximate solution and provide

estimates of the condition numbers. Therefore, thanks to the a posteriori results in Chapter

2, we are confident that the solutions produced by our numerical methods correspond to

true solutions.

The algorithms consist in specifying discretizations for all the functional analysis steps

in Chapter 2. We choose a systematic way to approximate functions by a finite set of

numbers (Taylor-Fourier series) and develop a toolkit of algorithms that implement the

operators – notably composition – that enter into the theory.

We do not present rigorous estimates on the effects of discretizations (they are in prin-

ciple applications of standard estimates), but we present analysis of running times. We

implement the algorithms above and report the results of running them in some represen-

tative examples. In our examples, one can indeed obtain very accurate solutions in a few

minutes in a standard today’s laptop.

The results in this chapter are presented in an increasing level of details, from the gen-

eral steps of the algorithms to more specialized and the hardest steps of them. The algo-

rithms that allow to solve the invariance equation (2.8) are fully detailed in section 4.2.

Section 4.3 explains the numerical composition of periodic mappings as well as its compu-

tational complexity in Fourier representation. In section 4.4 we report the results in some

examples.
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Our results take the parameterization of the unperturbed limit cycle and its isochrons

as input. They can be obtained from standard ODE techniques. For completeness, we

summarize in Appendix B the steps and add practical comments of the parameterization

method described in [26].

Our numerical representation for periodic orbit is going to be one-dimensional Fourier

expansion. See Appendix C for a summary of possibly well-known results of Fourier

representation and how they are managed and packed from a programming point of view.

4.1 Non-Uniqueness of the Solution

Recall that our goal is to find constants ω, λ, and map W of the form (2.11), which

solve equation (2.8). We will only compute W up to a finite order, and will not consider

Wąpθ, sq. That is, we only compute the limit cycle and a finite Taylor expansion of the

isochrons. The error of the reminder of the Taylor expansion is indeed very small (much

smaller than other sources of numerical error, which are already small).

The equation (2.8) is underdetermined, i.e., if W , ω, and λ solve equation (2.8), then

Wσ,η, ω, and λ also solve the same equation with

Wσ,ηpθ, sq “ W pθ ` σ, ηsq. (4.1)

The parameters σ and η correspond to choosing a different origin in the angle coordinate θ

and a different scale of the parameter s, respectively. All these solutions in (4.1) are math-

ematically equivalent, we introduce two normalizations to fix one solution in this family.

A convenient way to fix the origin of θ is to require

ż 1

0

“

BθW
0
1 pθ, 0qW1pθ, 0q

‰

dθ “ a (4.2)

where W 0 is an initial approximation and a is a real number, typically it is close to 1. This

normalization is easy to compute and is rather sensitive since, when we move in the family
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(4.1), the derivative with respect to the shift is a positive number.

The normalization of the origin of coordinates, has no numerical consequences except

for the possibility of comparing the solutions in different runs. The solutions corresponding

to different normalizations have very similar properties. The numerical algorithm 74 in its

step 5 has a small drift in the normalization in each iteration, but it is guaranteed to converge

to one of the solutions in (4.1).

The second normalization is just a choice of the eigenvector of an operator. We find it

convenient to take
ż 1

0

BsW2pθ, 0q dθ “ ρ (4.3)

with a real ρ ‰ 0.

We anticipate that changing the value of ρ is equivalent to changing s into bs where b is

commonly named scaling factor.

The choice of this normalization affects the numerical accuracy dramatically. Notice

that if we change s into bs, the coefficients W jpθq in (2.11) change into W jpθqbj . So, dif-

ferent choices of b may cause the Taylor coefficients to be very large or very small, which

makes the computations with them very susceptible to roundoff error. It is numerically

advantageous to choose the scale in such a way that the Taylor coefficients have a compa-

rable size. In our problem, we are also going to use the scaling to ensure that the second

component of W lie in the domain of K so that K ˝W is well-defined.

In practice, we run the calculations twice. First we do a preliminary calculation whose

only purpose is to compute an approximation of the scale that makes the coefficients remain

more or less of the same size. Then, a more definitive calculation can be run. The latter

running is more numerically reliable.

Remark 73. In standard implementation of the Newton method for the fixed point of a

functional, say Ψ, the fact that the space of solutions is two dimensional results in DΨ´ Id

having a two-dimensional kernel, and not be invertible.
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In our case, we will develop a very explicit and fast algorithm that produces an approx-

imate linear right inverse. This linear right inverse leads to convergence to an element of

the family (4.1).

4.2 Computation of pW,ω, λq – Perturbed Case

4.2.1 Fixed point approach

We compute all the coefficients W jpθq of the truncated expression W pθ, sq in (2.11) order

by order. The zero and first orders require a special attention due to the fact that the values

ω and λ are obtained in the equation (2.8) matching coefficients of s0 and s1 respectively.

The condition that allows to obtain ω comes from the periodicity condition (2.12). The

mapping W 0 is not a periodic function. But we can use it to get a periodic one defined by

Ŵ 0pθq– W 0pθq ´ p θ0 q. The condition for λ is given by the normalization condition (4.3).

We can use a scaling factor, which allows to set the value of ρ in (4.3) to 1.

Algorithm 74 sketches the fixed-point procedure to get ω and W 0 whose periodicity

condition is ensured in step (5). In this case the initial condition will be ω0 (the value for

ε “ 0) for ω and p θ0 q for W 0pθq since W pθ, sq is close to the identity.

Algorithm 74 (s0 case). Let ĄW 0pθq– W 0
`

θ ´ ωr ˝KpW 0pθqq
˘

.

‹ Input: 9x “ Xpxq`εP px, x̃, εq, 0 ă ε ! 1, Kpθ, sq “
řm´1
j“0 Kjpθqpb0sq

j , b0 ą 0,

ω0 ą 0, λ0 ă 0 and a tolerance tol.

‹ Output: Ŵ 0 : TÑ R2 and ω ą 0.

1. Ŵ 0pθq Ð 0 and ω Ð ω0.

2. W 0pθq Ð

¨

˚

˝

θ

0

˛

‹

‚

` Ŵ 0pθq.

3. Solve DK ˝W 0pθqηpθq “ εP pK ˝W 0pθq, K ˝ĄW 0pθq, εq. Let η ” pη1, η2q.
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4. αÐ
ş1

0
η1pθq dθ and ω Ð ω0 ` α.

5. Solve ωBθŴ 0
1 pθq “ η1pθq ´ α imposing

ş1

0
Ŵ 0

1 pθq dθ “ 0.

6. Solve pωBθ ´ λ0qŴ
0
2 pθq “ η2pθq.

7. Iterate from (2) to (6) until convergence in W 0 and ω with tolerance tol.

Algorithm 75 sketches the steps to compute pW 1, λq and W n for n ě 2. The initial

guesses are λ0 for λ, p 0
1 q for W 1 and p 0

0 q for W n.

Algorithm 75 (s1 case and sn case with n ě 2).

Let ĂW pθ, sq– W
`

θ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqq
˘

.

‹ Input: 9x “ Xpxq`εP px, rx, εq, 0 ă ε ! 1, Kpθ, sq “
řm´1
j“0 Kjpθqpb0sq

j , b0 ą 0,

ω0 ą 0, λ0 ă 0, Ŵ 0pθq, W jpθq for 0 ă j ă n, b ą 0, ω ą 0 and a tolerance tol.

‹ Output: either W 1 : TÑ Tˆ R and λ ă 0 or W n : TÑ Tˆ R.

1. W npθq Ð

¨

˚

˝

0

0

˛

‹

‚

.

s1 If n “ 1, W 1pθq Ð

¨

˚

˝

0

1

˛

‹

‚

and λÐ λ0.

2. W pθ, sq Ð

¨

˚

˝

θ

0

˛

‹

‚

` Ŵ 0pθq `
n
ř

j“1

W jpθqpbsqj .

3. Y pW pθ, sqq Ð DK ˝W pθ, sq´1P pK ˝W pθ, sq, K ˝ĂW pθ, sq, εq.

4. ηpθq Ð εB
nY
Bsn
pW pθ, sqq|s“0. Let η ” pη1, η2q.

s1 If n “ 1, then λÐ λ0 `
ş1

0
η2pθq dθ.
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5. Solve pωBθ ` nλqW n
1 pθq “ η1pθq.

6. Solve pωBθ ` nλ´ λ0qW
n
2 pθq “ η2pθq.

7. Iterate from (2) to (6) until convergence with tolerance tol. Then undo the scaling b.

Both algorithms 74 and 75 have non-trivial parts, such as, the effective computation

of ĂW , the numerical composition of K with W and also with ĂW (see 4.3), the effective

computation of the step 4 in Algorithm 75 and the choice of the scaling factor (see 4.2.3).

On the other hand, there are steps that we can use the same methods in the unperturbed case

(see B), such as, the solution of linear systems like step 3 in Algorithm 75 via Lemma 77

or the solutions of the cohomological equations by Proposition 76.

In the next sections we address each of these parts.

4.2.2 Stopping criterion

Algorithms 74 and 75 require to respectively stop when the prescribed tolerance has been

reached.

Alternatively, one can stop when the invariance equation is satisfied up to the given

tolerance.

4.2.3 Scaling factor for orders n ě 1

As we discussed, if W pθ, sq is a solution, then W pθ ` θ0, bsq will also be a solution for

any θ0 and b. A difference with the unperturbed case is that now K ˝ W and K ˝ ĂW

are required to be well-defined. That is, the second components of W and ĂW must lie in

r´1, 1s. Stronger conditions are

ppsq–
ÿ

jě0

‖W j
2 pθq‖|s|j ď 1 and rppsq–

ÿ

jě0

‖ĂW j
2 pθq‖|s|j ď 1.
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In the iterative scheme of Algorithm 75, these series become finite sums and an upper

bound for the value b ą 0 is mints˚, rs˚u, where s˚ ą 0 is the value so that pps˚q “ 1 and,

similarly, rs˚ ą 0 is the value verifying rpprs˚q “ 1. Notice that, the solutions s˚ and rs˚ exist

because ‖W 0
2 pθq‖ ă 1 and ‖ĄW 0

2 pθq‖ ă 1.

4.2.4 Solutions of the cohomology equations in Fourier representation

Under the Fourier representation (see Section C) we can solve the cohomological equations

in the steps 5 and 6 in Algorithm 74 as well as in steps 5 and 6 in Algorithm 75.

Proposition 76 (Fourier version, [26]). Let Epθ, sq “
ř

j,k Ejke
2πikθsj .

• IfE00 “ 0, then pωBθ`λsBsqupθ, sq “ Epθ, sq has solution upθ, sq “
ř

j,k ujke
2πikθsj

and

ujk “

$

’

’

&

’

’

%

Ejk
λj`2πiωk

if pj, kq ‰ p0, 0q

α otherwise.

for all real α. Imposing
ş1

0
upθ, 0q dθ “ 0, then α “ 0.

• IfE10 “ 0, then pωBθ`λsBs´λqupθ, sq “ Epθ, sq has solution upθ, sq “
ř

j,k ujke
2πikθsj

and

ujk “

$

’

’

&

’

’

%

Ejk
λpj´1q`2πiωk

if pj, kq ‰ p1, 0q

α otherwise.

for all real α. Imposing
ş1

0
Bsupθ, 0q dθ “ 0, then α “ 0.

The paper [26] also presents a solution in terms of integrals. Those integral formulas

for the solution are independent of the discretization and work for discretizations such as

Fourier series, splines and collocations methods. Indeed, the integral formulas are very ef-

ficient for discretizations in splines or in collocation methods which could be preferable in

some regimes where the limit cycles are bursting. In this chapter, we will not use the inte-

gral formulas, since we will discretize functions in Fourier series, and for this discretization,
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the methods described in Proposition 76 are more efficient.

4.2.5 Treatment of the step 3 in Algorithm 75

To solve the linear system in the step 3 of Algorithm 75, we can use Lemma 77, whose

proof is a direct power matching.

Lemma 77. Let Apθ, sqxpθ, sq “ bpθ, sq be a linear system of equations for each given

pθ, sq. Explicitly:
ˆ

ÿ

kě0

Akpθqs
k

˙

ÿ

kě0

xkpθqs
k
“

ÿ

kě0

bkpθqs
k.

Then, the coefficients xkpθq are obtained recursively by solving

A0pθqxkpθq “ bkpθq ´
k
ÿ

j“1

Ajpθqxk´jpθq.

which can be done provided that A0pθq is invertible and that one knows how to multiply

and add periodic functions of θ.

4.2.6 Use of polynomials for elementary operations

We also recall that composition of a polynomial in the left with exponential, trigonometric

functions, powers, logarithms (or any function that satisfies an easy differential equation)

can be done very efficiently using algorithms that are reviewed in [17] which goes back to

[95].

We present here the case of the exponential which can be used in Algorithm 75 for the

computation of ĂW .

If P is a given polynomial – or a power series – with coefficients Pj , we see that

Epsq “ expP psq satisfies
d

ds
Epsq “ Epsq

d

ds
P psq,

with Taylor coefficients Ej at s “ 0. Equating like powers on both sides, it leads to
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E0 “ expP p0q, and the recursion:

Ej “
1

j

j´1
ÿ

k“0

pj ´ kqPj´kEk, j ě 1,

Note that this can also be done if the coefficients of P are periodic functions of θ (or

polynomials in other variables). In modern languages supporting overloading or arithmetic

functions, all this can be done in an automatic manner.

Note that if the polynomial has degree ns, the computation up to degree ns takes Θpn2
sq

operations of multiplications of the coefficients.

4.3 Numerical Composition of Periodic Maps

The goal of this section is to deeply discuss how we can numerically compute ĂW and the

compositions of K with W pθ, sq and ĂW pθ, sq only having a numerical representation (or

approximation) of K and W in the algorithms 74 and 75.

There are a variety of methods that can be employed to numerically get the composition

of a periodic mapping with another (or the same) mapping. Some of these methods depend

strongly on the representation of the periodic mapping and others only depend on specific

parts of the algorithm.

We start the discussion from the general methods to those that strongly depend on the

numerical representation. One expects that the general ones will have a bigger numerical

complexity or they will be less accurate.

Before discussing the algorithms, it is important to stress again that for functions of two

variables pθ, sq P T ˆ r´1, 1s, there are two complementary ways of looking at them. We

can think of them as functions that given θ produce a polynomial in s – this polynomial

valued function will be periodic in θ – or we can think of them as polynomials in s taking

values in spaces of periodic functions (of the variable θ). Of course, the periodic functions

that appear in our interpretation can be discretized either by the values in a grid of points
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or by the Fourier transform.

Each of these equivalent interpretations will be useful in some algorithms. In the sec-

ond interpretation, we can “overload” algorithms for standard polynomials to work with

polynomials whose coefficients are periodic functions (in particular Horner schemes). In

the first interpretation, we can easily parallelize algorithms for polynomials for each of the

values of θ using the grid discretization of periodic functions.

Possibly the hardest part of algorithms 74 and 75 is the compositions between K with

W and with ĂW . Due to the step 4 of Algorithm 75 the composition should be done so that

the output is still a polynomial in s with coefficients that are periodic functions of θ. In our

implementation, we use the Automatic Differentiation (AD) approach [17, 96].

If W pθ, sq “ pW1pθ, sq,W2pθ, sqq is a function of two variables taking values in R2,

then

K ˝W pθ, sq “
m´1
ÿ

j“0

Kj
pW1pθ, sqq pb0W2pθ, sqq

j , (4.4)

which can be evaluated with m´ 1 polynomial products and m´ 1 polynomial sums using

Horner scheme, once we have computed Kj ˝W1pθ, sq.

The problem of composing a periodic function with a periodic polynomial in s – to

produce a polynomial in s taking values in the space of periodic functions – is what we

consider now. In particular, we are going to discuss three different approaches and their

computational complexities.

The first one is the most general one and it is based on a dynamic programming tech-

nique. It assumes some given information to build a table from where the composition can

be extracted. In this case the numerical representation is in the part that is assumed to be

given.

The second one exploits the Fourier representation in the inputs of the dynamic pro-

gramming to provide the final full complexity of the composition.

Finally, the third approach also uses the Fourier representation but rather than using the

dynamic programming technique, it uses the recurrences in Automatic Differentiation for
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the sine and cosine functions.

4.3.1 Composition via dynamic programming

The most general method considers S a periodic function, the Kj in (4.4), and qpsq “
řk
j“0 qjs

j a polynomial of a fixed order k ě 0 where the qj are periodic functions of θ that

we consider discretized by their values in a grid (the W1 in (4.4)).

We want to compute the polynomial p– S ˝ q up to order k. Assume that dj

dθj
Spq0q for

0 ď j ď k are given as input and that they have been previously computed in a bounded

computational cost. These inputs in a computer strongly depend on the numerical repre-

sentation of the periodic function S. In further sections we will consider the Fourier series

as a representation which will lead to two different algorithms.

The chain rule gives us a procedure to compute the coefficients of ppsq “
řk
j“0 pjs

j .

Indeed, one can build a table, whose entries are polynomials in s, like Table 4.1 and which

follows the generation rule in Figure 4.1.

1

i−1
�

d

ds
·

d

ds
q(s)

Figure 4.1. Generation rule for i “ 2, . . . , k ` 1 Table 4.1 entries.

The inputs of Table 4.1 are ai,1 “ 0 for i ‰ 1 and a2,2 “
d
ds
qpsq. Then the entries aij

with 2 ď j ď i ď k ` 1 are given by

aijpsq “
1

i´ 1

ˆ

d

ds
ai´1,jpsq ` ai´1,j´1psq

d

ds
qpsq

˙

. (4.5)

Thus, the coefficients of ppsq are pj “
řk
l“0 ajlp0q

dl

dθl
Spq0q for 0 ď j ď k.

Note that it is enough to store in memory k entries of the Table 4.1 to compute all the

coefficients pj .

Moreover, for each entry in the ith row with i “ 2, . . . , k`1, one only needs to consider
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Table 4.1. Composition of a function with a polynomial.

Spq0q
d
dθ
Spq0q

d2

dθ2
Spq0q ¨ ¨ ¨ dk´1

dθk´1Spq0q
dk

dθk
Spq0q

p0 1 0

p1 0 d
ds
qpsq 0

p2 0 1
2
˝ 1

2
˝

...
...

...
... . . . 0

pk´1 0 1
k´1

˝ 1
k´1

˝ ¨ ¨ ¨ 1
k´1

˝ 0

pk 0 1
k
˝ 1

k
˝ ¨ ¨ ¨ 1

k
˝ 1

k
˝

polynomials of degree k ` 1 ´ i. Overall the memory required is at most 1
2
kpk ` 1q. The

number of arithmetic operations following the rule (4.5) are given by the Proposition 78.

Proposition 78. Let S be a real-periodic function and let qpsq be a real polynomial of

degree k. Given dj

dθj
Spqp0qq for j “ 0, . . . , k. The polynomial S ˝ q can be performed using

Table 4.1 with 1
2
kpk ` 1q units of memory and Θpk4q multiplications and additions.

Proof. Note that kpk ` 1q multiplications and pk ` 1q2 additions are needed to perform

the product of two polynomials of degree k. Also k multiplications are needed to perform

the derivative of a polynomial of degree k multiplied by a scalar. To bound the number of

operations we must distinct three different situations of the Table 4.1.

1. The column a3..k,2.
k´2
ř

i“1

pk ´ i` 1q “ 1
2
pk2 ` k ´ 6q multiplications.

2. The diagonal a3..k,3..k.

•
k´2
ř

j“1

pk ´ j ´ 1qpk ´ j ` 1q ` 1 “ 1
6
p2k3 ´ 3k2 ` k ´ 6q multiplications.

•
k´2
ř

j“1

pk ´ j ´ 1q2 ` 1 “ 1
6
p2k3 ´ 9k2 ` 19k ´ 18q additions.

3. The rest.
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•
k´2
ř

j“1

k´2
ř

i“j`1

pk´i´1qpk´i`1q`pk´i´2q`1 “ 1
12
p7k4´56k3`71k2`38k´24q

multiplications.

•
k´2
ř

j“1

k´2
ř

i“j`1

pk ´ i ´ 1q2 ` pk ´ iq ` 1 “ 1
12
p5k4 ´ 36k3 ` 85k2 ´ 102k ` 72q

additions.

Overall 7
12
k4 `Θpk3q multiplications and 5

12
k4 `Θpk3q additions.

The next Theorem 79 summarizes the previous explanations and it provides the com-

plexities to numerically compute K ˝W in (4.4). It assumes that di

dθi
Spq0q of Table 4.1,

which are the di

dθi
KjpW1pθ, 0qq in K ˝ W , are given as input. These inputs are the only

elements in Table 4.1 that depend on the numerical representation of the periodic functions

(i.e. the Kj in K ˝W ) and makes the result in Theorem 79 independent of how periodic

functions are represented.

Theorem 79. For a fixed θ, the computational complexity to compute the compositions

of Kpθ, sq “
řm´1
j“0 Kjpθqpb0sq

j with W pθ, sq “
řk´1
j“0 W

jpθqpbsqj and ĂW pθ, sq using

Table 4.1 is Θpmk4q and space Ωpk2q assuming di

dθi
KjpW 0

1 pθqq as input for i “ 0, . . . , k´1.

Remark 80. In general, if nθ denotes the mesh size of the variable θ, we will have k ď

m ! nθ. That is, the mesh size will be much larger than the degree (in s) of Kpθ, sq. That

means that the parallelization in nθ will be more advantageous.

Theorem 79 has an important assumption involving di

dθi
KjpW 0

1 pθqq which can have a

big impact in the complexity of K ˝W pθ, sq. However, such an impact strongly depends on

the numerical representation of Kj and it will be discussed in the Fourier representation

case.

4.3.2 Composition in Fourier

Theorem 79 reduces the problem of computing K ˝ W pθ, sq in (4.4) to the problem of

computing composition of a periodic function with another one.
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In the case of a Fourier representation (see C) of an arbitrary mapping S : T Ñ R

(the Kj’s in (4.4)) , such a composition between Fourier truncated series may require to

know the values not in the standard equispaced mesh tk{nθu
nθ´1
k“0 of θ which hampers the

use of the FFT. Indeed, the FFT which states a fast way to biject tSpk{nθqu
nθ´1
k“0 Ă R to

tpSjunθ´1
j“0 Ă C such that,

Spk{nθq “
nθ´1
ÿ

j“0

pSje2πijk{nθ and pSj “
1

nθ

nθ´1
ÿ

k“0

Spk{nθqe
´2πijk{nθ . (4.6)

assumes the mesh of θ to be equispaced. However the Spq0q may request to evaluate S

outside the mesh.

A direct composition of real Fourier series requires a computational complexity Θpn2
θq.

However, nowadays recent algorithms with a Θpnθ log nθq complexity efficiently solve this

possible bottleneck in the performance of our algorithms. See, for instance, the NFFT3 in

[97] or FINUFFT in [98, 99]. The package NFFT3 allows to express S : T Ñ R with the

same coefficients in (4.6) and perform its evaluation in an even number of non-equispaced

nodes pθkq
nθ´1
k“0 Ă T by

Spθkq “
nθ´1
ÿ

j“0

pSje´2πipj´nθ{2qpθk´1{2q. (4.7)

The corrections of θk in (4.7) is because NFFT3 considers T » r´1{2, 1{2q rather than the

other standard equispaced discretization in r0, 1q. NFFT3 uses some window functions for

a first approximation as a cut-off in the frequency domain and also for a second approxima-

tion as a cut-off in time domain. It takes under control (by bounds) these approximations

to ensure the solution is a good approximation. Joining these results with Proposition 78

and Theorem 79, we have

Theorem 81. The computational complexity to compute in Algorithm 75 the composi-

tions of Kpθ, sq “
řm´1
j“0 Kjpθqpb0sq

j with the maps W pθ, sq “
řk´1
j“0 W

jpθqpbsqj and
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ĂW pθ, sq “
řk´1
j“0

ĂW jpθqpbsqj using Table 4.1 and NFFT3, and assuming that Kj , W j and

ĂW j are expressed with nθ Fourier coefficients is Θpmk4nθ ` mknθ log nθq. The space

complexity is Ωpknθ ` k
2q.

Remark 82. The remark 80 also applies to Theorem 81 in terms of the parallelization of

nθ due to the fact that in general k ď m ! nθ. However, in the parallelism case, the space

complexity increase to Ωpknθ ` k2npq with np the number of processes although the part

corresponding to knθ can be shared memory.

In particular, the NFFT3 can also be used for the zero order W 0 of Algorithm 74 giving

in that case the same complexity as Theorem 81 but with k “ 1.

4.3.3 Automatic Differentiation in Fourier

Theorem 79 tells us that the composition K ˝W pθ, sq can numerically be done indepen-

dently of the periodic mapping representation. Nevertheless, differentiation is a notoriously

ill-posed problem due to the lack of information in the discretized problem. Thus, Ta-

ble 4.1 is a good option when no advantage of the computer periodic representation exists

or k ! m.

Using the representation (C.3), we can use the Taylor expansion of the sine and cosine

by recurrence [95, 17]. That is, if qpsq is a polynomial, then sin qpsq and cos qpsq are given

by s0 “ sin q0, c0 “ cos q0 and for j ě 1,

sj “
1

j

j´1
ÿ

k“0

pj ´ kqqj´kck, cj “ ´
1

j

j´1
ÿ

k“0

pj ´ kqqj´ksk. (4.8)

Therefore the computational cost to obtain the sine and cosine of a polynomial is linear

with respect to its degree.

Theorem 83 says that the composition of K with W or ĂW are rather than Θpmk4nθ `

mknθ log nθq like in Theorem 81 just Θpmkn2
θq. Therefore if k ! m and nθ is large, the

approach given by Theorem 81 has a better complexity although Theorem 83 will be more
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stable for larger k.

Theorem 83. The computational complexity to compute in Algorithm 75 the composi-

tions of Kpθ, sq “
řm´1
j“0 Kjpθqpb0sq

j with the maps W pθ, sq “
řk´1
j“0 W

jpθqpbsqj and

ĂW pθ, sq “
řk´1
j“0

ĂW jpθqpbsqj using Automatic Differentiation and assuming that Kj , W j

and ĂW j are expressed with nθ Fourier coefficients is Θpmkn2
θq.

4.4 Numerical Results

The van der Pol oscillator [100] is an oscillator with a non-linear damping governed by a

second-order differential equation.

As an example, we consider the state-dependent perturbation of the van der Pol oscil-

lator like in [101], which has the form

9xptq “ yptq,

9yptq “ µp1´ xptq2qyptq ´ xptq ` εxpt´ rpxptqqq,

(4.9)

with µ ą 0 and 0 ă ε ! 1. For the delay function rpxptqq we are going to consider two

cases. A pure state-dependent delay case rpxptqq “ 0.006exptq or just a constant delay case

rpxptqq “ 0.006.

The first step consists in computing the change of coordinate K, the frequency ω0 of

the limit cycle and its stability value λ0 ă 0 for ε “ 0. By standard methods of computing

periodic orbits and their first variational equations, we compute the limit cycles close to

px, yq “ p2, 0q for different values of µ. Table 4.2 shows the values of ω0 and λ0 for each

of those values of the parameter µ.

The computation of Kpθ, sq, following Algorithm 96, up to order 16 in s and with a

Fourier mesh size of 1024 allows to plot the isochrons in Figure 4.2.

In the case of ODEs, the isochrons computed by evaluating the expansion can be global-

ized by integration of the ODE (4.9) forward and backward in time, see [26]. In the case of

132



Table 4.2. Values of ω0 and λ0 for different values of the parameter µ in eq. (4.9) with
ε “ 0.

µ ω0 λ0

0.25 0.1585366857025485 ´0.2509741760777654
0.5 0.1567232109993800 ´0.5077310891698608
1 0.1500760842377394 ´1.0593769948418550
1.5 0.1409170454968141 ´1.6837946490433340

the SDDE, ε ‰ 0, propagating backwards is not possible. We hope that this limitation can

be overcome, but this will require some new rigorous developments and more algorithms.

We think that this is a very interesting problem.

A relevant indicator for engineers is the power spectrum, i.e. the square of the modulus

of the complex Fourier coefficients. In Figure 4.3 we illustrate the power spectrum for K0,

since K0 is the one that is commonly observed in a circuit system.

Due to the quadratic convergence of the Algorithm 96, see [26], the computation of

Table 4.2 and Figure 4.2 are performed in less than one minute in a today standard laptop.

However, we notice that for values of µ ą 1.5 the method may not converge for the unper-

turbed case, the scaling factor and the Fourier mesh size need to be smaller due to spikes,

especially for the high orders in s, i.e. Kjpθq for large j. This is an inherent drawback of

the numerical representation of periodic functions that can be emphasized with the model

involved.

4.4.1 Perturbed case

Let us analyze the case of µ “ 1.5 for two different types of delay functions; a constant

one rpxptqq “ 0.006 and a state-dependent one rpxptqq “ 0.006exptq.

The two cases have some advantages to be exploited. For instance, in the constant

case ĂW pθ, sq “ W pθ ´ ωβ, se´λβq is easier to compute than in the state-dependent case.

Since in both casesW and ĂW must be composed byK, the use of automatic differentiation

for the step 4 in Algorithm 75 is still needed. In particular, for the Algorithm 74 and the

composition via Theorem 81, the NFFT3 can be used to perform the numerical composition
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Figure 4.2. Limit cycles and their isochrons for different values of the parameter µ in the
unperturbed eq. (4.9).

of K with W and ĂW .

The first steps of our method get ω and λ which we distinguish their values depending

on the delay function and the parameter ε. Again here we are assuming µ “ 1.5. These

values are summarized respectively in Tables 4.3 and 4.4. They were computed fixing

a tolerance for the stopping criterion of 10´10 in double-precision. Because the result is

perturbative, these values are close to those in Table 4.2 and are further as ε increase.

Moreover we report a speed factor around 2.25 using the NFFT3 with respect to a direct

implementation of the Fourier composition.

Figure 4.4 shows, for different values of ε in eq. (4.9), the logarithmic error of invari-
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Figure 4.3. Logscale of the power spectrum of K0 ” pK0
1 , K

0
2q for µ “ 1.5 and ε “ 0 in

eq. (4.9).

Table 4.3. Values of ω for different values of ε in eq. (4.9) with µ “ 1.5 obtained by
Algorithm 74. ωs corresponds to the state-dependent delay and ωc the constant
delay.

ε ωs ωc

10´4 0.140908673246532 0.140908547470887
10´3 0.140833302396846 0.140832045466042
10´2 0.140077545298062 0.140065058638519

ance equation for each of the different orders j ě 0. That is, the finite system of invariance

equations obtained after plugging W pθ, sq “
ř

W jpθqsj into eq. (2.8) and matching terms

of the same order. The state-dependent case requires ε to be smaller than the constant delay

case, the reason can be seen from our proofs in Chapter 2.

Figures 4.5 shows the difference between the isochrons for the perturbed and unper-

turbed case. As one expects from the theorems in Chapter 2, the error is smaller as the

perturbation parameter value ε becomes smaller.

An important point in Algorithm 75 is the well-definedness of the composition of K

with W and ĂW . Because the state-dependent delays consider much more situations than

just the constant delay, one expects that potentially smaller scaling factor compared to the
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Table 4.4. Values of λ for different values of ε in eq. (4.9) with µ “ 1.5 obtained by
Algorithm 75. λs corresponds to the state-dependent delay and λc the constant
delay.

ε λs λc

10´4 ´1.6838123845562083 ´1.6838091880373793
10´3 ´1.6839721186835845 ´1.6839401491442914
10´2 ´1.6855808865357260 ´1.6852607528946115
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Figure 4.4. Log10 scale of the 2-norm of the error in the invariance equation.

constant delay will be needed as large order is computed. Figure 4.6 shows if ε is large, the

scaling factor will need to be small. We also see that for the constant case, it is enough to

use a constant scaling factor, and for the state-dependent case, the scaling factor decreases

drastically in the first orders.

To illustrate the physical observation, the Figures 4.7 and 4.8 shows the power spectra

of the limit cycles after the perturbations. More concretely, Figure 4.7 displays the power

spectrum of pK ˝W q0 for the pure state-dependent delay case and ε “ 0.01. In contrast

with Figure 4.3, we observe that for the even indexes they have non-zero values in the

double-precision arithmetic sense. On the other hand, Figure 4.8 shows that these non-zero

values in the even indexes are not present in the constant delay case and the power spectrum

for the case ε ą 0 is away from that when ε “ 0 as ε increase.
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Appendices



APPENDIX A

REGULARITY PROPERTIES

One of the sources of complication in the study of delay equations – especially state de-

pendent delay equations – is that the equations involve compositions, which have many

surprising properties. In this appendix we collect a few of them. A systematic study of the

composition operator in Cr spaces which are the most natural for our problem is in [54].

A.1 Function Spaces

Let ` be a positive integer, let X be a Banach space and U Ă X be a an open set. For

functions on U taking values in another Banach space Y , we can define derivatives [102,

103], and Lipschitz and Hölder regularity of the derivatives.

We recall that the j derivative is a j-multilinear function from Xbj to Y and that there

is a natural norm for multilinear functions (supremum of the norm of the values when the

arguments have norm 1).

We denote by C`pU, Y q the space of all functions with uniformly bounded continuous

derivatives up to order `. We endow C`pU, Y q with the norm

}f}C` “ max
0ďjď`

sup
ξPU

}Djfpξq}XbjÑY ,

so that C`pU, Y q is a Banach space. We denote by

Lip pF q “ sup
x,yPU,x‰y

}F pxq ´ F pyq}Y {}x´ y}X

Definition 84. We say that K : U Ñ Y is in C``LippU, Y q when K has ` derivatives and

the ` derivative is Lipschitz.
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We endow C``LippU, Y q with the norm:

}K}C``Lip “ max
 

}K}C` ,LippD`Kq
(

(A.1)

which makes C``Lip into a Banach space.

A similar definition can be written when U is a Riemannian manifold. In this thesis we

will use the case that U “ T or U “ Tˆ R.

Remark 85. We note that Definition 84 assumes uniform bounds of the derivatives in the

whole domain. There are other very standard definitions of differentiable sets that only as-

sume continuity and bounds in compact subsets of U . Even when U “ Rn these definitions

(e.g. Whitney topology, very natural in differential geometry) do not lead to C``Lip being a

Banach space and we will not use them.

A.2 Faà di Bruno formula

We quote Faà di Bruno formula, which deals with the derivatives of composition of two

functions.

Lemma 86. Let gpxq be defined on a neighborhood of x0 in a Banach space E, and have

derivatives up to order n at x0. Let fpyq be defined on a neighborhood of y0 “ gpx0q in a

Banach space F , and have derivatives up to order n at y0. Then, the nth derivative of the

composition hpxq “ f rgpxqs at x0 is given by the formula

hn “
n
ÿ

k“1

fk
ÿ

ppn,kq

n!
n
ź

i“1

gλii
pλi!qpi!qλi

. (A.2)

In the above expression, we set

hn “
dn

dxn
hpx0

q, fk “
dk

dyk
fpy0

q, gi “
di

dxi
gpx0

q,
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and

ppn, kq “

#

pλ1, . . . , λnq : λi P N,
n
ÿ

i“1

λi “ k,
n
ÿ

i“1

iλi “ n

+

.

This can be proved by the Chain Rule and induction. See [104] for a proof.

A.3 Simple estimates on Composition

We will need the following property of the composition operator, one can refer to [54] for

more details.

Lemma 87. Let X, Y, Z be Banach spaces. Let E Ă X , F Ă Y be open subsets.

Assume that: g P C``LippE, Y q, f P C``LippF,Zq and that gpEq Ă F so that f ˝ g can

be defined. Then, f ˝ g P C``LippE,Zq, and

}f ˝ g}C``LippE,Zq ďM`}f}C``LippF,Zq

`

1` }g}``1
C``LippE,Y q

˘

(A.3)

The proof of Lemma 87 just uses the Faà di Bruno formula in Lemma 86 for the deriva-

tives of the composition. To control the Lipschitz constant of the ` derivative, we use that

the Lipschitz constant of product and composition satisfy the same formulas as those of the

derivative with an inequality in place of equality.

In (A.3) we can take any set F that contains gpEq. The results are sharper when we

take F as small as possible.

A.4 The mean value theorem

Definition 88. We say that an open set U Ă X is a compensated domain when it is con-

nected, and there is C ą 0 such that for any x, y P U , there is a C1 path γ Ă U such

that

lengthpγq ď C}x´ y}

In particular, a convex domain is compensated with C “ 1.
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We also recall the fundamental theorem of calculus.

Theorem 89. Assume that U Ă X is open connected, F : U Ñ X is a C1 function,

x, y P U and that γ is a C1 path joining x, y. Then

F pxq ´ F pyq “

ż 1

0

DF pγptqqDγptq dt

As a corollary of Theorem 89 we have that

}F pxq ´ F pyq} ď }DF }C0 ¨ lengthpγq ď }F }C1 ¨ lengthpγq

If the domain U is compensated, we obtain that

}F pxq ´ F pyq} ď C}F }C1}x´ y}

In particular, C1 functions on compensated domains are Lipschitz.

The conclusion that C1 implies Lipschitz, is not true if the domain is not compensated.

It is not difficult to obtain examples of domains where C1 functions are not continuous

even when X “ R2.

Lemma 90. Assume that for some ` ě 1, }f}C``Lip ď A, }g1}C`´1`Lip , }g2}C`´1`Lip ď B.

Then:

}f ˝ g1 ´ f ˝ g2}C`´1`Lip ď CpA,Bq}g1 ´ g2}C`´1`Lip (A.4)

Proof. By the fundamental theorem of calculus we have pointwise

f ˝ g1 ´ f ˝ g2 “

ż 1

0

Dfpg2 ` tpg1 ´ g2qqpg1 ´ g2q dt

If we interpret the above as identity among functions we have

}f ˝ g1 ´ f ˝ g2}C`´1`Lip ď

ż 1

0

C}Dfpg2 ` tpg1 ´ g2qq}C`´1`Lip ¨ }pg1 ´ g2q}C`´1`Lip dt
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Using Lemma 87, }Dfpg2 ` tpg1 ´ g2qq}C`´1`Lip is bounded by a function of A and B, we

are done.

A.5 Interpolation

We quote the following result from [105, 106]. See [54] for a modern, very simple proof

valid for functions on compensated domains in Banach spaces.

Lemma 91. Let U be a convex and bounded open subset of a Banach space E, F be a

Banach space. Let r, s, t be positive numbers, 0 ď r ă s ă t, and µ “ t´s
t´r

. There is a

constant Mr,t, such that if f P CtpU, F q, then

}f}Cs ďMr,t}f}
µ
Cr}f}

1´µ
Ct .

A.6 Closure Properties of C``Lip ball

We quote a very practical result which appears as Lemma 2.4 in [50]. (This paper is largely

reproduced as a chapter in [107]. See Lemma (2.5) on p. 39.) A related notion, Quasi-

Banach space, was used in [108].

Lemma 92. Let U Ă X be a compensated domain.

Denote by B a closed ball in C``LippU, Y q. Let tununPN Ă B be such that un converges

pointwise weakly to u. Then, u P B.

Furthermore, the derivatives of un of order up to ` converge weakly to the derivatives

of u.

We note that the hypothesis of Lemma 92 are easy to verify in operators that involve

composition. The propagated bounds just amount to proving that the size of derivatives of

composition of two functions can be estimated by the sizes of the derivatives of the original

functions. The contraction properties are done under the assumption that the functions are

smooth so that one can use the mean value theorem.
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A similar result to Lemma 92 is the following, which appears as Lemma 6.1.6 in [78,

p. 151].

Lemma 93. Let U Ă X be an open set. Denote by B a closed ball in C``LippU, Y q. Let

tununPN Ă B be such that un converges uniformly to u. Then, u P B.

Furthermore the derivatives of un of order up to ` converge uniformly to the derivatives

of u away from the boundary of U .

Both Lemma 92 and Lemma 93 remain true when we replace the spaces of C``Lip

functions by Hölder spaces.

Remark 94. It is instructive to compare the proofs of Lemma 92 and Lemma 93 in their

original references.

The proof of [50] is based on considering restrictions to lines. Then, one can apply

Arzela-Ascoli theorem and extract converging subsequences. The assumption of a weak

pointwise limit ensures that the limit is unique. The uniformity of the C``Lip norms of the

functions ensures the existence of derivatives and the convergence.

The proof of [78] goes along different lines. It shows that there are bounds on the

derivatives by the C0 norms and the size of the ball. An alternative argument is to use

interpolation inequalities in Lemma 91, which provides uniform convergence of the deriva-

tives on U (also near the boundary).

As a consequence of Lemma 92, we have the following version of the contraction map-

ping.

Lemma 95. With the same notation of Lemma 92.

Assume T : BÑ B satisfies that there exists κ ă 1 such that

}T puq ´T pvq}C0 ď κ}u´ v}C0 @u, v P B

Then, T has a unique fixed point u˚ in B.
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For any u P B, and 0 ď j ď `

}T n
puq ´ u˚}Cj`Lip ď Cκn

`´j
``1 }T puq ´ u}

`´j
``1

C0

where C is a constant that depends on the radius of the ball B and j.

Furthermore,

}u´ u˚}Cj`Lip ď Cp1´ κq´
`´j
``1 }T puq ´ u}

`´j
``1

C0

Proof. WhenX is finite dimensional (or just separable), Lemma 92 is a corollary of Ascoli-

Arzela theorem. For any subsequence of un we can extract a sub-subsequence that con-

verges in C` sense. The limit of this sub-subsequence has to be u. It follows that the un

converges to u in C` sense. It then follows that the `-derivative is Lipschitz.

If X is infinite dimensional, one can repeat the above argument restricting to lines. The

uniform regularity assumed on un translates to uniform regularity of u restricted to lines.

We refer to [50] for more details. Indeed, [50] only needs to assume that the sequence

converges weakly pointwise. The convergence properties are only used to guarantee the

uniqueness of the limit obtained through compactness (The paper [50] is written when the

domain U is the whole space, but this is not used).

Once we have the closure property, the existence of the unique fixed point is as in

Banach contraction. We observe that for any u P B,

}T n`1
puq ´T n

puq}C0 ď κn}T puq ´ u}C0

Using the interpolation inequalities Lemma 91 and that the C``Lip norms of the iterates

are bounded, we obtain

}T n`1
puq ´T n

puq}Cj`Lip ď Cκn
`´j
``1 }T puq ´ u}

`´j
``1

C0 (A.5)
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From this one obtains that T npuq ´ u “
řn
k“1pT

kpuq ´ T k´1puqq is an absolutely

convergent series in the Cj`Lip sense. Let u˚ be the fixed point. Using (A.5) to estimate

the series, we obtain:

}u´ u˚}Cj`Lip ď Cp1´ κ
`´j
``1 q

´1
}T puq ´ u}

`´j
``1

C0 .

On the other hand, from the standard Banach fixed point theory, we obtain that }u ´

u˚}C0 ď p1´ κq´1}T puq ´ u}C0 . By Lemma 91 we obtain

}u´ u˚}Cj`Lip ď Cp1´ κq´
`´j
``1 }T puq ´ u}

`´j
``1

C0 .

It is easy to see that this bound is better than the previously obtained one summing the

series.
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APPENDIX B

COMPUTATION OF pK,ω0, λ0q – UNPERTURBED CASE

For completeness, we quote the Algorithm 4.4 in [26] adding some practical comments.

That algorithm allows us to numerically compute ω0, λ0 and K : T ˆ r´1, 1s Ñ R2 in

(2.6). We note that the algorithm has quadratic convergence as it was proved in [26].

Algorithm 96. Quasi-Newton method

‹ Input: 9x “ Xpxq in R2, Kpθ, sq “ K0pθq `K1pθqb0s, ω0 ą 0, λ0 P R, scaling

factor b0 ą 0 and a tolerance tol.

‹ Output: Kpθ, sq “
řm´1
j“0 Kjpθqpb0sq

j , ω0 and λ0 such that ‖E‖ ! 1.

1. E Ð X ˝K ´ pω0Bθ ` λ0sBsqK.

2. Solve DKẼ “ E and denote Ẽ ” pẼ1, Ẽ2q.

3. σ Ð
ş1

0
Ẽ1pθ, 0q dθ and η Ð

ş1

0
BsẼ2pθ, 0q dθ.

4. E1 Ð Ẽ1 ´ σ and E2 Ð Ẽ2 ´ ηs.

5. Solve pω0Bθ ` λ0sBsqS1 “ E1 imposing

ż 1

0

S1pθ, 0q dθ “ 0. (B.1)

6. Solve pω0Bθ ` λ0sBsqS2 ´ λ0S2 “ E2 imposing

ż 1

0

BsS2pθ, 0q dθ “ 0. (B.2)
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7. S ” pS1, S2q.

8. Update: K Ð K `DKS, ω0 Ð ω0 ` σ and λ0 Ð λ0 ` η.

9. Iterate from (1) to (8) until convergence with tolerance tol in K, ω and λ. Then undo

the scaling b0.

Algorithm 96 requires some practical considerations:

i. Initial guess. K0 : T Ñ R2 will be a parameterization of the periodic orbit of the

ODE with frequency ω0. It can be obtained, for instance, by a Poincaré section

method, continuation of integrable systems or Lindstedt series. An approximation

for K1 : TÑ R2 and λ can be obtained by solving the variational equation

DX ˝K0
pθqUpθq “ ω0

d

dθ
Upθq,

Up0q “ Id2.

Hence if peλ0{ω0 , K1p0qq is the eigenpair of Up1q such that λ0 ă 0, then K1pθq “

UpθqK1p0qe´λ0θ{ω0 .

ii. Stopping criteria. As any Newton method, a possible condition to stop the iteration

can be when either ‖E‖ or maxt‖DKS‖, |σ|, |η|u is smaller than a given tolerance.

Note that the a posteriori theorems in [26] give a criterion of smallness on the error

depending on properties of the function K. If these criteria are satisfied, one can

ensure that there is a true solution close to the numerical one.

iii. Uniqueness. Note that in the steps 5 and 6, which involve solving the cohomology

equations, the solutions are determined only up to adding constants in the zeroth or

first order terms. We have adopted the conventions (B.1), (B.2). These conventions

make the solution operator linear (which matches well the standard theory of Nash-

Moser methods since it is easy to estimate the norm of the solutions).
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As it is shown in [26], the algorithm converges quadratically fast to a solution, but

since the problem is underdetermined, we have to be careful when comparing solu-

tions of different discretization. In [26] there is discussion of the uniqueness, but for

our purposes in Chapter 4, any of the solutions will work. The uniqueness of the

solutions considered in Chapter 4 is discussed in section 4.1.

iv. Convergence. It has been proved in [26] that the quasi-Newton method still has

quadratic convergence.

Note that it is remarkable that we can implement a Newton like method without

having to store – much less invert – any large matrix. Note also that we can get a

Newton method even if the derivative of the operator in the fixed point equation has

eigenvalues 1. See Remark 73.

v. Cohomological equations. The most delicate steps of above algorithm are 5 and 6,

which are often called cohomology equations. These steps involve solving PDEs

whereas the other steps are much simpler. In case of a Fourier representation (see C),

they can be addressed by using Proposition 76.

vi. Linear system. Step 2 can be addressed by Lemma 77.
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APPENDIX C

FOURIER DISCRETIZATION OF PERIODIC FUNCTIONS

As mentioned before, the key step of Algorithm 96 is to solve the equations in steps 5 and 6.

Their numerical resolution will be particularly efficient when the functions are discretized

in Fourier-Taylor series. This is the only discretization we consider in Chapter 4 providing

a deep discussion.

Recall that a function S : RÑ R is called periodic when Spθ ` 1q “ Spθq for all θ.

To get a computer representation of a periodic function, we can either take a mesh in θ,

i.e. pθkq
nθ´1
k“0 and store the values of S at these points: qS “ pqSkq

nθ´1
k“0 P Rnθ with qSk “ Spθkq

or we can take advantage of the periodicity and represent it in a trigonometric basis.

The Discrete Fourier Transform (DFT), and also its inverse, allows to switch between

the two representations above. If we fix a mesh of points of size nθ uniformly distributed

in r0, 1q, i.e. θk “ k{nθ, the DFT is:

pS “ ppSkq
nθ´1
k“0 P Cnθ

so that

qSk “
nθ´1
ÿ

j“0

pSje
2πijk{nθ (C.1)

or equivalently

pSk “
1

nθ

nθ´1
ÿ

j“0

qSje
´2πijk{nθ . (C.2)

In the case of a real valued function, pS0 is real and the complex numbers pS satisfy Her-

mitian symmetry, i.e. pSk “ pS˚nθ´k (denoting by ˚ the complex conjugate), which implies

pSnθ{2 real when nθ is even. Then, we define real numbers pa0; ak, bkq
rnθ{2s´1
k“1 if nθ is odd,
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here r¨s denotes the ceiling function, otherwise pa0, anθ{2; ak, bkq
nθ{2´1
k“1 defined by

a0 “ 2pS0, anθ{2 “ 2pSnθ{2, ak “ 2 Re pSk and bk “ ´2 Im pSk

with 1 ď k ă rnθ{2s.

Thus, S can be approximated by

Spθq “
a0

2
`
anθ{2

2
cospπnθθq `

rnθ{2s´1
ÿ

k“1

ak cosp2πkθq ` bk sinp2πkθq (C.3)

where the coefficient anθ{2 only appears when nθ is even and it refers to the aliasing notion

in signal theory.

Therefore (C.3) is equivalent to (C.1) but rather than 2nθ real numbers, only half of

them are needed.

Henceforth, all real periodic functions S can be represented in a computer by an array

of length nθ whose values are either the values of S on a grid or the Fourier coefficients.

These two representations are, for all practical purposes equivalent since there is a well

known algorithm, Fast Fourier Transform (FFT), which allows to go from one to the other in

Θpnθ log nθq operations. The FFT has very efficient implementations so that the theoretical

estimates on time are realistic (we can use FFTW3 [109], which optimizes the use of the

hardware).

We can also think of functions of two variablesW pθ, sqwhere one variable θ is periodic

and the other variable s is a real variable. In the numerical implementations, the variable s

will be discretized as a polynomial. Thus W pθ, sq can be thought as a function of θ taking

values in polynomials of length ns. Hence, a function of two variables with periodicity as

above will be discretized by an array nθˆns. The meaning could be that it is a polynomial

for each value of θ in a mesh or that it a polynomial of whose coefficients are Fourier

coefficients. Alternatively, we could think of W pθ, sq as a polynomial in s taking values in

a space of periodic functions.
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This mixed representation of Fourier series in one variable and power series in another

variable, is often called Fourier-Taylor series and has been used in celestial mechanics for

a long time, dates back to [110] or earlier. We note that, modern computer languages allow

to overload the arithmetic operations among different types in a simple way.

It is important to note that all the operations in Algorithm 96 are fast either on the

Fourier representation or in the values of a mesh representation. For example, the product

of two functions or the composition on the left with a known function are fast in the rep-

resentation by values in a mesh. More importantly for us, as we will see, the solution of

cohomology equations is fast in the Fourier representation. On the other hand, there are

other steps of Algorithm 96, such as adding, are fast in both representations.

Similar consideration of the efficiency of the steps will apply to the algorithms needed

to solve our problem. The main novelty of the algorithms in Chapter 4 compared with

those of [26] is that we will need to compose some of the unknown functions (in [26] the

unknowns are only composed on the left with a known function). The algorithms we use

to deal with composition is presented in Section 4.3. The composition operator will be

the most delicate numerical aspect, which was to be expected, since it was also the most

delicate step in the analysis in Chapter 2. The composition operator is analytically subtle

[54, 111].

Remark 97. Fourier series are extremely efficient for smooth functions which do not have

very pronounced spikes. For rather smooth functions – a situation that appears often in

practice – it seems that Fourier Taylor series is better than other methods.

It should be noted, however that in several models of interest in electronics and neu-

roscience, the solutions move slowly during a large fraction of the period, but there is a

fast movement for a short time (bursting). In these situations, the Fourier scheme has the

disadvantage that the coefficients decrease slowly and that the discretization method does

not allow to put more effort in describing the solutions during the times that they are indeed

changing fast. Hence, the Fourier methods become unpractical when the limit cycles are
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bursting. In such cases, one can use other methods of discretization. In this thesis, we

will not discuss alternative numerical methods, but note that the theoretical estimates in

Chapter 2 are independent of the discretization. We hope to come back to implementing the

results here in other discretizations.

Remark 98. One of the confusing practical aspects of the actual implementation is that

the coefficients of the Fourier arrays are often stored in a complicated order to optimize the

operations and the access during the FFT.

For example, the coefficients ak’s and bk’s in (C.3), in FFTW3, the fftw plan r2r 1d

uses the following order of the Fourier coefficients in a real array pv0, . . . , vnθ´1q.

v0 “ a0,

vk “ 2ak and vnθ´k “ ´2bk for 1 ď k ă rnθ{2s,

vnθ{2 “ anθ{2

where the index nθ{2 is taken into consideration if and only if nθ is even. Another standard

order in other packages is just pa0, anθ{2; ak, bkq in sequential order or pa0; ak, bkq if nθ is

odd.

To measure errors and size of functions represented by Fourier series, we have found

useful to deal with weighted norms involving the Fourier coefficients.

‖S‖w`1,n “ 2pnθ{2q
n
|pSnθ{2| `

rnθ{2s´1
ÿ

k“1

ppnθ ´ kq
n
` knq|pSk|

“ pnθ{2q
n|anθ{2|`

1

2

rnθ{2s´1
ÿ

k“1

ppnθ ´ kq
n
` knqpa2

k ` b
2
kq

1{2.

where, again, the term for nθ{2 only appears if nθ is even.

The smoothness of S can be measured by the speed of decay of the Fourier coeffi-

cients and indeed, the above norms give useful regularity classes that have been studied by
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harmonic analysts.

Remark 99. The relation of the above regularity classes with the most common Cm is not

straightforward, as it is well known by Harmonic analysts [112].

Riemann-Lebesgue’s Lemma tells us that if S is continuous and periodic, pSk Ñ 0 as

k Ñ 8 and in general if S is m times differentiable, then |pSk||k|m tends to zero. In

particular, |pSk| ď C{|k|m for some constant C ą 0.

In the other direction, from |pSk| ď C{|k|m we cannot deduce that S P Cm.

One has to use more complicated methods. In [113] it was found that one could find

a practical method based on Littlewood-Paley theorem (see [112]) which states that the

function S is in α-Hölder space with α P R` if and only if, for each η ě 0 there is constant

C ą 0 such that for all t ą 0.

∥∥∥∥ˆ BBt
˙η

e´t
?
´∆θ

∥∥∥∥
L8pTq

ď Ctα´η.

The above formula is easy to implement if one has the Fourier coefficients, as it is the case

in our algorithms.
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[33] I. Maroto, C. Núñez, and R. Obaya, “Exponential stability for nonautonomous
functional differential equations with state-dependent delay,” Discrete Contin. Dyn.
Syst. Ser. B, vol. 22, no. 8, pp. 3167–3197, 2017.

[34] J. Mallet-Paret and R. D. Nussbaum, “Stability of periodic solutions of state-dependent
delay-differential equations,” J. Differential Equations, vol. 250, no. 11, pp. 4085–
4103, 2011.

[35] J. Gimeno, “Effective methods for recurrence solutions in delay differential equa-
tions,” PhD thesis, Universitat de Barcelona, 2019.

158



[36] X. Li and R. de la Llave, “Convergence of differentiable functions on closed sets
and remarks on the proofs of the “converse approximation lemmas”,” Discrete Con-
tin. Dyn. Syst. Ser. S, vol. 3, no. 4, pp. 623–641, 2010.

[37] R. D. Nussbaum, “Periodic solutions of analytic functional differential equations
are analytic,” Michigan Math. J., vol. 20, pp. 249–255, 1973.

[38] J. L. Kaplan and J. A. Yorke, “On the stability of a periodic solution of a differential
delay equation,” SIAM J. Math. Anal., vol. 6, pp. 268–282, 1975.

[39] J. Jaquette, J.-P. Lessard, and K. Mischaikow, “Stability and uniqueness of slowly
oscillating periodic solutions to Wright’s equation,” J. Differential Equations, vol. 263,
no. 11, pp. 7263–7286, 2017.

[40] J. Mallet-Paret and R. D. Nussbaum, “Analyticity and nonanalyticity of solutions of
delay-differential equations,” SIAM J. Math. Anal., vol. 46, no. 4, pp. 2468–2500,
2014.

[41] J. Sieber, “Finding periodic orbits in state-dependent delay differential equations as
roots of algebraic equations,” Discrete Contin. Dyn. Syst., vol. 32, no. 8, pp. 2607–
2651, 2012.

[42] J. B. van den Berg, C. Groothedde, and J.-P. Lessard, “A general method for computer-
assisted proofs of periodic solutions in delay differential problems,” Journal of Dy-
namics and Differential Equations, 2020.

[43] R. Szczelina, “A computer assisted proof of multiple periodic orbits in some first
order non-linear delay differential equation,” Electron. J. Qual. Theory Differ. Equ.,
Paper No. 83, 19, 2016.
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