
DEADLOCK RECOVERY IN ON-CHIP INTERCONNECTION NETWORKS

A Dissertation
Presented to

The Academic Faculty

By

Aniruddh Ramrakhyani

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2017

Copyright c© Aniruddh Ramrakhyani 2017

DEADLOCK RECOVERY IN ON-CHIP INTERCONNECTION NETWORKS

Approved by:

Dr. Tushar Krishna, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Ada Gavrilovska
School of Computer Science
Georgia Institute of Technology

Dr. Sudhakar Yalamanchili
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: April 24, 2017

Do the difficult things while they are easy and do the great things while they are small. A

journey of a thousand miles must begin with a single step.

Lao Tzu

This work is dedicated to my parents, my grandparents and my sister.

ACKNOWLEDGEMENTS

I have been fortunate to receive the guidance and mentorship from some of the brightest

people in my field who have helped shape the ideas contained in this work. Without their

help and guidance this work wouldn’t have the same intellectual richness as it does now. I

would like to start by thanking my advisor, Prof. Tushar Krishna for mentoring and guiding

me and being a constant source of support throughout my graduate school life. He was

always available to help me out when I was stuck with the problems and always inspired

me to strive harder. His role has been pivotal in the development of my intellectual abilities

for which I thank him from the bottom of my heart. I also extend my sincere gratitude to

Prof. Ada Gavrilovska and Prof. Sudhakar Yalamanchili for serving on my Masters Thesis

committee and providing feedback on my work. I am thankful to Prof. Paul Gratz from

Texas A&M University for his guidance in architecting the deadlock recovery scheme and

suggesting ingenious ways to solve the corner cases of the design. I would also like to

thank Swati Gupta from MIT for her help in deriving a closed form proof for the static

bubble placement algorithm. I am grateful to Chia Hsin and Suvinay Subramanian from

MIT for their feedback on this work.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . viii

List of Figures . ix

Chapter 1: Introduction . 1

1.1 Definition of key NoC Terms: . 3

1.2 The Origin of Irregular on-chip Topologies 4

1.2.1 Power-gating of network elements 4

1.2.2 Waning Silicon Reliability . 5

1.2.3 Heterogeneous SoCs . 6

1.3 The Problem . 6

Chapter 2: Background and Related Work . 11

2.1 Assumptions . 11

2.2 Definitions . 12

2.3 Deadlock Avoidance . 12

2.3.1 Turn Model . 13

2.3.2 Spanning Trees . 14

vi

2.3.3 Alternate approaches in Resilient NoCs 15

2.3.4 Alternate approaches in Power-gated NoCs 16

2.4 Deadlock Detection and Recovery . 16

2.4.1 DISHA . 17

2.4.2 Escape-VC . 17

2.5 Bubble Flow Control (BFC) in Rings . 19

2.6 Routing over Irregular topologies . 19

Chapter 3: Static Bubble . 20

3.1 Static Bubble Placement Algorithm . 20

3.2 The Recovery Algorithm . 23

3.2.1 Walk-through Example . 24

3.3 Special Cases and Design Details . 30

3.4 Router Microarchitecture . 35

Chapter 4: Evaluations . 40

4.1 Simulation Methodology . 40

4.2 Configuration and Baselines . 41

4.3 Network Performance and Energy Analysis 42

4.4 Deadlock Detection Threshold Sweep . 46

4.5 Real Applications . 47

Chapter 5: Conclusion . 50

References . 53

vii

LIST OF TABLES

3.1 Special Message Types . 38

3.2 Static Bubble vs. Escape VC . 39

4.1 System Configuration . 41

viii

LIST OF FIGURES

1.1 Figure showing packet path from Source(S) to Destination(D) in green and
the turn restrictions in red for XY routing. 2

1.2 Irregular topologies on-chip due to (a) Heterogeneous SoCs (b) Router or
link failures/gating. 7

1.3 Dynamically changing irregular topology due to Power-gating of network
elements. 8

1.4 Percentage of deadlock-prone irregular topologies for a given number of
faulty/absent/off routers and links in a 8x8 mesh. 9

1.5 Heat-map of the cumulative frequency distribution of irregular topologies
that deadlock at a particular injection rate for a given number of faulty links
with uniform random traffic. 10

2.1 Figure showing the limitations of XY routing in irregular topologies. Here
the source S cannot route to destination D as the only path that connects
them involves turns that are not allowed by the XY routing algorithm. . . . 14

3.1 Placement of static bubbles on a 8x8 mesh at design-time to guarantee a
bubble in any possible cycle. 22

3.2 Finite State Machine of the static bubble counter. 23

3.3 Walkthrough: Probe Traversal . 24

3.4 Walkthrough : Disable Traversal . 26

3.5 Walkthrough : Check Probe Traversal . 28

3.6 Walkthrough : Enable Traversal . 29

ix

3.7 Router Microarchitecture : Additional Probes/Disable/Enable Circuitry in
grey. 35

4.1 Average and max network latency improvements demonstrated by Static
Bubble, normalized to Spanning-tree, across the irregular topology space
with uniform random traffic at low-loads. 43

4.2 Average and max network latency improvements demonstrated by Static
Bubble, normalized to Spanning-tree, across the irregular topology space
with bit-complement traffic at low-loads. 43

4.3 Average network throughput, normalized to Spanning-tree, of all designs
across the irregular topology space with uniform random traffic. 44

4.4 Average Network Energy. 45

4.5 Deadlock Detection threshold tDD sweep. 46

4.6 Scatter plot of application throughput with escape-vc and static bubble, nor-
malized to spanning tree scheme, for Rodinia workloads, with increasing
link and router faults. 48

4.7 (a) Application Runtime and (b) Network EDP for PARSEC with four link
faults. 48

x

SUMMARY

The demise of Dennard Scaling and the continuance of Moore’s law has provided us

with shrinking chip dimensions and higher on-chip transistor density at the cost of increas-

ing power density. Chips today are highly power-constrained and often operate close to

their melt-down energy thresholds. To avert the thermal meltdown of chip, designers use

intelligent power-gating techniques. Here, the mode of operation is to power-up only a sub-

set of IP blocks at a time. In addition to the power-density problem, decreasing transistor

size has lead to decreasing silicon reliability which has led to increasing instances of on-

chip faults. Both these effects lead to irregular on-chip topologies that change at runtime.

Chip designers and architects today face the problem of routing packets over a dynamically

changing irregular topology without sacrificing performance and more importantly without

running into routing deadlocks.

Another trend in the semi-conductor industry that has contibuted to the significance of

this problem is the increasing use of heterogenous System-on-Chip (SoC). SoCs in most

instances are tailored to the application needs. To maximise performance, these SoCs em-

ploy custom-built irregular topologies to connect IP blocks. SoC designers have to to run a

large number of simulations to understand the network traffic flows of the application it is

being designed for. These simulation studies are carried out to ensure the absence of rout-

ing deadlocks. This leads to increase in design time and consequently the time to market,

leading to increase in costs and decrease in profits.

Prior works in power-gating, resiliency and SoC design domains have addressed the

routing deadlock problem by constructing a spanning-tree over the irregular topology and

using it either as a deadlock avoidance mechanism (spanning-tree based routing) or as a

deadlock-recovery mechanism (escape-vc) to route packets. However, this spanning-tree

xi

based solutions leads to significant loss in throughput and performance as shown in this

work. In addition, a new spanning-tree construction is required every time the topology

changes due to a fault in or power-gating of a network element.

In this work, a new deadlock recovery framework called Static Bubble is proposed to

achieve deadlock freedom in a static or dynamically changing irregular on-chip topology

that doesn’t require any tree construction and thus is able to eliminate any overhead or

limitations associated with the spanning-tree based solutions. Compared to the other state

of the art works, static bubble provides upto 30% less latency, 4x more throughput and 50%

less network EDP at less than 1% hardware overhead.

xii

CHAPTER 1

INTRODUCTION

Shrinking of transistor dimensions as a result of Moore’s law [1] enabled us to pack an in-

creasingly large number of transistors on chip. As architectures moved from a single core

to multi-core era, it drove the need for a fast and efficient communication fabric that could

be used to connect together the communicating cores and the memory system. The commu-

nication fabric also known as Network-on-chip (NoC) has today become a key determinant

of chip performance. Consequently, there has been a significant amount of research liter-

ature published in recent years that deals with the design and synthesis of low-latency and

high throughput interconnects. The key problems faced in the design of interconnects are

that of topology design, routing algorithm and router micro-architecture.

In the early days of multi-core architectures when the core count on-chip was less than

four, bus interconnect was the most dominant interconnect topology that was used to con-

nect the cores and memory system in both academic and commercial designs. However, as

the core count increased and the demand for bandwidth went up due to the emergence of

better memory technologies like DDR3 [2], the bus interconnect proved to be insufficient

to meet the challenge. Architects then moved away from the bus based interconnect to a

more scalable topology : the mesh interconnect. The mesh topology arranges the cores

and the directories in a m*n grid. This today has emerged as the most dominant intercon-

nect topology in both academic (MIT RAW [3], Princeton Piton [4], MIT Scorpio [5]) and

commercial (Intel Xeon, Intel Xeon phi, Intel Teraflops, Tilera Tile64, Intel SCC) designs.

Besides being more scalable, mesh provides abundant path diversity (important for load

balancing and resiliency) and is easy to layout.

The move from a bus based interconnect to a mesh based interconnect also drove the

need for efficient routing algorithms to route packets. In a bus based interconnect, every

1

Figure 1.1: Figure showing packet path from Source(S) to Destination(D) in green and the
turn restrictions in red for XY routing.

message was broadcasted on the bus. This was inefficient as a broadcast required too

much energy and it allowed only one set of nodes to communicate at a given time. The

key metrics for evaluating a routing algorithm are : packet latency, peak throughput, ease

of implementation and deadlock freedom. Due to the strict energy constraints on-chip,

architects preferred simpler routing algorithms over fancy ones. Turn-restriction based

routing algorithms that relied on deadlock avoidance became popular with chip architects

as they were easy to implement and provided deadlock freedom at the same time. One such

popular turn-restriction based algorithm XY routing restricts all Y to X turns and only allows

X to Y turns. The path taken by a packet using the XY routing algorithm for a Source (S)

to a destination (D) is shown in fig 1.1 on a (4 * 4) mesh . The allowed turns are shown in

green while the disallowed turns are shown in red.

2

1.1 Definition of key NoC Terms:

Before we dive deep into the details of the proposed solution for the problem of dead-

locks in irregular on-chip topologies, it is imperative to define key NoC terms to facilitate

discussion in the following sections.

• Topology: An arrangement of cores, directory and memory system and their con-

nections.

• Virtual Channel (VC): Buffers added to the router to avoid head-of-line blocking.

This allows sharing of router links on a per-flit basis.

• Virtual Cut Through (VCT): A routing style where the VCs are as large as the

largest packet size.

• Deadlock: A cyclic buffer-dependence such that no forward progress is possible.

• Routing Algorithm: An algorithm used to derive a path between any source and

destination pair in the network.

• Deadlock Avoidance: A class of routing algorithms that rely on placing routing

restrictions to prevent a network deadlock.

• Deadlock Recovery: A class of routing algorithms that allow network deadlocks to

happen and then recover out of them rather than avoiding deadlocks from forming in

the first place.

• Injection Rate: Number of packets injected into the network by a node per cycle.

• Throughput: Number of packets delivered per cycle.

• Wormhole Routing: A class of Routing algorithms where the VC size is less than

the size of largest packet.

3

1.2 The Origin of Irregular on-chip Topologies

In this work I address the problem of routing deadlocks in both dynamically changing

and static irregular topologies. Before diving into the causes for deadlocks in irregular

topologies, we need to understand how irregular topologies are created/occur on-chip. In

this section, I provide a background on how irregular topolgies occur in on-chip networks.

1.2.1 Power-gating of network elements

Moore’s law, given by Gordon Moore the co-founder of Intel, states that the transistor den-

sity on a chip would double every two years. This law has been the reason for exponential

increase in compute capability of machines over the years. A key contributor to the success

of Moore’s law has been Dennard Scaling. Dennard Scaling [6] given by Robert H. Den-

nard in 1974 states that to keep the electic field constant in a transistor, the channel length

and operating voltage needs to scale down by alpha and the doping density needs to scale

up by alpha. Both the Moore’s law and Dennard scaling provided architects with faster

and more number of transistors on-chip that improved the processing power of the chip.

Around 2006 however, Dennard Scaling broke-down as the operating voltage of the chip

came too close to the threshold voltage of the transistor and thus it was no longer possible

to reduce the operating voltage. Decreasing feature size of transistors with almost constant

operating voltage led to a large increase in the leakage energy of transistors. As leakage

became a large fraction of the total power consumption of chip, it no longer was possible to

keep the whole of the chip ”on” or powered-up at the same time due to the fear of thermal

runaways. Thus as technology scaled, a large part of the chip was off or dark and it came

to be called dark silicon [7].

To decrease the leakage power consumption of the chip, circuit designers started to

power gate chip components when not in use. In power-gating [8], the power supply of a

chip component is cut by inserting a high threshold voltage transistor between the supply

4

and the Pull-up Network (PUN) or ground and Pull Down Network (PDN). The PUN or

PDN themselves can contain low threshold voltage transistors and often do, as low thresh-

old transistors have faster switching speeds. However, the penalty for using power-gating

to reduce static leakage energy is paid in terms of circuit switch-on time every time a

power-gated element is powered-up. This latency can be in hundreds of cycles depending

on where in circuit the high threshold voltage transistor has been inserted. An interesting

consequence of power-gating is that it leads to irregular topology on-chip at run-time. As

there is no guarantee on which network element will or will-not be power-gated, the irregu-

lar topology can be any arbitrary configuration derived from the underlying mesh topology.

In addition, the problem gets exacerbated as the irregular topology will be changing dy-

namically depending on the power-gating decisions made by the controller.

1.2.2 Waning Silicon Reliability

Silicon devices today are becoming less and less reliable as technology scales to smaller

feature size. The unreliability of silicon has been attributed to manufacturing defects and

variability, aging, chip design complexity and limitation of validation techniques. Accord-

ing to a commentator from Intel in [9], ”within a decade we will see 100 billion transistor

chips. However, 20 billion of them will fail in manufacture and a further 10 billion will

fail in the first year of operation”. Thus, a 20-30% failure rate underscores the fact that

component failure over the lifetime of the chip is going to be a common occurrence in

future.

This reduced silicon reliability and increased likelihood of faults has important conse-

quences for the NoC. Random faults in this communication fabric can lead to highly irreg-

ular and disconnected topology even though the initial topology was a regular mesh. As

these faults are random and can occur anytime during the lifetime of the chip, the topology

is going to change dynamically providing no guarantees about the structure of the resulting

topology. Routing over such a highly irregular topology is highly prone to deadlocks as it

5

would often involve packets taking convoluted cyclic routes.

1.2.3 Heterogeneous SoCs

Heterogeneous System-on-chip pack together dissimilar co-processors in a single chip to

provide enhanced performance compared to homogeneous chips that use the same type of

cores. These systems are designed and optimized for specific applications and take ad-

vantage of the fact that application requirements are known in advance. The interconnects

designed to connect different IP blocks in such system are often custom-made to take ad-

vantage of the known traffic flows. An example of a custom-made interconnect would

be Spidergon interconnect by ST Microelectronics. The topology used in these systems

is often irregular and only connects IP blocks that need to communicate with each other.

This topology due to its irregular nature would require convoluted routing paths to send

messages and thus is prone to network deadlocks. SoCs designers spend considerable time

in studying network traffic flows of applications to make sure no deadlocks ever occur.

This, as mentioned before, increases design effort, cost and the time to market. It thus

necessitates the need for a plug and play solution to achieve deadlock freedom in any irreg-

ular topology. An interesting point to note about such an irregular topology is that it can

be mapped to a regular mesh with faulty or power-gated elements as shown in figure 1.2

thereby showing the similarity of this problem with those discussed above.

1.3 The Problem

Having looked at how irregular topologies occur on-chip, its time to now look at why dead-

locks are a key problem in such topologies. This can be attributed to three reasons. First,

irregular topologies offer very little path diversity as the number of paths between a given

source and destination may be severely reduced due to faults or power-gating decisions.

Second, often the remaining paths between nodes are highly convoluted and involve long

and twisted cycles. Third, due to the reduced path diversity, it may now be very easy to sat-

6

root

B

A

(a)

Faulty/Off Router

Faulty/Off Links (b)

Deadlock

Core/Accelerator

Router

Figure 1.2: Irregular topologies on-chip due to (a) Heterogeneous SoCs (b) Router or link
failures/gating.

urate the network even with regular traffic flows. All these make it easier to create a cyclic

buffer dependence between routers leading to a deadlock. Figure 1.2 shows an example

of a deadlock in (a) Heterogeneous SoC with irregular NoC topology and (b) an irregular

NoC topology created due to faulty/power-gated routers.

Figure 1.3 shows an example mode of operation of a chip which was designed using

8x8 mesh as the interconnection network. Due to power-gating decisions the number of

cores/routers that are ”on” changes from 64 routers to 32 routers and later to 16 routers.

The fig also shows the case where different cores/routers are chosen to be power-gated in

different epochs. An interesting thing to note here is that not all the resultant irregular

topologies shown contain cycles in their topology graph. An absence of cycle in topology

graph also necessarily means the absence of any deadlock since to create a deadlock you

need at least one cyclic path in the topology. Figure 1.3(a) and 1.3(c) don’t have any cycle

in the topology graph and hence have been labeled as ”Deadlock free” whereas figure 1.3(b)

and 1.3(d) contain cycle/s in their topology graph and are labeled as ”Not Deadlock free”.

The need for the presence of at least one cyclic path in the topology to be able to

create a deadlock presents an interesting scenario in case of irregular topologies that are

derived from a regular mesh. As the faults or the power-gating decisions are random, the

7

(a) 32 cores on , Deadlock free (b) 32 cores on , Not Deadlock free

(c) 16 cores on , Deadlock free (d) 16 cores on , Not Deadlock free

Figure 1.3: Dynamically changing irregular topology due to Power-gating of network ele-
ments.

resulting irregular topologies may not contain any cycles and thus are inherently deadlock

free. It would thus be interesting to find out how many topologies at a given fault number

are deadlock-prone to ascertain if deadlocks in irregular topologies are a real problem.

Figure 1.4 shows the results of such an experiment where faults were randomly injected

in a 8x8 mesh. For each fault number, 10K topologies were generated and each router

was allowed to inject one packet per cycle (injection rate of 1.0). Each packet was routed

minimally without any routing restrictions. The percent of topologies that deadlocked have

been plotted against the number of chip faults.

At low number of router and link faults, almost all the possible topologies are found

to be deadlock-prone i.e. they deadlocked at injection rate of one packet per node per

cycle. This necessitates the need for a solution to the problem of deadlocks in irregular

topologies for functional correctness of the chip. At high-fault number, the topology be-

comes highly-fragmented with very few short cycles that don’t manifest as deadlocks even

8

0

20

40

60

80

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

De
ad
lo
ck
-p
ro
ne
	

To
po
lo
gi
es
	(%

)

No	of	Routers/Links	Absent/Faulty/off

Links
Routers

Figure 1.4: Percentage of deadlock-prone irregular topologies for a given number of
faulty/absent/off routers and links in a 8x8 mesh.

at high injection rate. An important point to note is that at high fault number, the chip itself

might be unusable as certain key components like memory controllers would be discon-

nected/unreachable from the nodes.

Deadlocks in irregular topologies are a key problem that have been addressed in all

the three domains of work discussed previously: Power-gating, resiliency and heteroge-

neous SoC synthesis. However, the solutions proposed are highly conservative and per-

form poorly both in terms of latency and throughput as I show later in the evaluations. To

highlight the highly conservative nature of the solutions that state of the art works propose,

I performed an experiment to find out the minimum injection rate at which the irregular

topologies start to deadlock with minimal routing and with no routing restrictions. Figure

1.5 shows the heat map of injection rate at which the irregular topologies for a given fault

number start to deadlock. Most of topologies at low link fault number start to deadlock

at injection rates of around 0.1-0.3 flits per node per cycle. This is fairly high since the

injection rate of real applications (PARSEC 2.0 [10] and Rodinia [11]) is around 0.01-0.02

flits per node per cycle due to the high L1 cache hit rates. Thus, we need a very light

weight solution that has a low overhead and doesn’t cause significant performance loss as

the problem of deadlocks in irregular topologies is going to occur very rarely. In this work,

9

Figure 1.5: Heat-map of the cumulative frequency distribution of irregular topologies that
deadlock at a particular injection rate for a given number of faulty links with uniform
random traffic.

I propose a solution called Static Bubble that provides up-to 30% less network latency, 50%

less Energy-Delay-Product (EDP) and 4x more throughput at less than 1% area overhead.

10

CHAPTER 2

BACKGROUND AND RELATED WORK

Deadlocks as a problem date back to the advent of Inter-connection networks in chips and

supercomputers. Consequently, there have been several works [12, 13, 14, 15, 16] that

have addressed it. These works can broadly be classified into two domains : Deadlock

Recovery and Deadlock Avoidance. In this section, I describe these theories and provide

formal definition of deadlock and related concepts and also detail the assumptions. Later

on, I discuss the work related to the area of deadlocks in irregular topologies.

2.1 Assumptions

• Virtual Cut Through (VCT) routing has been assumed. The design can however be

extended to wormhole routing as well.

• Packets can have arbitrary lengths.

• Although the scheme can work on any arbitrary topology, the bubble placement al-

gorithm has been specifically designed for a mesh topology. However, the size of the

mesh can be arbitrary.

• There is no minimum or maximum requirement on the number of Virtual Channels.

• A node can generate traffic destined for other any node at any rate.

• A message arriving at the destination is eventually consumed.

• Minimal Adaptive routing is used to route packets.

• The routing algorithm provides packets with live-lock-free routes.

11

2.2 Definitions

Interconnection Network: An Interconnection Network I is a strongly connected directed

graph represented by G(N, C) where N is number of vertices and C is the number of edges.

Vertices in G are the processing nodes or routers. Edges in G are physical channels con-

necting the nodes. Each channel ci has a queue with some fixed capacity cap(ci).

Routing Algorithm: A Routing Algorithm provides the next channel (cnext) for a mes-

sage given the last channel used by packet (cprev) and the destination node (ndest).

Deadlocked Configuration: In a deadlocked configuration, there is no flit one hop from

the destination. Header flits cannot move forward as the queues for all alternative output

channels are full. More formally,

1. head(ci) 6= di and size(cj) > 0 ∀ cj ∈ R(di , head(ci))

2. head(ci) 6= di and size(next(ci)) = cap(next(ci))

2.3 Deadlock Avoidance

Deadlock Avoidance based routing algorithms rely on placing routing restrictions to pre-

vent deadlocks from occurring. These techniques prevent messages from taking certain

turns which prevents packets from creating a cyclic buffer dependence. The concept of

turn-restriction based routing algorithm was first given by Dally and Seitz in [12]. In this

paper, the authors defined the concept of Channel Dependency Graph and used it to prove

the necessary condition for deadlock freedom : the existence of an acyclic channel depen-

dency graph. More formally, a Channel Dependency graph is defined as

Channel Dependency Graph: A Channel Dependency Graph, D, for a given intercon-

nection network I, and Routing function R, is a directed graph D = G(C, E). The vertices

of D are channels of I. The edges of D are the pairs of channels connected by R:

E = { (Ci , Cj) | R(ci , n) = cj for some n ∈ N }

12

By creating a channel dependency graph for a given interconnection network with a

defined routing algorithm it can be ascertained if the routing algorithm is deadlock free.

Alternatively, the routing algorithm can be made deadlock-free by removing certain edges

from the cyclic channel dependency graph to make it acyclic. As edges in a Channel

Dependency Graph correspond to turns, removing edges corresponds to preventing packets

from taking those turns or in other words placing routing restrictions.

2.3.1 Turn Model

The concept of Channel Dependency graph was extended by Glass and Ni in their paper on

deadlock-free routing for partially adaptive algorithms [15]. They introduced the concept of

Turn Model to define the necessary condition for a deadlock. The turn model is constructed

by analyzing all the turns that packets in network can take. By prohibiting just enough turns

to break all the cycles in the turn model, a routing algorithm can be made deadlock free.

For a regular mesh, this model proposed four different deadlock-free routing algorithms

which are explained below:

West-first Turn Model: In this algorithm you route a packet west-first if necessary and

then adaptively south, east and north. This routing algorithm is partially adaptive.

North-last Turn Model: In this algorithm a packet travels North only if that is the last

direction it needs to travel. In other words, a packet is first routed adaptively west, south

and east and then north. This routing algorithm is partially adaptive too.

Negative-first Turn Model: In this algorithm, a packet is routed first adaptively west and

south and then adaptively east and north. This algorithm is partially adaptive.

Dimension-ordered Routing: or XY routing in case of a 2-D mesh is a completely non-

adaptive deterministic routing that routes packets in X direction first and then in Y direction.

Another version of this routing YX routing does exactly the opposite.

While these routing algorithms guarantee connectivity and deadlock freedom in a regu-

lar mesh topology, they fail to guarantee connectivity in case of an irregular topology. This

13

Figure 2.1: Figure showing the limitations of XY routing in irregular topologies. Here the
source S cannot route to destination D as the only path that connects them involves turns
that are not allowed by the XY routing algorithm.

is because certain turns might be unavoidable to guarantee connectivity between every

source and destination pair. If these turns are allowed, the routing algorithm will no longer

be deadlock-free. An example of such a scenario is shown in figure 2.1. Here, the source S

is routing a packet to destination D in an irregular topology. The only path between S and

D is highlighted in orange. However, if we were to use XY routing algorithm to route the

packet, it would involve taking restricted turns (shown in red) and consequently the packet

will not be able to make it to D from S despite the presence of healthy and fully-functional

links connecting them. Thus, the use of turn model based routing algorithms exacerbates

the problem of connectivity in an irregular topology.

2.3.2 Spanning Trees

To overcome this limitation of turn-based routing algorithms, state of the art NoC works

that deal with irregular topologies construct a spanning tree over the remaining nodes and

14

use it to route packets over them [17, 18, 19, 20, 21]. A tree by definition cannot have a

cycle and thus the routing cannot lead to a deadlock. A very common topology-agnostic

off-chip routing algorithm used for the construction of spanning trees is the up-down rout-

ing algorithm. Up-down starts by a selecting a root node. This step is crucial as the connec-

tivity and throughput of the topology are highly dependent on the optimal selection of the

root node. Several works have been proposed for the optimal selection of the root node to

reduce the reconfiguration time or increase network connectivity [17, 18]. After selection

of the root node, all links towards the root node are marked as up, those away are marked

as down and equidistant ones are tagged arbitrarily. All cyclic dependencies are broken by

disallowing packets from using down links immediately after using up links.

Spanning-tree based routing however, provides non-minimal paths for some traffic

flows which leads to increase in latency, reduction in network throughput and increase

in network energy. This is because packets have to go via the root node when being routed

from one sub-tree to the other to avoid a cyclic dependency even when healthy and fully-

functional links may be present connecting the nodes. This is shown in Figure 1.2 where

a packet from A has to be routed via the root and takes 10-hops instead of the minimal 2-

hops. In addition, construction of an optimized spanning tree across all possible root nodes,

while maintaining high-connectivity and providing sufficient bandwidth is an exponential

state space problem that often requires optimization solvers running in software for 1000s

of cycles. Spanning-tree routing has been used as the first baseline in evaluations.

2.3.3 Alternate approaches in Resilient NoCs

Apart from spanning-tree based routing, several other techniques have been proposed to

deal with deadlock-free routing over irregular topologies. However, these techniques suf-

fer from either not being able to guarantee connectivity and deadlock-freedom in any arbi-

trary topology or perform poorly compared to the first baseline. Vicis [22] uses a heuristic

to determine the routing restrictions. This heuristic however fails to guarantee deadlock

15

freedom on any arbitrary irregular topology as prior work points out [17]. Immunet [23]

uses local Bubble Flow Control (BFC) [24] in a ring constructed using the spanning tree of

the remaining nodes. This work however uses three routing tables and offers poor perfor-

mance compared to the first baseline [17]. BLINC [21] and Balboni et al. [25] use segment

routing [26], where the network is divided into segments each with a different turn restric-

tions. They however, place a restriction on the location and/or the number of faults and

thus cannot handle arbitrary irregular topology.

2.3.4 Alternate approaches in Power-gated NoCs

Two recent techniques, Power Punch [27] and CatNap [28], maintain network regularity

for routing purposes by waking up the routers that fall in the path of the flits that are routed

using deadlock-free XY routing algorithm. These schemes are orthogonal to this work as I

address the problem of deadlocks in irregular topologies (both static and dynamic).

2.4 Deadlock Detection and Recovery

In contrast to the Deadlock Avoidance routing algorithms, routing algorithms based on

deadlock detection and recovery allow packets to get into a deadlock and then recover out

of it. The Channel Dependency Graph (CDG) of such an algorithm can contain cycles

which will lead to deadlocks. Traditionally, such recovery based schemes have not been

very popular as turn based schemes like West-first routing are simpler to implement while

providing adequate path diversity to traffic. However, such turn-based schemes will not

work in an irregular topology as pointed out earlier. Also, spanning-tree routing provides

network traffic with non-minimal paths. Based on the experiments discussed in the in-

troduction section that show deadlocks to be rare occurrences, it would be better to use

deadlock recovery based routing schemes for solving deadlocks in the irregular topology

domain instead of avoidance based schemes that penalize the common case to ensure cor-

rect behaviour in rare scenarios.

16

2.4.1 DISHA

DISHA [16] was an early work in the deadlock recovery domain that detected deadlocks

using counters that are present at every node in the network. Upon the expiry of the counter,

the router would wait to capture a token that circulated around the network in a loop. After

successfully capturing the token, the router would put the deadlocked packet in a separate

network that connected all the nodes in a loop. When the complete packet had reached its

destination, the token would be released by the destination node. At a given time, only one

packet could exist in the separate deadlock recovery network. This is ensured by the use of

tokens.

DISHA and its recent variants [29, 30] will not work in an environment with dynami-

cally changing irregular topology as it requires a path connecting all nodes to circulate the

token. Computing this path in a dynamically changing irregular topology is a non-trivial

task. In addition, DISHA would have high energy and latency penalties due to the need

for constant token circulation and the need for token capture before starting the recovery

process.

Ping and Bubble [31] was a subsequent idea proposed for off-chip networks that sent

out a ping upon detection of a possible deadlock. The ping would traverse a control net-

work tracing the dependency chain and reserving the output ports along the way. If it is

a deadlock, an extra-buffer is turned on when the ping returns to drain the deadlock. The

extra-buffer is switched off when the bubble returns. However, the design doesn’t handle

false positives where output ports might have been reserved even though it was not a dead-

lock. In addition, this scheme was proposed for off-chip networks where energy and area

are not as precious of a resource as in the on-chip world.

2.4.2 Escape-VC

Escape-VC solution for deadlock freedom was proposed by Duato [14] in 1993. He showed

that the requirement of an acyclic Channel Dependency Graph (CDG) given by Dally et.

17

al. [12] was a sufficient condition for a deadlock-free routing algorithm but not a necessary

condition. According to Duato’s theory, a routing algorithm can be deadlock-free with

cycles in its Channel Dependency graph if and only if there exists a subset of channels

C1 ⊆ C that defines a routing sub-function which is connected and has no cycles in its

extended channel dependency graph. In other words, if there exists an acyclic sub-part

of the Channel Dependency graph that connects all the nodes, the routing algorithm is

deadlock-free.

This acyclic connected sub-part of the Channel Dependency Graph can be used to define

a deadlock-free routing algorithm that can be used to route packets within a subset of

Virtual Channels (VCs). This subset of virtual channel is called escape vc. Routing in

other VCs can be done in a fully adaptive manner. This is an improvement over the turn-

based models which only allowed at best partial adaptive routing algorithms and also killed

the path-diversity provided by the topology. This improvement however, comes at the cost

of hardware overhead of counters and routing tables. Escape-VCs can be either used as a

deadlock avoidance scheme if the packets actively use it or as a deadlock recovery scheme

if the packets are pushed into the escape-vc network upon detection of deadlock.

The use of escape-vcs has been proposed as an alternative to spanning trees for provid-

ing deadlock-free routing in irregular topologies. It is interesting to note that spanning-tree

construction is still required as it will be used by the escape-vc network. In addition,

escape-vc requires that at least one VC per input port per message class be reserved at

every node for the escape-vc network. Also, an extra-routing table is required to store the

spanning tree path for the escape-vc network. VC reservation causes throughput loss while

the extra-routing table has associated energy and area overheads. NoRD [32], recently

proposed for NoC power-gating uses a high-latency deadlock-free ring snaking around the

network as the escape path. Packets are forced to enter the escape-Vc network after their

mis-routed hop count increases beyond a certain threshold. Router Parking [20], another

work in the NoC power-gating domain, replaces the high-latency ring of NoRD with a

18

spanning-tree constructed using up-down routing. Escape-vcs using spanning-tree based

routing for only the escape network and minimal adaptive routing for other VCs has been

used as the second baseline for comparison in this work.

2.5 Bubble Flow Control (BFC) in Rings

Bubble Flow Control [24] is a flow control algorithm that provides the necessary and suf-

ficient condition for deadlock avoidance in a ring : as long as there is one bubble or one

empty buffer in a ring, there cannot be any deadlock and forward progress can be made.

The presence of one empty slot is ensured by intelligent injection of packets. Nodes are

required to capture tokens before injecting packets in the ring. In this work the underly-

ing theory of one empty slot being enough to make forward progress in a ring has been

leveraged.

2.6 Routing over Irregular topologies

Prior works across resiliency and power-gating use a mix of hardware [17, 18] and soft-

ware [21, 20, 19] techniques to identify connectivity among currently active routers upon

detection of faults in or power-gating of network elements. Disconnected components are

discarded and routing tables are populated at every source Network Interface (NI). In this

work I leverage this rich body of work and provide a routing table at every node in the net-

work. For spanning-tree baseline, this routing table has routes derived from the spanning

tree. For escape-vc and static bubble, these routes are minimal. The escape network in the

escape-vc baseline also uses routes derived from spanning tree.

19

CHAPTER 3

STATIC BUBBLE

Static Bubble is a deadlock recovery algorithm that guarantees deadlock-freedom for any

regular or irregular (both static and dynamically changing) topology that can be derived

from a mesh topology. Upon detection of a deadlock, the recovery algorithm introduces an

extra-buffer (called static bubble) in the deadlocked chain. According to the principle of

Bubble Flow Control (BFC), one empty buffer in a deadlocked ring is enough to guarantee

forward progress. At the core of the deadlock recovery algorithm lies a novel placement

algorithm that guarantees the presence of at least one static bubble in every possible depen-

dency chain in the mesh. Since the placement algorithm covers all possible dependency

chains, any irregular topology derived from this mesh topology is guaranteed deadlock

freedom by the recovery algorithm discussed in this work. In this chapter I discuss the

placement algorithm, the recovery algorithm, the micro-architecture and the special cases.

3.1 Static Bubble Placement Algorithm

The deadlock-freedom guarantee for any irregular topology derived from a mesh topology

is based upon the guarantee provided by the static bubble placement algorithm : every pos-

sible dependency chain in any NxM mesh topology will have at least one static bubble. The

algorithm picks up nodes where the extra-buffer or the static bubble will be placed. The

nodes that the algorithm picks have been referred to as static bubble nodes in the work. The

algorithm is as follows: For any node (x,y) in a NxM mesh, a static bubble will be added

if (x > 0) and(y > 0) (no static bubbles in the first row and the first column) and one of

the following conditions hold:

(1) x mod 4 ≡ y mod 4

(2) x mod 4 ≡ 1 and y mod 4 ≡ 3

20

(3) x mod 4 ≡ 3 and y mod 4 ≡ 1

Figure 3.1(a) shows the placement of 21 static bubbles in a 8x8 mesh. Visually, the

nodes on the solid diagonal satisfy condition (1), while the ones on the dotted diagonals

satisfy conditions (2) or (3).

I now provide the proof for the claim made earlier in the section : every possible cycle

in the mesh topology has at least one static bubble.

Lemma: There is at least one static bubble in every possible cycle within the mesh.

Proof: Starting at node (x,y) in a mesh, any cyclic buffer dependency chain needs to

return to the same node (x,y).

Case I: Node (x, y) itself contains a static bubble.

The proof is trivial in this case since any cycle going through it will have at-least one static

bubble.

Case II: Node (x, y) doesn’t contain a static bubble.

The coordinates of any such node (except on the first row and column) will be of one of

the following forms: (4k+2, 4l), (4k+1, 4l), (4k+3, 4l), (4k+2, 4l-1), (4k+2, 4l+1) or the

mirror images of this (swap k and l). This is shown in Figure 3.1(b). All these five types

of nodes (shown in fig) are bound by static bubbles. Every hop or turn is an increment

or decrement of k or l. It is not possible to make 4 (min number required to complete a

cycle) turns that would complete a cycle without encountering a node that satisfies one of

the three conditions of the placement algorithm.

It is worthwhile to note that to reduce the number of static bubbles, no node from the

first row and column is selected as not all turns are possible from these nodes. In addition,

the design doesn’t allow 180 degree turns or u-turns. A corollary of the proof presented

above is that any irregular topology derived from this mesh topology will also have at-

least one static bubble in each of its dependency chain. An interesting scenario arises if

the static bubble nodes themselves become faulty or are selected for power-gating. If a

21

x

y

(4k+2, 4l)

(4k+3, 4l)

(4k+2, 4l+1)

(4k+2,4l-1)

(4k+1, 4l)

k=1
l= 1

(a) (b)

Figure 3.1: Placement of static bubbles on a 8x8 mesh at design-time to guarantee a bubble
in any possible cycle.

static bubble stops functioning then all the dependency chains/cycles that are a part of this

deadlock get broken. In the extreme scenario where all the static bubble nodes go offline,

all possible network dependency chains are broken and the network is deadlock-free. In

addition there can be cases where one static bubble is part of more than one dependency

chain. In this case, the algorithm can resolve deadlocks in all of them serially. The static

bubble count provided by the algorithm scales linearly with the minimum of (M,N) which

keeps the hardware overhead low. The number of static bubbles in a NxM mesh given by

the algorithm is:

[m
4
−1]∑

k=0

(min(m− 4k, n)− 1) +

[m
2
]∑

l=1,lεodd

(min(m− 2l, n)

2
+

[n
4
−1]∑

p=1

(min(m,n− 4p)− 1) +

[n
2
]∑

r=1,rεodd

(min(m,n− 2r)

2

(3.1)

where [] represents the Greatest Integer Function (GIF).

22

State:	SOFF
Counter:	Off

State:	SDD
Counter	Thres:	tDD

State:	SDISABLE
Cntr Thres:	tDR

State:	SENABLE
Counter	Thres:	tDR

State:	SSB_ACTIVE
Counter:	Off

State:	SCHECK_PROBE
Counter	Thres:	tDR

new flit/ rsc / -

flit leaves & vc(s) active/
increment_counter_pointer, rsc/ -

Timeout/ rsc
/send probe

probe rcvd/store path,
rsc/ send disable

disable rcvd/
set
is_deadlock,
compute IO
priority buffer,
switch on SB,

stop counter / -

SB re-claimed/ switch off SB,
rsc / send check_probe

check_probe rcvd/ switch on SB,
stop counter/-

enable rcvd & VCs active/
increment_counter_pointer,
reset is_deadlock, rsc/ - Timeout/rsc/ send

enable

Timeout/ rsc /
send enable

enable rcvd &
no VC active /
reset is_deadlock,
stop counter / -

Format:
Triggering event/ internal
actions / output message

flit leaves & no VC active/
stop counter/-

Timeout / rsc / send enable

rsc: restart counter
SB: Static Bubble
DD: Deadlock Detection
DR: Deadlock Resolution

Figure 3.2: Finite State Machine of the static bubble counter.

3.2 The Recovery Algorithm

Each static bubble router contains one extra-packet sized buffer called static bubble and

one counter associated with a finite state machine (fsm). When the system starts, all static

bubbles are in off state. The FSM associated with the counter at a static bubble node has

six different states shown in Figure 3.2. The counter has two possible thresholds : tDD

(Deadlock Detection), which is a configurable parameter and tDR (Deadlock Recovery),

which depends on the length of the deadlock path. To aid in flow-control when doing dead-

lock recovery, four special messages have been introduced namely, probe, disable, enable

and check probe. The probe message is used to obtain the deadlocked path by following

the buffer dependency chain. Disable message places injection and routing restrictions

at nodes that are a part of the deadlock while the enable message lifts those restrictions.

Check probe messages are used to confirm the presence of the dependency chain after the

static bubble has been reclaimed.

23

A
B

1

C
D

4

E
F

6

K
Z

2

M
N 3

I
J 5

G
H

7

VC0
VC1

VC0
VC1VC1

VC0

VC1
VC0

VC1
VC0

VC1
VC0

VC1
VC0

SB

Cntr State:	DD

L L S L L

Counter	Expired1

Probe	Sent2

Probe	
Forked3

Probe	Dropped4a

Probe	Traversal4b

Probe	Received5

Path	Latched6

DD: Deadlock Detection
SB: Static Bubble

Probe Path

Physical link

Buffer Dependence

(Z)(K)

(A,B)

(D)

(C)

(E,F)

(G,H)

(I,J)

Deadlock path

Figure 3.3: Walkthrough: Probe Traversal

3.2.1 Walk-through Example

The FSM at a static bubble router starts in the OFF state. When a new flit arrives at the

router, (other than from the Local port or the Network Interface) the counter is made to

point to the VC it occupies and starts counting to the Deadlock Detection threshold. If

the flit leaves within the threshold time, the counter pointer is incremented to point to a

non-empty VC (VC in active state) in the router in a round robin manner. If there is no VC

in active state, the FSM transitions to the OFF state and the counter stops counting.

In this section, I describe the various steps involved in the deadlock recovery process

using a walk-through example in Figure 3.3. Each buffer dependence in the figure is marked

by the packet(s) that want to use it to go to the next hop. As can be seen, there exists a

deadlock due to the following cyclic dependency chain :

(A,B)→ (C)→ (E,F)→ (G,H)→ (I,J)→ (K)→ (A,B)

In this dependency chain, Node 5 is the static bubble router. Each VC can hold one

packet. I explain this design with Virtual Cut Through traffic (VCT) (packet sized buffers)

for simplicity though a wormhole design would work too with minor alterations.

24

Probe Traversal

In Figure 3.3 the counter expires in SDD state (Step 1) as packet I doesn’t leave within

the threshold time (Deadlock Detection threshold). Node 5 then sends out a probe message

(Step 2) from the North output port (output port for packet I) to check if it is a real deadlock

(and not a false positive due to congestion) and get the deadlock path. After sending out

the probe, the counter is reset and restarted and the counter pointer in incremented in a

round-robin manner to point to a non-empty VC. The threshold is set to tDD .

The probe message will track the buffer dependency and if it is cyclic (requirement for

deadlock), the probe message will come back to the starting node. When a probe reaches a

router from a given Input port, it gets forked out of all the outports that the VCs at the input

port are waiting on. If however, any VC is waiting for the local port to get ejected or there

is an empty VC at the input port, the probe is dropped at the router. This is because of the

assumption of packet consumption made earlier. Consuming a packet would empty a VC

in the dependence chain and consequently forward progress can be made with one empty

buffer in a dependency according to the principle of Bubble Flow Control (BFC). Thus a

deadlock is not possible and the probe should be dropped.

The forking operation creates identical copies of the probe message, so all the informa-

tion already present is retained. The router appends input to output turn (Left turn (L) or

Right turn (R) or Straight turn (S)) in each output probe. For instance, at node 2 the probe

gets forked out of the west and east output ports and the router appends turns (L) and (R)

respectively to the probes (Step 3). At node 3 (Step 4(a)), the probe is dropped as packets

M and N are waiting to get ejected and thus cannot be a part of a cyclic buffer dependence

chain. At nodes 1, 4, 6 and 7 the probe is forwarded out of the south, south, east and north

output ports respectively (Step 4(b)) and the turns L, S, L and L are appended respectively.

When the probe returns to node 5 (Step 5), the deadlock is confirmed and the path acquired

by the probe (L, L, S, L, L) is latched in a special buffer called the turn buffer (Step 6).

25

A
B

1

C
D

4

E
F

6

K
Z

2

I
J 5

G
H

7

VC0
VC1

VC0
VC1VC1

VC0

VC1
VC0

VC1
VC0

VC1
VC0

SB

Cntr State:	
Disable

L L S L L

Counter	State	Changed.	
Threshold	set	to	 	
path_length *2

7

Disable	Sent8

Disable	
Traversal

Disable	
Received

is_deadlock bit	set

S : South
S : Straight turn

Disable Path
Buffer Dependence

1
is_deadlock

S WIO-priority
buffer

to west port

to west port

1is_deadlock

S NIO-priority
buffer

IO-priority	buffer	set9

Local	injection	into	
west	port	stopped

9

Injection	to	west	port	
from	north	stopped9

Injection	to	west	port	
from	east	stopped9

is_deadlock bit	set9

IO-priority	
buffer	set

SB	switched	
on

10
11

12

13

5
source_id

Source-id	
stored

9

12

11

Figure 3.4: Walkthrough : Disable Traversal

Disable Traversal

After the probe returns with the path of the deadlocked chain, router 5 sends out a disable

message (Step 8)along the deadlocked path (Figure 3.4). The counter state changes to

SDisable and the counter threshold to tDR (Step 7). tDR is set to twice the deadlock path

length as the disable is guaranteed to return within this time unless it is dropped as will

be explained later. The disable message carries the deadlock path and the node-id of the

sender (node 5).

Upon receiving the disable, each router disables injection of traffic into the output port

corresponding to the turn specified by the disable. Only the input port through which the

disable entered the router is still allowed to inject flits into this output port. For instance,

node 2 (Step 9) extracts the first turn field, Left (L) from the disable entering at the south

port and identifies that this corresponds to a south to west turn. It stores this in a IO-priority

buffer and the node-id of the sender in source-id buffer. It also sets the is deadlock bit to

’1’. The is deadlock bit if set, instructs the switch allocator at node 2 to disable injection

26

into West output port from every input port except the South input port. In other words, no

other flit is allowed to enter the detected dependency chain. Node 2 then removes the first

turn from the disable message and sends it out of the West output port.

All nodes along the dependence chain (1, 4, 6 and 7) process the disable message in

a similar manner (Step 10). At each node the first turn is stripped away from the disable

message and it is forwarded out. This ensures that the turn corresponding to the node is

always the first turn in the disable message when it is received, speeding-up the forwarding

circuitry. Once the disable is received back at node 5 (Step 11), it begins the deadlock

recovery process (Step 12) by setting its is deadlock bit and the ports for its IO priority

buffer to South and North respectively. The static bubble is now switched on (Step 13) and

the FSM transitions to state SSB Active . In this state, there is no threshold associated with

the counter and the counter doesn’t increment its count.

A bubble has now been introduced in the deadlocked ring and any new packet has been

prevented from entering the deadlocked loop. This allows the packets that are a part of the

deadlock to move forward by one hop. This can be seen by looking at the buffer occupancy

change between Figure 3.4 and Figure 3.5. The information about switching-on of the

static bubble is conveyed to node 7 through standard flow control credit messages. Packet

G from node 7 comes and occupies the static bubble node. This allows packets E, C, A and

K to each move forward by one hop. Packet G occupying the static bubble moves to VC1

at node 2 and the static bubble is empty again. Even if packet G does not want to use the

north output port of the router after moving to node 5, and is stuck waiting for some other

output port, we still have packet I that wants to go north. Packet I would then move north

vacating VC1 at node 5. Packet G would then move to the VC vacated by packet I. The

Static Bubble would become free and thus can be reclaimed/switched-off.

It is interesting to note here that the static bubble cannot be switched on without first

placing the restriction on injection into the deadlocked loop. This is because a new packet

can come and occupy the static bubble. If this happens, we will be stuck in a deadlock

27

K
B

1

A
D

4

C
F

6

G
Z

I
J 5

E
H

7

VC0
VC1

VC0
VC1VC1

VC0

VC1
VC0

VC1
VC0

VC1
VC0

SB

Cntr State:	CP

L L S L L
Counter	State	

Changed

Check_Probe Sent

CP: Check-Probe
S : South
S : Straight turn

Check_Probe Path
Buffer Dependence

1
is_deadlock

S W
IO-priority buffer

to west port

to west port

1is_deadlock

S NIO-priority
buffer

SB	reclaimed	
and	switched	off
14

15

16

(A,D)

(G,Z)

(K,B)

(C,F)
(E,H)

(I,J)

5
source_id

Check_Probe
Dropped

17

Figure 3.5: Walkthrough : Check Probe Traversal

without any recovery mechanism.

Check Probe Traversal

Once the deadlocked ring moves forward by one step Figure 3.5(c), the static bubble is re-

claimed and switched-off (Step 14). At this point the FSM moves to the SCheck Probe (Step

15) and the counter is reset and restarted with threshold tDR. A check probe message is

sent out along the same deadlocked path (Step 16). Unlike a regular probe, the check probe

is not forked but simply forwarded out along the same dependency chain as long as at least

one VC at the routeris still a part of the same dependency chain detected earlier by the

probe (and later traversed by the disable).

If the check probe returns, the static bubble is switched on again and the dependence

ring moves forward by one more hop. In this walk-though example the check probe is

dropped at node 4 (Step 17) as both packets (A,D) at the north input port don’t want to

use the south output port. If the check probe doesn’t come back within the threshold time

28

K
B

1

A
D

4

C
F

6

G
Z

2

I
J 5

E
H

7

VC0
VC1

VC0
VC1VC1

VC0

VC1
VC0

VC1
VC0

VC1
VC0

SB

Cntr State:	Enable Counter	State	
Changed

Enable	Sent

Enable	Traversal

Enable	Received

is_deadlock
bit	reset

Enable Path

0
is_deadlock

IO-priority buffer

to west port

to west port

0is_deadlock

IO-priority
buffer

IO-priority	
buffer	cleared

Injection	restriction	
removed

Injection
restriction	removed

Injection	
restriction	removed

is_deadlock bit	reset

IO-priority	
buffer	cleared

21

22

23

23

18

19

20

20

20

20

20

Turn	buffer	
cleared23

source_id

Source-id	
cleared

20

Figure 3.6: Walkthrough : Enable Traversal

(tDR), it indicates that the deadlock due to the previously detected dependency chain has

been resolved/no longer exists.

Enable Traversal

If the counter expires in state SCheck Probe due to the check probe not making it back to

the source static bubble node, the FSM transitions to SEnable and the counter is reset and

restarted (Figure 3.6). The threshold is again set to tDR (equal to 2 times the length of

deadlock path in the Turn Buffer) (Step 18). An enable message is now sent out along the

same path (Step 19) embedded with the turns and the node-id, just like the disable.

Each router in the enable path checks if the sender-id of the enable matches the id stored

in the source-id buffer. If the ids match, the router clears the is deadlock bit and the IO-

priority buffers (Steps 20 and 21). This lifts the injection restrictions and resumes normal

traffic flow across all ports since the deadlock has been resolved. Once the enable returns

to the originating node (Step 22), it resets its is deadlock bit and clears the turn-buffer and

29

the IO-priority buffer (Step 23). The recovery process is now complete and the deadlock

has been resolved. Next, the counter pointer is incremented in a round-robin manner to

point to a non-empty VC. The FSM state is updated to SDD and the counter threshold is set

to tDD . If all the VCs at a router are empty the counter goes back to SOFF . It is essential

to note here that it is necessary that routers check the source-id buffer and the node-id of

the sender and make sure that they match. This is because a router may receive enable

from a different static bubble router router than the one whose disabled was processed by

the router. This will happen when the disable of some router gets dropped and the FSM

transitions straight to SEnable and sends out an enable.

3.3 Special Cases and Design Details

A number of interesting cases arise due to the interaction of multiple special messages

which are flowing through the network at the same time. A lot of the design decisions

have been taken to ensure correct behavior in these special cases i.e. guarantee deadlock

freedom in the midst of multiple special messages from multiple static bubbles. In this

section, I discuss these special cases and show how the design manages them. This will

also illustrate the motivation behind a particular implementation of the architectural feature

of the scheme when there were more than one possible ways to implement it. The special

cases have been discussed in a question-answer format.

A strict priority order is maintained in the processing of special messages at each node

:

Check Probe > Disable or Enable > Probe > Flit

This priority order is required for switch arbitration in case more than one special mes-

sages want to use the same output port in the same cycle at the same node. It also ensures

that all the nodes maintain a consistent architectural state which helps avoid race or dead-

locked conditions. At the static bubble node, in addition to the priority order rules, the FSM

provides additional control in the processing of messages which ensures that the FSM state

30

cannot be changed by other nodes once it has started the recovery process.

1. What if the counter expires before the probe returns or all copies of the probe

get dropped ?

The counter resets and restarts and the FSM sends out a new probe. This however

cannot continue indefinitely. If there is a real deadlock the probe would return. Else

things might just be moving slowly due to congestion. Eventually, the congestion

will clear-up and the flit would leave.

2. What if the flit leaves by the time probe returns ?

When the probe returns, the source router checks the VCs at the input port to find if

there still exists any VC that wants to use the output port from which the probe was

sent out. If that is the case, the next steps which include sending a disable happen

else the probe is dropped and the disable is not sent.

3. What happens if there are two or more static bubbles in a dependency cycle and

both send out probes ?

The static bubble node with the highest-id in the dependency chain is responsible

for resolving the deadlock. If a static bubble node receives a probe from another

static bubble node with lower id, it drops that probe. However, if the probe came

from a static bubble node with higher-id, the probe is allowed to pass through. This

ensures that the probe that came from the static bubble node with the highest-id in

the loop(sent earlier or later) completes the full loop and returns to its source router.

Once the probe retuns, the router starts the recovery process by sending out a disable.

4. What if there are two different deadlocked dependency chains that are both

sharing only one static bubble ?

The static bubble will successfully resolve the deadlocks serially i.e. one after the

other depending on which direction it sent out the probe first.

31

5. What happens if a static bubble node sends a probe, followed by a disable and

then receives a copy of its own probe back ?

This means there are two different cyclic dependency chains starting from the same

outport that this static bubble is a part of. Since the router has already sent out the

disable for the first deadlock chain, this copy of the probe will be dropped. Once the

first deadlock resolves, timeout counter will expire again and send out a new probe

and resolve the second deadlock if it still exists. Multiple deadlocks can be resolved

in parallel by multiple static bubbles (each trying to resolve a different deadlock). If

however, the same static bubble is a part of multiple deadlocked rings, the deadlocks

are resolved serially by the static bubble node.

6. Why do we need to fork the probe ? Can we not drop the probe if all VCs at the

input port do not want to use the same output port ?

There may be buffer dependence scenarios where one buffer dependency chain might

depend on another. In the walk-through example discussed in the previous section,

if the probe message was dropped at node 4, and there was such a dependency cycle,

the deadlock would never get resolved.

7. Can a probe loop around infinitely due to buffer dependency ?

No. Each turn takes 2-bits to encode. Since all special messages in our design are

single flit messages that use the same links as the regular flits, their turn carrying

capacity is finite. In a 64-core mesh, assuming 128-bit wide links, the probe can

carry a maximum of 59 turns (3-bits for message type and 6 bits for sender node-id).

After the turn carrying capacity of the probe gets exhausted it is dropped.

8. Can false positives (i.e. no real deadlock) lead to the enabling of the static bubble

?

If there is no cyclic dependency chain, the probe will get dropped without returning

back to its sender. There may however be dependency cycles due to congestion

32

which may make the probe return to its sender. In this case the disable will be sent

out. If any of the nodes in the cyclic buffer dependence chain including the sender, no

longer have the same buffer dependence as detected earlier by the probe, the disable

is dropped at that node. Further in some cases, congestion may lead to probe and

disable both returning successfully leading to the tuning ON of the static bubble.

This will let the dependence chain move forward by one hop and the static bubble

will be turned OFF again. Thus, there is no correctness problem.

9. What if a node receives more than one probes or disables or enables in the same

cycle ?

Send the one with higher node-id and drop the rest. The FSM at the sender of the

dropped probe/enable/disable will handle re-transmissions.

10. Can a non-static bubble node receive more than one disable, one after the other

?

A node will not receive more than one disable from the same static bubble node in

the same cycle. But it can be a part of more than one dependency chain and receive

disable from both of them. If the is deadlock bit is already set, other disables will be

dropped. If more than one disable messages are received in the same cycle, it will

process the one that came from the highest node-id router and drop the rest.

11. What happens if a Disable gets dropped midway and doesn’t return to the

sender node ?

The static bubble router FSM which is in state SDisable will expire waiting for the

disable to return. It will then transition to SEnable and send out an enable message.

This is required as the nodes that the disable went to before it was dropped would

have processed it and placed injection restrictions that now need to be removed.

12. Can a static bubble node receive a disable/enable when it has itself sent an en-

able/disable ?

33

The same static bubble can be a part of two dependency cycles. In the first cycle,

it may be the highest-id node and may have sent a disable/enable after receiving the

probe back. In the second cycle, it may not be the highest-id node and thus would

let the probe from a higher-id node pass through. Now since it allowed the probe

from a different static bubble node to pass through, it may receive a disable/enable

from that router. Since it is in state SDR , it will drop that disable/enable. Effectively

this means that we are allowing the first deadlock chain to clear. Later the recovery

process can be initiated for the second deadlock cycle (if it still exists) by the other

static bubble node.

13. Which state does the FSM of a static bubble node transition to, if it receives a

disable from a higher-id static bubble node ?

The counter would go to the Soff state. When the enable message arrives, the counter

pointer will be incremented to point to a non-empty VC and its state will be changed

to SDD.

14. What if a node receives an enable from a node that is different from the node

that sent it the disable ?

This can happen since the different VCs at various ports of a node can be part of

multiple dependency chains. If the node id carried by the enable doesn’t match the

source-id stored at the node, the enable message is not processed and is simply sent

out of the port calculated from the turn and not dropped.

15. Can static bubble scheme solve a deadlock chain that is in the shape of a knot

or the number ”8” ?

Yes. In a mesh with four input and four output ports per router and with 180 degree

turns restricted, there can be upto two input-output port pairs that can be a part of a

deadlock chain. Thus having a two entry IO priority buffer would suffice to solve

such a deadlock with other things remaining the same. If the static bubble node is the

34

Msg_Type

D
em

ux Input	Buffers

VC 1
VC 2

VC n

Probe	Fork	
Unit

VC out-port info

Buffer	
Dependency	Check

VC out-port info

5

source_id
1

is_deadlock
S W

IO-priority buffer

Disable/Enable_Sel

Disable/Enable
Mux

W
E
S
N

DE_west
Disable/Enable_outport

D
em

ux DE_east
DE_north
DE_south

Probe_W_E
Probe_W_N

Probe_W_S

Check_Probe_W_E
Check_Probe_W_N

Check_Probe_W_S Switch	
Allocator

VC	
Allocator

Crossbar Switch

MuxProbe_E_N
Probe_S_N

Msg_Sel

Mux

Probe_Sel

flit_W
flit_E
flit_S

flit_N

Probe_N

L L S L L

Static
Bubble
Turn
Buffer

Cnt State Input	
Port

Vnet VC
Counter:

E

W

N

S

E

W

N

S

flit
Probe

Check_probe

Disable/
Enable

Only in Static Bubble node

Disable/Enable Processing Unit

Figure 3.7: Router Microarchitecture : Additional Probes/Disable/Enable Circuitry in grey.

intersection router, the credit signal for the switching on of static bubble can be sent

to either entries of the IO priority buffer (but not to both).

3.4 Router Microarchitecture

This section discusses the microarchitecture details of the static bubble scheme. We use the

following features to make our scheme low-cost and plug-and-play:

• All the special messages : probe, disable, enable, check probe are not buffered any-

where in the network. When these messages arrive at a node, they are either sent out

of their intended output port or dropped at the node. Thus, the transmission of these

messages is completely buffer-less which saves area and energy.

• All the special messages use the same links as the regular flits and get higher prior-

ity. Thus, no additional wires have been added to the topology. During a deadlock

condition, the output links are idle in any case since the flits are stuck waiting to get

a free VC at the next router. Hence, leveraging these idle links for the transmission

of special messages will not incur a significant performance penalty.

35

• The processing of special messages is carried out in parallel units off the critical path

of the router pipeline for flits. The only component added to the critical path is a

mux at the output port that is used to select between different messages (including

the regular flit) during the link traversal stage. Implementation of the design in 32nm

DSENT [33] shows that this doesn’t increase the critical path delay which is dom-

inated by the switch allocator and we can still use the state of the art single cycle

router [34].

Fixed Delay of Messages: A highly unique and useful feature of the static bubble

scheme is that once a probe returns with the deadlock path, the time in which other spe-

cial messages disable, enable, check probe would return back to the source node is known

: twice the deadlock path length assuming 1-cycle latency for the link and a single cycle

router. If the special message doesn’t return within this time, it means it was dropped some-

where in the path. The FSM (figure 3.2) transitions to an appropriate state and transmits an

enable in all these cases without having to worry about race conditions.

If there is only one static bubble in the cyclic dependency chain, things are simple : a

router will receive special messages from only one node as the walk-through example illus-

trated. However, if there are multiple static bubbles within a dependency chain, or a router

is a part of multiple deadlocked dependency chains, multiple static bubbles can start send-

ing probes and other special messages which arrive at the router in the same cycle. In any

cycle, a router can receive upto four special messages (probe/disable/enable/check probe)

from its four input ports leading to 43 different combinations. Since there are no buffers,

the router will forward upto one message from the output port(s) and drop the rest/all. A

strict priority order is enforced in processing of the special messages which guarantees

correct behavior and deadlock freedom.

Figure 3.7 shows the micro-architecture of each router. The router contains standard

units like Virtual Channel Buffers at each input port, Switch Allocator unit, Virtual Channel

Allocator unit and the Crossbar switch. The units colored grey show the components that

36

have been added to the micro-architecture of a standard NoC router to support the static

bubble scheme. Each incoming special message is demuxed into appropriate unit.

• Probe Fork Unit: is present at each input port. This unit sends one (or none) probes

to every output port. It scans through all the VCs at the input port to find all unique

output ports the packets are waiting on. It then creates copies of the probe and dis-

patches to the switch to be sent out of the appropriate output port.If multiple probes

want to use the same output port, Probe sel selects the one from the highest node-id

and drops the rest.

• Enable/Disable Processing Unit: This unit is centralized and there is only one in

every router. It is responsible for sending one (or none) disable or enable to an

output port. It sets (clears) the is deadlock bit, the IO priority buffer and the source-

id buffer using the information present in the disable/enable. If the router receives

both an enable and a disable in the same cycle for the same output port, then if the

is deadlock bit is set at the router, the enable is sent out and the disable is dropped,

else the opposite happens.

• Buffer Dependency Check: This is a centralized unit and only one is present in

every router. This unit checks if there exists at least one VC at the input port of the

router that wants to use the output port stored in the IO priority Buffer. If that is the

case, the check probe is forwarded out of that output port, else it is dropped.

After being processed at the input units described above, the following priority order is

used to select between special messages that want to use the same output port in the same

cycle :

check probe > disable or enable > probe > flit

This order is used to generate the Msg sel signal at run-time that is used by the Mux at

the output port. All the operations on special messages and the associated conditions have

been summarised in table 3.1.

37

Table 3.1: Special Message Types
Message Operation Condition

Probe

Fork: Create copies
of the probe to be
sent along different
directions

When VCs at the probe’s input port at a router
want to use different output ports (see walk-
through example Step 3 for reference).

Drop: Kill the probe (i) If there exists at least one VC at probe’s input
port that is empty.
(ii) If there exists at least one VC at probe’s input
port that contains a packet waiting for ejection at
the router.
(iii) If the is deadlock bit is set at the router.
(iv) If there is another probe from a node with a
higher id
(v) If it has exhausted its turn carrying capacity.
Additional conditions at Static Bubble (SB)
Routers:
(vi) If the counter is in state SDisable Enable or
SCheck Probe.
(vii) If the static bubble router’s own id is greater
than the probe’s node-id.

Disable Drop: Kill the disable. (i) If the is deadlock bit is set at the router.
(ii) If there is another disable from a node with a
higher id
(iii) [At SB Router]: If the counter is in state
SDisable Enable or SCheck Probe.

Enable Drop: Kill the enable. (i) If there is another enable from a node with a
higher id, except if
(ii) is deadlock is set and this enable’s node-id is
same as the source-id buffer.

Check Probe Drop: Kill the
check probe.

(i) When the buffer dependency indicated by the
IO priority buffer at a router does not exist any-
more.

Static Bubble Routers: A static bubble router, in addition to the units described above,

also contains a FSM, a counter, a static bubble and a turn buffer as shown in Figure 3.7.

A static bubble is like any other VC and is deep enough to hold the largest packet (Virtual

Cut Through).

Static Bubble vs Escape-VC: Escape-VCs are a powerful framework for deadlock-

freedom and table 3.2 compares the two schemes both qualitatively and quantitatively in

terms of area overhead. The deadlock resolution time for escape-vc solution depends on the

spanning-tree based escape path while for Static Bubble this depends on the length of the

deadlocked path as the disable and enable need to traverse the deadlocked loop to resolve

the deadlock.

38

Table 3.2: Static Bubble vs. Escape VC
Static Bubble Escape VC

Operating Mode Deadlock Deadlock Avoidance
Recovery or Recovery

Pre-Deadlock Minimal Minimal
Post-Deadlock Minimal Non-Minimal

Spanning Tree/Ring
Control FSM Routing Table

Additonal Equation 1 n×m×5
Buffers in 21 in 64 core 320 in 64 core
n×m Mesh 89 in 256 core 1280 in 256 core

Area Overhead ∼0% 18%

Synthesis of Network Router: Implementation of a Static Bubble router in DSENT

[33] at 32nm showed less than 0.5% area overhead compared to a conventional 1-cycle

mesh router (where the buffers and crossbar dominate the area). In addition, compared to

the escape-vc scheme 18% lower area overhead is observed. This is because one VC per

vnet per input port at every router needs to be reserved for the escape-path which leads to

an increase in router area. Moreover, since Static Bubble (SB) does not require a deadlock-

free spanning-tree for its operation unlike the deadlock avoidance schemes or escape-vc

(which needs it for the constructing the escape-path), the network reconfiguration cost can

be reduced significantly compared to prior works [17, 21].

39

CHAPTER 4

EVALUATIONS

In this section, I quantitatively compare static bubble against the two baselines described

earlier in the background and related works section namely deadlock avoidance using

spanning-trees and deadlock recovery using escape-vcs. In addition, other evaluations in

this section illustrate the correctness and low-cost nature of the scheme.

4.1 Simulation Methodology

State Space Exploration with Fault Model

All the simulations used a 8x8 mesh as the underlying base topology. All faulty/power-

gated irregular topologies have been derived from a 8x8 mesh. Two fault models are used

to generate the topologies. In first, faults are injected randomly in the network and mapped

to link failures. These links are taken out of the topology graph. In the second model, faults

are injected in randomly selected routers and they are then removed from the topology

graph. Both of these fault models are in line with previous works in the resiliency domain

[18, 22, 35]. For ease of writing, we call the network elements removed from the topology

graph as faulty components though they may also be viewed as power-gated link-drivers or

routers.

For each fault number, since the state-space of possible topologies is exponential, a full

exploration is infeasible. Instead, I keep increasing the number of topologies till the average

of the trend we wish to study (like throughput, latency, etc.) stabilizes. Due to the high

symmetry of the mesh topology, many of the generated irregular topologies gave similar

results and the trend stabilized within 100 topologies for most cases. A key observation

from Fig 1.4 and Fig 1.5 is that at high number of faults /power-gated links or routers, the

40

Table 4.1: System Configuration
Network Configuration
Topology 8x8 Mesh
Routing Source Routing
Num VCs 3 Vnets, 4VCs per VNet per port
Latency 1-cycle router + 1-cycle link
Flit Size 128b
SB tDD 34
Fault Model Random [36, 18, 22] (links &

routers)
Traffic (using gem5 [37] + Garnet [38])
Synthetic Uniform Random with mix of 1-flit

and 5-flit packets
Multi-threaded PARSEC [10] running on Hyper-

Transport [39] protocol
Heterogeneous Rodinia [11] traces

topologies are highly fragmented lacking cycles and thus don’t deadlock. At low number

of faults, which is expected to be the common case, almost all the topologies are deadlock-

prone.

Routing Algorithms

As described in previous sections, each Network Interface Controller (NIC) has a routing

table that is used to embed the path in each packet. The reconfiguration of network to pop-

ulate the routing tables at the NIC for routing over faulty irregular topologies is based on

the prior works in this domain [17, 18, 21]. With synthetic traffic patterns, if the destina-

tion is not reachable from the source, the packet is simply dropped. With real application

traffic (PARSEC 2.0 and Rodinia), the application is mapped on cores that are a part of a

connected sub-network. In addition to being connected, these topologies also have paths in

the remaining topology connecting memory controllers.

4.2 Configuration and Baselines

gem5 [37] full system simulator with the GARNET [38] network model has been used for

all the evaluations. Network energy and area is estimated using DSENT [33] using 32 nm

technology node and 2 GHz clock frequency. Table 4.1 lists the system configuration. The

41

following two state of the art works have been used as baselines for comparison with the

static bubble scheme.

Deadlock Avoidance with Spanning tree. Deadlock avoidance using spanning-tree

based routing with the spanning tree constructed using the up-down routing algorithm sim-

ilar to that used by state of the art in works NoC resiliency [17, 18, 23, 21] and power-

gating [19] domains. To strengthen this baseline further zero cycle reconfiguration time

has been assumed for the spanning-tree construction although this cost is usually in thou-

sands of cycles [17, 21]. All the packets for this baseline simulation come embedded with

a deadlock-free route.

Deadlock Recovery with escape VCs. The second baseline is a deadlock recovery

scheme that uses spanning-tree based paths for the escape network. Upon detection of

a deadlock, packets move to the escape VC. Once in escape VC they have to use the

spanning-tree based route until they reach their destination [32, 20]. The path is given

by a routing table present at every router, that is configured with spanning-tree based dead-

lock free paths. Packets in regular VCs use minimal routes set by the source with 1-cycle

router. Again to strengthen the baseline, zero cycle reconfiguration cost has been assumed

for spanning-tree construction.

4.3 Network Performance and Energy Analysis

I start by first presenting the performance sweep of entire design space of irregular topolo-

gies with synthetic traffic.

Low-Load Latency

Figures 4.1 and 4.2 plot the average latency of Static-bubble, Spanning-tree and escape-

vc based deadlock freedom solutions at low injection rate (0.01 packet per node per cy-

cle). The injection rate of real applications is very close to this. Results of all the three

schemes have been normalized to the Spanning-tree scheme. The simulations have been

42

Figure 4.1: Average and max network latency improvements demonstrated by Static Bub-
ble, normalized to Spanning-tree, across the irregular topology space with uniform random
traffic at low-loads.

Figure 4.2: Average and max network latency improvements demonstrated by Static Bub-
ble, normalized to Spanning-tree, across the irregular topology space with bit-complement
traffic at low-loads.

carried out for both link and router faults using two different synthetic traffic patterns : (a)

uniform-random and (b) bit-complement traffic patterns. As deadlocks don’t occur at low

injection rates, both static bubble and escape-vc show similar performance providing upto

22% improvement with uniform random traffic pattern and upto 15% improvement with

bit-complement traffic pattern at low number of link and router faults. This reiterates the

motivation story for this work that restricting path diversity in an already irregular topol-

ogy that the spanning-tree based deadlock avoidance scheme does is very conservative and

leads to performance loss.

Beyond 53 link faults, the topolgies become fragmented and have very little path di-

versity that can be exploited, so minimal routes show similar performance compared to

spanning-tree. The trend for router faults is similar to link faults except that at high router

faults the network traffic is reduced due to the faulty routers being taken out of the topology

43

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

N
or
m
al
ize

d	
Sa
tu
ra
tio

n	
Th

ro
ug

hp
ut

No.	of	Faulty	Links

0

0.5

1

1.5

2

2.5

3

3.5

4

1 6 11 16 21 26 31 36 41 46

N
or
m
al
ize

d	
Sa
tu
ra
tio

n	
Th

ro
ug

hp
ut

No.	of	Faulty/Power-gated	Routers

Escape VC
Spanning Tree

Static Bubble
Escape VC
Spanning Tree

Static Bubble

Figure 4.3: Average network throughput, normalized to Spanning-tree, of all designs across
the irregular topology space with uniform random traffic.

graph. This leads to some latency improvement for minimal traffic compared to spanning-

tree baseline. Again, recovery schemes perform better than avoidance scheme.

Network Throughput

Figure 4.3 plots the average network saturation throughput as a function of link and router

faults with uniform random traffic. The throughput figures have been normalized to the

spanning-tree baseline scheme. Static Bubble provides upto 3.5x to 4x more throughput

compared to the spanning-tree based deadlock avoidance solution. This is due to the turn

restrictions imposed by the spanning-tree scheme that disallows packets to use links even

though they are otherwise healthy and fully-functional. Packets from one sub-tree have to

go through the root if their destination lies in some other sub-tree. Thus, the packets are

forced to take non-minimal paths which leads to early network saturation.

Compared to the escape-vc scheme, static bubble also provides a 1.2x to 1.3x higher

throughput even though both the schemes are based on deadlock recovery. This is because

the escape-vc reserves one VC per vnet per input port in all routers for the escape network.

Consequently, this VC cannot be used by regular flits unless there is a deadlock. Thus,

due to the reduction in number of buffers available for performance compared to the static

bubble design where all VCs are available for use by regular flits, the escape-vc design

shows poor performance in terms of throughput.

After 55 link faults, the topologies become highly fragmented offering little path di-

44

0

0.2

0.4

0.6

0.8

1

1.2

Sp-Tree SB eVC

N
or
m
al
ize

d	
En

er
gy

Sp-Tree SB eVC Sp-Tree SB eVC Sp-Tree SB eVC

Total	Link	
Dynamic

Total	Router	
Dynamic

Total	Link	
Leakage

Total	Router	
Leakage

2 Faulty/PG
Routers

7 Faulty/PG
Routers

15 Faulty/PG
Routers

30 Faulty/PG
Routers

Figure 4.4: Average Network Energy.

versity and thus minimal routing saturates the network at the same point as spanning-tree

based routing. Thus the performance of all three designs is similar. At around 21 router

faults, the performance of all three designs is very similar. This is because there are very

few deadlock-prone topologies at this fault number. Beyond 21 router faults, the network

is partitioned and there are cycles within each fragment that lead to performance improve-

ments for static bubble and escape vc compared to spanning-tree based solution. Static

bubble still outperforms escape-vc solution in terms of network saturation throughput. It is

interesting to note the similar trends shown by the latency and throughput graphs for link

and router faults.

Energy

Figure 4.4 plots the average network energy for four different router fault number calculated

using DSENT [33] with uniform random traffic at low injection rate (0.01). Across the

design space, static bubble design shows a 20% energy reduction compared to escape-vc

solution and 10% energy reduction compared to spanning-tree solution. In addition, static

bubble shows about 22% reduction in leakage energy at low fault number. Static Bubble

can thus be used to increase the static energy savings of existing power gating solutions.

It is interesting to note the high leakage energy consumption of the escape-vc scheme in

all fault scenarios. This happens because VCs are kept reserved for the escape network

which continuously leak energy at low loads without contributing to performance. At high

45

Figure 4.5: Deadlock Detection threshold tDD sweep.

number of router faults, leakage becomes a larger part of the total energy consumption

consumption. This happens due to the fragmentation of the topology which reduces the

average hop count, leading to a dip in dynamic energy consumption. Even in this case,

static bubble provides 20% more energy savings compared to spanning-tree scheme and

about 40% compared to escape vc.

4.4 Deadlock Detection Threshold Sweep

Deadlock Detection Threshold (tDD) is the only configurable parameter in the static bubble

scheme. To recall, tDD is the time allotted for a flit to leave the router failing which a probe

would be sent out to get the deadlock path. In this section, I present the results as this

configurable parameter is changed.

Intuitively, a very low value of tDD will result in a lot of probes being sent out while

a very high value may delay deadlock resolution. In practice however, it is observed that

at low (0.01 flits/node/cycle) and medium (0.1 flits/node/cycle) loads, even with a tDD of

just 5 cycles, no probes were sent out as the flit would leave within this time. Figure 4.5

sweeps tDD at high loads, when the network is deadlock-prone (Fig 1.5) for 10K cycles.

The NoC has 20 router faults and the average value across all topologies are plotted. A

46

very low value of tDD results in over 4000 (0.4 per cycle) probes being generated across

the NoC. As tDD increases, there is an exponential decline in the number of probes being

sent out and it saturates to a total of about 200 (0.02 per cycle) probes generated across the

NoC in 10K cycles.

While more probes steal bandwidth from flits, it turns out that probes are being sent

only when there is a deadlock in which case the links are idle. At this point the network

is saturated which is reflected by the extremely high packet latency. It is worthwhile to

recall here that the number of probes sent out does not affect the functional correctness

of the design; it just affects the time to detect deadlocks and impacts the total link energy

consumption of the design. While we did not see any noticeable difference in the aver-

age latency of a flit as the threshold is varied since the link usage of probes is orders of

magnitude less than flits, a slight improvement in packet latency is seen at low tDD as the

deadlocks get detected faster.

Figure 4.5 also shows the link utilization of different message classes as tDD is varied.

Link utilization of probes falls from 5% when tDD is low to 2% at medium tDD to 1.5%

at high tDD . The other special messages have constant link utilization (enable(0.45%),

disable(0.45%), check probe(0.6%)) at all values of tDD, thus showing that these messages

use the links only in case of a deadlock and thus don’t steal bandwidth from regular flits

that remain the dominant users of the NoC with greater than 93% link utilization at all

values of tDD .

4.5 Real Applications

Figure 4.6 plots the application throughput of Rodinia [11] benchmarks as a function of

link and router faults across the topology space, normalized to the spanning-tree baseline

scheme. At low link and router faults, the system with static bubble consistently outper-

forms both escape-vc and spanning-tree schemes by offering upto 2-4x more throughput

than the spanning-tree baseline and 1.3-2x more throughput than escape-vc baseline. The

47

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

0 10 20 30 40

N
io
rm

al
ize

d	
Th

ro
ug

hp
ut

No.	of	Faulty	Links

Sp Tree

0
0.5
1

1.5
2

2.5
3

3.5
4

0 5 10 15 20

N
or
m
al
ize

d	
Th

ro
ug

hp
ut

No.	of	Faulty/Power-gated	Routers

SB_Hadoop
escVC_Hadoop
SB_BPlus
escVC_BPlus
SB_kmeans
escVC_kmeans
SB_srad
escVC_srad
SB_BFS
escVC_BFS

Sp Tree

Figure 4.6: Scatter plot of application throughput with escape-vc and static bubble, nor-
malized to spanning tree scheme, for Rodinia workloads, with increasing link and router
faults.

Escape VCSpanning Tree Static Bubble

0
0.2
0.4
0.6
0.8
1

1.2

N
or
m
al
ize

d	
Ru

nt
im

e

0
0.2
0.4
0.6
0.8
1

1.2

N
et
w
or
k	
ED

P

Figure 4.7: (a) Application Runtime and (b) Network EDP for PARSEC with four link
faults.

only exception is Hadoop which shows similar performance with all designs due to the high

collective traffic which saturates all the NoCs very early. At high link fault rates, BPLUS

and SRAD show throughput improvements with static bubble while the performance of

both the baselines drop. At 20 router faults, all designs perform almost identically on all

rodinia benchmarks as very few connected topologies to run Rodinia exist at this fault rate

and there is hardly any path diversity that the minimal routing schemes can exploit. Dead-

lock occurrence (and resolution) was observed in some instances of the topologies at low

number of faults with Hadoop, SRAD and BFS traffic.

Figure 4.7 plots the normalized runtime and Energy-Delay Product (EDP) of PARSEC

48

[10] benchmarks for all three schemes. PARSEC was run on a connected 8*8 mesh with

four link faults for all the designs. As the injection rates of real applications are low,

deadlock recovery schemes (static bubble and escape-vc) outbeat the deadlock avoidance

schemes (spanning-tree) in terms of application runtime due to their highly conservative

approach for achieving deadlock freedom which impacts performance. Results obtained

with 32 router faults were very similar and hence haven’t been shown. The benefit of static

bubble over escape-vc for PARSEC benchmarks is seen in the EDP graphs plotted in Figure

4.7(b). Static bubble has 53% lower EDP compared to spanning-tree design and 17% lower

EDP compared to escape-vc design. This is because non-minimal routing in spanning-tree

design leads to increase in dynamic energy consumption while buffer reservation for the

escape network leads to increase in leakage power consumption in the escape-vc design.

49

CHAPTER 5

CONCLUSION

Current solutions for achieving deadlock freedom in irregular topologies require expensive

spanning tree construction and non-minimal routing over it. The alternative of using escape

VCs still requires such a tree for providing a deadlock-free escape path. The network needs

to be reconfigured to construct the spanning-tree every time there is a fault or a network

element is power-gated. As faulty or power-gated irregular topologies are expected to be

the common case in future, we need a low overhead scheme for deadlock freedom that

doesn’t cause loss in performance. In this work, I showed through state space exploration

that while most irregular topologies are deadlock-prone, the actual occurrence of deadlocks

at runtime is rare. I presented a plug-and-play solution for deadlock recovery, known as

Static Bubble, that augments a set of routers in a mesh with an extra buffer via a novel

algorithm that guarantees the existence of at least one static bubble in any dependency

cycle. Static Bubble provides a low-cost mechanism for deadlock recovery and performs

better than state-of-the-art solutions in terms of latency, throughput and energy. In addition,

it does not require any tree construction and can augment current solutions in the space of

heterogeneous SoC design, NoC resiliency and NoC power-gating.

50

REFERENCES

[1] R. R. Schaller, “Moore’s law: Past, present, and future,” Ieee spectr., vol. 34, no. 6,
pp. 52–59, Jun. 1997.

[2] “DDR3 SDRAM Memory, en.wikipedia.org,”

[3] J. Kim et al., “Energy characterization of a tiled architecture processor with on-chip
networks,” in Islped, 2003.

[4] M. McKeown et al., “Piton : A manycore processor for multi-tenant clouds,” Ieee
micro, 2017.

[5] B. K. Daya, C.-H. O. Chen, S. Subramanian, W.-C. Kwon, S. Park, T. Krishna, J.
Holt, A. P. Chandrakasan, and L.-S. Peh, “Scorpio: A 36-core research chip demon-
strating snoopy coherence on a scalable mesh noc with in-network ordering,” in
Proceeding of the 41st annual international symposium on computer architecuture,
ser. ISCA ’14, Minneapolis, Minnesota, USA, 2014, pp. 25–36, ISBN: 978-1-4799-
4394-4.

[6] R. H. Dennard, F. H. Gaensslen, H.-n. Yu, V. L. Rideout, E. Bassous, Andre, and R.
Leblanc, “Design of ion-implanted mosfets with very small physical dimensions,”
Ieee j. solid-state circuits, p. 256, 1974.

[7] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” in Proceedings of the 38th annual inter-
national symposium on computer architecture, ser. ISCA ’11, San Jose, California,
USA: ACM, 2011, pp. 365–376, ISBN: 978-1-4503-0472-6.

[8] Y. Shin, J. Seomun, K.-M. Choi, and T. Sakurai, “Power gating: Circuits, design
methodologies, and best practice for standard-cell vlsi designs,” Acm trans. des. au-
tom. electron. syst., vol. 15, no. 4, 28:1–28:37, Oct. 2010.

[9] Z. Zhang, A. Greiner, and S. Taktak, “A reconfigurable routing algorithm for a fault-
tolerant 2d-mesh network-on-chip,” in Proceedings of the 45th annual design au-
tomation conference, ser. DAC ’08, Anaheim, California: ACM, 2008, pp. 441–446,
ISBN: 978-1-60558-115-6.

[10] C. Bienia et al., “The PARSEC benchmark suite: Characterization and architectural
implications,” in PACT, 2008.

51

[11] S. Che et al., “Rodinia: A benchmark suite for heterogeneous computing,” in Iiswc,
2009.

[12] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multiprocessor inter-
connection networks,” Ieee trans. comput., vol. 36, no. 5, pp. 547–553, May 1987.

[13] A. Ramrakhyani and T. Krishna, “Static bubble : A framework for deadlock-free
irregular on-chip topologies,” in Proceedings of the 23rd ieee symposium on high
performance computer architecture, hpca, 2017.

[14] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole networks,”
Ieee trans. parallel distrib. syst., vol. 4, no. 12, pp. 1320–1331, Dec. 1993.

[15] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” J. acm, vol. 41, no.
5, Sep. 1994.

[16] K. V. Anjan and T. M. Pinkston, “An efficient, fully adaptive deadlock recovery
scheme: DISHA,” in Isca, 1995.

[17] K. Aisopos et al., “ARIADNE: agnostic reconfiguration in a disconnected network
environment,” in Pact, 2011.

[18] R. Parikh and V. Bertacco, “Udirec: Unified diagnosis and reconfiguration for frugal
bypass of noc faults,” in Micro, 2013.

[19] R. Parikh et al., “Power-aware nocs through routing and topology reconfiguration,”
in Dac, 2014.

[20] A. Samih et al., “Energy-efficient interconnect via router parking,” in Hpca, 2013.

[21] D. Lee et al., “Brisk and limited-impact noc routing reconfiguration,” in Date, 2014.

[22] D. Fick et al., “A highly resilient routing algorithm for fault-tolerant nocs,” in Date,
2009.

[23] V. Puente et al., “Immunet: A cheap and robust fault-tolerant packet routing mecha-
nism,” in Isca, 2004.

[24] ——, “The adaptive bubble router,” J. parallel distrib. comput., vol. 61, no. 9, Sep.
2001.

[25] M. Balboni, J. Flich, and D. Bertozzi, “Synergistic use of multiple on-chip networks
for ultra-low latency and scalable distributed routing reconfiguration,” in Date ’15,
2015.

52

[26] A. Mejia et al., “Segment-based routing: An efficient fault-tolerant routing algorithm
for meshes and tori,” in Ipdps, 2006.

[27] L. Chen et al., “Power punch: Towards non-blocking power-gating of noc routers,”
in Hpca, 2015.

[28] R. Das et al., “Catnap: Energy proportional multiple network-on-chip,” in Isca, 2013.

[29] Y. Ho Song and T. M. Pinkston, “A progressive approach to handling message-
dependent deadlock in parallel computer systems,” Ieee tpds, vol. 14, no. 3, Mar.
2003.

[30] A. Lankes et al., “Comparison of deadlock recovery and avoidance mechanisms to
approach message dependent deadlocks in on-chip networks,” in Nocs, 2010.

[31] Y. H. Song and T. M. Pinkston, “A new mechanism for congestion and deadlock
resolution,” in Icpp, 2002.

[32] L. Chen and T. M. Pinkston, “Nord: Node-router decoupling for effective power-
gating of on-chip routers,” in Micro, 2012.

[33] C. Sun et al., “Dsent - a tool connecting emerging photonics with electronics for
opto-electronic networks-on-chip modeling,” in Nocs, 2012.

[34] S. Park et al., “Approaching the theoretical limits of a mesh noc with a 16-node chip
prototype in 45nm SOI,” in Dac, 2012.

[35] W. J. Dally and B. Towles, “Route packets, not wires: On-chip inteconnection net-
works,” in Dac, 2001.

[36] M. Fattah et al., “A low-overhead, fully-distributed, guaranteed-delivery routing al-
gorithm for faulty network-on-chips,” in Nocs, 2015.

[37] N. Binkert et al., “The gem5 simulator,” Sigarch comput. archit. news, vol. 39, no.
2, Aug. 2011.

[38] N. Agarwal et al., “GARNET: A detailed on-chip network model inside a full-system
simulator,” in Ispass, 2009.

[39] A. Ahmed et al., “AMD Opteron shared memory MP systems,” in 14th hot chips
symposium, Aug. 2002.

53

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Definition of key NoC Terms:
	The Origin of Irregular on-chip Topologies
	Power-gating of network elements
	Waning Silicon Reliability
	Heterogeneous SoCs

	The Problem

	Background and Related Work
	Assumptions
	Definitions
	Deadlock Avoidance
	Turn Model
	Spanning Trees
	Alternate approaches in Resilient NoCs
	Alternate approaches in Power-gated NoCs

	Deadlock Detection and Recovery
	DISHA
	Escape-VC

	Bubble Flow Control (BFC) in Rings
	Routing over Irregular topologies

	Static Bubble
	Static Bubble Placement Algorithm
	The Recovery Algorithm
	Walk-through Example

	Special Cases and Design Details
	Router Microarchitecture

	Evaluations
	Simulation Methodology
	Configuration and Baselines
	Network Performance and Energy Analysis
	Deadlock Detection Threshold Sweep
	Real Applications

	Conclusion
	References

