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SUMMARY 

In order to achieve stable and sustainable systems for recycling post-consumer 

goods, it is frequently necessary to concentrate the flows from many collection points to 

meet the volume requirements for the recycler.  This motivates the importance of 

growing the collection network over time to both meet volume targets and keep costs to a 

minimum.  Furthermore, this problem is complicated by the spatial variation of the 

density of resources and heterogeneous attitudes of agents towards participating in 

recycling activities.  This research addresses a complex and interconnected set of 

strategic and tactical decisions that guide the growth of reverse supply chain networks 

over time.  It contributes the first models and solution approaches that capture the 

uncertain, multi-stage aspects of the strategic reverse supply chain design problem. 

This dissertation has two major components:  a tactical recruitment model and a 

strategic investment model.  These capture the two major decision levels for the system, 

the former for the regional collector who is responsible for recruiting material sources to 

the network, the latter for the processor who needs to allocate his scarce resources over 

time and to regions to enable the recruitment to be effective.  First, I develop a 

recruitment model for the regional collector.  A contribution of the model is 

conceptualizing the individual agent behavior as a Markov Process over various states of 

“willingness” to join the network.  The agent’s willingness state is changed by the 

recruitment actions and budget expenditures of the regional collector.  The recruitment 

model is posed as a stochastic dynamic program.  Three solution approaches are 
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developed to solve this problem in Chapter 4.  A numerical study of the solution 

approaches is performed in Chapter 5. 

The second component involves a key set of decisions on how to allocate resources 

effectively to grow the network to meet long term collection targets and collection cost 

constraints.  The growth occurs not only in a temporal but also in a spatial dimension 

over regions.  The recruitment problem appears as a sub-problem for the strategic model 

and this leads to a multi-time scale Markov decision problem, which is presented in 

Chapter 6.  A heuristic approach which decomposes the strategic problem is proposed to 

solve realistically sized problems.  Chapter 7 provides numerical valuation of the 

heuristic approach for small and realistically sized problems. 
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CHAPTER   1  

INTRODUCTION 

 
 
 

My dissertation addresses a complex set of decisions that surround the growth of 

reverse supply chain networks over time.  It is motivated by an industrial example 

associated with a carpet recycling company recruiting carpet retailers to participate in a 

used carpet collection program coupled with establishing the rest of the necessary 

collection network infrastructure.  A key set of decisions addresses how to recruit 

retailers effectively to meet long term collection targets and collection cost constraints.  

The percent participation of the retailers can be raised by aggressive recruitment, but 

there are limited financial and human resources that can be deployed in any given time 

period.  Furthermore, the problem of network growth is complicated by the spatial 

variation of the density of used carpet resources and heterogeneous attitudes of retailers 

towards participating in recycling activities.  Modeling this complex multi-stage 

decision-making situation requires careful design of interacting models that address 

specific aspects of the decision problem.  The complexity of the problem raises the 

degree of difficulty to achieve the optimal solution for realistically sized problems for the 

processor.  Hence, my dissertation aims to develop a methodology to support decision 

making for such problems in order to provide insight to the processor and to contribute to 

the general body of knowledge for supply chain design. 
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Figure 1.1  Structure of the Decision Levels 
 

I use a spatial and temporal decomposition to model the network growth problem.  

The decompositions result in several models.  Overarching is a processor strategic 

problem that allocates resources to grow the network over regions and within macro-

periods.  The use of resources over a finer time discretization, termed periods, and within 

each region is handled by a tactical decision problem by regional collector agents.  

Finally, the recruitment problem results in a network that must be serviced by trucks over 

smaller time increments, or micro-periods.  Figure 1.1 illustrates how the decisions from 

the upper levels are passed onto the lower levels.  In addition, it also shows how the 

results are sent back from the lower levels to the upper levels.  In my dissertation, I 

develop models and methodology for each decision level.  Simultaneously, an overall 

methodology to coordinate and capture decisions and passing information among levels 

is developed. 

- Collection Budget Allocation 
- Collection Volume Targets 

Tactical level (period) 

- Retailers to Collect from 
- Number of Trucks 

Strategic level (macro-period) 

Operational level 
(micro-period) 

- Customer Service Levels 
- Collection Volumes 

- Collection Volume 
- Collection Cost 
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This chapter provides background for the general problem and approach.  The 

relevant academic literature is reviewed in Chapter 2.  In Chapter 3, a formal definition of 

the overall problem is provided.  Chapter 4 develops the tactical level model and 

corresponding solution methodologies.  Chapter 5 presents a numerical study for the 

tactical level problem.  In Chapter 6, the strategic level model and solution methodology 

are developed.  Chapter 7 presents a numerical study for strategic level problem.  The 

summary, contributions and future extensions are given in Chapter 8.  

In this chapter, first I provide the motivation of the problem based on industry 

examples.  Then, I overview insights related in this dissertation in three areas: reverse 

production systems, hierarchical decision making and simulation-based optimization.  

These motivation and overviews provide a background for the proposed research. 

1.1 Problem Motivation 

According to Carpet and Rug Institute (2003), the U.S. carpet industry produced 

1.833 billion square yards of carpeting in 1998 alone.  These produced carpets, if sold, 

will be disposed of by approximately 2008 since the average carpet life is about 5-10 

years.  This presents a potential of over 8 billion pounds of carpets that need to be 

recycled or disposed of.  Note that these figures are just for one year sales alone.  

Broadloom carpeting forms the majority of carpeting marketed in the U.S.  Carpeting 

itself is composed of 49.2% face fiber, 38.4% latex and calcium carbonate, and the rest is 

often polypropylene.  Face fibers are mostly nylon 6 or nylon 6,6 polymers.  
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The carpet industry has had limited success with recycling nylon carpets.  Post 

consumer carpet scrap is priced at approximately $0.06a pound1 for truck load quantity 

(40,000 pounds or more) while nylon 6 (after processing nylon-6 scrap) is priced at 

$1.592 for truck load quantity.  Hence, the nylon fibers produced in 1998 alone are worth 

a potential one billion U.S. dollars.  It is this economic potential in recovering used nylon 

carpeting and avoiding landfill tipping fees that drives several of the current efforts in 

carpeting recycling.  However, according to the data from Carpet America Recovery 

Effort’s Annual Report in 2004, 4,000 million pounds of used carpet is discarded to the 

landfill in year 2003 while less than 100 million pounds is recycled.   

With the effort of companies belonging to the Carpet and Rug Institute to recycle 

more carpet, Carpet and Rug Institute (2003) showed how the carpet industry has reduced 

its environmental footprint over the years.  The amount of landfill use, carbon dioxide 

emissions, energy consumption, water usage and hazardous air pollutants have been 

reduced by 80% over the past 12 years from 1990.  It is crucial to recognize these 

reductions occurred while production increased by 47% over the same period.  Their goal 

by 2012 is to reduce the environmental footprint an additional 28 percent. 

However, in the past decade, two major carpet recycling companies suffered major 

financial problem that led to the closure of the recycling plants.  The first company is 

Evergreen Nylon Recycling, a joint venture of DSM and AlliedSignal, who built a $100-

million plant in Augusta, Georgia.  The plant began operation in November 1999 and 

                                                 
1

 Canada's Waste Recycling Marketplace (2006) 
2

 IDES The Plastics Web (2006) 
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could chemically reclaim nearly 200 million pound a year of nylon 6 carpet waste 

(Plastics Technology 2002).  In addition to eliminating significant carpet waste, the 

renewal of nylon 6 will save 4.4 trillion BTUs of energy annually—enough power to heat 

over 100,000 homes each year (International Fiber Journal 1999). It also was designed to 

produce 100 million pounds of virgin-quality nylon 6 per year, reduce the dependence on 

foreign oil, and create new jobs throughout the recycling industry. 

However, the company was shut down in 2001, less than two years after it started 

up (Atlanta Business Chronicle 2001).  Higher than expected production costs combined 

with current business and economic conditions for caprolactam3 in general led to the shut 

down.  The closure of this facility scuttled numerous carpet recycling operations across 

the country and left Polyamid 2000 (PA 2000), a German corporation, as the only viable, 

large scale recycler of post-consumer nylon carpet fiber. 

The second company was Polyamid 2000, located in Premnitz, Germany, who set 

up their plant in 1999 to reclaim post-consumer carpet material from all over Europe 

using chemical depolymerization of nylon 6.  The huge PA 2000 installation cost around 

$200 million.  In 2002, PA 2000 produced about 15 million pound a year of nylon 6 but 

ran at about 75% of capacity (Plastics Technology 2002).  The plant had expected to 

process roughly 264 million pound a year of carpet into 20 million pound a year of nylon 

6.  The underlying problem is that the content of nylon in European waste carpets was 

less than expected.  Recyclers had expected 30% of European carpet to be nylon 6 but 

they only found 20% of nylon 6.  PA 2000 then turned to the used carpet markets in U.S., 

                                                 
3

 Caprolactam is a building block of all Nylon 6 products.  It is obtained by depolymerizing the nylon 
content of the used carpet.  
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mainly in California.  Furthermore, the recyclers faced the problem of low landfill tipping 

fees in the US.  An increase in transportation cost of importing the material from U.S. 

drove PA 2000 to declare bankruptcy in July 2003 (Carpet America Recovery Effort 

2004). 

The failure of these two companies raises an important question to the recyclers or 

processors:  what went wrong?  One explanation is the high cost of the supply material.  

In theory, it is not difficult to provide either the Evergreen or Polyamide 2000 plants with 

the volumes of used carpet they required – which were a small fraction of all used carpet.  

What was challenging was to provide the volumes at low enough cost to make them 

viable – witness the incredible lengths Polyamide 2000 went to by importing used carpet 

from the US, and specifically California! 

Therefore the careful planning of the collection network to supply the capital 

intensive processing plant can be a critical factor in the success or failure of recycling 

operations.  However, the processor is faced with a significant challenge.  Processors are 

typically not familiar with the waste business; the collection of “trash” is not a core 

competency of their organization, nor do they have existing waste hauling contracts that 

they can exploit to get the material.  This leads to the need to recruit a layer of the supply 

to the system.  In the case of carpet this might be the retailers who sell carpet, as they are 

the ones to whom the carpet is typically returned by the installers.  One solution to this 

recruitment problem is to subcontract the responsibility of recruiting to a local regional 

collector.  This collector is then allocated a budget with which to recruit the retailers to 

the network.  This budget may be financial incentives in this case.  Alternatively, the 

processor may decide to do the recruitment and collection itself, and in this case, the 
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budget will most likely reflect the amount of time and personnel resources that are 

devoted to a particular region. 

A further issue that is faced by the processor is the need to build the network to 

meet a significant demand that ramps very rapidly in volume in comparison to the 

volume collected from any one source. Consumer products that are correlated with 

population imply numerous collection agents to provide adequate material to support the 

economy of scale required at the processing site.  Thus, it is necessary to concentrate the 

flows from many collection points to meet the volume requirements of the processor.    In 

the carpet recycling there is a need to collect from many retailer locations to feed one 

separation and material recovery facility.    

The challenging question of how to allocate one’s effort in building a collection 

network over time and in many regions is addressed in this research.  I model the 

decisions required to build a collection network to meet the target demand while 

minimizing the cost in the long run.  The resulting framework can greatly benefit a 

company who may want to reopen the high-cost processing plant, make them financially 

viable, and stay in business longer.  Consequently, more carpet waste will be kept out of 

the landfill and the recycling rate will be increased.  This also helps Carpet and Rug 

Institute achieve their recycling rate target in 2012, which is a key sustainability goal for 

the whole industry. 
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1.2 Overview of Reverse Production Systems 

A reverse production system (RPS) is a network of transportation logistics and 

processing functions that collect, refurbish, and demanufacture for reuse and/or recycle 

used or end-of-life e-scrap products.  Realff et al. (1999) illustrated the material flows in 

forward and reverse production system as shown in Figure 1.2.  An initial mathematical 

model (mixed integer linear programming) was developed to plan a reverse production 

system for carpet recycling by Newton (2000).  Assavapokee (2004) then proposed an 

extension of this to represent reverse logistic infrastructure for both single period and 

multiple periods timeframes applied to the electronics waste stream.  The model has the 

ability to make the strategic decisions for the location of collecting centers and 

processing centers, the type of collected materials allowed at each collecting center, the 

type of processes installed at each processing center, and number of pounds collected, 

processed and transported throughout the reverse logistics system.  Both of these models 

assumed that the targeted collection amounts would appear at the collection centers 

without additional effort on the part of the system. 

Raw Material
Refining

Material
Manufacturing

Component
Manufacturing Final

Assembly
Point

of Sale

Increase in Manufactured Value

Collection
&

Sorting
Demanufacturing

Decrease in Manufactured Value

Chemical
Recycling Material

Compounding

 

Figure 1.2:  Material Flows in Forward and Reverse Production Systems 
(from Realff et al. 1999) 
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1.3 Overview of Hierarchical Decision Making 

In the collection network growth problem, decisions are made at different 

hierarchical levels with interaction and feedback between the levels.  In the literature, 

hierarchical decision making problems arises in many applications.  One of them is the 

production planning problem (Bitran et al. 1986, Sethi and Zhang 1994).  The general 

description of the production planning problem is the following.  There are two levels:  

the “marketing management” level and “operational” level.  At the marketing 

management level, the decision maker needs to control which family of products to 

produce over each decision epoch, where a family is a set of items consuming the same 

resources and sharing the same setup.  At the operational level, the decision maker needs 

to determine actual production quantities of the items in the family given stochastic 

demands for the items, production capacity, holding cost, etc.  The objective is to develop 

a two-level production plan to maximize the net revenue of the manufacturing system.   

Sethi et al. (1995) further investigate hierarchical decisions by including capacity 

expansion in the marketing management level.  A firm must satisfy a given increasing 

demand for its product over time to minimize its total discounted costs of investment in 

new capacity and production, and inventory/shortage over a finite horizon.  The firm has 

a number of existing machines which are failure-prone with given rates of breakdown 

and repair.  As demand increases, the firm has an option to purchase a number of new 

machines, identical to the existing machines, at a fixed given cost for each machine.  In 

this problem, strategic planning from the management level bases its capacity expansion 

decisions on some aggregated, rather than detailed, information from the operational 
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level.  Subsequently, the operational level makes production planning decision given the 

capacity decisions made at the upper level.   

Complexity of hierarchical decision making also comes from the uncertainty of 

future outcomes in the operational level and the decisions at each level.  Thus, the 

decision maker at the higher level is confronted with difficult decisions in specifying a 

multi-period plan that optimizes the system’s objective.  With these complexities, the 

hierarchical decision making approach requires careful design to account for the 

interactions of each level.   

1.4 Overview of Control Optimization Area 

For control optimization problems, a familiar control objective is to guide a system 

from an initial state so that the output optimizes a predefined performance measure of the 

system.  Specialized solution methods exist for optimal control problems involving linear 

systems and quadratic cost functions, and methods based on the calculus of variations can 

yield close-form solution for restricted classes of problems.  A well-known general 

framework is the dynamic programming (DP) method (Bertsekas 1987, Bellman 1957, 

Howard 1960, Puterman 1994, and Karin 1955). 

From the perspective of control optimization, DP usually is confronted by curses of 

modeling and dimensionality.  A very small problem may contain one-thousand states but 

one may have to store one million transition probabilities just for one action (Bertsekas 

1995).  In recent years, simulation-based optimization has been a rapidly evolving 

subdiscipline in the simulation and optimization research areas to solve control 

optimization problems.  Engineers and scientists have always wanted the ability to 
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optimize the systems using simulation models.  Computational capacity has increased 

tremendously over the years, this has served as one of the driving forces for research in 

this area along with fruitful interactions between the disciplines of operations research, 

artificial intelligence and statistics that have led to new algorithmic insights into how to 

solve large problems approximately. 

Modeling a complex system using declarative mathematical programming 

constructs is difficult when significant portions of system behavior are procedural in 

nature.  In addition, mathematical programming models typically scale badly as the 

problem size increases, both in terms of the length of the declaration (number of 

constraints and variables) and in required solution time. This is a particular problem when 

the application requires a plan that stretches across multiple periods and which must 

consider a number of different possible scenarios driven by the uncertainty in values of 

the underlying problem data.  This leads to a combinatorial explosion in the variables and 

constraints required to represent the problem.  It creates awkward representational 

choices in capturing the relationships between the scenarios. 

Some real world applications do not have the luxury of waiting for optimal results 

and the need to evaluate alternative models and data streams to gain insight is lost if each 

computation is very time consuming.  The tradeoff is often between solving an 

approximation exactly, or a more exact representation approximately.  A particularly 

common approximation is to solve the problem assuming there is no uncertainty in the 

model or data.  This assumption dramatically simplifies the problem statement and 

solution methods, but uncertainty is a significant factor in many strategic system design 

problems.  A faster, approximate, approach might be a more effective decision support 
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approach for these applications.  However, the decrease in the solution quality needs to 

be balanced against the gain in computational efficiency.   

One alternative to declarative mathematical programming is a simulation based 

optimization approach.  Simulation can act as a function evaluation in complex systems.  

Since the objective function is not required to be in a closed form, as well as naturally 

imposing the system constraints, it can capture more realistic situations without the 

representational burden of declarative formulations.    A simulation model can include 

some crucial random events such as allowing breakdowns of machines or rush orders 

from customers.  The solution obtained from running the simulation for many 

replications is a sample mean.  By the strong law of large numbers, as the number of 

replications increases, the sample mean will converge to the true mean.  However, 

depending on the specification of the problem, the run time of the simulation might be so 

extensive that using simulation also can be computationally expensive.  This is a 

significant drawback when a solution with good estimates of higher order moments of the 

performance distribution is required.  The overriding problem is that simulation may not 

select specific sample paths that have particularly bad implications for certain decisions, 

and hence estimation and probabilistic guarantees replace concrete proofs of validity or 

worse case performance. 

The main reason a simulation-based optimization approach is used in this research 

is its ability to model complex systems close to the real world processes without having 

to make oversimplifying assumptions.  In particular, the decisions have to be made in the 

face of uncertainty and over multiple time periods.  In my research, the uncertainty comes 

from the recruitment outcome of the agents to the recycling network. 
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The objective of my dissertation is to develop a new approach for supporting 

decisions for supply chain infrastructure design and growth over time for a realistic size 

problem.  This approach composes of three levels of decisions:  strategic decisions, 

recruitment decisions and servicing decisions.  The methodology to obtain the decisions 

in the first two levels is developed in this dissertation.  These components of the approach 

have been prototyped and tested using small and large examples.   

This dissertation provides a better understanding of the collection network growth 

over time.  At the tactical level, the model helps the regional collectors to understand the 

recruitment activity better and provides a methodology to assist them in reaching the 

target goal with high confidence.   This is done by introducing a new model to capture the 

heterogeneous attitudes of the retailers towards recruitment.  At the strategic level, a 

modified multi-time scale Markov Decision Process model (Chang et al. 2003) is 

developed.  Furthermore, the methodology for solving the model yields a solution that 

can have a significant impact for the processor.  The processor can incorporate the 

expected amount of collection volume and cost into his or her long term and short term 

investment decision making in order to be financially viable.  However, the number of 

available retailers for the processor is so large that this makes the collection network 

growth problem large-scale and difficult to solve.  Hence, this dissertation aims at 

proposing the solution approach that can solve a realistic sized problem rather than an 

exact method that is limited to a small problem. 

In the next chapter, I provide a review of relevant literature for this dissertation.  

This supporting literature can be classified into three main areas: collection within 

reverse production system, hierarchical decision making and control optimization. 
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CHAPTER   2  

LITERATURE REVIEW 

 
 
 

This chapter reviews the literature and background related to this research.  

Overviews are presented of the following three main areas: Collection within Reverse 

Production Systems, Hierarchical Decision Making, and Control Optimization.  These are 

covered in sections 2.1, 2.2, and 2.3 respectively. 

2.1 Literature Review of Collection within Reverse Production 

Systems 

Flapper (1995, 1996) and Fleishmann et al. (1997, 2000) give systematic overviews 

of the logistic components of reuse and recycling.  In the reverse supply chain literature, 

special attention has been paid to the design of RPS infrastructure (Barros et al. 1998, 

Krikkee 1998, Realff et al. 2004, Pochampally and Gupta 2003).  The design specifies 

where to locate the collection and processing sites in order to benefit the entire system’s 

objective.  Within the framework of reverse production infrastructure design, 

Fleischmann et al. (2000) characterize the main activities in the product recovery 

networks as collection, selection, re-processing, disposal, and re-distribution.   

This research focuses on building a collection network over time instead of the 

entire and complete RPS design by concentrating on the collection, sorting and delivery 
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to a given end use with a specific target capacity.  The importance of collection system is 

addressed by Biehl et al. (2005) and Fleischmann (2000).  In the context of RPS, 

collection includes all activities rendering used products available and physically moving 

them to some point where further treatment is accomplished.  Collection of used carpet 

from carpet dealerships (Realff et al. 1999) and take-back of used copiers from customers 

(Krikke 1998) are typical examples from the above case studies. 

Fleishmann et al. (1997) describe reverse distribution as the collection and 

transportation of used products and packages.  Reverse distribution can take place 

through the original forward channel, through a separate reverse channel (Caruso et al. 

1993, Kroon and Vrijens 1995, Barros 1998, Spengler et al. 1997), or through 

combinations of the forward and reverse channels (Salomon et al. 1996, Del Castillo and 

Cochran 1996).  Guiltinan and Nwokoye (1975) provide one of the first analyses of 

reverse distribution networks.   Figure 2.1 shows a framework for reverse distribution 

combining the forward flow from producer to user, and the reverse flow from user to 

producer.  This research specifically examines the process of transporting the materials 

from the consumers to the collectors and from the collectors to the recycler.  This portion 

of the supply chain is highlighted within the solid rectangular box in Figure 2.1. 
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Reverse Channel 

 
 

Figure 2.1:  Framework Reverse Distribution (from Fleischmann et al. 1997) 
 

In general, the decisions for collection system design include what kind of products 

to collect, which processing options to choose for incoming products, where to locate the 

collection and consolidation points (Jayaraman 1996, Solomon et al. 1994, 1996, 

Spengler et al. 1997), and how to batch the collected end-of-life products.  In this 

research, the decisions do not focus on determining where to locate the collection and 

consolidation points for a given product and processing option.  These decisions 

presuppose that the demand for collection is known and that the minimization of 

transportation cost at the local level is the key driving force. The problem addressed in 

this thesis is to strategically design the growth of the collection system used in the reverse 

production system over time and under uncertainty.  There is considerable freedom in 

which subset of sources is used to provide the material, but the behavior of these sources 

is not under the direct control of the planner.  The sources must be recruited to the 

network. 
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Several authors have proposed modifications of traditional facility location models 

(Mirchandani and Francis 1989, Flapper et al. 1996, Louwers et al. 1999) for the design 

of reverse distribution networks.  In addition, Berman et al. 2001 and Berman and Huang 

2004 examine the collection problem (such as garbage collection) as a collection depots 

location problem.  One special characteristic to be taken in to account is the convergent 

structure of the network from many sources to a few demand points or collection points 

(Ginter and Starling 1978).  Such ‘many to few’ problems have also been studied in the 

hazardous waste disposal literature (e.g. Batta and Chiu 1988 and Erkut 1996).  By 

contrast, traditional location models typically consider a divergent network structure from 

few sources or distributors to many demand points. 

Building collection networks has also been studied as part of a solid waste 

management problem:  how to effectively allocate recycling drop-off stations, of 

appropriate size; and how to design efficient collection-vehicle routing and scheduling in 

the solid waste network.  Various types of mathematical programming models have been 

developed for this problem.  The methodologies include linear programming (Hsieh and 

Ho 1993, Lund and Tchobanoglous 1994; Huang et al. 1992, 1993), mixed integer 

programming (Anderson 1968, Marks et al. 1970, Chang et al. 1993, Chang and Wang 

1995), and dynamic programming (Baetz 1990, Huang et. al. 1994).  Some researchers 

study this problem from the multi-objective programming standpoint (Caruso et al. 1993, 

Chang and Wei 1999).   

However, for the solid waste management problem, the focus is the operational 

level (designing the collection route) and the tactical level (designing drop-off locations).  

In this research, the focus is on the strategic and tactical levels with different objectives at 
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each level.  In addition, most collection problems, such as the solid waste collection 

problem, assume that there are many collection points of sources and each source has 

different generation rates.  There is also a constraint that all collection generated must be 

collected for process or disposal (Huang et al. 1995, Chang et al. 1997, Chang and Wei 

1999, Realff et al. 2004).  However, it does not address how to physically or 

commercially grow the network of source of collection to reach a long term target in 

order to feed a recycling facility. 

Another particular feature of reverse distribution networks is their high degree of 

uncertainty in supply both in terms of quantity and quality of used products returned by 

the consumers. Both are important determinants for a suitable network structure since, for 

example, high quality products may justify higher transportation costs (and thus a more 

centralized network structure), whereas extensive transportation of low value products is 

uneconomical.   

Under solid waste management planning, conventional mathematical programming 

approaches for dealing with uncertainties may be classified by the following three 

methods:  (1) stochastic programming approaches, (2) fuzzy integer programming, and 

(3) scenario analysis.  Stochastic programming approaches can effectively deal with 

various probabilistic uncertainties in decision making and are particularly useful when 

the values of system components vary but their probabilistic descriptions are known 

(Yudi and Tsoy 1974, Glover 1976, Kunsch 1990).  However, the increased data 

requirements for specifying the parameters’ probability distributions affect the method’s 

applicability.  The stochastic programming approach may lead to large or complicated 

models that are difficult to solve in practical applications (Rockafellar and Wets 1991).   
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In the past decade, fuzzy sets theory and interval programming technique have 

received wide attention in the field of planning solid waste management systems.  For 

example, Koo et al. (1991) accomplished the site planning of a regional hazardous waste 

treatment center in Korea using a fuzzy multiobjective programming algorithm.  Huang 

et al. (1992, 1993, 1994) developed a grey linear programming, grey fuzzy linear 

programming, and grey fuzzy dynamic programming approaches to deal with a 

hypothetical solid waste management in Canada.  Chang et al. (1995, 1996) apply fuzzy 

goal programming in dealing with several issues in the integrated solid waste 

management in Taiwan. 

In scenario analysis (Rockafellar and Wets 1991, Assavapokee et al. 2005), the 

uncertainty of system components is modeled by a small number of subproblems derived 

from the underlying optimization, which corresponds to different scenarios.  The model 

of the collection system in this research uses a stochastic dynamic programming model to 

address uncertainty in the collection system.   

In addition to focusing on building a collection network, this research implements a 

recruitment model for collection points within the collection system.  Recruitment models 

in the literature focus on employment recruitment, human resource management, and 

physiological models in medical research (Darmon 2003, Treven 2006, Hawkins 1992, 

Georgiou and Tsantas (2002).  Mehlmann (1980) use a recruitment concept for a long-

term manpower planning problem.  Coughlan and Grayson (1998) examine the problem 

where the individual distributors play two key roles in network marketing organizations 

(e.g. Amway, Mary Kay and NuSkin):  they sell product, and they recruit new 

distributors.  They develop a model of network marketing organization network growth 
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that shows how compensation and other network characteristics affect growth and 

profitability of the distributor.  In their context, one distributor recruits others by socially 

interacting with them in one form or another.  They represented this process by adapting 

a diffusion model formulation to the recruitment process (Bass 1969).  This model allows 

for network growth via both inherent attraction (the innovation effect) and the spread of 

word-of-mouth (the imitation effect).  They introduce a recruitment function which 

includes innovation and imitation terms.  This thesis includes the notion of the 

recruitment of the collectors, instead of the distributors.  Furthermore, the recruitment 

process is represented in a more complex form, not just a closed-form function.   

Overall, this research examines at the reverse distribution problem with a focus on 

the collection component and features the issue of growing the collection network.  The 

strategic and tactical decisions are key, rather than the operational decisions.  The 

decisions required for the strategic and tactical levels are different, and made under 

differing time scale and uncertainty.  The next section provides an overview of how 

hierarchical decision making has been approached in the published literature. 

2.2 Literature Review of Hierarchical Decision Making 

The collection network growth problem in this research is to integrate overall plans 

to establish and grow infrastructure, and to determine effective tactics to operate the 

infrastructure.  The overall plans include 1) building the infrastructure, 2) determining the 

recruitment process to grow the network over time in order to achieve the plan, and 3) 

servicing the given network.  However, these plans are decided at different hierarchical 

decision levels and different time scales. 
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The hierarchical decision making problem arises in many applications such as 

semiconductor fabrication (Panigrahi and Bhatnagar 2004, 2006), production planning 

(Bitran et al. 1986), shop floor control (Qiu and Joshi 1999) and network traffic 

applications (Tuan and Park 1999).  Decision making in collection network growth 

incorporates hierarchical decision making in the sense that the decisions for each level 

have impacts on lower levels and decisions at lower levels feedback to decisions at the 

higher level for subsequent decision periods.  

The Markov Decision Process (MDP) (Chang et al. 2003, Panigrahi and Bhatnagar 

2004, 2006) has been introduced to model the hierarchical decision making problem.  

Chang et al. (2003) propose a model called the Multi-time scale Markov Decision 

Process (MMDP) for hierarchically structured sequential decision making processes.  The 

decisions in each hierarchical level are made at different discrete time-scales.  They also 

present an exact MMDP solution approach and study some approximation methods, 

along with an heuristic sampling-based scheme.  In addition, McDonnel et al. (2004) 

examine shop floor control systems and model them using game theory, as set-up games.  

They also propose a heuristic approach to solve the set-up game model. 

Panigrahi and Bhatnagar (2004) and Chang et al. (2003) propose a simulation-based 

approach, Q-learning, to solve the MMDP problem.  Panigrahi and Bhatnagar (2006) and 

Borkar (2005) consider the same problem and develop a simulation based two-timescale 

actor-critic algorithm in a general framework.  Hauskrecht et al. (1998) introduce the 

concept of macro actions and propose the solution method via these macro actions. 



 22

In this research, a hierarchical decision making model is introduced based on the 

MMDP model (Chang et al. 2003) but uses different assumptions on the form of the 

interactions between the hierarchical levels.  A heuristic method is also proposed to solve 

the multi-level decision making problem.  The heuristic employs methodologies from 

dynamic programming and simulation-based optimization combined with mathematical 

programming and model predictive control.  In next section, I provide the basic concept 

and literature review of these areas. 

2.3 Literature Review of Control Optimization 

The objective of control optimization is to determine a set of actions to be taken in 

the different system states in order to optimize a predefined system performance measure.  

In general, mathematical programming methods such as linear, non-linear and integer 

programming can be applied to parametric optimization (Pham and Karaboga 1998).  For 

control optimization, dynamic programming is the classical tool (Bellman 1957, 

Puterman 1994, Sethi and Thompson 2000). 

The MDP is a specific subset of control optimization problems.  According to 

Puterman (1994), a MDP model is used by a decision maker who is confronted with the 

problem of influencing the behavior of a probabilistic system as it evolves through time.  

The decision maker has to choose the actions through time, and its goal is to choose a 

sequence of actions that lead the system to perform optimally with respect to some 

predetermined performance criteria.  Basically, the decision maker wishes to find an 

optimal policy – defined as a sequence of actions in time.  When deciding which action to 

take, he or she must anticipate the available opportunities and costs (or rewards) 
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associated with future system states.  Many problems of practical importance have been 

formulated as MDP.  An extensive investigation of the theory and application of this 

framework can be found in many books such as those by Bertsekas (1987) and Ross 

(1983). 

There are many classes of MDPs such as the Finite-Horizon MDP, the Infinite-

horizon MDP and the Discounted MDP.  This dissertation employs a finite horizon, 

discrete-time MDP.  The theory and computation of this type of problem uses backward 

induction (Dynamic Programming or DP) to recursively evaluate expected reward.  

Bellman (1957) presents the optimality equations and the Principle of Optimality in his 

book which introduced and illustrated many of the key ideas of DP.  Karlin (1955), 

Howard (1960), and Hinderer (1970) provide extensive introductions to the area. 

However, the DP algorithm frequently is confronted by curses of modeling and 

dimensionality.  A very small real-world problem may contain one-thousand states but 

one may have to store one million transition probabilities just for one action (Bertsekas 

1995).  Because of the high dimensionality of this information it is difficult to store and 

access, it is also hard to generate a solution.   

Recently, a methodology called Reinforcement Learning (RL) has been introduced 

into the simulation-based optimization literature (Kumar 1985, Kumar and Variya 1986, 

Kaebling et al. 1996) to overcome dimensionality challenge.  The concept of simulation-

based optimization is also reviewed by Fu (2001), Law and McComas (2002), and 

Shapiro (1996).  The RL approach is essentially a form of simulation-based dynamic 

programming used primarily to solve Markov decisions problems.  The RL approach can 
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generate optimal or near-optimal solutions without having to compute or store transition 

probabilities (Sutton 1992).  In this research, an RL-based approach called the Q-

Learning algorithm (Watkins 1989, Rummery and Niranjan 1994, Bertsekas and 

Tsisikilis 1995, and Sutton 1992) is applied to the hierarchical decision making model.  

Gosavi (2003) and Kaebling et al. (1996) give an extensive description of this method. 

Overall, my dissertation focuses on the collection network growth problem within 

the context of reverse production system design.  The addition of the recruitment concept 

and the uncertainty of the response to recruitment from agents increase the complexity of 

the model.  The overall objective is to integrate overall plans to grow the collection 

network and to determine effective tactics to operate the network over time.  The 

comprehensive plans include decisions in three levels made at different time scales. 

At the tactical level, I propose an innovative way to examine more sophisticated 

behaviors of the agents in the recruitment process.  To the best of my knowledge, no 

recruitment has been investigated in the supply chain area.  This results in a new 

recruitment model for the supply chain application.  My recruitment model is developed 

using a stochastic dynamic programming framework.  An exact and two heuristics 

methods are proposed. 

In order to handle the hierarchical decision making, a novel strategic model is 

developed to incorporate the recruitment model.  The strategic model offers a robust way 

to integrate decisions from other levels in order to achieve the objectives that are different 

from most research on collection within reverse production systems.  This strategic 

model is developed based on the Multi-time scale Markov Decision Process (MMDP) 
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framework (Chang et al. 2003).  Different assumptions in the strategic model lead to 

different MMDP model from the previous work.  To the best of my knowledge, there is 

no published work examining the hierarchical decision making with the objectives 

proposed in this research.  Furthermore, the heuristic for the strategic model is developed 

for multi-level decision making in order to solve realistically sized problems 

incorporating the fact that the heuristic method for the tactical level problem can provide 

a solution quickly.  The heuristic includes the methodologies from dynamic 

programming, Q-Learning, and integer programming (IP).  This model can aid processors 

with high set-up costs to plan the collection network more efficiently in order to be 

financially viable.  Next chapter will cover more details of problem description in three 

levels: strategic, tactical and operational levels. 
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CHAPTER   3  

PROBLEM DEFINITION 

 
 
 

In this chapter the overall nature and structure of the decision models for strategic 

reverse production system growth problems are presented.  I divide the strategic network 

growth problem into three parts:  strategic, tactical and operational problems.  The 

strategic problem involves designing a long-term collection network over a horizon of 

several macro-periods and a regional marketing plan to grow required collection volume 

capacity and minimizing the total collection costs.  The strategic problem operates at a 

multi-region geographic scale and over several periods.  The strategic plan is revised at 

the end of each period to reflect the feedback from the regions.   

The tactical problem provides a recruitment plan to achieve the collection volume 

target set by the strategic decisions for the given marketing budget allocation.  The 

operational problem schedules the pick-up service to the recruited retailers.  The 

recruitment problem and pick-up service problem are decided on different timescales 

than the strategic problem, referred to as periods and micro-periods respectively.  I 

provide a detailed description of problem statement in section 3.1, and I describe an 

important assumption for the operational level in section 3.2. 
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3.1 Problem Statement 

In Chapter 1, I motivated the problem with a carpet industry example of a failure of 

a recycling system to reach its goals.  On September 1, 2005, Shaw Industries Group, 

Inc., agreed to purchase the U.S. nylon carpet fibers business from Honeywell 

International (Shaw Floors: Honeywell 2005).  Shaw will also acquire Honeywell’s 50 

percent stake in Evergreen Nylon Recycling based in Augusta.  The company plans to 

reopen the recycling plant owned by Evergreen.  However, as discussed in Chapter 1, 

operating the large nylon 6 recycling plant is a challenging problem.  Without a 

collection strategy, Shaw will face the same possibility for failure as Evergreen Nylon 

Recycling in 2001 and Polyamid 2000 in 2003. 

The high cost and large scale of the processing site drives the company to have 

enough supply at low cost to be financially viable. Shaw will change its operation from 

Evergreen, scaling back the facility throughput to about half that of the original 200 

million lbs of nylon 6, but it will need 100 million pounds of used nylon 6 carpet per 

year.  The large number of small firms and low landfill tipping fee can make collecting a 

large amount of post-consumer carpet difficult.  There are roughly 7,0004 small firms out 

of 8,000 firms in U.S. who can potentially supply the used carpet and these firms 

currently send the used carpet to the landfill.   

In addition to the collection problem, Shaw has to compete with the companies in 

China for supply as well as other domestic recyclers.  Currently these companies are 

buying a significant amount of used carpet from U.S. sources and capitalizing on cheap 
                                                 
4
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backhaul transportation costs to bring it to China for recycling.  They are simultaneously 

building nylon 6 polymerization capacity and the caprolactam plants to produce the 

monomer, which has long term implications for the demand for used carpet that could 

destabilize the recycling industry.  To survive and thrive, over time Shaw must find a 

way to grow capacity and find/expand markets while being robust to uncertainties or 

changes in transportation costs and technology. 

The collection system must manage network growth by investing wisely in the 

recruitment of collection sites and their retention.  Recruitment decisions play out over 

time, regions, and market segments (e.g., targeting multi-family dwellings for used nylon 

6 carpet collection due to higher facility turnover and use of this carpet type in this 

segment).  Recruitment strategies range from adding individual sites (e.g., a carpet sales 

location) to large scale additions (e.g., adding a retailer system, like Home Depot or 

StarNet or Carpet One). 

From Shaw’s perspective, I derive the following problem statement. A carpet 

recycling company wants to build a network infrastructure to collect, process, and 

transport used carpet to the company’s processing site for recycling such that the total 

cost of the entire system is minimized and collection volume targets are met.  Hence, the 

collection network growth can be viewed as a problem for a single decision maker.  A 

collection center can perform the collection tasks as well as certain processing tasks.  

Processing tasks may include sorting and packaging (baling).  Only the processor’s site 

can perform a more complex chemical recycling process (Mihut et al. 2001).   Figure 3.1 

depicts how the processes are linked in the carpet recycling industry. 
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Figure 3.1:  An Idealized Carpet Recycling Process Diagram  
 

 To justify the large capital cost of the depolymerization plant, the processor, or 

recycling company, must find a way to collect a sufficient amount of used carpets to 

supply the processing site.  I take the perspective of the processor.   

In Figure 3.2, I summarize overall inputs and the outputs of the strategic network 

growth problem followed by a discussion on how this problem may be subdivided into 

three levels:  strategic, tactical and operational.  
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Figure 3.2:  Inputs and Outputs of the Strategic Network Growth Problem 
 

Collection network planning consists of deciding how much to collect in each 

region and how to grow collection volume over time.  These decisions are critical 

strategic decisions.  I consider this overall planning problem at a national scale, for which 

I have a set of regions in which to build collection networks.  Each region consists of a 

collection center and a set of retailers that can be recruited to the network.  For simplicity, 

I assume that there are no value added processes such as sorting at the collection center 

and there is no capacity limit at the collection center.  Each regional collector operates its 

own collection center in its region.  Overall, the entities in the reverse supply chain 

include the processors, the regional collectors, and suppliers (retailers).  They are 

connected as shown in Figure 3.3.  For simplicity, throughout this dissertation, I focus on 
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a single type of material to be collected.    The costs associated with strategic planning in 

this reverse supply chain include: 

• Fixed and variable collection costs, and 

• Fixed and variable opening costs for collection centers. 

In addition to these costs, the processor spends a marketing budget over the planning 

macro-periods.  In the strategic problem, for a specific budget, I assume that I can obtain 

an estimated supply quantity from each region based on the result from the recruitment 

problem.  I assume that the collectors make their own decisions on which retailers to 

recruit based on the recruiting budget given to them.  The resulting supply quantity 

estimation for each region depends on the region’s recruiting budget and characteristics.  

One region may consist of many small retailers who are more than willing to supply the 

source to the processor while another region may consist of retailers who have already 

agreed to send their source to other processors. 

 

Figure 3.3:  Network Growth Infrastructure 
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various sources surrounding the regional collection center.  All amounts collected from 

every region are transported to the final customer location, the processor’s site.  In the 

strategic level, there are two main objectives.  The first objective is a capacity target for 

collection volume to be satisfied at the processor’s site at the end of planning horizon.  

This target is a total collection capacity, not a total collection amount.  The second one is 

that the total associated costs must be minimized.  The processor collection capacity 

target and total recruiting budget are provided as inputs to the strategic problem.  I adopt 

a decision horizon of multiple macro-periods with decisions made every macro-period.  

In summary, the design of the strategic infrastructure of the reverse supply chain system 

attempts to answer the following questions: 

• In which regions, and when, should collection centers be opened? 

• How much should be invested towards recruitment in each specific region? 

When a regional collection center is opened, a regional recruiting budget may or 

may not have been allocated.  If there is no recruiting budget allocated to the region, the 

regional collector performs the collection from existing recruited retailers only.  

Alternatively, if there is a recruiting budget, the collector uses it to recruit new retailers 

while performing collection on the existing network of retailers.   This reflects the notion 

that an existing collection network is in place, and may require augmenting with new 

retailers and/or regions. 

Given the answers to these strategic questions, many tactical decisions need to be 

made.  These decisions are determined by the collector.    I adopt a decision horizon of 

one macro-period with decisions made every period.  These decisions include: 
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• Given the recruitment budget to be spent over one macro-period, how much of the 

budget should be allocated in a given period? 

• Which subset of retailers should be targeted for recruitment during each period? 

I define the objective of the tactical problem for a regional collector as how to 

achieve the specified regional collection target for the collection center.  The collector 

cannot collect materials from a retailer unless both parties agree to the arrangement.  

Both parties reach agreement through the recruitment process.  The collector serves as a 

recruiter and the retailer acts as a recruitee.  The goal is to recruit the retailers in order to 

have access to their material by using the recruiting budget efficiently to reach the target 

amount.  The retailer may or may not accept the offer depending upon its recruitment 

allocation.  Therefore, a key modeling assumption predicts how the retailer behaves with 

respect to the offered incentives (Guide and Van Wassenhove 2001).  According to the 

Florida Department of Environmental Protection (2000), providing the incentives to the 

collectors is one of the recommendations in the carpet pilot collection program done in 

Sarasota County in Florida. 

Given the answers from the recruitment problem, many operational decisions need to 

be answered in order to operate the regional collection network.  In a given period, the 

collector has to schedule transportation to pick up the recruited material from the 

recruited retailers in its regional network.  In actual applications, each retailer generates 

the source material in random quantities per time period.  I adopt an operational decision 

horizon of one period with decisions made every micro-period.  Some of these 

operational decisions include: 
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• How many trucks are required used to service the retailers over the period?  (I assume 

that this decision is made once at the beginning of the period and every truck has the 

same capacity.) 

• Which retailers to be served by which truck in the specific time period? 

The costs associated with the operational problem include: 

• Fixed and variable transportation cost, 

• Penalty cost if there are failures in service, and 

• Penalty cost if the target collection amount does not satisfy the overall network goals. 

Combining all the decisions together, the strategic, tactical and operational problems 

are depicted in Figure 3.4.  Strategic level decisions have an impact on the decisions in 

the tactical level which also affects the decisions in the operational level. 

 

Figure 3.4:  Information Passed between the Decision Levels 
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major beverage makers such as Coke and Pepsi although 2 out of 3 soda bottles (15 

million) were not recycled in 1998 (Container Recycling Institute 2005).  In April 2000, 

Coke announced that they have committed to a goal of using 10% recycled content in its 

plastic bottles by the end of this year.  That goal is only 2.5% of the total amount of 

bottles the company sold in 1993.  This implies that plastics-recycling firms also demand 

enough of supply with low cost to justify the cost of the high-technology processing site 

and operation.  The company in this industry also faces another competitor from China.  

The U.S. plastics recycling industry experiences a shortage because so much is being 

exported to China for recycling there (MSNBC U.S. News Environment 2005). 

The strategic and tactical problems are designed to understand, model, and support 

decision making in growing carpet-recycling supply chain networks.  To be more 

specific, I have provided the relationship between the timescale and decision levels in 

Figure 3.5.  For example, if the strategic planning horizon has a macro-period of five 

years, the network structure solutions and target quantity decisions in year one are passed 

onto tactical level problem in order to solve the recruitment problem over a number of 

periods, in this case months.  The recruitment is determined monthly to identify which 

retailers are to be recruited and which retailers are to be served for that month.  These 

decisions are acknowledged by the operational level, which constructs a policy for each 

micro-period, one day, for the truck operation plan based on the information on the state 

of the retailers in the network. 
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Figure 3.5:  Diagram Showing the Connections between the Strategic, Tactical and 
Operational Levels 

 

3.2 Assumptions for the Operational Level 

My dissertation focuses on models for the tactical and strategic level problems and 

their associated solution methodologies.  For simplicity, I assume that each retailer’s 

generation rate is deterministic and that the pick-up schedule in the operational level can 

be solved optimally.  Hence, recruited retailers form the collection network and provide a 

fixed amount of resource to be delivered to the collection center at the end of the month.  

This implies that the pick-up service has satisfactory performance.  Therefore, the 
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recruited retailers never leave the network.  The only cost incurred is the transportation 

cost from collection center to the retailer.  This assumption aims to reduce the 

computation burden to obtain the solution for the strategic and tactical level problems.  

The goal of this research is to be able to approach the solution of a problem of realistic 

size.  Furthermore, the operational level problem can be viewed as a scheduling problem 

in solid waste management where many researchers (Hsieh and Ho 1993, Chang et al. 

1993, Huang et al. 1993) have already proposed many methodologies for this type of 

problem. 

In the collection network growth problem, a recycling company with large capacity 

and expensive processing facility requires enough material with low collection cost in 

order to be financially viable.  This problem is a long term problem where the collection 

strategy can be changed yearly depending on the outcome of the previous year.  My 

research provides the multi-time model that captures the decision making in each level 

and time period in order to grow the collection network wisely.  The solution approach 

for this model can assist the company to make better decisions to meet the target 

collection volume with the least costs and eventually thrive financially.  The end result is 

environmentally invaluable because less amount of used carpet will end up in the landfill. 

With the overall problem description and the assumptions on the operational level, I 

discuss the model and approach for the tactical level in Chapter 4 problem and for 

strategic level problem in Chapter 6.  A numerical study of tactical approach is presented 

in Chapter 5 and a numerical study of strategic approach is displayed in Chapter 7. 
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CHAPTER   4  

MODEL AND SOLUTION APPROACH FOR THE  

TACTICAL LEVEL PROBLEM 

 
 
 

In this chapter a model for the tactical recruitment of sources is developed.  This 

model builds upon the solution from the operational level and the budget allocation from 

the strategic level.  The tactical problem addresses the regional collector’s problem of 

recruiting the retailers to join its network.  This chapter provides the modeling details for 

the recruitment problem, a general framework for the recruitment process, and a 

methodology to solve the recruitment problem.  A crucial element of the model is the 

individual retailer state behavior, which is assumed to follow a Markov process.  The 

recruitment actions and budget expenditures move the retailers into more favorable states.  

Thus, the overall problem is to balance the short term recruitment with the longer term 

actions to increase the future cumulative recruitment. 

This chapter is organized as follows.  In section 4.1, the description of tactical level 

problem is discussed.  Then I introduce the general framework for the recruitment 

problem in section 4.2.  In section 4.3, the tactical problem is formulated with a 

stochastic dynamic programming framework.  In section 4.4, an exact method is 

developed to solve the tactical problem.  In the next two sections, two heuristics are 
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proposed.  In section 4.5, I develop a simulation based optimization methodology, the Q-

Learning Based Heuristic.  In section 4.5, I propose a rolling horizon based methodology, 

the Rolling IP with DP Heuristic. 

4.1 Tactical Level Problem 

According to Chapter 3, the input from the strategic level informs the tactical level 

about which regions to recruit, how much budget can be spent in each recruiting region, 

and how much regional collection volume should be targeted in one macro-period.  The 

output from the tactical level informs the operational level about recruiting retailers and 

the corresponding budget allocation for each period.  The operational level then follows 

the recruitment plan from the tactical level, updates the recruiting network in each month, 

and performs the collection accordingly.  The information flows for tactical level are 

displayed in Figure 4.1.  

 

Figure 4.1:  Information Flow for Tactical Level Problem 
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For each region, I assume that the retailers are dispersed around the collector.  In 

some regions, such as rural areas, the retailers may locate sparsely around the collector.  

While in other regions, such as metropolitan areas, the retailers may cluster tightly near 

the collector.  This dispersion plays a role in the regional collection cost for the strategic 

level decision making which will be discussed in Chapter 6.  I denote the term 

“recruitment” as the negotiating process that involves two parties:  the regional recruiter 

and the recruitee.  The regional collector cannot retrieve material from a source or retailer 

unless it is agreed by both parties through the recruitment process.  The regional collector 

serves as a recruiter and the retailer acts as a recruitee.  The initial objective of the tactical 

level problem for a region is to recruit the retailers for the sources by using the limited 

recruiting budget efficiently to reach the target collection volume.  For simplicity, 

throughout this chapter I represent the regional collector’s tactical objective as a 

maximization of the expected collection volume obtained from recruiting the retailers 

with a limited recruiting budget.  The regional tactical problem is solved per period over 

one macro-period.  Given the solutions from strategic level, the tactical for a region 

decisions are: 

1) Which subset of retailers to recruit, and 

2)  How to allocate the budget to those selected retailers. 

Given the details of the tactical level problem, the general framework of the 

regional recruitment model is described in the next section. 
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4.2 Multi-period Recruitment Framework 

In this section, a general framework for the regional recruitment process is 

developed.  This framework attempts to capture the heterogeneous attitudes of retailers 

towards participating to join the processor’s collection network.  In the literature, 

recruitment models focus on employment recruitment, human resource management, and 

physiological models in medical research (Darmon 2003, Treven 2006, Hawkins 1992, 

Georgiou and Tsantas (2002).  No research has been found on recruitment in supply 

chain applications.  In this research, I develop a general framework for the regional 

recruitment model from industrial engineer’s perspective using the available 

methodologies in operations research.  The overall problem I consider has M  regions 

and each region has mη  retailers.  Consider region m .  There are two types of entities in 

this model:  recruiter and agent. 

Recruiter 

A regional recruiter is an entity who is responsible for recruiting agents to join its 

network in order to gather required resources from agents.  I assume that there is only one 

recruiter in this region framework and it does not compete with other recruiters for the 

resource.  It is given a resource, called Resource A, which can be used for the agents’ 

recruitment process.  This resource typically can be interpreted as money or a discount 

that can be used as an incentive to recruit the agents.  I call this resource the recruiting 

budget, which is determined for each region by the strategic model.  For example, in 

carpet recycling, the recruiter can represent the regional collector trying to establish a 

collection network in its region for used carpets from carpet retailers.  The recruiting 
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budget can be the amount of initial cost reduction to offer to the retailer for waste 

collection beyond the cost of actual service. 

Agent 

An agent (recruitee) represents the owner of the resource that the recruiter desires.  

In this framework, there is only one type of resource from an agent, called Resource B.  

The region contains a heterogeneous set of agents.  Heterogeneity is in: 

a) The quantity of the resource they generate, 
 

b) Their geographical location, 
 

c) Their initial willingness to sell/give the recruiter the resource based on some 

predefined factors, and 

 
d) Their predisposition towards becoming recruited to the network. 

The agents can represent the carpet retailers that have used carpet to be recycled.  

The regional recruiter interacts with a subset of the agents in order to achieve its 

objective.  The objective of the regional recruiter is described next. 

Objective 

The objective of the regional recruitment model (recruiter) is to build the collection 

network that yields the highest collection volume by the end of the planning period, 

1T − , by making decisions in each period with a limited regional recruiting budget.  The 

recruiter is given a recruiting budget that must be allocated over discrete finite time 

period, (0,1,..., 1)t T= − , with budget allocation decision required for each period.  Figure 

4.2 depicts the growth of recruitment network over time. 
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Figure 4.2:  Growing Recruitment Network 
 

In order to achieve the objective, the recruiter makes the recruitment budget 

allocation decision in each decision period.  Its decision also affects the decisions of the 

agents.  The decisions of the recruiter and the agents are described in the following 

paragraphs. 

Recruiter’s Decisions 

In each period, the recruiter decides how to allocate the recruiting budget, Resource 
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case that the agent does not contract to provide the resource to the recruiter, the agent’s 

overall willingness state can change by being influenced by the incentives it receives 

from the recruiter. 

Figure 4.3 summarizes how the decision of the recruiter is related to the decision of 

the agents in each period. 

 
 

Figure 4.3:  Decisions of Recruiter and Agent in One Period 
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Figure 4.4:  The Decision Timeline for a Recruitment Problem 
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collection network.  In other words, for simplicity, I am assuming that the recruiter is not 

confronted with the agent retention issue.  The model also consists of other states that 

represent a “distance” from recruitment based on the probability of reaching recruitment 

and connection to other states.  Each agent has its own Markov model.  Consider agent i  

in this model.   

Willingness State Definition (Agent’s state) 

    { , , , }its R L M H= . 

This describes what state agent i  is in at time period t .  There are four possible states for 

each agent: 

1. Recruited (R) - The agent agrees to give the resource to the recruiter. 

2. Low (L) - The agent is not recruited by the recruiter.  Also, the agent is in the state that 

is very hard to be recruited. 

3. Medium (M) - The agent is not recruited by the recruiter.  The agent has no bias 

against the recruitment. 

4. High (H) - The agent is not recruited by the recruiter.  Also, the agent is in a state that 

makes recruitment easy. 

I assume that when the agent is recruited, it resides in the R willingness state, an 

absorbing state.  The states L, M, and H represent a “distance” from recruitment based on 

the probability of reaching the recruitment state and connection to other states.  In other 

words, if the agent is not recruited, it can be only in either the L, M, or H state.  Figure 

4.5 shows a symbolic representation of the states and possible transitions.  
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Figure 4.5:  Agent’s State Diagram 
 

I denote the amount of resource that agent i  can generate between each decision 

epoch (each period) as ig , which is assumed to be deterministic.  According to section 

3.2, I assume that the operational level or the pick-up problem can be solved exactly.  

Thus, this means that I am assuming that the recruiter can collect the full amount of 

resources from every recruited retailer in each period.  In addition, I denote ita  as the 

amount of budget that agent i  receives from the recruiter in period t .  Given the action 

ita , the agent transits to the next state with following transition probabilities. 

Transition Probabilities 

The probability of moving to state , 1i ts +  from state its  by action ita  is denoted by 

, 1( | , )i t it itp s s a+  or 
, 1

( )
it i ts s itPr a

+
.  There are two types of transition probabilities to consider. 

The probability of recruitment is the probability of moving to state R from the L M, 

or H states ( ( ), ( ), ( )LR it MR it HR itPr a Pr a Pr a ).  The difficulty of recruitment depends on three 

factors:  state of the agent, budget allocation or action, and agent’s recruitment budget 

threshold, iµ .  The recruitment budget threshold has the same units as the budget 

allocation.  In general, it represents a minimum value required to recruit the agent.  In the 

HML

R
Probability =1 
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case of carpet retailers, there may be some correlation between the size of the retailer and 

the budget required.  The reason is that the incentives offered may directly scale with the 

amount of carpet available for pick-up.  The threshold may be interpreted as subsidizing 

the cost of the retailer’s disposal fee.  In Chapter 5, when I generate the data for 

numerical study, I assume that if the agent can provide a significant amount of Resource 

B, it also demands large amount of allocation of Resource A from the recruiter.  Thus, the 

recruitment budget threshold depends on the amount of Resource B collection volume 

from agent i .  A higher ig  implies a higher iµ .  This means that it is more expensive to 

recruit agents who have higher Resource B generation rates. 

In order to capture these three factors together, I apply a Sigmoid function (Seggern 

1993) to calculate the probability of recruitment.  A sigmoid function is a mathematical 

function that produces a sigmoid curve — a curve having an "S" shape.  Often, a sigmoid 

function refers to the special case of the logistic function shown in Figure 4.6.  In general, 

a sigmoid function is real-valued and differentiable, having a non-negative or non-

positive first derivative, one local minimum, and one local maximum.  In addition, I 

define the recruitment willingness factor, sβ , based on the state of the agent such that 

0H M Lβ β β> > > .   

 

Figure 4.6:  A Sigmoid Function 
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In this research, I assume that the function to calculate probability of recruitment of agent 

i  at time t  is expressed as:  

( )
1( )

1it s it iit
s R it aPr a

e β µ− −=
+

. (4.1)

Using the probability of recruitment function in (4.1), I can vary the value of the 

recruitment willingness factor so that each state has different difficulties to recruit as 

shown in Figure 4.7.  I set 2Hβ = , 1Mβ = , and 0.5Lβ = . 
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Figure 4.7:  Recruitment Probability for Different Recruitment Willingness States 

 

The probability of (unrecruited) state transition can be specified according to how 

easy the particular agent is moved among the L, M, and H states if it is not recruited.  The 

probability of state transitions can be set up such that it is easy to move to M and H from 

L.  This makes the agent easier to recruit.  On the other hand, the probability of state 

transition can be set up such that it is more difficult to move to M and H from L.  This 

makes the agent more difficult to recruit.  Figure 4.8 displays the overall transition 

probabilities of an agent. 

ita
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Figure 4.8:  Transition Probabilities for An Agent 

 

Using the Agent’s Resource Willingness (ARW) Model, the decision for one period 

that is shown in Figure 4.3 can be modified as shown in Figure 4.9.  The ARW model 

provides a better representation of each agent’s participation status for the recruiter.  

 

Figure 4.9:  Decisions of Recruiter and Agents with the ARW 
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4.3 A Stochastic Dynamic Programming Formulation for 

Recruitment Problem 

This section develops a stochastic dynamic programming model for the recruitment 

problem that capitalizes on the Markov property in the Agent’s Resource Willingness 

model.  The formulation of this model consists of the definition of decision epochs, state 

space, actions, transition probabilities, and rewards.  A solution for this model provides 

the optimal recruiting policy to the regional collector.  In this formulation, I assume that 

the precise information for the parameter values is available.  If the values for the 

parameters are not exactly known, White and Eldeib (1984) discuss how to handle this 

situation in dynamic programs.5  The overall problem I consider has M  regions and each 

region has mη  retailers.  Each regional collector has its own recruitment problem.  In this 

section, I consider the recruitment problem for region m .  The number of agents is mη , 

the maximum recruiting budget is maxB  and the total number of planning periods is T .  

The decision epochs and state spaces are defined as follows. 

Decision Epochs  

{0,1,..., 1}t T= −  

State Space 

1 2{ , , ,..., , }
m

Start
t t t t tY t w w w Bη=  for all tY ∈S , 

where the willingness state of retailer i  at decision epoch t  is { , , , }itw L M H R∈  and the 

starting recruitment budget at the beginning of period t  is represented by Start
tB .   

                                                 
5

 Special thanks to my dissertation committee member Dr. Chelsea C. White III for providing this insight. 
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In this model, I define the action set as follows. 

Action Sets 
1 2{ , ,..., }

mlt lt lt ltA a a aη= , 
 

where the amount of resource A allocation to agent i  from action set index l  at time 

period t  is represented by  such that    
m

ilt
i

a
η

≤∑  Start
tB  and 0 Start

ilt ta B≤ ≤  for 1,...,| |tl A= .  

At the first period, max
0
StartB B= .  The size of the action set depends on mη   and Start

tB .  

In this model, I define the state transition rules as follows. 

State Transition Rules 

(a) Initial State 

There is more than one possible initial agent state at 1t =  depending on the initial 

value of itw .  One example initial state is 0 10 20 0 0{0, , ,..., , }
m

StartY w w w Bη= =  {0, ,..., ,10}
m

L L
η

123  

where all agents begin in the ‘L’ willingness state and starting budget is 10. 

(b) State Transition Probabilities 

These probabilities depend on the ARW model for each agent.  I assume that each 

agent’s willingness state changes independently, so the state transition probability is the 

multiplication of the probability of the willingness state transition for each agent given 

the specific Resource A allocation provided by the recruiter.  The representation of the 

transition probability in the product form can be simplified into a representation based on 

simple product form through algebra manipulation according to Economou (2005) and 

Thomas (2005).6 

                                                 
6

 Special thanks to my dissertation committee member Dr. Chelsea C. White III for providing this insight. 
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If the current state is tY  and action ltA  is taken in period t , the probability transition 

of moving to state 1tY +  or 1( | , )t t t ltP Y Y A+  can be represented in the following form, 

1( | , )t t t ltP Y Y A+

 
( 1( 1) 2( 1) ( 1) 1( 1, , ,.... , )

m

Start
t t t t tP t w w w Bη+ + + += +  

         )1 2 1 2( , , ,.... , ), ( , ,..., )
m m

Start
t t t t lt lt ltt w w w B a a aη η ,      

 
1 1( 1) 2 2( 1) ( 1), 1 , 2 ,( ) ( ) ( )

t t t t t t mm mw w lt w w lt w w ltPr a Pr a Pr a
η η η+ + +

= ⋅ ⋅⋅ ⋅ , 

 
, ( 1)

1

( )
m

it i tw w ilt
i

Pr a
η

+
=

=∏ .                      (4.2)

where 
1

m
Start

ilt t
i

a B
η

=

≤∑  and 1
1

m
Start Start
t t ilt

i
B B a

η

+
=

= −∑ .  Here, the probability of moving to 

willingness state ( 1)i tw +  is 
( 1), ( )

it i tw w iltPr a
+

 if the previous willingness state is itw  and 

allocation ilta  is taken for agent i .  These probabilities can be obtained from the ARW 

model described in section 4.3.  If the recruitment willingness factor parameter 
itwβ  

cannot be obtained precisely, the transition probability can not be obtained exactly.  

White and Eldeib (1994) provide an algorithm to approach this difficulty by assuming 

that the transition probability mass vector for each state and action is described by a finite 

number of linear inequalities7.  

For this model, I define the rewards as follows. 

Rewards 

In order to compute the rewards, I assume that the willingness state of agent i  at 

time t  has its own value, 
itwV .  Let RV  be the amount of Resource B that agent can 

provide to the recruiter.  Because the reward should represent the increment in collection 

                                                 
7

 Special thanks to my dissertation committee member Dr. Chelsea C. White III for providing this insight. 
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volume, the values for the non-recruited states LV , MV , and HV  can be set to zero.  

However, the reward should be defined such that there is an incentive to move to a higher 

willingness state.  Hence, the value of   LV , MV , and HV  are assigned a small value such 

that L M H RV V V V< < << .  For example, LV  = 0.1,  MV  = 0.2, and HV  = 0.3.  Let 

( )1, ,t t lt tr Y A Y +  denote the value at time t  of the reward received when the state of the 

system at decision epoch t  is tY , action ltA  is taken, and the system occupies state 1tY +  at 

decision epoch  1t + .  This value represents the total increment in the collective value of 

all of the agents’ state changes.  If the recruiter moves many agents to state R , it can 

obtain a high reward from the cumulative collection volume for the recruited agents.  

This value can be obtained by: 

( )1, ,t t lt tr Y A Y + ( )( 1)
1

m

i t itw w
i

V V
η

+
=

= −∑ . (4.3)

The regional recruiter’s expected reward of state tY  and for action ltA  can be 

evaluated by computing: 

( ),t t ltr Y A  ( )
1

1 1( | , ) , ,
t

t t lt t t lt t
Y

P Y Y A r Y A Y
+

+ +
∀

= ∑ , 

 ( ), ( 1) ( 1)
1 11

( )
m m

it i t i t it
t

w w ilt w w
Y ii

Pr a V V
η η

+ +

+∀ ==

⎡ ⎤
= ⋅ −⎢ ⎥

⎣ ⎦
∑ ∑∏ . (4.4)

Given the description of the reward function, the objective function of this model 

can be defined as follows. 

Objective Function 

 The objective is to maximize the expected collection volume using the given 

budget from the strategic level.  In other words, under a fixed budget, the recruiter wants 
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to move a subset of retailers to state R such that those retailers yield the maximum 

expected collection volume in the final period.  Since the overall purpose is to maximize 

the total collection volume at the end of the time horizon and the volume is not a quantity 

associated with time, there is no conventional discount factor involved.   

Let π  = 0 1 1( , ,..., )Td d d −  represent the optimal policy for every time period.  Hence, 

π ∗  = * * *
0 1 1( , ,..., )Td d d −  denotes the optimal policy in each time period.  Define the 

expected total reward obtained at decision epoch , 1,..., 1t t T+ −  by using policy π  to be 

( )t tu Yπ  with starting state tY  in decision epoch t  as: 

1

( ) ( , )
t

T

t t Y t t lt
t t

u Y E r Y Aπ π
−

′ ′ ′
′=

⎧ ⎫= ⎨ ⎬
⎩ ⎭
∑ . (4.5)

Let *( )t tu Y  denote the maximum expected total reward obtained at decision epochs 

, 1,.., 1t t T+ −  with starting state tY  in decision epoch t .  Then the optimality equation for 

the recruitment problem is: 

{
1

* * *
1 1 1( ) ( ) max ( , ) ( | , ) ( )

tlt

t t t t t t lt t t t lt t t
YA

u Y u Y r Y A P Y Y A u Yπ

+

+ + +
∀

⎧ ⎫⎪ ⎪= = +⎨ ⎬
⎪ ⎪⎩ ⎭

∑ , (4.6)

1

* *
1 1 1( ) arg max ( , ) ( | , ) ( )

t
lt

t t t lt t t t lt t t
YA

A Y r Y A P Y Y A u Y
+

+ + +
∀

⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭

∑14243
. (4.7)

The optimal action in states Y  at epoch t  is denoted by *( )tA Y .  In other words, the 

maximum expected total reward at period t , *( )t tu Y , is the realization from all possible 

actions of the immediate reward and expected future reward from a particular action.  

Essentially, the objective of the recruitment problem is to find *
0 0( )u Y .   
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Given the stochastic dynamic programming formulation of the recruitment problem, 

the exact method to solve this problem is developed in the next section. 

4.4 Dynamic Programming Algorithm 

In this section, the algorithm to solve for the optimal policy of the recruitment 

problem is proposed.  The algorithm takes advantage of the optimality equation 

developed in section 4.3.  Because the stochastic recruitment problem is a finite horizon 

problem, it can be modeled as a stochastic path problem where the number of paths is 

exponentially large.  In addition, the recruitment problem’s reward falls under the total 

reward problem.  For a finite period stochastic path problem with total reward, one could 

use value iteration based scheme to solve the problem.  Hence, for a small sized problem, 

backward induction or dynamic programming (DP) provides an efficient method to solve 

the recruitment problem. 

The procedure of the DP algorithm is shown as follows. 

Backward Induction (DP) Algorithm Procedure 
 
Step 1 Set t T=  and * ( ) ( ) 0T T T Tu Y r Y= =   for all possible states in t . 

 
Substitute 1t −  for t  and compute *( )t tu Y  for each tY ∈S  from 

 

          {
1

* *
1 1 1( ) max ( , ) ( | , ) ( )

tlt

t t t t lt t t t lt t t
YA

u Y r Y A P Y Y A u Y
+

+ + +
∀

⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ,       

          

Step 2  
 

{ ( ), ( 1) ( 1)

1

*

11

( ) max ( )
m m

it i t i t it

tlt

t t w w ilt w w
Y iA i

u Y Pr a V V
η η

+ +

+∀ ==
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(4.8)
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Set 

 
1

* *
1 1 1( ) arg max ( , ) ( | , ) ( )

t
lt

t t t lt t t t lt t t
YA

A Y r Y A P Y Y A u Y
+

+ + +
∀

⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭

∑14243
. (4.9)

Step 3 If 0t = , stop. Otherwise return to step 2. 
 

Using theorem 4.5.1 from Puterman (1994), it can be shown that the optimal value 

for all decisions epochs is *( )t tu Y  and corresponding to the optimal action (policy) in all 

states tY  at epoch t  is optimal action *( )tA Y .  An illustration to find *
1 1( )u Y  using the 

dynamic programming algorithm for a 2-agent problem is displayed in Figure 4.10. 

 
Figure 4.10:  Example Steps of the DP Algorithm 

 

For a small sized problem, the DP algorithm gives us an optimal policy for decision 

making based on the states and the time period.  It enables the recruiter to find which 

agents to recruit and how much of Resource A to allocate to each agent for each period.  

However, this algorithm suffers from “the curse of dimensionality” as described in 

Bellman (1957).  This means that computational efforts grow exponentially with the 

number of state variables or with the problem size.   

Immediate reward and 

1 2 1 | |1( | , )AP Y Y A

1 2 1 11( | , )P Y Y A
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2 2( )u Y  

{2,R,R,0} 

All Actions

11A  
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| |1AA

1Y = {1,M,M,10} 
Find *

1 1( )u Y  , *
1( )A Y  

{2,L,L,0} 
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Consider a problem with three periods and a recruiting budget bounded by the 

largest budget required to recruit an agent multiplied by the number of agents.  Table 4.1 

displays the number of states, an upper bound on the number of actions, and the total 

number of state-action pairs.  For a large problem, it is difficult to compute an exact 

number of actions because of the large combinatorial combinations.  As shown in Table 

4.1, a one-agent problem has a small number of states and actions.  As the number of 

either agents or action sizes increases linearly, the number of states and actions increases 

at an exponential rate.  In addition, the computation of the transition probabilities in (4.2) 

becomes more troublesome. 

 Table 4.1:  Number of State, Actions, State-Action Pairs 
 

Number of 
Agents 

Action 
Sizes 

Number of 
States 

Upper bound on 
Number of Actions Number of state-action pairs

1 5 60 6 360 
5 5 15,360 7,776 1.2E+08 
10 5 1.5E+07 6E+07 9.5E+14 
20 5 1.6E+13 3.6E+15 6 E+28 
1 10 120 11 1,320 
5 10 30,720 16,1051 4.9E+09 
10 10 3.1E+07 2.5E+10 8.1E+17 
20 10 3.3E+13 6.7E+20 2.2E+34 
1 20 240 21 5,040 
5 20 61,440 4E+06 2.5E+11 
10 20 6.2E+07 1.6E+13 1E+21 
20 20 6.6E+13 2.7E+26 1.8E+40 

For large-scale problems, the DP algorithm is difficult to solve in reasonable time 

because it has to examine every possible action in each state in order to find the optimal 

solution, even though many states would not be reached by the optimal policy.  With the 

notion that the tactical level problem has to interact efficiently with the strategic level 

problem to grow the network, the recruitment problem must be solved with a small 
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amount of computational effort.  In the next section, I introduce two heuristics as a way 

to solve the large-scale recruitment problem in reasonable time. 

4.5 Q-Learning Based Heuristic 

This section develops a heuristic based on the Q-Learning method to obtain a 

solution policy for the recruitment problem.  This heuristic provides an alternative way to 

solve the large-scale recruitment problem within reasonable effort.  Q-learning (Watkins 

1989) is an extension to traditional dynamic programming or value iteration.  Q-Learning 

is one of the methods of reinforcement learning (RL) or simulation-based optimization 

concepts.  According to Kaebling (1996), RL is the problem where a solver must learn 

how to achieve the best action via trial-and-error with interaction in a dynamic 

environment.  Typically, there are two strategies for RL.  The first is to do a search of 

actions in order to find one that performs well in the environment.  This approach has 

been taken by genetic algorithms.  The second is to use statistical techniques and DP 

methods to estimate the utility of taking actions in the states.  Q-Learning falls under the 

second strategy. 

With a large scale in the number of actions and the number of states in complex 

recruitment problems, the exploitation-exploration dilemma is encountered.  To achieve 

high reward, a reinforcement learning solver most likely takes actions that have been 

tried in the past and found to produce high rewards.  In order to discover such actions, it 

must choose actions that have not been tried before.  The solver must exploit the on-hand 

information in order to obtain high rewards, but it also must explore to make better action 

selections in the next periods. The dilemma is that neither exploration nor exploitation 
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can be pursued exclusively without failing at the task.  Failing to explore enough state-

action pairs results in an inability to choose an action that may produce higher future 

reward, while failing to exploit makes the current information lead to slow convergence.  

In general, the solver must choose a variety of actions and progressively favor those that 

appear to be best.  For a stochastic task, each action must be tried many times to gain a 

reliable estimate of its expected reward.  These two characteristics--trial-and-error 

(exploration) search and delayed reward (exploitation)--are the two most important 

distinguishing features of reinforcement learning.   

The main difference between RL and DP is depicted in Figure 4.11.  Both 

methodologies are similar in the distribution of the random variables that control the 

system’s behaviors.  However, things work differently after that.  In order to perform the 

DP algorithm, the transition probabilities and reward functions must be known in 

advance.  In RL, instead of computing these values or estimating them, the system is 

simulated using the distributions of the random variables.  Then, within the simulator, a 

suitable RL algorithm is executed to obtain a near-optimal solution.  

 

Figure 4.11:  A Schematic Difference in RL and DP 

Reinforcement Learning Classical DP

Inputs: Distribution of 
random variables 

Generate transition probability 
and reward matrices 
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Optimal Solution 
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Since computational effort is a primary concern for solution of the recruitment 

problem, I adapt the Q-Learning approach discussed by Gosavi (2003) with a 

modification to exclude visit factors in order to lessen the computational burden.  First, I 

introduce the Q-value, ( , )Q state action  or ( , )tQ Y a , that corresponds to value of each 

state-action pair. 

The step-by-step procedure of the QBH method is shown as follows. 

Q-Learning Based Heuristic (QBH) Procedure 

Step 0 Set the iteration number to 0. 

Step 1 Initialize time period, t , to 0 and starting state to tY .  This represents the initial 
budget and initial willingness state of each agent. 

 
Step 2 Generate an action a  using an action selection heuristic, described below.  

 
Step 3 Simulate action a  to retrieve the next period action, 1tY + .  Let 1( , , )t t tr Y a Y +  be 

the immediate reward earned in the transition to state 1tY +  from state tY  under 
the influence of action a .   

 
Update ( , )tQ Y a  using the following equation: 

 

1
1 1( )

( , ) (1 ) ( , ) [ ( , , ) max ( , )]
t

t t t t t tb A Y
Q Y a Q Y a r Y a Y Q Y bα α

+
+ +∈

← − + + ,  0 1α< ≤ ,  (4.10)

Step 4 

where 1( )tA Y +  represent all possible actions in state 1tY +  and if 1( , )tQ Y b+  has 
no value, set its initial value is set to 0. 
 

Step 5 If t T= , increase the iteration number by 1 and go to step 1.  Otherwise, 
increase t  by 1 and go to step 2.  If iteration number exceeds the limit go to 
step 6. 

 
Step 6 For each tY , select 

( )

( ) arg max  ( , )
t

t t

b A Y

A Y Q Y b∗

∈

=
14243

. (4.11)

The learning rate is represented by α  in (4.10).  Its value weights how much the 

previous value of  ( , )tQ Y a  and the evaluation of immediate reward with future reward 
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should affect the new value of ( , )tQ Y a .  The Q-value is a prediction of the sum of the 

reinforcement one receives when performing the associated action and the following 

given policy.  To update the prediction ( , )tQ Y a , one must perform the associated action 

a, causing a transition to the next state 1tY + , and returning a scalar reinforcement 

1( , , )t t tr Y a Y + .  Then one only needs to find the maximum Q-value in the new state, 

1
1( )

max ( , )
t

tb A Y
Q Y b

+
+∈

, to have all necessary information for revising the prediction (Q-Value) 

associated with the action just performed.  Q-learning does not require one to calculate 

the transition probabilities to successor states.  The reason is that a single sample or a 

successor state for a given action is an unbiased estimate of the expected value of the 

successor state.   

         The action selection heuristics in step 2 of the QBH method procedure are 

described as follows. 

Action Selection Heuristics 

Budget allocation for each agent represents the action a  in step 2 of the QBH.  It is 

very important to select an action wisely as this is the exploration part of the RL.  Three 

heuristics are introduced.  In the Q-Learning QBH procedure, one of the heuristics is 

randomly selected during each execution of action selection. 

Heuristic 1: Random Allocation 

In this heuristic, the remaining budget is allocated to a random set of agents at a 

random amount level.   
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Heuristic 2: High Willingness State Agent First 

This heuristic focuses on allocating the remaining budget to those agents who have 

a higher chance of recruitment success.  This may not be the best way to obtain the 

highest payoff because the agents with a high willingness state may generate smaller 

amount of Resource B collection volume compared to agents with a low willingness state 

who generate a higher amount of collection volume. 

Heuristic 3: High Collection Volume Agent First 

This heuristic focuses on allocating the remaining budget among those agents who 

generate higher amount of Resource B collection volume.  This may not be the best way 

to obtain the highest payoff because agents with a higher collection volume may be very 

hard to recruit.  In other words, recruiting many willing small agents may result in a 

higher amount of total collection volume.   

The QBH uses the action selection heuristics to explore the action and state spaces.  

The exploitation applies (4.10) to update the Q-value for a state-action pair.  According to 

Gosavi (2003), the Q-Learning method gives a near-optimal solution when the maximum 

number of iteration is large enough. 

In order to perform a large number of iterations in a reasonable computation time, 

the computational complexity of the algorithm should be analyzed.  In step 4, the number 

of steps required to update ( , )tQ Y a  in (4.10) requires first a search for the initial value of 

( , )tQ Y a  and second the maximization of 1( , )tQ Y b+  for every value of 1( )tb A Y +∈ .  The 

value look-up for ( , )tQ Y a  is performed in ( )O Ω  steps, where Ω  is the size of a typically 

large Q-table.  Q-table is a look-up table that stores the value of ( , )Q state action  for 
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every encountered state-action pair.  This step takes ( )O Ω × number of actions  at states 

1tY + , which is typically large.  In summary, every computation of (4.10) in step 4 of the 

Q-Learning Based Heuristic requires: 

Time Complexity of (4.10) = ( ) | |O AΩ ∗ . (4.12)

Two modifications are introduced to speed up this step.  The first is to set the 

learning rate α  equal to 1 and the second is to store the Q-values using a hash table.  

Each of these modifications is described in the following paragraphs. 

Learning Rate Equal to One 

With α  = 1, equation (4.10) becomes 

1
1 1( )

( , ) ( , , ) max ( , )
t

t t t t tb A Y
Q Y a r Y a Y Q Y b

+
+ +∈

← + . (4.13)

Instead of storing 1( , )tQ Y b+  for every value of 1( )tb A Y +∈  and searching for the 

maximum of 
1

1( )
max ( , )

t
tb A Y

Q Y b
+

+∈
 in every iteration, it is much simpler to store the maximum 

of 1( , )tQ Y b+  into max 1 max( , )tQ Y b+ . Under this modification, the update of ( , )tQ Y a  

becomes: 

max max max max 1 max 1 max( , ) max[ ( , ), ( , , ) ( , )]t t t t t tQ Y a Q Y a r Y a Y Q Y b+ += + . (4.14)

Basically, retrieving 
1

1( )
max ( , )

t
tb A Y

Q Y b
+

+∈
 can be done in complexity of ( )O Ω  from 

looking up max 1 max( , )tQ Y b+ .  The update of max max( , )tQ Y a  is performed if the new value of 

1 max 1 max( , , ) ( , )t t t tr Y a Y Q Y b+ ++  is higher than the previous value of max max( , )tQ Y a .  In this 

step, the best action maxa  is also updated accordingly. 

In addition to this modification, the Hash Table data structure is applied to the QBH 

method.  It is described as follows. 
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Hash Table 

The QBH method requires a large size of Q-table in order to look up Q-values of 

corresponding states and actions.  Computationally, it is time-consuming to retrieve the 

selected Q-value using a traditional array for the data-structure. As a better alterative, 

Hash Tables (Knuth 1973) are used as a Q-value data structure to improve the look-up 

time.  There are two components in this data structure--an array (the hash table) and a 

mapping (the hash function).  The hash function maps keys into hash values. Items stored 

in a hash table must have keys. In this case, the key corresponds to the state-action pair.  

The hash function maps the key of an item to a hash value, and that hash value is used as 

an index into the hash table for that item. This allows the Q-value to be inserted and 

located quickly.  There are many hash function forms in the literature (Fox et. al 1992 

and Knuth 1973).  I implement one that converts a string into an integer value.  The Q-

value can be retrieved in complexity of (1)O  in the average case and best cases. The 

worst case search time is ( )O Ω ; however, the probability of this happening is 

vanishingly small.  This data structure technique does not have an impact on the solution 

quality of the QBH method.  The procedure is the same.  The only change is the retrieval 

time of the Q-value of any state-action pair in (4.10). 

Employing the hash table data structure for Q-values and fixing the learning rate α  

to one, the computational complexity of (4.10) in step 4 of the QBH is reduced from 

( ) | |O AΩ ∗  to (1)O  in the average and best cases.  In the worst case, it is ( )O Ω .  This 

improvement reduces computational requirements for exploitations.  Completely ignoring 

the previous value of Q-value by setting the learning rate α  to one may affect the 
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resulting quality of the heuristic solution, but the computational effort is significantly 

reduced to facilitate overall problem solution. 

4.6 A Rolling IP with DP Heuristic 

The previous section developed the Q-Learning Based Heuristic, or QBH, approach 

to solve the recruitment problem.  As an alternate to the QBH, this section develops a 

heuristic called Rolling IP with DP to solve the recruitment problem.  This heuristic 

provides a way to solve the large-scale recruitment problem within reasonable 

computation effort.  The intuition behind this heuristic and the step-by-step procedure are 

presented in this section. 

The heuristic is based on an observation of the DP algorithm described in section 

4.4.  Solving for an optimal recruitment policy for an individual agent using the DP 

algorithm requires a relatively small computational effort because the number of states 

and actions are small as shown in Table 4.1.  Using this characteristic may be beneficial 

for solving the overall recruitment problem.  The main concept of this heuristic is to 

shrink a multi-period problem so as to think of it a one-period problem.  First, the optimal 

policy for each individual agent is solved for T  periods.  Then, all of these individual 

agent solutions are used to find the best combination of budget allocations among agents.  

The resulting solution is implemented for the first time period where the selected agents 

receive their given first period budget allocations.  Next, the optimal policy for each 

individual agent is solved for the remaining 1T −  periods.  Then the procedure repeats 

itself until the final period is solved.  The example of an agent for whom a recruitment 

budget is allocated in the first and second period is shown in Figure 4.12. 
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Figure 4.12:  The Rolling Horizon Concept 
 

A key step in this approach is an optimization problem that selects the best 

combination of individual policies to use to maximize the collective recruited agents’ 

collection volume, subject to the overall recruitment budget constraint.  This approach is 

suboptimal because it does not take advantage of the ability to observe and respond to 

recruitment during the policy execution.  To improve performance, a rolling horizon 

implementation is applied.  The remaining unspent funds allocated to those agents who 

have been recruited and unspent funds allocated to retailers not recruited are added back 

to the available recruitment budget amount and then the optimization problem is resolved 

with the updated information. 

The reason why this approach is suboptimal is because it does not take action based 

on the information about how the retailer responds to the expenditures.  In other words, it 

allocates a budget to be spent for the entire period on the retailer and does not account for 

the ability to reallocate money from among retailers who are recruited early on in the 

process.  It is important to emphasize that the recruitment outcome is a random outcome. 

Optimal Policy for 1 period 

If allocated, spend budget in the first period 

If allocated, spend budget in the second  

Optimal Policy for 2 periods 
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Denote the stochastic recruitment function max( , , )SR i B t  as a function that returns 

the solution from solving the recruitment problem with the DP algorithm (developed in 

section 4.4) for retailer i  for t  periods given the starting total budget maxB .  The solution 

yields the optimal budget allocation policy in each period and the expected collection 

volume from retailer i  over t  periods.  Next, the optimization problem that selects the 

best combination of individual policies among all retailers is formulated.  The index, 

parameters, and variables are defined as: 

Index: 
 
i  Index of retailers ( i  = 1, 2, …,  mη ) 
j  Index of budget amounts ( j   = 1, 2, …,  J ) 

 
Parameters: 
 

maxB  Maximum starting total budget over total T  periods 
 

start
tB  Maximum starting budget at period t  

 
jb  Budget allocation the collector choose to spend on the retailer, which is the 

value of thj  entry in 1( ,..., ,..., )j JB b b b=  
 

ijv%  Maximum expected increment of capacity volume that can be collected from 
retailer i  if budget amount jb  is allocated to that retailer.  The value of ijv%  
can be obtained from solving ( , , )jSR i b t  using the DP approach.   

 
 
Variables: 
 

ijx  = 
⎧
⎨
⎩

 
1     if budget amount  jb  is allocated to retailer i  
0     Otherwise  

The integer programming problem (IP) called Rolling IP for period t  can be 

formulated as:  

 



 69

Rolling IP ( )tRP  for Period t  
 
Maximize 

ij ij
i j

v x∑∑ %   (4.15)

Subject to: 1ij
j

x ≤∑  i∀  (4.16)

 
start

j ij t
i j

b x B≤∑∑   (4.17)

 {0,1}ijx =  ,i j∀ . (4.18)
 

The objective function (4.15) is the sum of collection volume.  Constraints (4.16) 

permit only one budget amount to be allocated to retailer i .  Constraint (4.17) restricts the 

overall spending budget to be less than the budget limit.  Constraints (4.18) force ijx  

variables as binary variables. 

The procedure for the Rolling IP with DP method is discussed next by combining 

the Rolling IP formulation together with the rolling horizon concept. 

Rolling IP with DP Heuristic (RIDH) Solution Procedure 

Step 0 Set 1t =  and max
0
startB B= .  

Solve for ijv%  from ( , , )jSR i b T  as defined earlier in this section for all ,i j  using 
the DP approach developed in section 4.4.  The initial state of ( , , )jSR i b T  is [0, 
initial willingness state of retailer i , jb ]. 
 

Step 1  Formulate the rolling IP ( )tRP  model and solve for ijx . 
 

Step 2 For the retailers for where a recruiting budget has been allocated, simulate the 
action in period t  only. 
 
If t T= , obtain the total increment in collection volume from period 1 to period 
T  and exit.  Otherwise, go to Step 3. 
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Step 3 Set 1t t= + .   

Update the value of ijv%  from for all ,i j .  Note that there is no need to resolve 
MDP for each retailer.  Obtain the ijv%  by changing the starting initial state to 
[t+1, new willingness state, remaining budget].  For example, if the initial state 
is [0,M,30], a budget amount 10 is applied to this period, the next period status 
change to H, and the overall remaining budget is 10, then ijv%  can be looked up 
from state [1,H,10]. 
 
Update remaining budget start

tB , ( 1
start start
t tB B −= −  actual budget spent in the 

previous period). 
 
Go to Step 1 

These steps can be summarized by the flow chart Figure 4.13. 

 
Figure 4.13:  Procedure for the RIDH Solution Approach 

 

Set 0t =  

Obtain final result 

Obtain the value for all ijv%  

Formulate and solve IP ( )tRP  

Simulate and update the 
actual state of each retailer. 

Set 1t t= +  

t T=

No 
Yes 

Update remaining 
budget and ijv%  
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In this chapter, the general framework for the recruitment problem is developed.  

Using the developed framework, the recruitment problem is posed as the stochastic 

dynamic programming.  The DP algorithm is proposed to obtain the optimal policy.  In 

addition, two heuristics are introduced in order to solve the recruitment problem for the 

large-scale problem that the DP method cannot solve with reasonable computational 

effort.  The two heuristics’ performances will be tested with small and large scale 

examples in Chapter 5.  The insights and potential algorithm improvements are also 

developed based upon the computational testing. 
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CHAPTER   5  

NUMERICAL STUDY ON THE  

TACTICAL LEVEL PROBLEM 

 
 
 

In Chapter 4 I introduced the conceptual model for the tactical level problem and 

provided an exact method, and two heuristics, to determine the recruiting decisions in 

each time period.  In this chapter, the solution approaches are applied to small and large 

examples.  Since the Dynamic Programming (DP) algorithm can find an optimal solution 

for the small example in a reasonable computation time, its solution can be used as a 

benchmark against the solutions obtained by the Rolling IP with DP heuristic (RIDH), 

and Q-learning based heuristic (QBH).  For the large example, the computational 

requirements are prohibitive for the DP algorithm.  Thus, only the results from the two 

heuristics are compared.  In addition, the performance of the QBH is investigated by 

varying the computational effort and using problem decompositions motivated by the 

structure of the problem.  I also study how incorrect information from the retailers may 

affect the performance of the recruitment model.  All the computation experiments in this 

chapter and Chapter 7 are solved using a Windows 2000-based Pentium 4 1.80 GHz 

personal computer with 640MB of RAM with CPLEX version 8.0 (www.ilog.com) for 

the optimization software. 
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5.1 Small Example 

For the small example, I examine a recruitment problem with five retailers.  Each 

retailer i  has a different amount of collection volume, ig , that it can generate in one 

period or one month.   The recruitment budget threshold, iµ , is assumed to have a 

positive correlation with ig .  Hence, a higher amount of collection volume ig  implies 

higher recruitment budget threshold value iµ .   

Throughout the numerical study in this chapter, and Chapter 7, I use the following 

numerical parameters.  The recruitment willingness factor for the willingness state of 

each retailer is defined as 2Hβ = , 1Mβ = , and 0.5Lβ = .  Equation (4.1) is used to 

compute the probabilities of recruitment, ( ( )LRPr a , ( )MRPr a , ( )HRPr a ), for the given 

willingness state and budget allocation ( a ).  These probabilities also depend on the 

recruitment budget threshold of the retailer.  When the given budget allocation fails to 

recruit the retailer, two cases are considered. 

Case A: If ia µ≥ , the transition probabilities are depicted in Figure 5.1. 

 
Figure 5.1:  Transition Probabilities for Case A 
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Case B: If 0 ia µ≤ < ,  the transition probabilities are depicted in Figure 5.2. 

 
Figure 5.2:  Transition Probabilities for Case B 

 

These two cases describe the situation that if the recruiter allocates enough 

recruitment budget amounts to the retailer, it is more likely to move the retailer to a more 

favorable state, even though it fails to recruit the retailer.  On the other hand, if the 

recruiter does not allocate a large enough budget amount to the retailer, it is less likely to 

move the retailer to a more favorable state, even though it fails to recruit the retailer.  I 

assume that all retailers follow these transition probabilities when the given budget 

allocation fails to recruit the retailer. 

With these settings, I generate five test cases that have different retailers’ initial 

willingness states.  Table 5.1 shows the amount of collection volume and recruitment 

budget threshold of each retailer.  The alternative budget limitation settings are spaced 10 

units apart 10, 20, …, 100 and the budget allocation settings are similarly spaced.  The 

number of time periods is chosen to be three.  From the collective retailer collection 

volumes, the maximum system collection volume in all these five cases is 220 pounds. 
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Table 5.1:  Small Example Data 
 

Retailer Collection Volume (lb.) Recruitment Budget Threshold 
1 10 5 
2 30 15 
3 70 49 
4 20 20 
5 90 81 

 

To test the algorithms, several cases are evaluated where each case differ from the 

others based on the initial states of the retailers.  Of these cases is described in the 

paragraph below. 

 
Case 5.1:  All retailers start in state L 

In this case, all of the retailers’ initial willingness states are set to the low (L) value.  

The probability of recruitment is computed with 0.5Lβ = .  Table 5.2 displays the 

solution average collection volume, computation time, and optimality gap for solution 

approaches DP, RIDH, and QBH for different maximum budget settings.  The average 

collection volume is computed from the results obtained by applying the policy resulting 

from the different solution methods for 100 replications.  The optimality gap illustrates 

the solution quality found by the RIDH and QBH methods compared to the optimal 

solution obtained by the DP algorithm.  For the DP algorithm, the computation time is 

obtained by examining every possible state and action in every period and selecting the 

policy that yields the maximum average collection volume.  For the QBH solution 

approach, the maximum number of iteration is set to 100,000. 
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Table 5.2:  Average Volume Collection, Solution Time and Optimality Gap for Case 5.1 
 
 Solution Approaches 

 DP RIDH QBH 

Maximum 
Budget 

Average 
Collection 
Volume 

(lb.) 

Solution 
Time 
(sec.) 

Average 
Collection
Volume 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

Average 
Collection 
Volume 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

10 12.4 16 12.4 5 0.0 11.6 6 6.4 
20 27.6 118 28.5 7 0.0 21.5 6 22.1 
30 46.3 568 41.4 9 10.5 40.4 7 12.7 
40 76.8 2,086 80.4 14 0.0 8.0 8 89.5 
50 90.1 8,282 91.0 19 0.0 27.9 9 69.0 
60 106.7 61,229 103.0 23 3.4 75.9 9 28.8 

70 - 86,400
8 114.7 32 - 92.8 10 - 

80 - 86,400 138.1 41 - 92.1 11 - 
90 - 86,400 153.8 59 - 93.0 11 - 

100 - 86,400 165.2 65 - 95.6 11 - 

  The solution averages for the collection volume obtained by the RIDH method are 

close to the optimal solution for every maximum budget setting.  The largest optimality 

gap is only 10.5%.  For maximum budget settings of 20, 40, and 50, the average solution 

for collection volume found by the RIDH approach happens to be slightly higher than the 

value found by the DP approach because of the random numerical evaluation found by 

simulating 100 replications.  For this situation, I set the optimality gap to zero.   

The computation time requirements for the RIDH approach are much smaller than 

those from the DP method. The QBH method requires the least amount of solution time 

for every maximum budget setting, but the optimality gap is larger than that found by the 

RIDH approach.  In fact, its solution is worse than solution obtained by the RIDH 

approach for every maximum budget setting.  For maximum budget settings of 80 to 100, 

the DP method cannot obtain optimal policy within the stopping time limit of one day. 

                                                 
8

 Algorithm was stopped when the computation time requirement reached 86,400 seconds or one day. 
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Case 5.2:  All retailers start in state M 

In this case, all of the retailers’ initial willingness states are set to the medium (M) 

value.  The probability of recruitment is computed with 1Mβ = .  Table 5.3 displays the 

solution average collection volume, computation time, and optimality gap for solution 

approaches DP, RIDH, and QBH for different maximum budget settings. 

Table 5.3:  Average Volume Collection, Solution Time and Optimality Gap for Case 5.2 
 
 Solution Approaches 

 DP RIDH QBH 

Maximum 
Budget 

Average 
Collection 
Volume 

(lb.) 

Solution 
Time 
(sec.) 

Average 
Collection
Volume 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

Average 
Collection 
Volume 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

10 12.2 1 12.6 4 0.0 1.5 6 87.7 
20 47.2 8 44.4 6 5.9 5.6 6 88.1 
30 84.8 40 82.6 8 2.5 16.3 6 80.7 
40 100.6 138 99.1 11 1.4 56.7 7 43.6 
50 131.4 393 130.7 15 0.5 52.1 8 60.3 
60 158.9 962 155.5 16 2.1 45.4 8 71.4 
70 175.3 2,097 165.4 23 5.6 82.3 9 53.0 
80 187.2 4,419 180.1 26 3.7 84.7 9 54.7 
90 201.5 8,417 197.5 38 1.9 117.9 9 41.4 

100 210.0 15,309 201.4 41 4.1 181.3 10 13.6 

The overall results follow the same trends as Case 5.1.  For the same maximum 

budget setting, the average solution’s collection volume in this case is higher than one in 

Case 5.1 because the retailers in Case 5.2 start in more favorable states than ones in Case 

5.1.  Furthermore, the computation time requirements are less in this case because the 

probability of the retailer moving back to state L is small. 

Case 5.3:  All retailers start in state H 

In this case, all of the retailers’ initial willingness states are set to the high (H) 

value.  The probability of recruitment is computed with 2Hβ = .  Table 5.4 displays the 
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solution average collection volume, computation time, and optimality gap for solution 

approaches DP, RIDH, and QBH for different maximum budget settings. 

  The overall results follow the same trends as in Cases 5.1 and 5.2.  For the same 

budget limit, the average solution’s collection volume in this case is higher than ones in 

Cases 5.1 and 5.2 because the retailers in Case 5.3 start with highest favorable states 

compared to the ones in Cases 5.1 and 5.2.  Furthermore, the computation time 

requirements are less in this case.  When the maximum budget equals 70, every retailer 

can be recruited into the system.  It is interesting to see that the QBH approach performs 

almost as well as the DP algorithm when the budget limit is equal or greater than 60.  

Table 5.4:  Average Volume Collection, Solution Time and Optimality Gap for Case 5.3 
 
 Solution Approaches 

 DP RIDH QBH 

Maximum 
Budget 

Average 
Collection 
Volume 

(lb.) 

Solution 
Time 
(sec.) 

Average 
Collection
Volume 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

Average 
Collection 
Volume 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

10 44.1 1 46.9 5 0.0 5.4 6 87.7 
20 90.0 1 90.0 3 0.0 54.9 6 39.0 
30 137.7 2 139.7 5 0.0 63.1 6 54.1 
40 171.1 5 166.9 6 2.4 84.8 7 50.4 
50 199.1 11 189.4 6 4.8 100.8 7 49.3 
60 211.5 27 210.0 10 0.7 194.8 8 7.9 
70 220.0 59 220.0 9 0.0 205.3 8 6.6 
80 220.0 116 220.0 16 0.0 220.0 8 0.0 
90 220.0 215 220.0 22 0.0 220.0 9 0.0 

100 220.0 377 220.0 24 0.0 220.0 9 0.0 
 
Case 5.4:  Retailers start in state MHHMH 

In this case, retailers’ initial willingness states are randomly assigned to the setting 

‘MHHMH’ respectively.   
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Table 5.5 displays solution average collection volume, computation time, and 

optimality gap for solution approaches DP, RIDH, and QBH for different maximum 

budget settings. 

 
Table 5.5:  Average Volume Collection, Solution Time and Optimality Gap for Case 5.4 
 
 Solution Approaches 

 DP RIDH QBH 

Maximum 
Budget 

Average 
Collection 
Volume 

(lb.) 

Solution 
Time 
(sec.) 

Average 
Collection
Volume 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

Average 
Collection 
Volume 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

10 46.2 1 47.5 4 0.0 30.0 6 35.0 
20 90.0 1 84.8 4 5.7 50.0 6 44.4 
30 138.3 4 139.2 5 0.0 60.0 7 56.6 
40 177.7 15 173.6 6 2.3 64.6 7 63.6 
50 178.2 44 192.5 8 0.0 77.8 7 56.3 
60 199.1 103 199.1 10 0.0 90.1 8 54.7 
70 212.5 226 213.4 12 0.0 111.0 8 47.7 
80 219.9 468 219.8 19 0.1 127.3 8 42.1 
90 220.0 863 220.0 24 0.0 168.4 9 23.4 

100 220.0 1,615 220.0 26 0.0 150.5 9 31.5 

In this case, the quality of the solution obtained by the RIDH approach is almost as 

good as the solution obtained by the DP algorithm for every maximum budget setting.   

The QBH approach does not provide very good solutions for this case. 

The results from the small example show that the RIDH solution approach performs 

almost as well as the optimal DP procedure in all cases, with much lower computational 

effort.  The QBH method solves the small example recruitment problem with the least 

computational effort, but yields the worst average collection volume solutions compared 

to the DP and RIDH methods.  Next, I attempt to solve a larger problem.  
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5.2     Large Example 

To structure the data in the large example, I classify the retailer into different 

groups according to its collection volume and recruitment difficulty.  The recruitment 

difficulty for the retailer is set according to its initial willingness state:  low, medium, or 

high.  For collection volume, I categorize the retailer into three groups: small (0-30 

lbs/month), mid-size (40-60 lbs/month), and large (70-90 lbs/month). Table 5.6 displays 

the solution average volume collected for the one-retailer recruitment that is solved using 

the DP algorithm with the different collection volumes, initial willingness states and 

maximum recruitment budget settings 

Table 5.6:  Average Collection Volume Obtained For Different Collection Volumes, 
Initial Willingness States and Maximum Recruitment Budget Settings for One Retailer 
 

   Maximum Recruitment Budget Amount 
Collection  
Volume 

(lbs.) 

Collection 
Volume 

Type 
Initial 
State 10 20 30 40 50 60 70 80 90 100 

10 Small L 9.4 10 10 10 10 10 10 10 10 10 
10 Small M 9.9 10 10 10 10 10 10 10 10 10 
10 Small H 10 10 10 10 10 10 10 10 10 10 
20 Small L 10.6 19.8 20 20 20 20 20 20 20 20 
20 Small M 13 20 20 20 20 20 20 20 20 20 
20 Small H 20 20 20 20 20 20 20 20 20 20 
30 Small L 0 27.3 30 30 30 30 30 30 30 30 
30 Small M 0.3 30 30 30 30 30 30 30 30 30 
30 Small H 30 30 30 30 30 30 30 30 30 30 
40 Mid-size L 0 22 40 40 40 40 40 40 40 40 
40 Mid-size M 0 35.2 40 40 40 40 40 40 40 40 
40 Mid-size H 40 40 40 40 40 40 40 40 40 40 
50 Mid-size L 0 0 46 50 50 50 50 50 50 50 
50 Mid-size M 0 42 49.5 50 50 50 50 50 50 50 
50 Mid-size H 50 50 50 50 50 50 50 50 50 50 
60 Mid-size L 0 0 49.8 53.4 60 60 60 60 60 60 
60 Mid-size M 0 52.8 60 60 60 60 60 60 60 60 
60 Mid-size H 60 60 60 60 60 60 60 60 60 60 
70 Large L 0 0 37.1 52.5 57.4 70 70 70 70 70 
70 Large M 0 46.2 65.8 69.3 70 70 70 70 70 70 
70 Large H 42.7 70 70 70 70 70 70 70 70 70 
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Table 5.6 (contintued) 
 

   Maximum Recruitment Budget Amount 
Collection  
Volume 

(lbs.) 

Collection 
Volume 

Type 
Initial 
State 10 20 30 40 50 60 70 80 90 100 

80 Large L 0 0 15.2 64 67.2 69.6 76.8 80 80 80 
80 Large M 0 13.6 70.4 80 80 80 80 80 80 80 
80 Large H 12 80 80 80 80 80 80 80 80 80 
90 Large L 0 0 3.6 72 75.6 78.3 81.1 83.5 89 90 
90 Large M 0 4.5 79.2 89.1 90 90 90 90 90 90 
90 Large H 2.7 90 90 90 90 90 90 90 90 90 

The results show that if the retailer’s collection volume is large and its initial 

willingness is L, this is the hardest situation for recruitment with a low budget as shown 

in Figure 5.3.  On the other hand, if the collection volume is small, the initial state does 

not have much effect on the average collection volume as shown in Figure 5.4.  For a 

small budget amount, say 20, it is very likely that a retailer in willingness state H will be 

recruited. 
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Figure 5.3:  Budget Allocation and Average Collection Volume of Different Initial State 

for Retailer with Collection volume 90 
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Figure 5.4:  Budget Allocation and Average Collection Volume of Different Initial State 
for Retailer with Collection Volume 30 

 

Using the results in Table 5.6, I construct three cases to examine in the large 

example.  Case 5.5 consists of a different number of retailers (5,10,15,20) with large 

collection volumes and all retailers starting in willingness state L.  The solution results 

are shown in Table 5.7.  Case 5.6 consists of a different number of retailers (5,10,15,20) 

with small and mid-size collection volumes and all retailers starting in willingness state 

M.  The solution results are shown in Table 5.8.  Case 5.7 consists of a different number 

of retailers (5,10,15,20) with large collection volumes and all retailers starting in 

willingness state H.  The solution results are shown in Table 5.9. 
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Table 5.7:  Results for Case 5.5 
 

  Solution Approaches 
  RIDH QBH 

Number of 
Retailers 

Maximum 
Budget 

Average 
Collection 

Volume (lb.) 

Best 
 Collection 
Volume(lb.) 

Solution 
Time 
(sec.) 

Average 
Collection 

Volume(lb.) 

Best  
Collection 

Volume (lb.) 

Solution 
Time 
(sec.) 

5 50 66.3 90 9 6.1 90 6 
  100 146.4 230 16 112.6 150 7 
  150 242 320 31 141.6 220 9 
  200 325.8 390 52 187.7 240 10 

10 50 76.5 90 12 8.5 90 11 
  100 162 230 25 85.4 140 16 
  150 251.3 340 56 81 170 26 
  200 347.5 430 114 193.2 230 32 

15 50 74.7 90 16 1.6 80 17 
  100 152.5 230 33 93.8 140 30 
  150 261.7 340 82 86.7 170 54 
  200 362.8 450 165 196.8 230 65 

20 50 74.7 90 16 12.8 80 23 
  100 147.5 230 41 93.1 140 45 
  150 263.1 340 124 114.1 210 74 
  200 359 450 191 192.4 230 85 

 
Table 5.8:  Results for Case 5.6 
 

  Solution Approaches 
  RIDH QBH 

Number of 
Retailers 

Maximum 
Budget 

Average 
Collection 

Volume (lb.) 

Best  
Collection 

Volume(lb.) 

Solution 
Time 
(sec.) 

Average 
Collection 

Volume(lb.) 

Best  
Collection 

Volume (lb.) 

Solution 
Time 
(sec.) 

5 50 98.2 110 8 79.8 110 8 
  100 144.6 150 9 141.6 150 9 
  150 150 150 19 150 150 8 
  200 150 150 31 150 150 9 

10 50 117.8 130 9 94.6 120 13 
  100 207 230 17 134.8 180 20 
  150 274.3 300 33 210.8 250 26 
  200 302.7 310 62 271.4 310 27 

15 50 122.2 140 12 73.6 120 21 
  100 235.9 260 23 146 180 35 
  150 323.6 350 49 223.8 260 51 
  200 399.1 430 96 298 340 56 

20 50 127.2 140 12 103.5 110 30 
  100 260.1 280 27 148 190 51 
  150 360.1 390 63 212.2 270 66 
  200 451.7 490 114 327.6 330 75 
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Table 5.9:  Results for Case 5.7 
 

  Solution Approaches 
  RIDH QBH 

Number of 
Retailers 

Maximum 
Budget 

Average 
Collection 

Volume (lb.) 

Best  
Collection 

Volume(lb.) 

Solution 
Time 
(sec.) 

Average 
Collection 

Volume(lb.) 

Best  
Collection 

Volume (lb.) 

Solution 
Time 
(sec.) 

5 50 218.5 310 6 155.6 320 6 
  100 387.9 390 6 317.5 390 7 
  150 390 390 15 381.6 390 9 
  200 390 390 21 390 390 9 

10 50 231.7 300 8 156.6 330 11 
  100 462.7 550 11 349.3 530 13 
  150 661.3 790 21 528.5 560 16 
  200 788.6 790 33 600.4 720 16 

15 50 241.5 350 10 122.2 250 15 
  100 465.9 550 14 412.3 500 18 
  150 688.7 810 27 464.6 570 23 
  200 879.7 970 51 736.4 790 26 

20 50 248.5 350 10 188.1 320 20 
  100 473.4 600 18 425.6 480 25 
  150 695.3 860 36 586.8 680 37 
  200 908.6 1040 62 667.3 760 43 

 

The results from Cases 5.5, 5.6, and 5.7, which are displayed in Tables Table 5.7, 

Table 5.8, and Table 5.9, show that the RIDH approach outperforms the QBH method in 

every case.  The best collection volume represents the largest collection volume that the 

solution method has found so far and has set as a target to achieve.  Even though the 

QBH approach requires less computational effort to obtain the resultant policy, its 

average solution collection volume is dominated by the one obtained by the RIDH 

approach, which also provides higher best collection volumes than the one obtained by 

the QBH method.  Next, I examine how the maximum number of iterations and 

decomposition methods in the QBH approach may affect the solution quality. 
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5.3    Q-Learning Based Heuristics Performance 

In this section, I study how the performance of QBH solution approach can be 

affected when the maximum number of iteration allowed changes.  Also, decomposition 

ideas are examined in order to explore how dividing the large problem into smaller 

problems may affect the performance of QBH. 

5.3.1 Maximum Number of Iterations 

One parameter that may affect the performance of the QBH approach is the 

maximum number of iterations permitted.  Of course, a larger number of iterations 

require more computational effort.  To test the impact, I apply the QBH approach to two 

different data sets.  The first test case uses the data from Case 5.2 with a maximum 

budget 50.  Table 5.10 displays the solution results for different settings of the maximum 

number of iterations parameter including required computation time, number of state-

action pairs, average collection volume obtained by simulating the resultant policy, and 

the best collection volume so far.  The best collection volume represents the largest 

collection volume that the QBH method has found so far and has set as a target to 

achieve. 

Table 5.10:  QBH Results on Case 5.2 with 5 Retailers and Maximum Budget 50 
 

Maximum 
Number of 
iterations 

Solution 
Time 
(sec.) 

Number of  
State-action Pairs

Average Collection 
Volume (lb.) 

Best Collection     
Volume (lb.) 

100 0.1 71 51.1 70.0 
1,000 0.1 183 88.5 110.0 

10,000 0.6 253 46.2 120.0 
100,000 5.9 339 52.1 140.0 

1,000,000 59.0 391 42.2 160.0 
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Figure 5.5 illustrates the relationship between number of state-action pairs and 

required computation time to solve Case 5.2 using the QBH method.  The number of 

state-action pairs increases quickly as the iteration limit begins to grow.  The problem 

size is small enough that the number of state-action pairs seems to converge at about one 

million iterations.  When the iteration limit increases, there is also an increase in the 

required computation time, the number of state-action pairs, and the best collection 

volume.   
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Figure 5.5:  Number of State-Action Pairs and Required Computational Time for 

Solution Obtained by the QBH Method for Case 5.2 with 5 Retailers and Recruitment 
Budget 50 

Figure 5.6 displays two important data sets.  The average collection volume is 

computed as the average result obtained from applying the resultant policy of the QBH 

procedure 100 times.  The best collection volume is the target that the QBH approach is 

trying to achieve from the policy.  As the maximum number of iterations rises, the QBH 

algorithm explores a larger number of state-action pairs.  Consequently, the best 

collection volume increases because it has more opportunities to find a better collection 

volume.   
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Nevertheless, in Figure 5.6, the average solution collection volumes do not 

approach the best collection volume at the higher number of iterations settings.  This may 

be the result of setting the learning rate to one in QBH’s update equation.  With this 

setting, I gain the benefit of reducing the computation time and allowing the QBH 

method to explore a larger number of state-action pairs.  However, I lose the ability to 

exploit action paths that return good solutions.  The QBH approach chooses a riskier path 

with high return myopically but fails to determine the best move in the next period if the 

retailer’s state does not change to the expected state. 
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Figure 5.6:  Average and Best Collection Volume for Solution Obtained by the QBH 

Method for Case 5.2 with 5 Retailers and Recruitment Budget 50 
 

Next, I examine the QBH on a larger problem.  The second test case replicates each 

retailer’s information in Case 5.2 twice.  Hence, there are total of 10 retailers and total 

budget is 100.  Table 5.11 displays the solution results for different settings of the 

maximum number of iterations parameter.   
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Table 5.11:  QBH Results on Case 5.2 with 10 Retailers and Maximum Budget 100 
 

Maximum 
Number of 
iterations 

Solution 
Time 
(sec.) 

Number of  
State-action Pairs

Average Collection 
Volume (lb.) 

Best Collection     
Volume (lb.) 

100 0.02 160 110.0 110.0 
1,000 0.09 819 119.7 120.0 

10,000 0.95 3,287 151.0 160.0 
100,000 9.70 9,263 105.9 190.0 

1,000,000 106.00 19,183 98.7 200.0 

Figure 5.7 illustrates the relationship between number of state-action pairs and 

computation time for the solutions obtained by the QBH method for Case 5.2 with 10 

retailers and recruitment budget of 100.  The problem size is so large that the number of 

state-action pairs fails to converge even at one million iterations.  The computation time 

in this case is almost twice the time it requires in the previous study. 
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Figure 5.7:  Number of State-Action Pairs and Required Computational  

Time for Solution Obtained by the QBH Method for Case 5.2  
with 10 Retailers and Recruitment Budget 100 

 

Figure 5.7 shows that the average solution collection volumes for the solution 

obtained by the QBH method tend to deviate from the best collection volume at the 

higher maximum number of iterations.  However, at the lower best collection volume, the 

QBH method achieves the best collection volume.  A possible explanation is provided by 
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the fact that the probability of recruitment of a retailer with a lower collection volume is 

higher than one with a higher collection volume.  Aiming to recruit a retailer with a small 

collection volume indicates two alternative strategies of budget allocation.  In one 

strategy, the budget allocation is concentrated on a small subset of retailers who have 

high collection volumes.  In this strategy, each retailer’s budget allocation is large enough 

to increase the probability of recruitment.  Alternatively, in a second strategy, the budget 

allocation is spread over a large set of retailers who have low collection volumes.  In this 

strategy, each retailer’s budget allocation is small but large enough to keep the 

probability of recruitment high for those retailers.  As the QBH method explores a large 

number of state-action pairs, and aims for a higher collection volume, the recruitment 

budget is allocated among the retailers who have high collection volumes (retailer 3 and 

retailer 5 in Table 5.1). 
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Figure 5.8:  Average and Best Collection Volume for Solution Obtained by the QBH 

Method for Case 5.2 with 10 Retailers and Recruitment Budget 100 
 

Two conclusions can be drawn from this study.  First, the QBH approach can find 

better best collection volume when the maximum number of iterations increases.  The 



 90

reason is that the QBH method explores more number of state-action pairs. However, the 

average solution collection volume does not always increase when the maximum number 

of iterations increases.  Second, when the problem size is large (10 retailers or more), the 

number of state-action pairs is too large for the QBH method to explore them adequately 

and may prohibit the ability to find good solutions.  This motivates trying to find ways to 

keep the problem small by using decomposition. 

5.3.2 Decomposition Ideas 

 For large scale problems, I attempt to improve the solution quality by 

decomposing the problem into many small subproblems.  I divide the budget limit evenly 

among subproblems and solve each one individually.  The overall solution is composed 

as the union of the solutions for each subproblem.  With a smaller problem size for each 

subproblem, less total computation effort should be required.  I define number of retailers 

as N , the number of retailers in each subproblem as n% , and the number of sub problems 

as N
n

γ ⎡ ⎤= ⎢ ⎥⎢ ⎥%
.  I explore three different decomposition ideas: random, symmetric and 

sorted decomposition.  Three test cases are generated and solved with different 

decomposition methods, and each subproblem is solved using the QBH method.    

1. Random Decomposition 

In this decomposition, the retailers are randomly divided into subproblems.  Each 

subproblem has n%  retailers.     
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2. Symmetric Decomposition 

The retailers are divided into many subproblems such that the sum of all the 

retailers’ collection volumes for each subproblem is about the same.  The dividing 

procedure starts by sorting the retailers in increasing order by the amount of collection 

volume.  Then, the first subproblem includes ( 1) , 0,1,..., 1thk k nγ + = −%  retailers on the 

list.  This step is repeated until the  thγ  subproblem which includes 

( ) , 0,1,..., 1thk k nγ γ+ = −%  retailers.  Figure 5.9 depicts the symmetric decomposition 

scheme. 

 
Figure 5.9:  Symmetric Decomposition 

 
 
3. Sorted Decomposition 

First, the retailers are sorted in increasing order by the amount of collection volume.  

Then, the first subproblem consists of the first n%  retailers.  The second subproblem 

consists of the next n%  retailers.  This procedure is repeated until all retailers are included 

in a subproblem.  The first subproblem groups the retailers with low collection volume 

List of sorted 
Retailers divided 
into n%  groups 

γ

γ

Subproblem 1 

Subproblem γ  γ
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together while the last subproblem groups the retailers with high collection volume 

together. 

For the test problem, the collection volume for each retailer is generated according 

to the lognormal distribution with mean 1.2 and standard deviation 0.5.  Limpert et al. 

(2001) show that this distribution has been used for many science applications.  Log-

normal distributions have proven useful as distributions for rainfall amounts, for the size 

distributions of aerosol particles or droplets, and for many other cases.  The lognormal 

distribution of for collection volume seems to be reasonable from an empirical 

standpoint.  One feature of the log-normal distribution is that it is positive-definite, so it 

is often useful for representing quantities that cannot have negative values.  

For the test problem, the number of retailers is 40.  I consider three cases with 

different initial willingness states.  Each subproblem is solved using the QBH method. 

Case 5.8:  Decomposition of 40 retailers with low initial willingness states L 

In this case, every retailer has a low initial willingness state L.  The problem is 

decomposed into different subproblem size settings.  Different decomposition methods 

are used to generate the subproblem according to subproblem size parameter.  Each 

subproblem is solved using the QBH method.  Then, the overall solution is composed as 

the union of the solutions for each subproblem.  Figure 5.10 displays the average solution 

collection volumes on different number of retailers in the subproblem from all 

decomposition methods.  The benchmark solution is obtained when there is no 

decomposition at all (subproblem size equals to 40).  The decomposition worsens the 

overall solution quality compared to the solution obtained with no decomposition.  All 
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decomposition methods suggest that decreasing the number of retailers per subproblem 

decreases the average solution collection volume.  Since all retailers are difficult to 

recruit, dividing the available recruitment budget reduces the flexibility of spending the 

rest of the budget in the later periods.  Hence, the overall probability of recruiting the 

retailers is reduced.  The comparative performance of the different decomposition method 

is indecisive in this case. 
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Figure 5.10:  Average Solution Collection Volume and Subproblem Size for Case 5.8 
 

Case 5.9:  Decomposition of 40 retailers with medium initial willingness states M 

In this case, every retailer has a medium initial willingness state M.  The problem is 

decomposed into different subproblem size settings.  Different decomposition methods 

are used to generate the subproblem according to subproblem size parameter.  Each 

subproblem is solved using the QBH method.  Then, the overall solution is composed of 

the union of the solutions for each subproblem.  Figure 5.11 displays the average solution 

collection volumes for the case problem, for alternative subproblem sizes, for the three 

decomposition methods.  Problem decomposition seems to worsen the overall solution 

quality for the test case compared to the solution obtained with no decomposition.  For all 
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decomposition methods, lower numbers of retailers per subproblem decreases the average 

solution collection volume. In this case, random decomposition outperforms the sorted 

decomposition.  For all subproblem sizes, the average solution collection volume 

obtained by the symmetric decomposition is higher than the one obtained by the random 

decomposition. 
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Figure 5.11:  Average Solution Collection Volume and Subproblem Size for Case 5.9 
 

Case 5.10:  Decomposition of 40 retailers with high initial willingness states H 

In this case, every retailer has a high initial willingness state H.  The problem is 

decomposed into different subproblem size settings.  Different decomposition methods 

are used to generate the subproblem according to subproblem size parameter.  Each 

subproblem is solved using the QBH method. Then, the overall solution is composed as 

the union of the solutions for each subproblem.  Figure 5.12 displays the average solution 

collection volumes for the case problem on different sub problem sizes for all 

decomposition methods.  For this test problem, it seems that the decomposition improves 

the overall solution quality compared to the solution obtained with no decomposition.  

For all decomposition methods, increasing the number of retailers per subproblem can 
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increase the average collection volume for certain subproblem sizes.  For the test 

problem, symmetric decomposition outperforms the other two decompositions. 
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Figure 5.12:  Average Solution Collection Volume and Subproblem Size for Case 5.10 
 

From the results in Cases 5.8, 5.9 and 5.10, decomposition with the QBH method 

yields better results only when the retailers are easy to recruit.  Also, the symmetric 

decomposition approach for the test case performs better than other decomposition 

methods for most subproblem sizes.  The peak in the graph might be explained by the 

tradeoff between increasing the number of state action pairs explored relative to the total 

number as the problem size gets smaller, versus decreasing the opportunities to exploit 

certain combinations of retailers and budget allocations because of the division. 

Next, I consider the case when each subproblem is solved using the RIDH 

approach.  For the subproblem size of 5 I evaluate the RIDH approach to solve the case.  

The results are shown in Table 5.12.   
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Table 5.12:  Applying the RIDH Approach Using Different Decomposition Methods 
When Subproblem Size is 5 for 40 retailers 
 

Decomposition Methods 

Case Data  Symmetric Random Sorted

No Decomposition 
Solution Obtained 

by the RIDH 
Method 

Case 5.8 
Average Collection  

Volume (lb.) 538 500 408 489.5 

 
Best Collection  

Volume (lb.) 620 630 610 610 

 Time (sec.) 50 53 55 252 

Case 5.9 
Average Collection  

Volume (lb.) 766 732 572 717.5 

 
Best Collection  

Volume (lb.) 1240 1160 760 1000 

 Time (sec.) 61 61 56 212 

Case 5.10 
Average Collection  

Volume (lb.) 1,685 1,618 1,357 1,625.2 

 
Best Collection  

Volume (lb.) 1,820 1,720 1,420 1,770 

 Time (sec.) 31 28 31 192 

 From Table 5.12, symmetric decomposition shows only a slight improvement over 

solving the original problem without the decomposition for this case, but with a 

dramatically reduced computation time.  However, sorted decomposition worsens the 

average collection volume in all considered cases for this problem.  Thus, overall, it 

would appear that the symmetric decomposition approach is a useful strategy in this 

problem for RIDH, the solution quality is not degraded and the computation time is 

reduced. 

Next, I investigate how incorrect information from the retailers may affect the 

performance of the recruitment model.  
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5.4    Imperfect Information Study 

In the recruitment model, I make the key assumption that the state of the recruitee is 

known perfectly by the recruiter.  In this section, the DP algorithm is used to solve 

recruitment problem where the transition probabilities may be incorrect.  I assume that 

the initial state of the recruitee is correctly known but the transition probabilities are 

assumed incorrectly.  Hence, the recruiter determines a policy using the DP algorithm 

with incorrect transition probabilities.  The resultant policy is then evaluated using the 

true values for the transition probabilities.  I hypothesize that the approach may be able to 

approximate the actual recruitee behavior even with incorrect information for the 

transition probabilities. 

The data from the in Case 5.4 problem is used to study the impact of imperfect 

information.  In addition, three sets of transition probabilities are defined.  Transition 

probabilities for set A are provided such that it is the easiest to move the willingness state 

to a higher state.  Transition probabilities for set B are provided such that it is not too 

easy or too difficult to move the willingness state to a higher state.  Transition 

probabilities for set C are provided such that it is the most difficult to move the 

willingness state to a higher state. 

First, the Case 5.4 problem is solved assuming each of the three sets of transition 

probabilities as the input data to obtain the optimal policy for each set.   

Table 5.13 displays the result when resultant solution policy is evaluated as though 

the true information for transition probabilities was found in set A.  Table 5.14 displays 
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the result when resultant solution policy is evaluated as though set B contained the true 

transition probabilities and similarly Table 5.15 displays the result for set C.  

 
Table 5.13:  Imperfect Information Solution Results with Correct Information from 
Probability Transactions A 
 

Incorrect Transition Probabilities A Transition Probabilities B Transition Probabilities C
Correct Transition Probabilities A Transition Probabilities A Transition Probabilities A

Maximum 
Budget 

Average Solution 
Collection Volume (lb.)

Average Solution 
Collection Volume (lb.) 

Average Solution 
Collection Volume (lb.) 

10 0.0 0.0 0.0 
20 0.0 0.0 0.0 
30 56.2 56.8 58.1 
40 74.0 73.7 71.8 
50 79.3 78.7 61.9 
60 138.0 70.0 70.0 

 
Table 5.14:  Imperfect Information Solution Results with Correct Information from 
Probability Transactions B 
 

Incorrect Transition Probabilities A Transition Probabilities B Transition Probabilities C
Correct Transition Probabilities B Transition Probabilities B Transition Probabilities B

Maximum 
Budget 

Average Solution 
Collection Volume (lb.) 

Average Solution 
Collection Volume (lb.) 

Average Solution 
Collection Volume (lb.)

10 0.0 0.0 0.0 
20 0.0 0.0 0.0 
30 35.2 35.1 34.3 
40 42.6 42.9 43.8 
50 58.7 56.0 61.6 
60 85.9 70.0 70.0 

 
Table 5.15:  Imperfect Information Solution Results with Correct Information from 
Probability Transactions C 
 

Incorrect Transition Probabilities A Transition Probabilities B Transition Probabilities C
Correct Transition Probabilities C Transition Probabilities C Transition Probabilities C

Maximum 
Budget 

Average Solution 
Collection Volume (lb.)

Average Solution 
Collection Volume (lb.) 

Average Solution 
Collection Volume (lb.)

10 0.0 0.0 0.0 
20 0.0 0.0 0.0 
30 17.7 18.1 16.4 
40 22.1 22.4 23.9 
50 31.7 35.1 61.0 
60 58.9 70.0 70.0 
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Overall, even though the incorrect information is used to determine a solution 

policy, the results do not differ greatly from those with correct initial information.  From 

this test problem, I empirically demonstrate that the accuracy of the transition probability 

data may not be absolutely critical to the overall solution quality. 

In this chapter, the RIDH approach provides the average solution collection 

volumes almost as good as the ones obtained by the DP approach when the small 

example is considered.  In the large example, the RIDH approach outperforms the QBH 

approach.  In addition, I use the test case to illustrate that the QBH approach can find 

improved best collection volumes when the maximum number of iterations increases.  

However, the average solution collection volume does not always increase when the 

maximum number of iterations increases.  Using different decomposition methods, the 

QBH method yields better results only when the retailers are easy to recruit.  Lastly, I 

empirically illustrate that the correctness of the transition probability data may not be 

very critical to the overall solution quality. 

I have shown in this chapter the RIDH approach performs well for the recruitment 

problem with a reasonable computation effort.  In the next chapter, I propose a strategic 

model which requires solving many recruitment problems.  Using the result in this 

chapter as a subroutine, the solution method for strategic model is proposed and 

discussed. 
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CHAPTER   6  

MODEL AND SOLUTION APPROACH FOR THE 

STRATEGIC LEVEL PROBLEM 

 
 
 

Building upon the solutions of the operational level and tactical level problems, I 

provide a model for the strategic level problem and a methodology to solve it in this 

chapter.  The strategic problem addresses the processor’s need to grow a collection 

network over a time horizon of several macro-periods.  An important mechanism of the 

methodology is to generate and evaluate many network growth trajectories in order to 

achieve a predetermined target collection volume for the end of final macro-period, while 

minimizing the total collection costs over time.  The overall problem is to determine the 

marketing budget allocation over time in different regions in order to follow a selected 

trajectory while considering uncertainty in collection volumes from the regions of 

collection networks. 

This chapter is organized as follows.  In section 6.1, the description of strategic 

level problem is discussed.  Then I introduce a way to estimate the collection cost for the 

strategic problem in section 6.2.  In section 6.3, the strategic problem is formulated 

within a stochastic dynamic programming framework.  In section 6.4, the strategic 

problem is viewed as a resource allocation-collection multi-time scale model.  The 



 101

general framework of this model is developed and presented.  In section 6.5, the strategic 

model is adapted to fit the general framework of the multi-time scale model.  I then 

propose a strategic trajectory heuristic to solve the strategic problem in section 6.6.  

However, one step in the strategic trajectory heuristic requires solving the target 

recruitment problem.  The corresponding methodology is discussed in section 6.7.  

6.1 Strategic Level Problem Model 

In this section, I provide the details of the strategic level problem from the 

processor’s standpoint.  According to the discussion in Chapter 3, the processor’s two 

objectives are minimizing 1) the collection costs and 2) the deviation of the actual 

collection volume from the target collection volume.  In order to accomplish its goals, it 

must manage collection network growth “smartly” by investing wisely in the recruitment 

of collection regions. 

I attempt to build the strategic model by exploring the benefit of information 

sharing in a vertical coordination of the supply chain.  The processor in the upper tier and 

the regional collector in the middle tier exchange information back and forth as shown in 

Figure 6.1. I assume that the processor has information on every retailer in the every 

region.  However, it does not control the recruitment in the regions.  Without knowing 

good estimations of collection volume from all regional collectors, the processor can not 

grow the collection network to reach the collection target effectively.  The significance of 

information sharing between tiers is discussed by Fiala (2005), Cachon and Fisher 

(2000), and Lee et al. (1997).  With no input from the regions, the processor may wrongly 

allocate a large amount of marketing budget to a region where it is difficult to recruit and 
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expensive to collect.  This mistake may return a lower collection volume than expected 

and lower success probability for achieving the target collection volume in the final 

macro-period.  Thus, the processor can employ these estimations to help grow collection 

network wisely by coordinating with the regional collectors. 

 
 

Figure 6.1: Information Flow for Strategic Level Problem 
 

I assume that the regional collector or recruiter for each region can use current 

information for its retailers to provide an estimate of the collection volume to the 

processor for a given budget amount and target collection volume.  Then the processor 

makes use of this information in determining the overall marketing budget allocation 

across regions.  When the regional collector receives its budget allocation from the 

processor at the beginning of any macro-period, it decides how to spend the recruiting 

budget in each period over one macro-period. 

The timeline of how the recruiting budget is spent among regions at the strategic 

level and how each regional collector allocates the given budget among the retailers in 

each region in the tactical level is displayed in Figure 6.2.  In the figure, macro-period 

and period present in a year and a month respectively.  For each year, the processor 
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determines the regional recruiting budget and the target collection volume.  Then the 

regional collector decides how to allocate its recruiting budget monthly to its retailers. 

 

Figure 6.2: Budget Timeline for Strategic and Tactical Level 
 

The processor makes three decisions each year.  First, it decides in which region(s) 

to grow the collection network.  Second, it determines how much marketing budget to 

spend in each region.  Third, it sets the regional targets for collection volume for the next 

year.  In order to determine these decisions the processor uses the current information for 

collection volumes and costs along with the inputs from all the regional collectors.  

Year 4 Year 0 Year 1 Year 2 Year 3

Month 0 Month 12

 

Tactical: Regional collector 
decides budget for each 
retailer in the region monthly 

Retailer 1 Retailer 1η  Retailer 2 

Given budget and target for region 1 
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Strategic: Processor decides budget 
and target for each  region yearly 
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Before making these decisions, the processor receives an estimate of the collection 

volume and the collection cost for a given budget and collection target from all regional 

collectors.  The decision timeline of the processor is shown in Figure 6.3.   

 
Figure 6.3:  The Decision Timeline for a Recruitment Problem 

 

Let M  represent the total number of regions.  Each region contains mη , 

1, 2,...,m M= , retailers that can be recruited to join the collection network.  In the carpet 

industry, there are thousands of retailers in the southeastern region of the U.S.  Even 

though there is a possibility that some of them can be removed from consideration based 

on the minimum volume the processor is prepared to collect, there are still hundreds of 
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retailers to be considered for collection recruitment.  A large number of retailers imply 

the high complexity of the collection network growth problem.  At this strategic level, I 

do not aim for a mathematically optimal solution that requires a great deal of 

computational effort but for a heuristic, not necessarily optimal, good solution that 

requires a reasonable computational time. 

In this section, I provide a description of the strategic level problem.  One of the 

objectives of the strategic level problem is to minimize the total collection cost through 

the final macro-period.  A total collection cost function that is a function of many factors 

is introduced in the next section. 

6.2 Collection Cost Function 

This section provides a model to estimate the total collection cost for each regional 

collector.  Each region can have different collection costs.  In Chapter 4, I assume that the 

locations of the retailers were dispersed differently in each region.  This has an impact on 

the regional transportation cost, which is part of the total collection cost.  For 

transportation cost, I use the fact that the collection center in each region can be thought 

as a depot that transports the collected material to the processor.  There are two types of 

transportation costs to be considered.  The first type is the cost to transport the large 

amount of collected materials to the processing site.  This is done by a third party long-

haul trucking company.  The second type is the cost to collect the materials from retailers 

in regional collection network.  An average distance estimate is employed to reflect the 

estimated dispersion in that region.  The more the retailers cluster together near the 

center, the lower the average distance becomes.  Consequentially, the transportation cost 
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in this situation should be lower.  On the other hand, the further the retailers disperse 

from the center, the higher the average distance becomes.  Consequentially, the 

transportation cost in this situation should be greater.  Let ( )Pr
mD  be the distance between 

the processor and collector in region m  and Dc  be the long-haul transportation cost per 

unit volume and per unit distance.   

The fixed collection cost in region m  is denoted by ( )co
mF .  Fixed cost is a fixed 

transportation cost that occurs no matter the level of the collection volume.  This could 

include a truck rental charge, insurance costs, etc.  Let ( )co
mV  be the actual volume 

collected in region m  and mD  be the average distance between collector in region m  and 

all retailers in that region.  Lastly, I denote Dc  as transportation cost per unit volume and 

per unit distance within the region.  I estimate for the total collection cost as:  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )total co co Pr co co
m m m D m m D m mc V F c D V c D V ρ= + + , (6.1)

where 0 1ρ< < .  The volume parameter, ρ , controls how much the collection volume 

affects the total collection cost.  The reason ρ  is restricted to values between zero and 

one is to represent collection cost typically as a concave cost function (Konno and 

Yamamoto 2003, Tishler and Lipovetsky 2000). 

To illustrate the collection cost function formula, I construct the following 

examples.  For three different configurations, the distance between the retailers and the 

collector in a region is given in Table 6.1.  For these examples, larger range of distances 

(1-15) implies large dispersion and a smaller range of distances (1-5) implies small 

dispersion.   



 107

Table 6.1 displays the distances for the different dispersion examples along with the 

associated calculation for average distance.  The volume parameter ρ  is set to 0.5 in this 

example.  In addition, Dc  = 1, Dc  = 0.5, ( )Pr
mD  = 20, and ( )co

mF  = 20.   

Table 6.1:  Distance Data for the Example Regions with Alternate Dispersions of 
Retailers 
 

  
Region with Large 

Distance Dispersion
Region with Medium 
Distance Dispersion 

Region with Small 
Distance Dispersion 

Retailer Distance 1-15 Distance 1-10 Distance 1-5 
1 5 8 3 
2 5 9 5 
3 7 2 3 
4 10 1 5 
5 2 7 5 
6 1 2 4 
7 14 4 3 
8 13 8 3 
9 9 7 1 

10 5 5 1 
11 9 3 1 
12 13 9 2 
13 14 7 2 
14 6 6 4 
15 3 3 4 
16 12 8 1 
17 2 6 3 
18 5 8 5 
19 9 7 5 
20 3 6 1 

Total 147 116 61 
Average Distance 7.35 5.80 3.05 
 

Using the data from Table 6.1, I plot the regional total collection cost versus 

collection volume as shown in Figure 6.4 and unit cost versus collection volume for the 

region as shown in Figure 6.5.  It can be seen that the total collection cost increases at a 

higher rate when the regional collection volume is very low than when the volume is 

high.  The figures also show that unit cost approaches a limiting value as the regional 

collection volume increases. 
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Figure 6.4: Total Collection Cost and Collection Volume 
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Figure 6.5: Unit Cost and Collection Volume 
 

In sections 6.1 and 6.2, I have provided a general description of the strategic model 

and showed how to acquire importation information on collection costs.  In the next 

section, I present a stochastic dynamic programming formulation for the strategic 

problem. 
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6.3 A Stochastic Dynamic Programming Formulation for the 

Strategic Problem 

As a starting point, I model the strategic problem from the processor’s standpoint to 

provide a heuristic policy.  To explain this model, I begin with the definitions of decision 

epochs, state space, actions, transition probabilities, and rewards.  Let the maximum 

starting recruitment budget be maxθ  and the number of total macro-periods be N  to 

define the decision epochs and state space as follows. 

Decision Epochs 

{0,1,..., 1}n N= −  

State Space 

1

1

11 12 1 1 2{ , , ,..., ,..., , ,..., , }
M

M

Start
n n n n M n M n M n nz n w w w w w wη η

η η

θ=
1442443 144424443

 for all nz Z∈ , 

where the willingness state of retailer i  of region m  {from among potentials states 

(L,M,H,R) as previously described in Chapter 4} at decision epoch n  is minw  and the 

maximum starting budget at each macro-period is represented by Start
nθ  such that 

maxstart
n

n
θ θ=∑ .  Although I assume that minw  is known to the processor, I assume that the 

willingness state can be updated through the recruitment process of that region by the 

regional collector only.  Using the willingness states for every retailer of each region in 

each macro-period, the processor can convert this information into the estimated 

collection volume and collection cost of that region.  Furthermore, the information also 

signals the recruitment difficulty of each region to the processor.  Hence, this information 
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along with the target collection volume forms the basis for the collector to make 

decisions on the recruiting budget allocation in each macro-period.   

For my model, I define the action set as follows. 

Action Set 
1 2 1 2{ , ,..., , , ,..., }ln ln ln Mln n n Mnλ λ λ λ λ λΛ = , 

where the amount of recruiting budget provided to region m  from action set index l  at 

macro-period n  is represented by mlnλ  and the target collection volume set for region m  

from macro-period n  is represented by mnλ .  There are restrictions on mlnλ  and mnλ  such 

that 
1

M
start

mln n
m

λ θ
=

≤∑ , 0 start
mln nλ θ≤ ≤  for 1,...,| |nl = Λ , and 0 mn mnHλ≤ ≤ , where the size of 

the thm  region’s target collection volume in macro-period n  is mnH .  The action set’s 

size depends on the number of regions, the size of budget limit, and the size of target 

collection volume in each macro-period.  Since the amount of recruiting budget allocated 

to region m , mlnλ , limits how much the collector of region  m  can spend, it constrains 

the action space of the recruitment problem of that region. 

 For my model, I define the state transition rules as follows. 

State Transition Rules 
 
(a) Initial State 

The initial state depends on the initial willingness states of all retailers in every 

region and the maximum starting recruiting budget.  For example, one possible initial 

state value is 0z =  
1

{0, ,..., ,..., ,..., ,100}
M

L L L L
η η

123 123  where all retailers in each region are in the 

‘L’ willingness state. 
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(b) Transition Probabilities 

The transition probabilities, 1( | , )n n n lnP z z+ Λ , are difficult to compute because the 

processor does not control how each region spends its recruiting budget allocation.  If the 

problem is set up as a centralized system where the processor manages every retailer in 

every region itself, the transition probability can be computed similarly to what I have 

shown in Chapter 4. 

Rewards 

It is hard to express the reward for the state-action pair in earlier macro-periods 

since I cannot compute the transition probabilities exactly.  In addition, the objective of 

this problem concerns minimizing the total collection cost while reaching the target 

collection volume in the final macro-period only.  I set the reward for each macro-period 

except the final macro-period as the lowest collection cost.  The final macro-period 

reward includes a penalty for deviating from the target collection volume after the actual 

collection volume is realized. 

Objectives 

The objectives of the strategic level problem are to minimize the final collection 

cost and the deviation between the final collection volume and the collection target.  

Since these two objectives apply to the end of the planning horizon, it is difficult to 

represent the optimality equation in a closed form.  By its definition, the optimality 

equation expresses the fact that the value of a state under an optimal policy must equal 

the expected return for the best action from that state.  The expected return on the final 

collection cost and deviation between the final collection volume and the collection target 

is difficult to approximate for earlier planning periods.  
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The strategic network growth problem is a multi stage problem where the first stage 

decisions generate uncertain results that affect the decisions in the next stage.  The 

problem could be formulated using a multi-stage stochastic knapsack (SKP) model9 

(Birge, J.R. and Louveaux 1997).  For the SKP model, previous research results provide a 

decomposition technique and approximation methods (Vondrak et al. 2004) that simplify 

solution of the strategic problem.  However, there are two reasons that the strategic 

problem is not formulated here as a stochastic knapsack problem.  First, the strategic 

network growth problem has more than two planning periods, which is a typical horizon 

used for SKP approaches. Second, the number of possible scenarios in the next decision 

period becomes too large for the SKP formulation because the state of the strategic 

problem is the aggregation of each individual state.  If the state of the strategic can be 

represented in a simple form and the probability transition can be computed exactly, a 

two-stage strategic problem can be formulated as a SKP model.  The approximation 

methods then can be applied to simply solution of the strategic problem. 

Next, I attempt to generalize the strategic level problem by examining how the 

entities in all levels interact.  The planning in the tactical level is taken into consideration 

while making decisions in the strategic level.  

6.4 Resource Allocation-Collection Multi-time Scale Model 

In this section, I propose a multi-time scale model to illustrate how the strategic and 

tactical models are connected.  The multi-time scale model is motivated by the work of 

Chang et al. (2003), Panigrahi and Bhatnagar (2004), and Panigrahi and Bhatnagar 
                                                 
9

 Special thanks to my dissertation committee member Dr. Ozlem Ergun for providing this insight. 
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(2006).  Chang et al. (2003) propose a model called Multi-time-scale Markov Decision 

Process (MMDP) for hierarchically structured sequential decision making processes.  The 

decisions in each hierarchy level are made in different discrete time-scales.  The 

hierarchical decision making in semiconductor fabrications is studied by Panigrahi and 

Bhatnagar (2004).  Panigrahi and Bhatnagar (2006) consider the same problem and 

develop a simulation based two-timescale actor-critic algorithm in a general framework. 

I develop a framework for my hierarchical resource-allocation control problem with 

a two time-scale Markov Decision Process (MDP) model.  The basic framework is 

similar to Chang et al. (2003) and Panigrahi and Bhatnagar (2006) but some assumptions 

are different.  There are two levels of decisions.  The higher level (HL) problem has a 

slow time-scale.  The lower level (LL) problem has fast time-scale.  I assume that the 

problems in both levels are categorized as finite horizon discounted MDPs.  The planning 

period on the slow time-scale is from 0,1,.., 1n N= − .  I denote time in the fast time-scale 

as 0 1 2{ , , ,...}t t t t∈  and time in the slow time-scale as ,nTt n= , 0,1,.., 1n N= −  where T  is 

a fixed finite scale factor between slow and fast time-scales.  Figure 6.6 illustrates 

different time-scale in more details.  The LL MDP has T  planning periods and the HL 

MDP has N  planning macro-periods.  The model requires the LL MDP to be resolved 

every T  periods.  I assume that nTt n ε= +  where ε  is a positive number arbitrary close 

to zero.  The purpose of this assumption is to allow a small gap between nTt  and n  such 

that a LL decision at nTt  is made slightly after a HL decision. 
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Figure 6.6: Graphical Illustration of Time Evolution in the Two Time-scale Problem 

 

At the LL, there are M  agents which correspond to regional collectors.  Each agent 

has different finite number of clients which correspond to retailers.  Each client belongs 

to only one unique agent and follows the Markov model proposed in Chapter 3.  I assume 

the state representation of each agent MDP depicts the status of each client.  Each client 

contains amount of Resource B that the upper level decision maker (corresponding to the 

processor) desires.  The MDP of each agent involves interaction with the clients to 

retrieve the Resource B.  Each agent has a different collection cost function which 

depends on the amount of Resource B that it can collect from the clients.  I assume that 

the amount of Resource B that the client is willing to offer is a function of its status and 

the amount of Resource A that it receives from the agent.  The allocation of Resource A 

among all clients represents the action space of each agent in the lower level.  In the LL 

problem, the size of the state and action space of each agent’s MDP is different.  Figure 

6.2 represents how Resource A, recruitment budget, is allocated at different problem 

level.  This is different from the model assumptions by Chang et al. (2003), where it is 

assumed that every MDP in the LL problem shares the same state and action space.   

My model assumes that each agent makes its own decisions based on the action 

taken by the HL decision, the amount of Resource A provided each agent.  The action set 

………

( | , )uP z z λ′  

………………
0n =  1n =  2n =  

0t t=  1t t=  Tt t=  2Tt t=  

( , ) ( | , , )l m m m mP y x a λ  

Time scale for LL MDP

Time scale for HL MDP
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in the lower level (LLA) is confined by the action from the higher level (HLA).  The 

transition dynamics of the LL MDP depends on the state at the LL (LLS), the action at 

the LL and the action at the HL.  It does not depend on the state at the HL (HLS).  In 

contrast, Chang et al. (2003) include the HLS as part of the transition dynamics of the LL 

MDP also. 

The objective of the HL is to achieve the target amount of resource B, VN , that is 

attained at time N  with the least collection costs.  The allocation of resource A among 

all agents represents the action space of the upper level decision maker in the upper level. 

I assume that the maximum starting amount of Resource A, start
nθ , is given and can be 

used to retrieve Resource B by allocating it to each agent in each slow time-scale period.  

The defined problem involves Resource A allocation and Resource B collection. 

I assume that the performance of overall system is evaluated based on the 

performance of each agent in the LL obtained from the state transition over the T -

horizon of the lower level.  Hence, the state at the HL problem at time n  is an 

aggregation of all agents’ states at nTt .  The transition dynamics for the HL problem do 

not depend on the LL decisions even though the performance produced by the lower level 

decisions affect the selection of the higher-level actions. 

Both Chang et al. (2003) and Panigrahi and Bhatnagar (2006) offer an initialization 

function in order to reinitialize the state of the LL MDP.  However, the state of the LL 

MDP in my model is only initialized at 0t .  The state at nTt  stays the same until the next 

action is taken. 
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The higher level MDP has a finite state space Z  and a finite action space Λ .  At 

each decision time 0,1,.., 1n N= −  and at state nz Z∈ , an action nλ ∈Λ  is taken and nz  

makes transition to a state 1nz Z+ ∈  with probability 1( | , )u
n n nP z z λ+ .  The superscript u  

on P  represents the transition probability of the HL problem.  The action λ  basically 

assigns the amount of Resource A among the sets of agents and set the target collection 

amount of Resource B from allocated set of agents.  After the action has been taken in the 

HL problem, the solution for the LL MDP over one-step slow time-scale period is 

determined accordingly.  I denote the finite state space and the finite action space for the 

LL MDP of agent m  by mX  and mA  respectively.   

Let the initial state in the lower level of agent m  be m mx X∈  and the initial state in 

the upper level MDP be z Z∈  ( 1 2
0 0 0 0 0{ , ,..., ,..., }m Mz z x x x x= =  at 0n = ) or 

1 2 .... Mz X X X∈ × × × .  The system follows the lower level MDP evolution from 0t  to 

1Tt − .  At the state mx  at 0t , an action 0 0
m ma A∈  is taken and mx  makes transition to next 

state m my X∈  which is a state at time 1t , according to the probability 

( , )
0( | , , )l m m m mP y x a λ .  The superscript ( , )l m  on P  represents the transition probability 

of agent m  in the LL problem.  The action m ma A∈  at 0t  is constrained by 0λ .  During 

this transition, a nonnegative and bounded reward of ( , )
0( , , )l m m mR x a λ  for agent m  in the 

LL is incurred and this process is repeated at the state my  at 1t  until the time 1Tt − .  The 

superscript ( , )l m  on R  represents the reward of agent m  in the LL problem.  The 

expected total reward over the T -horizon represents the expected collection cost when 

trying to reach the target defined in 0λ .  Hence, the state transitions and the reward 
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functions in the LL MDP (over the T -epoch) are induced by the upper level action.  This 

has an impact on the optimal policy of the lower level problem.  At time 1n = , an upper 

level action 1λ  is taken at 1z .  Then the lower level MDP evolves over the next T -epoch. 

I define a lower level decision rule for agent m , ( , )l md  = ( , ){ }l m
nπ , 0,1,..., 1n N= −   

as a  sequence of T -horizon nonstationary policies defined such that for all n , 

( 1) 1

( , ) { ,..., }
t n TnT

l m m m
n tπ φ φ

+ −
=  is a sequence of functions for agent m  in the LL problem where 

:
q

m m m
t X Aφ ×Λ→  for 0q∀ ≥ . 

 Given a lower level problem decision rule ( , ) ( , )l m l md D∈  and a nonnegative and 

bounded immediate reward function uL  defined over Z ×Λ  for the upper level problem, 

I define a function uR  such that for all 0n ≥ , for 1 1( ,..., )M Mx X x X∈ ∈  or nz Z∈  and 

nλ ∈Λ , 

( ,1) ( , )( , , ( ,..., ))u l l M
n nR z λ π π =

( 1) 1
1 ( ) ( ,1) 1 1 1
, ( , ( , ), )

n T

n n

nT

t
x t l
z t t t n n

t t

E R x xσ
λ α φ λ λ

+ −

=

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑  

 ( 1) 1
2 ( ) ( ,2) 2 2 2
, ( , ( , ), )

n T

n n

nT

t
x t l
z t t t n n

t t
E R x xσ

λ α φ λ λ
+ −

=

⎧ ⎫⎪ ⎪+ ⎨ ⎬
⎪ ⎪⎩ ⎭
∑  

M  
M 

 ( 1) 1
( ) ( , )

, ( , ( , ), )
n T

M

n n

nT

t
x t l M M M M
z t t t n n

t t
E R x xσ

λ α φ λ λ
+ −

=

⎧ ⎫⎪ ⎪+ ⎨ ⎬
⎪ ⎪⎩ ⎭
∑  

  ( , ),                    0 1,u
n nz λ α+ < ≤L              (6.2)

where ( )nT qt qσ + =  for all n  with {0,1,..., 1}q T= −  and α  represents the discount factor 

for each fast time-scale period in the LL problem.  The superscript mx  on E  represents 

the initial state of agent m , 
nT

m m
tx x= , and the subscript ,n nz λ  on E  represents that nz  
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and nλ  for the expectation are fixed.  The reward function for upper level uR  is the 

summation for all m  of the T -horizon total expected reward for following the  T -

horizon nonstationary policy ( , )l mπ  given nz Z∈  and nλ ∈Λ  starting with state m mx X∈  

plus an immediate reward of taking an action nλ  at the state nz  at the upper level.  In 

other words, it represents the total expected collection cost to hit the target set by the 

upper level problem, nλ .  The immediate reward of the upper level problem, uL , helps 

guide the upper level decisions to reach the desired target, VN , at the slow time-scale 

period N . 

Hence, the summation for all regions, where region m  has a total of total expected 

reward obtained by the lower level T -horizon nonstationary policy ( , )l mπ , acts as a 

single-step reward for the upper level MDP.  I define an upper level stationary decision 

rule ud  as a function :ud Z →Λ  and I denote uD  as the set of all possible such 

stationary decision rules.  Given the initial states z Z∈ , the objective is to achieve the 

decision rules of ( , ) ( , )l m l md D∈  for m∀  and  u ud D∈  that obtains the following 

functional value defined over Z : 
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where I define *V  as the two-level optimal finite horizon discounted value function and 

γ  as the discount factor for each slow time-scale period in the HL.  In summary, the 

decisions at the upper level must depend on the aggregation of the lower level state, 

which is the initial state for the lower level MDP evolution of each agent over the T -

horizon in the fast time-scale. 

Using the definition of the reward for the upper level and the lower level along with 

the value function, the optimality equation can be defined as follows. 

Optimality Equation 

For a given pair of z Z∈  and λ ∈Λ , I define a set ( , )[ , ]l m z λΠ  of all possible lower 

level T -horizon nonstationary policies of agent m  under the fixed pair of the upper level 

state z  and action λ : 

{ 0 1

( , ) ( , ) ( , ) ( , ) ( , )[ , ] : [ , ] | [ , ] : { ,..., },
T

l m l m l m m m
t tz z z λ λλ π λ π λ φ φ

−
Π = =  

                                         ( , ) : { }
q

m m m
t X Aλφ × Λ → , and }0,..., 1q T= − . (6.4)
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In addition, I define ( , ) ( , )( [ , ])m m
T m l m

x y
P zπ λ  as the probability that a state m my X∈  is 

reached by T -steps starting with mx  by following the T -horizon nonstationary policy 

( , )[ , ]l m zπ λ .  The probability ( , ) ( , )( [ , ])m m
T m l m

x y
P zπ λ  can be obtain by ( , )l mP .  Using the 

definition of   ( , ) ( , )( [ , ])m m
T m l m

x y
P zπ λ , I can obtain: 

1( | , )u
n n nP z z λ+  = 0 1 0 1

1 1 1 1(( , ,..., ,..., ) | ( , ,..., ,..., ), )u m M m M
n n n n n n n n nP x x x x x x x x λ+ + + + , 

 = 
( 1) ( 1) ( 1) ( 1)

0 1 0 1(( , ,..., ,..., ) | ( , ,..., ,..., ), )
n T n T n T n T nT nT nT nT

u m M m M
t t t t t t t t nP x x x x x x x x λ

+ + + +
, 

 
= 

( 1)

( , ) ( , )

1

( [ , ])m m
t tnT n T

M
T m l m

n nx x
m

P zπ λ
+=

∏ .     (6.5)

 Next, I can define how the MDP in upper level operates.  The state at time n  is an 

aggregation of the lower level state of each agent, 0 1( , ,..., ,..., )
nT nT nT nT

m M
n t t t tz x x x x= .  An 

action at state nz  is a composite control of nλ ∈Λ  and  ( , ) ( , )[ , ] [ , ]l m l m
n n n nz zπ λ λ∈Π  for 

m∀ .  Eventually, I can write Bellman’s optimality equation for this problem.  The upper 

level sequential decisions are an MDP with a reward function that is defined over all 

agents’ MDP dynamics.  From Puterman (1994) and Hernandez-Lerman (1989), I can 

adapt the standard MDP theory for Bellman’s optimality equation, for all z Z∈ : 

{ {
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( ) min min ( , , ( [ , ],..., [ , ])
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u l l M
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′∈

⎞⎫′ ′+ ⎬⎟
⎭⎠

∑ . (6.6)

Using similar arguments as those in Chang et al. (2003), the unique solution to (6.6) is 

*V .   

In this section, I have developed the resource allocation-collection multi-time scale 

MDP model as a general framework to represent the overall strategic problem.  This 



 121

model defines the states, transition probabilities, and the value function.  In addition, this 

model provides a general understanding for how the decisions in each hierarchical level 

are connected.  Using this general framework, I interlink the recruitment problem and 

strategic problem within the framework proposed in the next section. 

6.5 Multi-time Strategic Model 

In this section, I apply the multi-time scale MDP structure developed in section 6.5 

to the strategic level problem.  The decision maker for the slow time-scale is the 

processor and the decision makers for the fast time-scale are the regional collectors 

(agents) who can recruit the retailers (clients) in their regions.  The number of agents or 

regional collectors is M .  The number of retailers for regional collector m  is mη .  

Resource A represents the recruiting budget and Resource B represents used carpet. 

The state of each regional collector m  represents the willingness state of its 

retailers, 1{ ,.., }
m

m
m mx w w η= .  Hence, the state of the processor is the aggregation of all 

regional collectors’ states or 
1

0
11 1 1{ ,.., } { ,.., ,..., ,.., }

M

m
M Mz x x w w w wη η= = . 

The strategic model must decide how to allocate the available quantities of 

Resource A at the slow-time scale.  I denote maxθ  as a total amount of Resource A with a 

limit Start
nθ  on how much the resource can be spent in each macro-period n .  The size of 

the action in the upper level is bounded by the number of regional collectors and Start
nθ  

because it is a combinatorial set of resource allocations.  Action λ  defines the resource 

allocation and the target collection volume for each regional collector.  The resource 
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allocation to regional collector m  limits how much the regional collector m  can spend 

over the next T -horizon.  Hence, for a regional collector m , the given resource 

allocation and the number of retailers control its action space, m ma A∈ , and the 

probability transition, ( , ) ( | , , )l m m m mP y x a λ  of the lower level problem.  The probability 

transition in the lower level can be obtained using (4.2). 

The two objectives of the strategic model, minimizing total collection cost and 

minimizing deviation from the period N  collection volume target, are measured in 

different units.  I introduce a penalty cost per collection volume unit, ϕ , to convert the 

unit of deviation (pound) from collection volume target to a cost unit (dollar).  In the 

recruitment problem of each collector m , I introduce ( , ) ( , , )l m m m
tR x a λ  as the reward 

function in period {0,1,.., 1}t T∈ − .  For {0,1,.., 2}t T∈ − , I set the reward 

( , ) ( , , )l m m m
tR x a λ  to represent the increment in collection cost only.  For 1t T= − , the 

reward ( , ) ( , , )l m m m
tR x a λ  includes the penalty cost of deviation from the collection volume 

target set by λ .  This penalty is higher than the collection cost so that that collection 

volume target is achieved.  Consequently, the policy that minimizes the total expected 

cost over T -horizon, 
( 1) 1

( ) ( , )
, ( , ( , ), )

n T
m

nT

t
x t l m m m m
z t t t

t t
E R x xσ

λ α φ λ λ
+ −

=

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑ , provides the budget 

allocation over the T -horizon in order to meet the collection volume target with the least 

cost. 

The immediate reward function uL  for the strategic level problem can be redefined 

as  
 ( , ) 0u
n z λ =L  for 0,1,..., 2n N= − .  For last macro-period reward  

 1( , )u
N z λ−L , it can be 
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set to the penalty of failing to reach the overall collection volume target given at the 

beginning of planning macro-period.  Before making the strategic decision, the processor 

can make better decisions if it has the information of all the retailers in each region.  Each 

regional collector provides its current collection volume, collection cost and possible 

recruitment success rate in each region.  This explains why the status of each retailer in 

each region is part of the state in the upper level. 

With these settings, solving the multi-scale model is the same as obtaining the 

optimal policy to grow the collection network with the least cost and still meet the 

collection volume target.  However, the computational effort of using an exact method to 

solve for an optimal policy is high.  By relaxing some assumptions and fixing the number 

of agents to one, the strategic problem can be modeled using the Multi-time scale MDP 

approach proposed by Chang et al. (2003).  One iteration in their proposed value iteration 

requires 2(( ) )T XO X Z A⋅ Λ ⋅  effort.  The strategic problem includes the consideration 

of m  different MDPs so the complexity increases by at least the magnitude of m .  Since 

it is very challenging to pose and solve the strategic level problem exactly, I propose an 

heuristic in the next section to obtain “good” solution. 

6.6 Strategic Trajectory Heuristic 

I present a strategic trajectory heuristic to solve strategic problem in this chapter by 

examining the problem in each level.  The strategic trajectory heuristic procedure is 

composed of three main parts.  The first part is to formulate a strategic integer 

programming problem (IP) to make the selection of actions for the current and future 

macro-periods.  The solution from the IP in each slow time-scale period is then simulated 
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over T -periods to obtain the new state.  The second part is to update the parameters in 

each slow time-scale period in order to reformulate the IP in the next slow time-scale 

period.  Determining the parameters for the IP requires solving the lower level MDP 

(recruitment problem) many times.  The last part is to apply the concept of the Q-learning 

based heuristic to obtain the final policy. 

I approach the strategic problem by using reference trajectories that explicitly set 

targets on the increment amounts that are to be collected in each macro-period.  This 

constrains the upper level problem in every macro-period.  If this heuristic searches 

through enough reference trajectory combinations, a good solution can be obtained.  In 

the remainder of this section, the strategic trajectory heuristic is detailed.  First, the 

strategic IP formulation is developed and the process to updating parameters is specified.  

These are incorporated into a Q-learning based heuristic. 

6.6.1 Strategic IP Formulation 

The purpose of creating a trajectory in each slow time-scale period is to set a target 

on the Resource B and then to try to achieve the target by selecting action λ∈Λ  with the 

least cost.  Achieving the desired target collection volume at time N  is what I attempt to 

accomplish.  The strategic IP is formulated in order to select the action λ∈Λ  to achieve 

this target while minimizing the upper level reward uR , which is the total expected 

collection cost when all m  regions achieve their lower level targets set by the upper 

level, nλ .  It is important to emphasize that λ  controls the transition dynamics of each of 

the lower level MDPs.  Hence, it is necessary to obtain the estimation of 

( , ) ( , ( , ), )l m m m mR x xφ λ λ  for all λ ∈Λ . 
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For a given time period, the model’s representation of the target collection volume 

does not include the collection volume of the retailers recruited in the previous period.  

Alternatively, in the model a time period’s target collection volume is actually the desired 

increment in collection volume, not the cumulative total collection volume attained.  For 

the model, the target collection volume is the range shown by a solid bracket in Figure 

6.7. 

 

Figure 6.7: Target Collection Used in the IP Model for One Time Period 
 

The strategic IP is used to solve the budget allocation problem for a given macro-

period to represent the actual state trajectory as closely as possible based on the state of 

the macro problem at the beginning of the macro-period.  Thus, this is a myopic IP in the 

sense that it does not try to determine budget allocations beyond the end of the given 

macro-period.  In order to capture different strategic choices by using reference 

trajectories, the strategic trajectory heuristic uses the strategic IP to try to get the actual 

trajectory to match the reference as closely as possible. 

For the strategic problem, the strategic IP formulation attempts to reach the target 

collection volume at the end of each macro-period by growing collection network along a 

specific trajectory.  A vector of target collection volumes for each macro-period 

Total Collection Volume

0 
Volume 

Target Collection Volume Current Collection Volume 
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represents a trajectory over the strategic planning horizon.  In each macro-period, the 

objective is to minimize the collection costs such that the deviation between actual 

collection volume and the target collection volume from the trajectory in that macro-

period is bounded within a certain range.  This concept is illustrated in Figure 6.8, where 

the solid line represents the linear trajectory and the dashed line represents the solution 

for the strategic IP in each year. 
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Figure 6.8: Strategic IP and Linear Trajectory 
 

I define the index, parameters, and variables for the strategic IP below. 

Index: 
 
m  Index of regions ( m  = 1, 2, …,  M ) 
j  Index of budget amounts ( j   = 1, 2, …,  J ) 

k  Index of collection target amounts ( k   = 1, 2, …., K ) 
n  Index of macro-period s ( n   = 0,1, …,  1N − ) 

Using these indices, the parameters for the strategic IP can be defined.  Before 

explicitly defining each term, a modeling device to establish discreet value alternatives 

for budget and collection volume settings needs to be described.  I create a list of 

alternative budget settings to be used to form a budget array for each region m  and for 
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each time period n , 1{ ,.., ,..., }mn mn jmn JmnB b b b= , where jmnb  represents the value of the 

thj  entry in mnB .  Also, the list of available target collection volumes is used to create a 

collection target array for each region m  and for each time period n , 

1{ ,..., ,..., }mn mn kmn KmnH h h h= , where kmnh  represents the value of thk  entry in mnH .  Using 

this notation, the parameters are defined as follows. 

Parameters: 
 

jmnb  Amount of marketing budget that the processor chooses to spend on the 
region m  in period n , which is the value of thj  entry in mnB . 

 
kmnh  Target collection volume for region m  at the end of period n  from the 

target array, which is the value of thk  entry in mnH . 
 

mjknv%  Expected increment in collection volume from region m  by using budget 
jmnb  to achieve target collection volume kmnh   at the end of macro-period 

n .  
 

( ) ( )total
mn mjknc v%

 

Expected increment in total collection cost of region m  at the end of 
macro-period n  to collect volume mjknv%  from region m  in period n  by 

using budget jmnb  to achieve target collection volume kmnh . 
 

VN  Target collection volume at the end of planning horizon 1N − . 
 

nV  Target collection volume from the trajectory that should be achieved at 
the end of macro-period n . 

 
nV ′  Adjusted target collection volume that should be achieved at the end of 

macro-period n . 
 
 

mnv  Actual collection volume of region m  at the start of macro-period n . 

mnvt  The summation of actual collection volume for all regions ( 1,2,...,m M= ) 
at the start of macro-period n . 

 
ε  Allowable deviation between expected collection volume and the target 

collection volume. 
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The strategic IP embeds a parametric solution of the lower level MDP with the 

expected increments in collected volume and cost.  The solution represents the estimate 

of the expected collection volume responses for given target and given initial conditions 

for the regions.  The estimate of the cost can be obtained from (6.1).  The estimate of the 

expected collection volume is found by solving the target recruitment problem in each 

region which will be explained in Section 6.7. 

In each trajectory, I represent the total target collection volume from all regions at 

macro-period n  as nV .  There are an infinite numbers of trajectories to consider if I 

restrict the set of intermediate volume targets to rational numbers.  One simple trajectory 

is a linear trajectory, where 0 3
VNV = , 1

2
3
VNV = , and 2V VN=  for a three-year plan, 

which is shown as a thick line in Figure 6.9.  I also show many other trajectories to reach 

VN .  The algorithm randomly chooses the trajectory by selecting nV .  The heuristic is 

thus to use many different, but reasonable, trajectories that capture the different tradeoffs 

in the problem.  The goal is then to further combine the states visited by these trajectories 

into better solutions through the Q-learning approach. 
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Figure 6.9: Sample Trajectories of Target Collection Volume 
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Using defined indices and parameters, the decision variables for the strategic IP can 

be defined as follows. 

Variables: 
 

mjknx  = 

⎧
⎪
⎪
⎨
⎪
⎪⎩

 

1 if budget amount jmnb  is assigned to region m  in order to achieve the 

target kmnh  in macro-period n   
 
0, otherwise. 

Strategic IP for macro-period n , 0,..., 1( )n NSP = − , can be formulated as: 

Minimize    ( ) ( )total
mn mjkm mjkn

m j k
c v x∑∑∑ %   (6.7)

Subject to: 1mjkn
j k

x ≤∑∑  m∀  (6.8)

 
Start

jmn mjkn n
m j k

b x θ≤∑∑∑   (6.9)

 mjkn mjkn n
m j k

v x V ε′− ≤∑∑∑ %   (6.10)

 mjkn mjkn n
m j k

v x V ε′− ≥ −∑∑∑ %   (6.11)

 {0,1}mjknx =  , ,m j k∀ . (6.12)

The objective function (6.7) is the sum of the total collection cost.  Constraints (6.8) 

require only one budget amount can be allocated in region m  for the specific target 

collection volume.  Constraint (6.9) restricts the overall spending budget to be less than 

the budget limit.  Constraints (6.10) and (6.11) bound the deviation between the expected 

collection volume and the adjusted target collection volume.  Constraints (6.12) force 

mjknx  variables as binary variables. 

The strategic IP of period n  only looks ahead one macro-period.  The solution of 

strategic IP ( )nSP  selects the action nλ  and resultant policy of each collector ( , )[ , ]l m
nzπ λ .  

Then using action nλ , T -horizon MDP evolution of each collector is performed to 
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retrieve 
( 1)n T

m
tx

+
 for m∀  or 1nz + .  This process is called one-period rolling horizon.  The 

strategic IP 1( )nSP +  is then formulated and the process is repeated until the final macro-

period.  Hence, by exploring many trajectories, the strategic trajectory heuristics creates 

possible realizations ( , )z λ  that meet the objective functions.  Some trajectories may be 

infeasible to reach or feasible but very costly. 

I allow the situation where the region starts with some retailers that are already in 

its network.  Hence, each region has an initial seed collection volume.  I assume that 

these recruited retailers are part of the system and so if the processor decides to collect 

from that region, it gets that initial amount for no recruitment cost.  However, that 

amount is still a part of total collection cost.  I then have to keep track of which regions 

are in the collection network system.  If the region is not part of the system, the value of 

mjknv%  of that region becomes the summation of initial seed collection volume and the 

original value of mjknv% .  Otherwise, the value of mjknv%  remains the same. 

In this subsection, I developed the IP formulation for the strategic problem.  Its 

objective is to determine the recruitment budget and the target collection volume to 

minimize the collection costs such that the deviation between actual collection volume 

and the target collection volume from the trajectory in that macro-period is bounded 

within a certain range.  The next subsection describes how the parameters of the strategic 

IP in each macro-period are updated. 



 131

6.6.2 Updating Information in Strategic IP Formulation 

In order to formulate the strategic IP in each macro-period, three parameters need to 

be updated.  They are the remaining budget ( 1
Start
Nθ − ) in the last period, the expected 

collection volume ( mjknv% ), and the corresponding collection cost ( ( ) ( )total
mn mjknc v% ).  I describe 

these updates below. 

Remaining Budget ( 1
Start
Nθ − ): 

The budget limit, Start
nθ , is given for each macro-period.  There is an exception in 

the final macro-period such that the remaining budget from the previous macro-period 

also can be spent.  Thus, the budget limit for the final period decision is the summation of 

the remaining budget from previous macro-periods and the starting budget limit of that 

macro-period.  The final macro-period maximum budget can be obtained from: 

2
max

1 1
0

N
Start Start
N N jmn mjkn

n m j k
b xθ θ θ

−

− −
=

← + −∑∑∑∑ . (6.13)

Since the willingness state of the retailers in the region may change after the 

allocation has been assigned, the expected collection volume for the same budget amount 

and target collection amount in that region may also change.  Hence, this value needs to 

be updated in each macro-period. 

Expected collection volume ( mjknv% ): 

The algorithm must compute this parameter for every region, every budget amount, 

every target amount and every macro-period.  It can be obtained by solving the 

recruitment problem which is described in next section (section 6.7).  The target 

recruitment problem takes three parameters:  region ( m ), budget allocation ( jmnb ), and 
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target collection volume ( kmnh ).  I denote the target recruitment function ( , , )jmn kmnTR m b h  

as a function that returns the expected collection volume from solving target recruitment 

problem with defined parameters m , jmnb , and kmnh .  Again, the expected collection 

volume is the expected increment in collection volume from the amount that can be 

collected from recruited retailers in region m  in macro period n . 

Since the expected collection cost ( ) ( )total
mn mjknc v%  depends on the expected collection 

volume, this value also needs to be updated in each macro-period. 

Expected collection cost ( ( ) ( )total
mn mjknc v% ): 

After retrieving the value of mjknv% , the algorithm updates the collection cost 

respectively as shown in Figure 6.10.  First, it obtains the actual collection volume of 

region m  at current macro-period n , mnv .  Then it computes the increment in collection 

cost by: 

( ) ( ) ( )( ) ( ) ( )total total total
mn mjkn mn mn mjkn mn mnc v c v v c v= + −% % . (6.14)

The action space from the high level Λ  is ( , )jmn kmnb h  for all j  and k .  The 

expected collection cost ( ) ( )total
mn mjknc v%  represents ( , ) ( , ( , ), )l m m m mR x xφ λ λ . 

These procedures for updating the remaining budget Start
nθ  in the final period, the 

expected collection volume mjknv% , and the corresponding collection cost ( ) ( )total
mn mjknc v%  are 

combined with the IP and the Q-learning based heuristic to obtain the final policy.  This 

approach is described in the next section. 
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Figure 6.10: Computing Total Collection Cost for Each Region 
 

6.6.3 Strategic Trajectory Heuristics Procedure 

This subsection details the complete step-by-step procedure of the Strategic 

Trajectory Heuristic (STH).  The procedure explains how the strategic IP, updating the 

important parameters, and the Q-Learning based heuristic are combined.  

Step 1 First, set the iteration count equal to 1. 
 

Step 2 Set 0n = , 0nvt = , 0,mnv m= ∀ . 
 
Reset all parameters for the first macro-period. 
 

Step 3 For all , ,m j k : 
 

Obtain mjknv%  by solving the ( , , )jmn kmnTR m b h  problem as discussed in 
section 6.7.   

 
Obtain ( ) ( )total

mn mjknc v%  using (6.14). 
 

End For 

m nv  

( ) ( )total
mn mjknc v%

m jknv%  

( ) ( )total
mn mnc v



 134

Step 4 Randomly choose nV  such that n nvt V VN< < . 
 
Update n n nV V vt′ = −  which is the target in increment of volume target for the 
end of macro-period n  
 

Step 5 Build the ( )nSP  model as defined in (6.7)-(6.12) and solve it. 

Step 6 For all 1mjknx = , simulate the actual collection capacity in region m  using 

budget amount jmnb  to target kmnh .  This means simulate an instance in the 

region m  using the policy from ( , , )jmn kmnTR m b h .  A different result can be 
obtained for each simulated instance. 
 
Update , 1,m nv m+ ∀   using the results from the simulation. 
 
Update 1 , 1n m n

m
vt v+ +=∑ . 

 
Step 7 Update the Q-Table using the following equation: 

 

1
1 1( )

( , ) ( , , ) max ( , )
n

n n n nA z
Q z r z z Q z

+
+ +Λ∈

Λ ← Λ + Λ . 
(6.15)

  
For 0,1,..., 2n N= −  

The initial immediate reward is actually an increment in collection cost.  

Because the Q-Learning approach is set up as a maximization problem, it 

expects to be working with the immediate reward as a profit instead so the 

following adjustment is made.  Let ξ  be the revenue in each time period.  Set 

this revenue to be very large such that it is always greater than the cost.  

Then, the immediate reward in period n  can be computed from:             

 
( ) ( )

1 , 1( , , ) ( ) ( )total total
n n n mn mn mn m n

m m
r z z c v c vξ+ −

⎡ ⎤Λ = − −⎢ ⎥⎣ ⎦
∑ ∑ . (6.16)
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For 1n N= −  

In the final period, the goal is to minimize the increment in collection 

cost and also to achieve the collection target, VN .  Hence, the immediate 

reward includes both components.  Recall that cost and volume have different 

measurement units. Let ψ  be the cost per unit to penalize the collection target 

deviation.  Because the Q-Learning approach is set up as a maximization 

problem, transform the immediate reward to a profit by subtracting cost from 

profit.  Hence, the immediate reward for period N  can be computed from: 

 
( ) ( )

1 1 1 , 1( ) ( ) ( )total total
N N mN mN mN m N N

m m
r z c v c v VN vtξ ψ− − − −

⎡ ⎤= − − − −⎢ ⎥⎣ ⎦
∑ ∑  (6.17)

  
Update the remaining budget for the last period according to (6.13). 

 
Step 8 Increase n  by 1.  If n N= , go to step 9.  Otherwise, go to step 3 

 
Step 9 Increase the iteration count by 1. 

 
If iteration count exceeds the limit, exit. Otherwise, go to step 2 
 

Step 10 Use the Q-Table to obtain the final policy. 
 

  A summary of this procedure is displayed in the flow chart in Figure 6.11.  The 

iteration count limit represents how many trajectories are examined.  In each iteration, the 

trajectory in each macro-period is randomly generated.  Then, the necessary parameters 

are updated.  The strategic IP is solved in order to obtain the collection volume target and 

recruitment budget for the regional collectors.  The solution is simulated to acquire the 

actual outcome.  The state-action pair and the reward in each macro-period are fed into 

Q-Table for an update. These steps are repeated for N  periods in one iteration.  After 

sufficient trajectories are considered, the final policy is obtained. 
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Figure 6.11: Diagram of Strategic Trajectory Heuristics 
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6.7 Target Recruitment Model 

In step 3 of the strategic trajectory procedure described in section 6.6.3, the value of 

mjknv%  is obtained by solving the target recruitment model.  Therefore, in this section, I 

modify the target recruitment model and the methodology based on the discussion in 

Chapter 4 in order to obtain the value of mjknv% .  The importance of this model is to 

provide an estimate of the collection volume from the lower level to the upper level.  In 

section 4.7, I provide a methodology to solve the recruitment problem where the 

objective is to recruit retailers in order to achieve the maximized collection volume for 

given recruiting budget.  However, the overall strategic goal for each regional collector is 

to recruit the retailers to minimize the deviation of the expected collection volume from 

the target collection volume while keeping costs low.  In this section, I modify the 

Chapter 4 model to obtain a target recruitment model and methodology for the strategic 

problem.   

Here the stochastic dynamic programming formulation of the target recruitment 

problem is similar to the Chapter 4 recruitment model.  Decision epochs, states, actions, 

and transition probabilities remain the same.  The only change is for the reward prior the 

final period, 1T − .  In Chapter 4, the reward represents the summation of the increment 

in value of the willingness state for every retailer.  The value of willingness state R is the 

collection volume for a retailer.  For the strategic level problem, the objective is to 

maximize the positive state change of all retailers as a proxy for maximizing total 

collection volume over fixed planning horizon.  For the target recruitment model, I 

modify the reward structure to reflect the new objective.  There are mη  retailers to 
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consider.  The reward in period 1T −  of moving to state TY  from state 1TY −  by action 

( 1)l TA −  becomes 

( ) ( ) ( )( 1) 01 1 ( 1)
1 1

, ,
m m

iT i T iT iT T l T T w w w w
i i

r Y A Y V V h V V
η η

ψ
−− − −

= =

= − − − −∑ ∑ , (6.18)

where h  is the given collection target that the processor tries to accomplish according to 

step 3 in  strategic trajectory heuristic procedure, kmnh , and ψ  is the positive penalty of 

deviating from the target per unit volume.  The first term in (6.18), ( )( 1)
1

m

iT i Tw w
i

V V
η

−
=

−∑ , is 

the summation of increment in value for all retailers.  The second term, 

( )0
1

m

iT iw w
i

h V V
η

ψ
=

− −∑ , is added to penalize the deviation between the target collection 

volume and the total increment in collection volume for all retailers between the first 

period and the final period, ( )0
1

m

iT iw w
i

V V
η

=

−∑ .  In other words, higher deviation implies 

smaller reward.  The penalty ψ  must be high enough to guide the solution toward the 

target collection volume.   

From Chapter 5, because the Rolling IP with DP heuristic provides a solution with 

better solution quality and solution time than Q-Learning method, I modify the Rolling IP 

with DP heuristic to solve the target recruitment problem.  I denote e  as the deviation of 

actual collection volume from the target.  The initial budget allowed 0
startB  or maxB  

represents given budget allocation from the strategic level, jmnb .  As a starting point, I 

can model the target recruitment model for each region as the following quadratic 

programming problem. 
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Regional Target Recruitment Problem-Quadratic Programming Formulation ( )tQP  
  
Minimize    2e   (6.19)
Subject to: 1ij

j
x ≤∑  i∀  (6.20)

 
start

j ij t
i j

b x B≤∑∑   (6.21)

 ij ij t
i j

e v x h′= −∑∑ %   (6.22)

 {0,1}ijx =  ,i j∀  (6.23)

 e−∞ < < ∞ .  (6.24)

I introduce th′  as the remaining collection volume target at time t  and start
tB  as the 

remaining budget at time t .  To avoid the need to solve a challenging integer quadratic 

programming problem, I change the objective function to minimize the absolute deviation 

using standard reformulation techniques.  I represent e+  as the deviation of going over 

the target collection volume 0ij ij t
i j

v x h
⎛ ⎞

′− ≥⎜ ⎟
⎝ ⎠
∑∑ % , and e−  as the deviation of going 

below the target collection volume 0ij ij t
i j

v x h
⎛ ⎞

′− ≤⎜ ⎟
⎝ ⎠
∑∑ % .  Then I replace e  by the 

difference of two new nonnegative variables, e e e+ −= − , where , 0e e+ − ≥ .  The solution 

has the property that either 0e+ =  or 0e− =  (or both).  Hence, I can use the summation 

of these two terms to represent the objective function, which is the summation of errors 

that go over and below the target collection volume.  I then reformulate the targeted 

recruitment problem for each region as a mixed integer linear programming problem 

(MILP): 
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Regional Target Recruitment MILP Formulation ( )tTRP  

Minimize    e e+ −+   (6.25)
Subject to: 1ij

j
x ≤∑  i∀  (6.26)

 
start

j ij t
i j

b x B≤∑∑   (6.27)

 ij ij t
i j

e e v x h+ − ′− = −∑∑ %   (6.28)

 {0,1}ijx =  ,i j∀  (6.29)
 , 0e e+ − ≥ .  (6.30)

To solve the target recruitment problem, I follow the recruiting rolling horizon 

solution procedure as explained in section 4.7 with some modifications.  The regional 

target recruitment rolling horizon solution procedure is described below. 

Regional Target Recruitment Rolling Horizon Solution Procedure (RTHS) 

Step 0 Set 0t =  , 0h h′ = , and max
0
startB B=  

 
For all retailers i  that are already in the network, set  ijv%  = 0. 
 
Otherwise, solve ijv%  from ( , , )jSR i b T  for all ,i j  using the DP approach.  The 
initial state of ( , , )jSR i b T  is [0, initial willingness state, jb ]. 
 

Step 1 Formulate the associated regional tTRP  model and solve for ijx . 
 

Step 2 For the retailers for which marketing budget has been allocated, simulate the 
action in period t  only. 
 
If t T= , obtain the total increment in collection volume from period 0 to period 
T  and exit.  Otherwise, obtain the total increment in collection volume from 
prior the period 1t −  and go to Step 3. 
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Step 3 Set 1t t= + .   
 
For all retailers i  that are already in the network, set  ijv%  = 0. 
 
Otherwise, look up ijv%  from current state, [ t , current willingness state of 
retailer i , jb ]. 
 
Update the remaining collection target, th′  ( 1t th h −′ ′= −  the actual increment 
collection volume from the previous period). 
 
Update remaining budget start

tB , ( 1
start start
t tB B −= −  actual budget spent in the 

previous period). 
 
Go to Step 1. 
 
 

The RTHS procedure is similar to obtaining a good policy on the fly by adjusting 

the action in each period corresponding to the uncertainty of the willingness state 

transition of the retailer.  The solution from the target recruitment problem is a value of 

target recruitment function, TR , which is defined in section 6.6.  This is a function of 

region, budget amount, and target collection volume.  As shown in Figure 6.12, the 

algorithm performs this procedure numerous times for given regional target collection 

volume and budget settings in order to obtain expected collection volume.  The strategic 

model uses the expected collection volume value as the parameter mjknv%  in its IP 

formulation ( n  represents the macro-period). 
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Figure 6.12: Procedure for TR Function 
 

In this chapter, the estimate of the collection cost function is proposed.  In addition, 

the general framework of the strategic problem is examined.  I developed the general 

framework of this problem, called the resource allocation-collection multi-time MDP 

model.  The strategic problem is then adapted for this framework.  The complexity of the 

model makes it prohibitive to obtain the optimal policy in reasonable computation time.  

Thus, I proposed a heuristics to solve the strategic level problem.  This heuristics’ 

performance will be tested with small examples in Chapter 7 and the heuristics will be 

used in a large-scale example.  Insights and possible improvements are also discussed.   
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CHAPTER   7  

NUMERICAL STUDY ON THE  

STRATEGIC LEVEL PROBLEM 

 
 
 

In Chapter 6 I posed the conceptual model of the strategic problem and provided a 

heuristic to determine the recruiting budget allocation in each macro-period.  I also 

provided the description and approach for the target recruitment problem.  In this chapter, 

the target recruitment problem is exemplified in section 7.1.  Then, the strategic trajectory 

heuristic approach is applied to small and large examples of the strategic problem in 

section 7.2 and 7.3.  In addition, possible improvements are studied and discussed. 

7.1 Target Recruitment Study 

In this study, I explore how the region size (number of included retailers), 

marketing recruitment budget, and target collection volume are related by solving many 

target recruitment problems by the RTHS method proposed in section 6.7.  There are 

three different regions in this study.  Each region has the same proportion of retailer’s 

initial willingness state:  low (50%), medium (30%), and high (20%).  The number of 

retailers in regions A, B, and C is 10, 20, and 30 respectively.  The collection volume of 

the retailer in each region is generated according to the lognormal distribution with mean 

1.2 and standard deviation 0.5. The complete details of the data are shown in Tables B1, 
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B2, and B3 in Appendix B.  Next, I consider fixing two dimensions from 1) recruitment 

budget, 2) region size, and 3) target collection volume capacity, and investigating the 

impact of varying the third. 

7.1.1 Fixing Target Collection Volume and Recruitment Budget 

In this test case, the target collection volume is set to 100 and the recruitment 

budget is set to 100.  The RTHS method is used to simulate 100 replications of the 

solution for actual collection volume with different region size settings.  The solutions for 

actual collection volumes are then fitted to a normal distribution.  The normal distribution 

curve for each region’s solution is shown in Figure 7.1.  The narrow curve implies small 

standard deviation and the center of the curve represents the average value.  Figure 7.1 

shows how the size of the region has an impact on the solution quality.  The solution for 

region C yields a high probability of obtaining the target collection volume, with a 

narrow and high curve centered at 100.  The solution for region A yields the worst result.  

Its average value is below the target and the normal curve has a very wide shape. 
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Figure 7.1 also implies the characteristic of each region.  Given that the recruitment 

budget 40 is considered small, the wide normal curve for region A implies that there are 

not many retailers who start in the high state.  However, as the number of retailers 

increases in region B and C, the normal curves for region B and C are narrower.  The 

growth in the number of retailers in a region also increases the number of retailers who 

start in the high state because of the assumption about constant proportions of retailers in 

each state in each region.  Consider the case where the proportion is in favor of the high 

initial willingness state, i.e. low (30%), medium (30%), and high (40%). The normal 

curve of each region’s solution is shown in Figure 7.3.  The normal curve for region A in 

Figure 7.3 has a higher mean than the one in Figure 7.1.  Unlike the normal curve for 

region B in Figure 7.1, the normal curve for region B in Figure 7.3 is narrow and centered 

at the target.  The normal curve for region C in Figure 7.3 is narrower that the one in 

Figure 7.1. 
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Next, the target collection volume is set to 200 and the recruitment budget is set to 

40.  I hypothesize that it is harder to meet the target collection volume in this case 

compared to the previous case because the target collection volume setting increases 

while the recruitment budget setting remains the same.  The normal curve of each 

region’s solution is shown in Figure 7.3, which shows how the different number of 

retailers in the region affects the solution quality.  The normal curve for region C implies 

that the largest collection volume it can achieve with high confidence, with the given 

settings, is only about 130.  Thus, it allocates the recruitment budget in order to achieve 

collection volume of 130 instead of target collection volume of 200.  The solution for 

region B has higher average collection volume than the one for region C, but has a much 

higher standard deviation.  The solution for region A yields the worst result.  Its average 

value is below 100 and its normal curve has a very wide shape. 
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Figure 7.3:  Normal Curves of Actual Collection Volume with Target Collection Volume 
200 and Budget 40 

Next, the target collection volume is set to 200 and the recruitment budget is set to 

100.  I hypothesize that it is easier to achieve the target collection volume in this case 

compared to the previous case because of the increase in recruitment budget setting.  The 

Target 
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normal curve of each region’s solution is shown in Figure 7.4, which shows how a 

different number of retailers in the region affects the solution quality.  The normal curves 

for regions B and C are similar.  Both results return the average collection volume close 

to the target with small standard deviation.  The result for region A yields a lower 

average collection volume than the target with slightly higher standard deviation. 
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Figure 7.4:  Normal Curves of Actual Collection Volume with Target Collection Volume 

200 and Budget 100 
 

From Figures 7.1, 7.3, and 7.4, the results show that when the proportion of 

retailers’ initial states is fixed, there is a higher probability to achieve the target collection 

volume from the region with a larger number of retailers.  By fixing the target collection 

volume and the recruitment budget, it is possible to find the number of retailers in the 

region or region size so that the target collection volume can be obtained with high 

confidence.  Nevertheless, the budget has to be large enough, and the region contain 

enough retailers, to meet the volume targets.  For example, in Figure 7.3, the recruitment 

budget of 40 is too small to obtain the target collection volume 200 even in region C, 

which has the largest number of retailers among the three regions. 

Target 
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Essentially, in this subsection the role of the region’s character is highlighted.  Each 

region has a different number of retailers whose initial willingness state are different.  

Region C has a larger number of retailers who start in the high state than region A.  

Therefore, region C can recruit more retailers with higher probability than region A for 

the same amount of budget.  Therefore, it is important for the processor to use the 

information on the characteristic of the region as part of his or her decision making. 

The characteristic of the region can be explained by the resultant normal curve for 

the given target collection volume and recruitment budget.  If the normal curve is narrow 

and tall, it implies that the target collection amount can be achieved with high probability. 

Therefore, it is possible to achieve a higher target collection volume for the same amount 

of recruitment budget or to achieve the same target collection volume for the smaller 

amount of recruitment budget.  On the other hand, if the normal curve is wide and flat, it 

implies that the target collection amount is too high or there is not enough budget 

amounts to meet the target in that region.  Therefore, an increase in the budget amounts 

may help in meeting the same target, or the reduction of the target collection volume may 

potentially help achieve the new target with higher probability. 

7.1.2 Fixing Target Collection and Number of Retailers 

In this test case, the target collection volume is fixed but the recruitment budgets 

takes different values.  The alternative recruitment budget settings are 20, 40, …, 140 and 

the target collection volume is set to 180.  The RTHS approach is used to simulate 100 

replications of the solution and the actual collection volumes are found with different 

recruitment budget settings.  Figure 7.5 displays the 90% confidence interval of the actual 
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collection volume solution obtained by the RTHS approach when different recruitment 

budget settings are used to achieve the target collection volume 180 in region A.  The 

dashed line shows the trend line of the mean collection volume for all recruitment budget 

settings.  The recruitment budget drives the mean collection volume higher but the mean 

collection volume does not exceed 150.  One explanation is because region A is 

considered hard to achieve a high collection volume target due to the low number of 

retailers in the favorable state.  In addition, the results show that even with a large 

recruitment budget setting, it is difficult to meet target collection volume with high 

confidence. 
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Figure 7.5:  90% Confidence Interval of Actual Collection Volume in Region A with 

Target Collection Volume 180 

Figure 7.6 displays the 90% confidence interval of the actual collection volume 

solution obtained by the RTHS approach when different recruitment budget settings are 

used to achieve the target collection volume 180 in region B.  The dashed line shows the 

trend line of the mean collection volume for all recruitment budget settings.  The 

recruitment budget drives the mean collection volume higher until it reaches 178.8.  

Furthermore, the results show that starting with a recruitment budget setting of 60, the 

target collection volume can be achieved with high confidence.   
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Figure 7.6:  90% Confidence Interval of Actual Collection Volume in Region B with 

Target Collection Volume 180 
 

Figure 7.7 displays the 90% confidence interval of the actual collection volume 

solution obtained by the RTHS approach when different recruitment budget settings are 

used to achieve the target collection volume of 180 in region C.  The dashed line shows 

the trend line of the mean collection volume for all recruitment budget settings.  The 

recruitment budget drives the mean collection volume higher until it reaches 180.  In 

addition, the results show that starting at recruitment budget of 60, the target collection 

volume can be achieved almost surely.  

70

130

180180180180180

0
20
40
60
80

100
120
140
160
180
200

20 40 60 80 100 120 140
Recruitment Budget

A
ct

ua
l C

ol
le

ct
io

n 
Vo

lu
m

e 
(lb

.)

 
 

Figure 7.7:  90% Confidence Interval of Actual Collection Volume in Region C with 
Target Collection Volume 180 
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 Figure 7.8 combines results from the Figures 7.5, 7.6, and 7.7 together.  It shows 

the trend line of the mean collection volume for each region with different recruitment 

budget settings.  The trend lines illustrate the same basic slope.  The slope increases when 

the recruitment budget is small and then converges when the recruitment budget is large. 
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Figure 7.8:  Trend line of the Mean Collection Volume in Region A,B, and C with 
Target Collection Volume 180 

From Figures 7.5, 7.6, 7.7, and 7.8, it is possible to find the minimum recruitment 

budget setting that can achieve the target collection volume with high confidence in 

different region sizes.  However, the characteristic of the region can prevent the recruiter 

to achieve the target.  For example, region A’s mean collection volume does not exceed 

150 as shown in Figure 7.5.   

This subsection also raises the question: what if the poor decisions are made during 

the recruitment process?  Figure 7.7 illustrates that if the recruitment budget of 60 is 

spent intelligently on Region C, a target amount of 180 can be achieved with high 

probability by recruiting the retailers who are easily recruited.  However, if the recruiter 

spends the recruitment budget on a retailer who may return a very high collection volume 

Target 
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but is difficult to recruit, the recruiter may fail to meet the target.  This poor decision may 

lead to a larger range in the confidence interval of the actual collection volume.  

Consequently, it becomes harder to find the optimal budget setting that can achieve the 

target collection volume with high probability.  This argument strengthens the 

significance of the recruitment problem.  In addition, achieving the target with high 

confidence also helps the strategic decision maker with robust planning. 

7.1.3 Fixing Recruitment Budget and Number of Retailers 

In this test case, the recruitment budget and the region size are fixed but the target 

collection volume takes different values.  The target collection volume settings are 34, 

68, …, 340 and the recruitment budget is set to 80.  The maximum possible collection 

volume in region A is 340.  The RTHS approach is used to simulate 100 replications of 

the solution for actual collection volume with different target collection volume settings.  

Figure 7.9 display the 90% confidence interval of the actual collection volume solution 

obtained by the RTHS method with different target collection volume settings in region 

A.  The results show that largest target collection volume that it can achieve with high 

confidence is between 34 and 68.  In addition, given the parameter settings, the average 

solution collection volume does not exceed 147.2. 
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Figure 7.9:  90% Confidence Interval of Expected Collection Volume in Region A with 

Recruitment Budget 80 
 

Figure 7.10 display the 90% confidence interval of the actual collection volume 

solution obtained by the RTHS method with different target collection volume settings in 

region B.  The results show that the largest target collection volume that it can achieve 

with high confidence is between 170 and 204.  In addition, given the parameter settings, 

the average solution collection volume does not exceed 195.6. 
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Figure 7.10:  90% Confidence Interval of Expected Collection Volume in Region B with 

Recruitment Budget 80 
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Figure 7.11 display the 90% confidence interval when fixed recruiting budget is 

used to achieve many target collection volumes in region C. The results show that the 

largest target collection volume that it can achieve with high confidence is between 170 

and 204.  In addition, given the parameter settings, the average solution collection 

volume does not exceed 205.8. 
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Figure 7.11:  90% Confidence Interval of Expected Collection Volume in Region C with 

Recruitment Budget 80 
 

From Figures 7.9, 7.10, and 7.11, it is possible to find the minimum target 

collection volume that the region can achieve with high confidence given a fixed 

recruitment budget.  If the target collection volume is too high, there is a limit on how 

much the region can collect for a given budget. 

 In this study, three cases are considered.  First, the solutions from the test case in 

section 7.1.1 show that by fixing the target collection volume and the recruitment budget, 

it is possible to find the region size that can obtain the target collection volume with high 

confidence.  Second, the solutions from the test case in section 7.1.2 show that it is 
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possible to find the recruitment budget setting that can achieve the target collection 

volume with high confidence with different region sizes.  Lastly, the solutions from the 

test case in section 7.1.3 show that it is possible to find the target collection volume that 

the region can achieve with high confidence given a fixed recruitment budget.  The 

conclusions from these cases illustrate a pattern whereby the collection system can fix 

two dimensions from among 1) recruitment budget, 2) region size, and 3) target 

collection volume capacity, and then determine the third. 

This pattern can enable the processor to perform a pre-selection of the regions in 

which to attempt recruitment.  If the number of regions is large, the processor can choose 

to concentrate the recruitment from the regions that have a high probability of achieving 

the predetermined target collection volume.  This can be done by fixing the recruitment 

budget and the region size.   

7.2 Small Example 

In this section, a data set is generated for each of three test cases.  The solutions for 

these test cases are then obtained by the strategic trajectory heuristic (STH) method.  

There are two regions and the number of planning years is three.  The three-year target 

collection volume is 50.  Region A has 4 retailers and region B has 2 retailers.  This small 

example is used because it is possible to compute the optimal solution to the recruitment 

problem. The collection cost function is computed by (6.1).  The parameter settings in 

collection cost function are  Dc  = 1, Dc  = 0.5, and ( )co
mF  = 20.  The retailers in all regions 

are centered closely to their regional collector with average distance equal to 1.  The 

difference in transportation cost between the regional collector and the processor is 
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emphasized over the transportation cost within a region.  For Cases 7.1 to 7.3, the 

distance between the processor and the regions are set to ( ) 10Pr
AD =  and ( ) 1Pr

BD = . The 

total marketing budget is 60 and the maximum budget in each year is 20.  The alternative 

recruitment budget ( jb ) settings are 0, 10, 20 and the target collection volume ( kh ) 

settings are 10, 20, 30, 40, 50.  The collection volume in each region is generated such 

that it is not enough to achieve the target collection volume by only collecting from 

region B, which is closer to the processor.  Next, three different test cases are considered 

where the initial willingness states in each region are different. 

Case 7.1:  Easy to recruit in both regions 

The data in Table 7.1 is given and the heuristic policy is obtained by the STH 

approach.  The iteration number limit is set to 100. 

Table 7.1:  Data Set for Case 7.1 
 

Retailer Region 
Collection Volume 

(lb./month) 
Recruitment Budget 

Threshold Initial Willingness State 
1 A 30 15 H 
2 A 40 20 M 
3 A 20 10 H 
4 A 60 36 M 
1 B 10 5 M 
2 B 20 10 M 

The resultant policy obtained by the STH approach is then simulated for 100 

replications to find the actual collection volume and the total collection cost at the end of 

the third year.  Figure 7.12 shows the histogram of the final period actual collection 

volume.  In addition, the average cost per pound of the samples in each actual collection 

volume value (40 and 50 in this case) is computed and displayed because the same actual 

collection volume does not always produce the same collection cost.  In this case, the 

heuristic policy obtained by the STH method can achieve the target collection volume in 



 157

almost all replications.  Since the data set is small, the minimum collection cost can be 

calculated.  In this case, it is best to recruit retailer 1 and 2 from region B and retailer 3 

from region A.  Hence, the minimum cost per pound is 2.64. 
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Figure 7.12: Actual Collection Histogram for Case 7.1 

 

For cases 7.1 and 7.2, the actual collection histogram of the optimal policy is shown 

in Figure 7.13. 
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Figure 7.13: Actual Collection Histogram of Optimal Policy for Case 7.1 and 7.2 

 

The total running time for Case 7.1 is 14 minutes.  The solution average, minimum, 

maximum of the collection volume, total cost and, cost per pound are shown in Table 7.2.  

When the actual collection volume is 50, its average cost per pound is 2.64 which is equal 
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to the minimum value.  In this test case, the policy obtained by the STH method is able to 

achieve the minimum collection cost and meet the target collection volume in 99 

replications.  The heuristic policy performs almost as well as the optimal policy in this 

case. 

Table 7.2:  Result Summary for Case 7.1 
 
  Collection Volume (lb.) Total Cost ($) Cost Per Pound ($/lb.) 

Average 49.90 132.20 2.65 
Minimum 40.00 129.56 2.64 
Maximum 50.00 132.23 3.24 

 
Case 7.2:  Easy to recruit in region A but difficult to recruit in region B 

The data in Table 7.3 is given and the heuristic policy is obtained by the STH 

approach.  The iteration number limit is set to 100. 

Table 7.3:  Data Set for Case 7.2 
 

Retailer Region 
Collection Volume 

(lb./month) 
Recruitment Budget 

Threshold Initial Willingness State 
1 A 30 15 H 
2 A 40 20 M 
3 A 20 10 H 
4 A 60 36 M 
1 B 10 5 L 
2 B 20 10 L 

 

The resultant policy obtained by the STH approach is then simulated for 100 

replications to compute the actual collection volume and the total collection cost at the 

end of the third year.  Figure 7.14 shows the histogram of the final period actual 

collection volume.  In this case, the heuristic policy obtained by STH method can achieve 

the target collection volume in most replications.  Since it is more difficult to recruit the 

retailers in region B, there is a high probability that the allocated budget fails to recruit 

those retailers in the earlier years.   
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If the retailers in region B fail to be recruited in the first two years, there are two 

choices in the heuristic policy in the final year.  If only retailer 2 in region B is recruited, 

the policy chooses to spend the rest of the budget to recruit retailer 3 in region B to 

achieve the total collection volume of 40 even though it costs more.  If only retailer 1 in 

region B is recruited, the policy chooses to spend the rest of the budget to recruit retailer 

2 in region B instead of retailer 3 in region A to achieve the total collection volume of 30 

because the total collection volume would be the same but the total cost would be lower.  

This explains the 30 percent occurrence of the policy obtained by the STH method 

missing the target collection volume.  Even though it is easy to recruit the retailers in 

region A to meet the target collection volume, its collection cost is higher than the 

collection cost in region B.  Hence, the resultant policy attempts to recruit the retailers 

from region B first.  Compared to the optimal policy in Figure 7.13, the heuristic policy 

in this case performs well but not as well as in case 7.1. 
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Figure 7.14: Actual Collection Histogram for Case 7.2 

 

The total running time for Case 7.2 is 15 minutes.  The solution average, minimum, 

maximum of the collection volume, total cost and, cost per pound are shown in Table 7.4.  
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When the actual collection volume is 50, its average cost per pound is 2.70, which is 

slightly higher than the minimum.  When the actual collection volume is 40, its average 

cost per pound is 3.24.  This value is high because the collection volumes are from region 

A only.  On the other hand, when the actual collection volume is 30, its average cost per 

pound is 1.03.  This value is low because the collection volumes are from region 2 only.   

Table 7.4:  Result Summary for Case 7.2 
 
  Collection Volume (lb.) Total Cost ($) Cost Per lb ($/lb.) 

Average 45.90 124.64 2.69 
Minimum 30.00 30.81 1.03 
Maximum 50.00 156.28 4.21 

 
Case 7.3:  Difficulty in recruiting in both regions 

The data in Table 7.5 is given and the heuristic policy is obtained by the STH 

approach.  The iteration limit is set to 100. 

Table 7.5:  Data Set for Case 7.3 
 

Retailer Region 
Collection Volume 

(lb./month) 
Recruitment Budget 

Threshold Initial Willingness State 
1 A 30 15 L 
2 A 40 20 L 
3 A 20 10 L 
4 A 60 36 L 
1 B 10 5 L 
2 B 20 10 L 

The resultant policy obtained by the STH approach is then simulated for 100 

replications to acquire actual collection volume and the total collection cost at the end of 

the third year.  Figure 7.15 shows the histogram of the final period actual collection 

volume.  In this case, the heuristic policy obtained by STH method can achieve the target 

collection volume in 26 replications.  Since it is more difficult to recruit the retailers in 

both regions, there is a higher probability that the allocated budget fails to recruit those 

retailers.  The percentage that the policy obtained by the STH method misses the target 
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collection volume is high (74 percent).  The actual collection histogram of the optimal 

policy for case 7.3 is shown in Figure 7.16.  Compared to the optimal policy in Figure 

7.16, the heuristic policy in this case does not perform well.  The optimal policy can meet 

the target collection volume in 48 more replications. 
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Figure 7.15: Actual Collection Histogram for Case 7.3 
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Figure 7.16: Actual Collection Histogram of Optimal Policy for Case 7.3 

 

The total running time for Case 7.3 is 16 minutes.  The solution average, minimum, 

maximum of the collection volume, total cost and, cost per pound are shown in Table 7.6.  

When the actual collection volume is 50, its average cost per pound is 3.06, which is 

higher than the minimum.  The reason is that since both regions are difficult to recruit, 

sometimes it is better to concentrate on just region A to achieve the target collection 
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volume because the retailers in region A have higher collection volume.  In the worst 

scenario, there are a few replications where no retailer is successfully joined to the 

network.   

Table 7.6:  Result Summary for Case 7.3 
 
  Collection Volume (lb.) Total Cost ($) Cost Per lb ($/lb.) 

Average 38.20 133.03 3.41 
Minimum 0.00 0.00 1.03 
Maximum 50.00 174.62 4.27 

In order to improve the performance of the heuristic policy, the problem in case 7.3 

is resolved with some modifications in the parameter settings. The target collection ( kh ) 

settings are discretized in a finer space {0, 5, 10,…, 50}.The iteration limit is increased to 

200.  Figure 7.17 shows the histogram of the final period actual collection volume. 
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Figure 7.17: Actual Collection Histogram for Case 7.3 with Parameter Modifications 

 

Figure 7.17 shows a tremendous improvement in the solution quality.  However, the 

total running time in this case increases to 41 minutes, compared to 16 minutes in case 

7.3.   

From the results in Cases 7.1, 7.2, and 7.3, I empirically show that heuristic policy 

obtained by STH method performs well when the retailers in all regions are easy to 
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recruit.  The target collection volume is achieved in most of the replications.  However, 

when the retailers in all regions are difficult to recruit, the performance of the policy 

acquired by the STH method deteriorates.  However, the performance can be improved 

by adjusting the discretization of the target collection volume, including the iteration 

limit. 

For a small example, the other solution method to solve MMDP such as the 

approximation method (Chang et al. 2003) and actor-critic algorithm (Panigrahi and 

Bhatnagar 2006) may provide better solution performance.  However, this research aims 

to develop a methodology to support decision making for a realistic sized problem in 

order to provide insight to the processor.  The STH method is tested on a large sized 

example in the next section. 

7.3 Large Example 

In this section, a large data set is generated and explored for four test cases.  The 

computational requirements of the STH approach depend on not only the number of 

regions and the number of retailers in those regions, but also the size of the target 

collection volume settings kh  and the size of the recruitment budget settings jb .  In order 

to solve the large scale problem with reasonable computation effort, the size of the target 

and budget is chosen carefully through discretization.  Next, four different test cases are 

considered with different parameter settings. 
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Case 7.4:  Easy to recruit 

There are two regions (region A and region B) in this case and each region contains 

50 retailers.  All of the retailers’ initial willingness states in both regions are set to the 

high (H) value.  The collection volume of the retailers in region A is smaller than the one 

in region B.  Region A is closer to the processor than region B, so let ( ) 10Pr
AD =  and 

( ) 20Pr
BD = .  The total marketing budget is set to 600 for three years.  The marketing 

budget limit for each year is 200.  The target collection volume at the end of the third 

year is 2000.  The recruitment budget settings are 0, 40, 80, …, 200 and the target 

collection volume settings are 300, 600,…, 1500. 

The resultant policy obtained by the STH approach is then simulated for 100 

replications to estimate actual collection volume and the total collection cost at the end of 

the third year.  Figure 7.18 shows the histogram of the final period actual collection 

volume.  In this figure, 2000s represents the collection volume from 2000 to 2100.  In 

this case, the heuristic policy obtained by STH method can achieve the collection volume 

in the range of 1900-2200 in 94 replications.  In this case, the lower bound of the cost per 

pound is computed from the cost of collecting 2000 from region 1 alone which is 1.04. 
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Figure 7.18:  Range of Actual Collection Histogram for Case 7.4 
 

The total running time for Case 7.4 is 69 minutes.  An increase in number of 

retailers in the region adds more complexity to the original problem.  The solution 

average, minimum, maximum of the collection volume, total cost and, cost per pound are 

shown in Table 7.7.  The numerical results show that two thirds of the actual collection 

volume is from region A.  This implies that even though it is cheaper to collect from 

region A, the recruitment budget is not enough to recruit enough retailers to meet the 

target collection volume.  Hence, it has to allocate part of the recruitment budget to 

recruit the retailers in region B, which contains retailers with higher collection volume, to 

join the network.  As a result, the cost per pound in every replication from the simulation 

is higher than the proposed lower bound. 

Overall, the heuristic policy performs well, as it should, because of the easy 

recruitment in both regions.  Only 16 replications fail to meet the target.  In most 

replications, the actual collection volume is off by only 5%.   
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Table 7.7:  Result Summary for Case 7.4 
 
  Collection Volume (lb.) Total Cost ($) Cost Per lb ($/lb.) 

Average 2,086.96 3,228.36 1.55 
Minimum 1,872.40 2,825.17 1.47 
Maximum 2,266.50 3,600.74 1.68 

 
Case 7.5:  Three regions with different initial states 

There are three regions in this case and the number of retailers in region A, B, and 

C is 10, 10 and 5 respectively.  Region A is the furthest away from the processor but the 

retailers in this region are easy to recruit (initial willingness state H).  Region C is the 

closest to the processor but the retailers in this region are very hard to recruit (initial 

willingness state L).  Region B locates closer to the processor than region A, but further 

than region C.  All of the retailers’ initial willingness states in region B are set to the 

medium (M) value.  The collection volume of the retailers in region C is low compared to 

the one in region A and B.  The complete details of the data for this case are shown in 

Table B4.  Let ( ) 20Pr
AD = , ( ) 10Pr

BD = , and ( ) 1Pr
CD = .  The total marketing budget is 150 

for three years.  The marketing budget limit for each year is 50.  The target collection 

volume at the end of the third year is 300.  The recruitment budget settings are 0, 10, 20, 

…, 50 and the target collection volume settings are 30, 60,…, 300.  

The resultant policy obtained by the STH approach is then simulated for 100 

replications to acquire actual collection volume and the total collection cost at the end of 

the third year.  Figure 7.19 shows the histogram of the final period actual collection 

volume.  In this figure, 300s represents the collection volume from 300 to 320.  In this 

case, the heuristic policy obtained by STH method can achieve the collection volume in a 

wide range of 160-360 with the concentration in the middle (260-300).     
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Figure 7.19:  Range of Actual Collection Histogram for Case 7.5 

 

The total running time for Case 7.5 is 42 minutes.  An increase in the number of 

regions adds more complexity to the original problem.  The solution average, minimum, 

maximum of the collection volume, total cost and, cost per pound are shown in Table 7.8.  

The lowest cost per pound of the replication where the actual collection volume meets the 

target is 1.69.  In this replication, it only collects from regions B and C.  This is 

reasonable because the total collection from region C is only 80 and the collection cost in 

region B is cheaper than the one in region A.  By examining the resultant policy, if the 

regional collector of region A or B fails to meet the target assigned by the processor in 

the earlier year, the processor is forced to turn to region A in a later year where the 

retailers are easiest to recruit in order to meet the target collection volume.  

Consequently, the total collection cost is raised higher. 

Overall, the heuristic policy does not perform well.  There are 63 replications that 

fail to meet the target.  In the worst case, the actual collection volume is only 80 
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compared to the target of 300.  However, this can be explained from the fact that region 

C is the hardest to recruit but has the cheapest total collection cost. 

Table 7.8:  Result Summary for Case 7.5 

  Collection Volume (lb.) Total Cost ($) Cost Per lb ($/lb.) 
Average 264.60 774.95 2.91 

Minimum 80.00 41.49 0.52 
Maximum 350.00 1,046.65 4.17 

 
Case 7.6:  Three regions with random initial states 

There are three regions in this case and the number of retailers in region A, B, and 

C is 20, 20 and 10 respectively.  Region C is the furthest away from the processor but the 

retailers in this region are easy to recruit.  Region A is the closest to the processor.  

Region B locates closer to the processor than region C but further than region A.  All of 

the retailers’ initial willingness states in all regions are randomly assigned.  The 

collection volumes of the retailers in all regions are generated from the same lognormal 

distribution.  The complete details of the data for this case are shown in Table B5.  Let 

( ) 15Pr
AD = , ( ) 20Pr

BD = , and ( ) 25Pr
CD = .  The total marketing budget is 180 for three 

years.  The marketing budget limit for each year is 60.  The target collection volume at 

the end of the third year is 500.  The recruitment budget settings are 0, 10, 20,…, 60 and 

the target collection volume settings are 50, 100,…, 500. 

The resultant policy obtained by the STH approach is then simulated for 100 

replications to acquire actual collection volume and the total collection cost at the end of 

the third year.  Figure 7.20 shows the histogram of the final period actual collection 

volume.  In this figure, 500s represents the collection volume from 500 to 530.  In this 

case, the heuristic policy obtained by STH method can achieve the collection volume in 
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the wide range of 410-590 with the concentration in the middle (500-530).   It is not 

obvious in this case what the lower bound of cost per pound is. 
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Figure 7.20:  Range of Actual Collection Histogram for Case 7.6 
 

The total running time for Case 7.6 is 208 minutes.  An increase in running time 

comes from increase in number of regions and number of retailers per region.  The 

solution average, minimum, maximum of the collection volume, total cost and, cost per 

pound are shown in Table 7.9.  By examining the resultant policy, it attempts to recruit 

region A and B first.  There are some cases where region C is recruited to the network. 

Overall, there are 43 replications that fail to meet the target.  There is no obvious 

explanation to determine the performance of the heuristic policy because the initial states 

of the retailers in all regions are random.  If the recruitment budget is large enough, the 

policy may have done better.  However, it is not clear in this case. 

Table 7.9:  Result Summary for Case 7.6 

  Collection Volume (lb.) Total Cost ($) Cost Per lb ($/lb.) 
Average 473.90 1,380.13 2.92 

Minimum 360.00 979.27 2.31 
Maximum 590.00 2,020.40 4.11 
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In the small and large examples, the STH method yields the heuristic policy that 

performs well when the initial state of the retailers is H.  When the initial states of the 

retailers contain many low (L) and medium (M) values, the STH method finds it difficult 

to provide a policy that always returns a collection volume that achieves the target.  The 

retailer who starts with a low initial state can move to other states with different 

probabilities.  Hence, there are many more states to consider for the strategic level 

problem.  Still, the STH method can provide a policy that returns the collection volume 

close to the given target even though the collection cost might not be the minimum. 

Considering current computational time requirements, it will take more than 208 

minutes to solve the problem with three regions where each region can have hundreds of 

retailers.  Next, I propose how to improve the computation time through a preprocessing 

scheme. 

Preprocessing Phase 

I attempt to solve the strategic problem with three regions with a large number of 

retailers as would be expected in a real case.  Region A, B and C have 200, 50, 50 

retailers respectively.   However, even in case 7.6 where the total number of retailers is 

only 50 for three regions, it takes 208 minutes to solve, and hence I would expect very 

significant computation times for regions of this size.  I introduce a preprocessing phase 

that helps improve the computational effort.   

In the strategic IP formulation discussed in section 6.6.1, in order to compute for 

expected collection volume of region m  using budget jb  to meet target kh  in each 

period, mjknv% , the target recruitment problem needs to be resolved for every parameter 
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setting.  The majority of the effort comes from solving the recruitment problem for all 

mjknv% .  The total number of recruitment problems depends on the number of retailers in 

region m , the budget size and the target size.  Under the RTHS method, in order to solve 

TRP the expected collection volume for each retailer i  from budget jb , ijv% , and their 

action in that period needs to be obtained.  This depends also on which willingness state 

that retailer is in and the period. 

Previously, ijv%  is recomputed every time the value is needed using the exact DP.  

However, solving for each ijv%  and its corresponding action for every retailer, starting 

willingness state, and month period can be computed once at the beginning.  The results 

are stored in a look up table.  A hash table is used to store these results in order to 

improve the retrieval time.  The size of this hash table is: 

The size of hash table = number of regions ×  number of retailers ×  budget size ×  
number of willingness state ×  number of months          (7.1) 

This preprocessing scheme is then applied to the data set in Case 7.7. 

Case 7.7:  Large Scale Problem 

There are three regions. Region A, B, and C has 200, 50, and 50 retailers 

respectively.  All of the retailers’ initial willingness states in all regions are randomly 

assigned.  Moreover, region A, B, and C has initial collection volume of 131.7, 257.1, 

and 348.8 respectively.  Let ( ) 10Pr
AD = , ( ) 20Pr

BD =  and ( ) 30Pr
CD = .  The total marketing 

budget is 300 for three years.  The collection volume in retailer for each region A, B and 

C is drawn from uniform distribution [0,30], [30,60], and [60-90] respectively.  The 

marketing budget limit each year is 100.  The target collection volume at the end of third 
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year is 2000.  In this case, region A and region B should be chosen to join the network 

before region C because of the distance between the regional collector and the processor.  

The recruitment budget settings are 0, 10, 20,…, 100 and the target collection volume 

settings are 100, 200,…, 1000. 

The total running time to generate 100 trajectories is 240 minutes.  This is a 

considerable improvement compared to Case 7.5.  The heuristic policy is shown in Table 

7.10. 

Table 7.10:  Heuristic Policy for Case 7.7 

  Region Budget Allocation 
Target Collection Volume 

(lb.) 
Year 1 1 60 200 
Year 2 1 80 200 
Year 2 2 20 100 
Year 3 2 100 500 
Year 3 3 40 300 

The projected collection volume at the end of year 3 is to collect 531.7 from region 

A, 857.1 from region B and 648.8 from region C.  The total projected collection volume 

is 2,037.6.  The resultant policy obtained by the STH approach is then simulated for 100 

replications to acquire actual collection volume and the total collection cost at the end of 

the third year.  In all replications the actual collection volume is 2,000.4 and the total 

collection cost is 5,876.13 (cost per pound 2.94).  Since there are numerous retailers in 

each region that start in state H, the STH method attempts to recruit these retailers first.  

The STH approach performs very well in identifying these favorable retailers in each 

region and electing to recruit them to join the network accordingly.  It is surprising that 

the solution policy only recruits the retailers in the state H.  However, it is reasonable 

because the recruiting this type of retailers is easy.  Therefore, assigned region can 
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achieve the target collection volume aimed by the processor in each macro-period.  

Nevertheless, these results do not guarantee the minimum cost per pound. 

This numerical study for the strategic problem may be considered a “small” realistic 

problem.  Large scale realistic sized problems would have about 8 regions and each 

region could have a couple of hundred retailers.  The large scale example discussed 

above is solved using a Windows 2000-based Pentium 4 1.80 GHz personal computer 

with 640MB of RAM.  However, if a parallel processor-based platform is available to 

solve the strategic problem, the computation time can be reduced tremendously.  The 

advantages of parallel computing can be exploited in three following ways: 

 1. Solving each retailer in the recruitment problem in parallel to obtain the expected 

collection volume for every budget setting. 

 
 2. Solving each region in parallel to obtain the expected collection volume for every

budget and target setting. 

 
 3. 
 

Solving each trajectory of the strategic problem in parallel. 
 
 

7.4 A Large Carpet Producer Case Study 

To illustrate the approach on a more realistically sized large scale problem that is 

representative of an actual industry challenge, I have approximated a situation similar to 

one currently faced by a large carpet producer.  In this research case study these data 

have been estimated by me, and not provided by the company, so in no way do they 

accurately depict the true financials of the company.  I assume that there are five regions 

to consider.  The details for the case study regional information are shown in Table 7.11.  

The population information for the states under consideration has been retrieved from the 
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U.S. Census Bureau10 and the cost per pound has been quoted from American Freight 

Companies.11  I assume that the processing site is located at Augusta, Georgia.  For 

purposes of estimating the amount of used carpet available, I assume that one person 

generates about 17 pounds of carpet per year.12  

 
Table 7.11  Case Study Data - Regions Information 
 

Region Name 

States 
included 

in the 
Region Population

Total 
Population 

Approximate 
Volume (lb.) 

Distance to 
Augusta, GA 

(miles) 

Linear 
Shipping 

Cost per Lb 
($/lb.) 

1. Atlanta GA 9,072,576 50,321,532        855,466,044 148 0.015 
  FL 17,789,864      
  TN 5,962,959      
  AL 4,557,808      
  SC 4,255,083      
  NC 8,683,242        
2. New York NY 19,254,630 50,311,211        855,290,587 785 0.035 
  PA 12,429,616      
  MA 6,398,743      
  NJ 8,717,925      
  CT 3,510,297        
3. Los Angeles CA 36,132,147 48,127,302        818,164,134 2,363 0.101 
  NV 2,414,807      
  OR 3,641,056      
  AZ 5,939,292        
4. Dallas TX 22,859,968 35,639,018        605,863,306 928 0.041 
  NM 1,928,384      
  OK 3,547,884      
  AR 2,779,154      
  LA 4,523,628        
5. Chicago IL 12,763,371 31,800,951        540,616,167 864 0.039 
  WI 5,536,201       
  IA 1,429,096       
  MO 5,800,310       

  IN 6,271,973         

                                                 
10

 http://www.census.gov/popest/datasets.html 
11

 http://www.freightcenter.com 
12

 Source: Dr. Matthew Realff, Chemical and Biomolecular Engineering, Georgia Institute of Technology.  
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In addition, due to the relative size of landfill tipping fees in those areas, I assume 

that the retailers in the New York and Los Angeles regions mostly have initial states ‘H’ 

while the retailers in the Atlanta, Dallas and Chicago regions mostly have initial states 

‘M’ or ‘L’.  The total population and approximated collection volume in the Atlanta, New 

York and Los Angeles regions are similar, so I assume that the number of retailers in 

each of these regions is the same.  The data on the amount of carpet generated (square 

yards) for all available retailers in the Atlanta region are obtained and fitted to a 

lognormal distribution.  Using these data, the data in the Dallas and Chicago regions are 

approximated by scaling using the total populations.  The histogram and the fitted curve 

of the Atlanta, Dallas and Chicago regions are shown in Figure 7.21.  One square yard of 

used carpet is approximately 4.5 pounds.13 
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13

 Source: Carpet and Rug Institute (2003) 



 176

For a realistically sized problem, the actual number of retailers is in thousands.  Due 

to computation limits, I consider 50 retailers each in Atlanta, New York and Los Angeles, 

35 retailers in Dallas, and 30 retailers in Chicago.  As a result, the solution computation 

time for case study scenario is about 2-3 hours.  In the Atlanta region, the top 50 retailers 

(in term of square yards) are selected, but the total generated volume for these 50 retailers 

exceeds the approximated collection volume in Table 7.11.  Hence, the collection volume 

in each retailer is scaled by the ratio of the regional approximated collection volume to 

the total volume of the top 50 retailers.  The collection volumes of the retailers for the 

remaining regions are computed in the same way.  The scaling of the volume per retailer 

is important in the sense that it prevents the problem from being too simple.  If the 

collection volume per retailer is large, it is easy to choose a small number of retailers to 

achieve the target collection volume.  I assume that the target collection volume at the 

end of the third year is 400 million pounds.  Two types of scenarios are considered in this 

case study, one where no retailers are initially committed to the collection network and 

the other where the initial network contains recruited retailers in a distant region (Los 

Angeles).  Each scenario is studied first then with an assumption of linear transportation 

costs and then an assumption of concave transportation costs.  Also, the marketing budget 

is set at small or large settings for alternative problems. 

Scenario 1:  Small and Large Marketing Budget with Linear and Concave Costs 

For this scenario, I assume that there are no retailers initially committed to the 

collection network.  First I study the problem with an assumption of linear transportation 

costs, using first a small and then a large marketing budget. 
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Results for the Linear Transportation Cost Assumption 

The solution for these assumptions yields an heuristic policy with the marketing 

budget allocation concentrated on the Atlanta and New York regions.  It rarely allocates 

the marketing budgets to other regions.  This is intuitive because Atlanta is the closest 

region to the processing site (Augusta, GA).  Even though the retailers in the Atlanta 

region are difficult to recruit, it is more cost effective to concentrate the marketing budget 

in this region.  Since the collection costs in this case are assumed linear, there is no 

financial incentive to recruit additional retailers to obtain larger amounts of collection 

volume from a region where it is easy to recruit such as the Los Angeles region.  The 

solution results for a large marketing budget assumption show that the number of 

recruited retailers in the Atlanta region is larger than when recruiting with a small budget.  

However, due to volume requirements, there is still a need to recruit the retailers from 

other regions.  The New York region is the next closest and the retailers there are easy to 

recruit. 

 
Results for the Concave Transportation Cost Assumption 

Alternatively, I study the large scale industrial case with an assumption of concave 

transportation costs.  Assuming a large marketing budget, the solution produces an 

heuristic policy that also concentrates the marketing budget allocation in the Atlanta and 

New York regions.  However, for a small marketing budget, the heuristic policy 

concentrates the allocation in the New York region more than in the Atlanta region.  The 

explanation for this result is that there is a cost incentive (concave cost) to concentrate 

retailers in a region where it is easier to recruit the retailers.   
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Scenario 2:  Initial Retailers in Los Angeles with Linear and Concave Costs 

For this scenario, I assume that there is an initial network containing recruited 

retailers in the Los Angeles region.  As before, I study this scenario first with a linear 

transportation cost assumption and then with a concave transportation cost assumption.  I 

also assume that the marketing budget is set to be small so that the policy is more likely 

to recruit in the Los Angeles region in order to meet the target collection volume. 

Results for the Linear Transportation Cost Assumption 

The solution for this scenario provides an heuristic policy where the marketing 

budget is allocated to the Los Angeles region in order to obtain the initial collection 

volume.  The later periods’ allocations are spent in the Atlanta and New York regions.  

There appears to be no cost incentive to recruit more retailers from the Los Angeles 

region. 

Results for the Concave Transportation Cost Assumption 

For the situation where concave transportation costs are assumed, the solution 

produces an heuristic policy with a larger portion of the marketing budget allocated to the 

Los Angeles region compared to the linear cost assumption scenario.  An explanation 

reason is that under a concave cost function, the higher collection volume drives the unit 

cost from Los Angeles down.  The rest of the marketing budget allocation is allocated 

mostly in the New York region. 

Overall, this case study illustrates that if the collection costs are linear, the heuristic 

policy most likely spends the allocations on the regions that are closest to the processing 

site.  On the other hand, if the collection costs are concave, there is an incentive to recruit 

more retailers from region where they are easy to recruit even though the region is 
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located further away from the processing site than the region where retailers are more 

difficult to recruit.  Hence, the cost structure has a big impact on the network growth 

planning. 

In this chapter, I provide a range of numerical studies for the target recruitment 

problem.  If two dimensions are fixed among recruitment budget, region size, and target 

collection volume, the third dimension can be determined.  Furthermore, the STH method 

is applied on a small example where the optimal value can be obtained.  The results show 

that the heuristic policy obtained from the STH method performs well, especially when 

the initial state is H.  For the large scale problem, the initial state of the retailer has a 

large impact on the performance of the STH approach but the performance can be 

improved from the parameter setting in the STH approach.  A preprocessing scheme is 

introduced to improve the computational time.  This enables the STH method to solve the 

problem with as many as 300 retailers.  Lastly, the large carpet producer case study is 

performed.  The insights from the various scenarios provide useful information to help a 

company make the marketing budget allocation decisions. 
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CHAPTER   8  

SUMMARY, CONTRIBUTIONS AND  

FUTURE DIRECTIONS 

 
 
 

8.1 Summary 

This dissertation addresses a complex set of decisions that surround the growth of 

reverse supply chain networks over time.  The network growth problem is decomposed 

into strategic, tactical and operational problems.  The strategic problem allocates 

resources to grow the network over regions and within macro-periods.  The use of 

resources over a finer time discretization, termed periods, and within each region is 

handled by a tactical or recruitment decision problem.  Finally, the network obtained 

from recruitment process must be serviced by trucks over smaller time increments, or 

micro-periods.  In this dissertation, I formulate a higher fidelity representation of the 

collection system, with an emphasis on the strategic and operational decisions associated 

with recruiting and retaining a thriving network of collection entities. 

In Chapter 1, the problem is motivated through industrial examples that demonstrate 

the importance of the problem of growing collection networks.  An overview of the 

reverse production system, hierarchical decision making, and control optimization is also 

provided.  The related literature review in this research is discussed in Chapter 2.  In 
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Chapter 3, the research problem is cultivated and decomposed into three levels:  strategic, 

tactical and operational.   

In Chapter 4, I develop a general framework for the recruitment of sources in 

reverse supply chain distribution.  The crucial element is the individual agent state 

behavior, which follows a Markov process.  I pose the recruitment problem as a 

stochastic dynamic programming problem.  The DP algorithm is introduced to solve the 

tactical problem exactly.  However, the realistic problems are so large that the DP 

algorithm cannot solve the problem in reasonable computational time.  As a solution 

alternative, I develop two heuristics:  The Q-Learning based heuristic (QBH) and the 

Rolling IP with DP heuristic (RIDH).  The QBH approach is based on a simulation-based 

optimization technique to avoid computing the large transition probability matrix.  The 

RIDH method utilizes the benefit of a rolling horizon feature and IP capabilities in order 

to capture the recruitment decisions over time. 

In Chapter 5, the QBH and RIDH methods are tested on many examples.  The 

results illustrate the computational efficiency of the heuristics for different types of 

problems.  For small examples, I have shown that the RIDH method can perform almost 

as well as DP algorithm.  In addition, the RIDH method outperforms QBH in the small 

and large examples, and is therefore the method of choice for this problem. 

 In Chapter 6, first I develop a function to estimate the collection cost function.  

Then I pose the strategic problem as a multi-time scale model.  Specifically, I generalize 

the strategic problem as a resource allocation-collection multi-time scale problem where 

sequential decision making in each hierarchical level impacts the other levels.  The 
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decisions and rewards in the upper (strategic) level and the lower (tactical) level are 

defined in mathematical terms.  The optimality equation can be written down, but solving 

this problem exactly is difficult even for a small problem.  I introduce the strategic 

trajectory heuristic (STH) to solve large scale problems.  This approach employs 

reference trajectories that explicitly put targets on the increment amounts that are to be 

collected in each macro-period.  This constrains the upper level problem in every macro-

period.  If this heuristic searches enough reference trajectories and combines those 

trajectories, a good solution can be obtained.  I also show how the information from the 

tactical level can help the strategic level makes better plans to grow the collection 

network through solving a target recruitment problem. 

In Chapter 7, I provide a numerical study for the target recruitment problem.  I have 

shown empirically that if I fix two dimensions from among recruitment budget, region 

size, and target collection volume, I can determine the third because the heuristic 

technique is fast enough to run many case studies.  Moreover, I test the STH method on a 

small example where the optimal value can be obtained.  The results show that the 

heuristic policy obtained from the STH approach can perform well, especially when the 

retailers’ initial states are easy to recruit.  For the large scale problem, the initial state has 

a large impact on the performance of the STH approach.  However, increasing the 

number of considered trajectories and adjusting the discretization on the target collection 

volume in the STH approach may improve the performance of this approach.  Also, I 

propose a preprocessing scheme to improve the computational time.  This enables 

solution for problem containing as many as 300 retailers.  Lastly, the large carpet 

producer case study is performed in order to emulate what may happen in the real 
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situation.  The study provides useful information to help the company makes the budget 

allocation decisions. 

8.2 Contributions 

Overall, this dissertation presents a framework to grow a recycling collection 

network from the processor standpoint through layers of decisions.  It is a network 

structure from many sources to few collectors.  Unlike most of earlier research for solid 

waste management problem that concentrates on the operational and tactical levels, the 

emphasis here on the growing a collection network is on the strategic and tactical level 

decisions.  In addition, this dissertation offers a new perspective for the objective of the 

collection network.  The growing collection network problem focuses on increasing the 

collection volume to meet a specified target while minimize the cost.  These objectives 

are crucial to the business continuity of a processor like Shaw Industries in the case of 

carpet recycling.  The high set-up cost of the plant makes it essential to have enough low-

cost supply that can generate enough revenue to repay capital expenditures.  Developing 

the strategic model to achieve these significant objectives will assist Shaw Industries in 

understand the collection system better and to make better decisions and have a 

sustainable recycling business. 

At the tactical level, this dissertation is the first to employ a recruitment concept for 

supply chain applications.  I model the behavior of retailers who have different attitudes 

towards participating in recycling activities as a Markov process.  Using this mechanism, 

the tactical problem is formulated as a stochastic dynamic programming problem.  This 

dissertation provides an exact solution method for small problems and two heuristics for 
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larger problems.  The numerical study demonstrates that the RDMH method can solve 

large tactical problems quickly with good solution quality.  The ability to solve an actual 

size recruitment problem eventually enables the strategic level to solve realistic problem 

for the processor.  In addition, the recruitment model can be used to apply to many types 

of recruitment problems such as recruiting supermarket stores for collection of plastic 

bottles in the plastic recycling industry and recruiting the major electronic stores such as 

Best Buy and Circuit City for the electronics equipment in the electronic scrap recycling 

industry. 

For the strategic level, I develop a new modeling approach to interlink decisions 

from different hierarchical levels.  In addition, the notion of resource allocation and 

resource collection are incorporated into the multi-time model.  The strategic problem is 

then generalized as to a resource allocation-collection multi time period model.  The 

model enables us to utilize information sharing to aid the decision planning in each level.  

The proposed strategic trajectory heuristic offers the ability to obtain a policy that can 

achieve the objectives of the strategic problem.  The numerical study shows that it can 

obtain a good solution for very large problem sizes with reasonable computation time.  

The ability to solve realistic problem is significant for a processor because of the number 

of retailers or consumers that are required to meet the demands of large scale recycling 

plants. 

For example, the carpet recycling industry is starting to reach the point where the 

“easy” carpet recycling sources have been tapped out in some regions. Understanding 

how retailer attitudes could change the rate of growth the network, because of the need to 

invest in significant recruitment efforts, could change the level of effort that the industry 
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devotes to this activity.  Failure to invest sufficient resources in this arena could lead to a 

second Evergreen closure for Shaw.  This would probably lead to the demise of large 

scale recycling efforts for carpet for a significant period of time, unless regulatory 

authorities step in and implement landfill bans.  The implications are thus very significant 

for an industry that forms a major sector of the manufacturing industry located in 

Georgia. 

8.3 Future Research Directions 

Results from this dissertation raise new questions and several potential directions of 

future research.  Future extensions can be envisioned in both the modeling and solution 

methodology areas. 

In collection networks, it is important to retain the recruited retailers in the network 

to reduce the future cost to recruit additional retailers and increase the probability to 

achieve the collection target volume.  In this research, strategic, tactical, and operational 

decisions affect the retention of collection network entities in the face of their defection 

opportunities to other processors or markets.  Retention may depend on many factors, 

such as system service levels (e.g., allocation of trucks, logistics, and inventory storage 

capabilities), profitability, and economies of scales (e.g., volume that justifies a baler).   

Currently I have developed a tactical collection model under the assumption that 

once the agent is recruited to the network, it always stays in the network.  However, in 

actual situations, sometimes a collection agent may opt to leave the network.  Future 

work includes extending the recruitment model to include retention and defection 

considerations.  An important subtask is to define the criteria that determine the retention 
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and defection actions of the agent after it is recruited.  The additional complexity will 

impact the capability of the current approach to solve large scale collection recruitment 

problems.   

In this research, it is assumed that the regional recruiter will cooperate with the 

processor and provide the truthful status information.  If this assumption is not true, the 

regional collector may furnish incorrect information that benefits itself in order to obtain 

more marketing recruiting budget in the next period.  Interesting questions focus on 

incentives for the regional recruiter to provide truthful information and what the 

processor should do to be certain that the regional recruiter will cooperate.14  Further 

research on an approach to offer discounts for the correct status information and to set a 

penalty fee for incorrect status information may be a possible way to incentivize the 

regional recruiter corporation. 

In the real application, the recruitment process and retailer retention may depend 

not only on the connection between the retailers and the recruiter, but also on the outside 

market, a competitor.  For example, currently the companies in China are buying a large 

amount of used carpet from U.S. sources to bring it to China for recycling.  Hence, there 

can be a competition for the desired source.  Retailers both in and out of the collection 

network may opt to give the source to competitor collectors who provide a better 

incentive.  This also affects the recruitment allocation plan for the carpet recycler in U.S.  

Adding a competition feature from the game theory perspective to the recruitment model 

                                                 
14

 Special thanks to my dissertation committee member Dr. Ozlem Ergun for providing this insight. 
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can complicate the model framework but provides a better understanding of how the 

entities might act in the real situation. 

Furthermore, at the operational level, I assume that the retailer’s generation rate is 

deterministic and the pick-up schedule in the operational level can be solved optimally.  

Hence, a fixed amount of resource is collected from the recruited agents and delivered to 

the collection center at the end of the period.  Future work includes exploring the 

collection logistics where the generation rate of collection material varies among the 

agents.  With this uncertainty, the problem of routing a fixed number of finite capacity 

trucks to collect the material from the collection agents is more difficult.  The 

performance of the material collection service can be linked to the retention and defection 

framework where the collection agent might become “unhappy” if no truck shows up to 

pick up overflowing collection bins.  One service level criteria might be the number of 

days with overflowing bins.  In the next period, the “unhappy” collection agents might 

choose to defect and leave the collection network.  The solution from the operational 

level must be obtained quickly in order to provide information back to the tactical levels 

of the hierarchical problem. 

By extending the model into the operational level, there is an impact on the multi-

time model also.  In this dissertation, decisions in each level in the two-level hierarchy 

are made in two different discrete time-scales.  The future work includes extending the 

model into three-level hierarchy with three different discrete time-scales. 
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APPENDIX A: NOTATION SUMMARY 

Table A1: The Summary of Notations  
 
i  : Index of retailers 
m  : Index of regional collector 
j  : Index of budget type 
k  : Index of target 
t  : Index of fast-time scale, period or month 
n  : Index of slow-time scale, macro-period or year 

mη  : Number of retailers in region m  
M  : Number of regions 
T  : Number of periods 
N  : Number of macro-periods 

its  : Willingness state the agent/retailer i  at period t , (L,M,H,R) 

ig  : Amount of resource that agent i  can generate in one period 

iµ  : Recruitment budget threshold of agent i  

sβ  : Recruitment willingness factor of willingness state s  

, 1
( )

it i ts sPr a
+

 : Transition probability of moving to state , 1i ts +  from its  by action a  
maxB  : Maximum budget over T  periods for the tactical problem 

tY  : Aggregate state in tactical model 

itw  : Willingness state of retailer i  at time t  
Start
tB  : Maximum budget at time t  for the tactical problem 

sV  : Value of the willingness state s  
( , )Q s a  : Q-value of given state action pair ( , )s a  

jb  : Amount of budget from budget type j  in the recruitment model 

ijv%  : Maximum expected increment of capacity volume that can be 
collected from retailer i  if jb is allocated to that retailer 

SR  : Stochastic recruitment function that returns the collection volume 
TR  : Target recruitment function 
α  : Learning rate 

( )co
tr  : Reward of the regional collector at time period t  

( )Pr
mD  : Distance between the processor and collector in region m  

Dc  : Long-haul transportation cost per unit volume and per unit distance 
( )co

mF  : Fixed collection cost in region m  
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Table A1: (continued) 
 

( )co
mV  : Actual volume collected in region m  

mD  : Average distance between collector in region m  and all retailers in 
that region 

Dc  : Transportation cost per unit volume and per unit distance within the 
region 

ρ  : Volume parameter 
maxθ  : Maximum marketing budget for the strategic problem 
Start
nθ  : Maximum marking budget at macro-period n  for the strategic 

problem 
nz  : Aggregate state in strategic model 

minw  : Willingness state of retailer i  in region m  at macro-period n  
VN  : Target collection volume at the end of planning horizon N  

( )total
mc  : Collection Cost Function of region m  

ψ  : Penalty cost the deviation between the target collection volume and 
the actual collection volume per unit volume (Recruitment Problem) 

ψ  : Penalty cost the deviation between the target collection volume and 
the actual collection volume per unit volume (Strategic Problem) 

α  : Discount factor (monthly) 
γ  : Discount factor (yearly) 

kmnh  : Target collection volume from target array, which is the value of thk  
entry in mnH , for region m  at time period n  

jmnb  : Amount of marketing budget that the processor chooses to spend on  
the region m  at time period n , which is the value of thj  entry in mnB  

mjknv%  : Expected increment in collection volume from region m  by using 
budget jmnb  to achieve target collection volume kmnh   at macro-period 
n  

( ) ( )total
mn mjknc v%

 

: Expected increment in total collection cost of region i  in macro-
period n  to collect volume ijkv τ%  or ( , ) ( , ( , ), )l m m m mR x xφ λ λ  

nV  : Target collection volume from the trajectory that should be achieved 
in macro-period n  

nV ′  : Adjusted target collection volume that should be achieved in  
macro-period n  

mnv  : Actual collection volume of region m  at the start of macro-period n  

nvt  : The total actual collection volume for all regions at the start of macro-
period n  

ε  : Allowable deviation between expected collection volume and the 
target collection volume. 

ξ  : Revenue in strategic model 
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APPENDIX B: DATA 

Table B1:  Data for 10 retailers 
 

Retailer 
Collection Volume 

(lb./month) Recruitment Budget Threshold Initial Willingness State 
1 10 5 L 
2 30 15 L 
3 20 10 L 
4 30 15 L 
5 80 64 L 
6 60 36 L 
7 40 20 L 
8 20 10 L 
9 20 10 L 

10 30 15 L 
 

Table B2:  Data for 20 retailers 
 

Retailer 
Collection Volume 

(lb./month) Recruitment Budget Threshold Initial Willingness State 
1 10 5 L 
2 30 15 L 
3 20 10 L 
4 30 15 L 
5 80 64 L 
6 60 36 L 
7 40 20 L 
8 20 10 L 
9 20 10 L 

10 30 15 L 
11 40 20 M 
12 40 20 M 
13 80 64 M 
14 30 15 M 
15 30 15 M 
16 40 20 M 
17 70 49 H 
18 30 15 H 
19 60 36 H 
20 20 10 H 
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Table B3:  Data for 30 retailers 
 

Retailer 
Collection Volume 

(lb./month) Recruitment Budget Threshold Initial Willingness State 
1 10 5 L 
2 30 15 L 
3 20 10 L 
4 30 15 L 
5 80 64 L 
6 60 36 L 
7 40 20 L 
8 20 10 L 
9 20 10 L 

10 30 15 L 
11 40 20 L 
12 40 20 L 
13 80 64 L 
14 30 15 L 
15 30 15 L 
16 40 20 M 
17 70 49 M 
18 30 15 M 
19 60 36 M 
20 20 10 M 
21 20 10 M 
22 30 15 M 
23 30 15 M 
24 60 36 M 
25 30 15 H 
26 30 15 H 
27 30 15 H 
28 40 20 H 
29 20 10 H 
30 30 15 H 
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Table B4:  Data for Case 7.5  
 

Retailer Region 
Collection Volume 

(lb./month) Distance 
Recruitment 

Budget Threshold 
Initial Willingness 

State 
1 A 60 20 36 H 
2 A 40 20 20 H 
3 A 90 20 81 H 
4 A 60 20 36 H 
5 A 50 20 25 H 
6 A 70 20 49 H 
7 A 70 20 49 H 
8 A 50 20 25 H 
9 A 40 20 20 H 
10 A 80 20 64 H 
1 B 50 10 25 M 
2 B 50 10 25 M 
3 B 50 10 25 M 
4 B 40 10 20 M 
5 B 50 10 25 M 
6 B 60 10 36 M 
7 B 50 10 25 M 
8 B 70 10 49 M 
9 B 60 10 36 M 
10 B 40 10 20 M 
1 C 10 1 5 L 
2 C 20 1 10 L 
3 C 10 1 5 L 
4 C 20 1 10 L 
5 C 20 1 10 L 
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Table B5:  Data for Case 7.6 
 

Retailer Region 
Collection Volume 

(lb./month) Distance 
Recruitment 

Budget Threshold 
Initial 

Willingness State
1 A 40 15 20 3 
2 A 60 15 36 1 
3 A 70 15 49 2 
4 A 50 15 25 2 
5 A 60 15 36 2 
6 A 50 15 25 1 
7 A 40 15 20 3 
8 A 50 15 25 2 
9 A 50 15 25 2 
10 A 50 15 25 3 
11 A 80 15 64 3 
12 A 40 15 20 2 
13 A 50 15 25 3 
14 A 70 15 49 1 
15 A 70 15 49 3 
16 A 50 15 25 3 
17 A 60 15 36 1 
18 A 90 15 81 2 
19 A 40 15 20 3 
20 A 60 15 36 1 
1 B 50 20 25 3 
2 B 50 20 25 1 
3 B 80 20 64 1 
4 B 30 20 15 1 
5 B 30 20 15 3 
6 B 30 20 15 2 
7 B 60 20 36 3 
8 B 100 20 100 2 
9 B 60 20 64 1 
10 B 40 20 20 3 
11 B 40 20 20 3 
12 B 70 20 49 2 
13 B 60 20 36 1 
14 B 60 20 36 2 
15 B 50 20 25 3 
16 B 80 20 64 2 
17 B 50 20 25 2 
18 B 60 20 36 3 
19 B 70 20 49 3 
20 B 40 20 20 2 
1 C 50 25 25 1 
2 C 30 25 15 1 
3 C 50 25 25 2 
4 C 40 25 20 3 
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Table B5: (continued) 
 

Retailer Region 
Collection Volume 

(lb./month) Distance 
Recruitment 

Budget Threshold 
Initial 

Willingness State
5 C 60 25 36 3 
6 C 30 25 15 3 
7 C 70 25 49 3 
8 C 50 25 20 1 
9 C 40 25 16 1 
10 C 40 25 16 3 
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