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SUMMARY

We introduce the notion of special spherical symmetry and classify the complete regular

minimal surfaces in S3 having this symmetry. We also show that the Clifford torus is the

unique embedded minimal torus in S3 possessing special spherical symmetry.
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CHAPTER 1

INTRODUCTION

We study minimal surfaces in S3 that are either 1) invariant under spherical reflection with

respect to each sphere in a family of spheres that are each orthogonal to S3 and whose

centers comprise a line ` ⊂ R4 \ S3 or 2) invariant under planar reflection with respect to

each hyperplane in a family of hyperplanes whose intersection contains a great circle in S3.

We briefly review mean curvature of hypersurfaces, rotations in Rn, stereographic projection,

and orthogonality of surfaces, and then we introduce reflection about spheres and special

spherical symmetry. Finally we show that if M is a complete regular minimal surface in S3

that possesses special spherical symmetry, then M is either a great sphere or a rotation of

the Clifford torus.
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CHAPTER 2

PRELIMINARIES

Rn = {(x1, x2, . . . , xn)|xi ∈ R, i = 1, . . . , n} will denote n-dimensional cartesian space

equipped with the Euclidean metric

|x− y| = |(x1 − y1, x2 − y2, . . . , xn − yn)| =
(

n∑
i=1

(xi − yi)
2

)1/2

and the inner product

〈x, y〉 = 〈(x1, x2, . . . , xn), (y1, y2, . . . , yn)〉 =
n∑

i=1

xiyi.

A subset M ⊆ Rn (n ≥ 2) is a regular hypersurface if for each p ∈ M there is a neighborhood

V ⊆ Rn of p and a continuously differentiable mapping X : U ⊂ Rn−1 → V ∩M of an open

set U onto V ∩M such that

(i) X is a homeomorphism (i.e. X has a continuous inverse), and

(ii) the derivative of X at p, dX(p) = dXp : Rn−1 → Rn, is injective.

The pair (X,U) is called a local coordinate system or a parametrization of M at p. The

hypersurfaces we consider will be regular, and when n = 3, hypersurfaces will be referred to

as surfaces.

Remark: (i) allows for a meaningful notion of differentiability of smooth functions defined on

M . That is, (i) can be used to show that coordinates on M can be changed in a differentiable

manner and thus derivatives computed on M are independent of the choice of coordinates

used [D]. (ii) will allow us to talk about the tangent plane to M at each p ∈ M .
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Two examples of hypersurfaces in Rn are the (n-1)-sphere or hypersphere centered at a

point c of radius r > 0, {x ∈ Rn : |x− c| = r}, and the hyperplane containing p with normal

ν, {x ∈ Rn : 〈ν, x− p〉 = 0}.

Hypersurfaces in Sn = {x ∈ Rn+1 : |x| = 1} are defined analogously to those of Rn. An

example of a hypersurface in Sn is the hypersphere which is defined to be the intersection of

a hyperplane in Rn+1 with Sn. Another example is the great sphere, which is a hypersphere

whose associated hyperplane contains the origin.

For two points p, q of a hypersurface M , d(p, q) is defined to be the infimum of the lengths

of all piecewise differentiable curves in M joining p and q. M is complete if d makes M into

a complete metric space. Complete hypersurfaces are connected and non-extendable, and

there is always a path of least length joining any two points in a complete hypersurface [D].

2.1 MEAN CURVATURE OF HYPERSURFACES

Observe that if M ⊆ Rn is a hypersurface, and (X,U) is a parametrization of M at p,

dXp : Rn−1 → Rn is a linear map. And if ej ∈ Rn−1, j = 1, ..., n− 1, is the vector with 1 in

its jth coordinate and 0 in the other coordinates, then

dXp(ej) =
∂X(p)

∂uj

= Xuj
(p).

We define

TpM = span
({

Xu1(p), Xu2(p), . . . , Xun−1(p)
})

to be the tangent plane of M at p.

Rn ⊂ Rn+1 is a hypersurface and we may parameterize Rn globally by inclusion i :

(x1, x2, . . . , xn) 7→ (x1, x2, . . . , xn, 0). For any p, ixj
(p) = ej, so TpRn =span({e1, . . . , en}) =
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Rn. Sn ⊂ Rn+1 is also a hypersurface and it can be shown that TpSn = {x ∈ Rn+1 : 〈x, p〉 =

1}.
Let N = Rn+1 or Sn+1, M ⊆ N a hypersurface and p ∈ M . We have that TpM ⊂ TpN

and dim(TpM) = n < n + 1 = dim(TpN). Therefore there are precisely two unit length,

normal vectors in TpN ∩ (TpM)⊥. Locally fixing a smooth normal field ν : U ∩ M → Sn,

where |ν| = 1 and U ⊆ N is a neighborhood of p, we define the mean curvature of M at p

to be

H(p) = − 1

n
tr (dνp) , (1)

where dνp : TpM → TpSn is the derivative of ν at p and tr(A) denotes the trace of a linear

map A. M is said to be a minimal hypersurface or simply minimal if its mean curvature

vanishes at every point in M .

Remark: Suppose αj : (−εj, εj) ⊂ R → M (εj > 0) j = 1, . . . , n are smooth unit-speed

curves satisfying αj(0) = p and 〈α′j(0), α′k(0)〉 = δjk. It turns out that

H(p) =
1

n

n∑
j=1

kj

where kj = −〈α′′j (0), ν〉. That is, H(p) is the average of the respective curvatures, as mea-

sured in M , of n unit-speed curves that meet orthogonally at p.

2.2 MEAN CURVATURE FORMULAE

Let M ⊆ R3 be a surface, p ∈ M , and (X, U) be a parametrization of M at p. Let (u, v)

denote the coordinates on U and ν the normal field defined on a neighborhood of p. Below,

all derivatives are evaluated at p.

We have that 〈ν, ν〉 = 1, so 〈ν, νu〉 = 〈ν, νv〉 = 0, and thus νu, νv ∈ TpM =span({Xu, Xv}).
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Hence there are constants a, b, c, d such that

νu = aXu + bXv νv = cXu + dXv (2)

Taking inner products of Xu and Xv with (both sides of) both equations in (2), we find that

dνp has the matrix representation

dνp
.
=

1

EG− F 2




fF − eG gF − fG

eF − fE fF − gE




in the basis {Xu, Xv}, where

E = |Xu|2, F = 〈Xu, Xv〉, G = |Xv|2,

and

e = 〈Xuu, ν〉, f = 〈Xuv, ν〉, g = 〈Xvv, ν〉.

Thus,

H =
eG− 2fF + gE

2(EG− F 2)
. (3)

Inverse stereographic projection (see section 2.4 for the definition and properties of stereo-

graphic projection) is given by

σ : R3 → S3; (u1, u2, u3) 7→ (2u1, 2u2, 2u3, u
2
1 + u2

2 + u2
3 − 1)

u2
1 + u2

2 + u2
3 + 1

.
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We will write

σ(u) =
(2u, |u|2 − 1)

|u|2 + 1
, u = (u1, u2, u3).

Observe that σ(M) ⊆ S3 is a surface with parametrization (σ ◦X, U) at σ(p) ∈ σ(M).

Tσ(p)σ(M) = span ({(σ ◦X)u, (σ ◦X)v}) ,

and since |σ ◦X| = 1, 〈σ ◦X, (σ ◦X)u〉 = 〈σ ◦X, (σ ◦X)u〉 = 0. Thus, in some neighborhood

V of σ(p) there exists a smooth unit normal field η : V ∩ σ(M) → S3 such that

[
Tσ(p)σ(M)

]⊥
= span ({σ ◦X, η}) ,

and
[
Tσ(p)σ(M)

]⊥ ∩ Tσ(p)S3 = span ({η}) .

A calculation similar to the one performed above to derive (3) shows

HS =
|(σ ◦X)u|2〈(σ ◦X)vv, η〉 − 2〈(σ ◦X)u, (σ ◦X)v〉〈(σ ◦X)uv, η〉+ |(σ ◦X)v|2〈(σ ◦X)uu, η〉

2(|(σ ◦X)u|2|(σ ◦X)v|2 − |〈(σ ◦X)u, (σ ◦X)v〉|2) ,

(4)

where HS is the mean curvature of σ(M) at σ(p). We have that

|(σ ◦X)u|2 =
4|Xu|2

(1 + |X|2)2
=

4E

(1 + |X|2)2
,

〈(σ ◦X)u, (σ ◦X)v〉 =
4〈Xu, Xv〉
(1 + |X|2)2

=
4F

(1 + |X|2)2
,

|(σ ◦X)v|2 =
4|Xv|2

(1 + |X|2)2
=

4G

(1 + |X|2)2
,

(σ ◦X)uu =
4

(1 + |X|2)2
(
1 + |X|2

2
Xuu − (|Xu|2 + 〈X,Xuu〉)X, |Xu|2 + 〈X,Xuu〉)

−4〈X, Xu〉
1 + |X|2 (σ ◦X)u,
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(σ ◦X)vv =
4

(1 + |X|2)2
(
1 + |X|2

2
Xvv − (|Xv|2 + 〈X,Xvv〉)X, |Xv|2 + 〈X,Xvv〉)

−4〈X, Xv〉
1 + |X|2 (σ ◦X)v,

and

(σ ◦X)uv =
4

(1 + |X|2)2
(
1 + |X|2

2
Xuv + 〈X,Xv〉Xu − 〈X,Xu〉Xv − (〈Xu, Xv〉+

〈X, Xuv〉)X, 〈Xu, Xv〉+ 〈X, Xuv〉)− 4〈X, Xv〉
1 + |X|2 (σ ◦X)u.

Substituting these calculations into (4) and using the fact that |η| = 1 and 〈η, σ ◦ X〉 =

〈η, (σ ◦X)u〉 = 〈η, (σ ◦X)v〉 = 0, we find 1

HS =
1 + |X|2

2
H + 〈X, ν〉. (5)

Remark: Expressions for the inner products involving η in (4) are relatively simple if the

inner products are computed in the ordered (orthonormal) basis for R4

β =

{
Xu√
E

,

√
E√

EG− F 2

(
Xv − F

E
Xu

)
, ν, e4

}
.

In β, η has the representation

η
.
=

(
−〈X, Xu〉〈X, ν〉√

E
,
〈X,Xu〉〈X, ν〉F − 〈X, Xv〉〈X, ν〉E√

E
√

EG− F 2
,

1 +
〈X, Xu〉2

E
− 1 + |X|2

2
+

(〈X,Xu〉〈X, ν〉F − 〈X, Xv〉〈X, ν〉E)2

E(EG− F 2)
, 〈X, ν〉

)
.

1The author would like to thank Sungho Park for introducing the author to equation (5).
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2.3 ROTATIONS OF Rn

f : Rn → Rn is a rigid motion of Rn if for all x, y ∈ Rn, |f(x)− f(y)| = |x− y|.

Proposition 1 Let f be a rigid motion of Rn and T : Rn → Rn; x 7→ f(x)− f(0). Then for

all x, y ∈ Rn and a ∈ R,

1. |T (x)| = |x|
2. |T (x)− T (y)| = |x− y|
3. 〈T (x), T (y)〉 = 〈x, y〉, and

4. T (x + ay) = T (x) + a T (y).

Proof : Parts 1 and 2 follow directly from definition of a rigid motion. 3. 〈T (x), T (y)〉 =

1
2
(|T (x)− T (y)|2 − |T (x)|2 − |T (y)|2) = 1

2
(|x− y|2 − |x|2 − |y|2) = 〈x, y〉.

4. |T (x + ay)− T (x)− aT (y)|2 = |(T (x + ay)− T (x))− aT (y)|2

= |T (x + ay)− T (x)|2 + a2|T (y)|2 −

2a〈T (x + ay)− T (x), T (y)〉

= |(x + ay)− x)|2 + a2|y|2 −

2a (〈T (x + ay), T (y)〉 − 〈T (x), T (y)〉)

= 2a2|y|2 − 2a(〈x + ay, y〉 − 〈x, y〉)

= 0. ¤

Hence if T is a rigid motion that fixes the origin, then T is a linear map and T tT = TT t =

idRn . Thus, det(T ) = ±1. T is said to be a rotation of Rn if det(T ) = +1.
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R
xjxk

θ =




Ij−1

cos θ − sin θ

Ik−j−1

sin θ cos θ

In−k




is the elementary rotation of the xj xk coordinate plane by an angle θ, where Im is the m×m

identity matrix and zeros fill the empty spaces. R
xjxk

θ is a rotation of Rn and we refer the

reader to the appendix of [M ] for a proof of the following proposition.

Proposition 2

1. If u, v ∈ Rn, there exists a finite composition of elementary matrices R such that Ru = v,

and

2. every rotation of Rn is a finite composition of elementary rotations.

2.4 STEREOGRAPHIC PROJECTION

π : Sn \ {en+1} → Rn; (x1, . . . , xn+1) 7→ (x1, . . . , xn)

1− xn+1

is defined to be stereographic projection. We will sometimes write x = (x1, . . . , xn+1) =

(x, xn+1), where x = (x1, . . . , xn). With this convention

π(x) =
x

1− xn+1

.

Geometrically, π(x) = Rn
⋂

`(x), where `(x) = {x + t(en+1 − x) ∈ Rn+1 : t ∈ R}. π is a

useful tool when doing geometry in Sn for the following reasons
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Proposition 3

1. π is bijective,

2. π is conformal (or angle preserving), and

3. π maps hyperspheres in Sn to n−spheres and hyperplanes in Rn.

Proof : 1. π−1(u) = (2u, |u|2 − 1)/(|u|2 + 1), u ∈ Rn.

2. For any smooth curve α : (a, b) ⊂ R→ Sn \ {en+1}; t 7→ α(t) we have

|(π ◦ α)′(t)| = |dπα(t)(α
′(t))| = λ(t)|α′(t)|, λ(t) =

1

1− αn+1(t)
> 0.

So if two smooth curves x, y ⊂ Sn \ {en+1} satisfy x(0) = y(0) = p, and thus λ(0) =

1/(1− xn+1(0)) = 1/(1− yn+1(0)) > 0, then

〈(π ◦ x)′(0), (π ◦ y)′(0)〉
|(π ◦ x)′(0)||(π ◦ y)′(0)| =

1
2
(|dπp(x

′(0))− |dπp(y
′(0))|2 − |dπp(x

′(0))|2 − |dπp(y
′(0))|2)

λ(0)2|x′(0)||y′(0)|

=
1
2
(|dπp(x

′(0)− y′(0))|2 − λ(0)2|x′(0))|2 − λ(0)2|y′(0))|2)
λ(0)2|x′(0)||y′(0)|

=
1
2
(|(x′(0)− y′(0))|2 − |x′(0))|2 − |y′(0))|2)

|x′(0)||y′(0)|
=

〈x′(0), y′(0)〉
|x′(0)||y′(0)| .

3. If P = {x ∈ Rn+1 : 〈x, u〉 = α}

π(P ∩ Sn) = {x ∈ Rn : 〈x, u〉 = α}, if en+1 ∈ P

=

{
x ∈ Rn :

∣∣∣∣x−
u

α− un+1

∣∣∣∣ =

√
|u|2 − α2

|un+1 − α|

}
, otherwise.
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If S = {x ∈ Rn : |x− c| = r},

π−1(S) = {x ∈ Sn : 〈x, (−2c, r2 − |c|2 + 1)〉 = r2 − |c|2 − 1},

and if Q = {x ∈ Rn : 〈x, v〉 = β},

π−1(Q) ∪ {en+1} = {x ∈ Sn : 〈x, (v, β)〉 = β}. ¤

Remark: Observe that π is defined on U = {x ∈ Rn+1 : 〈x, en+1〉 6= 1} and its extension to

U is surjective.

2.4 ORTHOGONALITY

Two hyperplanes in Rn are orthogonal if their normal vectors are orthogonal. Two hyper-

surfaces in M, N ⊆ Rn are orthogonal if

1. M ∩N 6= ∅, and

2. for each p ∈ M ∩N , TpM and TpN are orthogonal hyperplanes.

Proposition 4

1. A hyperplane P is orthogonal to a hypersphere S if and only if P contains the center of

S.

2. Two hyperspheres are orthogonal if and only if the square of the distance between their

centers is equal to the sum of the squares of their radii.

Proof : 1. Let S = {x ∈ Rn : |x − c| = r} and P = {x ∈ Rn : 〈x − x0, u〉 = 0}. If

(X,U) is a parametrization of S at p, we have |X − c|2 = r2 and thus 〈X − c, Xuj
〉 = 0 for

j = 1, . . . , n− 1. Hence, if p ∈ S ∩ P , we can take u as the normal of TpP = P and p− c as

the normal to TpS. Since 〈x− p, u〉 = 0 for all x ∈ P , we have that 〈c− p, u〉 = 0 if and only

11



Figure 1: Orthogonal circles.

if c ∈ P if and only if S and P are orthogonal.

2. Let S1 = {x ∈ Rn : |x − c1| = r1} and S2 = {x ∈ Rn : |x − c2| = r2}. Suppose

that S1 and S2 are orthogonal. As in part 1, we have that for p ∈ S1 ∩ S2, v1 = p − c1

v2 = p − c2 can be taken as the normals to TpS1 and TpS2, respectively, and orthogonality

requires 〈v1, v2〉 = 0. Hence

|c1 − c2|2 = |v1 − v2|2 = |p− c1|2 + |p− c2|2 = r2
1 + r2

2.

Conversely, suppose that |c1 − c2|2 = r2
1 + r2

2. Observe that S1 and S2 intersect since

|c1− c2|2 < (r1 + r2)
2. If p ∈ S1∩S2, we have that v1 = p− c1 v2 = p− c2 can be taken as the

normals to TpS1 and TpS2, respectively. Since |c1 − c2|2 = r2
1 + r2

2, |v1 − v2|2 = |v1|2 + |v2|2

12



and consequently 〈v1, v2〉 = 0. Thus S1 and S2 are orthogonal. ¤
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CHAPTER 3

SPHERICAL SYMMETRY

Below we introduce spherical reflection and special spherical symmetry. We also establish

two results that will help us identify the stereographic projections of sets in S3 possessing

special spherical symmetry; this will in turn simplify the analysis needed for the proof of

our main theorem. Theorem 10 asserts a subset A ⊂ S3 has special spherical symmetry if

and only its stereographic projection has an analogous symmetry; Theorem 8 asserts that it

is possible to study the intersections of π(A) with a specific family of planes to determine if

π(A) has this “analogous” symmetry.

3.1 SPHERICAL REFLECTION

Let P = {x ∈ Rn : 〈x, u〉 = α, |u| = 1} and a ∈ P . We define the mapping

ψP : Rn → Rn : x 7→ x− 2〈x− a, u〉u

to be planar reflection about P . ψP does not depend on the choice of a ∈ P , ψ2
P = idRn , ψP

is conformal, and ψP is a rigid motion. Any set A ⊆ Rn satisfying ψP (A) = A is said to be

symmetric with respect to P or invariant under reflection about P .

By proposition 3, S = π−1(P ) ∪ {en+1} is a hypersphere in Sn. Now consider the map

ΨS : Sn → Sn : x 7→ π−1 ◦ ψP ◦ π(x). It is straightforward to show that if 0 /∈ P

ΨS(x) =
v

α
+

1

α2

x− v/α

|x− v/α|2 , (6)

where v = (u, α); and if 0 ∈ P , ΨS(x) = x− 2〈x, v〉v where v = (u, 0). Hence, if S is a great

sphere, ΨS is just the restriction of a planar reflection to Sn.
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ΨS is a mapping that is completely determined by S = π−1(P ) ∪ {en+1}, which is a

hypersphere in Sn. However, ΨS does not depend on whether or not S contains en+1.

Therefore, we consider any hypersphere S ⊆ Sn (which does not necessarily contain en+1) and

use its associated mapping ΨS to determine a reflection ψQ : Rn → Rn : x 7→ π ◦ΨS ◦π−1(x).

It can be verified that if Q = π(S ∩Sn) is a hyperplane, ψQ is planar reflection about Q; and

if Q is an n-sphere with center a and radius ρ

ψQ(x) = a + ρ2 x− a

|x− a|2 , x ∈ Rn \ {a}.

ψQ is called spherical reflection about Q, and any set A such that ψQ(A) = A is said to be

spherically symmetric with respect to Q or invariant under spherical reflection about Q.

Remark: Now it is evident that the mapping defined in (6) is spherical reflection about

the (n + 1)-sphere S0 ⊆ Rn+1 with radius 1/α and center v/α. By proposition 4, S0 is or-

thogonal to Sn. Furthermore, for any hypersphere S ⊆ Sn that is not a great sphere there is

a unique (n + 1)-sphere S0 ∈ Rn+1 such that S = S0 ∩ Sn and S0 is orthogonal to Sn. S0 is

the horizon sphere corresponding to S.

We should also note that a horizon sphere is completely determined by its center: given

any c ∈ Rn+1 with |c| > 1, orthogonality requires that the horizon sphere centered at c has

radius
√
|c|2 − 1. The center of a horizon sphere is called a cone point.

Like planar reflection, spherical reflection has many nice properties. We mention just a

few in the following proposition.

Proposition 5 Let ψ : Rn \ {a} → Rn \ {a}; x 7→ a + ρ2(x− a)/|x− a|2.
1. ψ is bijective.
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2. The restriction of ψ to any line or hyperplane passing through a is bijective.

3. ψ maps n-spheres and hyperplanes to n-spheres and hyperplanes.

4. ψ(S) = S, S = {x ∈ Rn : |x− a| = ρ}, and ψ(x) = x if and only if x ∈ S.

5. ψ is conformal.

6. ψ(S ′) = S ′ for any n-sphere or hyperplane S ′ that is orthogonal to S.

7. For x /∈ S, ψ(x) = (` ∩ S0) \ {x}, where ` = {a + t(x− a) ∈ Rn : t ∈ R} and

S0 =



y ∈ Rn :

∣∣∣∣y −
(

a +
ρ2 + |x− a|2

2|x− a|
x− a

|x− a|
)∣∣∣∣ =

√(
ρ2 + |x− a|2

2|x− a|
)2

− ρ2



 .

Proof : 1.

ψ2(x) = ψ(ψ(x))

= a + ρ2 ψ(x)− a

|ψ(x)− a|2

= a + ρ2 (a + ρ2(x− a)/|x− a|2)− a

|(a + ρ2(x− a)/|x− a|2)− a|2
= a + (x− a)

= x,

so ψ = ψ−1.

2. Suppose a ∈ P = {x ∈ Rn : 〈x, n〉 = α, |n| = 1}. If x ∈ P , 〈ψ(x), n〉 = 〈a + ρ2(x −
a)/|x− a|2, n〉 = 〈a, n〉 = α, so ψ(P ) ⊂ P. Again we have that if x ∈ P , then y = ψ(x) ∈ P ;

but then x = ψ−1(y) = ψ(y) ∈ ψ(P ), and thus ψ(P ) = P . ψ(a + tv) = a + ρ2v/t, and

ψ2(a + tv) = a + tv, so ψ(`) = ` for ` = {a + tv ∈ Rn : |v| = 1, t ∈ R}.

16



3. If P = {x ∈ Rn : 〈x, n〉 = α, |n| = 1} , then

ψ (P ) = P, if 〈a, n〉 = α

=

{
x ∈ Rn :

∣∣∣∣x−
(

a +
ρ2/2

α− 〈a, n〉n
)∣∣∣∣ =

ρ2/2

|〈a, n〉 − α|
}

, otherwise;

and if Q = {x ∈ Rn : |x− x0| = r},

ψ (Q) = {x ∈ Rn : 〈x0 − a, x− a〉 = ρ2/2}, if |a− x0| = r

=

{
x ∈ Rn :

∣∣∣∣x−
(

a + ρ2 x0 − a

|x0 − a|2 − r2

)∣∣∣∣ =
ρ2r

||x0 − a|2 − r2|
}

, otherwise.

4. If ρ = |x− a|, ψ(x) = x. ψ(x) = a + ρ2(x− a)/|x− a|2 = x ⇔ |x− a| = ρ ⇔ x ∈ S.

5. For any smooth curve α : (a, b) ⊂ R→ Rn \ {a} : t 7→ α(t), we have that

|(ψ ◦ α)′(t)| = ρ2

|α(t)− a|2 |α
′(t)|.

We can now repeat the argument given in the proof of proposition 3.

6. The result follows from part 3 of this proposition and proposition 4.

7. x ∈ ` ∩ S0 and ` contains the center of S0, so ` ∩ S0 = {x, y} for some y ∈ Rn. Moreover,

ψ(`) = ` and ψ(S0) = S0, by parts 2 and 6 of this proposition, respectively. Since ψ = ψ−1,

we have that ψ(` ∩ S0) = ψ(`) ∩ ψ(S0) = ` ∩ S0. Then ψ({x, y}) = {ψ(x), ψ(y)} = {x, y},
and by hypothesis x /∈ S, so part 4 requires that ψ(x) 6= x. Hence, ψ(x) = y. ¤

3.2 STEINER CIRCLES AND CIRCLES OF APOLLONIUS

The set of circles in R2 passing through two points a, b ∈ R2 is the set of Steiner Circles
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corresponding to a and b.

Given two points p, q ∈ R2, the family of circles

Figure 2: Circles of Apolonnius, Steiner circles, and both sets together.

{
x ∈ R2 :

|x− p|
|x− q| = t

}

t∈(0,1)∪(1,∞)

are the circles of Apollonius corresponding to p and q.

Lemma 6 Each circle of Apollonius corresponding to a and b is orthogonal to every Steiner

circle corresponding to a and b.

Proof : Let ρ = |a − b|/2 > 0 and without any loss of generality we may assume that

a = −ρe1 and b = ρe1.

S =

{
x ∈ R2 :

|x + ρe1|
|x− ρe1| = t

}
=

{
x ∈ R2 :

∣∣∣∣x−
ρ(1 + t2)

t2 − 1
e1

∣∣∣∣ =
2ρt

|t2 − 1|
}

and

T± = {x ∈ R2 : |x±
√

r2 − ρ2e2| = r}.
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Any circle of Apollonius corresponding to ±ρe1 can be represented by S for some t ∈ (0, 1)∪
(1,∞) and any Steiner circle corresponding to ±ρe1 is given by T+ or T− for some r ≥ ρ.

The result follows from proposition 4, since

∣∣∣∣
ρ(1 + t2)

t2 − 1
e1 ±

√
r2 − ρ2e2

∣∣∣∣
2

=
4ρ2t2

(t2 − 1)2
+ r2. ¤

Proposition 7 A ⊂ R2 is invariant with respect to each reflection about each circle in

the set of Steiner circles corresponding to a and b, if and only if A is a union of circles of

Apollonius corresponding to a and b and possibly the line orthogonal to the Steiner circles

corresponding to a and b.

Proof : We will assume that a = −ρe1 and b = ρe1 where ρ = |b − a|/2 > 0. Let R be

the set of Steiner circles corresponding to ±ρe1 and suppose ψS(A) = A for each circle

S ∈ R. Then,

A =
⋃
S∈R

A

=
⋃
S∈R

ψS(A)

=
⋃
S∈R

(⋃
x∈A

{ψS(x)}
)

=
⋃
x∈A

( ⋃
S∈R

{ψS(x)}
)

.

If 〈x, e1〉 = 0,
⋃

x∈A{ψS(x)} = {w ∈ R2 : 〈w, e1〉 = 0}, which is the line orthogonal to all the
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Steiner circles; otherwise,

⋃
x∈A

{ψS(x)} =



w ∈ R2 :

∣∣∣∣w −
|x|2 + ρ2

2〈x, e1〉 e1

∣∣∣∣ =

√( |x|2 + ρ2

2〈x, e1〉
)2

− ρ2





=

{
w ∈ R2 :

|w + ρe1|
|w − ρe1| =

|x + ρe1|
|x− ρe1|

}
,

which is circle of Apollonius. Conversely, if A is a union of circles of Apollonius correspond-

ing to ±ρe1, lemma 6 has that each circle in A is orthogonal to every circle in R. The result

now follows from proposition 5. ¤

Theorem 8 Let γ ⊂ R3 be a circle. The centers of the family of spheres R that con-

tain γ comprise a line `. A subset M ⊆ R3 \ {`} is symmetric with respect to each sphere in

R if and only if M ∩ P is a union of circles of Apollonius corresponding to γ ∩ P for each

plane P containing `.

Proof : γ is contained in a plane with a normal direction v. ` passes through the center

of γ in the direction of v.

Assume that M ⊆ R3 \ {`} is symmetric with respect to each sphere in R, let S ∈ R
and P be a plane containing `. Since ψS = ψ−1

S we have ψS(M ∩ P ) = ψS(M) ∩ ψS(P ).

By proposition 7, ψS(P ) = P . Hence, ψS(M ∩ P ) = M ∩ P. The restriction of ψS to P

is reflection about a Steiner circle corresponding to γ ∩ P , and since S ∈ R was arbitrary,

proposition 7 has that M ∩ P is a union of circles of Apollonius corresponding to γ ∩ P .

Now suppose that M ∩ P is a union of circles of Apollonius corresponding to the points

γ ∩ P for each plane P passing through `. Proposition 7 asserts that ψS(M ∩ P ) = M ∩ P

for each S ∈ R. It’s clear that

R3 =
⋃

P⊃`

P
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where the union is taken over all planes P ⊂ R3 that contain `, and since ψS = ψ−1
S for all

S ∈ R we have

ψS(M) = ψS

(
M ∩ R3

)

= ψS

(
M ∩

(⋃

P⊃`

P

))

= ψS

(⋃

P⊃`

(M ∩ P )

)

=
⋃

P⊃`

ψS(M ∩ P )

=
⋃

P⊃`

(M ∩ P )

= M. ¤

3.3 SPECIAL SPHERICAL SYMMETRY

A ⊆ S3 has special spherical symmetry if 1) there is a line of spherical symmetry ` ⊂ R4 \ S3

such that for each x ∈ `, ψS(A) = A, where S is the horizon sphere centered at x or 2)

ψS(A) = A for each hyperplane in a family of hyperplanes whose intersection contains a

great circle in S3, which is the intersection of two distinct great spheres in S3.

Lemma 9 Suppose that A ⊆ S3 has special spherical symmetry and that A has a line

of spherical symmetry `. Then all the horizon spheres associated with A intersect in a two-

sphere W . Moreover, W ∩ S3 is a circle.

Proof : We may assume that there exist p, v ∈ R4 such that |p| > 1, |v| = 1 〈p, v〉 = 0,

and ` = {p + tv : t ∈ R}. Observe that the horizon sphere St with center p + tv has radius
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√
|p|2 + t2 − 1 (this follows from the fact that St and S3 are orthogonal).

A sufficient and necessary condition for two spheres, with radii r1 and r2 and whose

centers are separated by a distance d, to intersect nontrivially is that r1 + r2 > d. Since

d = |(p + tv)− (p + sv)| = |s− t| and r1 + r2 =
√
|p|2 + t2 − 1 +

√
|p|2 + s2 − 1 > |s|+ |t| ≥

|s− t| = d, St and Ss intersect nontrivially. Hence we may suppose that there is x ∈ Ss ∩ St

and comparing the equations

|x− (p + tv)|2 = |p|2 + t2 − 1 and |x− (p + sv)|2 = |p|2 + s2 − 1

we find (s− t)〈x, v〉 = 0. Since s 6= t, we must have 〈x, v〉 = 0. This also gives that

|p|2 + t2 − 1 = |x− (p + tv)|2 = |x− p|2 + t2

or that |x− p| =
√
|p|2 − 1. Hence,

St ∩ Ss ⊆ {x ∈ R4|〈x, v〉 = 0} ∩ S0

for all s, t ∈ R. And if y ∈ {x ∈ R4|〈x, v〉 = 0} ∩ S0,

|y − (p + tv)|2 = |y − p|2 + t2 − 2t〈y − p, v〉 = |p|2 + t2 − 1 ⊂ St

for all t ∈ R.

W = {x ∈ R4|〈x, v〉 = 0} ∩ S0 =
⋂

t∈R
St

which is two-sphere and W ∩ S3 = {x ∈ S3|〈x, v〉 = 0, 〈x, p〉 = 1} which is a circle. ¤

Theorem 10 A ⊆ S3 has special spherical symmetry if and only if there is either a cir-

cle or a line γ ∈ R3 such that ψS ◦ π(A) = π(A) for each sphere or plane S containing γ.
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Proof : Suppose that A ⊂ S3 has special spherical symmetry. For each horizon sphere

or symmetry hyperplane Q, we define ψS = π ◦ ΨQ ◦ π−1 where S = π(Q ∩ S3) and ΨQ is

spherical or planar reflection about Q. Hence ψS ◦ π(A) = π ◦ ΨQ(A) = π(A). If A has a

line of spherical symmetry `, Lemma 9 asserts that all the horizon spheres of A intersect

in a two-sphere and the intersection of the two-sphere with S3 is a circle W . Thus π(A)

has either spherical or reflectional symmetry with respect to each sphere or plane passing

through π(W ) = γ, which is either a circle or a line in R3. If A does not have a line of

spherical symmetry `, then the intersection of all the symmetry hyperplanes of A intersects

S3 in a great circle and so we may repeat the argument above.

Conversely suppose that π(A) is symmetric with respect to each sphere S passing through

a circle γ. We have that ΨS′(A) = π−1 ◦ ψS ◦ π(A) = A, where S ′ is a symmetry sphere or

hyperplane for A determined by π−1(S) and ψS is spherical reflection with respect to S. If

γ has radius ρ, is centered a point a, and is contained in a plane with normal u, for each

sphere S passing through a γ there is a unique t ∈ R such that S has center a + tu and

radius
√

ρ2 + t2. We write St = {x ∈ R3 : |x − (a + tu)| =
√

ρ2 + t2}. If a = 0 and ρ = 1,

we have that the line of centers {tu ∈ R3 : t ∈ R} contains the origin, so π−1(γ) is a great

circle. Hence, A has special spherical symmetry. If a 6= 0,

π−1(St) = {x ∈ R4 : 〈x, (−2(a + tu), ρ2 − |a|2 − 2t〈a, v〉+ 1)〉 = ρ2 − |a|2 − 2t〈a, v〉 − 1}

which is a non-great hypersphere for t 6= t∗ = (ρ2 − |a|2 − 1)/2〈a, v〉. The cone points

associated with π−1(St) are

α(t) =
(−2(a + tu), ρ2 − |a|2 − 2t〈a, v〉+ 1)

ρ2 − |a|2 − 2t〈a, v〉 − 1
, t ∈ R \ {t∗}.
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We have that

|α(t)| =
√

4(ρ2 + t2)

(ρ2 − |a|2 − 2t〈a, u〉 − 1)2
+ 1 > 1

and

α′(t) = − 2

(ρ2 − |a|2 − 2t〈a, v〉 − 1)2
((ρ2 − |a|2 − 2t〈a, v〉 − 1)v + 〈a, v〉a,−2〈a, v〉)

= f ′(t)w

where

f(t) = − 1

〈a, v〉
1

ρ2 − |a|2 − 2t〈a, v〉 − 1

is a real-valued, monotone function on R \ {t∗} and w = ((ρ2 − |a|2 − 2t〈a, v〉 − 1)v +

〈a, v〉a,−2〈a, v〉) is a constant vector. Consequently, ` = α(R \ {t∗}) ⊂ R4 \ S3 is a line for

which A is invariant under reflection about each horizon sphere centered on `. We conclude

that A has special spherical symmetry.

Suppose that π(A) is symmetric with respect to each plane P containing a line γ. Again

we have that ΨS′(A) = π−1◦ψP ◦π(A) = A, where S ′ is a symmetry sphere or hyperplane for

A determined by π−1(P )∪{e4} and ψP is planar reflection about P . If γ contains the origin,

π−1(γ) is a great circle and thus A has special spherical symmetry. Otherwise π−1(γ)∪ {e4}
is circle passing through e4 and a calculation very similar to the above shows that A has

special spherical symmetry. ¤

In view of the equivalence established in theorem 10, we will say that a set A ⊆ R3 has

special spherical symmetry if ψS(A) = A for each sphere S containing a circle in R3 or

ψP (A) = A for each plane P containing a line in R3. With this convention, Theorem 12

also shows that rotationally symmetric surfaces (or surfaces of revolution) and their inverse
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stereographic projections have special spherical symmetry.

Example 11 Since spheres are rotationally symmetric, spheres (in R3 and S3) have spe-

cial spherical symmetry.

Example 12 The Clifford torus is defined to be C = {(x1, x2, x3, x4) ∈ R4 : x2
1 + x2

2 =

1/2 = x2
3 + x2

4}. It can be shown that C is a minimal surface in S3 and that π(C) is the

surface of revolution obtained by rotating the circle Γ = {(x, 0, z) ∈ R3 : (x−√2)2 +z2 = 1}
around the z-axis. Theorem 12 implies that C possesses special spherical symmetry. In fact,

Figure 3: The stereographic projection of the Clifford torus and its meridian curve.

McCuan and Speitz have shown that every rotation of C has special spherical symmetry [M ].
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CHAPTER 4

CLASSIFICATION

In this section we establish the main result of this paper

Theorem 13 Let M be a complete regular minimal surface in S3 with special spherical

symmetry. Then M is either a great sphere or a rotation of the Clifford torus.

An immediate consequence of Theorem 13 is a special case of Lawson’s conjecture, which

states that the Clifford torus is the unique complete embedded minimal torus in S3 [Y ].

Corollary 14 If M ⊆ S3 is a complete embedded minimal torus with special spherical

symmetry, M is necessarily a rotation of the Clifford torus.

Proof : If M is an embedded minimal torus, M is regular and has genus 1, so Theorem

13 applies. ¤

This section is outlined as follows. First, we obtain a useful parametrization for the stereo-

graphic projections of complete regular surfaces possessing special spherical symmetry. Using

this parametrization and formula (5), we then compute the mean curvature of these surfaces

and obtain a minimal surface equation. Theorem 13 is a result of the classification of the

solutions of the minimal surface equation.

4.1 PARAMETRIZATION OF SYMMETRIC SURFACES IN S3

The following lemma is a major step towards the proof of Theorem 13. The success of our
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strategy depends crucially on our choice of parametrization.

Lemma 15 Let M ⊂ S3 be a complete regular surface. M possesses spherical symme-

try if and only if there is a rotation R of R4 such that π ◦R(M) is a plane or at each point

π ◦R(M) admits a local parametrization of the form

X(θ, φ) = ([
√

r(θ)2 + ρ2 + r(θ) cos φ] cos θ, [
√

r(θ)2 + ρ2 + r(θ) cos φ] sin θ, r(θ) sin φ + h) (7)

(θ, φ) ∈ (θ0, θ1)× [0, 2π), where ρ, θ0, θ1, h ∈ R and r : (θ0, θ1) → [0,∞] is a smooth function

of θ.

Proof : (⇒) Suppose M has special spherical symmetry and that M is invariant under reflec-

tion about each hyperplane in a family of hyperplanes whose intersection contains a great

circle ξ ⊂ S3. Then there exist n1, n2 ∈ S3 such that ξ = {x ∈ S3 : 〈x, n1〉 = 〈x, n2〉 = 0};
and for any rotation R of R4 satisfying Rn1 = e3 and Rn2 = e4, we have that π ◦ R(ξ) is

the unit circle in the xy plane. It follows that ψS ◦ π ◦R(M) = π ◦R(M) for each sphere S

containing the unit circle.

Now suppose that π ◦ R(M) is not a plane and let p be a point in π ◦ R(M) that is not

on the z-axis in R3. By Corollary 10, the intersection of the half plane Π0 containing p and

the z-axis is a union of circles of Apolonnius (corresponding to ±e1). Hence p lies on a circle

of Apolonnius in Π0. Since M is regular, there is some ε > 0 such that the intersection of

the halfplane Πθ, obtained by rotating Π0 about the z-axis by an angle θ, and π ◦ R(M) is

non-trivial and thus contains a circle of Apolonnius for |θ| < ε. If we denote the radius of

these circles by r(θ), (7) is a local parametrization of M at p with h = 0 and ρ = 1. For if
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we fix θ = θ0 ∈ (−ε, ε) we have that

∣∣∣X(θ0, φ)−
√

r(θ0)2 + 1(cos θ0, sin θ0, 0)
∣∣∣ = r(θ0) φ ∈ [0, 2π),

and so X(θ0, ·) is a circle of Apolonnius in the halfplane Πθ0 with radius r(θ0). The smooth-

ness of r follows from the regularity of M .

Now suppose that p is on the z-axis. The special spherical symmetry of M requires that

π ◦ R(M) contains the z-axis and that π ◦ R(M) is unbounded. For each small δ > 0, the

completeness of M assures that there is x ∈ π ◦ R(M) (that is not on the z-axis) such that

|x − p| ≤ d(x, p) < δ. From the above arguments, (7) is a parametrization of M at x and

thus x lies on a circle of Apolonnius α corresponding to (±e1). The closest point (in the

sense of | · |) on α to the z-axis is X(0, π) with

|X(0, π)− (0, 0, 0)| =
√

r(0)2 + 1− r(0) ≤ |x− p| < δ,

and thus

r(0) >
1

2

(
δ−1 − δ

)
.

Hence, we can always find a sequence of circles in π ◦ R(M) that converge to the z-axis

with corresponding radii that converge to ∞. Since π ◦ R(M) is regular we can assume

that this convergence happens in a (single) neighborhood of the p. Hence, π ◦ R(M) can

be parametrized at p by (7) (h = 0 and ρ = 1), where there is a θ∗ ∈ (θ0, θ1) such that

limθ→θ∗ X(θ, ·) is the z-axis.

Suppose M has special spherical symmetry and that M is invariant under reflection

about each horizon sphere centered on a line ` ⊂ R4 \ S3. By Proposition 2, there is a

rotation R0 of R4 such that R0(`) intersects the x4 axis in R4. Then π ◦R0(`) is a line that

contains the origin in R3. Again by Proposition 2, there is a rotation P of R3 such that
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P ◦ π ◦ R0(`) is the z-axis. Trivially extending P to a rotation of R4 via Pe4 = e4 we have

P ◦π ◦R0(`) = π ◦PR0(`) which by design is the z-axis. Hence there is a rotation R = PR0

of R4 such that π ◦R(`) is the z-axis. Now we can repeat the argument given in the previous

case where the the unit circle is now replaced with the circle γ of radius ρ that is centered

at a point (0, 0, h) on the z-axis and all the symmetry spheres of π ◦R(`) contain γ.

(⇐) If π ◦ R(M) is a plane, then example 11 implies that M has special spherical sym-

metry. If π ◦ R(M) is not a plane and can be parametrized by (10) at each point, for some

rotation R of R4, then this implication follows directly from Theorem 8 and Theorem 10. ¤

4.2 MINIMAL SURFACE EQUATION

Suppose that M ⊂ S3 is a complete regular minimal surface with special spherical symmetry.

Formula (5) implies that

HS =
1 + |X|2

2
H + 〈X, N〉 ≡ 0,

where X is a parametrization for π(M) with unit normal field N and H is the mean curvature

of π(M). If H vanishes identically, then 〈X, N〉 = 0. In this case, π(M) is a plane containing

the origin and hence M is a great sphere. If H does not vanish identically, Lemma 15 asserts

that there is a rotation R of R4 such that π ◦R(M) admits the parametrization given in (7).

Therefore we may assume without any loss of generality that π(M) can be parametrized by

(7).

We have

N =
Xθ ×Xφ

|Xθ ×Xφ|

=

√
r2 + ρ2

0 cos φu1 − r′u2 +
√

r2 + ρ2
0 sin φ e3√

r′2 + r2 + ρ2
0

(8)
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where u1 = (cos θ, sin θ, 0), u2 = (− sin θ, cos θ, 0), and using (3)

H =
a0 + a1 cos φ + a2(cos φ)2

2r(r cos φ +
√

r2 + ρ2
0)

2(r2 + ρ2
0 + r′2)3/2

(9)

a0 =
√

r2 + ρ2
0

[
(r2 + ρ2

0)rr
′′ − ((r2 + ρ2

0)
2 + (2r2 + ρ2

0)r
′2)

]

a1 = r
[
(r2 + ρ2

0)(rr
′′ − 3(r2 + ρ2

0))− (3ρ2
0 + 4r2)r′2

]

a2 = −2r2
√

r2 + ρ2
0(r

2 + ρ2
0 + r′2).

Moreover,

0 = (HS)φ |φ=0

=

(
〈X, Xφ〉H +

1 + |X|2
2

Hφ + 〈X,Nφ〉+ 〈Xφ, N〉
)
|φ=0

= h

(
rH|φ=0 +

√
r2 + ρ2

r2 + ρ2 + r′2

)

where r′ = dr/dθ. If h 6= 0, then

rH|φ=0 +

√
r2 + ρ2

r2 + ρ2 + r′2
= 0. (10)

The general solution to (10) is

r(θ) =
√

a2 − (a2 + ρ2) (sin(θ − θ0))2,

with a 6= 0. Since

∣∣∣X(θ, φ)−
(√

a2 + ρ2 cos θ0,
√

a2 + ρ2 sin θ0, h
)∣∣∣ = |a|,

M is necessarily a great sphere. Therefore we have proved
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Proposition 16 If M is a complete regular minimal surface whose stereographic projec-

tion M is parametrized by (7), h 6= 0 implies that M is a great sphere.

This leads us to the following surprising result

Corollary 17 If M is a complete regular minimal surface whose stereographic projection

M is parametrized by (7), h = 0 implies that ρ = 1.

Proof : If h = 0, the xy-plane is a plane of symmetry for P = π(M), where is M is not

a great sphere. π ◦ Rzw
π/2 ◦ π−1 maps the xy-plane to S2. Thus S2 is a symmetry sphere for

π ◦ Rzw
π/2 ◦ π−1(P ) = P ′. Since M was not a great sphere, π−1(P ′) is not a great sphere. On

the other hand P ′ possesses special spherical symmetry (where all the symmetry spheres are

centered along the z-axis) so P ′ can be parametrized by (7) and again we have that h = 0.

Hence the xy-plane is a plane of symmetry for P ′. It follows that the symmetry spheres of

P ′ all meet in the unit circle on the xy plane and thus ρ = 1. ¤

From (8) and (9), we find that when h = 0 (and thus ρ = 1)

HS =

√
r2 + 1 [r(1 + r2)r′′ + r4 − 1− r′2]

2r(r′2 + r2 + 1)3/2
= 0,

or

r(1 + r2)r′′ + r4 − 1− r′2 = 0. (11)

4.3 SOLUTIONS
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r(θ) = 1 is the lone positive constant solution to (11). In this case, (7) becomes

X(θ, φ) =
(
[
√

2 + cos φ] cos θ, [
√

2 + cos φ] sin θ, sin φ
)

, (θ, φ) ∈ [0, 2π)2.

Thus X([0, 2π)2) is the surface of revolution with generating curve x2 +(
√

2− z)2 = 1 which

implies that M is the Clifford torus (see example 12).

More generally, (11) has the first integral

c =
r√

1 + r2
√

1 + r2 + r′2

where c is a constant of integration. Hence, each solution to (11) is periodic and satisfies

r′2 =
r2 − c2(1 + r2)2

c2(1 + r2)
. (12)

We must have 0 < c ≤ 1/2 for r′2 to exist and be nonnegative. c = 1/2 corresponds to the

Clifford torus, so now we will only consider solutions for 0 < c < 1/2.

In order to complete the proof of Theorem 13, we need to show that there are no solutions

to (12) for 0 < c < 1/2 that correspond to complete regular minimal surfaces. This can be

done through analyzing the periods of the solutions. For a fixed c ∈ (0, 1/2), the only

way for the surface that corresponds to the solution to (12) to be regular is that there is

a natural number n such that nT (c) = 2π, where T (c) is the period of the solution (i.e.

r(θ) = r(θ + T (c)) for all θ). Otherwise, the surface will be self-intersecting and thus non-

regular (see figure 4 for an example of such a surface). We now proceed to show that this is

precisely the case.

A solution to (12) for a fixed 0 < c < 1/2 assumes minimum and maximum values r0
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Figure 4: A surface that corresponds to a solution to (12) for 0 < c < 1/2.

and r1, respectively, where

r0 =
1−√1− 4c2

2c
and r1 =

1 +
√

1− 4c2

2c

(since (12) is translation invariant, we may assume r(0) = r0). It follows that r is monotone

increasing on some interval [0, θmax], where r(θmax) = r1, and r is then monotone decreasing

on [θmax, T (c)] where r(T (c)) = r(T (c) + 0) = r(0) = r0. We have that

θmax =

∫ r1

r0

c
√

1 + r2

√
r2 − c2(1 + r2)2

dr,

and

T (c)− θmax = −
∫ r0

r1

c
√

1 + r2

√
r2 − c2(1 + r2)2

dr.

Thus,

T (c) =

∫ r1

r0

2c
√

1 + r2

√
r2 − c2(1 + r2)2

dr. (13)

The following proposition describes the periods of the solutions to (12). From our comments

above, it is easily seen that the first assertion of the proposition completes the proof of The-
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orem 13.

Proposition 18

1. π < T (c) ≤ √
2π, 0 < c < 1/2, and

2. T is monotone increasing on (0, 1/2), limc↘0 T (c) = π and limc↗1/2 T (c) =
√

2π

Proof : 1.
√

1 + r2 > r, so

T (c) =

∫ r1

r0

2c
√

1 + r2

√
r2 − c2(1 + r2)2

dr

>

∫ r1

r0

2cr√
r2 − c2(1 + r2)2

dr

=

∫ r1

r0

2cr√
1/4c2 − 1− (cr2 + c− 1/2c)2

dr

= sin−1

(
cr2 + c− 1/2c√

1/4c2 − 1

)∣∣∣
r1

r0

= π.

c2(1 + r2)2 ≤ r2 which implies c(r + 1/r) ≤ 1, and thus

2

√
1 + r2

1 + r/c + r2
= 2

√
1− 1

c(r + 1/r) + 1
≤ 2

√
1− 1

2
= 2

1√
2

=
√

2.

Hence,

T (c) =

∫ r1

r0

2c
√

1 + r2

√
r2 − c2(1 + r2)2

dr

=

∫ r1

r0

2
√

1 + r2

√
1 + r/c + r2

dr√
−1 + r/c− r2

≤
√

2

∫ r1

r0

dr√
(r − r0)(r1 − r)

=
√

2π.
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2.

T (c) =

∫ r1

r0

2c
√

1 + r2

√
r2 − c2(1 + r2)2

dr

=

∫ r1

r0

√
1 +

1

r2

2cr√
r2 − c2(1 + r2)2

dr

=

√
1 +

1

r2
sin−1

(
cr2 + c− 1/2c√

1/4c2 − 1

)∣∣∣
r1

r0

−
∫ r1

r0

(√
1 +

1

r2

)′

sin−1

(
cr2 + c− 1/2c√

1/4c2 − 1

)
dr

=
π
√

1 + 2c

2c
+

∫ r1

r0

sin−1
(
(cr2 + c− 1/2c)/

√
1/4c2 − 1

)

r2
√

1 + r2
dr, (14)

and now it’s clear that we may use Leibnitz’ rule for differentiating integrals. Doing so, we

find

T ′(c) =
2

1− 4c2

∫ r1

r0

(1− 2c2)r2 − 2c2

r2
√

1 + r2
√

r2 − c2(1 + r2)2
dr.

For each fixed 0 < c < 1/2,

r 7→
r +

√
2c√

1−2c2

r2
√

1 + r2
√

cr2 + c + r

is a positive, monotone decreasing function of r, and

inf
r∈[r0,r1]

{
r +

√
2c√

1−2c2

r2
√

1 + r2
√

cr2 + c + r

}
=

√
2c5/2(2

√
1− 2c2 +

√
2(1−√1− 4c2))√

1− 2c2(1 +
√

1− 4c2)2
> 0.

We also have for each c ∈ (0, 1/2)

∫ r1

r0

r −
√

2c√
1−2c2√

r − c(1 + r2)
dr = π

√
1− 2c2 − 2

√
2c2

2c3/2
√

1− 2c2
> 0
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since
√

1− 2c2 − 2
√

2c2 > 0 for c ∈ (0, 1/2). With these estimates

T ′(c) =
2

1− 4c2

∫ r1

r0

(1− 2c2)r2 − 2c2

r2
√

1 + r2
√

r2 − c2(1 + r2)2
dr

=
2(1− 2c2)

1− 4c2

∫ r1

r0

r +
√

2c√
1−2c2

r2
√

1 + r2
√

cr2 + c + r

r −
√

2c√
1−2c2√

r − c(1 + r2)
dr

≥ 2(1− 2c2)

1− 4c2

√
2c5/2(2

√
1− 2c2 +

√
2(1−√1− 4c2))√

1− 2c2(1 +
√

1− 4c2)2

∫ r1

r0

r −
√

2c√
1−2c2√

r − c(1 + r2)
dr

> 0.

Now we proceed to show that limc↘0 T (c) = π by proving that

lim
c↘0

∫ 1

r0

2c
√

1 + r2

√
r2 − c2(1 + r2)2

dr = 0 and lim
c↘0

∫ r1

1

2c
√

1 + r2

√
r2 − c2(1 + r2)2

dr = π. (15)

Recall that for r ∈ [r0, r1], 2
√

r2 + 1/
√

r/c + r2 + 1 ≤ √
2, and for r ∈ [r0, 1], 1/

√
r1 − 1 ≥

1/
√

r1 − r. Thus,

∫ 1

r0

2c
√

1 + r2

√
r2 − c2(1 + r2)2

dr =

∫ 1

r0

2
√

1 + r2

√
1 + r/c + r2

dr√
−1 + r/c− r2

=

∫ 1

r0

2
√

1 + r2

√
1 + r/c + r2

1√
r1 − r

dr√
r − r0

≤
√

2√
r1 − 1

∫ 1

r0

dr√
r − r0

=

√
2√

1/r0 − 1
2
√

1− r0

= 2
√

2r0

= 2

√
1−√1− 4c2

c

= 2

√
4c

1 +
√

1− 4c2

≤ 4
√

c,
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which establishes the first limit in (15). As for the second limit in (15), we first observe that

since
√

1 + r2 − r < 1/2r for r > 0,

∣∣∣∣∣
∫ r1

1

2c
√

r2 + 1√
r2 − c2(r2 + 1)2

dr −
∫ r1

1

2cr√
r2 − c2(r2 + 1)2

dr

∣∣∣∣∣ =

∫ r1

1

2c(
√

r2 + 1− r)√
r2 − c2(r2 + 1)2

dr

<
1

2

∫ r1

1

1

r

2c√
r2 − c2(r2 + 1)2

dr

=
1

2

∫ 1

r0

2cr√
r2 − c2(r2 + 1)2

dr

=
1

2

(π

2
− sin−1(

√
1− 4c2)

)

which goes to 0 as c ↘ 0. Hence

lim
c↘0

∫ r1

1

2c
√

r2 + 1√
r2 − c2(r2 + 1)2

dr = lim
c↘0

∫ r1

1

2cr√
r2 − c2(r2 + 1)2

dr

= lim
c↘0

(π

2
+ sin−1(

√
1− 4c2)

)

= π.

Finally, we note that

∣∣∣∣∣∣

∫ r1

r0

sin−1
(
(cr2 + c− 1/2c)/

√
1/4c2 − 1

)

r2
√

1 + r2
dr

∣∣∣∣∣∣
≤ π

2

∫ r1

r0

dr

r2
√

1 + r2

=
π

2

(√
1 +

1

r2
0

−
√

1 +
1

r2
1

)

which implies that

lim
c↗1/2

∫ r1

r0

sin−1
(
(cr2 + c− 1/2c)/

√
1/4c2 − 1

)

r2
√

1 + r2
dr = 0,

since limc↗1/2 r1 = limc↗1/2 r0 = 1. From (14) it is evident that limc↗1/2 T (c) =
√

2π. ¤
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Remark: Our classification applies to any minimal surface in S3 that can be rotated so

that its stereographic projection admits the parametrization (7). We believe that this result

applies in general to complete minimal surfaces possessing special spherical symmetry that

can be immersed in S3 .
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