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Abstract 

Traditional hidden Markov model speech recognition is generally based upon a set of 

parameters which are extracted at discrete intevals. Such an analysis necessitates use of a 

discrete-transition hidden Markov model in which the underlying states can change only 

at intervals related to the frame rate of the analysis. The exact locations of the analysis 

windows can influence the front-end outputs. As a result, inconsistent performance 

can often be observed in discriminating words which differ only in short duration cues. 

In the current study, methods are explored which circumvent this framing effect by 

allowing state trasitions to occur at each sample. Efficient methods for implementing 

this strategy are derived, and testing of a variety of procedures using a set of highly 

confusable utterances is reported. Significantly superior performance was demonstrated 

both for quiet and noisy conditions. 
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1 Introduction 

Over the past few years, the method of choice for many speech recogni-

tion applications has been on hidden Markov modelling. Steady improvement 

has been reported in such areas as speaker independence, noise handling, 

training and response times, as well as general performance. The first HMM 

based systems modeled speech as a discrete state discrete trial Markov process 

with discrete observations. More recently, models which allow a continuous 

distribution of observations have been presented. Throughout all these mod-

els, however, the assumption remains that sampling the parameterization of 

the speech (e.g., spectral or LPC based parameters) is only necessary every 

10 to 30 milliseconds. When words differ only by a short duration interior 

consonant, however, the exact placement of the analysis windows can have an 

impact on performance. 

The motivation for the current study came from our observations that 

although general performance of a recognizer may not depend highly on the 

exact placement of frames, the detailed error patterns often would. The meth-

ods explored are attempts at eliminating the apparent framing artifacts by, in 

essence, extracting a set of parameters for every sample of the digital speech. 

The recognition algorithm can then be considered a close approximation to 

a continuous transition hidden Markov model. This approach would not be 

feasible were it not for efficient algorithms we have been formulated for this 

specific problem. 

In this paper, we will first discuss the aspects of hidden Markov models 

which are conducive to this strategy and discuss the issues involved in training, 

and recognition. Second we will describe three parameter extraction methods, 

one of which relies on a novel utilization of Kalman filtering, with others two 

involving more classical procedures. Third, we will examine experimental 

results and discuss the conclusion which can be drawn. 
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2 The Hidden Markov Model 

A. Definitions : 

Consider a discrete state discrete transition hidden Markov model for each 

pattern to be recognized. Assume the observations are drawn from a finite 

alphabet of size M , and a new observation is made for every sample of the 

digital speech. This would imply some form of vector quantizer continuously 

outputting a codeword sequence. Although the form and implementation of 

this process will be described in detail in section 3, for all systems considered, 

enough memory existed in the analysis to produce long sequences of the same 

codeword in a segment of an utterance. The importance of this result will 

become apparent below. 

Denote the number of states in a model by n . 

7ri 	= probability the model starts in state i, 

1r2, • • • , irn1 

transition probability matrix, where : 

probability of transition from state i to state j 

in one trial; i, j = 1,2,...,n. 

observation probability matrix where 

bJk = probability of observing codeword k 

given state j. 

codeword observed at time t, 1 < t < F 

observation matrix, consisting of : 

R(t) = diag[bi(0 (t)), • • ,bn(0 (0)] 

For a given model M, and observations 0 (1), 0 (2), . . . , O (F), we define 

aT 
(t) 

ai (t) 
fiT (t)  

pi (t) 

= [al (t), 	, an  (t)] 

= prob[0 (1), 	, 0 ; state i at ti 

= 1131(t) ,  • • • , fln (t) 
= probE0 + 1), 	0 (F); state i at t] 

Then the probability that we observe the sequence from the model is 

PrE0 (1), , 0 (F)] = E ai (t)/3i  (t) 
i=i 

HT = 
A = 
aii  = 

B = 

0(t) = 

R(t) = 

(1) 
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We can rewrite a(t), 13(0, and Eq.(1) in matrix form such that 

Pr [0 (1), , O (F)] = IITR(1)AR (2)A • • • AR (F)f(F) 	(2) 

oiT  (t) = ITTR (1)AR (2) • • • AR (t) 	 (3) 

PT  (t) = AR (t + 1)AR (t + 2) • • •AR (F)/3 (f) 	(4) 

If the model is constrained to the left-to-right, A will be upper triangular. 

If the model demands the system to start in state 1 and end in state n, then 

IIT 	= [1, 0,... ,0] 
(5) #1.  (F) = [0,...,0, 1] 

B. Recognition : 

For a given model, one needs to compute the probability of the observations. 

This can be accomplished, of course, through evaluation of Eq.(2). In our 

system, F is normally such a large number that dirrect evaluation of Eq.(2) 

would require tremendous amount of computation. In order to reduce this 

computational burden, we make use of the fact that usually a long run of 

the same codewords are observed, which makes Eq.(2) several long runs of the 

same matrix multiplications, and the constraint that the model be left-to-right 

which makes A upper-triangular. Let's assume that the codewords at time 

t + 1 through t + m are same. Then the partial product of Eq.(2) for the 

period of time, 

[AR(t + 1)AR (t + 2) • • • AR(t + m)], 

is equal to 

[AR(t + m)]"n 

Since the matrix A is upper-triangular and R(t + m) is diagonal, the prod-

uct, [AR(t+m)]ni is an upper-triangular matrix. The upper-triangular matrix 

has a nice property that it can be diagonalized if the diagonal elements are 

distinct. In our case, if we assume that the diagonal elements of AR(t + m) 

are distinct, it can be diagonalized in such a form that 

AR(t + m) = PDP -1 	 (6) 
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where D is diagonal with its elements same as the diagonal elements of 

AR(t + m), P is a upper-triangular matrix with its diagonal elements equal 

to 1. Therefore, 

[AR(t m)]"` = PD"IP -1 
	

(7) 

And 2(t m) can be computed directly from a(t) without computing in-

termediate La's at t + 1,t + 2, ... , and t + m — 1 , that is, 

z(t + m) = a(t)[AR(t + m)1'n 

= a(t)PD'nP -1 
	 (8) 

It seems that obtaining the matrices, P and P -1 , require time-consuming 

computation, especially when the dimension of the matrix is large. This, how-

ever, is not so in our case. In fact, there exist very efficient ways using the 

property that [AR(t rn)] is upper -triangular. The efficient methods to com- 

pute P and P -1  are shown in Appendix A. 

C. Training Algorithms : 

In the previous section, we have shown an efficient way of computing a' s with-

out computing the intermediate ones when a long run of the same codewords 

are observed. Q's can also be computed in the same way. In this section, two 

different training methods are introduced in which we make use of the same 

method to efficiently carry out the restimation. The first one, denoted as " 

Algorithm 1 ", is strictly based on the Baum-Welch reestimation algorithm, 

while the second one,denoted as " Algorithm 2", is slightly varied version and 

yet performs better. 

1). Algorithm 1 : 

The Baum-Welch reestimation algorithm states that the estimates of and 

b, (v), denoted as and k(v) respectively, are updated at each iteration based 

on the previous estimates as follows : 

(9) 
'Ii 
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ti (v) — 	Er_1 %(t)A; (t) 
EtE0(0=k ai(t)Pi(t) 
	

(10) 

where 
F-1 

=  Iii 	— E cli (t)aii k(o(t +1)))3i (t + 1) 	(11) 
P g=i 

= 	'NJ 	 (12) 
j=1 

Let's consider the computation of 	If O(k + 1) = O(k + 2) = • • • 

O(k + m), then bi  (0(k + 1)) = b i  (0(k + 2)) = • • • = I);  (0(k + m)). Thus the 

partial summation of Eq.(11) for k < t < k+m —1, denoted as "Ai  (k, k+m —1), 

can be written as 
-1 

= —
1

[aii bi  (0(k + 1))] E ai(t)fii(t + 1) 	 (13) 
P 	 t=k 

Computation of Eq. (13) in a straight forward way requires ai(t) and f3i(t+1) to 

be computed at t = k, k+1, ,k+m-1, With a different manipulation, which 

will be shown in the following, this can be avoided and a lot of computation 

can also be saved,especially when m is large. First let's express a(t) and 

/3(t + 1) for k <t<k+m-1 in terms of a(k) and $(k + m) as follows ; 

	

ar (t) = cAT (k)1AR(k + 1)1" 	 (14) 

/3(t + 1) = [AR(k +1)]m -t +k-1 )5(k + 	 (15) 

Then 

	

cei(t),li (t + 1) = Et.-7-1 ig(t),89t + 1)]q 	 (16) 
= Etr1  MAR)" 712(k),O T  (k + m)((AR)m -t+k -1 )T]ii 

where [*]ii denotes i-j component of matrix H and R = R(k+1) for simplicity. 

As shown in the previous section, AR can be decomposed such that AR = 

PDP-1 . Then Eq.(16) can be rewritten as follows; 

Mr-1  ai(t)fij (t + 1) 
= rp-r-l[p-Tpt-hpT sx(k)fiT 

	
(17) 

= [P-T (atrl Dt-kpT ft (k)fiT 	m)p-TDm-t+k-1)pT 
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If we let 

_4(k) = P T  a(k) 

(k m) = 	(k m)13-  

then Eq.(17) can be written more neatly such that 

k+m-1 
E ai (t)p i (t + 1) = [13-T  MP T 	 (20) 
t=k 

where 

M = Eti_r_ipt_kpTa(k)oT (k  top-TDm-t+k-i 
. 

= E71-1 Dt-kA(k)(3
T 
 (k + m)Dm - t+k -1  

Now let's consider the computation of M. The i — j th  component of M, Mii , 

can be expressed as 

= Enn-1 drk«,(k) )3; (k + m)dr -t+k-1 

= (k(k)ii i (k + m)) Etn-kt+k-1 dt-kdrit-t+k-1 

Since it was assumed that di  0 di if i j,the summation can be reduced such 

that 

k+m-1 	 cri-dqt 

E  dirk dtrt+ k-1 	d;-d; for i j 

t=k 	 m(di) m-1  for i = j 

Thus 
Id, -dr. 

=ia;  + m) for i 0 j 
Mii = 11 : . 

mdr -1 •54(k)Pi(k + m) for i = j 

In summary, 

m — 1) =1-p[p-TmpT]ii(ai i bi (0(k + 1))) 	(25) 

It is worth to be noted that only the upper triangular portions of M are 

necessary to be computed, since we only need •yii(k„k m —1), for i < j and 

the matrices, P -T and PT, are lower triangular. 

Secondly, let's consider the numerator of Eq.(10) for the reestimation of 

b; (v). Under the same assumption that O(k + 1) = O(k + 2) = • • • = O(k + 

(21) 

(22)  

(23) 

(24) 
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m) = v,the partial summation of the numerator, Ete0(t)=0«i(t)f3i(t), for k + 

1 < t < k + m can be expressed in terms of a(k) and 16(k + m), 

Etqn+i (t)oi (t) — Etm, [2 (t) fiT  (OW 
= [p-T Et.ta i  (Dt-kpT a  (k) f3T (k 

▪ 

 m)p-Trp+m-emTl ii  

Eq.(26) is very similar to Eq.(17), and can be evaluated similarly. In fact, if 

we denote the term in the summation of Eq.(26) as 14, i.e., 
k+m 

Ni E  Dt-kpT g(k)fiT (k 

▪ 

 m)p-Tpk+m-t 

k+1 

It can be observed that M is the product of D and M,i.e., 

= DM 	 (28) 

Hence, once M is obtained to compute ryii (k,k + m — 1), Eq.(22) can be 

computed with only a few more computation as follows; 
k+trs 

E aa(t)/3:7(t) = EP-TDmpTi ji 	 (29) 
t=k+1 

As mentioned earlier, in the partial summations involved for the restima-

tions of aii and bi(v), a's and P's are not required to be computed at ev-

ery time unit. For example, if we consider the assumption given above that 

0(t + 1) = 0(t + 2) = • • • = 0(t + m), only a(k) and p (k + m) are required in 

the partial summations, that is, all the intermediate .a's and IT s do not have 

to be computed, which contributes to the great saving of computation. 

2). Algorithm 2 : 

The algorithm presented here can be considered as the sampling version of 

Baum-Welch restimation algorithm. Unlike the Baum-Welch algorithm, which 

is formulated by Eq.(9) and Eq.(10), in the new algorithm only the samples 

of are used. Eq.(11) can be rewritten as follows; 

P  "Ai = t' (t) 	 (30) 
t= 1 

where 
1 

= —ai(t)diiEsi(0(t +1))131(t + 1) (31) 

(26) 

(27) 
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The restimation equations (9) and (10) can also be written in terms of iii (t) . 

= 	 (32) 
E7.1(Er.--ii (t)) 

bi(v) = EtE0 (E 17i j (t  1)) 	 (33) 
ELI (E7.1 7'i; (t — 1)) 

In the new algorithm, we sample -yii (t) at every kth time unit, and assume 

that it stays same during the sampling interval. In other words, if iii(t) is 

sampled at t = 1, k + 1,2k + 1, ..., then we assume that 

iv (1) 	= 	(2) 	= • • • = 

ryii(k +1) 	= ryij (k + 2) 	= • • • = -ii(2k) 

•-yii (2k + 1) = -yii (2k + 2) 	• • • = 	(3k) 
(34) 

• 

Under this assumption and the assumption that F mk for some integer m, 
Eq.(32) becomes as follows, 

+ 1)  
Qij = 	 (35) 

Ein.1 	(rk + 1) 

which can be seen as the sampled version. This algorithm is not proven 

mathematically to converge, but it has shown experimentally that it not only 

converges but also gives better results than the conventional Baum-Welch al-

gorithm. It•seems that this algorithm has a smoothing property which enables 

the algorithm to find a better local maximum point. 

3 Front-End Analysis 

The approach we are adopting is based on a linear model of speech which is 

time-invariant over short intervals. This is the traditional model often used 

in speech recognition and coding applications. However, we allow for natural 

smooth changes occuring in the system as well as additive uncorrelated noise. 

Our linear model may also have explicit modeling of time-varying system 

parameters. Since many phonemes are characterized by a particular evolution 

in time rather than by steady-state or target spectra, this model is more 
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powerful than more traditional ones. In particular our model is : 

1 X(k) = 4(k)X(k — 1) + r(k)w(k) 
(36) 

s(k) = HTX(k) + v(k) 

where the vector X(k) = [x(k)x(k — 1)- • • x(k — p + 1)1T, x(k) is the speech 

without noise, tv(k) the noise input and Ilk) its gain, HT = [1,0, 0, .. • ,0], 

v(k) the additive noise, and 4.(k) characterizes the time-varying vocal-tract 

filter. 

Systems similar to this have been used to model many varied signals aris-

ing in sonar, heart monitoring, aircraft control,etc.. In the linear prediction 

synthesis model 4.(k) remains constant over 10 to 30 millisecond intervals, 

and v(k) is zero. In the LPC analysis model, v(k) is generally assumed to 

be zero so that (I)(k) can be estimated every 10 to 30 milliseconds. Recursive 

linear least square estimation based on our model falls within the general area 

of Kalman filtering, which allows one to efficiently compute the least squares 

estimate of X(k) from the least squares estimate of X(k — 1) and 8(k). The 

property we wish to exploit is that if we have modeled the system correctly, 

the prediction error, c(k), would be white, and it should have a predictable 

ratio of its power to the unfiltered signal's power. If there are L possible 

models from which the observed signals was generated, this idea can be used 

for computing the relative likelihood of each model given the observed signal. 

In the following our front-end process is explained in detail on the Kalman 

filtering process followed by decision making process. 

3.1 Kalman Filtering 

In the Kalman filtering process, we have L distinct competing models, each 

of which has the form, 

X(k) = (I0X(k — 1) + t(k)w(k) 

s(k) = HX(k)+ v(k) 
(37) 
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where 

= 

a(1) 

1 

0 

0 

a(2) 

0 

1 
• • 
• 

0 

— • 

• • • 

•• • 

• • 

a(p) 

0 

0 

0 

H = [100 • • • 0] 

Ev(k) = 0 Ev(k)v(1) = cr:(k)5ki 

Ew(k) = [0, 0, • - • , OJ T  

1 0•• 0 

0 0 •• 0 
Ew (k)w (1) = 

• • Ski 
• 
• 

• 
• 

0 0 — • 0 

g(k) 0 •• • 0 

0 0 •• • 0 
: ' • . : 

0 0 •• • 0 

and a(1), a(2), 	, a(p) are linear prediction coefficients which characterize the 

model. 'This model results in the following time-recursive formula which gives 

the linear least squares estimate of X(k) given s(k -- 1), s(k — 2), , s(0). 

	

c(k) 	(k) — 	— 1) 	 (38) 

	

oRk) 	HP(kik — 1)HT 	(k) 	 (39) 
1 

	

M(k) 	P(klk — 1)11T 	 (40) 
a 

	

t(kik) 	t(kik — 1) + M(k)e(k) 	 (41) 

X(k 1Ik) = 41(14) 	 (42) 

P(kik) = P (kik — 1) — M(k)M T  (k)a: 	(43) 

P (k + 11k) = IP (kik)(1) T  + (k)rT (k) 	 (44) 

where ((k) is the innovations sequence, al(k) the variance of the innovations, 

M(k) the Kalman gain, and P(k1r) the covariance of the estimate error X(k)— 

r(k) 
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SC.(1c1r). The initial condition is given as follows; 

)ACT (010) = [8(0)4(-1) • • - s(—p + 1)] 
(45) 

P(010) = cr2 (0)I 

With the innovations sequence obtained from each model, a likelihood test 

is performed in a recursive manner. If we denote ei (k) the innovation produced 

by model i at time k and pi(k) the probability that model i generate s(k) , 

then 

N(Ei(k),al(k))p i (k  — 1) 
pi  (k) =  L 	 (46) 

N(ci (k),crli (k))pi (k -- 1) 

where arE (k) is the variance of ei(k) when model is correct, and N(a, b) 

represents the Gaussian density of zero mean with the variance b evaluated at 

a. We then choose the model with the largest p. 

4 Experiments 

Several recognition experiments were performed with clean speech, noisy speech 

of SN.R = 26dB, and of SNR = 20dB. The isolated words used in the ex-

periments are 'break', 'change', 'degree', 'eight', 'eighty', 'enter', 'fifty', 'fix', 

'six', 'go'. Each word has 12 utterances, 6 of which were used for the training 

of HMM's. Each utterance was passsed through Kalman-filtering process with 

3 different level of white Gaussian noises as stated above, which produced 3 

different sets of codewords, one for clean speech, one for the noisy speech of 

SNR = 26dB, and one for the noisy speech of SNR = 20dB. In the Kalman-

filtering process, the variances of the generating noise and the additive noise 

were updated at every 80 samples, and the initail conditions were reset ac-

cordingly at the same time. The filter order was 14 for each of the 64 different 

filters. 

A. With Clean Speech : 2 errors out of 120 = 1.7 1 error from the set used 

for training : 'six' recognized as 'fix' 

1 error from the set not used for training : 'eight' recoginzed as 'eighty' 

B. With Noisy Speech of SNR = 26dB : 8 errors out of 120 = 6.7 0 error 
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from the set used for training 

8 errors from the set not used for trianing : 'eight' recoginized as 

'eighty' (4), 'fix' recognized as 'six' (1), 'six' recognized as 'fix' (3). 

C. With Noisy Speech of SNR = 26dB and Clean Speech : 

i). the recognition of noisy speech : 6 errors out of 120 = 5 0 error from the 

set used for training 

6 errors from the set not used for training : 'eight' recognized as 'eighty' (3), 

'fix' recognized as 'six' (1), 'six' recognized as 'fix' (2) 

ii). the recognition of clean speech : 7 errors out of 120 = 5.8 2 errors from 

the set used for training : 'eight' recognized as 'eighty', and 'six' recognized 

as 'fix' 

5 errors from the set not used for training : 'eight' recognized as 'eighty' (5) 

It is interesting to note that the models trained with both clean and noisy 

speech give higher recognition rate for noisy speech ( compare the results of 

B and C O.) than the ones trained with only noisy speech, while giving 

lower recognition rate for clean speech ( compare the results of A and C 

ii).) than the ones trained with only clean speech. It may be interpreted 

as clean speech giving positive information for the trtaining of noisy speech 

models, and noisy speech giving negative information for the training clean 

speech models. This behavior has been observed in several occasions. More 

comprehensive experiments are to be done with larger vocavulary and various 

SNR's. 
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Iterative Speech Enhancement 
With Spectral Constraints 

John H. Hansen and Mark A. Clements 
Georgia Institute of Technology 
School of Electrical Engineering 

Atlanta, Georgia 30332 
Abstract 
	

With these assumptions, good enhancement took place in 2-3 
iterations. It is assumed that in a real-time environment how-
ever, noise spectral estimates could be gathered and updated 
during silent intervals. An important observation which could be 
made from this previous work was that as additional iterations 
were performed, individual formants of the speech decreased in 
bandwidth (see fig.1), resulting in unnatural sounding speech. 
Frame-to-frame pole jitter was also observed which contributed 
to unnatural sounding results. Also, the original technique 
employs no explicit frame-to-frame constraints. Since the origi-
nal algorithm already constrains the speech to be the response 
from an all-pole system, applying further constraints on the 
pole movements may improve the algorithms performance. One set 
of constraints were applied directly to the LPC poles. These 
results were quite encouraging, yet computationally intensive. A 
new approach for implementing the spectral constraints was 
formed by employing the line spectral pair (LSP) transformation 
as a method for representing the vocal tract spectrum. This 
method of specification allowed constraints to be efficiently 
applied to the speech model pole movements across time (inter-
frame) so that formants lay on smooth tracks. In addition, 
constraints could also be easily applied across iterations 
(intra-frame) on a frame-by-frame basis. 

Iterative Speech Enhancement 

Enhancement based on the estimation of all-pole speech 
parameters in additive white Gaussian noise was investigated by 
Lim and Oppenheim [1], and later for a colored noise degradation 
by Hansen and Clements [2]. It was shown that the estimation 
procedures which result in linear equations without background 
noise, become nonlinear when noise is introduced. However by 
allowing a suboptimal procedure, an iterative algorithm results 
which possesses the property that the estimation procedure is 
linear at each iteration. 

Consider the statistical parameter estimation of speech in 
the presence of noise. Over a short-time basis, the speech 
signal can be represented as the following difference equation: 

s(n) = a s(n-1,n-p) + g w(n) 	 (1) 

where 	aT=[a„a2,...,ap] represents the all-pole predictor 
coefficients. Substituting the degraded speech into the speech 
model gives the following equation for the observation vector: 

y(N-1,0) = s(N -1,0) + d(1.-1,0) 	(2) 
Yo  = a y(n-1,n-p) + g w(n) + d(n) - a d(n-1,n-p) 

where s(N-1,0) are N samples of original speech, and d(N-1,0) 
represents the additive background noise. The 2p + 1 unknowns 
indude the predictor coefficients a, initial conditions for the 
predictor given by Si = s(-1,-p), and the gain factor g for the 
input excitation. Consider the case where all unknown 
parameters are random with a priori Gaussian probability density 
functions. The basic procedure used is a maximum a priori (MAP) 
estimator, which maximizes the probability density function of 

A new and improved iterative speech enhancement technique 
based on spectral constraints is presented in this paper. The 
iterative technique, originally formulated by Lim and Oppenheim, 
attempts to solve . for the maximum likelihood estimate of a 
speech waveform in additive white noise. The new approach 
applies inter- and intro frame spectral constraints to ensure 
convergence to reasonable values and hence improve speech 
quality. An extremely efficient technique for applying these 
constraints is in the use of line spectral pair (LSP) coeffi-
cients. The inter-frame constraints ensures more speech-like 
formant trajectories than those found in the unconstrained 
approach. Results from speech degraded by additive white 
Gaussian noise show noticeable quality improvement. 

Introduction 

The successfulness of an enhancement algorithm rests on the 
goals and assumptions used in deriving the approach. Depending 
on the application, a system may be directed at one or more 
objectives such as improving overall quality, increasing intel-
ligibility, reducing listener fatigue, etc. Three assumptions 
normally made include: i) that the noise distortion be additive, 
ii) that only the degraded speech signal is available, and 
that the noise and speech signals are uncorrelated. In general, 
constraints placed on the speech model improve the potential for 
separating speech from background noise. However, such systems 
are also more sensitive to "deviations" from these constraints. 
The degradation considered is additive white Gaussian noise. The 
basis of the technique is an iterative enhancement approach 
based on noncausal Wiener filtering originally formulated by Lim 
and Oppenheim [1]. This approach attempts to solve for the 
maximum likelihood estimate of a speech waveform in additive 
white noise using the constraint that the signal is an all-pole 
process. Crucial to the success of this approach is the accuracy 
of the estimates of the all-pole speech parameters at each 
iteration. One advantage of the Wiener filtering approach is 
that no "musical tone" artifacts are present after processing as 
can be observed in spectral subtraction techniques. In addition, 
under certain conditions, it can be shown that it is the optimal 
solution in the mean-squared sense for a white noise distortion. 
Although successful in a mathematical sense, this technique has 
received little application due to several factors. First, it is 
an iterative scheme with sizable computational requirements as 
opposed to a direct form such as spectral subtraction. Second, 
although the original sequential MAP estimation technique was 
shown to increase the joint likelihood of the speech waveform 
and all-pole parameters, heuristic convergence criteria had to 
be employed. After an extensive investigation [2], this approach 
was found to produce significant levels of enhancement for white 
Gaussian noise in 3-4 iterations. The technique was generalized 
to allow for colored aircraft noise. Various spectral estimation 
techniques where employed for securing estimates of the colored 
background noise and although the noise was not stationary, 
estimates were performed prior to application of the algorithm. 
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the parameters given the observations. Therefore, a,g,Si are 
chosen to maximize the probability density function 
p(a,g,SilY0). The procedure requires that a be chosen to 
maximize P(alYo), noting that the estimate is conditioned on the 
noisy observations Yo. Using Bayes' rule, p(alY0) can be written 
as a product of terms involving p(Yola,g,S1). When the Gaussian 
density function p(Yola,g,Si) is expanded, it can be shown that 
the mean and variance are functions of the predictor 
coefficients a. Therefore the resulting equations for maximizing 
p(alY0) are nonlinear, involving partial derivatives with 
respect to a. Lim and Oppenheim considered a suboptimal solution 
employing a two step approach based on MAP estimation of S o 

 given Yo , followed by MAP estimation of a given A o,where So  is 
the result of the first estimation. Observations indicate that 
this algorithm converges to a local maximum of the joint density 
p(a,SalYoZ,Si). In particular, if the probability density 
function is unimodal, and the initial estimate for a is such 
that the local maximum equals the global maximum, then the 
procedure is equivalent to the joint MAP estimate of a and S o. 
After some simplification, the MAP estimation of S o, based on 
maximizing the probability density function p(Sola,,Y0) which is 
jointly Gaussian in Y o, is equivalent to a minimum mean squared 
error (MMSE) estimate of S o. Therefore as the observation window 
increases in length, the procedure for obtaining a MMSE estimate 
of s(n) approaches a noncausal Wiener filter. With this, the 
implementation of the algorithm is presented in Figure 2. This 
approach can also be extended to the colored noise case as 
shown. As indicated, the background noise spectral density must 
be estimated during non-speech activity. 

	

a) Distorted Original (b) 2 Iterations 	(c) 4 Iterations 	(d) 8 Iterations 

Figure 1: Variation in vocal tract response across iterations. 

As indicated, the sequential MAP estimation technique 
increases the joint likelihood of the speech waveform and all-
pole parameters, yet a heuristic convergence criterion had to be 
employed. Also, as additional iterations were performed, 
individual formants of the speech decrease in bandwidth as 
indicated in figure 1. Frame-to-frame pole jitter was also 
observed. Both effects contributed to unnatural sounding speech. 
The goal, therefore is to impose constraints on the pole move-
ments across time (inter-frame) and iterations (intra-frame). An 
initial approach was to limit the poles from moving too close to 
the unit circle by performing an off-axis spectral evaluation 
where the z-transform is evaluated on a circle further away from 
the poles of the spectral model. Other approaches considered 
included applying constraints directly to the pole radii and/or 
angular displacements in the LPC model. Performance of such 
inter and intra-frame constraints lead to encouraging results, 
but at the expense of a pth order root-solve and a pole ordering 
step per frame for each iteration. Since root solving is not 
always numerically accurate and ordering can be inconsistent 
across frames, a more robust approach was sought to implement 
these constraints. Previous success of the line spectral pair 
(ISP) transformation in speech coding by Crosmer [3], led to the 
use of LSP's for this purpose. 

Line Spectral Pair Representation of Spectral Characteristics 

The LSP transformation may be viewed as an alternative 
representation of the LPC spectrum. The LSP coefficients are 
obtained from the LPC prediction coefficients by combining the 
forward and backward predictor polynomials as follows: 

	

P(z) A(z) + B(z), 	Q(z) A(z) - B(z). 	(3)  

The vocal tract transfer function is given by g/A(z), and M is 
the order of the LPC speech model. The resulting polynomials 
P(z) and 0(z), are symmetric and antisymmetric, respectively, 
with a root of P(z) at z= +1, and a root of Q(z) at z=-1. The 
remainder of the roots of P and Q all lie on the unit circle. 
Since the roots occur in conjugate pairs, the original 
polynomial can be represented by M real numbers. The angles of 
the roots, {eh, are called the line spectrum pairs. 

The LSP's possess several important properties which make 
them attractive for use in applying spectral constraints. One 
important characteristic is that if the vocal tract polynomial 
A(z) has all its roots inside the unit circle (i.e., a stable 
filter), then the roots of P and Q will be interleaved around 
the unit circle [3]. If two adjacent LSP frequencies are identi-
cal, it indicates that a root of A(z) lies on the unit circle. 

In addition to their attractive representation of the LPC 
spectrum, the LSP coefficients offer the possibility of a more 
direct representation of perceptually important information. 
Specifically, their is a firm statistical relationship between 
the locations and bandwidths of the speech formants and the 
locations of the roots of P and Q respectively. Since roots of 
the P polynomial correspond approximately to locations of for-
mant center frequencies (when a formant is present), the P 
polynomials' LSP coefficients are termed position coefficients. 
It can be shown that the closer two LSP coefficients are 
together, the narrower the bandwidth of the corresponding pole 
of the vocal tract filter. Therefore, formants are indicated 
when two LSP coefficients are close together. When LSP coeffi-
cients are far apart, they indicate poles which contribute only 
to the overall spectral shape. Because of their relationship to 
the presence or absence of a formant by their nearness to a 
position coefficient, the coefficients of Q are termed 
difference coefficients. Given the LSP coefficients, the 
position coefficients are simply the odd index ISP coefficients, 
{pi= The difference coefficients are given 
as follows: 

{I di I 	MEN ( I ula+i - com I ), 	1,2,...,m14 (4) 
j --1,1 

where the sign of di is positive if (u m  is closer to 	and 
otherwise is negative. With this interpretation, a new enhance-
ment technique based on Wiener filtering is now possible by 
imposing constraints on the LSP coefficients. 

Step 1: Estimate at  from S. 
the either: i. first P values as tif initial condition vector 

or: u. always assume Si w 0 . 

Step 2: I. Using iy, estimate the speech spectrum: 
2 

Ps(w) -1- 

Il - 1 at  e36)  1 2  
1,1 

U. Calculate gain term using Patsevat's theorem. 
W. Estimate either the degrading 

a.) white noise variance al or b.) colored noise spectrum PD(w) 
from a period of silence closest to the utterance. 

iv. Construct the noncausal Wiener filter; 
Ps(w) 	 Ps(w) 

a.) H(w) 	 b.) H(w) 	PAO + Pike) 
v. Filter the estimated speech f, to produce h i". 
vi. Repeat until some specified error criterion is satisfied. 

se<vintratoup. 

Figure 2: Enhancement Algorithm based on All-pole modeling/Wiener 
filtering. a) a AWGN distortion b) a non-white distortion 

Enhancement with Spectral Constraints 

Consider the statistical parameter estimation of speech in 
the presence of noise, where all unknown parameters are random 
with a priori Gaussian probability density functions. It can be 
shown that MAP estimation of a, g, and Si given the noisy 
observations Yo, results in a set of nonlinear equations. There-
fore, instead of joint estimation of a and S o, a suboptimal 
solution is formulated employing a two step approach based on 
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MAP estimation of So  given Yo , followed by MAP estimation of • 
given So, where So  is the result of the first estimation. Since 
speech can be considered short-time stationary, frame-to-frame 
spectral constraints may aid in enhancement. The new approach 
imposes such constraints on the vocal tract spectrum between MAP 
estimation steps. The procedure for obtaining the MAP estimate 
of a from MAX p(alSo;g,Sii) remains the same. The next step is to 
apply spectral constraints to 	which will ensure that; i) the 
all-pole speech model is stable, 	it possess speech-like 
characteristics (i.e., poles are not too close to the unit 
circle causing narrow bandwidths), and the vocal tract 
characteristics do not vary wildly from frame-to-frame when 
speech is present. Due to this constrained approach, an improved 
estimate di  results. Given this new estimate, the second MAP 
estimation of So  given y can be carried out by maximizing 
p(Soli„Yo;g,Sj)• Since p(Solai ,Y0;g,S0 is still jointly 
Gaussian in Yo, the resulting MAP estimate is equivalent to a 
MMSE estimate of So. Again, in the limiting case, the procedure 
for obtaining the MMSE estimate of s(n) approaches a noncausal 
Wiener filter. Once this new estimate of Sou is formed, the 
iterative procedure continues by re-estimating applying 
constraints to 1,, and then forming the noncausal filter using 
k to re-estimate So  •. This continues until some convergence 
criterion is satisfied. The procedure for implementing these 
constraints will now be addressed. 

Two classes of spectral constraints are considered; inter-
frame (across time), and intra-frame (across iterations). Two 
approaches are considered: a fixed frame rate, and a variable 
frame rate approach. In the first of these, the LPC predictor 
coefficients, a, are first converted to LSP position and 
difference coefficients. Next, each frame's energy is observed, 
and if it is above some threshold, it is classified as voiced 
speech; if it is below, then it is either noise or unvoiced 
speech. A local running count Li, is kept for the number of 
consecutive frames which fall below the energy threshold. If L I 

 reaches Lax, then all subsequent frames below the threshold are 
classified as noise. This allows for further smoothing for long 
periods of silence. The position coefficients for each frame are 
smoothed using a weighted triangular window with a variable base 
of support (1 to 5 frames). If a frame has been classified as 
noise, maximum smoothing is performed. In addition, the lower 
Torment frequencies are smoothed over a narrower triangle width 
than for those position coefficients at higher frequencies. This 
preserves perceptually important speech characteristics found in 
the lower torments. No smoothing is performed on the difference 
coefficients since they are more closely related to torment 
bandwidth than formant location. However, it is possible that a 
difference coefficient falls within a "forbidden zone," (i.e., 
the region within d i,mr  of a position coefficient). When this 
occurs, the LPC analysis has most likely overestimated the Q of 
a particular pole. Since this causes unnatural sounding speech, 
(as in the unconstrained approach), the value of ky is set to 
dam. Finally, the position and difference coefficients are 
combined to form the constrained LPC predictor coefficients 

The second inter-frame constraint approach considered is a 
variable frame rate technique which takes advantage of the 
interpolation properties of the LSP coefficients. The speech 
signal is first divided into segments, where segments are chosen 
such that they are long when the speech spectrum is varying 
slowly and short when the speech spectrum is varying quickly. 
The LSP coefficients are reconstructed with linear interpolation 
used to compute the coefficients for intermediate frames. 

The segmentation algorithm begins with a step to determine 
the onset/offset of speech. This is carried out by thresholding 
the LPC residual energy, which produces relatively long seg-
ments. Next, the long segments are subdivided based on the 
curvature of the position coefficients. This is performed by 
computing a gain-normalized Itakura-Saito measure of the spec-
tral distance between the frequency response of two adjacent 
frames. The procedure continues by computing the distortion of  

position coefficients for successively longer segments until the 
distortion exceeds a threshold TD. At that point, a subsegment 
boundary is set, with the intermediate position coefficients 
reconstructed via linear interpolation. During this step, the 
length of a subsegment is also limited to LmAx  to prevent 
excessively long segments which might contribute to muffled or 
unnatural sounding speech. The advantage of this approach is 
that it incorporates more information from adjacent frames when 
the spectrum indicates similar characteristics. Yet, it also 
reduces the effects of adjacent frames when the spectrum is 
significantly different as in the case of a transition from 
unvoiced passages to noise. This in effect, distorts the 
position coefficients as little as possible when associated 
difference coefficients indicate the presence of formants. 
Difference coefficients for each frame, (or an average set 
across a segment) are used to compute the predictor coefficients 
11 . The difference coefficients are required to be at least d ko,, 
or greater in distance from adjacent position coefficients to 
ensure that poles from the LPC filter do not move too close to 
the unit circle. 

Inter-frame constraints are applied to a single frame 
across iterations, and as such require the frames' previous 
estimates to be available. The motivation for such constraints 
is that under certain conditions, pole locations for the same 
frame vary significantly from their previous estimated values. 
Since the present estimate of affects the next estimate of 
So j , sections of Si,. will also vary significantly across itera-
tions. In addition, ' previous results based on objective speech 
quality measures indicated that the unconstrained approach 
produced minimum objective measures at different iterations for 
different classes of speech. For example, maximum overall speech 
quality was observed for additive white Gaussian noise in three 
iterations. This was also true for vowels and fricatives. 
However, glides required two iterations, nasals, liquids, and 
affricates between five and six. It is therefore desirable to be 
able to affect the convergence rate so that the best objective 
measure of quality occurs at the same iteration across all 
classes of speech. Improved quality as measured by objective 
measures may also result in improved estimation of B r. By 
constraining the vocal tract filter to be a function of its 
previous estimates, it may be possible to accomplish this. Two 
approaches are considered, one applied to the autocorrelation 
lags, the other to the position coefficients. The first approach 
simply weights the present set of autocorrelation lags with the 
same frame from previous iterations. This technique is very easy 
to perform, since the autocorrelation lags must be computed in 
order to estimate the predictor coefficients a. The second 
approach weights position coefficients with those from the same 
frame but previous iteration. If the corresponding difference 
coefficient indicates the adjacent position coefficient to 
represent a foment, this approach has the effect of 
constraining the Iformants to lie along smooth tracks across 
iterations. 

Results 

Speech degraded by additive white Gaussian noise was 
processed using various configurations of the new constrained 
enhancement algorithm. Energy thresholds for inter-frame 
constraints were obtained from frame energy histograms at each 
signal-to-noise ratio. Excellent enhancement resulted for a wide 
range of threshold values. Intra-frame constraints were applied 
across two to three iterations. Informal listening tests 
indicated noticeable quality improvement, although no intelligi-
bility testing has been performed. However, there has been 
extensive work carried out in the area of objective speech 
quality measures [4]. Good correlation has. been shown to exist 
between subjective quality and objective measures. Therefore, 
objective measures including: the Itakura-Saito likelihood 
ratio, log area ratio, and weighted spectral slope measure where 
used for evaluation. Figure 3 illustrates a comparison of 
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typical results for the various constraint approaches. Itakura-
Saito measure is plotted versus signal-to-noise ratio for a 
white noise distortion. Plot a represents the original distorted 
speech. Plots b through e represent combinations of inter-frame 
constraints (both fixed and variable rate), and intra-frame 
constraints (applied to position coefficients/autocorrelation 
lags). All configurations examined showed significant 
improvement in Itakura-Saito measures. Threshold settings for 
the variable frame rate inter-frame constraint were somewhat 
sensitive to varying noise levels. However, the fixed frame 
approach by itself, and with either autocorrelation or position 
intra-frame constraints gave impressive results with little 
sensitivity to varying levels of SNR. In order to determine a 
limit on the level of enhancement, the original undistorted 
predictor coefficients a were used in the unconstrained 
algorithm. In essence, the two step MAP estimation approach is 
now reduced to a single MAP estimate of S o, and therefore 
represents the theoretical limit for enhancement using Wiener 
filtering. Plot f indicates this limit. Although only Itakura-
Saito measures are shown, similar improvement was also observed 
for log area ratios and weighted spectral slope measures. Figure 
4 compares the new approach to existing techniques. Plot b shows 
results from spectral subtraction as formulated by Boll [5]. An 
evaluation was performed for both half and full-wave 
rectification, along with one to five frames of magnitude 
averaging; where these points represent the best results. Plot c 
is from the unconstrained Wiener filtering technique. Plots d 
and e are typical values for the inter-frame constraint (fixed 
frame rate), and inter plus intra-frame constraints (fixed frame 
and autocorrelation lags). Again I  indicates the limit for the 
Wiener filtering approaches. 

Squad 

Type 
Itakura-Saito Likelihood Measure 

Original I Lim-Oppenheim Hansen-Clements True LPC 
Silence 1.634 1.649 0.842 0.319 
Vowel 4.020 3.299 1.651 0.582 
Nasal 19.814 17.656 3.968 0.324 
Stop 7.261 3.979 1.099 0.435 

Fricative 3.739 3.509 1.766 0.649 
Glide 1.525 1.442 1.131 0.705 
Liquid 9.597 4.545 0.998 0.303 

Affricate 3.924 2.702 2.229 0.323 
Voiced + Unvoiced 5.838 4.293 1.761 0.519 

Total 4.022 3.151 1.364 0.433 
SNR=+5.18 

Table 1: Comparison of algorithms over sound types for white Gaussian noise. 

Itakura-Saito Likelihood Measure 

I 	 I 
0 	 
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Figure 3: Comparison of constraint algorithms over SNR. 
a.) Original Distorted Speech 
b.) Inter-Frame Constraint: Variable Frame 
c.) Inter-Frame Constraint: Fixed Frame 
d.) Inter & Infra-Frame Constraints: Fixed Frame, Position 
e.) Inter & 1=3-Frame Constraints: Fixed Frame, Autocorrelation 
1.) Theoretical limit: using undistorted LPC coefficients, a. 

Performance evaluation over sound classes was accomplished 
by hand partitioning speech into segments. Entire sentences were 
processed, and objective measures from each class were computed. 
Table 1 summarizes this comparison between the unconstrained 
Lim-Oppenheim technique to that of the inter and intra-frame 
constraint approach. Measures for the theoretical limit using 
undistorted LPC predictor coefficients a are also indicated. 
Improvement is indicated for all types of speech. In addition, 
the constrained approach produced superior objective measures of 
quality across all speech classes at the same iteration. These 
results dearly indicate improvement over the unconstrained 
approach as well as spectral subtraction for additive white 
Gaussian noise. 

Conclusions 

The application of spectral constraints to noncausal Wiener 
filtering results in improved speech enhancement. Informal 
listening tests along with objective measures such as Itakura-
Saito and log-area-ratio's show improvement over the 
unconstrained technique. By using the Line Spectral Pair 
transformation, a modest increase in computational requirements 
results in significant improvement in speech quality. This 
approach to pole movement constraints is quite robust over 
direct methods applied to pole radial/angular movements. 
Finally, this approach may be useful in enhancement for human 
listeners as well as a preprocessor for speech recognition. 
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Figure 4: Comparison of enhancement algorithms over SNR. 
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1 Abstract 

A set of iterative speech enhancement techniques employing spec-
tral constraints is extended and evaluated in this paper. The orig-
inal unconstrained technique attempts to solve for the maximum 
likelihood estimate of a speech waveform in additive noise. The new 
approaches (presented in ICASSP-87 [3]), apply inter- and intra-
frame spectral constraints to ensure optimum speech quality across 
all classes of speech. Constraints are applied based on the presence 
of perceptually important speech characteristics found during the 
enhancement procedure. Previous results show improvement over 
past techniques for additive white noise distortions. Three points 

are addressed in the present study. First, a convenient and con-
sistent terminating point for the iterative technique is presented 
which was previously unavailable. Second, the techniques have 
been generalized to allow for slowly varying, colored noise. And 
finally, a comparative evaluation was performed to determine their 
usefulness as preprocessors for recognition in extremely noisy en-
vironments in the vicinity of 0 dB SNR. 

2 Introduction 

The general problem of automatic speech recognition is one which 
requires several alternatives to be specified prior to formulation of 
a solution. The type of speech, restrictions on speakers, vocabulary 
size, and environment all ultimately affect recognition performance. 
The specific problem of limited vocabulary, speaker dependent, iso-
lated word recognition has to varying degrees been solved. In the 
past, approaches such as dynamic time warping or hidden Markov 
modeling have largely been applied in tranquil environments. Stud-
ies have shown that recognition accuracy is severely reduced when 
speech is uttered in noisy, stressful environments. One alternative 
is to reformulate previous approaches to the recognition problem 
assuming a noisy environment. Unfortunately, many systems are 
LPC based which, from research in speech erillionrewn.rit  and cod-
ing are known to deteriorate rapidly in noise. Another alternative, 
which would be beneficial for recognition as well as speech trans-
mission systems is to develop robust enhancement preprocessors. 
Such preprocessors would produce speech or recognition features 
which are less sensitive to background noise so that existing recog-
nition systems may be employed. 

The set of speech enhancement algorithms under consideration 
were previously developed for improving both speech quality and 
all-pole speech parameter estimation [3,4]. The basis of these al-
gorithms is to form a maximum likelihood estimate of the speech 
waveform in additive noise with the constraint that the signal be 
an all-pole process. In section 3, a review of the constrained tech-
niques is presented. A comparative evaluation is presented in sec- 

tion 4 which include; additive white Gaussian noise, and slowly 
varying colored aircraft interior noise. Finally, the enhancement 
algorithms are evaluated to determine their ability as preproces-
sors for automatic recognition in extremely noisy environments. 

3 Iterative Speech Enhancement 

The success of a speech enhancement algorithm is dependent on 
the objectives made in deriving an approach. Assumptions made 
in this environment include: i) the noise distortion is additive, 
ii) only the degraded speech signal is available, and iii) the noise 
and speech signals are uncorrelated. The basis of the original un-
constrained iterative enhancement approach is noncausal Wiener 
filtering [5]. This approach attempts to solve for the maximum like-
lihood estimate of a speech waveform in additive white Gaussian 
noise with the requirement that the signal be the response from 
an all-pole process. Crucial to the success of this approach is the 
accuracy of the estimates of the all-pole parameters at each itera-
tion. The algorithm is formulated by considering the case where all 
unknowns (all-pole speech parameters d, noise free speech S0) are 
random with a priori Gaussian probability density functions. The 
basic procedure used is a maximum a posteriori (MAP) estimator, 
which maximizes the probability density function of the unknown 
parameters given the noisy observations. After some simplification, 
it can be shown that the resulting equations for the joint MAP es-
timate of 11 and So become nonlinear, involving partial derivatives 
with respect to 5. Lim and Oppenheim considered a suboptimal 
solution employing a sequential two step approach based on MAP 
estimation of So followed by MAP estimation of a. given So,;, 

where a 0,1 is the result of the first estimation. This sequential es-
timation procedure is linear at each iteration, and continues until 
some convergence criterion is satisfied. After further simplifying 
assumptions, it can be shown that the MAP estimation of So is 
equivalent to a minimum mean squared error (MMSE) estimate. 
In addition, as the observation window increases, the procedure for 
obtaining a MMSE estimate approaches a noncausal Wiener filter. 

Although successful in a mathematical sense, this technique has 
received little application due to several factors. First, the scheme 
is iterative with sizable computational requirements. Second and 
most important, is that although the original sequential MAP esti-
mation technique was shown to increase the joint likelihood of the 
speech waveform and all-pole parameters, a heuristic convergence 
criterion had to be employed. This is a serious drawback if the ap-
proach is to be used in environments requiring automatic speech en-
hancement. After an extensive investigation [1], this approach was 
found to produce significant levels of enhancement for white Gaus-
sian noise in 3-4 iterations. Some interesting anomalies were noted 
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which helped motivate development of the constrained approaches. 
First, as additional iterations were performed, individual formants 
of the speech decreased in bandwidth and shifted in location. Sec-
ond, frame to frame pole jitter was observed across time. Both 
effects contributed to unnatural sounding speech. The goal there-
fore was to formulate a new set of enhancement algorithms which 
impose constraints on pole locations across time (inter-frame) and 
iterations (intra-frame). Spectral constraints are applied to the all-
pole parameters I; which ensure that; i) the all-pole speech model 
is stable, it possess speech-like characteristics (e.g., poles are 
not too close to the unit circle causing narrow bandwidths), and 
iii) the vocal tract characteristics do not vary wildly from frame 
to frame when speech is present. Due to the constraints imposed, 
improved estimates of result. Given this new estimate, the sec-
ond MAP estimation of So can be carried out. In order to increase 
numerical accuracy, reduce computational requirements, and elimi-
nate inconsistencies in pole ordering across frames, the line spectral 
pair (LSP) transformation was used to implement most of the con-
straint requirements. Figure 1 illustrates the framework for the 
constrained enhancement algorithms. 

Figure 1: Framework for the constrained iterative enhance-
ment algorithms. 

4 Evaluation 

Speech degraded by additive noise was processed using various 
configurations of the constrained algorithms. Enhancement al-
gorithms evaluated include: algorithms incorporating inter-frame 
constraints applied on a fixed-frame (FF-LSP:T) or variable-frame 
(VF-LSP:T) basis to the LSP coefficients, algorithms incorporat-
ing intra-frame constraints applied to autocorrelation coefficients 
(Auto:I) or LSP coefficients (LSP:I), along with combinations (FF-
LSP:T,Auto:I), (FF-LSP:T,LSP:I), (VF-LSP:T,LSP:I). In the eval-
uation, global estimates of SNR were employed since the assump-
tion of accurate local estimates is normally unrealistic in actual en-
hancement environments. Also, energy thresholds for inter-frame 
constraints were obtained from frame energy histograms at each 
SNR. In this study, the primary tool for quantitative enhancement 

evaluation has been objective quality measures. This is based on 
extensive work carried out in the formulation of objective speech 
quality measures [6], and the application of these measures to en-
hancement [2]. Fair to good correlation has been shown to exist 
between subjective and objective quality measures. 
Evaluation Using Additive White Gaussian Noise 

As previously reported, the constrained enhancement algorithms 
have been shown to significantly improve speech quality over such 
past techniques as the unconstrained Lim-Oppenheim technique 
as well as spectral subtraction with magnitude averaging [3]). Al-
though significant improvement was noted, it was possible the algo- 
rithms were improving one or two particular speech classes which 
had high concentrations over the speech considered. Therefore, a 
comparative evaluation over speech sound classes was performed. 
Improvement over all classes of speech was reported. 

As mentioned, the iterative enhancement algorithms must be 
suspended at some iteration. In order to determine a terminat-
ing iteration, a criterion must be selected to evaluate levels of im-
provement as the iterative scheme progresses. The criterion chosen 
is based on objective speech quality measures. Such measures are 
formed by a weighted comparison of actual and resulting estimated 
LPC predictor coefficients found during enhancement. The obvi-
ous problem with such a criterion is that, outside of simulation, 
the actual speech is unknown during the procedure. If, however, 
simulations were to show a consistent value for the beat iteration 

in terms of this criterion, a convenient stopping condition would 
exist. Previous results based on objective quality measures indi-
cate the unconstrained approach to produce maximum objective 
quality at different iterations for different classes of speech. Ta-
ble 1 illustrates this behavior over the indicated sound classes. As 

this table shows, maximum overall speech quality is obtained at 
the third iteration, with considerable variation across sound types. 
For example, glides required two iterations, with nasals, liquids, 
and affricates requiring between five and six. Therefore, depend-
ing on sound class concentration, the optimal iteration (in terms of 
minimum distance) would vary considerably. This result indicates 
the inability to determine in advance a terminating iteration for 
the unconstrained approach since it is highly dependent on sound 
class and to a lesser degree on SNR. 

The new constrained enhancement algorithms appear to solve 
this problem of sound class dependency. Table 2 presents results 
from an equivalent evaluation for one of the constrained enhance-
ment algorithms (FF-LSP:T,Auto:I). A comparison between ta-
bles 1 and 2 show that the constrained approach produces superior 
quality measures across all speech classes at the same iteration. 
This improvement surpasses even combined individual maximum 
quality measures found across the unconstrained approach. Thus, 
the constrained enhancement algorithm does more than simply 
impose a constraint to adjust the rate of improvement: the con-
strained approaches consistently result in superior objective speech 
quality at the same iteration over all sound classes, independent of 
SNR. Table 3 summarizes optimum terminating points in terms 
of objective quality for the enhancement algorithms. Techniques 
employing only inter-frame constraints consistently resulted (93% 
occurrence) in maximum quality at the third iteration. Techniques 
employing inter- and intra-frame constraints had a 97% occurrence 
of maximum quality at the seventh iteration. In addition, adjacent 
iterations differ only slightly in objective quality for the constrained 
techniques. This is in sharp contrast to the large variations in ad- 
jacent iterations for the unconstrained technique. Therefore, Lithe 
iterative scheme were allowed to continue or halted one iteration 
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Itakura- Saito Likelihood Measure 

e 
0 	i 	I 	I 	1 	0 

-5 	0 	5 	10 

Signal-to-Noise Ratio 

Figure 2: Comparison of inter & intra-frame constrained en- 
hancement algorithms for colored aircraft noise over SNR. 

a.) Original Distorted Speech 

b.) Lim-Oppenheim: Unconstrained Wiener filtering 

e.) Hansen-Clements: employing Inter-Frame constraints 

d.) Hansen-Clements: employing Inter & Intra4rame constraints 

e.) Theoretical limit: using undistorted LPC coefficients a. 

0 
riTt 

to 

Irior to optimal, only minor differences in speech quality would 
esult. The results consistently suggested that the constrained en-
iancement algorithms reach a maximum level of speech quality at 
he same iteration, independent of SNR and sound class concen-
rations. 

Bound 
nffe 

Itakura-Saito like ikood Mennen (arose ttershone) 

ICI=IFIL 03 I 	#3  I #4 	#5 	#6  # 7  
Silence 1.63 1.82 41.61 1.65 1.93 3.76 20.36 49.88 

Veen' 4.02 3.72 3.45 43.30 3.72 8.33 1213 - 

Nasal 19.81 19.15 18.42 17.06 17.01 16.59 415.19 15.70 

Stop 7.36 6.11 4.93 3.98 43.82 6.89 35.52 29.69 

Fricative 3.74 3.64 3.53 43.51 3.90 7.66 47.83 94.11 

Glide 1.6S 1.41 41.31 1.44 2.33 4.30 8.39 15.56 

Liquid 9.60 8.24 6.55 4.55 2.61 41.68 6.38 30.00 

Affricate 3.92 3.61 3.21 2.70 2.09 41.55 3.91 3.98 

Yoked + Unvoiced 5.84 5.32 4.77 4.29 44.29 7.35 61.87 - 

Total 4.02 3.72 3.40 46335 3.27 5.80 43.48 - 

Cable 1: Lim-Oppenheim unconstrained speech enhance-
neat for AWGN, SNR=+5dB. Optimum perceived quality 
Dr a particular speech class is indicated by a 6. 

Sound 
Type 

itearre•Seito Likelava Mauna (across sten:awns) 
Original #1 #8 #3 #4 #5 #6 #7 #8 

Silence 1.63 1.55 135 1.18 1.03 0.08 0.93 40.88 0.90 

Vowel 4.02 3.32 2.87 2.39 1.86 1.68 1.57 41.56 1.83 

Naeal 19.81 16.49 12.40 10.52 8.68 6.84 4.93 43.79 5.55 

Stop 7.26 6.25 4.84 3.49 3.67 1.81 1.38 41.13 1.43 
Fricative 3.74 3.43 3.03 3.61 3.34 1.95 1.73 41.61 1.84 

Glide 1.53 1.59 1.38 1.23 1.31 1.19 1.16 41.15 1.23 

Liquid 9.60 6.48 3.38 2.24 1.61 1.21 0.94 60.92 1.31 

Affricate 3.92 3.72 3.45 3.12 2.80 2.60 2.47 42.37 3.96 

Voiced + Unvoiced 5.84 4.64 3.66 3.01 2.50 2.13 1.86 41.74 1.95 

Total 4.02 3.03 2.44 2.07 1.80 1.61 1.46 41.38 1.49 

number of spectral estimates across the utterance should improve 
enhancement performance. An analysis was performed for an inter-
frame (FF-LSP:T), and a combined inter and intra-frame (FF-
LSP:T,Auto:I) approach. Informal listening tests indicated notice-
able quality improvement. Figure 2 illustrates results from this 
study. All configurations examined showed significant improve-
ment in Itakura-Saito measures. Plot a shows Itakura-Saito mea-
sures for the original distorted speech. Plot b is from the uncon-
strained Wiener filtering technique. Plots e and d are typical values 
for the inter-frame constraint (FF-LSP:T), and inter- plus intra-
frame constraint (FF-LSP:T, Auto:I) approaches. In order to de-
termine limits on the level of enhancement, the original undistorted 
predictor coefficients were used in the unconstrained algorithm. In 
essence, the two step MAP estimation approach is now reduced to a 
single MAP estimate of So, and therefore represents the theoretical 
limit for enhancement using Wiener filtering. Plot e indicates this 
limit. Although only Itakura-Saito measures are shown, similar 
improvement was observed for log area ratio and weighted spectral 
slope distance measures. As this figure indicates, significant levels 
of enhancement result for the constrained enhancement algorithms. 

These results show that the constraint algorithms outperform 
the unconstrained approach for a colored distortion. However, it is 
possible that the constrained techniques are improving only partic-
ular speech classes which may have high concentrations in the test 
utterances. Therefore, a performance evaluation over sound classes 
was performed by hand partitioning speech into segments, pro - 

'able 2: Hansen-Clements Inter & Intra-frame constrained 
peech enhancement for AWGN, SNR=+5dB. Optimum per-
eived quality for a particular speech class is indicated by a ♦ . 

Conetrained 
&Armament 

Algorithm 

Aida.. Mate Ottumwa Nome SNR 

OVERALL 
-5 dB -0 1 	+5 +10 

Optimal /gentian neap Itakura-Saito Like 'hood Maas 
ker. 	Freq. her. 	Freq. her. Freq. lie.. 	Freq. her. Freq. 

FI•SP:T 	3 	100% 3 
4 

87% 

13% 
3 
4 

87% 
13% 

3 100% 3 
4 

91% 
9% 

• 	 S 	90% 
4 	10% 

3 
4 

85% 
15% 

3 
4 

94% 
6% 

3 100% 3 
4 

93% 
7% 

.F-LSP:T,Auto: 	7 	100% 7 100% 7 100% 7 
6 

so 
12% 

7 
6 

97% 
3% 

1'F.LSP:T,L5PLI IIEMIMI 
VF LSP•T,LSP:1 111=3:01 

4 
4 

100% 4 100% 4 100% 4 100% 
100% 4 100% 4 100% 4 100% 

Table 3: Summary of optimal terminating iteration across SNR for AWGN. 

idditive Non-White, Non-Stationary Noise 

The unconstrained Wiener filtering/all-pole modeling approach 
vas previously generalized for colored aircraft noise [1]. In that 
Ludy, an extensive investigation was performed using various spec-
ral estimation techniques (MEM, MLM, Burg, Bartlett, Pisarenko, 
'eriodogram) for securing estimates of colored background noise, 
Jong with varying SNR (-20dB to +20dB). Results indicated that 
3artlett's method produced spectral estimates which resulted in 
tighest quality improvement for this particular distortion. 

Noise recorded from a Lockheed C130 aircraft interior was used 
°degrade noise free utterances. For these simulations, two Bartlett 
rpectral estimates found from the original noise waveform (to avoid 
umplications in silence detection) were used across each sentence. 
fhe noise was both colored and non-stationary, so increasing the 
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ing entire sentences, and computing objective measures from each 
class. Table 4 summarizes this comparison between the uncon-
strained technique to that of the inter- and intra-frame constraint 
approach (FF-LSP:T,Autol). Measures for the theoretical limit 
using undistorted LPC coefficients are also indicated. It should be 
noted that voiced plus unvoiced measures give a better indication 
of quality improvement due to the time varying nature of the inter-
fering background noise. Improvement is indicated for all types of 
speech. This shows that the constrained techniques are enhancing 
all aspect. of the speech signal. 

Sound 

TYPe 

Basra-Saito Lskeishood Aleanri 
Orirmai Vm.Oppenkeirn Hansen-Clemente Tess LPC 

Silence 6.63 6.33 4.32 2.03 

Vowel 3.23 2.54 1.44 0.53 

Naomi 4.03 3.26 2.13 0.45 

Stop 1.58 1.29 0.66 0.61 
Fricative 1.37 1.09 0.85 0.65 

Glide 1.14 1.04 0.52 0.51 
Liquid 1.32 0.55 0.22 0.18 

Affricate 0.90 0.51 0.33 0.16 
Voiced + Unvoiced 2.27 1.78 1.08 0.52 

Total 4.15 3.86 2.74 1.17 

Table 4: Comparison of unconstrained (Lim-Oppenheim) 
and inter- and intra-frame constrained (Hansen-Clements) 
algorithms over sound types for slowly varying colored noise. 
SNR = +5 dB 

Recognition Evaluation 
A fairly standard, isolated-word, discrete-observation hidden 

Markov model recognition system was used for evaluation. This 
system was LPC based and had no embellishments. In all experi-
ments, a five state, left-to-right model was used. System dictionary 
consisted of twenty highly confusable words used by Texas Instru-
ments and Lincoln Labs to evaluate recognition systems. Subsets 
include (go,oh,rio,hello} and {six,fix}. Twelve examples of each 
word were used, six for training, six for recognition (i.e., all tests 
fully open). A vector quantizer was used to generate a 64 state 
codebook using two minutes of noise free training data. The twenty 
models employed by the HMM recognizer were trained using the 
forward-backward algorithm. Table 5 presents results from five sce-
narios using a noise free codebook and noise free trained system. 
Spectral subtraction preprocessing employed three frames of mag-
nitude averaging. The unconstrained Lim-Oppenheim approach 
was terminated at the third iteration. The constrained Hansen-
Clemente (FF-LSP:T,Auto:I) was terminated at the seventh. As 
these results indicate, recognition was reduced to chance for noisy, 
spectral subtraction, and Lim-Oppenheim (-5,0,5 dB) speech. The 
constrained approach resulted in improved recognition across all 
SNR considered, which is quite remarkably in light of the severe 
levels of noise, and difficulty of dictionary employed. However, re-
liable recognition in such a hostile environment may require more 
than merely extending existing techniques. As a final compari-
son, three tests were performed using noisy and enhanced speech 
(SNR=4-10dB). For the noisy case, speech was coded using a noisy 
codebook, and recognition performed using a noisy trained HMM 
recognizer. Similar tests were performed for two enhancement tech-
niques, (i.e., enhanced words coded using enhanced codebook, and 
tested using enhanced speech trained HMM recognizer). 40% of 
the errors in recognition were caused by misclassification of lead-
ing consonants (especially fricatives). 

Condition 
RECOGNITION RESULTS 

S'gnal-to-Noise Ratio 
(noise free training) Original .5dB °dB 1-5dB 4-10dB 

Noise free 88% 
Noisy 5% 5% 6.7% 5% 

Spectral Subtraction 5.8% 7.1% 5% 5.4% 
Lim- Oppenheim 5.4% 5.8% 7.5% 12.5% 

Hansen-Clements 15% 14% 19.5% 34.5% 
Train 6/ Recognise In Same Environment 

Noise free Noisy t Hansen-Clements t Lom-Oppenheim 
88% 90% 77% 23% 

Table 5: Recognition performance using enhancement preprocessing in AWGN. 
t SNR = +10dB 

5 Conclusions 

The constrained speech enhancement algorithms have been shown 
to improve speech quality across all classes of speech for both ad-
ditive white Gaussian and slowly varying, non-white degradations. 
In addition, a consistent terminating procedure has been identified 
which is independent of sound class concentration and relatively in-
sensitive to varying SNR. Finally, the constrained algorithms have 
shown improvement as a preprocessor for speech recognition, al-
though their ability to bring performance up to an acceptable level 
in SNR's low as those considered is questionable. Though the en-
hancement procedures improved LPC parameter estimation sub-
stantially, LPC-based strategies may simply be inappropriate for 
SNR's of roughly OdB. Further work in this SNR range will require 
as a minimum, different front end processing. 

This work sponsored in , part by U.S. Army Human Engineering Labe. 
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Abstract 

In this paper, an improved form of iterative speech enhancement for single channel inputs 

is formulated. The basis of the procedure is sequential maximum a posteriori estimation 

of the speech waveform and its all-pole parameters as originally formulated by Lim and 

Oppenheim, followed by imposition of constraints upon the sequence of speech spectra. 

The new approaches impose intra- and inter-frame constraints on the input speech signal 

to ensure more speech-like formant trajectories, reduce frame-to-frame pole jitter and 

effectively introduce a relaxation parameter to the iterative scheme. Recently discovered 

properties of the line spectral pair representation of speech allow for an efficient and 

direct procedure for application of many of the constraint requirements. Substantial 

improvement over the unconstrained method has been observed in a variety of domains. 

First, informed listener quality evaluation tests and objective speech quality measures 

demonstrate the technique's effectiveness for additive white Gaussian noise. A consistent 

terminating point for the iterative technique is also shown. Second, the algorithms have 

been generalized and successfully tested for noise which is non-white and slowly varying in 

characteristics. The current systems result in substantially improved speech quality and 

LPC parameter estimation in this context with only a minor increase in computational 

requirements. Third, the algorithms were evaluated with respect to improving automatic 

recognition of speech in the presence of additive noise, and shown to outperform other 

enhancement methods in this application. 



1 Introduction 

The presence of background noise can seriously degrade the performance of many speech 

processing systems, since most digital voice communication and recognition systems have 

traditionally been formulated in noise-free, tranquil environments. There are, however, 

many instances where such systems must perform reliably in noisy environments. As an 

example, consider the use of speech recognition in a noisy aircraft cockpit. It has been 

shown that recognition performance is severely reduced in such an environment due to 

background noise and pilot task requirements [8, 13, 18]. Since commonly used front-

ends do not usually take noise into account explicitly, recognition deteriorates rapidly. 

One alternative, which would benefit recognition as well as speech coding systems is to 

develop enhancement preprocessors that produce speech or recognition features less sen-

sitive to background noise, so that existing recognition/communication systems may be 

employed. Such preprocessing systems would also benefit human listeners by improving 

speech characteristics in voice communications systems. 

The problem of enhancing speech degraded by additive background noise covers a 

broad spectrum of applications and issues [12]. A system may be directed at one or 

more objectives such as improving overall quality, increasing intelligibility, or reducing 

listener fatigue. Assumptions made in this investigation include: i) the background 

noise distortion is additive, ii) only the degraded speech signal is available (i.e., single 

microphone environment), and iii) the noise and speech signals are uncorrelated. 

This paper presents an improved method for iterative speech enhancement based on a 

set of vocal tract spectral constraints. The framework of this approach was adopted from 

all-pole modeling/noncausal Wiener filtering as formulated by Lim and Oppenheim [11]. 

The original iterative technique attempts to solve for the maximum a posteriori (MAP) 

estimate of a speech waveform in additive white noise. The improved techniques are for-

mulated using inter- and intra-frame constraints to ensure speech-like characteristics. An 

efficient technique for applying the spectral constraints is based on the line spectral pair 

(LSP) transformation of the LPC parameters. The paper is arranged, as follows. First, 

the iterative unconstrained technique is discussed. Several anomalies are cited which 
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motivate formulation of constrained enhancement techniques using the LSP transforma-

tion. Next, algorithm evaluation is performed for additive white Gaussian noise, and a 

slowly varying non-white distortion. Finally, a comparative evaluation is also performed 

to determine their usefulness as preprocessors for recognition in noisy environments. 

2 Iterative Speech Enhancement 

Enhancement based on the estimation of all-pole speech parameters in additive white 

Gaussian noise was investigated by Lim and Oppenheim [1:1], and later for a colored 

noise degradation by Hansen and Clements [3, 4, 6]. This approach attempts to solve for 

the maximum a posteriori estimate of a speech waveform in additive white Gaussian noise 

with the requirement that the signal be the response from an all-pole process. Crucial to 

the success of this approach is the accuracy of the estimates of the all-pole parameters 

at each iteration. After some simplification, it can be shown that the resulting equations 

for the joint MAP estimate of the all-pole speech parameters ci, gain g, and noise free 

speech §0 become nonlinear. Lim and Oppenheim considered a suboptimal solution 

employing sequential MAP estimation of ,§0  followed by MAP estimation of 5, g given 

So,i, where so ,;  is the result of the ith estimation. The sequential estimation procedure is 

linear at each iteration, and must continue until some criterion is satisfied. With further 

simplifying assumptions, it can be shown that MAP estimation of §0 is equivalent to 

noncausal Wiener filtering of the noisy speech 11. Lim and Oppenheim showed this 

technique, under certain conditions, increases the joint likelihood of a and S' 0  with each 

iteration. It can also be shown to be the optimal solution in the mean-squared sense for 

a white noise distortion. 

Although successful in a mathematical sense, this technique has received little appli-

cation due to several factors. First, the scheme is iterative with sizable computational 

requirements. Second and most important, is that although the original sequential MAP 

estimation technique was shown to increase the joint likelihood of the speech waveform 

and all-pole parameters, a heuristic convergence criterion had to be employed. This 

represents a serious drawback if the approach is to be used in environments requiring 
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automatic speech enhancement. Hansen and Clements performed an extensive investiga-

tion of this technique for additive white Gaussian (AWGN), and a generalized version for 

additive non-white, non-stationary aircraft interior noise [3, 4]. Objective speech quality 

measures, which have been shown to be correlated with subjective quality [17], were used 

in the evaluation. This approach was found to produce significant levels of enhancement 

for white Gaussian noise in 3-4 iterations. Improved all-pole parameter estimation was 

also observed in terms of reduced mean squared error. Only if the probability density 

function is unimodal, and the initial estimate fora is such that the local maximum 

equals the global maximum, is the procedure equivalent to the joint MAP estimate of a., 
g and 4). Some interesting anomalies were noted which helped motivate development 

of the constrained approaches. First, as additional iterations were performed, individual 

formants of the speech consistently decreased in bandwidth and shifted in location as 

indicated in Figure 1. Second, frame-to-frame pole jitter was observed across time. Both 

effects contributed to unnatural sounding speech. Third, although the sequential MAP 

estimation technique was shown to increase the joint likelihood of the speech waveform 

and all-pole parameters, a heuristic convergence criterion had to be employed. Lim and 

Oppenheim recognized these limitations and an improved method was formulated by 

Musicus and Lim [15] which addresses some of them. Even with their improvements, 

however, no explicit frame-to-frame constraints are employed. Since the original algo-

rithm already constrains the speech to be the response from an all-pole system, applying 

further constraints on the pole movements imposes no new assumptions on the speech 

or noise, and may improve the algorithm's performance. The imposition of some rela-

tively simple constraints turns out to improve speech quality results, even when directly 

attached to the original Lim-Oppenheim method. 

Enhancement with Spectral Constraints 

Consider the statistical parameter estimation of speech in the presence of noise as 

formulated by Lim and Oppenheim where all unknown parameters over a short interval 

(all-pole speech parameters 5, gain g, and noise free speech §0 ) are random with a priori 

Gaussian probability density functions. It was shown that MAP estimation of a , g, and 
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So given noisy observations fo , results in a set of nonlinear equations. Therefore, instead 

of joint estimation of a. and go , a suboptimal solution was formulated employing a two- 

step approach based on MAP estimation of go  given co , followed by MAP estimation of 
. 

, g given So,i, where So,i is the result of the ith estimation. In the currently reported 

work, constraints Ware imposed on the vocal tract spectrum between MAP estimation 

steps. The procedure for obtaining the MAP estimates of a. and g remain the same, as 

that of Lim and Oppenheim. In the current system, constraints are applied to at  to ensure 

that, 0 the all-pole speech model is stable, ii) it possesses speech-like characteristics (e.g., 

poles are in reasonable places with respect to each other and the unit circle), and iii) the 

vocal tract characteristics do not vary by more than a prescribed amount from frame to 

frame when speech is present. Given the new estimate ki. 4. 1 , the second MAP estimation 

of go  is performed by maximizing its conditional probability density function given iti+1 

and the observed noisy sequence 31. Since this probability density function is jointly 

Gaussian, the resulting MAP estimate is equivalent to a MMSE estimate of go. With 

further simplifying assumptions, it can be shown that MAP estimation of go  reduces 

to a minimum mean squared error (MMSE) estimate, and as the observation window 

increases, the procedure becomes a noncausal Wiener filter. Once the new estimate of So,i 
is formed, the iterative procedure continues by re-estimating at , applying constraints to ri,j, 

and forming the noncausal filter using a.t+ , to re-estimate go,i. The procedure continues 

until some convergence criterion is satisfied. Due to the flexibility of the enhancement 

framework, a variety of constraint options are possible between MAP estimation steps. 

Figure 2 presents an overview of two classes of constraints which include inter-frame 

(across time) and/or intra-frame (across iterations). Each technique differs in the type 

of constraint and computational requirements. The present evaluation focuses on two 

representative inter-frame (FF-LSP:T) and combined inter-frame plus intra-frame (FF-

LSP:T,Auto:I) based techniques. Further discussion of all techniques are found in [5, 

6, 7]. For historical purposes, several comments concerning the other approaches are 

summarized. 

Since observations indicate that poles of the LPC filter often move unrealistically 

close to the unit circle when the unconstrained iterative technique is allowed to continue, 
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initial techniques limited pole movement by applying constraints directly to radial and/or 

angular movements of the LPC poles across iterations and time. For these techniques, 

LPC predictor coefficients were obtained, a Pth-order root-solve was performed and a 

pole ordering step applied. If pole movement fell within a movement constraint window, 

a constraint was applied, otherwise, no constraint was applied based on the assump-

tion that either movement was allowable, or that the pole was mischaracterized due to 

the ordering step. Results showed substantial improvement in objective speech quality 

(as measured by Itakura-Saito, log-area-ratio, and weighted spectral slope (Klatt) mea-

sures [17]). Informal listening tests also revealed improvement, especially during vowels 

and vowel transitions toward nasals. Larger levels of quality improvement were observed 

using inter-frame versus intra-frame constraints, thus suggesting that temporal variation 

in pole locations have a greater effect on overall quality. 

Although successful in improving speech quality, constrained techniques based on di-

rect pole location were computationally expensive. A Pth-order root-solve and a pole 

ordering step per frame for each iteration was required. Since root solving is not al-

ways numerically accurate and ordering can be inconsistent across frames, a more robust 

approach was sought to implement these constraints. 

An alternative approach for implementing the spectral constraints was formed by 

employing the line spectral pair (LSP) transformation as a method for representing the 

vocal tract spectrum. Previous success of the LSP transformation in low-bit-rate speech 

coding by Crosmer [2] led to the use of LSP's for this purpose. 

The Line Spectral Pair (LSP) [9, 19] transformation comes from modifying the LPC 

polynomial, A(z), in two ways: P(z) and Q(z) are obtained by augmenting A(z)'s PAR-

COR sequence with a +1 and —1 respectively. This results in two polynomials of order 

p + 1 which have all roots on the unit circle. 
M-1 

P(z) 	(1 — z -1 ) 1-1 (1 — 2 cos wiz-1  + z-2) 	 (1) 
i=1,3,5,... 

M-1 
Q(z) = (1 -I- z -1 ) H (1- 2 cos wiz-1  + z-2) 	 (2) 

i=2,4,6,... 

The angles of the roots, { w i , i = 1, 2, ... , M}, are called the line spectrum pairs. In 

general, A(z) will represent a stable LPC filter if and only if the roots of P(z) and Q(z) 
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interleave. The angles of the roots of P(z), correspond roughly to the angles of the roots 

of A(z) (formant frequencies), and the separation of a particular root of P(z) from the 

closest root of Q(z) indicates in some sense the bandwidth of that resonance. The angle 

of the roots of P(z) between 0 and it are termed the position parameters (i.e., the odd 

indexed LSP parameters, {p, = 1412i-1, i = 1, 2, ... , M/2} ), and the separations mentioned 

above are the difference parameters, di. 

Ildi I = min a wzi+i — 	= I, 2, ... , M/2) 
j=-1,1 ( 3  ) 

The sign of di  is positive if w2; is closer to CO2;+1, and otherwise is negative. The useful 

properties of the LSP's include an easy check for stability, excellent interpolation proper-

ties, ease of computation (compared to roots of A(z)), some well understood trajectories 

for speech, and the relative insensitivity of the auditory system under quantization of the 

difference parameters. 

Enhancement Using the LSP Transformation 

In these techniques, constraints are imposed on the LSP parameters directly. In 

the first technique (MS-LSP:T), a five frame median smoothing constraint was placed 

on the position parameters across time, with difference parameters restricted to be at 

least dM IN in magnitude, ensuring the LPC poles of reasonable bandwidth. Good im-

provement resulted without the expense of root solving or pole ordering. Plots of LSP 

parameters versus time confirmed a reduction in frame-to-frame pole jitter with only a 

slight increase in computational requirements. Since vocal-tract characteristics and rela-

tive strength of background noise vary across time, the imposition of spectral constraints 

should be dependent on speech characteristics obtained during the enhancement proce-

dure. Therefore, the remaining constraints are applied based on particular characteristics 

found in the speech waveform during enhancement. 

Two inter-frame approaches are considered: a fixed frame rate (FF-LSP:T), and a 

variable frame rate approach (VF-LSP:T). In the first of these, the LPC predictor coef-

ficients, a, are first converted to LSP parameters. Next, each frame's energy is observed, 

and classified as voiced or unvoiced speech according to some threshold Eviuv. A local 
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running count Li  is kept for the number of consecutive frames which fall below the energy 

threshold. If L, reaches LMAX,  all subsequent frames below the threshold are classified 

as noise. This allows for a tighter pole movement constraint during long periods of si-

lence. The position parameters for each frame are smoothed using a weighted triangular 

window with a variable base of support (1 to 5 frames). If a frame has been classified as 

noise, maximum smoothing (or tightest movement constraint) is performed. The lower 

formant frequencies are smoothed over a narrower triangle width than for those posi-

tion parameters at higher frequencies in order to preserve perceptually important speech 

characteristics found in the lower formants. No smoothing is performed on the difference 

parameters since they are more closely related to formant bandwidth than formant loca-

tion. However, it is possible that a difference parameter falls within a "forbidden zone." 

When this occurs, the LPC analysis has most likely underestimated a particular pole's 

bandwidth. Since this causes unnatural sounding speech, (as found in the unconstrained 

approach), the value of Idil is set to dmm. Finally, the position and difference parameters 

are combined to form the constrained LPC predictor coefficients ai+i . 
The (F'F-LSP:T) technique applies constraints across time on a frame-by-frame basis. 

Since phonetic transitions do not normally coincide with frame boundaries, an inter-frame 

approach (VF-LSP:T) based on constraints applied over speech segments was formulated. 

The technique is identical in theory to (FF-LSP:T), except for the front-end segmentation 

algorithm which divides the signal into speech segments. Segments are chosen to be long 

when the speech spectrum is slowly varying and short when the speech spectrum is 

varying quickly. The LSP parameters are reconstructed with linear interpolation used to 

compute the parameters for intermediate frames. 

The segmentation algorithm begins by determining the onset/offset of speech by 

thresholding the LPC residual energy, which produces relatively long segments. Long 

segments are subdivided based on the curvature of the position parameters. This is per-

formed by computing a gain-normalized Itakura-Saito measure of the spectral distance 

between the frequency response of two adjacent frames. The procedure continues by com-

puting spectral distortion of position parameters for successively longer segments until 

the spectral distortion exceeds a threshold TD. At that point, a subsegment boundary 
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is set, with the intermediate position parameters reconstructed via linear interpolation. 

During this step, the length of a subsegment is also limited to Liu 'ix to prevent exces-

sively long segments which might contribute to muffled or unnatural sounding speech. 

The advantage of this approach is to incorporate more information from adjacent frames 

when the spectrum indicates similar characteristics. This in effect, distorts the position 

parameters as little as possible when associated difference parameters indicate the pres-

ence of formants. Difference parameters for each frame are used to compute the predictor 

coefficients The difference parameters are required to be at least dm/N  or greater. 

The convergence problems inherent in the unconstrained Wiener filtering approach 

which have been pointed out [5, 7, 15], are at least partially caused by bias in the 

MAP estimation. Although spectral constraints were originally constructed to be used 

across frames, it has been observed that if they are used across iterations, convergence 

to reasonable values occurs with much greater frequency and consistency. In particu-

lar, previous results based on objective speech quality measures show the unconstrained 

Wiener filtering approach to produce minimum objective measures at different iterations 

for different classes of speech [5, 7] (see Table 3). By constraining the vocal tract filter 

to be a function of its values obtained from previous iterations, a much improved consis-

tency in quality across speech classes and LPC parameter ai  estimation resulted. Two 

approaches were considered, one applied to the autocorrelation lags (Auto:I), the other 

to the position parameters (LSP:I). The first approach simply weighted the present set 

of autocorrelation lags with the same frame from previous iterations. Such a technique is 

easy to perform, since the autocorrelation lags must be computed in order to estimate the 

predictor coefficients 5. The second approach weighted position parameters with those 

from the same frame but previous iteration. If the corresponding difference parameter 

indicated the adjacent position parameter to represent a formant, this approach had the 

effect of constraining the formants to lie along smooth tracks across iterations. Such a 

procedure is generally refered to as introducing relaxation into the iterations [16]. If the 

iteration is producing results for which weighted averaging makes sense (e.g., LSP's but 

not ei ) , improved convergence results. Results from inter-, intra-, and combined inter-

plus intra-frame constraint approaches will be presented in the next section. Figure 3 
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illustrates the framework for the new set of constrained enhancement techniques. 

3 Evaluation 

We now evaluate the performance of the proposed algorithms for speech enhancement 

alone, and as a preprocessor for word recognition in noisy environments. Speech was de-

graded by additive white or colored noise and processed. Enhancement algorithms eval-

uated include: techniques incorporating inter-frame constraints applied on a fixed-frame 

(FF-LSP:T) or variable-frame (VF-LSP:T) basis to the LSP parameters, and algorithms 

incorporating combinations of inter- plus intra-frame constraints (FF-LSP:T,Auto:I), 

(FF-LSP:T,LSP:I). Global estimates of SNR' were used in the evaluation, since the 

assumption of accurate local estimates is normally unrealistic in actual noisy environ-

ments. Further improvement is therefore possible if a continuous local SNR estimate is 

available. The Intra-frame constraints were applied across two to three iterations. 

Several parameters must be addressed to ensure proper application of spectral con-

straints. These include the voiced/unvoiced energy threshold Eviriv , silence frame count 

threshold LmAx, LSP difference parameter thresholds dMIN)dmAx,  and the accumulated 

frame-to-frame Itakura-Saito distance threshold TD. 

The energy threshold Evxv  is used to distinguish voiced from unvoiced or silent 

speech frames for use in applying inter-frame constraints. Values were obtained from 

frame energy histograms at each signal-to-noise ratio. Similar enhancement levels resulted 

for Eviuv in the range between average, and one standard deviation below average speech 

frame energy (e.g., Average frame energy for sentence S6 was 7719. Ev1uv  set between 

8000 and 5000 resulted in Itakura-Saito measures which ranged from 1.96 to 2.02). 

The silence frame count threshold LmAx, is used in conjunction with Ev1uv. If LMAX 

consecutive frames fall below Eviu v , that segment is classified as silence (or noise) so 

that tighter spectral constraints can be enforced. If Ev1uv is set as above, similar speech 

s2 (n

n

)

)  (

) 1  

'The signal-to-noise ratio is defined as 101og 
(. 

d 	
where the summation is over the entire 

length of the sentence. This definition was chosen in keeping with the format used in previous studies 

on noncausal Wiener filtering. [11] 

9 



quality measures resulted with LMAX  set between two and five frames. Reduced quality 

measures resulted with LMAX  in the eight to twelve frame range, thereby suggesting 

increased residual noise levels during silent portions. 

The difference thresholds dMIN, dMAX, constrains the LSP difference parameters to 

ensure poles of reasonable bandwidths (e.g., the all-pole speech model is stable and that 

it possesses speech-like characteristics). Values in the range .015 < dMIN < .031 radians, 

.055 < dMAX < .077 radians, resulted in good quality improvement. 

The value of TD (accumulated frame-to-frame Itakura- Saito distance threshold) greatly 

effects speech segment length. If set to high, small duration phonemes can be lost (e.g., an 

initial stop and final vowel joined to form one speech segment as in be). A value of 1.2 was 

found to produce segments of reasonable length and quality at higher SNR (> +5dB). 

At lower SNR, frame-to-frame distance values were too large to reliably segment speech, 

resulting in decreased performance. 

Generally speaking, substantial enhancement resulted for a wide range of Eviuv, 

LMAX, dMIN, and  dMAX  threshold settings, indicating the algorithms robust performance 

over estimated threshold values. Only TD, the accumulated frame-to-frame Itakura-

Saito distance threshold, proved to be sensitive, especially across varying SNR. Greater 

enhancement was observed when TD was allowed to vary across iterations. 

In this study, the primary tool for quantitative enhancement evaluation has been 

objective quality measures. This is based on extensive work carried out in the formulation 

of objective speech quality measures for speech coding [17], and the application of these 

measures to enhancement [4]. Fair to good correlation has been shown to exist between 

subjective and objective quality measures, such as: the Itakura-Saito likelihood ratio, log 

area ratio, and weighted spectral slope measure. These measures have been shown to be a 

viable tool for use in evaluating speech enhancement algorithms for white and non-white 

additive noise [4]. In addition, the Itakura-Saito likelihood ratio is also a commonly used 

distance measure for speech recognition as well as for coding methods employing vector 

quantization. Therefore, improvement in Itakura-Saito distance might also suggest the 

possibility of improvement in automatic recognition. The speech data for enhancement 

evaluation is described in the Appendix. 
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3.1 Evaluation Using Additive White Gaussian Noise 

Various configurations of the new constrained enhancement algorithms were evaluated in 

an additive white Gaussian noise environment. Informal listening tests indicated notice-

able quality improvement, although no intelligibility testing was performed. A variety 

of objective speech quality measures were used in the evaluation procedure. Figure 4 

illustrates a comparison of typical results for the various constraint approaches. The 

Itakura-Saito measure is plotted versus signal-to-noise ratio for a white noise distortion. 

Plot a represents the original distorted speech. Plots b through e represent combinations 

of inter-frame constraints (both fixed and variable rate), and intra-frame constraints (ap-

plied to position parameters/autocorrelation lags). All configurations examined showed 

significant improvement in Itakura-Saito measures. Threshold settings for the variable 

frame rate inter-frame constraint were somewhat sensitive to varying noise levels. This 

indicates that although applying inter-frame constraints across speech segments is the-

oretically attractive and should aid in enhancement, in reality the speech segmentation 

step proves to be too sensitive to varying background noise levels. However, the fixed 

frame approach by itself, and with either autocorrelation or position intra-frame con-

straints gave impressive results with little sensitivity to varying levels of SNR. In order 

to determine a limit on the level of enhancement, the original undistorted predictor co-

efficients a were used in the unconstrained algorithm. In essence, the two step MAP 

estimation approach is now reduced to a single MAP estimate of SI G., and therefore rep-

resents the theoretical limit for enhancement using Wiener filtering. Plot f indicates this 

limit. 

One advantage of the general class of Wiener filtering approaches is that no "mu-

sical tone" artifacts are present after processing as observed in spectral subtraction 

techniques[1, 3, 12]. To determine performance versus spectral subtraction, a series 

of enhancement evaluations under identical conditions (same distorted utterances, same 

global SNR, estimates) were performed. Evaluation was performed for both half and full-

wave rectification over a SNR range of —20 to +20 dB, and employed one to five frames 

of magnitude averaging (as defined by Boll [1]). See Hansen [7] for details. Full-wave 

rectification resulted in improvement over a wider range of SNR, however half-wave recti- 

11 



fication had greater improvement over the restricted SNR band of 5 to 10 dB. Magnitude 

averaging lead to improved enhancement for both rectification approaches. 

Next, the constraint approaches were compared to spectral subtraction and uncon-

strained noncausal Wiener filtering. All systems performed enhancement on the same 

speech, with the same global estimates of SNR. Figure 5 compares quality improvement 

for each technique. Although only Itakura-Saito measures are shown, similar improve-

ment was observed for log area ratios and weighted spectral slope measures (Klatt). 

Itakura-Saito measures are presented since they are widely accepted as a spectral dis-

tance measure and have been used extensively for speech recognition applications. A 

comparison of the three speech quality measures is shown in Table 2. The average cor-

relation between each objective quality measure and subjective quali ;y as measured by 

the DAM (diagnostic acceptability test) is shown [17]. 

Quality'Improvement Over Speech Classes 

To determine individual quality improvement, an evaluation over sound classes was 

performed by hand partitioning speech into segments ;  processing entire sentences, and 

computing objective measures from each class. Table 1 summarizes the comparison 

between the unconstrained technique, and an inter- plus intra-frame constrained approach 

(FF-LSP:T,Autod). Measures for the theoretical limit using undistorted LPC predictor 

coefficients a.  are also indicated. Improvement is indicated for all classes of speech. These 

results show that the constraint techniques are enhancing all aspects of the speech signal. 

Termination Criterion 

As mentioned, the iterative enhancement algorithms must be suspended at some it-

eration. In order to determine a terminating iteration, a criterion must be selected to 

evaluate levels of improvement as the iterative scheme progresses. The criterion chosen 

is based on objective speech quality measures. Such measures are formed by a weighted 

comparison of actual and resulting estimated LPC predictor coefficients found during 

enhancement. The obvious problem with such a criterion is that, outside of simulation, 
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the actual speech is unknown during the procedure. If, however, simulations were to 

show a consistent value for the best iteration in terms of this criterion, a convenient 

stopping condition would exist. Previous results based on objective quality measures 

indicate the unconstrained approach to produce maximum objective quality at different 

iterations for different classes of speech. Table 3 illustrates this behavior over the indi-

cated sound classes. As shown, maximum overall speech quality is obtained at the third 

iteration, with considerable variation across sound types. Glides required two iterations 

for maximum quality, with nasals, liquids, and affricates requiring between five and six. 

Therefore, depending on sound class concentration, the optimal iteration (in terms of 

minimum distance) would vary considerably. Observations from a previous investigation 

indicate that the optimal iteration varies between the second and sixth and that it is also 

somewhat 'dependent on SNR [3]. 

The new constrained enhancement algorithms have less sensitivity to sound class. 

Table 4 presents results from an equivalent evaluation for one of the constrained enhance-

ment algorithms (FF-LSP:T,Auto:I). A comparison between tables 3 and 4 show that the 

constrained approach produces superior quality measures across all speech classes at the 

same iteration. The improvement surpasses even combined individual maximum quality 

measures found across the unconstrained approach. Thus, the constrained enhancement 

algorithm does more than simply impose a constraint to adjust the rate of improvement: 

the constrained approaches consistently result in superior objective speech quality at the 

same iteration over all sound classes, independent of SNR. 

Termination Consistency Versus SNR 

Further evaluations were performed to determine the consistency of the terminat-

ing iteration versus SNR. Table 5 summarizes optimum terminating points in terms of 

objective quality for some of the enhancement algorithms. Techniques employing only 

inter-frame constraints consistently resulted (94% occurrence) in maximum quality at the 

third iteration. Techniques employing inter- and intra-frame constraints had a 97% oc-

currence of maximum quality at the seventh iteration. In addition, dide to the relaxation 

of the iterative scheme as imposed by intra-frame constraints, adjacent iterations differ 
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only slightly in objective quality for the constrained techniques. Therefore, only minor 

differences in speech quality would result if the iterative scheme were halted one iteration 

prior to optimum. The results consistently suggest that the constrained enhancement al-

gorithms reach a maximum level of speech quality at the same iteration, independent of 

SNR and sound class concentrations. Thus, a convenient terminating criterion may be 

determined under simulated conditions and employed in actual noisy environments. 

Vocal Tract Estimation 

In addition to the problem of a terminating point dependent on speech class concen-

tration and SNR, the unconstrained approach also suffered from undesirable movements 

of the LPC poles. Specifically, it was observed that as additional iterations were per-

formed, individual formants of the speech consistently decreased in bandwidth and shifted 

in location as shown in Figure 1. Figure 6 illustrates results from a single frame of speech 

for the unconstrained and constrained approaches. The original and distorted original 

spectra are the same for both approaches. Results from .4 iterations and 8 iterations are 

presented for both approaches. For the unconstrained approach, the terminating point 

is the fourth iteration. For this example the unconstrained approach was somewhat suc-

cessful in improving overall spectral shape, especially in the region of the second formant. 

However, as additional iterations were performed, spectral distortions result, especially 

with respect to bandwidth information. The constraint approach (FF-LSP:T,Auto:I) is 

able to eliminate these undesirable effects. The terminating point for this approach was 

the seventh iteration. The change in spectral shape between the seventh and eighth it-

erations were minor, based on visual observation and objective speech quality measures. 

As this figure indicates, fine characteristics of the speech spectrum result only in the later 

iterations. 

Computational Issues 

Discussion of algorithm performance should also address computational issues as well 

as algorithm complexity. Naturally, there exists a trade-off between resulting speech 

14 



quality and each algorithm's computational complexity. It is clear that iterative tech-

niques require greater computer resources than non-iterative approaches such as spectral 

subtraction and correlation subtraction. However, improvement in speech quality for the 

constraint approaches may be substantial enough to justify the additional computer re-

quirements. In Table 6, a comparison of enhancement algorithms are made with respect 

to speech quality, relative computer resources and memory requirements, and algorithm 

complexity. By applying constraints to the LSP parameters, a modest increase in com-

puter resources results in a marked increase in speech quality. For example, median 

smoothing of the LSP parameters (MS-LSP:T) increases speech quality with only slight 

increases in computation and complexity. If greater resources are available, more sophis-

ticated constraint approaches may be chosen. If memory and computational resources 

are available, use of the constrained approaches appears justifiable. 

Time Versus Frequency Plots 

Isometric plots of time versus frequency magnitude spectra were constructed. In 

Figure 7, each line represents a 128-point frequency analysis. The top two graphs are the 

original and distorted cases. The lower left graph is the time versus frequency response for 

the unconstrained approach, terminated at the third iteration. The lower right graph is 

the frequency response after six iterations of an inter- plus intra-frame constrained (FF-

LSP:T,Auto:I) approach. These figures indicate that the considerable noise rejection 

achieved in the single frame noted in Figure 6, is generally true over time. 

3.2 Evaluation Using Additive Non-White, Non-Stationary 

Noise 

The enhancement techniques described for the white additive noise case were also tested 

using non-stationary, colored noise recorded from the interior of a Lockheed C130 aircraft. 

Estimates for the noise spectrum were made using Bartlett's method [10, 14] over long 
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intervals2 . Energy thresholds for the inter-frame constraints were obtained from frame en-

ergy histograms at each signal-to-noise ratio. Intra-frame constraints were applied across 

two to three iterations. Figure 8 and Table 7 list the results of the analysis, presented 

in a manner consistent with the white noise descriptions. Although only Itakura-Saito 

measures are shown, similar improvement was observed for log-area-ratio and weighted 

spectral slope distance measures [7]. As seen, consistent improvement over all SNR's and 

speech sounds resulted, although the improvement was not as much as the white noise 

case. 

3.3 Recognition Evaluation 

One application for speech enhancement is a preprocessor for an automatic recognition 

system. For evaluation of the enhancement algorithms in this application, a set of recog-

nition experiments were performed, including: 1) the no noise condition (in order to set 

an upper limit of recognition performance), 2) distorted condition with no preprocessing 

(in order to set an assumed lower limit of recognition), 3) the best performing spec-

tral subtraction preprocessing (i.e., the configuration employing either half or full-wave 

rectification and 1 to 5 frames of magnitude averaging which gave the highest quality im-

provement for the given vocabulary), 4) unconstrained Lim-Oppenheim preprocessing, 

5) and constrained preprocessing. The evaluation was performed at six levels of SNR 

(-5,0,-1-5,-1-10,+20,+30 dB) for the additive white Gaussian noise degradation. 

A fairly standard, isolated-word, discrete-observation hidden Markov model recog-

nition system was used for evaluation. This system was LPC based with no embel-

lishments. In all experiments, a five state, left-to-right model was used. The system 

dictionary consisted of twenty highly confusable words from a speech data base formu-

lated for recognition evaluation in diverse environments [7]. These words are also used 

2 Previous enhancement investigations employing colored aircraft background noise, indicated that of 

the spectral estimation techniques considered (maximum entropy method, maximum likelihood method, 

Burg's method, Bartlett's method, Pisarenko harmonic decomposition, and the Periodogram method [10, 

14]), Bartlett's method produced estimates resulting in highest quality improvement for this particular 

distortion [3, 6]. 
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by Texas Instruments and Lincoln Labs to evaluate recognition systems. Subsets include 

/go-oh-no-hello/, /six-fix/, /wide-white/, and /degree-freeze-three/. Twelve examples of 

each word were used, six for training, six for recognition (i.e., all tests fully open). A 

vector quantizer was used to generate a 64 state codebook using two minutes of noise-free 

training data. The twenty models employed by the HMM recognizer were trained us-

ing the forward-backward algorithm. Figure 9 presents results from five scenarios using 

a noise-free codebook and noise-free trained system. The 88% recognition rate clearly 

indicates the difficulty (confusability) of the chosen vocabulary 3 . Spectral subtrac-

tion preprocessing employed three frames of magnitude averaging. The unconstrained 

Lim-Oppenheim approach was terminated at the third iteration. The constrained (FF-

LSP:T,Auto:I) approach was terminated at the seventh iteration. Results show that 

recognition was reduced to chance for noisy, spectral subtraction, and Lim-Oppenheim 

preprocessed speech in the SNR range of (-5,0,5 dB). The constrained approach resulted 

in improved recognition across all SNR's considered, which is quite encouraging in light 

of the severe levels of noise, and difficulty of dictionary employed. An increased number 

of training tokens as well as a less confusable vocabulary would at the very least be 

required if recognition in such hostile environments is to be feasible with enhancement 

preprocessing. In this first set of tests, all recognition training was performed on un-

degraded speech. This serves to model the case of training a recognizer in advance in 

quiet surroundings (off-line) and using it in a noisy environment. As a final comparison, 

recognizer training was carried out using enhanced speech, which models training in the 

field. Three tests were performed using noisy and enhanced speech at a SNR of +10dB. 

For the noisy case, speech was coded using a noisy codebook, and recognition performed 

using a noisy trained HMM recognizer. Similar tests were performed for two enhancement 

techniques., (i.e., enhanced words coded using enhanced codebook, and tested using en-

hanced speech trained HMM recognizer). The results indicate that the new constrained 

enhancement algorithms improve recognition performance over the unconstrained Lim-

Oppenheim approach. Although the scenario of training in noise, and recognizing in 

noise shows improvement, the recognition system is now dedicated to a specific SNR. 

3 0n isolated digit tasks in quiet, the recognizer consistently scored 100% [7]. 
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If noise characteristics or SNR should change over time, recognition performance would 

seriously degrade. The constraint approaches have been shown to be robust over varying 

SNR, and therefore should result in higher recognition rates with changing levels of SNR. 

It is worth noting that although performance is poor for apparently high SNR's, the 

SNR computation was performed over entire words. For low energy consonantal portions, 

the SNR's may well be 20 dB lower; and for highly confusable word pairs (e.g., /six-fix/, 

/go-oh-no/), errors are understandable. A detailed analysis of the error patterns bears 

out this hypothesis since almost all confusions were between such pairs. For example, 

in one noisy speech recognition test, 43 of 61 recognition errors (70%) were caused by 

misclassification of distinguishing consonants, many of which were leading consonants 

(especially fricatives). Constrained enhancement significantly reduces these errors (e.g., 

one test using (FF-LSP:T,Auto:I) resulted in 16 of 21 recognition errors (with 120 test 

tokens) caused by misclassification of distinguishing consonants). The noise-free case 

itself, gave 12% errors due to the difficulty of the test set, and the small number of 

tokens (6) per word used for training. These results show that the new constrained 

techniques are valuable for recognition, especially at SNR's in the +10 to +30dB range. 

4 Conclusions 

The problem of enhancing speech degraded by additive white and slowly varying colored 

background noise was addressed. In addition, algorithm performance as a preprocessor 

for speech recognition was also considered. The set of enhancement algorithms presented 

impose inter- and intra-frame constraints on the input speech signal and were shown to 

be useful in enhancing speech for human listeners, and somewhat useful as preprocessing 

for recognition in noisy environments. Inter-frame constraints ensure more speech-like 

formant trajectories than those found in the unconstrained approach and thus reduce 

pole jitter on a frame-to-frame basis. Intra-frame constraints ensure relaxation of the 

iterative scheme so that overall maximum speech quality is obtained across all classes 

of speech. In order to increase numerical accuracy, reduce computational requirements, 

and eliminate inconsistencies in pole ordering across frames, the line spectral pair (LSP) 
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transformation of the LPC coefficients was used to implement many of the constraint 

requirements. The new set of constrained algorithms were shown to be effective in several 

domains. First, improvement in objective speech quality measures was shown. Improved 

LPC parameter estimation was also observed. Second, the algorithms were extended 

and shown to be effective on non-stationary colored noise. Third, the algorithms were 

shown to improve all segments of speech for both white and non-white noise. Fourth, 

the current algorithms have been shown to possess a consistent terminating criterion. 

Specifically, the optimum terminating iteration was shown to be consistent over all speech 

sound classes, and virtually all tested SNR's. Finally, the constrained algorithms have 

shown improvement as a preprocessor for speech recognition. Their ability to bring 

performance up to an acceptable level in SNR's between —5 and +5dB is questionable. 

This may be due in part to the difficulty of the highly confusable test set, the small 

number of tokens per word used for training, and the observation that SNR's in low 

energy consonantal portions which discriminate confusable pairs may well be 20 dB lower. 

Recognition improvement in SNR's between +10 and +30dB may be large enough to 

warrant enhancement preprocessing for recognition. 
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APPENDIX 

All sentences were sampled at 8000 samples/sec. 

SPEECH DATA 

Si: The pipe began to rust while new. Female Speaker 

S2: Thieves who rob friends deserve jail. Male Speaker 

S3: Add the sum to the product of these three. Female Speaker 

S4: Open the crate but don't break the glass. Male Speaker 

S5: Oak is strong and also gives shade. Male Speaker 

S6: Cats and dogs each hate the other. Male Speaker 
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(a) Original 
	

(b) Distorted Original (c) 4 Iterations 	(d) 8 Iterations 

Figure 1: Variation in vocal tract response across iterations. 

Sound 
Type 

Itakura-Saito Likelihood Measure 
Original Lim-Oppenheim Hansen-Clements True LPC 

Silence 1.634 1.649 0.842 0.319 
Vowel 4.020  3.299 1.651 0.582 
Nasal 19.814 17.656 3.968 0.324 
Stop 7.261 3.979 1.099 0.435 

Fricative 3.739 3.509 1.766 0.649 

Glide 1.525 1.442 1.131 0.705 

Liquid 9.597 4.545 0.998 0.303 
Affricate 3.924 2.702 2.229 0.323 

Voiced -I- Unvoiced 5.838 4.293 1.761 0.519 
Total 4.022 3.151 1.364 0.433 

Table 1: Comparison of unconstrained (Lim-Oppenheim) and inter- and in-
tra-frame constrained (Hansen-Clements) algorithms over sound types for white 
Gaussian noise. SNR = +5 dB 

OBJECTIVE  QUALITY  MEASURE  
Itakura-Saito log-area-ratio Blatt 

Iol 	 .59 	 .62 	.74 

Noisy Original 4.02 15,27 2.39 
(Lim- Oppenheim) 3.15 8.78 2.19 
(Hansen-Clements) 1.38 5.56 1.62 

Table 2: A comparison of objective speech quality measures for noisy and en-
hanced speech employing the unconstrained (Lim-Oppenheim) and constrained 
FF-LSP: T,Auto:I (Hansen-Clements) algorithms for white Gaussian noise. SNR = 
+5 dB, 1A1 is the average correlation coefficient between objective and subjective 
speech quality[17]. 



ACROSS TIME 	ACROSS ITERATIONS 

           

I (0A:1): Off-Axis Spectral Evaluation 

           

 

(DFA:T): Direct Frame Averaging 
of Radial Pole Locations 

    

      

(DCP:I): Direct Constraints on 
Maximum Pole Movement. 

             

             

    

(DFA:T, DCP:I): Direct Weighted Smoothing of Radial Pole 
Locations (time). Direct Constraints on 
Maximum Radial Pole Movement (iteration). 

    

                   

                   

 

,11■1=4.1■■■•■•■ 	  

              

  

(MS -LSP:T): Median Smoothing 
of LSP Parameters 

           

                   

                   

  

FF-LSP:T): Fixed-frame smoothing 
constraint on LSP parameters. 

      

(Auto:I): Autocorrelation coeff. 
movement constraint 

 

                   

                   

                   

                   

                   

 

(VF-LSP:T): Variable-frame smoothing 
constraint on LSP parameters. 

           

            

       

(LSP:I): LSP Parameter 
movement constraint. 

 

               

               

	*I (VF-LSP.FF-LSP:1): Variable followed 
\  by Fixed -frame smoothing constraints. 

           

           

           

                   

 

(FF-LSP,VF-LSP:I): Fixed followed by 
Variable-frame smoothing constraints. 

           

                   

   

I  (FF-LSP:T, Auto:I): Fixed-frame LSP Parameter constraint (time) 
Autocorrelation coeff. constraint (iteration) 

   

      

(FF-LSP:T, LSP:I): Fixed-frame LSP Parameter constraint (time) 
LSP Position Parameter constraint (iteration) 

(VF-LSP:T, LSP:I): Variable-frame LSP Parameter constraint (time) 
LSP Position Parameter constraint (iteration) 

Figure 21 An overview of spectral constraints considered for the class of constrained 
speech enhancement algorithms. 
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Figure 3: Framework for the new set of constrained enhancement algorithms. 
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Figure 4: Comparison of constraint algorithms over SNR. 

a.) Original Distorted Speech 

b.) Inter-Frame Constraint: Variable Frame (VF-LSP:T) 

c.) Intra-Frame Constraint: Fixed Frame (FF-LSP:T) 

d.) Inter & Intra-Frame Constraints: Fixed Frame, Position (FF-LSP:T,LSP:I) 

e.) Inter & Intra-Frame Constraints: Fixed Frame, Autocorrelation (FF-LSP:T,Auto:I) 

f.) Theoretical limit: using undistorted LPC coefficients E. 
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Figure 5: Comparison of enhancement algorithms over SNR. 

a.) Original Distorted Speech 

b.) Boll: Spectral Subtraction, using magnitude averaging 

c.) Lim-Oppenheirn: Unconstrained Wiener filtering 

d.) Hansen-Clements: employing Inter-Frame constraints (FF-LSP:T) 

e.) Hansen-Clements: employing Inter & Intra-Frame constraints (FF-LSP:T,Auto:I) 

f.) Theoretical limit: using undistorted LPC coefficients Ir. 



Sound 
Type 

Itakura-Saito Likelihood Measure 	across iterationsL_ 
#5 	ilel Original #1 #2 	#3 	#4 #7 

Silence 1.634 1.615 •1.608 1.649 1.933 3.756 20.360 49.884 
Vowel 4.020 3.721 3.445 43.299 3.720 8.319 121.82 - 
Nasal 19.814 19.154 18.416 17.656 17.009 16.593 415.192 15.697 
Stop 7.261 6.114 4.926 3.979 43.822 6.889 25.515 29.694 

Fricative 3.739 3.637 3.532 43.509 3.902 7.658 47.829 94.106 
Glide 1.525 1.414 41.333 1.442 2.231 4.300 8.391 15.561 

Liquid 9.597 8.241 6.546 4.545 2.606 41.676 6.381 30.001 
Affricate 3.924 3.609 3.213 2.702 2.091 41.552 2.911 2.975 

Voiced -I- Unvoiced 5.838 5.321 4.767 4.293 44.289 7.346 61.865 - 
Total 4.022 3.720 3.402 43.151 3.271 5.795 43.457 - 

Table 3: Lim-Oppenheim unconstrained speech enhancement for white Gaussian 
noise. Optimum perceived quality for a particular speech class in terms of objective 
measures is indicated by a 4. SNR=-1-5dB 

Sound 
Type 

Itakura-Saito Likelihood Measure (across iterations 
Original #1 #2 #3 #4 #5 #6 #7  #8  

Silence 1.634 1.551 1.351 1.155 1.036 0.979 0.929 40.884 0.901 
Vowel 4.020 3.319 2.865 2.394 1.863 1.677 1.571 41.565 1.828 
Nasal 19.814 16.490 12.397 10.523 8.682 6.840 4.929 43.789 5.548 

Stop 7.261 6.246 4.840 3.492 2.668 1.812 1.383 41.129 1.435 
Fricative 3.739 3.432 3.027 2.612 2.245 1.948 1.729 41.615 1.844 

Glide 1.525 1.389 1.275 1.232 1.219 1.189 1.161 41.153 1.217 
Liquid 9.597 6.481 3.382 2.243 1.612 1.209 0.943 40.926 1.211 

Affricate 3.924 3.722 3.447 3.117 2.806 2.598 2.472 42.368 3.966 
Voiced + Unvoiced 5.838 4.642 3.658 3.006 2.501 2.131 1.865 41.740 1.953 

Total 4.022 3.026 2.441 2.069 1.801 1.611 1.457 41.381 1.498 

Table 4: Hansen-Clements Inter & Intra-frame constrained speech enhancement 
for white Gaussian noise. Convergence for a particular speech class in terms of 
objective quality is indicated by a 4. SNR=---1-5dB 



Constrained 
Enhancement 

Algorithm 

Additive White Gaussian Noise SNR 
+10 dB 

OVERALL 
-5 dB 	I 	-0 dB 	I 	+5 dB 	1 

Optimal Iteration using Itakura-Saito Likelihood Measure 
Iter. 	Freq. Iter. 	Freq. lien 	Freq. 	Iter. 	Freq. Iter. 	Freq. 

FF-LSP:T 3 	100% 3 	87% 
4 	13% 

3 	87% 
4 	13% 

3 	100% 3 	93% 
4 	7% 

VF-LSP:T 3 	90% 
4 	10% 

3 	85% 
4 	15% 

3 	94% 
4 	6% 

3 	100% 3 	94% 
4 	6% 

FF-LSP:T,Auto:I 7 	100% 7 	100% 7 	100% 7 	88% 
6 	12% 

7 	97% 

6 	3% 

FF-LSP:T,LSP:1 4 	100% 4 	100% 4 	100% 4 	100% 4 	100% 

VF-LSP:T,LSP:I 4 	100% 4 	100% 4 	100% 4 	100% 4 	100% 

Table 5: Summary of optimal terminating iteration across SNR for AWGN. 

Lim - Oppenheim: Unconstrained Enhancement 

       

      

      

(la) Original (1b) Distorted Original (1c) 4 Iterations 	(1d) 8 Iterations 

 

Hansen - Clements: Constrained Enhancement (FF-LSP:T,Auto:I) 

(2a) Original 
	

(2b) Distorted Original (2c) 4 Iterations 
	

(2d) 8 Iterations 

Figure 6: Variation in vocal tract response across iterations for 1a-d) unconstrained, 
and 2a - d) constrained enhancement algorithms. 



Itakura-Saito 
Measure 

Relative 
Complexity 

(1-10) 

Relative 
Computation 

(1-10) 
Terminating 

Iteration 

Noisy Original 4.02 
Spectral Subtraction 3.36 2 1.5 

Lim-Oppenheim 3.15 5 3 3 
iMS-LPS:T) 2.68 6 4 4 

JIFF-LPS:T) 1.96 7 6 3 
IF-LPS:T,Autod) 1.36 9 10 7 

Table 6: Comparison of enhancement algorithms in terms of quality, relative com-
plexity, and relative computational resources. SNR = +5 dB, Additive white Gaus-
sian noise distortion. 

Sound 
Type 

Itakura-Saito Likelihood Measure 
Original Lirn-Oppenheim Hansen-Clements True LPC 

Silence 6.63 6.33 4.32 2.03 
Vowel 3.23 2.54 1.44 0.53 
Nasal 4.03 3.26 2.13 0.45 
Stop 1.58 1.29 0.66 0.61 

Fricative 1.37 1.09 0.85 0.65 
Glide 1.14 1.04 0.52 0.51 

Liquid 1.22 0.55 0.22 0.18 
Affricate 0.90 0.51 0.33 0.16 

Voiced + Unvoiced 2.27 1.76 1.08 0.52 
Total 4.15 3.86 2.74 1.17 

Table 7: Comparison of generalized unconstrained (Lim-Oppenheim) and inter-
and intra-frame constrained (Hansen-Clements) algorithms over sound types for 
slowly varying colored noise. SNR = +5 dB 



NOISE FREE ORIGINAL 
	

DISTORTED ORIGINAL 

0  
FREQUENCY (kHz) 4 

UNCONSTRAINED 
	

CONSTRAINED 

Figure 7: Time versus frequency plots of the sentence Cats and dogs each hate the other. 
The original and distorted original (additive white Gaussian noise, SNR = +5dB) 
are shown above. The lower left-hand plot is the response after three iterations 
of the unconstrained noncausal Wiener filtering approach. The lower right-hand 
plot is the frequency response after six iterations of an inter- plus intra-frame 
constrained (FF-LSP:T,Auto:I) approach. 
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Figure 8: Comparison of inter & intra-frame constrained enhancement algorithms 
for colored aircraft noise over SNR. 

a.) Original Distorted Speech 

b.) Generalized unconstrained Wiener filtering 

c.) Hansen-Clements: employing Inter-Frame constraints (FF-LSP:T) 

d.) Hansen-Clements: employing Inter & Intra-Frame constraints (FF-LSP:T,Auto:I) 

e.) Theoretical limit: using undistorted LPC coefficients E. 
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Signal-to-Noise Ratio 
(noise-free training) Original -5dB 0dB +5dB +10dB +20dB +30dB 

Noise-free 88% 
Noisy 5% 5% 6.7% 5% 8% 49% 

Spectral Subtraction 5.8% 7.1% 5% 5.4% 20% 55% 
Lim - Opp enheim 5.4% 5.8% 7.5% 12.5% 41% 64% 

Hansen- Clements 15% 14% 19.5% 34.5% 59% 83% 

Train & Recognize In Same Environment 
Noise-free Noisy 1 Hansen-Clements t Lim-Oppenheim t 

88% 90% 77% 23% 

Figure 9: Recognition performance using enhancement preprocessing in additive 
white Gaussian noise. TSNR = +10dB 
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