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Abstract

Traditional hidden Markov model speech recognition is generally based upon a set of
parameters which are extracted at discrete intevals. Such an analysis necessitates use of a
discrete-transition hidden Markov model in which the underlying states can change only
at intervals related to the frame rate of the analysis. The exact locations of the analysis
windows can influence the front-end outpute. As a result, inconsistent performance
can often be observed in discriminating worde which differ only in short duration cues.
In the current study, methods are explored which circumvent this framing effect by
allowing state trasitions to occur at each sample. Efficient methods for implementing
this strategy are derived, and testing of a variety of procedures using a set of highly
confusable utterances is reported. Significantly superior performance was demonstrated

both for quiet and noisy conditions.



1 Imntroduction

Over the past few years, the method of choice for many speech recogni-
tion applications has been on hidden Markov modelling. Steady improvement
has been réported in such areas as speaker independence, noise handling,
training and response times, as well as general performance. The first HMM
based systems modeled speech as a discrete state discrete trial Markov process
with discrete observations. More recently, models which allow a continuous
distribution of observations have been presented. Throughout all these mod-
elé, however, the assumption remains that sampling the parameterization of
the speech (e.g., spectral or LPC based parameters) is only necessary every
10 to 30 milliseconds. When words differ only by a short duration interior
consonant, however, the exact placement of the analysis windows can have an
impact on performance.

The motivation for the current study came from our observations that
although general performance of a recognizer may not depend highly on the
exact placement of frames, the detailed error patterns often would. The meth-
ods explored are attempts at eliminating the apparent framing artifacts by, in
essence, extracting a set of parameters for every sample of the digital speech.
The recognition algorithm can then be considered a close approximation to
a continuous transition hidden Markov model. This approach would not be
feasible were it not for efficient algorithms we have been formulated for this
specific problem.

In this paper, we will first discuss the aspects of hidden Markov models
which are conducive to this strategy and discuss the issues involved in training,
and recognition. Second we will describe three parameter extraction methods,
one of which relies on a novel utilization of Kalman filtering, with others two
involving more classical procedures. Third, we will examine experimental

results and discuss the conclusion which can be drawn.



2 The Hidden Markov Model

A. Definitions :

Consider a discrete state discrete transition hidden Markov model for each
pattern to be recognized. Assume the observations are drawn from a finite
alphabet of size M , and a new observation is made for every sample of the
digital speech. This would imply some form of vector quantizer continuously
outputting a codeword sequence. Although the form and implementation of
this process will be described in detail in section 3, for all systems considered,
eﬂough memory existed in the analysis to produce long sequences of the same
codeword in a segment of an utterance. The importance of this result will
become apparent below.

Denote the number of states in a model by n .

0 = probability the model starts in state t,

nT = ([m,m2,..., 7]

A = transition probability matriz, where :

aij = probability of transition from state s to state j

tnonetrial; 1,7 =1,2,...,n.
B = observation probability matriz where
bjx = probability of observing codeword k
given state 3.
O(t) = codewordobservedattimet,1<t< F
R(t) = observation matriz, consisting of :
R(t) = diag[b,(O(t)),...,b.(O())]
For a given model M, and observations O(1),0(2),...,0(F), we define
o(t) = [aaft),-..,an(t)]
a;(t) = problO(1),...,0(t); state i at t]
BT() = [Bilt)---sBnl(t)]
Bi(t) = problO(t +1),...,0(F); stateiatt]
Then the probability that we observe the sequence from the model is

PrO(),...,0(F)] = Y- a(t)ilt) o)

=1



We can rewrite a(t), 8(t), and Eq.(1) in matrix form such that

Pr[O(1),...,0(F)] = I'R(1)AR(2)A--- AR(F)S(F) (2)
o”(t) = I"R(1)AR(2)---AR(t) (3)
BT(t) = AR(t+1)AR(t+2)---AR(F)S(f) (4)

If the model is constrained to the left-to-right, A will be upper triangular.
If the model demands the system to start in state 1 and end in state n, then
nr = [,0,...,0] (5)
B*(F) = [o,...,0,1]
B. Recognition :
For a given model, one needs to compute the probability of the observations.
This can be accomplished, of course, through evaluation of Eq.(2). In our
system, F is normally such a large number that dirrect evaluation of Eq.(2)
would require tremendous amount of computation. In order to reduce this
computatiohal burden, we make use of the fact that usually a long run of
the same codewords are observed, which makes Eq.(2) several long runs of the
same matrix multiplications, and the constraint that the model be left-to-right
which makes A upper-triangular. Let’s assume that the codewords at time
t + 1 through ¢ + m are same. Then the partial product of Eq.(2) for the

period of time,
[AR(t + 1)AR( + 2)--- AR(t + m)],
is equal to
[AR(t + m)]™

Since the matrix A is upper-triangular and R (¢t + m) is diagonal, the prod-
uct, [AR(t+m)]™ is an upper-triangular matrix. The upper-triangular matrix
has a nice property that it can be diagonalized if the diagonal elements are
distinct. In our case, if we assume that the diagonal elements of AR(t + m)

are distinct, it can be diagonalized in such a form that

AR(t + m) =PDP™! (6)



where D is diagonal with its elements same as the diagonal elements of
AR(t + m), P is a upper-triangular matrix with its diagonal elements equal

to 1. Therefore,
[AR(t + m)|™ = PD™P! (N

And g(t + m) can be computed directly from a(t) without computing in-

termediate g's at t + 1,t +2,..., and t + m — 1, that is,

alt+m) = oft)|AR(t +m)]™

It seems that obtaining the matrices, P and P~1, require time-consuming
computation, especially when the dimension of the matrix is large. This, how-
ever, is not so in our case. In fact, there exist very efficient ways using the
property that [AR(t + m)] is upper-triangular. The efficient methods to com-
pute P and P! are shown in Appendix A.

C. Training Algorithms : ‘
In the previous section, we have shown an efficient way of computing o's with-
out computing the intermediate ones when a long run of the same codewords
are observed. E’s can also be computed in the same way. In this section, two
different training methods are introduced in which we make use of the same
method to efficiently carry out the restimation. The first one, denoted as ”
Algorithm 1 ?, is strictly based on the Baum-Welch reestimation algorithm,
while the second one,denoted as ” Algorithm 27, is slightly varied version and
yet performs better.

1). Algorithm 1 :
The Baum-Welch reestimation algorithm states that the estimates of a;; and
b;(v), denoted as &; and b;(v) respectively, are updated at each iteration based
on the previous estimates as follows :

R Yij '
I 9
a;; ” 9



2teo(t)=k Q5 (t)B; (t)

W) = S A0 1)

where
v = iz ()b (Ot + 1)B5(2 +1) (a1)
Y = i'fij (12)

Let’s consider the computation of +;;. X O(k+1) = O(k+2) =-.. =
O(k + m), then b;(O(k + 1)) = b;(O(k + 2)) = --- = b;(O(k + m)). Thus the
p;a.rtial summation of Eq.(11) for k < t < k+m—1, denoted as ~;;(k, k+m—1),
can be written as

kt+m-1

= -[%b (O(k +1))] Z o (t)B;(t + 1) (13)

Computation of Eq.(13) in a straight forward way requires o;(t) and §;(t+1) to
be computed att = k, k+1,...,k+m—1, With a different manipulation, which
will be shown in the following, this can be avoided and a lot of computation
can also be saved,especially when m is large. First let’s express a(t) and

B(t+1)for k<t<k+m—1in terms of a(k) and §(k + m) as follows ;

a'(t) = o (k)[AR(k+1)]"* (14)
Bt+1) = [AR(k +1)|™***18(k + m) (15)

Then

HET el®)s(t +1) = TEP el (¢ + 1

(16
= SEP((AR) (RS (k + m) (AR)™ 11T

where [#];; denotes i-j component of matrix [#] and R = R(k+1) for simplicity.
As shown in the previous section, AR can be decomposed such that AR =
PDP!. Then Eq.(16) can be rewritten as follows;

e () (t +1)
= Ef:,:"'l[P‘TD‘ ¥PTq(k)87 (k + m)P-TD™-t+:-1PT[,  (17)
= [P—T(E‘k::n—l Dt—kPTg(k)ET(k + m)P—TDm—t+k-1)PT]‘J,



If we let

(k) = PTa(k) (18)
QT(k+m) = BT(k+m)PT, (19)

I

then Eq.(17) can be written more neatly such that

Hszl oi(t)B;(t +1) = [P~"MP7];, (20)

t=k
where
M = THPIDSFPTo(k)gT(k + m)P-TDm-t-L

k+m—1 ka(LYAT k (21)
= SHPDHa(k)E (k + myDmot

Now let’s consider the computation of M. The i — j** component of M, M;;,

can be expressed as

My = THPdra(k)By(k + mydpithol

= (@()B, (k + m)) TPt dbdptis #2)

Since it was assumed that d; # d; if ¢ # j,the summation can be reduced such

that

k-'in:_l d‘-"'d’-""“'l — d;:::':n fOI' J # j (23)
= m(d;)™! fori=j
Thus
dr—dP . .,
My = —ht_—a,(k)ﬂ: (k+m) fori#j (24)
mdl & (k)Bi(k+m) fori=j
In summary,
Yij(ksk +m—1) = %[P'TMPT].-,-(a;,-b,-(O(k +1))) (25)

It is worth to be noted that only the upper triangular portions of M are
necessary to be computed, since we only need ~;;(k,k +m — 1), for £ < 5 and
the matrices, P~T and P7, are lower triangular.

Secondly, let’s consider the numerator of Eq.(10) for the reestin;ation of
b;(v). Under the same assumption that O(k+1) =O0(k+2) =.-- = O(k +



m) = v,the partial summation of the numerator, 3eo(1)=v @j(t)8;(t), for k +

1 <t < k+ m can be expressed in terms of a(k) and B(k + m),

T ()85 () = TiXale ()BT ()5 (26)
= [P~T T2 (D PTa(k) 87 (k + m)P-T D™= )PT];
Eq.(26) is very similar to Eq.(17), and can be evaluated similarly. In fact, if

we denote the term in the summation of Eq.(26) as M, i.e.,

k+m
M = Z Dt-—kPTg(k)éT(k + m)P—TDk+m—t (27)
k+1

It can be observed that M is the product of D and Mi,i.e.,
M = DM (28)

Hence, once M is obtained to compute ~;;(k,k + m — 1), Eq.(22) can be

computed with only a few more computation as follows;

kin ;(t)B5(t) = [P"TDMPT];; (29)
t=k+1

As mentioned earlier, in the partial summations involved for the restima-
tions of a;; and b;(v), &'s and f's are not required to be computed at ev-
ery time unit. For example, if we consider the assumption given above that
O(t+1) =O0(t+2) =--- = O(t+ m), only a(k) and f(k + m) are required in
the partial summations, that is, all the intermediate g's and g's do not have

to be computed, which contributes to the great saving of computation.

2). Algorithm 2 :
The algorithm presented here can be considered as the sampling version of
Baum-Welch restimation algorithm. Unlike the Baum-Welch algorithm, which
is formulated by Eq.(9) and Eq.(10), in the new algorithm only the samples

of 4;; are used. Eq.(11) can be rewritten as follows;

F-=1
Wi = ‘Z_E %5 (t) (30)
where
%(t) = Zes(t)aB,(0 + )8t + 1) (31)



The restimation equations (9) and (10) can also be written in terms of ~;;(t) .
i i (t)
P (ia wi(t)
EteO(t):v (E?=1 ¥ij (t — 1))
Tt (1 %5 (¢ — 1))

In the new algorithm, we sample ;;(t) at every k** time unit, and assume

&; = (32)

b;(v) (33)

that it stays same during the sampling interval. In other words, if ~;;(t) is
sampled at t =1,k + 1,2k + 1,..., then we assume that

%3 (1) = %;(2) =+ =;(k)
Y%i(k+1) =wik+2) =-- =;(2k) (34)
=+ =;(3k)

"7.','(2]9 + 1) = “Yij (Zk + 2)

Under this assumption and the assumption that F = mk for some integer m,

Eq.(32) becomes as follows,

3, = _ Zreo Witk +1)
T T TS wi(rk+ 1)

which can be seen as the sampled version. This algorithm is not proven

(35)

mathematically to converge, but it has shown experimentally that it not only
converges but also gives better results than the conventional Baum-Welch al-
gorithm. It-seems that this algorithm hasa smoothing property which enables

the algorithm to find a better local maximum point.

3 Front-End Analysis

The approach we are adopting is based on a linear model of speech which is
time-invariant over short intervals. This is the traditional model often used
in speech recognition and coding applications. However, we allow for natural
smooth changes occuring in the system as well as additlve yncorrelated nolse,
Our linear model may also have explicit modeling of time-varying system
parameters. Since many phonemes are characterized by a particular evolution

in time rather than by steady-state or target spectra, this model is more



powerfu! than more traditional ones. In particular our model is :

(36)

X(k) = ®(K)X(k— 1)+ T(k)w(k)
s(k) = HTX(k) +v(k)

where the vector X(k) = [z(k)z(k —1)---z(k — p + 1)]T, z(k) is the speech
without noise, w(k) the noise input and T'(k) its gain, HT = [1,0,0,---,0],
v(k) the additive noise, and ®(k) characterizes the time-varying vocal-tract
filter.

Systems similar to this have been used to model many varied signals aris-
iné in sonar, heart monitoring, aircraft control,etc.. In the linear prediction
synthesis model ®(k) remains constant over 10 to 30 millisecond intervals,
and v(k) is zero. In the LPC analysis model, v{(k) is generally assumed to
be zero so that ®(k) can be estimated every 10 to 30 milliseconds. Recursive
linear least square estimation based on our model falls within the general area
of Kalman filtering, which allows one to efficiently compute the least squares
estimate of X (k) from the least squares estimate of X(k — 1) and s(k). The
property we wish to exploit is that if we have modeled the system correctly,
the prediction error, ¢(k), would be white, and it should have a predictable
ratio of its power to the unfiltered signal’s power. If there are L possible
models from which the observed signals was generated, this idea can be used
for computing the relative likelihood of each model given the observed signal.
In the following our front-end process is explained in detail on the Kalman

filtering process followed by decision making process.

3.1 Kalman Filtering

In the Kalman filtering process, we have L distinct competing models, each

of which has the form,

{ X (k)
s(k)

X (k —1) + T'(k)w(k)

(37)
HX(k) + v(k)

10



where )

a(1) o(2) -+ afp) |
1 0 --- 0
d = 0 1 ..« 0

0o o0 - 0
H = [100:--0]

Ev(k) = 0 Ev(k)v(l) = o2(k)bu

Ew(k) =[0,0,---,0]T

(10 .- 0]

00 --0
Ew(k)w(l) = Coe . St

00 --- 0
[ g(k) © -+ 0]

0 0 --- D
L) =1 . . .

0 0.0
and a(1),a(2),...,a(p) are linear prediction coefficients which characterize the
model. This model results in the following time-recursive formula which gives

the linear least squares estimate of X (k) given s(k — 1), s(k — 2),...,8(0).

e(k) = s(k)-HX(k|k-1) (38)

ol(k) = HP(k|k—1)HT + o?(k) (39)
M(k) = ‘—:EP(klk -1)HT (40)
X(k|k) = J‘c”(k|k- 1) + M(k)e(k) (41)
X(k+1k) = dX(k|k) (42)
P(k|lk) = P(klk—1)—M(k)M"(k)o? (43)
P(k+1jk) = &P(k|k)®T + I'(k)TT (k) (44)

where ¢(k) is the innovations sequence, o?(k) the variance of the inn;)vations,
M(k) the Kalman gain, and P(k|r) the covariance of the estimate error X(k) —

11



X(k|r). The initial condition is given as follows;

{ X7 (0/0) = [s(0)s(~1) - s(~p + 1)}

(45)
P(0[0) = o%(0)X

With the innovations sequence obtained from each model, a likelihood test
is performed in a recursive manner. If we denote ¢;(k) the innovation produced
by model ¢ at time k and p;(k) the probability that model ¢ generate s(k) ,
then

N (ei(k), o2 (K)pik — 1)
= N6 (R), o2, (R))p; (k - 1)

where o7, (k) is the variance of ¢;(k) when model j is correct, and N(a,b)

pi(k) =

(46)

represents the Gaussian density of zero mean with the variance b evaluated at

a. We then choose the model with the largest p.

4 Experiments

Several recognition experiments were performed with clean speech, noisy speech
of SNR = 26dB, and of SNR = 20dB. The isolated words used in the ex-
periments are ’break’, ’change’, degree’, ’eight’, ’eighty’, ’enter’, ’fifty’, *fix’,
’six’, 'go’. Each word has 12 utterances, 6 of which were used for the training
of HMM’s. Each utterance was passsed through Kalman-filtering process with
3 different level of white Gaussian noises as stated above, which produced 3
different sets of codewords, one for clean speech, one for the noisy speech of
SNR = 26dB, and one for the noisy speech of SNR = 20dB. In the Kalman-
filtering process, the variances of the generating noise and the additive noise
were updated at every 80 samples, and the initail conditions were reset ac-
cordingly at the same time. The filter order was 14 for each of the 64 different
filters.

A. With Clean Speech : 2 errors out of 120 = 1.7 1 error from the set used
for training : ’six’ recognized as ’fix’
1 error from the set not used for training : ’eight’ recoginzed as ’eighty’
B. With Noisy Speech of SNR = 26dB : 8 errors out of 120 = 6.7 O error

12



from the set used for training

8 errors from the set not used for trianing : ’eight’ recoginized as

‘eighty’ (4), 'fix’ recognized as ’six’ (1), ’six’ recognized as ’fix’ (3).

C. With Noisy Speech of SNR = 26dB and Clean Speech :

i). the recognition of noisy speech : 6 errors out of 120 = 5 0 error from the
set used for training

6 errors from the set not used for training : ’eight’ recognized as ’eighty’ (3),
fix’ recognized as ’six’ (1), ’six’ recognized as *fix’ (2)

ii). the recognition of clean speech : 7 errors out of 120 = 5.8 2 errors from
the set used for training : ’eight’ recognized as ’eighty’, and ’six’ recognized
as fix’

5 errors from the set not used for training : ’eight’ recognized as ’eighty’ (5)

It is interesting to note that the models trained with both clean and noisy
speech give higher recognition rate for noisy speech ( compare the results of
B and C i).) than the ones trained with only noisy speech, while giving
lower recognition rate for clean speech ( compare the results of A and C
ii).) than fhe ones trained with only clean speech. It may be interpreted
as clean speech giving positive information for the trtaining of noisy speech
models, and noisy speech giving negative information for the training clean
speech models. This behavior has been observed in several occasions. More
comprehensive experiments are to be done with larger vocavulary and various

SNR’s.
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Iterative Speech Enhancement
With Spectral Constraints

John H. Hansen and Mark A. Clements

Georgia Institute of Technology
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Abstract

A new and improved iterative speech enhancement technique
based on spectral constraints is presented in this paper. The
iterative technique, originally formulaied by Lim and Oppenheim,
attempts to . solve . for the maximum likelihood estimate of a
speech waveform in additive white noise. The new approach
applies inter- and intra-frame spectral constraints 10  ensure
convergence to reasonable values and hence improve speech
quality. An extremely efficient technigque for applying these
constraints is in the use of line spectral pair (LSP) coeffi-
ciemis. The inter-frame constrainis ensures more speech-like
formant  trajectories than those found in the wunconstrained
approach.  Results from speech degraded by additive white
Gaussian noise show noticeable quality improvement.

Introduction

The successfulness of an enhancement algorithm rests on the
goals and assumptions used in deriving the approach. Depending
on the application, a system may be directed at one or more
objectives such as improving overall quality, increasing intel-
ligibility, reducing listener fatigue, etc. Three assumptions
normally made include: i) that the noise distortion be additive,
ii) that only the degraded speech signal is available, and iii)
that the noise and speech signals are uncorrelated. In general,
constraints placed on the speech model improve the potential for
separating speech from background noise. However, such systems
are also more sensitive to “deviations” from these constraints.
The degradation considered is additive white Gaussian noise. The
basis of the technique is an iterative enhancement approach
based on noncausal Wiener filtering originally formulated by Lim
and Oppenheim [1]. This approach attempts to solve for the
maximum likelihood estimate of a speech waveform in additive
white noise using the constraint that the signal is an all-pole
process. Crucial to the success of this approach is the accuracy
of the estimates of the all-pole speech parameters at each
iteration. One advantage of the Wiener filtering approach is
that no "musical tone" artifacts are present after processing as
can be observed in spectral subtraction techniques. In addition,
under certain conditions, it can be shown that it is the optimal
solution in the mean-squared sense for a white noise distortion.
Although successful in a mathematical sense, this technique has
received little application due to several factors. First, it is
an iterative scheme with sizable computational requirements as
opposed to a direct form such as spectral subtraction. Second,
although the original sequential MAP estimation technique was
shown to increase the joint likelihood of the speech waveform
and all-pole parameters, heuristic convergence criteria had to
be employed. After an extensive investigation [2], this approach
was found to produce significant levels of enhancement for white
Gaussian noise in 3-4 iterations. The technique was generalized
to allow for colored aircraft noise. Various spectral estimation
techniques where employed for securing estimates of the colored
background noise and although the noise was not stationary,
estimates were performed prior to application of the algorithm.

With these assumptions, good enhancement took place in 2-3
iterations. It is assumed that in a real-time environment how-
ever, noise spectral estimates could be gathered and updated
during silent intervals. An important observation which could be
made from this previous work was that as additional iterations
were performed, individual formants of the speech decreased in
bandwidth (see fig.1), resulting in unnatural sounding speech.
Frame-to-frame pole jitter was also observed which contributed
to unnatural sounding results. Also, the original technique
employs no explicit frame-to-frame constraints. Since the origi-
nal algorithm already constrains the speech to be the response
from an all-pole system, applying further constraints on the
pole movements may improve the algorithms performance. One set
of constraints were applied directly to the LPC poles. These
results were quite encouraging, yet computationally intensive. A
new approach for implementing the spectral constraints was
formed by employing the line spectral pair (LSP) transformation
as a method for representing the vocal tract spectrum. This
method of specification allowed constraints to be efficiently
applied to the speech model pole movements across time (inter-
frame) so that formants lay on smooth tracks. In addition,
constraints could also be easily applied across iterations
(intra-frame) on a frame-by-frame basis.

Iterative Speech Enhancement

Enhancement based on the estimation of all-pole speech
parameters in additive white Gaussian noise was investigated by
Lim and Oppenbeim [1], and later for a colored noise degradation
by Hansen and Clements [2]. It was shown that the estimation
procedures which result in linear equations without background
noise, become nonlinear when noise is introduced. However by
allowing a suboptimal procedure, an iterative algorithm results
which possesses the property that the estimation procedure is
linear at each iteration.

Consider the statistical parameter estimation of speech in
the presence of noise. Over a short-time basis, the speech
signal can be represented as the following difference equation:

s(n) = a" s(n-1,0-p) + g w(n) 4V,

where a'= [a),8,...» represents the all-pole predictor
coefficients.  Substituting the degraded speech into the speech
model gives the following equation for the observation vector:

o™ Y(N-1,0) = s(N10)+d(N10) )
Yo=2a y(u- ,0-p) + gw(n) + d(n) -a' d(n-1,n-p)

where s(N-1,0) are N samples of original speech, and d(N-1,0)
represents the additive background noise. The 2p + 1 unknowns
include the predictor coefficients a, initial conditions for the
predictor given by S; = s(-1,-p), and the gain factor g for the
input excitation. ider the case where all unknown
parameters are random with a priori Gaussian probability density
functions. The basit: procedure used is a maximum a priori (MAP)
estimator, which maximizes the probability density function of

6.7.1

CH2396-0/87/0000-0189 $1.00 @ 1987 IEEE 189




the parameters given the observations. Therefore, a,g,S; are
chosen to maximize the probability density function
p(a,8,5;Yo). The procedure requires that a be chosen to
maximize p(a]Y,), noting that the estimate is conditioned on the
noisy observations Y4. Using Bayes’ rule, p(a]Yy) can be written
as a product of terms involving p(Ygle,8,S;). When the Gaussian
density function p(Yla,g.S;) is expanded, it can be shown that
the mean and variance are functions of the predictor
coefficients a. Therefore the resulting equations for maximizing
palY,) are nonlinear, - involving partial derivatives with
respect to a. Lim and Oppenheim considered a suboptimal solution
employing a two step approach based on MAP estimation of 8,
given Yg, followed by MAP estimation of a given Sy,where S is
the result of the first estimation. Observations indicate that
this algorithm converges to a local maximum of the joint density
P(a,SoYe:g,Si). In particular, if the probability density
function is unimodal, and the initial estimate for a is such
that the local maximum equals the global maximum, then the
procedure is equivalent to the joint MAP estimate of a and S,
After some simplification, the MAP estimation of Sg, based on
maximizing the probability density function p(Sgla,,Yy) which is
jointly Gaussian in Y, is equivalent to a miniroum mean squared
error (MMSE) estimate of So. Therefore as the observation window
increases in length, the procedure for obtaining a MMSE estimate
of s(n) approaches a noncausal Wiener filter. With this, the
implementation of the algorithm is presented in Figure 2. This
approach can also be extended to the colored noise case as
shown. As indicated, the background noise spectral density must
be estimated during non-speech activity.

LYY

\/\J

(a) Distorted Original (b} 2 Iterations (c) 4 fierations (d} & lterations

Figure 1:; Variation in vocal tract response across iterations.

As indicated, the scquential MAP estimation technique
increases the joint likelihood of the speech waveform and all-
pole parameters, yet a heuristic convergence criterion had to be
employed. Also, as additional iterations were performed,
individual formants of the speech decrease in bandwidth as
indicated in figure 1. Frame-to-frame pole jitter was also
observed. Both effects contributed to unnatural sounding speech.
The goal, therefore is to impose constraints on the pole move-
ments across time (inter-frame) and iterations (intra-frame). An
initial approach was to limit the poles from moving too close to
the unit circle by performing an off-axis spectral evaluation
where the z-transform is evaluated on a circle further away from
the - poles of the spectral model. Other approaches considered
included applying constraints directly to the pole radii and/or
angular displacements in the LPC model. Performance of such
inter and intra-frame constraints lead to encouraging results,
but at the expense of a pth order root-solve and a pole ordering
step per frame for each iteration. Since root solving is not
always numerically accurate and ordering can be inconsistent
across frames, a more robust approach was sought to implement
these constraints. Previous success of the line spectral pair
(LSP) transformation in speech coding by Crosmer [3], led to the
use of LSP’s for this purpose.

Line Spectral Pair Representation of Spectral Characteristics

The LSP transformation may be viewed as an alternative
representation of the LPC spectrum. The LSP coefficients are
obtained from the LPC prediction coefficients by combining the
forward and backward predictor polynomials as follows:

P@z) = AQz) + B(2), Qz) = A(2)-Bz). (3)

The vocal tract transfer function is given by g/A(z), and M is
the order of the LPC speech model. The resulting polynomials
P(z) and Q(z), are symmetric and antisymmetric, respectively,
with a root of P(z) at z=+1, and a root of Q(z) at z=-1. The
remainder of the roots of P and Q all lie on the unit circle.
Since the roots occur in comjugate pairs, the original
polynomial can be represented by M real numbers. The angles of
the roots, {w;, i=12,...,M}, are called the fine spectrum pairs.
The LSP’s possess several important properties which make
them attractive for use in applying spectral constraints. One
important characteristic is that if the vocal tract polynomial
A(z) has all its roots inside the unit circle (i.e., a stable
filter), then the roots of P and @ will be interleaved around
the unit circle [3]. If two adjacent LSP frequencies are identi-
cal, it indicates that a root of A(z) lies on the unit circle.
In addition to their attractive representation of the LPC
spectrum, the LSP coefficients offer the possibility of a more
direct representation of perceptually important information.
Specifically, their is a firm statistical relationship between
the locations and bandwidths of the speech formants and the
locations of the roots of P and @ respectively. Since roots of
the P polynomial correspond approximately to locations of for-
mant center frequencies (when a formant is present), the P
polynomials’ LSP coefficients are termed position coefficients.
It can be shown that the closer two LSP coefficients are
together, the narrower the bandwidth of the corresponding pole
of the vocal tract filter. Therefore, formants are indicated
when two LSP coefficients are close together. When LSP coeffi-
cients are far apart, they indicate poles which contribute only
to the overall spectral shape. Because of their relationship to
the presence or absence of a formant by their ncarness to a
position  coefficient, the coefficients of @ are termed
difference coefficientss.  Given the LSP coefficients, the
position coefficients are simply the odd index LSP coefficients,
{p=wy,, i=1,2,...,M/72}. The difference coefficients are given
as follows:
1= MIN (|- ugl), i = 12,..M2) ()
J=-=4,
where the sign of d; is positive if wy is closer t0 wy,;, and
otherwise is negative. With this interpretation, a new enhance-
ment technique based on Wiener filtering is now possible by
imposing constraints on the LSP coefficients.
Step 1: Estimate a; from Sg;.
Use either: i. first P values as t
or: ii. always assume Sj =~ 0',

initial condition vector

Step 2: I. Using 4, estimate the speech spectrum:
2
Pyw) = _'E_
-
kel

if. Calculate gain term using Parseval's theorem.
ill. Estimate cither the degrading
a.) white noise variance a3, or b.) colored noise spectrum Pp(w)
from a period of silence closest to the utterance.
Iv. Construct the noncausal Wiener filter;

Py(w) b )
) HE) = 50y + o7 Y H©) = 50y Pl
v. Filter the estimated speech § to produce 4,,.
vi. Repeat until some specificd error criterion is satisfied,
A€ <<THRESHOLD.
Figure 2: Enhancement Algorithm based on All-pole modeling/Wiener
filtering. #) a AWGN distortion b) a non-white distortion

Enhancement with Spectral Constraints

Consider the statistical parameter estimation of speech in
the presence of noise, where all unknown parameters are random
with a priori Gaussian probability density functions. It can be
shown that MAP estimation of a, g, and Sj given the noisy
observations Y, mesults in a set of nonlinear equations. There-
fore, instead of joint estimation of a and Sg, a suboptimal
solution is formulated employing a two step approach based on

6.7.2

190




MAP estimation of S, given Yq, followed by MAP estimation of a
given Sy, where Sg is the result of the first estimation. Since
speech can be considered short-time stationary, frame-to-frame
spectral constraints may aid in enhancement. The new approach
imposes such constraints on the vocal tract spectrum between MAP
estimation steps. The procedure for obtaining the MAP estimate
of a from MAX p(nlSo,g S;) remains the same. The next step is to
apply spectral constraints to #; which will ensure that; i) the
all-pole speech model is stable, ii) it possess speech-like
characteristics (i.e., poles are not too close to the unit
circle causing narrow bandwidths), and iii) the vocal tract
characteristics do not vary wildly from frame-to-frame when
speech is present. Due to this constrained approach, an improved
estimate &, results. Given this new estimate, the second MAP
estimation of S, given i can be carried out by maximizing
D(Soli,Yoig,Sp).  Since (Sl Yoig.Sj) is still jointly
Gaussian in Yq, the resulting MAP estimate is equivalent to a
MMSE estimate of Sg. Again, in the limiting case, the procedure
for obtaining the MMSE estimate of s(n) approaches a poncausal
Wiener filter. Once this new estimate of Sy, is formed, the
iterative procedure continues by re-estlmatmg &, app]ymg
constraints to &, and then forming the noncausal filter using
4 to re-estimate Sy, This continues until some convergence
criterion  is satmfmdI The procedure for implementing these
constraints will now be addressed.

Two classes of spectral constraints are considered; inter-
frame (across time), and intra-frame (across iterations). Two
approaches are considered: a fixed frame rate, and a variable
frame rate approach. In the first of these, the LPC predictor
coefficients, a, are first converted to LSP position and
difference coefficients. Next, each frame’s energy is observed,
and if it is above some threshold, it is classified as voiced
speech; if it is below, then it is either noise or unvoiced
speech. A local running count L, is kept for the number of
consecutive frames which fall below the energy threshold. If L,
reaches L, x, then all subsequent frames below the threshold are
classified as noise. This allows for further smoothing for long
periods of silence. The position coefficients for each frame are
smoothed using a weighted triangular window with a variable base
of support (1 to 5 frames). If a frame has been classificd as
noise, maximum smoothing is performed. In addition, the lower
formant frequencies are srnoothed over a narrower triangle width
than for those position coefficients at higher frequencies. This
preserves perceptually important speech characteristics found in
the lower formants. No smoothing is performed on the difference
coefficients since they are more closely related to formant
bandwidth than formant location. However, it is poss1blc that a
difference  coefficient falls within a "forbidden zone,” (i.e.,
the region within dygy of a position coefficient). When this
occurs, the LPC analysis has most likely overestimated the Q of
a particular pole. Since this causes unnatural sounding speech,
(as in the unconstrained approach), the value of i is set to
dyqn. Finally, the position and difference coefficients are
combined to form the constrained LPC predictor coefficients ﬂ,

The second inter-frame constraint approach considered is a
variable frame rate technique which takes advantage of the
interpolation properties of the LSP coefficients. The speech
signal is first divided into segments, where segments are chosen
such that they are long when the speech spectrum is varying
slowly and short when the speech spectrum is varying quickly.
The LSP coefficients are reconstructed with lincar interpolation
used to compute the coefficients for intermediate frames.

The segmentation algorithm begins with a step to determine
the onset/offset of speech. This is carried out by thresholding
the LPC residual energy, which produces relatively long seg-
ments. Next, the long segments are subdivided based on the
curvature of the position coefficients. This is performed by
computing a gain-normalized Itakura-Saito measure of the spec-
tral distance between the frequency response of two adjacent
frames. The procedure continues by computing the distortion of

position coefficients for successively longer segments until the
distortion exceeds a threshold Ty,. At that point, a subsegment
boundary is set, with the intermediate position coefficients
reconstructed  via linear interpolation. During this step, the
length of a subsegment is also limited to L,,, to prevent
excessively long segments which might contribute to muffled or
unnatural sounding speech. The advantage of this approach is
that it incorporates more information from adjacent frames when
the spectrum indicates similar characteristics. Yet, it also
reduces the effects of adjacent frames when the spectrum is
significantly different as in the case of a transition from
unvoiced passages to noise. This in effect, distorts the
position coefficients as little as possible when associated
difference coefficients indicate the presence of formants.
Difference coefficients for each frame, (or an average set
across a segment) are used to compute the predictor coefficients
&, The difference coefficients are required to be at least Ay
or greater in distance from adjacent position coefficients to
ensure that poles from the LPC filter do not move too close to
the unit circle.

Inter-frame constraints are applied to a single frame
across iterations, and as such require the frames’ previous
estimates to be available. The motivation for such constraints
is that under certain conditions, pole locations for the same
frame vary significantly from their previous estimated values.
Since the present estimate of & affects the next estimate of
So_,, sections of So will also vary significantly across itera-
tions. In addition, ' previous results based on objective speech
quality measures indicated that the unconstrained approach
produced minimum objective measures at different iterations for
different classes of speech. For example, maximum overall speech
quality was observed for additive white Gaussian noise in three
iterations. This was also true for vowels and fricatives,
However, glides required two iterations, nasals, liquids, and
affricates between five and six. It is therefore desirable to be
able to affect the convergence rate so that the best objective
measure of quality occurs at the same iteration across all
classes of speech. Improved quality as measured by objective
measures may also result in improved estimation of 4. By
constraining the vocal tract filter to be a function of its
previous estimates, it may be possible to accomplish this. Two
approaches are considered, one applied to the autocorrelation
lags, the other to the position coefficients. The first approach
simply weights the present set of autocorrelation lags with the
same frame from previous iterations. This technique is very easy
to perform, since the autocorrelation lags must be computed in
order to estimate the predictor coefficients a. The second
approach weights position coefficients with those from the same
frame but previous iteration. If the corresponding difference
coefficient indicates the adjacent position coefficient to
represent  a formant, this approach has the effect of
constrmnmg the formants to lie along smooth tracks across
iterations.

Results

Speech degraded by additive white Gaussian noise was
processed using various configurations of the new constrained
enhancement  algorithm. Energy thresholds for inter-frame
constraints were obtained from frame energy histograms at each
signal-to-noisc ratio. Excellent enhancement resulted for a wide
range of threshold values. Intra-frame constraints were applied
across two to three iterations. Informal listening tests
indicated noticeable quality improvement, although no intelligi-
bility testing has been performed. However, there has been
extensive work carried out in the area of objective speech
quality measures [4]. Good correlation has. been shown to exist
between subjective quality and objective measures. Therefore,
objective measures including: the Itakura-Saito likelihood
ratio, log area ratio, and weighted spectral slope measure where
used for evaluation. Figure 3 illustrates a comparison of
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typical results for the various constraint approaches. Itakura-
Saito measure is plotted versus signal-to-noise ratio for a
white noise distortion. Plot a represents the original distorted
speech. Plots & through e represent combinations of inter-frame
constraints (both fixed and variable rate), and intra-frame
constraints  (applied to position coefficients/autocorrelation
lags). All  configurations examined showed significant
improvement in Itakura-Saito measures. Threshold settings for
the variable frame rate inter-frame constraint were somewhat
sensitive to varying noise levels. However, the fixed frame
approach by itself, and with either autocorrelation or position
intra-frame constraints gave impressive results with little
sensitivity to varying levels of SNR. In order to determine a
limit on the level of enhancement, the original undistorted
predictor coefficients a were used in the unconstrained
algorithm. In essence, the two step MAP estimation approach is
now reduced to a single MAP estimate of S,, and therefore
represents the theoretical limit for enhancement using Wiener
filtering. Plot f indicates this limit. Although only Itakura-
Saito measures are shown, similar improvement was also observed
for log arca ratios and weighted spectral slope measures. Figure
4 compares the new approach to existing techniques. Plot b shows
results from spectral subtraction as formulated by Boll [5]. An
evaluation was performed for both half and full-wave
rectification, along with one to five frames of magnitude
averaging; where these points represent the best results. Plot ¢
is from the unconstrained Wiener filtering technique. Plots d
and e are typical values for the inter-frame constraint (fixed
frame rate), and inter plus intra-frame constraints (fixed frame
and autocorrelation lags). Again f indicates the limit for the
Wiener filtering approaches.

Sound Itakura-Saito Likelthood Measure
Type Original | Lim-Oppenheim | Hansen-Clements | True LPC
Silence 1.634 1.649 0.842 0.319
Vowel 4.020 3.299 1.651 0.582
Nasal 19.814 17.656 3.968 0.324
Stop 7.261 3.979 1.099 0.435
Fricative 3.739 3.509 1.766 0.649
Glide 1.525 1.442 1.131 0.705
Liquid 9.597 4.545 0.998 0.303
Affricate 3.924 2.702 2.229 0.323
Voiced + Unvoiced | 5.838 4.293 1.761 0519
Total 4.022 3.151 1.364 0.433
SNR=+5dB

Table 1: Comparison of algorithmn over sound types for white Gaussian noise.

Itakura-Saito Likelihood Measure

-5.0 0.0 5.0 10.0
Signal-to-Noise Ratio

Figure 3: Comparison of constraint algorithms over SNR.
.) Original Distorted Speech
.) Inter-Frame Constraint: Variable Frame
.) Inter-Frame Constraint: Fixed Frame
.) Inter & Intra-Frame Constraints: Fixed Frame, Position
.) Inter & Intra-Frame Constraints: Fixed Frame, Autocorrelation
.) Theoretical limit: using undistorted LPC cocfficicnts, a.

i id ﬂ.ﬁ o.

Performance evaluation over sound classes was accomplished
by hand partitioning speech into segments. Entire sentences were
processed, and objective measures from each class were computed.
Table 1 summarizes this comparison between the unconstrained
Lim-Oppenheim technique to that of the inter and intra-frame
constraint approach. Measures for the theoretical limit using
undistorted LPC predictor coefficients a are also indicated.
Improvement is indicated for all types of speech. In addition,
the constrained approach produced superior objective measures of
quality across all speech classes at the same iteration. These
results clearly indicate improvement over the unconstrained
approach as well as spectral subtraction for additive white
Gaussian noise.

Conclusions N

The application of spectral constraints to noncausal Wiener
filtering results in improved speech enhancement. Informal
listening tests along with objective measures such as Itakura-
Saito and log-arca-ratio’s show improvement over the
unconstrained technique. By wusing the Line Spectral Pair
transformation, a modest increase in computational requirements
results in significant improvement in speech quality. This
approach to pole movement constraints is quitc robust over
direct methods applied to pole radial/angular movements.
Finally, this approach may be useful in enhancement for human
listeners as well as a preprocessor for speech recognition.
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1 Abstract

A set of iterative speech enhancement techniques employing spec-
tral constraints is extended and evaluated in this paper. The orig-
inal unconstrained technique attempts to solve for the maximum
likelihood estimate of a speech waveform in additive noise. The new
approaches (presented in ICASSP-87 [3]), apply inter- and intra-
frame spectral constraints to ensure optimum speech quality across
all classes of speech. Constraints are applied based on the presence
of perceptually important speech characteristics found during the
enhancement procedure. Previous results show improvement over
past techniques for additive white noise distortions. Three points
are addressed in the present atudy. First, a convenient and con-
sistent terminating point for the iterative technique is presented
which was previously unavailable. Second, the techniques have
been generalized to allow for slowly varying, colored noise. And
finally, a comparative evaluation was performed to determine their
usefulness as preprocessors for recognition in extremely noisy en-
vironments in the vicinity of 0 dB SNR.

2 Introduction

The general problem of automatic speech recognition is one which
requires several alternatives to be specified prior to formulation of
asolution. The type of speech, restrictions on speakers, vocabulary
size, and environment all ultimately affect recognition performance.
The specific problem of limited vocabulary, speaker dependent, iso-
lated word recognition has to varying degrees been solved. In the
past, approaches such as dynamic time warping or hidden Markov
modeling have largely been applied in tranquil environments. Stud-
ies have shown that recognition accuracy is severely reduced when
speech is uttered in noisy, stressful environments. One alternative
is to reformulate previous approaches to the recognition problem
assuming a noisy environment. Unfortunately, many systems are
LPC based which, from research in speech enhancement and cod-
ing are known to deteriorate rapidly in noise. Another alternative,
which would be beneficial for recognition as well as speech trans-
mission systems is to develop robust enhancement preprocessors.
Such preprocessors would produce speech or recognition features
which are less sensitive to background noise so that existing recog-
nition systems may be employed.

The set of speech enhancement algorithms under consideration
were previously developed for improving both speech quality and
all-pole speech parameter estimation [3,4]. The basis of these al-
gorithms is to form a maximum likelihood -estimate of the speech
waveform in additive noise with the constraint that the signal be
an all-pole process. In section 3, a review of the constrained tech-

. niques is presented. A comparative evaluation is presented in sec-

tion 4 which include; additive white Gaussian noise, and slowly
varying colored aircrafi interior noise. Finally, the enhancement
algorithms are evaluated to determine their ability as preproces-
sors for automatic recogaition in extremely noisy environments.

3 Iterative Speech Enhancement

The success of a speech enhancement algorithm is dependent on
the objectives made in deriving an approach. Assumptions made
in this environment include: i) the noise distortion is additive,
ii) only the degraded speech signal is available, and iii) the noise
and speech signals are uncorrelated. The basis of the original un-
constrained iterative enhancement approach is noncausal Wiener
filtering {5]. This approach attempts to solve for the maximum like-
lihood estimate of a speech waveform in additive white Gaussian
noise with the requirement that the signal be the response from
an all-pole process. Crucial to the success of this approach is the
accuracy of the estimates of the all-pole parameters at each itera-
tion. The algorithm is formulated by considering the case where all
unknowns (all-pole speech parameters &, noise free speech Sp) are
random with a priori Gaussian probability density functions. The
basic procedure used is a maximum a posteriori (MAP) estimator,
which maximizes the probability density function of the unknown
parameters given the noisy observations. After some simplification,
it can be shown that the resulting equations for the joint MAP es-
timate of @ and Sp become nonlinear, involving partial derivatives
with respect to & Lim and Oppenheim considered a suboptimal
solution employing a sequential two step approach based on MAP

estimation of Sp followed by MAP estimation of & given 50,.-,

where 50'1 is the result of the first estimation. This sequential es-
timation procedure is linear at each iteration, and continues until
some convergence criterion is satisfied. After further simplifying
assumptions, it can be shown that the MAP estimation of Sp is
equivalent to a minimum mean squared error (MMSE) estimate.
In addition, as the observation window increases, the procedure for
obtaining a MMSE estimate approaches a noncausal Wiener filter.

Although successful in a mathematical sense, this technique has
received little application due to several factors. First, the scheme
is iterative with sizable computational requirements. Second and
most important, is that slthough the original sequential MAP esti-
mation technique was shown to increase the joint likelihood of the
speech waveform and all-pole parameters, a heuristic convergence
criterion had to be employed. This is a serious drawback if the ap-
proach is to be used in environments requiring automatic speech en-
hancement. After an extensive investigation [1)], this approach was
found to produce significant levels of enhancement for white Gaus-
sian noise in 3-4 iterations. Some interesting anomalies were noted
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which helped motivate development of the constrained approaches.
First, as additional iterations were performed, individual formants
of the speech decreased in bandwidth and shifted in location. Sec-
ond, frame to frame pole jitter was observed across time. Both
effects contributed to unnatural sounding speech. The goal there-
fore was to formulate a new set of enhancement algorithms which
impose constraints on pole locations across time (inter-frame) and
iterations (intra-frame). Spectral constraints are applied to the all-
pole parameters @; which ensure that; i) the all-pole speech model
is stable, ii) it possess speech-like characteristics (e.g., poles are
not too close to the unit circle causing narrow bandwidths), and
iii) the vocal tract characteristics do not vary wildly from frame
to frame when speech is present. Due to the constraints imposed,
improved estimates of & ; result. Given this new estimate, the sec-
ond MAP estimation of Sp can be carried out. In order to increase
numerical accuracy, reduce computational requirements, and elimi-
nate inconsistencies in pole ordering across frames, the line spectral
pair (LSP) transformation was used to implement most of the con-
straint requirements. Figure 1 illustrates the framework for the
constrained enhancement algorithms.

mﬂ.f-g

Transform @y to LSP coefficients:

2 = 8, = B9
LPC Prodictor L&' meflicienls  Position, Differonce cosfficionts
+
Inler-Frome lalre-frams
Apply C i IA
A torw a,
ay Iteration

+
L Convert Pl.d"" 3"
+

Construct noncausal Plw)
Wiener Filter: Hlw) =
: Flew) + Flo)
Filter s°| . Q a

i Repeat until A ¢ < TWAssHOLO I

Figure 1: Framework for the constrained iterative enhance-
ment algorithms.

4 Evaluation

Speech degraded by additive noise was processed using various
configurations of the constrained algorithms. Enhancement al-
gorithms evaluated include: algorithms incorporating inter-frame
constraints applied on a fixed-frame (FF-LSP:T) or variable-frame
(VF-LSP:T) basis to the LSP coefficients, algorithms incorporat-
ing intra-frame constraints applied to autocorrelation coefficients
(Auto:I) or LSP coefficients (LSP:I), along with combinations (FF-
LSP:T,Auto:1), (FF-LSP:T,LSP:I), (VF-LSP:T,LSP:1). In the eval-
uation, global estimates of SNR were employed since the assump-
tion of accurate local estimates is normally unrealistic in actual en-
hancement environments. Also, energy thresholds for inter-frame
constraints were obtained from frame energy histograms at each
SNR. In this study, the primary tool for quantitative enhancement

evaluation has been objective quality measures. This is based on
extensive work carried out in the formulation of objective speech
quality measures (6], and the application of these measures to en-
hancement [2]. Fair to good correlation has been shown to exist
between subjective and objective quality measures. v

Evaluation Using Additive White Gausslan Noise

As previously reported, the constrained enhancement algorithms
have been shown to significantly improve speech quality over such
past techniques as the unconstrained Lim-Oppenheim technique
as well as spectral subtraction with magnitude averaging [3]). Al
though significant improvement was noted, it was possible the algo-

rithms were improving one or two particular speech classes which
had high concentrations over the speech considered. Therefore, a
comparative evaluation over speech sound classes was performed.
Improvement over all classes of speech was reported.

As mentioned, the iterative enhancement algorithma must be
suspended at some iteration. In order to determine a terminat-
ing iteration, a criterion must be selected to evaluate levels of im-
provement as the iterative scheme progresses. The criterion chosen
is based on objective speech quality measures. Such measures are
formed by a weighted comparison of actual and resulting estimated
LPC predictor coefficients found during enhancement. The obvi-
ous problem with such a criterion is that, outside of simulation,
the actual speech is unknown during the procedure. If, however,
simulations were to show a consistent value for the best iteration
in terms of this criterion, a convenient stopping condition would
exist. Previous results based on objective quality measures indi-
cate the unconstrained approach to produce maximum objective
quality at different iterations for different classes of speech. Ta
ble 1 illustrates this behavior over the indicated sound classes. As
this table shows, maximum overall speech quality is obtained at
the third iteration, with considerable variation across sound types.
For example, glides required two iterations, with nasals, liquids,
and affricates requiring between five and six. Therefore, depend-
ing on sound class concentration, the optimal iteration (in terms of
minimum distance) would vary considerably. This result indicates
the inability to determine in advance a terminating iteration for
the unconstrained approach since it is highly dependent on sound
class and to a lesser degree on SNR.

The new constrained enhancement algorithms appear to solve
this problem of sound class dependency. Table 2 presents results
from an equivalent evaluation for one of the constrained enhance-
ment algorithms (FF-LSP:T,Auto:I). A comparison between ta
bles 1 and 2 show that the constrained approach produces superior
quality measures across all speech classes at the same iteration.
This improvement surpasses even combined individual maximum
quality measures found across the unconstrained approach. Thus,
the constrained enhancement algorithm does more than simply
impose a constraint to adjust the rate of improvement: the con-
strained approaches consistently result in superior objective speech
quality at the same iteration over all sound classes, independent of
SNR. Table 3 summarizes optimum terminating points in terms
of objective quality for the enhancement algorithms. Techniques
employing only inter-frame constraints consistently resulted (93%
occurrence) in maximum quality at the third iteration. Techniques
employing inter- and intra-frame constraints had a 97% occurrence
of maximum quality at the seventh iteration. In addition, adjacent
iterations differ only slightly in objective quality for the constrained
techniques. This ia in sharp contrast to the large variations in ad-
jacent iterations for the unconstrained technique. Therefore, if the
iterative scheme were allowed to continue or halted one iteration
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irior to optimal, only minor differences in speech quality would
esult. The results consistently suggested that the constrained en-
\ancement algorithms reach a maximum level of speech quality at
he same iteration, independent of SNR and sound class concen-
rations.

Seund Tiakuro-Satto Lakelihood Measure (across sterahions)}

Type Onginal | #1 #e2] #3 #i ¥5 #6 | #7
Silence 1.63 1.63 | #1.61 1.85 193 3.7¢ 20.36 | 49.80
Vowsl 4.03 3.73 245 | $3.30 T2 8.32 1218 —_—
Nasal 19.81 [ 19.15 | 18.43 | 17.88 | 17.01 16.59 | #15.19 | 15.70
Stop 7.26 .11 4.93 3.98 | 43.82 6.89 25.62 | 29.69
Fricative 3.74 3.84 3.53 | $3.51 390 71.88 47.83 | 9411
Glids 1.53 1.41 | 133 1.44 3.23 4.30 839 | 15.58
Liquid 9.60 8.34 6.55 455 3.61 | §1.68 6.38 | 30.00
Affricate .92 3.81 331 2.70 2.00 | $1.58 2.91 3.98
Voiced + Unvoked .84 | B33 | 497 | 429 | $4.20 7.35 81.87 -

Total 4.02 3.72 340 | #3.15 3.27 5.80 43.46 —

fable 1: Lim-Oppenheim unconstrained speech enhance-
pent for AWGN, SNR=+5dB. Optimum perceived quality
or a particular speech class is indicated by a &.

Sound Ttakura-Saito Likelthood Measure (acroas sterations]

Type Omginal | 1| #2| #S| #4| #5| #6| #7] #8
Silence 1.6 1.55 13§ 1,16 [ 1.03 | 0.08 | 0.93 | #0.88 | 0.80
Yowel 4.02 3.32 2387 2.39 | 1.86 | 1.68 | 1.57 | &#1.56 | 1.83
Nasal 10.81 | 16.45 | 12.40 | 10.52 | 8.88 | 6.84 | 4.03 | #3.70 | 5.55
Stop 738 | 6.35 4.84 3.49 | 267 | 1.8) [ 1,38 | #1.13 | 1.43
Fricative 374 | _SA3 | 303 | 3.61 | 2.34 [ 185 | 1.73 | #1.61 | 1.84
Glide 1.53 1.39 1.38 1.33 | 1.2 | 1.19 | 1.18 | #1.15 | 1.32
Liquid 9.80 648 338 2.24 | 161 | 1.21 [ 0.94 | #4092 | 1.1
Affricate 392 | 372 | 345 | 312 [2.80 [ 2.60 | 2.47 | #2.37 | 3.96
Voiced 4+ Unvoiced 5.84 4.64 .68 3.01 [ 250 | 32.13 | 1.88 | $1.74 | 1.95

Total 4.02 03 2.44 3.07 [ 1.80 | 1.61 | 1.46 | $1.38 | 1.49

‘able 2: Hansen-Clements Inter & Intra-frame constrained
peech enhancement for AWGN, SNR=+5dB. Optimum per-
eived quality for a particular speech class is indicated by a .

Additive White Caxassian Nowse SNR

Constrained 5d8 [ -0dF ] +5dF | +I0dB .
Enkancement Optimal Jtcration waing Tlakura-Sarto Inkelihood Measure | OVERALL
Algorithm Jter.  Freq. [ Tter. Freq. [ Iter. Freq. | lter.  Freg. | Tter.  Freg.
FF.LSP:.T 3 100% | 3 7% |3 7% | 8 100% |[ 3 0%
1 13% | 4 13% 4 9%
VF.LSP.T 2 0% | 3 5% (3 % 2 100% | 3 3%
4 10% | 4 15% | 4 8% 4 %
FLSP:-TAstod | 7 100% | 7 100% | 7 100% | 7 8% [ 7 TT%
8 12% || & 3%
FR.LSP:T,LSP:T || 4 100% | 4 100% | 4 100% [ 4 100% [ 4 100%
VF-LSP:T,LSFP:I | 4 100% | 4 100% | 4 100% | 4 100% || 4 100%

Table 3: Summary of optimal terminating iteration across SNR for AWGN.

\dditive Non-White, Non-Stationary Noise

The unconstrained Wiener filtering/all-pole modeling approach
vas previously generalized for colored aircraft noise [1]. In that
tudy, an extensive investigation was performed using various spec-
ral estimation techniques (MEM, MLM, Burg, Bartlett, Pisarenko,
Yeriodogram) for securing estimates of colored background noise,
long with varying SNR (-20dB to +20dB). Results indicated that
Jartlett’s method produced spectral estimates which resulted in
lighest quality improvement for this particular distortion.

Noise recorded from a Lockheed C130 aircraft interior was used
o degrade noise free utterances. For these simulations, two Bartlett
pectral estimates found from the original noise waveform (to avoid
omplications in silence detection) were used across each sentence.
[he noise was both colored and non-stationary, so increasing the

number of spectral estimates across the utterance should improve
enhancement performance. An analysis was performed for an inter-
frame (FF-LSP:T), and s combined inter and intra-frame (FF-
LSP:T,Auto:I) approach. Informal listening tests indicated notice-
able quality improvement. Figure 2 illustrates results from this
study. All configurations examined showed significant improve-
ment in Itakura-Saito measures. Plot a shows Itakura-Saito mea-
sures for the original distorted speech. Plot 4 is from the uncon-
strained Wiener filtering technique. Plots ¢ and d are typical values
for the inter-frame constraint (FF-LSP:T), and inter- plus intra-
frame constraint (FF-LSP:T, Auto:I) approaches. In order to de-
termine limits on the level of enhancement, the original undistorted
predictor coefficients were used in the unconstrained algorithm. In
essence, the two step MAP estimation approach is now reduced to a
single MAP estimate of '5-"0, and therefore represents the theoretical
limit for enhancement using Wiener filtering. Plot e indicates this
limit. Although only Itakura-Saito measures are shown, similar
improvement was observed for log area ratio and weighted spectral
slope distance measures. As this figure indicates, significant levels
of enhancement result for the constrained enhancement algorithms.

These results show that the constraint algorithms outperform
the unconstrained approach for a colored distortion. However, it is
possible that the constrained techniques are improving only partic-
ular speech classes which may have high concentrations in the test
utterances. Therefore, a performance evaluation over sound classes
was performed by hand partitioning speech into segments, pro-

Itakura- Saito Likelihood Measure

Distance
asuelsig

44

0 t + t
0 5
Signal-to-Noise Ratio

-
[e]

Figure 2: Comparison of inter & intra-frame constrained en-
hancement algorithms for colored aircraft noise over SNR.

a) Original Distorted Speech

b.) Lim-Oppenheim: Unconstrained Wiener filtering

¢.) Hansen-Clements: employing Inter-Frame constraints

d.) Hansen-Clements: employing Inter & Intra-Frame constraints
e.) Theoretical limit: using undistorted LPC coefficients &.
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ing entire sentences, and computing objective measures from each
class. Table 4 summarizes this comparison between the uncon-
strained technique to that of the inter- and intra-frame constraint
approach (FF-LSP:T,Auto:I). Measures for the theoretical limit
using undistorted LPC coefficients are also indicated. It should be
noted that voiced plus unvoiced measures give a better indication
of quality improvement due to the time varying nature of the inter-
fering background noise. Improvement is indicated for all types of
speech. This shows that the constrained techniques are enhancing
all aspects of the speech signal.

Sound Itaksra-Saste Likelihood Measnre
Type Original | Lim-Oppenheim | Hansen-Clements | Trse LFC

Sileace 6.63 6.33 4.33 2.03
Yowal 3.23 2.54 1.44 0.53
Nasal 4.03 3.26 2.13 0.45
Stop 1.58 1.29 0.68 0.61
Fricative 1.37 1.09 0.85 0.65
Glide 1.14 1.04 0.52 0.51
Tiquid 132 058 0.a3 0.18
Affricate 0.90 0.51 0.33 0.16
Yoiced + Unvoiced 3.27 1.78 1.08 0.52
Total 4.18 3.88 2.7¢ 1.17

Table & Comparison of unconstrained (Lim-Oppenheim)
and inter- and intra-frame constrained (Hansen-Clements)
algorithms over sound types for slowly varying colored noise.
SNR = +5 dB

Recognition Evaluation

A fairly standard, isolated-word, discrete-observation hidden
Markov model recognition system was used for evaluation. This

system was LPC based and had no embellishments. In all experi-

ments, a five state, left-to-right model was used. System dictionary
consisted of twenty highly confusable words used by Texas Instru-
ments and Lincoln Labs to evaluate recognition systems. Subsets
include {go,oh,no,hello} and {six,fix}. Twelve examples of each
word were used, six for training, six for recognition (i.e., all tests
fully open). A vector quantizer was used to generate a 64 state
codebook using two minutes of noise free training data. The twenty
models employed by the HMM recognizer were trained using the
forward-backward algorithm. Table 5 presents results from five sce-
narios using a noise free codebook and noise free trained system.
Spectral subtraction preprocessing employed three frames of mag-
nitude averaging. The unconstrained Lim-Oppenheim approach
was terminated at the third iteration. The constrained Hansen-
Clements (FF-LSP:T,Auto:I) was terminated at the seventh. As
these results indicate, recognition was reduced to chance for noisy,
spectral subtraction, and Lim-Oppenheim (-5,0,5 dB) speech. The
constrained approach resulted in improved recognition across all
SNR considered, which is quite remarkably in light of the severe
levels of noise, and difficulty of dictionary employed. However, re-
liable recognition in such a hostile environment may require more
than merely extending existing techniques. As a final compari-
son, three tests were performed using noisy and enhanced speech
(SNR=+10dB). For the noisy case, speech was coded using a noisy
codebook, and recognition performed using a noisy trained HMM
recognizer. Similar tests were performed for two enhancement tech-
niques, (i.e., enhanced words coded using enhanced codebook, and
tested using enhanced speech trained HMM recognizer). 40% of
the errors in recognition were caused by misclassification of lead-
ing consonants (especially fricatives),

RECOGNITION RESULTS
Condition Signal-to-Nosse Ratio
(nosse free trasning) | Original | -5dB | 0dB | +5dB | +104B
Notse free 88%
Noisy 5% | 5% | 6.7% | 5%
Spectral Subtraction 5.8% |71% | 5% 5.4%
Lim-Oppenheim 5.4% [5.8% | 7.5% | 12.5%
Hansen-Clements 15% | 14% [ 19.5% | 34.5

Train 8§ Recognize In Same Environment
Noise free | Noiay 1 | Hansen-Clements t | Lim-Oppenheim ¢
88% 950% 7% 23%

Table 5: Recognition performance using enhancement preprocessing in AWGN.,
t SNR = +104B

b Conclusions

The constrained speech enhancement algorithms have been shown
to improve speech quality acroes all classes of speech for both ad-
ditive white Gauasian and slowly varying, non-white degradations.
In addition, a consistent terminating procedure has been identified
which is independent of sound class concentration and relatively in-
sensitive to varying SNR. Finally, the constrained algorithms have
shown improvement as a preprocessor for speech recognition, ak
though their ability to bring performance up to an acceptable level
in SNR's low as those considered is questionable. Though the en-
hancement procedures improved LPC parameter estimation sub-
stantially, LPC-based strategies may simply be inappropriate for
SNR'’s of roughly 0dB. Further work in this SNR range will require
as a minimum, different front end processing.

This work sponsored in part by U.S. Army Human Engineering Laba.
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Abstract

In this paper, an improved form of iterative speech enhancement for single channel inputs
is formulated. The basis of the procedure is sequential maximum a posteriori estimation
of the speech waveform and its all-pole parameters as originally formulated by Lim and
Oppenheim, followed by imposition of constraints upon the sequence of speech spectra.
The new approaches impose intra- and inter-frame constraints on the input speech signal
to ensure more speech-like formant trajectories, reduce frame-to-frame pole jitter and
effectively introduce a relaxation parameter to the iterative scheme. Recently discovered
properties of the line spectral pair representation of speech allow for an efficient and
direct procedure for application of many of the constraint requirements. Substantial
improvement over the unconstrained method has been observed in a variety of domains.
First, informed listener quality evaluation tests and objective speech quality measures
demonstrate the technique’s effectiveness for additive white Gaussian noise. A consistent
terminating point for the iterative technique is also shown. Second, the algorithms have
been generalized and successfully tested for noise which is non-white and slowly varying in
characteristics. The current systems result in substantially improved speech quality and
LPC pararmeter estimation in this context with only a minor increase in computational
requirements. Third, the algorithms were evaluated with respect to improving automatic
recognitfom of speech in the presence of additive noise, and shown to outperform other

enhancement methods in this application.



1 Introduction

The presence of background noise can seriously degrade the performance of many speech
processing systems, since most digital voice communication and recognition systems have
A ~ traditionally been formulated in noise-free, tranquil environments. There are, however,
many instances where such systems must perform reliably in noisy environments. As an
example, consider the use of speech recognition in a noisy aircraft cockpit. It has been
shown that recognition performance is severely reduced in such an environment due to
background noise and pilot task requirements [8, 13, 18]. Since commonly used front-
-ends do not usually take noise into account explicitly, recognition deteriorates rapidly.
One alternative, which would benefit recognition as well as speech coding systems is to
develop enhancement preprocessors that produce speech or recognition features less sen-
sitive to background noise, so that existing recognition/communication systems may be
employed. Such preprocessing systems would also benefit human listeners by improving
speech characteristics in voice communications systems.

The problem of enhancing speech degraded by additive background noise covers a
broad spectrum of applications and issues [12]. A system may be directed at one or
more objectives such as improving overall quality, increasing intelligibility, or reducing
listener fatigue. Assumptions made in this investigation include: i) the background
noise distortion is additive, ii) only the degraded speech signal is available (i.e., single
microphone environment), and iii) the noise and speech signals are uncorrelated.

This paper presents an improved method for iterative speech enhancement based on a
set of vocal tract spectral constraints. The framework of this approach was adopted from
all-pole modeling /noncausal Wiener filtering as formulated by Lim and Oppenheim [11].
The original iterative technique attempts to solve for the maximum a posteriori (MAP)
estimate of a speech waveform in additive white noise. The improved techniques are for-
mulated using inter- and intra-frame constraints to ensure speech-like characteristics. An
efficient technique for applying the spectral constraints is based on the line spectral pair
(LSP) transformation of the LPC parameters. The paper is arranged as follows. First,

the iterative unconstrained technique is discussed. Several anomalies are cited which



motivate formulation of constrained enhancement techniques using the LSP transforma-
tion. Next, algorithm evaluation is performed for additive white Gaussian noise, and a
slowly varying non-white distortion. Finally, a comparative evaluation is also performed

. to determine their usefulness as preprocessors for recognition in noisy environments.

2 TIterative Speech Enhancement

Enhancement based on the estimation of all-pole speech parameters in additive white
Gaussian noise was investigated by Lim and Oppenheim [11], and later for a colored
noise degradation by Hansen and Clements [3, 4, 6]. This approach attempts to solve for
the maximum a posteriori estimate of a speech waveform in additive white Gaussian noise
with the requirement that the signal be the response from an all-pole process. Crucial to
the success of this approach is the accuracy of the estimates of the all-pole parameters
at each iteration. After some simplification, it can be shown that the resulting equations
for the joint MAP estimate of the all-pole speech pararneters @, gain g, and noise free
speech So become nonlinear. Lim and Oppenheim considered a suboptimal solution
employlng sequentlal MAP estimation of Sp followed by MAP estimation of &, g given
S 0,i, where So ; is the result of the ith estimation. The sequential estimation procedure is
linear at each iteration, and must continue until some criterion is satisfied. With further
simplifying assumptions, it can be shown that MAP estimation of Sy is equivalent to
noncausal Wiener filtering of the noisy speech Y. Lim and Oppenheim showed this
technique, under certain conditions, increases the joint likelihood of @ and Sy with each
iteration. It can also be shown to be the optimal solution in the mean-squared sense for
a white noise distortion.

Although successful in a mathematical sense, this technique has received little appli-
cation due to several factors. First, the scheme is iterative with sizable computational
requirements. Second and most important, is that although the original sequential MAP
estimation technique was shown to increase the joint likelihood of the speech waveform
and all-pole parameters, a heuristic convergence criterion had to be employed. This

represents a serious drawback if the approach is to be used in environments requiring



automatic speech enhancement. Hansen and Clements performed an extensive investiga-
tion of this technique for additive white Gaussian (AWGN), and a generalized version for
additive non-white, non-stationary aircraft interior noise {3, 4]. Objective speech quality
_ measures, which have been shown to be correlated with subjective quality [17], were used
in the evaluation. This approach was found to produce significant levels of enhancement
for white Gaussian noise in 3-4 iterations. Improved all-pole parameter estimation was
also observed in terms of reduced mean squared error. Only if the probability density
function is unimodal, and the initial estimate for @ is such that the local maximum
equals the global maximum, is the procedure equivalent to the joint MAP estimate of @,
g and So. Some interesting anomalies were noted which helped motivate development
of the constrained approaches. First, as additional iterations were performed, individual
formants of the speech consistently decreased in bandwidth and shifted in location as
indicated in Figure 1. Second, frame-to-frame pole jitter was observed across time. Both
effects contributed to unnatural sounding speech. Third, although the sequential MAP
estimation technique was shown to increase the joint likelihood of the speech waiveform
and all-pole parameters, a heuristic convergence criterion had to be employed. Lim and
Oppenheim recognized these limitations and an improved method was formulated by
Musicus and Lim [15] which addresses some of them. Even with their improvements,
however, no explicit frame-to-frame constraints are employed. Since the original algo-
rithm already constrains the speech to be the response from an all-pole system, applying
further constraints on the pole movements imposes no new assumptions on the speech
or noise, and may improve the algorithm’s performance. The imposition of some rela-
tively simple constraints turns out to improve speech quality results, even when directly

attached to the original Lim-Oppenheim method.

Enhancement with Spectral Constraints

Consider the statistical parameter estimation of speech in the presence of noise as
formulated by Lim and Oppenheim where all unknown parameters over a short interval
(all-pole speech parameters &, gain g, and noise free speech Sp) are random with a prior

Gaussian probability density functions. It was shown that MAP estimation of @, g, and



So given noisy observations Yo, results in a set of nonlinear equations. Therefore, instead
of joint estimation of @ and 5o, a suboptimal solution was formulated employing a two-
step approadx based on MAP estimation of Sp given Yo, followed by MAP estimation of
d, g given So i, where So ; is the result of the i:th estimation. In the currently reported
work, constraints are imposed on the vocal tract spectrum between MAP estimation
steps. The procedure for obtaining the MAP estimates of @ and g remain the same, as
that of Lim and Oppenheim. In the current system, constraints are applied to a; to ensure
that, i) the all-pole speech model is stable, ii) it possesses speech-like characteristics (e.g.,
poles are in reasonable places with respect to each other and the unit circle), and iii) the
vocai tract characteristics do not vary by more than a prescribed amount from frame to
frame when speech is present. Given the new estimate d:41, the second MAP estimation
of Sy is performed by maximizing its conditional probability density function given i1
and the observed noisy sequence Yo. Since this probability density function is jointly
Gaussian, the resulting MAP estimate is equivalent to a MMSE estimate of Sp. With
further simplifying assumptions, it can be shown that MAP estimation of Sp reduces
to a minimum mean squared error (MMSE) estimate, and as the observation window
increases, the procedure becomes a noncausal Wiener filter. Once the new estimate of § 04
is formed, the iterative procedure continues by re-estimating a;, applying constraints to a:,
and forming the noncausal filter using Giy1 to re-estimate .A';'.o'.-. The procedure continues
until some convergence criterion is satisfied. Due to the flexibility of the enhancement
framework, a variety of constraint options are possible between MAP estimation steps.

Figure 2 presents an overview of two classes of constraints which include inter-frame
(across time) and/or intra-frame (across iterations). Each technique differs in the type
of constraint and computational requirements. The present evaluation focuses on two
representative inter-frame (FF-LSP:T) and combined inter-frame plus intra-frame (FF-
LSP:T,Autc:I) based techniques. Further discussion of all techniques are found in [5,
6, 7). For historical purposes, several comments concerning the other approaches are
summarized.

Since observations indicate that poles of the LPC filter often move unrealistically

close to the unit circle when the unconstrained iterative technique is allowed to continue,



initial techniques limited polé movement by applying constraints directly to radial and/or
angular movements of the LPC poles across iterations and time. For these techniques,
LPC predictor coefficients were obtained, a Pth-order root-solve was performed and a
pole ordering step applied. If pole movement fell within a movement constraint window,
" a constraint was applied, otherwise, no constraint was applied based on the assump-
tion that either movement was allowable, or that the pole was mischaracterized due to
the ordering step. Results showed substantial improvement in objective speech quality
(as measured by Itakura-Saito, log-area-ratio, and weighted spectral slope (Klatt) mea-
sures [17]). Informal listening tests also revealed improvement, especially during vowels
and vowel transitions toward nasals. Larger levels of quality improvement were observed
using inter-frame versus intra-frame constraints, thus suggesting that temporal variation
in pole locations have a greater effect on overall quality.

Although successful in improving speech quality, constrained techniques based on di-
rect pole location were computationally éxpensive. A Pth-order root-solve and a pole
ordering step per frame for each iteration was required. Since root solving is not al-
ways numerically accurate and ordering can be inconsistent across frames, a more robust
approach was sought to implement these constraints.

An alternative approach for implementing the spectral constraints was formed by
employing the line spectral pair (LSP) transformation as a method for representing the
vocal tract spectrum. Previous success of the LSP transformation in low-bit-rate speech
coding by Crosmer [2] led to the use of LSP’s for this purpose.

The Line Spectral Pair (LSP) [9, 19] transformation comes from modifying the LPC
polynomial, A(z), in two ways: P(z) and Q(z) are obtained by augmenting A(z)’s PAR-
COR sequence with a +1 and —1 respectively. This results in two polynomials of order

p + 1 which have all roots on the unit circle.

M-1

P(z) = (1-2z71) ‘_H (1 —2coswiz™l + z"’) (1)
M-1

Qz) = (1+:z7Y ~ II (1 —2cosw;z™ 1 + z"’) (2)

The angles of the roots, { wi,# = 1,2,..., M}, are called the line spectrum pairs. In

general, A(z) will represent a stable LPC filter if and only if the roots of P(z) and Q(z)
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interleave. The angles of the roots of P(z), correspond roughly to the angles of the roots
of A(z) (formant frequencies), and the separation of a particular root of P(z) from the
closest root of Q(z) indicates in some sense the bandwidth of that resonance. The angle
of the roots of P(z) between 0 and 7 are termed the position parameters (i.e., the odd
- indexed LSP parameters, {p; = wai-1,1 = 1,2,...,M/2}), and the separations mentioned

above are the difference parameters, d;.
{Idl| =jr=n_§?1(|w2i+j_w2i I)a"= 132”M/2} (3)

The sign of d; is positive if wy; is closer to wai4j, and otherwise is negative. The useful
propérties of the LSP’s include an easy check for stability, excellent interpolation proper-
ties, ease of computation (compared to roots of A(z)), some well understood trajectories
for speech, and the relative insensitivity of the auditory system under quantization of the

difference parameters.

Enhancement Using the LSP Transformation

In these techniques, constraints are imposed on the LSP parameters directly. In
the first technique (MS-LSP:T), a five frame median smoothing constraint was placed
on the position parameters across time, with difference parameters restricted to be at
least dpsznv in magnitude, ensuring the LPC poles of reasonable bandwidth. Good im-
provement resulted without the expense of root solving or pole ordering. Plots of LSP
parameters versus time confirmed a reduction in frame-to-frame pole jitter with only a
slight increase in computational requirements. Since vocal-tract characteristics and rela-
tive strength of background noise vary across time, the imposition of spectral constraints
should be dependent on speech characteristics obtained during the enhancement proce-
dure. Therefore, the remaining constraints are applied based on particular characteristics
found in the speech waveform during enhancement.

Two inter-frame approaches are considered: a fixed frame rate (FF-LSP:T), and a
variable frame rate approach (VF-LSP:T). In the first of these, the LPC predictor coef-
ficients, @, are first converted to LSP parameters. Next, each frame’s energy is observed,

and classified as voiced or unvoiced speech according to some threshold Evjyv. A local



running count L; is kept for the number of consecutive frames which fall below the energy
threshold. If L; reaches Ly4x, all subsequent frames below the threshold are classified
as noise. This allows for a tighter pole movement constraint during long periods of si-
lence. The position parameters for each frame are smoothed using a weighted triangular
- window with a variable base of support (1 to § frames). If a frame has been classified as
noise, maximum smoothing (or tightest movement constraint) is performed. The lower
formant frequencies are smoothed over a narrower triangle width than for those posi-
tion parameters at higher frequencies in order to preserve perceptually important speech
characteristics found in the lower formants. No smoothing is performed on the difference
‘parameters since they are more closely related to formant bandwidth than formant loca-
tion. However, it is possible that a difference parameter falls within a “forbidden zone.”
When this occurs, the LPC analysis has most likely underestimated a particular pole’s
bandwidth. Since this causes unnatural sounding speech, (as found in the unconstrained
approach), the value of |d;| is set to darn. Finally, the position and difference parameters
are combined to form the constrained LPC predictor coefficients @;y1.

The (FF-LSP:T) technique applies constraints across time on a frame-by-frame basis.
Since phonetic transitions do not normally coincide with frame boundaries, an inter-frame
approach (VF-LSP:T) based on constraints applied over speech segments was formulated.
The technique is identical in theory to (FF-LSP:T), except for the front-end segmentation
algorithm which divides the signal into speech segments. Segments are chosen to be long
when the speech spectrum is slowly varying and short when the speech spectrum is
varying quickly. The LSP parameters are reconstructed with linear interpolation used to
compute the parameters for intermediate frames.

The segmentation algorithm begins by determining the onset/offset of speech by
thresholding the LPC residual energy, which produces relatively long segments. Long
segments are subdivided based on the curvature of the position parameters. This is per-
formed by computing a gain-normalized Itakura-Saito measure of the spectral distance
between the frequency response of two adjacent frames. The procedure continues by com-
puting spectral distortion of position parameters for successively longer segments until

the spectral distortion exceeds a threshold Tp. At that point, a subsegment boundary



is set, with the intermediate position parameters reconstructed via linear interpolation.
During this step, the length of a subsegment is also limited to Lyax to prevent exces-
sively long segments which might contribute to muffled or unnatural sounding speech.
The advantage of this approach is to incorporate more information from adjacent frames
when the spectrum indicates similar characteristics. This in effect, distorts the position
- parameters as little as possible when associated difference parameters indicate the pres-
ence of formants. Difference parameters for each frame are used to compute the predictor
coefficients ¢:1';+1. The difference parameters are required to be at least dyn or greater.
The convergence problems inherent in the unconstrained Wiener filtering approach
which have been pointed out [5, 7, 15], are at least partially caused by bias in the
MAP estimation. Although spectral constraints were originally constructed to be used
across frames, it has been observed that if they are used across iterations, convergence
to reasonable values occurs with much greater frequency and consistency. In particu-
lar, previous results based on objective speech quality measures show the unconstrained
Wiener filtering approach to produce minimum objective measures at different iterations
for different classes of speech [5, 7] (see Table 3). By constraining the vocal tract filter
to be a function of its values obtained from previous iterations, a much improved consis-
tency in quality across speech classes and LPC parameter &@; estimation resulted. Two
approaches were considered, one applied to the autocorrelation lags (Auto:I), the other
to the position parameters (LSP:I). The first approach simply weighted the present set
of autocorrelation lags with the same frame from previous iterations. Such a technique is
easy to perform, since the autocorrelation lags must be computed in order to estimate the
predictor coefficients @. The second approach weighted position parameters with those
from the same frame but previous iteration. If the corresponding difference parameter
indicated the adjacent position parameter to represent a formant, this approach had the
effect of constraining the formants to lie along smooth tracks across iterations. Such a
procedure is generally refered to as introducing relaxation into the iterations [16]. If the
iteration is producing results for which weighted averaging makes sense (e.g., LSP’s but
not @), improved convergence results. Results from inter-, intra-, and gombined inter-

plus intra-frame constraint approaches will be presented in the next section. Figure 3



illustrates the framework for the new set of constrained enhancement techniques.

3 Evaluation

‘We now evaluate the performance of the proposed algorithms for speech enhancement
alone, and as a preprocessor for word recognition in noisy environments. Speech was de-
graded by additive white or colored noise and processed. Enhancement algorithms eval-
uated include: techniques incorporating inter-frame constraints applied on a fixed-frame
(FF-LSP:T) or variable-frame (VF-LSP:T) basis to the LSP parameters, and algorithms
incorporating combinations of inter- plus intra-frame constraints (FF-LSP:T,Auto:]),
(FF-LSP:T,LSP:I). Global estimates of SNR! were used in the evaluation, since the
assumption of accurate local estimates is normally unrealistic in actual noisy environ-
ments. Further improvement is therefore possible if a continuous local SNR estimate is
available. The Intra-frame constraints were applied across two to three iterations.

Several parameters must be addressed to ensure proper application of spectral con-
straints. These include the voiced/unvoiced energy threshold Ev,yv, silence frame count
threshold Lasax, LSP différence parameter thresholds das;n, dymax, and the accumulated
frame-to-frame Itakura-Saito distance threshold Tp.

The energy threshold Ev,yy is used to distinguish voiced from unvoiced or silent
speech frames for use in applying inter-frame constraints. Values were obtained from
frame energy histograms at each signal-to-noiseratio. Similar enhancement levels resulted
for Ev;yv in the range between average, and one standard deviation below average speech
frame energy (e.g., Average frame energy for sentence 56 was 7719. Evy,yv set between
8000 and 5000 resulted in Itakura-Saito measures which ranged from 1.96 to 2.02).

The silence frame count threshold Las4x, is used in conjunction with Ev,yy. If Lyax
consecutive frames fall below Ey,pv, that segment is classified as silence (or noise) so

that tighter spectral constraints can be enforced. If Ey,yv is set as above, similar speech

]
1The signal-to-noise ratio is defined as 10log ( ;’E:;)’ where the summation is over the entire
length of the sentence. This definition was chosen in 'i{eeping with the format used in previous studies

on noncausal Wiener filtering. [11]



quality measures resulted with Lysax set between two and five frames. Reduced quality
measures resulted with Lyax in the eight to twelve frame range, thereby sugigesting
increased residual noise levels during silent portions.
The difference thresholds dpsrn, dprax, constrains the LSP difference parameters to
- ensure poles of reasonable bandwidths (e.g., the all-pole speech model is stable and that
it possesses speech-like characteristics). Values in the range .015 < dpynv < .031 radians,
.055 < dprax < .077 radians, resulted in good quality improvement.

The value of Tp (accumulated frame-to-frame Itakura-Saito distance threshold) greatly

effects speech segment length. If set to high, small duration phonemes can be lost (e.g., an

| initial stop and final vowel joined to form one speech segment as in be). A value of 1.2 was
found to produce segments of reasonable length and quality at higher SNR (> +5dB).
At lower SNR, frame-to-frame distance values were too large to reliably segment speech,
resulting in decreased performance.

Generally speaking, substantial enhancement resulted for a wide range of Ey/yv,
Larax, dmin, and dyrax threshold settings, indicating the algorithms robust perfo!rmance
over estimated threshold values. Only Tp, the accumulated frame-to-frame Itakura-
Saito distance threshold, proved to be sensitive, especially across varying SNR. Greater
enhancement was observed when Tp was allowed to vary across iterations.

In this study, the primary tool for quantitative enhancement evaluation has been
objective quality measures. This is based on extensive work carried out in the formulation
of objective speech quality measures for speech coding [17], and the application of these
measures to enhancement [4]. Fair to good correlation has been shown to exist between
subjective and objective quality measures, such as: the Itakura-Saito likelihood ratio, log
area ratio, and weighted spectral slope measure. These measures have been shown to be a
viable tool for use in evaluating speech enhancement algorithms for white and non-white
additive noise [4]. In addition, the Itakura-Saito likelihood ratio is also a commonly used
distance measure for speech recognition as well as for coding methods employing vector
quantization. Therefore, improvement in Itakura-Saito distance might also suggest the
possibility of improvement in automatic recognition. The speech data for enhancement

evaluation is described in the Appendix.

10



3.1 Evaluation Using Additive White Gaussian Noise

Various configurations of the new constrained enhancement algorithms were evaluated in
an additive white Gaussian noise environment. Informal listening tests indicated notice-
- able quality improvement, although no intelligibility testing was performed. A variety
of objective speech quality measures were used in the evaluation procedure. Figure 4
illustrates a comparison of typical results for the various constraint approaches. The
Itakura-Saito measure is plotted versus signal-to-noise ratio for a white noise distortion.
Plot a represents the original distorted speech. Plots b through e represent combinations
of inter-frame constraints (both fixed and variable rate), and intra-frame constraints (ap-
plied to poéition parameters/autocorrelation lags). All configurations examined showed
significant improvement in Itakura-Saito measures. Threshold settings for the variable
frame rate inter-frame constraint were somewhat sensitive to varying noise levels. This
indicates that although applying inter-frame constraints across speech segments is the-
oretically attractive and should aid in enhancement, in reality the speech segmentation
step proves to be too sensitive to varying background noise levels. However, the fixed
frame approach by itself, and with either autocorrelation or position intra-frame con-
straints gave impressive results with little sensitivity to varying levels of SNR. In order
to determine a limit on the level of enhancement, the original undistorted predictor co-
efficients @ were used in the unconstrained algorithm. In essence, the two step MAP
estimation approach is now reduced to a single MAP estimate of .S-"o, and therefore rep-
resents the theoretical limit for enhancement using Wiener filtering. Plot findicates this
limit.

One advantage of the general class of Wiener filtering approaches is that no “mu-
sical tone” artifacts are present after processing as observed in spectral subtraction
techniques[l, 3, 12]. To determine performance versus spectral subtraction, a series
of enhancement evaluations under identical conditions (same distorted utterances, same
global SNR estimates) were performed. Evaluation was performed for both half and full-
wave rectification over a SNR range of —20 to +20 dB, and employed one to five frames
of magnitude averaging (as defined by Boll [1]). See Hansen [7] for details. Full-wave

rectification resulted in improvement over a wider range of SNR, however half-wave recti-
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fication had greater improvement over the restricted SNR band of 5 to 10 dB. Magnitude
averaging lead to improved enhancement for both rectification approaches.

Next, the constraint approaches were compared to spectral subtraction and uncon-
strained noncausal Wiener filtering. All systems performed enhancement on the same
speech, with the same global estimates of SNR. Figure 5 compares quality improvement
for each technique. Although only Itakura-Saito measures are shown, similar improve-
ment was observed for log area ratios and weighted spectral slope measures (Klatt).
Itakura-Saito measures are presented since they are widely accepted as a spectral dis-
tance measure and have been used extensively for speech recognition applications. A
comparison of the three speech quality measures is shown in Table 2. The average cor-
relation between each objective quality measure and subjective qualiiy as measured by

the DAM (diagnostic acceptability test) is shown [17).

Quality Improvement Over Speech Classes

To determine individual quality improvement, an evaluation over sound classes was
performed by hand partitioning speech into segments, processing entire sentences, and
computing objective measures from each class. Table 1 summarizes the comparison
between the unconstrained technique, and an inter- plus intra-frame constrained approach
(FF-LSP:T,Auto:I). Measures for the theoretical limit using undistorted LPC predictor
coefficients @ are also indicated. Improvement is indicated for all classes of speech. These

results show that the constraint techniques are enhancing all aspects of the speech signal.

Termination Criterion

As mentioned, the iterative enhancement algorithms must be suspended at some it-
eration. In order to determine a terminating iteration, a criterion must be selected to
evaluate levels of improvement as the iterative scheme progresses. The criterion chosen
is based on objective speech quality measures. Such measures are formed by a weighted
comparison of actual and resulting estimated LPC predictor coefficients found during

enhancement. The obvious problem with such a criterion is that, outside of simulation,
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the actual speech is unknown during the procedure. If, however, simulations were to
show a consistent value for the best iteration in terms of this criterion, a convenient
stopping condition would exist. Previous results based on objective quality measures
indicate the unconstrained approach to produce maximum objective quality at different
~ iterations for different classes of speech. Table 3 illustrates this behavior over the indi-
cated sound classes. As shown, maximum overall speech quality is obtained at the third
iteration, with considerable variation across sound types. Glides required two iterations
for maximum quality, with nasals, liquids, and affricates requiring between five and six.
Therefbre, depending on sound class concentration, the optimal iteration (in terms of
minimum distance) would vary considerably. Observations from a previous investigation
indicate that the optimal iteration varies between the second and sixth and that it is also
somewhat dependent on SNR [3].

The new constrained enhancement algorithms have less sensitivity to sound class.
Table 4 presents results from an equivalent evaluation for one of the constrained enhance-
ment algorithms (FF-LSP:T,Auto:I). A comparison between tables 3 and 4 show that the
constrained approach produces superior quality measures across all speech classes at the
same iteration. The improvement surpasses even combined individual maximum quality
measures found across the unconstrained approach. Thus, the constrained enhancement
algorithm does more than simply impose a constraint to adjust the rate of improvement:
the constrained approaches consistently result in superior objective speech quality at the

same iteration over all sound classes, independent of SNR.

Termination Consistency Versus SNR

Further evaluations were performed to determine the consistency of the terminat-
ing iteration versus SNR. Table 5 summarizes optimura terminating points in terms of
objective quality for some of the enhancement algorithms. Techniques employing only
inter-frame constraints consistently resulted (94% occurrence) in maximum quality at the
third iteration. Techniques employing inter- and intra-frame constraints had a 97% oc-
currence of maximum quality at the seventh iteration. In addition, due to the relaxation

of the iterative scheme as imposed by intra-frame constraints, adjacent iterations differ

13



only slightly in objective quality for the constrained techniques. Therefore, only minor
differences in speech quality would result if the iterative scheme were halted one iteration
prior to optimum. The results consistently suggest that the constrained enhancement al-
gorithms reach a maximum level of speech quality at the same iteration, independent of
~ SNR and sound class concentrations. Thus, a convenient terminating criterion may be

determined under simulated conditions and employed in actual noisy environments.

Vocal Tract Estimation

In addition to the problem of a terminating point dependent on speech class concen-
tration and SNR, the unconstrained approach also suffered from undesirable movements
of the LPC poles. Specifically, it was observed that as additional iterations were per-
formed, individual formants of the speech consistently decreased in bandwidth and shifted
in location as shown in Figure 1. Figure 6 illustrates results from a single frame of speech
for the unconstrained and constrained approaches. The original and distorted original
spectra are the same for both approaches. Results from 4 iferations and 8 iterations are
presented for both approaches. For the unconstrained approach, the terminating point
is the fourth iteration. For this example the unconstrained approach was somewhat suc-
cessful in improving overall spectral shape, especially in the region of the second formant.
However, as additional iterations were performed, spectral distortions result, especially
with respect to bandwidth information. The constraint approach (FF-LSP:T,Auto:I) is
able to eliminate these undesirable effects. The terminating point for this approach was
the seventh iteration. The change in spectral shape between the seventh and eighth it-
erations were minor, based on visual observation and objective speech quality measures.
As this figure indicates, fine characteristics of the speech spectrum result only in the later

iterations.

Computational Issues

Discussion of algorithm performance should also address computational issues as well

as algorithm complexity. Naturally, there exists a trade-off between resulting speech
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quality and each algorithm’s computational complexity. It is clear that iterative tech-
niques require greater computer resources than non-iterative approaches such as spectral
subtraction and correlation subtraction. However, improvement in speech quality for the
constraint approaches may be substantial enough to justify the additional computer re-
- quirements. In Table 6, a comparison of enhancement algorithms are made with respect
to speech quality, relative computer resources and memory requirements, and algorithm
complexity. By applying constraints to the LSP parameters, a modest increase in com-
puter resources results in a marked increase in speech quality. For example, median
smoothing of the LSP parameters (MS-LSP:T) increases speech quality with only slight
incr;:ases in computation and complexity. If greater resources are available, more sophis-
ticated constraint approaches may be chosen. If memory and computational resources

are available, use of the constrained approaches appears justifiable.

Time Versus Frequency Plots

Isometric plots of time versus frequency magnitude spectra were constructed. In
Figure 7, each line represents a 128-point frequency analysis. The top two graphs are the
original and distorted cases. The lower left graph is the tirne versus frequency response for
the unconstrained approach, terminated at the third iteration. The lower right graph is
the frequency response after six iterations of an inter- plus intra-frame constrained (FF-
LSP:T,Auto:I) approach. These figures indicate that the considerable noise rejection

achieved in the single frame noted in Figure 6, is generally true over time.

3.2 Evaluation Using Additive Non-White, Non-Stationary

Noise

The enhancement techniques described for the white additive noise case were also tested
using non-stationary, colored noise recorded from the interior of a Lockheed C130 aircraft.

Estimates for the noise spectrum were made using Bartlett’s method [10, 14] over long
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intervals?. Energy thresholds for the inter-frame constraints were obtained from frame en-
ergy histograms at each signal-to-noise ratio. Intra-frame constraints were applied across
two to three iterations. Figure 8 and Table 7 list the results of the analysis, presented
in a manner consistent with the white noise descriptions. Although only Itakura-Saito
measures are shown, similar improvement was observed for log-area-ratio and weighted
spectral slope distance measures [7]. As seen, consistent improvement over all SNR’s and
speech sounds resulted, although the improvement was not as much as the white noise

case.

3.3 Recognition Evaluation

One application for speech enhancement is a preprocessor for an automatic recognition

‘system. For evaluation of the enhancement algorithms in this application, a set of recog-
nition experiments were performed, including: 1) the no noise condition (in order to set
an upper limit of recognition performance), 2) distorted condition with no preprocessing
(in order to set an assumed lower limit of recognition), 3) the best performing spec-
tral subtraction preprocessing (i.e., the configuration employing either half or full-wave
rectification and 1 to 5 frames of magnitude averaging which gave the highest quality im-
provement for the given vocabulary), 4) unconstrained Lim-Oppenheim preprocessing,
5) and constrained preprocessing. The evaluation was performed at six levels of SNR
(-5,0,+5,+10,+20,+30 dB) for the additive white Gaussian noise degradation.

A fairly standard, isolated-word, discrete-observation hidden Markov model recog-
nition system was used for evaluation. This system was LPC based with no embel-
lishments. In all experiments, a five state, left-to-right model was used. The system
dictionary consisted of twenty highly confusable words from a speech data base formu-

lated for recognition evaluation in diverse environments [7). These words are also used

2Previous enhancement investigations employing colored aircraft background noise, indicated that of
the spectral estimation techniques considered (maximum entropy method, maximum likelihood method,
Burg’s method, Bartlett’s method, Pisarenko harmonic decomposition, and the Periodogram method [10,
14]), Bartlett’s method produced estimates resulting in highest quality improvement for this particular

distortion [3, 6].
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by Texas Instruments and Lincoln Labs to evaluate recognition systems. Subsets include
/go-oh-no-hello/, /six-fix/, /wide-white/, and /degree-freeze-three/. Twelve examples of
each word were used, six for training, six for recognition (i.e., all tests fully open). A
vector quantizer was used to generate a 64 state codebook using two minutes of noise-free
- training data. The twenty models employed by the HMM recognizer were trained us-
ing the forward-backward algorithm. Figure 9 presents results from five scenarios using
a noise-free codebook and noise-free trained system. The 88% recognition rate clearly
indicates the difficulty (confusability) of the chosen vocabulary 3. Spectral subtrac-
tion preprocessing employed three frames of magnitude averaging. The unconstrained
Lim-Oppenheim approach was terminated at the third iteration. The constrained (FF-
LSP:T,Auto:]1) approach was terminated at the seventh iteration. Results show that
recognition was reduced to chance for noisy, spectral subtraction, and Lim-Oppenheim
preprocessed speech in the SNR range of (-5,0,5 dB). The constrained approach resulted
in improved recognition across all SNR’s considered, which is quite encouraging in light
of the severe levels of noise, and difficulty of dictionary employed. An increased number
of training tokens as well as a less confusable vocabulary would at the very least be
required if recognition in such hostile environments is to be feasible with enhancement
preprocessing. In this first set of tests, all recognition training was performed on un-
degraded speech. This serves to model the case of training a recognizer in advance in
quiet surroundings (off-line) and using it in a noisy environment. As a final comparison,
recognizer training was carried out using enhanced speech, which models training in the
field. Three tests were performed using noisy and enhanced speech at a SNR of +10dB.
For the noisy case, speech was coded using a noisy codebook, and recognition performed
using a noisy trained HMM recognizer. Similar tests were performed for two enhancement
techniques, (i.e., enhanced words coded using enhanced codebook, and tested using en-
hanced speech trained HMM recognizer). The results indicate that the new constrained
enhancement algorithms improve recognition performance over the unconstrained Lim-
Oppenheim approach. Although the scenario of training in noise, and recognizing in

noise shows improvement, the recognition system is now dedicated to a specific SNR.

- 30n isolated digit asks in quiet, the recognizer consistently scored 100% [7].
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If noise characteristics or SNR should change over time, recognition performance would
seriously degrade. The constraint approaches have been shown to be robust over varying
SNR, and therefore should result in higher recognition rates with changing levels of SNR.

It is worth noting that although performance is poor for apparently high SNR’s, the
- SNR computation was performed.over entire words. For low energy consonantal portions,
- the SNR’s may well be 20 dB lower; and for highly confusable word pairs (e.g., /six-fix/,
/go-oh-nof), errors are understandable. A detailed analysis of the error patterns bears
out this hypothesis since almost all confusions were between such pairs. For example,
in one noisy speech recognition test, 43 of 61 recognition errors (70%) were caused by
misclassification of distinguishing consonants, many of which were leading consonants
(especially fricatives). Constrained enhancement.signiﬁcantly reduces these errors (e.g.,
one test using (FF-LSP:T,Auto:]) resulted in 16 of 21 recognition errors (with 120 test
tokens) caused by misclassification of distinguishing consonants). The noise-free case
itself, gave 12% errors due to the difficulty of the test set, and the small number of
tokens (6) per word used for training. These results show that the new constrained

techniques are valuable for recognition, especially at SNR’s in the +10 to +30dB range.

4 Conclusions

The problem of enhancing speech degraded by additive white and slowly varying colored
background noise was addressed. In addition, algorithm performance as a preprocessor
for speech recognition was also considered. The set of enhancement algorithms presented
impose inter- and intra-frame constraints on the input speech signal and were shown to
be useful in enhancing speech for human listeners, and somewhat useful as preprocessing
for recognition in noisy environments. Inter-frame constraints ensure more speech-like
formant trajectories than those found in the unconstrained approach and thus reduce
pole jitter on a frame-to-frame basis. Intra-frame constraints ensure relaxation of the
iterative scheme so that overall maximum speech quality is obtained across all classes
of speech. In order to increase numerical accuracy, reduce computational requirements,

and eliminate inconsistencies in pole ordering across frames, the line spectral pair (LSP)
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transformation of the LPC coefficients was used to implement many of the constraint
requirements. The new set of constrained algorithms were shown to be effective in several
domains. First, improvement in objective speech quality measures was shown. Improved
LPC parameter estimation was also observed. Second, the algorithms were extended
- and shown to be effective on non-stationary colored noise. Third, the algorithms were
shown to improve all segments of speech for both white and non-white noise. Fourth,
the current algorithms have been shown to possess a consistent terminating criterion.
Specifically, the optimum terminating iteration was shown to be consistent over all speech
sound classes, and virtually all tésted SNR’s. Finally, the constrained algorithms have
'shown improvement as a preprocessor for speech recognition. Their ability to bring
performance up to an acceptable level in SNR’s between —5 and +5dB is questionable.
This may be due in part to the difficulty of the highly confusable test set, the small
number of tokens per word used for training, and the observation that SNR’s in low
energy consonantal portions which discriminate confusable pairs may well be 20 dB lower.
Recognition improvement in SNR’s between +10 and +30dB may be large enough to

warrant enhancement preprocessing for recognition.
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APPENDIX

All sentences were sampled at 8000 samples/sec.

SPEECH DATA
S1: The pipe began to rust while new. Female Speaker
S2: Thieves who rob friends deserve jail. Male Speaker

'S3: Add the sum to the product of these three. Female Speaker
S4: Open the crate but don’t break the glass.  Male Speaker

S5:  Qak is strong and also gives shade. Male Speaker
S6: Cats and dogs each hate the other. Male Speaker
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(a) Original (b) Distorted Original (c) 4 Iterations (d) 8 Iterations

Figure 1: Variation in vocal tract response across iterations.

Sound Hakura-Saito Likelihood Measure
Type Original | Lim-Oppenheim | Hansen-Clements | True LPC
Silence 1.634 1.645 0.842 0.319
Vowel 4.020 3.299 1.651 0.582
Nasal 15.814 17.656 3.968 0.324
Stop 7.261 3.979 1.099 0.435
Fricative 3.739 3.509 1.766 0.649
Glide 1.525 1.442 1.131 0.705
Liquid 9.567 4.545 0.998 0.303
Affricate 3.924 2.702 2.229 0.323
Voiced 4+ Unvoiced 5.838 4.293 1.761 0.519
Total 4,022 3.151 1.364 0.433

Table 1: Comparison of unconstrained (Lim-Oppenheim) and inter- and in-

tra-frame constrained (Hansen-Clements) algorithms over sound types for white
Gaussian noise. SNR = +5 dB

OBJECTIVE QUALITY MEASURE
Hakura-Saito | log-area-ratio | Klatt

[ 18] | .59 €2 | a4 |
Noisy Original 4.02 15.27 2.39
(Lim-Oppenheim) 3.15 8.78 2.19
(Hansen-Clements) 1.38 5.56 1.62

Table 2: A comparison of objective speech quality measures for noisy and en-
hanced speech employing the unconstrained (Lim-Oppenheim) and constrained
FF-LSP:T,Auto:I (Hansen-Clements) algorithms for white Gaussian noise. SNR =
+5 dB, |j| is the average correlation coefficient between objective-and subjective
speech quality[17]. '




ACROSS TIME ACROSS ITERATIONS

{(DFA:T): Direct Frame Averaging (0A:D): Off-Axds Spectral Evaluation]

of Radial Pole Locations

(DCP:I): Direct Constraints on
Maximum Pole Movement.

(DFA:T, DCP:I): Direct Weighted Smoothing of Radial Pole
Locations (time), Direct Constraints on
Maximum Radial Pole Movement (iteration].

(MS-LSP:T): Median Smoothing
) of LSP Parameters

(FF-LSP:T): Fixed-frame smoothing to:: Autocorrelation coeff.
/ constraint on LSP parameters. (huto:D movement constraint

(VF-LSP:T): Variable-frame smoothing

constraint on LSP parameters. (LSP:I}: LSP Parameter

/ movement constraint.

(VF-LSP.FF-LSP:I): Variable followed

by Fixed-frame smoothing constraints.

(FF-LSP,VF-LSP:I): Fixed followed by
Variable-frame smoothing constraints.

A4

(FF-LSP:T, Auto:I}: Fixed-frame LSP Parameter constraint (time)
Autocorrelation coefl. constraint (iteration)

(FF-LSP:T, LSP:I}): Fixed-frame LSP Parameter constraint (time)
LSP Position Parameter constraint (iteration)

{(VF-LSP:T, LSP:I): Variable-frame LSP Parameter constraint {time)
LSP Position Parameter constraint (iteration)

Figure 2: An overview of spectral constraints considered for the class of constrained
speech enhancement algorithms.
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Figure 4: Comparison of constraint algorithms over SNR.

Original Distorted Speech

Inter-Frame Constraint: Variable Frame (VF-LSP:T)

Intra-Frame Constraint: Fixed Frame (FF-LSP:T)

Inter & Intra-Frame Constraints: Fixed Frame, Position (FF-LSP:T,LSP:])

Inter & Intra-Frame Constraints: Fixed Frame, Autocorrelation (FF-LSP:T,Auto:])

Theoretical limit: using undistorted LPC coeficients 4.
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Figure 5: Comparison of enhancement algorithms over SNR.

Original Distorted Speech

Boll: Spectral Subtraction, using magnitude averaging

Lim-Oppenheim: Unconstrained Wiener filtering

Hansen-Clements: employing Inter-Frame constraints (FF-LSP:T)
Hansen-Clements: employing Inter & Intra-Frame constraints (FF-LSP:T,Auto:I)

Theoretical limit: using undistorted LPC coefficients a.



Sound

Itokura-Saito Likelthood Measure (across iteralions)

Type Originali #I] #2 ] #SL #4 f #5] #GT #7
Silence 1.634 1.615 | #1.608 1.649 1.933 3.756 20.360 | 40.884
Vowel 4.020 3.721 3.445 | #3.299 3.720 8.319 121.82 _—
Nasal 19.814 | 19.154 18.416 | 17.656 | 17.009 16.503 | #15.192 | 15.697
Stop 7.261 6.114 4.926 3.970 | #3.822 6.889 25.515 | 29.694
Fricative 3.739 3.637 3.532 | #3.509 3.902 7.658 47.829 | 94.106
Glide 1.525 1.414 | #1.333 1.442 2.231 4.300 8.391 | 15.561
Liquid 9.597 8.241 6.546 4.545 2.606 | #1.676 6.381 | 30.001
Affricate 3.924 3.609 3.213 2.702 2.091 | &1.552 2.911 2.975
Voiced 4- Unvoiced §.838 | 5.321 4.767 4.293 | $4.289 7.346 61.865 C—

Total 4.022 | 3.720 3.402 | #3.151 3.271 5.795 43.457 —

Table 3: Lim-Oppenheim unconstrained speech enhancement for white Gaussian
noise. Optimum perceived quality for a particular speech class in terms of objective
measures is indicated by a &. SNR=-+5dB

Sound Takura-Saito Likelihood Measure (across fieralions)

Type Original #1 #2 #38 #4 #5 #6 #7 #8
Silence 1.634 1.551 1.351 1.155 | 1.036 | 0.979 | 0.929 | &0.884 | 0.901
Vowel 4.020 | 3.319 2.865 2.394 | 1.863 | 1.677 | 1.571 | &1.565 | 1.828
Nasal 19.814 | 16.490 | 12.397 | 10.523 | B.6B2 { 6.840 | 4.929 | &3.789 | 5.548
Stop 7.261 6.246 4.840 3.492 | 2.668 | 1.812 | 1.383 | #1.129 | 1.435
Fricative 3.739 | 3.432 | 3.027 | 2.612 | 2.245 | 1.948 | 1.720 | #1.615 | 1.B44
Glide 1.525 1.389 1.275 1.232 | 1.219 | 1.189 | 1.161 | #1.153 | 1.217
Liquid 9.597 | 6.481 3.382 2.243 | 1.612 | 1.209 | 0.943 | #0.926 | 1.211
Affricate 3.924 3.722 3.447 3.117 | 2.806 | 2.598 | 2.472 | #2.368 | 3.966
Voiced + Unvoiced 5.838 4.642 3.658 3.006 | 2.501 | 2.131 | 1.865 | #1.740 | 1.953

Total 4.022 3.026 2.441 2.069 | 1.801 | 1.611 | 1.457 | $1.381 | 1.498

Table 4: Hansen-Clements Inter & Intra-frame constrained speech enhancement
for whilte Gaussian noise. Convergence for a particular speech class in terms of
objective quality is indicated by a &. SNR=+45dB



Additive White Gaussian Noise SNR
Constrained || -5dB | -0dB | +54dB +10 dB

Enhancement || Optimal Heration using lakura-Seito Likelihood Measure || OVERALL
Algorithm [ Hter. Freg | Iier. Freq. | Mter. Freq | Iter.  Freq. || Iter. Freg.
FF-LSP:T 3 100% | 3 81% | 3 87% | 3 100% [[ 3 93%

4 13% | 4 13% 4 7% |
VF-LSP:T 3 90% | 3 85% | 3 94% | 3 100% || 3 94%
4 10% | 4 15% | 4 6% 4 6%

FF-LSP:T,Aulo:1 }| 7 100% | 7 100% | 7 100% | 7 88% {| 7 97% |.
6 12% || © 3%
FF-LSP:T,LSP:1 || 4 100% | 4 100% | 4 100% | 4 100% || 4 100%
VF-LSP:T,LSP:] || 4 100% | 4 100% | 4 100% | 4 100% || 4 100%

Table 5: Summary of optimal terminating iteration across SNR for AWGN.

Lim - Oppenheim: Unconstrained Enhancement

i

(1a) Original

(1b) Distorted Original

(1c) 4 Iterations (1d) 8 Iterations

Hansen - Clements: Constrained Enhancement (FF-LSP:T,Auto:I)

\ N\ o

(2a) Original

(2b) Distorted Original (2c¢) 4 Iterations (2d) 8 Iterations

Figure 6: Variation in vocal tract response across iterations for la-d) unconstrained,
and 2a-d) constrained enhancement algorithms.



Relative Relative
Hakura-Saite | Complezily | Computation | Terminatling
Measure | (1-10) (1-10) Iteration
Noisy Original 4.02 T
Spectral Subtraction 3.36 2 1.5
Lim-Oppenheim 3.15 5 3 3 '
(MS-LPS:T) 2.68 6 4 4
(FF-LPS:T) 1.96 7 6 3
(F-LPS:T,Auto:I) 1.36 9 10 7

Table 6: Comparison of enhancement algorithms in terms of quality, relative com-
plexity, and relative computational resources. SNR = +5 dB, Additive white Gaus-
sian noise distortion.

Sound Hakura-Saito Likelihood Measure
Type Original | Lim-Oppenheim | Hansen-Clements | True LPC
Silence 6.63 633 | 4.32 2.03
Vowel 3.23 2.54 1.44 0.53
Nasal 4.03 3.26 2.13 0.45
Stop 1.58 1.29 0.66 0.61
Fricative 1.37 1.09 0.85 0.65
Glide 1.14 1.04 0.52 0.51
Liquid 1.22 0.55 0.22 0.18
Affricate 0.90 0.51 0.33 0.16
Voiced + Unvoiced 2.27 1.76 1.08 0.52
Total 4.15 3.86 2.74 1.17

Table 7: Comparison of generalized unconstrained (Lim-Oppenheim) and inter-
and intra-frame constrained (Hansen-Clements) algorithms over sound types for
slowly varying colored noise. SNR = +5 dB
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Figure 7: Time versus frequency plots of the sentence Cats and dogs each hate the other.
The original and distorted original (additive white Gaussian noise, SNR = +5dB)
are shown above. The lower left-hand plot is the response after three iterations
of the unconstrained noncausal Wiener filtering approach. The lower right-hand
plot is the frequency response after six iterations of an inter- plus intra-frame
constrained (FF-LSP:T,Auto:I) approach.
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Figure 8: Comparison of inter & intra-frame constrained enhancement algorithms
for colored aircraft noise over SNR.

a.) Original Distorted Speech
b.) Generalized unconstrained Wiener filtering
~ ©.) Hansen-Clements: employing Inter-Frame constralnts (FF-LSP:T)
d.) Hansen-Clements: employing Inter & Intra-Frame constraints (FF-LSP:T,Auto:I)

e.) Theoretical limit: using undistorted LPC coeflicients a.
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RECOGNITION RESULTS
Condition Stgnal-i0-Notse Ratio
(noise-free iraining) | Original -5dB_| 0dB | +5dB | +10dB | +20dB | +80dB
Noise-free 88%
Noisy 5% 5% 6.7% 5% 8% 49%
Spectral Sublraction 5.8% 7.1% 5% 5.4% 20% 55%
Lim- Oppenheim 5.4% 5.8% 7.5% 12.5% 1% 64%
Hansen-Clemenis 15% 14% 19.5% 34.5% 59% 83%
Train & Recognize In Same Environment
Noise-free Notsy ¢ Hansen-Clemenis ¥ | Lim-Oppenheim %
88% 90% 7% 23%

Figure 9: Recognition performance using enhancement preprocessing in additive
white Gaussian noise. {SNR = +410dB
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