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SUMMARY

Further development of MPC for complex systems has been impeded by: difficult

system identification, on-line computational burden, and fundamental limitations of han-

dling uncertainties. Dynamic Programming (DP) has advantages over MPC in that it finds

an optimal control policy off-line and provides closed-loop feedback solution for stochastic

systems. However, the exorbitant computation of standard DP solution algorithms has

been considered largely unrealistic for practical control problems. Meanwhile, Artificial In-

telligence and Machine Learning communities have explored approximate DP algorithms,

which are collectively known as Reinforcement Learning and Neuro-Dynamic Programming.

Their main idea is to use simulation or operation data with a function approximator to solve

DP in a computationally amenable manner. Owing to the significant disparity of problem

formulations and objectives, the algorithms and techniques available from these fields are

not directly applicable to process control problems.

This thesis develops approximate DP (ADP) strategies suitable for process control prob-

lems aimed at overcoming the limitations of MPC. The suggested approach identifies the

relevant regions of state space by performing closed-loop simulations with judiciously chosen

control policies. To deal with continuous variables, we employ a function approximation

scheme and solve the Bellman equation in an iterative manner. The rationale is that only

a very small fraction of the state space would be relevant for optimal control calculation.

The advantages are that an improved control policy from starting ones is derived off-line,

a multi-stage on-line optimal control problem is reduced to a single-stage one, and uncer-

tainties can be handled in a more rigorous and convenient way.

A critical issue of the suggested method, however, is how to choose and design the func-

tion approximator properly. A comparative study on the choice of function approximators

is provided to show that a family of local approximators is adequate for approximating the

xiv



‘cost-to-go’ function. Though the local approximators show “stable” off-line learning, un-

due extrapolations should be guarded against to have a guaranteed performance. A penalty

function method is proposed to prevent the unreasonable predictions of cost-to-go values.

The penalty function systematically adjusts “risky” estimates of cost-to-go by considering

local density of training data.

The thesis also demonstrates versatility of the proposed ADP strategy with difficult

process control problems. First, a stochastic adaptive control problem is presented. In

this application an ADP-based control policy shows an “active” probing property to reduce

uncertainties, leading to a better control performance. The second example is a dual-

mode controller, which is a supervisory scheme that actively prevents the progression of

abnormal situations under a local controller at their onset. Finally, two ADP strategies for

controlling nonlinear processes based on input-output data are suggested. They are model-

based and model-free approaches, and have the advantage of conveniently incorporating the

knowledge of identification data distribution into the control calculation with performance

improvement.
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CHAPTER I

INTRODUCTION

The objective of this thesis is to develop approximate dynamic programming (ADP) strate-

gies that are intended to overcome several outstanding problems associated with current

control strategies based on mathematical/empirical modeling and on-line optimization, the

most celebrated of which is model predictive control (MPC). The proposed approaches,

in essence, use closed-loop simulation data and function approximation to circumvent the

computational obstacle, so called ‘curse-of-dimensionality’ of the conventional algorithms

for dynamic programming (DP). The main advantages of the new framework over MPC are:

starting control policies can be improved in an evolutionary manner, on-line computation

can be potentially reduced, and known uncertainties in a process model can be handled

more rigorously. The work of this thesis is based on the ideas developed in the fields of

Artificial Intelligence (AI) and Machine Learning (ML) – referred to by various names, such

as Neuro-Dynamic Programming (NDP) and Reinforcement Learning (RL). Since the char-

acteristics and requirements of their common applications considerably differ from those of

the process control problems, these approximate methods should be understood and inter-

preted carefully from the viewpoint of process control before they can be considered for real

process control problems. Hence, this thesis brings forward novel ADP methods designed

for process control problems, addresses practical issues to make the suggested framework

“reliable” to use, and presents important process control applications that can be tackled

by the ADP methods.

1.1 Motivation

Model predictive control (MPC) is the currently accepted advanced control technique for

the process industry owing to its ability to handle complex multivariable control problems

with constraints. Typically, a dynamic model is used to build a prediction of future output
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behavior, based on which an on-line optimization finds a sequence of input moves that min-

imize output deviation from a set-point trajectory. Since the first appearance of industrial

MPC applications in the late 70s [97, 34], the last two decades of intensive research has

brought sound theories and fundamental understandings of its behavior, and has spawned a

myriad of design methods that guarantee stability and certain optimality properties [82, 76].

Despite this, there remain two important issues for MPC, which are both theoretical

and practical in nature. The first is the potentially exorbitant on-line computation needed

to calculate the optimal control moves at each sample time. This issue is particularly

relevant when the underlying model of a system is large in dimension, demands the use

of long prediction/control horizons, and is nonlinear or hybrid in nature [45, 17, 82]. The

resulting optimization problem to be solved on-line is a large-scale nonlinear program or

mixed integer program, which still presents nontrivial computational challenges despite all

the advances made in computational hardware and numerical methods. The second issue

is the MPC’s inability to take into account the future interplay between uncertainty and

estimation in the optimal control calculation [60, 31]. The problem the conventional MPC

solves at each sample time is a deterministic open-loop optimal control problem, which

thus ignores the uncertainty and feedback at future time points. MPC tries to address the

issue of uncertainty by updating the prediction equation based on fresh measurements and

re-solving the optimization on a moving window at each sample time, which is referred to as

receding horizon control implementation. This approach, however, is inherently suboptimal

for the problems that involve uncertainties and feedback.

Both issues can be addressed by the approach of (stochastic) dynamic programming

(DP) in principle [15]. DP is a closed-loop formulation that derives an optimal control pol-

icy off-line for multi-stage dynamic optimization problems. The ‘cost-to-go’ function in DP

can be used to reduce a multi-stage problem into an equivalent single stage problem, thus

reducing the on-line computational load dramatically. Also, in stochastic DP, the cost-to-go

function is calculated with respect to the information vector (sometimes called ‘hyperstate’)

to reflect the effect of uncertainty on the future costs under the optimal feedback control
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[8, 9, 62, 24]. The proper accounting of the uncertainty results in a control policy with sev-

eral desirable properties, like cautiousness and active reduction of uncertainty (i.e. active

probing) according to its importance for future control performance. Though successfully

used to derive optimal control policies for simple problems such as linear quadratic (Gaus-

sian) optimal control, the DP approach has been considered largely impractical because

analytical solution is seldom possible and numerical solution via discretization and interpo-

lation suffers from what is referred to as ‘curse-of-dimensionality’ [15].

1.2 Issues in Applying Existing ADP Methods

Conventional DP approaches necessitate solving the ‘Bellman equation’ for every possible

state through discretization of entire state space. These strategies will find exponential

growth in the computation with respect to the state dimension, resulting in excessive com-

putational and storage requirements. Whereas the process control community concluded

DP to be impractical early on, researchers in the fields of ML and AI began to explore

the possibility of applying the theories of psychology and animal learning to solving DP

in an approximate manner in the 1980s [119, 116]. The research areas related to the gen-

eral concept of programming agents by “reward and punishment without specifying how

the task is achieved” have been known as Reinforcement Learning (RL) [51, 120]. It has

spawned a plethora of techniques to teach an agent to learn cost or utility of taking actions

given a state of the system. The connection between these techniques and the classical

dynamic programming was elucidated by Bertsekas and Tsitsiklis [25, 131], who coined the

term Neuro-Dynamic Programming (NDP) because of the popular use of artificial neural

networks (ANNs) as the function approximator.

Typical RL algorithms improve the cost-to-go function on-line by trial-and-error in a

continual manner. For example, human controls a robot randomly to explore the state

space in the early phase. They also assume that the environment does not change, which

reduces the dimension of a concerned state space. On the other hand, NDP is more of

an off-line based learning [25, 20], and its basic assumption is that large amounts of data

can be collected from simulation trajectories obtained with “good” suboptimal policies.
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Their common update rule, however, is based on the incremental ‘temporal-difference’ type

learning, which is difficult to apply to continuous state variables. In addition, complex

dynamics of most chemical processes would limit the amount of data, whereas the NDP or

related algorithms require huge amounts of data [23]. Despite various approximate methods

from RL/NDP communities, their applicability to process control problems is limited by

the following disparities:

1. Continuous state and action spaces: Infinite number of state and action values

are common in process control problems due to their continuous nature. Furthermore,

the number of state variables is generally large. In this case, discretization and the

common “incremental” update rule are not practical approaches. Function approxi-

mation should also be used with a caution, because approximation errors can grow

quickly.

2. Costly on-line learning: Real-world-experience-based learning, which is the most

prevalent approach in RL, is costly and risky for process control problems. For exam-

ple, one cannot operate a chemical reactor in a random fashion without any suitable

guidelines to explore state space and gather data. Consequently, off-line learning us-

ing simulation trajectories should be preferred to on-line learning. Furthermore, one

should also exercise a caution in implementing on-line control by insuring against “un-

reliable” control actions calculated from only a partially learned cost-to-go function.

3. Limited data quantity: Though large amounts of simulation data can be collected

for off-line learning, complex dynamics of most chemical processes still limit the state

space that can be explored, leading to regions of sparse data. This limits the range

over which the learned cost-to-go function is valid. Thus, learning and using of the

cost-to-go function should be done cautiously by guarding against unreasonable ex-

trapolations.

In summary, an adequate ADP approach for process control problems should be able to

provide a reliable control policy given limited coverage of continuous state and action spaces

by training data.
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1.3 Outline of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we compare the conven-

tional MPC formulation with that of DP to bring out the key advantages of the latter. A

brief overview of DP formulation is provided along with traditional algorithms for solving

it. Then, we review popular approximate approaches for solving DP, mainly found in the

RL and NDP literature. Though the algorithms can be extended to any type of Markov

processes in principle, typical setup of their concerned problems are discrete states and ac-

tions formulated with a probabilistic model, for which the algorithms have been developed

accordingly. They are incrementally updating the cost-to-go function with the state tra-

jectory obtained from experiments or simulations. The update scheme assumes that many

trial-and-errors can be allowed for refinement of cost-to-go function and multiple realiza-

tions of control policies to visit a same state with different control actions. It turns out that

these learning strategies are not adequate in the context of process control problems.

In Chapter 3, we suggest an ADP framework for process control applications. The

proposed framework is based on ‘value or policy iteration.’ The suggested approach shares

the commonality with the aforementioned techniques in that the simulation and function

approximation are involved in solving the Bellman equation. Suboptimal control policies

are judiciously chosen to identify a relevant envelope of the state space, and a function

approximator is employed to generalize cost-to-go function over a continuous state space. A

Van de Vusse reaction example illustrates the efficacy of the approach over the conventional

MPC.

Most chemical process control problems have a high dimensional state space, sparse data

distribution due to complex nonlinear dynamics, and constraints on the state variables, lead-

ing to a “stiff” cost-to-go structure. In these typical cases, proper choice of approximation

structures is shown to be crucial for the proposed approach to be successful. In Chapter 4,

we show that a family of local approximators is a preferred choice for approximating cost-to-

go function by comparing a feedforward neural network (parametric global approximator)

and a k-nearest neighborhood estimator (local “averagers”) through several benchmark ex-

amples. It is found that global and parameterized approximators, such as a neural network,
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can amplify approximation errors in an unpredictable manner during the off-line iteration

step, whereas the local averagers show proper convergence behavior. Despite the advanta-

geous properties of the local averagers, we demonstrate that the optimizer may push the

solution to other regions of inadequate data density based on a cost-to-go value from the

approximator that is not trustworthy. This result implies that quantifying the accuracy of

a cost-to-go estimate based on the local data density and incorporating it into the control

move optimization is essential for the success of the suggested ADP approach.

In Chapter 5, we propose a penalty function method to design a robust approximation

structure for both off-line learning and on-line implementation. We quantify the confidence

in the cost-to-go approximation based on the local data density, which is calculated from a

nonparametric probability density estimator. The measure of confidence is used to define

a ‘risk’ term, which is included in the objective function to discourage the controller from

venturing into an unexplored envelope of the state space. This add-on feature is naturally

compatible with the local approximation scheme.

Throughout Chapters 6 to 8, we present applications of the ADP strategy to the process

control problems that have been considered difficult to tackle using formerly-existing con-

trol algorithms. In Chapter 6, a dual adaptive control problem is studied, where estimation

quality and control performance are interlaced together. The optimal controller is known

to be ‘dual,’ meaning it balances between control and “active” exploration. Chapter 7 dis-

cusses a dual-mode controller, which designs a nonlinear override controller to improve the

performance of a local linear controller. The higher-level nonlinear controller monitors the

dynamic state of the system under the local controller and sends an override control action

whenever the system is predicted to move outside an acceptable operating regime under

the local controller. In Chapter 8, we present input-output data-driven control schemes for

nonlinear processes. A major difficulty in using an empirical model based on input-output

identification data is the potential over-extrapolation of the model in the optimal control

calculation step, leading to large mismatches between the actual closed-loop performance

and that predicted by the model. Proposed ADP strategies handle the issue conveniently,

as well as improve starting control policies dramatically.
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Finally, Chapter 9 summarizes the contributions made by this thesis and discusses their

relevance and possible directions for further work.
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CHAPTER II

PRELIMINARIES

We identify the intrinsic disadvantages of a typical MPC formulation and then discuss

dynamic programming (DP) as an alternative framework. We also give an overview of both

conventional DP algorithms and some popular approximate techniques from Reinforcement

Learning (RL) and Neuro-Dynamic Programming (NDP) literature.

2.1 MPC – Open-Loop Optimal Feedback Control

Typical MPC algorithms calculate the optimal control actions by minimizing an objective

function that penalizes the deviations of the predicted input and output trajectories from

their reference trajectories as illustrated in Figure 1. Feedback is updated after the first

control action is implemented on the process. This procedure is repeated at each sample

time by sliding forward the forecast window, referred to as receding horizon control imple-

mentation. At the heart of the MPC formulation is the model, which is used not only to

predict the effects of future inputs, but also to estimate the current state of the process given

the most recent measurements. A typical process model is described by a set of ordinary

differential equations.
dx
dt = fc(x, u, t)

y = g(x, t)
(1)

where x is a process state vector, u is an input vector, and y is an output vector.

Since MPC algorithms are implemented on digital computers, a process model is gen-

erally represented in a discrete time form.

x(k + 1) = f(x(k), u(k)) = x(k) +
∫ (k+1)·ts

k·ts
fc(x(τ), u(k), τ)dτ (2)

where ts is a sample time, and u(k) is held constant for k · ts ≤ τ ≤ (k + 1) · ts. The

relation between state variables and outputs remain same with that of the continuous time

representation.
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Figure 1: Optimization problem of model predictive control.

Given a process model, the on-line control action is calculated by solving the following

open-loop optimal control problem at each sample time after a feedback update of the state:

min
u(0),···,u(m−1)

{[
p−1∑

k=0

φ(x(k), u(k))

]
+ φt(x(p))

}
(3)

where p is the prediction horizon, m is the control horizon, φ is the single-stage cost, and φt

is the cost of the terminal state. A quadratic form is typically used for the single stage cost,

and additional constraints such as input and output limits can be added to the above. The

above open-loop optimal control problem (OLOCP) implicitly defines a relationship between

initial state x(0) and the optimal initial control adjustment u(0), which can be denoted as

u(0) = µ(x(0)). µ is a policy that maps the state to the action. Thus µ(x(t)) represents

the feedback policy for MPC. As the MPC policy is only implicitly defined through the

OLOCP, its implementation requires solving the optimization problem at each sample time

on-line with x(0) = x(t) (or = x̂(t), an estimate of x(t)) rather than determined off-line.

Because the optimization problem should be solved on-line within a sample time period,

a linear model is a favorite choice to make it quadratic program, which can be easily

solved with off-the-shelf softwares. The dynamic behavior for most chemical processes,
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on the other hand, are rarely linear. Complex nonlinearities are easily introduced through

thermodynamics of non-ideal mixtures, higher-order reactions with exponential terms in the

Arrhenius equations, etc. Furthermore, logic rules may be incorporated to represent more

realistic operations [17]. Though the linear controllers can be detuned to account for these

complex dynamics of underlying process, the resulting control policies are often conservative

and sometimes are not capable of maintaining a stable operation. For these reasons, MPC

integrated with nonlinear/hybrid models is increasingly considered as a required technology.

In the implementation of the nonlinear/hybrid MPC, we are faced with the nontrivial task

of solving complex mathematical optimization problems like nonlinear programs and mixed

integer programs on-line, which can become even more formidable to handle due to the

multi-stage formulation of MPC [19, 45, 17]. Then challenge will be on how to shift some

of the computational burden to off-line design and also how to devise a systematic way to

tradeoff between optimality and reduction of the computational burden – without losing

important properties like stability.

Another challenge is the question on how to ensure robustness against known uncer-

tainties. Since a first-principle model is difficult to obtain in general, system identification

is performed. This is a time-consuming and difficult task, which leads to modeling errors

frequently. In this case, a state estimator is designed to compensate the plant-model mis-

match, where the estimation problem and control problem are interlaced as the quality of

estimation is affected by control and vice versa. Unfortunately, the formulation based on

the OLOCP is fundamentally incapable of addressing this interplay. For example, since

sampled data values for the input trajectories are directly optimized in the formulation in

a deterministic manner, the ameliorating effect of exploratory input actions on future esti-

mation through the generation of additional signals are not considered. This is true even

when the uncertainty information is incorporated explicitly into the OLOCP – to minimize

the average cost or the worst-case cost over the bounded parametric uncertainty regions.

In summary, the MPC approach of solving the OLOCP repeatedly with feedback updates

leads to only suboptimal control in the case of uncertain systems [62, 60].
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2.2 Dynamic Programming – Closed-Loop Optimal Feed-
back Control

Dynamic Programming (DP) offers a unified approach for solving sequential multi-stage op-

timization problems with or without uncertainties. Bellman’s Principle of Optimality [15]

states that an optimal state trajectory has the property that no matter how an intermedi-

ate state is reached, the rest of the trajectory should coincide with an optimal trajectory

calculated with the intermediate point as the starting point. This principle is used to define

a so called ‘cost-to-go’ function, which can provide a closed-loop optimal control policy.

The cost-to-go of a state is the sum of all single-stage costs that you can expect to incur

under a given policy starting from the state, and hence expresses the quality of a state in

terms of future performance. Given the optimal cost-to-go function, one can easily calculate

the optimal action simply by minimizing the sum of the cost of the current state and the

cost-to-go of the next state.

2.2.1 Deterministic System

For a deterministic system with a fixed starting state and a deterministic policy, the entire

future sequence of states and actions is determined. For any given control policy µ, a finite

horizon (N) optimal control problem can be defined as

Jµ
N (x) =

[
N−1∑

k=0

φ(x(k), µ(x(k))) + φt(x(N))

∣∣∣∣∣x(0) = x

]
∀x ∈ X (4)

where X is the set of all possible states.

The optimal cost-to-go function, J∗N = Jµ∗
N , is the cost-to-go function under the optimal

policy and is unique.

J∗N = Jµ∗
N = inf

µ
Jµ

N (5)

Then the optimal cost-to-go function should satisfy the following recursive equation:

J∗N (x(k)) = min
u(k)∈U

[
φ(x(k), u(k)) + J∗N−1(f(x(k), u(k)))

]
(6)

where U is the set of all possible actions. To solve the above optimality equation, sequential

calculation of J∗ for all states is performed, usually in a backward manner starting from

the terminal state with J∗0 (x(k)) = φt(x(k)).
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With the optimal cost-to-go function for the N − 1 stage, J∗N−1(x), calculated off-line,

one can solve the following single-stage optimal control problem, which is equivalent to

N -stage problem defined earlier:

u(k) = arg min
u(k)∈U

[
φ(x(k), u(k)) + J∗N−1 (f(x(k), u(k)))

]
(7)

Most of the important optimal control problems are concerned with minimizing the cost

accumulating infinitely:

Jµ
∞(x) =

[ ∞∑

k=0

αkφ(x(k), µ(x(k)))

∣∣∣∣∣ x(0) = x

]
∀x ∈ X (8)

J∗∞(x) = Jµ∗
∞ = inf

µ
Jµ
∞(x) ∀x ∈ X (9)

where α ∈ [0, 1) is a discount factor that handles the tradeoff between immediate and

delayed costs. This discount factor can also be introduced in the finite horizon problem.

In general, one cannot just find the solution to the infinite horizon problem by taking the

limit of the finite horizon solution as N →∞. This is because one cannot interchange the

limit and the min operators. DP takes advantage of the problem’s recursive nature and is

formulated as the following Bellman Equation, which must be solved for all x to obtain the

optimal cost-to-go function:

J∗∞(x) = min
u(k)∈U

[φ(x(k), u(k)) + αJ∗∞(f(x(k), u(k)))|x(0) = x] ∀x ∈ X (10)

In the rest of the thesis, we will denote J without the subscript of ∞ as a cost-to-go

function for infinite horizon problems.

2.2.2 Stochastic System

One benefit of DP is that the method extends very naturally to stochastic problems.

Whereas the DP (closed-loop) and the MPC (open-loop) formulations result in the same

solution in the case of a deterministic system, the two approaches lead to very different re-

sults in the case of a stochastic system. Because the conventional MPC formulation treats

the future inputs as deterministic, it represents only a suboptimal feedback strategy. For

optimal feedback control, one should solve the following problem:

min
µ
E

[
N−1∑

k=0

φ(x(k), µ(I(k))) + φt(x(N))

]
(11)
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where E is an expectation operator, I(k) is a vector summarizing the information available

at the kth time, which typically consists of the parameters defining the conditional proba-

bility distribution of the state, e.g. the state estimate and the error covariance matrix for

a Gaussian system. It is assumed that there is an underlying equation for dynamic propa-

gation of x and I. Note that the inputs are no longer optimized as deterministic variables

as I is stochastic. The consideration of feedback control gives rise to a stochastic dynamic

program, which must be solved in a similarly sequential manner.

The Bellman equation is then defined as

J∗(I(k)) = min
u(k)

E [φ(x(k), u(k)) + αJ∗ (fI(I(k), u(k)))| I(k)] (12)

where fI is the stochastic equation that relates the information vector from one sample

time to the next. It is assumed that the equation for recursive calculation of I is available.

2.3 Conventional DP Algorithms

2.3.1 Dynamic Programming Operator

In this section, we first define the Dynamic Programming Operator (DP Operator) T and

show its important properties, which are the fundamentals for the conventional DP algo-

rithms introduced later. We consider a stochastic system defined by the transition function

x(k + 1) = f(x(k), u(k), ω(k)) (13)

Note that (13) represents a Markov decision process (MDP), meaning the next state

x(k + 1) depends only on the current state and input not on the states and actions of past

times. The model form is quite general in that, if the next state did indeed depend on

past states and actions, a new state vector can be defined by including those past variables.

Whereas (13) is the typical model form used for process control problems, most operations

research (OR) problems have a model described by a transition probability matrix, which

describes how the probability distribution (over a finite set of discrete states) evolves from

one time step to the next.

The DP operator T is then defined as

(TJ)(x(k)) = min
u(k)∈U

E [φ(x(k), u(k)) + αJ(x(k + 1))] (14)
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Equation (14) can be recast as

(TJ)(x) = min
u∈U

∑

x′∈X
px,x′(u)

(
φ(x, u, x′) + αJ(x′)

)
(15)

For notational simplicity, we set x = x(k) and x′ = x(k + 1). px,x′(u) is the transition

probability from x to x′ under the control action u. This representation is convenient for

proving some important properties of the T as will be shown later. We also define the

operator Tµ with respect to a fixed policy µ as

(TµJ)(x) =
∑

x′∈X
px,x′(µ(x))

(
φ(x, u, x′) + αJ(x′)

)
(16)

Now we present some important properties of the DP operator for discounted dynamic

programming.

Theorem 1. J∗ = limN→∞ TNJ

Proof. We consider a more general case where policy can change at each time, π = {µ0, µ1, · · ·}.
Then any cost-to-go function starting with x can be written as

Jπ(x) = E

[
N−1∑

k=0

αkφ(x(k), µk(x(k))

∣∣∣∣∣ x(0) = x

]
+ E

[ ∞∑

k=N

αkφ(x(k), µk(x(k)))

∣∣∣∣∣x(0) = x

]

(17)

The absolute value of the second term is less than αN

1−αM , where M is a constant such that

|φ(x(k), u(k))| < M . With

(TNJ)(x(0)) = min
π
E

[
N−1∑

k=0

αkφ(x(k), µk(x(k))) + αNJ(x(N))

]
(18)

We have the following inequalities:

Jπ(x(0))− αN

1− α
M − αN‖J‖∞ ≤ E

[
N−1∑

k=0

αkφ(x(k), µk(x(k))) + αNJ(x(N))

]

≤ Jπ(x(0)) +
αN

1− α
M + αN‖J‖∞ (19)

If we minimize each term w.r.t. π,

Jπ∗(x(0))− αN

1− α
M − αN‖J‖∞ ≤ TNJ ≤ Jπ∗(x(0)) +

αN

1− α
M + αN‖J‖∞ (20)

As N →∞, αN → 0. Hence, it follows that J∗ = limN→∞ TNJ .
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Theorem 2. T is an α-contraction mapping with respect to the infinity norm, i.e., ‖TJ −
T J̄‖∞ ≤ α‖J − J̄‖∞ for all J, J̄ .

Proof. We use the following property for arbitrary functions g, h : A → R, where A is some

arbitrary set.
∣∣∣min

a
g(a)−min

a
h(a)

∣∣∣ ≤ max
a
|g(a)− h(a)| (21)

Using the property we have

∣∣(TJ)(x)− (T J̄)(x)
∣∣ =

∣∣minu

(∑
x′∈X px,x′(u) (φ(x, u, x′) + αJ(x′))

)

−minu

(∑
x′∈X px,x′(u)

(
φ(x, u, x′) + αJ̄(x′)

))∣∣

≤ maxu α
∑

x′∈X px,x′(u)
∣∣J(x′)− J̄(x′)

∣∣

≤ α‖J − J̄‖∞

(22)

Because ‖TJ−T J̄‖∞ = maxx

∣∣(TJ)(x)− (T J̄)(x)
∣∣, the above inequality implies that ‖TJ−

T J̄‖∞ ≤ α‖J − J̄‖∞.

Theorem 3. T has a monotonicity property, i.e., if J ≥ J̄ , then TJ ≥ T J̄ .

Proof. Suppose J ≥ J̄ , then

∑

x′∈X
px,x′(u)J(x′) ≥

∑

x′∈X
px,x′(u)J̄(x′) ∀x ∈ X , ∀u ∈ U (23)

By multiplying both sides by α and adding the expected single stage cost, we have

∑

x′∈X
px,x′(u)

(
φ(x, u, x′) + αJ(x′)

) ≥
∑

x′∈X
px,x′(u)

(
φ(x, u, x′) + αJ̄(x′)

)
(24)

for all x ∈ X and u ∈ U . The above inequality implies that TµJ ≥ TµJ̄ for any policy

µ. Suppose µ∗ satisfies Tµ∗J = TJ , then TJ ≥ Tµ∗ J̄ as well as Tµ∗ J̄ ≥ T J̄ . Therefore

TJ ≥ T J̄ .

Theorem 4. The sequence {TNJ} converges for any J .

Proof. We assume that T : Rn → Rn. Then, it is sufficient to show that {TNJ} is a Cauchy
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sequence. For any K and M,N ≥ K,

‖TMJ − TNJ‖∞ =
∥∥∥∑N−1

i=M

(
T iJ − T i+1J

)∥∥∥
∞

≤ ∑N−1
i=M

∥∥(
T iJ − T i+1J

)∥∥
∞

≤ ∑N−1
i=M αi ‖(J − TJ)‖∞

≤ αK

1−α ‖(J − TJ)‖∞

(25)

For any ε > 0, one can find K such that

αK

1− α
‖(J − TJ)‖∞ ≤ ε (26)

Hence, {TNJ} is a Cauchy sequence and converges.

Theorem 5. T has a unique fixed point.

Proof. The sequence {TNJ} converges to a fixed point of T , which means that there exists

at least one fixed point. Suppose there are two fixed points, J1 and J2 for T . Then we have

TJ1 = J1 and TJ2 = J2. Then we have,

‖TJ1 − TJ2‖ = ‖J1 − J2‖ (27)

This is contradictory to the α-contraction property of T . Therefore, the fixed point of T is

unique.

From the last two theorems, we can conclude that J∗ is the unique solution to the

equation

J∗ = TJ∗ (28)

which is equivalent to the Bellman equation. It is also clear from the above theorems that

Tµ is also a ∞-norm α-contraction mapping. This fact gives the following result.

Theorem 6. A stationary policy π = {µ, µ, · · ·} is optimal iff TJ∗ = TµJ∗.

Proof. Suppose that the stationary policy is optimal. Let Jµ be the cost-to-go function

under this policy. Then we have J∗ = Jµ, and Jµ is the unique solution for J = TµJ .

Consequently, Jµ = TµJµ ⇒ J∗ = TµJ∗ ⇒ TJ∗ = TµJ∗.

Now suppose TJ∗ = TµJ∗. This implies that J∗ = TµJ∗. Since Jµ is the unique solution

of the Tµ operator, J∗ = Jµ, so the stationary policy described by µ is optimal.
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This theorem implies that one can always find an optimal stationary policy for a dis-

counted infinite horizon problem [94].

In the following sections, conventional algorithms to find the fixed solution of the Bell-

man equation are presented. They are either iteratively applying DP operators (T , Tµ) or

employing a mathematical programming based approach. All the algorithms are demon-

strated for discounted infinite horizon cases. Corresponding algorithms for finite horizon

problems are also straightforward to derive but they are not of our interest in the thesis.

2.3.2 Value/Policy Iteration

Value iteration and policy iteration are two classical solution methods for DP using a given

model. They form the basis for the various approximate methodologies introduced later.

• Value Iteration

In value iteration, one starts with an initial guess for the cost-to-go for each state and

iterates on the Bellman equation until convergence. This is equivalent to calculating

the cost-to-go value for each state by assuming an action that minimizes the sum of

the current stage cost and the cost-to-go for the next state according to the current

estimate. Hence, each update assumes that the calculated action is optimal, which

may not be true given that the cost-to-go estimate is inexact, especially in the early

phase of iteration. The algorithm involves the following steps:

1. Initialize J0(x) for all x ∈ X .

2. For each state x

J i+1(x) = min
u
E

[
φ(x, u) + αJ i(x̂)

]
(29)

where x̂ = f(x, u, ω) ∈ X , and i is the iteration index.

3. Perform the above iteration (step 2) until J(x) converges.

The update rule of (29) is called full backup because the cost-to-go values of the entire

states are updated in every round of update.

• Policy Iteration
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Policy iteration is a two-step approach composed of policy evaluation and policy im-

provement. Rather than solve for a cost-to-go function directly and then derive an

optimal policy from it, the policy iteration method starts with a specific policy and

the policy evaluation step computes the cost-to-go values under that policy. Then

the policy improvement step tries to build an improved policy based on the previous

policy. The policy evaluation and the policy improvement steps are repeated until

the policy no longer changes. Hence, this method iterates on policy rather than the

cost-to-go function.

The policy evaluation step iterates on the cost-to-go values but with the actions dic-

tated by the given policy. Each evaluation step can be summarized as follows:

1. Given a policy µ, initialize Jµ(x) for all x ∈ X .

2. For each state x, find the fixed point solution of Tµ according to

Jµ,`+1(x) = E
[
φ(x, µ(x)) + αJµ,`(x̂)

]
(30)

where ` is the iteration index of policy evaluation step.

3. The above iteration (step 2) continues until Jµ(x) converges.

The overall policy iteration algorithm is given as follows:

1. Given an initial control policy µ0, set i = 0.

2. Perform the policy evaluation step to evaluate the cost-to-go function for the

current policy µi

3. The improved policy is represented by

µi+1(x) = arg min
u
E

[
φ(x, u) + αJµi

(x̂)
]

(31)

Calculate the action given by the improved policy for each state.

4. Iterate steps 2 and 3, and stop until µ(x) converges.

Figure 2 depicts the alternating feature of policy iteration algorithm.
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Figure 2: Graphical metaphor of policy iteration algorithm.

For systems with a finite number of states, both the value iteration and policy iteration

algorithms converge to an optimal policy [15, 49, 24]. Whereas policy iteration requires

complete policy evaluation between steps of policy improvement, each evaluation often

converges in just few iterations because the cost-to-go function typically changes very

little when the policy is only slightly improved. At the same time, policy iteration

generally requires significantly fewer policy improvement steps than value iteration

because each policy improvement is based on accurate cost-to-go information [94].

One difficulty associated with the value or policy iteration is that the update is per-

formed after one “sweep” of an entire state set, making it prohibitively expensive for

most problems. To avoid this difficulty, asynchronous iteration algorithms have been

proposed [23, 22]. These algorithms do not back up the values of states in a strict order

but use whatever updated values available. The values of some states may be backed

up several times while the values of others are backed up once. However, obtaining

optimal cost-to-go values requires infinite number of times update in general.
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2.3.3 Linear Programming Based Approach

Another approach to solving DP is to use a linear programming (LP) formulation. The

Bellman equation can be characterized by a set of linear constraints on the cost-to-go

function. The optimal cost-to-go function can then be derived by solving the following LP

[72, 38, 47, 26]:

max
∑

x∈X J

s.t. TJ ≥ J
(32)

Since the standard LP formulation does not allow for the min operator of (32), it is

translated into the following set of constraints:

E [φ(x, u) + αJ(x̂)] ≥ J(x) ∀u ∈ U (33)

Note that the LP approach also leaves us with the same ‘curse-of-dimensionality.’ More-

over, the number of constraints in the above can be problematic as the number of possible

actions is growing.

Theorem 7. The above LP problem gives a unique solution of J∗.

Proof. If J is feasible solution to the LP, then TJ ≥ J . By the monotonicity property of T ,

J ≤ TJ ≤ T 2J ≤ · · · ≤ J∗ (34)

Hence, any feasible J satisfies J ≤ J∗. Because J∗ is a fixed solution of T , maximizing the

sum solves for J∗ and it is unique.

The LP approach is the only known algorithm that can solve DP in polynomial time,

and recent years have seen substantial advances in algorithms for solving large-size linear

programs. However, theoretically efficient algorithms have still been shown to be ineffective

or even infeasible for practically-sized problems [51, 120].

2.4 Review of Approximate Methods for Dynamic Program-
ming

In this section, we give an overview of popular approximation techniques for solving DP

developed from the AI and ML fields. We first discuss the representation of state space,
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and then review different approximate DP algorithms, which are categorized into model-

based and model-free methods. The most striking feature shared by all the approximate

DP techniques is the synergetic use of simulations (or interactive experiments) and function

approximation. Instead of trying to build the cost-to-go function for an entire state space,

they use sampled trajectories to identify parts of the state space relevant to optimal or

“good” control where they want to build a solution and also obtain an initial estimate for

the cost-to-go values.

2.4.1 State Space Representation

Typical MDPs have either a very large number of discrete states and actions or continuous

state and action spaces. Computational obstacles arise from the large number of possi-

ble state/action vectors and the number of possible outcomes of the random variables. The

‘curse-of-dimensionality’ renders the conventional DP solution approach through exhaustive

search infeasible. Hence, in addition to developing better learning algorithms, substantial

efforts have been devoted to alleviating the curse-of-dimensionality through more compact

state space representations. For example, state space quantization/discretization methods

have been used popularly in the context of DP [12] and gradient descent technique [113].

The discretization/quantization methods have been commonly accepted because the stan-

dard RL/NDP algorithms were originally designed for systems with discrete states. The

discretization method should be chosen carefully, however, because incorrect discretization

could severely limit the performance of a learned control policy, for example, by omitting

important regions of the state space and/or by affecting the original Markov property [84].

More sophisticated discretization methods have been developed based on adaptive reso-

lutions such as the multi-level method [98], clustering-based method [57], triangularization

method [84, 85], state aggregation [21], and divide-and-conquer method (Parti-Game al-

gorithm) [80]. The parti-game algorithm, which is one of the most popular discretization

strategies, attempts to search for a path from an initial state to a goal state (or region) in a

multi-dimensional state space based on a coarse discretization. When the search fails, the

resolution is iteratively increased for the regions of the state space where the path planner
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is unsuccessful. Though some adaptive discretization methods can result in a better policy

compared to the fixed versions [7], they can potentially suffer from their own ‘curse-of-

dimensionality’ and become less reliable when the estimation of cost-to-go is necessary for

the states lying in a smaller envelope than that of converged partitions.

Function approximation methods have also been employed to express the correlation

between cost-to-go and system state, either by based on parametric structures (e.g. ANNs)

or ‘store-and-search’ based nonparametric methods (e.g. nearest neighbor). The function

approximation based approaches are more general because they are applicable to both finite

and infinite number of states without modification of a given problem. The current status

and the issues of incorporating function approximators into approximate strategies will be

discussed separately in Chapters 4 and 5.

2.4.2 Model-Based Methods

If there exists a model that describes a concerned system, the main question becomes how to

solve the Bellman equation efficiently. Given an exact model, a conceptually straightforward

method is to use the value or policy iteration algorithm. A family of methods in which a

model built from data is used to derive a control policy as if it were an exact representation

of the system is called ‘certainty-equivalence’ approach, which is similar to the concept for

process identication/control involving learning phase and acting phase [59]. We note that

random exploration for gathering data to build such a model is much less efficient than

using a policy-interlaced exploration [136, 53].

Independently from the researchers working on direct DP solution methods, Werbos

proposed a family of adaptive critic designs (or actor-critic methods (AC) as named later

in [14]) in the late 70s [134]. He extended the work and collectively called the approach

Heuristic Dynamic Programming [135]. The purpose of the adaptive critic design is to learn

optimal control laws by successively adapting two ANNs, namely, an action network and a

critic network. These two ANNs indirectly approximate the Bellman equation. The action

network calculates control actions using the performance index from the critic network.

The critic network learns to approximate the cost-to-go function and uses the output of
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Figure 3: The actor-critic architecture.

the action network as one of its inputs, either directly or indirectly. This structure has

been used as a “policy learner” in conjunction with many RL schemes in addition to being

a popular structure for neuro-fuzzy-controllers [93]. The AC algorithms are less suited to

cases where the data change frequently since the training of the networks is challenging

and time-consuming. We note that the AC framework is not limited to the model-based

learning scheme, and it has also been used as a framework for model-free learning. The

general structure of AC is shown in Figure 3. RL literature has considered the model-based

learning an alternative way to use gathered data efficiently during interactive learning with

an environment, compared to a class of model-free learning schemes that will be introduced

in the next section. They have been more interested in ‘exploration through trial-and-error’

to increase the search space, for example, in a robot-juggling problem [104]. Hence, most

model-based approaches from the RL literature have been designed to learn an explicit

model of a system simultaneously with a cost-to-go function and a policy [114, 115, 81, 92,

13]. The general algorithms iteratively 1) update the learned model, 2) calculate control

actions that optimize the given cost-to-go function with the current learned model, 3) update
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the corresponding cost-to-go function as in value iteration, and 4) execute the control policy

and gather more data. Representative algorithms in this class are Dyna and RTDP (real-

time dynamic programming) [114, 13]. These model-based interactive learning techniques

have the advantage that they can usually find good control actions with fewer experiments

since they can exploit the existing samples better by using the model [10].

2.4.3 Model-Free Methods

RL/NDP and other related research work have been mainly concerned with the question

of how to obtain an optimal policy when a model is not available. This is mainly because

the state transition rule of their concerned problems is described by a probability transition

matrix, which is difficult to identify empirically. Many trial-and-errors, however, allow one

to find the optimal policy eventually. These “on-line planning” methods have an agent

interact with its environment directly to gather information (state and action vs. cost-to-

go) from on-line experiment or in simulations. In this section, three important model-free

learning frameworks are introduced – Temporal Difference (TD) learning, Q-learning, and

SARSA, all of which learn the cost-to-go functions incrementally based on experiences with

the environment.

2.4.3.1 Temporal Difference Learning

TD learning is a passive learner in that one calculates the cost-to-go values by operating an

agent under a fixed policy. For example, we watch a robot wander around using its current

policy µ to see what cost it incurs and which states it explores. This was suggested by

Sutton and is known as the TD(0) algorithm [117]. The general algorithm is as follows:

1. Initialize J(x).

2. Given a current policy (µi(x)), let an agent interact with its environment, for example,

let an agent (e.g. robot, controller, etc.) perform some relevant tasks.

3. Watch the agent’s actions given from µi(x) and obtain a cost φ(x, µi(x)) and its

successor state x̂.
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4. Update the cost-to-go using

J(x) ←− (1− γ)J(x) + γ
{
φ(x, µi(x)) + αJ(x̂)

}
(35)

or equivalently,

J(x) ←− J(x) + γ
{
φ(x, µi(x)) + αJ(x̂)− J(x)

}
(36)

where γ is a learning rate from 0 to 1. The higher the γ, the more we emphasize our

new estimates and forget the old estimates.

5. Set x ←− x̂ and continue experiment.

6. If one sweep is completed, return to step 2 with i ←− i+1, and continue the procedure

until convergence.

Whereas TD(0) update is based on the “current” difference only, a more general version

called TD(λ) updates the cost-to-go values by including the temporal differences of the later

states visited in a trajectory with exponentially decaying weights.

Suppose we generated a sample trajectory, {x(0), x(1), · · · , x(t), · · ·}. The temporal

difference term, d(t), at time t is given by

d(t) = φ(x(t), µ(x(t))) + αJ(x(t + 1))− J(x(t)) (37)

Then the policy evaluation step for a stochastic system is approximated by

J(x(t)) ←− J(x(t)) + γ

∞∑
m=t

λm−td(m) (38)

where 0 ≤ λ < 1 is a decay parameter. Within this scheme, a single trajectory can include

a state, say x, multiple times, for example, at times t1, t2, · · · , tM . In such a case, ‘every-

visit’ rule updates the cost-to-go whenever the state is visited in the trajectory according

to

J(x(t)) ←− J(x(t)) + γ
M∑

j=1

∞∑
m=tj

λm−tjd(m) (39)

Graphical representation of the addition of update terms is shown in Figure 4. A cor-
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Figure 4: Cumulative addition of temporal difference terms in the every-visit method.

responding on-line update rule for the every-visit method is given by

J(x(t)) ←− J(x(t)) + γ
{
φ(x(t), µi(x(t))) + αJ(x(t + 1))− J(x(t))

}
et(x(t)) (40)

where t is the time index in a single sample trajectory, and et(x) is ‘eligibility,’ with which

each state is updated. Note that the temporal difference term, {·} of (40), appears only if

x has already been visited in a previous time of the trajectory. Hence, all eligibilities start

out with zeros and are updated at each time t as follows:

et(x) =





αλet−1(x) if x 6= x(t)

αλet−1(x) + 1 if x = x(t)
(41)

where α is the discount factor for the cost-to-go. The eligibility thereby puts more em-

phasis on the temporal difference term in recent past. Singh and Sutton [108] proposed an

alternative version of the eligibility assignment algorithm, where visited states in the most

recent sample run always get an eligibility of unity rather than an increment of 1, which

they called the ‘first-visit’ method.

Since the TD learning is based on a fixed policy, it can be combined with an AC-type

policy-learner. The convergence properties of the AC-related algorithms were explored
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[137]. The convergence property of TD(λ) learning was also studied by several researchers

[35, 91, 129].

2.4.3.2 Q-learning

Q-learning [133, 132] is an active learner in that one modifies the ‘greedy’ policy as the agent

learns. One can also tweak the policy to try different control actions from the calculated

policy even when the agent is interacting with a real environment. For example, injection of

random signals into actions is often carried out for exploration of the state space. Optimal

Q-value is defined as the cost-to-go value of implementing a specific action u at state x, and

then following the optimal policy from the next time step on. Hence, the optimal Q-function

satisfies the following equation:

Q∗(x, u) = E [φ(x, u) + α minû Q∗(x̂, û)]

= E [φ(x, u) + αJ∗(x̂)]
(42)

This also gives a recursive relation for the Q-function as does the Bellman equation for

the ‘J-function.’ Once the optimal Q-function is known, the optimal policy µ∗(x) can be

easily obtained by

µ∗(x) = arg min
u

Q∗(x, u) (43)

The on-line incremental learning of the Q-function is similar to the TD-learning:

1. Initialize Q(x, u).

2. Let an agent interact with its environment by solving (43) using the current ap-

proximation of Q instead of Q∗. If there are multiple actions giving a same level of

performance, select an action randomly.

3. Update the Q values by

Q(x, u) ←− (1− γ)Q(x, u) + γ

{
φ(x, u) + α min

û
Q(x̂, û)

}
(44)

4. Set x ←− x̂ and continue experiment.

5. Once a loop is completed, repeat from step 2 until convergence.
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If one performs the experiment infinite times, the estimates of Q-function converge to

Q∗(x, u) with proper decaying of the learning rate γ [133, 50]. Greedy actions may confine

the exploration space, especially in the early phase of learning, leading to failure in finding

the optimal Q-function. To explore the state space thoroughly, random actions should be

carried out on purpose. As the solution gets improved, the greedy actions are implemented.

This randomization of control actions is similar to the simulated annealing technique used

for global optimization.

2.4.3.3 SARSA

SARSA [99] also tries to learn the state-action value function (Q-function). It differs from

Q-learning with respect to the incremental update rule. SARSA does not assume that the

optimal policy is imposed after one time step. Instead of finding a greedy action, it assumes

a fixed policy as does the TD learning. The update rule then becomes

Q(x, u) ←− Q(x, u) + γ
{
φ(x, u) + αQ(x̂, µi(x̂))−Q(x, u)

}
(45)

A policy learning component like an AC scheme can also be combined with this strategy.

2.4.4 Applications of Approximate DP Methods

In this section, we briefly review some of the important applications of the approximate

DP methods, mainly RL and NDP methods. Important OR applications are reviewed in

[25, 120]. We classify the previous work by application areas.

2.4.4.1 Operations Research

The application area that benefited the most from the RL/NDP theory is game playing.

Samuel’s checker player was one of the first applications of DP in this field and used linear

function approximation [101, 102]. One of the most notable successes is Tesauro’s backgam-

mon player, TD-Gammon [122, 123, 124]. It is based on TD methods with approximately

1020 states. To handle the large number of state variables, ANN with a simple feedforward

structure was employed to approximate the cost-to-go function, which maps a board po-

sition to the probability of winning the game from the position. Two versions of learning
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were performed for training the TD-Gammon. The first one used a very basic encoding

of the state of the board. The advanced version improved the performance significantly

by employing some additional human-designed features to describe the state of the board.

The learning was done in an evolutionary manner over several months – playing against

itself using greedy actions without exploration. TD-Gammon successfully learned to play

competitively with world-champion-level human players. By providing large amounts of

data frequently and realizing the state transitions in a sufficiently stochastic manner, TD-

Gammon could learn a satisfactory policy without any explicit exploration scheme. No

comparable successes to that of TD-Gammon have been reported in other games yet, and

there are still open questions regarding how to design experiments and policy update in

general [105, 125].

Another noteworthy application was in the problem of elevator dispatching. Crites

and Barto [32, 33] used Q-learning for a complex simulated elevator scheduling task. The

problem is to schedule four elevators operating in a building with ten floors. The objective

is to minimize the discounted average waiting time of passengers. The formulated discrete

Markov system has over 1022 states even in the most simplified version. They also used a

neural network and the final performance was slightly better than the best known algorithm

and twice as good as the policy most popular in real elevator systems. Other successful

RL/NDP applications in this field include large-scale job-shop scheduling [142, 141, 143],

cell-phone channel allocation [107], manufacturing [71], and finance applications [86].

2.4.4.2 Robot Learning

Robot learning is a difficult task in that it generally involves continuous state and action

spaces, similar to process control problems. Barto et al. [14] proposed a learning structure

for controlling a cart-pole system (inverted pendulum) that consisted of an associative

search system and an adaptive critic system. Anderson [5] extended this work by training

ANNs that learned to balance a pendulum given the actual state variables of the inverted

pendulum as input with state space quantization for the evaluation network.

Schaal and Atkeson [104] used a nonparametric learning technique to learn the dynamics
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of a two-armed robot that juggles a device known as “devil-stick.” They used task-specific

knowledge to create an appropriate state space for learning. After 40 training runs, a policy

capable of sustaining the juggling motion up to 100 hits was successfully obtained. A non-

parametric approach was implemented to generalize the learning to unvisited states in the

algorithm. This work was later extended to learn a pendulum swing-up task by using hu-

man demonstrations [11, 103]. In the work, however, neither parametric nor nonparametric

approach could learn a task of balancing the pendulum reliably due to poor parametrization

and insufficient information for important regions of the state-space, respectively.

We note that most robots used in assembly and manufacturing lines are trained in such

a way that a human guides the robot through a sequence of motions that are memorized

and simply replayed. Mahadevan and Connell [70] suggested a Q-learning algorithm with

a clustering method for tabular approach to training a robot performing a box-pushing

task. The robot learned to perform better than a human-programmed solution when a

decomposition of sub-tasks was done carefully. Lin [67] used an ANN-based RL scheme to

learn a simple navigation task. Asada et al. [7] designed a robot soccer control algorithm

with a discretized state space based on some domain knowledge. Whereas most robot

learning algorithms discretized the state space [121], Smart and Kaelbling [111] suggested

an algorithm that deals with continuous state space in a more natural way. The main

features are that approximated Q-values are used for training neighboring Q-values, and

that a hyper-elliptic hull is designed to prevent extrapolation.

2.4.4.3 Process Control

After Bellman’s publication, some efforts were made to use DP to solve various deterministic

and stochastic optimal control problems. However, only a few important results could be

achieved through analytical solution, the most celebrated being the LQ optimal controller

[140]. This combined with the limited computing power available at the time caused most

control researchers to abandon the approach. As the computing power grew rapidly in the

1980s, some researchers used DP to solve simple stochastic optimal control problems, e.g.

the dual adaptive control problem for a linear integrating system with an unknown gain [8].
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While the developments in the AI and OR communities went largely unnoticed by

the process control community, there were a few attempts for using similar techniques on

process control problems. Hoskins and Himmelblau [48] first applied the RL concept to

develop a learning control algorithm for a nonlinear CSTR but without any quantitative

control objective function. They employed an adaptive heuristic critic algorithm suggested

by Anderson [5] to train a neural network that maps the current state of the process to a

suitable control action through on-line learning by experience. This approach used qual-

itative subgoals for the controller and could closely approximate the behavior of the PID

controller, but generalization of the method requires sufficient on-line experiments to cover

the domain of interest at the cost of more trials for learning. Miller and Williams [79] used

a temporal-difference learning scheme for control of a bio-reactor. They used a backpropa-

gation network to estimate Q-values, and the internal state of a plant model was assumed

to be known. The learning was based on trial-and-errors, and the search space was small

(only 2 states).

Wilson and Martinez [138] studied batch process automation using fuzzy modeling and

RL. To reduce the high dimensionality of the state and action spaces, they used a fuzzy

look-up table for Q-values. Anderson et al. [6] suggested a RL method for tuning a PI

controller of simulated heating coil. Their action space had only 9 discrete values, and

therefore the look-up table method could be used. Martinez [74] suggested batch process

optimization using RL, which was formulated as a two dimensional search space problem

by shrinking the region of policy parameters. This work did not solve the DP, but only

used a RL-based approach for exploring in the action space. Ahamed et al. [1] solved a

power system control problem, which they represented it as a Markov chain with known

transition probabilities so that the system dynamics would have finite candidate state and

action sets for exploration and optimization.

To summarize, there has been no attempt to solve DP directly for deriving an opti-

mal control policy of a process characterized by continuous state and action spaces with

practically large dimensions. Some of them are unrealistic in that validation and improve-

ment of a solution rely on on-line experiments, and some of the problem formulations are
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impractically simplified.

2.4.5 Solution Property: Convergence and Optimality

Understanding the accuracy of a learned cost-to-go function and its corresponding policy

is very important for successful implementation. Researchers have been interested in un-

derstanding the convergence property of a learning algorithm and its error bound (or bias

from the “true” optimal cost-to-go function). Though exact value and policy iterations

are shown to converge and their error bounds are presented in standard DP textbooks [94],

most of the approximate DP algorithms employing function approximation are yet to be un-

derstood fully at a theoretical level. This is particularly true for problems with continuous

state-action spaces.

Gordon’s value iteration algorithm using a local averager with the nonexpansion prop-

erty [44] is convergent but its error bound is only available for the 1-nearest neighborhood

estimator. Tsitsiklis and Van Roy [128] provided a proof of convergence and its accuracy

for linear function approximators when applied to finite MDPs with temporal difference

learning under a particular on-line state sampling scheme. They concluded that the con-

vergence properties of general nonlinear function approximators (e.g. neural network) were

still unclear.

Ormoneit and Sen [89] suggested a kernel-based Q-learning for continuous state space

using sample trajectories only. The algorithm is designed for discounted infinite horizon

cost and employs a kernel averager like Gordon’s to average a collection of sampled data

where a specific action was applied. Hence, a separate training data set exists marked with

each action to approximate the Q-function. This way they show that the kernel-based Q-

learning can converge to a unique solution, and the optimal solution can be obtained as the

number of samples increases to infinity, which they call consistency. They also conclude that

all reinforcement learning using finite samples is subject to bias. Same results for average

cost problems are provided in [88]. Though the theoretical argument on the convergence

property could be established, error bounds for practical set-up of the algorithm are yet to

be provided.
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Sutton et al. [113] suggested an alternative approach that directly optimizes over the

policy space. The algorithm uses a parametric representation of a policy, and gradient-

based optimization is performed to update the parameter set. As the number of parameters

increases, the learning converges to an optimal policy in a “local” sense due to the gradient-

based search. Konda and Tsitsiklis [54] proposed a similar approach under an actor-critic

framework, which guarantees convergence to a locally optimal policy. In both approaches,

they consider a finite MDP with a randomized stationary policy that gives action selection

probabilities.

De Farias and Van Roy [36] proposed an approximate LP approach to solving DP based

on parameterized approximation. They derived an error bound that characterizes the qual-

ity of approximations compared to the “best possible” approximation of the optimal cost-to-

go function with given basis functions. The approach is, however, difficult to generalize to

continuous state problems, because the LP approach requires a description of the system’s

stochastic behavior as finite number of constraints, which is impossible without discretiza-

tion of a probabilistic model.

2.5 Conclusions

In this chapter, we have pointed out the MPC’s inherent drawbacks, which are exorbitant

on-line computation for complex models and awkwardness of handling uncertainties. We

show that DP can address the issues effectively because it reduces a multi-stage optimiza-

tion problem to a single-stage one and rigorously handles the uncertainty in a closed-loop

manner. We reviewed the DP formulation and its classical solution algorithms. Both ana-

lytical and numerical solutions to DP, however, are seldom possible to obtain for practical

problems due to the curse-of-dimensionality.

We have covered some popular approximate DP techniques in the fields of AI and ML,

which are designed for circumventing the curse-of-dimensionality. They are not adequate to

use for process control problems because of their different assumptions such as discrete states

and actions, on-line trial-and-error learning, or availability of huge amounts of data. In the

following chapter, we propose an ADP framework suitable for process control problems and
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identify its potential issues.
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CHAPTER III

ADP ARCHITECTURE FOR PROCESS CONTROL

PROBLEMS

The objective of this chapter is to present an approximate dynamic programming (ADP)

strategy suited to process control problems. We describe why the proposed method is most

appealing for process control applications and then present its algorithms for deterministic

and stochastic systems. The method is intended to take advantage of a DP formulation

with manageable computation. We use a nonlinear Van de Vusse reactor to illustrate the

efficacy of the proposed ADP architecture and identify its potential issues.

3.1 Proposed ADP Architecture

Process control problems are characterized by continuous state and action variables with

a high dimensional state space. Unpredictable operation of processes to explore the state

space and improve a control policy is generally undesirable. In addition, a family of in-

cremental update rules introduced in Chapter 2 is designed for discrete state and action

variables, hence it is not directly applicable to a problem with continuous state and action

spaces.

The most viable approach to solve DP accounting for the above disparities is an off-

line iteration scheme using a function approximator. For the circumvention of the curse-

of-dimensionality, the proposed ADP strategy solves the Bellman equation off-line using

closed-loop simulations and function approximation. It gathers operation or simulation

data with some judiciously chosen closed-loop policies subject to various possible distur-

bances/operation conditions that guarantee stable operations at least. This way one avoids

random exploration of the state space, which may be detrimental to a process. Within

limited regions of the state space visited by the data, one solves the DP off-line using

value or policy iteration. The premise of the suggested approach is that although the state
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space may be huge, only a very small fraction of it would be relevant for optimal or near-

optimal control in practice. The rationale for using closed-loop simulations is that several

suboptimal policies combined together should span an envelope in the state space, within

which satisfactory controls can be found. Of course, this is not always true and one should

consider adaptive adjustment of the envelope through cautious exploration and additional

simulations from the resulting DP-based policies.

Function approximation should be employed to estimate cost-to-go values for the data

that were not visited by the simulations. Estimation of cost-to-go values for the unvisited

data points in solving the Bellman equation is necessary due to the continuous nature of the

state variables. Hence, the proposed scheme is characterized by simulation and iteration

between function approximation and improvement of the cost-to-go approximation through

value/policy iteration. LP-based approaches are excluded because representation of the

constraints is infeasible for continuous problems. Next, the off-line iteration and on-line

implementation procedures are described for both deterministic and stochastic systems.

3.1.1 Deterministic Systems

The following are the steps for constructing and improving the cost-to-go function off-line:

1. Perform simulations of the closed-loop system with some suboptimal control policies

(µ0) under all representative operating conditions. The quality of suboptimal control

policies matter: The closer they are to the optimal policy, the better. However,

optimal or near optimal control policies may be unknown or computationally too

expensive to simulate. It is recommended that several policies effective in different

regions of the state space and conditions be simulated.

2. Using the simulation data, calculate the infinite (or finite) horizon cost-to-go (Jµ0
)

for each state visited during the simulations.

3. Construct a function approximator for the data to approximate the cost-to-go as a

function of the state, denoted as J̃µ0
(x).
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4. To improve the cost-to-go, which is suboptimal because it is with respect to the sim-

ulated suboptimal policies, use a value or policy iteration. The algorithms described

below are for infinite horizon problems. The formula for the finite horizon case is

equally straightforward to derive based on (6).

The value iteration solves

J i+1(x) = min
u

{
φ(x, u) + αJ̃ i(f(x, u))

}
(46)

where i denotes the ith iteration step. Once the cost-to-go values are updated for all

the states, then we fit another cost-to-go function approximation to the x vs. J i+1(x)

data.

The policy iteration has the following two steps:

J̃µi,`+1(x) = φ(x, µi(x)) + αJ̃µi,`(x) policy evaluation (47)

µi+1(x) = arg min
u

{
φ(x, u) + αJ̃µi

(f(x, u))
}

policy improvement (48)

where ` and i are the iteration indices of policy evaluation and improvement steps,

respectively. The policy iteration continues until µ(x) converges.

Since function approximation based on limited data in a continuous state space is used

in our iterations, approximation errors at each step can be significant and the above results

do not hold. In addition, even convergence cannot be guaranteed. Also, the question of

which algorithm performs better for various practical scenarios is an open question.

Compared to the classical solution approach for DP, the above approach reduces the com-

putational burden significantly for two reasons: First, even for very high-dimensional sys-

tems, the operating regions the closed-loop system occupies may represent a low-dimensional

manifold. Second, for the infinite horizon cost-to-go calculation, the iteration of the Bellman

equation is started with a very good estimate J̃µ0
, which is obtained through simulation

with a suboptimal (but good) control policy.

On-line implementation of the optimal control law is based on the converged cost-to-go

function and involves solving at each sample time

min
u

{
φ(x, u) + αJ̃(f(x, u))

}
(49)
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Figure 5: A schematic diagram of value iteration algorithm with simulation and function
approximation.

which is relatively simple to solve computationally. Of course, one could iterate the closed-

loop simulation with the new control policy defined above in order to add more state samples

and obtain more accurate cost-to-go data for them. Figure 5 shows the value iteration

scheme described above.

3.1.2 Stochastic Systems

In the stochastic case, the procedure is further complicated by the need to evaluate the ex-

pectation operator. However, the general idea remains the same as the following procedure

shows:

1. Execute Monte Carlo simulations of the closed-loop system with some judiciously

chosen suboptimal control law. For example, start with a control scheme that couples

some state estimator like the extended Kalman Filter (EKF) and a deterministic

control policy.

2. From the simulation data, calculate the discounted cost-to-go for all the visited states
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and construct data for ‘information vector’ vs. cost-to-go.

3. Using a function approximation method, fit the data to obtain an initial approximation

for the cost-to-go function, J̃µ0
(I).

4. Perform value (or policy) iteration until convergence as follows.

(a) With the current estimate J̃ i, calculate J i+1 for the given sample points of I by

solving

J i+1(I) = min
u
E

[
φ(I, u) + αJ̃ i(f(I, u))

]
(50)

This step is more demanding than before owing to the presence of the expectation

operator (which arises from the fact that f(I, u) is a stochastic equation).

(b) Fit an improved cost-to-go approximation to the I vs. J i+1(I) data.

5. One may also iterate the steps 1 – 4 with the updated suboptimal control policy for

more improvement.

On-line implementation involves solving the following one-step optimization problem:

min
u
E

[
φ(I, u) + αJ̃(f(I, u))

]
(51)

Note that, in calculating the expected cost-to-go from simulation data in the above

iteration step, the expectation operator is not explicitly evaluated. Instead, it is thought

that, by fitting an approximator to the data from various realizations of the stochastic

system (i.e. Monte Carlo simulations), the fitted cost will represent the expected cost. This

simulation-based approach also provides some additional flexibility such as the choice of

disturbances. One does not have to limit oneself to some linear process driven by an i.i.d.

Gaussian noise. One can work with non-normal distributions and (randomly occurring)

deterministic disturbances mixed with stochastic noises.

Here we assumed a fixed estimator and it is not further optimized. This is not limiting

as long as the model does not have any structural error. However, the information supplied

to the estimator is influenced by the control decision and hence is optimized (for the partic-

ularly chosen estimator) directly for future control performance. Thus, one automatically

gets some probing (i.e. active learning), designed for optimal control performance.
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In the stochastic case, the exploration step (described in Step 5 of the aforementioned

procedure) may be more important because the optimal control policy is known to behave

very differently from the certainty equivalence control policy that ignores the uncertainty.

Also, one may enhance the performance by performing closed-loop simulation subject to

some dithering. In this way, the benefit of active exploration can be incorporated into the

cost-to-go approximation.

This line of though also suggests a way to improve an already-implemented control policy

in an evolutionary manner. One could collect the cost-to-go values from real operation and

use it to improve the cost-to-go approximation and the corresponding control policy with

the relatively simple framework described above.

3.2 Application to Van de Vusse Reactor

We consider a Van de Vusse reaction [130] in isothermal CSTR described by

dx1
dt = −k1x1 − k3x

2
1 + (x1f − x1)u

dx2
dt = k1x1 − k2x2 − x2u

(52)

where k1 = 50h−1, k2 = 100h−1, k3 = 10 `
mol·h , and x1f = 10mol

` . The state variables x1

and x2 represent the concentrations of the reactant and the intermediate, respectively. x1f

represents the concentration of the reactant in the feed, and u represents the dilution rate.

The control objective is to regulate the output y = x2, the concentration of the intermediate,

at the set-point of 1.2 by manipulating the dilution rate with a sample time of 0.002h. With

the set-point, we have two steady state solutions: {x1, x2, u} = {5.5362, 1.2, 130.6758}
and {3.4960, 1.2, 45.6683}.

This reactor shows input multiplicities and process zero shifts from left-half-plane zero

to right-half-plane zero at u = 77.5 when the output variable is x2 [109]. A sufficiently long

horizon is needed due to the nonminimum phase behavior of this system [77].

3.2.1 Deterministic Case

3.2.1.1 Suboptimal Nonlinear MPC

We consider the deterministic system and introduce step changes of various sizes in the

parameters, k1 and x1f at t = 0. Hence, the cost-to-go function we construct is a function
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of k1 and x1f as well as the two states.

As a starting suboptimal control policy, we use the nonlinear MPC algorithm based

on successive linearization described in [61]. The method linearizes the nonlinear model

at each current state and input values to calculate a prediction equation linear in terms

of the future manipulated input moves. The control is computed by solving quadratic

programming (QP), of which the Hessian matrix and the gradient vector are updated at

each sample time. Here we assume that the full state variables are measured.

The one-stage cost φ(x, u) was chosen as:

φ(x(k), u(k)) = Q(x2(k + 1)− 1.2)2 + R∆u2(k) (53)

By formulating the single state cost to include a penalty on the error of the state at next

sample time, we ensure that, in the on-line control calculation of (49), the one-step-ahead

error is counted exactly (rather than through the approximated cost-to-go function), thus

making the formulation more robust to approximation errors. The weighting factors we

used are Q = 1000 and R = 1 in (53).

Assuming higher dilution rate is undesirable, we place an upper limit on the control

input (70 h−1) to prevent the input from drifting to the other side of the steady-state

curve. The problem is the large inverse response, which can cause the MPC to drive the

process away from the desired operating condition. To prevent this, we had to use a fairly

large prediction horizon p = 50.

3.2.2 ADP Approach

We first employed the successively-linearized MPC (slMPC) scheme with p = 50 as a

suboptimal control policy to generate closed-loop data for the initial cost-to-go calculation.

Within ±2% of the nominal parameter values, we sampled 17 representative points from

the disturbance space of k1 and x1f to cover the probable operating range. From the 17

simulation runs, 1360 data points for states vs. cost-to-go were obtained. The architecture

for the cost-to-go function approximation we used in this work is a multilayer perceptron

with 10 hidden nodes. The value iteration was used for off-line cost improvement and it
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Table 1: Converged cost-to-go value in value iteration (deterministic case).
Infinite horizon cost Average Min. Max.
Initial policy (slMPC) 1.01 0 125.27
Converged policy (ADP) 0.781 0 107.56

Table 2: On-line performance: closed-loop cost comparison of two control policies for 10
sample points (deterministic case).

Infinite horizon cost Average Min. Max. CPU time
Initial policy (slMPC) 58.95 5.92 113.25 110.17 s
ADP 24.39 2.57 49.69 52.62 s

converged after 2 runs with the following termination condition:

1
N

N∑

k=1

∣∣∣J̃ i+1(xk)− J̃ i(xk)
∣∣∣ < 0.3 (54)

where N is the number of data points, 1360. Table 1 compares the initial vs. converged

cost-to-go for the 1360 data points.

In Table 2, we compare the on-line performance by calculating the infinite horizon costs

from two different control policies, the NMPC control policy with p = 50 and the ADP-

based control policy of (49). The actual infinite horizon costs were computed by performing

closed-loop simulations with 10 fresh initial states that are different from those in the

training set. The CPU time shown is the averaged value over the 10 simulations performed

with MATLAB 6 on Pentium III (800 MHz). We can clearly see the superior performance

of the control policy obtained from the ADP approach, both in terms of the optimality and

computational time.

3.2.3 Stochastic Case with Full State Feedback

Consider the case where integrated white noises are introduced in k1 and x1f of (52).

k1(k + 1) = x3(k + 1) = x3(k) + e1(k)

x1f (k + 1) = x4(k + 1) = x4(k) + e2(k)
(55)

where e1(k) ∼ N (0, 0.22) and e2(k) ∼ N (0, 0.042).

For reasonable sampling of the augmented state space, four representative realizations

of the stochastic disturbances were selected: (1) monotonic increases in x3 and x4, (2)
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Table 3: Comparison of closed-loop performance under two control policies with 10 fresh
test data sets (stochastic case with full state feedback).

Averaged performance slMPC ADP
CPU time 326.4 s 120.4 s
Cost for 300 horizons 1082 888

monotonic increase in x3 and monotonic decrease in x4, (3) monotonic decrease in x3 and

monotonic increase in x4, and (4) monotonic decreases in x3 and x4. It is important to note

that we do not sample every possible state. The use of simulation to “judiciously” sample

the space is the key idea. The total number of the state samples visited during the four

stochastic simulations was 1200, and 800 data points for the cost-to-go approximation with

the discount factor of 0.9.

In the simulation, the previously used state-feedback suboptimal nonlinear MPC with

p = 50 gave an average discounted infinite horizon cost of 33.79 (averaged over all the states

visited during the 4 simulations). We fitted to the ‘state vs. cost-to-go’ data from the four

simulations using a multi-layer perceptron with 10 hidden nodes. This was followed by value

iteration where the expectation was taken over 50 realizations. The termination condition

of the iteration was
1
N

N∑

k=1

|J̃ i+1(xk)− J̃ i(xk)| < 1.0 (56)

After 21 iterations, the average discounted cost associated with the converged approxi-

mator was 12.46, a significant reduction from the starting value, which means more optimal

control policy was learned.

In order to compare control performances, we generated 10 fresh integrated noise dis-

turbances (different from those in the training set). Table 3 shows the averaged result of

the closed-loop simulation under the slMPC with p = 50 and the ADP-based approach with

the test data set. The cost in the table is calculated for 300 time steps without a discount

factor.

3.3 Conclusions

An ADP framework suitable for process control applications was proposed to combat two

important deficiencies of MPC. By solving DP for the important regions of state space
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with a function approximation scheme, the new framework was shown to offer enhanced

computation time for on-line optimization and more improved control policy from a starting

one. Simulation results from a nonlinear Van de Vusse reactor indicate that the suggested

approach provides a promising framework to generalize MPC to handle nonlinear and/or

hybrid system models as well as stochastic system models in a computationally amenable

way. Since it is based on a function approximation scheme based on the data distributed

over a limited envelope of state space, cautious utilization of simulation data and design

of approximators are requisite for the success of the proposed scheme. We will discuss this

issue in the next two chapters in detail.
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CHAPTER IV

A COMPARATIVE STUDY ON THE CHOICE OF

APPROXIMATOR

This chapter investigates the choice of function approximator within the strategy of approx-

imate dynamic programming (ADP). A proper choice and design of the function approxima-

tor turns out to be critical for stability of the iteration and the quality of a learned control

policy. This is because an approximation error can grow quickly through the iteration of

optimization and function approximation. Typically, there are two classes of approximators

for the approach: parameterized global approximators (e.g. artificial neural networks) and

nonparametric local averagers (e.g. k-nearest neighbor). In this chapter, we assert based on

some case studies and existing theories that the local-averager type approximators should

be preferred over the global approximators as the former ensures stability of the off-line

iteration, an important requirement for bringing the ADP strategy to practice. We also

conclude that simple use of local averagers, while assuring convergence of the off-line it-

eration, does not necessarily lead to a stable learned control policy due to the problem of

over-extrapolation. We hint that a local-averager again is better suited to handle this issue.

4.1 Introduction

In Chapter 3, we have shown the efficacy of the ADP approach using a nonlinear control

problem. The main issue that arises in the practical implementation of the method, however,

is that stability of learning and quality of a learned control policy are critically dependent

on the structure and reliability of function approximator. The typical approach in the

NDP and RL literature is to fit a global approximator like a neural network to cost-to-

go data. While this approach has seen notable successes in some applications including a

backgammon player at world champion level [122], it has also met with failures in many

other applications [28, 105]. In certain instances, the off-line iteration would even fail to
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converge, with the cost-to-go approximation showing extreme non-monotonic behavior or

even instability with iteration.

The failure with a general function approximator was first explained by Thrun and

Schwartz [126] with what they called an “overestimation” effect. They assumed uniformly

distributed and independent error in the approximation and derived bounds on the neces-

sary accuracy of the function approximator and discount factor. Sabes [100] showed that

bias in optimality can be large when a basis function approximator is employed. Boyan

and Moore [27] listed several simple simulation examples where popular approximators fail

miserably in off-line learning. Sutton [118] modified the experimental setup for the same ex-

amples and adopted a model-free on-line learning scheme to make them work. In summary,

experiments with different function approximation schemes have produced mixed results,

probably because of the different learning schemes and problem setups.

Gordon [44] presented a ‘stable’ cost-to-go learning scheme with off-line iteration for a

fixed set of states. A class of function approximators with a ‘nonexpansion’ property (e.g. k-

nearest neighbor) was shown to guarantee off-line convergence of cost-to-gos to some values

upon iteration. Gordon also provided a result for the accuracy of converged cost-to-go

values in the case of 1-nearest neighbor, which has a fixed point property in approximation.

Tsitsiklis and Van Roy [128] provided a proof of convergence and its accuracy for linear

function approximators when applied to finite MDPs under temporal difference learning

with a particular on-line state sampling scheme. They commented that the convergence

properties with general nonlinear function approximators (e.g. neural network) remained

unclear.

For systems with a continuous state space (infinite MDP), there are no proofs for conver-

gence bound in the learning of cost-to-go function with general function approximators. For

linear quadratic regularization problems, there exist proofs of convergence and its accuracy

bounds for continuous state-action space problems with specific approximator structures

[135]. Recently, a kernel-based local averaging structure was shown to have a property of

convergence to the optimal cost-to-go with increasing number of samples and decreasing

the kernel bandwidth for a certain model-free learning scheme [89, 88].
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We argue for the use of local averagers for the function approximation in the approach.

Our experience with the suggested approaches confirmed the great difficulty associated with

selecting the structure and training algorithm of a global neural network in order to ensure

stability of value iteration [64]. Hence, the use of local averagers appears more promising for

process control problems. Even for continuous problems, we can show that the nonexpansion

property guarantees stable learning in the off-line value iteration step. We also back up

this assertion with several case studies. We believe that this is an important step towards

making the approach more user-friendly and bringing it to practice. It still remains to make

sure that the converged cost-to-go indeed leads to optimal or at least improved closed-loop

performance. In this regard, we show that simple use of local averagers does not necessarily

lead to a converged cost-to-go function guaranteeing closed-loop stability and performance,

especially for a system with high state/input dimension. Analysis of the failed cases will

show that the reason for poor closed-loop performance is attributed to ‘over-extrapolation’

of the cost-to-go approximation, both during the off-line iteration and on-line control, and

a safeguard against over-extrapolation is needed for the approach to be successful.

The rest of the chapter is organized as follows: In Section 4.2, we discuss a class of

local approximators with the nonexpansion property. In Section 4.3, our criteria for evalu-

ating different types of approximators are first provided, and then several case studies are

presented to compare the performances of global approximators vs. local approximators.

Section 4.4 offers some conclusions.

4.2 Function Approximators with Nonexpansion Property

In this section, we discuss a family of local approximators with the nonexpansion property

described in [44] and show how off-line convergence is guaranteed for discounted problems.

We first define a contraction mapping h with a chosen norm as

∀x, y ∈ X , ‖h(x)− h(y)‖ ≤ γ‖x− y‖ (57)

where X is a closed vector space with a norm ‖ · ‖ on X and γ ∈ [0, 1). We call h a

nonexpansion mapping if γ ∈ [0, 1].
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In Chapter 2, the DP operator T was shown to be a contraction mapping with respect

to the infinity norm and have a fixed point solution for discounted problems. Furthermore,

with every possible state in the state space involved in a look-up table form, infinite number

of applications of T will converge to the optimal cost-to-go values and a convergence bound

can be provided for finite discounted MDP problems [94].

The suggested ADP scheme samples the state space using simulations and hence does

not compute and store the cost-to-go value of every state in the state space. Let us denote

the set of sampled states as Xsam. We also have the set of states, Xest, for which the cost-

to-go should be estimated using the function approximator in solving (28). Finally, let T̃

represent the approximate Bellman operator with a chosen function approximation scheme.

Theorem 8. Suppose T̃ is based on a family of function approximators with a nonexpansion

property in the sense of the infinity norm. That is, the function approximator used in the

approximate Bellman operator is a local averager with the following property:

J̃(x0) = β0k0 +
n∑

i=1

βiJ(xi) (58)

with
n∑

i=0

βi = 1 βi ≥ 0 (i = 0, · · · , n) (59)

where x0 is a query point in the set Xest and n is the number of neighboring points in the

set Xsam for approximation.

Then, the iteration of T̃ on the cost-to-go values for the sampled data points converges

in the following sense:

‖J i+1(xj)− J i(xj)‖∞ ≤ αi‖T̃ J0(xj)− J0(xj)‖∞ (60)

where xj(j = 1, · · · , N) ∈ Xsam and i is the iteration index.

Proof. Suppose that there are N(≥ n) sampled points in Xsam and xk ∈ Xest. In each

iteration, we compute T̃ J for ∀x ∈ Xsam, which requires evaluation of cost-to-go for several

xk’s ∈ Xest in the evaluation of the minimization operator. First, the approximation error
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for all xk ∈ Xest over each iteration can be expressed as

∣∣∣J̃ i+1(xk)− J̃ i(xk)
∣∣∣ =

∣∣∣∑j βkj

(
J i+1(xj)− J i(xj)

)∣∣∣
≤ maxj

(
J i+1(xj)− J i(xj)

)
= ‖J i+1(xj)− J i(xj)‖∞

(61)

where i is the iteration index and xj ∈ Xsam. Here J̃ is used to emphasize the fact that

its cost-to-go value is approximated based on its neighboring points in Xsam via the local

averager.

We also note that the following property holds for arbitrary functions g, h : A → R,

where A is some arbitrary set:

∣∣∣min
a

g(a)−min
a

h(a)
∣∣∣ ≤ max

a
|g(a)− h(a)| (62)

Using the property the iteration error over the finite samples xj ∈ Xsam becomes

∣∣J i+1(xj)− J i(xj)
∣∣ =

∣∣∣minu

{∑
xk∈Xest

pxj ,xk
(u)

(
φ(xj , u) + αJ̃ i(xk)

)}

− minu

{∑
xk∈Xest

pxj ,xk
(u)

(
φ(xj , u) + αJ̃ i−1(xk)

)}∣∣∣
≤ maxu α

∑
xk∈Xest

pxj ,xk
(u)

∣∣∣J̃ i(xk)− J̃ i−1(xk)
∣∣∣

≤ α‖J̃ i(xk)− J̃ i−1(xk)‖∞

(63)

where pxj ,xk
is a transition probability from xj to xk for a given choice of u. For a continuous

state space, the transition probability is replaced by a transition probability density function

and the sum by an integral over the entire state space, which can subsequently be replaced

by a sum using a quadrature approximation.

From (61), Equation (63) becomes

∥∥J i+1(xj)− J i(xj)
∥∥
∞ ≤ α

∥∥J i(xj)− J i−1(xj)
∥∥
∞

= α‖T̃ iJ(xj)− T̃ i−1J(xj)‖∞ ≤ αi‖T̃ J0(xj)− J0(xj)‖∞
(64)

Since α < 1, the right side converges to 0 as i → ∞, and we can conclude that under

the approximate value iteration scheme, the cost-to-go converges to some value for every

xj ∈ Xsam.

The above theorem implies that the local averagers preserve the contraction mapping of

the DP operator for the sampled data in Xsam, and therefore the vector J(x) (x ∈ Xsam)
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converges upon the iteration for the discounted problems. We note, however, that accuracy

bounds for the converged solution cannot be computed in general because such an averager

may not necessarily have a same fixed point solution with the DP operator. Limited analysis

on the converged solution’s accuracy can be found for a finite MDP with a 1-nearest neighbor

approximation in [44].

4.3 Case Studies

In this section, we present some case studies comparing different choices of function approx-

imators. We provide the criteria for evaluating their performance in terms of the ease of

off-line learning and on-line performance.

4.3.1 Choice of Function Approximators

4.3.1.1 Neural Network

Global and parametric approximators such as an artificial neural network (ANN) have been

the popular choice in the NDP and RL literature [122, 142, 25, 107]. ANNs can learn

arbitrarily complex functions and make predictions efficiently once trained. New training

data are incorporated into the model and then discarded. This parametric nature loses

information on the distribution of the data used for the training. For this study, we test a

feedforward neural network of the following structure:

J̃(x) =
M∑

m=1

gm(wT
mx) (65)

where gm is a nonlinear function (e.g. sigmoid), and wm is a vector of weighting factor,

which is generally learned through a gradient-descent approach with error back-propagation.

4.3.1.2 Instance-Based Algorithms

Instance-based algorithms are nonparametric representations in that they simply store the

training data. They use the stored points “close” to a query point to make a prediction

when they are asked to do so. The closeness is typically defined according to some distance

metric (e.g. Euclidean distance). K-nearest neighbor (kNN) and kernel-based predictors

are instance-based algorithms. The computational load of these algorithms is mostly borne
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during prediction not during learning, because the prediction involves calculation of distance

and averaging whereas the learning amounts to simply storing the data. This is why they

are often called lazy learning algorithms.

In this paper, we use kNN as the representative of the instance-based algorithms. We

also note that the kNN has the nonexpansion property. Predictions of the kNN are given

by

J̃(x) =
1
k

∑

xi∈Nk(x)

J(xi) (66)

where Nk(x) is the data set composed of the k-nearest neighbors of x defined by the training

samples.

As a variant of the kNN, a distance weighted kNN can also be used to make the contri-

bution of each data point to the prediction inversely proportional to the distance.

J̃(x) =
∑

xi∈Nk(x)

wiJ(xi) (67)

where

wi =
1/di∑
i 1/di

(68)

For the distance metric, we use the Euclidean distance defined as

di =
√

(x− xi)T W (x− xi) (69)

where W is a feature weighting matrix with zero off-diagonal elements assigning a weight

to each dimension. This flexibility allows for emphasizing dimensions of the state variables

that are more important than others.

4.3.2 Evaluation Criteria

4.3.2.1 Convergence Behavior in the Off-line Iteration Step

In the off-line iteration step, the approximate cost-to-go function is obtained through the

iteration of the Bellman equation based on some function approximation scheme for the

sampled points in the state space until convergence. We define the following properties as

the criteria for evaluating the suitability of different types of function approximators.

51



• Learning stability: Does the cost-to-go converge within a given error tolerance (ε)

upon the iteration?

• Monotonicity: Do the iteration errors (i.e. some norm of the differences between the

cost-to-go values of the two consecutive iteration runs) decrease monotonically?

• Rate: How fast is the convergence?

We also adopt the following measure of the iteration error:

eabs(i) = max
k=1,···,N

∣∣J i(xk)− J i−1(xk)
∣∣ (70)

where i denotes the iteration index and N is the number of sampled data points in the state

space.

Alternatively, one can use a relative error in case that the magnitude of cost-to-go is

very large.

erel(i) = max
k=1,···,N

∣∣∣∣
J i(xk)− J i−1(xk)

J i−1(xk)

∣∣∣∣ (71)

4.3.2.2 Accuracy of the Converged Approximator

Of course, the resulting cost-to-go function should converge to a “reasonable” approximation

of the optimal cost-to-go values. As a measure of proper learning, we use the following

measure of the closed-loop performance obtained by implementing a control policy µ, which

is a greedy policy based on the converged cost-to-go J̃ :

Jµ(x(0)) =
∞∑

k=0

φ(x(k), µ(x(k))) (72)

In the rest of the section, we present the results of applying the two function approxi-

mation schemes to three process control problems that feature different types of cost-to-go

function structures: a smooth cost-to-go structure that is relatively easy to learn, a stiff

cost-to-go structure that occurs often in the state constrained systems, and finally a system

with a large number of states leading to sparse high dimensional data.
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4.3.3 Case 1: Smooth Cost-to-Go Structure – Van de Vusse Reactor

We consider a simple nonlinear system, Van de Vusse reactor introduced in Chapter 3.

The system is given by (52) with the same nominal parameter values. The control objec-

tive is to drive the system from any initial state to the equilibrium point {x1, x2, u} =

{3.496, 1.2, 45.67}. The same one-stage cost φ of (53) is used.

4.3.3.1 Convergence Behavior in the Off-line Learning

For this example, 11 initial points were sampled by gridding the state space in an equally-

spaced manner within the range of 0 ≤ x1 ≤ 6.9920 and 0 ≤ x2 ≤ 2.4. 121 sampled

states were then obtained from closed-loop simulations of the system under a successive

linearization based MPC (slMPC) controller [61], starting from the various initial states.

The prediction and control horizons were 10 and 5, respectively. The cost-to-go values for

the sampled states were initialized with the cost-to-go values calculated from the closed-loop

simulation data.

Two approximators were tested: a feedforward neural network with three hidden nodes

in the middle layer and a k-nearest neighbor averager with k = 4. The weight vector of the

neural network was identified using the MATLAB Neural Network Toolbox [37]. Absolute

convergence criterion of (70) was used with ε = 0.1. Figure 6 shows that the off-line learning

behavior of kNN is stable and monotonic while that of NN is not. The cost-to-go structure

is very smooth as depicted in Figure 7. The fluctuation in the iteration error for the NN

approximation was shown to occur at the edge of sampled state values. The iteration

behaviors are summarized in Table 4.

4.3.3.2 Accuracy of the Cost-to-Go

To demonstrate the effectiveness of the learned cost-to-go from each method, we compare the

on-line performance based on (72). Of course, for the neural network, it is difficult to decide

where to terminate the iteration. We present the result with the cost-to-go function after

100 iterations and note that results with other iteration runs produced similar solutions.

For comparison, we sampled 169 fresh data points different from the training data
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Figure 6: Van de Vusse reactor: comparison of off-line iteration trends.

Table 4: Van de Vusse reactor: convergence behavior of the off-line learning.
Neural network K-nearest neighbor

Stability Not stable: eabs shows sud-
den increases and fluctuates
around 100 - 200, which is
around 2-3% of maximum of
cost-to-go.

Stable: the convergence toler-
ance was met after 43 itera-
tions (eabs = 0.1).

Monotonicity No. Yes.
Rate Does not converge. Converged and faster than

neural network.
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Figure 7: Van de Vusse reactor: cost-to-go function with 100 iterations using a neural
network.

points. We also tested the trained data points. Out of 169 fresh data points, 129 data

points showed better performances with the neural network and the rest with the k-nearest

neighbor averager. In the case of the training data set, similar trends were observed. For

121 data points, 90 points showed better on-line performances with the neural network.

The on-line performances are compared in Table 5. We can see that significant improved

control performances resulted compared to the starting control policy in both cases. De-

spite the oscillatory behavior of the neural network in the off-line iteration, the cost-to-go

approximation from the neural network at certain iterations was reasonable enough to yield

a good on-line performance. However, this may be limited to the current case of smooth

cost-to-go structure with a relatively “small” state space.

4.3.4 Case 2: Stiff Cost-to-Go Structure – State-Constrained System

Many process control problems have output or state constraints. Here we consider an

example involving soft constraints, where a large penalty is assigned to the states violating
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Table 5: Van de Vusse reactor: comparison of on-line performances.
1
N

∑N
k=1 J µ̃(xk) Neural network K-nearest neigh-

bor
slMPC

Trained points (N =
121)

1.2036e3 1.349e3 1.507e3

Fresh points (N = 169) 994.51 1.126e3 1.241e3

the constraints. This generally gives a very “stiff” cost-to-go shape, which is difficult for

function approximators to learn. We consider the problem of disturbance rejection for a

linear system with state and input constraints.1 The model originally refers to the control

of engine rpm (y) using a bypass valve (u) in the presence of step disturbance in torque

load (d) [83]. With a sample time of 0.2 (sec), a discrete state space model is obtained as

x(k + 1) =




−0.04223 −0.3932 −0.08433

0.04299 1.035 −0.3984

0.08795 0.4352 0.4681




x(k) +




0.06815

0.2912

0.6062




u(k)

+




−0.2026

1.68

−0.468




d(k)

y(k) =
[

0.2999 −2.021 0.9494

]
x(k)

(73)

The pertinent constraints imposed are −5 ≤ u ≤ 5 and −5 ≤ y ≤ 5. The disturbances are

assumed to be measured and can take values between 0 and 1.

The constraints impose some interesting limits on the achievable performance. For

d > 0.84, the system cannot be controlled to the set-point y = 0 with the given constraints.

Also, for d = 0.8 and starting at the origin, no sequence of control actions u(k) can be

found to satisfy the state constraint, which necessitates constraint relaxation or softening.

The cost-to-go function is defined as

J(x(k)) =
∞∑

i=0

αiφ(x(k + i), u(k + i)), α = 0.99 (74)

φ(x(k), u(k)) = Qy2(k + 1) + R∆u2(k) (75)

1This simulation work was done by Niket S. Kaisare.
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4.3.4.1 Convergence Behavior in the Off-line Learning

Two different PI controllers (Kc = 0.25, τI = 0.15; Kc = 0.5, τI = 0.08) were used as

initial suboptimal policies, with the input moves truncated to satisfy the constraint |u| ≤ 5.

Simulations were performed for two different starting points and four different d values. 75

data points were obtained from each of the 16 scenarios (2 controllers, 2 initial conditions,

4 disturbances).

The weighting matrices for one-stage cost were chosen to be Q = 1 and R = 0.04.

For the states with constraint violations, the stage-wise cost was multiplied 100 times (i.e.,

Q = 100, R = 4 if |y(k)| > 5). This results in a cost-to-go function having a very stiff

structure. This is because the states that violate (or lead to immediate future violations

of) state constraints have high cost-to-go values, while those that do not have significantly

lower cost-to-go values.

The augmented state is composed of the system state, the disturbance, and the deviation

from the set-point, i.e., x = [x1 x2 x3 d (r − y)]T . Two different approximators were used

to obtain cost-to-go as a function of system state:

• A feedforward neural network with 7 hidden nodes, and

• distance-weighted k-nearest neighbor (k = 4). As the disturbance (d) and error (r−y)

were judged to be more critical than the three system states, feature weighting matrix

W = diag[1 1 1 6 10] was used in computing the distances for the normalized data.

The neural network was unable to provide a good approximation of the stiff cost-to-go

function. The cost-to-go function did not converge even after 150 iterations. As shown

in Figure 8, the learning with ANN is unstable. For the kNN, the relative iteration error

decreased monotonically with increasing number of value iterations. The value iteration

converged in 27 iterations with the tolerance level of ε = 0.005. The iteration behavior is

summarized in Table 6.
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Figure 8: State-constrained case: comparison of off-line iteration trends.

Table 6: State-constrained case: convergence behavior of the off-line learning.
Neural network K-nearest neighbor

Stability Not stable: erel shows fluctua-
tions around the order of 102.

Stable: the convergence toler-
ance was met after 27 itera-
tions (erel = 0.005).

Monotonicity No. Yes.
Rate Does not converge. Converged and faster than

neural network.
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4.3.4.2 Accuracy of the Cost-to-Go

None of the 150 trained neural networks were able to control the system. The dash-dot line

in Figure 9 shows the performance of the best ANN cost approximator. On the other hand,

the on-line performance using the k-nearest neighbor averager based on the converged cost-

to-go data (solid line in Figure 9) is comparable to that of the truly optimal ∞−horizon

MPC. The specific plots are for d = 0.8, wherein constraint softening is required as at least

one point violates the constraint. Note that d = 0.8 is a new point, i.e., this condition was

not used in learning the cost function.

4.3.5 Case 3: High Dimensional State Space with Sparse Data – MMA Poly-
merization Reactor

In this section, we consider the control of a free radical polymerization of methyl methacry-

late (MMA) in the solution phase of a jacketed continuous stirred tank reactor (CSTR).
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Table 7: Elementary reactions for free radical polymerization of MMA.
Initiation

I
kd−→ 2R

M + R
ki−→ P1

Propagation

Pn + M
kp−→ Pn+1 (n = 1)

Chain transfer to monomer

Pn + M
ktrm−→ Mn + P1 (n = 1)

Chain transfer to solvent

Pn + S
ktrs−→ Mn + P1 (n = 1)

Termination

Pn + Pm
ktd−→ Mn + Mm (disproportionation)

Pn + Pm
ktc−→ Mn+m (combination)

Note that Pn and Mn denote living and dead polymers, respectively.

The complete plant model has 8 state variables and is highly nonlinear [2]. This system

presents challenges in that the state space is high dimensional but the amount of sampled

data is limited, resulting in sparse occupation of the state space by the training data. This

would be the typical scenario for practical process control problems.

4.3.5.1 Model Description and Problem Statement

The reaction kinetics of the free radical polymerization mechanism including chain transfer

reactions to both solvent and monomer are shown in Table 7. The kth moments of living

and dead polymer concentrations, Gk and Fk, respectively are defined as

Gk =
∞∑

n=1

nkPn(t) (76)

Fk =
∞∑

n=2

nkMn(t) (77)

The details of the complete plant model can be found in [2] and are omitted due to space

limitation. The state vector consists of variables: the concentrations of initiator, monomer,

and solvent, the moments of dead polymer concentrations, and the temperatures of reactor

and jacket, respectively.

x =
[

I

If

M

Mf

S

Sf

F0

F00

F1

F10

F2

F20

Tr

Tf

Tj

Tf

]T

(78)
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Jacket inlet temperature and flow rate are the manipulated inputs.

u =

[
T in

j

Tf

qf

qf0

]T

(79)

The controlled variables are the conversion and weight-average molecular weight defined as

X =
Vpρp

V ρr
=

F1Wm

MWm + SWs + F1Wm
(80)

Mw = Wm
G2 + F2

G1 + F1
(81)

where V , ρ, W denote total volume of the reaction mixture, density, and molecular weight.

The subscripts p, m, and r represent polymer, monomer, and reaction mixture, respectively.

The controlled output vector y is represented by

y =
[
X

Mw

10000

]T

(82)

Further simplification is possible by making the assumption of quasi-steady state in the

concentrations of living polymers, constant V , and q = qf with dimensionless time τ .

θ =
V0

qf0
=

0.9l

0.01l/60s
= 5400s (83)

τ = t/θ (84)

dx1

dτ
= u2 − u2x1 − θkdx1 (85)

dx2

dτ
= u2 − u2x2 + θ

{
−2fkdx1

If

Mf
− (kp + ktrm)x2G0

}
(86)

dx3

dτ
= u2 − u2x3 + θ {−ktrsx3G0} (87)

dx4

dτ
= −u2x4 +

θ

F00

{
1
2
(kt + ktd)G2

0 + (ktrmMfx2 + ktrsSfx3)G0

}
(88)

dx5

dτ
= −u2x5 + θG1(ktG0 + ktrmMfx2 + ktrsSfx3) (89)

dx6

dτ
= −u2x6 +

θ

F20

{
(ktdG0 + ktrmMfx2 + ktrsSfx3)G2 + ktc(G0G2 + G2

1)
}

(90)

dx7

dτ
= u2 (1− x7) +

θ

TfρCp

(−∆H)kpMfx2G0 +
UA

ρCpqf0

(x8 − x7) (91)

dx8

dτ
= θ

{
qc

(u1 − x7)
Vj

+
UA

ρwCpwVj
(x7 − x8) +

UaAa

ρwCpwVj

(
Ta

Tf
− x8

)}
(92)

where

G0 =
√

2fkdI

kt
(93)
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Table 8: Model parameters of MMA polymerization reactor.
kd0 1.25× 1018 Ed 35473
kp0 2.94× 106 Ep 5656
kt0 5.2× 108 Et 1394
ktd0 1.83× 1027 Etd 44467
ktrm0 9.32kp0 × 103 Etrm Ep + 13971
ktrs0 8.75kp0 × 10−5 Etrs Ep + 42.6
ktc kt − ktd R 1.987 [ cal

mol·K ]
Wm 100.12 [ g

gmol ] Ws 88.12 [ g
gmol ]

Wi 242.23 [ g
gmol ] qf0 1.67× 10−4 [ l

s ]
Tf 20 [◦C] Ta 20 [◦C]
−∆H 13800 qc 0.0833
If 0.0206 Mf 4.7104
Sf 5.1085
F00 0.001 F20 1000
f 0.4 UA 3.2
UaAa 3.2 Vj 0.8
V 0.9 [l] θ 5400 [s]

G1 =
2fkdI + (kpM + ktrmM + ktrsS) G0

ktG0 + ktrmM + ktrsS
(94)

G2 = G1 +
2kpMG1

ktG0 + ktrmM + ktrsS
(95)

Since the concentration of living polymers is much smaller than that of dead polymers, the

contribution of living polymer moments to the overall molecular weight is negligibly small.

Thus, Equation (81) is further reduced to

Mw = Wm
F2

F1
(96)

The control objective is to drive the outputs to the set-points of [0.2, 15]T from an initial

state. The model parameters and the feed condition are found in Table 8. Step changes

of various sizes in the activation energies of dissociation and propagation are introduced at

the initial time as depicted in Figure 10. In the sequel, the simplified model will be used as

a plant and no model/plant mismatch is assumed to exist.

4.3.5.2 State Space Sampling using Suboptimal Control Policy: slMPC

To cover the pertinent operating ranges, we sampled 19 points in the disturbance space as

shown in Figure 10 and performed closed-loop simulations using slMPC. 3549 data points
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Figure 10: Possible step disturbances in the parameter space of MMA polymerization
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Table 9: MMA reactor: input constraints and parameters for slMPC.
Sample time 90 sec
Prediction horizon 15
Control horizon 5

Output weighting
[

10 0
0 1

]

Input weighting
[

1 0
0 0.1

]

Input magnitude constraints 50◦C ≤ T in
j ≤ 90◦C, 0.1 ≤ qf ≤ 2qf0

Input rate constraints |∆T in
j | ≤ 5◦C, |∆qf | ≤ 5ml/min

were obtained from the simulations. The tuning parameters of slMPC and the input con-

straints are given in Table 9. We note that it was very difficult to find other control policies

and initial conditions that operate the system stably. The cost-to-go is defined as

J(x(k)) =
∞∑

t=0

αtφ(x(k + t), u(k + t)), α = 0.98 (97)

φ(x(k), u(k)) = (r−y(k+1))T




10 0

0 1


 (r−y(k+1))T +∆uT (k)




1 0

0 0.1


∆u(k) (98)

The state vector is augmented as follows for encoding the cost-to-go information:

xaug = [x1 x2 · · · x8 Ed Ep y1 y2]
T (99)

Note that the outputs are also included in the augmented state in order to ensure integral

actions. This helps because the output variables are nonlinear functions of the state vari-

ables. Figure 11 shows the visited states under the closed-loop simulations using the slMPC

policy.

4.3.5.3 Convergence Behavior in the Off-line Learning

For the 3549 data points, two different function approximators relating the cost-to-go with

augmented state were tested: a feedforward neural network and a distance-weighted k-

nearest neighbor (K=4) averager. Based on the approximators, value iteration was per-

formed. In using the neural network, the number of hidden nodes was adjusted at each

iteration to respect the fitting criterion of MSE < 0.001. ε = 0.03 was used for the relative

error convergence criterion of (71). Figure 12 shows that the kNN approximator learns
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Figure 12: MMA reactor: comparison of off-line iteration trends.

stably with convergence achieved after 10 iterations, while the NN does not. Table 10

summarizes the observation of off-line learning behavior.

4.3.5.4 Accuracy of the Cost-to-Go

We tested the kNN averager based on the converged cost-to-go data and the neural network

obtained at the 18th iteration which showed the minimum iteration error. A representative

result for nominal values of Ed and Ep is shown as solid lines in Figure 13. On-line per-

formance was tested for the various values in the parameter space. Though the cost-to-go

converged stably in the kNN case, both approximators do not control the system success-

fully. An investigation of the state space plot in Figure 14 suggests that extrapolations to

previously unvisited regions of the state space are responsible for the undesirable closed-loop

behavior. Hence, this case study indicates that the case of sparsely sampled high dimen-

sional state space should be approached with a more robust algorithm for off-line learning
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Table 10: MMA reactor: convergence behavior of the off-line learning.
Neural network K-nearest neighbor

Stability Not stable: erel shows fluctua-
tions and eabs increases expo-
nentially.

Stable: the convergence toler-
ance was met after 10 itera-
tions (erel = 0.03).

Monotonicity No. Yes.
Rate Does not converge. Converged and faster than

neural network.

as well as on-line optimization. This is a topic of the Chapter 5. We also note that other

cost-to-go functions from different iteration runs for the neural network case show the same

trends.

4.4 Conclusions

In this chapter, we investigated the choice of approximators for the approximate dynamic

programming strategy for process control. Specifically, we compared a parameterized global

approximator and a nonparameterized local averager with a ‘nonexpansion’ property in

terms of their off-line convergence behavior and eventual on-line performance. Some the-

oretical analysis as well as the simulation results of three process control problems let us

conclude that the use of local averagers gives more predictable off-line convergence behavior

and often better on-line performance. Though global and parametric representation such as

artificial neural networks has been used successfully as a cost-to-go function approximator in

many applications, training data should be large and densely occupy the state space, which

is rare for process control problems. This result has an important practical implication

for the future of the ADP strategy in process industries as unpredictable off-line training

results and on-line performance will undoubtedly frustrate the users and have them give up

entirely.

Despite the nice behavior of the local averagers in the off-line learning phase, it is shown

that its use does not automatically guarantee an acceptable on-line performance, especially

in the case that the learning data is sparse in the state space. This is because uncontrolled

extrapolations can deteriorate the quality of cost-to-go approximations since the learned

cost-to-go information is valid only in the regions of the state space where learning data
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Figure 13: MMA reactor: comparison of on-line performances: Ed/Ed0 = 1, Ep/Ep0 = 1.
The dotted lines are set-points.
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Figure 14: MMA reactor: state space plot of states visited during on-line implementation
with distance-weighted kNN (X). The dots are data used for cost-to-go approximation.

were available – a fact that is obvious but not always given attention to in applications.

This observation suggests that an additional strategy for balancing between exploration

and exploitation (cautious use of the learned cost-to-go information) in a user-controlled

manner should be devised for the ADP strategy to be applicable to practical process control

problems.
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CHAPTER V

DESIGN OF PENALTY FUNCTION FOR ROBUSTNESS

This chapter addresses the problem of ‘excessive extrapolation’ during learning and use

of a cost-to-go function in implementing the approximate dynamic programming strategy.

We propose a penalty function term to be used in conjunction with a local averager for

more robust estimation and use of cost-to-go information. Though the use of certain local

averagers guarantees convergence in the off-line value iteration step as shown in Chapter 4,

cost-to-go predictions provided by the local averagers may not be accurate, if the data

density around a query point is inadequate. This is especially a problem in cases of high

dimensional state space with sparse training data. To cope with this difficulty, we propose

that a penalty term be included in the objective function in each minimization to discourage

the optimizer from finding a solution in the regions of state space for which confidence in the

approximation is low. Confidence in this context can be measured by an estimate of local

data density around a query point. The Parzen density estimator, which can be naturally

combined with a local averager, is suggested for this purpose and a quadratic penalty term is

designed based on the local data density estimate. The suggested use of the penalty function

endows the user with the ability to use given cost-to-go information in a more controlled

manner and avoid excessive extrapolations, which can lead to a significant bias in the

learned cost-to-go and poor closed-loop performance. We illustrate the potential robustness

advantage that the suggested modification allows for with the MMA polymerization reactor

example used in the previous chapter.

5.1 Introduction

In Chapter 4, we compared a neural network and a local averager for function approximation

and concluded that the latter gives better off-line convergence behavior and oftentimes

results in better closed-loop performances within the overall ADP strategy.
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Since the approximation of a cost-to-go function is based on the data generated by closed-

loop simulations or experiments, the domains of the state space wherein the approximation

is valid may be limited. Sparseness of training data is expected to be a rule rather than an

exception in process control problems where high dimensional state space, complex nonlinear

dynamics, and limited opportunities for experimentation are typical. Though the learning

based on data sampled from closed-loop simulations/experiments helps us deal with the

curse of dimensionality, caution must be exercised in generalizing the learned cost-to-go

information since it may not be globally valid. This problem is fundamental and the use of

a local averager does not prevent it. However, it does facilitate the design of a strategy to

deal with it, as we will see in this chapter.

Though the problem of cost-to-go function approximation has been studied extensively

in dynamic programming literature, the issue of extrapolation has not been dealt with

explicitly. For example, in Neuro-Dynamic Programming, it is normally assumed that large

amounts of training data are available [25]. In addition, random exploration of state space

is not considered detrimental due to the nature of studied applications. In fact, learning

is designed to be evolutionary (e.g., game playing and robot-learning) in their common

algorithms in that they are intended to explore through randomized control policies and

learn from “bad” on-line trajectories as well as good trajectories.

One noteworthy work dealing with the issue of excessive extrapolation in the context of

cost-to-go function approximation is found in [111]. They construct an approximate convex

hull, which is called independent variable hull (IVH) taking an elliptic form as depicted in

Figure 15. It finds a fixed number of training data that lie closer than some threshold value

from a query point and builds the IVH. Whenever they have to estimate the cost-to-go for

a query point, the IVH is calculated and the query point is checked whether it lies inside

the hull or not. Any queries within the convex hull are considered to be reliable and those

outside are deemed unreliable. A query point, q, is categorized as a reliable point, if

qT (XT X)−1q ≤ max
i

vii (100)
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Figure 15: Two-dimensional independent variable hull (IVH).

where vii are the diagonal elements of matrix V , which is calculated according to

V = X(XT X)−1XT (101)

where X is a matrix with its rows corresponding to the training data. This approach is not

computationally attractive. It also gives up making a prediction for the point outside the

hull and requires more random exploration. In addition, the design of a convex hull may be

misleading if the elliptic hull contains a significant empty region around the query point.

In chemical process control, it is of paramount importance for control to ensure stable

and safe operations, even if it means the economic optimality is sacrificed a bit. This

calls for a modification in the typical ADP approach, which requires explorations through

randomized policies and encourages ‘learning by mistakes.’ In process control, large control

actions with unpredictable outcomes should be avoided at all cost. This implies that an
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ADP algorithm for process control should avoid excessive stretch of given or learned cost-to-

go information beyond the domain of training data and try to produce a solution within the

boundaries of given information, even though such a solution will generally be suboptimal.

One plausible approach to deal with this problem is to calculate and use information

on the local data density in solving the minimization appearing in the Bellman equation.

To this end, we propose to use a probability density estimator proposed by Parzen [90] for

estimation of local data density. The density estimate is then translated into a quadratic

penalty term added to the cost-to-go estimate to discourage the optimizer from finding

a solution (i.e. a next state) in regions where the training data density is inadequately

low. The penalty term systematically biases upward the cost-to-go function in a manner

inversely proportional to the local data density. This way we can make the off-line iteration

steps and on-line control calculations more robust against potential approximation errors

from insufficient sampling.

For demonstrating the effectiveness of the proposed method, the continuous methyl

methacrylate (MMA) polymerization reactor example studied Chapter 4 is revisited where

simple application of a local averager was shown to be inadequate. The rest of the chapter

is organized as follows: Section 5.2 presents the design of a penalty function based on a

multi-dimensional Parzen density estimator. In Section 5.3, the modified ADP strategy

that makes use of the penalty function is discussed. In Section 5.4, the performance of the

controller resulting from the modified ADP approach is compared with that of a starting

control policy (successive linearization based MPC by Lee and Ricker [61]) as well as a

nonlinear MPC controller. Section 5.5 offers some conclusions.

5.2 Penalty Function Based on Local Data Density

5.2.1 Local Data Density Estimator

There are two principal approaches to (probability) density estimation, the parametric and

the nonparametric design. In the parametric estimation, the distribution of data is assumed

to follow a certain form with a few adjustable parameters. An example is the Gaussian dis-

tribution, which is parameterized by a mean vector and a covariance matrix. Such an
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approach is statistically and computationally efficient but can lead to poor results if the

presumed form is not close to an underlying density distribution. Alternatively, a nonpara-

metric approach can be taken where the shape of the density estimate is also determined by

the data. In principle, given enough data, arbitrary densities can be estimated to a desired

accuracy, which is called consistency [106]. One of the most popular nonparametric methods

is the Parzen estimator, which is based on local smoothing of the data with a kernel func-

tion. A disadvantage of the approach is the intensive computational requirement. However,

we will discuss later that this is not the case for our application since the purpose of our

adoption is not to estimate the global density. Instead, we employ the multi-dimensional

Parzen probability density function [29] to arrive at a measure for confidence in a cost-to-go

approximation.

Suppose that we have a training data set Ω and a new query point x0. The Parzen

density estimate, fΩ(x0), is obtained as a sum of kernel functions placed at each sample in

Ω according to

fΩ(x0) =
1

Nσm0

N∑

i=1

K

(
x0 − xi

σ

)
(102)

where x0, xi ∈ Rm0 , xi ∈ Ω, K is a selected kernel function, N is the number of data in

Ω, and σ is the smoothing parameter (or the bandwidth). The kernel function, K, is often

chosen in a way such that it has mathematically tractable properties such as continuity or

differentiability. A well-known and widely used kernel is the following multivariate Gaussian

distribution function:

K

(
x0 − xi

σ

)
=

1
(2πσ2)(m0/2)

exp
(
−‖x0 − xi‖2

2

2σ2

)
(103)

Hence, the multi-dimensional Parzen density function is based on Euclidean distance

between the query point x0 and neighboring points xi in the training data set, Ω, through

the kernel function. The kernel assigns high values to the training points close to x0 and

low values to those far.

5.2.2 Quadratic Penalty Function

Since a local averager estimates a cost-to-go value of a query point based on those of the

nearest neighboring points, which can be very far, states in regions with little data can still
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be chosen as a solution to the minimization. However, this is undesirable as the cost-to-go

estimate for such a state is likely to have a significant error. If we know the structure of the

true cost-to-go function, accurate extrapolations to such a region could be done, but this is

not a general case.

To assure a predictable outcome, we should select a control action such that the solution

state has adequate data density around it. To this end, a penalty function based on the local

data density is designed and added to the cost-to-go estimate in solving the minimization.

Penalty function method has been an important element of constrained optimization for

decades [87]. In optimization, a penalty function is mainly used to force the search to

stay inside or close to a feasible region. A similar approach can be taken in our problem’s

context: A penalty term can be included in the objective function to bias the search to

those regions of adequate data densities. This way, excessive extrapolation can be avoided.

In this work, we use a quadratic penalty function that adjusts the objective function as

follows:

J̃aug(x0) ⇐ J̃(x0) + Jbias(x0) (104)

Jbias(x0) = A ·H
(

1
fΩ(x0)

− ρ

)
·
[

1
fΩ(x0) − ρ

ρ

]2

(105)

where x0 is a query point, ρ is a user-given threshold value, A is a scaling parameter, and

H is a heavy-side step function defined as

H(x) =





1 (x > 0)

0 (x ≤ 0)
(106)

Figure 16 depicts how the penalty function is designed.

Parameters A and ρ can be determined by the following procedures:

1. Determine the bandwidth parameter σ in (102). σ is determined by considering the

distance range to be considered. For example, in the MMA example case, we use

σ = 0.3118, which is 1.5% of normalized distance range (6
√

m0).

2. The buffer zone, inside which no penalty term is assigned, is determined by setting

‖x0 − xi‖2
2 = σ2 in (103) calculating the corresponding ρ from (102).
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Figure 16: Quadratic penalty adjustment term.
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3. A, which controls the rate of increasing penalty term, is determined by

Jmax = A ·H
(

1
fΩ(x0)

− ρ

)
·
[

1
fΩ(x0) − ρ

ρ

]2

(107)

where Jmax is some large cost-to-go value, and fΩ(x0) is determined by setting ‖x0 −
xi‖2

2 = (3σ)2.

5.3 Modified ADP Strategy

In this section, we describe how the penalty function is incorporated into the aforemen-

tioned ADP strategy. In the off-line value iteration, one solves the Bellman equation in the

following recursive manner:

J i+1(x) = min
u
E

[
φ(x, u) + αJ̃ i (f(x, u))

]
(108)

Each iteration step in the minimization involves estimating the cost-to-go J̃ i (f(x, u)) for a

candidate u using a local averager based on the stored cost-to-go data. Without a penalty

term, the minimization is done with no regard to the accuracy of the cost-to-go estimate

and the solution may lie in a region with little data present. In Chapter 4, we saw that

this is especially a problem for a process with a high dimensional state space like the MMA

polymerization reactor example.

It is important to note that, even though we solve the minimization with the bias term

(Equations (104) and (105)) included, the cost-to-go value we record for each state in the

training set after the minimization is solved should not include the extra penalty term. This

is because the large penalty term can accumulate with the iteration and can start biasing

the cost-to-go values for the entire state space.

The modified ADP algorithm with the penalty function can be summarized as follows:

1. Perform closed-loop simulations and sample the resulting state trajectories to form a

training data set, Xsam.

2. Evaluate the initial cost-to-go value for each state in Xsam based on the data.

3. Improve the cost-to-go for each state in Xsam by evaluating (108). In solving the
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minimization, adjust the objective function for each candidate u according to (104)

and (105). J̃ is estimated using a local averager like the k-nearest neighbor averager.

4. Record the cost-to-go value J̃ (not J̃aug) corresponding to the solution for each state

in Xsam. Note that the penalty term is not to be included in the recorded cost-to-go

value.

5. Repeat steps 3–4 until a convergence criterion is met.

6. With the converged cost-to-go, real-time calculation of a control action is done by

solving

min
u
E

[
φ(x, u) + αJ̃∗aug(f(x, u))

]
(109)

with adjustment of the objective function according to (104) and (105).

We also note that the local data density is evaluated using (102) with neighboring points

(N = k) only. This is a small number compared to the entire data set and thus obviates the

heavy computational requirement associated with a nonparametric data density estimator.

5.4 Control of Continuous MMA Polymerization Reactor

In this section, we revisit the example of MMA polymerization reactor presented in the

previous chapter. Without any guard against excessive extrapolation, the ADP controller

based on the converged cost-to-go values could not regulate the process. We also compare

the performance of the ADP controller with those of the slMPC and the nonlinear pro-

gramming based MPC (NMPC) [61]. Model equations and parameter values are found in

the previous chapter. The control objective is to drive the conversion and weight-average

molecular weight to the set-point of [0.2 15]T . The activation energies for dissociation and

propagation are assumed to change in a deterministic manner at time 0 so that they are also

included in the state vector. In reality, they would have to be estimated from measurements.
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Figure 17: MMA reactor: off-line iteration trends using a penalty function.

5.4.1 The Modified ADP Approach

The same data set (composed of 3594 points) obtained from the closed-loop simulations

under the slMPC policy was used for estimation of the initial cost-to-go values. A distance-

weighted k-nearest neighbor method with k = 4 was employed for the cost-to-go evaluation

in the minimization. For the Parzen density estimator, the bandwidth parameter σ was

chosen as 0.3118, which was 1.5% of the range of normalized distance. Given Jmax = 105, the

corresponding threshold value ρ and the parameter A were calculated as 7.1765× 10−8 and

34.8, respectively. Value iteration was performed with the penalty function suggested in the

previous section, and the cost-to-go function converged after 13 iterations with erel < 0.03

as shown in Figure 17.
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Table 11: Cost incurred during on-line operation under different policies.
Case Ed/Ed0 Ep/Ep0 slMPC NMPC ADP

1 1.05 1.00 12878 11888 11318
2 1.05 1.03 7080 6491 6265
3 1.05 1.05 4516 4124 3869
4 1.03 0.95 9424 8601 8406
5 1.03 0.97 6310 5744 5620
6 1.03 1.00 3124 2853 2775
7 1.03 1.03 1317 1213 1184
8 1.03 1.05 641 599 567
9 1.00 0.95 594 559 592

10 1.00 0.97 239 232 238
11 1.00 1.00 28 26 28
12 1.00 1.03 39 38 39
13 1.00 1.05 133 130 132
14 0.97 0.95 176 164 175
15 0.97 0.97 321 315 321
16 0.97 1.00 713 683 712
17 0.97 1.03 1362 1295 1338
18 0.97 1.05 2001 1915 2214
19 0.95 0.97 1532 1456 1505

5.4.2 Comparison of On-line Performance

The converged cost-to-go was implemented as J̃∗ for on-line optimal control using (109).

Note that we are dealing with a deterministic system, which does not require evaluation

of any expectation operator. The performance is compared using slMPC, NMPC, and the

modified ADP controller. Table 11 shows on-line cost incurred under the three controllers

for 19 disturbance scenarios. The on-line cost was calculated using

∞∑

k=0

φ(x(k), µ(x(k))) (110)

φ(x(k), u(k)) = (r−y(k+1))T




10 0

0 1


 (r−y(k+1))T +∆uT (k)




1 0

0 0.1


∆u(k) (111)

The NMPC was formulated with prediction horizon of 5 and control horizon of 1, which

was found to be a tractable nonlinear optimization problem using the subroutine fmincon

of MATLAB. The results show that in most cases the modified ADP approach can improve

the performance from the starting control policy significantly and for some cases the perfor-

mance was even better than those of the particular NMPC policy, especially for the cases
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where the calculated trajectories were in regions where data is rich as shown in Figures 18

and 19. However, in the case 18, the ADP controller performs worse than the starting

control policy (slMPC). This was because the policy learned to explore aggressively while

there is only one trajectory generated by the slMPC in the nearby region. This phenomenon

is clearly shown in the state space plot of x3 and x4 in Figure 20. However, the penalty

function helped stabilize the on-line control eventually. By reducing the ρ to the density of

0.5% of normalized distance range from a query point, we could trap the state trajectory

very close to that of slMPC, leading to the same on-line performance with that of slMPC.

Hence, the parameters of penalty function can be designed to control the level of exploration

by user’s choice. The observation suggests that the ADP strategy may benefit from simula-

tion data covered by several different control policies or input dithering schemes, which can

allow the ADP strategy to derive a more improved control policy within a larger subset of

the state space.

We also tested for the “fresh” step disturbance cases that were not included in training

data set, and similar trends of performance improvement with closed-loop stability were

observed with those of the 19 cases.

5.5 Conclusions

Use of a penalty function was proposed to control extrapolation of the learned cost-to-go

data within the approximate dynamic programming strategy. In the minimization of off-

line value iteration and on-line control, the penalty function based on an estimate of local

data density systematically biases the search to those regions of adequate data density,

thereby “trapping” the solution within them. The continuous MMA polymerization reactor

was used to illustrate the efficacy of the modified approach: The modification provided

a control policy that regulated the system successfully and significantly improved on-line

performances were obtained compared to the starting control policy in most cases. We also

noted that simulations with different scenarios and control policies will enlarge the domain

of search and help improve the solution significantly.
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Figure 18: Output trajectories of different control policies for case 6.
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Figure 19: State trajectories of ADP for case 6. X’s denote the on-line state trajectory
and dots denote simulation data.

83



0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

 x
1

 x
2

0.92 0.94 0.96 0.98 1
0

0.5

1

1.5

2

2.5

3

 x
3

 x
4

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

 x
5

 x
6

1.05 1.1 1.15 1.2 1.25
1.05

1.1

1.15

1.2

1.25

 x
7

 x
8

Figure 20: State trajectories of ADP for case 18. X’s denote the on-line state trajectory
and dots denote simulation data.
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CHAPTER VI

STOCHASTIC OPTIMAL CONTROL: DUAL ADAPTIVE

CONTROL

In this chapter we solve a stochastic dual adaptive control problem using the ADP strategy.

The optimal dual control law can be obtained via dynamic programming, but solving the

Bellman equation is analytically and computationally intractable using conventional solu-

tion methods that involve sampling of a complete hyperstate space. We show that the ADP

method, when judiciously applied, generates a dual control policy that takes into account

accuracy of current and future parameter estimates, yet is computationally amenable. An

integrating process with an unknown gain is used for illustration.

6.1 Introduction

Practical control problems are characterized by mismatches between model and plant, which

can be caused by structural/parametric uncertainties and unknown exogenous disturbances.

MPC solves an open-loop (oftentimes deterministic) optimal control problem on a future

time horizon, with a feedback update occurring at each time step. However, this approach

can lead to highly suboptimal results for systems with uncertainties. Uncertainties may

be modeled using either deterministic bounds or as stochastic processes. In the case of

deterministic bounds, min-max control formulations have been proposed. While several

algorithms have been proposed that guarantee robust stability, most of them are based on

repeating open-loop optimal control calculations and therefore the result can be highly con-

servative. Recently, some closed-loop formulations have been put forward [56, 62, 16], but

these algorithms are either computationally intractable or based on very limited assump-

tions on how uncertainties enter the model. For example, most algorithms assume that the

uncertainties can vary with time in an arbitrary manner within assigned bounds. This may

be conservative as most uncertainties show strong correlations in time.
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In the case of stochastic parameters, the usual approach is to combine parameter esti-

mation and control into an adaptive control strategy as shown in Figure 21. The estimator

block delivers information about the unknown parameters, such as their mean values and

covariances. Different classes of adaptive controllers are obtained depending on how the

information is utilized. The most popular approach is to perform a control calculation by

assuming that the estimated parameters are true values, which is referred to as the ‘certainty

equivalence’ approach. This approach, however, disregards uncertainties in the parameter

estimates and can lead to severe robustness problems like the “bursting” phenomenon. In

addition, the disregard of the coupling between the estimation and control makes the learn-

ing “passive,” meaning the controller does not make exploratory moves to actively generate

information about important parametric uncertainties.

To obtain useful information about the process dynamics, it is necessary to perturb

the process in general. On the other hand, such a perturbation may not be favorable

from a viewpoint of closed-loop performance. Thus, there is a conflict between information

gathering and present control quality. This problem was first introduced and discussed by

Fel’dbaum in his series of papers published in the early 60s [39, 40, 41, 42]. The optimal

controller has dual goals, meaning it should balance between control and exploration. By

gaining more process information when needed, better control performance can be achieved

in the future. Fel’dbaum also showed that Dynamic Programming (DP) should be solved to
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obtain the optimal solution to the dual control problem. It has been thought that the DP

solution for the problem is intractable, and only a few simple examples have been solved

this way after reducing the problem size through some analytical insights into the specific

problem [8]. Because of the computational complexity, most dual control problems have

been approached by introducing cautious and active probing features to simpler suboptimal

controllers in a somewhat ad hoc manner [31, 68].

We employ the ADP approach to solve the dual optimal control problem. The approach

enables us to combine the merits of the different starting policies systematically through

interpolation and improvement of cost-to-go values in the state space. If successful, the de-

rived ADP-based controller should show a well-balanced dual feature. It will be shown that

a nonparametric local averager is a good choice for function approximation for a highly com-

plex and nonlinear cost-to-go structure in this problem’s context. This chapter is organized

as follows: In Section 6.2 we present a dual adaptive control problem. Section 6.3 discusses

a general procedure for applying the ADP approach to the dual optimal control problem.

An example of integrator with an unknown gain is presented in Section 6.4. Section 6.5

concludes the chapter.

6.2 Stochastic Adaptive Control

6.2.1 Problem Formulation

We consider a discrete time model described as

x(k + 1) = f(x(k), u(k), θ(k), ζ(k)) (112)

where x(k) is a state vector, which is assumed to be measured, u(k) is a manipulated

input vector, θ(k) is a vector containing unknown parameters of the model, and ζ(k) is an

exogenous noise, which we assume here to be independently identically distributed (i.i.d.)

Gaussian. We also assume that the structure f is known and the unknown parameter θ is

also described by a Gaussian process.

The control objective is to minimize an infinite horizon cost:

E

[ ∞∑

t=0

αtφ(x(k + t), u(k + t))

∣∣∣∣∣ ξ(k)

]
(113)
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where α is a discount factor, and expectation operator E is taken over the distribution of

ζ and θ. ξ(k) is an information state (or hyperstate) at time k, which includes the process

state x(k) and the first two moments of the a posteriori probability density function of the

Gaussian parameter vector.

ξ(k) =
[
x(k), θ̂(k), P (k)

]T
(114)

where θ̂ and P are the conditional mean and the covariance matrix of θ (conditioned by

the measurements), respectively. A feasible control policy is the one that determines u(k)

based on the information available at time k (i.e. ξ(k)).

A closed-loop optimal solution to (113) assumes that the future inputs are determined

in a feedback-optimal sense, which means they are dependent on the future hyperstates

(which themselves are stochastic variables). The optimal control policy can be derived by

solving the following stochastic dynamic programming:

J∗(ξ(k)) = min
u(k)

E [φ(x(k), u(k)) + αJ∗(ξ(k + 1))| ξ(k)] (115)

Note that ξ(k + 1) is a stochastic variable and is affected by the choice of control action

u(k). The difficulty in solving the above is that the minimization, which requires expectation

calculation for each evaluation of a candidate u, must be solved for all the points in a densely

gridded hyperstate space. The control action influences the immediate cost φ, quality of

future estimation (reflected through future hyperstate ξ), and future control performance.

Even though the optimal controller will have the desired dual feature, the DP formulation is

intractable in all but simplest cases if a conventional solution approach (e.g., value iteration,

policy iteration) is taken.

6.2.2 Passive Learning Policies

This section introduces popular “passive” control policies, the certainty equivalence (CE)

control policy and the cautious control policy. The CE policy calculates a control action at

each sample time as if the estimate θ̂(k) were exact:

uCE(k) = µCE(x(k), ˆθ(k)) (116)
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The inputs are designed without any regard for their effects on future estimation quality,

which can make the achieved performance substantially suboptimal and cause intermittent

instability phenomenon known as ‘bursting’ [4].

A simple design that takes into account the uncertainty is to minimize the cost function

of (113) only for a single step. Note that, for a single step problem, u can be optimized

as a deterministic variable. The resulting controller is called a cautious controller. It

adds a measure of caution to account for uncertainty in that the gain in the controller is

decreased as the uncertainty increases. It does not, however, take into account the effects

of a control action on future estimation quality, and can lead to turn off of the controller

if the uncertainty gets too large. The cautious policy is also a passive learning controller

because there is no active probing signal generated to improve the identification.

6.3 ADP Implementation

In this section, we describe the ADP procedure for solving the previously described stochas-

tic control problem. Due to the difficulties in computing the exact solution to the DP for-

mulation, several approximate solutions have been proposed [139]. One of them is to find

an approximate solution for two-step ahead cost-to-go function [68, 69]. It is, however, still

very complex and is restricted to simple problems. The ADP approach instead solves for

a discounted infinite horizon formulation for a reasonable number of points in the hyper-

state space, which are sampled from closed-loop simulations of different controller types,

and hence should be more generally applicable. Based on the basic algorithm presented in

Section 5.3, the practical implementation steps are as follows:

1. Perform closed-loop simulations.

Since the ADP algorithm derives an improved control policy from the data visited by

starting policies, it is preferable to simulate with different control policies having the

characteristics of cautiousness and active exploration. For example, passive controllers

with dither signals can be used for the simulation.

Input dithering is a randomized policy, where a white noise signal is typically added to

the control action. With a high noise level, uncertainty can be reduced significantly.
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Despite its simple implementation, the systematic design of a good noise level is

still difficult, and the blind randomization with respect to the current uncertainty

information is not the optimal way to explore.

2. Approximation of the initial cost-to-go values.

We use a local averager introduced in Chapter 4. Note that the expectation operator

is not explicitly evaluated in this step, but the function approximator should smoothen

the stochastic nature giving a good estimate of the expected cost-to-go value. How-

ever, this is not so critical because the off-line iteration step will refine the cost-to-go

with explicit evaluation of the expectation operator.

We also note that it is generally difficult to fit an artificial neural network to the data

generated from a stochastic system. In our previous study involving neural networks

[63], use of prior knowledge on the cost-to-go function was necessary to obtain an

acceptable approximation. In contrast, the local approximator provides much more

robust results, as will be shown in the example.

3. Improvement of cost-to-go estimates using value iteration.

This step is complicated by the expectation operator coupled with the minimization.

The expectation operator is evaluated by sampling the innovation term, which is also

affected by the control action (See the example for more details). We not only sample

the control actions used in the suboptimal control policies but discretize the actions

with a reasonable grid size. Each candidate action gives probability distribution of

the corresponding innovation, according to which the possible outcomes of hyperstate

are sampled using Monte Carlo simulations. A penalty function is also designed for

guarding against over-extrapolations of the available cost-to-go data.

We also note that it is desirable to perform sufficient number of simulations under

dithered policies as well as to perform the sampling and averaging cautiously. This

is because a few “outliers” could significantly bias the average cost-to-go due to the

penalty term. In the example studied in the next section, we left out the sampled

outliers in averaging, if the total number of the outliers is less than 10% of the entire
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sample set. This will not be necessary if the simulations covered all the possible

realizations.

4. With the converged cost-to-go values, real-time calculation of control action is done

by solving the minimization on-line, where the expectation operator is evaluated in

the same manner as described in the value iteration step.

6.4 Example: An Integrator with Unknown Gain

6.4.1 Problem Statement

Consider an integrator process [8] described by

y(k + 1) = y(k) + bu(k) + e(k + 1) (117)

where y(k) is the output, u(k) is the manipulated input, e(k) is a white noise, and b is an

unknown parameter. e and b follow the normal distributions.

e ∼ N (0, σ2) (118)

b ∼ N
(
b̂(0), P (0)

)
(119)

Furthermore, the unknown parameter b can vary in time and its behavior is modeled as

b(k + 1) = b(k) + w(k) (120)

where w(k) is also a Gaussian white noise.

The control objective is to minimize the following discounted infinite horizon objective

function:

E

[ ∞∑

t=k+1

αt−(k+1) [y(t)]2
∣∣∣Yk

]
(121)

where Yk denotes the sequence of observed outputs and inputs available at time k. Given

the measurements Yk, the estimator generates the conditional probability distribution of

the parameter b. Given that b is a Gaussian distribution, the conditional distribution is

represented by its mean and covariance defined as follows:

b̂(k) = E {b(k)| Yk} (122)
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P (k) = E
{[

b̂(k)− b(k)
]2

∣∣∣∣Yk

}
(123)

They can be calculated recursively according to

b̂(k + 1) = b̂(k) + K(k)
[
y(k + 1)− y(k)− b̂(k)u(k)

]
(124)

K(k) =
P (k)u(k)

σ2 + P (k)u2(k)
(125)

P (k + 1) = [1−K(k)u(k)]2 P (k) + σ2K2(k) + Rw (126)

where Rw is the variance of w. Then, the hyperstate of the process, ξ(k), is defined as

ξ(k) =
[
y(k), b̂(k), P (k)

]T
(127)

6.4.2 Simulation Scenarios

In most cases, the following CE controller is nearly-optimal for the given problem:

u(k) = −y(k)

b̂(k)
(128)

Let us first consider a simple but somewhat idealistic case where the gain b can jump from

the initial value of 0.5 to a value between -15 and 15 (except 0) and the initial parameter

value is assumed to be known exactly so that the estimator is initiated with a covariance

of P (0) = 0. The covariance of the exogenous noise term is set as 1 (σ = 1.0) but in

the particular realization we simulate it is kept to as a zero signal up to some time period

(t = 100), during which a parameter jump occurs at a certain time period (t = 10). We

also assume (somewhat unrealistically but for the sake of simplicity in this first scenario)

that the parameter change can be detected and the covariance in the estimator is reset to

200 at that point.

As shown in Figures 22 and 23, the CE controller can suffer from temporary instability

(bursting) when the parameter uncertainty is large. The following cautious controller is

derived by minimizing the one-step ahead cost-to-go function.

u(k) = − b̂(k)

b̂2(k) + P (k)
y(k) (129)

Though the cautious controller includes the uncertainty parameter P , the controller can turn

off itself when the uncertainty becomes large. The phenomenon is displayed in Figure 24.
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Figure 22: Output of the CE controller when b jumps from 0.5 to 15 at time 10 and the
measurement noise enters at time 15.
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Figure 23: b̂ and P of the CE controller when b jumps from 0.5 to 15 at time 10 and the
measurement noise enters at time 15.
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Figure 24: Input and output of the cautious controller when b jumps from 0.5 to 15 at
time 10 and the measurement noise enters at time 15.

Because of the turn off of the control signals after the covariance is reset, output deviates

significantly due to the integration of exogenous noises.

6.4.3 ADP-based Controller

6.4.3.1 Data Generation

For generation of training data (hyperstate vs. cost-to-go), closed-loop simulations were

performed using the following control policies: (1) The CE controller, (2) the cautious

controller (3) the CE and cautious controllers with dithered inputs. We simulated parameter

jumps from the nominal value to b = ±5,±10,±15. The dither signals were randomly

generated from the uniform distribution of [−0.1 0.1]. Three sets of the dither signals were

injected at regular intervals during quiet periods. Each set of dither signals lasted for 4

sample times. Three and five realizations of e were simulated for non-dithered policies and

dithered policies, respectively. Three separate realizations of the input dithering were also
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simulated for each realization of the dithered policies. The parameter was modeled as a

constant for this scenario, which means we set Rw = 0, and the variance of σ was set as 1.

The total number of simulation data obtained was 3849.

6.4.3.2 Value Iteration

In the value iteration step, we solve

J i+1(ξ(k)) = min
u(k)

E
[
y2(k + 1) + αJ̃(ξ(k + 1))

]
(130)

where α = 0.98 was used. The expectation operator was evaluated by sampling 50 innova-

tion values (ε(k)) for each action candidate u(k) used for the optimization.

ε(k) = y(k + 1)− y(k)− b̂(k)u(k) (131)

has the following distribution:

ε(k) ∼ N (
0, 1 + u(k)2P (k)

)
(132)

As shown in Figure 25, the value iteration step converged after 24 runs with

erel < 0.03 (133)

A distance weighted k-nearest neighbor estimator was used for the cost-to-go approximation

with k = 4, and the quadratic penalty function of (105) was designed with the parameter

choices of A = 0.87, ρ = 0.047, σ = 0.35, Jmax = 2500.

6.4.3.3 On-line Performance

Different parameter jump cases were simulated to compare the ADP policy with the subop-

timal control policies. The parameter jump cases that had not been simulated for generating

the training data set were also tested. For each case, the total cost over 50 sample times

(
∑50

t=1 y2(t)) were calculated. The total cost averaged over 10 realizations are compared in

Table 12. Whereas the average performance of the ADP controller does not vary much with

different parameters, the other control policies suffer from bursting or turn off phenomena,

leading to poor average performances.
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Figure 25: Convergence behavior of the value iteration.

Table 12: Averaged cost over 50 sample times with 10 realizations of e.
b CE Cautious Dithered CE Dithered Cautious ADP

15 630.5 152.3 63.1 79.8 52.9
-15 936.7 179.8 116.0 93.3 50.7
10 194.6 169.6 99.7 85.5 66.3
-10 184.1 163.9 156.0 64.3 56.7

5 68.4 142.9 41.2 113.7 56.8
-5 72.0 130.5 83.4 64.7 48.0
12 630.1 109.3 60.0 52.3 51.2
-12 401.5 85.8 875.0 51.7 46.6

7 125.9 126.8 60.0 83.8 46.6
-7 345.1 167.4 84.1 65.2 60.7
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Figure 26: A sample run of the parameter jump case (b = 15): y and u.

The performance disparities were observed during the transient period when the param-

eter jump occurred and exogenous noises entered the system. Figures 26 and 27 show sample

results of the output regulation and estimation under the three policies (CE, Cautious, and

ADP). At time 10, b jumps from 0.5 to 15 and the covariance is reset to 200. White noise

e enters the system at time 15. Figure 26 shows that the ADP controller injects the prob-

ing signal at time 10 and achieves the best overall performance of regulation, whereas the

passive policies do not move the control actions until time 15, and the performances are

degraded either by bursting of the output or by turn off of the control signals.

6.5 Conclusions

In this chapter, we solved a stochastic optimal control problem that has a dual objective

of identification and control using the ADP approach. Starting from different control poli-

cies, including several passive and randomized policies, the ADP approach could derive a
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Figure 27: A sample run of the parameter jump case (b = 15): b̂ and P .

superior control policy that actively reduces the parameter uncertainty, leading to a ro-

bust performance. Our experience also indicates that sufficient number of simulations with

dithered signals during the transient period must be performed in order for the approach

to learn a policy with the desired dual feature.
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CHAPTER VII

SIMULATION-BASED DUAL MODE CONTROLLER FOR

NONLINEAR PROCESSES

This chapter presents a simulation-based strategy for designing a nonlinear override control

scheme to improve the performance of a local linear controller. The higher-level nonlinear

controller monitors the dynamic state of the system under the local controller and sends

an override control action whenever the system is predicted to move outside an acceptable

operating regime under the local controller. For this purpose, a cost-to-go function is

defined, an approximation of which is constructed by using simulation or historic operation

data. The cost-to-go function delineates the “admissible” region of state space within

which the local controller is effective, thereby yielding a switching rule. The same cost-

to-go function can also be used to calculate override control actions designed to bring the

system state back into the admissible region as quickly as possible. The proposed scheme

is demonstrated and discussed with nonlinear examples.

7.1 Introduction

MPC is being widely used in the process industry because of its ability to control multivari-

able processes with hard constraints. Most of the current commercial MPC solutions are

based on linear dynamic models, which are easier in terms of identification and on-line com-

putation [95]. On the other hand, many chemical processes exhibit strong nonlinearities.

This disparity has prompted several studies on MPC formulations with nonlinear system

models [60]. Since most nonlinear MPC (NMPC) formulations require on-line solution of

a nonlinear program (NLP), issues related to computational efficiency and stability of a

control algorithm have received much attention.

The initial focus was on formulating a computationally tractable NMPC method with

guaranteed stability. Mayne and Michalska [75] showed that stability can be guaranteed by
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introducing a terminal state equality constraint at the end of prediction horizon. In this case,

the value function for the NMPC can be shown to be a Lyapunov function under some mild

assumptions. Because the equality constraint is difficult to handle numerically, Michalska

and Mayne [78] extended their work to suggest a dual-mode MPC scheme with a local linear

state feedback controller inside an elliptical invariant region. This effectively relaxed the

terminal equality constraint to an inequality constraint for the NMPC calculation. The dual-

mode control scheme was designed to switch between the NMPC and the linear feedback

controller depending on the location of the state. Chen and Allgöwer [30] proposed a quasi-

infinite horizon NMPC, which solves a finite horizon problem with a terminal cost and a

terminal state inequality constraint. The main difference from the Michalska and Mayne’s

method is that a fictitious local linear state feedback controller is used only to determine the

terminal penalty matrix and the terminal region off-line, and switching between controllers

is not required.

These NMPC schemes have theoretical rigor but have some practical drawbacks. First,

these methods still require solving a multi-stage nonlinear program at each sample time.

Assurance of a globally optimal solution or even a feasible solution is difficult to guarantee.

Second, the optimization problem for determining the invariant region for a local linear

controller and the corresponding terminal weight are both conservative and computationally

demanding.

Motivated by the drawbacks and the industry’s reluctance to adopt full-blown NMPC,

we propose an override (or supervisory) control strategy for monitoring and improving the

performance of a local controller. Our method is similar to the dual-mode MPC suggested

by Michalska and Mayne in that the switch between two different control policies depends

on current location of the state. However, we employ a cost-to-go function based approach

instead of NMPC. First, a cost-to-go function under the local controller is defined, which

serves to delineate the admissible region within which the local controller can effectively

keep the system inside acceptable operating limits. The same cost-to-go function is also

shown to facilitate the calculation of override control actions that will bring the system

outside the admissible region back into the region as quickly as possible. We propose to
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use simulation or historic data to construct an approximation to the cost-to-go function.

With the cost-to-go function, an override control action can be calculated by solving a single

stage nonlinear optimization problem, which is considerably simpler than the multi-stage

nonlinear program solved in the NMPC.

7.2 Simulation-Based Construction of an Override Con-
troller

The proposed scheme uses either simulation or actual plant data to identify the region of the

state space, in which the local controller can effectively keep the system inside an acceptable

operating regime (defined by some inequalities in the state space). We do this by assigning

to each state a cost-to-go value defined as

Jµ(x0) =
∞∑

i=0

αiφ(xi) (134)

where Jµ(x0) is the cost-to-go for state x0 under the local control policy µ(x), α is a discount

factor, and φ(xi) is a stage-wise cost that takes the value of 0 if the state at time i is inside

the acceptable operating limit and 1 if outside when x0 is the state at time 0. This way, if

a particular state x0 under the control policy evolves into a state outside the limit in some

near future under the policy µ, the cost-to-go value will reflect it. On the other hand, those

states that are not precursors of future violation of the operating limit will have negligible

cost-to-go values. The latter states comprise the “admissible” region.

The cost-to-go function is approximated by first simulating the closed-loop behavior of

the nonlinear model under the local linear controller for various possible operating conditions

and disturbances. This generates x vs. Jµ(x) data for all the visited states during the

simulation. Then the generated data can be interpolated to give an estimate of Jµ(x),

J̃µ(x), for any given x in the state space.

In the real-time application, whenever the process reaches a state with a significant cost-

to-go value, it is considered to be a warning sign that the local controller’s action will not

be adequate. When this happens, an override control action is calculated and implemented

to bring the process back to the “admissible” region where the cost-to-go is insignificant.
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One can calculate such an action by implementing the override policy of

if J̃µ(xt+1(xt, µ(xt))) ≥ η, ut = arg min
u′t

J̃µ(xt+1(xt, u
′
t)) (135)

where η is a user-given threshold value for triggering the override control scheme. If no u′t

can be found such that J̃µ(xt+1(xt, u
′
t)) < J̃µ(xt+1(xt, µ(xt))), then ut = µ(xt) is used for

the current sample time.

7.3 A Kernel-Based Approximator of Cost-to-Go Function

We use a kernel-based local averager to approximate the cost-to-go values, as empirical stud-

ies in Chapter 4 show that global approximators (e.g. neural network) are not good choices

in general. In addition, it was shown that the local averager with the nonexpansion prop-

erty is compatible with the DP operator and effective for representing local characteristics

of state spaces.

Another reason for adopting the local averaging approach is our concern for grossly

incorrect cost-to-go estimates that can arise from extrapolating to a region not accounted

for in the simulation step. In implementing a risk-averse cost-to-go based controller, Kaisare

et al. [52] used a feedforward neural network but gridded the state space in order to separate

regions visited by simulation from those not. For those cells with little or no data, a high

cost-to-go value was assigned to prevent the controller from driving the state trajectory

into these uncertain regions. However, this is difficult to implement for cases with high

dimensional state spaces.

For a convenient implementation of the risk-averse or risk-sensitive scheme, we propose

to use a variation of Gaussian-kernel-based approximators.1 This structure decides whether

a reliable estimate can be given to a query point based on the available data. For a “reliable”

query point it gives local weights calculated from a Gaussian kernel to give more influence

on the regression to those training points closer to the query point than those farther away.

1This is a rudimentary version of the penalty function method in Chapter 5, which was developed later
than this work.
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Table 13: “Risk-averse” prediction using Gaussian-kernel-based approximator.
Prediction Algorithm
1. Is the query point x0 in the memory?

a. Yes: Use the value in the memory.
b. No: Go to step 2.

2. Enumerate the data points inside r around the x0.
Is the number of data points greater than kmin?
a. Yes: Average with the kernel.
b. No: J̃(x0) cannot be estimated. Assign Jmax to x0.

The suggested structure of kernel-based prediction is

J̃(x0) =
∑N

i=1 Kλ(x0, xi)J(xi)∑N
i=1 Kλ(x0, xi)

(136)

where

Kλ(x0, xi) = exp
(
−‖x0 − xi‖2

2

λ2

)
(137)

The number of neighbor points N is the number of data points inside a hypersphere,

the radius of which is a user-given value r. In addition to r, there are other parameters

that user should provide. These are the Gaussian kernel width λ, minimum number of data

points inside the hypersphere kmin, and the high cost-to-go value Jmax to be assigned to

an “unreliable” query point. Table 13 describes how the estimate of cost-to-go value for a

query point is calculated.

7.4 Illustrative Examples

7.4.1 Simple Nonlinear Example

7.4.1.1 Problem Description

We consider a system with two states, one output, and one manipulated input described by

x1(k + 1) = x2
1(k)− x2(k) + u(k)

x2(k + 1) = 0.8 exp{x1(k)} − x2(k)u(k) (138)

y(k) = x1(k)

with an equilibrium point of xeq = (−0.3898, 0.5418), ueq = 0.
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We also define the acceptable operating regime by

W (x) =
{

(x1 − x1eq) +
√

3(x2 − x2eq)
}2

+

{
(x2 − x2eq)−

√
3(x1 − x1eq)

0.3

}2

−4 ≤ 0 (139)

A linear MPC controller was designed based on a linearized model around the equilib-

rium point. The control objective is to regulate y to yeq. The linear MPC is used as the

local controller with the following design:

min
∆u

p∑

i=1

5ȳ2(k + i) +
m−1∑

l=0

∆ū2(k + l) (140)

with p = 2 and m = 1.

−3 ≤ ū ≤ 3

∆ū ≤ 0.2
(141)

The closed-loop behavior under the local controller starting at x0 = xeq + [0.3 0.6] =

[−0.0898 1.1418] is shown as dotted lines in Figure 28. Though the initial point is inside

the operating limit, the system under the local linear controller violates the limit several

times until the system is regulated to the equilibrium point.

7.4.1.2 Simulation-Based Design

To design the proposed override controller, closed-loop simulations under the local controller

were performed using 347 initial points inside the operating limit. The simulations generated

17006 data points and cost-to-go values for each state in the trajectory were calculated using

(134) with a value of α = 1 and

φ(xt) =





1 if W (x1t, x2t) ≤ 0

0 if W (x1t, x2t) > 0
(142)

Next step is to design a Gaussian-kernel approximator. Considering the coverage of

state space, following parameters were chosen: r = 0.05, kmin = 3, λ = 0.03, Jmax = 30.

The actual value of cost-to-go is zero for the states inside the admissible region of a

linear controller and outside the region the cost-to-go will be over unity. This makes the

structure of cost-to-go function very stiff. However, the approximator will smoothen out
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Figure 28: State trajectories under local MPC and dual-mode controller.
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Figure 29: Regions under local controller with J̃(x) < 0.02.

the stiff structure a bit by averaging. Therefore small tolerance value (η = 0.02) was chosen

to illustrate a possible shape of the admissible region under the local controller, which is

illustrated in Figure 29.

7.4.1.3 Real-Time Application

To compare on-line performances of the local controller alone and the dual mode controller

(i.e. the local controller combined with the proposed override controller), eight initial

points different from the training set were sampled. We also compare the proposed dual-

mode controller with the successive linearization based MPC (slMPC) scheme suggested

in [61]. Finally, we also simulated the LMPC and the slMPC with the state constraints

of −0.95 ≤ x1 ≤ 0.2 and −0.35 ≤ x2 ≤ 0.45 (denoted by scLMPC and scslMPC). The

prediction and control horizons of slMPC are the same as those of the LMPC.

The solid lines in Figure 28 is the state trajectory with the same initial point under
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Table 14: Comparison of performances (total # of limit violations).
Test pt LMPC slMPC scLMPC scslMPC Override
1 diverged 5 diverged diverged 0
2 3 3 diverged diverged 0
3 2 0 0 diverged 0
4 2 0 0 diverged 0
5 0 0 diverged diverged 0
6 0 0 0 diverged 0
7 7 15 1 diverged 0
8 diverged diverged diverged diverged 0

Table 15: Model parameters: bioreactor example.
µmax 0.53 hr−1 km 0.12 g/l
k1 0.4545 l/g Y(yield) 0.4
Ds, x2fs 0.3 hr−1, 4.0 g/l xs [0.9951 1.5123]

the dual-mode controller. For the first three points, the override control actions were used

instead of those of LMPC’s. The proposed scheme successfully steers the state back to the

region with lower cost-to-go values. Table 14 shows the sum of stage-wise cost (the total

number of violation of operating limit) and the suggested control design outperforms for all

the test points. We can also see that imposing state constraints did not work here as many

infeasible solutions were returned, eventually causing divergence.

7.4.2 Bioreactor Example

In this section, we consider a bioreactor example with two states: biomass and substrate

[18]. With a substrate inhibition for growth rate expression of biomass, the system shows

multiple steady states. To operate at the unstable equilibrium, closed-loop control must be

used. The system equation is

dx1

dt
= (µ−D)x1

dx2

dt
= D(x2f − x2)− µx1

Y
(143)

µ =
µmaxx2

km + x2 + k1x2
2

where x1 is biomass concentration and x2 is substrate concentration. Table 15 shows the

parameters for the model at the unstable steady state.
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7.4.2.1 Local Linear Controller

A linear MPC was designed based on a linearized model around the unstable equilibrium

point with sample time of 0.1h. The control objective is to regulate x to xs at the equilibrium

values and the manipulated variables are the substrate concentration in the feed x2f and the

dilution rate D. The parameters of the LMPC controller are Q = 100I, R = 10I, p = 10,

and m = 5, where I is a 2 by 2 identity matrix, Q is a state weighting matrix, and R is an

input weighting matrix.

We also define an acceptable operating region as

W (x) =
{

0.52(x1 − x1eq) + 0.85(x2 − x2eq)
7

}2

+
{−0.85(x1 − x1eq) + 0.52(x2 − x2eq)

0.5

}2

− 1 ≤ 0 (144)

which is shown in Figure 30. The input constraints for MPC is

0 ≤ D ≤ 0.5 |∆D| ≤ 0.2

0 ≤ x2f ≤ 8 |∆x2f | ≤ 2
(145)

The closed-loop behavior under the LMPC for different initial points are shown in

Figure 30. As in the previous example, the LMPC cannot drive the state back into the

equilibrium point without violating the operating limit.

7.4.2.2 Simulation-Based Dual Mode Controller

With the same definition of one-stage cost as in (142), a cost-to-go-based override controller

was designed. For the simulation, 109 initial points were sampled inside the operating limit

and closed-loop simulations under the LMPC yielded 21909 points. Parameters for a kernel-

based approximator were chosen as: r = 0.1, kmin = 5, λ = 0.05, Jmax = 50, η = 0.02.

As in the previous example, the dual mode controller successfully navigated the state to

the equilibrium point without violating the operating limit by searching for the path with

lowest cost-to-go values. One of the sample trajectories tested is shown in Figure 31.
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Figure 30: State trajectories under local MPC.
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7.5 Evolutionary Improvement of Cost-to-Go

Because the approximator employed in the calculation of override control action is based

on the cost-to-go value of the local linear controller, it is not the optimal cost-to-go. The

resulting override controller from the suboptimal cost-to-go approximation is also subopti-

mal. Hence, further improvement of the override control policy to steer the system back into

the admissible region of the linear controller is possible by iteratively solving the following

optimality equation (as in value-iteration) until J̃ converges.

J i+1(x) = min
u

[
φi(x) + J̃ i(f(x, u))

]
(146)

where f is a state transition equation and i denotes iteration index.

For this purpose, the one-stage cost is re-defined differently as

φi(x) =





1 J̃ i(x) ≥ η

0 J̃ i(x) < η
(147)

With this change, the aim of the optimal control is to bring the system state back into the

“admissible” region as quickly as possible. The value iteration was performed for the first

illustrative example and the iteration converged after 5 steps with the following convergence

criterion.

‖J̃ i+1(x)− J̃ i(x)‖∞ < 0.1 (148)

Figure 32 shows one of the state trajectory with the initial point of x0 = xeq +[0.3 0.75]

when the improved cost-to-go function is used in the override control calculation. As shown

in the figure, the improved override controller brings the state back into the admissible

region more efficiently than that based on the cost-to-go approximation under the LMPC.

7.6 Conclusions

A simulation-based override control scheme was shown to improve the performance and

stability of a given local controller. The ease of design and implementation makes it a

potentially appealing addition to an existing controller in industrial applications. The

suggested framework can give operators indications on the future performance of the local

controller and also suggest override control actions, if needed.
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Figure 32: State trajectory with the dual-mode controller using improved cost-to-go.

113



CHAPTER VIII

INPUT-OUTPUT DATA-DRIVEN CONTROL OF

NONLINEAR PROCESSES

In this chapter we propose two ADP based strategies for controlling nonlinear processes

using input-output data. The first strategy, which we term ‘J-learning,’ builds an empirical

nonlinear model using closed-loop test data and then uses it to derive an improved control

policy by performing dynamic programming. The second strategy, called ‘Q-learning,’ tries

to learn an improved control policy in a model-less manner. Compared to the conventional

approach of building an input-output model and then designing and implementing a predic-

tive controller based on it, the new approach brings some practical advantages besides the

potential reduction in the on-line computational burden. Though many nonlinear input-

output model structures have been proposed and used for control in the literature, models

built in practice tend to be valid only within limited regions of the state space, mainly

due to the lack of guidelines on test signal designs and presence of various limitations on

plant testing. These prevent the full excitation of dynamic operating space, especially if the

model order is chosen high to avoid significant bias. This difficulty in the identification step

can translate into potential over-extrapolation of the model in the optimal control calcula-

tion step, leading to large mismatches between the actual closed-loop performance and that

predicted by the model. For robust control, one must prevent such abusage of the model in

the control calculation step, for example, by forcing the optimizer to restrict its search to

regions of the state space with sufficient identification data. However, this is very difficult

to implement within the multi-step predictive control setting. In the proposed ADP-based

strategies, this issue can be handled conveniently by imposing the penalty term based on

local data distribution. A diabatic CSTR example is provided to illustrate the proposed

approaches.

114



8.1 Introduction

As discussed in Chapter 2, typical MPC formulations find a sequence of control actions by

solving on-line minimization problems. Since the optimization is based on the predictions

of future output behavior, an accurate model is essential for a successful outcome.

While the dynamic behavior of most chemical processes is nonlinear, linear models have

been used predominantly in practice because of the difficulty associated with building an

accurate nonlinear model. For a more widespread use of nonlinear model-based control,

a control method tightly integrated with a nonlinear system identification strategy needs

to emerge. Currently, popular nonlinear model structures studied in the literature include

Volterra series models, block-oriented models such as Hammerstein and Wiener models,

bilinear models, and NARX (Nonlinear AutoRegressive with eXogenous input) models [110].

To perform a nonlinear system identification, one must first decide on the system order.

For example, for the NARX model of the form

ŷ(k + 1) = f (y(k), · · · , y(k − ny), u(k), · · · , u(k − nu)) (149)

one has to choose the order parameters ny and nu. This can be done by using methods like

the False Nearest Neighborhood [96] and Akaike Information Criterion [3]. This is followed

by choosing a parameterized functional structure of f , which can be a series expansion or a

neural network. Finally, the parameters of f are determined through least squares estima-

tion or similar regression methods. All three steps can contribute significantly to final model

error. Given little prior knowledge one typically has in the beginning, the model order may

have to be chosen high and the parameterization quite general to avoid bias, leading to

an ill-conditioned estimation problem. This is particularly serious given the difficulty as-

sociated with designing and implementing persistently exciting signals for many nonlinear

model structures. Lin and Jang [66] suggested an information theory based approach for

designing data set to construct a reliable empirical model. However, implementation of

such a design may be very expensive for practical problems. For example, most industrial

processes can only be perturbed mildly around a few operating points (and transition tra-

jectories), and this can result in insufficient information about many parts of the dynamic
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state space [112]. Control actions and performance predictions calculated from the resulting

model may not be reliable.

Since an empirical nonlinear model may be valid only in the regions of the state space

where sufficient amounts of identification data were available, it is essential to exercise

a caution in using it for model-based control. One option in predictive control is to re-

strict the search for optimal control moves to those keeping the system within the parts

of the state space covered by the identification data. The question is how to do this in

a systematic and computationally amenable manner. Leonard et al. [65] proposed a ra-

dial basis function network (RBFN) that computes the prediction reliability in terms of

extrapolation and interpolation. The validity index was computed using clustered points

with Parzen density estimator [90] for detecting over-extrapolation. Though developed for

the RBFN-type structures, the idea of using a probability density estimator to define “re-

liable” search space seems attractive. Nevertheless, accommodation of such a measure of

confidence within predictive control should be difficult and computationally demanding, as

such measures must be applied to all time steps in the prediction window. Tsai et al. [127]

proposed a coordinated architecture between a conventional MPC and an additional neural

adaptive controller (NAC), which uses NAC for unexplored regions as detected by a density

estimator. This approach can be inefficient and unreliable for highly nonlinear systems in

that the structure requires additional training for the NAC design and simply combines

control actions of MPC and NAC in a linear manner.

Another option is to continually update both the parameters and the structure of a given

model on the basis of incoming data. Hernández and Arkun [46] used a recursive prediction

error method to update a model. Chikkula and Lee [31] derived an input weighting function

for a second-order Volterra model with stochastic parameters based on the calculation of an

expected quadratic cost value. It is worth noting that most formulations for robust MPC,

even those for linear systems, are based on open-loop performance objective, which can lead

to very conservative control actions [62]. Furthermore, the on-line parameter update option

can take a long transient time before enough data are collected to give the controller the

needed robustness.
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The idea of constructing cost-to-go function within the limited regions of state space and

using it cautiously with a penalty function method seems a promising approach to addressing

the problems of data-based nonlinear control. In Chapter 5, we showed that unreasonable

extrapolations arising from the limited validity of the cost-to-go approximation can be

curbed effectively in the single-stage optimization. In this work, building upon the suggested

ADP framework, we present two different ADP based strategies for nonlinear control using

input-output data alone. The first strategy builds and uses an empirical nonlinear model

just like in the conventional MPC approach, but in both the cost-to-go approximation and

on-line control calculation, extrapolation is controlled by adding a penalty term based on

local data distribution. This way, the search for optimal control moves is restricted to keep

the system within the parts of the state space with adequate data density. The second one

aims at improving a given control policy in a continual manner without having to build

a model. For both approaches, a localized approximator is employed for the cost-to-go

function approximation. The approaches are illustrated with a diabatic CSTR example to

highlight the difference with the conventional MPC approach.

8.2 Model Predictive Control Using a NARX Model

In this section, as a representative approach for using an empirical model for nonlinear

control, we present a MPC formulation based on a NARX model structure, which is given

as

y(k + 1) = f (y(k), · · · , y(k − ny), u(k), · · · , u(k − nu)) + e(k + 1) (150)

where e is a white-noise. f can be parameterized in many different forms such as neural

network, polynomial expansion, etc.

A state space realization of (150) can be constructed as

x(k) = [y(k), · · · , y(k − ny), u(k − 1), · · · , u(k − nu)]T (151)
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x(k+1) =




0 · · · 0 0

I 0
. . .

...

I 0

0 · · · 0 0

I 0
. . .

...

I 0




x(k)+




f(x(k), u(k))

0
...

0

u(k)

0
...

0




+




I

0
...

0

0

0
...

0




e(k+1) (152)

y(k) =
[

I 0 · · · 0

]
x(k) (153)

We denote (152) as

x(k + 1) = F (x(k), u(k)) + Ge(k + 1) (154)

where

G =
[

I 0 · · · 0

]T

(155)

In using the model for process control, we need to compensate for a possible plant/model

mismatch and ensure that the resulting controller will have the integral action. For this,

we add to the output of the NARX model an integrated white noise term ζ(k). Hence the

overall model becomes

xaug(k) =




x(k)

ζ(k)


 =




F (x(k − 1), u(k − 1))

ζ(k − 1)


 +




G 0

0 I







e1(k)

e2(k)


 (156)

where e1(k) and e2(k) are independent white noises with covariance matrices R1 and R2,

respectively.

The above can be compactly written as

xaug(k) = F(xaug(k − 1), u(k − 1)) + Γee(k)

y(k) = Hxaug(k) + ν(k)
(157)

where

H =
[

I 0 · · · 0 I

]
(158)
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and

Γe =




G 0

0 I


 (159)

Here artificial white noise ν is added in the model output for tuning purposes. The

augmented state can be estimated using the following conventional EKF approach:

Prediction

x̂aug(k|k − 1) = F (x̂aug(k − 1|k − 1), u(k − 1)) (160)

ŷ(k|k − 1) = Hx̂aug(k|k − 1) (161)

Measurement correction

x̂aug(k|k) = x̂aug(k|k − 1) + L(k) (ỹ(k)− ŷ(k|k − 1)) (162)

ŷ(k|k) = Hx̂aug(k|k) (163)

EKF gain calculation

L(k) = Σ(k|k − 1)HT
(
HΣ(k|k − 1)HT + Rν

)−1
(164)

Σ(k|k − 1) = Φ(k − 1)Σ(k − 1|k − 1)Φ(k − 1)T + ΓeRe(Γe)T (165)

Σ(k|k) = (I − L(k)H)Σ(k|k − 1) (166)

where Φ(k − 1) =




A(k − 1) 0

0 I


 , Re =




R1 0

0 R2


, A(k − 1) = ∂F

∂x

∣∣
x̂(k−1|k−1),u(k−1)

,

and ỹ is a measured output.

Given the state estimate at each time, a multi-step prediction of y can be computed

recursively for the purpose of optimal control move calculation. A successive linearization

based scheme such as the one suggested by Lee and Ricker [61] computes the output predic-

tions using the nonlinear model under the assumption of constant input and then adds the

effect of input changes based on a linearized model in order to obtain an affine prediction

model with respect to the input moves. This yields a quadratic program (QP) instead of a

nonlinear program (NLP) for the on-line optimal control calculation, which is much easier

to handle computationally. The detailed algorithm can be found in the paper. We shall
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compare the performances of this algorithm as well as the full nonlinear MPC based on

solving the NLP with those of the proposed ADP based methods.

In the following two sections, we develop two different approaches based on the ADP

framework to address the aforementioned drawbacks of MPC in using empirical models for

control of nonlinear processes.

8.3 Empirical Model Based ADP Approach: J-Learning

The first approach is essentially same as the penalty function based ADP algorithm dis-

cussed in Chapter 5 except that an identification based on the input-output data precedes

the procedure. Since the same data are used for identification and derivation of an improved

control policy, the quantification of the accuracy of a cost-to-go estimate based on the local

data density naturally incorporates cautious utilization of a given model into the design

of a controller. As discussed in Chapter 5, the suggested ADP approach defines a ‘risk’

term that is included in the objective function to discourage the controller from entering

the regions of the state space for which the confidence is low. This way, the optimizer can

be coaxed to use the empirical model only in the regions of the state space with adequate

data density, in both the value iteration step and the on-line optimization.

In this work, we employ a distance-weighted k-nearest neighbor approximation scheme

of (67) – (69), local density estimator of (102) and (103), and the corresponding penalty

function method described in Chapter 5.

With the above, we can attempt to learn an improved control policy while utilizing the

identified model cautiously. The procedure is described as follows:

1. Perform closed-loop identification experiments in all possible operating regions by

injecting dither signals into the control actions.

2. Identify a NARX model by fitting a parameterized structure (e.g., neural network,

polynomial, etc.) to the data.

3. Perform the value iteration with the identified model and the initial cost-to-go data

until the cost-to-go values for all the visited states converge.
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4. On-line control action is calculated according to (49).

Since the cost-to-go function represented by the local averager is non-smooth in general,

manipulated variable u is discretized into a set of values for the global optimization in order

to avoid local minima.

8.4 Model-Free Approach: Q-learning

In this section, we propose a different approach to designing a cost-to-go function based

controller, which does not involve building an explicit input-output model and allows for a

continual improvement of a given control policy through periodic updates based on obtained

on-line data. In order to learn a control policy in the absence of an input-output model,

the definition of cost-to-go function needs to be changed slightly. Whereas the cost-to-go

for the previous approach has the state vector as a sole argument, the cost-to-go for the

new approach, which we refer to as Q-function, maps the state and action pair to the future

cost-to-go value. The optimal Q-function satisfies

Q∗ (x(k), u(k)) = φ (x(k), u(k)) + α min
u′∈U

Q∗ (
x(k + 1), u′

)
(167)

which is equivalent to

Q∗ (x(k), u(k)) = φ (x(k), u(k)) + αJ∗(x(k + 1)) (168)

where x(k +1) is the successor state of x(k) after applying u(k). Equations (167) and (168)

imply that Q value is the sum of all the single-stage costs over the infinite horizon starting

with a given state and action pair assuming the optimal control policy is enforced from the

next time step on.

As discussed in Chapter 2, this approach was originally proposed within the AI commu-

nity [132, 133] to solve discrete MDPs where the number of state and action pairs is finite.

The conventional way to solve for the optimal Q function is to iterate (167) by performing

a large number of on-line experiments to allow for multiple visits to a same state with

different action values. General update rule of the Q-value is

Qi+1(x(k), u(k)) = (1− γ)Qi(x(k), u(k)) + γ

{
φ(x(k), u(k)) + α min

u′∈U
Qi(x(k + 1), u′)

}

(169)
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where γ is a learning rate parameter between 0 and 1 [132, 133].

However, the conventional Q-learning is not well-suited for process control problems due

to the continuous nature of typical state and action spaces. States collected from transient

trajectories will tend to be distinct and multiple visits to a same state unlikely even with a

large number of experiments. In other words, different control policies and randomization

do not ensure multiple visits to exact same states.

Recently, several modified Q-learning methods capable of handling continuous state and

action spaces have been proposed. Most of them are based on discretizing state and action

spaces and then posing the problem as a discrete MDP. However, the discretization approach

is limited to small-size problems and the result can be very sensitive to the discretization

method [121]. One noteworthy work for continuous Q-learning was proposed by Smart and

Kaelbling [111], who named it the HEDGER algorithm. The main idea is to use existing

approximated Q-values for training neighboring Q-values and to use a hyper-elliptic hull

to prevent extrapolation. The strategy of updating neighboring points based on distance

metric is attractive, but the algorithm has some disadvantages in terms of application to

process control problems. Not only is the task of building the independent variable hull

(IVH) at each decision point computationally very expensive but the conservativeness of

IVH can oftentimes result in no control action taken by the controller. Such a learning

scheme may be acceptable for robot-learning problems, where ‘learning-by-mistakes’ is an

acceptable practice, but for chemical process control problems, one must be able to provide

a reasonable guarantee against catastrophic failures before a controller can be put on-line.

Based on this consideration, we propose a modified Q-learning algorithm suited for process

control problems. Important features of the modified approach are

• A memory-based local averager is employed for the approximation of Q values.

• In the implementation of the approximated Q function, the same quadratic penalty

adjustment as in (104) (but with J replaced by Q) is made to calculate the control

action. The distance metric is based on the concatenated vector composed of the state

and action vectors.
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• To update the Q values in the memory, the exact Q values are calculated from on-line.

The corresponding Q-learning procedure for learning an improved control policy in the

absence of a model is as follows:

1. Perform closed-loop experiments in all possible operating regimes by injecting dither

signals into the control actions.

2. Estimate initial Q values for each visited state-action pair. Based on these values,

build a local averager (e.g. distance-weighted k-nearest neighborhood), of which the

input argument is a concatenated vector of state-action pair. A feature weight can be

assigned to each component of the vector to make the prediction more accurate.

Q0 (x(k), u(k)) =
∞∑

t=k

αt−kφ(x(t), u(t)) (170)

Q̃(z) =
∑

zj∈Nk(z)

wjQ(zj) (171)

where

z = [x u]T (172)

,

wj =
1/dj∑
j 1/dj

(173)

and

dj =
√

(z − zj)T W (z − zj) (174)

3. Perform a closed-loop experiment under the policy based on Q̃i, which is

u(k) = µi(x(k)) = arg min
u∈U

Q̃i(x(k), u) (175)

with the penalty term added to Q̃i as in the J-learning’s case. In the above optimiza-

tion, input action set U can be constructed by sampling the neighboring ku points

of the x(k) and also add discretized action sets within the sampled bound for global

optimization. This is reasonable in view of the fact that state-action pairs that are

far from the available data are unlikely to be chosen due to the penalty term anyhow.
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In essence, this results in discretization and global search only in the relevant region

of the action space, which can reduce the computation time.

4. Calculate the Q value (Qon) for each visited state and action pair (x0, u0) from the

on-line experiment according to

Qon(x0, u0) =
∞∑

t=0

αtφ (176)

5. Update the Q values using the new information Qon

Qi+1(x, u) = Qi(x, u) + γ
{
Qi,on(x0, u0)−Qi(x, u)

}
(177)

where i is the off-line update index, and the learning rate parameter γ is assigned as

follows:

• If (x0, u0) is the same point (within some tolerance) with (x, u)

γ =
1√

i + 1
(178)

Otherwise, add the point (x0, u0) to the memory.

• In both cases, neighboring points, (x, u) ∈ Nku(x0, u0), are also updated using

the distance-weighted factor.

γ =
1/dj∑ku

j=1 1/dj

(179)

where Nku(x0, u0) is the set composed of the ku-nearest neighbors of (x0, u0).

6. Repeat the procedure from step 3 until no appreciable improvement is observed.

8.5 Simulation Example: CSTR

In this section, an example of CSTR with a first-order exothermic reaction adopted from

Hernández and Arkun [46] is considered. The proportional-integral (PI) controllers, the

successive linearization based MPC (slMPC) method described in [61], nonlinear program-

ming based MPC (NMPC), J-learning-based controller, and Q-learning-based controller are

compared to illustrate some key aspects of the suggested approaches.
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The dynamic equations of the system is given in dimensionless form by

ẋ1 = −x1 + Da(1− x1) exp
(

x2
1+x2/ϕ

)

ẋ2 = −x2 + BDa(1− x1) exp
(

x2
1+x2/ϕ

)
+ β(u− x2)

y = x1

(180)

where x1 and x2 are the dimensionless reactant concentration and reactor temperature,

respectively. The input u is the cooling jacket temperature. Da, ϕ, B, and β are Damköhler

number, dimensionless activation energy, heat of reaction, and heat-transfer coefficients,

respectively. With the choice of the following parameters,

Da = 0.072, ϕ = 20.0, B = 8.0, β = 0.3 (181)

the system shows three steady states, the middle one of which is unstable as shown in

Figure 33. The control objective is to take the system from a stable equilibrium point

(x1 = 0.144, x2 = 0.886, u = 0.0) to an unstable one (x1 = 0.445, x2 = 2.7404, u = 0.0).

In the following, we first illustrate how the model-based controllers can overuse an

identified model leading to poor control performances, and then show how the overuse can

be prevented by the proposed approaches.

8.5.1 Identification

A NARX structure with a feedforward neural network was identified using data from closed-

loop simulations under a PI controller. One can determine the structure of a NARX model

by using the stepwise model building algorithm discussed in [55]. With the dimensionless

sample time of 0.5, the output of next time step y(k + 1) was found to be a function of

[y(k), · · · , y(k − 3), u(k), · · · , u(k − 3)] [46]. Thus, the state vector x is defined as in (151)

with ny = 3 and nu = 3.

To cover pertinent operating ranges, different controller gains were used under the set-

point of 0.4450. The selected gain values were 9, 6.75, and 4.5 with the same integral time of

83.3 (sample time). For each closed-loop experiment, the input was dithered at each sample

time with a random noise generated from the uniform distribution within [-0.03 0.03]. 12

set of simulations were conducted by changing the set-point from the low steady state to
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Figure 33: Steady-state output vs. steady-state input for CSTR example.
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Figure 34: State space plot of the identification data: plot of x1 vs. x5.

the unstable one. From the simulations, we collected 2820 input-output data points. The

identification data (x1 vs. x5) are plotted in Figure 34.

The neural network we fitted has seven hidden nodes with eight inputs, x(k), u(k), and

one output, y(k + 1). The parameters were identified using the MATLAB Neural Network

Toolbox [37] with the fitting tolerance (MSE) set as 1e-5. The resulting neural network

gave excellent predictions for the test data lying in the regions of the state space occupied

by the identification data as shown in Figure 35.

8.5.2 Model Predictive Control

We tested both slMPC and NMPC coupled with the EKF estimator. With a prediction

horizon of 7 and a control horizon of 1, the MPCs solve the following objective function
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Figure 35: A sample plot of prediction performance of the NARX model for a test data
set.
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Figure 36: Regulation performances of slMPC and NMPC using the identified model.

on-line at each sample time k:

min
u(k)

[
7∑

t=1

50 {0.4450− y(k + t)}2 + ∆u(k)2
]

(182)

The regulation performances are shown in Figure 36. We can see that the system could

not be regulated by either of the controllers. Larger control horizon choices were found to

yield worse performances, probably due to the optimizer finding local minima. Figure 37

shows that the poor regulation performance is due to the extrapolation of the identified

model to unexplored regions of the state space. It is noteworthy that the output and input

weights had to be detuned significantly in order to achieve closed-loop stability. The ratio of

the output weight to the input weight had to be decreased to 5.

8.5.3 J-learning Approach

For the 2820 data, the value iteration was performed with the k-nearest neighbor approx-

imator, which averages four neighboring points (k = 4) for the cost-to-go approximation.
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Figure 37: On-line state trajectories of MPCs: plot of x1 vs. x5.
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Using a discount factor of 0.98, the initial cost-to-go values were calculated as an discounted

infinite horizon sum of the following one-stage cost:

φ(x(k), u(k)) = 50(0.4450− y(k + 1))2 + (u(k)− u(k − 1))2 (183)

Hence, with the ADP based method, we are attempting to derive a much less detuned

controller that still maintains closed-loop stability. The convergence criterion used for the

value iteration was

erel =
∥∥∥∥
J i(xk)− J i−1(xk)

J i−1(xk)

∥∥∥∥
∞

< 0.01 (184)

where k = 1, · · · , 2820 and i is the iteration index. The off-line value iteration converged

after 31 steps, during which erel decreased monotonically as shown in Figure 38. The

parameters of the penalty function were set as σ = 0.1587 (1% of normalized distance

range), ρ = 6.6× 10−9, A = 0.0696, and Jmax = 200. Figure 39 shows the improvement in

performance from the starting control policies (PI controllers) and Figure 40 illustrates that

the suggested strategy uses the model in the vicinity of the data and avoids unreasonable

extrapolations.

8.5.4 Q-learning Approach

Using the same starting PI controllers and input dither signals, 3256 points of state and

action pairs were collected. Initial Q values for each state and action pair were estimated

by (170) with α of 0.98. For the Q function approximation, the k-nearest neighbor approx-

imator with k = 4 was employed and W = diag[5 3 3 2 3 2 2 5] was chosen to assign more

weights to the current input and output values. ku = 15 was used for action sampling and

update of neighboring Q values based on the updated on-line information. The parameters

of penalty function were set as σ = 0.1697, ρ = 1.2× 10−9, A = 0.0696, and Qmax = 200.

As mentioned earlier, this interactive learning between on-line experiment and off-line

redesign of the Q function (and therefore the controller) in the absence of a model involves

the update of new information at each iteration, which implies a gradual increase in the

number of data points stored in the memory. Table 16 indicates about 100% increase in

the number of data points after 20 iteration steps, which is very reasonable.
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Figure 38: Convergence behavior of the off-line value iteration for J-learning.

Table 16: Number of data points in the memory at each iteration step of Q-learning.
Iteration Data Iteration Data

1 3256 11 4979
2 3442 12 5147
3 3627 13 5242
4 3810 14 5410
5 3990 15 5592
6 4157 16 5756
7 4269 17 5923
8 4451 18 6089
9 4633 19 6250
10 4809 20 6418
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Figure 39: Improved regulation performance of J-learning from starting control policies.
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Figure 40: On-line state trajectory of J-learning: plot of x1 vs. x5.
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Table 17: Improvement of on-line performance under Q-learning.
Iteration

∑∞
k=0 φ Iteration

∑∞
k=0 φ

1 44.76 11 30.88
2 39.08 12 29.71
3 41.73 13 29.59
4 38.74 14 29.56
5 34.09 15 29.01
6 35.64 16 29.01
7 32.83 17 29.56
8 31.93 18 28.42
9 31.48 19 27.53
10 29.72 20 27.53

Table 18: Comparison of the closed-loop performance of control polices: infinite horizon
cost.

Method
∑∞

k=0 φ

PI (Kc=4.5) 60.9
PI (Kc=6.75) 43.8
PI (Kc = 9.0) 58.0

slMPC ∞
NMPC ∞

slMPC (detuned) 165
NMPC (detuned) 42.0

J-learning 27.2
Q-learning 27.5

Figure 41 and Table 17 show oscillatory behavior in the early phase of learning, but

after a while the performance improvement is gradual and reaches very good performance

after 20 iteration steps. The state space plot of Figure 42 from the on-line simulation using

the Q-function obtained from the 20th iteration shows a well-interpolated trajectory to

the target point. In Table 17, undiscounted infinite horizon cost is used for comparison of

on-line regulation performances:
∞∑

k=0

φ(x(k), u(k)) (185)

Table 18 shows that the ADP schemes improved the starting control policies (PI con-

trollers) while avoiding the extrapolation problem seen in the MPCs.
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Figure 41: Evolutionary improvement of regulation performance under Q-learning.
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Figure 42: On-line state trajectory of Q-learning: plot of x1 vs. x5.
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8.6 Conclusions

In this chapter, we presented two input-output-data-based nonlinear control approaches

based on the ADP framework, which iteratively learn the cost-to-go function from data col-

lected through identification experiments. The first approach, which we named ‘J-learning,’

builds an empirical input-output model and then derives the cost-to-go function off-line for

use in on-line control. The second approach, named ‘Q-learning,’ does not build any input-

output model but alternates between on-line experiment and approximation of the so called

Q function. In both approaches, we discourage the optimizer from finding a solution that

pushes the system into the regions of the state space with sparse data density, by adjusting

the learned cost-to-go function with a penalty term based on the local data density. Com-

pared to the conventional model-based approaches like MPC, the suggested approaches have

the advantage of being able to incorporate the knowledge of identification data distribution

(and therefore model’s confidence) into the control calculation more easily, thereby yielding

a more robust control policy.
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CHAPTER IX

CONTRIBUTIONS AND FUTURE WORK

9.1 Contributions

This thesis work was motivated by the necessity of a novel control framework, as chemi-

cal processes in practice diversify into complex nonlinear/uncertain systems or even more

challenging processes, the dynamics of which can only be described by molecular simula-

tion procedures. The current model-based and on-line optimization control methodologies

can only provide limited performance or they cannot be incorporated into such systems.

Approximate dynamic programming (ADP) strategies developed in the fields of artificial

intelligence (AI) and machine learning (ML) offer attractive advantages in view of the limi-

tations of MPC and conventional DP approaches. However, they are mostly tailored to suit

the characteristics of applications in operations research, computer science, and robotics.

In this thesis, we have: proposed ADP strategies suitable for chemical process control, ad-

dressed issues on the proper choice of a function approximator for cost-to-go and the reliable

use of the approximated information, and tackled difficult process control problems using

the ADP approaches.

In Chapter 3, we have presented an ADP framework for chemical process control. Pro-

cess control problems have continuous variables and high-dimensional state space. On-line

trial-and-error learning is risky and should be avoided. Because of these factors, some

popular algorithms found in the Reinforcement Learning (RL) and Neuro-Dynamic Pro-

gramming (NDP) literature are not applicable to process control problems. The suggested

ADP strategy identifies important regions of the state space using closed-loop simulation

data. The starting control policies are judiciously chosen so that satisfactory controls can

be found within the limited envelope. The main premise is that only a small fraction of the

huge state space would be relevant for optimal or near-optimal control in practice. Then

the starting control policies are improved by iterating on the Bellman’s optimality equation
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off-line using function approximation. Though the working state space may not contain

the optimal path, this step brings significant improvement to the initial control policies.

For example, one may have several different control policies working satisfactorily only for

different regions of the state space. The principle of optimality can find an improved trajec-

tory by interpolating the state points visited by the simulations under the initial policies.

Furthermore, on-line implementation of an ADP control policy is relatively simple to solve

on-line, compared with the MPC formulation.

To deal with the continuous variables, a function approximator is necessary in the frame-

work. Since the optimization and function approximation are interlaced and recursively used

at every iteration step, a proper choice and design of the approximator was found to be

critical for the suggested framework. Though some former papers pointed out the issues,

there have been mixed results because of the different natures of the problem. Hence,

in Chapter 4, we have examined the suitability of different sorts of approximators for the

suggested ADP framework using typical process control examples. They include difficult

case studies, such as a state-constrained problem and a high-dimensional nonlinear process.

We compared a global parameterized approximator (artificial neural network) with a lo-

cal averaging instance-based approximator (k-nearest neighbor). We could conclude that a

local averager shows better off-line learning behavior and on-line performance, but undue

extrapolation is problematic for the high-dimensional case, due to the limited explorations

in the state space.

In Chapter 5, we have proposed a penalty function method for ensuring a reliable use of

cost-to-go approximation that is valid over limited regions of state space. In the RL/NDP

literature there have been few studies dealing with the undue extrapolation issue because

they assume either huge amounts of data or trial-and-error learning. The proposed method

evaluates local data density around a query point to indicate the ‘risk’ of cost-to-go es-

timation. The risk is formulated as a quadratic penalty term on the cost-to-go estimate.

The penalty function systematically biases the search of a control action to those regions of

adequate data density, thereby providing the most dependable control action.

From Chapters 6 to 8, we have tackled difficult process control problems using the
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ADP approach. In Chapter 6, we have solved a dual adaptive control problem where the

estimation quality and the control performance are coupled. The optimal controller is

known to have dual features, which are regulating actions and active probing actions. Only

ad hoc design methods have been suggested to implement the dual features because DP

approaches have been considered infeasible. The ADP approach could derive a dual control

policy with less computational burden. Stochastic nature was handled using Monte Carlo

simulations.

Chapter 7 has shown how the cost-to-go based controller can be used for monitoring

and overriding a local linear controller. The proposed scheme switches between an override

nonlinear controller and a local linear controller based on the dynamic state of a system.

The ease of design and implementation is attractive for industrial applications. Not only can

the dual-mode controller improve the performance and stability of a given local controller,

but it can also give operators indications on the future performance of the local controller.

In Chapter 8, we have considered a situation where a first-principle model is unavailable.

A typical nonlinear MPC approach builds an input-output model and uses it for control

calculations, which is considered difficult because the validity of a given model cannot

be accounted for conveniently within the predictive control scheme. The ADP framework

naturally handles this issue in that the local approximation scheme with the penalty function

derives an improved control policy while restricting the search space for optimal control

moves to those covered by the identification data. In addition, we have proposed a model-

free learning (Q-learning) scheme for continuous state variables. This does not require a

model identification step, but improves a control policy by continually updating the cost-

to-go function from operation to operation.

9.2 Future Work

There are several directions for further work based on the suggested framework in this

thesis. They include:

• Theoretical guarantees on the use of cost-to-go

Though the penalty function method with a local averaging scheme has been shown
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to work successfully for a number of practical systems, function approximation can be

carried out in a more systematic way if an error bound can be derived for a general

class of problems. This analysis is yet to be reported for continuous problems.

• Systematic exploration

Exploration of the state space may give us significant performance improvements.

One possible way is to use outer policy iteration, which alternates between the on-line

implementation of converged cost-to-go information and the off-line redesign of the

cost-to-go much like in the suggested Q-learning scheme in Chapter 8. In this step,

one can also inject some input dither signals to yield a randomized control policy.

Systematic way of expanding the learning domain in an evolutionary manner is an

open question.

• Sampling and averaging for stochastic systems

For a stochastic control problem introduced in Chapter 6, we found that some outliers

could occur during the sampling in evaluating the expectation operator and could bias

the average cost-to-go significantly. This can be avoided if there are huge amounts

of simulation data, but smart handling of these outliers associated with the penalty

term can help reduce the computation in the learning step. A proper strategy for

sampling and realizations for stochastic systems is an open issue in this regard.

Evaluation of the expectation can be more systematic and simplified, if we use quadra-

ture approximation given a probability distribution instead of using sample average

from Monte Carlo simulation. However, it is still unclear how to conduct simulations

in this case.

• Large action space

The suggested algorithms can suffer from the same curse-of-dimensionality as the di-

mension of action space increases. This is because the action space should be searched

over for finding a greedy control action. One approach we employed is to confine the

action space by sampling the action values from the suboptimal laws and optimize
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over it. More rigorous studies along this line, with an efficient optimization algorithm,

would also be beneficial.

• Parallelization of the off-line iteration

Because the value iteration sequentially updates a cost-to-go for each state, the it-

eration step may require significant amount of computing time when it is applied

to large-scale problems. Intelligent allocation of computing time by parallelizing the

value iteration procedure can facilitate management of the computational and storage

requirements. A proper strategy for partitioning the data set should be explored in

this context.

• Extension to challenging processes

Emerging engineering applications deal with more complex systems with different

length and time scales. For such a process, it is difficult to apply existing control

techniques to calculate a proper control policy. For example, material processing and

biological systems are next to impossible to describe using macroscopic conservation

equations. For such processes, molecular simulation tools are mainly developed for

design and optimization [43]. One of the main advantages of the ADP framework

is that it is not limited by specific model forms or processes in principle. Given a

simulator and a control objective, one can generate the data and bring evolutionary

improvements on given control policies. However, proper representation of the cost-

to-go would be important in this application.

Large scale and distributed systems are common in practice, for which differential

algebraic equations (DAEs) are often used. It is more difficult to derive a proper

control strategy for DAE systems than the systems with ordinary differential equations

because of the issues like high index and consistent initial conditions [58]. Proper

interpretation and application of the ADP strategy to the DAE systems is a fruitful

avenue to explore.

Proper integration of relevant techniques into the ADP strategy would also be bene-

ficial for further extension to the large-scale systems. For example, use of data-based
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model reduction technique (e.g. POD) to obtain a more compact representation of the

state for the cost-to-go information storage will be particularly important in plant-

wide centralized control.

• Applicability of policy space algorithms

The ADP framework is concerned with approximating the cost-to-go function aimed

at solving the Bellman equation directly. Then the learned cost-to-go function is

used to prescribe a near-optimal policy. A new approach recently advocated is to

approximate and optimize directly over the policy space, which is called policy-gradient

method [54, 113, 73]. The method was motivated by the disadvantage of the cost-to-

go function based approach that can result in very different actions for “close” states

from the greedy policy in the presence of approximation errors. This can be avoided

by controlling the smoothness of the policy directly. However, the algorithms still need

significant investigation to be recast as an applicable framework for process control

problems.
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