
Absorbing boundary conditions for low group velocity
electromagnetic waves in photonic crystals

Murtaza Askari,1,* Babak Momeni,1,2 Charles M. Reinke,1,3 and Ali Adibi1

1School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
2Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA

3Sandia National Labs, Albuquerque, New Mexico 87185, USA

*Corresponding author: murtaza.askari@gatech.edu

Received 29 July 2010; revised 6 January 2011; accepted 23 January 2011;
posted 25 January 2011 (Doc. ID 132500); published 18 March 2011

We present an efficient method for the absorption of slow group velocity electromagnetic waves in photo-
nic crystal waveguides (PCWs). We show that adiabatically matching the low group velocity waves to
high group velocity waves of the PCWand extending the PCW structure into the perfectly matched layer
(PML) region results in a 15dB reduction of spurious reflections from the PML. We also discuss the
applicability of this method to structures other than PCWs. © 2011 Optical Society of America
OCIS codes: 050.1755, 130.5296.

1. Introduction

Photonic crystals [1–3] (PCs) have generated much
interest due to their unique dispersion and bandgap
properties. Two dimensional (2D) PCs, in particular,
have attracted a lot of attention because of their ease
of realization using mature semiconductor fabrica-
tion techniques. The interesting properties of PCs
have found applications at both microwave [4–6] and
optical frequencies [7–9]. A 2D photonic crystal
waveguide (PCW) is usually fabricated with a row
of air holes missing in an otherwise perfect PC. These
waveguides provide a large frequency range for sin-
gle mode operation, interesting dispersion (e.g., low
and high group velocity [10]), and the possibility of
wide bandwidth and low-loss bending [11,12]. The
slow group velocity modes distinguish PCWs from
other nonperiodic waveguiding structures (e.g., con-
ventional ridge and rib waveguides), which usually
consist of only fast group velocity modes. The slow
group velocity modes in PCWs have several applica-
tions such as delay lines and compact biological and
chemical sensing [13,14].

Understanding and utilizing the unique properties
of PCs require accurate simulation of these struc-
tures. Among several possible techniques, the finite-
difference time-domain (FDTD) [15] method has
been widely used to obtain the wideband frequency
response of PC structures for investigating the pro-
pagation of electromagnetic (EM) waves. Absorbing
boundary conditions, for example Berenger’s per-
fectly matched layer (PML) [16], are used to termi-
nate the structures to simulate the infinite extent of
the structure and eliminate spurious reflections from
the boundaries of the simulation domain. Despite the
widespread use of the FDTD technique for the ana-
lysis and design of PC structures, its application to
simulate PCWs presents unique challenges. The re-
flections from such a PML can be on the order of
20%–30% in amplitude [17]. These reflections result
in interference that compromises the accuracy of the
simulation results.

Mekis et al. [18] have shown that the reflection
from the PCW-homogenous PML interface is due to
the k mismatch. By reducing the k mismatch using a
distributed Bragg reflector (DBR) waveguide inside
the PML, the amplitude reflection from the PML
can be reduced to 3%–5% [18]. Because a DBR wave-
guide can provide zero kmismatch for only a single k
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value, Koshiba et al. [19] proposed using a PCPML by
extending the PCW inside the PML; the EMwaves at
the PCW-PCPML interface would be k matched and
would result in much lower reflection. Although the
use of PCPML reduces the reflection to a −30dB level
and below for high group velocity modes, the reflec-
tion at low group velocities remains at the same level
(around −15dB) as that for the Berenger’s PML or
the k-matched DBR waveguide PML. Thus, a new
type of PML is needed for the investigation of PCWs
at low group velocity regions.

In this paper, we show that by adiabatically match-
ing the low group velocity modes of a PCW to large
group velocity modes of the PML, the reflection from
the PML can be reduced to −30 dB or below. In
Section 2, we present the details of the structure used
in our simulations. We also discuss why the PCPML
approach does not work well for low group velocity
modes. In Section 3, we discuss our approach for
reducing reflections from thePCPMLat low group ve-
locities. Final conclusions are made in Section 4.

2. Simulation Platform

The structure we used in our simulations is shown in
Fig. 1(a). It consists of a dielectric slab waveguide
connected to a PCW. The PCW is formed by removing
one row of holes in the ΓJ direction of a triangular
lattice PC of air holes in silicon (neff¼2:811). The width
of the slab waveguide is chosen to be the same as the
PCWand is shown in Fig. 1(a) as d. The radius of the
air holes r, is 30% of the lattice period, a. To analyze
the structure, we use a 2D FDTD technique. To take
the finite thickness of the structure into account, we
use the effective index technique explained in [20].
We also employ PMLs around the structure at all
boundaries. The lattice period is taken to be equal
to 24 grid points in our FDTD grid.

To calculate the power reflection spectrum (reflec-
tion coefficient versus frequency) from the PML, we
have used a pulsed Huygen’s source [21] to excite the
fundamental TMmode (i.e., magnetic field normal to
the plane of the periodicity of the PC) in the slab
waveguide. The bandwidth of the pulse is chosen
to cover the complete single mode region of the
PCW. The PCW has one TM even (fundamental)
mode and one TM odd mode in the photonic bandgap
as shown in Fig. 1(b). The single mode region is the
frequency range (0:2668 ≤ ωn ≤ 0:29) of the even
mode below the odd mode. To calculate the reflection
spectrum, the time fields are recorded at the obser-
vation surface. Incident/reflected power spectrum
is calculated from the Fourier transform of the
fields. The spectrum of the power reflection coeffi-
cient (ΓðωÞ) is then calculated as the ratio of the
reflected power to the incident power (ΓðωÞ ¼
Px;ref ðωÞ=Px;incðωÞ).

The calculation of reflection coefficient requires
caution when operating at low group velocity fre-
quencies of the dispersion, where there is large group
velocity dispersion (GVD). The large GVD causes
different frequency components to arrive at the ob-

servation surface at different times. To ensure accu-
racy of results, it is important to separate, in the time
domain, the reflected energy from the incident en-
ergy. Let vg1 and vg2 be the two extreme group ve-
locities contained in an impulse excitation of the
PCW structure, i.e., vg2 ≤ vðωÞ ≤ vg1. As shown in
Fig. 1(a), let the observation surface be at location
x, and the total length of the structure be L. Let t2
be the time taken by the vg2 part of the incident pulse
[traveling to the right in Fig. 1(a)] to reach the obser-
vation surface, and t1 be the time taken by vg1 part of
the reflected pulse [traveling to the left after reflect-
ing from the PCW-PML interface in Fig. 1(a)] to reach
the observation surface. In order to separate the in-
cident pulse from the reflected pulse at the observa-
tion surface, the relationship between the two times
t1 and t2 is given by

Fig. 1. (Color online) (a) Structure used in our simulations show-
ing the location of the source and the observation surface. The PC
structure is formed by a triangular lattice of air holes in silicon.
The radius of each hole (r) is 30% of the lattice constant (a).
The PCW is formed by removing one row of air holes. The origin
of the coordinate system is in the middle of the slab at the slab-
PCW interface. The observation surface is at a distance x from
the slab-PCW interface. (b) Dispersion diagram of the TM modes
(i.e., magnetic field normal to the plane of periodicity) of the PCW.
Also identified in the figure are even and odd modes of the PCWas
well as the high and low group velocity regions of the even mode.
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t2 < t1 ⇒ x=vg2 < ð2L − xÞ=vg1 ⇒ vg1=vg2

< ð2L − xÞ=x: ð1Þ

When x ¼ L=2 as in [18,19], Eq. (1) becomes

vg1=vg2 < 3: ð2Þ

Equation (2) clearly shows that irrespective of the
total length of the structures, if the observation sur-
face is at the center of the PCW structure (i.e.,
x ¼ L=2), the maximum group velocity ratio that
can be separated at the observation surface is 3.
Hence, Eq. (2) shows that the location of the observa-
tion surface as used in [18,19] is not well suited for
studying structures with large GVD. Using x ¼ 10a
and L ¼ 300a in Eq. (1) gives

vg1=vg2 < 59: ð3Þ

Equation (3) shows that if we use a PCW of L ¼ 300a
with an observation surface placed at x ¼ 10a, the
maximum group velocity ratio that we can separate
at the observation surface is 59. This group velocity
ratio of 59 is more than what is used in practical ap-
plications of PCWs. To make sure we get meaningful
results, we find the incident field from a large refer-
ence PCW structure [L ¼ 300a in Fig. 1(a)], where
there is no overlap between the incident and the re-
flected pulses at the observation surface at x ¼ 10a.
We record the incident field (Ey;inc, and Hz;inc) at this
location. For the reflected field, we use smaller struc-
tures with the observation surface at the same loca-
tion (x ¼ 10a), with respect to the slab-PCW interface
and record the total electric field (Etotal). The re-
flected electric field (Eref ) is then computed by

Ey;ref ¼ Ey;total − Ey;inc: ð4Þ

This can be done without any ambiguity because the
Ey;inc is the same in the two cases (large reference
structure forEy;inc and small structure forEy;total), be-
cause the structure to the left of the observation sur-
face is the same in the two cases. To ensure that the
effects of the interference due to multiple reflections
present at the observation surface are not too drastic,
we can average the reflected field over a number of
simulations with different structure lengths [L in
Fig. 1(a)]. From our simulations we have found that
with this approach, the ripples we see in our reflec-
tion spectra is on the order of 2–3dB only, which is
insignificant when compared with −30 to − 45dB of
the reflection we observe.

Using our simulation platform, we simulated the
performance of the PCPML [19] in absorbing a pulse
with a large GVD inside the PCW. The reflection
from the PCPML is compared with Berenger’s or
homogeneous PML (HPML) in Fig. 2, which shows
that the PCPML works better than the HPML only
at high group velocities (ωn > 0:275), and that the
performance of the two PMLs is similar at low group

velocities (ωn ≤ 0:275), with less than a few decibels
better performance for the PCPML. Also note the dif-
ference in lengths of the PML (shown as a multiple of
the lattice constant “a” in Fig. 2), because we have
used the same length of the PCPML as used in [19].
Note that the properties of the PCPML (electrical
conductivity [σ] and scaling) are the same as those
of the Berenger’s PML used in our simulations. The
maximum value of σ used in our simulations is 4 (i.e.,
σmax ¼ 4), and we have used polynomial scaling [22]
for scaling σ values in the PML region.

The reason for this large reflection at low group ve-
locities is primarily the k and group velocity mis-
match between the PCW mode and the PCPML
mode. This fact becomes clear when we find the dis-
persion diagram of the PCW and the PCPML, which
is modeled by a PCW with nonzero conductivity (σ).
With σ ≠ 0, the permittivity (ε) becomes a function
of frequency (ω), and the dispersion diagram cannot
be computed with ω as the eigenvalue. Thus, the dis-
persion must be calculated with k as the eigenvalue
[23]. Figure 3 plots the dispersion diagram of a
PCW for two values of σ (σ ¼ 0 and σ ¼ 0:03). The σ ¼
0:03 corresponds to the σ value of the second cell of the
PCPML region in our simulations. Because most of
the reflections from the PCPML come from the first
few cells of the PCPML region, we have plotted the
dispersion diagram for this value of σ. Any further in-
crease in the sigma value changes the slope of the dis-
persion in only the low group velocity region until the
low group velocity region is completely lost, and the
dispersion becomes linear with the same slope as
the high group velocity region. Figure 3 shows that
as soon as conductivity is added to the PCW, the dis-
persion changes drastically in the low group velocity
regions of the dispersion diagram. The reason for this
drastic change in the dispersion of the low group

Fig. 2. (Color online) Comparison of reflection from a PCPML
[19] (blue dashed curve) and an HPML [16] (red solid curve).
The length of these PMLs are 15a and 0:5a, respectively, with a
being the lattice constant. All parameters of the PCW structure
are the same as those in the caption of Fig. 1.
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velocity region can be explained intuitively by consid-
ering that the zero group velocity points of the dis-
persion correspond to counterpropagating Floquet
components with equal amplitudes that cancel one
another. With σ ≠ 0, the amplitudes of these counter-
propagating Floquet components are no longer equal
and hence, they do not cancel one another; as a result,
the slope of the dispersion changes in the low group

velocity region of the dispersion. The effect of adding
σ to the even mode dispersion is that the mode gap
disappears, and the evenmode couples with themode
(modeA in Fig. 3) lying below it. This coupling results
in a drastic change in the dispersion of the low group
velocity region of the even mode, resulting in a large
groupvelocitymismatchaswell as a largekmismatch
between the modes of the PCWand the PCPML (i.e.,
PCW with nonzero σ). The field profile of mode A,
shown inFig. 4, has the same parity as the evenmode,
allowing it to couple to the evenmode of the PCWand
thus causing it to bend downwards.

Figure 3, in addition to providing the reason for
large reflections at low group velocities for the
PCPML, also provides the reason for the good perfor-
mance of the PCPML at high group velocities. The
dispersion for the linear part of the even mode (i.e.,
the high group velocity region [ωn > 0:275]) in Fig. 3,
does not change when conductivity is added. Hence,
there is a good group velocity and k match between
the modes of the PCWand the PCPML at high group
velocities, resulting in reduced reflections compared
to the HPML and the DBR waveguide PML [18], as
shown in [19]. However, to reduce reflections at the
low group velocity region (ωn < 0:275), a similar
group velocity and k matching between the PCW
and the PML region must be enforced.

3. Adiabatically Matched PCPML and Discussion

Adiabatic matching has been used to reduce reflec-
tions from the interface between nonperiodic and per-
iodic structures [9,24]. The same idea can be used to

Fig. 3. (Color online) Dispersion diagram of the PCW of Fig. 1(a)
at different values of conductivity (σ). The curves shown have con-
ductivity σ ¼ 0 (red plus signs) and σ ¼ 0:03 (blue circles). The
modes of the two structures are almost the same for ωn > 0:275.
However, there is a significant difference at ωn < 0:275, which cor-
responds to the low group velocity region.

Fig. 4. (Color online) (a) Dispersion diagram of a PCW with σ ¼ 0:03. The field profiles are calculated at (b) κa ¼ 2:0942 and ωn ¼ 0:275,
(c) κa ¼ 2:138 and ωn ¼ 0:266, and (d) κa ¼ 2:447 and ωn ¼ 0:266. All parameters of the PCWare the same as those in the caption of Fig. 1.
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reduce reflections from the PCW-PCPML interface.
Figure 5 shows the dispersion diagram of the PCW
in Fig. 1(a), as a function of r=a. Figure 5 shows that
the dispersion moves to lower frequencies as we re-
duce the radius of the air holes. The lowgroup velocity
modes of the PCW with r=a ¼ 0:3, lie in the same fre-
quency range as the high group velocity modes of the
PCWwith r=a ¼ 0:26. The lowgroupvelocitymodes of
the PCW with r=a ¼ 0:3, can then be absorbed by
adiabatically matching these modes to large group
velocity modes of a PCW with r=a ¼ 0:26, and then
terminating the structure with a PCPML with
r=a ¼ 0:26. In this scheme, which we call the adiaba-
tically matched PCPML (AM-PCPML), the absorbing
boundary consists of two regionsas shown inFig. 6. (1)
The adiabatic region in which r=a is adiabatically re-
duced from left to right, and (2) the PCPML region in
which r=a is fixed. The adiabatic (transition) region in
Fig. 6 matches the low group velocity modes of the
PCW with a large r=a (e.g., r=a ¼ 0:3) to high group
velocity modes of a PCW with a smaller r=a (e.g.,
r=a ¼ 0:26). The second region is the PCPML region,
with the smaller r=a (e.g., r=a ¼ 0:26), which is used to
absorb the incomingEMenergy.Thedesign of the first
region is similar to the one presented in [9]. Thepower

reflected from such an AM-PCPML is compared with
HPML and PCPML in Fig. 7.

The adiabatic region in our case consists of six per-
iods of a PCW with r=a decreasing linearly from 0.3
to 0.26. This choice of final r=a for air holes in the
adiabatic region and the total length of the adiabatic
region was chosen after multiple simulations with
different values for final r=a and total length of the
adiabatic region. The best performance for the AM-
PCPML was obtained for a final r=a of 0.26 and the
length of adiabatic region of 6a. The PCPML consists
of three periods of PCW with r=a ¼ 0:26. The length
of the PCPML region was also varied, and no signif-
icant change in the reflections was observed with
further increase in length of the PCPML region.
Figure 7 shows that the AM-PCPML performs much
better than the PCPML in the low group velocity re-
gion (ωn < 0:275), and that the reflection is reduced
by 13–16dB in this region. The performance of the
two PMLs in the high group velocity region
(ωn > 0:28) is similar due to the similar dispersion
characteristics of the two PMLs in this frequency
range. We should also point out that the total length
of the AM-PCPML, which includes the length of both
the adiabatic region and the PCPML region, is 9a,
which is smaller than the length of the PCPML
(15a) reported in [19]. Thus, the AM-PCPML, as pre-
sented in this work, is a good choice in absorbing both
high and low group velocity modes of a PCW.

This idea of an AM-PCPML can be easily extended
to any periodic structure exhibiting low group velo-
city modes. The main idea is to match the low group
velocity modes of the periodic structure to the high
group velocity modes of a similar structure before
adding conductivity to the periodic structure for ab-
sorbing the incident EM energy.

4. Conclusion

We presented here a new form of an absorbing
boundary condition that performs optimally for

Fig. 5. (Color online) Dispersion of the PCW, in Fig. 1(a), for
different values of r=a: r=a ¼ 0:30 (red squares), r=a ¼ 0:28 (blue
circles), and r=a ¼ 0:26 (green diamonds).

Fig. 6. Simulation structure with AM-PCPML. The figure shows
the adiabatic region, where the low group velocity modes of the
PCW with r=a ¼ 0:30 are matched to high group velocity modes
of the PCW with an r=a ¼ 0:26, and the PCPML (r=a ¼ 0:26)
region.

Fig. 7. (Color online) Comparison of reflections from different
PMLs: HPML (red solid curve), PCPML (blue dashed curve),
and AM-PCPML (green dash-dot curve) applied to the PCW shown
in Fig. 1(a).
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absorbing both the low and high group velocity
modes of a periodic EM structure (e.g., a PCW). The
low reflection at low group velocities from the pre-
sented AM-PCPML is achieved by adiabatically con-
verting the low group velocity mode of the periodic
structure to a high group velocity mode of a similar
periodic structure before applying conductivity to the
periodic structure. We showed that the reflection
from the AM-PCPML for waves incident from a PCW
structure at the low group velocity region is 13–16dB
lower than the best results reported earlier (using
other ideas to implement the PML), while having si-
milar performance at the high group velocity region.
The idea of AM-PCPML can be extended to simulate
any structure that exhibits dispersive behavior with
both low and high group velocity regions.
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