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SUMMARY 

 

Recent carbon allotropes such as carbon nanotubes (CNTs), fullerenes (C60s) and 

graphene have attracted great interests in both science and engineering due to their 

unique properties such as excellent electrical and mechanical properties as well as its vast 

surface area, and have led to many commercial applications. Especially, CNTs have been 

considered to be one of the promising candidates in the Li ion battery system because of 

its outstanding properties. However, the experimental results in the pristine CNT system 

have shown just slight improvement than original graphitic carbon material, which has 

been attributed to the weak adsorption of Li on CNTs. In this study, we investigated two 

types of CNT-C60 hybrid system consisting of CNTs and C60s to improve Li adsorption 

capabilities and predict its performance through quantum mechanical (QM) 

computations. First, we investigated adsorption energy of lithium (Li) on dilute CNT-C60 

hybrid and CNT-C60 nanobud system as well as various electronic properties such as 

band structure, density of states (DOS), molecular orbital and charge distribution. Then, 

we expanded our interest to the more realistic condensed structure of CNT-C60 hybrid 

and nanobud system to examine actual electrochemical characteristics. The study of the 

condensed structure has been expanded to the very unique CNT-C60 nano-network 

system and examined mechanical strength as well as electronic properties. Finally, Li 

adsorption on other carbon allotropes system such as graphene-C60 hybrid and graphene-

C60 bud system was investigated in order to provide fundamental understanding of 

electronic interaction between carbon allotrope and effect of Li adsorption. 



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Renewable energy 

 Carbon dioxide (CO2) is the one of the main gas responsible for the greenhouse 

effect [1]. As CO2 emissions from the use of fossil fuels continue to increase, many 

efforts are being made globally to develop new types of energy. Fossil fuels such as 

petroleum, natural gas and coal, encompass more than 80% of the current energy 

consumption, as shown in Figure 1.1, and demands are still increasing. However, within 

several centuries, these energy sources may be depleted while the CO2 concentration in 

the atmosphere will be greatly increased due to combustion. Therefore, many projects are 

being implemented to decrease the emission of CO2 gas by introducing renewable energy 

sources such as solar, wind, biomass and energy storage [2, 3]. Fortunately, the amount 

of renewable energy is expected to increase gradually to become an increasingly larger 

fraction of the total energy consumption. Currently, hydropower accounts for one-third of 

the current renewable sources as presented in Figure 1.1, and half of the total U.S. 

renewable energy is consumed by industry to produce electricity.  

Furthermore, stationary, high-yield, long-lasting, and low-maintenance electrical 

energy storage solutions are necessary to promote the effective use of low-emission or 

emission-free energy sources. In 2006, Germany, the leading country in wind energy 

utilization, wasted 15% of produced energy from wind because of a lack of suitable 

electrical energy storage [4]. Thus, the significance of energy storage such as fuel cell 

and lithium-ion batteries with sufficient power, efficiency and cycle life is growing along 

with increased consumption of renewable energy.   

 

1.2 Li ion battery system 
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 Among the various energy storages, Lithium-ion battery technology has been 

considered to be the fast growing technology for providing stationary storage solutions to 

enable the efficient use of renewable energy sources. At present, Li-ion batteries are 

 
Source: U.S. Energy Information Administration, Annual Energy Review, 2009, Table 

1.3, Primary energy consumption by energy source, 1949-2009. (August 2010) 

 

Figure 1.1: U.S. Energy consumption by energy source, 2009. 

 

widely used for low-power applications like consumer electronics. In addition, extensive 

research has lead the technology to a stage where it seems very likely that safe and 

reliable battery can be used for the high power systems such as hybrid electric and 

electric vehicles and connected to solar cells and windmills. However, it still faces some 

problems such as cost, performance, safety and cyclic life to overcome in spite of 

tremendous progress of technology.  

The working unit in a battery is the electrochemical cell, consisting of a cathode 

and an anode separated and connected by an electrolyte. The electrolyte conducts ions but 

is an insulator to electrons. The anode contains a high concentration of intercalated 

lithium (Li) while the cathode is depleted of lithium in a charge state. During the 
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discharge, intercalated lithium is extracted from the anode and migrates through the 

electrolyte to the cathode while its associated electron is collected by the external circuit 

to be used to operate an electric device [5, 6]. 

 
 

Figure 1.2: A lithium ion electrochemical cell based on lithium-metal oxide as 

cathode and graphite as anode [7]. 

 

In the lithium battery system, lithium-metal oxides such as LiCoO2, LiMn2O4, 

vanadium oxides, and LiFePO4 (olivines) are usually used as a cathode [7, 8]. Layered 

oxides containing cobalt and nickel are the most studied materials and they show a high 

stability in the high-voltage range but cobalt is toxic and has limited availability in 

nature, which is a huge drawback for mass production. On the contrary, Manganese 
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offers a low-cost substitution with a high thermal threshold and excellent rate capabilities 

but cycling life is limited. Therefore, mixtures of cobalt, nickel, and manganese are often 

used to derive the best properties and overcome the disadvantages of each material. 

Vanadium oxides have a large capacity and excellent kinetics, but the material tends to 

become amorphous due to lithium insertion and extraction and limits the cyclic behavior. 

Olivines are nontoxic material and have a moderate capacity, but their conductivity is still 

low.  

For the anode materials, graphite, lithium metal, lithium-alloying materials, or 

silicon are being used [9]. At present, graphite anodes have been widely used in Li ion 

batteries due to safety and cycle, although lithium metal electrodes are much higher 

capacity than carbon materials electrodes. To overcome those issues, some efforts with 

novel graphite varieties and carbon nanotubes have tried to increase the capacity but high 

cost of the processing is still problematic. Silicon is expected to have a quite high 

capacity up to 4,199 mAh/g corresponding to a composition of Si5Li22 [10], but poor 

cycle and safety problem should be resolved in order to be used as an acting material. 

Therefore, many active researches are still progressing to find a better lithium 

intercalation material in terms of the power density and cycle. 

 

1.3 Carbon nanotube, fullerene and graphene 

 Carbon allotrope, such as carbon nanotube (CNT), fullerene (C60) and graphene, 

have gained a great deal of attention in both science and engineering due to their 

extraordinary electronic and mechanical properties, leading to many applications in 

nanotechnology, such as field-effect transistor, composite materials and gas sensors [11-

14]. Among them, carbon nanotubes (CNTs, Figure 1.3.a) are a one-dimensional 

structure, which have garnered much interest after they were discovered in 1991. CNTs 

have outstanding electrical [15-17], electronic, electrochemical [18], thermal, and 

mechanical properties [19-24] as well as high surface area and electrochemical stability. 
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For example, their Young’s modulus can exceed 1000GPa, which approaches that of 

diamonds (1220 GPa), and metallic CNTs can carry an electric current three times more 

effectively than copper. These near-perfect properties made them ideal electrode 

materials for various renewable energy applications such as hydrogen storage and super 

capacitor. In addition, CNTs can be combined with other functional materials to form 

nano-structured hybrid materials, such as catalysts for applications in fuel cells and 

inorganic semiconductors for the generation of electro-hole pairs in solar cells. In 

particular, it is noticed that high performance electrical energy devices such as batteries 

based on CNTs or their hybrid materials have been developed to promote Li adsorption, 

which is motivated by increasing demand for better electrochemical materials of higher 

energy and power density [25]. 

 

a

 

b

 

c

 

 

Figure 1.3: Carbon allotropes: (a) single-walled nanotube; (b) graphene; and (c) 

fullerene (C60). 
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Graphene (Figure 1.3.b), a single layer of honeycomb lattice carbon atoms, is the 

most prominent nanoscale materials currently used in both science and technology. The 

two dimensional (2D) graphene consists of sp
2
-hybridized carbon atoms, which allow 

graphene to possess unique electrical properties resulting from its semi-metallic nature 

and 2D structure [12, 26-29]. This exceptional property makes it an ideal material for 

carbon-based nanoelectronics such as a graphene-based field-effect transistor (FET), 

including transistors to be used in nanoscale electronic circuits, light emitters and 

detectors and ultrasensitive chemical sensors and biosensors [30].  

Fullerene (C60, Figure 1.3.c), which was first discovered in 1985, form unique 

spherical molecules containing a conjugated π system. Each fullerene represents a closed 

network of fused hexagons and pentagons. C60s are chemically stable, but sp
2
 hybridized 

carbon atoms induce chemical reactivity [31]. Therefore, the production of various hybrid 

materials has been attempted to manipulate photo-active or electro-active properties by 

functionalizing fullerenes with interesting materials such as small organic molecules, 

polymers and carbon nanotubes. In addition, because C60 is a strong electron acceptor and 

is efficient in charge transfer, its usage in electron harvest material is increasing.  

In this study, we investigated various hybrid materials consisting of those carbon 

materials to utilize the advantages of each material and investigated the possibility for the 

application of each material in energy technology.  

 

1.4 Computational method 

 Computational methods use the results of theoretical physics and chemistry, 

incorporated into efficient computer programs, to calculate the structures and electronic 

properties of molecules and solids. It has become a useful way to investigate materials 
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that are too difficult to find or too expensive to measure. It also helps people make 

predictions before running the actual experiments so that they can be better prepared for 

taking measurements and understanding physics. In computational study, the Schrödinger 

equation is the basis for most of the computational methods because the Schrödinger 

equation describes the atoms and molecules with mathematics. Therefore, we can 

calculate various properties such as electronic structure, optimized geometry, electron 

and charge distributions, potential energy surfaces (PES), and energy of reaction by 

solving the Schrödinger equation. However, in all cases the computation time and 

computer resources increase rapidly with the size of the system being studied. Thus, 

computational methods range from highly accurate to very approximate: empirical or 

semi-empirical employing experimental data and highly accurate methods are typically 

feasible only for small systems.  

 

1.4.1 Ab initio methods  

 As mentioned above, computational methods are base on many different quantum 

mechanical methods that solve the Schrödinger equation associated with the atomic or 

molecular Hamiltonian. Ab initio methods can be made to converge to the exact solution, 

when all approximations are sufficiently small in magnitude and when the finite set of 

basis functions tends toward the limit of a complete set. Hartree-Fock (HF) method is the 

simplest the type of the ab initio calculation, in which the correlated electron–electron 

repulsion is not specifically taken into account; only its average effect is included in the 

calculation. Many types of calculations known as post-Hartree-Fock methods begin with 

a HF and subsequently correct for electron–electron repulsion.  

 

1.4.2 Density functional theory 

 Density functional theory (DFT) is to describe an interacting system by its density 

instead many body wave function and widely used in many fields because DFT methods 
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can be very accurate for little computational cost. It was first realized by Thomas and 

Fermi and later formalized by Hohenberg and Kohn in 1964. The properties of many 

electrons system can be determined by functional, which is the spatially dependent 

electron density. DFT is a successful approach for the description of ground state 

properties of metals, semiconductors, and insulators and its success expands to complex 

material such as proteins and carbon nanotubes.   

In this study, density functional theory (DFT) is used in order to understand the 

basic properties of the new hybrid material, which is a fairly recent player in the 

computational chemistry area.  
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CHAPTER 2 

THEOERY 

 

2.1 Density functional theory 

Density Functional Theory (DFT) has become a popular method for calculating 

the ground state properties of interacting many electron systems such as atoms, molecules 

or solids in computational physics, quantum chemistry and condensed-matter physics. 

The main goal of DFT is to solve a many-body interacting system through density and its 

importance is that it changes the many-body system into a system of non-interacting 

fermions in an effective field. The theory originates from the conceptual work from 

Thomas-Fermi model [32, 33] and is further developed by Hohenberg-Kohn [34] and 

Kohn-sham [35], which claims that properties of a system can be considered to be unique 

functionals of its ground state density. Combined with the Born-Oppenheimer 

approximation [36] and Kohn-Sham (KS) ansatz [35], accurate DFT calculations have 

been possible through the approximation for the so called exchange-correlation (XC) 

potential, which describes the effects of the Pauli principle and Coulomb potential 

beyond a pure electrostatic interaction of the electrons. In many cases, the results of DFT 

calculations for condensed matter systems agreed well with experimental data as well as 

relatively lower computational costs comparing with the method based on the many-

electron wavefunction. Therefore, we will briefly overview the basic concept behind DFT 

in this chapter. 

 

2.1.1 The Schrödinger equation 
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The solution of the Schrödinger equation (2.1) gives information about various 

processes and phenomena occurring in complex systems 
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, where the first, second and third terms in equation (2.1) represent the kinetic energy, 

interparticle interaction and interaction with external potential, respectively. In this 

equation, the electron-electron interaction makes it difficult solve the equation and this 

effect should be covered in the wavefunction . Since the exact solution cannot 

be exactly solved, various theories have been developed from Hartree-Fock (HF) and 

Thomas-Fermi-Dirac approximation to the modern density functional theory.  

 

2.1.2 The Hohenberg-Kohn theorem 

The main objective of density functional theory is to replace the many-body 

electronic wavefunction with the electronic ground-state density as basic quantity. 

Whereas the many-body wavefunction is dependent on 3N spatial variables and N spin 

variables, the density is a function of only three variables and is a simpler quantity to deal 

with both conceptually and practically. The method is in principle exact and based on two 

theorems derived and proved by Hohenberg and Kohn in 1964. The Hohenberg and Kohn 

theorem states that the density of a non-degenerate ground state uniquely determines the 

external potential (to within a constant) to which the many-electron system is subjected. 

Consequently, the density determines electronic wavefunction of the system and thus all 

the electronic properties of the ground state. The proof of the theorem for the   

mapping is based on reductio ad absurdum. Consider two external potentials 
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 which differ by more than a constant that each yield the same ground-state 

density and then the two potentials will give rise to different ground-state wavefunctions. 

Now, we can use the variational principle. From the Schrödinger equation (2.1), we have  

   000
ˆˆˆ EVV eeT                                                                                          (2.2) 

  '0'0'0'ˆˆˆ  EVV eeT .                                                                                     (2.3) 

If   were to be the same, then by subtracting (2.3) from (2.2) one would get 

                                                                                    (2.4) 

, where V̂ and 'V̂ appear to differ only by a constant if  does not vanish. However,  

cannot vanish on a set with nonzero measure by the unique continuation theorem. Thus, 

we obtain a contradiction with our initial assumption, and hence we can conclude that 

 00 . We can now prove that two potentials )(rv and )(' rv with corresponding 

Hamiltonians Ĥ and 'Ĥ and non-degenerate ground-state wavefunctions 0  and '0  

produce two different densities )(r and )(' r . Through the variational principle we have 

that 

'0'ˆˆˆ'0'0
ˆ'00

ˆ
00  VVHHHE .                                         (2.5) 

So that  

  drrvrvEE )](')([''00  .                                                                                      (2.6) 

Similarly, interchanging primed and unprimed quantities, one finds  

  drrvrvEE )]()('[0'0                                                                                          (2.7) 

and consequently we conclude that there cannot exist two different external potentials 

)(rv and )(' rv  corresponding to the same density )(r . This defines the mapping 

   0'000'ˆˆ EEVV
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v , and thus the one-to-one mapping v  is constructed. Therefore, that total 

energy of a many-electron system in an external static potential can be expressed in terms 

of the potential energy due to this external potential and of energy functional ][F  of the 

ground-state density, 

  ][)()(][0
ˆ][0][0  FdrrvrHE                                                       (2.8) 

with ][F  defined in  

  ][0|ˆˆ|][0)()(][0][ vV eeVvdrrvrEF  .                                         (2.9) 

Note that this functional is defined independently of the external potential )(rv , and thus 

it is a universal functional of the density. This means that if the explicit form is known, it 

can be used for any system. The second Hohenberg-Kohn theorem states that the exact 

ground-state density of a system in a particular external potential )(rv  minimizes the 

energy functional  

  drrvrFE )()(][][0 min                                                                         (2.10) 

, where E0  is the ground-state energy for the system in an external potential . The 

proof uses the variational principle again. The previous theorem assures that a trial 

density )(r


, such that 0)( r


 and   Ndrr)(


, with N number of electrons 

determines its own potential )(rv


, Hamiltonian Ĥ , and wavefunction ̂ . This 

wavefunction can be taken as trial function for the problem of interest having external 

potential )(rv . The variational principle asserts that 

  drrvrFdrrvrFH )()(][)()(][0||0 


                                     (2.11) 

, which proves the second Hohenberg-Kohn theorem. 
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2.1.3 The Kohn-Sham equation 

Even if the Hohenberg-Kohn theory implies the reformulation of the many-

particle interacting systems in terms of the density, it doesn’t guarantee the possibility for 

the exact solution of such systems. In Hohenberg-Kohn theory, both the kinetic energy 

and exchange-correlation energy has to be approximated. Kohn and Sham treated the 

kinetic energy in a much better manner. They replaced the interacting system by an 

auxiliary non-interacting system whose particle number density is same as the interacting 

system. For a system of N non-interacting electrons, the Hamiltonian reduces to 

  
 N

j r jvN
j

Tr jvVeeT
1

)(
1

ˆ)(0ˆ .                                                            (2.12) 

Now, for a non-interacting system, 

 




min|ˆ|min|ˆ|][][ min TTT sF ineractingnon               (2.13) 

Although in practice one can search over any arbitrary N-electron wavefunctions, the 

minimizing wavefunction  
min  for a given density  will be a non-interacting 

wavefunction (a single Slater determinant) for some external potential such that 





srvs

r

T s  )(
)(

][ 
 .                                                                                                 (2.14) 

The newly found KS potential )(rvs


 is also a functional of density )(r


 . If the effective 

potential in equation (2.14) will be 

)(

][

)(

][
)()(

rr
rvrvs

EXC











                                                                               (2.15) 

then by construction  s  for the auxiliary system and   for the interacting system are the 

same. In the above equation, the second and third terns on the right hand side of 
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represents the Coulomb and exchange-correlation potentials, the latter arising due to 

Pauli-Coulomb correlations. So the Euler equation for the auxiliary system becomes 





 )(

)(

][
rvs

r

T s 
 .                                                                                                  (2.16) 

Now we define the exchange-correlation energy, for the interacting system by the 

equation 

][][][][  EXC
UT sF                                                                                    (2.17) 

, where ][T s  is the KS kinetic energy defined by equation (2.13), and it can be written 

in terms of single particle orbital to be 

  i iiT s  |2
2

1
|][                                                                                         (2.18) 

,  ][U  is the Coulomb energy and the rest constitutes the exchange-correlation 

energy ][EXC
. The procedure is considered to be the better because (i)  ][T s  forms 

typically a very large part of the total kinetic energy, (ii)  ][T s  is largely responsible 

for density oscillations of the shell structure, which are accurately described by the KS 

method and (iii)  ][EXC
 is better suited for local and semi-local approximations than 

][EXC
. The exchange-correlation energy ][EXC

is the sum of independent exchange 

and correlation terms  

][][][  EEE CXXC
                                                                                          (2.19) 

, where 

][min||min][  UV eeEX
 .                                                                        (2.20) 
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When  
min  is a single Slater determinant defined by equation (2.13), the equation above 

is the Fock integral applied to the KS orbitals. Also one can notice that 

][][][min|ˆˆ|min  EX
UT sV eeT                                                       (2.21)         

, and in the one electron ( 0ˆ V ee ) limit. The correlation energy is 

]}[][{][min|ˆˆ|minmin|ˆˆ|min][  EE XC
UT sFV eeTV eeT  .              

(2.22)  

As expected correlation is always negative, since min
  is the wavefunction which yield 

density   and minimizes the  V eeT ˆˆ , whereas  
min   is that wavefunction which also 

yields the same density   but minimizes T̂  only. Thus, 

 
min|ˆˆ|minmin|ˆˆ|min

V eeTV eeT . For making DFT practicable, the 

approximation for the exchange-correlation energy functional is needed. The various 

local and semi-local approximations like local density approximation (LDA) and 

generalized gradient approximation (GGA) starts from the pioneering work of Kohn and 

Sham in 1965. To date there are number of accurate functionals that have been developed 

and tested for electronic structure calculations of atoms, molecules and solids. 

 

2.1.4 Approximations to the exchange-correlation (XC) functionals 

2.1.4.1 Local density approximation (LDA) 

The idea is that at each point in a molecule or solid, an electron experiences the 

same effect from the surrounding electrons as if the electronic density were uniform and 
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equal to the density where the affected electron is. It is main assumption in this model 

that we can write  in the following, very simple form,  

))(()(][ 3 rrrd
XCE

LDA

XC


  .                                                                                 (2.23) 

Here,  ))(( r
XC


  is the exchange-correlation energy per particle of a uniform electron 

gas of density )(r


 . The local energy per particle comes from the exact, known and 

parameterized exchange-correlation energy of a uniform gas for the exchange correlation 

energy density at each point in space [35]. It is accurate for uniform and slowly varying 

densities and is useful in solid-state physics. The exact ground-state energy of the three-

dimensional uniform unpolarized Fermi gas, termed Jellium, in the high-density limit is a 

function of the electronic density [37]: 














 )(096.0ln0622.0

0916.0

2

21.2
)(lim 0 r sr s

r sr s
N

E
r s

                               (2.24) 

with 

 
4

3
1

sr s  .                                                                                                               (2.25) 

The terms in equation (2.24) represent the kinetic contribution, the exchange contribution 

and the correlation contribution in order. The idea of the LDA is to take the exchange-

correlation energy per particle from this uniform gas and to use this in the functional, 

equation (2.23). The ground-state energy of Jellium is known through analytic forms for 

the high and low density limits and Monte Carlo calculations for intermediate densities 

[38]. Accurate parameterizations of the entire energy versus density curve have been 

constructed and are in use [39]. However, LDA tends to over-emphasize metallic 

character and overestimate weak bonds like hydrogen bond.  
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2.1.4.2 Generalized gradient approximation (GGA) 

A naive gradient expansion about the local-density approximation is problematic 

[34, 35], but careful considerations lead to the generalized gradient approximations 

(GGA) [40-42]. In the GGA, the information about the density )(r


  at a particular point 

, but to supplement the density with information about the gradient of the charge 

density,  ))(( r


  in order to account for the non-homogeneity of the true electron 

density. In other words, we can interpret that the local density approximation as the first 

term of a Taylor expansion of the uniform density and expect to obtain better 

approximations of the exchange-correlation functional by extending the series with the 

next lowest term, 

))(),(()(][ 3 rrrrd
XCE

GGA

XC


   .                                                                     (2.26) 

GGA's preserve many of the exact features of LDA and provide results which are good 

for chemistry as well as solid-state physics. 

 

2.2 DFT-D 

The van der Waals interactions between atoms and molecules play an important 

role in many chemical and biological systems. This dispersion interactions balance with 

electrostatic and exchange-repulsion interactions and they together control, for instances, 

the structures of proteins, DNA, host-guest complexes, crystal packing and soft materials. 

However, it is a well-known problem of almost all gradient-corrected density functionals, 

including various hybrids functional that replace part of the local by nonlocal HF 

exchange, and then they are unable to describe dispersive interactions. Accurate 

computations through higher-order ab initio based wave functions, such as coupled-
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cluster singles and doubles (CCSD(T)) method [43], perform a good level of accuracy 

with large basis sets. However, these suffer from inacceptable computational costs in 

terms of computation time and resources even relatively small system. Alternatively, 

cheaper methods like second-order Møller-Plesset perturbation theory (MP2) [44] which 

approximately accounts for uncoupled, two-body electron correlations are 

computationally simpler but it still overestimates the binding energies and underestimates 

intermolecular distances. Even though PBE can qualitatively account for some dispersive 

interactions, it seems to be difficult to account for dispersion within the standard DFT. 

Therefore, a variety of methods for the treatment of dispersion interactions including 

semi-empirical dispersion corrected functional (B97D) [45, 46] and treatments with 

specialized functional such as M06 series [47] recently have been developed to address 

this problem in the DFT field. Among these various attempts, adding an empirical 

potential of the form C6·R
-6

 corrections, where R are interatomic distances and C6 are the 

dispersion coefficients, to the standard DFT functionals seems most promising to resolve 

the problem in a point of robustness and computational efficiency. In this approach, the 

dispersion corrected total energy is defined as  

EEE dispDFTDDFT



                                                                                               (2.27) 

, where EDFT
 is the usual energy as obtained from the chosen DFT and Edisp

 is an 

empirical dispersion correction given by  

 
  

 1
1 1

)(
6
6

6
N at
i

N at
ij Rijf dmp

Rij

Cij

sEdisp
.                                                       (2.28) 
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Here,  N at  is the number of atoms in the system,  Cij
6

 denotes the dispersion coefficient 

for atom pair ij,  s6  is a global scaling factor that only depends on the DFT used, and Rij 

is an interatomic distance. In order to avoid near-singularities for small R, a damping 

function f dmp  must be used, which is given by 

e RRijd
Rijf dmp )10(1

1
)(


                                                                              (2.29) 

, where R0  is the sum of atomic vdW radii and typically calculated with wave function 

based methods and scaled by appropriate factor. Equation (2.29) is chosen because it 

decays at small R fast enough to zero such that the dispersion corrections between atoms 

well below typical van der Waals distances are negligible and thus, normal bonds are not 

significantly affected by the correction. The damping factor d which determines the 

steepness of the damping function takes on value between 20 and 23. C6 in equation 

(2.27) has been calculated from atomic hybridization states and also determined from 

LDF calculated IPs and static dipole polarizabilities and Cij
6

 can be introduced via 

geometric mean of the form  

C jCiCij
666

                                                                                                             (2.30) 

, which is determined to correctly cover heavier elements as well as light elements.  
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Figure 2.1: DFT-D corrected binding energy of (a) CNT-C60 hybrid system; (b) 

graphene-C60 hybrid system. 

 

 

In this study, this DFT-D correction is incorporated with PBE functional to handle 

dispersion interaction of the carbon allotrope hybrid system. Figure 2.1 shows binding 

energy of the CNT-C60 and graphene-C60 hybrid system after single point energy 

calculation varying distances between components. While the PBE underestimates the 

interaction between CNT and C60 or between graphene and C60 as represented in figure, 
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DFT-D predicts the dispersion interaction more correctly. For example, the DFT-D 

calculates 6.45Å  between graphene and C60, which agrees well with experimental value 

of 6.35Å  [48]. 
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Figure 2.2: DFT-D corrected binding energy between Li and (a) (5,5) CNT; (b) C60; 

and (c) graphene. 

 

Meanwhile, Figure 2.2 displays the binding energy through the PBE and corrected 

by DFT-D between Li atom and various carbon allotropes such as CNT, C60 and 

graphene. Unlike the pure carbon systems maintained by the van der Waals interaction, 

the interaction between Li and carbon system is not affected by the dispersion interaction 

because Li atom interacts with the carbon through charge transfer from the Li atom to the 

carbon systems. Therefore, the Li adsorption on the various hybrid systems of our 

concern can be described without further correction of the dispersion interaction. 
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CHAPTER 3 

FIRST-PRINCIPLES STUDY OF LI ADSOPRTION ON CARBON 

NANOTUBE-FULLERENE HYBRID SYSTEM 

 

 In this chapter, we investigate a new hybridized material system consisting of 

metallic single-walled carbon nanotube (SWCNT) and semiconducting fullerene (C60) to 

predict the performance and the change of electronic properties related to the Li 

adsorption in dilute or condensed phase of the CNT-C60 hybrid system. 

 

3.1 Introduction 

Currently, graphitic carbon anodes have been widely adapted for the Li ion 

battery application due to their cycle efficiency and safety, even though metallic Li anode 

systems have been shown to have better Li capacity than carbon-based anodes [49]. In 

this context, carbon nanotubes (CNTs) have been studied both theoretically and 

experimentally [15, 24, 50] in order to increase the Li adsorption capacity for electrode 

applications because CNTs provide a vast surface area for Li adsorption as well as the 

above-mentioned outstanding electrical and mechanical properties [51-53]. Early studies 

were focused on the adsorptions of Li on the outside single-wall carbon nanotubes 

(SWCNTs) and multi-wall carbon nanotubes (MWCNTS) with various diameters and 

chiralities [54-61], but later studies have been extended to the diffusion of Li on the 

interior and exterior of the CNT [62-66]. However, the experimental results of the Li-

intercalation on the bare CNT system have shown only slight increases of reversible 

capacities over that of the graphitic carbon material, which has been ascribed to the weak 

adsorption of Li on CNTs [53, 67, 68]. Hence, further development has sought to obtain 
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strong Li adsorption through various modifications such as doping impurities, forming 

structural defects, and mixing with other carbon-based materials [69-78]. For instance, 

Shimoda et al. have reported increases in the maximum capacity (~1000 mAh/g) of 

Li2.7C6 for SWCNTs by intercalating Li into the inside of CNTs through chemical etching 

of the CNTs [71, 72]. 

Among those modification methods aiming to improve electrochemical properties, 

diverse studies of carbon hybrid system between different carbon-base materials have 

also been actively attempted. In a recent study, Kawasaki et al. prepared the peapod 

structure by encapsulating fullerenes (C60s) into the inside of SWCNTs and achieved an 

improvement in reversible capacities compared to the bare SWCNTs [76]. In addition, 

Kaneko and his coworkers could have successfully produced the SWCNT-C60 mixed 

system through the sonication of SWCNTs and C60s in the toluene solution [73]. 

Meanwhile, Kauppinen and his coworkers synthesized another form of the CNT-C60 

hybrid structure, called nanobuds, by covalently bonding C60s to the outer surface of 

CNT and measured its field-emission properties, which can be utilized as a light-emission 

device [77, 78]. Moreover, C60-SWCNT complexes were used to enhance the 

performance of the polymer photovoltaic cells by exploiting the electron accepting 

property of the C60 [79-81]. Hence, it should be very desirable to understand the 

electronic properties of the CNT-C60 hybrid system in order to develop working devices.  

In this chapter, therefore, we investigate a new hybridized material system 

consisting of metallic SWCNT and semiconducting C60 to improve the performance 

related to the Li adsorption without adopting deteriorating processes as well as achieving 

better electrochemical properties. In addition, investigating the electronic properties of 
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the CNT-C60 hybridized system will be useful because this form of mixed system could 

be unintentionally produced in the middle of the processes such as peapod and nanobuds. 

This CNT-C60 hybrid system makes use of C60 as the electron acceptor from Li, and CNT 

as the charge transport channel throughout the electrode in the presence of Li atoms. 

Thus, it is expected that the Li adsorption on the CNT-C60 electrode is more favorable 

than the pure CNT-based electrode due to the higher electron affinity of C60 (experiment: 

2.65 eV [82]; theory: 2.697eV from GGA PBE), and then, the electrons harvested from 

Li via C60 will be transferred through metallic CNT under electrical potential when 

battery is discharged. 

 

 

a

 

c

a

b

c

 

b

 

 

 

Figure 3.1: The unit cell structure of the (5,5) CNT-C60 hybrid system: (a) side view; 

(b) top view; (c) the structure of the CNT-C60 hybrid system in the periodic box. The 

cell parameters are a = b = 60 Ǻ, c = 9.846 Å, α = β = 90 º and γ = 120 º.   
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Here, we use the first-principles computational methods, specifically the density 

functional theory (DFT) through DMol
3
 from Accelrys [83, 84] in order to investigate the 

electrochemical characteristics such as adsorption capabilities and charge transfer of such 

interesting CNT-C60 hybrid system. Using density functional theory (DFT), we calculate 

the Li adsorption energy on the CNT-C60 system (Figure 3.1) and the accompanied 

change in the electronic properties such as band structure, density of states (DOS) and 

charge distribution as a function of Li adsorption. In addition, we study the mechanism of 

the Li adsorption in comparison with the Li cluster formation by calculating the Li 

adsorption energy on the various regions around CNT-C60 hybrid system. 

 

3.2 Computational methods 

All the DFT calculations in this work were performed using generalized gradient 

approximation (GGA) Perdew-Burke-Ernzerhof (PBE) functional to treat the electron 

exchange-correlation energy of interaction electrons with double numerical basis and d-

polarization functions basis set [41, 85]. The unit cell dimension was 35 Å  × 35 Å  × 

9.846 Å , which is large enough to ensure that there was no direct interaction between 

original structure and its self-image in a- and b-axis though the periodic boundary while 

the dimension in c-axis is determined by the length of the CNT. The k-point samplings 

for the Brillouin zone were performed using the Monkhorst-Pack special k-point scheme 

[86] to determine the adsorption energy and other electronic properties such as band 

structure, density of states and Mulliken charge distribution [87, 88]. Here, we chose 

metallic tube rather than semiconducting tube because we are interested in the electron 

conduction capability of metallic CNT for the application towards Li ion battery 

electrode. (5,5) SWCNT is selected among various metallic tube because it is appropriate 
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for calculating electronic properties of the various configurations containing many Li 

atoms in terms of computational time. In order to decide appropriate k-point set, first, we 

performed the geometry-optimization of the m-(5,5) SWCNT–Li and the CNT–C60–Li 

system at gamma point (denoted by 1×1) or (1×1×4) k-point (denoted by 1×4).  Then, we 

calculated the Li adsorption energy at various k-point sets. As shown in Figure 3.2, the 

change of the Li adsorption energy as a function of k-point set was stabilized beyond 

(1×4) k-point for both cases. Thus we used (1×4) k-point for investigating all the 

properties of the system. The adsorption of Li was performed at the hexagon sites of 

SWCNT and the pentagon/hexagon sites of C60 because these sites showed most stable 

adsorption energy from our calculation results.  
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Figure 3.2: Various k-space set samplings to one Li atom on (a) m-(5,5) SWCNT (b) 

CNT-C60 hybrid system. 
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The adsorption energies and electronic properties of the CNT-C60 system were 

compared with those of the pure metallic (5,5) SWCNT and the C60 face-centered cubic 

(fcc) crystal structure with (111) surface. We define the adsorption energy per Li atom on 

the CNT-C60 hybrid system ( adsorptionE ) as 

      
n

LiEnsystemhybridEsystemhybridnLiE
Eadsorption


                  (3.1) 

where n is the number of the Li atoms, E[nLi+hybrid System], E[hybrid] and E[Li] are 

the energy of the Li-adsorbed CNT-C60 system, the energy of the system without Li and 

the energy of the single Li in vacuum, respectively.  

 

3.3 Dilute CNT-C60 hybrid system 

3.3.1 Pure CNT-C60 hybrid system 

To obtain the configuration of the Li adsorption on the CNT-C60 hybrid system, 

first, we fully optimized the geometry of the CNT-C60 hybrid system (Figure 3.1) before 

placing Li atoms on it. Figures 3.1.a and 3.1.b show the side and the top view of the 

optimized structure. In the structure, the nearest C-C distance between C60 and CNT was 

3.267Å  while the nearest C-C distance between C60 and C60 along c axis through the 

periodic boundary was 3.355Å . 

On the other hand, Figures 3.3.a-c display the band structure of the pure (5,5) 

SWCNT, the pure C60 and the CNT-C60 hybrid system, respectively. We also investigated 

several other CNT-C60 hybrid systems (metallic (4,4) CNT-C60, (10,10) CNT-C60 hybrid 

system and (10,10) CNT-C60 peapod system as shown in the Figures 3.4.a-c) to access 

the effects of CNT diameters and configuration characteristics. The corresponding band 

structure of the (4,4) CNT-C60, (10,10) CNT-C60 hybrid and peapod system is displayed 
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in Figures 3.4.d – 3.4.f for comparison with (5,5) CNT-C60 system. In these band 

structures, the Fermi levels are shifted to be located at 0 eV. As shown in Figure 3.3.c, 

the two energy bands meet at Fermi level (0 eV) keeping the character of the π orbital of 

the CNT while another two bands appear around  ~ 0.56 eV attributed to the t1u state of 

the neighbor C60 chain [89].   
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Figure 3.3: (a) The band structure of pure (5,5) SWCNT; (b) the band structure of 

the pure C60; (c) the band structure of the (5,5) CNT-C60 hybrid system.  

 

 

 

This band structure of the hybrid system is similar to that of the peapod system in 

Figure 3.4.f since both systems consist of CNT and C60 resulting in some amounts of 

charge transfer from CNT to C60. However, the extent of hybridization is less in the 

CNT-C60 hybrid system than the peapod because of the weak interaction between each 

component in the former system, which is mostly known as the dispersion interaction. 

Due to this weak interaction, the hybridization between CNT and C60 is not sensitive to 
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the curvature (or diameter) of the CNT, which is verified by investigating (4,4) CNT-C60 

and (10,10) CNT-C60 hybrid system shown in Figure.3.4.d and e: all the band structures 

from (5,5) CNT-C60 to (10,10) CNT-C60 hybrid system show no significant difference 

from each other. In our calculations, therefore, the whole hybrid system is metallic due to 

the metallic (5,5) SWCNT while the electronic structure seems to retain the 

characteristics of individual components.  
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Figure 3.4: The unit cell structure of the (a) (4,4) CNT-C60 hybrid system; (b) 

(10,10) CNT-C60 hybrid system; (c) (10,10) CNT-C60 peapod system. The band 

structure of the (d) (4,4) CNT-C60 hybrid system; (e) (10,10) CNT-C60 hybrid system 

(f) (10,10) CNT-C60 peapod systems. 
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This is confirmed from the DOS analysis as well in Figure 3.5, showing the DOS 

of the pure SWCNT, the C60 fcc crystal and the CNT-C60 hybrid system. It seems that the 

overall feature of the DOS of the CNT-C60 system is a product of the individual 

components. 
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Figure 3.5: The density of states (DOS) of the pristine (5,5) SWCNT, pristine C60 fcc 

crystal and the (5,5) CNT-C60 system. 

 

For the conduction band, the peak positions (~0.7 eV and ~1.7 eV) of the CNT-

C60 are in accordance with those of the pure SWCNT but it seems that they are combined 

with the downshifted peaks of the C60 from their original positions (~1.4 eV and ~2.5 eV). 

Similarly, the strong peaks of the CNT-C60 at ~ -2.1 eV and ~ -0.9 eV combine the peaks 

of the SWCNT at ~ -2.1 eV and ~ -1.2 eV with those of the C60 downshifted from ~ -1.5 

eV and ~ -0.2 eV. Again, based on analyzing the band structure and the DOS in which 

the characteristics of each component is still observed independently except for the shift 

of some energy levels, it is inferred that the interaction between CNT and C60 would be 

weak. 
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We also examine the charge distribution of the system using Mulliken population 

analysis. As summarized in Table 3.1, the charge of the CNT and C60 is 0.096e and -

0.096e, respectively, which is considered to be due to the relatively strong electron 

affinity of C60. In addition, the charge transfers on the (4,4) CNT-C60 and (10,10) CNT-

C60 hybrid system show a slight decrease ( e089.0 ) and increase ( e102.0 ), respectively 

compared to the (5,5) CNT-C60 hybrid system, which indicates that the charge transfer 

depends on the diameter of CNT as displayed in Figure 3.6, indicating that the    

interaction can be further developed more as the curvature decreases. 

 

Table  3.1: The Li adsorption energy and charge distribution (Mulliken charge) of 

various CNT-C60 hybrid system 

System 
Charges (e) 

CNT C60 

(5,5) CNT-C60 hybrid 0.096 -0.096 

(4,4) CNT-C60 hybrid 0.102 -0.102 

(10,10) CNT-C60 hybrid 0.089 -0.089 

(10,10) CNT-C60 peapod 0.225 -0.225 

CNT diameter (Angstrom)

4 6 8 10 12 14

C
h

a
rg

e
 t

ra
n

s
fe

r 
(e

)

0.02

0.04

0.06

0.08

0.10

0.12

(6,0)

(4,4)

(5,5)

(10,10)
(8,8)

CNT → C60

e

 
 

Figure 3.6: Charge transfer (e) as a function of the CNT diameter. 
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3.3.2 Single Li atom on CNT-C60 hybrid system 

Next, we simulated the adsorption of Li on various positions on the CNT-C60 

hybrid system. In this work, we placed the Li atom on the following sites:  

(i) the center of the hexagon sites (Center) of CNT since "Center" has lowest Li 

adsorption energy among the sites on the CNT surface such as top of the carbon atom 

(Top), above the axial (Axial) or zigzag (Zigzag) carbon-carbon bond (Figure 3.7).  

(ii) the pentagon and hexagon site of C60  since these sites attain the most stable Li 

adsorption in the C60. 

Figures 3.8.a-b shows that a Li atom is adsorbed on the CNT side (CNT@hybrid) 

and on the C60 side (C60@hybrid), respectively. Through this adsorption, the charge 

transfer from the adsorbed Li to the CNT-C60 hybrid system occurs, and the charge of the 

adsorbed Li is 0.844e for CNT@hybrid and 0.825e for C60@hybrid. 
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Figure 3.7: Single point energy calculation of the Li atom on the different positions 

of the hexagonal ring in the (5,5) SWCNT of the function of the distance from the 

center of the SWCNT: center, top, axial, zigzag.  
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Table 3.2 shows that the amount of charge transfer in the Li adsorption on the 

CNT@hybrid (0.844e) is larger than that on the pure CNT (0.835e), which is expected 

since the hybrid system has more electron affinity due to the presence of C60 compared to 

the pure CNT.  However, it should be noted that the Li adsorption on the C60@hybrid 

with smaller charge transfer (0.825e) than that of the pure CNT, which seems different 

from our expectation that the charge transfer might be larger for the Li-C60@hybrid than 

for the Li-CNT@hybrid as well as the Li-CNT.  

 

Table  3.2: Binding energy and charge distribution (Mulliken charge) of a Li atom 

system 

System 
Adsorption Energy 

(eV) 

Charges (e) 

Li CNT C60 

CNT-C60 hybrid N/A N/A 0.096 -0.096 

1 Li on (5,5) CNT -1.720(-1.640[35]) 0.835 -0.835 N/A 

1 Li onCNT@hybrid -1.802 0.844 -0.640 -0.204 

1 Li on C60@hybrid: Pentagonal site -2.110 0.825 -0.020 -0.805 

1 Li on C60@hybrid: Hentagonal site -2.108 0.847 -0.012 -0.835 

1 Li on (111) Surface of C60 fcc -2.256(-1.820[33]) 0.848 N/A -0.848 

 

We think that this can be understood by considering the charge distribution of the CNT-

C60 hybrid system. That is, before adsorbing Li atom, some amounts of charges are 

already transferred from CNT to C60 in the CNT-C60 system and thereby the CNT is 

positively charged whereas the C60 is negatively charged. Thus the additional charge 

transfer from the adsorbed Li could take place more for the CNT@hybrid rather than the 

C60@hybrid.  
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The Li adsorption energies are calculated as -1.802 eV and -2.110 eV for the 

CNT@hybrid and the C60@hybrid, respectively, which are larger than that of the pure 

SWCNT (5,5) (-1.720 eV). This result shows that the Li adsorption capability of the 

hybrid system is superior to the pure CNT system.  
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Figure 3.8: One-Li adsorption: (a) CNT@hybrid; (b) C60@hybrid. The band 

structure of one-Li adsorbed hybrid system: (c) CNT@hybrid; (d) C60@hybrid. 

 

We believe that it is driven by the C60 as the (111) surface of C60 Face-Centered Crystal 

(fcc) system shows the largest adsorption energy (-2.256 eV) among the systems we 

investigated. Therefore, it seems obvious that the Li adsorption and the charge transfer 
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are driven by the C60 in the CNT-C60 system. The corresponding band structures of the 

one-Li-adsorbed hybrid systems are shown at Figures 3.8.c and 3.8.d. When Li atom is 

adsorbed at CNT@hybrid, the band structures are not changed much as reported already 

in the previous study [55]. On the contrary, for the Li adsorption on C60@hybrid, it is 

clearly observed that two bands originated from C60 are significantly shifted down. 

Based on the above result, we define four distinct regions around the hybrid 

system as shown in the Figures 3.9.a-c: (i) CNT side (region1, red), (ii) between CNT 

and C60 (region2, yellow), (iii) between C60s (region3, blue) and (iv) C60 side (region4, 

orange) in order to describe the Li adsorption mechanism on the CNT-C60 hybrid system 

more systematically [90]. While the Li atoms can interact with either only CNT in the 

region1 or only C60 in region3 and the region4, they can interact with both CNT and C60 

simultaneously in region2. After defining four regions, we simulated the adsorption of 

one Li atom on various positions at each region around the CNT-C60 hybrid system. 

A Li atom is adsorbed on the CNT (from Pos1_CNT@hybrid to 

Pos10_CNT@hybrid as shown in Figures 3.10.a and b) and on the C60 (from 

Pos1_C60@hybrid to Pos8_C60@hybrid as shown in Figures 3.10.c and d). By 

performing geometry optimization for each adsorption position, we obtained the stable 

structures (Figures 3.11.a-d) and their corresponding adsorption energies (Table 3.3). For 

the CNT@hybrid sites, it seems that the adsorption energy of the Li in region2 becomes 

relatively lower in comparison to other regions. We think this is because Li atoms is 

exposed to C60 as well as CNT and has interactions with both components. For the 

C60@hybrid sites, it is found that the Li adsorption energy has lowest value (-2.649 eV) 

in the middle of the C60s (region3). 
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Figure 3.9: The basic structure of the (5,5) CNT-C60 hybrid system with different 

regions: (a) front view; (b) top view; (c) side view; Region1-red, Region2-yellow, 

Region3-blue, and Region4-orange. 
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Figure 3.10: Initial structures of one-Li adsorption on various positions around 

CNT@hybird: (a) front view (b) side view; and C60@hybrid: (c) front view (d) side 

view. 
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Figure 3.11: One-Li adsorption on various positions around CNT@hybird: (a) front 

view, (b) side view; around C60@hybrid:  (c) front view, (d) side view.  
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Such strong Li adsorption in the region3 is also attributed to the interaction with C60, so 

we can conclude that the Li adsorption becomes stronger as the Li atom is placed closer 

to the C60.  

On the other hand, region1 has relatively weak Li adsorption (-1.797 eV) because 

the Li atom is located in the blind site from the C60 even though the adsorption energy in 

region1 is still lower than that on the bare SWCNT system (-1.720 eV). Considering that 

the Li adsorption energy in region4 also has a relatively lower value (-2.110 eV), we 

believe that Li atoms will favorably occupy the C60 sites first, especially the mid-space 

between C60s or between C60 and CNT and then the remaining side of C60 and CNT sites 

in order. Through this adsorption, the charge transfer from the adsorbed Li to the CNT-

C60 hybrid system takes place, and its amount ranges from 0.825e to 0.975e depending on 

the positions.  

We also performed an energy decomposition analysis to distinguish the 

contributions of electrostatic (ES) and non-electrostatic (NES) interactions to the 

adsorption energy. The electrostatic energy (Es) was calculated from a point charge 

model. The non-electrostatic energy (ENES) was obtained from the difference between the 

Li adsorption energy and the electrostatic energy (Es) ( ESadsorptionNES EEE  ). It is 

clearly shown in Table 3.4 that the electrostatic interaction is dominant in the Li 

adsorption on the CNT-C60 system.  The positive values of ENES indicate that the Li-C 

distances are too short for dispersive interaction, which is actually in the range of 

repulsive interaction. This negative electrostatic energy with such short Li-C distances 

confirms that the nature of Li adsorption on the CNT-C60 system is a chemi-sorption 

through charge transfer. 
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Table  3.3: The adsorption energy and charge distribution (Mulliken charge) of one-

Li atom system 

System 
Adsorption Energy 

(eV) 

Charges (e) 

Li CNT C60 

Pos1_CNT@hybrid (region1) -1.802 0.844 -0.640 -0.204 

Pos2_CNT@hybrid (region1) -1.797 0.844 -0.644 -0.200 

Pos3_CNT@hybrid (region1) -1.801 0.844 -0.649 -0.195 

Pos4_CNT@hybrid (region1) -1.799 0.844 -0.648 -0.196 

Pos5_CNT@hybrid (region1) -1.809 0.844 -0.634 -0.210 

Pos6_CNT@hybrid (region2) -1.859 0.852 -0.600 -0.252 

Pos7_CNT@hybrid (region2) -2.558 0.902 -0.287 -0.615 

Pos8_CNT@hybrid (region2) -2.571 0.950 -0.414 -0.536 

Pos9_CNT@hybrid (region2) -2.471 0.853 -0.333 -0.520 

Pos10_CNT@hybrid (region2) -1.829 0.847 -0.620 -0.227 

Pos1_C60@hybrid (region2_pentagon) -2.569 0.904 -0.274 -0.630 

Pos2_C60@hybrid (region2_hexagon) -2.576 0.975 -0.294 -0.681 

Pos3_C60@hybrid (region3_pentagon1) -2.624 0.860 0.024 -0.884 

Pos4_C60@hybrid (region3_pentagon2) -2.111 0.828 -0.032 -0.796 

Pos5_C60@hybrid (region3_hexagon1) -2.514 1.484 0.045 -1.529 

Pos6_C60@hybrid (region3_hexagon2) -2.649 0.863 0.026 -0.889 

Pos7_C60@hybrid (region4_pentagon) -2.110 0.825 -0.020 -0.805 

Pos8_C60@hybrid (region4_hexagon) -2.108 0.847 -0.016 -0.831 
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Table  3.4: Energy decomposition analysis for one-Li systems 

System Adsorption energy (eV) Es* (eV) ENES** (eV) 

Pos3_CNT@hybrid (region1) -1.801 -2.514 0.713 

Pos8_CNT@hybrid (region2) -2.571 -4.042 1.471 

Pos2_C60@hybrid (region2_hexagon) -2.576 -4.134 1.558 

Pos6_C60@hybrid (region3_hexagon2) -2.649 -3.090 0.441 

Pos7_C60@hybrid (region4_pentagon) -2.108 -2.588 0.480 

*Es: Electrostatic energy, **ENES: Non-electrostatic energy 

 

3.3.3 Adsorption of two Li atoms on CNT-C60 hybrid system 

We added another Li atom at various sites in each region near the first Li atom to 

investigate the Li adsorption mechanism. Because the energy density of Li battery is 

proportional to the number of Li atoms on the electrode, it is very important to investigate 

how efficiently Li atoms utilize the vast amount of surface provide by the CNT-C60 

hybrid system. At a glance, a maximum Li capacity could be obtained by depositing Li 

atoms at all carbon rings of the CNT-C60 system. In this point, however, a question could 

be raised asking the possibility of Li cluster formation. So far, it has been reported that Li 

atoms remain as an isolated individual atom adsorbed on C60 rather than form a cluster on 

C60, which was rationalized by the binding energy: the Li-C binding energy is larger than 

the Li-Li binding energy [91]. Although this previous report checked only the pentagon 

sites as the binding site, the picture generated from this study [91] was that Li atoms 

would wrap a C60 first before forming their cluster. Therefore, we need a systematic study 

to understand adsorption direction on the hybrid system from various adsorption sites. 

For this purpose, we provided the second Li atom in relation to the first Li atom in each 

region of the hybrid system, although it is not easy to explicitly define all the possible 
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configurations for accommodating two Li atoms. Thus, we selected the positions for the 

second Li atom (blue) based on the adsorption energy of the first atom (purple). Here we 

assumed that the second Li atom is adsorbed on the nearest neighboring (N.N.) site or the 

next nearest neighboring (N.N.N.) site in either the radial or axial direction along the axis 

of the CNT surface for the CNT@hybrid (Figure 3.12.a). We also assumed that the 

second Li atom is adsorbed on the pentagonal or hexagonal ring in C60@hybrid following 

either direction along the axis of the CNT making the N.N. or the N.N.N. configuration 

(Figure 3.12.b). 

The Li adsorption energies of the two Li atoms using equation (3.1) are listed in 

Table 3.5 and some representative arrangements in each region are displayed in Figure 

3.13. Figures 13.3.a and 13.3.b show the optimized structures in region1 representing the 

N.N.N. and the N.N. site in radial direction from the first Li atom positioned at 

Pos1_CNT@hybrid, respectively, and the adsorption energy at the N.N.N. site (Figure 

3.13.a, -1.670 eV) is the lowest among the other configurations in region1. Although 

these values are higher than that of the one-Li adsorption energy, they are still lower than 

the Li-Li binding energy (experiment: -1.030 eV [92]; Dmol
3
: -1.008 eV [93]), which 

means the second Li atom prefers adsorption on the hybrid system rather than the binding 

with the given Li atom. Please note that the adsorption energy in region1 is the highest 

because those Li atoms are not able to interact with C60. On the other hand, the Li 

adsorption on the C60@hybrid in region4 seems to be more sensitive to the adsorption site 

(Figures 3.13.g and 3.13.h): the adsorption energy of the second Li atom is calculated as -

2.312 eV for the pentagonal site (Figure 3.13.g, the N.N.N. site of the pentagonal site) 

and -1.839 eV for the hexagonal site (Figure 3.13.h, the N.N. site of the pentagonal site) 
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a

 

b

 
 

Figure 3.12: The radial and axial direction of the second Li atom adsorption on the 

two-Li atom system around (a) CNT@hybird; (b) C60@hybrid (1st Li atom: purple, 

2nd Li atom: blue). 

 

 

to the axial direction starting from the Pos7_C60@hybrid, which seems that the Li 

adsorption will take place using the N.N.N. sites of the pentagon site for C60.  

The Li adsorption energies in the region2 (Figures 3.13.c and 3.13.d) show the 

low values from -2.188 eV (at the N.N.N. site in the radial direction from the first Li 

atom at Pos8_CNT@hybrid) to -2.632 eV (at the N.N.N. site in the axial direction from 

Pos1_C60@hybrid). In region2, the interaction with both CNT and C60 enhances the Li 

adsorption on the hybrid system, while it seems Li adsorption does not depend on the 

adsorption sites within this region, compared to region1 and 4. 
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Table  3.5: The adsorption energy of two- Li aomts adsorption systems 

System 
Adsorption Energy 

(eV) 

2 Li on region1: Radial (N.N.N.
a
 site) -1.670 

2 Li on region1: Radial (N.N.
b
 site) -1.523 

2 Li on region1: Axial (N.N.N. site) -1.529 

2 Li on region1: Axial (N.N. site) -1.381 

2 Li on region2 (CNT): Radial (N.N.N. site) -2.188 

2 Li on region2 (CNT): Radial (N.N. site) -2.405 

2 Li on region2 (CNT): Axial (N.N.N. site) -2.456 

2 Li on region2 (CNT): Axial (N.N. site) -2.475 

2 Li on region2 (C60): Radial (N.N.N. site) -2.297 

2 Li on region2 (C60): Radial (N.N. site) -2.195 

2 Li on region2 (C60): Axial (N.N.N. site) -2.632 

2 Li on region2 (C60): Axial (N.N. site) -2.475 

2 Li on region3: Radial (N.N.N. site) -2.601 

2 Li on region3: Radial (N.N. site) -2.623 

2 Li on region4: Radial (N.N.N. site) -2.014 

2 Li on region4: Radial (N.N. site) -1.864 

2 Li on region4: Axial (N.N.N. site) -2.312 

2 Li on region4: Axial (N.N. site) -1.839 

a. N.N.N.: Next Nearest Neighbor, b. N.N.: Nearest Neighbor 
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Figure 3.13: Two-Li adsorption on various regions. For region1: (a) next nearest 

neighboring (N.N.N.) site; (b) nearest neighboring (N.N.) site to radial direction at 

CNT@hybrid. For region2: (c) next nearest neighboring (N.N.N.) site; (d) nearest 

neighboring (N.N.). 
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 The Li adsorption energy in region3 is also low: -2.601 eV at the N.N.N. site and -2.63 

eV at the N.N. site in the radial direction from the first atom at the Pos3_C60@hybrid 

(Figures 3.13.e and 3.13.f). For both cases, the adsorption energy is low because the Li 

atoms are located between C60s which have strong electron affinity. From the calculation 

results, we could expect that Li adsorption starting from around C60 will proceed in the 

direction that maximizes the exposure to C60 of high electron affinity. 

We also checked the corresponding changes in the band structures of some two Li atoms 

systems as shown in Figures 3.14, showing some significant band shifts compared to the 

one-Li adsorption: specifically, the two-Li adsorption on CNT@hybrid (Figures 3.14.c 

and 3.14.d) shifts down the energy bands originated from CNT while the two-Li 

adsorption on C60@hybrid (Figures 3.14.g and 3.14.h) shifts down the bands from the C60. 

This is actually because the Fermi level is increased due to the extra electrons injected to 

the CNT-C60 system from Li atoms. 

 

3.3.4 Multiple Li atoms adsorbed on CNT-C60 hybrid system 

Now, we may ask the following question: if the Li adsorption energy is decreased 

with increasing number of Li atom, what would be the Li adsorption energy when the 

entire surface of the system is covered by Li atoms? Assuming that the Li adsorption will 

proceed on the N.N.N. sites, the number of absorbed Li atoms is 20 for CNT@hybrid, 12 

for C60@hybrid, and therefore, totally 32 Li atoms wrap up the hybrid system. The initial 

structure is presented in the Figure 3.15. After the geometry optimization, the positions of 

the Li atoms are adjusted as shown in Figures 3.16.a–f. From the optimized structures 

displayed, it is observed that Li atoms that initially attached on the CNT@hybrid sites 

(Figures 3.16.a and 3.16.e) are attracted toward C60, while the Li atoms around C60, as 
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shown in the Figures 3.16.c and 3.16.e, keep their original positions because the C60 sites 

have lower Li adsorption energy than CNT sites. 
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Figure 3.14: Two-Li adsorption on CNT@hybrid: (a) next nearest neighboring site; 

(b) nearest neighboring site: The corresponding band structures: (c) next nearest 

neighboring site and (d) nearest neighboring site of CNT@hybrid. Two-Li 

adsorption on C60@hybrid: (e) next nearest neighboring site: (f) nearest neighboring 

site. The corresponding band structures: (g) next nearest neighboring site and (h) 

nearest neighboring site of C60@hybrid. 
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Such positional adjustment agrees well with the results observed for the two-Li system, 

showing the lowest Li adsorption energy around C60, which drives Li atoms from the 

CNT sites toward C60. The adsorption energies for the multiple Li adsorption are -1.745 

eV for CNT@hybrid, -2.147 eV for C60@hybrid and -1.809 eV for the entire hybrid 

system (Table 3.6), indicating that the Li adsorption will take place on the C60 side 

(especially starting from the sites between CNT and C60) until all the available sites on 

the C60 are completely consumed, and the Li adsorption will subsequently proceed to the 

sites on the CNT side. Although the Li adsorption energy decreases with increasing 

numbers of Li atoms, all these adsorption energies are lower than the Li-Li binding 

energy, indicating that the Li cluster formation is not likely to occur until all the available 

sites on the CNT-C60 hybrid system are covered.  
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Figure 3.15: Initial structure: Initial structure: Front and side view of multiple-Li 

adsorption on the CNT-C60 hybrid system: (a), (b) 20 Li atoms on the CNT@hybrid; 

(c), (d) 12 Li atoms on the C60@hybrid; (e), (f) 32 Li atoms on the CNT-C60 system. 
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Figure 3.16: Front and side view of multiple-Li adsorption on the (5,5) CNT-C60 

hybrid system: (a), (b) 20 Li atoms on the CNT@hybrid; (c), (d) 12 Li atoms on the 

C60@hybrid; (e), (f) 32 Li atoms on the CNT-C60 system.  

 

 

Table  3.6: The adsorption energy of many Li adsorption systems 

System 
Adsorption Energy 

(eV) 

20 Li atoms on CNT@hybrid -1.745 

12 Li atoms on  C60@hybrid -2.147 

32 Li atoms on CNT-C60 hybrid -1.809 

Li-Li (experiment)        -1.030 [51] 

Li-Li (theory:Dmol
3
) -1.008 
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Figure 3.17: The corresponding band structures: (d) 20 Li atoms on the 

CNT@hybrid; (e) 12 Li atoms on the C60@hybrid; (f) 32 Li atoms on the CNT-C60 

system. 

 

 

Figures 3.17.a-c shows the band structure of the multiple-Li adsorbed CNT-C60 systems. 

The most noticeable point from these band structures is that the number of available 

energy bands around the Fermi level is now significantly increased in the CNT-C60 

system, which implies that the Li adsorption enhances the metallic character of the 

system such as conductivity. This finding is again confirmed from the DOS in Figures 

3.18.a and 18.b: compared to the bare CNT-C60 hybrid system, the Li adsorbed systems 

have more DOS around the Fermi level, meaning the enhanced metallic character of the 

CNT-C60 system. Such enhancement of the metallic character could increase the electron 

transport property (note that the C60 is a semiconductor originally). 
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Figure 3.18: Density of states for various numbers of Li atoms adsorbed on (a) 

CNT@CNT-C60 system and on (b) C60@CNT-C60. N.N.N. and N.N. denote the next 

nearest neighbor site and the nearest neighbor site, respectively. 

 

 

3.3.5 Electronic properties of the CNT-C60 hybrid system 

Finally, we investigated electronic properties as a function of the number of Li 

atoms on the CNT-C60 hybrid system in order to analyze the effect of Li adsorption. 

Figures 3.19.a-g show the highest occupied molecular orbital (HOMO) and the lowest 

unoccupied molecular orbital (LUMO) of some of the systems: one Li atom (Figures 

3.19.b-d) and many Li atoms around the hybrid system (Figures 3.19.e-g). In the pristine 
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hybrid system shown in the Figure 3.19.a, the HOMO is primarily formed on the CNT 

side, while LUMO is in the C60 side. For the molecular orbital of the one Li atom systems 

such as CNT@hybrid (Figure 3.19.b), CNT:C60 middle (Figure 3.19.c) and C60@hybrid 

(Figure 3.19.d), the LUMO is mostly formed at the components that are close to a Li 

atom depending on the Li position. It should be noted, however, that the overall feature of 

molecular orbital is dominated by the CNT-C60 system. Thus, the energy levels of 

HOMO and LUMO for one Li systems (Figures 3.19.b, 3.19.c and 3.19.d) are somehow 

similar to those of the pure CNT-C60 hybrid system without Li (Figure 3.19.a).  

On the other hand, when many Li atoms are absorbed (Figures 3.19.e, 3.19.f and 

3.19.g), the molecular orbital are mostly governed by the Li atoms, so the energy levels 

and distribution of the HOMO and LUMO for the multiple Li adsorption systems 

undergo significant changes compared to those for the pure CNT-C60 hybrid system. 

Additionally, the HOMO-LUMO difference is seriously reduced; the averaged difference 

is 1.331 eV and 0.195 eV for the one Li atom system and the multiple Li atom system, 

respectively. This result indicates that as the number of adsorbed Li atoms increases, the 

CNT-C60 hybrid system is more metalized, and its electronic structure becomes more 

polarizable due to the decreasing electronic hardness. Thus, we expect that the electrons 

can easily flow through the hybrid system. 

The DOS of the CNT-C60 hybrid system was also calculated to investigate the 

effect of Li adsorption on the electronic structure of the hybrid system in comparison 

with bare CNT system or bare C60 system. The DOS of bare (5,5) SWCNT and (5,5) 

hybrid system in which Li atoms are adsorbed preferably on CNT side is displayed in the 

Figure 3.20.a, showing similar electron distribution over the Fermi level representing  
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Figure 3.19: HOMO and LUMO of the CNT-C60 hybrid systems at different 

numbers of Li atoms: (a) No Li on the system; one Li atom (b) on the CNT side; (c) 

between CNT and C60; (d) on the C60 side; (e) 20 Li atoms around CNT; (f) 12 Li 

atoms around C60; (g) 32 Li atoms around CNT and C60. (The isovalue of HOMO 

and LUMO surface is 0.02). 

 

 

metallic behavior. Specifically, it is noted that the adsorbed Li atoms provide more 

electrons to the hybrid system around the Fermi level, which indicates that the hybrid 

system could be more conductive than bare SWCNT system. Similarly, Figure 3.20.b 

compares the DOS of  bare C60 and hybrid system in which Li atoms are adsorbed 
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preferably on the C60 side, showing that the Li adsorption on the C60 side generate more 

available electrons around Fermi level, in which we expect a better conductivity of the 

system as discussed in Figure 3.20.a. 
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Figure 3.20: Density of states of many Li atoms system on (a) (5,5) CNT and (5,5) 

CNT-C60 hybrid and (b) C60 and (5,5) CNT-C60 hybrid. 

 

3.3.6 Conclusion 

We investigated the Li adsorption on the CNT-C60 hybrid system using DFT with 

GGA PBE. Although it is found that this hybrid system retains the characteristics of its 
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components such as CNT and C60 in the electronic structure, it is clearly observed that the 

charges are transferred from CNT to C60 making the CNT positively charged (+0.096e) 

and the C60 negatively charged (-0.096e). This positively charged CNT could achieve 

lower Li adsorption energy (-2.571 eV) than the bare CNT system (-1.720 eV), which 

indicates that the CNT-C60 hybrid system has better Li adsorption capability compared to 

the bare CNT.  

Analyzing the Li adsorption as a function of various regions in the CNT-C60 

hybrid system, we found that the Li adsorption will occur preferably on the C60 side, 

more specifically on the mid-space between C60s (region3) or between CNT and C60 

(region2), and then subsequently proceed toward the CNT side instead of forming Li 

cluster since the Li-C adsorptive interaction (e.g., -2.138 eV in overall average for the 

two Li system) is more stable than the Li-Li binding interaction (-1.030 eV). In other 

words, it is thermodynamically probable that Li atoms do not form Li cluster unless all 

the available sites on the hybrid system are occupied by Li atom since these adsorption 

energies are always larger than the Li-Li binding energy. 

Although there is no significant change in the band structure after one Li atom is 

adsorbed on the hybrid system, additional Li adsorptions shift down the energy bands due 

to the electron injection from Li to the system. In addition, the change of the electronic 

properties such as molecular orbital and DOS in the hybrid system were also investigated 

as a function of the number of Li atoms. From this calculation, it is found that HOMO-

LUMO gap is decreased and electron distribution around Fermi level increased 

concurrently, which means the system becomes more metalized as the number of Li 

atoms in the hybrid system increases. Therefore, it is to be expected that the CNT-C60 
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hybrid system has enhanced conductivity and superior Li adsorption capability compared 

to the bare CNT system. 

 

3.4 Condensed CNT-C60 hybrid system 

3.4.1 Pure condensed CNT-C60 hybrid system 

We also investigated the condensed phase of the hybrid system including 

interactions between each component, which is expected to affect the adsorption energy 

of the Li atom. To determine the appropriate structure, four new systems (Figures 3.21.b-

e) were prepared by adjusting the position of the C60 and varying the cell size, before 

single point energy calculations were performed. Calculated energies are displayed in 

Figure 3.21.f, which shows the structure in Figure 3.21.c (New2) with the lowest energy 

among the possible structures of 18.35Å . We suggest the low energy can be explained by 

the symmetric structure of New2, which allows equivalent interactions of each 

component to stabilize. The New2 structure was further optimized to adjust geometry 

without changing the cell size. Figure 3.22.a shows an expanded view of the optimized 

unit structure (a=b=18.35Å  and c=9.846Å ) of the condensed phase. The corresponding 

band structure and DOS are represented in Figures 3.22.b and c, respectively. From the 

band structure and DOS, we found that the hybrid system was also metallic while 

retaining the characteristics of each component; therefore, there was no difference in the 

electronic properties between the dilute and condensed phase systems. This finding can 

be explained from the weak dispersion interaction between the CNT and C60 so that the 

electronic properties of the system are not affected by the density. However, the amount 

of charge transfer from the CNT to C60 increased from e096.0  to e141.0 because C60s 

are surrounded by other CNTs in the condensed phase. 
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Figure 3.21: Initial structures of the condensed CNT-C60 hybrid systems (a) 

Original; (b) New1; (c) New2; (d) New3; (e) New4; (f) Energy curve of each system 

in varying cell.   
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3.4.2. One Li atom on a condensed CNT-C60 hybrid system 

We investigated the adsorption of one Li on various positions of the condensed 

system similar to the dilute system. However, we did not assign different regions in this 

case because it was expected that this symmetric structure made an equal contribution to 

the Li adsorption regardless of the region. The position of the added Li atom was also 

chosen on either the center of the hexagon sites of the CNT or on the pentagon and 

hexagon sites of the C60. A Li atom is located on the CNT from Pos1_CNT@hybrid to 

Pos10_CNT@hybrid, as shown in Figure 3.23.a, and on the C60 from Pos1_C60@hybrid 

to Pos10_C60@hybrid, as shown in Figure 3.23.d. We acquired the optimized structures 

(Figures 3.23.b-c and e-f) by performing geometry optimization for each adsorption 

position and their adsorption energies are listed in Table 3.7. The Li adsorption energy of 

most spots revealed a narrow distribution range from -2.481eV to -2.642eV compared 

with the dilute phase of the hybrid system due to interactions with both components. 

Increased charge transfer (0.141e) from the CNT to C60 also affects the enhancement of 

the adsorption energy for the CNT@hybrid sites. Therefore, the increased Li adsorption 

in the condensed phase can be attributed to the more positively charged CNT surface and 

to the decreased space with C60, as in region2 in the dilute phase. Furthermore, 

Pos4_CNT@hybrid and Pos7_CNT@hybrid have high adsorption energy because they 

are positioned away from C60, which affects Li adsorption as shown in Figure 3.23.c. 

However, the adsorption energy and the amount of charge transfer at these sites are still 

better than those of the dilute system because of the closely packed structure. The Li 

adsorption energy (-2.542eV ~ -2.628eV) and charge transfer for most C60@hybrid sites 

are quite similar to the values observed in CNT@hybrid systems because of the 

symmetric and packed structures. 
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Figure 3.22: Condensed CNT-C60 hybrid system: (a) expanded view (3x3x3) of the 

optimized unit structure; (b) band structure; (c) density of states (DOS) of 

condensed and dilute phase in the hybrid system (Unit cell: a=b=18.35Å , c=9.846Å ). 
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Figure 3.23: One-Li adsorption on various positions around CNT@hybrid on 

condensed hybrid system: (a) initial structure (b) final structure (c) expanded view 

of final structure; (d) initial structure (e) final structure (f) expanded view of final 

structure of one-Li adsorption on various positions around C60@hybrid on 

condensed hybrid system.  
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Table  3.7: The adsorption energy and charge distribution (Mulliken charge) of one-

Li atom system on the condensed (5,5) CNT-C60 hybrid system 

System 
Adsorption Energy 

(eV) 

Charges (e) 

Li CNT C60 

Condensed (5,5) CNT-C60 hybrid N/A N/A 0.141 -0.141 

Pos1_CNT@hybrid -2.580 0.905 -0.230 -0.675 

Pos2_CNT@hybrid -2.642 1.054 -0.329 -0.725 

Pos3_CNT@hybrid -2.506 0.891 -0.266 -0.625 

Pos4_CNT@hybrid -1.917 0.862 -0.503 -0.359 

Pos5_CNT@hybrid -2.536 0.920 -0.313 -0.607 

Pos6_CNT@hybrid -2.572 0.944 -0.349 -0.595 

Pos7_CNT@hybrid -1.919 0.862 -0.503 -0.359 

Pos8_CNT@hybrid -2.614 0.944 -0.241 -0.703 

Pos9_CNT@hybrid -2.584 0.928 -0.342 -0.586 

Pos10_CNT@hybrid -2.481 0.876 -0.258 -0.618 

Pos1_C60@hybrid -2.542 0.962 -0.227 -0.735 

Pos2_C60@hybrid -2.628 0.956 -0.239 -0.717 

Pos3_C60@hybrid -2.090 0.859 -0.058 -0.801 

Pos4_C60@hybrid -2.151 0.849 -0.087 -0.762 

Pos5_C60@hybrid -2.591 0.989 -0.257 -0.732 

Pos6_C60@hybrid -2.590 0.977 -0.278 -0.699 

Pos7_C60@hybrid -2.096 0.861 -0.059 -0.802 

Pos8_C60@hybrid -2.137 0.845 -0.077 -0.768 

Pos9_C60@hybrid -2.580 0.982 -0.243 -0.739 

Pos10_C60@hybrid -2.625 0.976 -0.244 -0.732 
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Additionally, four positions (Pos3,4,7,8_C60@hybrid), which were faced away from the 

CNT, as shown in Figure 3.23.f, have higher adsorption energies and lower charge 

transfers compared to the other positions. The band structures of several one-Li-adsorbed 

systems are shown in Figure 3.24. Regardless of whether the Li atom was adsorbed on 

the CNT@hybrid (Figures 3.24.a-b) or C60@hybrid sites (Figures 3.23.c-d), the band 

structures were very similar except for the position of the two bands generated from C60 

in the band structure. Those two bands moved down to the Fermi level because Li was 

placed near C60 sites, similar to the dilute phase, which allowed these bands to shift down 

to the Fermi level in the sites at C60@hybrid as displayed in Figures 3.24.c-d.    
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Figure 3.24: The band structure of one-Li system in condensed phase: (a) 

Pos2_CNT@hybrid; (b) Pos7_CNT@hybrid; (c) Pos3_C60@hybrid; (d) 

Pos10_C60@hybrid.  

 

 

3.4.3 Multiple Li atoms on a condensed CNT-C60 hybrid system 

 We added another Li atom (blue) near the first Li atom (purple) of low adsorption 

energy on CNT@hybrid or C60@hybrid to study the Li adsorption mechanism. Some of 
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the two-Li atom adsorbed systems are displayed in Figure 3.25, and adsorption sites were 

discriminated in the same manner as defined in the dilute phase (Section 3.3.3). Hence, 

the second atom is adsorbed on the next nearest neighboring site (N.N.N.) or the nearest 

neighboring site (N.N.) in either the radial or axial direction along the axis of the CNT 

surface starting from first Li atom positioned at CNT@hybrid or C60@hybrid.  
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Figure 3.25: Two-Li adsorption on various regions: (a) next nearest neighboring 

(N.N.N.) site to radial direction starting at Pos2_CNT@hybrid; (b) the 

corresponding band structure; (c) next nearest neighboring (N.N.N.) site to axial 

direction starting at Pos2_C60@hybrid; (d) the corresponding band structure; (e) 

next nearest neighboring (N.N.N.) site to axial direction starting at 

Pos10_C60@hybrid (f) the corresponding band structure.
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Table  3.8: The adsorption energy of two- Li atoms adsorption systems on 

condensed (5,5 ) CNT-C60 hybrid system 

Starting position Direction 
Adsorption Energy 

(eV) 

2Li starting from 

Pos2_CNT@hybrid 

Radial (N.N.N.
a
 site) -2.524 

Radial (N.N.
b
 site) -2.454 

Axial (N.N.N. site) -2.460 

Axial (N.N. site) -2.444 

2Li starting from 

Pos2_C60@hybrid 

Radial (N.N.N. site) -2.351 

Radial (N.N. site) -2.474 

Axial (N.N.N. site) -2.622 

Axial (N.N. site) -2.469 

2Li starting from 

Pos10_C60@hybrid 

Radial (N.N.N. site) -2.431 

Radial (N.N. site) -2.397 

Axial (N.N.N. site) -2.636 

Axial (N.N. site) -2.606 

31 Li atoms on condensed 

CNT-C60 hybrid 
N.N.N. site -1.862 

a. N.N.N.: Next Nearest Neighbor, b. N.N.: Nearest Neighbor  

 

 

 

As shown in Table 3.8, the Li adsorption energies of the two Li systems are quite 

similar (-2.351eV ~ -2.636eV) and lower than the values obtained in the dilute system. 

Although the N.N.N. sites have slightly lower energy than the N.N. sites in most cases, it 

appears that Li adsorption is mainly driven by the compact structure of the condensed 

phase. Therefore, for example, the N.N. site energy of the Pos2_C60@hybrid is lower (-
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2.474eV) than the N.N.N. site (-2.351eV) because the location of the second Li atom in 

the N.N.N. configuration becomes distant from the CNT. Meanwhile, the second Li 

atoms in the other configurations are still located between CNT and C60 or C60 and C60, 

which can maximize Li adsorption. Therefore, Li adsorption will preferentially occur 

from the space between CNT and C60 or between C60 and C60 because C60s provide better 

adsorption sites due to their high electron affinity. We also observed significant band 

shifts after additional Li adsorption as displayed in Figures 3.25.b,d and f, and the slight 

differences in each band structure mainly relied on the position of the Li atoms. In all of 

the cases, the Fermi level increased through electron injection from Li atoms in 

condensed structure so that bands that originated from the CNT and C60 shifted down to 

or below the Fermi level. 

Finally, the entire surface of the hybrid system is covered with multiple (31) Li 

atoms assuming N.N.N. sites are preferred because it is important to predict the Li 

adsorption energy with respect to Li cluster formation. Figures 3.26.a-d shows the initial 

and optimized structure of the multi-Li system, band structure and the density of states. 

The Li adsorption energy calculated from equation (3.1) was -1.863eV, which is much 

lower than the Li-Li binding energy (-1.030eV). Therefore, we can expect that Li atoms 

will remain on the surface of the hybrid system rather than forming clusters with 

improved Li adsorption. Simultaneously, we can confirm the enhancement of the metallic 

behavior of the system through the band structure and DOS, which show significant 

increases in the number of bands (Figure 3.26.c) or electron density (Figure 3.26.d) 

across the Fermi level than appeared in the dilute phase of the CNT-C60 hybrid system.  
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Figure 3.26: Multiple (31)-Li atoms adsorption on whole hybrid system: (a) initial 

structure; (b) optimized structure; (c) the corresponding band structure; (d) density 

of states with pure condensed phase and 32 Li atoms on the dilute phase hybrid 

system.  

 

 

3.4.4 Conclusion 

In this section, we examined Li adsorption on the CNT-C60 hybrid system in the 

condensed phase using the density functional theory. We also demonstrated that Li 
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adsorption energy was increased comparison to pure CNT due to charge transfer (from 

CNT to C60) and C60 of higher electron affinity. This Li adsorption capability is further 

enhanced when the condensed phase of the hybrid system is formed. Although it retains 

the characteristics of its components in the condensed phase, the compact and symmetric 

structure enables more charges to transfer from CNT to C60 (0.141e) and increased 

interactions with both the CNT and C60, similar to region2 of the dilute phase. 

Consequently, the Li adsorption capabilities are increased and adsorption energy 

becomes uniform at most of the positions throughout the compact structure. Therefore, Li 

atoms will be adsorbed on the space between CNT and C60 or between C60 and C60 and 

fill the empty space which is away from the C60 supporting stronger adsorption site. 

Moreover, increased Li adsorption enhances the metallic character of the system, which 

is confirmed from the band structure and the DOS. In conclusion, the CNT-C60 hybrid 

system seems to be promising as a new type of electrochemical electrode material 

because of its increased Li adsorption capabilities.  
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CHAPTER 4 

FIRST-PRINCIPLES STUDY OF LI ADSOPRTION ON CARBON 

NANOTUBE-FULLERENE NANOBUD SYSTEM 

 

 In this chapter, we investigated another hybridized material system consisting of 

metallic single-walled carbon nanotubes (SWCNTs) and semiconducting fullerene (C60), 

which is called “nanobud”. We first examined the properties of the various nanobuds 

produced on the different CNTs, which can be zigzag, armchair, metallic or 

semiconducting CNTs. We also predicted the performance and changes in the electronic 

properties related to Li adsorption on (5,5) CNT-C60 in the dilute or condensed phases. 

 

4.1 Introduction 

In the previous chapter, we studied a new type of CNT-C60 hybrid system mainly 

maintained by dispersion interactions. Even though this hybrid system is bound by weak 

van der Waals interactions, it showed improved Li adsorption properties compared to a 

pristine CNT system in terms of its Li adsorption capabilities. Additionally, the 

Kauppinen group synthesized another form of a CNT-C60 hybrid structure by covalently 

binding C60s to the outer surface of CNT and measuring the field-emission properties, 

which can be utilized as light-emission devices as shown Figure 4.1 [77, 94]. Although 

experimentally prepared nanobuds [95-97] are created in a variety of sizes and shapes, 

the detailed structure and the exact atomic positions in these materials is not yet clear. 

However, nanobuds can be divided in two different types, depending on how the 

fullerene is attached to the sidewall of the CNT. First, a complete fullerene is covalently 

bonded to a CNT by way of sp
3
 hybridization of carbon atoms such as [2+2] 
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cycloaddition and [6+6] cycloaddition (Type I) [98]. Second, all carbon atoms are sp
2
 

hybridized, and fullerene can be considered to be a part of the CNT (Type II) [78, 99-

103]. Here, we focus on the Type I nanobuds, which are prepared by the cycloaddition 

reaction, because both types are reported in the previous experiments.  
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Figure 4.1: A hybrid carbon material; CNT-C60 nanobud: (a) high-resolution TEM 

image; (b) frequency-size distribution of fullerenes measured from high-resolution 

TEM images; and (c) field-emission properties of nanobuds. 

 

Moreover, Type II might not be suitable to study the electron conduction capabilities with 

which we are concerned because it was reported that Type II nanobuds on zigzag CNTs 
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became semiconducting, regardless of whether the zigzag CNTs were metallic or 

semiconducting [78]. 

In this work, we first chose the proper nanobud (Type I) through the calculation 

of pure nanobud systems. We then added Li atoms to that system and investigated the Li 

adsorption strength and the electronic properties. We also studied the Li adsorption 

properties of the selected nanobud in the condensed phase. Please note that in this paper, 

we refer to all of the structures in which C60 is covalently attached to any CNT as 

nanobuds. 

 

4.2 Computational details 

In this work, generalized gradient approximation (GGA) Perdew-Burke-Ernzerhof 

(PBE) functional was also introduced to calculate the electron exchange-correlation 

energy [41, 85]. All the DFT calculations were performed using a double numerical basis 

set with d-polarization functions (DND) through DMol
3
 from Accelrys [83, 84], which is 

the same condition used for calculating CNT-C60 hybrid system. 

We tested various metallic as well as semiconducting SWCNT because there were 

several different calculation results [78, 98, 99] depending on the SWCNT and bond 

formation type. The unit cell dimension was set to 50 Å  × 50 Å  × 12.297 Å  to avoid 

direct interaction between original structure and its self-images in a- and b-axis through 

the periodic boundary, while the c-axis dimension was determined by the length of the 

CNT. Monkhorst-Pack k-point scheme [86] was used for k-point sampling to determine 

the adsorption energy and other electronic properties such as band structure, density of 

states and Mulliken charge distribution [87, 88]. We chose (1x1×4) k-point for 

investigating all the system properties as well [93]. The adsorption energy per Li atom on 
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the CNT-C60 nanobud system is calculated using equation (3.1) and the negative value of 

the adsorption energy indicates a favorable Li adsorption whereas the adsorption is not 

favorable if the value is positive as we defined previously. 

 

4.3 Dilute CNT-C60 nanobud system 

4.3.1 Pure CNT-C60 nanobud systems 

Before we investigated the Li adsorption capabilities at the CNT-C60 nanobud 

systems, we examined nanobud systems built on diverse carbon nanotubes from metallic 

to semiconducting and from zigzag to axial CNTs. Even though little is known about the 

detailed structure of nanobuds, they usually can be divided into two different types, 

depending on how the fullerene is attached to the sidewall of the carbon nanotube. Type I 

refers to a fullerene that is covalently bonded to a CNT by way of sp
3
 hybridization of 

carbon atoms via the cycloaddition reaction. Type II refers to a C60 in which all of the 

carbon atoms are sp
2
 hybridized, and C60 can be considered to be a part of the CNT. 

Meng et al. conducted detailed research on Type II nanobud systems and found that 

nanobuds produced on both metallic and semiconducting zigzag CNTs became 

semiconducting, while nanobud produced on armchair CNTs retained their metallic 

properties [78]. Therefore, we chose armchair (5,5), (8,8) and zigzag (9,0), (12,0) CNTs 

for the metallic CNTs, and zigzag (8,0), (10,0), (14,0) CNTs for the semiconducting 

CNTs. Two C-C covalent bonds between CNT and C60 were connected via a 

cycloaddition reaction ([2+2] cycloaddition) to stabilize the system for preparing Type I 

nanobuds. We chose [2+2] cycloaddition because Wu et al. reported using their DFT 

calculation that a single covalent C-C bond is unstable, whereas six covalent C-C bonds 

between a hexagonal face of C60 and a hexagonal ring of CNT by way of a cycloaddition 
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reaction ([6+6] cycloaddition) require a binding energy approximately 3-4 times higher 

than [2+2] cycloaddition [98].  

There are two possible C-C bonds in the C60;a bond between two hexagonal faces 

(h) and a bond between a hexagonal face and pentagon face  as denoted in Figure.4.2.a.  

 

h

a

p

 

v
s

b

 

 

s
p

c

 

Figure 4.2: The following notation is used for the bond connections between C60 and 

the CNT to form nanobud systems through the [2+2] cycloaddition reactions; (a) h: 

the bond between hexagon and hexagon in C60 and, p: the bond between hexagon 

and pentagon in C60; (b) v: the bond vertical to the tube axis in the armchair CNT; 

and (c) p: the bond parallel to the carbon nanotube axis in the zigzag CNT and s: 

the bond slope of the carbon nanotube axis for both types of CNTs (Arrow displays 

the carbon nanotube axis). 

 

Alternatively, we can define the C-C bonds in the armchair CNTs, such as the vertical 

bond (v) and the slope bond (s), relative to the carbon nanotube axis.(Figure 4.2.b)  In the 

same manner, C-C bonds at the zigzag CNTs can be defined as parallel bonds (p) and 
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slope bonds (s) to the tube axis. (Figure 4.2.c) Thus, nanobuds produced by [2+2] 

cycloaddition reaction are denoted as (5,5) CNT-C60: hs, depending on the bond position 

in CNT and C60. We excluded the system originating from the bond between the hexagon 

and the pentagon (p) in fullerene because it required a binding energy 40% higher than 

that required for starting with a bond between two hexagons (h). 

After the connecting carbon nanotube to fullerene, the nanobud systems were fully 

optimized with GGA PBE. Optimized structures are displayed in Figures 4.3.a-d and i-l 

in which metallic carbon nanotubes were used to form nanobuds, while Figures 4.4.a-d 

and i-j show optimized structures in which semiconducting carbon nanotubes were 

employed. The corresponding binding energy (Ebinding = Enanobud – ECNT – EC60) and the 

bond lengths between C-C bonds are listed in Table 4.1. From this table, we found that 

binding energy had positive values, which showed that [2+2] cycloaddition reaction was 

endothermic. At the same time, carbon atoms involved in the covalent bonding protruded 

from the CNT surface because their bonding was switching from sp
2
 to sp

3
 hybridization 

as explained in a previous study [98]. In particular, the calculated results on the (5,5) and 

(10,0) nanobud systems agreed well with those reported by Wu et al. when the difference 

in lengths of the CNTs was considered. Through this comprehensive selection, we also 

found that the binding energy was lower when the bond was formed between the 

hexagonal face site (h) of the C60 and the parallel site (p) of the zigzag CNTs, whereas the 

slope site (s) of the axial CNTs offers lower binding energy. This tendency was 

previously explained through phi (π) bonding, so that two π bonds of the C-C bonds 

participating in the reaction are broken while two sigma (σ) bonds are created. In zigzag 

CNTs, parallel (p) bonds are less distorted, while vertical (v) bonds are less distorted in 
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the armchair CNTs because π bonds in carbon nanotubes are deformed due to the tubular 

bending of different extents [98]. Similarly, bond lengths change with the binding energy, 

which implies that the bonds become closer as the binding energy decreases. 

Table  4.1: Binding energy and bond length of the each CNT-C60 nanobud systems 

CNT type 

(Radius, Å ) 
Nanobud system 

Binding 

energy 

(eV) 

Bond length 

(Å ) 

Armchair 

Metallic 

(6.78) 

(5,5) CNT-C60: hs 1.326 1.613 

(5,5) CNT-C60: hv 1.464 1.619 

Zigzag  Metallic 

(7.05) 

(9,0) CNT-C60: hs 1.545 1.632 

(9,0) CNT-C60: hp 0.984 1.608 

Zigzag  Metallic 

(9.39) 

(12,0) CNT-C60: hs 1.906 1.635 

(12,0) CNT-C60: hp 1.440 1.617 

Armchair 

Metallic 

(10.85) 

(8,8) CNT-C60: hs 1.913 1.620 

(8,8) CNT-C60: hv 2.062 1.627 

Zigzag 

Semiconducting 

(6.26) 

(8,0) CNT-C60: hs 1.368 1.626 

(8,0) CNT-C60: hp 0.785 1.602 

Zigzag 

Semiconducting 

(7.83) 

(10,0) CNT-C60: hs 1.758 1.628 

(10,0) CNT-C60: hp 1.305 1.611 

Zigzag 

Semiconducting 

(10.96) 

(14,0) CNT-C60: hs 2.049 1.633 

(14,0) CNT-C60: hp 1.633 1.619 

 

We also examined the band structures of these optimized systems and displayed 

in Figures 4.3.e-f and m-p as well as Figures 4.4.e-f and k-l. Band gaps of all of the 

different nanobud systems are summarized in Table 4.2. There was a clear change in the 

band structure due to the covalent bond between CNT and C60, even though the 
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characteristics of each component were similar to those in the hybrid system. 

Furthermore, it was found that nanobuds produced on the armchair carbon nanotube 

((5,5) & (8,8)), which were originally metallic, created small band gaps (0.19eV and 

0.17eV) when C60 was connected to the slope C-C bond in CNT, unlike the Type II 

nanobud. 
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Figure 4.3: Metallic CNT series: Optimized structures of the various nanobud 

systems formed by [2+2] cycloaddition: (a) m-(5,5) CNT-C60:hs nanobud; (b) m-

(5,5) CNT-C60:hv nanobud; (the cell parameters are a = b = 50 Ǻ, c = 12.30 Å  ) (c) 

m-(9,0) CNT-C60:hs nanobud; (d) m-(9,0) CNT-C60:hp nanobud. The corresponding 

band structures for each nanobud system are as follow: (the cell parameters are a = 

b = 50 Ǻ, c = 12.78 Å ) (e) m-(5,5) CNT-C60:hs nanobud; (f) m-(5,5) CNT-C60:hv 

nanobud; (g) m-(9,0) CNT-C60:hs nanobud; and (h) m-(9,0) CNT-C60:hp nanobud.                                                  
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Figure 4.3 (continued): Metallic CNT series: Optimized structure of the various 

nanobud systems formed by [2+2] cycloaddition: (i) m-(12,0) CNT-C60:hs nanobud; 

(j) m-(12,0) CNT-C60:hv nanobud; (the cell parameters are a = b = 50 Ǻ, c = 12.78 

Å ) (k) m-(8,8) CNT-C60:hs nanobud; (l) m-(8,8) CNT-C60:hv nanobud. (the cell 

parameters are a = b = 50 Ǻ, c = 12.30 Å  ) The corresponding band structures for 

each nanobud system are as follows: (m) m-(12,0) CNT-C60:hs nanobud; (n) m-

(12,0) CNT-C60:hv nanobud; (o) m-(8,8) CNT-C60:hs nanobud; and (p) m-(8,8) 

CNT-C60:hv nanobud.
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Figure 4.4:: Semiconducting CNT series: Optimized structures of the various 

nanobud systems formed by [2+2] cycloaddition: (a) s-(8,0) CNT-C60:hs nanobud; 

(b) s-(8,0) CNT-C60:hp nanobud; (c) s-(10,0) CNT-C60:hs nanobud; (d) s-(10,0) 

CNT-C60:hp nanobud. The corresponding band structures of each nanobud system 

are as follows: (e) s-(8,0) CNT-C60:hs nanobud; (f) s-(8,0) CNT-C60:hp nanobud; (g) 

s-(10,0) CNT-C60:hs nanobud; and (h) s-(10,0) CNT-C60:hp nanobud. 

continued
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Figure 4.4 (continued): Semiconducting CNT series: Optimized structure of the 

various nanobud systems formed by [2+2] cycloaddition: (i) s-(14,0) CNT-C60:hs 

nanobud; (j) s-(14,0) CNT-C60:hp nanobud. The corresponding band structures of 

each nanobud system are as follows: (k) s-(14,0) CNT-C60:hs nanobud; (l) s-(14,0) 

CNT-C60:hp nanobud  (The cell parameters are a = b = 50 Ǻ, c = 12.78 Å ). 

 

Alternatively, nanobuds on the metallic zigzag carbon nanotube ((9,0) and (12,0)) 

did not form a band gap and retained its original metallic property. In the case of 

nanobuds on the zigzag semiconducting carbon nanotube ((8,0) & (10,0) & (14,0)), the 

band gap was decreased from the original band gap of the CNT in all of the cases. 

Therefore, it appears that different nanobuds can be used to tune the band gap by 

changing the type of CNT and that Type I nanobuds work differently than Type II 

nanobuds due to different hybridization.  
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Table  4.2: Band gap and charge distribution of the each CNT-C60 nanobud systems 

Nanobud system Band gap (eV) 
Pure CNT 

Band gap (eV) 

Charges (e) 

CNT C60 

(5,5) CNT-C60: hs 0.19 
0.01 

0.092 -0.092 

(5,5) CNT-C60: hv 0.06 0.064 -0.064 

(9,0) CNT-C60: hs 0.05 
0.08 

0.070 -0.070 

(9,0) CNT-C60: hp 0.06 0.080 -0.080 

(12,0) CNT-C60: hs 0.01 
0.01 

0.075 -0.075 

(12,0) CNT-C60: hp 0.01 0.092 -0.092 

(8,8) CNT-C60: hs 0.17 
0.01 

0.091 -0.091 

(8,8) CNT-C60: hv 0.07 0.076 -0.076 

(8,0) CNT-C60: hs 0.54 
0.62 

0.041 -0.041 

(8,0) CNT-C60: hs 0.5 0.056 -0.056 

(10,0) CNT-C60: hs 0.71 
0.82 

0.055 -0.055 

(10,0) CNT-C60: hs 0.03 0.067 -0.067 

(14,0) CNT-C60: hs 0.4 
0.69 

0.076 -0.076 

(14,0) CNT-C60: hs 0.51 0.087 -0.087 

 

 

We also found that all of the nanobuds showed the same charge transfer direction 

from CNT to C60 as listed in Table 4.2 through Mulliken charge analysis. It appears that 

there is no direct relationship between the diameter of the CNT and the degree of charge 

transfer; however, the amount of charge transfer depends on the binding energy. In other 

words, charge transfer increases when the nanobud can be formed with less energy (the 

formation nanobud is easier). 
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4.3.2 Single Li atom on a (5,5) CNT-C60 nanobud system 

We chose the (5,5) CNT-C60: hs nanobud system to predict Li adsorption 

capabilities on the covalently bonded hybrid system. This (5,5) bud system was selected 

because of its low binding energy with a higher charge transfer compared to the (5,5) 

CNT-C60 hybrid system discussed in the previous chapter. We followed the same method 

as the hybrid system to position the Li atom so that the “center” on the CNT and the 

pentagon and hexagon site on the C60 was selected as the Li adsorption sites. In addition, 

we assigned four different regions to both nanobud systems using the same method as the 

hybrid system: (i) the CNT side (region 1, red); (ii) between the CNT and C60 (region 2, 

yellow); (iii) between C60s (region 3, blue); and (iv) the C60 side (region 4, orange) for the 

systematic study. Figure 4.5.a shows the initial structure of the one-Li adsorbed system 

on each region, and the optimized structure of the (5,5)bud:hs system is displayed in 

Figure 4.5.b. In this study, however, we reduced the number of the Li adsorption sites in 

region 1 because the binding energy in this region is expected to be similar due to the 

lack of interaction with C60. The Li adsorption energy, charge distribution and band gap 

are listed in Table 4.3. While most of the Li atoms remain in their original positions, the 

Li atoms such as Pos1,2,3_C60@55bud, which are initially located close to the [2+2] 

cycloaddition bonds, are repelled outwards. This effect may be a result of the sp3 bonds 

in the junction because this strong bond does not allow the Li atom to form a bond with 

the carbon atom near the junction and forces the Li atom to move out of the C-C bonds. 

The adsorption energies are generally higher than the (5,5) CNT-C60 hybrid system, but it 

still follows the same regional dependence as the hybrid system. As a result, region 2 

(between CNT and C60, (5,5)bud:hs: -2.319 eV) and region 3 (between C60s, (5,5)bud:hs: 

-2.141 eV) have the lowest values followed by region 4 (C60 side, (5,5)bud:hs: -1.860 eV) 
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and region 1 (CNT side, (5,5)bud:hs: -1.675 eV). In other words, Li adsorption is 

strongly affected by C60 in the nanobud, and the adsorption energy decreases as the Li 

atoms are arranged more closely to the C60.  
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Figure 4.5: One-Li adsorption on various positions in each region around the (5,5) 

CNT-C60 nanobud: (a) initial structure and (b) optimized structure (region1: red; 

region2: yellow; region3: blue; region4: orange).  

 

 

Therefore, Li adsorption in the nanobud system is expected to start from the sites close to 

the mid-space between the CNT and the C60 (region 2, but away from the covalent bonds) 

or between C60s (region 3) and proceed to cover the remaining sites of C60 (region 4) and 

CNT (region 1). The amount of charge transfer after one-Li adsorption ranges from 

0.792e to 0.859e for the (5,5) bud:hs depending on the adsorption sites and is much lower 
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than the amount of charge transfer in the hybrid system (0.825e - 0.975e). We suggest 

that the decreased charge transfer can also be explained by the C-C bonds on the junction. 

After the bond formation, not only the space between the CNT and C60 decreases, but the 

covalent bonds also already share some amounts of the charge. Therefore, the Li atom 

cannot be positioned exactly in the middle between the CNT and C60 even though the 

adsorption and charge transfer were large in the hybrid system. In addition, this covalent 

bond already retains some amounts of the charge, which prevents it from allowing charge 

transfer among materials. As shown in Table 4.4, the charges on the carbon atoms in the 

junction did not change much even though the Li atom was positioned close to junction. 

 

Table  4.3: The adsorption energy, charge distribution (Mulliken charge) and band 

gap of one-Li atom on (5,5) CNT-C60 bud system (55bud) 

System 

Adsorption 

Energy 

(eV) 

Charges (e) Band 

gap 

(eV) Li CNT C60 

(5,5) CNT-C60 Nanobud N/A N/A 0.049 -0.049 0.19 

Pos1_CNT@55bud (region1) -1.612 0.810 -0.650 -0.160 0.18 

Pos2_CNT@55bud (region1) -1.675 0.813 -0.628 -0.185 0.2 

Pos1_C60@55bud (region2_penta) -2.178 0.834 -0.364 -0.470 0.21 

Pos2_C60@55bud (region2_hexa) -2.319 0.837 -0.415 -0.422 0.21 

Pos3_C60@55bud (region2) -2.182 0.809 -0.375 -0.434 0.20 

Pos4_C60@55bud (region3_penta) -2.141 0.859 -0.017 -0.842 0.19 

Pos5_C60@55bud (region3_hexa) -1.992 0.853 -0.030 -0.823 0.16 

Pos6_C60@55bud (region4_hexa) -1.818 0.810 -0.020 -0.790 0.19 

Pos7_C60@55bud (region4_penta) -1.860 0.792 -0.018 -0.774 0.19 
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For example, the charge of the carbon atoms in the CNT and C60 after Li adsorption 

remained at around -0.160e and -0.113e, respectively. Consequently, charge transfer from 

Li to the nanobud system does not occur efficiently unlike the hybrid system, in which 

the charge distributes evenly throughout the system. Therefore, the covalent bonds affect 

the charge transfer and Li adsorption capabilities to some extent in the nanobud system. 

However, the band structure does not seem to be affected by Li adsorption in the nanobud 

system. Figure 4.6 shows the band structures of the one-Li adsorption systems on the 

different regions. The 0.16-0.21 eV band gap in the (5,5) CNT-C60 still exists even after 

Li adsorption.    

 

Table  4.4: The Mulliken charge of the carbon atoms in the CNT-C60 junction 

without or with the Li atom on the (5,5)bud:hs nanobud system 

System 

CNT C60 

C1 C2 C1 C2 

(5,5) CNT-C60 Nanobud -0.160 -0.159 -0.111 -0.113 

Pos1_C60@55bud (region2) -0.160 -0.170 -0.135 -0.113 

Pos2_C60@55bud (region2) -0.160 -0.148 -0.113 -0.114 

Pos3_C60@55bud (region2) -0.157 -0.156 -0.112 -0.094 

 

 

4.3.3 Multiple Li atoms adsorption on the (5,5) CNT-C60  

The second Li atom (blue) is added at various sites starting from the first Li atom 

(pink) which had the lowest adsorption energy in each region to study the adsorption 

mechanism. The investigation of the Li adsorption mechanism is important as mentioned 
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Figure 4.6: The band structure of one-Li adsorption on various positions around 

(5,5)CNT-C60 nanobud: (a) region1; (b) region2; (c) region3; and (d) region4.  

 

  

earlier in that the utilization efficiency of the vast area of the nanobud surface could 

affect energy density in an actual Li battery system. We followed the same definition 

used in the hybrid system so that the second Li atom is provided on the nearest 

neighboring (N.N.) site or the next nearest neighboring (N.N.N.) site in either the radial 

or axial direction along the axis of the CNT surface. We also assumed that the second Li 

atom could be adsorbed on the pentagonal or hexagonal ring in the C60@hybrid to make 

the N.N. or the N.N.N. configuration. Some representative arrangements in each region 

are displayed in Figure 4.7 for (5,5) CNT-C60. Li adsorption energies are listed in Table 

4.5. Figures 4.7.a and b show the optimized structures in region1 representing the N.N.N. 

and the N.N. sites in radial direction from the first Li atom positioned at 

Pos1_CNT@hybrid, respectively. The adsorption energy at the N.N.N. site (Figure 4.7.a; 

-1.474 eV) is the lowest in region1, but the adsorption energy in region1 is the highest 

because those Li atoms are not able to interact with C60. 
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Figure 4.7: Two-Li adsorption on various regions. For region 1: (a) next nearest 

neighboring (N.N.N.) site and (b) nearest neighboring (N.N.) site in the radial 

direction at the CNT@55bud. For region 2: (c) next nearest neighboring (N.N.N.) 

site and (d) nearest neighboring (N.N.) site in the radial direction at CNT:C60 

middle. For region 3: (e) next nearest neighboring (N.N.N.) site and (f) nearest 

neighboring (N.N.) site in the radial direction at the C60@55bud. For region 4: (g) 

next nearest neighboring (N.N.N.) site and (h) nearest neighboring (N.N.) site in the 

radial direction at the C60@55bud.  
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Table  4.5: The adsorption energy of two-Li adsorption systems on the (5,5)bud  

System 
Adsorption Energy 

(eV) 

2 Li on region1: Radial (N.N.N.
a
 site) -1.474 

2 Li on region1: Radial (N.N.
b
 site) -1.323 

2 Li on region1: Axial (N.N.N. site) -1.374 

2 Li on region1: Axial (N.N. site) -1.215 

2 Li on region2: Radial (N.N.N. site) -2.105 

2 Li on region2: Radial (N.N. site) -2.175 

2 Li on region2: Axial (N.N.N. site) -2.235 

2 Li on region2:  Axial (N.N. site) -2.046 

2 Li on region3: Radial (N.N.N. site)        -2.039 

2 Li on region3: Radial (N.N. site)        -2.194 

2 Li on region4: Radial (N.N.N. site)        -1.827 

2 Li on region4: Radial (N.N. site)        -1.638 

2 Li on region4: Axial (N.N.N. site)        -1.786 

2 Li on region4: Axial (N.N. site)        -1.617 

Many (31) Li atoms (N.N.N. site)         -1.412 

a. N.N.N.: Next Nearest Neighbor, b. N.N.: Nearest Neighbor 

 

Li adsorption in region 4 (Figures 4.7.g and h) also prefers N.N.N sites: the adsorption 

energy of the second Li atom is calculated as -1.827 eV for the N.N.N. site (Figure 4.7.g) 

and -1.638 eV for the N.N. site (Figure 4.7.h) in the radial direction starting from the 

Pos6_C60@hybrid. This finding suggests that Li adsorption would occur using the N.N.N. 
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sites of the pentagon site in C60. In region 2, the Li adsorption energy is increased due to 

the interaction with both the CNT and C60 (Figures 4.7.c and d) ranging from -2.046 eV 

at the N.N. site to -2.235 eV at the N.N.N. site in the axial direction from the 

Pos2_C60@hybrid. It also appears that Li adsorption does not depend on the adsorption 

sites within this region as it does in the hybrid system. However, the adsorption energies 

are much higher than those of the hybrid system. This higher adsorption energy is also 

related to the bonds in the junction as mentioned in the previous section. Thus, the second 

Li atom cannot be positioned close to middle of the components due to the strong 

covalent bonds; therefore, its position away from the middle might lead to a little increase 

in adsorption energy. Because of the finite size of C60, the Li adsorption direction in 

region 3 is only possible at the N.N.N site (-2.039 eV) and N.N. site (-2.194 eV) in the 

radial direction from the first atom at the Pos4_C60@hybrid (Figures 4.7.e and 4.7.f). In 

region 3, the low adsorption energy may be primarily attributed to the strong electron 

affinity of C60. However, adsorption is also influenced by the covalent bonds. Therefore, 

the adsorption energy cannot reach the same level as it does in the hybrid system, and Li 

adsorption is expected to occur starting from around C60 and progress in the direction that 

maximizes exposure to high electron affinity C60.  However, the covalent bonds work as a 

barrier to enhanced adsorption capabilities. 

Band structures of the lowest adsorption energies in each region are examined in 

Figure 4.8. Additional Li adsorption resulted in some significant band shifts compared to 

the one-Li adsorption in the hybrid cases. The energy bands shifted down in all of the 

two-Li adsorption systems; this occurred because the Fermi level was increased due to 

the electrons injected from the Li atoms to the nanobud system. Therefore, the system 
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became metallic by overcoming the small band gap of the nanobud system as the number 

of the Li atoms increased. In detail, the band shift is affected by the position of the Li 

atoms, which causes the energy bands from the components closest to the Li to shift 

downward.  
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Figure 4.8: The band structure of two-Li adsorption on various positions around a 

(5,5) CNT-C60 nanobud: (a) region1; (b) region2; (c) region3; (d) region4. 

 

Consequently, these adsorption energies are still lower than the Li-Li binding energy 

(experimental: -1.030 eV [92]) even though these values are higher than the values in the 

one-Li adsorption energy and hybrid system. Hence, the adsorption of the second Li atom 

on the nanobud system is still preferred as opposed to the formation of a Li-Li bond. 

We finished the whole surface of the nanobud system with 31 Li atoms still 

assuming the preferred N.N.N. sites of adsorption on the CNT and C60 surfaces. The 

initial structure is presented in Figure 4.9.a. The positions of the Li atoms are adjusted 

after optimization of the geometry as shown in Figure 4.9.b. From the optimized structure, 

we found that some Li atoms that were initially attached to the CNT were attracted to the 
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C60, while the Li atoms on the blind sites of the C60 were still rearranged around the CNT. 

In addition, the Li atoms initially positioned in close proximity to the bond connecting 

the CNT and C60 were pushed away from the bond because Li cannot bind with the 

carbon atoms associated with a covalent bond. Thus, structures that are different from the 

hybrid system are formed. Many Li atoms on the CNT attracted to C60 and arranged the 

middle between CNT and C60 to maximize the exposure to C60 in the hybrid system. 

However, fewer Li atoms on the CNT side are able to move to the C60 because of the 

limited space between the CNT and C60 in the nanobud. Therefore, the hybrid structure 

could accept more Li atoms on the C60 providing strong adsorption sites and resulting in 

an adsorption energy difference between the nanobud (-1.412 eV) and hybrid systems (-

1.809 eV). However, the binding energy would still be larger than the Li-Li binding 

energy of -1.030 eV, which demonstrates that Li cluster formation is unlikely until all of 

the available sites on the nanobud system are occupied. Figures 4.9.c and d shows the 

band structure and density states of many Li systems on the nanobud system. From the 

band structure, we observed that the energy bands around the Fermi level significantly 

increased and that the original band structure including the small band gap disappeared 

and appeared to be similar to the band structure of the many Li atoms on the hybrid 

system. This observation indicates that Li adsorption enhances the metallic characteristics 

of the system such as conductivity and can be identified through DOS. DOS in multi-Li 

adsorbed systems demonstrates more electron states around the Fermi level compared to 

the pure nanobud system. This also indicates that the enhanced metallic character of the 

CNT-C60 nanobud system is expected and that such enhancement of the metallic 

character could contribute to the electron transport properties. 
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Figure 4.9: Multiple Li atom adsorption on a whole (5,5)CNT-C60 nanobud system. 

Initial structure: (a) front view; (b) side view; optimized structure; (c) front view; 

(d) side view; (e) the corresponding band structure; and (f) density of states (DOS).  
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4.3.4 Conclusion 

In this chapter, we investigated another type of hybridized material system 

consisting of the carbon nanotube and fullerene called nanobud. A fullerene is covalently 

bonded to a CNT through sp
3
 hybridization of carbon atoms via the [2+2] cycloaddition 

reaction (Type I). The original property of the CNT is changed after the nanobud is 

formed; thus, some metallic systems have a small band gap, while the band gap of the 

semiconducting system is decreased. Therefore, it appears that the nanobud could be used 

to tune the band gap for electronic devices by manipulating the chirality of the CNT, the 

density of the C60 or the bond type. We also studied the Li adsorption capabilities and 

electronic properties in a (5,5) CNT-C60 nanobud system. The adsorption energy of the 

one or two-Li systems was much higher than that of the hybrid system due to the covalent 

bond in the junction, but it still followed the same adsorption mechanism as the hybrid 

system. Therefore, Li will start to be adsorbed on the C60 side, especially on the CNT:C60 

middle (region 2) or between C60s (region 3) and subsequently fill the CNT side (region 

1). In addition, we can confirm that Li cluster formation (-1.030 eV) will not occur by 

comparing the bond energy to the adsorption energy (-1.412 eV) of the multi-Li system. 

We also found that a small band gap could be overcome after two Li atoms are adsorbed 

on the system and that the band structure is completely changed, which reflects enhanced 

metallic behavior after multi-Li adsorption. Hence, the CNT-C60 nanobud system is also 

expected to demonstrate an enhanced Li adsorption capability and mechanical strength 

compared to the pure CNT system and can be potentially used in electrodes in 

electrochemical devices.      
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4.4 Condensed phase of a (5,5) CNT-C60 nanobud system 

4.4.1 Pure condensed CNT-C60 hybrid system 

In this section, we considered the condensed phase of the (5,5) CNT-C60 nanobud 

system allowing each component to interact with neighboring components, which would 

affect the Li adsorption capabilities. Four new systems (Figures 4.10.b-e) were prepared 

to determine the ideal structure by varying the position of the C60 and the cell size. Then, 

single point energies of the structures were calculated. Figure 4.10.f describes the 

energies with varying cell sizes for each structure. The New2 structure (Figure 4.10.c) 

had the lowest energy among the tested structures at a and b=17.60 Å  and at c=12.30 Å . 

The symmetric structure of New2 also imposes uniform interactions between neighboring 

elements as in the hybrid structure and eventually forms a stable structure. Further 

optimization of the New2 structure was performed to determine the optimal geometry for 

a given cell size. Figure 4.11.a shows a 3x3x3 expanded view of the optimized unit 

structure (a and b=17.60 Å  and c=12.30 Å ), and the corresponding band structure and 

DOS are represented in Figures 4.11.b and c, respectively. The band structure and DOS 

in the condensed phase does not change, which allows the nanobud to have a narrow 

band gap (0.19 eV). Narrow band gap is still present because the covalent bonds still 

work strongly in the condensed phase and do not cause any electronic property changes 

in spite of the increased density of the metallic carbon nanotube. However, charge 

transfer from the CNT to C60 still increased from e092.0  to e147.0  because of the 

increased surface area of C60 facing the CNT, while the charges on the bonds (CNT- C1: 

-0.157e and C2: -0.157e; C60-C1: -0.110e; and C2: -0.112e) remained unaffected.      

  

 



 94 

Original

a

 
New1

b

 
New2

c

 
 d

New3
 

New4

e

 

17 18 19 20

-6092.100

-6092.095

-6092.090

-6092.085

-6092.080

Original 

New1 

New2 

New3 

New4 

Condensed CNT-C60 nanobud

Cell size (Angstrom)

E
n

e
rg

y
 (

H
a
tr

e
e
)

f

 
 

Figure 4.10: Initial structures of the condensed CNT-C60 hybrid systems (a) 

original; (b) New1; (c) New2; (d) New3; (e) New4; and (f) energy of each system in 

varying cell size.  
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Figure 4.11: Condensed CNT-C60 nanobud system: (a) expanded view (3x3x3) of the 

optimized unit structure; (b) band structure; and (c) density of states (DOS) of the 

condensed and dilute phases in the nanobud system. (Unit cell: a=b=17.60 Å , 

c=12.30 Å ). 

 

4.4.2 Single Li atom on a condensed (5,5) CNT-C60 nanobud system 

A Li atom is located on various positions on the condensed system, as in the 

dilute system. The position of the added Li atom is again chosen on either the center of 

the hexagon sites of the CNT or on the pentagon and hexagon sites of the C60. A Li atom 
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is located on the CNT from Pos1_CNT@nanobud to Pos9_CNT@nanobud and on the 

C60 from Pos1_C60@nanobud to Pos8_C60@nanobud as shown in Figures 4.12.a and d, 

respectively. Optimized structures with their expanded view are represented in Figures 

4.12.b-c, e-f, and the adsorption energy, charge distribution and band gaps are listed in 

Table 4.6. The Li adsorption energies (-2.374 eV ~ -2.565 eV) in the CNT@nanobud are 

increased to a much greater degree than in the dilute system and reach a comparable 

range (-2.481 eV ~ -2.642 eV) to the hybrid system in the condensed phase. The lowered 

adsorption energies may also be attributed to the symmetric geometry of the system, 

which permits simultaneous interactions with both components so that the Li atom may 

be located on any sites between C60 and the CNT (Figures 4.12.c and e) leading to an 

increase in the Li adsorption energy. It is noteworthy that the adsorption energy is 

slightly higher between C60 and the neighboring CNT-forming CNT-C60 hybrid structure 

than in the covalently bonded area. The charge transfer from Li to the nanobud is 

increased in the condensed phase of the nanobud system throughout its packed structure. 

The charge transfer increases from 0.864e to 1.020e except in the region that is 

covalently bonded to form the nanobud. Therefore, we can confirm that the covalent 

bond in this region still dominates regardless of the nanobud density, which prevents a 

change in the degree of the charge transfer (0.809e and 0.836e) compared to the values in 

the dilute phase.  

The corresponding band structures of some representative one-Li-adsorbed 

systems are represented in Figure 4.13. As shown in Figure 4.13.a-d, band structures 

appear to be similar to those of the dilute nanobud system, and band gaps still exist due to 

the strong covalent bond wherever one Li atom is adsorbed around the nanobud system. 
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Figure 4.12: One-Li adsorption on various positions around the CNT@hybrid on 

the condensed nanobud system: (a) initial structure; (b) optimized structure; (c) 

expanded view of optimized structure; (d) initial structure; (e) optimized structure 

and (f) expanded view of optimized structure of one-Li adsorption on various 

positions around the C60@hybrid on a condensed nanobud system.  
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Table  4.6: The adsorption energy and charge distribution (Mulliken charge) of one-

Li atom on the condensed (5,5) CNT-C60 nanobud system 

System 

Adsorption 

Energy 

(eV) 

Charges (e) Band 

gap 

(eV) Li CNT C60 

Condensed (5,5) CNT_C60 nanobud N/A N/A 0.147 0.147 0.196 

Pos1_CNT@ nanobud -2.439 0.869 -0.274 -0.595 0.197 

Pos2_CNT@ nanobud -2.489 1.020 -0.364 -0.656 0.198 

Pos3_CNT@ nanobud -2.466 0.872 -0.313 -0.559 0.198 

Pos4_CNT@ nanobud -2.467 0.874 -0.318 -0.556 0.197 

Pos5_CNT@ nanobud -2.565 0.994 -0.371 -0.623 0.200 

Pos6_CNT@ nanobud -2.559 1.009 -0.339 -0.670 0.200 

Pos7_CNT@ nanobud -2.390 0.812 -0.327 -0.485 0.211 

Pos8_CNT@ nanobud -2.386 0.809 -0.322 -0.487 0.209 

Pos9_CNT@ nanobud -2.374 0.809 -0.321 -0.488 0.21 

Pos1_C60@ nanobud -2.506 0.839 -0.358 -0.481 0.214 

Pos2_C60@ nanobud -2.105 0.826 -0.121 -0.705 0.201 

Pos3_C60@ nanobud -2.496 0.888 -0.319 -0.569 0.200 

Pos4_C60@ nanobud -2.514 0.908 -0.352 -0.556 0.195 

Pos5_C60@ nanobud -2.431 0.876 -0.274 -0.602 0.199 

Pos6_C60@ nanobud -2.551 0.971 -0.351 -0.620 0.204 

Pos7_C60@ nanobud -2.489 0.927 -0.331 -0.596 0.199 

Pos8_C60@ nanobud -2.432 0.864 -0.314 -0.550 0.197 



 99 

 

-3

-2

-1

0

1

2

3

E
n

e
rg

y
 (

e
V

)

 

Pos5_CNT@55buda

 
-3

-2

-1

0

1

2

3

E
n

e
rg

y
 (

e
V

)

Pos9_CNT@55bud

 

b

 
-3

-2

-1

0

1

2

3

E
n

e
rg

y
 (

e
V

)

 

Pos2_C
60

@55budc

 
-3

-2

-1

0

1

2

3

E
n

e
rg

y
 (

e
V

)

Pos6_C
60

@55bud

 

d

 
 

Figure 4.13: The band structure of a one-Li system in the condensed phase: (a) 

Pos5_CNT@55bud; (b) Pos9_CNT@55bud; (c) Pos2_C60@55bud; and (d) 

Pos6_C60@55bud.  

 

4.4.3 Multiple Li atoms on a condensed CNT-C60 hybrid system 

We added another Li atom (blue) near the first Li atom (pink) at the low 

adsorption energy site at the CNT@nanobud or C60@nanobud to investigate the 

mechanism for Li adsorption. Some of the two-Li adsorbed systems with corresponding 

band structures are displayed in Figure 4.14, and Li adsorption sites were defined as 

described in Section 4.3.3. Therefore, the second atom is adsorbed to the next nearest 

neighboring site (N.N.N.) or the nearest neighboring site (N.N.) in either the radial or 

axial direction along the axis of the CNT surface starting from the site which had the 

lowest Li adsorption energy at the CNT@nanobud or C60@nanobud. Table 4.7 provides 

the Li adsorption energies of these two-Li systems. The adsorption energies (-2.248 eV ~ 

-2.503 eV) are much lower than calculated in the dilute system, but they are slightly 

higher than those in the hybrid system in the condensed phase. 
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Figure 4.14: Two-Li adsorption on various regions; (a) next nearest neighboring 

(N.N.N.) site in the radial direction starting at the Pos5_CNT@55bud; (b) the 

corresponding band structure; (c) next nearest neighboring (N.N.N.) site in the 

radial direction starting at the Pos6_C60@55bud; (d) the corresponding band 

structure; (e) nearest neighboring (N.N.) site in the axial direction starting at the 

Pos6_C60@55bud; and (f) the corresponding band structure. 

 

We found that N.N.N. sites have a slightly lower value than the N.N. sites in general 

throughout the table; however, Li adsorption in the condensed phase is mainly driven by 

the compact structure, as in the hybrid system. The adsorption is lowered by positioning 

another Li atom closely to the high electron affinity C60, but N.N.N sites still seemed to 

be preferred. Hence, the hybrid area (between C60 and the neighboring CNT) is selected  
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Table  4.7: The adsorption energy of many-Li atoms adsorption systems on 

condensed (5,5) CNT-C60 nanobud system 

Starting position Direction 
Adsorption Energy 

(eV) 

2Li starting from 

Pos5_CNT@nanobud 

Radial (N.N.N.
a
 site) -2.411 

Radial (N.N.
b
 site) -2.457 

Axial (N.N.N. site) -2.380 

Axial (N.N. site) -2.360 

2Li starting from 

Pos6_C60@nanobud 

Radial (N.N.N. hexagon site) -2.296 

Radial (N.N.N. pentagon site) -2.503 

Radial (N.N. hexagon site) -2.248 

Radial (N.N. pentagon site) -2.311 

Axial (N.N.N. hexagon site) -2.326 

Axial (N.N.N. pentagon site) -2.418 

Axial (N.N. hexagon site) -2.363 

Axial (N.N. pentagon site) -2.459 

31 Li atoms on condensed 

CNT-C60 nanobud 
 -1.778 

a. N.N.N.: Next Nearest Neighbor, b. N.N.: Nearest Neighbor 

 

as a starting position for the first Li adsorption, and adsorption proceeds between C60s or 

to the closest sites over the covalent bonds even though the covalent bonds still prevent 

further enhancement of the Li adsorption capabilities. The possibility of the Li cluster 

forming in the nanobud system does not appear to be high considering that the adsorption 

energy shown in Table 4.7 is higher than the Li-Li binding energy. The band structure in 

Figures 4.14.b, d, and f shows that, like in the dilute system, the energy band shifts as a 
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result of the increase in the Fermi level after the addition of the Li atom on the system. 

Consequently, injected electrons from Li atoms to the nanobud system change the system 

to exhibit metallic characteristics. Because the Li atoms face the CNT and C60 

simultaneously in the condensed phase, the shape of all three of the band structures 

appear to be similar to each other from the uniform interaction with each component.  

Finally, we surrounded the entire nanobud surface in condensed phase with 

multiple (31) Li atoms on the preferred N.N.N. sites to predict the Li adsorption energy 

and electronic properties compared to Li cluster formation. Figure 4.15 represents the 

initial and optimized structure of the multi-Li adsorbed system with band structures and 

density of states (DOS) of the system. The structure in the condensed phase is actually a 

combination of the hybrid and nanobud structure, in which one side of the CNT is bonded 

to C60 and the other side faces the next C60. Therefore, enhancement of Li adsorption is 

expected from this mixed structure compared to the dilute phase, and the optimized 

structure shown in Figure 4.15.b confirms this. The Li atoms initially placed on the CNT 

were attracted to C60s around the CNT, but Li atoms around the bond adjusted their 

position. In addition, Li atoms in the nanobud system were uniformly distributed around 

the CNT in the nanobud system, while all of the Li atoms were located between the CNT 

and C60 in the hybrid system. Therefore, the enhancement of the adsorption was more 

apparent in the nanobud system than in the hybrid system (-1.809 eV: dilute system and -

1.862 eV: condensed system). The Li adsorption energy of the many Li system in the 

condensed phase was -1.778 eV, which was much lower than that in the dilute phase (-

1.412 eV) and reflected the advantage of the mixed (hybrid and nanobud) structure. 

Additionally, the Li adsorption energy of the nanobud system (-1.778 eV) was higher  
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Figure 4.15: Multi(31)-Li atoms adsorbed on the whole hybrid system: (a) initial 

structure; (b) optimized structure; (c) the corresponding band structure; and (d) 

density of states (DOS) with pure condensed phase and 31 Li atoms on the dilute 

phase of the nanobud system. 

 

than that of the hybrid system (-1.862 eV) because of the limited site by the bond 

between the CNT and C60. The corresponding band structure and DOS shown in Figure 

4.9.c appear to be similar to those obtained from multi-Li atom systems in the dilute 

phase. Therefore, energy bands around the Fermi level significantly increased along with 
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an increased number of electron states, although a slightly larger number of electron 

states existed over the conduction band as displayed in Figure 4.15.d. Band structure also 

reflects the enhanced metallic character of the system after the adsorption in any CNT-

C60 hybridized (hybrid or nanobud) system.  

 

4.4.4 Conclusion 

In this section, we studied Li adsorption on the CNT-C60 nanobud system in the 

condensed phase using GGA PBE. The nanobud system shows more charge transfer 

(0.147e) from the CNT to C60 than in the dilute phase (0.092e), while the band structure 

and the DOS remain unchanged. However, the Li adsorption capability was further 

enhanced in the condensed phase system along with uniform distribution of the 

adsorption energy except in sites that were distant from C60. Hence, Li adsorption will 

occur on the C60 side, especially between the CNT and C60 or between C60s, and progress 

to the CNT side following the N.N.N. scheme. Moreover, additional Li adsorption 

enhances the metallic character of the system, which is confirmed from the band structure 

and density of states as well as the Li adsorption energy that is lower than in the dilute 

phase. Therefore, it seems that the CNT-C60 nanobud system in the condensed phase may 

be promising as a possible electrode in a Li battery system via its enhanced Li adsorption 

and mechanical strength. 
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CHAPTER 5 

FIRST-PRINCIPLES STUDY OF LI ADSOPRTION ON CARBON 

NANOTUBE-FULLERENE NANO-NETWORK SYSTEM 

 

 In this chapter, we designed a theoretical 3D “nano-network” structure of the 

carbon nanotube (CNT) - fullerene (C60) system, which extends the structure of the 

nanobud system by binding all of the CNT-C60. First, we examined properties of the 

pristine nano-network system such as electronic and mechanical properties. And then, we 

investigated the performance and the change in electronic properties related to Li 

adsorption on the nano-network system. 

 

5.1 Introduction 

With increasing concern for clean and renewable energy sources, many studies 

have been performed to develop energy storage such as hydrogen storage [104-107] or Li 

ion battery systems [51-53] by using carbon nanotubes (CNTs) as electrodes. Although 

CNTs show superior electrical and mechanical properties, pristine CNTs do not meet the 

standards of these applications because of the weak Li adsorption in a Li battery system 

or the lack of well-defined samples in the measurement of hydrogen uptake. Thus, 

various hybrid [73, 75-77, 93] or network materials [108-114] have been exploited to 

overcome those disadvantages and meet appropriate standards for application. Recently, 

Barnes et al. prepared single-walled carbon nanotubes (SWCNTs) network films (Figure 

5.1.a) using an ultrasonic spray method to be used as transparent and conductive 

electrodes for organic solar cells [111]. Additionally, Weck et al. designed novel carbon 

nano-frameworks (Figure 5.1.b) consisting of (5,0) and (3,3) CNTs constrained by phenyl 
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spacers and investigated the electronic structures and stabilities using the density 

functional theory [114].      

 

a

 

b

 

 

Figure 5.1: A carbon nanotube network material: (a) AFM image of a 150-nm-thick 

transparent single-walled carbon nanotube (t-SWCNT) network film and (b) an 

optimized nano-framework structure consisting of (5,0) SWCNTs constrained by 

phenyl spacers. 

 

In this chapter, we report the development of a novel type of network system 

consisting of CNTs and C60 covalently bound to each other. This system is actually an 

expanded structure of a CNT-C60 nanobud. Furthermore, this nano-network system can 

utilize the advantages of each component by combining the high mechanical strength of 

CNTs and the strong electron affinity of C60 to enhance Li or hydrogen adsorption 

capabilities while maintaining high mechanical strength.  

In this study, we used the first-principles computational method to study the 

electronic and mechanical properties of the pristine CNT-C60 network system and the Li 

adsorption mechanism on the nano-network system. The Li adsorption mechanism can be 

examined in detail by calculating the Li adsorption energy as performed in the previous 
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two chapters. We also investigated changes in electronic properties such as band structure, 

density of states and charge distribution as a function of the number of Li atoms.    

 

5.2 Computational details 

In this study, generalized gradient approximation (GGA) Perdew-Burke-

Ernzerhof (PBE) functional was also introduced to calculate the electron exchange-

correlation energy. All the DFT calculations were performed using a double numerical 

basis set with d-polarization functions (DND) through DMol
3
 from Accelrys. 

The unit cell dimension was set to 15.9 Å  × 15.0 Å  × 12.297 Å  after geometric 

optimization of the nano-network system. Monkhorst-Pack k-point scheme [86] was used 

for k-point sampling to determine the adsorption energy and other electronic properties 

such as band structure, density of states and Mulliken charge distribution [87, 88]. Thus, 

gamma (1x1×1) k-point was used for geometry optimization and (1x1x4) k-point was 

used for looking into all the system properties. The adsorption energy per Li atom on the 

CNT-C60 network system is also calculated the same way in the chapter 3 (equation 3.1). 

The negative value of the adsorption energy indicates a favorable Li adsorption whereas 

the adsorption is not favorable if the value is positive as we defined previously. 

 

5.3 Results and discussion 

5.3.1 Pure CNT-C60 nano-network system 

To prepare the CNT-C60 network structure, we used a (5,5) CNT-C60 nanobud 

system in the condensed phase as an initial structure. First, the unit cell of the nanobud 

system (Figure 5.2.a) was adjusted to produce a symmetric structure, and each CNT and 

C60 was connected to form a 3-dimensional (3D) nano-network structure. In this process, 
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we attempted various bond connections between the CNT and C60 starting from the 

preferred hs (h denotes the C60 bond between two hexagonal faces and s denotes a slope 

bond to the tube axis in the armchair CNT: Figure 4.2) connection to obtain the 

reasonable structure. However, we used a classical molecular mechanics tool (Forcite 

from Accelrys) for checking various structures in advance before full geometry 

optimization by Dmol
3
. The results of the optimization showed that all three of the bond 

connections were not energetically preferred hs connections after geometry optimization. 

Instead, the only reasonable structure was calculated when new two bond connections 

were formed in a pv bond (p denotes a C60 bond between a hexagonal face and 

pentagonal face and v denotes a vertical bond to the tube axis in the armchair CNT). The 

optimized structure through molecular mechanics was further optimized by DFT to 

obtain a stable structure. Figure 5.2.b shows the expanded view of the optimized structure 

and it is clear that the unit structure was slightly smaller compared to the nanobud in the 

condensed phase. The corresponding binding energy (Ebinding = Enetwork – ECNT – EC60) was 

6.268 eV, which indicated that this conceptual structure needed more energy than the 

nanobud (1.326 eV) system realized via a [2+2] cycloaddition reaction. Bond lengths are 

summarized in the Table 5.1. We can clearly see the change of the electronic property of 

the nano-network system through the band structure and the density of states. 

Table  5.1: Mulliken charge distribution and bond length in the nano-network 

system 

 
Charges (e) Bond length (Å ) 

CNT C60 1 2 3 

CNT-C60 

network system 
0.187 -0.187 1.592 1.591 1.596 1.627 1.622 1.595 
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a

 

b

12

3

 
 

Figure 5.2: (a) The initial nanobud structure in the condensed phase (unit cell 

parameters: a=b= 17.6 Ǻ, c = 12.3 Å, α=β=90° and γ=120°) and (b) the 3x3 expanded 

optimized (5,5) CNT-C60 network structure (unit cell parameters: a =15.9 Ǻ, b = 15 

Ǻ, c = 12.3 Å, α=102.5°, β=85° and γ=118°). 

 

 

The band structure of the nano-network system and density of states (DOS) are 

represented in Figure 5.3 along with the hybrid and nanobud systems in the condensed 

phase. From the figure, it is shown that the band gap evolves as the number of bonds 

between the CNT and C60 increases. Thus, the nano-network system has a 0.34 eV gap, 

while the nanobud has a 0.19 eV or no band gap in the hybrid system. However, the band 

structure appeared to differ from other CNT-C60 systems. As shown in Figure 5.3.a, the 

band from C60 moves down to the Fermi level in the nano-network structure, whereas the 

same band exists around 0.56 eV in other hybridized system. Therefore, it appears that 

the nano-network system is semiconducting with a small band gap (~ 0.34 eV) because 

CNT work like dopants in the semiconducting C60. Therefore, electrons from the CNT 

will fill the band of the C60, which results in an increased DOS level around the Fermi  
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Figure 5.3: The band structure with DOS of the (a) CNT-C60 network system; (b) 

(5,5) CNT-C60 nanobud system in condensed phase and (c) (5,5) CNT-C60 hybrid 

system in condensed phase. The projected DOS of CNT and C60 are represented 

with pink and green lines, respectively. The total DOS is plotted with a black line. 

 

 

level compared to the nanobud or hybrid system as shown in Figure 5.3.d. The network 

system still shows a charge transfer from CNT to C60 in the nano-network system 
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amounting to e187.0 , which is higher than the hybrid ( e141.0 ) or nanobud system 

( e147.0 ) in the condensed phase. This increased charge transfer can be attributed to the 

smaller unit size of the nano-network system (a=15.9 Ǻ, b= 15 Ǻ) than the hybrid 

(a=b=18.35 Ǻ) or nanobud systems (a=b=17.6 Ǻ). This implies that CNT and C60 are 

closely located so that the charge transfer between each component can occur easily.  

We also investigated mechanical properties such as Young’s modulus, bulk 

modulus and shear modulus of the network system as well as the CNT-C60 hybrid and 

nanobud systems in condensed phase. Table 5.2 describes the mechanical strength of pure 

CNT, the CNT-C60 hybrid, the CNT-C60 nanobud and the CNT-C60 network systems in 

the condensed phase. Elastic moduli were calculated using a constant strain minimization 

method [115]. In general, the stress in a solid is defined as the change in the internal 

energy per unit volume with respect to the strain. In this method, small strains are applied 

to a periodic structure at an energy minimum, and the application of strain is 

accomplished by uniformly expanding the dimensions of the simulation cell in the 

direction of the deformation and re-scaling the new coordinates of the atoms to fit within 

the new dimensions. The structure is minimized again while fixing the lattice parameters 

and the resultant stress in the minimized structure is measured. This is repeated for a 

series of strains and the variation of the measured stress as a function of applied strain is 

used to derive the stiffness matrix using the following equation: 

jj

i

ji

ij

U

V
C









 2

1 2

 








                                                                                    (5.1) 

 , where V, U, ɛ and σ are the volume, internal energy, strain and stress on the system, 

respectively. Here, a small strain (ɛ=±0.003%) is applied to the hybridized system in the 
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direction of the x, y and z-axes, and a subsequent energy minimization is performed. The 

obtained mechanical strength of the hybridized system is lower than that of the pure CNT 

in the bundle because the CNT faces a smaller C60 instead of other CNTs. However, 

mechanical strength increases again as the CNT and C60 form covalent bonds, which 

allows the network system to increase its mechanical strength in all directions as shown 

in Table 5.2. The strength in the radial direction (~ 70 GPa) along the axis of the carbon 

nanotube is especially enhanced compared to the pure CNT bundle (~ 4 GPa),  

 

Table  5.2: Young’s, bulk and shear modulus of the CNT-C60 systems (Unit: GPa) 

 Yxx Yyy Yzz Bulk Shear 

(5,5) CNT 3.658 3.650 760.760 75.495 27.280 

CNT-C60 hybrid 0.531 0.491 225.505 12.337 7.101 

CNT-C60 nanobud 0.944 1.088 240.380 13.226 7.998 

Nano-network 67.964 71.649 309.632 48.680 28.343 

 

which is known to be rather soft in the radial direction [116] compared to the axial 

direction. Therefore, the nano-network structure consisting of CNT-C60 will have 

enhanced mechanical properties compared to the previous hybridized system. 

 

5.3.2 Single Li atom on a CNT-C60 network system 

We added Li atoms on various positions in the CNT-C60 network system to 

investigate its Li adsorption capabilities. In this work, we placed the Li atom on the 

center of the hexagon sites (Center) in CNT and the pentagon or hexagon sites in C60 as 

was done in previous experiments. Figure 5.4 shows the initial and final structure of the 

one-Li adsorption system on the CNT side and C60 side. It appeared to be difficult to 
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distinguish sites in this network system because of its nearly symmetric and condensed 

structure. Therefore, we chose sites between bonds and placed the Li atom closer to the 

CNT or C60 side making a CNT@network or C60@network. The adsorption energy is 

also low, ranging from -2.224 eV to -2.727 eV as a hybrid or nanobud system in 

condensed phases due to the simultaneous interaction between CNT and C60. However, 

some energy differences remain depending on the position because the nano-network 

system is not perfectly symmetric (having different bond lengths), and Li adsorption is 

strongly affected by the covalent C-C bond, as in the nanobud system. In addition, it 

appears that the adsorption energy was slightly lower when the Li atom was located close 

to the CNT (Pos1,2,3_CNT@network or Pos5,6_C60@network). This finding could be 

explained by the positively charged CNT surface (0.187e) relative to C60. Thus, the 

additional charge transfer from the adsorbed Li to the network system somewhat 

enhanced the Li adsorption energy. Conclusively, the Li adsorption in the nano-network 

system is mainly driven by the high electron affinity C60, but the slightly asymmetric 

structure and increased charge transfer can generate adsorption energy differences. 

We also investigated the band structure of several one-Li adsorbed systems in 

Figure 5.5. The overall band structure appeared to be similar to the pristine nano-network 

system even though the band from the CNT moved slightly toward the Fermi level, thus 

decreasing the bang gap slightly (0.26 eV) after one-Li atom adsorption as shown in 

Figure 5.5. Thus, it appears that one-Li adsorption does not affect the system property as 

much as the other hybridized systems. 
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Figure 5.4: One-Li adsorption on various positions in each region around the (5,5) 

CNT-C60 network: (a) initial structure and (b) optimized structure. 

 

 

5.3.3 Multiple Li atoms on a CNT-C60 network system  

Subsequent to this first Li atom (purple) adsorption, we added another Li (blue) at 

different sites near the initial Li atom to investigate the Li adsorption mechanism in the 

network system. For practical purposes, it is important to predict how efficiently Li atoms 

utilize the surface area of the CNT-C60 network system against Li cluster formation, 

which can be explained by the binding energy. For this reason, we added the second Li 

atom starting from the sites having the lowest energy on each side. However, we chose 

only two sites as a starting position in this network system, one at the CNT@network and 

the other at the C60@network, because these sites are expected to have very similar 
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adsorption energies when a second Li atom is added regardless of which Li atom is first 

selected due to the nearly symmetric and packed structure in the nano-network system. 

Figure 5.6.a shows the schematic view of the two-Li atom adsorption system starting 

from the Pos1_CNT@network to C60 or the CNT following the next nearest neighboring 

(N.N.N.) scheme. Alternatively, there may be various possibilities in determining the 

position of the second Li atom. 

 

Table  5.3: The adsorption energy and charge distribution (Mulliken charge) of one-

Li atom on the (5,5) CNT-C60 network system 

System 

Adsorption 

Energy 

(eV) 

Charges (e) 

Li CNT C60 

(5,5) CNT_C60 network N/A N/A 0.187 0.187 

Pos1_CNT@ network -2.727 0.821 -0.130 -0.691 

Pos2_CNT@ network -2.551 0.800 -0.204 -0.596 

Pos3_CNT@ network -2.544 0.799 -0.201 -0.598 

Pos1_C60@ network (pentagon) -2.224 0.817 -0.064 -0.753 

Pos2_C60@ network (hexagon) -2.374 0.815 -0.057 -0.758 

Pos3_C60@ network (pentagon) -2.227 0.817 -0.065 -0.752 

Pos4_C60@ network (hexagon) -2.367 0.815 -0.053 -0.762 

Pos5_C60@ network (pentagon) -2.668 0.809 -0.158 -0.651 

Pos6_C60@ network  (hexagon) -2.553 0.819 -0.239 -0.580 

Pos7_C60@ network (pentagon) -2.506 0.854 0.031 -0.885 
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Figure 5.5: The band structure of a one-Li system in a CNT-C60 network system: (a) 

Pos1_CNT@network; (b) Pos2_C60@network; (c) Pos4_C60@network; and (d) 

Pos5_C60@network. 
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Figure 5.6: Two-Li adsorption directions; (a) next nearest neighboring (N.N.N.) site 

to either CNT or C60 starting at Pos1_CNT@network and (b) the radial and axial 

direction/ next nearest neighbor (N.N.N.) and nearest neighbor (N.N.) of the second 

Li atom adsorption location starting from the Pos5_C60@network  (1
st
 Li atom: 

purple and 2
nd

 Li atom: blue, green or orange). 
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Therefore, we divided the second Li either toward the covalent bond side or toward the 

unbounded bond side along with our usual definition (radial/axial and N.N.N./N.N. 

scheme) shown in Figure 5.6.b. Some representative arrangements in two-Li adsorbed 

systems are displayed in Figure 5.7, and the Li adsorption energies of the two Li atoms 

are listed in Table 5.4. From the table, we observed that the adsorption energy of the two-

Li system was quite similar between -2.410 eV and -2.681 eV in the two sites on the C60. 

Additionally, it appears that Li adsorption attempts to occur in the middle between the 

CNT and C60 (Figures 5.7.a-b: -2.681 eV) but away from the covalent bond because the 

C-C bond was already strongly coupled. (Figure 5.7: -2.669 eV) The only exception (-

0.921 eV) is the N.N.N. scheme toward the covalent bond, which might be strongly 

trapped in the middle of the bond or a Dmol
3
 error. 

We also confirmed that the Li adsorption will start from C60 sites when we 

compared adsorption energy in Table 5.4, in which the energy toward another C60 (-2.410 

eV) site was lower than energy toward a CNT (-2.258 eV) site. Therefore, enhanced Li 

adsorption is expected to occur in the nano-network system as a hybrid or nanobud 

system in the condensed phase rather than forming Li clusters and will proceed similarly 

(C60 sites first followed by CNT) to previous hybrid systems. However, it seems Li 

adsorption will depend on the Li location rather than the N.N.N. scheme because covalent 

bonding strongly affects the adsorption and the condensed structure of the network 

system. 
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Figure 5.7: Optimized structures of two-Li adsorption toward the nonbonded side 

including (a) nearest neighboring (N.N.) site in the axial direction starting at the 

Pos5_C60@network and (b) next nearest neighboring (N.N.N.) in the radial direction 

starting at the Pos5_C60. Optimized structures toward bonded side including (c) 

nearest neighboring (N.N.) site in the radial direction starting at the 

Pos5_C60@network and (d) next nearest neighboring (N.N.N.) in the radial direction 

starting at the Pos5_C60@network (1
st
 Li atom: purple and 2

nd
 Li atom: blue 

(initial) and orange (final)). 

 

mailto:Pos5_C60@network;.(d)
mailto:Pos5_C60@network;.(d)
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Table  5.4: The adsorption energy of many Li adsorption systems on the (5,5) CNT-

C60 network 

Starting position Direction Adsorption energy (eV) 

2Li starting from 

Pos1_CNT@network 

To CNT (N.N.N. site) -2.258 

To C60 (N.N.N. site) -2.410 

2Li starting from 

Pos5_C60@network 

Nobond_Radial  

(N.N.N. pentagon site) 
-2.681 

Nobond_Radial  

(N.N. hexagon site) 
-2.561 

Nobond_Axial 

 (N.N.N. pentagon site) 
-2.573 

Nobond_Axial 

 (N.N. hexagon site) 
-2.681 

Bond_Radial /Axial 

(N.N.N. pentagon site) 
-0.921 

Bond_Radial  

(N.N. hexagon site) 
-2.669 

Bond_Axial  

(N.N. hexagon site) 
-2.567 

32 Li atoms on CNT-C60 

network system 
 -1.655 

 

Even though the CNT-C60 hybrid or nanobud systems showed a band shift after 

two-Li adsorption, the nano-network system did not exhibit the same behavior, retaining 

its band gap (0.24 eV) with additional Li atoms. (Figure 5.8) This result can be confirmed 

from the DOS in Figure 5.9 because the DOS on neither the CNT nor the C60 side 

changes until many Li atoms are adsorbed on the network system. Therefore, the 

electronic properties of the strongly bonded network system are still not affected by the 

small number of Li atoms adsorbed to the structure, and additional electrons fill up the 

band in the CNT.  
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Figure 5.8: The band structures of a two-Li adsorption network system: next 

nearest neighboring (N.N.N.) site to (a) CNT and (b) C60 starting at 

Pos1_CNT@network. Toward the nonbonded side: (c) nearest neighboring (N.N.) 

site in the axial direction and (d) next nearest neighboring (N.N.N.) in the radial 

direction. Toward the bonded side: (e) nearest neighboring (N.N.) site and (f) next 

nearest neighboring (N.N.N.) in the radial direction starting at the 

Pos5_C60@network.  

mailto:Pos5_C60@network;.(d)
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Figure 5.9: Density of states (DOS) with varying numbers of Li atoms on a (a) 

CNT@network and (b) C60@network. 

 

 

Finally, we covered the entire surface of the nano-network system with multiple 

(32) Li atoms following the N.N.N. scheme as usual. Figures 5.10.a and b show the initial 

and optimized structures of the multi-Li system. The optimized structure shows similar Li 

distribution as the CNT-C60 hybrid or nanobud system in the condensed phase, in which 

Li atoms are mainly positioned between the CNT and C60 after optimization. It indicates 

that Li adsorption can also be enhanced in the nano-network structure and the adsorption 

energy was calculated to be -1.655 eV. However, the adsorption energy is higher than in 
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the hybrid (-1.862 eV) or nanobud (-1.778 eV) system because the three bonds between 

CNT and C60 limit the adsorption sites between the CNT and C60. Furthermore, it is still 

lower than the Li-Li binding energy (-1.030 eV). Thus, it is likely that Li will fill the 

network system on the available sites on the surface of the network system before Li-Li 

clusters form.  
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Figure 5.10: Multi-(32)Li atom adsorption on a whole network system: (a) initial 

structure; (b) optimized structure; (c) the corresponding band structure and (d) 

density of states (DOS) with pure and 32 Li atoms on a network system. 
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The corresponding band structure and DOS are displayed in Figures 5.10.c and d. 

The band appears to be entangled as other hybridized system that has many Li atoms due 

to the increased number of Li atoms, but it still shows a discrete band structure with a 

0.07 eV band gap. The difference between the systems can also be observed in the DOS 

in Figure 5.10.d. The network system had fewer electrons across the Fermi level 

compared to other systems, although the states were continuously distributed over the 

Fermi level. Hence, many Li atoms need to be adsorbed to overcome the initial band gap 

to obtain metallic behaviors and utilize the material as an electrode. 

 

5.4. Conclusion  

In this chapter, we studied a 3D nano-network structure consisting of CNT and 

C60 using the DFT, which is simply the extended structure of the nanobud system formed 

by connecting CNT to C60. We found that the mechanical strength of the network system 

was greatly increased, especially in the radial direction of the CNT axis, which is 

commonly known as being weak relative to the axial direction. The calculated Young’s 

modulus in the radial direction was 70 GPa, which is larger than the Young’s modulus for 

pure CNT (~ 4 GPa) in the same direction and demonstrated a large Young’s modulus of 

310 GPa in the axial direction. We found that the nano-network system was 

semiconducting with a band gap of 0.34 eV and increased its density of states (DOS) 

around the Fermi level as a result of the filling of the C60 band. The charge transfer from 

CNT to C60 was e187.0 , which is slightly higher than the hybrid or nanobud systems in 

the condensed phase due to a smaller unit size of the network system. Furthermore, Li 

adsorption was also enhanced in the network system due to the condensed structure 
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enabling simultaneous interactions between CNT and C60, and the adsorption energy in 

the two-Li atoms system was still low. In addition, Li adsorption will occur preferentially 

on the high electron affinity C60 side, but it will depend on the adsorption site and will not 

follow the N.N.N scheme. The adsorption energy of many Li-adsorbed systems is -1.655 

eV, which is lower than the Li-Li binding energy. Therefore, network systems will 

provide appropriate structures for the Li adsorption. The band structure and DOS changes 

only slightly until many Li atoms are present in the system because the electronic 

properties of the nano-network system are influenced by C60. DOS reflects this property 

because the initial states (before Li adsorption) near the Fermi level were higher than the 

hybrid or nanobud systems in the condensed phase. This is likely a result of the electrons 

in the CNT filling the semiconducting C60 bands after network formation (like doping) so 

that the additional Li atoms slightly affect the electronic property of the system. Hence, 

the nano-network system with its great mechanical strength can be used as an electrode 

for strong Li adsorption. Additionally, the nano-network system can be used to control 

the band gap by adjusting the C60 packing density and changing the electronic properties 

of the system. 
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CHAPTER 6 

FIRST-PRINCIPLES STUDY OF LI ADSOPRTION ON CARBON 

GRAPHENE-FULLERENE HYBRID & NANOBUD SYSTEM 

 

 In this chapter, we investigate a graphene-C60 hybrid and a graphene-C60 nanobud 

system consisting of semi-metal graphene and semiconducting fullerene (C60) to predict 

the performance and changes in electronic properties related to Li adsorption in the dilute 

or condensed phases. 

 

6.1 Introduction 

In the current field of secondary rechargeable batteries, a graphite anode has been 

widely adapted with a maximum specific insertion capacity of 372 mAh/g corresponding 

to the formation of LiC6. However, it is expected that the capacity can increase from 500 

to 1100 mAh/g if graphene is used instead of graphite because Li can be stored on both 

the surface and the edge of the graphene [117, 118]. In this context, various types of 

graphene, such as graphene powder, nanoribbons and nanosheets, have been studied both 

theoretically [119-127] and experimentally [128-130] to investigate the Li adsorption 

capacity for electrode applications. In addition, further studies have been performed to 

obtain improved Li or hydrogen adsorption by adjusting the thickness of the interlayer 

[121, 131].    

Among those approaches, Gupta et al. have recently reported the synthesis and 

characterization of graphite intercalated by fullerene (C60) [48]. In that paper, they found 

that fullerene forms a hexagonal two-dimensional lattice between the graphene layers, 
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and TEM indicates that no covalent bonds between fullerene and graphene or fullerenes 

are formed. Some theoretical [132-135] and experimental [48, 129, 136-138] studies have 

attempted to investigate the C60 intercalated graphene hybrid structure as well. 

Furthermore, Yoo et al. prepared the various hybrid structures on graphene nanosheets 

(GNS), producing GNS, GNS+CNT and GNS+C60 systems, and measured their lithium 

insertion/extraction properties. Their result showed that the specific capacities of GNS 

(540 mAh/g), GNS+CNT (730 mAh/g) and GNS+C60 (784 mAh/g) were increased 

compared to graphite (372 mAh/g), which may be attributed to the increased d-spacing 

(distance between layers). Hence, it is important to understand the electronic properties of 

the graphene-C60 hybrid structure in the presence of Li atoms for developing actual 

working devices. In this study, we investigated two types of hybridized material systems 

consisting of graphene and C60 to investigate Li adsorption capabilities: one is bound by 

weak van der Waals interaction (graphene-C60 hybrid), and the other is bound by covalent 

bonds (graphene-C60 nanobud). Investigating the electronic properties of the graphene-

C60 hybridized system will also be useful because various studies have been 

accomplished to control the gap between graphene layers and increase hydrogen uptake 

to be used as hydrogen storage. Similar to the CNT-C60 hybrid structures, graphene-C60 

hybrid systems utilize C60 as the electron acceptor from Li and graphene as the charge 

transport channel throughout the electrode. Therefore, it is expected that Li adsorption on 

the graphene-C60 electrode is more favorable than the pure graphene-based electrode 

because of the higher electron affinity of C60.  

In this study, we used the first-principles computational methods through DMol
3
 

from Accelrys [83, 84] to investigate electrochemical characteristics such as adsorption 



 127 

capabilities and charge transfer of another interesting graphene-C60 hybrid system. We 

calculated the Li adsorption energy of the graphene-C60 hybrid system and the 

accompanied change in the electronic properties such as band structure, density of states 

(DOS) and charge distribution as a function of Li adsorption using the density functional 

theory (DFT). We also studied the mechanism of Li adsorption in comparison to Li 

cluster formation in the dilute or condensed phase by calculating the Li adsorption energy 

on the various regions around the graphene-C60 hybrid system. 

 

6.2 Computational methods 

We used generalized gradient approximation (GGA) Perdew-Burke-Ernzerhof 

(PBE) functional [41, 85] to treat the electron exchange-correlation energy of interaction 

electrons with double numerical basis and d-polarization functions basis set for all the 

DFT calculations, which is the same condition used for the CNT-C60 systems. The unit 

cell dimension was 12.3 Å  × 12.3 Å  × 35 Å , which is large enough to ensure that there 

was no direct interaction between original structure and its self-image in c-axis though 

the periodic boundary while the dimension in a- and b-axis is determined from the area of 

the graphene. The k-point samplings for the Brillouin zone were performed using the 

Monkhorst-Pack special k-point scheme in order to determine the adsorption energy and 

other electronic properties such as band structure, density of states and Mulliken charge 

distribution. We also tested k-point by calculating Li adsorption energy of sample system 

at different k-points as shown in the Figure 6.1.a, thus we performed the geometry 

optimization at the gamma point (denoted by 1x1) and then calculated all the electronic 

properties at 4x4x1 (denoted by 4x1). The adsorption of Li was performed at the center of 

hexagon sites (“Center”) in graphene among various sites (inset in Figure 6.1.b: Center, 
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Top, Bridge) and the pentagon/hexagon sites of C60 because these sites showed most 

stable adsorption energy from the Figure 6.1.b. The adsorption energies and electronic 

properties of the graphene-C60 system were compared with those of the pure graphene, 

carbon nanotube and the C60 face-centered cubic (fcc) crystal structure with (111) surface.  
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Figure 6.1: (a) Various k-space set samplings to one Li atom on (a) graphene-C60 

hybrid system; (b) Single point energy calculation of the Li atom on the different 

positions of the hexagonal ring in the graphene of the function of the distance from 

the center of the graphene: center, top, bridge. 
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6.3 Graphene-C60 hybrid and graphene-C60 nanobud systems in the dilute phase 

6.3.1. Pure Graphene-C60 hybrid and graphene-C60 nanobud systems 

First, we fully optimized the geometry of the graphene-C60 hybrid and graphene-C60 

nanobud systems before we studied the Li adsorption capabilities. Figures 6.2.a-c shows 

the top, side and expanded view of the hybrid system, which is maintained by dispersion 

interactions between graphene and C60. The distance between graphene and the center of 

the C60 in the hybrid structure is set to 6.35 Å , which originates from an experimental 

value [48]. Alternatively, Figures 6.2.d, e, and f display the top, side and expanded views 

of the graphene-C60 nanobud system, respectively. In the case of the nanobud system, we 

prepared two structures connecting the C-C bonds in graphene (h) and two possible C-C 

bonds in the C60: (i) a bond between two hexagonal faces (h) and (ii) a bond between a 

hexagonal and pentagonal face (p) via [2+2] cycloaddition as a CNT-C60 nanobud. 

Therefore, we prepared the hh and hp graphene-C60 structures and calculated the binding 

energy (Ebinding = Enanobud – Egraphene – EC60) of these two structures. We found that the hh 

structure (2.632 eV) was preferred to the hp structure (3.319 eV) according to the binding 

energy even though both needed considerable energy to form the structure. We 

summarized the binding energy, bond length, charge transfer from graphene to C60 

through Mulliken analysis and the band gap of the each hybrid structure in Table 6.1. 

 

Table  6.1: Binding energy, bond length, Mulliken charge and band gap of the 

graphene-C60 hybrid and bud system 

System 

Binding 

energy 

 (eV) 

Bond  

length  

(Å ) 

Charges (e) 
Band gap 

(eV) 
Graphene C60 

Graphene-C60 hybrid system -0.720 N/A 0.095 -0.095 0 

Graphene-C60 nanobud system:hh 2.632 1.637 0.059 -0.059 0 

Graphene-C60 nanobud system:hp 3.319 1.652 0.103 -0.103 0.30 
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a

 

b

 

c

 

d

 

e

 

f

 
 

Figure 6.2: The unit cell structure of the graphene-C60 hybrid system: (a) top view; 

(b) side view; and (c) expanded (2x2) view. The graphene-C60 bud system: (d) top 

view; (e) side view; and (f) expanded view. The cell parameters are a=b=12.3 Ǻ, 

c=35 Å, α=β=90º and γ = 120º. 
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 As shown in the table, it appears that the hybrid structure was more favorable in 

terms of the binding energy (-0.720 eV) with considerable charge transfer ( e095.0 ). 

However, extra energy was needed to form covalent bonds via sp3 hybridization of 

carbon atoms to form nanobud structures. A narrow band gap of - 0.30 eV is developed in 

the middle of the hybridization between the orbital of the graphene and C60 when 

graphene is connected to the bond between pentagonal and hexagonal site in the C60. The 

charge distribution of the system through Mulliken population analysis shows charge 

transfer from the graphene to fullerene for all of the systems due to the relatively strong 

electron affinity of C60.  

The band structure of the pure graphene, the pure C60, the graphene-C60 hybrid 

and the graphene-C60 nanobud systems are represented in Figure 6.3. In these band 

structures, the Fermi levels are shifted to be located at 0 eV. Because the graphene-C60 

hybrid system is also maintained by weak dispersion interactions, as in the CNT-C60 

hybrid system, the hybrid system retains the characteristics of its components. Therefore, 

the two energy bands meet at the Fermi level (0 eV) and retain the character of the π 

orbital of the graphene while two other bands appear around ~ 0.56 eV, which may be 

attributed to the t1u state of the neighboring C60 chain as shown in Figure 6.3.c [89]. 

However, the graphene-C60 nanobud system represents a unique band structure because 

of the covalent bond between graphene and C60. Even the band structure is different 

depending on the C-C bond position, which can be attributed to the π bonds related to the 

reaction. Hence, the graphene-C60 nanobud:hh has a no band gap while the graphene-

C60:hp has an indirect band gap (0.30 eV) due to the different degree of the π bond 

character. We also examined the density of states (DOS) of both hybrid and nanobud 
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systems in Figure 6.4. Similar to the CNT-C60 hybrid system, the overall feature of the 

DOS in the graphene-C60 hybrid system is a product of the individual components, while 

the graphene-C60 nanobud system has different characteristics.  

 

-3

-2

-1

0

1

2

3

 K M

Pure_graphene

E
n

e
rg

y
 (

e
V

)

a

 
-3

-2

-1

0

1

2

3

 K M

Pure_C
60

E
n

e
rg

y
 (

e
V

)

b

 
-3

-2

-1

0

1

2

3

 K M

Graphene-C
60

 hybrid

E
n

e
rg

y
 (

e
V

)

c

 

-3

-2

-1

0

1

2

3

 K M

Graphene_C
60

 bud:hh

E
n

e
rg

y
 (

e
V

)

d

 
-3

-2

-1

0

1

2

3

 K M

Graphene_C
60

 bud:hp

E
n

e
rg

y
 (

e
V

)

e

 

 

 

Figure 6.3: The band structure of (a) pure graphene; (b) pure C60; (c) graphene-C60 

hybrid; (d) graphene-C60 nanobud:hh; and (e) graphene-C60 nanobud:hp system (г= 

(0,0,0), K= (-1/3, 2/3, 0), and M= (0,1/2,0) in the Brillouin zone). 
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Figure 6.4: The density of states (DOS) of the pristine graphene, pristine C60, 

graphene-C60 hybrid, graphene-C60 nanobud:hh and graphene-C60 nanobud:hp 

system. 

 

However, it appears that the DOS of the graraphene-C60 nanobud: hh is similar to the 

DOS of the graphene-C60 hybrid system because the π bond in the nanobud:hh system is 

less distorted. 

 

6.3.2 Single Li atom on graphene-C60 hybrid and graphene-C60 nanobud systems 

Next, we studied the adsorption of Li on various positions of the graphene-C60 

hybrid and nanobud systems. For this evaluation, we chose the graphene-C60 hybrid along 

with the nanobud:hh system because it required less energy (2.632 eV) to form the 

structure than the graphene-C60 nanobud:hp (3.319 eV) and because of the smaller band 

gap because; furthermore, we are interested in the electron conduction capabilities toward 

electrodes. Additionally, a Li atom is placed in the center of the hexagon site (center) of 
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graphene (Figure 6.1.b) and the pentagon [139] or hexagon site of C60 because these sites 

attain the most stable Li adsorption in the C60 as previously explained. 

To describe the Li adsorption mechanism on the graphene-C60 hybrid system 

more systematically, we again defined four distinct regions around the graphene-C60 

hybrid and nanobud system as shown in Figures 6.5.a-b: (i) graphene side (region 1, red), 

(ii) between graphene and C60 (region 2, yellow), (iii) between C60s (region 3, blue) and 

(iv) C60 side (region 4, orange). The Li atom can interact only with the graphene in region 

1 or only the C60 in region 3 and region 4, while it can interact with both graphene and 

C60 simultaneously in region 2.  
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Figure 6.5: The structure of the graphene-C60 hybrid system with different regions: 

(a) front view; (b) side view; Region 1-red, Region 2-yellow, Region 3-blue and 

Region 4-orange.  

 

We placed one-Li atom on various positions at each region around the graphene-

C60 hybrid and nanobud systems as shown in Figures 6.6 and 6.7. We also summarize the 

adsorption energy and charge distribution of the one-Li adsorbed system on the hybrid 
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and nanobud system in Tables 6.2 and 6.3, respectively. From the table, we observed that 

Li adsorption (-1.769 eV) in graphene@hybrid was enhanced compared to the pure 

graphene system (-1.375 eV). It appears that this enhancement could be explained by the 

charge distribution of the CNT-C60 hybrid system and the unit structure of the hybrid 

system. 
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Figure 6.6: One-Li adsorption on various positions around a graphene-C60 hybrid 

system: (a) initial and (b) optimized structure.  

 

 

Table  6.2: The adsorption energy and charge distribution (Mulliken charge) of one- 

Li atom on the graphene-C60 hybrid system 

System 
Adsorption Energy 

(eV) 

Charges (e) 

Li graphene C60 

graphene-C60 hybrid N/A N/A 0.095 -0.095 

1 Li on graphene -1.375 (-1.096 [120]) 0.813 -0.813 N/A 

1 Li on C60 (pentagon) -1.838 (-1.820 [91]) 0.794 N/A -0.794 

Pos1_graphene@hybrid (region1) -1.769 0.860 -0.434 -0.426 

Pos2_ graphene @hybrid(region2) -2.285 0.894 -0.264 -0.630 

Pos1_C60@ hybrid (region2_hexa) -1.059 1.002 -0.297 -0.705 

Pos2_C60@ hybrid (region2_penta) -2.285 0.895 -0.259 -0.636 
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Table 6.2 continued     

Pos3_C60@ hybrid (region3_hexa) -1.960 0.845 0.037 -0.882 

Pos4_C60@ hybrid (region3_penta) -2.122 0.854 -0.007 -0.847 

Pos5_C60@hybrid (region4_hexa) -1.798 0.794 0.025 -0.819 

Pos6_C60@ hybrid (region4_penta) -1.862 0.791 0.032 -0.823 

 

In other words, some of the charges ( e095.0 ) are already transferred from the graphene 

to C60 making the graphene positively charged. Thus, the additional charge transfer from 

the adsorbed Li may occur to a greater extent in the graphene@hybrid and can contribute 

to the enhanced adsorption in the graphene@hybrid. At the same time, a Li atom in 

region 1 can still interact with C60 due to the planar structure of graphene and the size of 

the unit structure of the graphene-C60 hybrid system. Li atoms in region 1 of the CNT-C60 

hybrid system were unavailable to the C60. We can confirm this interaction through the 

amount of charge transfer to C60 (-0.426e), which is comparable to the amount in 

graphene (-0.434e). The Li atom at the Pos2@graphene moved to the same position as 

the Pos2@C60 after optimization, although the initial positions of these two atoms were 

different. The adsorption energy showed lower values in the middle of the graphene and 

C60 (region 2; -2.285 eV) or between C60s (region 3; -2.122 eV). However, there was only 

a slight change in the adsorption energy in region 4 compared to the Li adsorption energy 

in pure C60 (-1.798 eV and -1.862 eV, respectively) even though this value was still lower 

than that of region 1. From these results, it appears that Li adsorption and the charge 

transfer are driven by the high electron affinity C60 in the hybrid system.  
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In the same manner, we defined the four different regions in the graphene-C60 

nanobud system, placed Li atoms on each region as represented in Figure 6.7 and 

calculated the adsorption energy and charge distribution listed in Table 6.3. Overall 

adsorption energy was similar to the value in the hybrid system, and most of the Li atoms 

maintained their original position. However, the Li atom near to C60 (Pos2@graphene) 

clearly moved closer to the C60 while the Li atoms initially placed closer to the C-C bond 

in the junction (Pos1,2@C60) were repelled, which was observed in the CNT-C60 

nanobud. 
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Figure 6.7: One-Li adsorption on various positions around the graphene-C60 

nanobud system: initial structure (a) side view and (b) top view; optimized structure 

(c) side view and (d) top view. 
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Table  6.3: The adsorption energy and charge distribution (Mulliken charge) of one-

Li atom on the graphene-C60 nanobud system 

System 

Adsorption 

Energy 

(eV) 

Charges (e) 

Li graphene C60 

graphene-C60 nanobud:hh N/A N/A 0.059 -0.059 

Pos1_graphene@nanobud (region1) -1.905 0.858 -0.524 -0.334 

Pos2_ graphene @nanobud (region2) -2.346 0.863 -0.428 -0.435 

Pos1_C60@nanobud (region2_hex) -2.345 0.871 -0.427 -0.444 

Pos2_C60@nanobud (region2_penta) -2.182 0.856 -0.477 -0.379 

Pos3_C60@nanobud (region3_hexa) -2.002 0.856 -0.028 -0.828 

Pos4_C60@nanobud (region3_penta) -2.158 0.865 -0.025 -0.840 

Pos5_C60@nanobud (region4_hexa) -1.784 0.800 -0.015 -0.785 

Pos6_C60@nanobud (region4_penta) -1.840 0.785 -0.011 -0.774 

 

 

This may be attributed to the strong covalent bond between graphene and C60, which may 

prevent Li from forming the bond with carbon atoms in the system and keep it out of the 

junction. The adsorption energy was also low near the graphene-C60 (region 2; -2.345 eV) 

and between C60s (region 3; -2.158 eV) due to the strong electron affinity of C60. Through 

this adsorption, the amount of charge transfer from the adsorbed Li to the graphene-C60 

nanobud system ranged from 0.785e to 0.871e depending on the Li positions. The 

corresponding band structures of the one-Li adsorbed hybrid and nanobud system are 

represented in the Figures 6.8 and 6.9, respectively. The band structures of both systems 
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did not change in comparison to the pure systems. However, the bands are significantly 

shifted downward when Li atom is adsorbed to the C60@hybrid or C60@nanobud side. 

 

6.3.3 Multiple Li atom on graphene-C60 hybrid and graphene-C60 nanobud system 

We added Li atoms at various sites in each region starting from the first Li atoms, 

which had the lowest energy in the region, to investigate the Li adsorption mechanism.  
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Figure 6.8: The band structures of one-Li adsorption on various positions on the 

graphene-C60 hybrid system: (a) Pos1@graphene; (b) Pos2@graphene; (c) 

Pos1@C60; (d) Pos2@C60; (e) Pos3@C60; (f) Pos4@C60; (g) Pos5@C60; and (h) 

Pos6@C60.



 140 

 

-3

-2

-1

0

1

2

3

 K M

Pos1@graphene

E
n

e
rg

y
 (

e
V

)

a

 
-3

-2

-1

0

1

2

3

 K M

Pos2@graphene

E
n

e
rg

y
 (

e
V

)

b

 
-3

-2

-1

0

1

2

3

 K M

Pos1@C
60

E
n

e
rg

y
 (

e
V

)

c

 
-3

-2

-1

0

1

2

3

 K M

Pos2@C
60

E
n

e
rg

y
 (

e
V

)

d

 

-3

-2

-1

0

1

2

3

 K M

Pos3@C
60

E
n

e
rg

y
 (

e
V

)

e

 
-3

-2

-1

0

1

2

3

 K M

Pos4@C
60

E
n

e
rg

y
 (

e
V

)

f

 
-3

-2

-1

0

1

2

3

 K M

Pos5@C
60

E
n

e
rg

y
 (

e
V

)
g

 
-3

-2

-1

0

1

2

3

 K M

Pos6@C
60

E
n

e
rg

y
 (

e
V

)

h

 
 

Figure 6.9: The band structures of one-Li adsorption on various positions on the 

graphene-C60 nanobud system: (a) Pos1@graphene; (b) Pos2@graphene; (c) 

Pos1@C60; (d) Pos2@C60; (e) Pos3@C60; (f) Pos4@C60; (g) Pos5@C60 and (h) 

Pos6@C60.  

 

Because the energy density was proportional to the number of Li atoms, it is very 

important to efficiently utilize the surface provided by the graphene- C60 electrode instead 

of forming Li-Li clusters. Moreover, Li capacity could be maximized by covering all of 
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the carbon rings of the graphene-C60 system with Li atoms. Therefore, systematic 

experiments were warranted to predict the adsorption direction on the hybrid and 

nanobud systems from various adsorption sites. For this purpose, we provided the second 

Li atom (blue) with respect to the first Li atom (purple) having the lowest energy in each 

region of the hybrid and nanobud systems. We also followed the definition in the 

previous chapters about positioning the second Li atom at either the nearest neighboring 

(N.N.) site or the next nearest neighboring (N.N.N.) site in the axis of the graphene 

surface in graphene@hybrid/nanobud (Figure 6.10.a). We also assumed that the second 

Li atom was adsorbed on the pentagonal or hexagonal ring in the C60@hybrid/nanobud in 

the radial or axial direction along the axis of graphene to form the N.N. or the N.N.N. 

configuration (Figure 6.10.b). 
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Figure 6.10: Definition of the second Li atom adsorption direction on the two-Li 

atom system around (a) graphene@hybird and (b) C60@hybrid (1
st
 Li atom: purple 

and 2
nd

 Li atom: blue or green). 

 

 

The initial and optimized structures of the two-Li adsorbed system in different 

regions on the graphene-C60 hybrid and nanobud system are displayed in Figures 6.11 
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and 6.12, respectively. The Li adsorption energies of the two Li atoms calculated using 

equation (3.1) are listed in Tables 6.4 and 6.5. 
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Figure 6.11: The initial and optimized structure of two-Li adsorption on a 

graphene-C60 hybrid in different regions: (a) region 1; (b) region 2; (c) region 3 and 

(d) region 4 (1
st
 Li atom: purple and 2

nd
 Li atom: blue or green). 
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Table  6.4: The adsorption energy of two- Li aomts adsorption on the graphene-C60 

hybrid system 

System 
Adsorption Energy 

(eV) 

2 Li on region1: N.N.N. site -1.874 

2 Li on region1: N.N. site -1.873 

2 Li on region2: Axial (N.N.N. site) -2.168 

2 Li on region2: Axial (N.N. site) -2.155 

2 Li on region2: Radial (N.N.N. site) -2.178 

2 Li on region2 to region1:  N.N.N. site -1.888 

2 Li on region2 to region1:  N.N. site -2.154 

2 Li on region3: Axial (N.N.N. site) -1.986 

2 Li on region3: Axial (N.N. site) -1.920 

2 Li on region3 to region2: N.N.N. site -1.559 

2 Li on region3 to region2:N.N. site -2.066 

2 Li on region3 to region4: N.N.N. site        -1.969 

2 Li on region3 to region4:N.N. site         -1.891 

2 Li on region4: Radial (N.N.N. site)          -1.971 

2 Li on region4: Radial (N.N. site)          -1.899 

8 Li atoms on graphene@hybrid          -1.511 

12 Li atoms on C60@hybrid          -1.779 

20 Li atoms on graphene-C60 hybrid          -1.624 

Li-Li (experiment / theory:Dmol
3
)          -1.030[92] / -1.008 
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 In region 1 of the hybrid systems (Figure 6.11.a), the adsorption energy is the 

same for both N.N.N. and N.N. schemes because both second Li atoms moved to the 

strong electron affinity C60. Furthermore, the Li adsorption energy (-1.874 eV) was 

lowered compared to the one-Li system (-1.769 eV) even though the adsorption energy 

usually increased as the number of Li atoms increased. This is again related to the size of 

the unit structure because both Li atoms are strongly affected in the presence of C60; the 

adsorption is even lowered in two-Li systems. The adsorption energy was the lowest 

(Figure 6.11.b, -2.154 eV ~ -2. 178 eV) in region 2 through simultaneous interaction with 

both components; therefore, it had similar value, and it appeared that adsorption was 

independent of the adsorption sites compared to other regions. We also examined the 

adsorption direction by comparing the adsorption energy of two-Li system starting from 

Pos2@C60 (region 2) to another site in C60 or to graphene assuming the N.N.N. scheme. 

The energy toward C60 (-2.154 eV) was lower than graphene (-1.888 eV) as we expected 

because C60 usually provides strong adsorption sites through its strong electron affinity. 

Therefore, we can confirm again that Li will cover the C60 surface first. The adsorption 

energy in region 3 (between C60s) was also low, ranging from -1.891 ~ -2.066 eV due to 

the strong electron affinity of C60. It appears that the adsorption energy of the N.N.N. 

scheme was slightly low although the adsorption energy value was similar to the other 

directions. In region 4, the adsorption energy was calculated as -1.971 eV for the 

pentagonal site (Figure 6.11.d, N.N.N. site) and -1.899 eV for the hexagonal site (N.N. 

site), which suggests that the Li adsorption will take place using the N.N.N. sites of the 

pentagon site for C60. It appears that Li adsorption preferred the N.N.N. scheme; however, 

its dependence was weaker than the CNT-C60 hybrid system when we considered both 
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the unit size of the system and the planar structure of the graphene. The Li adsorption 

mechanism is strongly influenced by C60. Therefore, Li adsorption will start from C60 and 

proceed to the graphene in the direction that maximizes the exposure to C60.  

 

a FinalInitial

 

b
Initial Final

 

c Initial Final

 

d Initial Final

 
 

 

Figure 6.12: The initial and optimized structures of two-Li adsorption on graphene-

C60 nanobuds in different regions: (a) region 1; (b) region 2; (c) region 3; and (d) 

region 4 (1
st
 Li atom: purple and 2

nd
 Li atom: blue or green). 
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Table  6.5: The adsorption energy of two- Li aomts adsorption on the graphene-C60 

nanobud system 

 System 
Adsorption Energy 

(eV) 

2 Li on region1: N.N.N. site -1.971 

2 Li on region1: N.N. site -1.972 

2 Li on region2: Radial (N.N.N. site) -2.141 

2 Li on region2: Radial (N.N. site) -2.133 

2 Li on region2: Axial (N.N. site) -2.109 

2 Li on region3: Axial (N.N.N. site) -2.130 

2 Li on region3: Axial (N.N. site) -2.091 

2 Li on region3 to region2: N.N.N. site -2.229 

2 Li on region3 to region2:N.N. site -2.199 

2 Li on region3 to region4: N.N.N. site        -1.984 

2 Li on region3 to region4:N.N. site         -1.943 

2 Li on region4: Radial (N.N.N. site)         -1.987 

2 Li on region4: Radial (N.N. site)         -1.905 

18 Li atoms on graphene-C60 nanobud         -1.684 

 

The Li adsorption mechanism on the graphene-C60 nanobud also follows the hybrid 

system with only slight differences. Therefore, two-Li adsorption in region 1 results in 

the same adsorption energy using either the N.N.N. scheme (-1.971 eV) or the N.N. 

scheme (-1.972 eV). The N.N.N. scheme (-1.987 eV) is slightly preferred to the N.N. 

scheme (-1.905 eV) in region 4. The two-Li adsorption energy is also low in region 2 and 
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region 3, ranging from -1.943 eV to -2.229 eV. It appears that there is no apparent site 

dependency in these regions although the N.N.N. scheme was slightly lower than the N.N. 

scheme in both regions. Hence, the Li adsorption driven by C60 will occur on the entire 

C60 surface before proceeding to the graphene sites on the graphene-C60 nanobud system. 

We also checked the corresponding changes in the band structures of some two-Li 

atom systems in each region at the graphene-C60 hybrid and nanobud system as shown in 

Figures 6.13 and 6.14, respectively. From the table, we observed a significant band shift 

whenever another Li atom was added to both systems compared to the one-Li adsorption. 

The bands in close proximity to the additional Li were mainly affected and shifted down 

through increased Fermi levels as electrons were injected from the Li atoms into the 

system. 

 Finally, we added many Li atoms around both systems based on the N.N.N. 

scheme. We added 8 Li atoms at only graphene@hybrid sites, 12 Li atoms at C60@hybrid, 

20 atoms at whole@hybrid or 18 atoms at whole@nanobud. We also prepared the pure 

graphene and C60 having the same number of Li atoms for comparison. The initial 

structure and optimized systems are presented in Figure 6.15, and adsorption energies are 

listed in Tables 6.4 and 6.5. From the optimized structures, we observed that Li atoms 

initially attached to the graphene@hybrid or graphene@nanobud sites (Figures 6.15.a, c, 

and d) and were attracted toward the C60 as a CNT-C60 system. However, Li atoms 

around C60, as shown in Figures 6.15.b and c, retained their positions. 
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Figure 6.13: The band structures of two-Li adsorption in different regions on the 

graphene-C60 hybrid system: (a) region 1; (b) region 2; (c) region 3; and (d) region 4. 
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Figure 6.14: The band structure of two-Li adsorption in different regions on the 

graphene-C60 nanobud system: (a) region 1; (b) region 2; (c) region 3; and (d) region 

4. 
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Figure 6.15: Initial and optimized structures on multi-Li systems: (a) 8 Li atoms on 

graphene@hybrid; (b) 12 Li on atoms on C60@hybrid; (c) 20 Li atoms on 

whole@hybrid; and (d) 18 Li atoms on whole@nanobud. 
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Adsorption energies for the multiple Li adsorption are -1.511 eV for 

graphene@hybrid, -1.776 eV for C60@hybrid, -1.621 eV for the entire hybrid system and 

-1.684 eV for the entire nanobud system. These adsorption energies indicate that Li 

adsorption will take place on the C60 side until all of the available sites on the C60 are 

completely filled before proceeding to the sites on the graphene as found from the two-Li 

adsorption. Even though the Li adsorption energy decreases with an increasing number of 

Li atoms, all of these adsorption energies are lower than the Li-Li binding energy (-1.030 

eV [92]). Therefore, Li cluster formation is not likely to occur until all of the available 

sites on the graphene-C60 hybrid or nanobud systems are covered. Also, the binding 

energy is still lower than that of pure graphene (-1.086 eV) and C60 (-1.594 eV) systems 

having the same number of Li atoms. Therefore, graphene-C60 hybrid or nanobud systems 

appear to be promising for use as a possible electrode for Li batteries in terms of Li 

adsorption.  
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Figure 6.16: The band structure of multi-Li adsorbed systems; (a) 8 Li atoms on 

graphene@hybrid; (b) 12 Li on atoms on C60@hybrid; (c) 20 Li atoms on 

whole@hybrid; and (d) 18 Li atoms on whole@nanobud. 
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Figure 6.17: Density of states for various numbers of Li atoms adsorbed on (a) a 

graphene-C60 hybrid system; (b) a graphene-C60 nanobud system; (c) multi-Li on 

different sides of the hybrid system; and (d) comparison with the DOS of pure 

graphene, C60, hybrid and nanobud systems. 
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Figure 6.16 shows the band structure of the multiple-Li adsorbed graphene-C60 systems. 

From the band structure, we observed that the number of available energy bands around 

the Fermi level increased significantly in the graphene-C60 systems, which indicates that 

Li adsorption enhances the metallic characteristics of the system, such as conductivity. 

This result was confirmed by the DOS as shown in Figures 6.17.a and b, which was as a 

function of the number of Li atoms. In the figure, the Li adsorbed systems have more 

DOS around the Fermi level, especially after more than two Li atoms are adsorbed on the 

system compared to the pure graphene-C60 hybrid system. It indicates the enhanced 

metallic character of the graphene-C60 system and it could contribute to increases in the 

system’s electron transport properties. Finally, we compared the DOS of the graphene-

C60 hybrid and nanobud system with pure graphene or pure C60 systems to examine the 

effect of Li adsorption on the electronic structure of the hybrid and nanobud systems. As 

shown in Figure 6.17.d, the DOS of the hybrid and nanobud systems apparently retains 

more electrons around the Fermi level than pristine graphene and C60, which indicates 

that the hybrid/nanobud system could be more conductive than a pure graphene or C60 

system after Li adsorption. 

 

6.4 Graphene-C60 hybrid and nanobud systems in the condensed phase 

6.4.1 Pure graphene-C60 hybrid and nanobud system in the condensed phase  

We also investigated a graphene-C60 hybrid and nanobud system in the condensed 

phase by allowing interactions between each component, which is expected to affect the 

adsorption energy of the Li atom. We used an experimentally determined distance 

between graphene and C60 (6.35 Å ) [48] to generate a condensed structure in both 

systems. Both structures were further optimized for geometry while the cell size was held 
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constant. Figures 6.18.a-b and d-e show the top and side view of the optimized structure 

in the condensed phase of the graphene-C60 hybrid and nanobud system. The 

corresponding band structure and DOS of each system are represented in Figures 6.18.c, f 

and g. Even though the charge transfer from graphene to C60 increased from 0.095e to 

0.118e for the hybrid and from 0.059e to 0.067e for the nanobud system because of the 

mutual interactions of all of the components in the packed structure, the band structure 

and DOS remained constant compared to the dilute phases of the systems. Thus, both 

nanobud and hybrid systems retain their metallic character.  

 

6.4.2 Single Li atom on the graphene-C60 hybrid and graphene-C60 nanobud system 

We also examined the adsorption of one Li on various positions of the condensed 

system, as in the dilute system. The position of the added Li atom was chosen on either 

the center of the hexagonal sites of graphene or on the pentagonal and hexagonal sites of 

the C60 as in the dilute phase. However, we did not distinguish regions in the condensed 

phase systems because its symmetric structure results in similar contributions to Li 

adsorption regardless of region. Two positions were chosen on the top of graphene 

(Pos1_graphene and Pos2_graphene), and we identified the positions around the C60 as 

either between graphene and C60 (Pos1,2,5,6@C60) or between C60s (Pos3,4@C60) for 

both systems as shown in Figures 6.19.a and c. The optimized structures are represented 

in Figures 6.19.b and e, and the adsorption energies and charge distributions are listed in 

Tables 6.6 (hybrid) and 6.7 (nanobud). Most Li atoms are strongly bound to carbon atoms 

and retain their initial position except in Pos2@graphene or Pos1-3_C60@nanobud. The 

former position is attracted to the C60 side because of the influence of the C60, while the 

latter position, which is initially located near the bonds between graphene and C60, is 
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Figure 6.18: Graphene-C60 hybrid system in the condensed phase: (a) top view of the 

expanded (3x3x3) structure; (b) side view (unit cell: a and b=12.3 Å  and c=12.7 Å ) 

and (c) band structure. Graphene-C60 nanobud hybrid system in the condensed 

phase: (d) top view of the expanded (3x3x3) structure; (e) side view (unit cell: a and 

b=12.3 Å  and c=12.48 Å ); (f) band structure; and (g) density of states (DOS) of the 

hybrid and nanobud systems in both dilute and condensed phases. 

 

displaced away from the bonds. The Li adsorption energy in the condensed phase was 

lower than that in the dilute phase, especially between graphene and C60 (bonded or non-

bonded region) for both systems. A hybrid and nanobud structure is generated in the 

nanobud system when the nanobud system forms in the condensed phase as a result of 

van der Waals interactions. Therefore, Li adsorption occurs at the position between 

graphene and C60, which usually provides the strongest adsorption sites. Moreover, the 

energy between C60s such as Pos3 and Pos4_C60 was very similar in both systems 

because the adsorption at this area was only determined by interactions with C60. 

The corresponding band structures of several one-Li-adsorbed systems are shown 

in Figures 6.20 and 6.21 for the hybrid and nanobud systems, respectively. The band 

structures were similar in the dilute phase, which indicates that Li adsorption mainly 

causes the two bands originating from the C60 to move down to the Fermi level. 
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Figure 6.19: One-Li adsorption on various positions around the graphene-C60 

hybrid in the condensed phase: (a) initial structure and (b) optimized structure. 

One-Li adsorption on various positions around the graphene-C60 nanobud in the 

condensed phase: (c) initial structure and (d) optimized structure.   

 

Table  6.6: The adsorption energy and charge distribution (Mulliken charge) of one-

Li atom on the condensed graphene-C60 hybrid system 

System 
Adsorption Energy 

(eV) 

Charges (e) 

Li graphene C60 

graphene-C60 hybrid N/A N/A 0.118 -0.118 

Pos1_graphene@hybrid -1.817 0.856 -0.322 -0.534 

Pos2_ graphene @hybrid -2.346 0.906 -0.176 -0.730 

Pos1_C60@ hybrid (hexagon site) -1.708 1.187 -0.323 -0.864 

Pos2_C60@ hybrid (pentagon site) -2.340 0.910 -0.184 -0.726 

Pos3_C60@hybrid (hexagon site) -1.991 0.851 -0.016 -0.835 

Pos4_C60@ hybrid (pentagon site) -2.133 0.855 0.018 -0.873 



 157 

Table  6.7: The adsorption energy and charge distribution (Mulliken charge) of one-

Li atom on the condensed graphene-C60 nanobud system 

System 

Adsorption 

Energy 

(eV) 

Charges (e) 

Li graphene C60 

graphene-C60 nanobud N/A N/A 0.067 -0.067 

Pos1_graphene@nanobud -1.905 0.854 -0.397 -0.457 

Pos2_ graphene @nanobud  -2.352 0.870 -0.372 -0.498 

Pos1_C60@nanobud  -2.296 0.865 -0.368 -0.497 

Pos2_C60@nanobud  -2.179 0.859 -0.326 -0.533 

Pos3_C60@anobud  -1.983 0.853 -0.057 -0.796 

Pos4_C60@nanobud  -2.143 0.863 -0.046 -0.817 

Pos5_C60@nanobud  -2.333 1.119 -0.473 -0.646 

Pos6_C60@nanobud  -2.457 1.000 -0.407 -0.593 

 

However, Li adsorption does not alter the intrinsic properties of the system; therefore, a 

band structures are still similar to the pure hybrid or nanobud system without Li atom. 

 

6.4.3 Multiple Li atoms on graphene-C60 hybrid and graphene-C60 nanobud system 

 We added another Li atom (blue or green) near the first Li atom (purple) of low 

adsorption energy following the method in the previous chapter to investigate the Li 

adsorption mechanism. As a result, the second atom was adsorbed on the next nearest 

neighboring (N.N.N.) or the nearest neighboring (N.N.) site in either the radial or axial 

direction along the axis of the graphene surface starting from the first Li atom positioned  
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Figure 6.20: The band structure of several one-Li systems in the condensed phase: 

(a) Pos1_graphene@hybrid; (b) Pos2_graphene@hybrid; (c) Pos2_C60@hybrid; and 

(d) Pos4_C60@hybrid. 
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Figure 6.21: The band structure of several one-Li systems in the condensed phase: 

(a) Pos1_graphene@nanobud; (b) Pos1_C60@nanobud; (c) Pos4_C60@nanobud; 

and (d) Pos5_C60@nanobud.   
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at graphene@hybrid/nanobud or C60@hybrid/nanobud. Initial and optimized structures of 

the two-Li atom adsorbed systems are displayed in Figures 6.22 and 6.23 along with the 

corresponding band structures of some systems. The adsorption energies of the two atom 

systems are summarized in Tables 6.8 and 6.9. 

 

Table  6.8: The adsorption energy of two- Li atoms adsorption on graphene-C60 

hybrid system in condensed phase 

Starting position Direction Adsorption Energy (eV) 

2Li starting from 

Pos1_graphene@hybrid 

N.N.N.site -2.143 

N.N.site -2.147 

2Li starting from 

Pos2_C60@hybrid 

Radial (N.N.N. pentagon site) -2.412 

Radial (N.N. hexagon site) -2.266 

Axial (N.N.N. hexagon site) -2.449 

Axial (N.N.N. pentagon site) -2.496 

Axial (N.N. hexagon site) -2.261 

20 Li atoms on condensed 

graphene-C60 hybrid 
 -1.894 
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Figure 6.22: Two-Li adsorption on various regions. Two-Li configuration starting at 

Pos1_graphene@hybrid: (a) initial structure; (b) optimized structure; and (c) band 

structure of the next nearest neighboring (N.N.N) site. Two-Li configuration 

starting at Pos2_C60@hybrid: (d) initial structure; (e) optimized structure; and (f) 

band structure of the next nearest neighboring (N.N.N.) site in the axial direction. 
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Table  6.9: The adsorption energy of two- Li atoms adsorption on graphene-C60 

nanobud system in condensed phase 

Starting position Direction Adsorption Energy(eV) 

2Li starting from 

Pos1_graphene@nanobud 

N.N.N.site -2.249 

N.N. site -2.249 

2Li starting from 

Pos1_C60@nanobud 

Radial (N.N.N. pentagon site) -2.450 

Radial (N.N. hexagon site) -2.384 

Axial (N.N.N. pentagon site) -2.498 

2Li starting from 

Pos6_C60@nanobud 

Radial (N.N.N. hexagon site) -2.462 

Radial (N.N.N. pentagon site) -2.559 

Radial (N.N. hexagon site) -2.402 

Axial (N.N.N. hexagon site) -2.667 

Axial (N.N.N. pentagon site) -2.653 

Axial (N.N. hexagon site) -2.562 

18 Li atoms on condensed 

graphene-C60 nanobud 
 -1.983 

 

 

In these tables, we show that the Li adsorption energy of the two Li systems is 

lower than in the dilute phase as a result of the combined interactions from each 

component. Furthermore, it appears that the N.N.N. scheme is slightly preferred to the 

N.N. scheme for both systems in the condensed phase (~ 0.2 eV/hybrid and ~ 0.1 

eV/nanobud). However, it seems that the Li adsorption energies in the radial and axial 

directions are similar when the same scheme is used (N.N.N or N.N.) because the strong 

Li adsorption is mainly driven by C60 in the closely packed structure. 
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Figure 6.23: Two-Li adsorption on various regions. Two-Li configuration starting at 

Pos1_graphene@nanobud: (a) initial structure; (b) optimized structure; and (c) 

band structure of the next nearest neighboring (N.N.N) site. Two-Li configuration 

starting at Pos1_C60@hybrid: (d) initial structure; (e) optimized structure; and (f) 

band structure of the next nearest neighboring (N.N.N.) site in the radial direction. 

Two-Li configuration starting at Pos6_C60@hybrid: (g) initial structure; (h) 

optimized structure; and (i) band structure of the next nearest neighboring (N.N.N.) 

site in the axial direction.  
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 The lowest adsorption (-2.402 eV ~ -2.667 eV) in the nanobud system is located 

in the site between graphene and C60 (Pos6@C60: non-bonded regions) although the site 

closest to the covalent bond (Pos1@C60: close to bond) also possesses low adsorption 

energy (-2.384 eV ~ -2.498 eV). It indicates that selection of the appropriate site between 

graphene and C60 can maximize Li adsorption while the Li atoms are unable to enter the 

sites closest to the covalent bond or the sites in the middle between graphene and C60. 

Therefore, the maximum number of Li atoms will be lower in the nanobud system than in 

the hybrid system. We also observed similar band shifts to the dilute phase after 

additional Li adsorption in the system as represented in Figures 6.22 and 6.23. Therefore, 

bands created from the graphene and C60 moved down below the Fermi level as a result 

of electron injection from Li atoms, which was also observed in the CNT-C60 hybridized 

system. The density of states (DOS) shown in Figures 6.24.a and b also verifies this 

change. Thus, the DOS around the Fermi level rapidly increase after two-Li adsorption 

on the system, and many more states appear as the number of Li atoms increases, which 

indicate that conductivity is enhanced after Li adsorption. 
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Figure 6.24: Density of states for various numbers of Li atoms adsorbed on a (a) 

graphene-C60 hybrid system and on a (b) graphene-C60 nanobud system.  
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Finally, we investigated multi-Li systems consisting of 20 Li atoms around the 

hybrid and 18 Li atoms around the nanobud systems assuming the N.N.N. scheme 

adsorption mechanism. Figures 6.25 and 6.26 show the initial and optimized structure 

along with the corresponding band structures and density of states of the graphene-C60 

hybrid and nanobud systems in the condensed phase.  
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Figure 6.25: Multi(20)-Li atom adsorption on the entire hybrid system: (a) initial 

structure; (b) optimized structure; (c) band structure; and (d) density of states in 

the pure condensed phase with 20 Li atoms on the hybrid system in the dilute phase.  
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Figure 6.26: Multi (18)-Li atom adsorption on the entire nanobud system: (a) initial 

structure; (b) optimized structure; (c) band structure; and (d) density of states in 

the pure condensed phase with 18 Li atoms on the nanobud system in the dilute 

phase. 

 

 

The Li adsorption energies are -1.894 eV (hybrid) and -1.983 eV (nanobud), 

which are much lower than in the dilute system (-1.624 eV:hybrid and -1.684 eV: 

nanobud) and the Li-Li binding energy (-1.030 eV). Thus, we can expect Li atoms will 

remain on the surface of the hybrid/nanobud system rather than forming clusters. As a 
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result, enhanced Li adsorption will take place on the C60 side first, initiated at the site 

between graphene and C60, to cover the entire surface of C60 and proceed to the graphene 

side starting at the sites closest to C60. The only difference between the hybrid and 

nanobud systems appears to be that the Li atom cannot be located close to the covalent 

bond in the nanobud system, which may result in a greater number of adsorption sites in 

the hybrid system. We also observed potential enhancement of the metallic character of 

the system as a result of the band structure and DOS. This system showed significant 

increases in the number of bands (Figures 6.25.c and 6.26.c) and electron density 

(Figures 6.25.d and 6.26.d) across the Fermi level than in the pure hybrid/nanobud 

system along with a slightly higher electron density in the conduction band than in the 

dilute system. Therefore, we expect that the enhanced metallic character could improve 

the electron transport properties and Li adsorption capabilities as a result of the 

hybridized system. 

 

6.5. Conclusion 

We investigated Li adsorption on the graphene-C60 hybrid and nanobud system 

using the density functional theory (DFT) in both the dilute and condensed phases. 

Although it was found that the hybrid system retained the characteristics of its 

components, such as graphene and C60 in its electronic structure, it was observed that the 

charges were transferred from graphene to C60 making the graphene positively charged 

(+0.095e) and the C60 negatively charged (-0.095e). Similarly, the covalently bonded 

graphene-C60 nanobud:hh demonstrated the same direction of charge transfer from 

graphene to C60 ( e059.0 ); however, a small band gap (0.30 eV) was created for the 

graphene-C60 nanobud:hp after the [2+2] cycloaddition reaction. The electronic properties, 
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such as the band structure and density of states (DOS) did not change when the systems 

formed the condensed structure, while the charge transfer increased slightly for the 

hybrid ( e118.0 ) and nanobud ( e067.0 ) systems because of the interaction between the 

components in the condensed phase.  

We found that Li adsorption was enhanced compared to the pure graphene system. 

This enhanced adsorption capability may be explained by the high electron affinity of C60 

and the charge transfer from graphene to C60. Furthermore, we determined that the Li 

adsorption mechanism will preferentially occur on the C60 side, specifically at the space 

halfway between graphene and C60 or between C60s and proceed toward the graphene 

side by analyzing the Li adsorption as a function of various regions in the graphene-C60 

systems. Meanwhile, Li adsorption capability was further enhanced in the condensed 

phase as a result of the compact and symmetric structure, and adsorption energies were 

lower than in the dilute phase system. Consequently, it was unlikely that Li clusters 

would be formed because the Li-C adsorptive interaction was more stable than the Li-Li 

binding interaction.  

Although there was no significant change in the band structure after one Li atom 

was adsorbed on the graphene-C60 systems, additional Li adsorptions shifted the energy 

bands downward and even removed the band gap of the nanobud system as a result of 

electron injection from Li to the system in the dilute and condensed phases. Density of 

states (DOS) in the hybrid and nanobud system also indicated that the metallic character 

of the graphene-C60 system was enhanced as the number of Li atoms increased. Hence, it 

is expected that the graphene-C60 hybrid and nanobud systems will demonstrate enhanced 

conductive properties along with excellent Li adsorption capabilities compared to the 

pure graphene system.  



 168 

CHAPTER 7 

CONCLUSIONS 

 

 In this research, we investigated various hybrid materials consisting of carbon 

allotrope to predict the Li adsorption capabilities for developing an anode material in a Li 

ion battery system. Graphitic carbon anodes have been widely adapted for the current Li 

ion battery application, but these anodes demonstrate low energy density and cycle 

efficiency. Thus, various Li intercalation materials have been studied from carbon 

nanotubes (CNTs) to silicon to increase the Li adsorption capacity. However, early 

studies on Li intercalation to CNTs showed slight increases of reversible capacities 

comparing to current graphitic carbon material. Moreover, silicon based composite 

materials are very unstable in spite of their very high capacity. Despite the early failure to 

fabricate an adequate device using pure CNTs, it appears that the use of CNTs in Li ion 

batteries remains promising due to the vast surface area and outstanding electrical and 

mechanical properties of CNTs. Therefore, various modifications on the CNT, such as 

forming structural defects, doping impurities and mixing carbon-based materials, have 

been attempted to enhance the electrochemical properties. Among those modifications, a 

hybridized structure consisting of carbon material appears to be the most useful because 

it can achieve improved electrochemical properties without deteriorating processes, 

which is necessary for the other modifications. Therefore, we focused on diverse 

combinations and forms of hybridized materials prepared from CNTs, fullerene (C60) and 

graphene. Specifically, the structure hybridized with C60 was our main priority because 

the high electron affinity C60 allows it to be utilized as an electron acceptor for Li atoms 
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by providing strong Li adsorption sites. We used the density functional theory (DFT) 

through DMol
3
 for predicting the Li adsorption energy and electronic properties, such as 

band structure, density of states (DOS) and charge distribution of the Li-adsorbed system.  

The CNT-C60 hybrid system presented in Chapter 3 provides a simple structure, 

which is maintained by weak dispersion interaction. Therefore, the hybrid system retains 

the metallic characteristics of its components. Furthermore, it demonstrated charge 

transfer from CNT to C60 ( e096.0 ), which resulted in a positively charged CNT surface 

while C60 was negatively charged. This charge transfer helps achieve better Li adsorption 

on the CNT side and lower Li adsorption energy (-2.571 eV) compared to a pristine CNT 

system (-1.720 eV). We also found that Li will adsorb preferably in the C60 side, 

especially in the space between C60s or between CNT and C60, and proceed toward the 

CNT side instead of forming Li clusters. The electronic properties, such as the band 

structure and DOS, indicate that it generates more available electrons around the Fermi 

level as the number of Li atoms increases. Hence, the CNT-C60 hybrid system is expected 

to demonstrate enhanced conductivity and superior Li adsorption capabilities compared 

to the bare CNT system. Li adsorption is further enhanced and uniform over the entire 

hybrid system in the condensed phase. This can be attributed to the compact and 

symmetric structure, which enables simultaneous interactions between both the CNT and 

C60 in the system.  

In Chapter 4, we studied another type of CNT-C60 hybridized system called 

nanobud. C60 is covalently bonded to a CNT via a [2+2] cycloaddition reaction in the 

nanobud system, but the covalent bond changes the original properties of the CNT and 

creates a small gap in the metallic system while decreasing the band gap in the 
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semiconducting system. Therefore, the nanobud will be useful in tuning the band gap of 

the system by manipulating the chirality of CNT, the density of the C60 or the bond type. 

Li adsorption on the nanobud system is also enhanced compared to the bare CNT system 

as a result of C60, even though the Li adsorption was higher than in the CNT-C60 hybrid 

system due to the covalent bond at the junction. However, the degree of Li adsorption 

increases again in the condensed phase of the nanobud system. The Li adsorption 

mechanism is very similar to the hybrid system: however, the Li cannot access the exact 

middle between the CNT and C60 because of the covalent bond connecting the CNT and 

C60; therefore, the Li atom closest to the bond will eventually be repelled outward instead 

of forming a Li-C bond. 

We investigated the 3D nano-network structure; all of the CNTs and C60 were 

connected by a covalent bond. This network system demonstrated improved mechanical 

strength (Young’s modulus ~ 70 GPa) in the radial direction of the CNT axis, which was 

relatively weak (~ 4 GPa) in the pure CNT system. Therefore, the nano-network system 

is expected to have greater mechanical strength in both the axial and radial directions (to 

the axis of the CNT). However, the nano-network system is semiconducting with a band 

gap of 0.34 eV even though charge still transfers from CNT to C60 ( e187.0 ). 

Additionally, the Li adsorption energy is also low in the network system as a result of C60 

and its compacted structure. However, the additional Li atoms did not significantly alter 

the electronic properties of the original nano-network system in comparison to the CNT-

C60 hybrid or nanobud systems. 

Finally, we examined a graphene-C60 hybrid and nanobud system, which can be 

combined with the current graphitic anode in the Li battery system. The graphene-C60 
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hybrid system retains its metallic character by weak dispersion interactions, while the 

nanobud system is constructed through covalent bond between graphene and C60, similar 

to the CNT-C60 hybridized system. The Li adsorption capability (~ -1.893 eV: hybrid 

system and -2.070 eV: nanobud system for a one-Li adsorbed system) of the graphene-

C60 hybridized system was enhanced by C60 compared to the pure graphene system (~ -

1.375 eV), although Li adsorption energy was generally higher than in the CNT-C60 

systems.  

In conclusion, a CNT or graphene hybridized with C60 shows enhanced Li 

adsorption capabilities compared to pristine systems due to C60. The C60 in the hybridized 

system provides strong adsorption sites and charge transfer, which allows the other 

component in the hybridized system to be positively charged as a result of its high 

electron affinity. This charge transfer results in lowered Li adsorption energy on the CNT 

or graphene side. Furthermore, Li adsorption starts from the C60 sites between the CNT/ 

graphene and C60 or between C60s and proceeds to the remaining CNT/graphene sites. We 

also demonstrated that mechanical strength could be increased by increasing the number 

of bonds connecting each component. Thus, the nano-network system showed an 

increased Young’s modulus in both the radial and axial directions of the CNT axis. 

Hence, we are able to tune the electronic and mechanical properties by choosing different 

components, controlling the packing density of the components and changing 

connections between components to prepare this hybrid material system. This hybridized 

system will demonstrate enhanced Li adsorption capabilities in its application as an 

electrode in electrochemical devices. 
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