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NOMENCLATURE

MA Maneuver Automaton

ODE Ordinary Differential Equation

UAV Unmanned Aerial Vehicle

ceq(x,u) Denotes equality constraints on states and controls

c(x,u) Denotes inequality constraints on states and controls

˙(•) = d(•)/dt Derivative with respect to time

J Cost function

JR Robust cost function

Jopt Optimal cost function for nominal optimization

JRopt Optimal robust cost function for worst case optimization

nT length of q

nM length of p

p Maneuver

p Vector of trajectory maneuvers

PM Set of all maneuvers defining the library

q Trim condition

qfrom Trim condition a maneuver is initiated from

qto Trim condition a maneuver leads to

q Vector of trajectory trims

QT Set of all relative equilibria defining the library

qopt Optimal vector of trajectory trims for nominal optimization

qRopt Optimal vector of trajectory trims for worse case policy

r Yaw rate while in trim

ǫr Uncertainty in the trim yaw rate
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S Invariant mechanical system

t Time

t0 Initial time

tf Final time

T Fixed maneuver duration

ǫT Uncertainty on the fixed maneuver duration

T Vector of trajectory maneuver durations

u Denotes the control inputs to S

UT Set of all possible sequences of motion primitives

ufwd Forward velocity while in trim

uside Side velocity while in trim

ǫufwd
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ǫuside
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εufwd
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εuside
Percent error in the side trim velocity

εur
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w Generalized velocities

wq Generalized velocities specific to trim q
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X State space of S
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τ Variable trim coasting time

τ Vector of trajectory trim coasting times

τopt Optimal vector of trajectory trim coasting times for nominal optimization
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φ(·) Function describing the evolution of the system while in trim

γ Uncertainty level
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SUMMARY

The scope of this research is to develop an algorithm that enables an autonomous

vehicle to construct a trajectory between an initial position and a final determined target.

The trajectory is executed minimizing a performance index and thus, solving an optimal

control problem. The discretization of the system dynamics is favored by the use of a hybrid

maneuver automaton, whose characteristics are stored within a motion primitive library.

To bring robustness to the overall behavior of the vehicle, uncertainties are accounted for.

Those uncertainties in the dynamics of the vehicle are directly introduced within the motion

primitive library. Georgia Tech’s autonomous GT-Max simulator is used in order to obtain

all the data provided in this library.

The data acquired represents the dynamics of the system within the maneuver automa-

ton framework and is used to build a graph of possible trajectories, given initial conditions

on the dynamics of the system and on the position vector. A nominal optimal control prob-

lem is run for each trajectory, omitting uncertainties. In parallel, an optimization which

incorporates the uncertainties on the motion primitives within the motion planning problem

is carried on. Feedback is introduced in a model predictive way, by the use of Receding

Horizon Control. Consequently, the problem is repeated for both optimizations in closed

loop until the system reaches the final target within an allowable tolerance margin.

Considering a minimum time problem, it can be predicted that, although the nominal

trajectory is initially the fastest one, it performs very poorly in closed-loop when uncertain-

ties are introduced. The reason for this poor behavior is the fact that, the solutions to the

nominal optimization problem involve maneuvers, which are associated with uncertainties

large in magnitude. The closed-loop trajectory of the policy in which uncertainties are

accounted for is expected to perform better and to be less perturbed given that it uses more

cautious primitives.

xviii



CHAPTER I

INTRODUCTION

This research proposes a new formulation of the motion planning problem for unmanned

aerial vehicles. Recent research efforts in this area have relied on deterministic models.

Uncertainties were only accounted for during trajectory tracking, which results in the cor-

rection of model uncertainties only a posteriori, while the whole movement planning is done

in a purely deterministic fashion. This is fallacious because it relies on the assumption that

all uncertainties can be reduced to disturbances of deterministically planned trajectories.

It is therefore essential to introduce uncertainties both at the path planning and trajectory

tracking levels. The algorithm that was developed for this research seeks to incorporate

uncertainties in vehicle parameters at the level of motion planning.

1.1 Hierarchical Decomposition of the Flight Control Sys-

tem

The motion planning problem of autonomous vehicles is complex in nature and therefore

computational tractability is mostly difficult to achieve. In order to reduce this complexity

autonomous vehicles undergo a hierarchical decomposition of controls into decision layers

[25]. More precisely, three layers are defined:

Strategic layer: This layer corresponds to the definition of the mission objectives by a

central command decision making entity, in most cases a human operator.

Tactical layer: In this layer the motion planning algorithm decides on how to best fulfill

the goals set by the upper strategic layer.

Reflexive layer: This layer, also called skill layer, consists in tracking the trajectory

planned at the tactical layer in addition to regulating and stabilizing the vehicle.
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This hierarchical decomposition mimics the way human piloted aircrafts operate. For ex-

ample, in such a system, the strategic layer will correspond to the pilot receiving a mission

and preflight briefings from the control tower, the tactical layer matches the decision process

the pilot undergoes on how to best accomplish the mission given to him in accordance with

the briefings provided, and finally the mission will depend on the pilot’s actual skills.

In current Unmanned Aerial Vehicles (UAV) the higher layer in the hierarchy is still given

to the hands of humans. However, it is desired to achieve complete autonomous behavior

of the two other layers. The proposed research will concentrate on adding robustness to the

tactical layer. The motion planning will be performed using a maneuver automaton (MA)

representation of the dynamics of the vehicle.

1.2 Maneuver Automaton

At the tactical level, the motion planning problem for UAVs is usually tackled as an optimal

control problem. In fact, simple solutions such as purely kinematic planning or definition

of way-points and subsequent spline interpolation will lead, in general, to unfeasible trajec-

tories for highly agile autonomous vehicles. Recent effort in this area take into full account

the systems’ dynamic characteristics [12, 15, 23]. The MA representation of the dynamics

of the system is a modelling language for UAV trajectories, that is based on the inter-

connection of motion primitives, each primitive corresponding to a feasible and therefore

trackable vehicle maneuver. The optimal control problem of path planning is then tran-

scribed into the simpler problem of finding the best sequence of motion primitives within

the library that minimizes a given cost function, which in the case presented is time. The

path planning equations presented in Pb. 5.1 are very time consuming, and therefore costly,

if integrated in real-time. In order to achieve computational tractability, the MA framework

was introduced, in which the discretization is done off-line.
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1.3 Dealing with Uncertainties

In complex real-life applications, especially in hostile environments, there are important

sources of uncertainty that affect the decision making of autonomous agents. The uncer-

tainties affecting a system can be classified as

• epistemic, i.e. due to a lack of knowledge, and

• aleatory, also known as objective or inherent uncertainty.

The inevitable presence of uncertainties is usually relegated at the level of the reflexive

layer, which then takes the additional role of making the system properly robust to model

disturbances. This implies that the motion planning problem is usually regarded as a purely

deterministic one, while the stochastic nature of the vehicle control is dealt with only at

the lower reflexive layer. It is this inner real-time control loop that ensures proper tracking

of the planned trajectory, eliminating the effects of uncertainties on the knowledge of the

vehicle physical characteristics and of the environment. In the MA representation of the

dynamics as introduced in [12, 15], uncertainty is mainly present in the parameters of the

motion primitives. These are due to poor modelling of the dynamics of the system as well

as to external environmental changes. At the level of motion planning, a feasible sequence

of motion primitives as a result of an optimization problem will lead, in the presence of

uncertainties to perturbed and even unfeasible trajectories. Therefore, an optimization

based on the nominal policy where uncertainties are disregarded is not optimal.

1.4 Research Motivation

The decision making process that takes place at the tactical level is not and should not be

seen as a purely deterministic operation, but should account for the presence of uncertain-

ties. In fact, a capable pilot operating at the tactical level makes tactical decisions that

maximize the chances of reaching the mission objectives. These decisions are based on a

number of complex non-deterministic interacting factors, such as the operator’s inevitably

limited information, willingness to assume a certain level of risk, ability to estimate the

probable reward implied by a given action, skill in assessing the risks implied by a given

3



decision, and ultimately on the operator’s experience in predicting the outcome of given

decisions in uncertain situations. By using purely deterministic processes at the tactical

level, one negates the fundamental risk-management nature of the human tactical decision

making process.

The uncertainties in system parameters and in the environment are essential and cannot be

simply reduced to disturbances of deterministically planned paths. Failure to incorporate

epistemic uncertainty also at the level of the tactical layer can lead to mission failure, since

the reflexive layer is not capable of correcting wrong decisions made at the tactical layer.

In order to better explain this concept, consider for example the case of path planning in

the presence of multiple moving dynamic obstacles, as for example in the case of multiple

agents co-operating on a common goal, but acting independently and making autonomous

decisions. A deterministically computed trajectory could fail to avoid an obstacle and lead

to a potential crash, for example because the relative positions of the vehicles were only

approximatively known. Given the fatal trajectory, no reflexive skills can avoid the crash,

since the lower level controller can only blindly follow the prescribed path. In other words,

wrong policies can not be compensated by the sole use of control skills.

A part from the epistemic uncertainties, other processes that affect the operations of UAVs

are aleatory in nature, and can not be reduced to disturbances. For example, an enemy can

engage a UAV only with a given probability. Therefore, the decision to prefer, say, a shorter

but more dangerous path over a longer but safer one can only be taken in a risk-sensitive

way: the risk of being detected has to be weighted against the probable rewards implied

by the more direct path. The tactical decisions made by experienced human operators

are heavily influenced by these risk-management policies. This mode of operation should

be reflected by autonomous control systems for UAVs making tactical decisions. However,

the currently adopted deterministic approach at the tactical layer negates this view and,

consequently, is inherently limited in its ability to conduct effective autonomous missions

in highly complex, hostile environments. Accounting for uncertainties in the path planning

level, we are able to

• mimic to a higher level of fidelity the decision making process performed by human

4



pilots,

• produce trajectories that maximize the probability of meeting the goals set forth at

the strategic level, weighing risks against performance,

• guarantee greater overall robustness in the control system.

1.5 Thesis Outline

This thesis will be organized as follows:

• First, the Maneuver Automaton representation of the vehicle dynamics will be pre-

sented in detail, which will also include the motion primitive library that was defined

for the research. In addition, information on how the uncertainty library was build is

provided.

• In chapter III, the library of motion primitives will be constructed,

• In chapter IV, the robust optimal control theory will be introduced

• General motion planning and motion planning with the Maneuver Automaton frame-

work will be defined.

• Next, the nominal and robust optimization approaches will be introduced. In addition,

the closed loop formulation will be presented.

• In chapter VII, results to both optimal control problems will be provided.

• Finally, conclusions will be drawn, problems encountered identified and future im-

provements and investigations to be conducted discussed.
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CHAPTER II

MANEUVER AUTOMATON

At the source of the Maneuver Automaton lies the hybrid automata. In order to better

explain the motivation under the MA framework, the reader will be given a brief overview of

hybrid systems and hybrid automata. Furthermore, the MA representation of the dynamics

of a system will be defined.

2.1 Hybrid Systems and Hybrid Automata

2.1.1 Hybrid Systems

A hybrid system is, per definition, a mixed discrete-continuous system [7]. It consists of a

discrete program within an analog environment. Generally speaking, such systems originate

whenever one mixes logical decision-making with the generation of continuous control laws,

such as in modern flight control systems.

The continuous dynamics of the system are usually represented by differential equations of

the form

ẋ(t) = f(x(t),u(t)) ∀t ∈ IR+

where x(t) ∈ X is the continuous component of the state and f(x(t),u(t)) is a controlled

vector field depending on the continuous state x and controls u. The controls u consist

of a continuous component and a discrete phenomenon and therefore are referred to as

hybrid. Discrete controller events can include autonomous switching or jumps or controlled

switching or jumps. Continuous time systems are also affected by discrete events, such as

jumps in state.

2.1.2 Hybrid Automata

More and more processes are controlled by programs which are rooted in a continuously

changing environment. Therefore, those programs must be designed such that they adapt to
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the changes in the environment in real-time. However, continuously changing environments

are usually approximated by discrete sampling. The hybrid automata theory was developed

in order to represent both discrete and continuous processes within a unified framework.

More precisely, a hybrid automata is a finite-state model for the dynamics of a system

possessing both discrete and continuous components and has been proposed as a formal

model for hybrid systems (see [17, 1, 2, 22] for more detail).

An example of a hybrid system taken from [17] would be a digital controller of an analog

plant. In hybrid automata theory [17], the discrete state of the digital controller is modelled

by the vertices and the discrete dynamics of the controller is modeled by the edges of a

directed graph. The continuous dynamics of the plant are modeled by ordinary differential

equations. The execution of a hybrid automata results in a continuous change (flows)

and discrete change (jumps). For more insight, we recall the following definition from

[17, 1, 2, 22]

Definition 2.1 (Hybrid Automata). A hybrid automaton consists of

Variables: A finite set X = {x1, . . . , xn} with xi ∈ IR , i = [1, . . . , n] and n = dim(X).

Ẋ = {ẋ1, . . . , ẋn} is the finite set of first derivatives during continuous change and

X ′ = {x′1, . . . , x′n} is the finite set of values at the conclusion of discrete change.

Control graph: A finite directed multigraph (V,E) where vertices ∈ V are called control

modes and edges ∈ E are called control switches.

Initial, invariant and flow conditions: Three properties are assigned to each control

mode: the initial, the invariant and the flow conditions.

Jump condition: Property assigned to each control switch.

Event: Property assigned to each control switch.

As an example, temperature control of a thermostat, modeled by a hybrid automata is

provided in Fig. 1.
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Figure 1: Hybrid automata model of a thermostat

2.2 Maneuver Automaton

The Maneuver Automaton modeling of the dynamics of the system was introduced by

Frazzoli in [12, 15]. A MA is defined as a new computational and modeling framework

for steering underactuated, nonholonomic mechanical systems such as mobile robots and

autonomous vehicles that are time-invariant and admit symmetries and relative equilibria.

It is based on a quantization of the system’s dynamics, by which the feasible nominal system

trajectories are restricted to the family of curves that can be obtained by the interconnection

of suitably defined primitives. These primitives then constitute a library of motion or

trajectory primitives which is at the core of the MA.

Within the MA framework, the control architecture involves switching from one trajectory

primitive to the other, always alternating between two classes of primitives, which are

defined next. The control system therefore includes both continuous and discrete dynamics

and thus is referred to as a hybrid controller. Moreover, the state of the MA model is

represented by a hybrid vector, as it takes a hybrid control input, which represents feasible

trajectory primitives for the system.

2.3 Definition of Motion Primitives

A maneuver automaton applies to a class of nonlinear mechanical control systems admit-

ting symmetries and relative equilibria. Under that assumption, a motion primitive, also

referred to as trajectory primitive, is an equivalence class of trajectories, as defined in [12].

With the introduction of trajectory primitives, the relevant features of the dynamics of the

system in hand are captured. Furthermore, good approximations of optimal solutions are
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obtained by interconnecting appropriate primitives.

Motion primitives are composed of two classes, trim and maneuver conditions. At each

instant in time, the vehicle is either performing a maneuver or is within a trim condition.

They were defined considering a mechanical control system on a Lie group and using Lie

algebra. The reader is referred to [8] and to App. A for more information on simple me-

chanical control systems on Lie groups.

The advantage of a Lie group framework is that it leads to coordinate free expressions of the

behavior of the system as well as controls. Hence, one can exploit local charts and use Lie

Group framework to move on the configuration space without reformulating the controls.

2.3.1 Trim Conditions

The first class of motion primitives defined are trim trajectories which correspond to dy-

namic and relative equilibria conditions. More precisely, trim conditions are characterized

by steady-state trajectories, in which the velocity v of the vehicle expressed in the body

frame as well as the control setting u are constants. Hovering and constant rate turning

flight at constant speed are both examples of trim trajectories.

While in a trim condition q, a vehicle can coast for an unlimited amount of time, referred

to as coasting time and denoted as τ in this work. τ constitutes the continuous component

of the hybrid control vector of the MA representation.

2.3.2 Maneuver Conditions

A maneuver is a finite time, fixed displacement transition from one relative equilibria, i.e.

trim condition, to the next one. Notice that this does not omit the possibility of transitioning

from and back to the same trim trajectory. Each maneuver p is characterized by

• its finite duration T specific to each maneuver,

• its fixed displacement ∆xp,

• its fixed heading change ∆ψ.

The fixed displacement specific to each maneuver represents the discrete component of the

hybrid control vector. The trim condition after which the maneuver is initiated will be
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denoted as qfrom and the trim condition the maneuver leads to as qto.

The maneuver is initiated by the control action p for a specific maneuver. This control

action is a function of qfrom and can only lead to qto.

2.4 Motion Primitive Library

For the scope of this research, the MA framework will be used to produce a library by

selecting a finite number of relative equilibria, connected by a finite number of maneuvers.

Let QT be the set of all possible trims selected and PM be the corresponding set of

associated maneuvers. The number of maneuvers in PM is variable and will be decided

according to the problem in hand. All trims and maneuvers selected will be depicted by a

directed graph. An example for a simple problem is presented in Fig. 2.

Figure 2: Simple Maneuver Automaton

2.4.1 Trim conditions

As mentioned earlier, each trim is characterized by a constant velocity in body axes. Conse-

quently, at each vertex, the body axis velocity components will be stored. As the problem in

consideration is two dimensional, the body axis velocities will be the forward and sideways

velocities as well as turning rates. A trim condition will then include, within the library:

• ufwd, its forward velocity on the body x-axis,

• uside, its sideways velocity on the body y-axis,

• r, its yaw rate.
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We also will denote v = (ufwd, uside, r)
T as the velocity vector in the body attached frame.

The uncertainty within a trim condition comes from the gap between the theoretical veloci-

ties stored in the library vertices and the real values for those velocities. These uncertainties

will also be stored in the library vertices. Notice that while on the graph vertex, the discrete

state is stationary while the continuous dynamics keep evolving. In other words, in a trim

condition the dynamics are defined as

x = φ(wτ)xi (1)

where w represent the generalized velocities and xi is the initial state at which the trim

starts. φ(wτ) describes the evolution of the system within a trim and is an exponential

[12].

2.4.2 Maneuvers

The edges of the directed graph correspond to the transitions between two trim states, i.e.

maneuvers within the library. At each edge will be stored information proper to maneuvers

which include

• the trim condition the maneuver issues from qfrom,

• the trim condition the maneuver leads to qto,

• finite transition time T ,

• fixed displacement ∆xp,

• fixed heading change ∆ψ.

The uncertain parameters will also be added to the library and will include the uncertainty

in the displacement ∆xp, in the heading change ǫ∆ψ and in the fixed maneuver duration T .

2.5 Building the Reference Library

For the scope of this research, different libraries of motion primitives were used in order to

obtain numerous numerical results. Trims defined include fast and slow forward flights, fast
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and slow steady left and right turns. Tables 1 through 4 summarize the trim and maneuver

conditions that were defined for this investigation. It must be pointed out at this point

that the libraries used are very limited ones, since they do not encompass the entire flight

envelope. The vehicle is indeed constrained to a very limited amount of possible actions,

motion primitives, which it is allowed to perform. Thus, optimal trajectories obtained to

an optimization problem will constitute suboptimal ones. In order to have a more general

library and gain in optimality, one can add as many trim conditions and maneuvers.

For example, consider a motion planning problem where a system is required to reach a

final position in minimum time (general motion planning problems will be defined in detail

in later sections). Let us also assume that the system is given an initial heading such that

it has to turn in order to accomplish a mission. It is trivial in this case that if the library

of motion primitives was enriched with an on the spot turn, a possible feasible solution

to an optimization problem will be a trajectory in which the system rotates to the desired

heading and flies straight. This way, it does not have to perform a turn that requires spacial

displacement. Angular displacement while keeping its spacial position might represent a

better optimal solution. This problem is addressed in [12] in more detail.

In the scope of this research, we will be limited to the choice of trims and maneuvers shown

in Table 1 through Table 4. Also notice that the fixed duration and fixed displacement of

maneuvers is not added to the library at this point. The next sections will deal with how

to add those values to the library.

2.5.1 First Reference Library

The below presented Table 1 and Table 2 were preliminary trim and maneuver conditions

that were defined in order to validate the proposed approach. In directed graph repre-

sentation, those trims and maneuvers are connected as in Fig. 3 As seen, trim conditions

include fast and slow steady forward flights and fast and slow steady turns.
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Table 1: Reference Trim Library - Kinematics based
Trim q ufwd [m/s] uside [m/s] r [rad/s] Description

1 1 0 0 slow forward flight
2 4 0 0 fast forward flight
3 1 0 -0.1 slow left turning flight with slow turn rate
4 1 0 0.1 slow right turning flight with slow turn rate
5 4 0 -0.4 fast left turning flight with fast turn rate
6 4 0 0.4 fast right turning flight with fast turn rate

Table 2: Reference Maneuver Library - Kinematics based
Maneuvers p qfrom qto Maneuvers p qfrom qto

1 2 1 10 5 2
2 1 2 11 2 6
3 3 1 12 6 2
4 1 3 13 6 5
5 1 4 14 5 6
6 4 1 15 5 3
7 3 4 16 3 5
8 4 3 17 6 4
9 2 5 18 4 6

Figure 3: Directed Graph of the Maneuver Automaton - Kinematics based
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2.5.2 Reference Library obtained through simulations on the GTMax

Table 3 and Table 4 provide the initial maneuver automaton library that is used, in the

following section, to evaluate uncertainties present in motion primitives using the GTMax

simulator.

In directed graph representation, those trims and maneuvers are connected as shown in

Fig. 4

Table 3: Reference Trim Library - Experiment based
Trim q ufwd [ft/s] uside [ft/s] r [rad/s] Description

1 0 0 0 hover
2 3 0 0 slow forward flight
3 10 0 0 fast forward flight
4 3 0 -0.1 slow left turning flight with slow turn rate
5 3 0 0.1 slow right turning flight with slow turn rate
6 10 0 -0.6 fast left turning flight with fast turn rate
7 10 0 0.6 fast right turning flight with fast turn rate

Table 4: Reference Maneuver Library - Experiment based
Maneuvers p qfrom qto Maneuvers p qfrom qto

1 2 1 12 5 4
2 1 2 13 6 3
3 1 3 14 3 6
4 3 1 15 3 3
5 3 2 16 7 7
6 2 3 17 6 7
7 4 2 18 7 6
8 2 4 19 7 5
9 2 5 20 5 7
10 5 2 21 6 4
11 4 5 22 4 6
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Figure 4: Directed Graph of the Maneuver Automaton - Experiment based
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2.6 Populating the Library

By populating the library we mean finding the characteristics of the above chosen maneuver

conditions in the Maneuver Automaton representation of the dynamics of our system. We

will again use two different approaches in evaluating maneuver characteristics given the two

preliminary libraries defined above. One library will be enlarged using kinematics based

evaluation while the second one will be obtained through flight simulations.

2.6.1 Populating the First Reference Library

This first reference library was built using physics. In fact, one can predict, using physics

and kinematics, what displacement is required and how long those transitions last given

appropriate assumptions. For example, it is easy to predict the required displacement,

heading change and duration of a transition between two straight flights if one assumes

known constant acceleration. We based our analysis of maneuver characteristics on the

following: it was assumed that maneuver durations were known. Table 5 shows the du-

rations that were used. Now using average acceleration required to steer the system from

Table 5: Maneuver Library with durations - Kinematics based
p qfrom qto T [s] p qfrom qto T [s]

1 2 1 2 10 5 2 4
2 1 2 2 11 2 6 4
3 3 1 0.2 12 6 2 4
4 1 3 0.2 13 6 5 4
5 1 4 0.2 14 5 6 4
6 4 1 0.2 15 5 3 4
7 3 4 0.2 16 3 5 4
8 4 3 0.2 17 6 4 4
9 2 5 4 18 4 6 4

one relative equilibria to another, we can compute the required displacement and heading

changes using the expression for the average acceleration

ā =
vqfrom − vqto

T
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where v = (vfwd, vside, r)
T expressed in body attached frame and ā = (āfwd, āside, ᾱ)T . The

fixed linear maneuver displacement is then obtained writing

∆xp =
1

2
āT 2 + vqfromT

Here ∆xp represents the fixed displacement relative to the local body frame. Notice that

the third component of the displacement vector gives the angular displacement required to

reach the final yaw rate. We will isolate that equation from ∆xp and express the angular

displacement ∆ψ as

∆ψ =
1

2
ᾱ T 2 + rqfromT

Then by projecting the components of vqto onto the body frame attached to the point where

the maneuver is initiated, we obtain a new expression of ∆xp by setting the linear average

acceleration to

ā =
1

T







vfwd
to cos ∆ψ − vfwd

from

vfwd
to sin ∆ψ







Those equations apply only under the assumption that we can locally treat the problem as

linear and that the side velocities in the library are all zero. This results in the enlargement

of the library since information on fixed displacement and fixed heading changes becomes

available. The resulting Maneuver Automaton is presented in Table 6.
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Table 6: Maneuver Library with displacement and heading change - Kinematics based
p qfrom qto T [s] ǫT [s] ∆xpx [m] ∆xpy [m] ∆ψ [rads] ǫ∆xpx

[m] ǫ∆xpy
[m] ǫ∆ψ [rads]

1 2 1 2.0 -0.5 5.0 0.0 0.0 -0.5 0.0 0.0
2 1 2 2.0 -0.5 5.0 0.0 0.0 -0.5 0.0 0.0
3 3 1 0.2 -0.05 0.2 -0.05 - 2π

180 -0.05 0.0 0.0
4 1 3 0.2 -0.05 0.2 -0.05 - 2π

180 -0.05 0.0 0.0
5 1 4 0.2 -0.05 0.2 0.05 2π

180 -0.05 0.0 0.0
6 4 1 0.2 -0.05 0.2 0.05 2π

180 -0.05 0.0 0.0
7 3 4 0.2 -0.05 0.2 0.0 0.0 -0.05 0.0 0.0
8 4 3 0.2 -0.05 0.2 0.0 0.0 -0.05 0.0 0.0
9 2 5 4.0 -0.5 14.0 -10.0 -45π

180 -7.0 5.0 - 5π
180

10 5 2 4.0 -0.5 14.0 -10.0 -45π
180 -7.0 5.0 - 5π

180
11 2 6 4.0 -0.5 14.0 10.0 45π

180 -7.0 -5.0 5π
180

12 6 2 4.0 -0.5 14.0 10.0 45π
180 -7.0 -5.0 5π

180
13 6 5 4.0 -0.5 14.0 0.0 0.0 -7.0 5.0 5π

180
14 5 6 4.0 -0.5 14.0 0.0 0.0 -7.0 5.0 5π

180
15 5 3 4.0 -1.0 16.0 0.0 0.0 -8.0 5.0 5π

180
16 3 5 4.0 -1.0 16.0 0.0 0.0 -8.0 5.0 5π

180
17 6 4 4.0 -1.0 16.0 0.0 0.0 -8.0 5.0 5π

180
18 4 6 4.0 -1.0 16.0 0.0 0.0 -8.0 5.0 5π

180
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The procedure described here was mainly formulated in order to validate the robust

motion planning problem that will be introduced in the upcoming sections. It constitutes

a valid approach in sketching an academic example however would not give very good

results in practice since it does not rely on a mathematical model of the vehicle nor on

data from a real hardware. Therefore, the values of the various quantities characterizing

motion primitives computed would be very questionable for a real vehicle. Libraries of

motion primitives can be build more accurately taking into account the dynamics of the

system in question. We discuss two main ways to acquire information on maneuver and

trim conditions.

1. Experiments could be conducted either by simulation or by using the real hardware.

Those would consist in simulating sequences of trims and maneuvers using a simulator

or, in case a real vehicle model is available, having a pilot fly the vehicle in order to

get the recorded data [23].

2. Libraries can be built by optimization. Maneuver information can be obtained off-line

solving corresponding optimal control problems specific to each maneuver, based on a

mathematical or flight mechanics model of the vehicle [6]. Given a performance index

to minimize or maximize, suitable constraints and bounds on the states and controls,

one solves a maneuver optimal control problem whose solution yields the control time

histories that fly the vehicle. Hence, maneuvers can be defined in a mathematically

clear way. The maneuver optimal control problem solved consists of a boundary value

problem whose solution is expensive to compute. Therefore transciption methods

are used to compute the solution to the discretized problem. In other words, first

one discretizes the differential equations and next solve the discrete optimal control

problem [5].

In this work, maneuver information and extension of the motion primitive library is rendered

possible by the use of a flight tested simulation tool: the GT-Max.
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2.6.2 Populating the Reference Library through Simulations

Information on maneuver conditions is very difficult to obtain. In fact all the previously

described enlargement of the library is based on the assumption that the problem of finding

the displacement and heading change between two relative equilibria can locally be treated

as linear. Moreover, it was assumed that the maneuver durations were known. One can

have numerous different ways to transition from one trim condition to the other. For

example considering a maneuver condition connecting two forward flights at different speeds,

the transition can be treated at constant known acceleration. Then knowing the required

velocity change will provide the required duration and displacement.

It is therefore difficult to obtain, physically, rigorous information on what assumptions

to use. Also, maneuvers depend on the dynamics of the system in use, as the they change

drastically if the system in question is a hovercraft or an aircraft. It was therefore of interest

to investigate the nature of those maneuvers and how they affect the overall behavior of the

system on a real time flight test verified simulator.
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CHAPTER III

MOTION PRIMITIVE LIBRARY

3.1 Maneuver Automaton Representation

We will use the two previously introduced maneuver automaton representation of the dy-

namics of our system in this section.

3.2 Evaluating the Uncertainties

3.2.1 Kinematic Evaluation

In the previous section, the library of motion primitives was enlarged, by kinematic eval-

uation, to contain information on the required displacement and heading change, while

the vehicle is maneuvering from one relative equilibria to another. Similarly, uncertainties

present on maneuver characteristics are evaluated in this chapter. We assumed for our

analysis that the uncertainty on trim velocities were known. The uncertainties present in

trim characteristics as defined in Section 2.3 were modeled as percent errors from theoreti-

cal values. For example, for straight flights, it was assumed that faster straight flights will

suffer more from external perturbations, such as environmental uncertainty, than slower

flights. For turning flights, it was assumed that the uncertainties, such as environmental

perturbations, will affect more faster turns than it will affect slower turns. Hence,

• the percent error on forward velocity ufwd denoted as εufwd
,

• the percent error on side velocity uside denoted as εuside
,

• the percent error on yaw rate r denoted as εr.

were added to Table 7. Lets assume that the uncertainties relative to maneuver durations

are known. Since we also know the uncertainty present in trim velocities, we can repeat

the analysis from Section 2.6.1 including uncertain terms. Hence, we include the resulting

errors on maneuver displacements and maneuver heading changes in Table 8.
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Table 7: Trim Library with errors on velocities - Kinematics based
q ufwd [m/s] uside [m/s] r [rad/s] εufwd

εuside
εr

1 1.0 0.0 0.0 10 % 0 % 0 %
2 4.0 0.0 0.0 20 % 0 % 0 %
3 1.0 0.0 -0.1 10 % 0 % 10 %
4 1.0 0.0 0.1 10 % 0 % 10 %
5 4.0 0.0 -0.4 15 % 0 % 20 %
6 4.0 0.0 0.4 15 % 0 % 20 %
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Table 8: Maneuver Library with errors on displacement and heading change - Kinematics based
p qfrom qto T [s] ǫT [s] ∆xpx [ft] ∆xpy [ft] ∆ψ [rads] ǫ∆xpx

[ft] ǫ∆xpy
[ft] ǫ∆ψ [rads]

1 2 1 2.0 -0.5 5.0 0.0 0.0 -0.5 0.0 0.0
2 1 2 2.0 -0.5 5.0 0.0 0.0 -0.5 0.0 0.0
3 3 1 0.2 -0.05 0.2 -0.05 - 2π

180 -0.05 0.0 0.0
4 1 3 0.2 -0.05 0.2 -0.05 - 2π

180 -0.05 0.0 0.0
5 1 4 0.2 -0.05 0.2 0.05 2π

180 -0.05 0.0 0.0
6 4 1 0.2 -0.05 0.2 0.05 2π

180 -0.05 0.0 0.0
7 3 4 0.2 -0.05 0.2 0.0 0.0 -0.05 0.0 0.0
8 4 3 0.2 -0.05 0.2 0.0 0.0 -0.05 0.0 0.0
9 2 5 4.0 -0.5 14.0 -10.0 -45π

180 -7.0 5.0 - 5π
180

10 5 2 4.0 -0.5 14.0 -10.0 -45π
180 -7.0 5.0 - 5π

180
11 2 6 4.0 -0.5 14.0 10.0 45π

180 -7.0 -5.0 5π
180

12 6 2 4.0 -0.5 14.0 10.0 45π
180 -7.0 -5.0 5π

180
13 6 5 4.0 -0.5 14.0 0.0 0.0 -7.0 5.0 5π

180
14 5 6 4.0 -0.5 14.0 0.0 0.0 -7.0 5.0 5π

180
15 5 3 4.0 -1.0 16.0 0.0 0.0 -8.0 5.0 5π

180
16 3 5 4.0 -1.0 16.0 0.0 0.0 -8.0 5.0 5π

180
17 6 4 4.0 -1.0 16.0 0.0 0.0 -8.0 5.0 5π

180
18 4 6 4.0 -1.0 16.0 0.0 0.0 -8.0 5.0 5π

180

23



It is relevant to point out here that the sign of the uncertainty ǫT relative to the maneuver

duration is negative. The choice of this sign will be explained in App. B once the global

problem is formulated.

3.2.2 Evaluation using the GT-Max Simulator

In general cases, it is difficult to model the uncertainties present in motion primitives.

In order to have a better idea on how uncertainties affect different trim and maneuver

conditions the simulation environment provided by the GT-Max was used.

The controller architecture of the GT-Max is a combination of an inner loop, which controls

the attitudes and an outer loop, which controls the translational trajectory of the vehicle.

The adaptive element of the controller is a neural network, which focuses on the accurate

tracking of position commands. For more information on the dynamics of the GT-Max and

controller architecture the reader is referred to [19]. However, before the reader is introduced

to the assessment of perturbations, or uncertainties measured through the simulator, it is

important to point out what those measures correspond to.

There are two sources of uncertainty that affect the response of the simulator. Those are

external perturbations such as a flight tested turbulence model which acts on the UAV

and sensor noise. The uncertainty data that was recorded and assessed in this section

corresponds to the actual states. Notice that there is already a discrepancy, at the level

of the Kalman filter, between the estimated states and the real states (where the vehicle

thinks it is in comparison to where it actually is). Based on the fact that the comparison

is between the commanded states and the estimated ones, the controller might think the

system reached the target states even though it is not the case. Hence, a bad estimate of

the state will not be compensated for by the controller. The block diagram in Fig. 5 shows

where the uncertainties originate from and where they are present.

3.2.3 Extracting the Motion Primitives

A MATLAB code was written in order to generate sequences of trims and maneuvers us-

ing the library information provided in the previous section. As such, all nominal data

and sequence information were imported to the simulators external maneuver generator
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Figure 5: Origin of Uncertainties in the GT-Max

environment.

3.2.4 Trajectory generation using GT-Max

Path planning using the GT-Max happens after waypoints are specified. Smooth trajectories

are generated using a kinematics based external trajectory generator. The type of waypoint

chosen dictates the type of trajectory that will be generated in order to reach the waypoint.

3.2.5 Evaluating Uncertainties for Given Motion Primitive Sequence

In order to evaluate trims and maneuvers, the nominal motion primitive library described

in the previous section was used. Given a sequence of trims and maneuvers, the trajectory

generation begins with the initial trim. This trim is followed for a random amount of time.

Once the time allocated to this trim condition is elapsed, the simulator switches to the

second trim in the sequence and so on, until all the trims in the sequence are performed.

The transitions between trim conditions are defined as maneuvers. All the navigation data

is recorded in order to assess the actual vehicle behavior.

The trim conditions that are defined in the reference library were chosen such that attitude

limits are not exceeded and rate saturation does not occur. The controller of the GT-

Max is designed such that if the above mentioned holds, the system behaves like a second

order linear dynamic system, whose settling time is ideally constant. Therefore, when a
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transition between two forward flights is studied, the associated maneuver duration will be

equal to the settling time required for the system to reach the desired velocity. Let ∆V be

the desired velocity change between the trim condition the maneuver issues from and the

relative equilibria the maneuver leads to. For all ∆V , the settling time is constant as long as

the velocities are below actuator saturation limits. Hence, in the absence of uncertainties,

the settling time, or in other words, the maneuver duration between any forward flight in

the library will be equal to the same constant. Similarly, the maneuver duration between

two turning flights at different angular velocities will remain constant for any turning flight

in the library given that the actuator limits are not exceeded. The associated maneuver

duration errors are studied in upcoming sections.

3.2.6 Populating the Library

Per definition, maneuvers are transitions between one trim to another. Within the data

collected, maneuvers were recognized by a sudden change in velocities if the maneuver was

either acceleration or deceleration , or by a variation of the turn rates for banking maneu-

vers.

Several maneuvers were recorded and identified during the flight tests in the simulated envi-

ronment. It was noticed that each maneuver type is foreseeable in terms of the displacement

and duration and is repeatable as can be seen in Fig. 7.

The uncertainties on motion primitives were computed as maximum deviations. Those
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include, as mentioned earlier, uncertainties on the heading change, finite duration and finite

displacement. For trims, the same procedure was used but the uncertainties were computed

only on velocities. Hence the following uncertainties were added to the library:

• ǫufwd
, uncertainty on ufwd,

• ǫuside
, uncertainty on uside,

• ǫr, uncertainty on r.

For maneuvers, were added:

• ǫT , uncertainty on T ,

• ǫ∆xp , uncertainty on ∆xp,

• ǫ∆ψ, uncertainty on ∆ψ.

Table 9 and Table 10 give the updated version of the motion primitive library with uncer-

tainties added.

Table 9: Trim Library obtained through simulations with the GT-Max - Experiment based
q ufwd [ft/s] uside [ft/s] r [rad/s] ǫufwd

[ft/s] ǫuside
[ft/s] ǫr [rad/s]

1 0 0 0 0.128 0.189 0.006
2 3 0 0 0.620 0.619 0.027
3 10 0 0 0.610 0.529 0.020
4 3 0 -0.1 0.467 0.500 -0.017
5 3 0 0.1 0.545 0.418 0.015
6 10 0 -0.6 1.933 2.357 -0.020
7 10 0 0.6 2.462 1.631 0.014
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Table 10: Maneuver Library obtained through simulations with the GT-Max - Experiment based
p qfrom qto ∆xpx [ft] ∆xpy [ft] ∆ψ [rad] ǫ∆xpx

[ft] ǫ∆xpy
[ft] ǫ∆ψ [rad] T [s] ǫT [s]

1 2 1 6.095 0.135 0.010 -0.567 -1.939 -0.079 4.0 -0.8
2 1 2 6.255 0.067 0.007 -0.612 -1.886 -0.080 4.0 -0.8
3 1 3 19.652 0.082 0.014 -4.998 -1.221 -0.036 4.0 -1.2
4 3 1 21.087 0.034 0.022 -4.997 -1.001 -0.033 4.0 -1.2
5 3 2 25.953 0.119 0.029 -6.126 -1.612 -0.067 4.0 -1.2
6 2 3 26.170 0.102 0.019 -6.078 -1.603 -0.065 4.0 -1.2
7 4 2 8.749 -0.673 -0.134 -6.089 1.070 -0.048 3.0 -0.6
8 2 4 8.986 -0.643 -0.151 -6.116 1.338 -0.051 3.0 -0.6
9 2 5 8.856 0.671 0.144 -0.189 -1.326 0.046 3.0 -0.6
10 5 2 8.928 0.625 0.152 -0.195 -0.978 0.044 3.0 -0.6
11 4 5 8.974 -0.030 -0.013 -0.270 0.541 -0.002 3.0 -0.8
12 5 4 9.009 0.103 0.009 -0.269 -0.451 -0.002 3.0 -0.8
13 6 3 23.437 -12.233 -0.879 -1.232 9.706 -0.270 3.0 -0.9
14 3 6 24.324 -11.750 -0.900 -1.287 4.920 -0.272 3.0 -0.9
15 3 7 22.993 12.975 0.893 -1.449 -3.116 0.234 3.0 -0.9
16 7 3 24.494 11.532 0.791 -3.059 -3.157 0.229 3.0 -0.9
17 6 7 29.801 0.039 0.003 -2.892 -2.392 -0.006 3.0 -0.9
18 7 6 30.181 0.143 0.006 -4.386 -1.634 -0.006 3.0 -0.9
19 7 5 21.011 5.871 1.349 -2.525 -3.866 0.344 4.0 -1.2
20 5 7 9.340 19.857 1.400 -6.405 -1.492 0.345 4.0 -1.2
21 6 4 21.020 -5.913 1.409 -1.049 6.724 -0.323 4.0 -1.2
22 4 6 9.399 -19.709 1.377 -4.029 6.071 -0.368 4.0 -1.2
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3.3 Trend Identification using the Simulator

It was pointed out that the libraries used within this investigation are limited to the choice of

trim and maneuver conditions that are defined. This results in a very limited flight envelope

since the MA framework only allows limited amount of actions given the size of the library.

In order to add more motion primitives to the MA framework, one could investigate if there

is any trend in the execution of maneuvers and the uncertainties that would allow us to

compute maneuver characteristics, knowing the boundary trim conditions. For example,

one could simulate a transition between two forward flights at different increments of speed

and check the displacement and heading changes as well as uncertainties associated with

those. This section deals with finding out if there are any trends that would allow us to

predict the characteristics of a greater number of motion primitives.

3.3.1 Analysis of Trim Conditions

In order to assess what are the uncertainties associated with trim conditions, we flew the

simulator at different speeds. Fig. 7 suggests that, to the difference of the assumption made

in the kinematics based library, as the speed of the vehicle increases, the uncertainties, as

percent errors relative to the desired velocity, decrease for the given system. Let us consider

the sole case when there is a constant wind velocity from the side of the airplane. It is trivial

in this case that the effect of the wind velocity on the overall deviation of the vehicle from

its mean or desired forward velocity will be greater while the vehicle flies slow. A fast

flying vehicle will be more stable and therefore will be less affected by the constant wind

perturbing its states.

3.3.2 Analysis of Maneuver Conditions

Consider a vehicle constrained to fly straight at different speeds separated by intervals of 8

ft/s. Fig. 8 represents the required maneuver displacements as a function of the commanded

forward velocity the maneuvers issue from. Furthermore, the scenario that was considered

is composed of two different sections:

• the vehicle first accelerates to a fixed maximum velocity,
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Figure 7: Percent errors in forward velocities

• the vehicle decelerates to the initial speed until it reaches the initial forward velocity.

We define ∆V in the legend, as the the velocity increment that was fixed to 8 ft/s for this

example. Other scenarios with different values for ∆V were also conducted but will not

be shown in this work. It can be concluded that the required displacement to reach the

desired exit velocity for a given ∆V increases as the forward speed the maneuver issues from

becomes larger in magnitude. It is relevant to point out that the displacements measured

are relative to an inertial coordinate system, whose origin is the initial condition. The errors

presented in Fig. 8 are percent errors relative to the displacements required. Their analysis

exhibits two phenomena. On the one hand, at very low speeds, perturbations have a greater

impact on the displacement as far as magnitude of the percent errors are concerned. This

explains why the percent error increases as the speeds decrease. On the other hand, a

transition between two fast forward trims is also characterized by a larger percent error on

the displacement.

Now, looking to the maneuver durations, as the velocities and turn rates do not exceed

actuator limits, the maneuver durations remain unchanged as explained earlier. The mean

values for durations from a slow forward flight to a faster forward flight were found to be 4

seconds, the maneuver durations for turning flights at unchanged forward velocity in body

axes were found to be 3 seconds. Finally, since the settling time for forward flights is greater
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Figure 8: Maneuver displacement and associated errors

than turning flights, the mean maneuver durations associated with maneuver connecting a

slow turning flight to a fast turning flight will be of 4 seconds. As far as errors associated

with maneuver durations are concerned, they follow a similar pattern to displacement errors.

Close to hovering, the error on the maneuver duration is about 30%. Transitioning between

two fast turning flight is also about 30% in duration error. The library constructed above

takes into account those numbers.

Finally we considered a vehicle flying at constant forward velocity in body axes but subject

to an increasing turning rate. We will increment the turning rates by 0.1 rads/s. The

resulting maneuver characteristics are presented in Fig. 9. This figure suggests that as the

turning rate increases, the relative required maneuver angular displacement ∆ψ as well as

the percent error on maneuver durations increase. In fact, as the yaw rate increases while

the forward velocity remains constant, the radius of turn becomes smaller and smaller. As a

consequence, the maneuver the vehicle has to perform in order to increase its angular rate,

becomes more and more aggressive, hence the increase in both maneuver duration error and

heading change.

31



The library constructed here through simulations provides an order of magnitude of errors

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
20

22

24

26

28

30
Maneuver Durations for ∆ r = 0.1 rads/s

r
to

 [rads/s]

P
er

ce
nt

 D
ur

at
io

n 
E

rr
or

s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5
Maneuver Heading Change for ∆ r = 0.1 rads/s

r
to

 [rads/s]

ψ
 [r

ad
s]

Figure 9: Maneuver heading change and duration errors for turning flights

in motion primitives as well as maneuver characteristics. Obtaining a more accurate library

would require extended statistical analysis which is not the motivation of this research.

However, the provided data is pertinent enough within the scope of this work and validates

the developed approach.
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CHAPTER IV

ROBUST OPTIMAL CONTROL IN THE PRESENCE OF

UNCERTAINTIES

4.1 Optimal Control Theory

An Optimal Control Problem starts with the definition of the characteristics of the system

to be controlled. This includes the dynamics of the system and the boundary conditions

it is subject to. Once the system to be optimally controlled is known, the constraints it

is subject to and possible alternatives must be clarified. This should be followed by the

description of the task to be accomplished. At last, a clear statement of the criterion for

judging optimal performance must be established [3].

4.2 Classical Optimal Control

The classical optimal control problem can be defined as follows

Problem 4.1 (Non Robust Optimal Control).

min
u

JNR = JNR(x,u) performance index

s.t. : ẋ = f(x,u, p̄) system equations

x(0) = x0 initial conditions

c(x,u) ∈ [cl, cu] constraints

ψ(x(tf )) ∈ [ψtl , ψtu ] terminal constraints

x ∈ [xl,xu] state bounds

u ∈ [ul,uu] control bounds

for some nominal model parameters p̄.

The solution to Problem 4.1 yields the optimal control policy uNRopt , the optimal trajec-

tory xNRopt and the corresponding optimal cost JNRopt = JNR(xNRopt ,u
NR
opt ).
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In reality, the model parameters p are uncertain, i.e.

p = p̄ + ǫp

where ǫp is a stochastic variable. We could also consider other forms of uncertainty, e.g. in

the functional form of the system equations

ẋ = f(x,u,p) + ǫf (x,u,p)

however for simplicity we restrict the attention to the sole case of model parameter uncer-

tainty in the following.

In general, applying the optimal nominal policy uNRopt to the non-nominal case results in a

sub-optimal trajectory. In other words, solving the initial value problem

ẋ = f(x,uNRopt ,p), p 6= p̄

x(0) = x0

results in a trajectory xNRǫ 6= xNRopt such that

JNR(xNRǫ ,uNRopt ) > JNRopt

Furthermore, there is no guarantee that the constraints will be satisfied, i.e. in general,

c(x,u) /∈ [cl, cu]

ψ(x(tf )) /∈ [ψtl , ψtu ]

xNRǫ /∈ [xl,xu]

Consequently, the solution to Problem 4.1 is non-robust to perturbations (uncertainties) in

the system parameters p

4.3 Robust Optimal Control

We would like to hedge against the possible effects of uncertainties. However, we have no

detailed knowledge of the uncertainties, such as statistical distributions etc..., and we do

not want to assume that we will ever have this information, since it might be hard if not

impossible to obtain.
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We are therefore ready to trade some performance, as measured by the performance index

JNR(x,u), to gain in robustness, i.e. we will be satisfied with any value of the performance

index JNR such that

JNRopt ≤ JNR ≤ αJNRopt , α ≥ 1

where αmeasures the acceptable performance loss. Clearly, JNR ≈ JNRopt would be preferable

to JNR ≈ αJNRopt but this is not strictly necessary nor required.

Under this perspective, we will consider the family of uncertain parameters p as bounded

by an unknown value γ

(p − p̄)2 ≤ γ2 γ ≥ 0

γ is referred to as the uncertainty level. The greater its value, the greater the uncertainty

with respect to the nominal value of the system parameters p̄.

Robust optimal control maximizes the uncertainty level γ that still guarantees a certain

acceptable performance decrease with respect to the non-robust case, i.e. it finds the max-

imum uncertainty level that satisfies the trade-off we are ready to accept. We can now

formulate the robust optimal control problem as follows.

Problem 4.2 (Robust Optimal Control).

max
u

JR = γ performance index

s.t. : ẋ = f(x,u,p) system equations

x(0) = x0 initial conditions

(p − p̄)2 − γ2 ≤ 0

γ ≥ 0

JNR(x,u) ≤ αJNRopt acceptable performance loss

c(x,u) ∈ [cl, cu] constraints

ψ(x(tf )) ∈ [ψtl , ψtu ] terminal constraints

x ∈ [xl,xu] state bounds

u ∈ [ul,uu] control bounds
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The solution to Problem 4.2 results in the robust control policy uRopt, trajectory xRopt and

maximum allowable uncertainty level γmax with respect to the performance loss defined.

In order to verify the robustness to perturbations or uncertainties on model parameters of

the two optimal policies uNRopt and uRopt, we set

pγ = p̄ ± γmax

which is the maximum parameter deviation with respect to the nominal value p̄ that still

satisfies the performance requirement.

We compute the trajectories generated by the control policies uNRopt and uRopt in the non-

nominal maximum deviation case by solving the initial value problems

ẋ = f(x,uNRopt ,pγ±)

x(0) = x0

yielding xNRγ± , and

ẋ = f(x,uRopt,pγ±)

x(0) = x0

that yields xRγ± .

At this point, we can compare the performance indices

max(JNR(xNRγ+ ,uNRopt ), JNR(xNRγ− ,uNRopt ))

max(JR(xRγ+ ,u
R
opt), J

R(xRγ− ,u
R
opt))

and we can verify the constraint satisfaction or lack thereof. Therefore, the robust optimal

control problem is a two step process:

1. First, one solves the nominal non-robust problem (see Problem 4.1) to identify the

theoretical best possible value of the performance index JNRopt , which is, however,

practically not achievable and non-robust, due to the presence of uncertainties.

2. Second, one trades some performance to gain in robustness, by solving the robust

problem (see Problem 4.2).
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The result is a control policy that hedges against uncertainties in the maximum possible

way allowed by the acceptable performance loss.

4.4 Example

Problem 4.3 (Non-Robust Problem). Find

min
x,y

J = x2 + y2

s.t. : y = x+ ā

This problem is equivalent to finding the minimum of the curve generated by the in-

tersection of the plane passing through y = x + ā and parallel to J and the paraboloid

J = x2 + y2.

Solution. We can rewrite the augmented performance index as

Ĵ = x2 + y2 + λ(y − x− ā)

differentiating we obtain

∂Ĵ = 2x∂x+ 2y∂y + ∂λ(y − x− ā) + λ(∂y − ∂x)

The optimal solution is found by setting

∂x→ 2x− λ = 0

∂y → 2y + λ = 0

∂λ→ y − x− ā = 0

which yields

x = − ā
2

y =
ā

2

λ = −ā

Jopt =
ā2

2
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Problem 4.4 (Robust Problem). Find

max
x,y

γ

s.t. : y = x+ ā

(a− ā)2 − γ2 ≤ 0

γ ≥ 0

J = x2 + y2 ≤ α
ā2

2

This problem can be interpreted as finding the maximum deviation of a that will still

guarantee that the minimum of the intersection curve is not higher than the value α ā
2

2

Solution. We can rewrite the augmented performance index as

Ĵ = γ + λ(y − x− a) + µ[(a− ā)2 − γ2 + r2] + ν[x2 + y2 − α
ā2

2
+ s2]

The optimal solution is found by setting

∂x→ 2νx− λ = 0

∂y → 2νy + λ = 0

∂λ→ y − x− a = 0

∂γ → 1 − 2µγ = 0

∂µ→ (a− ā)2 − γ2 + r2 = 0

∂a→ −λ+ 2µ(a− ā) = 0

∂ν → x2 + y2 − α
ā2

2
+ s2 = 0

∂r → 2rµ = 0

∂s→ 2sν = 0
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which yields

x = − ā
√
α

2

y =
ā
√
α

2

a = ±ā
√
α

J = α
ā2

2

Notice that, J̄ = Jopt = ā
2 which yields J = αJ̄ . Moreover, J̄ = r̄2. Combining both,

we obtain r = r̄
√
α ( ( ·̄ ) terms denote nominal solutions to Problem 4.3).

4.5 Robust Optimal Control for the Maneuver Automaton

For the maneuver automaton representation of the dynamics of the system, the uncertainty

is present in motion primitive characteristics as defined in Section 2.3. In assessing the effect

of uncertainties in order to add robustness, one can choose amongst two different ways to

look at the problem:

1. Either γ(i) is the uncertainty associated with each motion primitive parameter. For a

given sequence, this will result in a vector of uncertainties, Γ = [γ1, . . . , γnT +nM ]T .

2. Either γ is a scaling factor which multiplies the variation in motion primitive para-

meters.

For the scope of this research we have chosen to use a single scaling factor that will be used

for each motion primitive parameter. The motivation under this choice is the fact that it

results in a more computationally feasible problem. The justification to this assumption

will be provided in App. B, once the motion planning problem for the MA is provided.
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CHAPTER V

MOTION PLANNING

5.1 Mechanical Control Systems and Motion Planning

For underactuated systems, the trajectory planning problem can be formulated as a nonlin-

ear optimization problem, where the control history parameters are coefficients of certain

basis functions and the state trajectory is obtained by integrating the dynamic equations of

motion, which are expressed as ODEs. Alternatively the state history can be parametrized

by coefficients of various basis functions with second-order constraints imposed on the state

and control variables (for extended information see [4]) . Heuristic randomized searches

[18, 20] give up on optimality and completeness to achieve a reduction in average computa-

tional time. Frazzoli et al. [16, 13, 14] search a graph of motion primitives, which is the MA

framework, to find motion plans for time-invariant dynamical systems. Other approaches

to trajectory planning involve using special structure in the equations of motion, such as

chained-form or differential flatness [11], to simplify the trajectory planning problem.

5.2 General Formulation

Let us consider a pair (A,B) of admissible configurations. A motion planning program

must take as input (A,B) and should produce as output, a description of a motion of the

system which starts at configuration A and ends at configuration B. Hence, the motion of

the system is a function of the input pair (A,B).

5.3 Motion Planning for UAV’s

For UAVs, the system in question is a time invariant mechanical system that we denote S.

Let us also define the state space of S as X. The behavior, over time, of a UAV can be

described as a set of differential equations on the states x ∈ X, such that, at any instant
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in time, the states satisfy

ẋ = f(x,u)

where u denotes control inputs to the system. For the general case, the motion planning

will be performed from some initial position in space that we term as xi to some final target

position xf given the control input u. Moreover,

xi = x (t0), xi ∈ X t0 ∈ IR+

xf = x (tf ), xf ∈ X tf ∈ IR+

Generally, the system will be subjected to constraints, equality or inequality, on its states

and controls. These constraints are expressed as

ceq(x,u ) = 0

c(x,u ) ≤ 0

We would like to plan the trajectory such that the vehicle not only meets the constraints

but also meets them while minimizing some cost. As such the performance of the generated

trajectory takes importance. Thus, the solution to the problem has to not only be feasible

but also minimize the cost. In the scope of this research, the cost is defined as the time

it takes to perform the mission. Consequently, the problem becomes an optimal control

problem where it is desired to minimize the time performance of the vehicle given that the

vehicle meets the boundary conditions and constraints [5]. Generically, let us define the

performance index as J(x,u). The formulation of the optimal motion planning problem in

a free environment is given next.

Problem 5.1. Given a mechanical control system S, an input position pair xi,xf ∈ X,

find an input control u(t) such that, ∀ t ∈ IR+

ẋ = f(x,u) (2a)

ceq(x,u ) = 0 or c(x,u ) ≤ 0 (2b)

J (x,u) is minimized (2c)
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In summary, the motion planning and guidance system of an autonomous vehicle enables

the vehicle to build and execute a motion plan.

In the scope of this research, using the MA vocabulary, we define the motion planning

problem as finding the sequence of primitives, stored within the library, that will enable us

to minimize some cost.

5.4 Motion Planning Using the Maneuver Automaton

The MA modeling of the dynamics of the vehicle was chosen as its usage results in a

reduction in computational complexity of the motion planning problem because there is no

need for a state, control or time discretization.

For a given problem, the maximum trajectory depth, i.e. maximum number of trajectory

trims will be fixed.

Definition 5.1. We define the vector of trajectory trims as

q = {q1, ..., qnT
}T

card(q) = nT

where nT is the maximum number of trajectory trims. The vector of variable coasting times

associated with each trajectory trim in q is noted as

τ = {τ1, ..., τnT
}T

card (τ ) = nT

Similarly,

Definition 5.2. We define the vector of trajectory maneuvers as

p = {p1, ..., pnM
}T

card(p) = nM

where nM = nT − 1. For all trajectory maneuvers we define the vector of fixed times as

T = {T1, ..., TnM
}T

card (T ) = nM
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A sequence of trims and maneuvers of fixed depth nT + nM can then be written as:

∀i ∈ [1, nT + nM ] (un)
nT +nM

n=1 :











ui = q ∈ q if i = 2nT − 1 ;

ui = p ∈ p if i = 2nT .

It is important to point out that, given the above formulation, each defined sequence of

motion primitives will start with a trim from the library and will end in one trim.

As p = p (q), the set of all possible sequences can be expressed as a function of trims only.

In other words, picking a particular sequence of possible trims determines the particular

maneuvers to be used in transitioning from one to the next trim. We will call the set of all

possible sequences of motion primitives as

UT = {∪ qj , max [ card(qj) ] = nT}

where the index j = 1, ..., nmax refers to one sequence of motion primitives picked within

UT whose card (UT ) = nmax. Notice that UT is finite dimensional given that it contains a

maximum number of sequences and given that each sequence has a finite number of trims

and maneuvers, and hence a finite depth nT +nM . Since each sequence of motion primitives

can be determined knowing the sequence of trims, we will refer, in this analysis, to the depth

of the sequence, in terms of the depth of the vector of trajectory trims.

5.4.1 Dynamics within the Maneuver Automaton Framework

Omitting uncertainties, the continuous state x evolves over time as follows

x 2k = φ(w qkτk)x 2k−1 in a trim condition k = 1, ..., nT ; (3a)

x 2k+1 = x 2k + ∆x p in a maneuver k = 1, ..., nM . (3b)

In the above expression, wqk
represent the generalized velocities specific to trim qk, φ ( · ) is

the exponential function that describes the dynamics within a trim condition. Adding the

uncertainties, the dynamics of the system will take the form,

x 2k = φ((w qk + ǫw qk
)τk)x 2k−1 in a trim condition k = 1, ..., nT ; (4a)

x 2k+1 = x 2k + ∆x p + ǫ∆xp in a maneuver k = 1, ..., nM . (4b)

where ǫw qk
are the uncertainties on the generalized velocities.
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5.5 Optimal Control Problem

We will introduce the optimal control problem as finding the best sequence of trims that

would result in reaching a target position minimizing a performance index [3]. For this

problem, we are interested in finding the best sequence that would minimize the time it

takes to reach the final boundary condition. To this end

Definition 5.3. We define the cost function as

J : {q, τ} ∈ {UT
nT , IR+nT } → J(q, τ ) ∈ IR

where q ∈ UT is a trajectory trim sequence and τ is the vector of coasting times associated

with this sequence.

Each element of τ is associated with the corresponding trim. We will express the total

time it takes to reach xf as:

nT
∑

i=1

τi +

nM
∑

i=1

Ti (5)

The first term in this expression corresponds to the total time spent in trajectory trims,

which is variable, and the second term represents the total time spent in trajectory maneu-

vers.
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CHAPTER VI

TRAJECTORY OPTIMIZATION WITH THE

MANEUVER AUTOMATON

6.1 Nominal Trajectory Optimization

The cost function for the nominal case is nothing else than the total time it takes to reach

the final position. Hence the optimal policy is the one that minimizes this cost whose

expression is:

J(q, τ ) =

nT
∑

i=1

τi +

nM
∑

i=1

Ti (6)

The nominal optimal control problem will be formulated as:

Problem 6.1. Given the maneuver automaton in consideration, an input position pair

x i,x f ∈ X, find a hybrid control input pair {q, τ} such that,

x 2k = φ(w qk
τk)x 2k−1 in a trim condition k = 1, ..., nT ; (7a)

x 2k+1 = x 2k + ∆x p in a maneuver k = 1, ..., nM . (7b)

x1 = xi ; (7c)

x2nT
= xf . (7d)

min
q∈UT

min
τ

J(q, τ ) (7e)

The solution to Pb. 6.1 yields the optimal sequence of trim conditions qopt, the optimal

coasting times τopt and the corresponding optimal cost Jopt.

With the library of motion primitives obtained through simulations on the GT-Max, if the

maximum number of trajectory trims is set to be 4, the resulting variable depth set of

possible trajectory trim sequences will have 333 elements. This is the result one obtains

without fixing the initial trim state. However, the number of possible sequences is further

reduced if one specifies the initial trim state, with which the optimization is restricted to
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start. According to this, for the problem in hand, Table 11 shows the number of trajectory

primitive sequences associated with each trim in the library, for a fixed maximum trim

sequence depth of 4 trims.

Table 11: Trajectory Sequences given Starting Trim
Starting Trim q Number of trajectory

sequences associated

1 35
2 57
3 57
4 46
5 46
6 46
7 46

6.2 Robust Motion Planning and Accounting for Uncer-

tainties

To mitigate the effects of uncertainties, it is necessary to add them when implementing the

optimization. As such, a new problem can be defined, where the cost to be minimized is a

trade-off between the cost of the action and the uncertainties present in the cost. Hence, it

is a trade of performance in order to gain in robustness.

6.2.1 Worst Case Scenario Trajectory Optimization

For this approach, the uncertainty in the maneuver duration was added to the expression

of the nominal cost function. The robust cost can then be defined as

J R(q, τ , γ) =

nT
∑

i=1

τi +

nM
∑

i=1

(Ti + γǫTi
)

Hence, the robust optimal control problem will be formulated as:

Problem 6.2. Given the maneuver automaton in consideration, an input position pair
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x i,x f ∈ X, find a hybrid control input pair {q, τ} such that,

x 2k = φ((w qk
+ γǫw qk

)τk)x 2k−1 in a trim condition k = 1, ..., nT (8a)

x 2k+1 = x 2k + ∆x p + γǫ∆xp in a maneuver k = 1, ..., nM (8b)

‖x2nT
− xf‖ ≤ δ where δ is a tolerance on the final position error (8c)

min
q∈UT

max
γ

min
τ

J R(q, τ , γ) where γ = 0 , −γa , γa (8d)

γa ∈ [0, 1] (8e)

The solution to Pb. 6.2 yields the optimal robust sequence of trim conditions qRopt, the

optimal robust coasting times τRopt and the corresponding optimal robust cost JRopt.

As seen in Pb. 6.2, for γa = 1 which corresponds to the maximum uncertainty level, γ is

restrained to take the values 0,−1, 1. When γ = −1 the uncertainties are subtracted from

the motion primitive parameters, similarly, when γ = 1 all uncertainties are added and

γ = 0 corresponds to the nominal case. For a given sequence of trim trajectories from the

set of possible sequences, three cost functions are consecutively computed in an imbedded

loop for each value of γ. Let

• JRminus be the cost associated with γ = −1,

• JRplus be the cost associated with γ = 1,

• J be the cost associated with the nominal case.

If the problem becomes infeasible for any value of γ, the sequence is considered infeasible.

However, if for all three values of γ the problem is feasible for a given sequence, all three

cost functions are compared. A worst case scenario formulation is used for the comparison.

The optimal cost function, for the sequence in consideration, is the one that satisfies,

max
γ

{JRminus, JRplus, J}

therefore this optimization is referred to as worst case approach. A similar approach was

investigated in [24], however an expected value formulation of the cost function was used.

For the entire optimal control problem, the optimal robust sequence qRopt is the sequence

associated to the minimum of the optimal worst cost scenarios.
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6.3 Receding Horizon Control

In open-loop guidance, the sequence of motion primitives that will lead to the target position

will be generated beforehand. As uncertainties in the motion primitives are added, the

likelihood of the open-loop trajectory to reach the target is significantly reduced when the

motion plan is executed. Nevertheless, one can improve the behavior of the plan using a

closed-loop formulation. To this end, we will introduce a closed-loop policy using receding

horizon control. For the general case, let the current state at time t be denoted as x(t).

For continuous time, receding horizon optimization is summarized as follows:

1. solve an optimal control problem over a fixed future interval defined as [t ; t + ∆tc]

taking into account the current and future constraints ,

2. in the resulting optimal control sequence, apply only until time t+ ∆tc,

3. Determine the state reached at time t+ ∆tc,

4. Repeat 1 - 2 over the future interval [t+ ∆tc ; t + 2∆tc], starting from the advanced

state x (t+ ∆tc).

In this definition, ∆tc refers to the time interval between two consecutive controller activa-

tions.

To the difference of receding horizon as defined, there is no horizon to track in this prob-

lem, rather a target destination to reach. We will therefore use a slightly different approach,

where the time window is not of constant length but rather a variable. For any optimization

performed from a different initial point, the time window is defined as [Tf − t ]. Fig. 10

presents the receding horizon trajectory planner used for the problem in hand. It can be

seen that the trajectories predicted in closed-loop all lead to the final position. Within

receding horizon control, the controller is stopped, using the previous notation, after ∆tc

seconds. The state reached then becomes the initial state for the optimization problem.

However, there are differences given the nature of the primitives the vehicle is performing.

This is due to the fact that the dynamics and therefore the evolution of the system is known
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Figure 10: Receding Horizon Closed-loop control

while the vehicle is within a trim state, yet, the only information available while transition-

ing is fixed displacement and fixed duration. Hence, there will be two different ways the

problem in hand will be treated,

• while in a trim condition, the equations of motion will directly be integrated and the

next state computed,

• while the vehicle is maneuvering, the next step will not be initialized until the ma-

neuver is completely executed.

6.3.1 Setting the tolerance in the Final Position

Even in closed-loop formulation, there is in general no guarantee that the final target po-

sition will be reached in presence of uncertainties. In fact, the constraints are initially

treated as hard constraints on the final state. In closed-loop, those hard constraints are at

the source of a feasibility problem. In order to improve feasibility in the solution, it is a

standard technique in receding horizon to replace hard constraints by inequality constraints.

Therefore, it is desired to reach the final target within a tolerance margin. When the mo-

tion planning problem is launched, the distance between the target and the initial position

can be significantly big. The allowable error margin in reaching the target position will

therefore be proportional to this distance. The closer the vehicle gets to the sought target
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position, the smaller this allowable error will become. In other words, the tolerance on the

final position becomes more conservative as we approach the target. We will estimate that

the target position is reached if it is within the acceptable tolerance limits.

6.3.2 Stopping within a Trim State

The equations of motion are known and therefore can be integrated while the vehicle is

within a trim state. If, for any predicted closed-loop trajectory, the vehicle ends coasting in

a trim, the position for the next iteration can be computed analytically using the equations

of motion (3a) depicted in Section 5.4.1.

The optimal motion primitive sequence computed in open-loop has been found with no

knowledge of the uncertainties for the non-robust approach. It is in closed-loop control that

the analysis of the effect of the uncertainties on the nominal trajectory will be performed.

In closed-loop, adding the uncertainties to the equations of motion for a trim condition will

lead the trajectory to be deviated from the nominal one. With the addition of uncertainties

to the trims, the equations of motion to be used are (4a) given in Section 5.4.1

6.3.3 Stopping within a Maneuver

As a consequence of the hybrid automaton setup, once a maneuver is initiated, it has to

be executed until the end. Therefore, in closed-loop formulation, the evolution of the state,

once a maneuver has been initiated, is given by equation (3b) omitting uncertainties and

(4b) accounting for uncertainties. If the uncertainties in motion primitives are significantly

high, both closed-loop and open-loop formulations will be affected, this due to the fact that

maneuvers are characterized by fixed time and displacement. Thus, any perturbation in the

maneuvers will result in the vehicle drifting away from the planned, or foreseen trajectory.

However, even though a closed-loop policy will correct for these deviations from the planned

trajectory, it will have to wait until the maneuver is executed to do so. This is one of the

disadvantages of using a MA representation of the systems dynamics, i.e. it results in

only sub-optimal trajectories. Yet, the performance of the closed-loop optimization can be

improved. In fact, by interpolation it is possible to predict where the vehicle is even while

it is maneuvering.
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CHAPTER VII

COMPARISON AND RESULTS FOR BOTH MOTION

PLANNING PROBLEMS

We applied the methodology for worst case robust motion planning defined in the previous

section to the two MA frameworks as presented in Chapter 2 and Chapter 3. In both cases,

the vehicle will be constrained to move in a plane, from a given initial position and an initial

orientation that we denote, respectively, as xi and ψi to a fixed final target denoted as xf .

The final orientation is not constrained.

The initial tolerance on the final position error δ is set to 3 ft, nevertheless, it is readjusted

to become smaller as we approach the target position.

7.1 Results obtained with the first reference library

For more accuracy, different scenarios were tested with this library. Results for two different

initial and final conditions are presented next. The MA representation that was used was

presented in Chapter 3 in Table 9 for trims and Table 10 for maneuvers.

7.1.1 Results obtained with the first mission

The vehicle is constrained to move in a plane, from the given initial position xi = [ 0 ft ; 0 ft ]

to the fixed final target xf = [ 30 ft ; 0 ft ]. Also, the vehicle is restricted, initially, to have

a heading of 3π
4 rads such that the optimizer does not pick a straight flight as the first

optimal sequence. Furthermore, the vehicle is initially constrained to fly forward at 1.0

ft/sec. There are no limitations on the final trim to be used.

7.1.1.1 Open-loop Solutions

Initially, a first open-loop solution for the optimal control problem is computed for both non-

robust and the worst case scenario formulations. Those solutions correspond to the nominal

or reference trajectories for our purposes. As the scaling factor γ increases, it is expected
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to see that the nominal open-loop solution for the worst case optimization problem will be

different from the non-robust nominal solution, as it accounts for uncertainties present in

primitives. However, for this first mission, one can see that, the open-loop (nominal) optimal

trajectory that was picked by the non-robust and the worst case scenario optimizations are

identical. This means that the nominal trajectory primitive sequence picked by the non-

robust optimization and the worst case policy is the one that is less perturbed by the

uncertainties present in the motion primitives. However, as we recompute the optimal

control problem in closed-loop formulation, the solutions picked by both optimizations will

change as the worst case formulation will pick solutions that are more cautious.

7.1.1.2 Optimization Results

The results obtained are indicated in Fig. 11 through Fig. 15 for the non robust optimization

and Fig. 16 through Fig. 20 for the worst case scenario policy. In both figures, the straight

dotted lines represent maneuvers and the solid curves trim states. In Figs. 11 - 15, the green

trajectory corresponds to the nominal solution to the optimal control problem and the blue

trajectory represents the closed-loop solution. Similarly, in Figs. 16 - 20, the red trajectory

represents the nominal solution to the worst case formulation while the green trajectory is

the closed-loop solution.

7.1.1.3 Receding Horizon Control

The behavior of the vehicle, in closed-loop, is indicated in Fig. 11 through Fig. 15 and Fig. 16

through Fig. 20 for increasing γ. The examination of the closed-loop trajectories suggests

that both non-robust and worst case scenario approaches pick the same solutions up to

a certain point, after which they deviate. This divergence affects mainly the non-robust

trajectory because the solutions are picked without knowledge of the effect and magnitude

of uncertainties until the closed-loop optimization comes into play. As a consequence, the

closed-loop solution to the nominal problem is highly perturbed.

The figures further indicate that the tracking performance of the worst case scenario ap-

proach is far better than the nominal one, since the primitives in the optimal sequence

picked are more cautious (less affected by uncertainties) and hence, trajectories produced
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are less perturbed. Therefore, the closed-loop trajectory for the worst case policy resembles

the open-loop path more, while the nominal policy becomes further and further deviated.

In fact, for γ > 0.3, the non robust optimization problem had to be stopped failure to have

reached the target position. In comparison, the worst case policy reaches the final position

even for large values of γ.

Numerical results are presented in Tables 12 through 16 each corresponding to a differ-

ent scaling factor scenario. As the value of the scaling factor γ and hence the amount of

uncertainty increases, the closed-loop solutions associated with the non-robust policy are

stopped as the maximum number of receding horizon activations is reached. However, the

worst case scenario solutions are robust to perturbations in motion primitive characteristics

and the final closed-loop costs associated with the successful accomplishment of the mission

objectives are lower than the worst case nominal cost. In other words, as seen in Table 15

the reference cost associated with the worst case approach is 23.34280767 seconds while the

closed-loop cost is only 19.86228881 seconds.
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Non Robust Trajectory Optimization for γ = 0

Figure 11: Closed-loop Solution to the Non Robust Approach for γ = 0.0 - Scenario 1
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Figure 12: Closed-loop Solution to the Non Robust Approach for γ = 0.3 - Scenario 1
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Figure 13: Closed-loop Solution to the Non Robust Approach for γ = 0.5 - Scenario 1
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Figure 14: Closed-loop Solution to the Non Robust Approach for γ = 0.8 - Scenario 1
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Figure 15: Closed-loop Solution to the Non Robust Approach for γ = 1.0 - Scenario 1
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Figure 16: Closed-loop Solution to the Robust Approach for γ = 0.0 - Scenario 1
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Figure 17: Closed-loop Solution to the Robust Approach for γ = 0.3 - Scenario 1
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Figure 18: Closed-loop Solution to the Robust Approach for γ = 0.5 - Scenario 1
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Figure 19: Closed-loop Solution to the Robust Approach for γ = 0.8 - Scenario 1
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Figure 20: Closed-loop Solution to the Robust Approach for γ = 1.0 - Scenario 1
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Table 12: Nominal and Closed-loop Optimal Costs for γ = 0.0 - Scenario 1

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

19.86835686 19.16843263

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

19.86835686 19.16731709

Table 13: Nominal and Closed-loop Optimal Costs for γ = 0.3 - Scenario 1

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

19.86835686 39.88946320

Maximum Number of Iteration Reached

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

21.07064123 18.96135452

Table 14: Nominal and Closed-loop Optimal Costs for γ = 0.5 - Scenario 1

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

19.86835686 38.93258630

Maximum Number of Iteration Reached

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

21.93479312 31.87326767

Maximum Number of Iteration Reached

Table 15: Nominal and Closed-loop Optimal Costs for γ = 0.8 - Scenario 1

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

19.86835686 61.05847568

Maximum Number of Iteration Reached

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

23.34280767 19.86228881

Table 16: Nominal and Closed-loop Optimal Costs for γ = 1.0 - Scenario 1

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

19.86835686 52.62802941

Maximum Number of Iteration Reached

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

24.36918340 19.36730029
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7.1.2 Results obtained with the second mission

This time, the vehicle is constrained to move in a plane, from the given initial position

xi = [ 0 ft ; 0 ft ] to the fixed final target xf = [ 30 ft ; 10 ft ]. Also, the vehicle is restricted,

initially, to have a heading of 2π
4 rads. The rest of the mission remains unchanged.

7.1.2.1 Open-loop Trajectories

To the difference of the first mission results, this mission allows us to show that there is

indeed a difference in the nominal solutions picked by the non-robust and robust policies

once the scaling factor γ becomes significantly large. In order to illustrate this, the reader is

provided the open-loop solutions to the worst case optimization for varying γ. The resulting

trajectories are as presented in Fig. 21 through Fig. 25.
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Figure 21: Nominal and Open-loop Solutions to the Robust Approach for γ = 0.0 -
Scenario 2
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Figure 22: Nominal and Open-loop Solutions to the Robust Approach for γ = 0.3 -
Scenario 2
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Figure 23: Nominal and Open-loop Solutions to the Robust Approach for γ = 0.5 -
Scenario 2
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Figure 24: Nominal and Open-loop Solutions to the Robust Approach for γ = 0.8
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Figure 25: Nominal and Open-loop Solutions to the Robust Approach for γ = 1.0
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Fig. 21 through Fig. 25 suggests that, the worst case scenario approach picks solutions

to the optimization problem as a function of the amount of uncertainty that is accounted

for, scaled by γ. Moreover, the red curves represent the nominal trajectories associated to

γ = 0. The green and blue trajectories correspond to the open-loop perturbed trajectories

for the values of γ given in caption. Moreover, the green curve corresponds to the open-loop

curve that results from subtracting all the uncertainties in the library scaled by γ, the blue

curve corresponds to the results obtained when all uncertainties in the library are added to

the motion primitive parameters, scaled by γ.

7.1.2.2 Optimization Results

As a result to this different mission, similar results are obtained. The tracking performance

of the worst case scenario approach is again better than the one for the non-robust pol-

icy as predicted. Furthermore, for γ = 1, i.e., all the uncertainties are accounted for in

their entirety, the worst case scenario closed-loop cost is 17.75431320 seconds while the

corresponding open-loop optimal cost was 20.31279186 seconds.
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Figure 26: Closed-loop Solution to the Non Robust Approach for γ = 0.0 - Scenario 2
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Figure 27: Closed-loop Solution to the Non Robust Approach for γ = 1.0 - Scenario 2
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Figure 28: Closed-loop Solution to the Robust Approach for γ = 1.0 - Scenario 2

64



Table 17: Nominal and Closed-loop Optimal Costs for γ = 0.0 - Scenario 2

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

13.80815399 13.80815399

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

13.80815399 12.06740119

Table 18: Nominal and Closed-loop Optimal Costs for γ = 1.0 - Scenario 2

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

13.80815399 68.52195604

Maximum Number of Iteration Reached

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

20.31279186 17.75431320
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7.1.3 Results obtained with the third mission

We finally applied the same methodology to a last set of initial conditions where xi =

[ 0 ft ; 0 ft ], ψi = 2π
4 and xf = [ 30 ft ; 20 ft ].

7.1.3.1 Open-loop Trajectories

The open-loop trajectories to this third mission allows the reader to see that the worst case

scenario picks solutions that are less prone to the effect of perturbations. The effect, on the

solutions picked by the worst case scenario formulation, of uncertainties, was investigated

by increasing the scaling factor γ. Fig. 29 and Fig. 30 suggest that, once the scaling factor

goes above γ = 0.5, the worst case scenario formulation will pick solutions that contain

motion primitives from the library which are associated to less perturbations. Therefore,

as γ increases and hence the amount of uncertainty accounted for increases, the open-loop

perturbed trajectories (green and blue curves) become closer to the nominal trajectory.

g = 0

g = 1

g = -1

Figure 29: Open-loop solutions to the Robust Approach for γ = 0.1 - Scenario 3
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g = -1
g = 0

g = 1

Figure 30: Open-loop solutions to the Robust Approach for γ = 0.5 - Scenario 3

7.2 Results obtained with the experimental library

Similarly to the first reference library, our methodology was tested on the experimental

library. As such, we will be able to show the robustness, to perturbation, of our approach

using the dynamic characteristics in terms of primitives of a real vehicle model.

Recall that the experimental library was obtained through simulations performed on a real

time flight test verified autonomous vehicle developed here at Georgia Institute of Technol-

ogy. The motion primitive library relative to the results obtained through simulations on

the GT-Max was presented in Chapter 3 in Tables 9 and 10

7.2.1 Results obtained with the first mission

We replicated the same mission that was tested in Section 7.1.1, this time on the experi-

mental library. Motion planning begins at the initial point xi = [ 0 ft ; 0 ft ], ψi = 3π
4 and

the target is defined to be xf = [ 30 ft ; 0 ft ].
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7.2.1.1 Optimization Results

The behavior of the vehicle, in closed-loop, is indicated in Fig. 31 through Fig. 33 for the

non robust formulation of the motion planning problem and Fig. 34 through Fig. 36 for the

worst case scenario approach for increasing γ.

Numerical results are presented in Tables 19 through 21 each corresponding to a different

scaling factor scenario. In all the scenarios presented here, the closed-loop robust solutions

are able to reach the target in lesser time than the corresponding non-robust solutions. As

means of comparison, the nominal open-loop solution to the non-robust optimization reaches

the target after 17.196 seconds while it fails to hit the target, or come to the allowed vicinity

of it in closed-loop for a scaling factor of 0.7. However, the worst case scenario solution

arrives to the target after 24.311 seconds for the same scaling factor.
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Non Robust Trajectory Optimization for γ = 0.1

Figure 31: Closed-loop Solution to the Non Robust Approach for γ = 0.1 - Scenario 1
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Figure 32: Closed-loop Solution to the Non Robust Approach for γ = 0.5 - Scenario 1
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Figure 33: Closed-loop Solution to the Non Robust Approach for γ = 0.7 - Scenario 1
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Figure 34: Closed-loop Solution to the Robust Approach for γ = 0.1 - Scenario 1
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Figure 35: Closed-loop Solution to the Robust Approach for γ = 0.5 - Scenario 1
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Figure 36: Closed-loop Solution to the Robust Approach for γ = 0.7 - Scenario 1

Table 19: Nominal and Closed-loop Optimal Costs for γ = 0.1 - Scenario 1

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

17.19564465 26.75174872

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

17.58223420 16.05815770

Table 20: Nominal and Closed-loop Optimal Costs for γ = 0.5 - Scenario 1

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

17.19564465 65.37049147

Maximum Number of Iteration Reached

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

19.12782333 32.03125826

Table 21: Nominal and Closed-loop Optimal Costs for γ = 0.7 - Scenario 1

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

17.19564465 52.68776743

Maximum Number of Iteration Reached

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

60.51056468 24.31112894
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It is of interest at this point to compare the nature of maneuvers and trim conditions

that were picked, as solutions to both non-robust and worst case scenario policies. To this

end, Figures 37 – 48 provide the distribution, as pie charts of occurring maneuvers and trim

conditions as well as uncertainties present in those chosen characteristics.

Figure 37: Trim Occurrences for Non Robust Approach γ = 0.1

Figure 38: Trim Occurrences for Robust Approach γ = 0.1
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Figure 39: Maneuver Occurrences for Non Robust Approach γ = 0.1

Figure 40: Maneuver Occurrences for Robust Approach γ = 0.1
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Figure 41: Trim Occurrences for Non Robust Approach γ = 0.5

Figure 42: Trim Occurrences for Robust Approach γ = 0.5
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Figure 43: Maneuver Occurrences for Non Robust Approach γ = 0.5

Figure 44: Maneuver Occurrences for Robust Approach γ = 0.5
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Figure 45: Trim Occurrences for Non Robust Approach γ = 0.6

Figure 46: Trim Occurrences for Robust Approach γ = 0.6
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Figure 47: Maneuver Occurrences for Non Robust Approach γ = 0.6

Figure 48: Maneuver Occurrences for Robust Approach γ = 0.6
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The above presented figures suggest that, as γ increases, the robust policy start picking

solutions that contain trim number 5, which is a slow right turn. For example in Fig. 42,

the robust solutions contain, 36% of the time, trim number 5. However, the non robust

policy uses both straight and turning flight trim conditions that are associated with large

velocities.

As far as maneuvers are concerned, referring to Fig. 55, the robust policy chooses optimal

sequences of trims and maneuvers that contain maneuver 19, which is the maneuver that

permits the vehicle to slow down, from a fast right turn to a fast left turn.

7.2.2 Results obtained with the second mission

This time the vehicle is constrained to move from the initial point xi = [ 0 ft ; 0 ft ], ψi = 2π
4

to the target xf = [ 50 ft ; 20 ft ].

7.2.2.1 Optimization Results

The behavior of the vehicle, in closed-loop, is indicated in Fig. 49 through Fig. 53 and

Fig. 54 through Fig. 58 for increasing γ.

Numerical results are presented in Tables 22 through 26 each corresponding to a different

scaling factor scenario. As for the previous scenario, the closed-loop robust solutions are

able to reach the target in lesser time than the corresponding non-robust solutions. For

small values of γ, tracking of the trajectory is also better than the non-robust solutions.
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Figure 49: Closed-loop Solution to the Non Robust Approach for γ = 0.1 - Scenario 2
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Figure 50: Closed-loop Solution to the Non Robust Approach for γ = 0.2 - Scenario 2
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Figure 51: Closed-loop Solution to the Non Robust Approach for γ = 0.3 - Scenario 2
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Figure 52: Closed-loop Solution to the Non Robust Approach for γ = 0.6 - Scenario 2

80



0 10 20 30 40 50 60 70 80

−10

0

10

20

30

40

50

x

y

Non Robust Trajectory Optimization for γ = 0.7

Figure 53: Closed-loop Solution to the Non Robust Approach for γ = 0.7 - Scenario 2
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Figure 54: Closed-loop Solution to the Robust Approach for γ = 0.1 - Scenario 2
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Figure 55: Closed-loop Solution to the Robust Approach for γ = 0.2 - Scenario 2
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Figure 56: Closed-loop Solution to the Robust Approach for γ = 0.3 - Scenario 2
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Figure 57: Closed-loop Solution to the Robust Approach for γ = 0.6 - Scenario 2
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Figure 58: Closed-loop Solution to the Robust Approach for γ = 0.7 - Scenario 2

83



Table 22: Nominal and Closed-loop Optimal Costs for γ = 0.1 - Scenario 2

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

13.07107247 38.77440384

Maximum Number of Iteration Reached

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

13.42410657 11.98088517

Table 23: Nominal and Closed-loop Optimal Costs for γ = 0.2 - Scenario 2

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

13.07107247 53.02731146

Maximum Number of Iteration Reached

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

13.77880971 11.79107632

Table 24: Nominal and Closed-loop Optimal Costs for γ = 0.3 - Scenario 2

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

13.07107247 51.42835246

Maximum Number of Iteration Reached

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

14.13470080 22.47452309

Table 25: Nominal and Closed-loop Optimal Costs for γ = 0.6 - Scenario 2

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

13.07107247 43.98039397

Maximum Number of Iteration Reached

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

15.20568435 21.05150780

Table 26: Nominal and Closed-loop Optimal Costs for γ = 0.7 - Scenario 2

(a) Non Robust Solutions

Nominal Cost [s] Real Cost [s]

13.07107247 45.77119840

Maximum Number of Iteration Reached

(b) Robust Solutions

Nominal Cost [s] Real Cost [s]

15.56276175 20.41190763
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CHAPTER VIII

CONCLUSIONS

8.1 Concluding Remarks

The focus of this research was to develop an algorithm that would enable an autonomous

vehicle to compute a motion plan to reach a target in minimum time, given a set of initial

conditions and given uncertain parameters affecting its dynamics. The proposed solution

of the motion planning problem was designed for a time-invariant dynamic control system

with symmetries: the Maneuver Automaton [12]. With this representation, motion plans

were defined as a concatenation of trajectory primitives, relative equilibria and maneuver

conditions, that were defined within a motion primitive library. The motion planning prob-

lem was addressed through the use of optimal control theory and the constraints to the

problem were defined on the states and controls. The solution to the time optimal problem

addressed through the use of the Maneuver Automaton leads an approximation of real tra-

jectories and therefore, the solutions that were computed according to the described method

are, in general, not optimal. However, the usage of this automaton results in a reduction in

computational complexity, as the quantization of the states and controls is done off-line and

stored within a library. Therefore there is no need for time, state or control quantization.

In order to address the inevitable presence of uncertainties in the environment surrounding

the vehicle and in its dynamics, two motion planning problems, one that omits and another

that accounts uncertainties, were defined. Uncertainties were accounted for, both in the

open-loop computation of an optimal guidance cost function, time for instance, and in a

closed-loop, for the formulation we named worst case approach. The resulting worst case

solution therefore represents a trade-off between time to reach the goal and uncertainties

present in the primitives minimization. Two different Maneuver Automaton representa-

tions, one based on kinematic evaluation of motion primitives and the other relying on data
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of an existing dynamic system were defined.

The examples provided for both libraries highlighted, through the comparison of both non-

robust and worst case scenario policies introduced in this work, that the addition of uncer-

tainties within the optimization problem results in closed-loop trajectories that are more

robust to perturbations and whose time performance is better. These results were validated

for both the theoretical and the experimental library and therefore reinforce the initial mo-

tivation of the research, which is to guarantee the overall robustness of the control system.

The nominal motion planning problem, which omits uncertainties in the system parameters

may lead to the failure of the mission, whereas the worst case motion planning problem, in

which uncertainties are introduced within the tactical layer, may result in the accomplish-

ment of mission objectives.

Moreover, uncertainties are statistical quantities and are therefore unknown at a given in-

stant in time. As a result, experiments at different level of uncertainties were run to back

up the results we obtained.

8.2 Problems Encountered

8.2.1 Suboptimality Issues

One of the drawbacks of the maneuver automaton framework is related to the limited

number of actions one is constrained to perform given a finite set of trims and maneuvers

defining the library. It follows that motion plans constructed through the concatenation of

suitable primitives are approximations of real trajectories and hence, the are sub-optimal.

8.2.2 Initial Guess Computations

As for any nonlinear programming problem, the computation of initial guesses was highly

complex. Even thought the optimizer was given a smart guess for initial values of coasting

times, it was sometimes confronted to infeasibility problems due to poor initial guesses.

8.2.3 Decent Motion Primitive Library

At the core of the Maneuver Automaton framework lies the motion primitive library. This

library depends on the dynamic characteristics and controller architecture of the system it
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issues from. Obtaining this representation for a given system therefore requires statistical

evaluations of not only relative equilibria and transitions as well as associated errors in

those parameters. Extending the library to a greater number of primitives is therefore very

time consuming.

8.2.4 Modeling Uncertainties

Dr. Eric N. Johnson and his team have been doing such a good job with the controller of

the GT-Max that it already deals very well with uncertainties and hence leaves very small

errors and uncertainties to work with. This was a problem in the generation of a good

library for the purposes of this research since the approach relies greatly on the nature and

quantity of uncertainties present in trims and maneuvers.

8.3 Future Work

In the presented work, we have introduced a new methodology, which enables the incorpo-

ration of uncertainties into the motion planning of UAVs. We have also investigated the

effect of increasing the factor that scales the uncertainties present in the system primitives.

The results provided in this work suggest that as γ becomes larger and larger, the deviation

for both the non-robust and worst case approaches becomes greater. As such the system

tends to behave inadequately.

It would be of interest to optimize the amount of uncertainty that one can incorporate

within the library of motion primitives, which will still ensure a satisfactory behavior of

the UAV. The motivation under the development of this third optimization is the brief

knowledge one has in reality, on the uncertainties present in the motion primitives. In fact,

a detailed knowledge on the uncertainties, as incorporated into the library so far, can be a

limiting factor. For example, the effect of environmental uncertainties, such as wind gust

or turbulence, on a Boeing 747 and on a UAV is considerably different. Therefore, the

uncertainties in the system parameters due to the presence of gust or turbulence, will differ

from system to system.

In more general cases, it will be desired to trade some performance, as introduced in Chap-

ter 4, as measured by the performance index J(x,u), to gain in robustness. More precisely,
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we will be satisfied with any value of the performance index J such that

Jopt ≤ J ≤ αJopt α ≥ 1

where α measures the acceptable performance loss.

Under this perspective, we will consider the family of uncertain parameters within the mo-

tion primitives as bounded by an unknown value γ > 0. Increasing γ indicates that the

uncertainty accounted for is greater with respect to the nominal value of the system para-

meters.

Robust optimal control maximizes the uncertainty level γ that still guarantees a certain

acceptable performance decrease with respect to the non-robust case, i.e. it finds the max-

imum uncertainty level that satisfies the trade-off we are ready to accept.

The robust cost function is identical to the worst case scenario cost function,

J R(q, τ , γ) =

nT
∑

i=1

τi +

nM
∑

i=1

(Ti + γǫTi
)

however , the uncertainty level is added to the optimization, which leads to the redefinition

of the optimal control problem for the robust case.

Problem 8.1. Given the maneuver automaton in consideration, an input position pair

x i,x f ∈ X, find a hybrid control input pair {q, τ} such that,

x 2k = φ((w qk
+ γǫw qk

)τk)x 2k−1 in a trim condition k = 1, ..., nT (9a)

x 2k+1 = x 2k + ∆x p + γǫ∆xp in a maneuver k = 1, ..., nM (9b)

‖x2nT
− xf‖ ≤ δ where δ is a tolerance on the final position error (9c)

min
q∈UT

min
τ

max
γ

J R(q, τ , γ) where γ ∈ [−1; 1] (9d)

In this formulation of the problem, it is not only the coasting times that minimizes the

given cost but also the level of uncertainty that one can include in order to remain in the

allowable trade-off range.

Finally, real-time issues have not been investigated nor discussed in the scope of this re-

search. In fact the motion planning problem has been addressed through the use of optimal

control techniques, which suffer from high computationnal costs and numerical issues that
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make them unsuitable for many real-time applications. Furthermore, t he optimizer was

chosen in order to ensure the best optimal solutions and is therefore highly sophisticated.

Its implementation in real-time will be very time-consuming and therefore costly. There

are ways to implement this methodology in real-time as investigated in [24]. However, this

research only focuses on the methodology itself rather than its real-time implementation.
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APPENDIX A

ANALYSIS OF MECHANICAL CONTROL SYSTEMS ON

LIE GROUPS

A.1 Mathematical Preliminaries

A.1.1 Differential Geometry

Following [8], let Q be the configuration manifold or space such that any element q ∈ Q

defines the configuration of the object. A local coordinate chart X : Q → IRn is defined

assuming that Q is locally diffeomorphic to IRn. We will further define the tangent space

TqQ to Q at the configuration q whose elements are tangent vectors. The tangent bundle

TQ is defined such that TQ = {
⋃

q∈Q

TqQ , dim(TQ) = 2n}. The cotangent space is denoted

as T ∗

qQ = {⋃Tq |Tq → IR is a linear function} and the cotangent bundle is designated as

T ∗Q = {
⋃

q∈Q

T ∗

qQ}. To add more clarity, v denoting a velocity vector will be an element

of the tangent space TqQ while a covector p denoting the momentum will belong to the

cotangent bundle T ∗Q and finally vector forces f will be elements of the cotangent space

T ∗

qQ.

A.1.2 On Lie Groups

A Lie algebra g is a vector space equipped with a skew-symmetric, bilinear bracket [· ; ·] :

g × g → g that satisfies the Jacobi identity

[u; [v;w]] + [v; [w;u]] + [w; [u; v]] = 0

For the purpose of this research we are interested in the definition of particular matrix Lie

groups, which are the rotation group and its associated Lie algebra and the group of rigid

displacements with its corresponding Lie algebra. We will restrict our definitions to IR2

Rotation Group The rotation group is an orthonormal group which is defined as

SO(2) , {R ∈ IR2×2|RTR = I,det(R) = 1} (10)
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The associated Lie algebra so(2) is the space of skew symmetric matrices

so(2) , {S ∈ IR2×2|ST = −S} (11)

Rigid Displacements The Euclidean group of rigid displacements, that is rotations and

translations on IR2 is denoted as SE(2)

SE(2) ,

{







R b

0 1






∈ IR3×3|R ∈ SO(2), b ∈ IR2

}

(12)

The associated Lie algebra se(2) is defined as

se(2) ,







ŵ v

0 0






(13)

A.2 Mechanical Control Systems

The reader is referred to consult [9, 8, 21, 10] for full information on Lie algebra and Lie

group frameworks. However we will provide preliminaries on the Lie group framework that

was used throughout this research.

A.2.1 Simple Mechanical Control Systems on Lie Groups

Given a mechanical system, it is desired to determine the position of its components in

an inertial reference frame. We are interested in simple mechanical control systems whose

lagrangian is equal to the kinetic minus the potential energy. The definition of mechanical

controls systems on Lie groups can be found in [12, 8]

A.3 Planar Rigid Body Example

Consider, for example, a hovercraft gliding over a body of water without friction. The

dynamics of the model can be described by the rigid body equations as presented in [21].

Using the notation from [8, 12] let g(t) = (ψ, x, y) be the configuration of the system where

the pair (x, y) describes the position of the vehicle and ψ describes its orientation (heading)

on a plane relative to the inertial frame. For the planar motion of the vehicle R is the
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direction cosine matrix

R =







cosψ − sinψ

sinψ cosψ







b ∈ IR2 is a translation vector. We define g(t) ∈ SE(2) to be the rigid body transformation

that maps a body fixed orthonormal frame into an inertial frame so that g(t) describes the

position at time t of the vehicle in the plane and its orientation at time t with respect to

the inertially fixed axis. Using equations 10 and 11, g can be expressed as

g =













cosψ − sinψ x

sinψ cosψ y

0 0 1













similarly, using equations 12 and 13,

ξ̂ =







ŵ v

0 0







where w and v are the angular and linear velocities in body axes.

Given a constant rigid body motion g0, a constant turning rate ψ̇, the general form of the

evaluation of the configuration of a planar rigid body is given by

g(t) =













cos ψ̇t − sin ψ̇t vx/ψ̇

sin ψ̇t cos ψ̇t vy/ψ̇

0 0 1













g0 (14)

where vx and vy are the components of the velocity vector v in body axes.

A.4 Maneuver Automaton Equations

The evolution of a dynamic system while in trim and maneuver using the maneuver au-

tomaton vocabulary was defined as

x 2k = φ(w qkτk)x 2k−1 in a trim condition k = 1, ..., nT ; (15a)

x 2k+1 = x 2k + ∆x p in a maneuver k = 1, ..., nM . (15b)
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in absence of uncertainties and

x 2k = φ((w qk
+ ǫw qk

)τk)x 2k−1 in a trim condition k = 1, ..., nT ; (16a)

x 2k+1 = x 2k + ∆x p + ǫ∆xp in a maneuver k = 1, ..., nM . (16b)

accounting for the uncertainties. The equations of motion for maneuver conditions are trivial

to obtain since they are characterized by a fixed displacement and heading change. We will

therefore concentrate our attention on trim conditions in the absence of uncertainties. The

evolution of the system is given by

x 2k = φ(w qk
τk)x 2k−1 k = 1, ..., nT

Before the evolution of the system while in a trim condition is defined in more detail, we

will illustrate the different transformations that were used. Let the position and orientation

x
0


r
0


r


d


x


Figure 59: Transformations in Inertial Frame

relative to the inertial frame of an initial point be denoted as x0 and α0 respectively (see

Fig. 59). Further, let v̄ = (v1, v2, 0) and w̄ = (0, 0, w3) be the body attached velocity and

angular velocity components characterizing the trim condition. Consequently, the velocity

and angular velocity of the initial point relative to the inertial frame can be expressed as

v0 = α0v̄ and w0 = α0w̄ respectively. Furthermore, the direction cosine matrix, relative to
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a rotation around the z axis (recall the formulation of the angular velocity) is defined as

R(w̄t) =













cosw3t − sinw3t 0

sinw3t cosw3t 0

0 0 1













where t ∈ IR+. We are interested in the evolution of the system from the initial position

and orientation x0 and α0 to an arbitrary final position and orientation x and α which is

reached after t seconds. From Fig. 59,

x0 = r0 + d

x = r + d

r = R(w̄t)r0

α = R(w̄t)α0

v = R(w̄t)v0

which yields

x = R(w̄t)r0 + x0 − r0

r0 =
1

w3













0 1 0

−1 0 0

0 0 0













v0

which is reformulated as

x = x0 + α0













sinw3t cosw3t− 1 0

1 − cosw3t sinw3t 0

0 0 0

























v1/w3

v2/w3

0













(17)

Now, using the notation introduced in this work let A2k−1 be the initial orientation of the

vehicle once it starts trimming. Since the vehicle will remain in a relative equilibria qk for

τk seconds, the final orientation of the vehicle can be expressed, as a function of τk as

A2k =







cos ψ̇kτk − sin ψ̇kτk

sin ψ̇kτk cos ψ̇kτk






A2k−1
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The position, relative to the inertial frame of the vehicle is obtained using Eq. 17

x2k = x2k−1 +A2k−1







sin ψ̇kτk cos ψ̇kτk − 1

1 − cos ψ̇kτk sin ψ̇kτk













ufwdk

ψ̇k

usidek

ψ̇k






(18)
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APPENDIX B

ON WORST CASE SCENARIO APPROACH

We are interested in investigating the effect of uncertainties on the overall behavior of

the system. It must be pointed out that the same scaling factor is used, throughout the

optimization for all the uncertainties in all primitives. This means that uncertainties are

either added or subtracted from the motion primitives for a given sequence. However, it is

in general difficult to predict the effect of uncertainties on motion primitives and hence on

the overall behavior of the system. By restricting γ to take the values -1, 0, or 1 we are

assuming that we can predict the effect of the uncertainties on the system. We will present

in detail how we can construct the library such that this assumption becomes a valid one.

In order to do this, we will first study a simple example.

B.1 Simple Example

Let us consider a very simple Maneuver Automaton Representation of 2 forward flight trims

and 2 connecting maneuvers. The trim and maneuver data that was used is provided in

Table 27 and Table 28 respectively. It is desired to reach the final position xf = [50; 0].

Table 27: Simple Problem: Trim Library
q ufwd uside r ǫufwd

ǫuside
ǫr

1 1 0 0 0.1 0.1 0.0
2 4 0 0 0.8 0.8 0.0

Table 28: Simple Problem: Maneuver Library
p qfrom qto ∆xpx ∆xpy ∆ψ ǫ∆xpx

ǫ∆xpy
ǫ∆ψ T ǫT

1 2 1 5.0 0.0 0.0 -0.5 0.0 0.0 2.0 -0.5
2 1 2 5.0 0.0 0.0 -0.5 0.0 0.0 2.0 -0.5

The initial heading is zero such that the system flies straight. The problem is again to

find the best sequence of motion primitives that will allow the vehicle to reach the final

96



position within set bounds. The system is restrained to start at a slow forward flight which

is trim 2. With a maximum trim depth of 2 for a given sequence, there are 2 possible

trajectories: Now if we allow the freedom, at each motion primitive, that the uncertainties

Table 29: Possible Sequences
q p q

1
1 2 2

can act any way without restriction, the uncertainty combinations presented in Table 30

will be obtained.

Table 30: Uncertainty Scenarios
Sequence Uncertainty

Scenario
1 -1

0
1

1 2 2 -1 -1 -1
-1 -1 0
-1 -1 1
-1 0 -1
-1 0 0
-1 0 1
-1 1 -1
-1 1 0
-1 1 1
0 -1 -1
0 -1 0
0 -1 1
0 0 -1
1 1 1
0 0 1
0 1 -1
0 1 0
0 1 1
1 -1 -1
1 -1 0
1 -1 1
1 0 -1
1 0 0
1 0 1
1 1 -1
1 1 0
0 0 0
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A solution is considered feasible if all of the uncertainty scenarios in Table 30 represent

a feasible solution to the optimization problem.

B.2 Optimization Results

The results obtained are provided in Table 31 and Table 33.

Table 31: Solutions to sequence 1
γ Cost (time [s])

-1 50.0000
0 45.4545
1 50.0000

Table 32: Solutions to sequence 2
γ Cost (time [s])

-1 -1 -1 22.7273
-1 -1 0 13.6250
-1 -1 1 10.1724
-1 0 -1 22.4545
-1 0 0 13.2500
-1 0 1 9.7586
-1 1 -1 22.1818
-1 1 0 12.8750
-1 1 1 9.3448
0 -1 -1 22.7273
0 -1 0 13.6250
0 -1 1 10.1724
0 0 -1 20.1818
1 1 1 9.3448
0 0 1 9.7586
0 1 -1 22.1818
0 1 0 12.8750
0 1 1 9.3448
1 -1 -1 22.7273
1 -1 0 13.6250
1 -1 1 10.1724
1 0 -1 22.4545
1 0 0 13.2500
1 0 1 9.7586
1 1 -1 22.1818
1 1 0 11.6250
0 0 0 12.0000

Table 33: Solutions to sequence 2
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From this table it can be seen that the lowest cost corresponds to the uncertainty

scenario where the scaling factor γ multiplying all uncertainties is 1 for all motion primitives.

Similarly, the maximum cost is achieved for all uncertainties multiplied by γ = -1. This

provides a preliminary example in backing up our motivation in using only one scaling

factor for all uncertainties, instead of testing each uncertainty scenario possible for each

trim. Also, as can be seen from Table 33, the number of optimal control problems to be

run and compared is not 3 anymore but is exponentially growing as the number of possible

uncertainty choices at each motion primitive is 3. As such, for a given sequence depth of

nT + nM , nT being the number of trajectory trims and nM being the number of trajectory

maneuvers, the number, Nopt of optimal control problems to be run for only one sequence

of primitives becomes

Nopt = (nT + nM)3

For the purposes of this research, this will correspond to a computationally infeasible prob-

lem and therefore it is in our interest to justify the use of only one scaling factor for each

primitive. Recall that trim conditions are characterized by their body axes velocities,

• ufwd forward velocity with associated uncertainty ǫufwd

• uside side velocity with associated uncertainty ǫuside

• r yaw rate with associated uncertainty ǫr

Uncertainties are added to the velocities as follows

urfwd = ufwd + γ ǫufwd
(19a)

urside = uside + γ ǫuside
(19b)

rr = r + γ ǫr (19c)

where the superscript ”r” indicates the real values. Now looking back to the trim library

provided in Table 27, one can see that ufwd > 0, uside = 0 and ǫufwd
> 0, ǫuside

= 0. It

follows that, as uncertainties are added to the trim parameters, i.e. γ = 1, their overall

effect on trajectory trims is such that the vehicle flies faster. This will result on the vehicle
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reaching the target in less time, and therefore yields the decrease of the objective function.

Similarly, choosing γ = −1 will result in a decrease in forward speed and hence an increase

of the objective function. For the same global overall effect, the uncertainty on the yaw rate

ǫr will be signed positive for a right turn and negative for a left turn as r > 0 for a right turn

and r < 0 for a left turn. That way, as uncertainties are added according to equation 19c,

γ = 1 will correspond to an increase in magnitude of the yaw rate. Recapitulating,

• γ = 1 corresponds to uncertainties acting on the system such that it flies faster and

reaches the goal in lesser time;

• γ = 0 corresponds to the case when no uncertainty is acting on the system;

• γ = −1 corresponds to the uncertainties acting on the system such that it flies slower

and hence reaches the goal in more time.

We would like to obtain the same homogeneous effect of uncertainties while maneuvering.

Recall that maneuvers were characterized by

• finite transition time T and associated uncertainty ǫT

• fixed displacement ∆xp and associated uncertainty ǫ∆xp

• fixed heading change ∆ψ and associated uncertainty ǫ∆ψ

Uncertainties affect maneuver parameters as follows

T r = T + γ ǫT (20a)

∆xrp = ∆xp + γ ǫ∆xp (20b)

∆ψr = ∆ψ + γ ǫ∆ψ (20c)

Let us first concentrate our study on the uncertainty associated with the maneuver duration.

If the sign on ǫT is positive, then γ = 1 will correspond to an increase in the maneuver

duration, which, in turn, will engender the increase of the objective function. As such, we

will have the exact contrary effect than what we have gotten through our analysis with

trims. As a remedy, we will store the maneuver duration error ǫT as negative. That
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way, as γ = 1, using equation 20a, the maneuver duration with the effect of uncertainties

becomes less then the maneuver duration as stored in the library. Similarly, if one spends

less time in a maneuver, it is also assumed that one will cover less distance and therefore,

the displacement change due to the maneuver must be less while uncertainties are present.

Therefore,

∆xp > 0 ⇔ ǫ∆xp < 0

∆xp < 0 ⇔ ǫ∆xp > 0

Since the maneuver displacement, as presented in the maneuver library, is measured in

body axis, ∆xp > 0 will always be satisfied. It follows that ǫ∆xp < 0. Similarly, γ = 1 will

correspond to the case where the uncertainty on the heading change will cause the heading

to decrease, since the required maneuver displacement with the addition of uncertainties is

less, in magnitude then the original ∆xp. Let us also point out, that the heading change

required to pass from a steady straight flight to a steady right turn , it be fast or slow, as

well as the uncertainty ǫ∆ψ associated, is signed negative. Respectively, heading changes

and associated uncertainties relative to transitions connecting steady straight flights to left

turns are signed positive.

Choosing the appropriate sign for characteristics of trims and maneuvers within the library

of motion primitives allows us to obtain the same ”global overall effect” relative to the

addition of uncertainties to the problem. It can therefore be predicted that by choosing

γ = 1 as the scaling factor that multiplies each uncertainty added to the characteristics of

motion primitives, the vehicle will reach the final target in lesser time. By the same token,

choosing γ = −1, the uncertainties will have the contrary effect on the behavior of the

vehicle, which will accomplish the mission in larger time. This justifies the choice of the

optimization problem name ”Worst Case Scenario Approach”, as the worst time scenario is

captured due to the proper construction of the library of motion primitives.

B.3 Proof

Let us consider the time invariant mechanical system denoted as S. Let X be the state

space of S as depicted in Chapter 5. The behavior, over time, of the system in the absence
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of uncertainties satisfies the differential equations on the states x ∈ X defined as

ẋ = f(x,u)

where u denotes control inputs to the system. Those control inputs are not known a priori

to the system.

Let us consider again the same mechanical system S whose states’ behavior over time with

the addition of uncertainties is determined by

ẋ = f(x,q, τ , γ)

where (q, τ ) represents the hybrid control input to the system and γ is the scaling factor

multiplying the uncertainties in the systems dynamics. The state vector is given by:

x(t) = Φ(x,q, γ)x(t0)

Locally, assuming that perturbations are small enough and linearizing, we can rewrite

Φ(x, γ) as

Φ(x, γ) = Φ(x0, γ0) + Φx(x0, γ0)(x − x0) + Φγ(x0, γ0)(γ − γ0) + O(|(x, γ)|)

Then, along the trajectory, taking x = x0 and γ0 = 0 leads

Φ(x, γ) = Φ(x, 0) + Φγ(x, 0) γ + O(|(x, γ)|)

hence,

Φ(x,−1) = Φ(x, 0) − Φγ(x, 0)

Φ(x, 1) = Φ(x, 0) + Φγ(x, 0)

Since −1 ≤ γ ≤ 1,

Φ(x, γ) − Φ(x,−1) = Φγ(x, 0) (γ + 1) (21)

Φ(x, γ) − Φ(x, 1) = Φγ(x, 0) (γ − 1) (22)

If Φγ(x, 0) < 0, equations (21,22) satisfy

Φ(x, γ) − Φ(x,−1) < 0

Φ(x, γ) − Φ(x, 1) > 0
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which equivalently yields

Φ(x, 1) < Φ(x, γ) < Φ(x,−1)

Now if Φγ(x, 0) < 0, equations (21,22) satisfy

Φ(x, γ) − Φ(x,−1) > 0

Φ(x, γ) − Φ(x, 1) < 0

and thus

Φ(x,−1) < Φ(x, γ) < Φ(x, 1)

We conclude that ∀x ∈ X, we have

Φ(x, 1) < Φ(x, γ) < Φ(x,−1) or (23)

Φ(x,−1) < Φ(x, γ) < Φ(x, 1) (24)

which implies, for −1 ≤ γ ≤ 1

traj (x,Φ(x, γ)) ⊂ Interior[(x,Φ(x, 1)) , (x,Φ(x,−1))] (25)
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