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A thousand goals there have been so far, for there have been a thousand peoples. Only the

yoke for the thousand necks is still lacking, the one goal is lacking. Humanity still has no

goal.

Nietzsche



For a more cooperative world
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SUMMARY

As progress in reinforcement learning (RL) gives rise to increasingly general and

powerful artificial intelligence, society needs to anticipate a possible future in which multiple

RL agents must learn and interact in a shared multi-agent environment. When a single

principal has oversight of the multi-agent system, how should agents learn to cooperate via

centralized training to achieve individual and global objectives? When agents belong to self-

interested principals with imperfectly-aligned objectives, how can cooperation emerge from

fully-decentralized learning? This dissertation addresses both questions by proposing novel

methods for multi-agent reinforcement learning (MARL) and demonstrating the empirical

effectiveness of these methods in high-dimensional simulated environments.

To address the first case, we propose new algorithms for fully-cooperative MARL in the

paradigm of centralized training with decentralized execution. Firstly, we propose a method

based on multi-agent curriculum learning and multi-agent credit assignment to address the

setting where global optimality is defined as the attainment of all individual goals. Secondly,

we propose a hierarchical MARL algorithm to discover and learn interpretable and useful

skills for a multi-agent team to optimize a single team objective. Extensive experiments

with ablations show the strengths of our approaches over state-of-the-art baselines.

To address the second case, we propose learning algorithms to attain cooperation within

a population of self-interested RL agents. We propose the design of a new agent who is

equipped with the new ability to incentivize other RL agents and explicitly account for

the other agents’ learning process. This agent overcomes the challenging limitation of

fully-decentralized training and generates emergent cooperation in difficult social dilemmas.

Then, we extend and apply this technique to the problem of incentive design, where a central

incentive designer explicitly optimizes a global objective only by intervening on the rewards

of a population of independent RL agents. Experiments on the problem of optimal taxation

in a simulated market economy demonstrate the effectiveness of this approach.

xvi



CHAPTER 1

INTRODUCTION

Reinforcement Learning (RL) [1] agents are achieving increasing success on an expanding

set of complex tasks [2, 3, 4, 5, 6], leading to the belief that RL provides a path toward

general Artificial Intelligence (AI) [7]. This is paralleled by a concurrent increase in

research effort on multi-agent reinforcement learning (MARL) [8], which extends the

concepts of early foundational work [9, 10, 11, 12, 13, 14, 15] with novel algorithms

and agent architectures [16, 17, 18, 19] that address the complexity of high-dimensional

real-world applications, such as autonomous navigation [20], game AI micromanagement

[17, 18], and traffic signal network optimization [21]. Among the many agendas of research

on multi-agent learning [13, 15], one of the strongest justifications of MARL rests on its

potential real-world applicability to decentralized optimization of a single global objective

in complex distributed systems [20, 22, 23], where many agents must act independently

based on their own local information but can be trained or influenced by a central entity.

In this setting, direct centralized control is often intractable due to high communication

costs and the exponentially large joint action space, or simply impossible when autonomous

agents do not live within the purview of the central controller. As a contribution to the

goal of increasing the potential applicability of MARL in real-world applications, this

dissertation shall focus solely on the agenda of achieving cooperation among learning agents

in decentralized optimization.

Other agendas in multi-agent learning include empirical modeling of human learning in

the presence of other learners, the study of convergence criteria for a given set of interacting

learning algorithms, and the design of a best learning strategy for a competitive agent, given

a fixed class of opponent agents [13, 15]. These alternative agendas fall outside the scope of

this dissertation: the first is orthogonal to the design of learning algorithms for decentralized
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optimization, the second belongs to non-cooperative game theory where there may be no

global objective that anyone wishes to optimize, while the last takes a selfish single-agent

viewpoint that is antithetical to the goal of optimizing a global system-level objective.

The problem of optimizing a global objective in a multi-agent system consists of two

distinct cases. In the first case, commonly termed centralized training with decentralized

execution (CTDE) [24], the multi-agent system falls under the purview of a central principal

who can impose a learning algorithm on all agents and provide global information in the

training phase. The principal can train agents to optimize the global objective directly,

subject to the constraint of decentralized execution of the resulting policies. This setting

includes many real-world problems, such as control of a fleet of autonomous vehicles, a

network of traffic signals, and a team of AI in team sports games [25, 21, 26]. In the

second case, the central principal does not have sufficient power over the agents to conduct

centralized training with global information. Nonetheless, one can guide this population

of independent learning agents to improve a system-level objective by setting appropriate

incentives that affect their learning process and promote the emergence of cooperation [27,

28]. If there is no central entity at all, then it is still possible for agents to adopt learning

algorithms that conduct mutual incentivization as a means to encourage mutual cooperation,

which may result in higher social welfare despite the lack of direct optimization.

1.1 Thesis statement

This dissertation addresses both aforementioned cases of the problem of optimizing a global

objective via multi-agent reinforcement learning, by putting forth and substantiating the

follow thesis statement:

Multi-agent reinforcement learning enables a collection of independently acting agents

to optimize individual and team goals via centralized training in fully-cooperative settings,

and generates emergent cooperation that benefits collective welfare via decentralized and

centralized incentivization in mixed-motive settings.
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This thesis is substantiated by the design of new multi-agent learning algorithms that

are empirically evaluated in high-dimensional simulations of cooperative navigation, au-

tonomous driving, a team sports game, social dilemmas, and a market economy with

taxation.

1.2 Contributions

We begin with fully-cooperative MARL in Chapter 3. Here, we have complete oversight

of the training process and the goal is to design a learning algorithm—in the paradigm of

centralized training with decentralized execution [29]—for agents to maximize a single

system-level objective. Specifically, we focus on the case that the system-level objective is

defined as achieving the collection of all individual agent goals. This multi-goal multi-agent

control problem arises in many real-world scenarios that require cooperation among multiple

autonomous agents. In autonomous driving, multiple vehicles must execute cooperative

maneuvers when their individual goal locations and nominal trajectories are in conflict

(e.g., double lane merges) [20]. In social dilemmas, mutual cooperation has higher global

payoff but agents’ individual goals may lead to defection out of fear or greed [30]. Even

settings with a global objective that seem unfactorizable can be formulated as multi-goal

problems: for example, in traffic flow optimization, different intersection controllers may

have local throughput goals but must cooperate for high global performance [21]. We

propose a new multi-agent curriculum learning approach to address the challenge of multi-

agent exploration, and we improve multi-agent credit assignment with a multi-agent policy

gradient involving a learned credit function between action-goal pairs. The proposed method,

called CM3 for Cooperative Multi-goal Multi-stage Multi-agent RL [19], outperforms the

previous state-of-the-art methods on benchmark problems such as cooperative navigation

and autonomous driving.

Continuing with fully-cooperative MARL, Chapter 4 tackles the challenge of discovering

interpretable and useful skills without domain knowledge in complex team environments via

3



hierarchical learning. A common approach in contemporary MARL is to conduct centralized

training at the level of primitive actions [31, 17, 18, 19, 32], which are the actions used

in the transition function of the Markov game [10]. However, the design of hierarchical

agents who can cooperate at a higher level of abstraction in high-dimensional multi-agent

environments using temporally-extended skills is still an open topic. By “skill”, we mean

a policy that is executed for an extended duration and generates distinguishable behavior;

more specifically, the policy is conditioned on a latent skill variable and produces trajectories

from which the latent variable can be decoded [33, 34]. It is also not clear how a team of

agents can discover useful skills without hand-crafted reward functions for each skill, and

how they should use skills effectively in combination to achieve a team objective. We draw

inspiration from real-world training practices in human team sports—where multiple players

learn to coordinate the use of individual skills under centralized training by a coach, while

each player individually masters the primitive actions required to perform a skill—to design

a new method for hierarchical MARL with automatic skill discovery, called HSD [35].

Evaluated against state-of-the-art non-hierarchical methods in a stochastic high-dimensional

simulation of team sports, HSD discovers interpretable and useful skills while maintaining

competitive performance, and it generalizes significantly better to ad-hoc cooperation.

In Chapter 5, we discard the possibility of centralized training and investigate the problem

of attaining multi-agent cooperation among selfish agents who independently optimize their

individual rewards. While much effort is devoted to single-agent environments and fully-

cooperative games, advances in AI research is driving human society toward a likely future

in which large numbers of RL agents with imperfectly-aligned objectives must interact and

continually learn in a shared multi-agent environment. The option of centralized training

with a global reward [17, 31, 18] is excluded as it does not scale easily to large populations

and may not be adopted by self-interested parties. On the other hand, the paradigm of

decentralized training—in which no agent is designed with an objective to maximize

collective performance and each agent optimizes its own set of policy parameters—poses
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difficulties for agents to attain high individual and collective return [36]. In particular, agents

in many real world situations with mixed motives, such as settings with non-excludable

and subtractive common-pool resources, may face a social dilemma wherein mutual selfish

behavior leads to low individual and total utility, due to fear of being exploited or greed to

exploit others [37, 38, 39]. Whether, and how, independent learning and acting agents can

cooperate while optimizing their own objectives is an open question. We propose a new

agent design based on the insight that cooperation may emerge without centralization when

each agent gives incentives to other learning agents and explicitly accounts for the impact of

incentives on other agents’ learning process. The proposed agent, called LIO for Learning

to Incentivize Other learning agents [40], provably converges to mutual cooperation in

the classic Iterated Prisoner’s Dilemma, and significantly outperforms numerous baselines

in difficult social dilemma problems. Promisingly, LIO converges near the known global

optimum social welfare in a deceptively hard pedagogical example that accentuates the

difficulty of incentivization for standard RL approaches.

In Chapter 6, we extend the methods in Chapter 5 to address the problem of incentive

design, whereby a central incentive designer aims to optimize a system-level objective solely

by providing incentives to a population of agents who selfishly optimize their individual

rewards. This formulation has broad applicability to complex population-level problems

in domains such as the energy grid [27], ride sharing [41], and tax design [42], and more

generally provides a path toward in silico experimental economics [43]. We extend the

effectiveness of meta-gradient RL for learning an incentive function [40] to the population

setting, and we show the applicability of effective loss functions such as TRPO and PPO

[44, 45] for meta-gradient optimization. The proposed method converges to known global

optima in standard benchmark problems, and it generates significantly higher social welfare

than the previous state-of-the-art in a complex high-dimensional economic simulation of

market dynamics with taxation.
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1.3 Background and notation

Just as Markov Decision Processes (MDPs) [46, 47, 48] provide the formalism for re-

inforcement learning [1], Markov games [49, 10] provide the formalism for multi-agent

reinforcement learning. This section introduces the framework and notation that will be used

throughout this document, and reviews a selection of standard algorithms in reinforcement

learning that are used in the construction of new methods in this thesis.

Definition 1 (Markov game). A Markov game with N agents is a tuple

〈N,S, {An}Ni=1, {Rn}Ni=1, P, γ〉, where S is the global state space, A1, . . . ,AN are indi-

vidual action spaces for each agent i, Ri : S ×A1 × · · · × AN 7→ R is an individual reward

for agent i, P : S × A1 × · · · × AN → ∆(S) is the global state transition function (with

P0 denoting the start state distribution), and γ ∈ (0, 1] is a discount factor for the infinite

horizon case. Each agent i learns policy πi : S → ∆(Ai), mapping from the state to a

distribution over its own action space, to maximize its objective J i(π1, . . . , πN), which

depends on the policies of all agents. In the case of selfish agents, J i is expected cumulative

discounted individual rewards

J i(π1, . . . , πN) := E{ajt∼πj(·|st)}Nj=1,st∼P (·|st−1,a),s0∼P0

[
∞∑
t=0

γtRi(st, a
1
t , . . . , a

N
t )

]
. (1.1)

In the fully-cooperative case, all agents share the same team objective

J(π1, . . . , πN) := E

[
∞∑
t=0

γt
N∑
i=1

Ri(st, a
1
t , . . . , a

N
t )

]
, (1.2)

where the expectation, whenever unspecified, is taken with respect to all agents’ policies

and the transition function.

In some practical scenarios, such as physical spaces with occlusion, each individual

agent i only receives a local observation oi = Oi(s) from an observation function Oi that

depends on the global state. Hence, agent i’s policy πi(ai|oi) is conditioned on the local
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observation only. This scenario is more appropriately formalized as a Decentralized Partially

Observable MDP (POMDP) [24] and treated by methods that reason about probabilities

of the true global state, given a sequence of past observations and actions by the agent.

However, dealing with partial observability is tangential to the objective this thesis. Our

focus is the issue of cooperation in two cases: 1) centralized training, where the global state

is available at training time; 2) the problem of learning to incentivize learning agents, where

the agents’ policy learning method is predetermined and not up to our design. Nonetheless,

wherever appropriate, we shall use the notation oi for observation and πi(ai|oi) for an agent’s

policy.

Wherever clear from context, we shall use the letters i, j, m, or n to index an arbitrary

agent. In the sequel, any quantity in boldface shall denote the collection of all agents’

individual quantities of the same type, e.g. the joint action a := (a1, . . . , aN), the joint

observation o := (o1, . . . , oN), and the joint policy parameter θ := (θ1, . . . , θN) when

policies are parameterized as πiθi . We denote the space of agent n policies by Πn, and the joint

policy induced by conditionally independent agent policies by π(a|s) := {πn(an|s)}Nn=1

Let the notation −n denote the indices of all agents except that of agent n (and similarly for

other letters i, j,m). Let Eπ [·] denote the expectation with respect to the joint policy and

the Markov transition function (omitted). In the case of parameterized policies πiθi , we may

use J i(θ) in place of J i(π).

1.3.1 Reinforcement Learning

In this section, we give an overview of single-agent reinforcement learning. We use the

same notation established above for Markov games, except that we omit the agent index.

Reinforcement learning is a class of methods that use repeated experience in a given

MDP to find an optimal policy π∗ that solves the following optimization problem:

max
π

J(π) := Eπ

[
∞∑
t=0

γtR(st, at)

]
(1.3)
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Whereas dynamic programming [50] solves (Equation 1.3) using exact knowledge of the

transition function P and reward function R, RL algorithms directly use sequences of

state-action transitions (s0, a0, s1, a1, . . . ), collected via repeated episodes of interaction in

the MDP, to estimate an optimal policy. This broadens the applicability of RL to a large

variety of complex and high-dimensional applications where the transition function is too

complex to be modeled or the state-action spaces are too large for the equations of dynamic

programming to apply, such as the game of Go [51] or StarCraft II [5]. In this document, we

focus on the class of model-free RL methods that do not estimate a model of the transition

or reward function. The alternative class of model-based approaches often use the same

learning updates as model-free methods [52], except for the use of a learned model to

provide additional samples to those collected from actual experience. It is conceivable, but

detracts from our focus on multi-agent cooperation, to combine model-based learning with

the methods proposed in this work.

The Bellman equations of dynamic programming [48] provide the foundation for RL

algorithms, and we shall review them here. The value function V π(s) measures the expected

return from state s, following the given policy π. It is defined as

V π(s) := Eπ

[
∞∑
t=0

γtR(st, at) | s0 = s

]
. (1.4)

Similarly, action-value function Qπ(s, a) (i.e., “Q-function”) measures the expected return

upon taking action a at state s, and following the given policy π thereafter. It is defined as

Qπ(s, a) := Eπ

[
∞∑
t=0

γtR(st, at)
∣∣ s0 = s, a0 = a

]
. (1.5)

For clarity, we provide the counterparts of the value and action-value function for an arbitrary
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agent n, under the joint policy π, in the multi-agent setting:

V n,π(s) := Eπ

[
∞∑
t=0

γtRn(st, at) | s0 = s

]
(1.6)

Qn,π(s, a) := Eπ

[
∞∑
t=0

γtRn(st, at)
∣∣ s0 = s, a0 = a

]
. (1.7)

The value and action value functions satisfy the Bellman expectation equations:

V π(s) = Eπ [R(st, at) + γV π(st+1) | st = s] (1.8)

Qπ(s, a) = Eπ [R(st, at) + γQπ(st+1, at+1) | st = s, at = a] . (1.9)

The recursive form of the Bellman equations suggests an iterative method for policy evalua-

tion. Given an estimate of the value function Vk(s) at iteration k, the value estimate at all

states s is updated by:

Vk+1(s) = Eπ [R(st, at) + γVk(st+1)|st = s] (1.10)

While this update rule provably converges in finite MDPs, it requires knowledge of the

transition and reward functions. It motivates the class of sample-based value estimation

algorithms called temporal difference (TD) learning [53], which contains the commonly-used

TD(0) update rule

V (st)← V (st) + α (R(st, at) + γV (st+1)− V (st)) , (1.11)

where α ∈ R+ is a learning rate and data is generated by the policy whose value is being

estimated. Here, the 1-step return R(st, at) + γV (st+1) is an example of a TD target. TD

targets are also commonly-used in reinforcement learning with function approximation,

such as deep RL [2, 54], where the value function V π
θ (s) is parameterized by θ and the value
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estimate is improved via semi-gradient descent according to

θk+1 ← θk − αE
[
∇θk

(
R(st, at) + γ⊥V π

θk
(st+1)− V π

θk
(st)
)2
]
, (1.12)

where ⊥ denotes the stop-gradient operator.

Aside from estimating the value of a given policy, one may wish to find the optimal

policy π∗, which can be extracted from the optimal Q-function Q∗ := maxπ∈ΠQ
π by

selecting optimal actions via argmaxa∈AQ
∗(a, s). Hence, in MDPs with discrete action

spaces, one often uses the Q-learning update rule [55]

Q∗k+1(st, at) = Q∗k(st, at) + α

(
R(st, at) + γmax

a∈A
Q∗k(st+1, a)−Q∗k(st, at)

)
(1.13)

to find an optimal Q-function. As an off-policy method, Q-learning may use transitions

generated by any behavioral policy. Using function approximation with parameters θ,

Q-learning is commonly implemented by semi-gradient descent according to

θk+1 ← θk − αE

[
∇θk

(
R(st, at) + γ⊥max

a∈A
Qθk(st+1, a)−Qθk(st, at)

)2
]

(1.14)

The class of policy gradient methods provides a more direct way to learn an optimal

policy, b ascending the gradient of the objective∇θJ(θ) for a policy πθ that is parameterized

by θ. This is especially useful in continuous action spaces where the maximization step in

Q-learning itself is a high-dimensional optimization problem. The policy gradient is [56]

∇θJ(θ) = Eθ [∇θ log πθ(a|s) (Qπ(s, a)− b(s))] , (1.15)

where b(s) is any state-dependent function for variance reduction. This is often implemented

in an actor-critic framework [57], whereby the critic is a value function V π
φ or action-value

function Qπ
φ that is parameterized by φ, which are improved with TD-learning.

10



CHAPTER 2

LITERATURE REVIEW

2.1 Cooperative Multi-Agent Learning

Cooperative multi-agent learning is important since many real-world problems can be

formulated as distributed systems in which decentralized agents must coordinate to achieve

shared objectives [14]. The multi-agent credit assignment problem arises when agents share

a global reward [58]. While credit assignment can be resolved when independent individual

rewards are available [59], this may not be suitable for the fully cooperative setting: [60]

showed that agents whose rewards depend on the success of other agents can cooperate

better than agents who optimize for their own success. In the special case when all agents

have a single goal and share a global reward, COMA [17] uses a counterfactual baseline,

while [61] employs count-based variance reduction limited to discrete-state environments.

However, their centralized critic does not evaluate the specific impact of an agent’s action

on another’s success in the general multi-goal setting. When a global objective is the sum

of agents’ individual objectives, value-decomposition methods optimize a centralized Q-

function while preserving scalable decentralized execution [31, 18, 32], but do not address

credit assignment. While MADDPG [16] and M3DDPG [62] apply to agents with different

rewards, they do not address multi-goal cooperation as they do not distinguish between

cooperation and competition, despite the fundamental difference.

Multi-goal MARL was considered in [63], who analyzed convergence in a special

networked setting restricted to fully-decentralized training, while we conduct centralized

training with decentralized execution [64]. In contrast to multi-task MARL, which aims

for generalization among non-simultaneous tasks [65], and in contrast to hierarchical

methods that sequentially select subtasks [66, 67], our decentralized agents must cooperate
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concurrently to attain all goals. Methods for optimizing high-level agent-task assignment

policies in a hierarchical framework [68] are complementary to our work, as we focus on

learning low-level cooperation after goals are assigned. Prior application of curriculum

learning [69] to MARL include a single cooperative task defined by the number of agents

[70] and the probability of agent appearance [71], without explicit individual goals. [72]

instantiate new neural network columns for task transfer in single-agent RL. Techniques in

transfer learning [73] are complementary to our novel curriculum approach to MARL.

2.2 Hierarchical Reinforcement Learning

Building on the framework of options, temporally-extended actions, and hierarchical single-

agent RL [74, 75, 76, 77], early work on hierarchical MARL in discrete state spaces with

hand-crafted subtasks [78, 79] showed that learning cooperation at the level of subtasks

significantly speeds up learning over flat methods [9, 10, 80]. Recent work built on deep rein-

forcement learning [2, 51] to demonstrate hierarchical single-agent RL in high-dimensional

continuous state spaces, using predefined subgoals [81], end-to-end learning of options

[82], and latent directional subgoals [66] in a two-level hierarchy. In hierarchical MARL,

different subtasks are chosen concurrently by all agents, whereas only a single subtask is

chosen for each segment in single-agent hierarchical RL [82, 66].

Progress in hierarchical learning benefits from a complementary line of work on auto-

matic subgoal discovery [83]. Our work draws inspiration from variational option discovery

[34, 84, 33], which—in formal analogy with variational auto-encoders [85]—trains a

maximum-entropy policy encoder to map latent context vectors into trajectories from which

the context can be recovered by a supervised decoder. In contrast to prior work on single-

agent skill discovery that focus on finding distinguishable behavior in simulated robotics

environments, option discovery in cooperative MARL poses significant new demands: 1)

individually distinguishable behaviors must be useful for the team objective; 2) hoping

to discover useful skills by increasing the number of latent skills is impractical for the
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exponentially larger action space of MARL; and 3) skills must be discovered in the actual

multi-agent environment rather than in an isolated single-agent setting.

The key differences from recent work in hierarchical MARL [86, 87] are that we discover

skills with an intrinsic reward instead of hand-crafting subtask-specific rewards [86], and

our agents are on equal footing without a dedicated “Manager” [87]. A concurrent work

on MARL with latent skills [88] require fully-centralized execution using global state

information, while our method enables decentralized execution with local observations.

A complementary line of work learns role-specific parameters and assignment of roles to

agents with unique features, where each role is sustained for an entire episode [89], while

our agents can dynamically choose skills multiple times in an episode. We design our

hierarchical agents using QMIX [18] and independent DQN [9, 2]; other decentralized

cooperative MARL [8] and single-agent RL [1] algorithms are equally applicable.

2.3 Toward Cooperation in Social Dilemmas

Learning to incentivize other learning agents is motivated by the problem of cooperation

among independent learning agents in intertemporal social dilemmas (ISDs) [38], in which

defection is preferable to individuals in the short term but mutual defection leads to low

collective performance in the long term. Algorithms for fully-cooperative MARL [17, 18,

31] may not be applied as ISDs have mixed motives and cannot canonically be reduced

to fully cooperative problems. Previous work showed that collective performance can be

improved by independent agents with intrinsic rewards [90, 91, 92, 93, 94], which are

either hand-crafted or slowly evolved based on other agents’ performance and modulate

each agent’s own total reward. In contrast, a reward-giver’s incentive function in our work

is learned on the same timescale as policy learning and is given to, and maximized by,

other agents. Empirical research shows that augmenting an agent’s action space with a

“give-reward” action can improve cooperation during certain training phases in ISDs [95].

Learning to incentivize is a form of opponent shaping, whereby an agent learns to
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influence the learning update of other agents for its own benefit. While LOLA [96] and

SOS [97] exert influence via actions taken by its policy, whose effects manifest through the

Markov game state transition, our proposed agent exerts direct influence via an incentive

function, which is distinct from its policy and which explicitly affects the recipient agent’s

learning update. Hence the need to influence other agents does not restrict a reward-

giver’s policy, potentially allowing for more flexible and stable shaping. We describe the

mathematical differences between our method and LOLA in Section subsection 5.2.1, and

experimentally compare with LOLA agents augmented with reward-giving actions.

Our work is related to a growing collection of work on modifying or learning a reward

function that is in turn maximized by another learning algorithm [98, 99, 100]. Previous

work investigate the evolution of the prisoner’s dilemma payoff matrix when altered by

a “mutant” player who gives a fixed incentive for opponent cooperation [101]; employ a

centralized operator on utilities in 2-player games with side payments [99]; and directly

optimize collective performance by centralized rewarding in 2-player matrix games [98].

In contrast, we work with N -player Markov games with self-interested agents who must

individually learn to incentivize other agents and cannot optimize collective performance

directly. Our technical approach is inspired by online cross validation [102], which is used to

optimize hyperparameters in meta-gradient RL [103], and by the optimal reward framework

[104], in which a single agent learns an intrinsic reward by ascending the gradient of its own

extrinsic objective [100].

2.4 Incentive, Utility, and Mechanism Design

A large body of previous work on incentive, utility, and mechanism design belongs to the

analytic paradigm, which faces limitations such as linear agent cost and planner incentive

functions [28, 105], finite single-round games [106], state-based potential games [107], or

pertain to special problems such as welfare distribution [108] or seller-buyer auctions [109].

These simplifications result in lower applicability to complex, nonlinear, and temporally-
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extended environments such as dynamic economies [42]. In contrast, we adopt the paradigm

of agent-based simulation [110] and take state-of-the-art agent learning methods (i.e., deep

reinforcement learning, at present) as the starting point to inform a method for incentive

design, at the cost of discarding analytical tractability.

Previous work on incentive or mechanism design with RL differ from ours in the choice

of the algorithm for the incentive designer or the model of agents. [111, 112] apply RL to

the upper-level planner for non-RL agents. [113] use perturbation-based gradient ascent to

search for hyperparameters of a k-armed bandit algorithm that determines the parameters

of an auction. [114] employ Bayesian optimization and treat the lower-level multi-agent

RL as a black-box. The central planner in [98] optimizes social welfare in 2-player matrix

games by anticipating the players’ one-step updates. [115] assume that agents’ total payoff

is a continuous and differentiable function of the joint strategy—which does not hold in

general if agents’ original reward can be any combination of discrete and nondifferentiable

rules—and differentiate through the variational inequality reformulation of Nash equilibria.

The closest work to ours are [40], where fully-decentralized RL agents learn mutual pairwise

incentivization, and [42, 116], where a central RL planner optimizes an adaptive tax or price

policy at the same time-scale as RL agents’ policy optimization.

The technical aspect of our method builds on single-agent meta-gradient RL [103] and

discovering intrinsic rewards [100], which we extend to the multi-agent setting and refine

with the principle of online cross-validation [102]. Related to but different from the variety

of existing single-agent meta-learning methods enumerated in [117, Table 1], our method

learns a general neural network representation of an incentive function within a single

lifetime, as opposed to methods that optimize hyperparameters [103, 118, 119], learn target

functions [117], or use multiple lifetimes over different environments to find general update

functions [120, 121].
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CHAPTER 3

COOPERATIVE MULTI-GOAL MULTI-AGENT REINFORCEMENT

LEARNING

3.1 Introduction

Many real-world scenarios that require cooperation among multiple autonomous agents are

multi-goal multi-agent control problems: each agent needs to achieve its own individual goal,

but the global optimum where all agents succeed is only attained when agents cooperate to

allow the success of other agents. In autonomous driving, multiple vehicles must execute

cooperative maneuvers when their individual goal locations and nominal trajectories are

in conflict (e.g., double lane merges) [20]. In social dilemmas, mutual cooperation has

higher global payoff but agents’ individual goals may lead to defection out of fear or greed

[30]. Even settings with a global objective that seem unfactorizable can be formulated as

multi-goal problems: in Starcraft II micromanagement, a unit that gathers resources must

not accidentally jeopardize a teammate’s attempt to scout the opponent base [122]; in traffic

flow optimization, different intersection controllers may have local throughput goals but

must cooperate for high global performance [21]. While the framework of multi-agent

reinforcement learning (MARL) [10, 80, 13] has been equipped with methods in deep

reinforcement learning (RL) [2, 54] and shown promise on high-dimensional problems with

complex agent interactions [16, 123, 17, 124, 125], learning multi-agent cooperation in the

multi-goal scenario involves significant open challenges.

First, given that exploration is crucial for RL [126] and even more so in MARL with

larger state and joint action spaces, how should agents explore to learn both individual goal

attainment and cooperation for others’ success? Uniform random exploration is common

in deep MARL [8] but can be highly inefficient as the value of cooperative actions may be

16



discoverable only in small regions of state space where cooperation is needed. Furthermore,

the conceptual difference between attaining one’s own goal and cooperating for others’

success calls for more modularized and targeted approaches. Second, while there are

methods for multi-agent credit assignment when all agents share a single goal (i.e., a global

reward) [58, 17, 61], and while one could treat the cooperative multi-goal scenario as

a problem with a single joint goal, this coarse approach makes it extremely difficult to

evaluate the impact of an agent’s action on another agent’s success. Instead, the multi-goal

scenario can benefit from fine-grained credit assignment that leverages available structure

in action-goal interactions, such as local interactions where only few agents affect another

agent’s goal attainment at any time.

Given these open challenges, this chapter focuses on the cooperative multi-goal multi-

agent setting where each agent is assigned a goal1 and must learn to cooperate with other

agents with possibly different goals. To tackle the problems of efficient exploration and credit

assignment in this complex problem setting, we develop CM3, a novel general framework

involving three synergistic components:

1. We approach the difficulty of multi-agent exploration from a novel curriculum learning

perspective, by first training an actor-critic pair to achieve different goals in an induced

single-agent setting (Stage 1), then using them to initialize all agents in the multi-agent

environment (Stage 2). The key insight is that agents who can already act toward

individual objectives are better prepared for discovery of cooperative solutions with

additional exploration once other agents are introduced. In contrast to hierarchical

learning where sub-goals are selected sequentially in time [75], all agents act toward

their goals simultaneously in Stage 2 of our curriculum.

2. Observing that a wide array of complex MARL problems permit a decomposition of

agents’ observations and state vectors into components of self, others, and non-agent
1Goal discovery and assignment are challenges for MARL. However, many practical multi-agent problems

have clear goal assignments, such as in autonomous driving and soccer. Our work is specific to known goal
assignment and is complementary to methods such as [68] for the unknown case.
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specific environment information [8], we employ function augmentation to bridge Stages

1-2: we reduce the number of trainable parameters of the actor-critic in Stage 1 by

limiting their input space to the part that is sufficient for single-agent training, then

augment the architecture in Stage 2 with additional inputs and trainable parameters for

learning in the multi-agent environment.

3. We propose a credit function, which is an action-value function that specifically evaluates

action-goal pairs, for localized credit assignment in multi-goal MARL. We use it to derive

a multi-goal multi-agent policy gradient for Stage 2. In synergy with the curriculum, the

credit function is constructed via function augmentation from the critic in Stage 1.

We evaluate our method on challenging multi-goal multi-agent environments with

high-dimensional state spaces: cooperative navigation with difficult formations, double

lane merges in the SUMO simulator [127], and strategic teamwork in a Checkers game.

CM3 solved all domains significantly faster than IAC and COMA [9, 17], and solved

four out of five environments significantly faster than QMIX [18]. Exhaustive ablation

experiments show that the combination of all three components is crucial for CM3’s overall

high performance.

3.2 Preliminaries

In multi-goal MARL, each agent should achieve a goal drawn from a finite set, cooperate with

other agents for collective success, and act independently with limited local observations.

We formalize the problem as an episodic multi-goal Markov game, review an actor-critic

approach to centralized training of decentralized policies, and summarize counterfactual-

based multi-agent credit assignment.

Multi-goal Markov games. A multi-goal Markov game is a tuple

〈S, {On}, {An}, P, R,G, N, γ〉 with N agents labeled by n ∈ [N ]. In each episode,

each agent n has one fixed goal gn ∈ G that is known only to itself. At time t
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and global state st ∈ S, each agent n receives an observation ont := on(st) ∈ On

and chooses an action ant ∈ An. The environment moves to st+1 due to joint action

at := {a1
t , . . . , a

N
t }, according to transition probability P (st+1|st, at). Each agent receives a

reward Rn
t := R(st, at, g

n), and the learning task is to find stochastic decentralized policies

πn : On × G ×An → [0, 1], conditioned only on local observations and goals, to maximize

J(π) := Eπ

[∑∞
t=0 γ

t
∑N

n=1R(st, at, g
n)
]
, where γ ∈ (0, 1) and joint policy π factorizes

as π(a|s,g) :=
∏N

n=1 π
n(an|on, gn) due to decentralization. Let a−n and g−n denote all

agents’ actions and goals, respectively, except that of agent n. Let boldface a and g denote

the joint action and joint goals, respectively. For brevity, let π(an) := πn(an|on, gn). This

model covers a diverse set of cooperation problems in the literature [8], without constraining

how the attainability of a goal depends on other agents: at a traffic intersection, each vehicle

can easily reach its target location if not for the presence of other vehicles; in contrast, agents

in a strategic game may not be able to maximize their rewards in the absence of cooperators

[31].

Centralized learning of decentralized policies. A centralized critic that receives

full state-action information can speed up training of decentralized actors that receive

only local information [16, 17]. Directly extending the single-goal case, for each

n ∈ [1..N ] in a multi-goal Markov game, critics are represented by the value func-

tion V π
n (s) := Eπ

[∑∞
t=0 γ

tRn
t

∣∣ s0 = s
]

and the action-value function Qπ
n (s, a) :=

Eπ

[∑∞
t=0 γ

tRn
t

∣∣ s0 = s, a0 = a
]
, which evaluate the joint policy π against the reward

Rn for each goal gn.

Multi-agent credit assignment. In MARL with a single team objective, COMA ad-

dresses credit assignment by using a counterfactual baseline in an advantage function

An(s, a) := Qπ(s, a)−
∑

ân π
n(ân|on)Qπ(s, (ân, a−n)) [17, Lemma 1] , which evaluates

the contribution of a chosen action an versus the average of all possible counterfactuals

ân, keeping a−n fixed. The analysis in [128] for a formally equivalent action-dependent

baseline in RL suggests that COMA is a low-variance estimator for single-goal MARL. We
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derive its variance in Section A.3.1. However, COMA is unsuitable for credit assignment

in multi-goal MARL, as it would treat the collection of goals g as a global goal and only

learn from total reward, making it extremely difficult to disentangle each agent’s impact on

other agents’ goal attainment. Furthermore, a global Q-function does not explicitly capture

structure in agents’ interactions, such as local interactions involving a limited number of

agents. We substantiate these arguments by experimental results in Section 3.5.

3.3 Methods

We describe the complete CM3 learning framework as follows. First we define a credit

function as a mechanism for credit assignment in multi-goal MARL, then derive a new

cooperative multi-goal policy gradient with localized credit assignment. Next we motivate

the possibility of significant training speedup via a curriculum for multi-goal MARL. We

describe function augmentation as a mechanism for efficiently bridging policy and value

functions across the curriculum stages, and finally synthesize all three components into a

synergistic learning framework.

3.3.1 Credit assignment in multi-goal MARL

If all agents take greedy goal-directed actions that are individually optimal in the absence of

other agents, the joint action can be sub-optimal (e.g. straight-line trajectory towards target

in traffic). Instead rewarding agents for both individual and collective success can avoid

such bad local optima. A naïve approach based on previous works [17, 16] would evaluate

the joint action a via a global Q-function Qπ
n (s, a) for each agent’s goal gn, but this does not

precisely capture each agent’s contribution to another agent’s attainment of its goal. Instead,

we propose an explicit mechanism for credit assignment by learning an additional function

Qπ
n (s, am) that evaluates pairs of action am and goal gn, for use in a multi-goal actor-critic

algorithm. We define this function and show that it satisfies the classical relation needed for

sample-based model-free learning.
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Definition 2. For n,m ∈ [N ], s ∈ S , the credit function for goal gn and am ∈ Am by agent

m is:

Qπ
n (s, am) := Eπ

[ ∞∑
t=0

γtRn
t

∣∣ s0 = s, am0 = am
]

(3.1)

Proposition 1. For all m,n ∈ [N ], the credit function (Equation 3.1) satisfies the following

relations:

Qπ
n (s, am) = Eπ

[
Rn
t + γQπ

n (st+1, a
m
t+1)

∣∣ st = s, amt = am
]

(3.2)

V π
n (s) =

∑
am

πm(am|om, gm)Qπ
n (s, am) (3.3)

Derivations are given in Section A.2.1, including the relation between Qπ
n (s, am) and

Qπ
n (s, a). Equation (Equation 3.2) takes the form of the Bellman expectation equation,

which justifies learning the credit function, parameterized by θQc , by optimizing the standard

loss function in deep RL:

L(θQc) = Eπ

[(
Rn
t + γQπ

n (st+1, a
m
t+1; θQc)−Qπ

n (st, a
m
t ; θQc)

)2
]

(3.4)

While centralized training means the input space scales linearly with agent count, many

practical environments involving only local interactions between agents allows centralized

training with few agents while retaining decentralized performance when deployed at scale

(evidenced in Section A.5).

3.3.2 Cooperative multi-goal multi-agent policy gradient

We use the credit function as a critic within a policy gradient for multi-goal MARL. Letting

θ parameterize π, the overall objective J(π) is maximized by ascending the following

gradient:
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Proposition 2. The cooperative multi-goal credit function based MARL policy gradient is

∇θJ(π) = Eπ

[ N∑
m,n=1

(∇θ log πm(am|om, gm))Aπ
n,m(s, a)

]
(3.5)

Aπ
n,m(s, a) := Qπ

n (s, a)−
∑
âm

πm(âm|om, gm)Qπ
n (s, âm) (3.6)

This is derived in Section A.2.2. For a fixed agent m, the inner summation over n

considers all agents’ goals gn and updates m’s policy based on the advantage of am over

all counterfactual actions âm, as measured by the credit function for gn. The strength of

interaction between action-goal pairs is captured by the extent to which Qπ
n (s, âm) varies

with âm, which directly impacts the magnitude of the gradient on agent m’s policy. For

example, strong interaction results in non-constant Qπ
n (s, ·), which implies larger magnitude

of Aπ
n,m and larger weight on∇θ log π(am). The double summation accounts for first-order

interaction between all action-goal pairs, but complexity can be reduced by omitting terms

when interactions are known to be sparse, and our empirical runtimes are on par with other

methods due to efficient batch computation (Section A.6). As the second term in Aπ
n,m is a

baseline, the reduction of variance can be analyzed similarly to that for COMA, given in

Section A.3.2. While Aπ
n,m = Qπ

n (s, a) − V π
n (s) (due to (Equation 3.3)), ablation results

show stability improvement due to the credit function (Section 3.5). As the credit function

takes in a single agent’s action, it synergizes with both CM3’s curriculum and function

augmentation as described in Section 3.3.5.

3.3.3 Curriculum for multi-goal MARL

Multi-goal MARL poses a significant challenge for exploration. Random exploration can be

highly inefficient for concurrently learning both individual task completion and cooperative

behavior. Agents who cannot make progress toward individual goals may rarely encounter

the region of state space where cooperation is needed, rendering any exploration useless for

learning cooperative behavior. On the other extreme, exploratory actions taken in situations
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that require precise coordination can easily lead to penalties that cause agents to avoid the

coordination problem and fail to achieve individual goals. Instead, we hypothesize and

confirm in experiments that agents who first learn to reach individual goals in the absence of

other agents can more reliably produce state configurations where cooperative solutions are

easily discovered with additional exploration in the multi-agent environment2.

We propose a MARL curriculum that first solves a single-agent Markov decision process

(MDP), as preparation for subsequent exploration speedup. Given a cooperative multi-goal

Markov game MG, we induce an MDP M to be the tuple 〈Sn,On, An, P n, R, γ〉, where

an agent n is selected to be the single agent in M. Entities Sn, P n, and R are defined by

removing all dependencies on agent interactions, so that only components depending on

agent n remain. The reduction to M involves only deletion of components associated with

all other agents from state vectors (since an agent is uniquely defined by its attributes),

deletion of if-else conditions from the reward function corresponding to agent interactions,

and likewise from the transition function if a simulation is used. Section A.7 provides

practical guidelines for the reduction on various tasks.

This reduction to M is possible in almost all fully cooperative multi-agent environments

used in a large body of work3 [8], precisely because they support a variable number of

agents, including N = 1. Important real-world settings that allow this reduction include

autonomous driving, multi traffic light control, and warehouse commissioning (removing

all but one car/controller/robot, respectively, from the environment). If an agent’s original

reward function provides no learning signal in the absence of other agents, such as the case

of a binary reward for a goal whose complete attainment requires at least another agent’s

presence and help, one may modify the reward via reward shaping [129] to enable learning

of good intermediate states along the path to goal attainment, without changing the optimal

policy in M. Based on M, we define a greedy policy for MG.

2We provide a synthetic example to aid intuition in Section A.4
3Environments include: discrete 2D worlds, continuous 3D physics simulators, StarCraft II, transportation

tasks, 3D first-person multiplayer games, etc. Exceptions are settings where a single task is purely defined by
inter-agent communication, but these are not multi-goal Markov games.
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Definition 3. A greedy policy πn by agent n for cooperative multi-goal MG is defined as

the optimal policy π∗ for the induced MDP M where only agent n is present.

This naturally leads to our proposed curriculum: Stage 1 trains a single agent in M to

achieve a greedy policy, which is then used for initialization in MG in Stage 2. This greedy

initialization causes agents to encounter the relevant region of state space reliably across

many early episodes of Stage 2, so that cooperative behavior can be discovered more quickly.

Next we explain in detail how to leverage the structure of decentralized MARL to bridge the

two curriculum stages.

3.3.4 Function augmentation for multi-goal curriculum

In Markov games with decentralized execution, an agent’s observation space decomposes

into On = Onself ∪ Onothers, where onself ∈ Onself captures the agent’s own properties, which

must be observable by the agent for closed-loop control, while onothers ∈ Onothers is the

agent’s egocentric observation of other agents. In our work, egocentric observations are

private and not accessible by other agents [130]. Similarly, global state s decomposes into

s := (senv, s
n, s−n), where senv is environment information not specific to any agent (e.g.,

position of a landmark), and sn captures agent n’s information. While this decomposition is

implicitly available in a wide range of complex multi-agent environments [131, 17, 16, 18,

132, 3], we explicitly use it to implement our curriculum. In Stage 1, as the ability to process

onothers and s−n is unnecessary, we reduce the input space of policy and value functions,

thereby reducing the number of trainable parameters and lowering the computation cost.

In Stage 2, we restore Stage 1 parameters and activate new modules to process additional

inputs onothers and s−n. This augmentation is especially suitable for efficiently learning the

credit function (Equation 3.1) and global Q-function, since Q(s, a) can be augmented into

both Qπ
n (s, a) and Qπ

n (s, am), as explained below.
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Figure 3.1: In Stage 1, Q1 and π1 learn to achieve multiple goals in a single-agent envi-
ronment. Between Stage 1 and 2, π is constructed from the trained π1 and a new module
π2; a similar construction is done for Qn(s, a) and Qn(s, am). In the multi-agent environ-
ment of Stage 2, these augmented functions are instantiated for each of N agents (with
parameter-sharing).

3.3.5 A complete instantiation of CM3

We combine the preceding components to create CM3, using deep neural networks for

function approximation (Figure 3.1 and Algorithm 7). Without loss of generality, we

assume parameter-sharing [17] among homogeneous agents with goals as input [133]. The

inhomogeneous case can be addressed by N actor-critics. Drawing from multi-task learning

[134], we sample goal(s) in each episode for the agent(s), to train one model for all goals.

Stage 1. We train an actor π1(a|o, g) and critic Q1(s1, a, g) to convergence according

to (Equation 3.4) and (Equation 3.5) in the induced MDP with N = 1 and random goal

sampling (see Section A.10). This uses orders of magnitude fewer samples than for the full

multi-agent environment—compare Figure A.1 with Figure 3.5.

Stage 2. The Markov game is instantiated with all N agents. We restore the trained

π1 parameters, instantiate a second neural network π2 for agents to process onothers, and

connect the output of π2 to a selected hidden layer of π1. Concretely, let h1
i ∈ Rmi denote

hidden layer i ≤ L with mi units in an L-layer network π1, connected to layer i − 1 via

h1
i = f(W 1

i h
1
i−1) with W 1

i ∈ Rmi×mi−1 and nonlinear activation f . Stage 2 introduces a

25



(a) Antipodal (b) Cross (c) Merge

Figure 3.2: Cooperative navigation

K-layer network π2(onothers) with outputs h2
K ∈ RmK , chooses a layer4 i∗ of π1, and augments

h1
i∗ to be h1

i∗ = f(W 1
i∗h

1
i∗−1 +W 1:2h2

K) with W 1:2 ∈ Rmi∗×mK . Being restored from Stage

1, not re-initialized, hidden layers i < i∗ begin with the ability to process (onself, g
n), while

the new weights in π2 and W 1:2 specifically learn the effect of surrounding agents. Higher

layers i ≥ i∗ that already take greedy actions to achieve goals in Stage 1 must now do so

while cooperating to allow other agents’ success. This augmentation scheme is simplest for

deep policy and value networks using fully-connected or convolutional layers.

The middle panel of Figure 3.1 depicts the construction of π from π1 and π2. The global

Qπ(s, a, gn) is constructed from Q1 similarly: when the input to Q1 is (senv, s
n, an, gn), a

new module takes input (s−n, a−n) and connects to a chosen hidden layer of Q1. Credit

function Qπ(s, am, gn) is augmented from a copy of Q1, such that when Q1 inputs are

(senv, s
n, am, gn), the new module’s inputs are (sm, s−n).5 We train the policy using

(Equation 3.5), train the credit function with loss (Equation 3.4), and train the global Q-

function with the joint-action analogue of (Equation 3.4).

3.4 Experimental setup

We investigated the performance and robustness of CM3 versus existing methods on diverse

and challenging multi-goal MARL environments: cooperative navigation in difficult forma-

tions, double lane merge in autonomous driving, and strategic cooperation in a Checkers

game. We evaluated ablations of CM3 on all domains. We describe key setup here, with full

4Setting i∗ to be the last hidden layer worked well in our experiments, without needing to tune.
5Input sm is needed for disambiguation, so that input action am is associated with agent m.
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Lane 3

Lane 0

Figure 3.3: Agent sedans must perform double lane merge to reach goal lanes. SUMO
controls yellow sedans and trucks. Policy generalization was tested on such traffic conditions.

details in Sections A.7 to A.106.

Cooperative navigation: We created three variants of the cooperative navigation sce-

nario in [16], where N agents cooperate to reach a set of targets. We increased the difficulty

by giving each agent only an individual reward based on distance to its designated target, not

a global team reward, but initial and target positions require complex cooperative maneuvers

to avoid collision penalties (Figure 3.2). Agents observe relative positions and velocities (de-

tails in Section A.7.1). SUMO: Previous work modeled autonomous driving tasks as MDPs

in which all other vehicles do not learn to respond to a single learning agent [135, 136].

However, real-world driving requires cooperation among different drivers’ with personal

goals. Built in the SUMO traffic simulator with sublane resolution [127], this experiment

requires agent vehicles to learn double-merge maneuvers to reach goal lane assignments

(Figure 3.3). Agents have limited field of view and receive sparse rewards (Section A.7.2).

A

B

Figure 3.4: Checkers

Checkers: We implemented a challenging strategic game

(Section A.7.3, an extension of [31]), to investigate

whether CM3 is beneficial even when an agent cannot

maximize its reward in the absence of another agent. In

a gridworld with red and yellow squares that disappear

when collected (Figure 3.4), Agent A receives +1 for red and -0.5 for yellow; Agent B

6Code for all experiments is available at https://github.com/011235813/cm3.
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receives -0.5 for red and +1 for yellow. Both have a limited 5x5 field of view. The global

optimum requires each agent to clear the path for the other.

Algorithm implementations. We describe key points here, leaving complete architec-

ture details and hyperparameter tables to Sections A.8 and A.9. CM3: Stage 1 is defined

for each environment as follows (Section A.7): in cooperative navigation, a single parti-

cle learns to reach any specified landmark; in SUMO, a car learns to reach any specified

goal lane; in Checkers, we alternate between training one agent as A and B. Section A.8

describes function augmentation in Stage 2 of CM3. COMA [17]: the joint goal g and

total reward
∑

nR
n can be used to train COMA’s global Q function, which receives input

(s, on, gn, n, a−n, g−n). Each output node i represents Q(s, an = i, a−n,g). IAC [9, 17]:

IAC trains each agent’s actor and critic independently, using the agent’s own observation.

The TD error of value function V (on, gn) is used in a standard policy gradient [56]. QMIX

[18]: we used the original hypernetwork, giving all goals to the mixer and individual goals to

each agent network. We used a manual coordinate descent on exploration and learning rate

hyperparameters, including values reported in the original works. We ensured the number

of trainable parameters are similar among all methods, up to method-specific architecture

requirements for COMA and QMIX.

Ablations. We conducted ablation experiments in all domains. To discover the speedup

from the curriculum with function augmentation, we trained the full Stage 2 architecture of

CM3 (labeled as Direct) without first training components π1 and Q1 in an induced MDP.

To investigate the benefit of the new credit function and multi-goal policy gradient, we

trained an ablation (labeled QV) with advantage function Aπ
n (s, a) := Qπ

n (s, a)− V π
n (s),

where credit assignment between action-goal pairs is lost. QV uses the same π1, Q1, and

function augmentation as CM3.
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Figure 3.5: a-e: Comparison against baselines in cooperative navigation (a-c), SUMO (d),
Checkers (e). f-j: Comparison against ablations. Average and standard deviation (shaded) of
10 evaluation episodes conducted every 100 training episodes, across 3 independent runs.

3.5 Results and Discussions

CM3 finds optimal or near-optimal policies significantly faster than IAC and COMA on

all domains, and performs significantly higher than QMIX in four out of five. We report

absolute runtime in Section A.6 and account for CM3’s Stage 1 episodes (Section A.10)

when comparing sample efficiency.

Main comparison. Over all cooperative navigation scenarios (Figures 3.5a to 3.5c),

CM3 (with 1k episodes in Stage 1) converged more than 15k episodes faster than IAC. IAC

reached the same final performance as CM3 because dense individual rewards simplifies the

learning problem for IAC’s fully decentralized approach, but CM3 benefited significantly

from curriculum learning, as evidenced by comparison to “Direct” in Figure 3.5f. QMIX and

COMA settled at suboptimal behavior. Both learn global critics that use all goals as input,

in contrast to CM3 and IAC that process each goal separately. This indicates the difficulty

of training agents for individual goals under a purely global approach. While COMA was

shown to outperform IAC in SC2 micromanagement where IAC must learn from a single

team reward [17], our IAC agents have access to individual rewards that resolve the credit

assignment issue and improve performance [59]. In SUMO (Figure 3.5d), CM3 and QMIX
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found cooperative solutions with performances within the margin of error, while COMA and

IAC could not break out of local optima where vehicles move straight but do not perform

merge maneuvers. Since initial states force agents into the region of state space requiring

cooperation, credit assignment rather than exploration is the dominant challenge, which

CM3 addressed via the credit function, as evidenced in Figure 3.5i. IAC underperformed

because SUMO requires a longer sequence of cooperative actions and gave much sparser

rewards than the “Merge” scenario in cooperative navigation. We also show that centralized

training of merely two decentralized agents allows them to generalize to settings with much

heavier traffic (Section A.5). In Checkers (Figure 3.5e), CM3 (with 5k episodes in Stage 1)

converged 10k episodes faster than COMA and QMIX to the global optimum with score 24.

Both exploration of the combinatorially large joint trajectory space and credit assignment for

path clearing are challenges that CM3 successfully addressed. COMA only solved Checkers

among all domains, possibly because the small bounded environment alleviates COMA’s

difficulty with individual goals in large state spaces. IAC underperformed all centralized

learning methods because cooperative actions that give no instantaneous reward are hard for

selfish agents to discover in Checkers. These results demonstrate CM3’s ability to attain

individual goals and find cooperative solutions in diverse multi-agent systems.

Ablations. The significantly better performance of CM3 versus “Direct” (Figures 3.5f

to 3.5j) shows that learning individual goal attainment prior to learning multi-agent coopera-

tion, and initializing Stage 2 with Stage 1 parameters, are crucial for improving learning

speed and stability. It gives evidence that while global action-value and credit functions

may be difficult to train from scratch, function augmentation significantly eases the learning

problem. While “QV” initially learns quickly to attain individual goals, it does so at the

cost of frequent collisions, higher variance, and inability to maintain a cooperative solution,

giving clear evidence for the necessity of the credit function.
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3.6 Summary

We presented CM3, a general framework for cooperative multi-goal MARL. CM3 addresses

the need for efficient exploration to learn both individual goal attainment and cooperation,

via a two-stage curriculum bridged by function augmentation. It achieves local credit

assignment between action and goals using a credit function in a multi-goal policy gradient.

In diverse experimental domains, CM3 attains significantly higher performance, faster

learning, and overall robustness than existing MARL methods, displaying strengths of both

independent learning and centralized credit assignment while avoiding shortcomings of

existing methods. Ablations demonstrate each component is crucial to the whole framework.
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CHAPTER 4

HIERARCHICAL COOPERATIVE MARL WITH SKILL DISCOVERY

4.1 Introduction

Fully cooperative multi-agent reinforcement learning (MARL) is an active area of research

[14, 8] with a diverse set of real-world application, which include autonomous navigation

[20], game AI micromanagement [17, 18], and traffic network optimization [21]. A unique

challenge is the need for centralized training for agents to find global optimal cooperative

policies, while ensuring scalable decentralized execution whereby agents choose actions

independently. In this paradigm of centralized training with decentralized execution [29],

a common approach [31, 17, 18, 19, 32] is to conduct centralized training at the level of

primitive actions, which are the actions used in the transition function of the Markov game

[10]. However, the design of hierarchical agents who can cooperate at a higher level of

abstraction using temporally-extended skills in high-dimensional multi-agent environments

is still an open question. A skill is a policy that is conditioned on a latent variable, executed

for an extended duration, and generates behavior from which the latent variable can be

decoded [33, 34]. It is also not clear how multiple agents can discover skills without hand-

crafted reward functions for each skill, and how to construct such hierarchical policies to

allow human interpretation of skills for potential human-AI cooperation.

In this chapter, we take a hierarchical approach to fully cooperative MARL and address

these questions by drawing inspiration from team sports games. At the team level, coaches

train human players to execute complementary skills in parallel, such as moving to different

field positions in a formation, as well as effective sequences of skills over time, such

as switching between offensive and defensive maneuvers when ball possession changes.

At the individual level, each player learns a sequence of primitive actions to execute
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a chosen skill. Hierarchical approaches inspired from such real-world practices have

several benefits for fully cooperative MARL. From an algorithmic viewpoint, a hierarchical

decomposition in two key dimensions—over agents, and across time—simultaneously

addresses both the difficulty of learning cooperation at the level of noisy low-level actions

in stochastic environments and the difficulty of long-term credit assignment due to highly-

delayed rewards (e.g., scoring a goal in football) [79, 66]. Hierarchical approaches may

also reduce computational complexity [75] to address the exponential increase in sample

complexity with number of agents in MARL. From the viewpoint of human-AI cooperation,

which has near-term application to video game AI to improve human players’ experiences

[137], hierarchical policies trained with explicit skills is a key step toward interpretable and

modular policies. In this work, we take interpretability to mean the decodability of a latent

skill from an agent’s observed behavior—i.e., a policy is interpretable if it produces events

and actions in a consistent or distinguishable manner. While a flat policy is a black-box, since

the action output is purely determined by the agent’s observation input, the modularity of

hierarchical models also provides an entry point for external control over the skills executed

by AI teammates (e.g., execute the offense skill when it observes a human teammate doing

so).

However, decomposing a global team objective such as “scoring a goal” into many sub-

objectives for training a collection of skills is extremely difficult without expert knowledge,

which may be hard to access for complex settings such as competitive team sports. Manually

crafting reward functions for each skill in high-dimensional state spaces involving numerous

agents is also prone to misspecification and cause unintended behavior [138]. Instead,

we investigate a method for hierarchical agents in MARL to discover and learn a set of

high-level latent skills. Agents should learn to cooperate by choosing effective combinations

of skills with their teammates, and also dynamically choose skills in response to the state

of the game. In contrast to prior work in single-agent settings, where motion skills were

discovered purely via an intrinsic reward [34, 33], MARL poses significant new challenges
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for skill discovery. Merely discovering distinguishable individual motion in an open-ended

multi-agent environment may be useless for a team objective. While increasing the number

of skills increases the chance that some are useful for a task [33], doing so in the hierarchical

multi-agent setting means exponentially increasing the size of a joint high-level action space

and will exacerbate the difficulty of learning.

We present a method for training hierarchical policies with unsupervised skill discovery

in cooperative MARL, with the following key technical and experimental contributions.

1) We construct a two-level hierarchical agent for MARL by defining a high-level action

space as a set of latent variables. Each agent consists of a high-level policy that chooses

and sustains a latent variable for many time steps, and a low-level policy that uses both its

observation and the selected latent variable to take primitive actions. 2) We use an extrinsic

team reward to conduct centralized training of high-level policies for cooperation, while

we use a combination of an intrinsic reward and the team reward to conduct decentralized

training of low-level policies with independent reinforcement learning (RL). This allows

the use of powerful and general algorithms for cooperative MARL and single-agent RL

to train high- and low-level policies, respectively. 3) We define the intrinsic reward as the

performance of a decoder that predicts the ground truth latent variable from trajectories

generated by low-level policies that were conditioned on the latent variables. By dynamically

weighting the intrinsic versus extrinsic reward, each low-level policy is trained to reach

a balance between decodability and usefulness—it executes a skill, without the need for

hand-designed skill-specific reward functions. 4) We applied this algorithm to a highly

stochastic continuous state simulation of team sports and performed a detailed quantitative

investigation of the learned behaviors. Agents discover useful skills, that affect game events

and determine low-level actions in distinct and interpretable ways, such as grouping together

to steal possession from an opponent. They learn to choose complementary skills among

the team, such as when one agent camps near the opponent goal to get a rebound when

its teammate makes a long-range shot attempt. 5) Our hierarchical agents perform higher
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Figure 4.1: Hierarchical MARL with unsupervised skill discovery. At the high level (left),
the extrinsic team reward is used to train a centralized action-value function Qtot(s, z)
that decomposes into individual utility functions Qn(on, zn) for decentralized selection of
latent skill variables z. At the low level (right), skill-conditioned action-value functions
Qn(on, zn, an) take primitive actions independently. Trajectories τ generated under each z
are collected into a dataset D = {(z, τ)}, which is used to train a skill decoder p(z|τ) to
predict z from τ . The probability of selected skills under p(z|τ) is the intrinsic reward for
low-level Qn.

than flat methods in ad-hoc cooperation when matched with teammates who follow policies

that were not encountered in training. This is an encouraging result for the possibility of

human-AI cooperation.

4.2 Methods

We present a method for fully-cooperative hierarchical MARL, whereby independently-

acting agents learn to cooperate using latent skills that emerge from a combination of intrinsic

and extrinsic rewards. Inspired by training practices of real world professional sports

teams, we create our method within the paradigm of centralized training with decentralized

execution [29]. For ease of exposition and intuition, we assume all agents have the same

observation space and action space; nevertheless they take individual actions based on

individual observations. In the rest of this section, we define the objective of hierarchical

MARL with skill discovery, describe our method to solve the optimization problem, and

discuss practical implementation techniques for effective learning.
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4.2.1 Combining centralized and decentralized training in hierarchical MARL

We describe a two-level hierarchical MARL setup for training N agents, labeled by n ∈ [N ],

as follows. Let Z denote a set of latent variables z, each of which corresponds to a skill.

In this work, we use a finite set of latent variables with one-hot encoding; it is possible to

generalize Z to be a learned continuous embedding space [34]. We treat Z as the action

space for high-level policies1 µn : O 7→ Z,∀n ∈ [N ], each of which maps from an agent’s

observation on ∈ O to a choice of skill zn ∈ Z . Each choice of zn is sustained for tseg time

steps: letting T = Ktseg denote the length of an episode, there are K time points at which a

high-level skill selection is made (see Section 4.2.4). Conditioned on a chosen latent skill and

given an agent’s observation, a low-level policy πn : O ×Z 7→ A outputs a primitive action

an in a low-level action space A. Each z ∈ Z and the latent-conditioned policy πn(·; zn)

is a skill, in accord with terminology in the literature [84, 33, 34]. Let boldface µ,π, and

a denote the joint high-level policy, joint low-level policy, and joint action, respectively.

Let (·)−n denote a joint quantity for all agents except agent n. At the high level, µ learns

to select skills to optimize an extrinsic team reward function R : S × {A}Nn=1 7→ R that

maps global state and joint action to a scalar reward. At the low level, {πn}Nn=1 learn to

choose primitive actions to produce useful and decodable behavior by optimizing a low-level

reward function RL. Combining the learning at both levels, we view hierarchical MARL as

a bilevel optimization problem [139]:

max
µ,π

Ez∼µ,P

[
Est,at∼π,P

[
T∑
t=1

γtR(st, at)

]]
(4.1)

πn ∈ argmax
π

Ez∼µ,P

[
K∑
k=1

Eτnk ∼π,P [RL(znk , τ
n
k )]

]
, ∀n ∈ [N ] (4.2)

where τnk is the k-th trajectory segment that consists of a sequence of observations by

agent n, P denotes the environment transition probability P (st+1|st, a), and RL(zn, τn) :=

1Without loss of generality, and for consistency with our algorithm implementation below, we use the
notation for deterministic policies in this chapter.
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∑
(st,at)∈τn RL(zn, st, at) denotes the sum of agent n’s low-level rewards along trajectory

τn. This may also be viewed as a general-sum meta-game between a µ-player and another

π-player. When RL is the extrinsic team reward, we have a fully-cooperative meta-game,

while the other extreme is where RL solely promotes decodability. Our approach, explained

in Section 4.2.2, lies in between these extremes to strike a balance between usefulness and

decodability.

It is difficult to solve (Equation 4.1)-(Equation 4.2) exactly in high-dimensional continu-

ous state spaces. Furthermore, we adjust RL dynamically to promote skill predictability (see

Section 4.2.2). Instead, we approach it using powerful algorithms for MARL and RL. First,

we use centralized MARL algorithms to train high-level policies µ for cooperative high-level

skill selection. While cooperative behavior may emerge from flat policies trained by a team

reward [132], explicitly training high-level skill-selection policies allows external control

over the choice of skills performed (by fixing a latent variable), and subsequent analysis of

the behavior for each skill. Second, we apply independent RL to train low-level policies

{πn}Nn=1, each conditioned on a skill selected by the agent’s corresponding high-level policy,

to take primitive actions to optimize RL(zn, τn) (defined below in Section 4.2.2). This

reflects the fact that human players in team sports can master skills individually outside of

team practice.

4.2.2 Skill discovery via dynamically weighted decoder-based intrinsic rewards

We define the low-level reward by first introducing a skill decoder pψ(zn|τn) that predicts

the ground truth latent skill zn that was used in the low-level policy π(·; zn) that generated

the trajectory τn. The decoder is trained using a dataset D = {(z, τ)} of skill-trajectory

pairs, where each consists of the z chosen by a high level policy and the corresponding

trajectory τ generated by the low level policy given z, over all agents. D is accumulated in

an online manner during training. Hence, training pψ alone can be viewed as a supervised

learning problem where we have access to the ground truth “label” z associated with each
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“datapoint” τ .

We define the intrinsic reward RI(z
n
k , τ

n
k ) for agent n’s k-th trajectory segment τnk via

the prediction performance of the skill decoder on the tuple (znk , τ
n
k ). Agent n receives this

scalar reward upon generating the segment τnk . The key intuition is that a skill in many

complex fully-cooperative team games can be inferred from the trajectory of primitive

actions that implement the skill [140, 8]. For example, any agent who executes a defensive

subtask in soccer will move toward opponents in a consistent way that mainly depends on

its own observations, with only weak dependence on the behavior of other physically distant

agents2. This intrinsic reward encourages the generation of distinguishable behavior for

different skills, since only by doing so can the low-level policy produce sufficiently distinct

“classes” in the dataset D for the decoder to achieve high prediction performance. Hence we

define the low-level reward RL as a combination of team reward R and intrinsic reward RI :

RL(zn, τn) := α
∑

st,at∈τn
γtR(st, at) + (1− α)RI(z

n, τn) (4.3)

where RI := pψ(zn|τn) (4.4)

α ∈ R is a dynamic weight (specified below) that determines the amount of intrinsic versus

environment reward. In contrast to prior work on single-agent option discovery that do

not use an extrinsic reward [84, 33, 34], we take advantage of the team reward in MARL

to guarantee that skills are useful for team performance, and rely on the intrinsic reward

only to promote the association of latent variables with predictable behavior. This ensures

that low-level policies, when conditioned on different latent variables, produce trajectories

that are 1) sufficiently different to allow decoding of the latent variable, and 2) useful for

attaining the true game reward—e.g. “attack opponent net” and “defend own net”. We

decrease α from 1.0 to αend via an automatic curriculum in which α decreases by αstep only

2As a first step, we do not include higher-order skills that involve coordinated behavior of two or more
agents. Our method can be extended to higher-order skills by associating multiple agents’ concurrent
trajectories with a single skill.
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when the performance (e.g., win rate) in evaluation episodes, conducted periodically during

training, exceeds a threshold αthreshold. At high α, low-level policies learn independently

to maximize the team reward by taking useful actions, some of which can be composed

into interpretable behavior. As α decreases and the skill decoder associates trajectories

with latent variables, the low-level policy is increasingly rewarded for generating easily

decodable modes of behavior when conditioned on different z. A high αthreshold can be more

suitable for highly stochastic games (see Section 4.4.2), so that the weight on the intrinsic

reward increases later during training, after agents have learned to take useful actions.

4.2.3 Algorithm

Algorithm 1 is our approach to the optimization problem eqs. (4.1) and (4.2), with skill

discovery based on eq. (4.3). We initialize replay buffers BH ,BL for both levels of the

hierarchy, for off-policy updates in similar style to DQN [2], and initialize a dataset D for

the decoder (line 2). At the k-th high-level step, which occurs once for every tseg primitive

time steps (line 6), we compute the SMDP reward R̃t :=
∑tseg−1

i=0 γiR(st−i, at−i) for the

high-level policy (line 8) [75]. Each agent computes its reward and independently selects a

new skill to execute for the next high-level step (lines 12-13). We periodically take gradient

steps to optimize the high level cooperative skill-selection objective (Equation 4.1) (lines

15-17), using QMIX [18] to train a centralized Q-function Qtot
φ (st, z) via minimizing the

loss:

L(φ) := Eµ,π

[
1

2

(
yk −Qtot

φ (sk, zk)
)2
]

(4.5)

yk := R̃k + γQtot
φ (sk+1, z

′)|{z′n=argmaxzn Q
n
φ(onk+1,z

n)}Nn=1
(4.6)

Qtot
φ is a non-linear function (e.g., neural network) that is monotonic in individual utility

functions Qn
φ, n ∈ [N ], and we denote µ as the collection of greedy policies induced by

Qn
φ. The hypernetwork of QMIX enforces ∂Qtot

φ /∂Q
n
φ > 0, which is a sufficient condition

39



for a global argmax to be achieved via decentralized argmax, i.e., argmaxzQ
tot
φ (·, z) =

{argmaxzn Q
n
φ(·, zn)}Nn=1. This allows centralized training with decentralized skill selection.

In general, one can choose from a diverse set of cooperative MARL algorithms with

decentralized execution [17, 31, 32, 19].

Conditioned on the choices of skills, each agent independently executes primitive actions

at every low-level time step (lines 19-20), using the greedy policy πn induced by low-level

Q-functions Qn
θ (ont , z

n
t , a

n). We periodically take gradient steps to optimize the low level

objective (Equation 4.2) (lines 23-25), by using independent DQN [9, 55, 2] to optimize Qn
θ

via minimizing the loss:

L(θ) := Eµ,π

[
1

2
(ynt −Qn

θ (ont , z
n, ant ))2

]
(4.7)

ynt := RL(zn, τn) + γmax
an

Q̂n
θ (ont+1, z

n, an),∀n ∈ [N ] (4.8)

π denotes the collection of greedy policies induced by all Qn
θ . The low level reward RL

includes the contribution of the intrinsic reward RI only at the final time step of each

length-tseg trajectory segment, i.e., at every high-level step. Q̂ is a target network [2].

Once Nbatch number of (zn, τn) are collected into the dataset D (lines 11, 27-29), the

skill decoder pψ(z|τ) is trained to predict z given τ via supervised learning on D by

minimizing a standard cross-entropy loss. Each chosen zn acts as the class label for the

corresponding trajectory τn. Periodically, we evaluate the agents’ performance (e.g., win

rate) in seperate evaluation episodes; if performance exceeds αthreshold, we decrease the

weight α by αstep with lower bound αend (Section 4.2.2). While it is extremely challenging

to provide theoretical guarantees for hierarchical methods, especially due to the need

for nonlinear function approximation to tackle high-dimensional continuous state spaces,

simultaneous optimization in hierarchical RL has shown promising practical results [82, 66].
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4.2.4 Trajectory segmentation and compression

Hierarchical MARL requires agents to change their choice of skills dynamically at multiple

times within an episode, such as in response to a change of ball possession in soccer. This

means we use partial segments instead of full episode trajectories for skill discovery, in

contrast to the single-agent case [84, 33, 34]. At first glance, using a fixed time discretization

hyperparameter tseg for segmentation may pose difficulties for the skill decoder, such as

when a segment contains qualitatively different behavior that should correspond to different

skills. We address this issue by using the time points at which the high-level policy chooses

a new set of skill assignments as the segmentation. Hence, π learns to generate trajectory

segments in between the time points, and pψ learns to associate these segments with the

chosen latent variables. We synchronize the time points of all agents’ high-level skill choice,

and all skills are sustained for tseg low-level steps. This corresponds to a special case of the

“any” termination scheme, which is dominant over other termination schemes considered

in [141]. A practical approach is to define a range of values based on domain knowledge

(e.g., average duration of a player’s ball possession) and include it in hyperparameter search.

Agents can still learn skills that require more than tseg steps, by sustaining the same skill for

multiple high-level steps.

Building on [34], we preprocess each trajectory before using it as input to the decoder.

We downsample by retaining every kskip steps, which filters out low-level noise in stochastic

environments. We use the element-wise difference between the downsampled observation

vectors. This discourages the possibility that more than one skill exhibits stationary behavior

(e.g., camping at different regions of a field), as the difference will be indistinguishable for

the decoder and result in low intrinsic reward. We reduce the dimension of observation

vectors for the decoder by removing entries corresponding to all other agents, while retaining

game-specific information (e.g., ball possession). Hence an agent’s own trajectory must

contain enough information for decoding the latent skill variable.
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4.3 Experimental Setup

Our experiments demonstrate that the proposed method discovers interpretable skills that are

useful for high-level strategies and has potential for human-AI cooperation in team sports

games3. We contribute evidence that hierarchical MARL with unsupervised skill discovery

can meet or exceed the performance of non-hierarchical methods in high-dimensional envi-

ronments with only a global team reward. We describe the simulation setup in Section 4.3.1

and provide full implementation details of all methods in Section 4.3.2.

4.3.1 Simple Team Sports Simulator

The Simple Team Sports Simulator (STS2) captures the high-level rules and physical

dynamics of general N versus N team sports while abstracting away fine-grained details that

do not significantly impact strategic team play [142, 26]. Stochasticity of ball possession and

goals makes STS2 a challenging environment for MARL. Complementary to 3D simulations

such as [143] that require massively parallelized training, STS2 is a lightweight benchmark

where MARL agents can outperform the scripted opponent team within hours on a single

CPU. We train in 3v3 mode against the scripted opponent team for 50k episodes. Each

episode terminates either upon a goal or a tie at 500 time steps.

State. We define a state representation that is invariant under 180 degree rotation of

the playing field and switch of team perspective. For one team, the state vector has the

following components, making up total dimension 34: normalized position of the player

with possession relative to the goal, and its velocity; a 1-hot vector indicating which team or

opponent player has possession; for each team and opponent player, its normalized position

and velocity.

Observation. Each agent has its own egocentric observation vector with the following

components, making up total dimension 31: normalized position and velocity of the player

with possession relative to this agent; a binary indicator of whether this agent has possession;
3Code for experiments is available at https://github.com/011235813/hierarchical-marl
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a binary indicator of whether its team has possession; its normalized position and its velocity;

relative normalized position of each teammate, and their relative velocities; a binary indicator

of whether the opponent team has possession; relative normalized position of each opponent

player, and their relative velocities.

Action. The low-level discrete set of actions consists of: do-nothing, shoot, pass-1, ...

, pass-N, down, up, right, left. Movement and shoot directions are relative to the team’s

field side. If the agent does not have possession and attempts to shoot or pass, or if it has

possession and passes to itself, it is forced to do nothing.

Reward. The team receives reward +1 for scoring, −1 when the opponent scores, ±0.1

on the single step when it regains possession from, or loses possession to, the opponent. We

include a reward of ±1/(2 ∗max steps per episode) for having or not having possession.

Game events. We define a set of game events, which are frequently used for analyzing

team sports [144], to quantify the effect of skills. Goals: agent scored a goal, upon which

an episode ends. Offensive rebound: agent’s team made a shot attempt, which missed, and

the agent retrieved possession. Shot attempts: agent attempted to score a goal. Made or

received pass: agent made (received) a successful pass to (from) a teammate. Steals: agent

retrieved possession from an opponent by direct physical contact.

4.3.2 Implementation and baselines

We use parameter-sharing among all agents, as is standard for homogeneous agents in

cooperative MARL [8]. For function approximation, we use fully-connected neural networks

without recurrent units since the game is fully observable. Each component is depicted in

Figure 4.1. The low-level Q-function has two hidden layers, each with 64 units, and one

output node per action. The high-level Q-function is a QMIX architecture: the individual

utility function has two layers with 128 units per layer, and one output node per skill. Utility

values of all agents are passed into a mixer network, whose non-negative weights in two

hidden layers are generated by hypernetworks of output dimension 64, and whose final
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output is a single global Q value (see [18]). The skill decoder is a bidirectional LSTM [145]

with 128 hidden units in both forward and backward cells, whose outputs are mean-pooled

over time and passed through a softmax output layer to produce probabilities over skills.

We use batch size Nbatch = 1000 to train the decoder; ε-greedy exploration at both high and

low levels with ε decaying linearly from 0.5 to 0.05 in 1e3 episodes; replay buffers BH and

BL of size 1e5; learning rate 1e-4; and discount γ = 0.99. High and low level action-value

functions are trained using minibatches of 256 transitions every 10 steps at the high and low

levels, respectively. Target networks [2] are updated after each training step with update

factor 0.01. We conduct 20 episodes of evaluation once every 100 training episodes. We

experimented with 4 and 8 latent skills, tseg = 10, and let α decay from 1.0 to a minimum of

0.6 by αstep = 0.01 whenever average win rate during evaluation exceeds αthreshold = 70%.

We process trajectory segments as described in Section 4.2.4 with kskip = 2.

As we instantiate our general method using QMIX [18] at the high level and independent

Q-learning (IQL) [9, 2] at the low level, we compare performance with these two baselines

to demonstrate that the new hierarchical architecture maintains performance while gaining

interpretability. QMIX uses the same neural architecture as our method, except that the

individual utility function outputs action-values for primitive actions instead of action values

for high-level skills. IQL uses a two-layer Q-network with 128 units per layer. We first

performed a coarse manual search for hyperparameters of QMIX and IQL, and used the same

same values for the corresponding subset of hyperparameters in our method. Additional

hyperparameters (αthreshold, αstep, and tseg) in our method were chosen from a coarse manual

search, and we show results on hyperparameter sensitivity. We also compared with a

variant of our method that uses two hand-scripted subtask reward functions with the same

hierarchical architecture. An agent with subtask 1 gets reward +1 for making a goal when

having possession; an agent with subtask 2 gets +1 for stealing possession from an opponent.

These individual rewards mitigate the difficult problem of multi-agent credit assignment, and

so this variant gives a rough indication of maximum possible win rate against the scripted
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Figure 4.2: (a-c): Behavioral investigation of one HSD policy, showing average and standard
error over 100 test episodes. (a) Distribution of special game events for each latent skill. (b)
Projection of each skill’s event distribution via PCA. (c) Distribution of primitive actions for
each latent skill, where “Px” denotes “pass to teammate x”. (d) Projection of each skill’s
action distribution via PCA. (e) Count of overall skill usage, when agent team has or does
not have possession. (f) Time series of skills selected high-level steps, each consisting of
tseg = 10 primitive steps; each subplot shows one independent test episode; (g) Count of
skill usage over the full continuous playing field, discretized to a 36x18 grid.

opponent team.

4.4 Results

Our method for Hierarchical learning with Skill Discovery, labeled “HSD”, learns inter-

pretable skills that are useful for high-level cooperation. HSD meets the performance of

QMIX and IQL, exceeds them in ad-hoc cooperation, and enables deeper policy analysis

due to its hierarchical structure. Section 4.4.1 provides a detailed quantitative behavioral

analysis of learned skills. Section 4.4.2 discusses performance, hyperparameters sensitivity,

and ad-hoc cooperation.
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4.4.1 Quantitative behavioral analysis

We conducted a quantitative analysis of the discovered skills by measuring the impact of

skills on occurrence of game events and primitive actions, agents’ choices of skills over an

episode, and the spatial occurrence of skills. Figure 4.2 shows results for the case of four

latent skills, which we describe immediately below. We describe the case of eight latent

skills later in Figure 4.3.

Analysis of game events. Figure 4.2a shows the counts of each game event under each

skill, summed over any agent who was assigned to execute the skill, and averaged over 100

test episodes. Skill 1 makes the most shot attempts, Skill 2 provides defense by focusing on

steals, while Skill 3 contributes to the most number of successful goals. This difference in

game impact, which emerged without any skill-specific reward functions, is also reflected by

the large separation of principal components in Figure 4.2b that result from applying PCA to

the vector of event counts of Figure 4.2a. Figure 4.2b suggests that component 1 corresponds

to tendency to make offensive shots, while component 2 corresponds to tendency to make

steals. Figure 4.2c shows the distribution of primitive actions taken by the low-level policy

when conditioned on each latent skill. Skill 0 predominantly moves up towards the opponent

net to begin offense, Skill 1 is more biased toward the left field, while Skill 2 moves down

to defend the home net more than other skills. Figure 4.2e shows the usage of each skill

by the high-level policy, under the cases when agent team has possession and when the

opponent team has possession. Skill 2 is strongly associated with lack of possession since it

is a defensive skill for regaining possession.

Time series of skill usage. Figure 4.2f shows a time series of skill usage over high-

level steps by each agent during three different episodes (from top to bottom). Importantly,

agents learned to choose complementary skills, such as in Episode 3 when Agent 3 stays for

defense while Agents 1 and 2 execute offense via Skills 1 and 3, at step 9. Each individual

agent also dynamically switches between skills, such as in Episode 1 when Agents 1 and 3

switch from the defensive Skill 2 to the offensive Skill 3 at step 6. As shown by the extended
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Figure 4.3: Behavioral analysis of HSD policies with 8 latent skills. (a) Skill 0 makes the
most goals, skill 1 focuses on defensive steals, skill 6 makes the most shot attempts. (b)
Differences between skills, especially skills 0, 1 and 6, are reflected by the PCA reduction
of events. (c) Skill 0 predominantly moves up, which explains its high goal rate, while skill
4 moves down the most (d) These distinguishable characteristics of skills are reflected by
their large separation after PCA reduction.

periods in all episodes when all agents play the defensive Skill 2, agents are able to sustain

the same skill over multiple consecutive high-level steps, which mitigates the concern over

choosing a fixed tseg. Note that at any given time in the game, the defensive Skill 2 is almost

always used by some agent either to make steals or cover the home net.

Spatial occurrence of skills. Figure 4.2g is a heatmap of skill usage over the playing

field. Consistent with the previous analysis, Skill 0 is used for moving up for offense, Skills 1

and 3 tend to camp near the opponent net (top) to attempt shots, while Skill 2 is concentrated

near the home net (bottom) to make defensive steals.

Increasing number of skills. The number of latent skills is also a key design choice

to make based on domain knowledge. Figure 4.3 analyzes HSD when trained with eight

skills. Skills 0, 3, and 6 focus on shot attempts and offensive rebounds (Figure 4.3a), and

they have high values of the first principal component (Figure 4.3b). Skills 1 and 2 focus on

defensive steals. Figure 4.3c shows that Skill 0 moves up for offense the most, while Skill 4

moves down to play defense. This is reflected by their large separation in the first principal

component (Figure 4.3d).
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Figure 4.4: Win rate against scripted opponent team over training episodes. Each curve is
the mean over random seeds (5 for (a) and 3 for (b-d)) with shaded region representing 95%
confidence interval. (a) HSD is within margin of error with QMIX and IQL. HSD-scripted
has the same hierarchical architecture as HSD but is trained with hand-scripted subtask
rewards. HSD-ext does not use extrinsic rewards. (b-d) Learning is more stable with high
αthreshold, small αstep, and longer tseg.

4.4.2 Performance and parameter sensitivity

Figure 4.4 shows win rate against the scripted opponent team over training episodes for

HSD and baselines, each with 5 independent runs, and for varying hyperparameter settings

of HSD, each with 3 independent runs. HSD agents learn faster than QMIX and IQL,

consistent with findings on hierarchical versus non-hierarchical methods in early work [79],

while their final performance are within the margin of error (Figure 4.4a). HSD-ext does not

have access to extrinsic rewards and underperforms the rest. This supports our hypothesis

that the extrinsic team reward is needed in combination with the intrinsic reward to promote

useful behavior. HSD-scripted outperformed other methods, showing that using cooperative

learning at the high-level and independent learning at the low level is a strong approach, and

improvement to skill discovery is possible.

We investigated the effect of varying the key hyperparameters of HSD. Figure 4.4b

shows that larger values of αthreshold gives higher performance and lower variance. A small

αthreshold increases the likelihood that a spuriously high evaluation performance crosses

αthreshold, which would cause a re-weighting of the extrinsic versus intrinsic reward even

when the agents have not yet adapted to the current reward. This explains the instability

of αthreshold = 0.4 in Figure 4.4b. Likewise, Figure 4.4c shows that a smaller value of αstep
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performs better, because each adjustment of the low-level reward is smaller and hence the

automatic curriculum is easier for learning. Figure 4.4d shows that agents who sustain

high-level skills for 10 or 20 time steps perform better than agents who sustain only for 5

steps. A smaller tseg means that agents make more frequent decisions to sustain or switch

their choice of skill, which allows for more flexible policies but increases the difficulty of

learning.

Table 4.1: Win/lose percentage of final policies over 100 test episodes and 5 seeds, matched
with different teammates.

HSD QMIX IQL

Teammate Win Lose Win Lose Win Lose

Training 46 (4) 39 (4) 55 (3) 23 (3) 36 (7) 46 (4)
1 scripted 49 (4) 45 (3) 48 (4) 44 (4) 32 (3) 54 (4)
2 scripted 52 (3) 45 (1) 45 (2) 51 (2) 37 (2) 58 (1)
1 defensive 43 (5) 42 (4) - - - -
1 offensive 45 (2) 41 (1) - - - -

Ad Hoc cooperation. We investigated the test performance of agents in ad-hoc

cooperation, by giving them teammate(s) with whom they never previously trained [146].

This mimics the setting where AI agents must cooperate with a human player in team sports

games. Table 4.1 shows the win and lose percentage of HSD, QMIX, and IQL (draws

are possible). HSD agents perform as well or better when one or two of their teammates

are replaced by scripted bots, possibly due to independently-trained low-level policies in

HSD. However, QMIX agents performed significantly worse when paired with scripted

bots, likely because the out-of-training behavior of bots pose difficulties for QMIX agents

who underwent fully-centralized training. IQL agents also lost significantly more often

with scripted teammates. For HSD, we can also fix one agent to always play a defensive or

offensive skill. Based on Figure 4.2a, we chose Skill 1 for offense and Skill 2 for defense.

HSD agents are able to maintain their performance within the margin of error.
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4.5 Summary

We presented a method for hierarchical multi-agent reinforcement learning that discovers

useful skills for strategic teamwork. We train cooperative decentralized policies for high-

level skill selection and train independent low-level policies to execute chosen skills, which

emerge from a dynamically weighted combination of intrinsic and extrinsic rewards. We

demonstrated the emergence of quantifiable, distinct and useful skills in stochastic team

sports simulations without assigning a reward to each skill. These findings are a step toward

multi-agent game AI that execute realistic high-level strategies and can cooperate with

human players.
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Algorithm 1 Hierarchical MARL with unsupervised skill discovery
1: procedure ALGORITHM

2: Initialize high-level Qφ, low-level Qθ, decoder pψ, high-level replay buffer BH ,
low-level replay buffer BL, and trajectory-skill dataset D

3: for each episode do
4: st,ot = env.reset()
5: Initialize trajectory storage {τn}Nn=1 of max length tseg

6: for each step t = 1, . . . , T in episode do
7: if t mod tseg = 0 then
8: if t > 1 then
9: Compute R̃t := γtseg ∗

∑tseg
k=0 Rt−k

10: Store (st−tseg ,ot−tseg , z, R̃t, st,ot) into BH
11: for each agent n do
12: Store (zn, τn) into D
13: Compute intrinsic reward Rn

I using (Equation 4.4)
14: end for
15: end if
16: Select new zn by ε-greedy(Qn

φ(on, z)),∀n ∈ [N ]
17: if # (high level steps) mod ttrain = 0 then
18: Update Qφ(s, z) using BH and (Equation 4.5)
19: end if
20: end if
21: Get ant from ε-greedy(Q(ont , z

n
t , a)) for each agent

22: st+1,ot+1, Rt = env.step(at)
23: Compute Rn

L := αRt + (1− α)Rn
I for each agent

24: For all agents, store (ont , a
n
t , R

n
L, o

n
t+1, z

n) into low-level replay buffer BL,
and append ont to trajectory τn

25: if # (low-level steps) mod ttrain = 0 then
26: Update Qθ(o

n, zn, an) using BL and (Equation 4.7)
27: end if
28: end for
29: if size of D ≥ Nbatch then
30: Update decoder pψ(z|τ) using D, then empty D
31: end if
32: if evaluation win rate exceeds αthreshold then
33: α← max(αend, α− αstep)
34: end if
35: end for
36: end procedure
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CHAPTER 5

LEARNING TO INCENTIVIZE OTHER LEARNING AGENTS

5.1 Introduction

Reinforcement Learning (RL) [1] agents are achieving increasing success on an expanding

set of tasks [2, 3, 4, 5, 6]. While much effort is devoted to single-agent environments and

fully-cooperative games, there is a possible future in which large numbers of RL agents with

imperfectly-aligned objectives must interact and continually learn in a shared multi-agent

environment. The option of centralized training with a global reward [17, 31, 18] is excluded

as it does not scale easily to large populations and may not be adopted by self-interested

parties. On the other hand, the paradigm of decentralized training—in which no agent is

designed with an objective to maximize collective performance and each agent optimizes

its own set of policy parameters—poses difficulties for agents to attain high individual and

collective return [36]. In particular, agents in many real world situations with mixed motives,

such as settings with nonexcludable and subtractive common-pool resources, may face a

social dilemma wherein mutual selfish behavior leads to low individual and total utility,

due to fear of being exploited or greed to exploit others [37, 38, 39]. Whether, and how,

independent learning and acting agents can cooperate while optimizing their own objectives

is an open question.

The conundrum of attaining multi-agent cooperation with decentralized training of

agents, who may have misaligned individual objectives, requires us to go beyond the

restrictive mindset that the collection of predefined individual rewards cannot be changed

by the agents themselves. We draw inspiration from the observation that this fundamental

multi-agent problem arises at multiple scales of human activity and, crucially, that it can be

successfully resolved when agents give the right incentives to alter the objective of other
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Figure 5.1: The N -player Escape Room game ER(N,M). For M < N , if fewer than M
agents pull the lever, which incurs a cost of −1, then all agents receive −1 for changing
positions. Otherwise, the agent(s) who is not pulling the lever can get +10 at the door and
end the episode.

agents, in such a way that the recipients’ behavior changes for everyone’s advantage. Indeed,

a significant amount of individual, group, and international effort is expended on creating

effective incentives or sanctions to shape the behavior of other individuals, social groups,

and nations [147, 148, 149]. The rich body of work on game-theoretic side payments [150,

151, 152] further attests to the importance of inter-agent incentivization in society.

Translated to the framework of Markov games for multi-agent reinforcement learning

(MARL) [10], the key insight is to remove the constraints of an immutable reward function.

Instead, we allow agents to learn an incentive function that gives rewards to other learning

agents and thereby shape their behavior. The new learning problem for an agent becomes

two-fold: learn a policy that optimizes the total extrinsic rewards and incentives it receives,

and learn an incentive function that alters other agents’ behavior so as to optimize its own

extrinsic objective. While the emergence of incentives in nature may have an evolutionary

explanation [153], human societies contain ubiquitous examples of learned incentivization

and we focus on the learning viewpoint in this work.

The Escape Room game. We may illustrate the benefits and necessity of incentivization

with a simple example. The Escape Room game ER(N,M) is a discrete N -player Markov

game with individual extrinsic rewards and parameter M < N , as shown in Figure 5.1. An

agent gets +10 extrinsic reward for exiting a door and ending the game, but the door can

only be opened when M other agents cooperate to pull the lever. However, an extrinsic

penalty of −1 for any movement discourages all agents from taking the cooperative action.
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If agents optimize their own rewards with standard independent RL, no agent can attain

positive reward, as we show in Section 5.4.

This game may be solved by equipping agents with the ability to incentivize other agents

to pull the lever. However, we hypothesize—and confirm in experiments—that merely

augmenting an agent’s action space with a “give-reward” action and applying standard RL

faces significant learning difficulties. Consider the case of ER(2, 1): suppose we allow agent

A1 an additional action that sends +2 reward to agent A2, and let it observe A2’s chosen

action prior to taking its own action. Assuming that A2 conducts sufficient exploration,

an intelligent reward-giver should learn to use the give-reward action to incentivize A2 to

pull the lever. However, RL optimizes the expected cumulative reward within one episode,

but the effect of a give-reward action manifests in the recipient’s behavior only after many

learning updates that generally span multiple episodes. Hence, a reward-giver may not

receive any feedback within an episode, much less an immediate feedback, on whether the

give-reward action benefited its own extrinsic objective. Instead, we need an agent that

explicitly accounts for the impact of incentives on the recipient’s learning and, thereby, on

its own future performance.

As a first step toward addressing these new challenges, we make the following conceptual,

algorithmic, and experimental contributions. (1) We create an agent that learns an incentive

function to reward other learning agents, by explicitly accounting for the impact of incentives

on its own performance, through the learning of recipients. (2) Working with agents who

conduct policy optimization, we derive the gradient of an agent’s extrinsic objective with

respect to the parameters of its incentive function. We propose an effective training procedure

based on online cross-validation to update the incentive function and policy on the same time

scale. (3) We show convergence to mutual cooperation in a matrix game, and experiment

on a new deceptively simple Escape Room game, which poses significant difficulties for

standard RL and action-based opponent-shaping agents, but on which our agent consistently

attains the global optimum. (4) Finally, our agents discover near-optimal division of labor
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in the challenging and high-dimensional social dilemma problem of Cleanup [91]. Taken

together, we believe this is a promising step toward a cooperative multi-agent future.

5.2 Learning to incentivize others

We design Learning to Incentivize Others (LIO), an agent that learns an incentive function

by explicitly accounting for its impact on recipients’ behavior, and through them, the impact

on its own extrinsic objective. For clarity, we describe the ideal case where agents have

a perfect model of other agents’ parameters and gradients; afterwards, we remove this

assumption via opponent modeling. We present the general case of N LIO agents, indexed

by i ∈ [N ] := {1, . . . , N}. Each agent gives rewards using its incentive function and learns

a regular policy with all received rewards. For clarity, we use index i when referring to the

reward-giving part of an agent, and we use j for the part that learns from received rewards.

For each agent i, let oi := Oi(s) ∈ O denote its individual observation at global state s;

ai ∈ Ai its action; and −i a collection of all indices except i. Let a and π denote the joint

action and the joint policy over all agents, respectively.

A reward-giver agent i learns a vector-valued incentive function rηi : O×A−i 7→ RN−1,

parameterized by ηi ∈ Rn, that maps its own observation oi and all other agents’ actions

a−i to a vector of rewards for the other N − 1 agents1. Let rj
ηi

denote the reward that agent i

gives to agent j. As we elaborate below, rηi is separate from the agent’s conventional policy

and is learned via direct gradient ascent on the agent’s own extrinsic objective, involving

its effect on all other agents’ policies, instead of via RL. Therefore, while it may appear

that LIO has an augmented action space that provides an additional channel of influence on

other agents, we emphasize that LIO’s learning approach does not treat the incentive as a

standard “give-reward” action.

We build on the idea of online cross-validation [102], to capture the fact that an incentive

has measurable effect only after a recipient’s learning step. As such, we describe LIO
1We do not allow LIO to reward itself, as our focus is on influencing other agents’ behavior. Nonetheless,

LIO may be complemented by other methods for learning intrinsic rewards [100].
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in a procedural manner below (Algorithm 2). This procedure can also be viewed as an

iterative method for a bilevel optimization problem [139], where the upper level optimizes

the incentive function by accounting for recipients’ policy optimization at the lower level.

At each time step t, each recipient j receives a total reward

rj(st, at, η
−j) := rj,env(st, at) +

∑
i 6=j

rj
ηi

(oit, a
−i
t ) , (5.1)

where rj,env denotes agent j’s extrinsic reward. Each agent j learns a standard policy πj ,

parameterized by θj ∈ Rm, to maximize the objective

max
θj

Jpolicy(θj, η−j) := Eπ

[
T∑
t=0

γtrj(st, at, η
−j)

]
. (5.2)

Upon experiencing a trajectory τ j := (s0, a0, r
j
0, . . . , sT ), the recipient carries out an update

θ̂j ← θj + βf(τ j, θj, η−j) (5.3)

that adjusts its policy parameters with learning rate β (Algorithm 2, lines 4-5). Assuming

policy optimization learners in this work and choosing policy gradient for exposition, the

update function is

f(τ j, θj, η−j) =
T∑
t=0

∇θj log πj(ajt |o
j
t)G

j
t(τ

j; η−j) , (5.4)

where the return Gj
t(τ

j, η−j) =
∑T

l=t γ
l−trj(sl, al, η

−j) depends on incentive parameters

η−j .

After each agent has updated its policy to π̂j , parameterized by new θ̂j , it generates a new

trajectory τ̂ j . Using these trajectories, each reward-giver i updates its individual incentive

function parameters ηi to maximize the following individual objective (Algorithm 2, lines
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6-7):

max
ηi

J i(τ̂ i, τ i, θ̂, ηi) := Eπ̂

[
T∑
t=0

γtr̂i,env
t

]
− αL(ηi, τ i) . (5.5)

The first term is the expected extrinsic return of the reward-giver in the new trajectory τ̂ i. It

implements the idea that the purpose of agent i’s incentive function is to alter other agents’

behavior so as to maximize its extrinsic rewards. The rewards it received from others are

already accounted by its own policy update. The second term is a cost for giving rewards in

the first trajectory τ i:

L(ηi, τ i) :=
∑

(oit,a
−i
t )∈τ i

γt‖rηi(oit, a−it )‖1 . (5.6)

This cost is incurred by the incentive function and not by the policy, since the latter does not

determine incentivization2 and should not be penalized for the incentive function’s behavior

(see Section B.1.1 for more discussion). We use the `1-norm so that cost has the same

physical “units” as extrinsic rewards. The gradient of (Equation 5.6) is directly available,

assuming rηi is a known function approximator (e.g., neural network). Letting J i(τ̂ i, θ̂)

denote the first term in (Equation 5.5), the gradient w.r.t. ηi is:

∇ηiJ
i(τ̂ i, θ̂) =

∑
j 6=i

(∇ηi θ̂
j)T∇θ̂jJ

i(τ̂ i, θ̂) . (5.7)

The first factor of each term in the summation follows directly from (Equation 5.3) and

(Equation 5.4):

∇ηi θ̂
j = β

T∑
t=0

∇θj log πj(ajt |o
j
t)
(
∇ηiG

j
t(τ

j; η−j)
)T

. (5.8)

Note that (Equation 5.3) does not contain recursive dependence of θj on ηi since θj is a

2Note that the outputs of the incentive function and policy are conditionally independent given the agent’s
observation, but their separate learning processes are coupled via the learning process of other agents.
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Algorithm 2 Learning to Incentivize Others
1: procedure TRAIN LIO AGENTS

2: Initialize all agents’ policy parameters θi, incentive function parameters ηi

3: for each iteration do
4: Generate a trajectory {τ j} using θ and η
5: For all reward-recipients j, update θ̂j using (Equation 5.3)
6: Generate a new trajectory {τ̂ i} using new θ̂
7: For reward-givers i, compute new η̂i by gradient ascent on (Equation 5.5)
8: θi ← θ̂i, ηi ← η̂i for all i ∈ [N ].
9: end for

10: end procedure

function of incentives in previous episodes, not those in trajectory τ i. The second factor in

(Equation 5.7) can be derived as

∇θ̂jJ
i(τ̂ i, θ̂) = Eπ̂

[
∇θ̂j log π̂j(âj|ôj)Qi,π̂(ŝ, â)

]
. (5.9)

In practice, to avoid manually computing the matrix-vector product in (Equation 5.7), one

can define the loss

Loss(ηi, τ̂ i) := −
∑
j 6=i

T∑
t=0

log πθ̂j(â
j
t |ô

j
t)

T∑
l=t

γl−tri,env(ŝl, âl) , (5.10)

and directly minimize it via automatic differentiation [154]. Crucially, θ̂j must preserve

the functional dependence of the policy update step (Equation 5.4) on ηi within the same

computation graph. Derivations of (Equation 5.9) and (Equation 5.10) are similar to that for

policy gradients [56] and are provided in Section B.3.

LIO is compatible with the goal of achieving emergent cooperation in fully-decentralized

MARL, as agents already learn individual sets of parameters to maximize individual objec-

tives. One may directly apply opponent modeling [155] when LIO can observe, or estimate,

other agents’ egocentric observations, actions, and individual rewards, and have common

knowledge that all agents conduct policy updates via reinforcement learning. These re-

quirements are satisfied in environments where incentivization itself is feasible, since these
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observations are required for rational incentivization. LIO may then fit a behavior model

for each opponent, create an internal model of other agents’ RL processes, and learn the

incentive function by differentiating through fictitious updates using the model in place of

(Equation 5.3). We demonstrate a fully-decentralized implementation in our experiments.

5.2.1 Relation to opponent shaping via actions

LIO conducts opponent shaping via the incentive function. This resembles LOLA [96], but

there are key algorithmic differences. Firstly, LIO’s incentive function is trained separately

from its policy parameters, while opponent shaping in LOLA depends solely on the policy.

Secondly, the LOLA gradient correction for agent i is derived from ∇θiJ
i(θi, θj + ∆θj)

under Taylor expansion, but LOLA disregards a term with ∇θi∇θjJ
i(θi, θj) even though

it is non-zero in general. In contrast, LIO is constructed from the principle of online

cross-validation [102], not Taylor expansion, and hence this particular mixed derivative is

absent—the analogue for LIO would be ∇ηi∇θjJ
i(θi, θj), which is zero because incentive

parameters ηi affect all agents except agent i. Thirdly, LOLA optimizes its objective

assuming one step of opponent learning, before the opponent actually does so [97]. In

contrast, LIO updates the incentive function after recipients carry out policy updates using

received incentives. This gives LIO a more accurate measurement of the impact of incentives,

which reduces variance and increases performance, as we demonstrate experimentally in

Section B.5.1 by comparing with a 1-episode variant of LIO that does not wait for opponent

updates. Finally, by adding differentiable reward channels to the environment, which is

feasible in many settings with side payments [150], LIO is closer in spirit to the paradigm of

optimized rewards [104, 3, 92].

5.2.2 Analysis in Iterated Prisoner’s Dilemma

LIO poses a challenge for theoretical analysis in general Markov games because each agent’s

policy and incentive function are updated using different trajectories but are coupled through
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Figure 5.2: Exact LIO in IPD: probability of recipient cooperation versus incentive for
cooperation.

the RL updates of all other agents. Nonetheless, a complete analysis of exact LIO—using

closed-form gradient ascent without policy gradient approximation—is tractable in repeated

matrix games. In the stateless Iterated Prisoner’s Dilemma (IPD), for example, with payoff

matrix in Table 5.1, we prove in Section B.2 the following:

Proposition 3. Two LIO agents converge to mutual cooperation in the Iterated Prisoner’s

Dilemma.

Table 5.1: Prisoner’s Dilemma

A1/A2 C D

C (-1, -1) (-3, 0)

D (0, -3) (-2, -2)

Moreover, we may gain further insight by visual-

izing the learning dynamics of exact LIO in the IPD,

computed in Section B.2. Let η1 := [η1
C , η

1
D] ∈ [0, 3]2

be the incentives that Agent 1 gives to Agent 2 for

cooperation (C) and defection (D), respectively. Let

θ2 denote Agent 2’s probability of cooperation. In Figure 5.2, the curvature of vector fields

shows guaranteed increase in probability of recipient cooperation θ2 (vertical axis) along

with increase in incentive value η1
C received for cooperation (horizontal axis). For higher

values of incentive for defection η1
D, greater values of η1

C are needed for θ2 to increase.

Figure B.1 shows that incentive for defection is guaranteed to decrease.

5.3 Experimental setup

Our experiments3 demonstrate that LIO agents are able to reach near-optimal individual per-

formance by incentivizing other agents in cooperation problems with conflicting individual

3Code for all experiments is available at https://github.com/011235813/lio
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and group utilities. We define three different environments with increasing complexity in

Section 5.3.1 and describe the implementation of our method and baselines in Section 5.3.2.

5.3.1 Environments

Iterated Prisoner’s Dilemma (IPD). We test LIO on the memory-1 IPD as defined in [96],

where agents observe the joint action taken in the previous round and receive extrinsic

rewards in Table 5.1. This serves as a test of our theoretical prediction in Section 5.2.2.

N -Player Escape Room (ER). We experiment on the N -player Escape Room game

shown in Figure 5.1 (Section 5.1). By symmetry, any agent can receive positive extrinsic

reward, as long as there are enough cooperators. Hence, for methods that allow incen-

tivization, every agent is both a reward giver and recipient. We experiment with the cases

(N = 2,M = 1) and (N = 3,M = 2). We also describe an asymmetric 2-player case and

results in Section B.5.1.

Waste

Apple

Agents

Cleaning 
beam

Figure 5.3: Cleanup (10x10
map): apple spawn rate de-
creases with increasing waste,
which agents can clear with a
cleaning beam.

Cleanup. Furthermore, we conduct experiments on

the Cleanup game (Figure 5.3) [91, 92]. Agents get +1

individual reward by collecting apples, which spawn on

the right hand side of the map at a rate that decreases lin-

early to zero as the amount of waste in a river approaches

a depletion threshold. Each episode starts with a waste

level above the threshold and no apples present. While an

agent can contribute to the public good by firing a clean-

ing beam to clear waste, it can only do so at the river as its fixed orientation points upward.

This would enable other agents to defect and selfishly collect apples, resulting in a difficult

social dilemma. Each agent has an egocentric RGB image observation that spans the entire

map.
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5.3.2 Implementation and baselines

We describe key details here and provide a complete description in Section B.4.2. In each

method, all agents have the same implementation without sharing parameters. The incentive

function of a LIO agent is a neural network defined as follows: its input is the concatenation

of the agent’s observation and all other agents’ chosen actions; the output layer has size N ,

sigmoid activation, and is scaled element-wise by a multiplier Rmax; each output node j,

which is bounded in [0, Rmax], is interpreted as the real-valued reward given to agent with

index j in the game (we zero-out the value it gives to itself). We chose Rmax = [3, 2, 2] for

[IPD, ER, Cleanup], respectively, so that incentives can overcome any extrinsic penalty or

opportunity cost for cooperation. We use on-policy learning with policy gradient for each

agent in IPD and ER, and actor-critic for Cleanup. To ensure that all agents’ policies perform

sufficient exploration for the effect of incentives to be discovered, we include an exploration

lower bound ε such that π̃(a|s) = (1− ε)π(a|s) + ε/|A|, with linearly decreasing ε.

Fully-decentralized implementation (LIO-dec). Each decentralized LIO agent

i learns a model of another agent’s policy parameters θj via θjestimate =

argmaxθj
∑

(ojt ,a
j
t )∈τ

log πθj(a
j
t |o

j
t) at the end of each episode τ . With knowledge of agent

j’s egocentric observation and individual rewards, it conducts incentive function updates

using a fictitious policy update in (Equation 5.3) with θjestimate in place of θj .

Baselines. The first baseline is independent policy gradient, labeled PG, which has the

same architecture as the policy part of LIO. Second, we augment policy gradient with discrete

“give-reward” actions, labeled PG-d, whose action space is A× {no-op, give-reward}N−1.

We try reward values in the set {2, 1.5, 1.1}. Giving reward incurs an equivalent cost. Next,

we design a more flexible policy gradient baseline called PG-c, which has continuous

give-reward actions. It has an augmented action space A × [0, Rmax]
N−1 and learns a

factorized policy π(ad, ar|o) := π(ad|o)π(ar|o), where ad ∈ A is the regular discrete

action and ar ∈ [0, Rmax]
N−1 is a vector of incentives given to the other N − 1 agents.

Section B.4.2 describes how PG-c is trained. In ER, we run LOLA-d and LOLA-c with the
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same augmentation scheme as PG-d and PG-c. In Cleanup, we compare with independent

actor-critic agents (AC-d and AC-c), which are analogously augmented with “give-reward”

actions, and with inequity aversion (IA) agents [91]. We also show the approximate upper

bound on performance by training a fully-centralized actor-critic (Cen) that is (unfairly)

allowed to optimize joint reward.

5.4 Results

We find that LIO agents reach near-optimal collective performance in all three environments,

despite being designed to optimize only individual rewards. This arose in ER and Cleanup

because incentivization enabled agents to find an optimal division of labor4 and in IPD

where LIO is proven to converge to the CC solution. In contrast, various baselines displayed

competitive behavior that led to suboptimal solutions, were not robust across random seeds,

or failed to cooperate altogether. We report the results of 20 independent runs for IPD and

ER, and 5 runs for Cleanup.

Figure 5.4: The sum of all
agents’ rewards in IPD.

Iterated Prisoner’s Dilemma. In accord with the theoret-

ical prediction of exact LIO in Section 5.2.2 and Section B.2,

two LIO agents with policy gradient approximation converge

near the optimal CC solution with joint reward -2 in the IPD

(Figure 5.4). This meets the performance of LOLA-PG and

is close to LOLA-Ex, as reported in [96]. In the asymmetric

case (LIO-asym) where one LIO agent is paired with a PG agent, we indeed find that they

converge to the DC solution: PG is incentivized to cooperate while LIO defects, resulting in

collective reward near -3.

Escape Room. Figures 5.5a and 5.5c show that groups of LIO agents discover a division

of labor in both ER(2,1) and ER(3,2), whereby some agent(s) cooperate by pulling the

lever to allow another agent to exit the door, such that collective return approaches the

4Learned behavior in Cleanup can be viewed at https://sites.google.com/view/neurips2020-lio
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Figure 5.5: Escape Room. (a,c) LIO agents converge near the global optimum with value
9 (N=2) and 8 (N=3). (b,d) Incentives received for each action by the agent who ends up
going to the lever/door.

optimal value (9 for the 2-player case, 8 for the 3-player case). Fully-decentralized LIO-dec

successfully solved both cases, albeit with slower learning speed. As expected, PG agents

were unable to find a cooperative solution: they either stay at the start state or greedily

move to the door, resulting in negative collective return. The augmented baselines PG-d and

PG-c sometimes successfully influence the learning of another agent to solve the game, but

exhibit high variance across independent runs. This is strong evidence that conventional RL

alone is not well suited for learning to incentivize, as the effect of “give-reward” actions

manifests only in future episodes. LOLA succeeds sometimes but with high variance, as it

does not benefit from the stabilizing effects of online cross-validation and separation of the

incentivization channel from regular actions. Section B.5.1 contains results in an asymmetric

case (LIO paired with PG), where we compare to an additional heuristic two-timescale

baseline and a variant of LIO. Figure B.4c evidences that LIO scales well to larger groups

such as ER(5,3), since the complexity of (Equation 5.7) is linear in number of agents.

To understand the behavior of LIO’s incentive function, we classify each agent at the

end of training as a “Cooperator” or “Winner” based on whether its final policy has greater

probability of going to the lever or door, respectively. For each agent type, aggregating

over all agents of that type, we measure incentives received by that agent type when

it takes each of the three actions during training. Figures 5.5b and 5.5d show that the

Cooperator was correctly incentivized for pulling the lever and receives negligible incentives
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Figure 5.6: Results on Cleanup. (a,c) Emergent division of labor between LIO agents
enables higher performance than AC and IA baselines, which find rewards but exhibit
competitive behavior. (b) Behavior of incentive function in 7x7 Cleanup at different training
checkpoints, measured against three scripted opponents: R moves within river without
cleaning; C successfully cleans waste; M fires the cleaning beam but misses waste (mean
and standard error of 20 evaluation episodes). (d) 10x10 map: the LIO agent who becomes
a “Cleaner” receives incentives, while the “Harvester” does not.

for noncooperative actions. Asymptotically, the Winner receives negligible incentives from

the Cooperator(s), who learned to avoid the cost for incentivization (Equation 5.6) when

doing so has no benefits itself, whereas incentives are still nonzero for the Cooperator.

Cleanup. Figures 5.6a and 5.6c show that LIO agents collected significantly more

extrinsic rewards than AC and IA baselines in Cleanup, and approach the upper bound on

performance as indicated by Cen, on both a 7x7 map and a 10x10 map with more challenging

depletion threshold and lower apple respawn rates. LIO agents discovered a division of

labor (Figure B.5a), whereby one agent specializes to cleaning waste at the river while the

other agent, who collects almost all of the apples, provides incentives to the former. In

contrast, AC baselines learned clean but subsequently compete to collect apples, which is

suboptimal for the group (Figure B.5b). Due to continual exploration by all agents, an agent

may change its behavior if it receives incentives for “wrong actions”: e.g., near episode 30k

in Figure 5.6a, an agent temporarily stopped cleaning the river despite having consistently

done so earlier.

We can further understand the progression of LIO’s incentive function during training as

follows. First, we classify LIO agents at the end of training as a “Cleaner” or a “Harvester”,

based on whether it primarily cleans waste or collects apples, respectively. Next, we
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define three hand-scripted agents: an R agent moves in the river but does not clean, a

C agent successfully cleans waste, and an M agent fires the cleaning beam but misses

waste. Figure 5.6b shows the incentives given by a Harvester to these scripted agents when

they are tested together periodically during training. At episodes 10k, 30k and 35k, it

gave significantly more incentives to C than to M, meaning that it distinguished between

successful and unsuccessful cleaning, which explains how its actual partner in training

was incentivized to become a Cleaner. After 40k episodes, it gives nonzero reward for

“fire cleaning beam but miss”, likely because its actual training partner already converged

to successful cleaning (Figure 5.6a), so it may have “forgotten” the difference between

successful and unsuccessful usage of the cleaning beam. As shown by results in the

Escape Room (Figures 5.5b and 5.5d), correct incentivization can be maintained if agents

have a sufficiently large lower bound on exploration rates that pose the risk of deviating

from cooperative behavior. Figure 5.6d shows the actual incentives received by Cleaner and

Harvester agents when they are positioned in the river, fire the cleaning beam, or successfully

clear waste during training. We see that asymptotically, only Harvesters provide incentives

to Cleaners and not the other way around.

5.5 Summary

We created Learning to Incentivize Others (LIO), an agent who learns to give rewards

directly to other RL agents. LIO learns an incentive function by explicitly accounting for the

impact of incentives on its own extrinsic objective, through the learning updates of reward

recipients. In the Iterated Prisoner’s Dilemma, an illustrative Escape Room game, and a

benchmark social dilemma problem called Cleanup, LIO correctly incentivizes other agents

to overcome extrinsic penalties so as to discover cooperative behaviors, such as division

of labor, and achieve near-optimum collective performance. We further demonstrated the

feasibility of a fully-decentralized implementation of LIO.
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CHAPTER 6

ADAPTIVE INCENTIVE DESIGN WITH MULTI-AGENT META-GRADIENT

REINFORCEMENT LEARNING

6.1 Introduction

As advances in artificial intelligence research drive the growing presence of AI in critical

infrastructures—such as transportation [156, 157], information communication [158], fi-

nancial markets [159] and agriculture [160]—it is increasingly important for AI research

to complement the solipsistic view of models and agents acting in isolation with a broader

viewpoint: these models and agents may be developed by independent and self-interested

principals but are eventually deployed in a shared multi-agent ecosystem. Apart from the

special cases of pure common or conflicting interest (i.e., team or zero-sum payoffs), the

majority of possible scenarios involve mixed motives [161] whereby cooperation for optimal

group payoff is attainable if selfish behavior out of greed or fear—which results in low

individual and group payoff—can be overcome. Research on endowing individual agents

with social capabilities and designing central institutional mechanisms to safeguard and

improve social welfare, recently named “Cooperative AI” [162], is a long-term necessity

that requires present-day research efforts.

We focus on one specific pillar of this research agenda: the problem of adaptive incentive

design [27], whereby a central institution shapes the behavior of self-interested agents to

improve social welfare, by introducing an incentive function to modify their individual

payoffs. The trivial solution of setting individual payoffs equal to the average system

payoff is known to be suboptimal [105]: e.g., uniform redistribution of income leads to low

productivity. This problem can be formalized as a reverse Stackelberg game [163, 164],

in which the leader first proposes a function (e.g., the incentive function) that maps from
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the follower’s action space to the leader’s decision space, while the follower chooses a best

response. This is a difficult bi-level optimization problem even in the linear case [165].

To tackle this problem in high-dimensional multi-agent systems, we propose a model-free

method based on meta-gradient reinforcement learning [103] and the principle of online

cross-validation [102], for the incentive designer (ID) to explicitly account for the learning

dynamics of agents in response to incentives. Potential applications in the long term include:

e.g. shaping consumption patterns to improve the efficiency of smart power grids [166] and

to mitigate climate crisis [167]; reducing wait times or traffic congestion in taxi dispatch

and traffic tolling systems [168, 41]; solving the social dilemma of autonomous vehicle

adoption [156]; improving the trade-off between economic productivity and income equality

via taxation [42].

In the spirit of complexity economics [169], whereby the tractability of linear models

with analytic equilibria [108, 28, 105] is eschewed for the greater realism and richer

dynamics of high-dimensional agent-based simulation, we work in the framework of Markov

games [10] with reinforcement learning (RL) agents [1]. Within this context, we interpret

“incentive design” in the broad sense of influencing agents’ behaviors via modifying their

individual payoffs. The issue of incentive compatibility, despite being central to analytically

tractable applications such as auctions where the goal is to elicit truthful reporting of private

valuations [27], do not pertain in general to complex simulations involving RL agents for

the following reasons: 1) the concept of private individual preferences may not make sense

in the application (e.g., a social dilemma whose payoff is known to all parties); 2) there

may be no a priori or fixed private valuations, because an agent’s preference is completely

represented by its reward function, which itself depends on the incentive function and hence

changes dynamically along with the ID’s online optimization process,; and 3) a complex

simulation involving nonlinear processes and discrete rules is used to investigate dynamical

behavior rather than to converge to equilibria.

Our use of simulation is motivated by two considerations. Firstly, there may arise a future

68



ecosystem of AI in diverse spaces, such as multiple firms in a financial market [170] and

multiple recommendation systems in the same consumer sector [171]. With the increasing

success of RL on progressively more difficult tasks [4, 5, 6] and growing efforts to apply RL

to real-world problems [172, 173], such real-world in silico AI are likely to involve RL for

optimization of long-term objectives and will be ontologically equivalent to the entities in

our work. Secondly, agent-based simulation is also relevant to incentive design for a group

of self-interested humans, firms, or states, by viewing the reward-maximizing behavior of

RL agents as an approximation of the bounded rationality of such real world entities [174].

Therefore, we validate our approach in existing simulation benchmarks: Escape Room [40]

and Cleanup [91], which are deceptively hard but easily interpretable benchmark problems,

and the complex economic simulation called Gather-Trade-Build [42], where agent behavior

such as specialization and correlations between taxation and productivity are qualitatively in

accord with results from economic theory and reality.

The centralized incentive designer (ID) in our work is related but orthogonal to the

centralization commonly seen in the literature on cooperative MARL [14, 175]: centralized

training in MARL permits a global entity to update each agent’s individual policy parameters

using shared global information and thereby directly optimize a single team reward, while

the ID in our work can only set an incentive function to affect each agent’s total individual

reward. Given a fixed incentive function, our agents live in a fully-decentralized POMDP

[24]. The ID’s intervention on the agents’ reward function also differs from the insertion of

controlled agents (e.g., centrally-controlled autonomous vehicles) whose actions indirectly

regulate the behavior of other individuals (e.g. human drivers) [176].

In short, the algorithmic and experimental contributions of this chapter are: (1) we

propose a meta-gradient approach for the reverse Stackelberg game formulation of incentive

design in high-dimensional multi-agent reinforcement learning settings; (2) we explain and

show experimentally that using standard RL for the incentive designer faces significant

difficulties even small finite state finite action Markov games; (3) our proposed method
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can converge to known global optima in standard benchmark problems, and it generates

significantly higher social welfare than the previous state-of-the-art in a complex high-

dimensional economic simulation of market dynamics with taxation.

6.2 Method

We propose a method, called “MetaGrad”, for an Incentive Designer (ID) to optimize a

measure of social welfare by explicitly accounting for the impact of incentives on the

behavior of a population of n independent agents. Each agent i ∈ {1, . . . , n} has an

individual reward function Ri : S × An × U → R, which depends not only on the global

state s ∈ S and the joint action a ∈ An, as in standard Markov games [10] with transition

function P (s′|s, a), but also on an incentive that is parameterized by u ∈ U for some

bounded set U ⊂ Rl (e.g., a vector of marginal tax rates). We assume thatRi is differentiable

with respect to the argument u—this holds in the common case of additive incentives such

as highway tolling, as well as in complex mechanisms such as a bracketed tax schedule

(Equation 6.7). This incentive u is generated by the ID via a learned incentive function

µη : S×An → U , parameterized by η, which adaptively responds to the current system state

and joint action of the agents. Each agent i independently learns a policy πθi , parameterized

by θi, to optimize its own individual expected return, while the ID’s performance is measured

by a social welfare reward RID(s, a). Let π and θ denote the agents’ joint policy and policy

parameters, respectively. For brevity, we use Ri
η(s, a) to denote Ri(s, a, µη(s, a)), and we

identify θ with the policy πθ where no confusion arises.

The ID aims to solve the bilevel optimization problem

(ID) max
η
J ID(η; θ̂) := Eπ

θ̂
,P (s′|st,a)

[
H∑
t=0

γtRID
t − ψ(st)

]
(6.1)

(Agents) θ̂ =

{
argmax

θi
J i(θ; η) := Eπθ

[
H∑
t=0

γtRi
η(st, at)

]}n

i=1

(6.2)
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over episode horizon H , and ψ is a known cost for incentivization (e.g., sum of all incen-

tives).

We assume that the n agents apply a gradient-based reinforcement learning proce-

dure RL(·) to update their policies in response to the reward determined by η, i.e., that

(Equation 6.2) is achieved by θ̂i = RL(θi0; η), where θi0 is an initial policy. In the ideal case,

one should measure the population behavior under the final joint policy θ̂, after conver-

gence of the RL process under a fixed η, to evaluate the effectiveness of η in optimizing

social welfare and conduct a single η update. However, the high sample count required for

convergence of RL in practice is prohibitively expensive, especially if one wishes to apply

gradient descent to optimize η. To tackle this challenge, we build on the effectiveness of

meta-gradient RL in optimizing hyperparameters and parameterized objectives concurrently

with an agent’s policy optimization [103, 117, 121]. We apply iterative gradient descent to

the upper objective (Equation 6.1) on the same timescale as the agents’ policy optimization

(Equation 6.2), by explicit differentiating through the agents’ policy updates. We emphasize

that even though the ID does not wait for convergence of the final θ̂, we follow the principle

of online cross-validation [102] and extend it to the optimal control setting : the data used

for the η-update is still generated by the agents’ updated policies, not by any arbitrary policy,

in order to measure accurately the impact of η on the ID’s objective through the agents’

learning process. This differs from previous single-agent meta-gradient RL [103, 117],

where the trajectories used for the outer update were not generated by the updated agent

policy.

Specifically, we implement the following algorithm (Algorithm 3). Given the cur-

rent policy θ0 and incentive function µη, agents collect trajectories {{τ ij}ni=1}M−1
j=0 ∼ πθ0

(Algorithm 3, line 3) and conduct M policy update steps (Algorithm 3, line 5):

θ̂(η) := θM = θ0 +
M−1∑
j=0

∆θj(η) . (6.3)
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Algorithm 3 Meta-Gradient Incentive Design with pipelining
1: procedure
2: Initialize all agents’ policy parameters θi, incentive function parameters η
3: Generate trajectory τ using θ and η
4: for each iteration do
5: For all agents, update θ̂i with τ using (Equation 6.3)
6: Generate a new trajectory τ̂ using new θ̂
7: Update η̂ by gradient ascent along (Equation 6.5) using τ and τ̂
8: τ ← τ̂ , η ← η̂, θi ← θ̂i for all i ∈ [n].
9: end for

10: end procedure

Each agent’s update ∆θij(η) ∝ ∇θij
J i(θij; η, τ

i
j) depends on the fixed η. For example, if

agents learn by policy gradient methods, we have ∆θij ∝
∑T

t=0∇θij
log πθij(a

i
t|oit)Ait(τ ij ; η),

where Ait is an advantage function that depends on η via Ri
η(s, a). Now let τ̂ denote the

subsequent trajectory generated by the agents’ updated policies θ̂ (Algorithm 3, line 6),

which serves as the validation trajectory that measures the indirect impact of η on the ID’s

return through the agents’ learning. The ID computes and ascends the gradient of objective

(Equation 6.1) w.r.t. η via the chain rule (Algorithm 3, line 7)

∇ηJ
ID(η; θ̂, τ̂ ) =

n∑
i=1

(
∇ηθ̂

i(η)
)> (
∇θ̂iJ

ID(η; θ̂, τ̂ )
)
−∇ηψ(τ) (6.4)

where∇ηθ̂
i is computed using a replica of the θi update step.

Proximal meta-gradient optimization. Instead of computing both factors of

(Equation 6.4), we can view (Equation 6.1) as a standard objective in policy-based RL,

with the difference that we optimize with respect to η instead of the policy parameters θ̂.

Hence, one can apply the policy gradient algorithm [177] by replacing ∇θ̂ with ∇η, as

shown in [40, Appendix C] and used implicitly by [103, 117]. We extend this viewpoint by

showing (in Section C.1.1) that trust-region arguments [44] hold for meta-gradients, which

justifies the use of a proximal policy optimization (PPO)-type gradient [45] for the outer
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optimization:

∇ηJ
ID(η; θ̂, τ̂ ) = Eat,st∼πθ̂(η)

[
min

(
r(θ̂; η)At, clip(r(θ̂; η), 1− ε, 1 + ε)At

)]
(6.5)

r(θ̂; η) :=
∇ηπθ̂(η)(a|s)
πθ̂(η)(a|s)

, (6.6)

where At :=
∑T−1

l=t (γλ)l−1δl is a generalized advantage estimator computed using δt :=

RID(st, at) + γV (st+1)− V (st), critic V for the ID, discount γ and λ-returns.

6.2.1 Technical relation to prior multi-agent learning methods for incentivization

The “AI Economist” [42] treats agents’ learning as a black-box: it applies standard RL to

a central planner who learns an adaptive tax policy concurrently with the agents’ policy

learning within a fully-decentralized multi-agent economy. Rather than addressing the bi-

level optimization problem, this expands the multi-agent system and exacerbates the already

existing problem of non-stationarity in decentralized MARL, which required heuristics

such as curriculum learning and tax annealing that are difficult to tune. In contrast, our

method to train the incentive function fundamentally differs from standard RL: the gradient

(Equation 6.5) is taken with respect to the η variables of the incentive function, through the

policy updates θ̂ ← θ+ ∆θ of all the regular RL agents, where θ̂i preserves the dependence

of each agent’s update on η in the computational graph.

Our technical method is the centralized analogue of the fully-decentralized pairwise

incentivization in LIO [40]. That work begins with the premise that all, or some, agents in

the environment are equipped with the LIO learning mechanism, but this may not hold in

general environments where no principal opts to use a LIO agent. In contrast, our work only

assumes that agents learn from reward functions that depend on and can be differentiated

with respect to incentives, which pertains to more general potential applications.
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6.3 Experimental setup

We evaluated our approach in three environments: 1) Escape Room (ER) [40], a small but

deceptively hard pedagogical example that accentuates the core challenges of incentive

design for RL agents; 2) Cleanup [91], a high-dimensional instance of a sequential social

dilemma; and 3) the Gather-Trade-Build simulation of a market economy with taxation,

trading, and competition for limited resource. Section 6.3.1 summarizes the high-level

features of these environments; Section C.2.1 provides complete specifications. Section 6.3.2

describes the implementation of the method and baselines.

6.3.1 Environments

Escape Room [40]. The Escape Room game ER(n,m) is a discrete n-player Markov game

with individual extrinsic rewards and parameter m < n. An agent gets +10 extrinsic reward

for exiting a door, but this requires m other agents to sacrifice their own self-interest by

pulling a lever at a cost of −1 each. We fix all agents to be standard independent RL agents

without “give-reward” capabilities, and we introduce a central incentive designer who can

modify each agent’s reward by adding a scalar bounded in (0, 2), since an incentive value of

1 + ε for ε > 0 is sufficient for an agent to overcome the −1 penalty for pulling the lever.

The ID’s reward RID is the sum of all agents’ rewards, and the cost of incentivization ψ is

the sum of all scalar incentives. Hence, the global optimum reward for the incentive designer

is 10(n−m)−m−m(1 + ε).

Cleanup [91]. The Cleanup scenario is a high-dimensional gridworld sequential social

dilemma that serves as a difficult benchmark for independent learning agents. Agents get +1

individual reward by collecting “apples”, whose spawn rate decreases in proportion to the

amount of “waste”. Each agent can contribute to the public good by firing a cleaning beam

to clear waste, but doing so would enable other agents to defect and selfishly collect apples,

hence posing a difficult social dilemma. We extended the open-source implementation [178]
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to provide a global observation image for the incentive designer.

Gather-Trade-Build (GTB) [42]. The GTB simulation is a 2D grid world in which

agents with varying skill levels collect resources that replenish stochastically, spend resources

to build houses for coins (i.e., income), and trade coins for resources in an auction system, at

the expense of labor costs for each action. It is not known to be a sequential social dilemma.

GTB has a much larger state and action space than Escape Room and Cleanup due to the

auction system, which provides 44 trading actions and supplements each agent’s spatial

observation with the current and historical market information (e.g., counts of bids and asks

for various price levels for each resource). At time t, the system productivity prodt is defined

as the sum of all agents’ coins, and equality eqt is defined such that eq = 1 corresponds to

uniform coin over agents and eq = 0 means only one agent has non-zero coin. The incentive

designer is a central tax planner who optimizes a trade-off between productivity and equality,

defined as
∑H

t=1 prodt · eqt over horizon H , by imposing taxes according the following

mechanism. Each episode lasts for H = 100 time steps and consists of 10 tax periods. At

the start of each tax period, the ID sets a tax schedule T : R → R that determines the tax

T (z) applied to an agent’s income z earned within the period. T is a bracketed tax schedule

based on the US federal taxation scheme: given a set of income thresholds {mb}B=7
b=0 with

m0 = 0 < m1 < · · · < mB =∞, the ID defines T by setting a vector of marginal tax rates

[τb]
B
b=1, where τb ∈ [0, 1] applies to bracket (mb,mb+1), such that the total tax on income z

is given by

T (z) =
B−1∑
b=0

τb
(
(mb+1 −mb)1z>mb+1

+ (z −mb)1mb<z≤mb+1

)
(6.7)

where 1p = 1 if p is true and 0 otherwise. At the end of each tax period, the total collected

tax is evenly distributed back to all agents: if agent i gets total income zpi within period p,
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then the agent’s final adjusted income at the end of the tax period is given by:

z̃pi = zpi − T (zpi ) +
1

N

n∑
j=1

T (zpj ) . (6.8)

We used the 15× 15 map called “env-pure_and_mixed-15x15” [42], which features similar

spatial distribution of resource spawn points as the original 25 × 25 map. Each agent’s

observation consists of an 11 × 11 egocentric spatial window, their resource inventories,

collection and building skills, personal and other agents’ bids and asks, and quantities

derived from the current period’s tax rate. The ID observes the complete spatial world state,

agents’ inventories and incomes, cumulative bids and asks, and all derived tax quantities,

but does not know agents’ private skill and utility functions. Agents have the same discrete

action space consisting of movements, building, and trading actions. Section C.2.1 provides

more information on observation/action spaces and agent utilities.

6.3.2 Implementation and baselines

We describe the key implementation of all methods here and include all remaining details in

Section C.2.2. We use M = 1 for MetaGrad across all experiments, such that an ID update

occurs after each policy update by agents. We employ pipelining to improve the efficiency

of MetaGrad: the validation trajectory τ̂ generated by agents’ updated policies (Algorithm 3,

line 6), which is required for the ID’s update step, is used for the agents’ policy update in

the next iteration (Algorithm 3, line 5). To differentiate through the agents’ learning step,

MetaGrad has access to agents’ policy parameters and gradients. This assumption can be

removed by using behavioral cloning to obtain surrogate models of agents, which has been

demonstrated by existing methods that rely on knowledge of agent parameters [96, 40].

Our main baseline is termed dual-RL, in which the incentive designer itself is a standard

RL agent who optimizes the system-level objective at the same time-scale as the original

RL agents. Dual-RL is the centralized analogue of the decentralized agents with “give-
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reward” actions, introduced as a baseline in [40]. It is also formally equivalent to the

method called “AI economist” in [42]. In Escape Room , we compare with discrete-action

and continuous-action variants of dual-RL, labeled “dual-RL (d)” and “dual-RL (c)”. In

Cleanup, we compare with “dual-RL (c)”. In GTB, we implemented the core aspects of the

“AI Economist” based on available information in [42] (relabeled as “dual-RL” here), and

also compare with the static US federal tax rates. We tuned hyperparameters for all methods

equally using a successive elimination method, detailed in Section C.2.3.

Escape Room. We used policy gradient [177] without parameter sharing as the base

agent implementation for all methods. The incentive function µη in MetaGrad is a neural

network that maps the global state and agents’ joint action to a scaled sigmoid output layer

of size |A| = 3 (the number of possible agent actions), such that the value of each output

node i lies in (0, 2) and is interpreted as the incentive for action i taken by any agent. This

parameterization enables MetaGrad to scale to larger number of agents, e.g. ER(10, 5).

The cost for incentivization is the sum of all incentives given to agents, and is accounted

by ψt(η) in MetaGrad’s loss function.1 For dual-RL (d), we tried three different sets of

discrete incentives Sr = {0, 1.1}, Sr = {0, 1.1, 2.0}, and Sr = {0, 0.5, 1.0, 1.5, 2.0}. The

designer’s action space is Discrete(|Sr||A|). Hence, the designer’s action is an assignment of

a scalar incentive value to each possible agent action, and the policy output is a categorical

distribution. In dual-RL (c), the designer’s action space is (0, 2)n, and its policy π(aID|o)

is defined by sampling u ∼ N (µη(s, a),1) with neural network µη : S × An → Rn, then

applying the same sigmoid output layer σ as MetaGrad to get aID = σ(u). The total

incentives given to agents are subtracted from RID. To compare with the method of [98], we

implemented separate experiments with actor-critic for agents’ policy updates.

Cleanup. We used actor-critic agents with TD(0) critic updates [1] and parameter-

sharing as the base agent for all methods. MetaGrad and dual-RL (c) have the same

1At train time, one cannot for cost in RID of the current episode because MetaGrad only learns from RID

in the next episode, not the episode where incentives are given. At test time, incentives are subtracted from
RID so that comparison to baselines is fair.
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architecture as for Escape Room, except that: 1) the observation input for agents and the ID

is an RGB image; 2) the ID has a vector observation indicating whether or not each agent

performed a cleaning action; 3) each output node of the incentive function is interpreted as

the incentive for an action type in the set {fire cleaning beam, collect apples, else}.

Gather-Trade-Build. We used PPO agents [45] with parameter sharing for all methods.

The incentive function in MetaGrad has B = 7 output nodes, where the value τb at each

node b is capped by sigmoid activation to lie in (0, 1) and is interpreted as the tax rate τb for

bracket (mb,mb+1). By (Equation 6.7), (Equation 6.8), and (Equation C.17), each agent’s

policy update is a differentiable function of the incentive function parameters η. The ID

has seven action subspaces (one for each of the B = 7 tax brackets), each with 21 discrete

actions that choose the marginal tax rate in {0, 0.05, . . . , 1.0}. Dual-RL applies standard

RL to the ID, whose action space is a direct product of seven action subspaces (one for

each of the B = 7 tax brackets), each with 21 discrete choices of the marginal tax rate in

{0, 0.05, . . . , 1.0}. [42] reported the need for a two-phase curriculum with tax annealing

to stabilize training for Dual-RL, which may face difficulties with non-stationarity of the

expanded multi-agent system. Hence, in the curriculum version of GTB experiments, we

first train agents in a free-market (zero tax) scenario in Phase 1, while the RL-based tax

policy is introduced in Phase 2 with a gradual annealing schedule on the maximum tax

rate. We repeated experiments without curriculum to investigate the stability of MetaGrad.

We trained four independent models per method per case. For measurements of economic

activity and tax rates produced by trained models, we report the mean and standard error

over the four trained models of the mean over 100 test episodes per model.

6.4 Results

Escape Room. MetaGrad converged to the known global optimum value of approximately

26 in ER(5, 2) and 40 in ER(10, 5) (Figures 6.1a and 6.1b, respectively). Figure 6.1d shows

the dynamics of incentivization during training in the case of ER(2, 1), where we labeled
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(a) ER(5,2) (b) ER(10,5) (c) Dual-RL (d) (d) Incentives

Figure 6.1: Escape Room. 8 independent runs per method. (a) In ER(5, 2), MetaGrad
converges to the global optimum where two agents are incentivized by 1 + ε (for some
small ε > 0) to pull the lever with -1 penalty, three other agents exit the door with +10
reward, which results in a total ID reward near 26. (b) MetaGrad also converges to the global
optimum in ER(5, 2) with ID reward near 40. (c) Dual-RL (discrete) was unstable and had
high variance across seeds, for various choices of discrete action spaces for the incentive
values. (d) Incentives given by MetaGrad for each action by each agent in ER(2, 1).

each agent at the end of training as either a “cooperator” or a “winner” based on whether

the agent primarily pulls the lever or exits the door, respectively. We see that the cooperator

consistently receives incentives of 1 + ε during the majority of episodes, which explains

the emergence of its cooperative behavior, whereas the winner receives zero incentives

asymptotically, which shows the designer learned to avoid unnecessary costs. In contrast,

both dual-RL (d) and dual-RL (c) did not solve ER, even including various choices of

the discrete action space (Figure 6.1c). This is because a standard RL incentive designer

optimizes the expected return of one episode, but the impact of its "give-reward" action only

appears after agents have conducted learning updates over many episodes. In any given

episode, the ID’s reward contains no information about the impact of the actions it chose

during that episode. The only conceivable way that dual-RL learns is by serendipity: the

ID’s action a in a previous episode i led to a change in agents’ behavior that results in

positive reward for the ID during the current episode j, and the ID happened to take a again

in episode j, which results in correct credit assignment when learning from episode j. In

fact, among eight independent runs for dual-RL, the only run that succeeded had the same

random seed as in hyperparameter search. Section C.3, Figure C.1, shows that MetaGrad

outperforms the incentive design method of [98], which faced numerical instabilities when

extended from matrix games to Markov games.
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Figure 6.2: 7x7 map

Cleanup. As shown in Figure 6.2, MetaGrad achieved a high

level of social welfare, which is only possible because one agent

received incentives to take cleaning actions while another agent col-

lects apples. The method labeled “Cen” trains a single policy that

acts for both agents; it serves as an empirical upper bound on perfor-

mance. Under dual-RL, agents did not receive appropriate incentives and hence behaved

selfishly—occasionally using the cleaning beam but immediately competing for any apples

that spawned—and therefore converged to low social welfare.

6.4.1 Gather-Trade-Build

Figure 6.5: US federal

Social welfare. MetaGrad outperforms both dual-RL and US fed-

eral without requiring heuristics such as curriculum learning and

tax annealing (Figure 6.3a). It discovers tax rates which differ from

the static US federal tax rates in two notable aspects (compare Fig-

ure 6.4 and Figure 6.5). Firstly, MetaGrad imposes much higher

taxes than US federal on the lowest income bracket (e.g., 0-10 coin), but chooses relatively

lower taxes for the next income bracket (10-39). Hence, compared to US federal, there is

less incentive for agents to fall in the lowest bracket, which may explain the higher income

of agents under MetaGrad versus US federal (Figure 6.12). Secondly, the highest income

bracket does not necessarily face significantly higher tax rates than other brackets, and even

(a) Social welfare (b) Equality (c) Productivity

Figure 6.3: GTB without curriculum: MetaGrad finds tax policies
that induce higher social welfare than baselines, by promoting
higher productivity at similar levels of equality.

Figure 6.4: MetaGrad
tax rates for each inde-
pendent run.
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(a) Social welfare (b) Equality (c) Productivity

Figure 6.6: GTB with curriculum. Both MetaGrad and dual-RL
find transient states of high social welfare but are less stable than
US federal.

Figure 6.7: MetaGrad
tax rates with curricu-
lum.

gets the lowest rate in one instance. While this results in lower equality than US federal

(Figure 6.3b), the increase in economic activity—such as resource collection, building, and

trading (Figure 6.8)—improves system productivity (Figure 6.3c) and ultimately produces

significantly higher social welfare.

When curriculum learning is applied to all methods—i.e., for all methods, initializing

agents with the same policy that was pre-trained in a free market context—MetaGrad also

exceeds the performance of dual-RL. Except for one out of four runs where social welfare

abruptly dropped around 150k episodes, MetaGrad also outperforms US federal. Similar to

the training dynamics observed in [42], we also observe a transient period where dual-RL

passes through unstable local optima (Figure 6.6a, near 25k episodes); however, in contrast

to their results, dual-RL did not manage to surpass US federal in asymptotic performance.

This is likely because the sudden introduction of a tax planner in Phase 2, after agents

have been trained in the free market setting of Phase 1, may do more harm than good for

stability, especially when the extra hyperparameters introduced by curriculum learning and

tax annealing are hard to tune. Both MetaGrad and dual-RL enact higher taxes at lower

income brackets than US federal.

Economic activity. Because skill levels determine the amount of coins per house built,

differences in agents’ skill levels generate income inequality and behavioral specialization.

For example, agents with second-highest skill tend to collect the most resources and sell them

for income, whereas agents with the highest skill spend less effort on resource collection
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(a) Resource collected (b) Income from build-
ing

(c) Income from trad-
ing

Figure 6.8: GTB without curriculum: economic activity after 200k
training episodes.

Figure 6.9: Dual-RL
tax rates for each inde-
pendent run.

but generate income by building houses from purchased resources (Figures 6.8a and 6.8c).

Notably, under all tax policies, all except the highest skill agents receive net positive income

from trading (Figure 6.8c). Even though resource collection is comparable across methods,

tax policies found by MetaGrad encouraged highest trading activity and hence highest

overall income from building, compared to US federal and dual-RL. In the curriculum case,

dual-RL tax policies impose high taxation (above 50%) on the three lowest income brackets

Figure 6.11. This may explain the fact that the lowest-skilled agent collects zero resources

(Figure 6.10a), which lowers overall system productivity.

(a) Resource collection (b) Building income (c) Trading income

Figure 6.10: GTB with curriculum: economic activity after 200k
training episodes in Phase 2.

Figure 6.11: Dual-RL
tax with curriculum.

Taxation and income. Agents with the two highest skill levels pay significantly less tax

for tax policies found by MetaGrad than they do for the US federal tax rates, whereas agents

with the two lowest skill pay comparably equal tax (Figure 6.12). This means that MetaGrad

does better than US federal at encouraging higher skilled agents to increase economic

activity such as building and trading, without affecting resource collection by lower skill

agents (as can be seen in Figure 6.8a). While this comes at the expense of lower equality
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Figure 6.12: GTB without curriculum: income and tax before and after redistribution, after
200k training episodes.

(Figure 6.3b), the incomes of lower-skilled agents both before and after redistribution are

actually higher for MetaGrad than US federal, because lower-skilled agents benefit from

increased trading activity (Figure 6.8c). Dual-RL tax policies caused agents of all skill levels

to pay more taxes than MetaGrad, which is correlated in overall lower building and trading

activity.

Figure 6.13: Training dynamics. Status of agent and designer behavior at 1300, 8900, and
100k episodes. Top row: income and tax before and after redistribution. Bottom row: tax
rates and economic activity.

Training dynamics. In the curriculum setting, the changing tax rates under MetaGrad

produced a more dynamical social welfare curve than the fixed US federal rates during

training (Figure 6.6a). This can be useful for extracting potential causal relations between

taxation and agents’ economic behavior. For one particular run of MetaGrad, we measured

taxation, income, and economic activity over 100 test episodes at 1300, 8900, and 100k

episodes during training, corresponding to the early peak, valley, and steady rising region
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in the social welfare curve in Figure 6.6a. These measurements are shown in Figure 6.13,

which we use to make the following observations. Social welfare is highest at episode 1300,

but agents actually have lower income (before redistribution) at episode 1300 than at episode

100k. This means MetaGrad quickly learned that social welfare can be artificially inflated

any productivity level by finding a tax scheme to increase the equality index—hence the

sharp early peak in Figure 6.6b. As shown in Figure 6.13, MetaGrad’s tax rates at episode

1300 produced nearly uniform income (after redistribution) over all skill levels, by enacting

high taxes on the higher skilled agents. This tax policy clearly disincentivizes agents from

earning high income, since episode 1300 is followed by a precipitous drop in productivity

(see Figure 6.6c) that reaches a global minimum near episode 8900, where agent activity

levels (resource collection, building, trading) are lowest. Nonetheless, MetaGrad adapted

its tax policy to produce a recovery of productivity at relatively constant equality, from

episodes 25k to 100k (Figures 6.6b and 6.6c). The tax policy at episode 100k resembles the

progressive schedule of the US federal policy, albeit with significantly lower rates for the

39-84 income bracket that applies to most of the highest-skilled agents, except for the very

top earners whose income exceeds 84.

Difficulty of GTB versus Escape Room and Cleanup. Given the clear advantage of

MetaGrad over dual-RL in Escape Room and Cleanup experiments (even though MetaGrad

is not tailored to social dilemmas in particular), one may wonder why the advantage is not

as stark in GTB. This is because the incentivization problem in GTB is conceptually easier

for an incentive designer who uses conventional RL. In GTB, agents can learn from positive

rewards regardless of the tax rate, which implies that the ID always receives a learning

signal that tracks the agents’ behaviors. For dual-RL, the ID receives such feedback in the

next episode, but at least it is non-zero. However, in the other two problems, if incentives

do not pass a threshold (1 + ε to overcome the environment penalty in Escape Room; a

more complex opportunity cost for sacrificing self-interest in Cleanup), then the agents

do not receive any predefined environment rewards, which means an RL-based designer
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does not receive any feedback at all. In this case, MetaGrad’s knowledge of the way that

agents’ policy parameters change in response to the incentive function, and the use of online

cross-validation to learn from the ID’s returns in subsequent episodes, is crucial.

6.5 Summary

We proposed the use of complex simulations involving reinforcement learning agents as

an in silico experimental approach to problems of incentive design. To tackle the issue of

delayed impact of incentives, which poses difficulties for directly applying standard RL to

the incentive designer, we proposed a meta-gradient approach for the incentive designer to

account exactly for the agents’ learning response to incentives. The new method significantly

outperforms baselines on benchmark problems and also improves the trade-off between

productivity and equality in a complex simulated economy.
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CHAPTER 7

CONCLUSION

As long as artificial intelligence continues to advance in generality and performance, a

multi-agent ecosystem of AI is inevitable. Humanity, still struggling with great collective

challenges in the present day, has not had the benefit of prescient design for cooperation

in the face of shared interests, not to mention conflicting objectives. Must AI struggle

likewise when their time comes? This dissertation puts forth the thesis that cooperation in

multi-agent systems is possible via multi-agent reinforcement learning, both in the case

of pure common interest where a single principal can directly optimize individual and

team-goals via centralized training, and in the mixed-motive setting where cooperation for

high social welfare may emerge via centralized or decentralized incentivization. The thesis

is substantiated by the design and empirical evaluation in simulation of new multi-agent

reinforcement learning algorithms, as summarized below.

7.1 Summary of Contributions

Chapter 3 proposes a fully-cooperative MARL algorithm for the multi-goal setting, where

global system optimality is defined as achieving different individual goals of all agents. This

multi-goal setting accentuates two key challenges: 1) multi-agent credit assignment, the

problem of effectively attributing a reward signal received by one agent to its own actions

or the actions of other agents; and 2) cooperative multi-agent exploration, the problem

of efficiently finding relevant regions of an exponential global state space where optimal

cooperation can occur. The proposed algorithm, called CM3, addresses the first challenge

by a credit function, a multi-agent variant of the action-value function, that evaluates pairs

of actions and goals of different agents. The second challenge of exploration is addressed

by a multi-agent curriculum method that first conducts rapid single-agent RL training in
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an induced MDP, which primes the agents with greedy behaviors that easily discover the

relevant states in the full multi-agent environment. CM3 performs uniformly the best or

equal to the best state-of-the-art method over varied cooperation problems in simulation,

and extensive ablations show the benefits of each component technique.

Whereas goal assignment are predetermined and fixed within an episode in Chapter 3,

Chapter 4 focuses on discovering and learning temporally-extended skills—which can

be viewed as sub-goals—for a team of hierarchical agents to maximize a team objective.

The proposed method, called HSD, is motivated by the team-sports setting: teams employ

centralized coaching to coordinate skills, while fully-decentralized players execute skills

via low-level actions at match time. Specifically, the method uses centralized training with

decentralized execution for high-level policies that select skill variables at a slow timescale;

in turn, fully-decentralized low-level policies are conditioned on the selected skills and take

primitive actions at a fast timescale. The set of initially meaningless skill variables induce

distinguishable agent behavior—and hence acquire semantic meaning—via a feedback loop:

conditioned on skill variables, low-level policies are encouraged by a decodability reward to

generate trajectory segments that are easy for a decoder to classify the skill variable that

was used. Implemented with baseline MARL methods as subcomponents, HSD is shown to

discover interpretable skills that are useful in a challenging team sports simulation, making

HSD competitive with non-hierarchical baselines in terms of win rate and outperform

baselines on generalization.

Chapter 5 tackles the more challenging problem of cooperation among selfish inde-

pendent agents in mixed-motive settings where no central entity directly optimizes global

social welfare. In principle, without any form of centralization, cooperation is unattainable.

Nonetheless, Chapter 5 shows that it is possible for cooperation to emerge if certain condi-

tions are met: 1) some, or all, agents in the environment are equipped with the ability to

give incentives to other agents; 2) incentives have the same normative value as environment

rewards; 3) an agent who gives incentives accounts for the indirect impact of incentives
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on their own future performance, through the direct impact on recipients’ learning process.

Specifically, we design an agent called LIO that learns to incentivize other learning agents

to cooperate, by extending the principle of online cross validation and meta-gradient rein-

forcement learning to the multi-agent setting. LIO provably attains the global optimum in

classical matrix game social dilemmas, and empirically approaches the optimum in difficult

high-dimensional intertemporal social dilemma benchmarks.

Chapter 6 removes the assumption in Chapter 5 that agents themselves are equipped

with the ability to give incentives; instead, we instate a central designer who explicitly

optimizes social welfare by intervening on the reward functions of an agent population. We

show the compatibility of the technical method in Chapter 5 with more effective objective

functions in reinforcement learning. This enables us to tackle the problem of optimal tax

design for optimizing a trade-off between productivity and equality in a larger and more

complex multi-agent RL simulation of resource collection, market dynamics and taxation.

The learning-aware nature of our method leads to consistently higher social welfare than the

state-of-the-art, and its fast adaptation to agents’ response enables us to conduct behavioral

analysis to extract domain insights regarding taxation.

7.2 Opportunities for Future Work

Fully-cooperative multi-agent learning. The credit function and curriculum in CM3

are effective heuristics for multi-goal MARL. However, the credit function is limited to

evaluating pairwise interactions between an agent’s action and another agent’s long-term

value. Hence, there is room to design more general methods that capture higher-order

interaction among actions and goals of many agents, for example by using graph neural

networks [179], and to investigate the question of optimal multi-agent credit assignment.

Furthermore, the curriculum is specifically designed to target the challenge of exploration

in the multi-goal setting. The effectiveness of the curriculum depends on the ability of

a single agent to make progress toward its goal in the absence of other agents in Stage
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1. While this is true in many application contexts, predominantly in physical navigation

tasks, where one can rely on reward shaping to ensure meaningful single-agent learning,

one may construct failure cases with strict constraints where reward shaping is not allowed

and single-agent pre-training does not produce a meaningful initialization for Stage 2. This

motivates further research on an overarching framework to organize the myriad of possible

dimensions of multi-agent curricula—such as varying the number of agents, the nature of

tasks, or a more complex co-evolution of agents and tasks—that can be used to circumvent

limitations and constraints in especially difficult scenarios. One may also generalize the

problem formulation of multi-goal MARL to the case of inhomogeneous agents and settings

without known goal assignments.

Hierarchical multi-agent learning. One may generalize the approach used in HSD for

skill discovery without hand-crafted rewards to discover other abstractions in model-free

MARL, such as different roles [89] to fulfill based on each agent’s unique features in a

heterogeneous team. Roles can also bias an agent’s choice of skills. Whereas HSD assumed

that all agents synchronously choose new skill variables after every certain number of time

steps, one may build on methods for asynchronous termination of options in the single-agent

setting [82] to allow learning a larger space of policies. Optimizing the number of skills is

also a natural generalization. It would be interesting to apply curriculum-learning approaches

that initialize skill-conditioned low-level policies from pretraining in an induced single-

agent setting, such as shown in CM3 [19], or using expert data, analogous to professional

players practicing skills outside of team matches. This may speed up training since low-level

policies can already generate useful trajectories that can be segmented into distinguishable

skills.

Decentralized incentivization as an approach for emergent cooperation. Our design

of the LIO agent to encourage the emergence of cooperation among decentralized agents in

social dilemmas poses many new questions. On the theoretical side, more work is needed

to analyze the simultaneous processes of updating incentive functions, which continuously
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modifies the game and the set of equilibria, and updating policies with these changing

incentives. Previous work that analyze the convergence of gradient-based learning in

differentiable games with fixed rewards [180, 97] and the convergence of learning in

Stackelberg games [181] are relevant starting points. There are many more open topics on

the algorithmic and agent design aspects of incentivization. How can an agent account for

the cost of incentives in an adaptive way? An improvement to LIO would be a handcrafted or

learned mechanism that prevents the cost from driving the incentive function to zero before

the effect of incentives on other agents’ learning is measurable. How should agents better

account for the longer-term effect of incentives? One possibility is to differentiate through

a sequence of gradient descent updates by recipients, during which the incentive function

is fixed, but this trades off the quality of a long-term measurement with the frequency of

updates to the incentive function. Can multi-agent reinforcement learning generate emergent

social factors that modulate the effect of incentives in an agent population? LIO assumes

that recipients cannot reject an incentive, but a more intelligent agent may selectively accept

a subset of incentives based on its appraisal of the other agents’ behavior, such as whether

their behavior abides by social norms within the agent population. An agent population

also provides fertile ground for more rigorous study of the emergence of social norms [182].

How should one solve higher-order social dilemmas that come with incentivization? Since

agents incur a cost for giving incentives, agents have the temptation to free-ride on the effort

that other agents spend on sending incentives, and this poses a second-order social dilemma.

Mechanism design. Beyond incentive design, one may consider the extension of ideas

in this work to the context of mechanism design, interpreted in the general sense of modifying

the underlying dynamics of the environment [183] to shape agents’ behavior and optimize

a system-level objective. Even when the agents’ learning process is not differentiable

with respect to the change in environment dynamics, our work has shown the importance

of evaluating an intervention by its long-term effect through the agents’ learning—the

principle of online cross validation still applies. More generally, our application to the
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Gather-Trade-Build simulation benchmark shows the feasibility of a path toward a data and

simulation-driven approach for improving complex systems in society. The realization of

this research agenda must build upon advances in transfer learning and robustness, in order

to handle the gap between simulation and reality.
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APPENDIX A

COOPERATIVE MULTI-GOAL MULTI-AGENT REINFORCEMENT

LEARNING

A.1 Algorithm

Algorithm 4 Initialization of networks
1: procedure INITIALIZE(c)
2: if c = 1 then
3: Set number of agents N = 1
4: Initialize Stage 1 main networks Qg := Q = Q1, π := π1 with parameters
θQ1 , θπ1

5: Initialize target networks with θ′π1 , θ′Q1

6: else if c = 2 then
7: Instantiate N > 1 agents
8: Construct global Qg := Qπ

n (s, a) = {Q1, Q2
g}, credit function Qc :=

Qπ
n (s, am) = {Q1, Q2

c} and π := {π1, π2} using function augmentation with parameters
θQg , θQc , θπ

9: Initialize target networks with θ′Qg , θ
′
Qc
, θ′π

10: Restore values of trained parameters θQ1 , θπ1 into the respective subsets of
θQg , θQc , θπ

11: end if
12: Return all trainable parameters
13: end procedure

Algorithm 5 Collect one episode of experience
1: procedure RUNEPISODE

2: Assign goal(s) gne to agent(s) according to given distribution
3: Get initial state s1 and observation(s) o1

4: for t = 1 to T do . execute policies in environment
5: Sample action ant ∼ π(ant |ont ; θπ, ε) for each agent.
6: Execute action(s) at, receive {rnt }n, st+1, and ot+1

7: Store (st,ot,ge, at, {rnt }n, R
g
t , st+1,ot+1) into B

8: st ← st+1,ot ← ot+1

9: end for
10: end procedure
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Algorithm 6 Train step
1: procedure TRAIN

2: for epochs 1 . . . K do
3: Sample minibatch of S transitions (si,oi,gi, ai, {rni }n, si+1,oi+1) from B
4: Compute global target for all n: xni = rni + γQ(si+1, ai+1, g

n
i ; θ′Qg)|ai+1∼π′

5: Gradient descent on L(θQg) = 1
S

∑
i

1
N

∑N
n=1

(
xni −Q(si, ai, g

n
i ; θQg)

)2

6: if c = 1 then
7: Aπ(si, ai) = Q1(si, ai, gi; θQ1)−

∑
âi
π(âi|oi, gi)Q1(si, âi, gi; θQ1)

8: else if c = 2 then
9: ∀m,n ∈ [1..N ], compute target yni = rni + γQ(si+1, a

m
i+1, g

n; θ′Qc)|ami+1∼π′m

10: Minimize (Equation 3.4):
11: L(θQc) = 1

S

∑
i

1
N2

∑N
n=1

∑N
m=1 (yni −Q(si, a

m
i , g

n
i ; θQc))

2

12: Compute advantage:
13: Aπ

n,m(si, ai) := Q(si, ai, g
n
i ; θQg)−

∑
âm π(âm)Q(si, â

m, gni ; θQc)
14: end if
15: ∇θπJ(π) = 1

S

∑
i

∑N
m,n=1(∇θπ log π(ami |omi , gmi ))Aπ

n,m(si, ai)
16: Update policy: θπ ← θπ + β∇θπJ(π)
17: Update all target network parameters using: θ′ ← τθ + (1− τ)θ′

18: Reset buffer B
19: end for
20: end procedure

Algorithm 7 Cooperative multi-goal multi-stage multi-agent reinforcement learning (CM3)
1: for curriculum stage c = 1 to 2 do
2: Computational graph← INITIALIZE(c) (Algorithm 4)
3: Set all target network weights to equal main networks weights
4: Initialize exploration parameter ε = εstart and empty replay buffer B
5: for each training episode e = 1 to E do
6: RUNEPISODE() (Algorithm 5)
7: if e mod Etrain = 0 then
8: TRAIN() (Algorithm 6)
9: end if

10: If ε > εend, then ε← ε− εstep

11: end for
12: end for
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Off-policy training with a large replay buffer allows RL algorithms to benefit from less

correlated transitions [184, 54]. The algorithmic modification for off-policy training is

to maintain a circular replay buffer that does not reset (i.e. remove line 38), and conduct

training (lines 24-41) while executing policies in the environment (lines 17-22). Despite

introducing bias in MARL, we found that off-policy training benefited CM3 in SUMO and

Checkers.

A.2 Derivations

A.2.1 Credit function recursion

By stationarity and relabeling t, the credit function can be written:

Qπ
n (s, am) := Eπ

[ ∞∑
t=0

γtR(st, at, g
n)
∣∣∣ s0 = s, am0 = am

]
= Eπ

[ ∞∑
t=1

γt−1R(st, at, g
n)
∣∣∣ s1 = s, am1 = am

]

Using the law of iterated expectation, the credit function satisfies the Bellman expectation
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equation (Equation 3.2):

Qπ
n (s, am) = Eπ

[ ∞∑
t=0

γtR(st, at, g
n)
∣∣ s0 = s, am0 = am

]
= Eπ

[
R(s0, a0, g

n) +
∞∑
t=1

γtR(st, at, g
n)
∣∣ s0 = s, am0 = am

]
= Es1,am1 |s0,a0,π

[
Eπ

[
R(s0, a0, g

n) +
∞∑
t=1

γtR(st, at, g
n)
∣∣

s0 = s, am0 = am, s1 = s′, am1 = âm
] ∣∣∣ s0 = s, am0 = am

]
= Es1,am1 |s0,a0,π

[∑
a−m

π(a−m|s,g−m)R(s, (am, a−m), gn)

+ Eπ

[ ∞∑
t=1

γtR(st, at, g
n)
∣∣ s0 = s, am0 = am, s1 = s′, am1 = âm

] ∣∣∣ s0 = s, am0 = am
]

=
∑
a−m

π(a−m|s,g−m)R(s, (am, a−m), gn) + Es1,am1 |s0,a0,π
[
Eπ

[ ∞∑
t=1

γtR(st, at, g
n)
∣∣

s0 = s, am0 = am, s1 = s′, am1 = âm
] ∣∣∣ s0 = s, am0 = am

]
=
∑
a−m

π(a−m|s,g−m)R(s, (am, a−m), gn) +
∑
a−m

π(a−m|s,g−m)
∑
s′

P (s′|s, (am, a−m))·

∑
âm

π(âm|om(s′))Eπ

[ ∞∑
t=1

γtR(st, at, g
n)
∣∣∣ s1 = s′, am1 = âm

]
=
∑
a−m

π(a−m|s,g−m)

[
R(s, (am, a−m), gn) + γ

∑
s′

P (s′|s, (am, a−m))
∑
âm

π(âm|om(s′))·

Eπ
[ ∞∑
t=1

γt−1R(st, at, g
n)
∣∣ s1 = s′, am1 = âm

]]
=
∑
a−m

π(a−m|s,g−m)
[
R(s, (am, a−m), gn)+

γ
∑
s′

P (s′|s, (am, a−m))
∑
âm

πm(âm|om(s′))Qπ
n (s′, âm)

]
= Eπ

[
R(st, at,g

n) + γQπ
n (st+1, a

m
t+1)
∣∣∣st = s, amt = am

]
�
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The goal-specific joint value function is the marginal of the credit function:

V π
n (s) = Eπ

[ ∞∑
t=0

γtR(st, at, g
n)
∣∣ s0 = s

]
= Eam0 |s0,π

[
Eπ

[ ∞∑
t=0

γtR(st, at, g
n)
∣∣ s0 = s, am0 = am

] ∣∣∣ s0 = s

]
=
∑
am

π(am|om(s), gm)Qπ
n (s, am) �

The credit function can be expressed in terms of the goal-specific action-value function:

V π
n (s) =

∑
am

π(am|om, gm)Qπ
n (s, am) by (Equation 3.3)

V π
n (s) =

∑
a

π(a|s,g)Qπ
n (s, a) by (Equation A.2)

=
∑
am

∑
a−m

π(am|om, gm)π(a−m|s, g−m)Qπ
n (s, (am, a−m))

⇒ Qπ
n (s, am) =

∑
a−m

π(a−m|s, g−m)Qπ
n (s, a) �

A.2.2 Cooperative multi-goal credit function based MARL policy gradient

First we state some elementary relations between global functions V π
n (s) and Qπ

n(s, a).

These carry over directly from the case of an MDP, by treating the joint policy π as as

an effective “single-agent” policy and restricting attention to a single goal gn (standard

derivations are included at the end of this section).

Qπ
n (s, a) = R(s, a, gn) + γ

∑
s′

P (s′|s, a)V π
n (s′) (A.1)

V π
n (s) =

∑
a

π(a|s,g)Qπ
n (s, a) (A.2)
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We follow the proof of the policy gradient theorem [56]:

∇θV
π
n (s) = ∇θ

∑
a

π(a|s,g)Qπ
n (s, a)

=
∑
a

[(
∇θπ(a|s,g)

)
Qπ
n (s, a) + π(a|s,g)∇θQ

π
n (s, a)

]
=
∑
a

[(
∇θπ(a|s,g)

)
Qπ
n (s, a) + π(a|s,g)∇θ

(
R(s, a, gn)+

γ
∑
s′

P (s′|s, a)V π
n (s′)

)]
=
∑
a

[(
∇θπ(a|s,g)

)
Qπ
n (s, a) + π(a|s,g)γ

∑
s′

P (s′|s, a)∇θV
π
n (s′)

]
=
∑
ŝ

∞∑
k=0

γkP (s→ ŝ, k,π)
∑
a

(∇θπ(a|ŝ,g))Qπ
n (ŝ, a) (by recursively unrolling)

∇θJn(π) := ∇θV
π
n (s0) =

∑
s

∞∑
k=0

γkP (s0 → s, k,π)
∑
a

(∇θπ(a|s,g))Qπ
n (s, a)

=
∑
s

ρπ(s)
∑
a

π(a|s,g)
(
∇θ logπ(a|s,g)

)
Qπ
n (s, a)

= Eπ [(∇θ logπ(a|s,g))Qπ
n (s, a)] (A.3)

We can replace Qπ
n (s, a) by the advantage function Aπ

n (s, a) := Qπ
n (s, a)− V π

n (s), which

does not change the expectation in Equation (A.3) because:

Eπ [∇θ logπ(a|s,g)V π
n (s)] =

∑
s

ρπ(s)
∑
a

π(a|s,g)∇θ logπ(a|s,g)V π
n (s)

=
∑
s

ρπ(s)V π
n (s)∇θ

∑
a

π(a|s,g) = 0

So the gradient (Equation A.3) can be written

∇θJn(π) = Eπ

[(
∇θ

N∑
m=1

log π(am|om, gm)
)(
Qπ
n (s, a)− V π

n (s)
)]

(A.4)
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Recall that from (Equation 3.3), for any choice of agent label k ∈ [1..N ]:

V π
n (s) =

∑
ak

π(ak|ok, gk)Qπ
n (s, ak) (A.5)

Then substituting (Equation 3.3) into (Equation A.4):

∇θJn(π) = Eπ

[(
∇θ

N∑
m=1

log π(am|om, gm)
)
Aπ
n,k(s, a)

]
(A.6)

Aπ
n,k(s, a) := Qπ

n (s, a)−
∑
âk

π(âk|ok, gk)Qπ
n (s, âk) (A.7)

Now notice that the choice of k in (Equation A.7) is completely arbitrary, since

(Equation 3.3) holds for any k ∈ [1..N ]. Therefore, it is valid to distribute Aπ
n,k(s, a)

into the summation in (Equation A.6) using the summation index m instead of k. Further

summing (Equation A.6) over all n, we arrive at the result of Proposition 2:

∇θJ(π) = Eπ

[ N∑
m=1

N∑
n=1

(
∇θ log π(am|om, gm)

)
Aπ
n,m(s, a)

]
Aπ
n,m(s, a) := Qπ

n (s, a)−
∑
âm

π(âm|om, gm)Qπ
n (s, âm) �

The relation between V π
n (s) and Qπ

n(s, a) in (Equation A.1) and (Equation A.2) are
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derived as follows:

Qπ
n (s, a) := Eπ

[∑
t

γtR(st, at, g
n)
∣∣ s0 = s, a0 = a

]
= Eπ

[
R(s0, a0, g

n) +
∞∑
t=1

γtR(st, at, g
n)
∣∣ s0 = s, a0 = a

]
= R(s, a, gn) + Es1|s0,a0,π

[
Eπ
[ ∞∑
t=1

R(st, at, g
n)
∣∣ s0 = s, a0 = a, s1 = s′

] ∣∣∣
s0 = s, a0 = a

]
= R(s, a, gn) + γ

∑
s′

P (s′|s, a)Eπ

[ ∞∑
t=1

γt−1R(st, at, g
n)
∣∣ s1 = s′

]
= R(s, a, gn) + γ

∑
s′

P (s′|s, a)V π
n (s′)

V π
n (s) := Eπ

[ ∞∑
t=0

γtR(st, at, g
n)
∣∣ s0 = s

]
= Ea0|s0,π

[
Eπ

[ ∞∑
t=0

γtR(st, at, g
n)
∣∣ s0 = s, a0 = a

] ∣∣∣ s0 = s

]
=
∑
a

π(a|s,g)Eπ

[ ∞∑
t=0

γtR(st, at, g
n)
∣∣ s0 = s, a0 = a

]
=
∑
a

π(a|s,g)Qπ
n (s, a) �
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A.3 Variance

A.3.1 Variance of COMA gradient.

Let Q := Qπ(s, a,g) denote the centralized Q function, let π(an) := π(an|on, gn) denote

a single agent’s policy, and let π(a−n) := π(a−n|o−n, g−n) denote the other agents’ joint

policy.

In cooperative multi-goal MARL, the direct application of COMA has the following

gradient.

∇θJ = E
[∑

n

∇θ log π(an|on, gn)
(
Q− bn(s, a−n,g)

)]
bn(s, a−n,g) :=

∑
ân

π(ân|on, gn)Qπ(s, ân, a−n,g)

Define the following:

zn := ∇θ log π(an|on, gn)

fn := ∇θ log π(an|on, gn)
(
Q− bn(s, a−n)

)
= zn

(
Q− bn(s, a−n,g)

)
Define Mnm := Eπ[fn]TEπ[fm] and let M :=

∑
n,mMnm. Then we have Mnm =

Eπ[znQ]TEπ[zmQ] since

Eπ[znbn] = Eπ

[∑
s

ρπ(s)
∑
a

π(a|s,g)∇θ log π(an|on, gn)bn(s, a−n,g)
]

=
∑
s

ρπ(s)
∑
a−n

π−n(a−n|o−n, g−n) ·
[

∑
an

π(an|on, gn)∇θ log π(an|on, gn)bn(s, a−n,g)
]

=
∑
s

ρπ(s)
∑
a−n

π−n(a−n|o−n, g−n)
∑
an

∇θπ(an|on, gn)bn(s, a−n,g)

=
∑
s

ρπ(s)
∑
a−n

π−n(a−n|o−n, g−n)bn(s, a−n,g)∇θ

∑
an

π(an|on, gn) = 0
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Since the COMA gradient is Eπ[
∑N

n=1 fn]. its variance can be derived to be [128]:

Var(
N∑
n=1

fn) =
∑
n

Eπ

[
zTn znQ

2 − 2bnz
T
n znQ+ b2

nz
T
n zn

]
+
∑
n

∑
m6=n

Eπ

[
zTn zm(Q− bn)(Q− bm)

]
−M

A.3.2 Variance of the CM3 gradient

For convenience, let Qn := Qπ
n (s, a) = Qπ(s, a, gn) denote the global Q function for goal

gn, and let π(am) := π(am|om, gm). The CM3 gradient can be rewritten as

∇θJ(π) = Eπ

[ N∑
n=1

N∑
m=1

∇θ log π(am)
(
Qn − bnm(s)

)]
bnm(s) :=

∑
âm

π(âm)Qπ
n (s, âm)

As before, zm := ∇θ log π(am). Define hnm := zm(Qn − bnm(s)) and let hn :=
∑

m hnm.

Then the variance is

Var(
∑
n

hn) =
∑
n

Var(hn) +
∑
n

∑
m 6=n

Cov(hn, hm)

=
∑
n

(∑
m

Var(hnm) +
∑
m

∑
k 6=m

Cov(hnm, hnk)
)

+
∑
n

∑
m 6=n

Cov(hn, hm)

A.4 Example of greedy initialization for MARL exploration

A greedy initialization can provide significant improvement in multi-agent exploration

versus naïve random exploration, as shown by a simple thought experiment. Consider

a two-player MG defined by a 4 × 3 gridworld with unit actions (up, down, left, right).

Agent A starts at (1,2) with goal (4,2), while agent B starts at (4,2) with goal (1,2). The

greedy policy for each agent in MG is to move horizontally toward its target, since this

is optimal in the induced M (when the other agent is absent). Case 1: Suppose that for
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ε ∈ (0, 1), A and B follow greedy policies with probability 1− ε, and take random actions

(p(a) = 1/4) with probability ε. Then the probability of a symmetric optimal trajectory is

P (cooperate) = 2ε2((1− ε) + ε/4)8. For ε = 0.5, P (cooperate) ≈ 0.01. Case 2: If agents

execute uniform random exploration, then P (cooperate) = 3.05e-5� 0.01.

A.5 Generalization

Table A.1: Test performance with heavy traffic on difficult initial and goal lanes configura-
tions

Config Initial lanes Goal lanes CM3 IAC COMA

C1 [1, 2] [3, 0] 16.17 11.40 10.00
C2 Unif. random Unif. random 14.93 12.20 12.93
C3 [1, 2] [2, 1] 15.85 14.32 15.00
C4 [0, 1] [3, 2] 16.35 9.73 8.1

We investigated whether policies trained with few agent vehicles (N = 2) on an empty

road can generalize to situations with heavy SUMO-controlled traffic. We also tested on

initial and goal lane configurations (C3 and C4) which occur with low probability when

training with configurations C1 and C2. Table A.1 shows the sum of agents’ reward,

averaged over 100 test episodes, on these configurations that require cooperation with

each other and with minimally-interactive SUMO-controlled vehicles for success. CM3’s

higher performance than IAC and COMA in training is reflected by better generalization

performance on these test configurations. There is almost negligible decrase in performance

from train Figure 3.5d to test, giving evidence to our hypothesis that centralized training

with few agents is feasible even for deployment in situations with many agents, for certain

applications where local interactions are dominant.

A.6 Absolute runtime

CM3’s higher sample efficiency does not come at greater computational cost, as all methods’

runtimes are within an order of magnitude of one another. Test times have no significant
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difference as all neural networks were similar.

Table A.2: Absolute training runtime of all algorithms in seconds

Environment CM3 IAC COMA QMIX

Antipodal 1.1e4±348 0.9e4±20 1.9e4±238 1.0e4±19
Cross 1.9e4±256 1.5e4±26 1.3e4±12 1.1e4±34
Merge 8.5e3±21 6.8e3±105 9.6e3±294 1.2e4±61
SUMO 9.6e3±278 7.0e3±1.5e3 8.7e3±1.3e3 6.3e3±21

Checkers 9.2e3±880 8.5e3±568 7.7e3±2.2e3 11e3±1.4e3

A.7 Environment details

The full Markov game for each experimental domain, along with the single-agent MDP

induced from the Markov game, are defined in this section. In all domains, each agent’s

observation in the Markov game consists of two components, oself and oothers. CM3 leverages

this decomposition for faster training, while IAC, COMA and QMIX do not.

A.7.1 Cooperative navigation

This domain is adapted from the multi-agent particle environment in [16]. Movable agents

and static landmarks are represented as circular objects located in a 2D unbounded world

with real-valued position and velocity. Agents experience contact forces during collisions.

A simple model of inertia and friction is involved.

State. The global state vector is the concatenation of all agents’ absolute position

(x, y) ∈ R2 and velocity (vx, vy) ∈ R2.

Observation. Each agent’s observation of itself, oself, is its own absolute position and

velocity. Each agent’s observation of others, oothers, is the concatenation of the relative

positions and velocities of all other agents with respect to itself.

Actions. Agents take actions from the discrete set do nothing, up, down, left, right,

where the movement actions produce an instantaneous velocity (with inertia effects).
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Goals and initial state assignment. With probability 0.2, landmarks are given uniform

random locations in the set (−1, 1)2, and agents are assigned initial positions uniformly at

random within the set (−1, 1)2. With probability 0.8, they are predefined as follows (see

Figure 3.2). In “Antipodal”, landmarks for agents 1 to 4 have (x, y) coordinates [(0.9,0.9),

(-0.9,-0.9), (0.9,-0.9), (-0.9,0.9)], while agents 1 to 4 are placed at [(-0.9,-0.9), (0.9,0.9),

(-0.9,0.9), (0.9,-0.9)]. In “Intersection”, landmark coordinates are [(0.9,-0.15), (-0.9,0.15),

(0.15,0.9), (-0.15,-0.9)], while agents are placed at [(-0.9,-0.15), (0.9,0.15), (0.15,-0.9),

(-0.15,0.9)]. In “Merge”, landmark coordinates are [(0.9,-0.2), (0.9,0.2)], while agents are

[(-0.9,0.2), (-0.9,-0.2)]. Each agent’s goal is the assigned landmark position vector.

Reward. At each time step, each agent’s individual reward is the negative distance

between its position and the position of its assigned landmark. If a collision occurs between

any pair of agents, both agents receive an additional -1 penalty. A collision occurs when

two agents’ distance is less than the sum of their radius.

Termination. Episode terminates when all agents are less than 0.05 distance from

assigned landmarks.

Induced MDP. This is the N = 1 case of the Markov game, used by Stage 1 of CM3.

The single agent only receives oself. In each episode, its initial position and the assigned

landmark’s initial position are both uniform randomly chosen from (−1, 1)2.

A.7.2 SUMO

We constructed a straight road of total length 200m and width 12.8m, consisting of

four lanes. All lanes have width 3.2m, and vehicles can be aligned along any of

four sub-lanes within a lane, with lateral spacing 0.8m. Vehicles are emitted at aver-

age speed 30m/s with small deviation. Simulation time resolution was 0.2s per step.

SUMO file merge_stage3_dense.rou.xml contains all vehicle parameters, and

merge.net.xml defines the complete road architecture.

State. The global state vector s is the concatenation of all agents’ absolute position
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(x, y), normalized respectively by the total length and width of the road, and horizontal

speed v normalized by 29m/s.

Observation. Each agent observation of itself onself is a vector consisting of: agent speed

normalized by 29m/s, normalized number of sub-lanes between agent’s current sub-lane and

center sub-lane of goal lane, and normalized longitudinal distance to goal position. Each

agent’s observation of others onothers is a discretized observation tensor of shape [13,9,2]

centered on the agent, with two channels: binary indicator of vehicle occupancy, and

normalized relative speed between agent and other vehicles. Each channel is a matrix with

shape [13,9], corresponding to visibility of 15m forward and backward (with resolution

2.5m) and four sub-lanes to the left and right.

Actions. All agents have the same discrete action space, consisting of five options:

no-op (maintain current speed and lane), accelerate (2.5m/s2), decelerate (−2.5m/s2), shift

one sub-lane to the left, shift one sub-lane to the right. Each agent’s action an is represented

as a one-hot vector of length 5.

Goals and initial state assignment. Each goal vector gn is a one-hot vector of length

4, indicating the goal lane at which agent n should arrive once it crosses position x=190m.

With probability 0.2, agents are assigned goals uniformly at random, and agents are assigned

initial lanes uniformly at random at position x=0. With probability 0.8, agent 1’s goal is lane

2 and agent 2’s goal is lane 1, while agent 1 is initialized at lane 1 and agent 2 is initialized

at lane 2 (see Figure 3.3). Departure times were drawn from a normal distribution with mean

0s and standard deviation 0.5s for each agent.

Reward. The reward R(st, at, g
n) for agent n with goal gn is given according to the

conditions: -1 for a collision; -10 for time-out (exceed 33 simulation steps during an

episode); 10(1 − ∆) for reaching the end of the road and having a normalized sub-lane

difference of ∆ from the center of the goal lane; and -0.1 if current speed exceeds 35.7m/s.

Termination. Episode terminates when 33 simulation steps have elapsed or all agents

have x >190m.
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Induced MDP. This is the N = 1 case of the Markov game defined above, used by

Stage 1 of CM3. The single agent receives only oself. For each episode, agent initial and

goal lanes are assigned uniformly at random from the available lanes.

A.7.3 Checkers

This domain is adapted from the Checkers environment in [31]. It is a gridworld with 5 rows

and 13 columns (Figure 3.4). Agents cannot move to the two highest and lowest rows and

the two highest and lowest columns, which are placed for agents’ finite observation grid

to be well-defined. Agents cannot be in the same grid location. Red and yellow collectible

reward are placed in a checkered pattern in the middle 3x8 region, and they disappear when

any agent moves to their location.

State. The global state s consists of two components. The first is sT , a tensor of shape

[3,9,2], where the two “channels” in the last dimension represents the presence/absence of

red and yellow rewards as 1-hot matrices. The second is sV , the concatenation of all agents’

(x, y) location (integer-valued) and the number of red and yellow each agent has collected

so far.

Observation. Each agent’s obsevation of others, onothers, is the concatenation of all other

agents’ normalized coordinates (normalized by total size of grid). An agent’s observation

of itself, onself, consists of two components. First, onself,V is a vector concatenation of agent

n’s normalized coordinate and the number of red and yellow it has collected so far. Second,

onself,T is a tensor of shape [5,5,3], centered on its current location in the grid. The tensor has

three “channels”, where the first two represent presence/absence of red and yellow rewards

as 1-hot matrices, and the last channel indicates the invalid locations as a 1-hot matrix. The

agent’s own grid location is a valid location, while other agents’ locations are invalid.

Actions. Agents choose from a discrete set of actions do-nothing, up, down, left, right.

Movement actions transport the agent one grid cell in the chosen direction.

Goals. Agent A’s goal is to collect all red rewards without touching yellow. Agent B’s
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goal is to collect all yellow without touching red. The goal is represented as a 1-hot vector

of length 2.

Reward. Agent A gets +1 for red, -0.5 for yellow. Agent B gets -0.5 for red, +1 for

yellow.

Initial state distribution. Agent A is initialized at (2,8), Agent B is initialized at (4,8).

(0,0) is the top-left cell (Figure 3.4).

Termination. Each episode finishes when either 75 time steps have elapsed, or when all

rewards have been collected.

Induced MDP. For Stage 1 of CM3, the single agent is randomly assigned the role of

either Agent A or Agent B in each episode. Everything else is defined as above.

A.8 Architecture

For all experiment domains, ReLU nonlinearity was used for all neural network layers unless

otherwise specified. All layers are fully-connected feedforward layers, unless otherwise

specified. All experiment domains have a discrete action space (with |A| = 5 actions),

and action probabilities were computed by lower-bounding softmax outputs of all policy

networks by P (an = i) = (1 − ε)softmax(i) + ε/|A|, where ε is a decaying exploration

parameter. To keep neural network architectures as similar as possible among all algorithms,

our neural networks for COMA differ from those of [17] in that we do not use recurrent

networks, and we do not feed previous actions into the Q function. For the Q network in all

implementations of COMA, the value of each output node i is interpreted as the action-value

Q(s, a−n, an = i,g) for agent n taking action i and all other agents taking action a−n. Also

for COMA, agent n’s label vector (one-hot indicator vector) and observation oself were used

as input to COMA’s global Q function, to differentiate between evaluations of the Q-function

for different agents. These were choices in [17] that we retain.
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A.8.1 Cooperative navigation

CM3. The policy network π1 in Stage 1 feeds the concatenation of oself and goal g to one

layer with 64 units, which is connected to the special layer h1
∗ with 64 units, then connected

to the softmax output layer with 5 units, each corresponding to one discrete action. In Stage

2, oothers is connected to a new layer with 128 units, then connected to h1
∗.

The Q1 function in Stage 1 feeds the concatenation of state s, goal g, and 1-hot action a

to one layer with 64 units, which is connected to the special layer h1
∗ with 64 units, then to

a single linear output unit. In Stage 2, Q1 is augmented into both Qπ
n (s, a) and Qπ

n (s, am)

as separate networks. For Qπ
n (s, a), s−n (part of state s excluding agent n) and a−n are

concatenated and connected to a layer with 128 units, then connected to h1
∗. For Qπ

n (s, am),

sm (agent m portion of state s) and s−n are concatenated and connected to a layer with 128

units, then connected to h1
∗.

IAC. IAC uses the same policy network as Stage 2 of CM3. The value function of IAC

concatenates onself and goal gn, connects to a layer with 64 units, which connects to a second

layer h2 with 64 units, then to a single linear output unit. onothers is connected to a layer with

128 units, then connected to h2.

COMA. COMA uses the same policy network as Stage 2 of CM3. The global Q function

of COMA computes Q(s, (an, a−n)) for each agent n as follows. Input is the concatenation

of state s, all other agents’ 1-hot actions a−n, agent n’s goal gn, all other agent goals g−n,

agent label n, and agent n’s observation onself. This is passed through two layers of 128 units

each, then connected to a linear output layer with 5 units.

QMIX. Individual value functions take input (onself, o
n
others, g

n) and connects to one hidden

layer with 64 units, which connects to the output layer. The mixing network follows the

exact architecture of [18] with embedding dimension 64.
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A.8.2 SUMO

CM3. The policy network π1 during Stage 1 feeds each of the inputs oself and goal gn to

a layer with 32 units. The concatenation is then connected to the layer h1
∗ with 64 units,

and connected to a softmax output layer with 5 units, each corresponding to one discrete

action. In Stage 2, the input observation grid onothers is processed by a convolutional layer

with 4 filters of size 5x3 and stride 1x1, flattened and connected to a layer with 64 units,

then connected to the layer h1
∗ of π1.

The Q1 function in Stage 1 feeds the concatenation of state s, goal g, and 1-hot action a

to one layer with 256 units, which is connected to the special layer h1
∗ with 256 units, then to

a single linear output unit. In Stage 2, Q1 is augmented into both Qπ
n (s, a) and Qπ

n (s, am) as

separate networks. For Qπ
n (s, a), s−n (part of state s excluding agent n), a−n, and g−n are

concatenated and connected to a layer with 128 units, then connected to h1
∗. For Qπ

n (s, am),

sm (agent m portion of state s), s−n, and g−n are concatenated and connected to a layer

with 128 units, then connected to h1
∗.

IAC. IAC uses the same policy network as Stage 2 of CM3. The value function of IAC

concatenates onself and gn, feeds it into a layer with 64 units, which connects to a layer h2

with 64 units, which connects to one linear output unit. onothers is processed by a convolutional

layer with 4 filters of size 5x3 and stride 1x1, flattened and connected to a layer with 128

units, then connected to h2.

COMA. COMA uses the same policy network as Stage 2 of CM3. The Q function of

COMA is exactly the same as the one in COMA for cooperative navigation defined above.

QMIX. Individual value functions take input (onself, g
n) and connects to one hidden layer

with 64 units, which connects to layer h2 with 64 units. onothers is passed through the same

convolutional layer as above and connected to h2. h2 is fully-connected to an output layer.

The mixing network follows the exact architecture of [18] with embedding dimension 64.
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A.8.3 Checkers

CM3. The policy network π1 during Stage 1 feeds onself,T to a convolution layer with 6

filters of size 3x3 and stride 1x1, which is flattened and connected to a layer with 32 units,

which is concatenated with onself,V , previous action, and its goal vector. The concatenation is

connected to a layer with 256 units, then to the special layer h1
∗ with 256 units, finally to a

softmax output layer with 5 units. In Stage 2, onothers is connected to a layer with 256 units,

then to the layer h1
∗ of π1.

The Q1 function in Stage 1 is defined as: state tensor sT is fed to a convolutional layer

with 4 filters of size 3x5 and stride 1x1 and flattened. onself,T is given to a convolution layer

with 6 filters of size 3x3 and stride 1x1 and flattened. Both are concatenated with sn (agent

n part of the sV vector), goal gn, action an and onself,V . The concatenation is fed to a layer

with 256 units, then to the special layer h1
∗ with 256 units, then to a single linear output

unit. In Stage 2, Q1 is augmented into both Qπ
n (s, a) and Qπ

n (s, am) as separate networks.

For Qπ
n (s, a), s−n (part of state vector sV excluding agent n) and a−n are concatenated

and connected to a layer with 32 units, then connected to h1
∗. For Qπ

n (s, am), sm (agent m

portion of state sV ) and s−n are concatenated and connected to a layer with 32 units, then

connected to h1
∗.

IAC. IAC uses the same policy network as Stage 2 of CM3. The value function of

IAC feeds onself,T to a convolutional layer with 6 filters of size 3x3 and stride 1x1, which

is flattened and concatenated with onself,V and goal gn. The concatenation is connected to a

layer with 256 units, then to a layer h2 with 256 units, then to a single linear output unit.

onothers is connected to a layer with 32 units, then to the layer h2.

COMA. COMA uses the same policy network as Stage 2 of CM3. The global

Q(s, (an, a−n)) function of COMA is defined as follows for each agent n. Tensor part

of global state sT is given to a convolutional layer with 4 filters of size 3x5 and stride 1x1.

Tensor part of agent n’s observation onself,T is given to a convolutional layer with 6 filters of

size 3x3 and stride 1x1. Outputs of both convolutional layers are flattened, then concatenated
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with sV , all other agents’ actions a−n, agent n’s goal gn, other agents’ goals g−n, agent n’s

label vector, and agent n’s vector observation onself,V . The concatenation is passed through

two layers with 256 units each, then to a linear output layer with 5 units.

QMIX. Individual value functions are defined as: onself,T is passed through the same

convolutional layer as above, connected to hidden layer with 32 units, then concatenated

with onself,V , ant−1, and gn. This is connected to layer h2 with 64 units. onothers is connected

to a layer with 64 units then connectd to h2. h2 is fully-connected to an output layer. The

mixing network feeds sT into the same convolutional network as above and follows the

exact architecture of [18] with embedding dimension 128.

A.9 Parameters

We used the Adam optimizer in Tensorflow with hyperparameters in Tables A.3 to A.5. εdiv

is used to compute the exploration decrement εstep := (εstart − εend)/εdiv.

Table A.3: Parameters used for CM3, ablations, and baselines in cooperative navigation

CM3

Parameter Stage 1 Stage 2 QV Direct IAC COMA QMIX

Episodes 1e3 8e4 8e4 8e4 8e4 8e4 8e4
εstart 1.0 0.5 0.5 1.0 1.0 1.0 1.0
εend 0.01 0.05 0.05 0.05 0.05 0.05 0.05
εdiv 1e3 2e4 2e4 8e4 8e4 2e4 8e4
Replay buffer 1e4 1e4 1e4 1e4 1e4 1e4 1e4
Minibatch size 256 128 128 128 128 128 128
Episodes per train 10 10 10 10 10 10 N/A
Learning rate π 1e-4 1e-4 1e-4 1e-4 1e-4 1e-5 N/A
Learning rate Q 1e-3 1e-3 1e-3 1e-3 N/A 1e-4 1e-3
Learning rate V N/A N/A 1e-3 N/A 1e-3 N/A N/A
Epochs 24 24 24 24 24 24 NA
Steps per train N/A N/A N/A N/A N/A N/A 10
Max env steps 25 50 50 50 50 50 50

112



Table A.4: Parameters used for CM3 and baselines in SUMO

CM3

Parameter Stage 1 Stage 2 QV Direct IAC COMA QMIX

Episodes 2.5e3 5e4 5e4 5e4 5e4 5e4 5e4
εstart 0.5 0.5 0.5 0.5 0.5 0.5 0.5
εend 0.05 0.05 0.05 0.05 0.05 0.05 0.05
εstep 2e3 1e3 4e4 4e4 1e3 1e4 4e4
Replay buffer 1e4 2e4 2e4 2e4 2e4 2e4 2e4
Minibatch size 128 128 128 128 128 128 128
Steps per train 10 10 10 10 N/A N/A 10
Episodes per train N/A N/A N/A N/A 10 10 N/A
Learning rate π 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 N/A
Learning rate Q 1e-3 1e-3 1e-3 1e-3 N/A 1e-3 1e-3
Learning rate V N/A N/A 1e-3 N/A 1e-3 N/A N/A
Epochs N/A N/A N/A N/A 33 33 N/A
Max env steps 33 33 33 33 33 33 33

A.10 Stage 1

The Stage 1 functions Q1 and π1 for a single agent are trained with the N = 1 equivalents

of (Equation 3.4) and (Equation 3.5):

L(θQ) = Eπ

[(
yi −Q1

θQ
(si, ai)

)2
]

(A.8)

yi := R(si, ai, g
n) + γQ1

θQ
(si+1, ai+1) (A.9)

∇θJ(π1) = Eπ1

[
∇θ log π(a)

(
Qπ1

(s, a)−
∑
â

π1(â)Qπ1

(s, â)
)]

(A.10)

Stage 1 training curves for all three experimental domains are shown in Figure A.1.
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Table A.5: Parameters used for CM3 and baselines in Checkers

CM3

Parameter Stage 1 Stage 2 QV Direct IAC COMA QMIX

Episodes 5e3 5e4 5e4 5e4 5e4 5e4 5e4
εstart 1.0 0.5 0.5 1.0 1.0 1.0 1.0
εend 0.1 0.1 0.1 0.1 0.1 0.1 0.1
εstep 5e2 1e3 1e3 1e4 2e4 1e4 1e4
Replay buffer 1e4 1e4 1e4 1e4 1e4 1e4 1e4
Minibatch size 128 128 128 128 128 128 128
Steps per train N/A 10 10 10 N/A N/A 10
Episodes per train 10 N/A N/A N/A 10 10 N/A
Learning rate π 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 N/A
Learning rate Q 1e-3 1e-3 1e-3 1e-3 N/A 1e-3 1e-5
Learning rate V N/A N/A 1e-3 N/A 1e-3 N/A N/A
Epochs 10 N/A N/A N/A 33 33 N/A
Max env steps 75 75 75 75 75 75 75
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Figure A.1: Stage 1 reward curves for CM3 in cooperative navigation, SUMO and Checkers.
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APPENDIX B

LEARNING TO INCENTIVIZE OTHER LEARNING AGENTS

B.1 Further discussion

B.1.1 Cost for incentivization

We justify the way in which LIO accounts for the cost of incentivization as follows. Recall

that this cost is incurred in the objective for LIO’s incentive function (see (Equation 5.5)

and (Equation 5.6)), instead of being accounted in the total reward (Equation 5.1) that is

maximized by LIO’s policy. Fundamentally, the reason is that the cost should be incurred

only by the part of the agent that is directly responsible for incentivization. In LIO, the

policy and incentive function are separate modules: while the former takes regular actions

to maximize external rewards, only the latter produces incentives that directly and actively

shape the behavior of other agents. The policy is decoupled from incentivization, and it

would be incorrect to penalize it for the behavior of the incentive function. Instead, we need

to attribute the cost directly to the incentive function parameters via (Equation 5.6). From a

more intuitive perspective, LIO is constructed with the knowledge that it can perform two

fundamentally different behaviors—1) take regular actions that affect the Markov game

transition, and 2) give incentives to shape other agents’ learning—and it knows not to

penalize the former behavior with the latter behavior. In contrast, if one were to augment

conventional RL with reward-giving actions (as we do for baselines in Section 4.3.2), then

the cost for incentivization should indeed be accounted by the policy. One may consider

other mechanisms for cost, such as budget constraints [95].

In our experiments, we find the coefficient α in the cost for incentivization is a sensitive

parameter. At the beginning of training, (Equation 5.6) immediately drives the magnitude of

incentives to zero. However, both the reward-giver and recipients require sufficient time to
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learn the effect of incentives, which means that too large an α would lead to the degenerate

result of rηi = 0. On the other extreme, α = 0 means there is no penalty and may result

in profligate incentivization that serves no useful purpose. While we found that values of

10−3 and 10−4 worked well in our experiments, one may consider adaptive and dynamic

computation of α for more efficient training.

B.2 Analysis in Iterated Prisoner’s Dilemma

Proposition 3. Two LIO agents converge to mutual cooperation in the Iterated Prisoner’s

Dilemma.

Proof. We prove this by deriving closed-form expressions for the updates to parameters of

policies and incentive functions. These updates are also used to compute the vector fields

shown in Figure 5.2. Let θi for i ∈ {1, 2} denote each agent’s probability of taking the

cooperative action. Let η1 := [η1
C , η

1
D] ∈ R2 denote Agent 1’s incentive function, where the

values are given to Agent 2 when it takes action a2 = C or a2 = D. Similarly, let η2 denote

Agent 2’s incentive function. The value function for each agent is defined by

V i(θ1, θ2) =
∞∑
t=0

γtpT ri =
1

1− γ
pT ri ,

where p =
[
θ1θ2, θ1(1− θ2), (1− θ1)θ2, (1− θ1)(1− θ2)

]
.

(B.1)

The total reward received by each agent is

r1 =
[
−1 + η2

C ,−3 + η2
C , 0 + η2

D,−2 + η2
D

]
, (B.2)

r2 =
[
−1 + η1

C , 0 + η1
D,−3 + η1

C ,−2 + η1
D

]
. (B.3)
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Agent 2 updates its policy via the update

θ̂2 = θ2 + α∇θ2V
2(θ1, θ2)

= θ2 +
α

1− γ
∇θ2

(
θ1θ2(−1 + η1

C) + θ1(1− θ2)η1
D

+ (1− θ1)θ2(−3 + η1
C) + (1− θ1)(1− θ2)(−2 + η1

D)
)

= θ2 +
α

1− γ
(
η1
C − η1

D − 1
)
,

(B.4)

and likewise for Agent 1:

θ̂1 = θ1 +
α

1− γ
(
η2
C − η2

D − 1
)
. (B.5)

Let p̂ denote the joint action probability under updated policies θ̂1 and θ̂2, and let ∆2 :=

(η1
C − η1

D − 1)α/(1 − γ) denote Agent 2’s policy update. Agent 1 updates its incentive

function parameters via

η1 ← η1 + β∇η1
1

1− γ
p̂T r1

= η1 +
β

1− γ
∇η1

[
θ̂1(θ2 + ∆2)(−1 + η2

C) + θ̂1(1− θ2 −∆2)(−3 + η2
C)

+(1− θ̂1)(θ2 + ∆2)η2
D + (1− θ̂1)(1− θ2 −∆2)(−2 + η2

D)
]

= η1 +
βα

(1− γ)2
B2

 1

−1

 ,

(B.6)

where the scalar B2 is

B2 = θ̂1(−1 + η2
C)− θ̂1(−3 + η2

C) + (1− θ̂1)η2
D − (1− θ̂1)(−2 + η2

D) = 2 . (B.7)
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Figure B.1: Vector fields showing the probability of recipient cooperation versus incentive
value given for cooperation (top row) and defection (lower row). Each plot has a fixed value
for the incentive given for the other action.

By symmetry, with B1 = 2, Agent 2 updates its incentive function via

η2 ← η2 +
βα

(1− γ)2
B1

 1

−1

 . (B.8)

Note that each ηi is updated so that ηiC increases while ηiD decreases. Referring to

(Equation B.4) and (Equation B.5), one sees that the updates to incentive parameters lead to

updates to policy parameters that increase the probability of mutual cooperation. This is

consistent with the viewpoint of modifying the Nash Equilibrium of the payoff matrices.

With incentives, the players have payoff matrices in Table B.1. For CC to be the global Nash

Equilibrium, such that cooperation is preferred by an agent i regardless of the other agent’s

action, incentives must satisfy ηiC − ηiD − 1 > 0. This is guaranteed to occur by incentive

updates (Equation B.6) and (Equation B.8).

Table B.1: Payoff matrices for row player (left) and column player (right) with incentives.

A1 C D
C -1 + η2

C -3 + η2
C

D 0 + η2
D -2 + η2

D

A2 C D
C -1 + η1

C 0 + η1
D

D -3 + η1
C -2 + η1

D
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B.3 Derivations

The factor ∇θ̂jJ
i(τ̂ i, θ̂) (Equation 5.9) in the incentive function’s gradient (Equation 5.7)

is derived as follows. For brevity, we will drop the “hat” notation—recall that it indicates

a quantity belongs to a new trajectory after a regular policy update—as all quantities here

have “hats”. Let ∇j denote ∇θ̂j and π denote π(at|st). Let V i,π(s) and Qi,π(s, a) denote

the global value and action-value function for agent i’s reward under joint policy π. Then

the gradient of agent i’s expected extrinsic return with respect to agent j’s policy parameter

can be derived in a similar manner as standard policy gradients [56]:

∇jJ
i(τ,θ) = ∇jV

i,π(s0) = ∇j

∑
a

π(a|s0)Qi,π(s0, a)

=
∑
a

π−j
(
(∇jπ

j)Qi,π(s0, a) + πj∇jQ
i,π(s0, a)

)
=
∑
a

π−j

(
(∇jπ

j)Qi,π + πj∇j

(
ri + γ

∑
s′

P (s′|s0, a)V i,π(s′)

))

=
∑
a

π−j

(
(∇jπ

j)Qi,π + γπj
∑
s′

P (s′|s0, a)∇jV
i,π(s′)

)

=
∑
x

∞∑
k=0

P (s0 → x, k,π)γk
∑
a

π−j∇jπ
jQi,π(x, a)

=
∑
s

dπ(s)
∑
a

π−j∇jπ
jQi,π(s, a)

=
∑
s

dπ(s)
∑
a

π−jπj∇j log πjQi,π(s, a)

= Eπ

[
∇j log πj(aj|s)Qi,π(s, a)

]
Alternatively, one may rely on automatic differentiation in modern machine learning

frameworks [154] to compute the chain rule (Equation 5.7) via direct minimization of the

loss (Equation 5.10). This is derived as follows. Let the notation 6= j, i denote all indices

except j and i. Note that agent i’s updated policy π̂i is not a function of ηi, as it does not

receive incentives from itself. Recall that a recipient j’s updated policy π̂j has explicit
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dependence on a reward-giver i’s incentive parameters ηi. Also note that

∇ηi π̂
−i =

∑
j 6=i

(∇ηi π̂
j)π̂ 6=j,i

by the product rule. Then we have:

∇ηiJ
i(τ̂ i, θ̂) = ∇ηiV

i,π̂(ŝ0) = ∇ηi

∑
â

π̂i(âi|ŝ0)π̂−i(â−i|ŝ0)Qi,π̂(ŝ0, â)

=
∑
â

π̂i

(∑
j 6=i

(∇ηi π̂
j)π̂ 6=j,iQi,π̂ + π̂−i∇ηiQ

i,π̂

)
(by the remarks above)

=
∑
â

π̂i

(∑
j 6=i

(∇ηi π̂
j)π̂ 6=j,iQi,π̂ + γπ̂−i

∑
s′

P (s′|ŝ0, â)∇ηiV
i,π̂(s′)

)

=
∑
x

∞∑
k=0

P (s0 → x, k, π̂)γk
∑
â

π̂i
∑
j 6=i

(∇ηi π̂
j)π̂ 6=j,iQi,π̂

=
∑
ŝ

dπ̂(ŝ)
∑
â

π̂i
∑
j 6=i

π̂j(∇ηi log π̂j)π̂ 6=j,iQi,π̂

=
∑
ŝ

dπ̂(ŝ)
∑
â

π̂i
∑
j 6=i

(∇ηi log π̂j)π̂−iQi,π̂

=
∑
ŝ

dπ̂(ŝ)
∑
â

π̂
∑
j 6=i

(∇ηi log π̂j)Qi,π̂ = Eπ̂

[∑
j 6=i

(∇ηi log π̂j)Qi,π̂

]

Hence descending a stochastic estimate of this gradient is equivalent to minimizing the loss

in (Equation 5.10).

B.4 Experiments

B.4.1 Environment details

This section provides more details on each experimental setup.

IPD. We used the same definition of observation, action, and rewards as [96]. Each

environment step is one round of the matrix game. Each agent observes the joint action

taken by both agents at the previous step, along with an indicator for the first round of each
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episode. We trained for 60k episodes, each with 5 environments steps, which gives the same

total number of environment steps used by LOLA [96].

Escape Room. Each agent observes all agents’ positions and can move among the three

available states: lever, start, and door. At every time step, all agents commit to and disclose

their chosen actions, compute the incentives based on their observations of state and others’

actions (only for LIO and augmented baselines that allow incentivization), and receive the

sum of extrinsic rewards and incentives (if any). LIO and augmented baselines also observe

the cumulative incentives given to the other agents within the current episode. An agent’s

individual reward is zero for staying at the current state, -1 for movement away from its

current state if fewer than M agents move to (or are currently at) the lever, and +10 for

moving to (or staying at) the door if ≥ M agents pull the lever. Each episode terminates

when an agent successfully exits the door, or when 5 time steps elapse.

Cleanup. We built on a version of an open-source implementation [178]. The environ-

ment settings for 7x7 and 10x10 maps are given in Table B.2. To focus on the core aspects

of the common-pool resource problem, we removed rotation actions, set the orientation of

all agents to face “up”, and disabled their “tagging beam” (which, if used, would remove a

tagged agent from the environment for a number of steps). These changes mean that an agent

must move to the river side of the map to clear waste successfully, as it cannot simply stay

in the apple patch and fire its cleaning beam toward the river. Acting cooperatively as such

would allow other agents to collect apples, and hence our setup increases the difficulty of the

social dilemma. Each agent receives an egocentric normalized RGB image observation that

spans a sufficiently large area such that the entire map is observable by that agent regardless

of its position. The cleaning beam has length 5 and width 3. For LIO and the AC-c baseline,

which have a separate module that observes other agents’ actions and outputs real-valued

incentives, we let that module observe a multi-hot vector that indicates which agent(s) used

their cleaning beam.
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Table B.2: Environment settings in Cleanup

Parameter 7x7 10x10

appleRespawnProbability 0.5 0.3
thresholdDepletion 0.6 0.4
thresholdRestoration 0.0 0.0
wasteSpawnProbability 0.5 0.5
view_size 4 7
max_steps 50 50

B.4.2 Implementation

This subsection provides more details on implementation of all algorithms used in exper-

iments. We use fully-connected neural networks for function approximation in the IPD

and ER, and convolutional networks to process image observations in Cleanup. The policy

network has a softmax output for discrete actions in all environments. Within each environ-

ment, all algorithms use the same neural architecture unless stated otherwise. We applied

the open-source implementation of LOLA [96] to ER. We use an exploration lower bound ε

that maps the learned policy π to a behavioral policy π̃(a|s) = (1− ε)π(a|s) + ε/|A|, with

ε decaying linearly from εstart to εend by εdiv episodes. We use discount factor γ = 0.99. We

use gradient descent for policy optimization, the Adam optimizer [185] for training value

functions (in Cleanup), and Adam optimizer for LIO’s incentive function.

The augmented policy gradient and actor-critic baselines, labeled as PG-c and AC-c,

which have continuous “give-reward” actions in addition to regular discrete actions, are

trained as follows. These baselines have an augmented action space A× RN−1 and learns a

factorized policy π(ad, ar|o) := π(ad|o)π(ar|o), where ad ∈ A is a regular discrete action

and ar ∈ RN−1 is the reward given to the other N − 1 agents. The factor π(ad|o) is a

standard categorical distribution conditioned on observation. The factor π(ar|o) is defined

via an element-wise sigmoid σ(·) applied to samples from a multivariate diagonal Gaussian,

so that π(ar|o) is bounded. Specifically, we let u ∼ N (fη(o),1), where fη(o) : O 7→ RN−1

is a neural network with parameters η, and let ar = Rmaxσ(u). By the change of variables
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formula, π(ar|o) has density π(ar|o) = N (µη,1)
∏N−1

i=1 (dar[i]/du[i])−1, which can be used

to compute the log-likelihood of π(ad, ar|o) in the policy gradient.

Let β denote the coefficient for entropy of the policy, αθ the policy learning rate, αη

the incentive learning rate, αφ the critic learning rate, and Ra the value of the discrete

“give-reward” action.

IPD. The policy network and the incentive function in LIO have two hidden layers of

size 16 and 8.

Table B.3: Hyperparameters in IPD.

Parameter Value Parameter Value

β 0.1 αθ 1e-3
εstart 1.0 αη 1e-3
εend 0.01 α 0
εdiv 5000 Rmax 3.0

ER. The policy network has two hidden layers of size 64 and 32. LIO’s incentive

function has two hidden layers of size 64 and 16. We use a separate Adam optimizer for the

cost part of the incentive function’s objective (Equation 5.5), with learning rate 1e-4, with

αη = 1e-3, and set α = 1.0. Exploration and learning rate hyperparameters were tuned for

each algorithm via coordinate ascent, searching through εstart in [0.5, 1.0], εend in [0.05, 0.1,

0.3], εdiv in [100, 1000], β in [0.01, 0.1], αθ, αη, and αcost in [1e-3, 1e-4]. LOLA performed

best with learning rate 0.1 and Ra = 2.0, but it did not benefit from additional exploration.

LIO and PG-c have Rmax = 2.0. PG-d used Ra = 2.0.

Table B.4: Hyperparameters in Escape Room.

N = 2 N = 3

Parameter LIO PG PG-d PG-c LIO PG PG-d PG-c

β 0.01 0.01 0.01 0.1 0.01 0.01 0.01 0.1
εstart 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0
εend 0.1 0.05 0.05 0.1 0.3 0.05 0.05 0.1
εdiv 1e3 1e2 1e2 1e3 1e3 1e2 1e2 1e3
αθ 1e-4 1e-4 1e-4 1e-3 1e-4 1e-4 1e-4 1e-3
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Cleanup. All algorithms are based on actor-critic for policy optimization, whereby each

agent j’s policy parameter θj is updated via

θ̂j ← θj + Eπ

[
∇θj log πθj(a

j|oj)
(
rj + γVφj(s

′)− Vφ̃j(s)
)]
, (B.9)

and the critic parameter φj is updated by minimizing the temporal difference loss

L(φj) = Es,s′∼π
[(
rj + γVφ̃j(s

′)− Vφj(s)
)2
]

(B.10)

The target network [2] parameters φ̃j are updated via φ̃j ← τφj + (1− τ)φ̃j with τ = 0.01.

The policy and value networks have an input convolutional layer with 6 filters of size

[3, 3], stride [1, 1], and ReLU activation. The output of convolution is flattened and passed

through two fully-connected (FC) hidden layers both of size 64. The policy output is a

softmax over discrete actions; the value network has a linear scalar output. LIO’s incentive

function uses the same input convolutional layer, except that its output is passed through the

first FC layer, concatenated with its observation of other agents’ actions, then passed through

the second FC layer and finally to a linear output layer. Inequity Aversion agents [91] have

an additional 1D vector observation of all agents’ temporally smoothed rewards—this is

concatenated with the output of the first FC hidden layer and sent to the second FC layer.

Entropy coefficient was held at 0.1 for all methods.

LIO and AC-c have Rmax = 2.0. AC-d used Ra = 2.0. Inequity aversion agents have

disadvantageous aversion coefficient value 0, advantageous aversion coefficient value 0.05,

and temporal smoothing parameter λ = 0.95. We use critic learning rate αφ = 10−3 for all

methods. LIO used αη =1e-3 and cost coefficient α = 10−4. Exploration and learning rate

hyperparameters were tuned for each algorithm via coordinate ascent, searching through

εstart in [0.5, 1.0], εend in [0.05, 0.1], εdiv in [100, 1000, 5000], αθ, αη, and αcost in [1e-3,

1e-4].
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Table B.5: Hyperparameters in Cleanup.

7x7 10x10

Parameter LIO AC AC-d AC-c IA LIO AC AC-d AC-c IA

εstart 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
εend 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
εdiv 100 100 100 100 1000 1000 5000 1000 1000 5000
αθ 1e-4 1e-3 1e-4 1e-4 1e-3 1e-4 1e-3 1e-3 1e-3 1e-3

start lever0 0

-1

-1

(a) Agent A2 incurs an extrin-
sic penalty for any change of
state.

start door-1 -1

-1

-1

(b) Agent A1 is penalized at
every step if A2 does not pull
the lever.

start door-1 +10

+10

-1

(c) A1 get +10 at the door if
A2 pulls the lever.

Figure B.2: Asymmetric Escape Room game involving two agents, A1 and A2. (a) In the
absence of incentives, A2’s optimal policy is to stay at the start state and not pull the lever.
(b) Hence A1 cannot exit the door and is penalized at every step. (c) A1 can receive positive
reward if it learns to incentivize A2 to pull the lever. Giving incentives is not an action
depicted here.

B.5 Additional results

B.5.1 Asymmetric Escape Room

We conducted additional experiments on an asymmetric version of the Escape Room game

between two learning agents (A1 and A2) as shown in Figure B.2. A1 gets +10 extrinsic

reward for exiting a door and ending the game (Figure B.2c), but the door can only be opened

when A2 pulls a lever; otherwise, A1 is penalized at every time step (Figure B.2b). The

extrinsic penalty for A2 discourages it from taking the cooperative action (Figure B.2a). The

global optimum combined reward is +9, and it is impossible for A2 to get positive extrinsic

reward. Due to the asymmetry, A1 is the reward-giver and A2 is the reward recipient for

methods that allow incentivization. Each agent observes both agents’ positions, and can

move between the two states available to itself. We allow A1 to observe A2’s current action

before choosing its own action, which is necessary for methods that learn to reward A2’s
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Figure B.3: Results in asymmetric 2-player Escape Room. (a) LIO (paired with PG)
converges rapidly to the global optimum, 2-TS (paired with tabular Q-learner) converges
slower, while policy gradient baselines could not cooperate. (b) Two PG agents cannot
cooperate, as A2 converges to “do-nothing”. (c) A LIO agent (A1) attains near-optimum
reward by incentivizing a PG agent (A2). (d) 1-episode LIO has larger variance and lower
performance. Normalization factors are 1/10 (A1) and 1/2 (A2).

cooperative actions. We use a standard policy gradient for A2 unless otherwise specified.

In addition to the baselines described for the symmetric case—namely, policy gradient

(PG-rewards) and LOLA with discrete “give-reward” actions—we also compare with a

two-timescale method, labeled 2-TS. A 2-TS agent has the same augmented action space as

the PG-rewards baseline, except that it learns over a longer time horizon than the reward

recipient. Each “epoch” for the 2-TS agent spans multiple regular episodes of the recipient,

during which the 2-TS agent executes a fixed policy. The 2-TS agent only caries out a

learning update using a final terminal reward, which is the average extrinsic rewards it gets

during test episodes that are conducted at the end of the epoch. Performance on test episodes

serve as a measure of whether correct reward-giving actions were taken to influence the

recipient’s learning during the epoch. To our knowledge, 2-TS is a novel baseline but has

key limitations: the use of two timescales only applies to the asymmetric 2-player game, and

requires fast learning by the reward-recipient, chosen to be a tabular Q-learning, to avoid

intractably long epochs.

Figure B.3 shows the sum of both agents’ rewards for all methods on the asymmetric

2-player game, as well as agent-specific performance for policy gradient and LIO, across

training episodes. A LIO reward-giver agent paired with a policy gradient recipient converges

rapidly to a combined return near 9.0 (Figure B.3a), which is the global maximum, while
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both PG and PG-rewards could not escape the global minimum for A1. LOLA paired with a

PG recipient found the cooperative solution in two out of 20 runs; this suggests the difficulty

of using a fixed incentive value to conduct opponent shaping via discrete actions. The

2-TS method is able to improve combined return but does so much more gradually than

LIO, because an epoch consists of many base episodes and it depends on a highly delayed

terminal reward. Figure B.3b for two PG agents shows that A2 converges to the policy of not

moving (reward of 0), which results in A1 incurring penalties at every time step. In contrast,

Figure B.3c verifies that A1 (LIO) receives the large extrinsic reward (scaled by 1/10) for

exiting the door, while A2 (PG) has average normalized reward above -0.5 (scaled by 1/2),

indicating that it is receiving incentives from A1. Average reward of A2 (PG) is below 0

because incentives given by A1 need not exceed 1 continually during training—once A2’s

policy is biased toward the cooperative action in early episodes, its decaying exploration

rate means that it may not revert to staying put even when incentives do not overcome the

penalty for moving. Figure B.3d shows results on a one-episode version of LIO where the

same episode is used for both policy update and incentive function updates, with importance

sampling corrections. This version performs significantly lower for A1 and gives more

incentives than is necessary to encourage A2 to move. It demonstrates the benefit of learning

the reward function using a separate episode from that in which it is applied.

B.5.2 Symmetric Escape Room

Figure B.4 shows total reward (extrinsic + received - given incentives), counts of “lever” and

“door” actions, and received incentives in one training run each for ER(2,1) and ER(3,2). In

Figure B.4a, A1 becomes the winner and A2 the cooperator. It is not always necessary for

A1 to give rewards. The fact that LIO models the learning updates of recipients may allow it

to find that reward-giving is unnecessary during some episodes when the recipient’s policy

is sufficiently biased toward cooperation. In Figure B.4b, A3 converges to going to the door,

as it incentives A1 and A2 to pull the lever.
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Figure B.5: (a) In 7x7 Cleanup, one LIO agent learns to focus on cleaning waste, as it
receives incentives from the other who only collects apple. (b) In contrast, AC agents
compete for apples after cleaning. (c) Incentives received during training on 7x7 Cleanup.
(d) Behavior of incentive function against scripted opponent policies on 10x10 map.

B.5.3 Cleanup

Figure B.5a is a snapshot of the division of labor found by two LIO agents, whereby the blue

agent picks apples while the purple agent stays on the river side to clean waste. The latter

does so because of incentives from the former. In contrast, Figure B.5b shows a time step

where two AC agents compete for apples, which is jointly suboptimal. Figure B.5c shows

the received incentives during training in the 7x7 map, for each of two LIO agents that were

classified after training as a “Cleaner” or “Harvester”. Figure B.5d shows the incentives

given by a “Harvester” agent to three scripted agents during each training checkpoint.

Agents with hand-designed intrinsic rewards based on social influence [93] also outper-

form standard RL agents on Cleanup. We can make an indirect comparison to [93] by noting

that IA reaches a score around 250 by 1.6× 108 steps [91, Figure 3a], which outperforms
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the score of 200 attained by Social Influence at 3× 108 steps [93, Figure 1a] in the original

Cleanup map with 5 agents. Hence, the fact that LIO outperforms IA in our experiments

suggests that LIO compares favorably with Social Influence, provided that LIO uses the

same RL algorithm as the latter for policy optimization.
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APPENDIX C

ADAPTIVE INCENTIVE DESIGN WITH MULTI-AGENT META-GRADIENT

REINFORCEMENT LEARNING

C.1 Additional discussion on methods

C.1.1 Meta-gradient with TRPO/PPO objectives

We recapitulate the derivation of Trust Region Policy Optimization (TRPO) [44] to show

that it is compatible with meta-gradient RL. From this, it also follows that PPO [45] is

applicable to the upper level incentive designer problem by substituting the gradient with

respect to incentive function parameters in the place of the gradient with respect to policy

parameters.

TRPO considers the performance of a policy π̂, parameterized by θ̂, versus another

policy π parameterized by θ. Here, the “hat” notation (̂·) has no relation to the “updated

policy” in meta-gradient RL. The TRPO objective is

J(π) := Eπ

[∑
t

γtR(st, at)

]
(C.1)

It was shown that [44, Equation 2]

J(π̂) = J(π) + Eπ̂

[∑
t

γtAπ(st, at)

]
(C.2)

= J(π) +
∑
s

ρπ̂(s)
∑
a

π̂(a|s)Aπ(s, a) , (C.3)

where ρπ is the discounted state visitation frequencies and Aπ is the advantage function

under policy π. TRPO makes a local approximation, whereby ρπ̂ is replaced by ρπ. One can
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define

Lπ(π̂) := J(π) +
∑
s

ρπ(s)
∑
a

π̂(a|s)Aπ(s, a) , (C.4)

and derive the lower bound J(π̂) ≥ Lπ(π̂)−CDmax
KL (π, π̂), whereDmax

KL is the KL divergence

maximized over states and C depends on π. The KL divergence penalty can be replaced by

a constraint, so the problem becomes

max
θ̂

∑
s

ρθ(s)
∑
a

π̂θ̂(a|s)Aθ(s, a) (C.5)

s.t. D̄θ
KL(θ, θ̂) ≤ δ , (C.6)

where D̄θ
KL is the KL divergence averaged over states s ∼ ρθ. Using importance sampling,

the summation over actions
∑

a(·) is replaced by Ea∼q
[

1
q(a|s)(·)

]
. It is convenient to choose

q = πθ, which results in:

max
θ̂

Es∼ρθ,a∼πθ

[
π̂θ̂(a|s)
πθ(a|s)

Aθ(s, a)

]
(C.7)

s.t. Es∼ρθ [DKL(πθ(·|s), π̂θ̂(·|s))] ≤ δ . (C.8)

During online learning, the θ̂ that is optimized and the old θ are the same at each iteration,

so the gradient estimate is

Eπθ

[
∇θπθ(a|s)
πθ(a|s)

Aθ(s, a)

]
. (C.9)

Now, making the connection to meta-gradient RL for the incentive design problem, we

note the formal equivalency between the TRPO objective J(π) (Equation C.1) and the

ID’s objective J ID(η; θ̂) (Equation 6.1), and between the TRPO agent policy πθ and the
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multi-agent joint policy πθ̂(η).
1 Hence, we arrive at the meta-gradient based on TRPO

Eπθ̂

[
∇ηπθ̂(η)(a|s)

πθ̂(a|s)
Aθ̂(s, a)

]
, (C.10)

where only the updated policy θ̂ appears explicitly. This also justifies the use of the PPO

loss function as the outer loss for meta-gradient RL.

C.1.2 Q-learning agents

If agents conduct Q-learning with a set of individual Q-functions {Qθi(o
i, au)}ni=1, we may

assume that the induced policy of each agent i is:

πθi(a
i|oi) :=

exp(τQθi(o
i, ai))∑

a∈A exp(τQθi(oi, a))
(C.11)

where τ is some constant. Agents conduct their standard Q-learning updates as

θ̂i ← θi + αf(θi, η, τ ) (C.12)

f(θi, η, τ ) := Eτ∼π
[
∇θi

(
Ri,tot(s, a, η) (C.13)

+ γmax
a
Q′(oit+1, a)−Qθi(o

i
t, a

i
t)
)2
]
. (C.14)

We can then use (Equation 6.5) with (Equation C.11) as the agents’ policies, and ∇ηθ̂
i can

be computed by differentiating through (Equation C.12).

C.1.3 Relation to hypergradients and implicit differentiation

Hyperparameter optimization seeks the best hyperparameters λ∗ such that the validation loss

LV is minimized by the model whose weights w∗ are obtained by minimizing the training

1Here, when used with argument η, the “hat” notation is interpreted in the metagradient context, where it
denotes the updated policy after learning from incentives.
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loss LT with λ∗. It can be formulated as a bi-level optimization problem [118]:

λ∗ = argmin
λ
LV (λ,w∗(λ)) (C.15a)

s.t. w∗(λ) = argmin
w
LT (λ,w) (C.15b)

This formulation requires knowing the best-response w∗(λ) and the Jacobian ∂w∗(λ)
∂λ

. How-

ever, it may not be necessary, or even the best method for fastest training, to know the

best-response. A λ corresponds to a certain optimization landscape, and the best response

w∗(λ) is the minimizer of the training loss of that landscape, with an associated validation

loss. It is not clear that the best w∗(λk) for each intermediate λk at training iteration k

produces the best direction for the update λk+1 ← λk + ∆λ. We only want the final set

of optimal weights, and there is no obvious reason to care about the trajectory of best

response weights w∗(λ1), . . . , w∗(λk), . . . , especially when this trajectory may not lead

to convergence to the minimizer of the validation loss. In our algorithm, we unroll and

differentiate through the 1-step inner optimization, without requiring convergence of the

inner optimization to a best response.

C.2 Experimental setup

C.2.1 Environment details

Escape Room

Each agent observes a 1-hot encoding of its own position in the three possible states (lever,

start, and door), as well as 1-hot encodings of the positions of all other agents. The incentive

designer observes a concatenation of 1-hot encodings of all agents’ positions. Each agent

has has three actions that move it to the three available states: lever, start, and door. At

each time step, the designer uses all agents’ chosen actions along with the designer’s global

observation to compute the incentives. Agents receive the sum of predefined environment
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rewards and incentives. An agent’s individual reward is zero for staying at the current state,

-1 for movement away from its current state if fewer than M agents move to (or are currently

at) the lever, and +10 for moving to (or staying at) the door if at least M agents pull the

lever. Each episode terminates when any agent successfully exits the door, or when 5 time

steps elapse.

Cleanup

We used the open-source implementation based on [178, 40], which contains the following

modifications that increase the difficulty of the social dilemma compared to the original

version [91]: rotation actions and the tagging beam are disabled, and all agents have a fixed

“upward” orientation. Hence, an agent must move to the river to clear waste successfully—it

cannot simultaneously stay in the region where apples spawn and fire its cleaning beam

toward the river—which incurs the risk that other agents exploit the opportunity to collect

apples. Each agent receives an egocentric normalized RGB image observation that spans a

sufficiently large area such that the entire map is observable by that agent regardless of its

position. The incentive designer’s input is a global observation of the entire RGB map and a

multi-hot vector that indicates which agent(s) used their cleaning beam.

Gather-Trade-Build

Each agent’s observation is a pair of tensor with shape 11x11x9 and a vector of size 136,

consisting of a limited egocentric spatial window, its own inventories and skills, bids and asks

in the market, the tax rates of the current period as well as the marginal rate corresponding

to its current income so far. This is in accord with the reverse Stackelberg game formulation,

whereby agents observe the designer’s chosen function. The ID’s observation is a pair of

tensor with shape 14x14x8 and a vector of size 112, consisting of complete spatial world

state, agents’ inventories, all bids and asks, and all derived tax quantities, but does not

contain agents’ private skill and utility functions.
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Each agent’s instantaneous reward at time step t is defined as

rit := ui(xit, l
i
t)− ui(xit−1, l

i
t−1) , (C.16)

where xit is the total resources (stone and wood) and coin owned by agent i at time t, and lit

is the cumulative labor due to actions by agent i up to time t. The utility function is defined

as:

ui(xit, l
i
t) := crra(xi,ct )− lit crra(z) :=

z1−η − 1

1− η
, η > 0 (C.17)

where xi,ct is the amount of coin owned by agent i.

[42] used a factored discrete action space whereby the tax planner’s action is τ ∈ [0, 1]B

where B = 7 is the number of tax brackets. They designed the discrete action subspace

for each bracket to be {0, 0.05, . . . , 1.0}. For our meta-gradient approach, we let rη have 7

real-valued output nodes bounded in [0, 1] and interpret them as the tax rate for each bracket.

We applied an annealing schedule that caps the maximum marginal tax rate chosen by

dual-RL, as done in previous work [42]. The cap increases linearly from 0.1 to 1.0 (i.e., no

cap) within the first 8k episodes.

C.2.2 Implementation

In Escape Room, the agent’s policy network has two fully-connected (FC) layers of size h1

and h2 each, followed by a softmax output layer with size equal to the action space size.

The MetaGrad incentive designer concatenates its observation with the actions taken by all

agents, passes them through two FC layers of sizes d1 and d2, then to a sigmoid output

layer with size equal to the number of possible agent actions. The dual-RL (c) incentive

designer has the same architecture as in MetaGrad, except that the output layer is linear and

is interpreted as the mean of a Gaussian distribution. The dual-RL (d) incentive designer

has the same architecture as the agents.
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In Cleanup, the agents have the following neural network layers, all with ReLU activtion.

The input image is passed through one convolutional layer with 6 filters of kernel size [3, 3]

and stride [1, 1]. This is flattened and passed through two FC layers with sizes h1 and h2.

For the agents’ policy network, there is a final softmax output layer that maps to action

probabilities. The agents’ value function has the same architecture as the policy, except for

a linear output layer. The incentive designer has the same convolutional layer as agents’

policies. The image part of the designer’s observation is passed through that layer, then

through an FC layer with size h1, then concatenated with the vector part of the designer’s

observation (the multi-hot vector indicating usage of cleaning beam), then passed through

the second FC layer with size h2, then finally to a sigmoid output layer with size 3 (one

per action type in the set {clean, collect apple, else}. The dual-RL (c) designer has the same

architecture as the MetaGrad designer, except for a linear output layer than is interpreted as

the mean of a diagonal Gaussian distribution for its continuous action space.

In Gather-Trade-Build without curriculum, the agents’ policy network consists of the

following neural network layers (all with ReLU activation) that process the agent’s obser-

vation (which has a 3D image part and a 1D vector part). The image part of the agent’s

observation is passed through two convolutional layers with 6 filters of kernel size [5, 5]

each and stride [1, 1]; this is flattened and passed through a fully-connected (FC) layer

whose output size equals the size of the 1D vector observation; this is concatenated with

the 1D vector observation, then passed through two FC layers of with 128 nodes each,

then finally to a softmax output layer size output size equal to the discrete action space

size. The incentive designer’s policy in dual-RL is exactly the same as the agents’ policy

architecture, except that the two FC layers have 256 nodes each. The incentive designer

in MetaGrad is the same as the dual-RL designer policy, except that the output layer has

sigmoid activation (rather than softmax) and has size 7 (for the 7 tax brackets). The

same architecture is used for the agents’ value function (which does not share parameters

with the policy network), except that we used an LSTM layer of size 128 after the two FC
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layers.

In Gather-Trade-Build with curriculum, the agent and designer policy and value networks

are the same as the case without curriculum, except for these differences: there is an LSTM

layer of size 128 after the two FC layers for the incentive designer’s policy (i.e., incentive

function in the case of MetaGrad, regular policy in the case of dual-RL) and value networks,

and for the agents’ value network. We omitted the LSTM only for the agents’ policy network

to avoid complications with second-order gradients in MetaGrad.

The incentive designer in MetaGrad differentiates its objective with respect to the tax

function parameters, through the agents’ learning, by replicating the chain of calculations

from tax T (z) (Equation 6.7) to the agents’ final instantaneous reward rit (Equation C.16)

within the overall computational graph. All quantities required to compute tax and total

reward are saved in the designer’s episode buffer to use in the meta-gradient step.

C.2.3 Hyperparameters

We used random uniform sampling with successive elimination for hyperparameter search

for all methods. We start with a batch of nbatch tuples, where each tuple is a combination

of hyperparameter values with each value sampled either log-uniformly from a continuous

range or uniformly from a discrete set. We train independently with each tuple for nepisode

episodes, eliminate the lower half of the batch based on their final performance, then initialize

the next set of nepisode episodes with the current models for the remaining tuples. We use

the hyperparameters of the last surviving model. For Escape Room, we used nbatch = 128

and nepsiodes = 8000. For Cleanup, we used nbatch = 128 and nepsiodes = 2800. For GTB, we

used nbatch = 128 and nepsiodes = 500.

Let centropy denote the policy entropy coefficient, αθ the agent’s policy learning rate,

αv,agent the agent’s value function learning rate, αID the incentive designer’s learning rate

(dual-RL’s policy, MetaGrad’s incentive function), αv,ID the incentive designer’s value

function learning rate, cv the value function target update rate (i.e., θ′v ← cvθv + (1− cv)θ′v,
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where θ′v are parameters of a separate target network and θv are parameters of the main value

network). For MetaGrad in Escape Room, we used a separate optimizer for the cost part of

the ID’s objective, with learning rate denoted by αcost.

The hyperparameter ranges used for tuning are the following.

• For Escape Room: centropy ∈ (0.01, 10.0), αθ ∈ (10−5, 10−3), designer centropy ∈

(0.01, 10.0), αID ∈ (10−5, 10−2), agent first hidden layer h1 ∈ {64, 128}, agent sec-

ond hidden layer h2 ∈ {16, 32, 64}, designer first hidden layer d1 ∈ {64, 128}, designer

second hidden layer d2 ∈ {16, 32, 64}, αcost ∈ (10−5, 10−3).

• For Cleanup: agent centropy ∈ (10−3, 1.0), agent εstart ∈ {0.5, 1.0}, agent εend ∈ {0.05, 0.1},

agent εdiv ∈ {100, 1000, 5000}, αθ ∈ (10−5, 10−3) αv,agent ∈ (10−5, 10−3), agent

cv ∈ (10−3, 1), first FC layer h1 ∈ {64, 128, 256}, second FC layer h2 ∈ {64, 128, 256},

designer centropy ∈ (10−3, 1.0), αID ∈ (10−5, 10−3), αv,ID ∈ (10−5, 10−3), designer PPO

ε ∈ (0.01, 0.5), designer cv ∈ (10−3, 1)

• For Gather-Trade-Build: agent centropy ∈ (10−3, 10.0), αθ ∈ (10−5, 10−3), αv,agent ∈

(10−5, 10−3), agent PPO ε ∈ (0.01, 0.5), agent cv ∈ (10−3, 1), designer centropy ∈

(10−3, 10.0), αID ∈ (10−5, 10−3), αv,ID ∈ (10−5, 10−3), designer PPO ε ∈ (0.01, 0.5),

designer cv ∈ (10−3, 1.0).

In Escape Room, we used discount γ = 0.99, gradient descent for agents, and AdamOp-

timizer [154] for the ID. In Cleanup, we used discount γ = 0.99, dual-RL designer GAE

λ = 0.99, gradient descent for agents, and AdamOptimizer for the ID. In Gather-Trade-

Build, the fixed hyperparameters (i.e., not part of tuning) are: GAE λ = 0.98 for both agents

and the ID, discount factor γ = 0.99, agent gradient clipping by 10.0 (for dual-RL and US

federal only), truncation of an episode rollout to subsequences of length 50 for LSTMs. We

used AdamOptimizer for both agents and the ID. For the case without curriculum, and for

MetaGrad with curriculum, we applied an exploration lower bound on the agents’ policies

such that the actual policy is π(a|s) = (1− ε)π̂(a|s) + ε/|A|, where |A| is the size of the
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Table C.1: Hyperparameters in Escape Room ER(5, 2).

ER(5, 2)

Parameter MetaGrad dual-RL (c) dual-RL (d)

Agent centropy 0.0166 7.07 0.386
αθ 9.56 · 10−5 7.70 · 10−4 3.41 · 10−4

Designer centropy - - 0.488
αcost 6.03 · 10−5 - -
αID 7.93 · 10−4 1.17 · 10−4 2.47 · 10−3

h1 64 64 128
h2 64 32 64
d1 64 64 128
d2 32 64 64

Table C.2: Hyperparameters in Escape Room ER(10, 5).

ER(10, 5)

Parameter MetaGrad dual-RL (c) dual-RL (d)

Agent centropy 0.0166 0.345 0.0166
αθ 9.56 · 10−5 9.05 · 10−4 9.56 · 10−5

Designer centropy - - 0.148
αcost 6.03 · 10−5 - -
αID 7.93 · 10−4 1.63 · 10−4 7.07 · 10−3

h1 64 64 64
h2 64 32 64
d1 64 128 64
d2 32 64 32

discrete action space and ε linearly decreases from εstart to εend over εdiv episodes. We did not

apply this exploration lower bound to dual-RL and US federal in the curriculum case as it

was not used in previous work [42].

C.2.4 Computation resources

Experiments were run on the following hardware: Intel(R) Core(TM) i7-4790 CPU with

NVIDIA GeForce GTX 750 Ti GPU; Intel(R) Xeon(R) CPU E5-2630 v4 with NVIDIA

GeForce GTX 1080 GPU.
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Table C.3: Hyperparameters in Cleanup.

Parameter MetaGrad dual-RL (c)

Agent centropy 0.129 0.173
Agent εstart 1.0 1.0
Agent εend 0.05 0.1
Agent εdiv 100 100
αθ 6.73 · 10−4 6.23 · 10−4

αv,agent 5.54 · 10−4 4.46 · 10−4

Agent cv 7.93 · 10−3 0.292
Designer centropy - 0.23
αID 1.24 · 10−5 1.15 · 10−5

αv,ID 2.4 · 10−5 1.72 · 10−5

Designer PPO ε 0.0172 0.0164
Designer cv 0.114 0.846
h1 64 64
h2 64 64

C.3 Additional results

The central planner in [98] is the centralized analogue of a LOLA agent [96], who learns

to shape opponent behavior by anticipating their policy update. [186] showed analytically

in certain settings that this can result in aggressive behaviors that try to force opponent

compliance, especially in settings with multiple LOLA agents. Moreover, the anticipatory

behavior of a LOLA-type central planner does not benefit from the knowledge of the actual

impact of incentives on recipients’ behavior, as previously shown experimentally in the

context of decentralized incentivization [40]. To match the open source implementation,

we used a single-layer linear policy network and actor-critic agents. Although [98] report

good results in matrix games, we see in Figure C.1 that this method learns slower than

MetaGrad. Runs were truncated after 6k episodes as the method was unstable on the

temporally-extended Escape Room game.
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Table C.4: Hyperparameters in Gather-Trade-Build.

No curriculum

Parameter MetaGrad dual-RL US Federal

Agent centropy 0.184 0.282 0.253
Agent εstart 0.5 0.5 0.5
Agent εend 0.05 0.05 0.05
Agent εdiv 5k 5k 5k
αθ 3.30 · 10−3 3.92 · 10−4 1.39 · 10−4

αv,agent 1.67 · 10−5 3.74 · 10−4 5.0 · 10−5

Agent PPO ε 0.01 0.0201 0.166
Agent cv 0.0126 2.80 · 10−3 4.36 · 10−3

Designer centropy - 0.203 -
αID 1.82 · 10−5 7.80 · 10−4 -
αv,ID 8.64 · 10−4 2.30 · 10−4 -
Designer PPO ε 0.382 0.0216 -
Designer cv 0.0158 1.90 · 10−3 -
Designer εstart - 0.5 -
Designer εend - 0.05 -
Designer εdiv - 5k -

Table C.5: Hyperparameters in Gather-Trade-Build.

Curriculum

Parameter MetaGrad dual-RL US Federal

Agent centropy 0.0316 0.0166 0.0811
Agent εstart 0.5 - -
Agent εend 0.05 - -
Agent εdiv 5k - -
αθ 1.09 · 10−5 3.33 · 10−4 1.32 · 10−4

αv,agent 1.14 · 10−5 5.58 · 10−5 8.87 · 10−5

Agent PPO ε 0.0308 0.084 0.034
Agent cv 0.0126 0.221 0.702
Designer centropy - 0.33 -
αID 2.03 · 10−4 4.9 · 10−5 -
αv,ID 10−5 5.14 · 10−4 -
Designer PPO ε 0.0394 0.0295 -
Designer cv 0.0573 0.0178 -
Designer εstart - - -
Designer εend - - -
Designer εdiv - - -
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Figure C.1: ER(2, 1) Figure C.2: GTB with curriculum: Phase 1
train curve
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