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SUMMARY

We study invariant measures and invariant densities for dynamical systems

with random switching (switching systems, in short). An early example of a switching

system related to the telegrapher’s equation was analyzed by Goldstein in [18], and

later by Kac in [25]. The first systematic study of switching systems was undertaken

by Davis in [12]. Davis coined the term piecewise deterministic Markov processes for

them.

In this thesis, we study a class of switching systems with the following specifics:

Given a finite collection of smooth vector fields on a finite-dimensional smooth

manifold, we fix an initial vector field and a starting point on the manifold. We

follow the solution trajectory to the corresponding initial-value problem for a random,

exponentially distributed time until we switch to a new vector field chosen at random

from the given collection. Again, we follow the trajectory induced by the new vector

field for an exponential time until another switch occurs. This procedure is iterated.

The resulting two-component process whose first component records the position on

the manifold, and whose second component records the driving vector field at any

given time, is a Markov process.

We identify sufficient conditions for its invariant measure to be unique and abso-

lutely continuous with respect to the product of Lebesgue measure on the manifold

and counting measure on an index set associated to the collection of vector fields.

These conditions consist of a Hörmander-type hypoellipticity condition as well as a

recurrence condition.

In the one-dimensional case, where the manifold is the real line or some subset

vi



thereof, we examine regularity properties of the invariant densities of absolutely con-

tinuous invariant measures. In particular, we show that invariant densities are smooth

away from critical points of the vector fields. At critical points, we derive the asymp-

totically dominant term for invariant densities under the additional assumption that

the vector fields are analytic.
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CHAPTER I

INTRODUCTION

This chapter gives an introduction to dynamical systems with random switching. In

Section 1.1, we sketch the role these systems play in modeling various phenomena in

the sciences and engineering, and explain why they are also of intrinsically mathe-

matical interest. In Section 1.2, we give several examples of dynamical systems with

random switching. Throughout the thesis, we will revisit these examples to better

illustrate some of our results (and also those of others). The main terminology and

notation is introduced in Section 1.3. In particular, we will describe the construction

of a dynamical system with random switching in detail. Section 1.4 is devoted to

the questions addressed in this thesis. We sketch our most important statements and

survey some interesting results in the existing literature.

1.1 Dynamical systems with random switching

This thesis is about dynamical systems with random switching. We will often refer to

these random dynamical systems by the shorter term “switching systems”. The class

of switching systems we study can be described in terms of a finite family of vector

fields D. The vector fields are defined on a finite-dimensional smooth manifold M .

We assume that at any given time, the evolution of the system is driven by one of

these vector fields, and at random times the driving vector field changes to another

vector field that is randomly selected from D. Systems of this nature arise naturally

in applications. In physics, switching systems can be used to model the overdamped

motion of a particle in a viscous fluid, subject to alternating forces (see [17]). They

also have applications to biochemistry as models for molecular motors and gene reg-

ulation ([17]), to neuronal activity and to modeling Internet traffic ([6]). Switching
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systems with one-dimensional manifold M appear in Markovian fluid models (see [2]

and [22]). Additional motivation for studying switching systems, as well as an ex-

tensive bibliography on the subject, can be found in the monograph [37]. Switching

systems are also interesting from a purely mathematical point of view. They can ex-

hibit several somewhat counterintuitive features, such as divergence of the switching

system to infinity even though all involved vector fields and their averages converge

to 0, see [27]. My advisor’s motivation for studying switching systems was the idea

that they could serve as an introduction to hypoellipticity.

Dynamical systems with random switching were introduced by Davis in [12] un-

der the name piecewise deterministic Markov processes (PDMPs), but examples of

switching systems appear in the literature much earlier, e.g. in relation to the teleg-

rapher’s equation (see [18] and [25]). A collection of results on PDMPs can be found

in [13]. Recently, there has been increased activity with regard to the ergodic theory

of processes with random switching, see [6] and [10].

1.2 Examples

In this section, we present several examples of switching systems.

Example 1 Let M = R and let D be the collection of vector fields u1(η) := −η,

u2(η) := 1 and u3(η) := −1. At any given time, the process X is either attracted to

the critical point 0 or moves to the left or to the right at constant speed.

Example 2 Let M = R and let D be the collection of vector fields u1(η) := −η and

u2(η) := 1− η. The process X is alternately attracted by 0 and 1, and is eventually

confined to the interval (0, 1).

Example 3 LetM be the n-dimensional torus Tn := Rn/Zn, and letD = {e1, . . . , en}

be the standard basis in Rn. At any given time, the process X moves at constant

speed in the direction of one of the coordinate axes.
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Example 4 Let M = R3, and let D consist of two Lorenz vector fields u and v with

different parameter values. A Lorenz vector field is a vector field of the form

u(x, y, z) :=


σ · (y − x)

rx− y − xz

xy − bz

 ,

where σ, r and b are physical parameters. Assume that u has Rayleigh number

ru = 28 and that v has a Rayleigh number rv that is different from, but close to, 28.

We assume for both vector fields that σ = 10 and that b = 8
3
, which is the classical

parameter choice for the Lorenz system.

Example 5 Let M = R2, and let D consist of the vector fields u1 := e1, u2 := e2

and u3(η) := −η. The process X either moves parallel to the x- or y-axis at constant

speed, or is attracted to the origin at an exponential rate. Since the vector fields −e1

and −e2 are not included in D, the process X while eventually be confined to the

open first quadrant.

Example 6 The following example is taken from [27]. Let M = R2, and let D consist

of the two linear vector fields u1 and u2 given by the matrices

U1 :=

−a c

0 −a


and

U2 :=

−a 0

−c −a

 ,

respectively. Here, we assume that a and c are positive parameters. Notice that

both matrices are defective, in the sense that their only eigenvalue −a has geometric

multiplicity 1 and algebraic multiplicity 2.
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1.3 Definitions and notation

We consider a finite collection D of vector fields on an n-dimensional smooth manifold

M . We do not assume that M is compact. We denote these vector fields by ui, i ∈

S := {1, . . . , k}. Each vector field ui in D induces an ordinary differential equation

of the form

ẋ(t) = ui(x(t)). (1)

We assume that (1) is uniquely solvable if equipped with an initial condition

x(0) = ξ ∈M.

This is for instance the case if ui is Lipschitz continuous. For most of our results,

we need a higher degree of regularity than Lipschitz continuity, at least continuous

differentiability. We also assume that each vector field ui is forward complete, which

means that the solution trajectories to (1) are well-defined for all times t ≥ 0.

We define a stochastic process X = (Xt)t≥0 on M as follows: Given an initial

point ξ ∈ M and an initial vector field ui ∈ D, the process X follows the solution

trajectory to the corresponding initial-value problem for an exponentially distributed

random time τ with parameter λi > 0, i.e. the distribution of τ has density

ρτ (t) = λie
−λit, t ≥ 0. Then, a new driving vector field uj is selected at random from

D \ {ui}, and X follows the solution trajectory to the initial-value problem

ẋ(t) = uj(x(t))

x(0) = Xτ

for an exponentially distributed random time with parameter λj > 0. We call these

random times switching times. Iterating the construction above, we obtain a contin-

uous trajectory (Xt)t≥0 on M that is defined for all positive times and driven by one

of the vector fields from D between any two switches. If the vector fields in D are

smooth, the trajectory is piecewise smooth.
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We make the following assumptions on the switching mechanism:

(a) All switching times are exponentially distributed and independent conditioned

on the sequence of driving vector fields.

(b) The parameter λj > 0 of the exponential time between any two switches depends

only on the current state j ∈ S. In particular, it does not depend on the value of

X at the given time.

(c) For any two indices i and j in S, there is a positive probability of switching from

i to j.

We call the parameters (λi)i∈S switching rates. For j 6= i, let λi,j be the rate of

switching from ui to uj. Then,

λi =
∑
j 6=i

λi,j.

In many papers on dynamical systems with random switching, the switching rates

are allowed to depend on the location of the process X, and it is only required that

the transition mechanism on S be irreducible (see for instance [17], [6] and [10]). It is

interesting to note that even if the switching rates of a process (X,A) do not depend

on X, the switching rates for the time-reversed version of (X,A) are in general X-

dependent (see [17]). If we consider for instance the switching system in Example 2

with constant switching rates λ1 = λ2, we observe that if we let time run backwards,

the rate of switching from −u1 to −u2 explodes near the critical point 1 of −u2 and

the rate of switching from −u2 to −u1 explodes near 0. This is not hard to see: Since

the original process is confined to the interval (0, 1), so is its time-reversed version.

However, the trajectories of −u1 and −u2 become unbounded as t goes to infinity, so

the fast switching becomes necessary to keep the trajectories inside (0, 1).

We work with exponentially distributed switching times because the exponential

distribution is memoryless, i.e. P (T > s + t|T > s) = P (T > t) if T is an expo-

nentially distributed random variable on a probability space (Ω,F , P ). This ensures
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the Markov property for the stochastic process that, at any time t, keeps track of

the position of X on M and of the driving vector field in D. If the switching times

are not exponentially distributed, we can still construct a Markov process if we also

record the time elapsed since the last switch. Our results can be extended to this

more general setting, but we do not carry out these straightforward extensions to

avoid heavy notation.

The process X is not a Markov process: The shape of the trajectory leading up to

a fixed point on M allows us to infer the current driving vector field. We can build a

Markov process by adjoining a second stochastic process A = (At)t≥0 that captures the

driving vector field at any given time. More precisely, we define At ∈ S as the index of

the driving vector field at time t. We will also refer to this index as the regime or the

state at time t. The process A is a continuous-time Markov process on the finite state

space S. Under our assumptions on the switching rates (in particular the fact that the

rates do not depend on X), it has a unique stationary distribution. The trajectories

of A are right-continuous and piecewise constant. The two-component process (X,A)

is then a Markov process with state space M × S. We call X the continuous and

A the discrete component of (X,A). We denote elements of the associated Markov

family, i.e. the distribution on paths emitted at (ξ, i) ∈ M × S and generated by

the iterative random procedure outlined above, by Pξ,i. The corresponding transition

probability measures are denoted by Ptξ,i, t ≥ 0, and the Markov semigroup associated

to the process (X,A) is denoted by (Pt)t≥0. The transition probability measures are

defined on the product σ-algebra B(M) ⊗ P(S), where B(M) is the Borel σ-algebra

on M and P(S) is the power set of S. We write Eξ,i for expectation with respect to

Pξ,i.

If the initial distribution of the Markov process (X,A) is µ, then the distribution
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of the process at time t is given by the measure µPt on M × S, defined by

µPt(E × {j}) :=
∑
i∈S

∫
M

Ptξ,i(E × {j}) µ(dξ × {i}). (2)

From here on, we will denote the projection µ(· × {i}) by µi.

A probability measure µ on M × S is called invariant for (Pt)t≥0 if µ = µPt for

all t ≥ 0. For real-valued and (Ptξ,i)(ξ,i)∈M×S-integrable functions f on M ×S, we can

also define the left action of Pt, t ≥ 0, on f by

Ptf(ξ, i) :=
∑
j∈S

∫
M

f(η, j) Ptξ,i(dη × {j}), (ξ, i) ∈M × S. (3)

A probability measure µ is then invariant for (Pt)t≥0 if and only if

∑
i∈S

∫
M

Ptf(ξ, i) µi(dξ) =
∑
i∈S

∫
M

f(ξ, i) µi(ξ) (4)

for all t ≥ 0 and for all bounded B(M) ⊗ P(S)-measurable functions f on M × S.

The infinitesimal generator L of the Markov semigroup (Pt)t≥0 is the linear operator

defined by

L f(·) := lim
t↓0

1

t
(Ptf(·)− f(·))

for those functions f for which the limit exists (see for instance [16]). If f is a function

on Rn × S such that f(·, i) is a smooth function on Rn for every i ∈ S, we have

L f(ξ, i) = 〈ui(ξ),∇ξf(ξ, i)〉+
∑
j 6=i

λi,j · (f(ξ, j)− f(ξ, i)), (5)

see [6, Formula 2]. Here, 〈·, ·〉 denotes the Euclidean inner product on Rn and∇ξ is the

gradient with respect to ξ. We will not work directly with the infinitesimal generator,

but we point out that equation (5) is the starting point for deriving the Fokker–Planck

equations for continuously differentiable invariant densities of the semigroup. This

derivation is carried out in [17, Proposition 3.1]. We will take up the discussion of

the Fokker–Planck equations in earnest in Section 6.4, and already hint at them in

Section 1.4.
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For i ∈ S, we denote the flow function of the vector field ui by Φi. Due to forward

completeness of ui, the flow function is uniquely defined for any t ≥ 0 and for any

ξ ∈M by

d

dt
Φt
i(ξ) = ui(Φ

t
i(ξ)),

Φ0
i (ξ) = ξ.

We write R+ to denote the positive real line (0,∞). For any index vector i =

(i1, . . . , im) ∈ Sm and for any corresponding vector of switching times t = (t1, . . . , tm) ∈

Rm
+ , we define

Φt
i (ξ) := Φtm

im
(Φ

tm−1

im−1
(. . .Φt1

i1
(ξ)) . . .)

as the cumulative flow along the trajectories of ui1 , . . . , uim with starting point ξ ∈M .

Through much of the thesis, we will restrict ourselves to positive switching times, but

we will need to admit flows backwards in time in Chapters 4 and 6. In these instances,

we will extend the definition of the cumulative flow to sequences of switching times

in Rm, provided that each of the flow functions is defined for the respective negative

time.

1.4 Questions addressed in this thesis and prior work

The questions addressed in this thesis concern the ergodic theory of dynamical sys-

tems with random switching. Our main objects of study will be invariant measures

of the Markov semigroup (Pt)t≥0 associated to the process (X,A). Many long-term

asymptotic properties of dynamical systems and random dynamical systems can be

described in terms of invariant measures. The existence of invariant measures can of-

ten be derived by constructing a Lyapunov function and by subsequently establishing

recurrence properties or tightness for the process (see for instance [37, Sections 3.3–

3.4]). On a compact state space, existence of an invariant measure is often shown

using the Krylov–Bogoliubov method, see Section 3.2.
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Uniqueness and absolute continuity of invariant measures are often related to each

other and more subtle. In Chapter 2, we establish sufficient conditions for uniqueness

and absolute continuity of the invariant measure of the Markov semigroup (Pt)t≥0.

These consist in easily verifiable properties of the vector fields in D. For dynamical

systems with random switching, a major obstacle to uniqueness and absolute conti-

nuity of the invariant measure is the fact that the only source of randomness is the

sequence of driving vector fields, i.e. the process (X,A) evolves deterministically most

of the time. Our conditions for uniqueness and absolute continuity are formulated

in terms of Lie algebras associated to the driving vector fields. They are analogues

of the classical Hörmander condition guaranteeing absolute continuity of transition

densities of hypoelliptic diffusions, and it is thus natural to refer to them as hypoellip-

ticity conditions. In the diffusion context, absolute continuity of transition densities

is usually derived from the variational analysis of diffusion paths known as Malliavin

calculus, see for instance [4, Chapter VIII], [5] and [30].

In 2.1, we will formulate a weak and a strong hypoellipticity condition. For the

weak hypoellipticity condition, we assume that the tangent space at some point ξ ∈M

is generated by the smallest Lie algebra of smooth vector fields on M that contains

all vector fields in D. We shall denote this Lie algebra by I(D). For the strong hy-

poellipticity condition, we assume that the tangent space at some ξ ∈M is generated

by the derived algebra associated to I(D). Since the derived algebra is a subalgebra

of I(D), the strong hypoellipticity condition is indeed stronger than the weak one.

If the weak hypoellipticity condition holds at a point ξ ∈M that can be approached

from any initial point using the given vector fields as admissible controls, then there

exists at most one invariant measure, and this measure is absolutely continuous. This

is Theorem 2 in Section 2.2. It was derived independently by Benäım, Le Borgne,

Malrieu and Zitt in [6].

The central part in establishing absolute continuity and uniqueness is the analysis
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of transition probabilities of switching systems. Under the strong hypoellipticity

condition, we prove that all transition probabilities for the system have nontrivial

absolutely continuous components. The weak hypoellipticity condition allows to prove

the existence of absolutely continuous components not for the transition probabilities

themselves, but for their time averages. The extraction of these absolutely continuous

components is based on classical control theory results that can be found in Chapter 3

of [24]. These control theory results rely on earlier work by Chow [9], Sussmann

and Jurdjevic [32], and Krener [26]. Our conditions and the structure of our proofs

match those of [24], where the nondegeneracy of certain maps is exploited to establish

accessibility of an open set of points, either at a fixed time t (under the strong

hypoellipticity condition) or for t ≥ 0 (under the weak hypoellipticity condition). We

use the same nondegeneracy to prove absolute continuity, and one can interpret our

result as filling the control theory with probabilistic content.

Existence of and convergence to an invariant measure are questions of general

interest and complement our work on uniqueness and absolute continuity. While we

did not study these questions, we give an overview of some interesting and important

results on ergodicity for switching systems in Chapter 3. Most of the results we

present were developed by Benäım, Le Borgne, Malrieu and Zitt in [6] and [7]; and

by Cloez and Hairer in [10]. We do not claim that our survey is comprehensive.

If an invariant measure of the Markov semigroup (Pt)t≥0 is absolutely continuous,

it has a probability density function according to the Radon–Nikodym Theorem (see

for instance [15]). We call the density of an invariant measure an invariant density.

In Chapter 4, we study the regularity theory for invariant densities of switching

systems with one-dimensional continuous component. In particular, we assume that

the manifold M is the real line. We show that smoothness of the vector fields in

D translates into smoothness of invariant densities away from critical points of the

vector fields (Theorem 11).
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In the literature, regularity properties of invariant densities are often assumed in

order to derive other features of the densities. For instance, it is shown in [17, Propo-

sition 3.1] that if invariant densities are C 1 on a set Ω, they satisfy the Fokker–Planck

equations associated to the switching system in the interior of Ω. From this differ-

ential characterization, the authors deduce time-reversibility of stationary piecewise

deterministic Markov processes and derive explicit formulas for the invariant densities

of certain switching systems that they call exactly solvable. A result similar to [17,

Proposition 3.1] can be found in [22, Theorem 1]. Our Theorem 11 in Section 4.1 gives

sufficient conditions for continuity and differentiability of invariant densities that are

stated in terms of the vector fields, and are easily verifiable. In particular, we show

that if none of the vector fields vanish at a point ξ ∈ R and if all vector fields are

C n+1 in a neighborhood of ξ, then the invariant densities are C n at ξ.

In Chapter 5, we give a detailed description of the support of invariant measures for

switching systems whose continuous component X lives on R. While this description

is interesting in its own right, it also serves as a tool to analyze how invariant densities

behave at critical points of the vector fields. This analysis is carried out in Chapter 6.

In the case of two vector fields on a bounded interval that point in opposite directions

(such as Example 2), [17, Proposition 3.12] gives an explicit formula for the invariant

densities. From this formula, one obtains the exact asymptotic behavior of the den-

sities close to critical points. However, computing invariant densities explicitly is in

general very difficult ([17, Section 3.3]). Finding necessary and sufficient conditions

for boundedness of invariant densities is already challenging. In the one-dimensional

case, invariant densities are bounded away from critical points (Lemma 13), but we

expect to find switching systems with two-dimensional continuous component whose

invariant densities become unbounded along curves that do not contain any critical

points. For an appropriate choice of switching rates, this phenomenon should occur

in Example 5, where we expect the invariant densities to become unbounded along
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the coordinate axes. If the continuous component is one-dimensional, [2, Theorem

1] provides sufficient conditions for boundedness of an invariant density close to a

critical point of its associated vector field. For vector fields that behave linearly close

to a critical point, we give necessary conditions and sufficient conditions for bound-

edness in terms of the vector fields and the switching rates (Corollary 4). These

conditions recover part of the results in [2]. For analytic vector fields, we also derive

the asymptotically dominant term of an invariant density as its argument approaches

a critical point of the corresponding vector field (Theorem 13). Even if the vector

fields in D are not analytic, we can derive some asymptotics at critical points, but

the results are not as sharp as in the analytic case, see Theorem 12. The basic tools

in our investigation of invariant densities (both in Chapter 4 and in Chapter 6) are

two integral equations satisfied by invariant densities. These equations are closely

related to the Kolmogorov forward equations (see Appendix B), but do not require

differentiablity of the densities. When deriving the asymptotically dominant terms

in the case of analytic vector fields, we use the theory of regular singular points for

systems of linear ordinary differential equations. We follow [33, Section 3.11].

We now highlight some important questions that are not covered in this thesis.

It is natural to ask how a switching process behaves if the switching rates diverge to

+∞ (i.e. in the limiting regime of very fast switching), and how it behaves if the

switching rates converge to 0 (i.e. in the limiting regime of very slow switching). For

the simple switching system in Example 2, these questions were studied in [23]. If we

assume that switches from u1 to u2 occur with the same frequency λ as switches from

u2 to u1, we find that the invariant densities of the switching process have the form

ρ1(ξ) = c(λ) · ξλ−1 · (1− ξ)λ (6)

and

ρ2(ξ) = c(λ) · (1− ξ)λ−1 · ξλ, (7)
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where c(λ) is a normalizing constant. Formulas (6) and (7) can be derived by solving

the Fokker–Planck equations associated to the switching system. This is only possible

because one can reduce the Fokker–Planck equations for Example 2 to a single first-

order linear ODE — for switching systems with more than two vector fields, one

obtains a linear system with nonconstant coefficients that may have singularities at

critical points, see Section 6.4. In [17, Proposition 3.12], similar formulas were derived

independently for switching between two real-valued vector fields pointing in opposite

directions. Exploiting the explicit representations in (6) and (7), we established the

following limit theorems in the spirit of laws of large numbers for fast and slow

switching (see [23]).

Theorem 1 For λ > 0, let µ(λ) denote the invariant measure for the switching system

in Example 2 with switching rates λ1 = λ2 = λ.

(i) As λ goes to 0, µ
(λ)
1 converges weakly to the Dirac measure δ0 and µ

(λ)
2 converges

weakly to the Dirac measure δ1.

(ii) As λ goes to +∞, µ
(λ)
1 and µ

(λ)
2 converge weakly to the Dirac measure δ 1

2
.

For fast switching, Proposition 3.6, part (i), in [17] is comparable to part (ii) of

Theorem 1, but is stated for a broad class of switching systems, not just for one

particular system. To give an idea of Proposition 3.6, we define the family of processes

(χt)t≥0 on the set of functions from S to {0, 1} by

χt(i) := 1{i}(At), i ∈ S, t ≥ 0.

Loosely writing, the proposition then states that as λ goes to +∞, the process (X,χ),

conditioned on starting at (ξ,1{i}), approaches a limiting process (X∗, χ∗), where X∗

is the solution to the entirely deterministic initial-value problem

Ẋ∗t =
∑
i∈S

ν({i}) · ui(X∗t ), (8)

X∗0 = ξ
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and where

χ∗t (j) := ν({j}), j ∈ S, t ≥ 0.

The measure ν on S is the stationary distribution of the Markov process A. The

vector field in (8) is called the mean vector field in [17] and can be thought of as the

natural average of the vector fields in D under the dynamics of A. In Example 2 with

equal switching rates, the stationary distribution of A assigns probability 1
2

to both

states 1 and 2. The mean vector field is then

ū(ξ) =
1

2
u1(ξ) +

1

2
u2(ξ) =

1

2
− ξ.

Clearly, ū has a critical point at ξ = 1
2

that is globally attracting. Compare this result

to weak convergence to δ 1
2

in part (ii) of Theorem 1.

In [23], we also established a large-deviation result for the switching system in

Example 2. For the entropy function

I(ξ) := − ln(4ξ · (1− ξ)),

we showed that

lim inf
λ→∞

1

λ
· ln(µ

(λ)
1 (G)) ≥ − inf

ξ∈G
I(ξ)

for any nonempty open set G ⊂ (0, 1) and that

lim sup
λ→∞

1

λ
· ln(µ

(λ)
1 (F )) ≤ − inf

ξ∈F
I(ξ)

for any closed set F ⊂ (0, 1). A variety of large-deviation results for much broader

classes of switching systems can be found in [17].

14



CHAPTER II

UNIQUENESS AND ABSOLUTE CONTINUITY

In this chapter, we identify conditions on the vector fields in D that guarantee unique-

ness and absolute continuity of the invariant measure associated to the Markov semi-

group (Pt)t≥0. The chapter is based on [1] and is organized as follows: In Section 2.1,

we introduce the main notions from differential geometry and geometric control the-

ory needed to formulate sufficient conditions for uniqueness and absolute continuity

of the invariant measure of (Pt)t≥0. In Section 2.2, we state the main result on

uniqueness and absolute continuity of the invariant measure (Theorem 2), as well as

two auxiliary results on regularity of transition probabilities each based on one of

the Hörmander-type assumptions. We prove these regularity results in Section 2.3.

Section 2.4 contains the proof of Theorem 2. In Section 2.5, we apply Theorem 2 to

Examples 3 and 4. Throughout Chapter 2, we assume that the vector fields in D are

C∞. We also assume that M is an n-dimensional C∞-manifold, where n can be any

positive integer.

2.1 Hypoellipticity

Let V(M) denote the set of real smooth vector fields on the manifold M , and let

C∞(M) denote the set of real-valued smooth functions on M . As explained above,

we assume that D is contained in V(M). Any element of V(M) corresponds uniquely

to a derivation on C∞(M), that is to a linear operator δ on C∞(M) satisfying the

Leibniz rule

δ(f · g) = δ(f) · g + f · δ(g).
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The Lie bracket of two vector fields u and v in V(M) is defined as the vector field

[u, v](f) := u(v(f))− v(u(f))

for test functions f in C∞(M). Alternatively, using the symbol Φu for the flow

function associated to vector field u, we can define the Lie bracket [u, v] as the vector

field

[u, v](ξ) :=
1

2

d2

dt2
Φ−tv (Φ−tu (Φt

v(Φ
t
u(ξ))))|t=0. (9)

Formula (9) can be interpreted as follows: Given two vector fields u and v, we obtain

the value of the Lie bracket [u, v] at a point ξ ∈ M by making appropriately scaled

infinitesimal switches between u and v. The set V(M) equipped with the bilinear

operation [., .] becomes a Lie algebra over the reals. That means V(M) is a real

vector space endowed with the bilinear and alternating operation [., .] that satisfies

the Jacobi identity

[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0, u, v, w ∈ V(M).

A subset of V(M) is called involutive if it is closed under taking Lie brackets of

its elements. An involutive subspace of V(M) is called a subalgebra of V(M). We

denote the smallest subalgebra of V(M) that contains D by I(D). The derived

algebra I ′(D) is the smallest algebra containing Lie brackets of vector fields in I(D).

We have I ′(D) ⊂ I(D), but I ′(D) might not contain any elements of D and may

therefore be strictly contained in I(D). In addition, we define I0(D) as the set of

vector fields of the form

v +
k∑
i=1

νiui,

where v ∈ I ′(D), u1, . . . , uk ∈ D and
∑k

i=1 νi = 0. Finally, we set

I(D)(ξ) := {u(ξ) : u ∈ I(D)}

and

I0(D)(ξ) := {u(ξ) : u ∈ I0(D)}
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for any ξ ∈M . The sets I(D)(ξ) and I0(D)(ξ) are finite-dimensional vector spaces.

Our results on uniqueness and absolute continuity of the invariant measure are

based on the following assumptions that can naturally be called hypoellipticity con-

ditions in analogy with Hörmander’s theory. We say that a point ξ ∈ M satisfies

the strong hypoellipticity condition if dim I0(D)(ξ) = n. We say that a point ξ ∈M

satisfies the weak hypoellipticity condition if dim I(D)(ξ) = n. The set of points

satisfying the strong hypoellipticity condition is open, and so is the set of points

satisfying the weak hypoellipticity condition.

For our absolute continuity results we will need a reference measure on M that

will play the role of Lebesgue measure. As a smooth manifold, M can be endowed

with a Riemannian metric. The metric tensor can be used to define measures on

coordinate patches of M . One can then use a partition of unity (see for instance [34,

Section 7]) to construct a Borel measure on M whose pushforward to Rn under any

chart map is equivalent to Lebesgue measure. We call the uniquely defined measure

on M obtained through this construction Lebesgue measure, denote it by λM , and use

it as the main reference measure, often omitting “with respect to Lebesgue measure”

when writing about absolute continuity. The product of the Lebesgue measure on

M and counting measure on S will be called the Lebesgue measure on M × S. We

denote the Lebesgue measure on Rm by λm.

It remains to introduce the notions of reachability and accessibility. Recall our

definition of the flow function Φi associated to the vector field ui in Section 1.3.

Also recall how we defined the cumulative flow along the trajectories of vector fields

ui1 , . . . , uim with a given starting point on M . In this chapter, we will only work with

positive switching times, both for single and cumulative flows. We call a point η ∈M

D-reachable from a point ξ ∈M if there exist an index vector i and a corresponding
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vector of positive switching times t such that

η = Φt
i (ξ).

If the components of t sum up to t, we say that η is D-reachable from ξ at time t.

For ξ ∈ M and t > 0, let Lt(ξ) denote the set of D-reachable points from ξ at time

t, and let L(ξ) :=
⋃
t>0 Lt(ξ) denote the set of D-reachable points from ξ. We call

the points in the closure L(ξ) D-accessible from ξ. Let L :=
⋂
ξ∈M L(ξ) denote the

set of points that are D-accessible from all other points in M . In [1], we used the

term D-appraochable instead of D-accessible. We make this change because the term

D-accessible is already established in the literature (see for instance [6, Remark 3.8]).

Notice that if one of the vector fields in D has a minimal global attractor, then this

attractor is a subset of L.

2.2 Sufficient conditions for uniqueness and absolute con-
tinuity of the invariant measure

We are ready to state sufficient conditions for uniqueness and absolute continuity of

the invariant measure.

Theorem 2 Suppose the weak hypoellipticity condition is satisfied at a point ξ ∈ L.

If (Pt)t≥0 has an invariant measure, then the invariant measure is unique and abso-

lutely continuous with respect to the product of Lebesgue measure on M and counting

measure on S.

The main task in the proof of Theorem 2 is to establish regularity for transition prob-

abilities under the weak hypoellipticity condition. Under the weak hypoellipticity

condition, it may happen that none of the transition probability measures (Ptξ,i)t≥0

has a nonzero absolutely continuous component. We refer the reader to the dis-

cussion of Example 3 in Section 2.5 to illustrate this point. Nevertheless, the weak

hypoellipticity condition guarantees that time averages of transition probabilities have
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nontrivial absolutely continuous components. Specifically, we will establish this for

the resolvent probability kernel Qξ,i defined by

Qξ,i(E × {j}) :=

∫
R+

e−t · Ptξ,i(E × {j}) dt. (10)

Theorem 3 If the weak hypoellipticity condition is satisfied at some point ξ ∈ M ,

then for any i ∈ S, the measure Qξ,i defined by (10) has a nonzero absolutely contin-

uous component with respect to Lebesgue measure on M × S.

Resolvent kernels are useful in the study of invariant distributions due to the

following straightforward result.

Lemma 1 If a measure µ is invariant with respect to the semigroup (Pt)t≥0, it is

also invariant with respect to Q, i.e. µ = µQ, where the convolution µQ is defined in

analogy to (2) by

µQ(E × {j}) :=
∑
i∈S

∫
M

Qξ,i(E × {j}) µi(dξ).

Under the strong hypoellipticity condition, we can establish a much stronger reg-

ularity property of the transition probabilities.

Theorem 4 If the strong hypoellipticity condition is satisfied at a point ξ ∈M , then

for any i ∈ S and any t > 0, the transition kernel Ptξ,i has a nonzero absolutely

continuous component with respect to Lebesgue measure on M × S.

2.3 Proof of Theorems 4 and 3

Our proofs of Theorems 4 and 3 use classical results from geometric control theory

that can be found in [24]. The statements we present below are derived from Theo-

rems 3.1, 3.2, and 3.3 in [24]. Analogous results for the special case of analytic vector

fields on a real analytic manifold are first stated in [32, Theorems 3.1 and 3.2]. In their

paper, Sussmann and Jurdjevic were able to build on prior work by Chow (see [9])
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who considered symmetric families of analytic vector fields. Krener generalized these

results to C∞-vector fields in [26].

Recall that a regular point of a function f : Rm →M is a point t ∈ Rm such that

the differential Df(t) has full rank. If Df(t) has deficient rank, t is called a critical

point of f .

Theorem 5 Assume that the strong hypoellipticity condition holds at some ξ ∈ M .

Then:

1. For any i, j ∈ S, there are an integer m > n and a vector i ∈ Sm+1 with i1 = i

and im+1 = j such that for any t > 0 the mapping fi : Rm
+ →M defined by

fi(t1, . . . , tm) := Φi

(
t1, . . . , tm, t−

m∑
l=1

tl, ξ

)
(11)

has a nonempty open set of regular points in the simplex

∆t,m :=

{
(t1, . . . , tm) ∈ Rm

+ :
m∑
l=1

tl < t

}
.

2. The interior of L(ξ) is nonempty and dense in L(ξ).

Theorem 6 Assume that the weak hypoellipticity condition holds at some ξ ∈ M .

Then:

1. For any i, j ∈ S, there are an integer m > n and a vector i ∈ Sm+1 with i1 = i

and im+1 = j such that for any t > 0 the mapping Fi : Rm+1
+ →M defined by

Fi(t1, . . . , tm+1) := Φi(t1, . . . , tm+1, ξ)

has a nonempty open set of regular points in ∆t,m+1.

2. The interior of L(ξ) is nonempty and dense in L(ξ).

Appendix A contains a discussion of Theorems 5 and 6, including proof sketches.

More detailed proofs and considerably more background information can be found
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in [24, Chapter 3]. The strong hypoellipticity condition is stronger than the weak

hypoellipticity condition, so it is not surprising that the conclusion of Theorem 5

implies the conclusion of Theorem 6.

Theorem 5 shows that under the strong hypoellipticity condition, we can find

a sequence of driving vector fields such that using that sequence and varying only

the switching times we can generate an open set of terminal positions for any fixed

terminal time t > 0. Moreover, the map assigning the terminal position at time t

to the switching time sequence is regular, i.e. its Jacobian has full rank. We will

use this theorem to conclude that, under this map, the pushforward of an absolutely

continuous measure is also absolutely continuous. Under the weak hypoellipticity

condition, such regularity for a fixed time t is not guaranteed. However, Theorem 6

shows that if it is allowed to vary also the terminal time t, we can still generate an

open set of terminal positions and the Jacobian of the corresponding map still has

full rank. This means that although the pushforward measures themselves do not

necessarily have the desired regularity, their averages over terminal times t do, and

we will use this argument to study the regularity of the resolvent measure of (X,A).

In addition to Theorems 5 and 6, we need the following result on the pushforward

of an absolutely continuous measure under a regular transformation.

Lemma 2 Let n and m be positive integers with n ≤ m. Suppose that B and ∆

are nonempty open sets in Rm, B ⊂ ∆, and that M is an n-dimensional smooth

manifold. If f : ∆→M is differentiable on B and all points in B are regular for f ,

then for any absolutely continuous probability measure µ on ∆ satisfying µ(B) > 0,

the pushforward µf−1 is not singular with respect to λM .

We will prove Lemma 2 only for the case M = Rn. Our proof can be easily modified

to include the general case by using coordinate patches on M .

We will use the following statement (see, e.g., Proposition 4.4 in [14]):
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Lemma 3 Let f : B → Rm be a Borel function that is differentiable almost every-

where on an open set B ⊂ Rm and satisfies λm{t ∈ B : detDf(t) = 0} = 0. If µ

is absolutely continuous with respect to λm, then µf−1 is absolutely continuous with

respect to λm, and

d(µf−1)

dλm
(s) =

∑
t∈B:f(t)=s

|detDf(t)|−1 dµ

dλm
(t).

Proof of Lemma 2: We can find an open set B′ ⊂ B such that µ(B′) > 0 and

there are n columns of Df(t) such that for any t ∈ B′, the columns are linearly

independent. We can assume without loss of generality that these columns are the

first n columns of Df(t). For ρ : B′ → Rn × Rm−n defined by

ρ : t = (t1, . . . , tm) 7→ (f(t), tn+1, . . . , tm),

and any t ∈ B′, we have

detDρ(t) 6= 0.

Therefore, by Lemma 3, the pushforward of the restriction of µ to B′ under ρ is

a positive absolutely continuous measure on Rn × Rm−n. Integrating over Rm−n,

we obtain that the pushforward of the restriction of µ to B′ under f is a positive

absolutely continuous measure on Rn. This completes the proof. 2

We can now proceed to proving Theorems 4 and 3.

Proof of Theorem 4: To establish Theorem 4, we need to show that for any

t > 0 and i ∈ S, the measure Ptξ,i is not singular.

Fix an index i ∈ S. We call a finite sequence i of indices in S with initial index

i an admissible sequence. For any admissible i, let Ci be the event that the driving

vector fields up to time t appear in the order determined by i. Since Pξ,i(Ci) > 0 for

any admissible i, it suffices to find an admissible sequence i such that Ptξ,i(·|Ci) is not

singular. We claim that this holds true for the the sequence i provided by Theorem 5.
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According to Theorem 5, there is an admissible sequence i = (i1, i2, . . . , im+1) with

i1 = i such that the function fi has a regular point in ∆t,m. Since the set of regular

points of a differentiable function is open in its domain, the function fi is regular in

a nonempty open set B ⊂ ∆t,m.

Let T1, T2, . . . , Tm+1 be independent and exponentially distributed random vari-

ables such that Tj has parameter λij for 1 ≤ j ≤ m+1. On Ci we have At = im+1, and

the distribution of Xt under Pξ,i(·|Ci) coincides with the distribution of fi(T1, . . . , Tm)

conditioned on the event

R :=

{ m∑
j=1

Tj < t ≤
m+1∑
j=1

Tj

}
. (12)

The distribution of the random vector (T1, . . . , Tm) conditioned on R, is equivalent

to the uniform distribution on the simplex

∆t,m :=

{
(t1, . . . , tm) ∈ Rm

+ :
m∑
j=1

tj < t

}
.

Now, Theorem 4 directly follows from Lemma 2. 2

Proof of Theorem 3: We need to show that Qξ,i is not a singular measure. The

proof is based on Theorem 6.

For the S-valued process A, we define It(A) as the sequence of states visited by

A between 0 and t. For any m ∈ N and any sequence i ∈ Sm, we can introduce an

auxiliary measure Qξ,i,i on M by

Qξ,i,i(B) :=

∫
R+

e−t Pξ,i{Xt ∈ B and It(A) = i} dt, B ∈ B(M).

Since

Qξ,i(B × {j}) =
∑
m

∑
i=(i,i2,...,im−1,j)∈Sm

Qξ,i,i(B), (13)

it is sufficient to find i = (i1, . . . , im) with i1 = i such that Qξ,i,i(M) > 0 and

Qξ,i,i(·) :=
Qξ,i,i(·)

Qξ,i,i(M)
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is a nonsingular probability measure. To apply Lemma 2, we need to represent Qξ,i,i

as the pushforward of a measure equivalent to Lebesgue measure under a smooth map

with a nonempty set of regular points.

Since the weak hypoellipticity condition holds at ξ, Theorem 6 yields an integer

m > n and a sequence i = (i1, i2, . . . , im+1) with i1 = i, such that the function

Fi : Rm+1
+ →M defined by

Fi(t) := Φi(t, ξ)

has a regular point. For this i provided by Theorem 6, Qξ,i,i is the distribution of

Φi

(
T1, . . . , Tm, T −

∑m
j=1 Tj, ξ

)
conditioned on

R :=

{ m∑
j=1

Tj < T ≤
m+1∑
j=1

Tj

}
, (14)

where T1, . . . , Tm+1 and T are independent random variables that are exponentially

distributed with parameters λi1 , . . . , λim+1 and 1, respectively.

Since the joint distribution of T1, . . . , Tm+1, T is equivalent to Lebesgue measure

and since event R has positive probability, the distribution µ of T1, . . . , Tm, T condi-

tioned on R induces a measure on

∆ :=

{
(t1, . . . , tm, t) ∈ Rm+1

+ :
m∑
j=1

tj < t

}
that is equivalent to Lebesgue measure. The regularity of Fi, guaranteed by Theo-

rem 6, implies that the function fi : ∆→M defined by

fi(t1, . . . , tm, t) := Fi

(
t1, . . . , tm, t−

m∑
j=1

tj

)
has a nonempty open set of regular points in ∆, and the proof is completed by an

application of Lemma 2, since Qξ,i,i is the pushforward of µ under fi. 2

24



2.4 Proof of Theorem 2

According to the Ergodic Decomposition Theorem, all invariant measures for a Markov

semigroup can be represented in terms of ergodic ones (see for instance [19, Theo-

rem 1.7]). We will use this to derive the absolute continuity part of Theorem 2 from

absolute continuity of ergodic invariant distributions.

To define ergodic measures, we need to recall the notion of µ-invariant sets. Let µ

be an invariant measure for the Markov semigroup (Pt)t≥0. A set A ∈ B(M)⊗ P(S)

is µ-invariant if for every t ≥ 0, we have Ptξ,i(A) = 1 for µ-almost every (ξ, i) ∈ A. An

invariant measure µ is called ergodic if for every µ-invariant set A, either µ(A) = 1

or µ(A) = 0. The Ergodic Decomposition Theorem then states that for any invariant

measure µ, there is a unique probability measure P on the set of invariant measures

I such that P is supported on the ergodic measures in I and

µ =

∫
I

νP (dν).

The following is a basic result on systems with Markov switchings that does not use

Conditions A or B.

Theorem 7 If µ is invariant with respect to (Pt)t≥0 and ergodic, it is either absolutely

continuous or singular.

Proof: Consider the Lebesgue decomposition µ = µac + µs, where µac is absolutely

continuous and µs is singular with respect to Lebesgue measure. Let us show that

both µac and µs are invariant. For any t > 0, using the invariance of µ, we can write

µac + µs = µ = µPt = µacP
t + µsP

t =
k∑
j=1

νj + µsP
t, (15)

where

νj(·) :=

∫
M

Ptξ,j(·)µac(dξ × {j}), j ∈ S. (16)
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We claim that the measures νj, j ∈ S, are absolutely continuous. To see this, we

check that for any sequence i = (i1, . . . , im+1) with i1 = j, the measure νi defined by

νi(E) :=

∫
M

Pξ,j(Xt ∈ E|Ci)µac(dξ × {j})

=

∫
M

P

(
Φi

(
T1, . . . , Tm, t−

m∑
l=1

Tl, ξ

)
∈ E

∣∣∣∣R)µac(dξ × {j}) (17)

is absolutely continuous. Here we use the notation introduced in Section 2.3. In

particular, we use the definition of R given in (12). Suppose that λM(E) = 0. For

fixed T1, . . . , Tm, Tm+1, the map Φi is a diffeomorphism in ξ. Therefore, on event R,

we have

µac

({
ξ × {j} : Φi

(
T1, . . . , Tm, t−

m∑
l=1

Tl, ξ

)
∈ E

})
= 0,

and νi(E) = 0 follows from disintegrating the right side of (17) and changing the

order of integration.

Now, using (15) and the absolute continuity of νj, j ∈ S, we can write

µac =
k∑
j=1

νj + (µsP
t)ac. (18)

Since Ptξ,j(M × S) = 1 for all ξ and j, (16) implies∑k
j=1 νj(M × S) = µac(M × S). Therefore, applying (18) to M × S, we obtain that

the absolutely continuous component of the measure µsP
t is zero. In other words,

µsP
t is singular, and from (15) and the absolute continuity of νj, j ∈ S, we obtain

µs = µsP
t. In other words, µs is invariant for (Pt)t≥0. It follows from (15) that µac is

also invariant. Since µ is ergodic, it cannot be represented as a sum of two nontrivial

invariant measures. This means that either µ = µac or µ = µs. 2

We endow the state space S with the discrete topology and recall that a point

(ξ, i) ∈M × S is contained in the support of a measure if and only if the measure of

every open neighborhood of (ξ, i) is positive.
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Theorem 8 Let µ be an ergodic invariant measure for (Pt)t≥0. Assume that the

support of µ contains a point (η, i) such that the weak hypoellipticity condition holds

at η. Then, µ is absolutely continuous with respect to Lebesgue measure on M × S.

In order to prove Theorem 8, we need the following lemma.

Lemma 4 Let ν be a finite Borel measure on M × S with support K. If U is any

open set in M × S whose intersection with K is nonempty, we have

ν(U ∩K) > 0.

Proof: Assume that ν(U ∩K) = 0. The complement of the support K has measure

zero. Therefore,

ν(U) = ν(U ∩K) + ν(U ∩Kc) = 0.

Thus, U c is a closed subset of M ×S whose complement has measure zero. From the

definition of the support, we obtain that K ⊂ U c. But then, U ∩K must be empty,

a contradiction. 2

Proof of Theorem 8: According to Theorem 7, we need to show that µ is not

singular. If µ is singular, it is entirely supported on a set G ⊂ M × S of Lebesgue

measure 0, so µ(Gc) = 0. Since µ is invariant with respect to (Pt)t≥0, it is also

invariant with respect to Q. Therefore, µ(Gc) = µQ(Gc), and we see that µ(V ) = 0,

where

V := {(ξ, j) ∈M × S : Qξ,j(G
c) > 0}.

Let U be the set of points ξ ∈ M where the weak hypoellipticity condition holds.

Due to Theorem 3, U × S ⊂ V , and we conclude that µ(U × S) = 0. Recall that U

is an open subset of M , and (U × S) ∩ suppµ 6= ∅ by assumption. Lemma 4 implies

that µ((U × S) ∩ suppµ) > 0. This contradicts µ(U × S) = 0, completing the proof.

2
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If one replaces the weak hypoellipticity condition in Theorem 8 with the strong

hypoellipticity condition, the resulting statement holds automatically, but one can

give a proof that does not involve the resolvent Q, see [1, Theorem 8].

Next, we establish two properties of the set E := L ∩ U , where U is the open set

of points satisfying the weak hypoellipticity condition and L is the set of points that

are D-accessible from all other points in M .

Lemma 5 The set E has nonempty interior.

Proof: By assumption, ξ ∈ E , so U 6= ∅ and L(ξ) ∩ U 6= ∅ because the vector

fields in D are continuous. Since ξ ∈ U , Theorem 6 implies that L(ξ) has nonempty

interior that is dense in L(ξ). Therefore, the set

V := L(ξ)◦ ∩ U

is nonempty and open. Clearly, V ⊂ U , and it remains to prove that L(ξ)◦ ⊂ L. In

fact, we even have that L(ξ) ⊂ L. To see this, let us fix any ζ ∈ L(ξ), η ∈ M , and

prove that ζ ∈ L(η). Since ζ ∈ L(ξ), we have

ζ = Φi(t, ξ)

for some index sequence i and some time sequence t. Let us fix a neighborhood W

of ζ. Since the mapping x 7→ Φi(t, x) is continuous, the inverse image of W under

this map is an open neighborhood of ξ. Since ξ is D-accessible from η, this open

neighborhood of ξ contains a point that is D-reachable from η. Hence, W contains a

point that is D-reachable from η. 2

As an immediate corollary of Lemma 5, the set L has nonempty interior.

Lemma 6 Suppose µ is an invariant measure for (Pt)t≥0. If G is a nonempty open

subset of L and j ∈ S, then µj(G) > 0.
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Proof: Let us assume that µ(G × {j}) = 0. Since µ is invariant with respect to

(Pt)t≥0, it is also invariant with respect to Q, and we have

0 = µj(G) =
k∑
i=1

∫
M

Qη,i(G× {j})µi(dη).

For all i ∈ S and µi-almost every η ∈M , we thus obtain

Qη,i(G× {j}) = 0. (19)

Choose a point η ∈ M for which (19) holds. By assumption, G ⊂ L ⊂ L(η). Since

G is open, G ∩ L(η) 6= ∅. So, there exist a sequence i = (i, i2, . . . , im, j) and a vector

of switching times t = (t1, . . . , tm, tm+1) such that Φi(t, η) ∈ G. By continuity of

Φi, there is a neighborhood W of t in Rm+1
+ such that Φi(s, η) ∈ G for all s ∈ W .

Defining s := s1+. . .+sm+1 and using the representation of Psη,i(·|Ci) via exponentially

distributed times from the proof of Theorem 4, we conclude that Psη,i(G×{j}) > 0 for

s sufficiently close to t := t1 + . . .+ tm+1. Therefore, Qη,i(G×{j}) > 0, contradicting

(19). 2

Proof of Theorem 2: By the Ergodic Decomposition Theorem, it suffices to

show absolute continuity and uniqueness of an ergodic invariant measure.

We first derive absolute continuity. If µ is an ergodic invariant measure that

satisfies the assumptions of Theorem 2, it suffices to show that L ⊂ suppµ in light of

Theorem 8. Let j ∈ S, ξ ∈ L, and let U be a neighborhood of ξ in M . By Lemma 6,

we have µj(U) > 0, hence ξ ∈ suppµ.

Next, we show uniqueness of the ergodic invariant measure. Let us assume that

µ(1) and µ(2) are two distinct ergodic invariant probability measures, and lead this

assumption to a contradiction. The Ergodic Decomposition Theorem implies that

µ(1) and µ(2) are mutually singular. Hence, the set M ×S can be partitioned into two

sets H1 and H2 with µ(1)(H2) = µ(2)(H1) = 0. The two sets can be represented as

Ha =
k⋃
j=1

Ma,j × {j}, a = 1, 2
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for some measurable sets Ma,j, j ∈ S, a = 1, 2. It is clear that M1,j ∪M2,j = M for

all j ∈ S. For all a ∈ {1, 2} and j ∈ S,

µ(a)(Ma,j × {j}) = µ(a)(M × {j}) > 0,

since the left side is a stationary distribution for the Markov chain on S and by our

assumptions, transitions between all states happen with positive probability.

Fix a j in S. By Lemma 5, the set E◦ is nonempty. By Lemma 6, we have

µ(1)(E◦ × {j}) > 0 for all j ∈ S. Since µ(1)(M2,j × {j}) = 0, we deduce that

µ(1)(E1×{j}) > 0, where E1 := E◦∩M1,j. The measure µ(1) is invariant with respect

to (Pt)t≥0, hence it is also invariant with respect to Q, and we have

0 = µ(1)(M2,j × {j}) ≥
∫
E1

Qη,j(M2,j × {j})µ(1)(dη × {j}). (20)

Since µ(1)(E1 × {j}) > 0, it suffices to show that Qη,j(M2,j × {j}) > 0 for all η ∈ E1

to obtain a contradiction with (20).

Since η satisfies the weak hypoellipticity condition, Theorem 6 guarantees that

there exist an integer m > n and a vector i = (j, i2, . . . , im, j) such that the function

f : Rm+1
+ →M defined by

f(t) := Φi(t, η) (21)

has an open set O of regular points and

{t = (t1, . . . , tm+1) ∈ O : t1 + . . .+ tm+1 < t} 6= ∅

for all t > 0. Therefore, the map F defined by

F (t1, . . . , tm+1, t) := f

(
t1, . . . , tm, t−

m∑
l=1

tl

)
on

∆ :=

{
(t1, . . . , tm+1, t) ∈ Rm+2

+ :
m∑
l=1

tl < t <

m+1∑
l=1

tl

}
has an open set V ⊂ ∆ of regular points such that

{t = (t1, . . . , tm+1, t) ∈ V : t < s} 6= ∅, s > 0. (22)
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The fact that F is regular on V implies that F (V ) is open. Using the representation

of Q via (13) and the family of exponentially distributed times T1, . . . , Tm+1, T , we

obtain that it is sufficient to prove that

P {F (T1, . . . , Tm+1, T ) ∈M2,j|R} > 0, (23)

where R was introduced in (14). Since E◦ is an open set containing η, and F (V ) is

an open set such that η ∈ F (V ) (due to (22) and continuity of F at 0), we obtain

that G := E◦ ∩ F (V ) is also a nonempty open set.

Let us choose a vector r ∈ V such that F (r) ∈ E◦. Since r is a regular point for

F , we see that for an arbitrary choice of local smooth coordinates around r, there

are n independent columns of the matrix DF (s) for s in a small neighborhood of r.

Without loss of generality, we can assume that these are the first n columns. Then,

the map ρ : Rm+2 →M × Rm+2−n defined by

ρ(s1, . . . , sm+1, s) := (F (s1, . . . , sm+1, s), sn+1, . . . , sm+1, s)

has nonzero Jacobian in that neighborhood. Therefore, we can choose an open set

WV containing r so that ρ is a diffeomorphism between WV and WG×Wm+2−n, where

WG ⊂ G and Wm+2−n ⊂ Rm+2−n
+ are some open sets.

The set WG is an open subset of L. It is also not empty since it contains F (r).

Lemma 6 implies that µ(2)(WG × {j}) > 0. Since µ(2)(M c
2,j × {j}) = 0, we conclude

that µ(2)(J × {j}) > 0, where J := M2,j ∩WG. Since µ(2) is an ergodic measure, it is

absolutely continuous, so

λM(J) > 0. (24)

Since J ⊂M2,j, the desired inequality (23) will follow from

P {F (T1, . . . , Tm+1, T ) ∈ J |R} > 0. (25)

Since the joint distribution of T1, . . . , Tm+1, T is equivalent to the Lebesgue measure on

∆, Lemma 3 implies that ρ(T1, . . . , Tm+1, T ) has positive density almost everywhere
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in WG ×Wm+2−n. Integrating over Wm+2−n, we see that

F (T1, . . . , Tm+1, T ) has positive density almost everywhere in WG. Now (25) follows

from (24). 2

Of course, Theorem 2 remains true if one replaces the weak hypoellipticity con-

dition with the strong hypoellipticity condition. Under the strong hypoellipticity

conition, one can prove this result without referring to the resolvent Q. Namely, one

can use the regularity of transition probabilities established in Theorem 4 and invoke

Theorems 5 and [1, Theorem 8] instead of Theorems 6 and 8.

2.5 Examples

Let us first consider Example 3. For any fixed time t > 0, the set of points D-reachable

from the origin at time t is the image of{
(s1, . . . , sn) ∈ [0,∞)n :

n∑
j=1

sj = t

}
under the covering map Rn → Tn, and has Lebesgue measure zero. Thus, Ptξ,i is a

purely singular measure. This implies that the strong hypoellipticity condition does

not hold for this system: If the strong hypoellipticity condition was satisfied at some

point ξ ∈ Tn, the transition probability measures Ptξ,i would not be singular with

respect to Lebesgue measure, according to Theorem 4.

It is also instructive to show directly why the strong hypoellipticity condition does

not hold. As all vector fields in D are constant, the derived algebra I ′(D) contains

only the zero vector field. Thus, for any ξ ∈ Tn,

I0(D)(ξ) =

{ n∑
i=1

νiui :
n∑
i=1

νi = 0

}
.

Due to the constraint
∑n

i=1 νi = 0, the algebra I0(D)(ξ) does not have full dimension,

so the strong hypoellipticity condition is violated at every point in Tn.

On the other hand, the weak hypoellipticity condition is clearly satisfied at any

point ξ ∈ Tn, as the standard basis of Rn applied to ξ yields a full-dimensional
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set of vectors in the tangent space. Also note that any point in Tn is D-reachable

from any other point. Therefore, Theorem 2 guarantees that the associated Markov

semigroup has a unique invariant measure, provided that such a measure exists. In

this elementary example, it is possible to point out the invariant measure explicitly.

If all switching rates are equal, the invariant measure is given by

µ(E × {i}) = λ(E), E ∈ B(Tn), i ∈ S,

where λ denotes Lebesgue measure on Tn.

Example 4 provides a situation where the number of vector fields in D is less

than the dimension of the manifold M , each individual vector field in D gives rise to

dynamics with a strange attractor and no absolutely continuous invariant measures,

but the switching system has a unique invariant measure that is absolutely continuous.

In [35], Tucker shows that the Lorenz system with parameters σ = 10, r = 28 and

b = 8
3
, corresponding to vector field u, admits a robust strange attractor Λ as well as

a unique SRB-measure supported on Λ (see [38] for background information on SRB-

measures). Robustness implies that the dynamical structure of the system remains

intact under small parameter changes, so the dynamics induced by v share these

features if rv is sufficiently close to ru. Moreover, the SRB-measure on Λ satisfies a

dissipative ergodic theorem, which can be inferred from [3, Section 5.1], using Tucker’s

result. It follows that any point ξ ∈ Λ is {u}-accessible (and thus D-accessible) from

every point in a set Sξ ⊂ R3 whose complement has Lebesgue measure zero.

Assisted by a computer algebra system, we checked that the strong hypoellipticity

condition is satisfied for this system at any point in R3 that does not lie on the z-axis.

Since the z-axis is invariant under the flows of both vector fields, we disregard it and

set M to be R3 without points on the z-axis. With this provision, every point on the

attractor Λ is D-accessible from any point in M :

Consider a point ξ ∈ Λ and a point η ∈ M . By Theorem 5, there is a nonempty
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open set of D-reachable points from η (recall that the strong hypoellipticity condition

holds at every point in M). And since this open set has positive Lebesgue measure,

it contains a point belonging to Sξ. Hence, ξ is D-accessible from η.

The only remaining condition of Theorem 2 that we need to check is existence of

an invariant distribution. An elementary calculation similar to that for the case of

one vector field (see, e.g., [21, Section 14.2]) shows that if rv is sufficiently close to

ru, then the function

V (x, y, z) := rux
2 + σy2 + σ(z − 2ru)

2

plays the role of a Lyapunov function for both vector fields u and v. Namely, there

is a number ν > 0 such that 〈u,∇V 〉 < 0 and 〈v,∇V 〉 < 0 if V ≥ ν. In particular,

the compact set {(x, y, z) : V (x, y, z) ≤ ν} is invariant for both vector fields, and a

standard application of the Krylov–Bogoliubov method (see Section 3.2) shows that

the system has an invariant distribution. As in Example 3, uniqueness and absolute

continuity of an invariant measure follow now from Theorem 2.
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CHAPTER III

ERGODICITY

In this chapter, we collect several conditions that guarantee exponential convergence

of the distribution of (X,A)t to an invariant measure in a suitable metric as t goes to

infinity. The chapter is based on work by Michel Benäım, Stéphane Le Borgne, Florent

Malrieu and Pierre-André Zitt. In Section 3.1, we state a lemma due to Benäım,

Le Borgne, Malrieu and Zitt that guarantees existence of minorizing measures for

compact subsets of M under the strong hypoellipticity condition. In Section 3.2, we

use this lemma to derive exponential convergence to the invariant measure in total-

variation distance on a compact manifold M . This result is also due to Benäım, Le

Borgne, Malrieu and Zitt. Besides, we present the Krylov–Bogoliubov method to

establish existence of an invariant measure if M is compact. In Section 3.3, we briefly

discuss exponential convergence to the invariant measure in a noncompact setting.

Finally, we apply some of the ergodicity results in this chapter to our examples.

3.1 Existence of a minorizing measure

We first address under which assumptions there exists a minorizing measure on M×S.

We call a probability measure ν on M × S minorizing with respect to the Markov

semigroup (Pt)t≥0 of (X,A) and a compact set K ⊂M if there exist a constant c > 0

and a time t > 0 such that

inf
η∈K,i∈S

Ptη,i(E × {l}) ≥ c · ν(E × {l})

for all measurable sets E ⊂ M and for all l ∈ S. Notice that the lower bound is

uniform in (η, i), at least over a compact subset of M × S. See also [20, Assumption

2]. Existence of a minorizing measure is reminiscent of Doeblin’s condition in the
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case of a discrete state space ([20, page 2]).

Under the strong hypoellipticity condition, we have the following statement.

Lemma 7 Assume that the strong hypoellipticity condition holds at a D-accessible

point ξ, and let K ⊂M be compact. Then, there exists a measure ν that is minorizing

with respect to (Pt)t≥0 and K.

Lemma 7 is due to Benäım, Le Borgne, Malrieu and Zitt, see [6]. In [6], the authors

assume that M is compact. Our version of the statement is a minimal extension that

follows immediately.

Sketch of Proof: We give an idea of how to prove Lemma 7. See [6] for the

details. If the strong hypoellipticity condition holds at a point ξ ∈ M , we have

the following local regularity result (see [6, Theorems 4.2, 4.4]): There exist an open

neighborhood U of ξ, an open set V ⊂M , a time T > 0, an index j ∈ S and constants

c̄, ε > 0 such that

inf
η∈U,i∈S,t∈[T,T+ε]

Ptη,i(E × {l}) ≥ c̄ · λM(E ∩ V ) · δl,j

for all measurable sets E ⊂M and for all l ∈ S. Here, λM denotes Lebesgue measure

on M and δl,j is the Kronecker delta. In addition, one has to establish global lower

bounds on transition probabilities to neighborhoods of D-accessible points. If the

strong hypoellipticity condition is satisfied at a D-accessible point ξ, the following

statement holds (see [6, Equation (20), page 16]): For any open neighborhood U of ξ

and for any compact set K ⊂M , there exist a time t > 0 and a constant α > 0 such

that

inf
η∈K,i∈S

Pη,i(Xt ∈ U) ≥ α.

Using these global lower bounds on transition probabilities, we can extend the local

regularity result with the help of the Chapman–Kolmogorov equations to obtain ex-

istence of a minorizing measure. 2
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3.2 The Krylov–Bogoliubov method and convergence in to-
tal variation

Suppose that M is compact or that the process X is eventually confined to a bounded

subset of M . Under this assumption, existence of an invariant measure is guaran-

teed by the Krylov–Bogoliubov method, see for instance [11, Theorem 3.1.1]. The

argument for switching systems goes as follows:

Assume without loss of generality that M is compact. Under our general assump-

tions on the switching system, the semigroup (Pt)t≥0 is Feller, see [6, Proposition

2.1]. This means that for any bounded and continuous function f : M ×S → R, the

function Ptf , defined by (3), is also bounded and continuous for all t ≥ 0. For more

general classes of piecewise deterministic Markov processes, (Pt)t≥0 doesn’t have to

be Feller, see [13, Example 27.5]. Fix a point (ξ, i) ∈ M × S. For T > 0, define the

probability measure

µT (E × {j}) :=
1

T
·
∫ T

0

Ptξ,i(E × {j}) dt, E ∈ B(M), j ∈ S.

The family of measures (µT )T>0 is tight because M × S is compact. By Prokhorov’s

theorem, tightness of (µT )T>0 implies that the family is relatively compact with re-

spect to the topology induced by weak convergence. This means there is a monotone

increasing sequence of times (Tl)l≥1 that diverges to +∞ as well as a probability

measure µ on M × S such that

lim
l→∞

∑
j∈S

∫
M

f(η, j) µTl(dη × {j}) =
∑
j∈S

∫
M

f(η, j) µ(dη × {j}) (26)

for all continuous and bounded functions f on M × S. For a fixed positive integer l,
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we have

∑
j∈S

∫
M

f(η, j) µTl(dη × {j}) =
∑
j∈S

∫
M

f(η, j)
1

Tl

∫ Tl

0

Ptξ,i(dη × {j}) dt

=
1

Tl

∫ Tl

0

∑
j∈S

∫
M

f(η, j) Ptξ,i(dη × {j}) dt

=
1

Tl

∫ Tl

0

Ptf(ξ, i) dt.

Thus, we can write (26) as

lim
l→∞

1

Tl

∫ Tl

0

Ptf(ξ, i) dt =
∑
j∈S

∫
M

f(η, j) µ(dη × {j}). (27)

We want to show that µ is an invariant measure for (Pt)t≥0. To this end, it suffices

to verify identity (4) from Section 1.3 for a bounded and continuous function f . Fix

a bounded and continuous function f on M ×S and let r > 0. Since (Pt)t≥0 is Feller,

the function g(η, j) := Prf(η, j) is also continuous and bounded. Replacing f with g

in (26) and using the semigroup property, we obtain

lim
l→∞

1

Tl

∫ Tl

0

Pt+rf(ξ, i) dt =
∑
j∈S

∫
M

Prf(η, j) µ(dη × {j}). (28)

For any positive integer l, the substitution s = t+ r yields

1

Tl

∫ Tl

0

Pt+rf(ξ, i) dt =
1

Tl

∫ Tl+r

r

Psf(ξ, i) ds

=
1

Tl

∫ Tl

0

Psf(ξ, i) ds+
1

Tl

∫ Tl+r

Tl

Psf(ξ, i) ds− 1

Tl

∫ r

0

Psf(ξ, i) ds.

If we let r go to 0, the term on the right converges to

1

Tl

∫ Tl

0

Psf(ξ, i) ds

by dominated convergence. And since (Pt)t≥0 is stochastically continuous, the term

to the right of the equality sign in (28) converges to

∑
j∈S

∫
M

f(η, j)µ(dη × {j})
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as r tends to 0. We have thus shown that

lim
l→∞

1

Tl

∫ Tl

0

Psf(ξ, i) ds =
∑
j∈S

∫
M

f(η, j)µ(dη × {j}).

Applying (27) to the term on the left, we obtain (4). This shows that µ is indeed an

invariant measure.

The total-variation distance of two probability measures µ and ν on (M×S,B(M)⊗

P(S)) is defined as

tv(µ, ν) :=
1

2
sup
‖f‖∞≤1

(∑
i∈S

∫
M

f(ξ, i) µ(dξ × {i})−
∑
i∈S

∫
M

f(ξ, i) ν(dξ × {i})
)
, (29)

where the supremum is taken over the set of measurable functions on M × S that

are bounded by 1 (see [10, page 2]). Alternatively, one can define the total-variation

distance in terms of couplings. A coupling of two probability measures µ and ν on

M × S is a measure Γ on the product space (M × S)× (M × S), endowed with the

σ-algebra (B(M)⊗ P(S))⊗ (B(M)⊗ P(S)), such that µ and ν are the marginals of

Γ. For example, the product measure µ ⊗ ν is a coupling of µ and ν. Let C(µ, ν)

denote the set of couplings of µ and ν. Then,

tv(µ, ν) = inf
Γ∈C(µ,ν)

Γ({((ξ, i), (η, j)) ∈ (M × S)× (M × S) : (ξ, i) 6= (η, j)})

= inf
Y,Z:L(Y,Z)∈C(µ,ν)

Pr(Y 6= Z). (30)

In (30), the infimum is taken over all random variables Y and Z whose joint distri-

bution is in C(µ, ν). We assume that Y and Z are defined on a common probability

space with probability measure Pr. The equivalence of the two definitions of the

total-variation distance follows from the Kantorovich–Rubinstein formula, see [36,

Particular Case 5.16]. We will need the following property of the total-variation

distance in the proof of Theorem 9.

Lemma 8 Let µ and ν be probability measures and let P be a transition probability

kernel on (M × S,B(M)⊗ P(S)). Then,

tv(µP, νP) ≤ tv(µ, ν).
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Proof: Let f be a measurable function on M × S that is bounded by 1. Then, Pf

is also measurable and

|Pf(ξ, i)| =
∣∣∣∣∑
j∈S

∫
M

f(η, j) Pξ,i(dη × {j})
∣∣∣∣

≤
∑
j∈S

∫
M

|f(η, j)| Pξ,i(dη × {j})

≤ Pξ,i(M × S) = 1.

Hence,

∑
i∈S

∫
M

f(ξ, i) µP(dξ × {i})−
∑
i∈S

∫
M

f(ξ, i) νP(dξ × {i})

=
∑
i∈S

∫
M

Pf(ξ, i) µ(dξ × {i})−
∑
i∈S

∫
M

Pf(ξ, i) ν(dξ × {i})

≤ sup
‖g‖∞≤1

(∑
i∈S

∫
M

g(ξ, i) µ(dξ × {i})−
∑
i∈S

∫
M

g(ξ, i) ν(dξ × {i})
)

=2tv(µ, ν).

Taking the supremum over all measurable functions f with ‖f‖∞ ≤ 1 yields Lemma 8.

2

In addition to compactness of M , we assume that the strong hypoellipticity con-

dition holds at a D-accessible point in M . By Theorem 2, the invariant measure

is unique. The next theorem asserts that the distribution of (X,A)t converges in

total-variation distance to this unique invariant measure at an exponential rate.

Theorem 9 Let µ denote the unique invariant measure of (Pt)t≥0. There exist con-

stants c > 1 and α > 0 such that

tv(πPt, µ) ≤ c · e−αt

for any probability measure π on M × S and for any t ≥ 0.
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Theorem 9 is due to Benäım, Le Borgne, Malrieu and Zitt (see [6, Theorem 4.6]).

Given Lemma 7, the proof is a standard exercise in the use of the coupling method.

The proof we give was suggested to us by Jonathan Mattingly. See also [29, Chapter

5]. When moving from discrete to continuous time, we follow [28, Section III.20].

Proof: Fix a probability measure π on M×S. By Lemma 7, there exist a probability

measure ν on M × S, a constant c̄ ∈ (0, 1) and a time s > 0 such that

inf
η∈M,i∈S

Psη,i(E × {l}) ≥ c̄ · ν(E × {l})

for all measurable sets E ⊂ M and for all l ∈ S. For this s, we define the transition

probability kernel P̄ := Ps. We will proceed according to the following strategy. For

each integer N ≥ 1, we construct a coupling of the measures πP̄N and µP̄N . These

couplings will be constructed in such a way that the tails of the associated coupling

times decay exponentially as N goes to infinity. With (30), we obtain an exponentially

decaying upper bound for tv(πP̄N , µ).

Let (Ym)m≥0 and (Zm)m≥0 be Markov chains on M×S with transition probability

kernel P̄ and initial distributions π and µ, respectively. For N ≥ 1, we define four

additional Markov chains (Ŷ
(N)
m )m≥0, (Ỹ

(N)
m )m≥1, (Ẑ

(N)
m )m≥0 and (Z̃

(N)
m )m≥1 on M × S

as follows: Let (Um)m≥1 be a sequence of independent, identically distributed random

variables with values in (M × S,B(M) ⊗ P(S)), and assume that U1 is distributed

according to ν. Let (βn)n≥1 be a sequence of independent and identically distributed

random variables, and assume that β1 is Bernoulli distributed, with P (β1 = 1) = c̄

and P (β1 = 0) = 1− c̄. For each (η, i) ∈M × S, we define the measure

P̃η,i(E × {l}) :=
1

1− c̄
· (P̄η,i(E × {l})− c̄ν(E × {l})), E ∈ B(M), l ∈ S.

Let Ŷ
(N)

0 be distributed according to π and let Ẑ
(N)
0 be distributed according to µ.

For 0 ≤ l ≤ N , let Ỹ
(N)
l+1 be distributed according to P̃η,i, provided that Ŷ

(N)
l = (η, i),

and let Z̃
(N)
l+1 be distributed according to P̃η,i, provided that Ẑ

(N)
l = (η, i). Then, let

Ŷ
(N)
l+1 := βl+1Ul+1 + (1− βl+1)Ỹ

(N)
l+1
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and

Ẑ
(N)
l+1 :=


βl+1Ul+1 + (1− βl+1)Z̃

(N)
l+1 , Ŷ

(N)
l 6= Ẑ

(N)
l

Ŷ
(N)
l+1 , Ŷ

(N)
l = Ẑ

(N)
l .

For l > N , let Ŷ
(N)
l+1 := Yl+1 and let Ẑ

(N)
l+1 := Zl+1.

Let us show that the processes (Ym)m≥0 and (Ŷ
(N)
m )m≥0 are identically distributed.

From its construction, it is clear that (Ŷ
(N)
m )m≥0 is also a Markov chain with initial

distribution π. For 0 ≤ l ≤ N and for (η, i) ∈M × S, we have

Pr(Ŷ
(N)
l+1 ∈ E × {j}|Ŷ

(N)
l = (η, i))

=Pr((βl+1Ul+1 + (1− βl+1)Ỹ
(N)
l+1 ) ∈ E × {j}|Ŷ (N)

l = (η, i))

=Pr(βl+1 = 1) · Pr(Ul+1 ∈ E × {j}) + Pr(βl+1 = 0) · Pr(Ỹ (N)
l+1 ∈ E × {j}|Ŷ

(N)
l = (η, i))

=c̄ · ν(E × {j}) + (1− c̄) · P̃η,i(E × {j})

=c̄ν(E × {j}) + P̄η,i(E × {j})− c̄ν(E × {j})

=P̄η,i(E × {j}), E ∈ B(M), j ∈ S.

For l > N ,

Pr(Ŷ
(N)
l+1 ∈ E × {j}|Ŷ

(N)
l = (η, i)) = P̄η,i(E × {j}), E ∈ B(M), j ∈ S

follows immediately from the construction of Ŷ (N). Along the same lines, one can

show that (Zm)m≥0 and (Ẑ
(N)
m )m≥0 are identically distributed. Let τ be the coupling

time of the processes (Ŷ
(N)
m )m≥0 and (Ẑ

(N)
m )m≥0, i.e.

τ := inf{m ≥ 0 : Ŷ (N)
m = Ẑ(N)

m }.

If inf{m ≥ 0 : Ŷ
(N)
m = Ẑ

(N)
m } > N , we have β1 = . . . = βN = 0. To see this, assume

the statement doesn’t hold. Then, there is an l ∈ {0, . . . , N − 1} for which βl+1 = 1.

It follows that Ŷ
(N)
l+1 = Ul+1. Since inf{m ≥ 0 : Ŷ

(N)
m = Ẑ

(N)
m } > N and since l < N ,

we have Ŷ
(N)
l 6= Ẑ

(N)
l . Thus, by definition, Ẑ

(N)
l+1 = Ul+1 = Ŷ

(N)
l+1 , a contradiction.
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Therefore,

Pr(τ > N) ≤ Pr(β1 = . . . = βN = 0) = (1− c̄)N .

Next, we derive an upper bound on tv(πP̄N , µ). Since µ is invariant with respect to

(Pt)t≥0, it is also P̄-invariant. Since πP̄N is the distribution of Ŷ
(N)
N and since µP̄N

is the distribution of Ẑ
(N)
N , the joint distribution of (Ŷ

(N)
N , Ẑ

(N)
N ) is a coupling of πP̄N

and µP̄N . With (30) and using the definition of Ẑ(N), we obtain

tv(πP̄N , µ) = tv(πP̄N , µP̄N) ≤ Pr(Ŷ
(N)
N 6= Ẑ

(N)
N ) = Pr(τ > N) ≤ (1− c̄)N . (31)

With α = − ln(1−c̄)
s

, we can rewrite (31) as

tv(πPNs, µ) ≤ e−αNs. (32)

Since N was arbitrarily chosen, inequality (32) holds for any integer N ≥ 1. It remains

to extend (32) to times that are not of the form Ns for some integer N ≥ 1. Fix an

arbitrary time t ≥ 0. There is a unique integer N ≥ 1 such that (N − 1)s ≤ t < Ns.

Using Lemma 8 and the semigroup property, we obtain

tv(πPt, µ) ≤ tv(πP(N−1)s, µ) ≤ e−α(N−1)s.

Theorem 9 then follows with c = eαs. 2

In the case of a noncompact M , Harris’s ergodic theorem (see [10, Theorem 2.10]),

together with Lemma 7, implies a similar result if the semigroup (Pt)t≥0 admits a Lya-

punov function. Exponential convergence to the invariant measure holds with respect

to a weighted version of the total-variation distance, with the weight depending on

the Lyapunov function.

3.3 Convergence in Wasserstein distance

Another sufficient condition for exponential convergence in a noncompact setting has

been provided by Benäım, Le Borgne, Malrieu and Zitt in [7, Assumption 1.8]. We
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present the version in [10], adapted to our more restrictive setting of switching between

deterministic trajectories (as opposed to switching between Markov processes).

Given a Polish space (E, d), the Wasserstein distance of two probability measures

µ and ν on E is defined by

Wd(µ, ν) := inf
Γ∈C(µ,ν)

∫
E×E

d(x, y) Γ(dx, dy),

where one should recall from Section 3.2 that C(µ, ν) denotes the set of couplings of

µ and ν. For a real number p ≥ 1, the Wasserstein distance of order p is defined as

W(p)
d (µ, ν) :=

(
inf

Γ∈C(µ,ν)

∫
E×E

d(x, y)p Γ(dx, dy)

) 1
p

,

see for instance [36, Definition 6.1].

For our switching system, assume that the continuous component X lives on a

Polish space (E, d). Let (Φi)i∈S be the flow functions associated to the vector fields

(ui)i∈S, and assume that Φt
i is globally Lipschitz continuous with Lipschitz constant

Lti for any i ∈ S and for any t ≥ 0. This means that

d(Φt
i(ξ),Φ

t
i(η)) ≤ Lti · d(ξ, η)

for any ξ, η ∈ E. Furthermore, suppose that

κi := inf
t>0

(
− ln(Lti)

t

)
(33)

is a well-defined real number for any i ∈ S. If one assumes, as we do, that the

switching rates are independent of the position of X, the stochastic process A on S

is Markov and has an invariant measure ν. The condition∑
i∈S

ν({i}) · κi > 0 (34)

then implies convergence to an invariant measure in a certain Wasserstein distance

defined in terms of d. Condition (34) can be interpreted as (X,A) contracting in

mean, see [10, page 5].

Recall that µi(·) := µ(· × {i}).
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Theorem 10 Under condition (34), there exist an invariant measure µ for (Pt)t≥0

and constants c, α, T > 0 such that

Wd̂(δ(ξ,i)P
t, µ) ≤ ce−αt · (1 +Wd(δξ, µi)), t ≥ T,

where

d̂((ξ, i), (η, j)) := 1i 6=j + 1i=j ·min{1, d(ξ, η)}.

In [7, Theorem 1.10], the authors establish a slightly different convergence result.

Under a moment condition, they show convergence with respect to a mixture of the

pth Wasserstein distance for the continuous component X and the total variation

distance for the discrete component A.

3.4 Examples

In Example 1, the associated flow functions are Φt
1(η) = ηe−t, Φt

2(η) = η + t and

Φt
3(η) = η − t, with global Lipschitz constants Lt1 = e−t and Lt2 = Lt3 = 1 for any

t ≥ 0. If we define κ1, κ2, κ3 as in (33), we have κ1 = 1 and κ2 = κ3 = 0. Since we

allow switching from any vector field to any other vector field, criterion (34) implies

existence of an invariant measure. Theorem 2 implies that the invariant measure is

unique and absolutely continuous.

In Example 2, the dynamics are eventually confined to the set (0, 1), so existence

of an invariant measure follows using the Krylov–Bogoliubov method. Uniqueness

and absolute continuity follow again from Theorem 2. Since u1 and u2 point in

opposite directions, the strong hypoellipticity condition holds at every point in (0, 1).

Theorem 9 then implies exponential convergence to the invariant measure in total-

variation distance.

The situation in Example 3 is uniformly elliptic, i.e. the tangent space at any point

on the torus is spanned by the vectors obtained through evaluating the vector fields
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in D at this point. In particular, the weak hypoellipticity condition holds at every

point. However, we have already pointed out in Section 2.5 that there is no point on

the torus where the strong hypoellipticity condition is satisfied, so Theorem 9 does

not apply. Given that the transition probabilities (and thus measures of the form

δ(ξ,i)P
t) are singular in this example, we do not have convergence to the invariant

measure in total-variation distance.

A quick computation shows that the flows Φ1 and Φ2 associated to the linear

vector fields in Example 6 are given by

Φt
1(ξ1, ξ2) = e−at

1 ct

0 1


ξ1

ξ2


and

Φt
2(ξ1, ξ2) = e−at

 1 0

−ct 1


ξ1

ξ2

 .

We have

Φt
1(0, ξ2)− Φt

1(0, η2) = e−at

1 ct

0 1


 0

ξ2 − η2


= (ξ2 − η2) · e−at

ct
1

 .

Taking the Euclidean norm on both sides, we obtain

‖Φt
1(0, ξ2)− Φt

1(0, η2)‖2 = |ξ2 − η2| · e−at ·
√
c2t2 + 1.

Thus,

Lt1 ≥ e−at ·
√
c2t2 + 1 > cte−at.

Similarly, one shows that Lt2 > cte−at. Then, for i = 1, 2,

− ln(Lti)

t
≤ a− ln(ct)

t
.
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The term on the right attains its minimum on (0,∞) at t = e
c
. Hence,

κi ≤ a− c

e
.

If λ1 = λ2 = λ and if c
a
≥ e, we have

ν({1}) · κ1 + ν({2}) · κ2 ≤ a− c

e
≤ 0,

so condition (34) does not hold in this case. Indeed, Lawley, Mattingly and Reed

show in [27, Lemma 3.3] that the norm of Xt diverges to∞ almost surely if the ratio

c
a

lies above a certain threshold value that depends on the ratio of c and the switching

rate λ. See also [8] for an earlier result of this type where some convex combination

of the matrices U1 and U2 has a positive eigenvalue. In Example 6, for λ ∈ (0, 1), the

matrix λU1 + (1− λ)U2 has eigenvalues −a− i
√
λ · (1− λ) and −a+ i

√
λ · (1− λ),

which still have negative real part.
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CHAPTER IV

REGULARITY OF INVARIANT DENSITIES

In this chapter, we study the regularity theory for switching systems whose continu-

ous component X lives on R. In Section 4.1, we state our main result: Smoothness

of the vector fields in D translates into smoothness of invariant densities away from

critical points of the vector fields (Theorem 11). In Section 4.2, we state two integral

equations that are satisfied by invariant densities. For differentiable densities, these

equations can be derived from the Fokker–Planck equations (see Appendix B), but

since we intend to use the equations to show differentiability of invariant densities,

we need to come up with a proof that does not rely on the Fokker–Planck equations.

The integral equation stated in Lemma 9 plays an important role in the proof of

Theorem 11. This proof is developed in Section 4.3. The integral equation in

Lemma 10 will figure prominently in Chapter 6. Section 4.4 contains the proofs

of Lemmas 9 and 10.

Throughout this chapter, we assume thatM = R. We assume that the vector fields

in D are continuously differentiable and forward-complete. Recall from Section 1.3

that a probability measure µ on R × S is an invariant measure with respect to the

Markov semigroup (Pt)t≥0 if

µi(E) =
∑
j∈S

∫
R

Ptξ,j(E × {i}) µj(dξ)

for any Borel set E ⊂ R, for any i ∈ S and for any t ≥ 0. Here, µi denotes the marginal

µ(·×{i}) on R. Also recall that we use the term “invariant density” for the probability

density function of an absolutely continuous invariant measure. An invariant density

ρ is an L1-function on R × S, and we will usually consider the projections (ρi)i∈S

that are defined on R by ρi(ξ) := ρ(ξ, i). In what is maybe in abuse of terminology,
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we refer to these projections as invariant densities of the invariant measure. These

invariant densities are then elements of L1(R) and whenever we state a regularity

property of ρi, we mean to say that the equivalence class ρi has a representative with

this regularity property.

We call a point ξ ∈ R critical if ui(ξ) = 0 for some i ∈ S. We call ξ ∈ R noncritical

if ui(ξ) 6= 0 for all i ∈ S and we call it uniformly critical if ui(ξ) = 0 for all i ∈ S.

Throughout this chapter, we assume that the set of critical points of the vector fields

in D has no accumulation points. If ξ is a critical point of a vector field ui for some

i ∈ S, we write that ui is positive to the right of ξ if there is an open interval with left

endpoint ξ on which ui is positive. In this definition, “right” can be replaced with

“left” and “positive” with “negative”.

4.1 Smoothness of invariant densities at noncritical points

Let µ be an invariant measure of (Pt)t≥0 that is absolutely continuous with respect

to Lebesgue measure. Let (ρi)i∈S denote the invariant densities associated to µ. If n

is a positive integer, we call a function C n on a set I or at a point ξ if the function is

n times continuously differentiable on I or at ξ. Being C 0 means being continuous.

Theorem 11 Let ξ ∈ R be noncritical, and assume that there exist an integer n ≥ 1

and a closed interval I containing ξ in its interior on which all vector fields in D are

C n+1. Then, the invariant densities (ρi)i∈S are C n at ξ.

Theorem 11 is proved in Section 4.3. The following statement is an immediate con-

sequence of Theorem 11: If ξ ∈ R is noncritical and if all vector fields in D are C∞

on a closed interval I containing ξ in its interior, then the invariant densities are C∞

at ξ.

In Theorem 11, we assume that there is some absolutely continuous invariant

measure that is not necessarily unique. By Theorem 2, the invariant measure of

(Pt)t≥0 is absolutely continuous (and unique) if there exists a point ξ ∈ R that is
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not uniformly critical and that is D-accessible from any starting point η ∈ R. See

Chapter 3 for conditions guaranteeing existence of an invariant measure.

4.2 Integral equations for invariant densities

In this section, we establish two integral equations satisfied almost everywhere by

invariant densities of (Pt)t≥0. Loosely stated, the equations illustrate how mass with

respect to an invariant density ρi accumulates at a point η ∈ R. At some point in

time, there is a switch from a vector field in D \{ui} to ui, and the flow associated to

ui transports mass to η. In a sense, we condition on the time and nature of this last

switch to ui. The family of equations in Lemma 9 describe the mass transport for a

finite history of the process. In this case, there is a positive probability of having no

switch. Lemma 9 will be the basic tool in the proof of Theorem 11. The equation in

Lemma 10 describes the transport mechanism for an infinite history. This guarantees

that with probability 1, there is at least one switch. Lemma 10 will play an important

role in the proofs of Theorem 12 in Section 6.1 and Theorem 13 in Section 6.2.

Let µ be an absolutely continuous invariant measure of (Pt)t≥0, with invariant

densities (ρi)i∈S. Since we do not assume backward completeness of the vector fields

in D, we have to be careful when studying the history of a switching trajectory. It

could happen that the backward flow associated to a vector field goes off to −∞ or

∞ in finite time. For any η ∈ R and for any i ∈ S, let τi(η) denote the supremum

over the set of times t ≥ 0 for which t 7→ Φ−ti (η) is well-defined. With this definition,

we introduce the shorthand

Φt
i#h(η) :=


h(Φ−ti (η))

DΦti(Φ
−t
i (η))

, t < τi(η)

0, t ≥ τi(η)

(35)

for the pushforward of the function h under the flow map Φt
i. We think of h as a

density function on the real line. Note that DΦt
i > 0 in dimension one, so there is

no need for absolute value in the denominator. Since ui is assumed to be C 1, so is
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η 7→ Φt
i(η), and the differential DΦt

i is well-defined.

Let L1
+(R) be the set of L1-functions on the real line that have a nonnegative

representative. In other words, L1
+(R) is the space of densities for finite measures on

R. For any h ∈ L1
+(R) and for any T > 0, define the Perron–Frobenius operators

P̄Ti h(η) :=
1

T
·
∫ T

0

e−λit · Φt
i#h(η) dt (36)

and

P̂Ti h(η) :=
1

T

∫ T

0

e−λit · (T − t) · Φt
i#h(η) dt. (37)

We can now state the truncated version of the integral equation.

Lemma 9 For any i ∈ S and for any T > 0,

ρi ≡ P̄Ti ρi +
∑
j 6=i

λj,i · P̂Ti ρj.

To state the integral equation over an infinite time horizon, we define the operators

P̄ih(η) :=

∫ ∞
0

e−λit · Φt
i#h(η) dt, i ∈ S

for densities h ∈ L1
+(R).

Lemma 10 For any i ∈ S,

ρi =
∑
j 6=i

λj,i · P̄iρj.

Lemmas 9 and 10 are proved in Section 4.4. As will become apparent from these

proofs, the lemmas continue to hold if the state space R of the continuous component

X is replaced with a finite-dimensional smooth manifold.

4.3 Proof of Theorem 11

In this section, we prove Theorem 11, which was stated in Section 4.1. By assumption,

there exist an integer n ≥ 1 and a closed interval I with ξ in its interior. Since

ξ is noncritical and since for each vector field in D, the set of critical points has
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no accumulation point, we may assume without loss of generality that I does not

contain any critical points. Let I0 ⊂ I be another compact interval containing ξ in

its interior, whose endpoints are a positive distance away from the endpoints of I. As

the trajectories of the X-component of the switching process have bounded speed on

compact subsets of R, there is a small time T0 > 0 such that (Φs
i )
−1(η) ∈ I for any

finite index sequence i, any corresponding sequence of nonnegative switching times s

with sum of components less than or equal to T0 and for any η ∈ I0.

We define the integration kernels

Ki(ζ, η) :=

exp

(
λi ·
∫ ζ
η

dx
ui(x)

)
ui(η)

(38)

and

K̂T0
i (ζ, η) :=

(
T0 +

∫ ζ

η

dx

ui(x)

)
· Ki(ζ, η) (39)

for i ∈ S and (ζ, η) ∈ I × I0. With these definitions, we have the following rep-

resentations of P̄T0
i ρi and P̂T0

i ρj. See (36) and (37) for the definitions of P̄T0
i and

P̂T0
i .

Lemma 11 For any i ∈ S and for any η ∈ I0,

P̄T0
i ρi(η) =

1

T0

·
∫ η

Φ
−T0
i (η)

ρi(ζ) · Ki(ζ, η) dζ. (40)

For any i, j ∈ S, i 6= j, and for any η ∈ I0,

P̂T0
i ρj(η) =

1

T0

·
∫ η

Φ
−T0
i (η)

ρj(ζ) · K̂T0
i (ζ, η) dζ. (41)

Our definition of T0 implies that the interval [Φ−T0
i (η), η] (or [η,Φ−T0

i (η)] if ui(ξ) < 0)

is contained in I, so the integrals on the right are well-defined. Notice in particular

that this reasoning still holds if ui is not backward complete.

Proof: Fix an η ∈ I0 and recall the definition of Φt
i#ρi in (35). Linearity of the

Jacobi flow gives

DΦt
i(Φ
−t
i (η)) =

ui(η)

ui(Φ
−t
i (η))

,
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hence

Φt
i#ρi(η) = ρi(Φ

−t
i (η)) · ui(Φ

−t
i (η))

ui(η)

for any t ∈ [0, T0]. The change of variables ζ = Φ−ti (η) then yields (40). Formula (41)

is proved similarly. 2

In (40) and (41), the expressions on the right still make sense if Ki and K̂T0
i are

replaced with arbitrary kernels on I × I0. For any such kernel H and for any i, j ∈ S,

set

HT0
i ρj(η) :=

1

T0

·
∫ η

Φ
−T0
i (η)

ρj(ζ) · H(ζ, η) dζ. (42)

The following lemma addresses regularity of the integration kernels (Ki)i∈S and (K̂T0
i )i∈S.

Lemma 12 The kernels (Ki)i∈S and (K̂T0
i )i∈S are C n+1 on I × I0.

Proof: This follows from our assumption that ui is C n+1 and nonzero on I. 2

The following lemmas illustrate the smoothing effect of the operators (P̄T0
i )i∈S and

(P̂T0
i )i∈S. We begin by showing that, away from critical points, the densities (ρi)i∈S

are bounded.

Lemma 13 The densities (ρi)i∈S are bounded on the interval I0.

Proof: Fix an i ∈ S. By Lemma 9, it is enough to show that P̄T0
i ρi and (P̂T0

i ρj)j 6=i

are bounded on I0. Since Ki and K̂T0
i are C 1 on the compact set I × I0 (Lemma 12),

they are also bounded on I× I0 by constants ki and ki,T0 . For j ∈ S, let ‖ρj‖1 denote

the L1-norm of ρj on R. Using integral representation (40),

P̄T0
i ρi(η) ≤ ki

T0

·
∫ η

Φ
−T0
i (η)

ρi(ζ) dζ ≤ ki · ‖ρi‖1

T0

for any η ∈ I0. And using integral representation (41),

P̂T0
i ρj(η) ≤ ki,T0

T0

·
∫ η

Φ
−T0
i (η)

ρj(ζ) dζ ≤ ki,T0 · ‖ρj‖1

T0

for any j 6= i, η ∈ I0. 2
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Remark 1 In the proof of Lemma 13, we did not use any concrete information about

Ki or K̂T0
i other than boundedness on I × I0. The result still holds if Ki and K̂T0

i are

replaced with arbitrary kernels that are bounded on I × I0. Besides, the time T0 can

be replaced with any time T ∈ (0, T0).

The following corollary will be useful in Section 6.3 when we derive asymptotics for

invariant densities at critical points.

Corollary 1 Let i ∈ S and assume that ξ ∈ R is not a critical point of ui. Then,

there is a compact interval I with ξ in its interior, such that ρi is bounded on I.

In Lemma 13, we assumed that ξ is noncritical. Here, the point ξ may be critical

for some of the vector fields in D, just not for the particular vector field ui whose

corresponding density function we are interested in.

Proof: Since ui(ξ) 6= 0 and since the set of critical points of ui has no accumulation

points, there is a compact interval I that has ξ in its interior, but does not contain

any critical points of ui. Let I0 ⊂ I be another compact interval with ξ in its interior

such that the endpoints of I0 are a positive distance away from the endpoints of I.

Choose T > 0 so small that Φ−ti (η) ∈ I for any η ∈ I0 and for any t ∈ [0, T ]. Define

the kernels Ki and K̂Ti according to (38) and (39). These kernels are bounded on

I × I0, and we can repeat the proof of Lemma 13 to finish the argument. 2

Let I1 ⊂ I0 be a compact interval that contains ξ in its interior and whose end-

points are a positive distance away from the endpoints of I0. Let T1 ∈ (0, T0] be

so small that (Φs
i )
−1(η) ∈ I0 for any index sequence i, any corresponding sequence

of nonnegative switching times s with l1-norm less than or equal to T1, and for any

η ∈ I1.

Lemma 14 The densities (ρi)i∈S are Lipschitz continuous on I1.
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Proof: Fix an i ∈ S. By Lemma 9, it is enough to show that P̄T1
i ρi and (P̂T1

i ρj)j 6=i

are Lipschitz continuous on I1. By Lemma 13, ρi is bounded on I0 by some constant

ri. Let L be a Lipschitz constant of Ki on I × I0 and let L̃ be a Lipschitz constant

of the flow function Φi on [−T1, 0] × I1. The constant ki is defined as in the proof

of Lemma 13 and ki,T1 is defined in analogy to ki,T0 . Fix two points η, ϑ ∈ I1. As

Φ−T1
i (η) and Φ−T1

t (ϑ) are both contained in I0, we obtain the estimate

|P̄T1
i ρi(η)− P̄T1

i ρi(ϑ)|

=
1

T1

·
∣∣∣∣∫ η

Φ
−T1
i (η)

ρi(ζ) · Ki(ζ, η) dζ −
∫ ϑ

Φ
−T1
i (ϑ)

ρi(ζ) · Ki(ζ, ϑ) dζ

∣∣∣∣
≤ 1

T1

·
(∣∣∣∣∫ Φ

−T1
i (ϑ)

Φ
−T1
i (η)

ρi(ζ) · Ki(ζ, η) dζ

∣∣∣∣+

∣∣∣∣∫ ϑ

η

ρi(ζ) · Ki(ζ, ϑ) dζ

∣∣∣∣
+

∣∣∣∣∫ η

Φ
−T1
i (ϑ)

ρi(ζ) · (Ki(ζ, η)−Ki(ζ, ϑ)) dζ

∣∣∣∣)
≤‖ϑ− η‖ · 1

T1

· (riki · (1 + L̃) + L · ‖ρi‖1).

Let L̂ be a Lipschitz constant of K̂T1
i on I × I0. For a fixed j 6= i, the density ρj is

bounded on I0 by a constant rj, and

|P̂T1
i ρj(η)− P̂T1

i ρj(ϑ)| ≤ |ϑ− η| · 1

T1

· (rjki,T1 · (1 + L̃) + L̂ · ‖ρj‖1). (43)

2

Remark 2 Lemma 14 continues to hold if Ki and K̂T1
i are replaced with arbitrary

kernels that are Lipschitz continuous on I × I0 and if T1 is replaced with an arbitrary

time T ∈ (0, T1).

Remark 3 Lemma 14 implies the following: If an open interval I does not con-

tain any critical points, then all invariant densities ρi are Lipschitz continuous on I.

Slightly modifying the proof of Lemma 14, one can show a related statement: If an

open interval I does not contain any critical points of a particular vector field ui (but
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possibly critical points of other vector fields), the invariant density ρi is continuous

on I.

Notice that we can only guarantee continuity, not Lipschitz continuity, of ρi. Since

we allow for critical points of the other vector fields (uj)j 6=i on I, we can no longer

ascertain boundedness of the corresponding densities (ρj)j 6=i. Instead of (43), we

obtain the weaker estimate

|P̂T1
i ρj(η)− P̂T1

i ρj(ϑ)| ≤ki,T1

T1

·
(∣∣∣∣∫ Φ

−T1
i (η)

Φ
−T1
i (ϑ)

ρj(ζ) dζ

∣∣∣∣+

∣∣∣∣∫ η

ϑ

ρj(ζ) dζ

∣∣∣∣)
+
‖ρj‖1

T1

· L̂ · |ϑ− η|.

Lemma 15 illustrates the actual smoothing mechanism.

Lemma 15 For any integer k ∈ {0, . . . , n− 1}, the following statement holds. If the

densities (ρi)i∈S are C k on a compact interval Ĩ ⊂ I1 that contains ξ in its interior,

there exist a compact interval Ĩ ′ ⊂ Ĩ with ξ in its interior and a time T ∈ (0, T1] such

that for any C k+2-kernel H on I × I0, the functions (HT
i ρj)i,j∈S are C k+1 on Ĩ ′.

Recall that we defined HT
i ρj in (42).

Proof: We prove Lemma 15 by induction on k. In the base case, assume that the

densities (ρi)i∈S are continuous on Ĩ ⊂ I1. Let Ĩ ′ ⊂ Ĩ be a compact interval that

contains ξ in its interior and whose endpoints are a positive distance away from the

endpoints of Ĩ. Let T ∈ (0, T1] be so small that (Φs
i )
−1(η) ∈ Ĩ for any index sequence

i, any corresponding sequences of nonnegative switching times s with l1-norm less

than or equal to T , and for any η ∈ Ĩ ′. For any C 2-kernel H on I × I0, for any η ∈ Ĩ ′
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and for any i, j ∈ S,

d

dη
HT
i ρj(η) =

1

T
·
(
ρj(η) · H(η, η)− ρj(Φ−Ti (η)) · H(Φ−Ti (η), η) · d

dη
Φ−Ti (η)

)
+

1

T
·
∫ η

Φ−Ti (η)

ρj(ζ) · ∂2H(ζ, η) dζ

=
1

T
·
(
ρj(η) · H(η, η)− ρj(Φ−Ti (η)) · H(Φ−Ti (η), η) · d

dη
Φ−Ti (η)

)
(44)

+ (∂2H)Ti ρj(η).

Here, ∂2H denotes the partial derivative of H with respect to its second component.

Since ρj is assumed to be C 0 on Ĩ, since H is C 2 on I × I0 and since ui is C n+1 on

I, the first term in (44) is C 0 on Ĩ ′.

It remains to show that (∂2H)Ti ρj is C 0, but this follows along the lines of

Lemma 14, keeping in mind that ∂2H is Lipschitz continuous on I × I0 and that

T ≤ T1 (see Remark 2). Since d
dη
HT
i ρj(η) is C 0 on Ĩ ′, it follows that HT

i ρj is C 1 on

Ĩ ′. This completes the base case.

In the induction step, let k be a fixed integer in {1, . . . , n − 1} and assume that

the statement holds for k − 1. Assume that the densities (ρi)i∈S are C k on Ĩ ⊂ I1.

The densities (ρi)i∈S are then also C k−1 on Ĩ. By induction hypothesis, there exist

a compact interval Ĩ ′ ⊂ Ĩ with ξ in its interior and a time T ∈ (0, T1] such that for

any C k+1-kernel H on I × I0, the functions (HT
i ρj)i,j∈S are C k on Ĩ ′. Without loss of

generality, we can assume that the endpoints of Ĩ ′ are a positive distance away from

the endpoints of Ĩ and that T is so small that (Φs
i )
−1(η) ∈ Ĩ for any index sequence i,

any corresponding sequence of nonnegative switching times s with l1-norm less than

or equal to T , and for any η ∈ Ĩ ′. Let H be a C k+2-kernel on I× I0. Then, (44) holds

for any η ∈ Ĩ ′ and for any i, j ∈ S.

Since ρj is by assumption C k on Ĩ, since H is C k+2 on I × I0 and since ui is C n+1

on I, the first term in (44) is C k on Ĩ ′. In addition, ∂2H is a C k+1-kernel on I × I0.

By induction hypothesis, (∂2H)Ti ρj is C k on Ĩ ′, so d
dη
HT
i ρj(η) is C k on Ĩ ′. From this,
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it follows that HT
i ρj is C k+1 on Ĩ ′. 2

Proof of Theorem 11: In order to prove Theorem 11, it suffices to show the

following statement:

For any integer k ∈ {0, . . . , n}, there is a compact interval Ik+1 with ξ in its

interior such that the densities (ρi)i∈S are C k on Ik+1.

We prove this statement by induction on k. By Lemma 14, the densities (ρi)i∈S

are Lipschitz continuous on I1. This takes care of the base case. In the induction

step, let k be an integer in {1, . . . , n} and assume that the densities (ρi)i∈S are C k−1

on a compact interval Ik ⊂ I1 with ξ in its interior. By Lemma 15, there exist a

compact interval Ik+1 ⊂ Ik with ξ in its interior and a time T ∈ (0, T1] such that

for any C k+1-kernel H on I × I0, the functions (HT
i ρj)i,j∈S are C k on Ik+1. Fix an

i ∈ S. Lemma 15 applied to the integration kernel Ki yields that P̄Ti ρi is C k on Ik+1.

And applying Lemma 15 to K̂Ti yields that for any j 6= i, P̂Ti ρj is C k on Ik+1. By

Lemma 9, ρi is C k on Ik+1. 2

In Malliavin calculus and many other areas of mathematics, regularity statements

for densities and for functions in general are typically proved using integration by

parts (see for instance [5]). Such an approach might also work for invariant densities

of switching systems, as suggested by Jonathan Mattingly. For a one-dimensional

continuous component, the main ingredients in this approach are Stroock’s lemma

(see [31, Lemma 3.1]) and the following control-theory lemma that we state without

proof.

Lemma 16 For any ξ ∈ R, there exist a neighborhood V of ξ, a time t > 0 and an

ε > 0 such that the following holds: For any index sequence i of finite length m that

includes indices i and j with ui(ξ) 6= uj(ξ), there is an open set W ⊂ Rm−1 with the

following features.
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(a) The closure of ∆t,m−1 is contained in W .

(b) For any η ∈ V , the differential of

f η : Rm−1 → R, (s1, . . . , sm−1) 7→ Φ
(s1,...,sm−1,t−

Pm−1
l=1 sl)

i (η)

has full rank in W .

(c) For any s ∈ W and for any η ∈ V ,

‖∇f η(s)‖ ≥ ε.

Lemma 16 provides conditions under which the map assigning to each sequence of

switching times with fixed terminal time t the corresponding terminal point on R is

guaranteed to be locally regular. It is very similar to the first part of Theorem 5 by

Chow, Jurdjevic–Sussmann and Krener in the case of a one-dimensional manifold.

Notice in particular that ui(ξ) 6= uj(ξ) for some i, j ∈ S means that the strong

hypoellipticity condition holds at ξ. In addition to the conclusion of Theorem 5,

we obtain a lower bound on the norm of the gradient of f η that is uniform in the

switching sequence.

4.4 Proof of Lemmas 9 and 10

For t ≥ 0, as defined in (2) let µPt denote the distribution of (X,A)t starting from the

distribution µ. conditioned on the initial distribution µ. Since µ is invariant under

(Pt)t≥0,

µi(·) =

∫ T (2)

T (1)

π(t) · µPt(· × {i}) dt (45)

for any T (1) < T (2) in [0,∞] and for any probability density π(t) on (T (1), T (2)).

We will expand the expression on the right with respect to the sequences of driving

vector fields and will ultimately see how ρi gets transformed through the action of

the Markov semigroup and through time-averaging.

The following formula is the key to Lemmas 9 and 10.
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Lemma 17 Let E ⊂ R be a Borel set and let i ∈ S. For any T (1) < T (2) in [0,∞]

and for any probability density π(t) on (T (1), T (2)),

µi(E) =

∫
E

(∫ T (2)

T (1)

π(t)e−λit Φt
i#ρi(η) dt

+
∑
j 6=i

λj,i

(∫ T (1)

0

e−λit Φt
i#ρj(η) dt+

∫ T (2)

T (1)

c(t)e−λit Φt
i#ρj(η) dt

))
dη,

where c(t) :=
∫ T (2)−t

0
π(s+ t) ds.

Given this representation for µi, we first show Lemma 9 and then Lemma 10. Finally,

we prove the representation itself.

4.4.1 Proof of Lemma 9

When we set T (1) := 0, T (2) := T and π(t) := 1
T

, the identity in Lemma 17 becomes

µi(E) =

∫
E

( 1

T

∫ T

0

e−λit Φt
i#ρi(η) dt+

∑
j 6=i

λj,i
1

T

∫ T

0

(T − t)e−λit Φt
i#ρj(η) dt

)
dη.

This implies Lemma 9.

4.4.2 Proof of Lemma 10

When we set T (1) := T for some time T > 0, T (2) :=∞ and π(t) := eT−t, the identity

in Lemma 17 becomes

µi(E) =

∫
E

(∫ ∞
T

eT−te−λit Φt
i#ρi(η) dt

+
∑
j 6=i

λj,i

(∫ T

0

e−λit Φt
i#ρj(η) dt+

∫ ∞
T

eT−te−λit Φt
i#ρj(η) dt

))
dη.

Since µ is a probability measure,∫
E

∫ ∞
T

eT−te−λit Φt
i#ρi(η) dt dη =

∫ ∞
T

eT−te−λitµi((Φ
t
i)
−1(E)) dt

≤e−λiT
∫ ∞
T

eT−t dt = e−λiT ,
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where one should observe that the set (Φt
i)
−1(E) is well-defined even if Φ−ti (η) is

undefined for some η ∈ E. Similarly,∑
j 6=i

λj,i

∫
E

∫ ∞
T

eT−te−λit Φt
i#ρj(η) dt dη ≤

∑
j 6=i

λj,ie
−λiT .

Letting T go to infinity, we obtain

µi(E) =

∫
E

∑
j 6=i

λj,i

∫ ∞
0

e−λit Φt
i#ρj(η) dt dη

and Lemma 10 follows.

4.4.3 Proof of Lemma 17

Fix an i ∈ S. We introduce some notation. For any t > 0 and for any index sequence

i with terminal index i, let Ct
i denote the event that the driving vector fields up to

time t appear in the order given by i. For any index sequence i = (i1, . . . , im−1, i) of

length m ≥ 2, let Pi be the probability that the first m driving vector fields appear

in the order given by i, conditioned on ui1 being the first driving vector field. For

T > 0 and m ∈ N, we define the simplex ∆T,m as the interior of the convex hull of

the vectors 0, T e1, . . . , T em in Rm. For any vector v with m components, no matter

whether v is a vector of indices, switching times or switching rates, let v(m−1) denote

the projection of v onto its first (m− 1) coordinates. Moreover, let ‖v‖1 be the sum

of the coordinates of v and let 〈·, ·〉 denote the Euclidean inner product on the space

that fits the context (usually Rm−1 or Rm).

Lemma 18 For any T (1) < T (2) in [0,∞] and for any function π(t) that is nonneg-

ative and integrable on (T (1), T (2)),∫ T (2)

T (1)

π(t)Pξ,i(C
t
(i))

∫
R

Pξ,i(Xt ∈ E|Ct
(i))µi(dξ) dt

=

∫
E

∫ T (2)

T (1)

π(t)e−λit Φt
i#ρi(η) dt dη.

Proof: This is immediate. 2
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Lemma 19 For any index sequence i = (i1, . . . , im−1, i) of length m ≥ 2, for any

T (1) < T (2) in [0,∞] and for any function π(t) that is nonnegative and integrable on

(T (1), T (2)),∫ T (2)

T (1)

π(t)Pξ,i1(C
t
i )

∫
R

Pξ,i1(Xt ∈ E|Ct
i )µi1(dξ) dt

= Pi

m−1∏
l=1

λil

∫
∆
T (2),m

\∆
T (1),m

π(‖s‖1)e−〈λ
(m−1),s(m−1)〉e−λismµi1((Φ

s
i )
−1(E)) ds,

where λ(m−1) := (λi1 , . . . , λim−1)
T .

Proof: Fix an index sequence i = (i1, . . . , im−1, i) of length m, T (1) < T (2) ∈

[0,∞] and a nonnegative integrable function π on (T (1), T (2)). Let T1, . . . , Tm be

independent, exponentially distributed random variables such that Tl has parameter

λil for 1 ≤ l ≤ m− 1 and Tm has parameter λi. For any t ≥ T (1),∫
R

Pξ,i1(Xt ∈ E|Ct
i )µi1(dξ)

=
1

P(Rt
i)

∫
R

P
(

Φ
(T1,...,Tm−1,t−

Pm−1
l=1 Tl)

i (ξ) ∈ E,Rt
i

)
µi1(dξ), (46)

where

Rt
i :=

{m−1∑
l=1

Tl < t ≤
m∑
l=1

Tl

}
.

As a notational shorthand, we introduce the functions

f ξt,i : Rm−1 → R, (s1, . . . , sm−1) 7→ Φ
(s1,...,sm−1,t−

Pm−1
l=1 sl)

i (ξ).

Then,

P
(

Φ
(T1,...,Tm−1,t−

Pm−1
l=1 Tl)

i (ξ) ∈ E,Rt
i

)
=

∫
∆t,m−1

1{fξt,i(s)∈E}(s)
m−1∏
l=1

λile
−λilsle−λi(t−‖s‖1) ds,

which implies that (46) can be written as

1

P(Rt
i)

∫
R

∫
∆t,m−1

1{fξt,i(s)∈E}(s)
m−1∏
l=1

λile
−λilsle−λi(t−‖s‖1) dsµi1(dξ). (47)
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Interchanging the order of integration, (47) becomes

1

P(Rt
i)

∫
∆t,m−1

m−1∏
l=1

λile
−λilsl−λi(t−‖s‖1)µi1((f

·
t,i(s))−1(E)) ds.

We have thus shown that

∫ T (2)

T (1)

π(t)Pξ,i1(C
t
i )

∫
R

Pξ,i1(Xt ∈ E|Ct
i )µi1(dξ) dt =

∫ T (2)

T (1)

π(t)
Pξ,i1(C

t
i )

P(Rt
i)

·
∫

∆t,m−1

m−1∏
l=1

λile
−λilsl−λi(t−‖s‖1)µi1((f

·
t,i(s))−1(E)) ds dt.

The term
Pξ,i1 (Cti )

P(Rti )
gives the probability that the first m driving vector fields appear

according to index sequence i, conditioned on ui1 being the first driving vector field.

It is therefore equal to Pi. Interchanging the order of integration and substituting

sm = t− ‖s‖1, Lemma 19 follows. 2

Lemma 20 For any index sequence i = (i1, . . . , im−1, i) of length m ≥ 2, for any

T (1) < T (2) in [0,∞] and for any function π(t) that is nonnegative and integrable on

(T (1), T (2)),

∫ T (2)

T (1)

π(t)Pξ,i1(C
t
i )

∫
R

Pξ,i1(Xt ∈ E|Ct
i )µi1(dξ) dt =∫

∆
T (2),2

\∆
T (1),2

λim−1,ie
−λitπ(s+ t)Pξ,i1(C

s
i(m−1))

·
∫

R
Pξ,i1(Xs ∈ (Φt

i)
−1(E)|Cs

i(m−1))µi1(dξ) d(s, t).

Proof: For notational compactness, we momentarily introduce the notation

∆̃i(m, t) := ∆T (i)−t,m−1. By Tonelli’s theorem, the term to the right of the equality
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sign in Lemma 19 can be written as∫ T (1)

0

Pi

m−1∏
l=1

λil

∫
(∆̃2\∆̃1)(m,t)

π(‖s‖1 + t)e−〈λ
(m−1),s〉−λitµi1((Φ

(s,t)
i )−1(E)) ds dt

+

∫ T (2)

T (1)

Pi

m−1∏
l=1

λil

∫
∆̃2(m,t)

π(‖s‖1 + t)e−〈λ
(m−1),s〉e−λit

· µi1((Φ
(s,t)
i )−1(E)) ds dt

=

∫ T (1)

0

λim−1,ie
−λitPi(m−1)

m−2∏
l=1

λil

∫
(∆̃2\∆̃1)(m,t)

πt(‖s‖1)e−〈λ
(m−1),s〉

· µi1((Φs
i(m−1))

−1((Φt
i)
−1(E))) ds dt

+

∫ T (2)

T (1)

λim−1,ie
−λitPi(m−1)

m−2∏
l=1

λil

∫
∆̃2(m,t)

πt(‖s‖1)e−〈λ
(m−1),s〉

· µi1((Φs
i(m−1))

−1((Φt
i)
−1(E))) ds dt,

where the function πt(s) := π(s+t) is nonnegative and integrable on (T (1)−t, T (2)−t)

if t < T (1), and is nonnegative and integrable on (0, T (2) − t) if t > T (1).

By another application of Lemma 19 (if m > 2) or of Lemma 18 (if m = 2), the

previous term becomes∫ T (1)

0

λim−1,ie
−λit

∫ T (2)−t

T (1)−t
πt(s)Pξ,i1(C

s
i(m−1))

·
∫

R
Pξ,i1(Xs ∈ (Φt

i)
−1(E)|Cs

i(m−1))µi1(dξ) ds dt

+

∫ T (2)

T (1)

λim−1,ie
−λit

∫ T (2)−t

0

πt(s)Pξ,i1(C
s
i(m−1))

·
∫

R
Pξ,i1(Xs ∈ (Φt

i)
−1(E)|Cs

i(m−1))µi1(dξ) ds dt

=

∫
∆
T (2),2

\∆
T (1),2

λim−1,ie
−λitπ(s+ t)Pξ,i1(C

s
i(m−1))

·
∫

R
Pξ,i1(Xs ∈ (Φt

i)
−1(E)|Cs

i(m−1))µi1(dξ) d(s, t).

2

Proof of Lemma 17: Fix a Borel set E, T (1) < T (2) ∈ [0,∞] and a probability

density π on (T (1), T (2)). Expanding the term to the right of the equality sign in (45)
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by conditioning on the sequences of driving vector fields, we obtain

µi(E) =

∫ T (2)

T (1)

π(t)Pξ,i(C
t
(i))

∫
R

Pξ,i(Xt ∈ E|Ct
(i))µi(dξ) dt

+

(i)∑
i:|i|≥2

∫ T (2)

T (1)

π(t)Pξ,i1(C
t
i )

∫
R

Pξ,i1(Xt ∈ E|Ct
i )µi1(dξ) dt, (48)

where
∑(i)

i:|i|≥2 extends over all index sequences i = (i1, . . . , im−1, i) with terminal

index i and length ≥ 2.

By Lemma 18, it is enough to show that the term in (48) equals

∑
j 6=i

λj,i

∫
E

(∫ T (1)

0

e−λit Φt
i#ρj(η) dt+

∫ T (2)

T (1)

c(t)e−λitΦt
i#ρj(η) dt

)
dη,

where c(t) is defined as in Lemma 17. For any m ≥ 2, let
∑(i)

i:|i|=m be the sum over

all index sequences of length m with terminal index i. For any j ∈ S, let
∑(j)

i be the

sum over all index sequences i with terminal index j. By Lemma 20, the term in (48)

can be written as

∞∑
m=2

(i)∑
i:|i|=m

∫
∆
T (2),2

\∆
T (1),2

λim−1,ie
−λitπ(s+ t)Pξ,i1(C

s
i(m−1))

·
∫

R
Pξ,i1(Xs ∈ (Φt

i)
−1(E)|Cs

i(m−1))µi1(dξ) d(s, t)

=
∑
j 6=i

∫
∆
T (2),2

\∆
T (1),2

λj,ie
−λitπ(s+ t)

·
(j)∑
i

Pξ,i1(C
s
i )

∫
R

Pξ,i1(Xs ∈ (Φt
i)
−1(E)|Cs

i ) µi1(dξ) d(s, t). (49)

Moreover, for any fixed s,

(j)∑
i

Pξ,i1(C
s
i )

∫
R

Pξ,i1(Xs ∈ (Φt
i)
−1(E)|Cs

i ) µi1(dξ) = µPs((Φt
i)
−1(E)× {j}).

Since µ is invariant, µPs((Φt
i)
−1(E)×{j}) equals µj((Φ

t
i)
−1(E)) and is thus indepen-

dent of s.
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As a result, the right side of (49) equals

∑
j 6=i

∫
∆
T (2),2

\∆
T (1),2

λj,ie
−λitπ(s+ t)µj((Φ

t
i)
−1(E)) d(s, t)

=
∑
j 6=i

∫ T (1)

0

λj,ie
−λitµj((Φ

t
i)
−1(E))

∫ T (2)−t

T (1)−t
π(s+ t) ds dt

+
∑
j 6=i

∫ T (2)

T (1)

λj,ie
−λitµj((Φ

t
i)
−1(E))

∫ T (2)−t

0

π(s+ t) ds dt,

and Lemma 17 follows. 2
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CHAPTER V

THE SUPPORT OF INVARIANT MEASURES ON R

Let µ be an invariant measure of the Markov semigroup (Pt)t≥0. In this chapter,

we describe the support of the measures (µi)i∈S, which are measures on the real

line. In Section 5.1, we introduce the notion of a minimal invariant set and present

an algorithm that allows us to identify the minimal invariant sets of a switching

system with one-dimensional continuous component. The only information required

is the critical points and signs of the driving vector fields. In Section 5.2, we relate

minimal invariant sets to the support of invariant measures and ultimately arrive at

a description of the support in terms of minimal invariant sets.

A point ξ ∈ R lies in the support of µi if and only if µi(U) > 0 for any open

neighborhood U of ξ. Recall from Section 2.1 that a point ξ ∈ R is called D-reachable

from a point η ∈ R if there exist a finite index sequence i and a corresponding sequence

of nonnegative switching times t such that

Φt
i (η) = ξ.

For any ξ ∈ R, we define L(ξ) as the set of points that are D-reachable from ξ. We

call a point ξ ∈ R D-accessible from η ∈ R if for any open neighborhood U of ξ there

exist a finite index sequence i and a corresponding sequence of nonnegative switching

times t such that

Φt
i (η) ∈ U.

Let L denote the set of points on the real line that are D-accessible from any point

in R.
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5.1 Minimal invariant sets

A nonempty set I ⊂ R is called invariant if

Φt
i (ξ) ∈ I

for any ξ ∈ I, any finite index sequence i and any corresponding sequence of non-

negative switching times t. A minimal invariant set is an invariant set for which any

nonempty strict subset is not invariant. Alternatively, a minimal invariant set is a

nonempty set I with the property that

L(ξ) = I (50)

for any ξ ∈ I.

The following algorithm yields exactly the minimal invariant sets of our switching

system.

1. Mark −∞ with the label “l” and mark +∞ with the label “r”.

2. Mark those critical points where all vector fields in D are nonnegative with an

“l” and mark those critical points where all vector fields in D are nonpositive

with an “r”. If a critical point has both labels “l” and “r”, it is uniformly

critical. All uniformly critical points form minimal invariant sets.

3. Consider all points, including −∞, with the label “l”. This includes those points

that carry both labels. As +∞ doesn’t have label “l”, each of these points has

a closest labeled point to its right. If this point has label “r”, the open, possibly

infinite, interval with the “l”-labeled and the “r”-labeled points as its endpoints

is a candidate for a minimal invariant set. It is indeed a minimal invariant set

if and only if it contains two not necessarily distinct points ξ and η for which

there are vector fields u, v ∈ D with u(ξ) > 0 and v(η) < 0.
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Proposition 1 The algorithm above characterizes the minimal invariant sets of the

switching system completely. Minimal invariant sets are thus either open intervals or

point sets with exactly one element.

Proof: We first show that any set identified by the algorithm as a minimal invariant

set is indeed a minimal invariant set. Let S be a set identified by the algorithm as a

minimal invariant set. Then, either S = {ξ}, where ξ is a uniformly critical point, or

S is an open interval (l, r), where l < r are elements of the extended real line such

that

(a) l = −∞ or ui(l) ≥ 0 for any i ∈ S

(b) r =∞ or ui(r) ≤ 0 for any i ∈ S

(c) for any critical point ξ in (l, r) there exist indices i, j ∈ S with ui(ξ) < 0 < uj(ξ)

(d) if there are no critical points in (l, r), there are at least points ξ, η ∈ (l, r) and

indices i, j ∈ S with ui(ξ) < 0 < uj(η).

If S = {ξ}, it is clear that S is a minimal invariant set: The only strict subset of S

is the empty set, and S is invariant because ξ is uniformly critical.

If S = (l, r), no switching trajectory starting in S can get to the left of l or to the

right of r. This is obvious if l = −∞ or r = ∞. If l or r are finite, it is guaranteed

by Conditions a and b, respectively. Hence, S is invariant. Next, we show that S is

also minimal. Assume that S is not minimal. Then, there is a nonempty strict subset

R of S that is invariant. In addition, there is a point ζ ∈ S with ui(ζ) ≤ 0 for any

i ∈ S. To see this, fix a point η ∈ S \ R and a point ξ ∈ R. We can assume without

loss of generality that η > ξ. Since R is invariant, η is not D-reachable from ξ. Thus,

there is a point ζ ∈ [ξ, η] with ui(ζ) ≤ 0 for any i ∈ S. In light of Condition c, ζ is

not critical. On the other hand, Condition d implies that there exist a ζ̃ ∈ S and a
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j ∈ S with uj(ζ̃) > 0. Assume without loss of generality that ζ̃ > ζ, and let

ζ̂ := sup{θ ∈ [ζ, ζ̃] : ui(θ) < 0 ∀i ∈ S}.

The point ζ̂ is a critical point in S with ui(ζ̂) ≤ 0 for any i ∈ S. This violates

Condition c.

Conversely, let I be a minimal invariant set. We need to show that the algorithm

correctly identifies I as a minimal invariant set. Due to the minimality assumption,

I is an interval. If I contains exactly one point, this point is uniformly critical, for

otherwise, I would not be invariant.

If I has at least two elements, it is an interval with distinct endpoints. We show

that if an endpoint of I is finite, it must be a critical point: Let ξ be a finite endpoint

of I, say its left endpoint, and assume that ξ is noncritical. Since I is invariant,

ui(ξ) > 0 for any i ∈ S. By continuity of the vector fields, there is an ε > 0 such that

ui(η) > 0 for any i ∈ S and for any η ∈ [ξ, ξ + ε]. By choosing ε sufficiently small, we

can then ensure that I \ [ξ, ξ + ε] is a nonempty strict subset of I that is invariant.

This contradicts the minimality assumption on I. Invariance of I also implies that

the endpoints of I are not D-reachable from a starting point in the interior of I.

Hence, I is an open interval (l, r), where l and r may be finite or infinite.

It remains to show that Conditions c and d are satisfied. Let ξ ∈ I be a critical

point. If ui(ξ) ≥ 0 for any i ∈ S, the interval (ξ, r) ⊂ (l, r) is invariant as well

– a contradiction. Similarly, ui(ξ) cannot be nonpositive for all i ∈ S, so we can

find i, j ∈ S with ui(ξ) < 0 < uj(ξ). To show that Condition d holds, assume that

ui(η) ≥ 0 for all η ∈ I and for all i ∈ S. For ξ ∈ I, the interval (ξ, r) is invariant,

which contradicts the minimality assumption. 2

Proposition 2 Minimal invariant sets are pairwise disjoint.
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Proof: Let I and J be minimal invariant sets with I ∩ J 6= ∅. As the intersection

of invariant sets, I ∩ J is invariant. Since I and J are minimal, it follows that

I = I ∩ J = J . 2

5.2 How minimal invariant sets relate to the support of
invariant measures

We begin by relating invariant measures of the global dynamics on R×S to invariant

measures of the switching dynamics confined to a minimal invariant set.

Let I ⊂ R be a minimal invariant set. On I × S, we define the semigroup (pt)t≥0

by

ptξ,i(E × {j}) := Ptξ,i(E × {j})

for any (ξ, i) ∈ I × S, for any set E in the Borel σ-algebra on I and for any j ∈ S.

Hence, (pt)t≥0 can be thought of as the restriction of (Pt)t≥0 to I×S. It is well-defined

because I is invariant.

Proposition 3 There is a one-to-one correspondence between invariant measures of

(pt)t≥0 and those invariant measures of (Pt)t≥0 that assign mass 1 to I × S.

Proof: Let ν be an invariant measure for (pt)t≥0. By setting

µ(E × {j}) := ν(E ∩ I × {j})

for Borel sets E ⊂ R and j ∈ S, we define a probability measure µ on R × S. This

measure is invariant with respect to (Pt)t≥0, for

µ(E × {j}) = ν(E ∩ I × {j})

=
∑
i∈S

∫
I

ptξ,i(E ∩ I × {j}) ν(dξ × {i})

=
∑
i∈S

∫
I

Ptξ,i(E ∩ I × {j}) ν(dξ × {i})

=
∑
i∈S

∫
I

Ptξ,i(E × {j}) µ(dξ × {i})
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by invariance of ν and I.

Conversely, let µ be invariant with respect to (Pt)t≥0 with µ(I×S) = 1. We define

the measure ν as the restriction of µ to I × S. As µ(I × S) = 1, ν is then also a

probability measure, and for Borel sets E ⊂ I,

ν(E × {j}) = µ(E × {j})

=
∑
i∈S

∫
R

Ptξ,i(E × {j}) µ(dξ × {i})

=
∑
i∈S

∫
I

Ptξ,i(E × {j}) µ(dξ × {i})

=
∑
i∈S

∫
I

ptξ,i(E × {j}) ν(dξ × {i}).

2

Next, we show that the support of the measure µ(· × S) does not contain points

outside of the closure of minimal invariant sets.

Proposition 4 Let ξ ∈ R be a point that is not contained in the closure of a minimal

invariant set. Then, ξ is not contained in the support of µ(· × S).

To prove Proposition 4, we need to establish several lemmas. We begin with a simple

criterion for membership in a minimal invariant set.

Lemma 21 A point ξ ∈ R does not belong to any minimal invariant set if and only

if there is a point η ∈ L(ξ) with ξ /∈ L(η).

Proof: By characterization (50) of minimal invariant sets, a point ξ ∈ R is contained

in a minimal invariant set if and only if L(ξ) is a minimal invariant set. This is in

turn equivalent to

L(ξ) =
⋂

η∈L(ξ)

L(η).

The inclusion
⋂
η∈L(ξ) L(η) ⊂ L(ξ) always holds, so a point ξ ∈ R is not contained in

a minimal invariant set if and only if there exist points η, ζ ∈ L(ξ) with ζ /∈ L(η).
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If such points η and ζ exist, the point ξ is not contained in L(η) either because ζ is

D-reachable from ξ. And if there is a point η ∈ L(ξ) with ξ /∈ L(η), we can choose

ζ = ξ. 2

Recall that for T > 0 and for a positive integer m, ∆T,m−1 denotes the simplex{
s ∈ (0,∞)m−1 :

m−1∑
l=1

sl < T

}
.

Lemma 22 Let ξ ∈ R be a point that is not contained in the closure of a minimal

invariant set. Then, there exist an open interval I containing ξ, an open set U ⊂ R,

a time T > 0, an index sequence i = (i1, . . . , im) and an open set ∆ ⊂ ∆T,m−1 such

that

Φ
(s,T−

Pm−1
l=1 sl)

i (η) ∈ U, η ∈ I, s ∈ ∆, (51)

and

I ∩ L(ϑ) = ∅, ϑ ∈ U. (52)

Proof: Since ξ is not contained in the closure of a minimal invariant set, there is

an ε > 0 such that

(i) none of the points in [ξ − ε, ξ + ε] belong to a minimal invariant set,

(ii) there is an i ∈ S such that ui(η) 6= 0 for all η ∈ [ξ − ε, ξ + ε].

Property (ii) follows from the fact that uniformly critical points form minimal invari-

ant sets. Assume without loss of generality that ui(η) > 0 for all η ∈ [ξ−ε, ξ+ε]. This

implies that the right endpoint ξ + ε is D-reachable from any point in [ξ − ε, ξ + ε].

Since ξ + ε is not contained in a minimal invariant set, Lemma 21 implies existence

of a ζ ∈ L(ξ + ε) with ξ + ε /∈ L(ζ). Then, η /∈ L(ζ) for all η ∈ [ξ − ε, ξ + ε].

Let U denote the interior of L(ζ). Since ζ is D-reachable from ξ + ε, it is not

uniformly critical. Therefore, U is not the empty set. Moreover, U ⊂ L(η) for any

η ∈ [ξ − ε, ξ + ε] and L(ϑ) ∩ [ξ − ε, ξ + ε] = ∅ for all ϑ ∈ U . Fix an arbitrary point
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ϑ̂ ∈ U . Then, ϑ̂ is D-reachable, i.e. there exist an index sequence i = (i1, . . . , im) and

a corresponding time sequence t with ϑ̂ = Φt
i (ξ). Let T be the sum of all components

of t. Since the map

(η, s) 7→ Φ
s,T−

Pm−1
l=1 sl)

i (η)

is continuous on [ξ − ε, ξ + ε] × ∆T,m−1, there exist an open interval I containing ξ

and an open set ∆ ⊂ ∆T,m−1 such that (51) holds. We can assume without loss of

generality that I ⊂ [ξ − ε, ξ + ε]. Then, (52) holds as well. 2

Next, we record a simple consequence of the fact that the speed of the process X

is bounded on bounded sets.

Lemma 23 Let I ⊂ R be a nonempty and bounded open set. Then, there exist

constants ε′, c′ > 0 and an open set I ′ ⊂ I such that

inf
η∈I′,i,j∈S

Pε
′

η,i(I × {j}) ≥ c′. (53)

See [6] for a proof of Lemma 23.

Proof of Proposition 4: To derive a contradiction, we assume that ξ belongs

to the support of µ(· × S). By Lemma 22, there exist an open interval I containing

ξ, an open set U ⊂ R, a time T > 0, an index sequence i = (i1, . . . , im) and an open

set ∆ ⊂ ∆T,m−1 such that (51) and (52) hold.

By Lemma 23, there are constants ε′, c′ > 0 and an open set I ′ ⊂ I such that (53)

is satisfied. As I ′ is an open interval containing ξ,

c := µ(I ′ × S) > 0.

Therefore,∑
i∈S

∫
I′

PT+ε′

θ,i (U × S) µi(dθ) =
∑
i∈S

∫
I′

∑
l∈S

∫
R

PTη,l(U × S) · Pε′θ,i(dη × {l}) µi(dθ)

≥
∑
i∈S

∫
I′

∫
I

PTη,i1(U × S) · Pε′θ,i(dη × {i1}) µi(dθ)

≥c · c′ · inf
η∈I

PTη,i1(U × S).
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Next, we show that infη∈I PTη,i1(U × S) > 0. Fix a point η ∈ I and let Ci denote the

event that the driving vector fields up to time T appear in the order given by i. Let

Pi be the probability that the first m driving vector fields appear in the order given

by i, conditioned on ui1 being the first driving vector field. Similarly to Lemma 19 in

Section 4.4, we have

PTη,i1(U × S) ≥Pη,i1(XT ∈ U,Ci)

≥Pi ·
∫

∆

m−1∏
l=1

λil · e−λilsl · e−λim (T−(s1+...+sm−1))ds. (54)

The term in (54) is strictly positive and does not depend on η. We conclude that

a :=
∑
i∈S

∫
I′

PT+ε′

θ,i (U × S) µi(dθ) > 0.

Hence, there is a positive integer N with N · a > 1. Let µP denote the distribution

of the Markov process (X,A) with initial distribution µ. For 0 ≤ k ≤ N − 1, define

the event

Ek := {Xk·(T+ε′) ∈ I ′, X(k+1)·(T+ε′) ∈ U,Xj·(T+ε′) ∈ I ′c for k + 2 ≤ j ≤ N}.

Since the sets (Ek)0≤k≤N−1 are pairwise disjoint,

µP(XN ·(T+ε′) ∈ I ′c) ≥
N−1∑
k=0

µP(Ek).

Since I ′ cannot be reached from any point in U , we have

Ek = {Xk·(T+ε′) ∈ I ′, X(k+1)·(T+ε′) ∈ U}.

Then, for 0 ≤ k ≤ N − 1,

µP(Ek) =
∑
i∈S

∫
R

∑
j∈S

∫
I′

PT+ε′

η,j (U × S) · Pk·(T+ε′)
θ,i (dη × {j}) µi(dθ) = a

because µ is an invariant measure. We infer that

µP(XN ·(T+ε′) ∈ I ′c) ≥ N · a > 1,
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which is impossible. Hence, ξ is not contained in the support of µ(· × S). 2

In Proposition 3, we saw that invariant measures on minimal invariant sets cor-

respond to invariant measures on R that are supported on a minimal invariant set.

In the following proposition, we show uniqueness of the invariant measure on a given

minimal invariant set.

Proposition 5 Any minimal invariant set admits at most one invariant measure.

Proof: Let I be a minimal invariant set. If I = {ξ} for some uniformly critical

point ξ, uniqueness of the invariant measure is clear.

If I is an open interval, it does not contain any uniformly critical points by Proposi-

tion 1. By the alternative characterization of minimal invariant sets in (50), I = L(η)

for any η ∈ I. Thus, any point in I is D-reachable from all starting points in I.

By [1, Theorem 1], this implies uniqueness of the invariant measure of the restricted

semigroup (pt)t≥0. 2

Now, assume that the invariant measure µ is ergodic. If I is a minimal invariant

set, ergodicity of µ implies that µ(I × S) is either 0 or 1. It is then natural to ask

whether we can assign a unique minimal invariant set I to µ for which µ(I × S) = 1.

The following proposition shows that this can be done.

Proposition 6 If µ is ergodic, there is a unique minimal invariant set I with

µ(I × S) = 1.

Proof: Let us begin by showing that such a minimal invariant set exists. Since µ is

ergodic, it is enough to show that µ(I ×S) > 0 for some minimal invariant set I. We

denote the set of points not contained in the closure of a minimal invariant set by T .

According to Proposition 4, the intersection of T and of the support of µ(· × S) is

empty, so there is a point ξ ∈ T c that also lies in the support of µ(· ×S). As ξ ∈ T c,
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there is a minimal invariant set I whose closure contains ξ. We distinguish between

several cases.

First, assume that I = {ξ}. Then, ξ is uniformly critical and may or may not be

an endpoint of one or two additional minimal invariant sets. If there are no minimal

invariant sets adjacent to {ξ}, we can find an open neighborhood U of ξ such that

U \ {ξ} ⊂ T . Since the complement of the support of µ(· × S) has measure 0, it

follows that µ(U \ {ξ} × S) = 0. Therefore, µ({ξ} × S) > 0.

If there is at least one open minimal invariant set adjacent to {ξ}, we have

µ({ξ} × S) > 0, or at least one of the adjacent minimal invariant sets has strictly

positive µ(· × S)-measure.

Now, assume that I = (l, r). If ξ ∈ I, it is immediate from the definition of the

support that µ(I ×S) > 0. If ξ is an endpoint of I, assume without loss of generality

that ξ = l. We have already dealt with the case where ξ is uniformly critical. If ξ is

critical but not uniformly critical, we still have µ({ξ} × S) > 0 or µ(I × S) > 0 or

µ(J × S) > 0, provided that J is an open minimal invariant set with ξ as its right

endpoint. We only need to exclude the case that µ({ξ} × S) > 0. This can be done

similarly to the proof of Proposition 4.

Uniqueness of the minimal invariant set follows from Proposition 2. 2

Proposition 7 If µ is ergodic, there is a unique minimal invariant set I such that

the support of the measures (µi)i∈S equals the closure of I.

Proof: Let I be the unique minimal invariant set for which µ(I×S) = 1 and whose

existence is postulated in Proposition 6. By characterization (50) of minimal invariant

sets, every point in I is D-reachable from any other point in I. This implies that I

is contained in the support of (µi)i∈S. With µ(I × S) = 1, the statement follows. 2
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Corollary 2 For any minimal invariant set I, there is at most one invariant measure

µ with µ(I × S) = 1.

Proof: This follows from Propositions 3 and 5. 2

Corollary 3 Let µ be an invariant measure, not necessarily ergodic. Then, there

exist minimal invariant sets I1, . . . , IN such that the support of µj equals the closure

of
⋃N
i=1 Ii for any j ∈ S. If µ is absolutely continuous, each of the minimal invariant

sets Ii is an open interval.

Proof: This follows from Proposition 7 and from the Ergodic Decomposition The-

orem, see, e.g., [19]. 2

In particular, the support of µj only depends on the invariant measure µ and not

on the index j. If µ is absolutely continuous, all of the minimal invariant sets Ii in

Corollary 3 are open intervals.

Finally, we show that invariant densities are positive in the interior of the support

of (µi)i∈S. We will need this result in Chapter 6. Suppose that µ is absolutely

continuous with respect to the product of Lebesgue measure on R and counting

measure on S, and let (ρi)i∈S be the invariant densities associated to µ.

Lemma 24 Let I be an open interval that is contained in the support of (µi)i∈S. If

the vector field ui does not have any critical points in I, then ρi(η) > 0 for any η ∈ I.

Proof: Fix a point η ∈ I. Let Ĩ be a closed subinterval of I, with η contained in

the interior of Ĩ. Let T > 0 be so small that

Φs
i (η) ∈ Ĩ
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for any finite index sequence i and any corresponding sequence of switching times s

with ‖s‖1 ≤ T .

Since ui does not have any critical points in I, the function

ζ 7→ exp

(
−λi ·

∫ η

ζ

dx

ui(x)

)
is bounded below on [Φ−Ti (η), η] by a constant c > 0. Using Lemma 9 and (40), we

obtain the estimate

ρi(η) ≥P̄Ti ρi(η) =
1

ui(η)
· 1

T
·
∫ η

Φ−Ti (η)

ρi(ζ) · exp

(
−λi ·

∫ η

ζ

dx

ui(x)

)
dζ

≥ c
T
· 1

|ui(η)|
·
∣∣∣∣∫ η

Φ−Ti (η)

ρi(ζ) dζ

∣∣∣∣
=
c

T
· 1

|ui(η)|
· µi((Φ−Ti (η), η)) > 0. (55)

For (55), we used that (Φ−Ti (η), η) is contained in the support of µi. 2
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CHAPTER VI

ASYMPTOTICS FOR INVARIANT DENSITIES AT A

CRITICAL POINT

In this chapter, we derive the asymptotically dominant term of an invariant density

as its argument approaches a critical point of the corresponding vector field. As in

Chapters 4 and 5, we assume that M = R. In fact, all assumptions made at the

beginning of Chapter 4 remain in place. In Section 6.1, we state our results for the

nonanalytic case. These results are proved in Section 6.3. In Section 6.2, we obtain

slightly stronger asymptotics under the additional assumption that all vector fields

in D are analytic in a neighborhood of the critical point. These results are proved in

Section 6.4.

6.1 Asymptotics for nonanalytic vector fields

Let µ be an invariant measure of (Pt)t≥0 that is absolutely continuous with respect

to the product of Lebesgue measure on R and counting measure on S. Let (ρi)i∈S

denote the invariant densities associated to µ. In this section, we study the asymptotic

behavior of ρi(η), i ∈ S, as η approaches a critical point of the corresponding vector

field ui.

Let ξ be a critical point of ui for some i ∈ S, and assume that none of the other

vector fields in D have ξ as a critical point. Without loss of generality, let u = u1

and let ξ = 0. Recall our standing assumption that for all vector fields uj ∈ D, the

set of critical points of uj has no accumulation point (see Chapter 4). Then, there is

a δ > 0 such that none of the vector fields in D \ {u1} have a critical point in [0, δ]

and u1 has no critical point in (0, δ]. To simplify the analysis further, we assume that
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there is a constant a 6= 0 such that

u1(η) = −aη +O(η2)

as η approaches 0 from the right, i.e. u1 behaves almost linearly near 0. The constant

a can be thought of as the contraction or expansion coefficient of u1 near 0. If u1 was

of order O(ηα) for α < 1, it would not be Lipschitz continuous. If u1 was of order

O(ηα) for α > 1, identifying the asymptotically dominant term would become more

complicated. Under these assumptions, we study the asymptotic behavior of ρ1 as η

approaches 0 from the right. Due to the symmetric nature of the problem, there is

no need to investigate the case of η approaching 0 from the left separately.

In Section 5.2, we showed that the support of the measures (µi)i∈S can be repre-

sented as a finite union of closed intervals of positive length (see Corollary 3). Let I

denote the collection of these intervals. If µ is ergodic, I contains only one interval.

Exactly one of the following statements holds:

(A) 0 is the left endpoint of an open interval that does not contain any points from

the support of (µi)i∈S.

(B) 0 is contained in the interior of an interval I ∈ I .

(C) 0 is the left endpoint of an interval I ∈ I .

Although these statements are not formulated in terms of the given vector fields, it

is easy to see which of them holds by using the algorithm in Section 5.1.

In case A, ρ1 is constantly equal to zero on an open interval with left endpoint 0.

Cases B and C are more intricate and are dealt with in Theorems 13 and 12. In case

C, either 0 is the right endpoint of an open interval that does not contain any points

from the support of (µi)i∈S, or 0 is the right endpoint of an interval J ∈ I . But if 0

is both left endpoint of an interval I ∈ I and right endpoint of an interval J ∈ I , it
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is uniformly critical (see Section 5.1). Since we assume that 0 is only critical for u1,

this second scenario cannot occur.

In Example 1, the projections (µi)i∈S of the unique invariant measure are sup-

ported on R (see also Chapter 5). This is then an example of case B. In Example 2,

the support of the measures (µi)i∈S is the closed interval [0, 1], so this is an example

of case C.

To state our result on the asymptotically dominant term of ρ1 in the nonanalytic

case, we introduce the function

ρ̄(η) :=
∑
i>1

λi,1 · ρi(η).

Theorem 12 Under the assumptions above, the following statements hold.

1. Let λ1 < a. In cases B and C, there is a constant c > 0 such that

ρ1(η) = cη
λ1
a
−1 + o(η

λ1
a
−1)

as η approaches 0 from the right.

2. Let λ1 > a > 0. In case B,

lim
η↓0

ρ1(η) =
ρ̄(0)

λ1 − a
> 0.

In case C,

lim
η↓0

ρ1(η) =
ρ̄(0)

λ1 − a
= 0.

3. Let λ1 = a. In case B, there exist constants c′, c > 0 such that

−c′ · ln(η) ≤ ρ1(η) ≤ −c · ln(η)

for η sufficiently small. In case C, there is a constant c > 0 such that

ρ1(η) ≤ −c · ln(η).

Theorem 12 is proved in Section 6.3.
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Remark 4 If a < 0, i.e. if 0 is a repelling critical point of u1, case C is not possible

(see Chapter 5). In case B,

lim
η↓0

ρ1(η) =
ρ̄(0)

λ1 − a
> 0.

The proof of this statement is similar to the proof of Theorem 12 and we omit it.

Theorem 12 implies the following conditions for boundedness of ρ1 to the right of 0.

Corollary 4 1. If λ1 < a, ρ1 is unbounded to the right of 0 in cases B and C.

2. If λ1 > a > 0, ρ1 is bounded to the right of 0 in cases B and C.

3. If λ1 = a, ρ1 is unbounded to the right of 0 in case B. In case C, our analysis

is inconclusive.

Remark 5 The conditions in Corollary 4 align with intuition. If λ1 < a, the rate

of switching away from u1 is lower than the rate at which u1 contracts to its critical

point 0. In this case, the rate at which mass accumulates in the vicinity of 0 is high,

which results in a singularity of the invariant density at 0. If λ1 > a > 0, the rate of

switching away from u1 is higher than the rate of contracting to 0. The rate at which

mass accumulates at 0 is low and ρ1 is bounded near 0 (see [2, Theorem 1, part c]).

6.2 Asymptotic analysis for analytic vector fields

In this section, we assume that all vector fields in D are analytic in an open interval

around 0. All other assumptions from Section 6.1 are kept in place. In particular, u1

has a critical point at 0 and

u1(η) = −aη +O(η2)

as η approaches 0 from the right. Recall from Section 6.1 that

ρ̄(η) :=
∑
i>1

λi,1 · ρi(η).
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Theorem 13 Under the assumptions above, the following statements hold.

1. Let λ1 < a. In cases B and C, there is a constant c > 0 such that

ρ1(η) = cη
λ1
a
−1 + o(η

λ1
a
−1)

as η approaches 0 from the right.

2. Let λ1 > a > 0. In case B,

lim
η↓0

ρ1(η) =
ρ̄(0)

λ1 − a
> 0.

In case C, there is a constant c > 0 such that

ρ1(η) = cη
λ1
a
−1 + o(η

λ1
a
−1)

as η approaches 0 from the right.

3. Let λ1 = a. In case B, there is a constant c > 0 such that

ρ1(η) = −c ln(η) + o(ln(η))

as η approaches 0 from the right. In case C, ρ1(η) converges to a positive

constant as η approaches 0 from the right.

Theorem 13 is proved in Section 6.4. Note that in the critical case λ1 = a, the density

ρ1 is unbounded to the right of η = 0 in case B and bounded in case C.

For λ1 < a, the conclusions of Theorems 12 and 13 are identical. For λ1 > a > 0,

Theorem 13 has a stronger conclusion in case C. And for λ1 = a, the conclusions

in Theorem 13 are stronger in both cases B and C. It is natural to ask whether the

analyticity assumption in Theorem 13 is essential, or whether one can recover exactly

the same conclusions under the weaker assumptions of Theorem 12. We tried to get

rid of the analyticity assumption, but have not had any success so far.
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6.3 Proof of Theorem 12

In this section, we prove Theorem 12.

In both cases B and C, there is an open interval I with left endpoint 0 such that

ρi(η) > 0

for any η ∈ I and for any i ∈ S. This is an immediate consequence of Lemma 24.

Let δ > 0 be so small that none of the vector fields (ui)i>1 have a critical point in

[0, δ], and that u1 has no critical point in (0, δ]. Let a > 0. The vector field u1 is then

strictly negative on (0, δ]. For η ∈ (0, δ), define ϑ := limt→τ1(η) Φ−t1 (η), where τ1(η)

was introduced in Section 4.2. This limit is independent of the concrete choice of η.

By Lemma 24, there is a constant c > 0 such that ρ̄(η) ≥ c for any η ∈ [ δ
2
, δ]. In

case B, we can even assume that ρ̄(η) ≥ c for any η ∈ [0, δ]. And by Remark 3, ρ̄

is continuous on [0, δ], which implies that ρ̄ is bounded from above on [0, δ] by some

constant ρ̄∞.

Set

r(η) := − 1

u1(η)
− 1

aη
, η ∈ (0, ϑ).

It is not hard to see that r(η) is bounded on (0, δ] by a constant r∞ > 0. Furthermore,

as u1 < 0 on (0, ϑ), we have r(η) ≥ − 1
aη

for any η ∈ (0, ϑ). For η, ζ ∈ [0, ϑ], define

E(η, ζ) := exp

(
−λ1 ·

∫ ζ

η

r(x) dx

)
.

Lemma 25 The function ζ 7→ ζ−
λ1
a · ρ̄(ζ) · E(η, ζ) is integrable on (δ, ϑ) for any

η ∈ [0, δ].

Proof: For η ∈ [0, δ] and ζ ∈ (δ, ϑ),

ζ−
λ1
a · ρ̄(ζ) · E(η, ζ) =ζ−

λ1
a · ρ̄(ζ) · E(η, δ) · E(δ, ζ)

≤ζ−
λ1
a · ρ̄(ζ) · eλ1δr∞ · exp

(
λ1 ·

∫ ζ

δ

dx

ax

)
=ρ̄(ζ) · eλ1δr∞ · δ−

λ1
a .
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The fact that ρ̄ is integrable implies the statement. 2

In analogy to Lemma 11, we have the following representation for ρ1.

Lemma 26 For any η ∈ (0, δ),

ρ1(η) =

(
η
λ1
a
−1

a
+ r(η)η

λ1
a

)
·
∫ ϑ

η

ζ−
λ1
a · ρ̄(ζ) · E(η, ζ) dζ.

Proof: Fix an η ∈ (0, δ). Using Lemma 10 and the change of variables ζ = Φ−t1 (η),

we obtain

ρ1(η) = − 1

u1(η)
·
∫ ϑ

η

ρ̄(ζ) · exp

(
λ1 ·

∫ ζ

η

dx

u1(x)

)
dζ. (56)

Since

exp

(
λ1 ·

∫ ζ

η

dx

u1(x)

)
= exp

(
−λ1 ·

∫ ζ

η

dx

ax

)
· E(η, ζ) = η

λ1
a · ζ−

λ1
a · E(η, ζ)

for any ζ ∈ (η, ϑ), and since ζ 7→ ζ−
λ1
a · ρ̄(ζ) ·E(η, ζ) is integrable by Lemma 25, the

statement follows. 2

Proof of Theorem 12: Fix an η ∈ (0, δ). Throughout the proof, we work with

the formula for ρ1 provided in Lemma 26.

First, let λ1 < a. Observe that ζ 7→ ζ−
λ1
a · ρ̄(ζ) · E(0, ζ) is integrable on (0, δ)

because

ζ−
λ1
a · ρ̄(ζ) · E(0, ζ) ≤ ζ−

λ1
a · ρ̄∞eλ1δr∞ .

Together with Lemma 25, we see that this function is integrable on (0, ϑ), which

implies that

lim
η↓0

(∫ ϑ

η

ζ−
λ1
a · ρ̄(ζ) · E(η, ζ) dζ

)
=

∫ ϑ

0

ζ−
λ1
a · ρ̄(ζ) · E(0, ζ) dζ <∞

by dominated convergence. In addition,∫ ϑ

0

ζ−
λ1
a · ρ̄(ζ) · E(0, ζ) dζ ≥

∫ δ

δ
2

ζ−
λ1
a · ρ̄(ζ) · E(0, ζ) dζ

≥ δ1−λ1
a

2
· c · e−λ1δr∞ > 0.
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And since r(η) is bounded on (0, δ), limη↓0(r(η) · η
λ1
a ) = 0. Part 1 of Theorem 12

follows then from Lemma 26.

Now, let λ1 > a > 0. In case B, ρ̄(0) > 0 by Lemma 24. In case C, ρ̄(0) = 0

because 0 is the right endpoint of an open interval that does not contain any points

from the support of (µi)i∈S.

Since λ1 > a > 0, there is a small α > 0 such that

λ1

a
· (1− α) > 1.

Let η ∈ (0, δ) so that η < ηα < δ. Then,

ρ1(η) =

(
η
λ1
a
−1

a
+ r(η)η

λ1
a

)
·
∫ ηα

η

ζ−
λ1
a · ρ̄(ζ) · E(η, ζ) dζ (57)

+

(
η
λ1
a
−1

a
+ r(η)η

λ1
a

)
·
∫ ϑ

ηα
ζ−

λ1
a · ρ̄(ζ) · E(η, ζ) dζ. (58)

The term in (58) is bounded from above by(
η
λ1
a
−1

a
+ r∞η

λ1
a

)
·
(∫ δ

ηα
ζ−

λ1
a · ρ̄(ζ) · E(η, ζ) dζ +

∫ ϑ

δ

ζ−
λ1
a · ρ̄(ζ) · E(η, ζ) dζ

)
≤
(
η
λ1
a
−1

a
+ r∞η

λ1
a

)
· (η−

λ1
a
α · eλ1δr∞ · ‖ρ̄‖1 + δ−

λ1
a · eλ1δr∞ · ‖ρ̄‖1)

=eλ1δr∞ · ‖ρ̄‖1 ·
(
η
λ1
a
·(1−α)−1

a
+ r∞η

λ1
a
·(1−α) +

δ−
λ1
a

a
η
λ1
a
−1 + r∞δ

−λ1
a η

λ1
a

)
,

which converges to 0 as η approaches 0 from the right.

Since ηα < δ, the function ζ 7→ ρ̄(ζ) · E(η, ζ) is continuous on [η, ηα]. By the

mean-value theorem for integration, there exists ζη ∈ (η, ηα) such that the term to

the right of the equality sign in (57) equals(
η
λ1
a
−1

a
+ r(η)η

λ1
a

)
·
∫ ηα

η

ζ−
λ1
a dζ · ρ̄(ζη) · E(η, ζη)

=

(
1

a
· (1− η(1−α)·(λ1

a
−1)) + r(η) · (η − ηα+(1−α)·λ1

a )

)
· a

λ1 − a
· ρ̄(ζη) · E(η, ζη).

Since ζη ∈ (η, ηα) for any η, it is clear that limη↓0 ζη = 0. Continuity of ρ̄ at η = 0

and integrability of r(x) on (0, δ) then imply that

lim
η↓0

(
ρ̄(ζη) · E(η, ζη) ·

a

λ1 − a

)
= a · ρ̄(0)

λ1 − a
.
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Furthermore,

lim
η↓0

(
1

a
· (1− η(1−α)·(λ1

a
−1))

)
=

1

a
.

Finally, for small η > 0, we have η > ηα+(1−α)·λ1
a . It follows that

|r(η)| · (η − ηα+(1−α)·λ1
a ) ≤ r∞ · (η − ηα+(1−α)·λ1

a ),

which converges to 0 as η approaches 0 from the right. This completes the proof of

part 2 of Theorem 12.

Finally, assume that λ1 = a. For η ∈ (0, δ),

ρ1(η) =

(
1

a
+ r(η)η

)
·
∫ δ

η

ζ−1 · ρ̄(ζ) · E(η, ζ) dζ

+

(
1

a
+ r(η)η

)
·
∫ ϑ

δ

ζ−1 · ρ̄(ζ) · E(η, ζ) dζ. (59)

By Lemma 25, the term in (59) is bounded on (0, δ). In case B, c ≤ ρ̄(η) ≤ ρ̄∞ for

any η ∈ [0, δ]. Therefore,

− c · e−λ1δr∞ · ln(η) + c · e−λ1δr∞ · ln(δ)

≤
∫ δ

η

ζ−1 · ρ̄(ζ) · E(η, ζ) dζ

≤− ρ̄∞ · eλ1δr∞ · ln(η) + ρ̄∞ · eλ1δr∞ · ln(δ)

for η ∈ (0, δ). As

lim
η↓0

(
1

a
+ r(η)η

)
=

1

a
,

this establishes part 3 of Theorem 12 for case B. In case C, we only have ρ̄(η) ≤ ρ̄∞,

which is why we obtain a weaker statement. 2

6.4 Proof of Theorem 13

In this section, we prove Theorem 13. The ensuing paragraph follows [2].

For i ∈ S, we introduce the probability flux

ϕi(η) := ρi(η) · ui(η).
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The vector of probability fluxes (ϕ1(η), . . . , ϕn(η))T is denoted by ϕ(η). As in Sec-

tion 6.3, we let δ > 0 be so small that the vector fields (ui)i>1 have no critical point

in [0, δ] and u1 has no critical point in (0, δ]. Since the invariant densities (ρi)i∈S are

C 1 on (0, δ), they satisfy the Fokker–Planck equations

ρ′i(η)ui(η) + ρi(η)u′i(η) = −λiρi(η) +
∑
l 6=i

λl,iρl(η), i ∈ S, (60)

on (0, δ), see [17]. Written in terms of the probability fluxes, (60) becomes

ϕ′i(η) = − λi
ui(η)

· ϕi(η) +
∑
l 6=i

λl,i
ul(η)

· ϕl(η), i ∈ S. (61)

In Appendix B, we show how Equation (56) can be derived directly from the Fokker–

Planck equations if the invariant densities are C 1.

Our approach is to derive the asymptotically dominant term for the probability

flux ϕ1, which will then immediately give the asymptotically dominant term for ρ1.

We begin by showing that limη↓0 ϕ1(η) = 0.

Lemma 27 We have limη↓0 ϕ1(η) = 0.

Proof: By Remark 3, the limit limη↓0 ϕi(η) exists for any i > 1. It is an easy

corollary of (61) that ∑
i∈S

ϕ′i(η) = 0

for any η ∈ (0, δ). Thus, the sum of all probability fluxes is equal to a constant k on

this interval. Since

ϕ1(η) = k −
∑
i>1

ϕi(η)

for any η ∈ (0, δ), the limit l := limη↓0 ϕ1(η) exists as well.

It remains to show that l = 0. To obtain a contradiction, assume that l 6= 0.

Then, there is no loss of generality in assuming that

|ϕ1(η)| ≥ |l|
2
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for any η ∈ (0, δ). Since u1(η) = −aη + o(η) as η approaches 0 from the right, we

may also assume that ∣∣∣∣u1(η)

η

∣∣∣∣ ≤ 2|a|, η ∈ (0, δ).

But this yields ∫ δ

0

ρ1(η) dη =

∫ δ

0

|ϕ1(η)|
|u1(η)|

dη ≥ |l|
4|a|
·
∫ δ

0

dη

η
=∞,

which contradicts the fact that ρ1 is integrable. 2

Corollary 5 In case C, limη↓0 ϕ(η) = 0.

Proof: In case C, the invariant densities (ρi)i∈S vanish to the left of 0. By Remark 3,

the densities (ρi)i>1 are continuous at 0, which implies that limη↓0 ρi(η) = 0 for any

i > 1. Hence, limη↓0 ϕi(η) = 0 for any i > 1, and limη↓0 ϕ1(η) = 0 by Lemma 27. 2

Recall that k := |S|. We introduce the matrix of switching rates

Λ :=



−λ1 λ2,1 · · · λk,1

λ1,2 −λ2 · · · λk,2
...

...
. . .

...

λ1,k λ2,k · · · −λk


,

and let U(η) be the diagonal matrix with diagonal entries 1
u1(η)

, . . . , 1
uk(η)

.

For a fixed ε ∈ (0, δ), we consider the initial-value problem

φ′(η) = Λ · U(η) · φ(η), (62)

φ(ε) = ϕ(ε),

whose unique solution is ϕ(η). Initial-value problem (62) can be written equivalently

as

φ′(η) =
1

η
B(η) · φ(η), (63)

φ(ε) = ϕ(ε).
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Here,

B(η) := Λ · Ũ(η),

where Ũ(η) is the diagonal matrix with diagonal entries η
u1(η)

, . . . , η
uk(η)

. Note that

B(η) is analytic at η = 0. This follows from the fact that the diagonal entries of Ũ(η)

are analytic at η = 0, which is easily derived from analyticity of the vector fields.

The linear system (63) then has a so-called regular singular point at η = 0 (see [33,

Section 3.11]).

Since B(η) is analytic at η = 0, there exist ρ ∈ (0, δ) and a sequence of matrices

(Bl)l≥0 such that

B(η) =
∞∑
l=0

ηl ·Bl (64)

for any η ∈ (−ρ, ρ). There is no loss of generality in assuming that ρ = δ. Since

u1(η) = −aη + O(η2), and since ui(η) 6= 0 for any i > 1, the matrix B0 in (64) has

the form

B0 =



λ1

a
0 · · · 0

−λ1,2

a
0 · · · 0

...
...

. . .
...

−λ1,k

a
0 · · · 0


.

It is easy to give a complete description of the eigenvalues and corresponding eigenspaces

of B0.

Lemma 28 The matrix B0 has eigenvalues λ1

a
and 0. The eigenspace

corresponding to λ1

a
is spanned by the vector λ := (λ1,−λ1,2,−λ1,3, . . . ,−λ1,k)

T . The

eigenspace corresponding to 0 is the orthogonal complement to the span of {(1, 0, . . . , 0)T}.

We omit the proof of Lemma 28.

At this point, we need to distinguish between two cases. First, assume that λ1

a
is

not an integer. Such a condition is sometimes referred to as a nonresonance condition.

The following statement is then a reformulation of [33, Proposition 11.2].
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Lemma 29 There is a function

V (η) = 1 +
∞∑
l=1

ηl · Vl (65)

that satisfies the normal equation

ηV ′(η) = B(η)V (η)− V (η)B0, η ∈ (0, δ) (66)

and for which

ϕ(η) = V (η) · exp

(
ln

(
η

ε

)
B0

)
V (ε)−1ϕ(ε), η ∈ (0, δ).

Now, we consider the resonance case, i.e we assume that λ1

a
is a positive integer.

In this case, we may not be able to construct a solution of the form (65) to (66).

Instead, we consider the modified version

ηV ′(η) = B(η)V (η)− V (η)(B0 + η
λ1
a Y ), (67)

where Y is a matrix satisfying

B0Y = Y

(
B0 +

λ1

a
1

)
. (68)

In this setting, we have the following reformulation of [33, Proposition 11.5].

Lemma 30 There exist a function V (η) of the form (65) and a matrix Y satisfy-

ing (68) such that V (η) satisfies (67) with Y and

ϕ(η) = V (η) · exp

(
ln

(
η

ε

)
B0

)
· exp

(
ln

(
η

ε

)
Y

)
V (ε)−1ϕ(ε), η ∈ (0, δ).

Proof of Theorem 13: Comparing Theorems 13 and 12, we see that we only

need to show part 2 for case C and part 3 for both cases.

Let ν ∈ R and let ỹ ∈ Rk with first component equal to 0 such that

V (ε)−1ϕ(ε) = νλ+ ỹ,

92



where λ was defined in Lemma 28. In the nonresonance case, Lemma 28 implies that

exp

(
ln

(
η

ε

)
B0

)
V (ε)−1ϕ(ε) =

∞∑
l=0

1

l!
·
(

ln

(
η

ε

))l
(νBl

0λ+Bl
0ỹ)

= ỹ + νλ+
∞∑
l=1

1

l!
·
(

ln

(
η

ε

))l
ν

(
λ1

a

)l
λ

= ỹ + ν · exp

(
λ1

a
· ln
(
η

ε

))
λ

= ỹ + νε−
λ1
a η

λ1
a λ, (69)

so

ϕ(η) =

(
1 +

∞∑
l=1

ηlVl

)
· (ỹ + νε−

λ1
a η

λ1
a λ), η ∈ (0, δ) (70)

by Lemma 29. From (70), we infer that

ỹ = lim
η↓0

ϕ(η).

In case C, Corollary 5 implies that ỹ = 0. If ν was equal to 0, it would then follow

that ϕ ≡ 0 on (0, δ). This is impossible in light of Lemma 24. As a result,

ϕ(η) = νε−
λ1
a η

λ1
a λ+ o(η

λ1
a )

as η approaches 0 from the right. This establishes part 2 of Theorem 13 for case C

and under the assumption that λ1

a
is not an integer.

In the resonance case, Proposition 11.6 in [33] implies that Y 2 = 0, that Y λ = 0

and that Y ỹ is an eigenvector of B0 corresponding to the eigenvalue λ1

a
. Together

with Lemma 30, this yields

ϕ(η) =V (η) · exp

(
ln

(
η

ε

)
B0

)
·
(
νλ+ ỹ + ln

(
η

ε

)
Y (νλ+ ỹ)

)
=V (η) ·

(
exp

(
ln

(
η

ε

)
B0

)
(νλ+ ỹ) (71)

+ ln

(
η

ε

)
·
(
Y ỹ +

∞∑
l=1

1

l!
·
(

ln

(
η

ε

))l(
λ1

a

)l
Y ỹ

))
. (72)

93



Using (69) and (65), the term in (71) and (72) becomes(
1 +

∞∑
l=1

ηlVl

)
· (ỹ + ε−

λ1
a η

λ1
a · (νλ− ln(ε)Y ỹ) + ε−

λ1
a η

λ1
a ln(η)Y ỹ). (73)

Let us first consider the situation where λ1

a
> 1. In case C, ỹ = 0 and we obtain

ϕ(η) = νε−
λ1
a η

λ1
a · λ+ o(η

λ1
a )

as η approaches 0 from the right. Since ν 6= 0 by Lemma 24, we have established part

2 of Theorem 13 for case C under the assumption that λ1

a
is an integer larger than 1.

Now, suppose that λ1

a
= 1. In case C, Representation (73) of ϕ(η) implies that

ϕ(η) = νε−1η · λ+ o(η),

and part 3 of Theorem 13 follows for case C. In case B, (73) yields

ϕ(η) = ỹ + ε−1η ln(η)Y ỹ + o(η ln(η)).

Since Y ỹ is an eigenvector of B0 with corresponding eigenvalue λ1

a
, Lemma 28 implies

that the first component of Y ỹ is nonzero. This yields part 3 of Theorem 13 for case

B. 2
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APPENDIX A

DISCUSSION OF THEOREMS 5 AND 6

The basic idea behind Theorems 5 and 6 is that for a sufficient number of switches,

by perturbing the switching time sequences one can generate perturbations to the

terminal point in all directions.

The first statement of Theorem 6 corresponds to Theorem 3.1 in [24], which reads

as follows: Under the assumptions of Theorem 6, any neighborhood U of ξ contains

points that are normally accessible from ξ at arbitrarily small times. A point η

in M is called normally accessible from ξ at time t > 0 if there exist vectors i ∈

Sm+1 and (t̂1, . . . , t̂m+1) ∈ ∆t,m+1 such that Fi(t̂1, . . . , t̂m+1) = η and the differential

DFi(t̂1, . . . , t̂m+1) has full rank. In [24], this is established along the following lines:

Fix a neighborhood U of ξ and a time T > 0. Since the weak hypoellipticity condition

holds in an open neighborhood of ξ, we can assume without loss of generality that

the weak hypoellipticity condition holds at every point in U . Recall that n is the

dimension of M . Theorem 3.1 in [24] will follow once we show the following statement:

For 1 ≤ k ≤ n, there exist an index vector i ∈ Sk and an open set Uk ⊂ ∆T,k such

that the map

Fk : ∆T,k →M, (t1, . . . , tk) 7→ Φ
(t1,...tk)
i (ξ) (74)

has the following properties.

(a) The rank of DFk(η) equals k for any η ∈ Uk.

(b) The set Fk(Uk) is a k-dimensional submanifold of M ∩ U .

We use induction. In the base case k = 1, there is an index i ∈ S with ui(ξ) 6= 0, for

otherwise we would obtain that I(D)(ξ) = {0}, contradicting our assumption that
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the weak hypoellipticity condition holds at ξ. Since ui(Φ
0
i (ξ)) = ui(ξ) 6= 0 and since

t 7→ ui(Φ
t
i(ξ)) is continuous, there is an ε ∈ (0, T ) such that ui(Φ

t
i(ξ)) 6= 0 for all

t ∈ (0, ε). Define the map

F1 : ∆T,1 →M, t 7→ Φt
i(ξ).

By the constant-rank theorem (see [24]), there is an open set U1 ⊂ (0, ε) such that

F1(U1) is a one-dimensional submanifold of M ∩ U .

In the induction step, assume that the statement holds for some k ∈ {1, . . . , n−1}.

Then, there exist an index vector i ∈ Sk and an open set Uk ⊂ ∆T,k such that the map

Fk defined according to (74) has properties a and b. Next, we show that there is some

η ∈ Fk(Uk) and some index i ∈ S such that ui(η) is not an element of the tangent

space TηFk(Uk). Under the assumption that ui(η) ∈ TηFk(Uk) for all η ∈ Fk(Uk) and

for all i ∈ S, one can show that I(D)(η) ⊂ TηFk(Uk) for some η ∈ Fk(Uk). But

property b states that TηFk(Uk) has dimension k, which is by assumption strictly less

than the dimension n of I(D)(η), a contradiction. In the sequel, we work with this

point η ∈ Fk(Uk) and with this index i ∈ S. Since η ∈ Fk(Uk), there is a time vector

t̂ ∈ Uk with η = Fk(t̂). Define the map

Fk+1 : ∆T,k+1 →M, (t1, . . . , tk+1) 7→ Φ
tk+1

i (Fk(t1, . . . , tk)).

Then,

DFk+1(t̂, 0) = (DFk(t̂), ui(Fk(t̂)) = (DFk(t̂), ui(η)).

Every column of DFk(t̂) is in TηFk(Uk), so the rank of this matrix is k. In addition,

ui(η) is not an element of TηFk(Uk), so DFk+1(t̂, 0) has full rank (k+ 1). Then, there

is a neighborhood W ⊂ ∆T,k+1 of (t̂, 0) where DFk+1 has full rank. Notice that one

can make sense of this last statement, even though (t̂, 0) is only a boundary point

of ∆T,k+1. By the constant-rank theorem, there is an open set Uk+1 ⊂ W such that

Fk+1(Uk+1) is a (k+1)-dimensional submanifold of M∩U . This finishes the induction

step.
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It’s worth pointing out that only one sequence i resulting in a map F with a regular

point was constructed. But since the flow generated by any vector field is a family

of diffeomorphisms, and since the set of points satisying the weak hypoellipticity

condition is open, one can append any indices in front or at the back of that sequence

without destroying the desired properties, and thus recover this part of Theorem 6 as

we state it. The fact that the interior of L(ξ) is nonempty and dense in L(ξ) follows

from Theorem 3.2.a in [24]. Theorem 5 follows from applying Theorem 3.1 ([24]) to

R×M and vector fields 1⊕ ui, i ∈ S, where

(1⊕ u)(r, ξ) := (1, u(ξ)), (r, ξ) ∈ R×M,

and 1 is the unit vector field on R corresponding to the derivation ∂/∂r and identically

equal to 1 in the natural coordinates on R.
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APPENDIX B

HOW EQUATION (56) RELATES TO THE

FOKKER–PLANCK EQUATIONS

Equation (56) in the proof of Lemma 26 can also be derived from the Fokker–Planck

equations, but in order to do this, one needs to assume that the invariant densities

are C 1.

It is an immediate consequence of (60) that

ρ̄(ζ) = (λ1 + u′1(ζ)) · ρ1(ζ) + u1(ζ) · ρ′1(ζ),

see [2]. Hence, the term to the right of the equality sign in (56) equals

− 1

u1(η)
·
∫ ϑ

η

(λ1 + u′1(ζ)) · ρ1(ζ) · exp

(
λ1 ·

∫ ζ

η

dx

u1(x)

)
dζ (75)

− 1

u1(η)
·
∫ ϑ

η

ρ′1(ζ) · u1(ζ) · exp

(
λ1 ·

∫ ζ

η

dx

u1(x)

)
dζ. (76)

As

lim
ζ↑ϑ

(
ρ1(ζ) · u1(ζ) · exp

(
λ1 ·

∫ ζ

η

dx

u1(x)

))
= 0

if u1 is smooth and forward-complete, integration by parts implies that the term

in (76) equals

ρ1(η) +
1

u1(η)
·
∫ ϑ

η

(λ1 + u′1(ζ)) · ρ1(ζ) · exp

(
λ1 ·

∫ ζ

η

dx

u1(x)

)
dζ. (77)

Since the second term in (77) cancels with the term in (75), we obtain (56).
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[9] Chow, W.-L., “Über Systeme von linearen partiellen Differentialgleichungen
erster Ordnung,” Math. Ann., vol. 117, pp. 98–105, 1939.

[10] Cloez, B. and Hairer, M., “Exponential ergodicity for Markov processes with
random switching,” Available at http://arxiv.org/abs/1303.6999, 2013.

[11] Da Prato, G. and Zabczyk, J., Ergodicity for infinite-dimensional systems,
vol. 229 of London Mathematical Society Lecture Note Series. Cambridge Uni-
versity Press, Cambridge, 1996.

99



[12] Davis, M. H. A., “Piecewise-deterministic Markov processes: a general class
of nondiffusion stochastic models,” J. Roy. Statist. Soc. Ser. B, vol. 46, no. 3,
pp. 353–388, 1984. With discussion.

[13] Davis, M. H. A., Markov models and optimization, vol. 49 of Monographs on
Statistics and Applied Probability. London: Chapman & Hall, 1993.

[14] Davydov, Y. A., Lifshits, M. A., and Smorodina, N. V., Local properties
of distributions of stochastic functionals, vol. 173 of Translations of Mathematical
Monographs. Providence, RI: American Mathematical Society, 1998. Translated
from the 1995 Russian original by V. E. Nazăıkinskĭı and M. A. Shishkova.
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