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Abstract— The architecture of many hydraulic manipulators,
such as excavators common in the earthmoving industry,
have constraints on the net sum of actuator speeds. This
paper gives the necessary conditions for minimum-time velocity
commands for point to point motion. A kinematic model of
the manipulator is used. The optimal solution is not always
unique. We propose a particular optimal solution, u∗, that is
stationary. The optimality of inputs unequal to u∗ is evaluated
by the position of u∗ in the input domain. Several examples
are given to demonstrate the analysis.

NOMENCLATURE

C Maximum pump flow rate.

D Vector of single-actuator flow constraints.

ψ Vector of the flow-velocity ratio of each actuator.

u Velocity of actuators.

u∗ A useful point for testing optimality.

x Normalized position coordinate.

q Generalized position coordinate.

(·)T Transpose of (·).
(·)k The kth element of vector (·).

I. INTRODUCTION

Hydraulic actuators are used in applications requiring high

power density at low to moderate speeds, including large-

scale industrial manipulators for factory automation and

earthmoving. Here, we consider the common earthmoving

excavator in Fig. 1. Excavators generally have at least four

degrees of freedom arranged in an open kinematic chain

and are typically manually controlled by a human operator

seated in the cab. That excavators are ubiquitous, multi-DOF

mobile manipulators capable of performing a wide array of

functions makes them excellent testbeds for studying robotics

and controls.

All manipulators are subject to motion constraints includ-

ing power limits and joint torque limits. In addition, multi-

DOF hydraulic manipulators driven by a single source of

pressurized oil are subject to limits on the combined velocity

achievable by all actuators. This constraint does not gener-

ally affect electrically actuated robots, and consequently the

literature is deficient in highlighting methods of control to

deal with this problem.
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Fig. 1: Major components of an excavator; the four actuated

functions are swing, boom, arm, bucket.

We have recently proposed a technique termed blended
shared control (SC) as a way to decrease task time of

manually controlled systems [1]. Blended SC may be a

low overhead way to decrease cycle times of repetitive,

manually controlled tasks. A key module of blended SC is

a method of calculating the time-optimal control to move

the manipulator from one configuration to another. The

optimization must be completed in real-time and for a

variety of configurations. Optimization methods presented in

literature are too specialized [2] or appear to be unsuitable

for real-time implementation [3], [4], [5]. This paper starts

from the assumption of quasi-static dynamics. From here,

necessary optimality conditions on the input u are stated. A

special point, u∗, is introduced. In the case where the input

u(t) = u∗ for all time, the motion is necessarily optimal.

In the case where u(t) �= u∗ for some time, the input may

or may not be optimal. The location of u∗ in the domain of

allowable inputs U provides a convenient test for optimality,

and can discriminate an input u(t) as sub-optimal even before

the input violates a necessary condition for optimality.

II. SYSTEM BACKGROUND

The manipulator linkages are accelerated by a hydraulic

actuator system comprised of cylinders, conduits, controlled

orifices, pumps, accumulators, and a prime mover. Fig. 2

shows a simplified schematic of the typical connection

actuators for the type of systems considered here. The valves

represent a generic arrangement of electronically controlled

orifices. The separate orifices comprising each valve may

be independently controlled (e.g., the valve may consist of

four or more electro-hydraulic poppet valves) or they may

be coupled (e.g., the valve may consist of a spool valve with

a single degree of freedom). An open-loop, electronic valve

controller handles low-level actuator tracking control.

Many such manipulators have a single pump to supply
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Fig. 2: The circuit for a multi-DOF hydraulic manipula-

tor. Supporting hydraulic circuitry and components are not

shown.
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Fig. 3: Piecewise monotonic motion segments are normalized

so the value at the final time is zero.

flow to all actuators as in Fig. 2. The pump is often

undersized so it is impossible to simultaneously actuate all

functions at full speed.

III. THE MANIPULATOR TASK

Let q(t) = [q1(t), · · · , qn(t)]T be the generalized position

of the actuators, e.g. the cab rotation (or swing) angle is q1,

and the length of the boom, arm, and bucket cylinders are

q2, q3, q4, respectively. In absence of kinematic singularities,

any end effector path through the workspace is equivalently

described by the displacement q(t) of the actuators. An

actuator trajectory may be decomposed into a sequence of

piecewise monotonic segments termed motion primitives.

We assume that the motion between the endpoints of these

motion primitives is inconsequential, and that only the final

relative displacement is to be considered.

A change of variables simplifies the notation. Defining

x(t) = (q(T )− q(t)) sign (q(T )− q(0)) (1)

as illustrated in Fig. 3 makes the motion from some starting

point q(t) to the end of the current motion primitive occuring

at q(T ) equivalent to the motion from x(t) to x(T ) = 0.

The sign (·) term guarantees that x(t) ≥ 0, since q(t) is

monotonic over the primitive. With the change of variables,

the problem is to drive the x(t) system from an initial

position x(0) to the origin, x(T ) = 0, with minimum
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Fig. 4: A cylinder and generic hydraulic valve with controlled

orifices.

final time T . Note that x(t) denotes the expected remaining

actuator displacement before reaching the origin.

A. System Model
Excavators have dynamics that occur over very different

time scales, ranging from very fast pressure rise within

a closed volume of fluid to slower rigid-body linkage

dynamics [6]. Fluid power researchers studying the gross

motion of hydraulic manipulators often assume the hydraulic

components undergo “quasi-static” dynamics.
We also make this convenient, though not entirely ac-

curate, assumption that all the hydraulic dynamics can be

neglected. Thus, assuming the actuators follow a simple

kinematic velocity-controlled law gives

ẋ = −u (2)

with the assumption that

u ∈ U

where the velocity control input to the cylinders is u and

U is the set of allowable inputs, as defined in Sec. IV. The

piecewise optimization of kinematic manipulators has been

treated previously [7]; however, the constraints considered

here place limits on the sum of actuator velocities—a con-

straint class not typically covered in literature.

IV. LIMITS ON CYLINDER VELOCITIES

Here we show how the space U of allowable velocities is

related to the flow-velocity ratio (FVR) ψ of each actuator.

A. Flow-velocity Ratio
Flow control valves direct pressurized oil from the system

pump to the actuators, as illustrated in Fig. 4. The flow

entering the actuator is related to the valve’s operating mode,

i.e., the particular combination of open orifices, which also

determines the FVR of that actuator. The FVR relates the

steady-state velocity uk of the actuator to Qk, the portion of

the system pump flow Qs that enters function k, as

ψk ≡ Qk

uk
(3)

By defining relative displacements as in (1), the velocity uk
is always nonnegative. The flow Qk entering the actuator

control valve from the supply conduit may be zero (if the

valve is operating in a regeneration mode) or positive. Thus

ψk ≥ 0.



B. Multi-actuator Velocity Constraint

Let C > 0 denote the maximum flow rate of the pump.

The combined velocity of all actuators is limited and must

satisfy ∑
Qk =

∑
ψkuk = ψTu ≤ C (4)

where ψ = [ψ1, · · · , ψn]
T

and u = [u1, · · · , un]T . We

assume that the valve operating mode, and hence ψ, is

constant throughout the motion from x(t) to the origin.

C. Single-actuator Velocity Constraint

The maximum actuator speed is constrained by the max

flow that can pass through the valve. The velocity of actuator

k must satisfy

uk ≤ Dk (5)

where the parameter Dk depends on the valve operating

mode, the orifice physical limitations, the maximum supply

pressure, and the power limits of the system.

D. Domain of Allowable Control Inputs

The allowable control inputs u must satisfy (4) and (5);

thus the domain of feasible velocities u is

U =
{
u : 0 ≤ uk ≤ Dk, ψ

Tu ≤ C
}

(6)

The region U is illustrated as the shaded region in Fig. 5 for

a two-dimensional case.1

E. Projection of Non-allowable Inputs to Allowable Region

The human operator commands the actuator velocity ū by

displacing joysticks located within the excavator cab. From

the equations of motion (2), the actuators track the input u
perfectly for u ∈ U . If the velocity ū commanded by the

operator is outside U , then ū is first projected to the feasible

region. A common technique in industry [8] is to scale each

component of ū by a common factor α so that

ūp = proj∂U ū (7)

= αū (8)

where ūp is the projection of ū onto the boundary ∂U of

U . With reference to Fig. 5, ∂U may consist of points along

the multi-actuator constraint ψTu = C, or the single-actuator

constraints uk = Dk, or both. The scalar α is

α = min
j

(1, αm, αj) (9)

where minj (·) indicates the minimum of the arguments

considering all values j = 1, 2, · · · , n and

αm =
C

ψT ū
(10)

αj =
Dj

ūj
(11)

are the factors necessary to scale ū to intersect the multi-

and single-actuator constraint lines.

1All figures will be drawn in the u1-u2 plane for clarity; however, in
general, u ∈ Rn.
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Fig. 5: An infeasible input ū is projected into the feasible

region U by proportionally scaling each component of ū.
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Fig. 6: Allowable region U for an undersized pump with

Dk ≥ C ∀k. An infeasible ū is projected to the boundary

of U by scaling each component equally.

Formally, the problem is summarized as

Find u(t) to minimize T

subject to x(0) = x0

x(T ) = 0

ẋ = −u
u ∈ U

(12)

Problems similar to 12 have been posed and solved in various

ways including dynamic programming, optimal control [9],

and by inversion of the main system dynamics [10] of a

chemical process.

V. OPTIMAL INPUT - SPECIAL CASE OF UNDERSIZED

PUMP

If Dk ≥ C ∀k, then the pump is undersized, and the

feasible region in the u-plane is triangular as sketched in

Fig. 6. The optimal solution to (12) will satisfy

ψTu(t) = C (13)

for all time.

There is a particular u, denoted u∗, for which all actuators

reach the origin simultaneously. This input is constant for all

time throughout the trajectory from x(0) to the origin.

Theorem 1: The input

u∗ =
C

ψTx
x (14)

will drive the system (12) from x = [x1, · · · , xn]T to the

origin in minimum time with a final time

T ∗ =
ψTx

C



and will be constant for all x along the trajectory.

Proof: The total fluid volume required from the system

pump is related to the flow-velocity ratio ψ of each actuator

and the remaining distance x each actuator must travel as

V = ψ1x1 + ψ2x2 + · · ·+ ψnxn = ψTx

With input u∗ the pump always delivers maximal flow rate C
because ψTu∗ = CψTx/(ψTx) = C. Hence, the minimum

time to deliver the net volume V is

T ∗ =
ψTx

C

Given a constant input uk, the time required for the kth

actuator to go from xk to the origin is

Tk =
xk
uk

Equating Tk = T ∗ = ψT x
C and solving and solving for uk,

gives

u∗k =
C

ψTx
xk

for all k = 1, · · · , n, which becomes (14) when expressed

in vector notation.

A. Motion of u∗ for Suboptimal ū

If the manipulator is manually controlled, and the pro-

jected operator input ūp differs from u∗, then u∗ will in

general not be stationary. Understanding the dynamics of

u∗ is helpful for assessing the optimality of an input. The

motion of u∗ will depend on the state x and the input u, as

in Theorem 2.

Theorem 2: The point u∗ defined by (14) is a dynamic

function of the state x and input u, having velocity du∗/dt =
u̇∗, where

u̇∗ =
C

(ψTx)
2

((
ψTu

)
x− (ψTx

)
u
)

(15)

Proof: This result follows directly from

du

dt

∗
= ∇u∗ dx

dt

by using the dynamics in (2) and

∇u∗ =
C

ψTx
[I]− C

(ψTx)
2xψ

T

where [I] is the identity matrix. The velocity is always

directed parallel to the manifold ψTu = C because

ψT u̇∗ =
C

(ψTx)
2

(
ψT
(
ψTu

)
x− ψT

(
ψTx

)
u
) ≡ 0

Remark 1: The point u∗ is stationary for any u along the

line from the origin to u∗. This is true because u̇∗ = 0
whenever uk/xk =

(
ψTu

)
/
(
ψTx

)
.

Remark 2: The velocity u̇∗ is always on the constraint

manifold ψTu = C and points in a direction “away” from

u. This result is seen by writing (15) as

u̇∗ =
ψTu

ψTx

C

ψTx
x− C

ψTx
u

=
ψTu

ψTx
u∗ − C

ψTx
u

=
ψTu

ψTx
(u∗ − u)− C − ψTu

ψTx
u

Thus, there is always a component of velocity in the direc-

tion (u∗ − u). The motion of u∗ for the case of suboptimal

operator input (u = ū) is illustrated in Fig. 6; for the planar

case, u∗ moves along the line ψTu = C.

VI. OPTIMAL INPUT FOR GENERAL CASE

With input u = ūp ∈ U , the task time T is the time

required for all components xk to reach the origin, and can

be written as

T = max
i

xi
ui

Choosing u = u∗p, where u∗p is the the projection of u∗ =
C

ψT x
x onto the feasible region using (8), gives

u∗p = min
j

(
1,

C

ψTu∗
,
Dj

u∗j

)
u∗

so that

T ∗ = max
i

⎛
⎝ xi

u∗
i

minj

(
1, C

ψTu∗ ,
Dj

u∗
j

)
⎞
⎠

where

C

ψTu∗
=

C

ψTx

ψTx

C
= 1

Dj

u∗j
=

Dj

C
ψT x

xj
=
ψTx

C

Dj

xj

xi
u∗i

=
xi
C

ψT x
xi

=
ψTx

C

Thus the optimal completion time can be written as

T ∗ = max
i

⎛
⎝ ψTx/C

minj

(
1, ψ

T x
C

Dj

xj

)
⎞
⎠ (16)

=

⎛
⎝ ψTx/C

minj

(
1, ψ

T x
C

Dj

xj

)
⎞
⎠ (17)

= max
j

(
ψTx

C
,
xj
Dj

)
(18)



Fig. 7: The regions L and Mk in the domain U for n = 3

VII. OPTIMALITY CONDITIONS

There are two subsets of the boundary of U , ∂U , which

are of interest. Let L and Mk be the regions defined as

L =
{
u : ψTu = C, uk ≤ Dk

}
(19)

Mk = {u : uk = Dk, u ∈ U} (20)

u ∈ L requires the maximum pump flow C, while u ∈ Mk

implies that uk is at maximum value, Dk, for actuator k.

Fig. 7 shows a sketch of regions L and Mk for the case

of three actuators (n = 3). Note, it is not necessary for

Mi ∪Mj = ∅.

Claim 1: If u∗ ∈ L, then the minimum task time is T ∗ =
ψT x
C . The optimality conditions are

1) u(t) ∈ L ∀t ∈ [t0, t0 + T ]
2) u∗(t) ∈ L ∀t ∈ [t0, t0 + T ]

Note that (1) ⇒ (2).

Claim 2: If the projected point u∗p ∈Mk, then a necessary

condition for optimality is that u∗p(t) ∈ Mk ∀t ∈ [t0, t0 +
T ].

While not shown here for succinctness, Claim 1 and Claim

2 are proven by showing that the task time when satisfying

these claims equals the optimal time given in (18).

VIII. EXAMPLES

Example 1, in Fig. 8: Consider manipulation of two

actuators, with ψ = [1, 1]
T

, C = 2, and dk > 2. Suppose

the actuators are just beginning a motion with x(0) = [1, 1]T

Using (14), the stationary optimal input is u∗ = [1, 1]T .

Suppose the operator input is ū = [ 14 , 1
3
4 ]

T , then the point

u∗ moves away from ū in the direction shown in Fig. 8a.

The operator input ū satisfies the necessary condition for

optimality (ψT ū = C) up to the moment that u∗ enters the

u2 = 0 plane. At this time, the dimensionality of the problem

is reduced to a line as in Fig. 8b. The original input ū violates

the optimality condition since ψ2ū2 < C. To remain optimal,

the operator input must always lie within the locus of point

ψTu = C. Hence, if the operator does not immediately

u

u1

u2

*u

1 2

1

2

0
(a) 2DOF motion (x1, x2 > 0)

u11 20

'u *u

(b) 1DOF motion (x1 >
0, x2 = 0)

Fig. 8: Example 1: Example of dynamics within u-plane for

2 degree-of-freedom manipulation

change inputs when the dimensionality is reduced, then there

will be a time for which the input is not optimal.

Consider three hypothetical trajectories for a 2DOF ma-

nipulator moving from the initial state x = [1, 1]
T

to the

origin. The illustrations will assume C = 1, ψ = [1, 1]
T

,

and D = 3C
4 ψ.

Example 2, in Fig. 9: The input is chosen to be ū = u∗, so

the necessary condition for optimality (ψTu = C) is satisfied

everywhere. In the u-plane, Fig. 9b, the point u∗ is stationary.

Example 3, in Fig. 10: Here, ū �= u∗; however, the

necessary condition for optimality is satisfied (ψT ū = C
always). Consider the behavior of u∗ in the u-plane. Initially,

ū = [ 14 ,
3
4 ]

T as shown in Fig. 10b. The point u∗ has a velocity

away from ū, so it slides down the line ψTu = C. Just

before t = 1, the point u∗ is on the verge of leaving L as

shown in Fig. 10c. At that instant, ū is suddenly changed to

ū = [ 34 ,
1
4 ]

T , which pushes u∗ back into the feasible region,

where it remains for the duration of the motion.

Example 4, in Fig. 11: This is a suboptimal trajectory.

The input is initially at ū = [ 14 ,
3
4 ]

T , which again causes

u∗ to move down the curve. Since ū �= u∗, u∗ moves

away from ū (see Fig. 11b) according to (15). The necessary

condition of optimality is satisfied through t = 1, after which

u∗ leaves the feasible region (Fig. 11c). The trajectory is

confirmed to be suboptimal immediately after u∗ leaves L
and enters M1—the suboptimality is proven even before ū
violates the necessary condition. Once the point u∗ leaves

U , then eventually the input ū must become sub-optimal.

At t = 4
3 , actuator 2 reaches the origin and the dimension

is reduced by one, as in Fig. 11d. Due to the constraint

u1 < d1, it is impossible for ū to continue satisfying

the optimality condition. Indeed, x reaches the origin with

T = 2 2
9 , which is 11 percent longer than the optimal cases.

This illustrates the potentially counter-intuitive result that

an operator commanding inputs that at all times yield the

maximum speed of an actuator will not necessarily yield a

time-optimal trajectory.

IX. CONCLUSIONS

This paper gave the optimality conditions on the input u(t)
for completing a motion primitive with a displacement x(t)
with multi- and single-actuator constraints on the allowable

input. The solution was derived by assuming a quasi-dynamic
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(a): The actuator position and velocity command. (b): ū =

[ 14 ,
3
4 ]

T
. (c): ū = [ 34 ,

1
4 ]

T

model for the actuator dynamics. This assumption produced

a solution amenable for real-time computation on low-end

industrial controllers typical in industry. The optimal solution

is almost never unique, but optimality can be tested by

considering a special point u∗. The location of u∗ in the

input plane provides a convenient test for optimality, and

can discriminate an input u(t) as sub-optimal even before

the input violates a necessary condition for optimality, as

demonstrated in the four examples presented.

There are some clear caveats to this optimization approach.

First, the relative distance x(t) was assumed to be precisely

known. In reality, x(t) is estimated online and is subject to

error. This error manifests as error in u∗. The effects of this

error on task completion time should be studied. Second,

the optimization occurs relative to each motion primitive;

whether sequential optimization of a trajectory’s constituent

t
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1 input, u

3/4
1/4

4/3 tf 4/3 tf

(a) solid: actuator 1; dashed: actuator 2
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3
, T ]

Fig. 11: Example 4: A suboptimal trajectory. (a): The actu-

ator position and velocity command. (b): ū = [ 14 ,
3
4 ]

T
(d):

ū = [ 34 , 0]
T

primitives leads to a lower overall task cost remains to be

shown. Third, the controls engineer must weigh whether

minimizing task time is appropriate for a given application,

especially since the energetic expense of a manipulator

trajectory tends to increase with the speed.

REFERENCES

[1] A. Enes and W. Book, “Blended shared control of zermelo’s navigation
problem,” in Proc. of IEEE ACC2010: American Control Conference,
Baltimore, MD, 2010.

[2] M. Cobo, R. Ingram, and S. Cetinkunt, “Modeling, identification, and
real-time control of bucket hydraulic system for a wheel type loader
earth moving equipment,” Mechatronics, vol. 8, no. 8, pp. 863–885,
1998.

[3] E. Budny, M. Chlosta, and W. Gutkowski, “Load-independent control
of a hydraulic excavator,” Automation in Construction, vol. 12, no. 3,
pp. 245–254, 2003.

[4] L. E. Bernold, “Motion and path control for robotic excavation,”
Journal of Aerospace Engineering, vol. 6, no. 1, pp. 1–18, 1993.

[5] P. Holobut, “Time-optimal control of hydraulic manipulators with path
constraints,” Journal of Theoretical and Applied Mechanics, vol. 43,
no. 3, pp. 523–38, 2005.

[6] H. Merrit, Hydraulic Control Systems. New York: Wiley, 1967.
[7] E. Bakolas and P. Tsiotras, “On-line, kinodynamic trajectory genera-

tion through rectangular channels using path and motion primitives,”
in IEEE International Conference on Decision and Control, CDC08,
Cancun, Mexico, 2008, pp. 1–14.

[8] J. Pfaff and K. Tabor, “Velocity based electronic control system for
operating hydraulic equipment,” U.S. Patent 6 732 512, 2004.

[9] A. Weinreb and A. E. Bryson, “Optimal control of systems with hard
control bounds,” IEEE Transactions on Automatic Control, vol. AC-
30, no. 11, pp. 1135–8, 1985.

[10] N. Petit, Y. Creff, and P. Rouchon, “Minimum time constrained
control of acid strength on a sulfuric acid alkylation unit,” Chemical
Engineering Science, vol. 56, no. 8, pp. 2767–2774, 2001.


