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SUMMARY

Simulation of maneuvers with multibody models of rotorcraft vehicles is an important

research area due to its complexity. During the maneuvering flight, some important design

limitations are encountered such as maximum loads and maximum turning rates near the

proximity of the flight envelope. This increases the demand on high fidelity models in order

to define appropriate controls to steer the model close to the desired trajectory while staying

inside the boundaries. The desired trajectory is dependent on the given mission or task. A

framework based on the hierarchical decomposition of the problem is used for this study.

The system should be capable of generating the track by itself based on the given criteria and

also capable of piloting the model of the vehicle along this track. The generated track must

be compatible with the dynamic characteristics of the vehicle. Defining the constraints for

the maneuver is of crucial importance when the vehicle is operating close to its performance

boundaries.

In order to make the problem computationally feasible, two models of the same vehi-

cle are used where the reduced model captures the coarse level flight dynamics, while the

fine scale comprehensive model represents the plant. The problem is defined by introduc-

ing planning layer and control layer strategies. The planning layer stands for solving the

optimal control problem for a specific maneuver of a reduced vehicle model by satisfying

the given constraints and optimizing the cost function. The control layer takes the result-

ing optimal trajectory as an optimal reference path, then tracks it by using a non-linear

model predictive formulation and accordingly steers the multibody model by solving the

time marching problem with the given initial conditions. Reduced models for the planning

and tracking layers are adapted by using neural network approach online to optimize the

predictive capabilities of planner and tracker.

Optimal neural network architecture is obtained to augment the reduced model in the

x



best way. The methodology of adaptive learning rate is experimented with different strate-

gies. Some useful training modes and algorithms are proposed for these type of applications.

It is observed that the neural network increased the predictive capabilities of the reduced

model in a robust way.

The proposed framework is demonstrated on a maneuvering problem by studying an

obstacle avoidance example with violent pull-up and pull-down.

Key words: Multibody dynamics; Maneuvers; Trajectory optimization; Optimal control;

Model predictive control; Neural Networks; Trajectory tracking; Flight mechanics; Vehicle

dynamics
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CHAPTER I

INTRODUCTION AND MOTIVATION

This study is concerned with maneuvering multibody dynamics (MMBD) by using an adap-

tive model predictive controller. MMBD is based on generating and executing a plan for

flying a virtual prototype of a vehicle between specific locations, achieving a given task [1].

For any given task we can have certain constraints, obstacles, specific flight conditions,

boundaries of a finite performance envelope and also some special requirements for the op-

erational phase. The planning part of the problem should ensure the satisfaction of those

task requirements. Current approaches for the multibody dynamics are based on computing

the motion of the vehicle by integrating the model equations in time, by taking as input

initial conditions and the given controls. The significant point here is the determination of

the time histories of control inputs. It is very complicated and computationally expensive

to produce the control inputs and the tracking trajectory by solving the optimal control

problem (boundary value problem) for the multibody model. However, MMBD is concerned

with generating the control actions for a given task by blending the coarse and fine scale

models. Typically we can define the problem in two sections as a) how to operate the model

of the vehicle based on the given criteria b) steer the model accordingly [1].

Great progress has been made in recent years towards the comprehensive simulation of

the rotorcraft based on the high fidelity aeroelastic mathematical models. Those models are

based on the multibody finite element methods that provide the ability to model the most

complex part of the vehicle, the rotor system, in a detailed way [6]. Rotorcraft multibody

codes are coupled with time-accurate aerodynamic models ranging from dynamic inflow

to free wake models all the way to first principles of computational fluid dynamics [1, 7].

Generally multibody-based analysis rely on complex, large, highly non-linear multi-field

models. These high fidelity mathematical models of rotorcraft systems are currently dealing

with the analysis of hover and forward flight regimes. Already some procedures are available
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such as constant-in-time control inputs that trim the aircraft model either in wind tunnel

or free flight modes [5]. On the other hand, only flight mechanics models (reduced model,

coarse model) are being used to perform a typical simulation of maneuvering flight [3]. In

those models, vehicles are mostly modelled as a rigid body and the rotor is described by

using blade element theory with wake corrections. In this sense, same physical system can

be defined by two different mathematical models such as aeroelastic (comprehensive, fine

scale) model and flight mechanics model which has far fewer degrees of freedom. Although

aeroelastic models are able to render fine scale details of the solution, reduced model is blind

to these small scales. However, those models are still able to capture the coarser scales of

the physical processes in a sense of flight mechanics characteristics.

There can be also problems such that the trajectory of the vehicle is given or easy to

determine. In this case, simulation of the maneuver becomes only a tracking problem where

the controller steers the vehicle along a pre-assigned trajectory. However, for rotorcraft

based applications, it is very difficult or almost impossible to guess a priori reasonable

tracking paths. This is due to the fact that, there are some factors such as maximum loads

and limiting criteria that are encountered during the maneuvering flight in proximity of

the flight envelope. In those cases, it will be very difficult to know whether a given path is

trackable, whether it is optimal or whether it satisfies the constraints based on performance

and operational requirements. There are some different rotary wing civil applications such

as emergency maneuvers following the partial loss of power due to an engine failure during

the take-off and obstacle avoidance problem with violent pull-up/ pull-down [1, 2]. These

studies addressed those issues by removing the assumption of pre-assigned track. However,

those studies are concentrated on the parameter optimization problem in a sense of adjusting

the reduced model. In this study, neural network is applied on the reduced model as an

adaptive controller to generate a more robust case. When compared with the previous

studies we can expect better tracking performance for the planned robust application.

The motion planning phase is totally based on the optimal control theory where we define

the vehicle performance index as a cost function which should be minimized subjected to

the system dynamics and other constraints on the controls and the states. Optimal control
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requires the solution of boundary value problems rather than the classical initial value

problems solved by time-marching multibody codes. By the increase of the complexity of the

model, the computational cost becomes a serious problem for boundary value applications.

In this sense, the maneuver optimal control problem is solved at the flight mechanics level

which is inexpensive. Then the controls computed as part of the solution are used for

steering the fine aeroelastic model. In this way, the fine level solution becomes a classical

forward dynamics integration with acceptable computational cost. In order to ensure the

convergence of the trajectories flown by the two models to a common result, iteration

methodology, using an adaptive controller, has been employed between coarse and fine level

representations to adjust the flight mechanics model to behave as close as to the aeroelastic

model.

Here is the detailed hierarchy of the layers that are used for the path planning and path

tracking [1] :

• A strategic layer is concerned with the definition of the problem regarding the tasks

that need to be studied and the final objectives of the process. (For example, a

helicopter avoiding an obstacle should accomplish violent pull up and accordingly

violent pull down in minimum time to recover the mission altitude and speed while

satisfying the constraints on controls and trajectory). The output of this layer will be

the definition of the maneuver as an optimal control problem in terms of cost function

and constraints.

• A tactical layer is responsible for the navigation and guidance of the vehicle based on

planning the best trajectory that satisfies the goal defined in the strategic layer. In

this planning phase, a reduced vehicle model is used in solving the optimal control

problem which is still able to capture the global dynamic characteristics (gross overall

motion) of the plant, i.e. of the detailed multibody model. Computational costs are

inexpensive since this coarse model has few degrees of freedom. The output of this

layer is the tracking trajectory which will be an input for the next layer.

• A reflexive layer focuses on the control problem by implementing the necessary control

3



actions to the plant to track the trajectory created in the previous layer. Also the

reduced model estimation is still used. This layer implements the non-linear model

predictive control (NMPC) [11] to adjust the reduced model in a sense of matching

the two models. Basically, the controller predicts the future behavior of the plant

by using this reduced model and finds the control inputs that are necessary to steer

the plant along the generated trajectory, solving the optimal control problem on a

receding horizon. Since steering in open-loop is prone to instabilities, receding horizon

methodology can be used as an application of model based predictive control for Multi-

Model Steering Algorithm (MMSA) [2].

By using the receding horizon methodology as a control policy we can come up with

stable behaviors of controls and states. Clearly, we are steering the aeroelastic model for

a short period of time and then solving the optimization problem again on a time shifted

horizon. At this time, adaption procedure is taking an important role on the non-linear

reduced model in order to predict the dynamics of the plant closely and guarantee small

tracking errors. These steps are iterated until we reach the end of the maneuver. The

reflexive layer performance is efficiently increased with the adaption procedure.

The adaption strategy on the reduced model requires the on-line training of the neural

network by using the information taken from the previous receding horizon window which

will be the difference between the predicted and effectively realized vehicle behaviors.

For clarity, tactical planner and reflexive controller both use the reduced model to

achieve low computational costs. Also as a a part of the reflexive layer, the multibody code

takes the role of the plant and it is used for solving the initial value problem with known

control actions.

Once the planned trajectory has been tracked by the reflexive controller, we have to

correct the reduced model deficiency according to the achieved performance. Then we have

to go back to the tactical layer and repeat the trajectory planning phase with the improved

reduced model. Contributions between those two layers should be carried out by iteration

in order to enforce the compatibility on the tracking trajectory of reduced model and plant

until we get a convergence or no further model improvements. This adaptive planning and
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tracking methodology uses MMSA.

As a first step, general information is given about the neural networks that can be use-

ful for this study (chapter 2). In order to find the best approach for the identification of

system errors, we worked on a simple dynamic problem (chapter 3). Then we described the

adaptive tracking and steering of the multibody models with the given trajectories (chapter

4). As a next step, formulation of the maneuver optimal control problem is developed for

the trajectory planning. Then different possible alternatives on implementing the adaptive

planning and tracking procedures are introduced (chapter 4). In order to assess the per-

formance, this methodology is applied to an obstacle avoidance problem involving violent

pull-up / pull-down maneuvers and results of this robust methodology is compared with

the previous studies (chapter 5). As a final step, optimal neural network architecture is

proposed for these kind of problems (chapter 6).
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CHAPTER II

NEURAL NETWORKS

Neural network is a highly complex, non-linear information processing system which is

motivated by the human brain. It is designed to model the way in which the brain performs

a particular task or function of interest. The vital importance lies under the learning

capability of this structure. Once the required knowledge is supplied to the network from

its environments through a learning process, it is capable of producing reasonable outputs

for inputs not encountered during training. This property is called generalization capability

of the neural network. By the use of this property, it is possible to solve complex (large

scale) problems that are currently intractable.

Here are some other important capabilities and properties of Neural Networks.

Nonlinearity : An artificial neuron can be linear or non-linear. Interconnection of

non-linear neurons create a non-linear structure. Nonlinearity is distributed through the

network.

Input-output mapping : Throughout the learning period neural network is subjected to

set of inputs and corresponding desired responses. Synaptic weights starting from initial

values are modified to minimize the difference between the desired and actual responses.

This procedure is repeated for many examples where network reaches steady state (no

further improvements are possible) or until the desired error is achieved.

Adaptivity : Neural networks have a built-in capability to adapt their synaptic weights

to changes in the surrounding environment. It can be retrained to deal with minor changes.

In non-stationary environments (dynamic systems, ...), a neural network can be designed

to change its synaptic weights in real time. Control applications coupled with the adaptive

capability make it a useful tool especially in adaptive control. The more adaptive we make

a system, the more robust its performance will likely be when operating in a stationary

environment.
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Fault tolerance : A neural network has the potential to be inherently fault tolerant or

capable of robust computation. Thus, a neural network exhibits a graceful degradation in

performance rather than catastrophic failure under adverse operating conditions. In order

to be assured that the neural network is in fact fault tolerant, it may be necessary to take

corrective measures in designing the algorithm to train the network.

2.1 Neural Network Architecture

Decision on the architecture of the neural network is one of the important issues that

affects the overall performance of the application. Before looking at different architectures

lets define the smallest element of this architecture which are neurons. Non-linear model of

neuron can be seen from figure (1).

Figure 1: Non-linear model of a neuron.

A set of connecting links (synapses) are characterized by weights of its own. Signal

xj at the input of synapse j connected to the neuron k, is multiplied by a weight wkj .

There is an adder (linear combiner) for summing up the input signals weighted by the

respective synapses of the neuron (1a). After this summation, an activation function is

used for limiting the amplitude of the output of a neuron to a permissible range (1b) .

Typically, the normalized amplitude range of the output of a neuron is written as the
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closed unit interval [0,1] or alternatively [-1,1].

The neuron model also includes an externally applied bias, denoted by bk. The bias has

the effect of increasing or lowering the net input of the activation function, depending on

its positive or negative respectively.

uk =
m∑

j=1

wkjxj (1a)

yk = ϕ(uk + bk) (1b)

There are different types of activation functions such as threshold function, piecewise

linear function, sigmoid function, etc... Sigmoid function is the most common form of

activation function used in the construction of artificial neural networks. It is defined as a

strictly increasing function that exhibits a graceful balance between linear and non-linear

behavior [14]. It is defined by the formulation in equation (2)

ϕ(ν) =
1

1 + exp(−aν)
(2)

where a is the slope parameter of the sigmoid function. When slope approaches infinity the

sigmoid function becomes a threshold function as seen from figure (2).

In general, we can define the neural network structure in three main sections which are

input layer, hidden layer(s), output layer. The first layer is called the input layer where the

information to be analyzed is fed to the neurons. Number of neurons in this layer depend

on the dimension of the information that is fed to the input layer. Then this information is

propagated to the neurons of the next layer (hidden layers) and the process continues until

reaching the output layer.

There are different classes of network architecture.

Single-layer feedforward network is the simplest form of a layered network where we

have an input layer of source nodes that projects onto an output layer neurons. There is

no hidden layer in the architecture. A compact illustration is used in figure (3) where just
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Figure 2: Sigmoid function.

an individual neuron contribution is shown. R represents the number of elements in input

vector, while S represents the number of the neurons in the output layer.

Figure 3: Single layer feedforward network.

The input vector elements enter the network through the weight matrix W . Row indices

on the elements indicate the destination neuron of the weight, while the column indices

indicate which source is the input for that weight as seen in figure (4).

In the figure (3), p is an input vector with length R, W is an SxR matrix and a and

b are S length vectors. As mentioned earlier, b is the bias vector, and we also have the

summer and the function operator.
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Figure 4: Weight matrix.

Multi-layer feedforward network distinguishes itself by the presence of one or more hid-

den layers. The network is enabled to extract higher order statistics. This is important

when the size of the input layer is large. Figure (5) illustrates fully connected feedforward

network with one hidden layer.

Figure 5: Fully connected 3-5-2 feedforward network structure.

Here all the nodes between subsequent layers are connected to each other. Input layer

has 3 neurons, hidden layer has five neurons and output layer has two neurons (3-5-2).

In the figure (6), two hidden layer structure can be seen where layer 1 and layer 2

represents the hidden layers and layer 3 represents the output layer. Input layer is not

numbered in this figure. The network has R input neurons and S3 output neurons.S1

and S2 represents the neurons on the layer 1 and layer 2 (hidden layers) respectively. The

outputs of each intermediate layer are the inputs of the next layer. IW represents the

weight matrix which has a contribution with input layer and LW’s represent the matrices

with contribution to hidden layers and output layer.
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Figure 6: R-S1-S2-S3 feedforward compact network illustration.

Multiple-layer networks are quite powerful. For instance, a network of three layers (one

hidden layer), where the hidden is sigmoid and the output layer is linear, can be trained

to approximate any function (with a finite number of discontinuities) arbitrarily well. This

kind of three-layer network will be also used in the applications.

Recurrent networks distinguishes itself from feedforward neural networks in that it has

at least one feedback loop.

There are some important issues that should be taken care while constructing the NN

architecture:

• Decision on the number of input neurons which depends on the variety of information

that is fed to the network.

• Deciding on the number of hidden layer neurons is an important and difficult task

since optimal number of neurons will provide the maximum network performance.

• Selection of activation functions (non-linear or linear) according to the problem.

2.2 Training Modes (Incremental and Batch Training)

In practical applications of back-propagation algorithm, learning process results from the

presentations of a prescribed set of training examples to the network. One complete presen-

tation of the entire training set is called epoch. The learning process is maintained on an
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epoch by epoch basis until the synaptic weights and bias levels of the network stabilize and

the averaged squared error over the entire training set converges to some minimum value.

For a given training set there can be two choices of learning ways:

1- Incremental (Sequential) mode : In the incremental mode of back-propagation learn-

ing, weight updating is performed after the presentation of each training example (input).

Specifically, after the first example is presented to the network, it adjusts its synaptic

weights and biases in order to minimize the error between the output of the network and

the desired output. This is done just for one training example of the entire epoch. Then,

second example is presented and new adjustments are done. This process is continued until

the last example, where one epoch is completed. Then, if necessary another epoch can be

processed in the same manner. This procedure is also called online or stochastic mode.

2- Batch mode : In this mode of back-propagation learning weight updating is performed

after the presentation of all the training examples, that constitute an epoch. We can define

the cost function as the averaged squared error shown in the equation (3)

εav =
1

2N

N∑

n=1

∑

jǫC

e2
j (n) (3)

where set of C includes all the neurons in the output layer, and the ej(n) is the error signal of

the output neuron j for the iteration n, between the desired response and the corresponding

response of the network. The inner summation is the error for one example and the outer

summation is for the entire epoch. Clearly, in this approach we want to minimize the error

for all the training examples at the same time. In other words, we want to converge to a

closest local minimum for the entire set. For a learning rate of η, the adjustments applied

to a synaptic weight wji connecting neuron i to neuron j is defined by the delta rule as the

following:
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∆wji = −η
∂εav

∂wji
(4a)

∆wji = −
η

N

N∑

n=1

ej(n)
∂ej(n)

∂wji
(4b)

wjinew = wjiold
+ ∆wji (4c)

Weight adjustments are done only after the entire training set has been presented to the

network.

Comparison Between Two Modes

• For the on-line training the incremental mode is preferred over the batch mode because

it requires less local storage for each synaptic connection (for small training sets with

few data, also batch mode can be an option for the online training as described as a

part of an application in chapter(6)).

• The use of pattern by pattern updating of weights (incremental mode) makes the

search in weight space stochastic in nature. This makes it less likely for the back-

propagation algorithm to be trapped in local minimum.

• The stochastic nature of the incremental mode makes it difficult to establish theoreti-

cal conditions for convergence of the algorithm. However, the batch mode of training

provides an accurate estimate of the gradient vector, convergence to a local minimum

is thereby guaranteed under simple conditions.

As a conclusion, despite the fact that the incremental mode of back-propagation learning

has several disadvantages, it is highly popular for two important practical reasons.

- The algorithm is simple to implement.

- It provides the effective solutions to large and difficult problems.

In this study, we will make use of both the batch mode and the incremental mode in an

effective way for the class of problems that have been worked on.
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2.3 Training Algorithms

In this chapter, several different training algorithms for feedforward networks will be dis-

cussed. The error back-propagation (EBP) algorithms which work for the feedforward struc-

tures are the most commonly used types [22]. These algorithms are widely used because of

their robustness, which allows them to be applied in a wide range of tasks. Back-propagating

the error from the output layer to the input layer is the way of using known input and out-

put pairs of a target function to find the coefficients that make a certain mapping function

approximate the target function as closely as possible. All of these algorithms use the gradi-

ent of the performance (cost) function to determine how to adjust the weights to minimize

performance. This gradient technique is called back-propagation which involves performing

computations backwards through the network.

Back-propagation Algorithm

There are many back-propagation algorithms which we discuss in this chapter. The sim-

plest implementation of back-propagation learning, updates the network weights and biases

in the direction in which the performance function decreases more rapidly (the negative of

the gradient). Generally, this is called gradient descent methodology.

Before going through the different types of implementations, its better to give some

information about the optimization techniques used in minimizing the cost.

Unconstrained optimization techniques

We can consider a cost ε(w) function which is continuously differentiable function of

some unknown vector w. The aim is to find the weight (parameter) vector of an adaptive

algorithm which makes the NN behave in an optimum manner. In order to do this, we have

to find the optimal solution (w∗) that satisfies the condition given in equation (5).

ε(w∗) ≤ ε(w) (5)
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The cost function ε(w) should be minimized with respect to the weight vector w. Neces-

sary condition for the optimality will be the equation (6) where ∇ is the gradient operator.

∇ε(w∗) = 0 (6)

∇ε(w) is the gradient vector of the cost function (7).

∇ε(w) = [
∂ε

∂w1
,

∂ε

∂w2
, .....,

∂ε

∂wm
]T (7)

Starting with an initial guess for the weight vectors we can generate a sequence of weight

vectors where the cost function is decreased in every iteration as shown in equation (8).

However, there is no guarantee that we will eventually converge to the optimal solution w∗.

ε(w(n + 1)) ≤ ε(w(n)) (8)

The basic methodology used for unconstrained optimization is steepest descent.

Method of steepest descent

In this methodology, the successive adjustments applied to the weight vector w are in

the direction of the steepest descent, which is in a direction opposite to the gradient vector

∇ε(w). For convenience we can take it as

g = ∇ε(w). (9)

The steepest descent algorithm is described by the formula given in equation (10a) where

η is a positive constant called the learning rate parameter and g(n) is the gradient vector

evaluated at the point w(n). Moving from iteration n to n + 1 the correction applied by

the algorithm is given in the equation (10b).
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w(n + 1) = w(n) − ηg(n) (10a)

∆w(n) = w(n + 1) − w(n) (10b)

∆w(n) = −ηg(n) (10c)

Now we can use a first order Taylor series expansion around w(n) to approximate

ε(w(n+1)) in order to show that the formulation satisfies the condition given in equation (8).

ε(w(n + 1)) ≃ ε(w(n)) + gT (n)∆w(n) (11a)

ε(w(n + 1)) ≃ ε(w(n)) − ηgT (n)g(n) (11b)

ε(w(n + 1)) ≃ ε(w(n)) − η ‖ g(n) ‖2 (11c)

Equation (11c) shows that for a positive learning rate η, the cost function is decreased

as the algorithm progresses from one iteration to next. The reasoning presented here is only

true for small learning rates.

The method of steepest descent converges to the optimal solution w∗ slowly. Further-

more, the learning rate has a profound influence on the convergence. In this part, it will be

useful to talk about the importance of the learning rate.

Learning Rate

The learning rate is one of the most important parameters in the steepest descent

methodology. In the equation (10c), η represents the learning rate which is a positive value

between 0 and 1. Learning rate has the same value for each connection (weight) where

it adjusts the step size that will be taken along the line corresponding to the steepest

gradient. It is downwards at the current weight state along the error surface over the

weight space [23]. Generally in standard back-propagation η is also kept fixed throughout

the application. When learning rate kept constant, the length of the steps will be in a
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fixed proportion to the size of the steepest gradient. Behavior resulting from this feature

will be most successful for error surfaces with large initial steepest gradients that become

shallow near the goal weight state. The initial largeness reduces the number of steps needed

to cover the initial ground towards the goal. However, large values for learning rate can

cause overshooting the goal (i.e. global error) by taking large steps. As a simplest case

in figure (7), we can demonstrate the gradient descent in one dimension (respect to one

weight). As it is discussed above, learning rate has to be chosen reasonably small enough

in order not to overshoot the goal.

Weight

Error

Gradient (-g)

Goal

Figure 7: Gradient descent in one dimension.

In the aspect of the weight changes, it can be said that the smaller we make the learning

rates, the smaller the changes to the synaptic weights in the network will be from one itera-

tion to next. This will cause a smoother trajectory in the weight space. This improvement

is attained at the cost of a slower learning rate. On the other hand, if we increase the

learning rate to speed up the process network may become unstable (i.e., oscillatory) in

terms of weights.

There is a simple application in the reference [14] in order to show the effect of the

changes in the learning rates to the algorithm. Due to these results, we can make some

interpretation as follows:

• When η is small the transient response of the algorithm is overdamped, the trajectory
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traced by w has a smooth path. For this case, the algorithm will take too long to

converge.

• When η is large the transient response of the algorithm is underdamped, trajectory

w follows has a oscillatory path.

• When η exceeds a certain critical value, the algorithm becomes unstable.

As a conclusion, we can say that the performance of the algorithm is very sensitive to

the proper setting of the learning rate.

There are two different ways in which the steepest descent algorithm can be imple-

mented. These are incremental and batch modes that have been discussed in the previous

section.

Steepest descent with Momentum rate

A well-known augmentation to back-propagation which speeds up travel over shallow

surfaces is to use momentum coefficient α to allow previous weight change to have contin-

uing influence on the current weight change. Formulation of this method is presented in

equation (12) where α is set between 0 and 1.

∆wji(n) = −η
∂ε

∂wji
+ α∆wji(n − 1) (12)

Momentum rate allows a network to respond not only to the local gradient but also

to recent trends in the error surface. It acts like a low-pass filter and allows the network

to ignore small features in the error surface. The use of momentum rate has both an

accelerating effects, where the current negative of the error-weight derivative has the same

direction to the previous weight change ∆wji(n−1), and a damping effect, where the terms

are opposite in sign.

The performance of the steepest descent algorithm can also be improved if the learning

rate is allowed to be changed during the process. The use of the adaptive learning rate with

the steepest descent methodology is discussed in detail in the chapter(6).
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There are some other augmentations that improve the performance of the steepest de-

scent methodology. For example, a sigmoid function can cause the gradients to have a very

small magnitude since if the inputs get large in value slope of the sigmoid function goes to

zero. Small changes in gradients will cause small changes in the weights and biases even

though they are far from their optimal values. This problem can be overcome by using

resilient back-propagation algorithm where these harmful effects of the magnitudes of the

partial derivatives can be eliminated. In this algorithm, only the sign of the derivative is

used to determine the direction of the weight update, the magnitude of the derivative has

no effect on the update.

Furthermore, there are some conjugate gradient algorithms where a search is performed

along conjugate directions rather than the steepest descent directions to provide faster con-

vergence. In this case, the step size is adjusted in each iteration.

Newton’s Method

This methodology is based on minimizing the quadratic approximation of the cost func-

tion ε(w) around the current point w(n). This minimization is performed at each iteration

of the algorithm. It uses a second order Taylor series expansion of the cost function around

the point w(n) as seen in equation (13).

∆ε(w(n)) = ε(w(n + 1)) − ε(w(n)) (13a)

∆ε(w(n)) ≃ gT (n)∆w(n) +
1

2
∆wT (n)H(n)∆w(n) (13b)

For the steepest descent case g(n) is the m-by-1 gradient vector of the cost function

ε(w) evaluated at the point w(n). In this case, the matrix H(n) is the m-by-m Hessian

matrix of ε(w) also evaluated at w(n). The Hessian matrix is defined by the equation (14).
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H = ∇2ε(w) (14a)

H =




∂2ε
∂w2

1

∂2ε
∂w1∂w2

. . . ∂2ε
∂w1∂wm

∂2ε
∂w2∂w1

∂2ε
∂w2

2

. . . ∂2ε
∂w2∂wm

...
...

...

∂2ε
∂wm∂w1

∂2ε
∂wm∂w2

. . . ∂2ε
∂w2

m




(14b)

In this case, the cost function ε(w) is required to be twice continuously differentiable

with respect to the elements of w. When we differentiate the equation (13b) with respect to

∆w, we will end up with the equation (15) where the change ∆ε(w) is minimized. Solving

this equation for ∆w, will lead to the formulation that we can use to adjust the weights of

the neural network.

g(n) + H(n)∆w(n) = 0 (15)

Newton’s method converges faster than the other gradient algorithms that are men-

tioned. Also it does not exhibit the zigzagging behavior that the steepest descent some-

times shows. However, the Hessian matrix has to be a positive definite matrix for all n’s

and there is no guarantee that H(n) is positive definite for each iteration. In this case,

some modifications are necessary to this method [14].

Levenberg-Marquardt Method

This method is also designed to approach second-order training speed like the Newton

method. However, there is no need to compute the Hessian matrix. When the performance

function has the form of a sum of squares, then the Hessian matrix can be approximated

as H = JT J and the gradient can be computed as g = JT e where J is the Jacobian matrix

which contains the first derivatives of the network errors with respect to the weights and

biases, and e is a vector of network errors as depicted in the equations (16).
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e(n) =

[
e(1), e(2), . . . , e(n)

]T

(16a)

J(n) =




∂e(1)
∂w1

∂e(1)
∂w2

. . . ∂e(1)
∂wm

∂e(2)
∂w1

∂e(2)
∂w2

. . . ∂e(2)
∂wm

...
...

...

∂e(n)
∂w1

∂e(n)
∂w2

. . . ∂e(n)
∂wm




w=w(n)

(16b)

The n-by-m Jacobian matrix can be computed through a standard back-propagation

technique that is less complex than computing the Hessian matrix. This Levenberg-Marquardt

methodology uses the following approximated Hessian matrix in the Newton-like update of

the weights.

w(n + 1) = w(n) − [JT J + µI]JT e (17)

In the equation (17), when the scalar µ is zero, this is just Newton’s method using the

approximate Hessian matrix. When µ is large, this becomes gradient descent with a small

step size. Newton’s method is faster and more accurate near an error minimum, so the aim

is shift towards Newton’s method from gradient descent as quickly as possible. In order to

do this, µ is decreased after each successful step (reduction in performance function) and

increased only when there is an increase in the performance function [24] .

Among all these methodologies Levenberg-Marquardt algorithm appears to be the fastest

method for training moderate-sized feedforward neural networks (up to several hundred

weights). Although the performance of this methodology is generally satisfactory in com-

plex problems with batch mode, steepest descent is mostly preferred for on-line training

applications because of its simplicity in implementation to the code and in control of the

parameter behaviors (i.e. learning rate), and its convenience in working with limited data.

Back-propagation Algorithm for Multilayer Networks

In order to be clear defining the process, lets define the error signal at the output layer
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and go back through the input layer by back-propagating the error. Equation (18) stands

for the error at the output neuron j for the iteration n (example n) where right hand side

is the difference between the desired output and the network output.

ej(n) = dj(n) − yj(n) (18)

The total error is obtained by summation over all neurons in the output layer where C

includes all the neurons in the output layer of the network in equation (19). This is the

total error for only one example (not complete set) where it can be used for the incremental

(on-line) training with one example each step.

ε(n) =
1

2

∑

j∈C

e2
j (n) (19)

Error ε(n) represents the performance function that we want to decrease applying the

gradient descent methodology. Equation (20) defines the correction for specific weighting

factor wji by the delta rule.

∆wji(n) = −η
∂ε(n)

∂wji(n)
(20)

The partial derivative ∂ε(n)/∂wji(n) represents a sensitivity factor determining the

direction of the search in weight space for the synaptic weight wji, while η represents the

learning rate of the back-propagation algorithm. The use of the minus sign stands for the

gradient descent in weight space (seeking a direction for weight change that reduces the

ε(n)).

Equation (20) can also be defined in the following way,

∆wji(n) = −ηδj(n)yi(n) (21)

where local gradient δj(n) and input signal of neuron j yi(n) is related with the equation (22)

and equation (23) respectively. Signal flow graph (8) for an individual neuron is also included

to make the interactions clear.
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δj(n) = −
∂ε(n)

∂vj(n)
(22a)

δj(n) = −
∂ε(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)
(22b)

yi(n) =
∂vj(n)

∂wji(n)
(23)

y =+10

w (n)=b (n)j0 j

w (n)ji v (n)j j(.) y (n)j -1

d (n)j

e (n)j

y (n)i

Figure 8: Signal-flow graph for the details of output neuron j.

2.4 System Identification and Adaption

The nonlinear functional mapping properties of neural networks are central to their use in

control. Training a neural network using input-output data from a plant can be considered

as a nonlinear functional approximation problem. Identification can be done with either

forward modelling or inverse modelling.

The procedure of training a neural network to represent the forward dynamics of a

system will be referred to as forward modelling. In general, system identification describe
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the input-output relation of an unknown multiple input-multiple output (MIMO) systems.

A structure for achieving this relation is shown schematically in figure (9). The neural

network model is placed parallel with the system and the prediction error is used as the

network training signal. To make it clear, lets implement an input vector xi to both an

unknown system and a NN based model. As shown in figure (9), the output of NN is

denoted by yi and the output of the unknown system (black box) is di. The difference

between the di and the network output yi provides the error signal vector ei. This error

signal is then used to adjust the free parameters of the network to minimize the squared

difference between the outputs of the unknown system and the neural network in a statistical

sense and, is computed over the entire training set [14, 20].

+

-

S

Unknown System

Neural Network
Model

xi (input vector)

di

ei

yi

Figure 9: Block diagram of system identification.

Also another way to approximate an unknown input-output mapping can be using an

inverse system methodology [14, 20].

The control of a plant is an important learning task that can be done by a neural

networks. Adaption of the controller takes a vital role in order to provide improved stability

of the plant.

However, the environment of interest is frequently non-stationary where the parameters

generated by the environment vary with time. In this situations, the traditional methods

24



of learning will be inadequate since the network will not be capable to track the statistical

variations of the environment in which it operates. To overcome this problem, it is desirable

for a neural network to continually adapt its free parameters to variations in the incoming

information in a real-time. The learning process encountered in an adaptive system never

stops, it continues with the new information processed by the system. This type of learning

is called continuous learning or learning-on-the-fly [14].

In the continuous learning neural network is able to adapt its behavior to the varying

temporal structure of the incoming signal since statistical characteristics of a non-stationary

process usually change slowly enough for the process to be considered as pseudo-stationary

over a window of short enough duration. This pseudo-stationary property of a stochastic

process can be used to extend the utility of a neural network by retraining it at some regular

intervals to account for statistical fluctuations of the incoming data.

For a more refined dynamic approach to learning, following steps can be used:

• Select a window short enough for the input data to be considered pseudo-stationary

and use the data to train the network.

• When a new data sample is received update the data window and use this to retrain

the network.

• Repeat the procedure on a continuing basis.

Direct and Indirect Control

The control of a plant is another learning task that can be done by a neural network.

The plant is the process or critical part of the system that is to be maintained in a controlled

condition. Mainly, two different approaches have been used to control a plant adaptively

for over 20 years. These are direct and indirect control. In direct control, the parameters

of the controller are directly adjusted to reduce some norm of the output error. In indirect

control, the parameters of the plant are estimated as the elements of a vector p̂p(n) at any

instant n and the parameter vector θc(n) of the controller is chosen assuming that p̂p(n)

represents the true value pp of the plant parameter vector. Since it can be shown that
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controller parameter vector θ∗
c (n) exist for every value of the plant parameter vector pp, so

that the output of the controlled plant together with the controller approaches the output

of the reference model asymptotically [18]. Even when the plant is assumed to be linear

and time variant, both direct and indirect adaptive control results in overall non-linear

systems [18]. Figures (10) and (11) represent the structure of the overall adaptive system

using the two methods for the adaptive control of a linear time-invariant plant [18, 19].
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Figure 10: Direct adaptive control

+

-

S

ec

Reference

Model

PlantController

ym

ypu

r

Identifiacation

Model

pp̂

^

S

-

+

yp̂

ei

ei

pp

Figure 11: Indirect adaptive control

At present, methods for directly adjusting the control parameters based on the output

error (between the plant and reference model outputs) are not available. This is because

the unknown nonlinear plant in Figure (10) lies between the controller and the output
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error ec. Hence, until such methods are developed, adaptive control of nonlinear plants has

to be carried out using indirect methods. Using the resulting identification model, which

contains neural networks as a controller and linear dynamical elements as subsystems, the

parameters of the controller are adjusted. The identification model can be used to compute

the partial derivatives of a performance index with respect to the control parameters.

Adaptively control a nonlinear plant depends largely on the prior information available

regarding the unknown plant. This includes knowledge of the number of equilibrium states

of the unforced system, their stability properties, as well as the amplitude of the input

for which the output is bounded. For example, if the plant is known to have a bounded

output for all inputs u belonging to same compact set U , then the plant can be identified

off-line. During the identification the weights in the identification model can be adjusted

at every instant of time or at discrete time intervals. Once the plant has been identified

to the desired level of accuracy, control action can be initiated so that the output of the

plant follows the output of a stable reference model. It must be emphasized that even if the

plant has bounded outputs for bounded inputs, feedback control may result in unbounded

solutions. Hence, for on-line control, identification and control must proceed simultaneously.

Predictive control

In the realm of optimal and predictive control methods the receding horizon technique

has been introduced as a natural, computationally feasible feedback law. It has been proven

that the method has a desirable stability properties for nonlinear systems.

In this approach a neural network model provides prediction of the future plant response

over the specified horizon (12). The predictions supplied by the network are passed to a nu-

merical optimization routine which attempts to minimize a specified performance criterion

in the calculation of a suitable control signal.

The control signal ú is chosen to minimize the quadratic performance criterion subject

to the constraints of the dynamical model.

Another possibility illustrated in the figure (12), is to train a further network to mimic

the action of the optimization routine. This controller network is trained to produce the
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Figure 12: Structure for predictive control

same control output u, for a given plant output, as the optimization routine ú. An advantage

of this approach is that the outer loop consisting of plant model and optimization routine

is no longer needed when training is complete [20].

Model predictive controller (MPC) is a control algorithm which solves an optimization

problem on-line at each time step. For problems adequately described by linear models, the

linear MPC algorithm is an efficient algorithm which incorporates inherent multivariable

and constraint handling capabilities. In some cases, however, the selection of the desired

operating range coupled with possibly nonlinear process dynamics can degrade performance

and potentially destabilize the closed-loop system. In that case, the nonlinear model pre-

dictive control (NMPC) algorithm is a powerful control technique that can alleviate this

performance degradation while retaining the multivariable and constraint handling benefits

of MPC algorithm. Control using nonlinear models can be further complicated when work-

ing with distributed parameters. Also efficient solution techniques for NMPC problems are

necessary when solution time or constraints are important. For systems where incomplete

information is available, the estimation analogue of NMPC, nonlinear moving horizon es-

timation, can be incorporated into the algorithm [20]. Detailed description of the NMPC

methodology is provided in chapter(4).
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CHAPTER III

DIFFERENT APPROACHES IN IDENTIFICATION OF

SYSTEM ERRORS

The methodology that is proposed in the introduction is based on the NMPC methodology.

By the nature of this control methodology, we will have a full model which will be considered

as a plant and we will also have a nonlinear controller which is represented by the receding

horizon model predictive method solved by a direct transcription approach. This method

uses a reduced model augmented by a neural network.

In this section, two different approaches are proposed in order to capture the defect of the

reduced model or to estimate the state derivative errors between two models. Performances

of both approaches will be evaluated by the use of an application of a simple dynamic

problem. This simple example is used for demonstrating the correct implementation of

both models and the neural network to the methodology.

Lets define both approaches by using a reduced model M and full model M̃. The goal

is matching the outputs of those two models (y ≈ ỹ).

In the first approach, the error captured by the neural network can be defined as a

function of reduced model states y, full model states ỹ and some control inputs u. The

error between the two models formulated as in equation (24d). Clearly, in this approach, the

error is computed between full and reduced models where the model equations are functions

of their corresponding states.

ẏ − f(y, u) = 0 (24a)

˙̃y − f̃(ỹ, u) = 0 (24b)

ǫ(ỹ, y, u) = ˙̃y − ẏ (24c)

ǫ(ỹ, y, u) = f̃(ỹ, u) − f(y, u) (24d)
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In the second approach, the defect captured by the neural network can be defined as a

function of full model states ỹ, derivative of full model states ˙̃y and some control inputs

u. Formulation of the defect can be seen from the equation (25d). Since we are trying to

ensure the matching of reduced and full model states, we can use the equation (25c) on

the (25b) equation to come up with the defect formulation. Clearly, in this approach, the

defect is computed between full and reduced models where the model equations are both

functions of full model states ỹ.

Specifically, approach-2 requires the implementation of the full model states to the

reduced model equations in order to evaluate the defect.

˙̃y − f̃(ỹ, u) = 0 (25a)

ẏ − f(y, u) − d(ẏ, y, u) = 0 (25b)

y = ỹ (25c)

d( ˙̃y, ỹ, u) = f̃(ỹ, u) − f(ỹ, u) (25d)

A problem with two degrees of freedom seen in figure (13) is chosen for this example. A

pendulum of length L and mass m mounted on a cart of mass M which is connected to the

ground by means of spring stiffness constant k and a dashpot of constant c. The problem

is represented by two generalized coordinates. The displacement of the cart and the stretch

of spring is denoted by x and the angular deflection of the pendulum with respect to the

vertical is denoted by θ.

A real model (plant) and a simplified model (reduced model) are defined to make the

problem similar to our main objective.

Real model is defined by the dynamical equations and the parameters given in equa-

tions (26).
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Figure 13: Dynamic system with two degrees of freedom.

(M + m)ẍ +
mL

2
cos θ θ̈ −

mL

2
sin θ θ̇2 + kx + cẋ = U1 (26a)

mL

2
cos θ ẍ +

mL2

3
θ̈ + mg

L

2
sin θ = U2 (26b)

M = 5 kg. m = 2 kg. L = 0.4 m. k = 10 N/m c = 0.5 N sec/m (26c)

In the simplified model coupled terms are disregarded. The simple dynamic equations can

be seen below.

Mẍ + kx + cẋ = U1 (27a)

mL2

3
θ̈ + mg

L

2
sin θ = U2 (27b)

Applied controls U1 and U2 are selected as harmonic functions depicted in equation (28)

where a1, b1, a2, b2 are constants and def1, def2 are the deflections used to expand the con-

trols for training. The results with the approach-1 and approach-2 can be seen from the

figures given between pages 34 to 37.

U1 = a1e
−t sin(b1 t) ± def1 (28a)

U2 = a2e
−t sin(b2 t) ± def2 (28b)

When we compare the results for the different approaches, it is obvious that approach-2

promising better performance than the approach-1. In this manner, all the examples that

we are dealing with will be based on approach-2.
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Figure 14: Displacement of the cart with approach 1
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Figure 15: Displacement of the cart with approach 2
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Figure 16: Angular deflection of the pendulum with approach 1
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Figure 17: Angular deflection of the pendulum with approach 2
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Figure 18: Horizontal velocity of the cart with approach 1
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Figure 19: Horizontal velocity of the cart with approach 2
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Figure 20: Angular velocity of the pendulum with approach 1
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Figure 21: Angular velocity of the pendulum with approach 2
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CHAPTER IV

ADAPTIVE TRACKING AND STEERING MULTIBODY

CASES

In general, a multibody model characterized by M̃, can include rigid and flexible bodies,

sensors, actuators, point elements, controls and interactional forces with environment [1, 6].

Governing system of differential-algebraic (DAE) equations of M̃ are defined by (29a) and

(29b), where (29a) stands for the kinematic and dynamic equilibrium equations and (29b)

represents the holonomic and non-holonomic constraints.

f̃( ˙̃x, x̃, λ̃, ũ) + fA (xA, x̃(τ), τ ∈ (−∞, t)) = 0 (29a)

c̃( ˙̃x, x̃) = 0 (29b)

In the equations depicted above, the states of the multibody system are represented

by x̃, the Lagrange multipliers which enforce the constraints are denoted by λ̃ and the

controls are defined by ũ. These controls may represent applied forces, actuator inputs,

joint relative displacements and rotations. We have to discretize the governing equations if

we have flexible components in our model. In this case, because of the discretization, the

degrees of freedom of the states x̃ will depend on the spatial grids of the flexible components.

Also, in the equation (29a), f̃ includes inertial, internal, external forces for the multi-

body system, while fA represents the aerodynamic forces and the xA aerodynamic states.

Multibody models are based on the finite element multibody approach which is described

in detail in the references [6, 8]. This general framework defined here could be applied to

any multibody formulation.

For the tracking problem of M̃ we want to minimize the difference between multibody

outputs and the prescribed reference that we have to track. This can be written in terms
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of a minimization problem as follows:

min
x̃,λ̃,ũ,ỹ

∫ T

T0

||ỹ(t) − y∗(t)||Sy
dt. (30)

The quantities representing a set of multibody outputs is defined as

ỹ = h̃(x̃), (31)

The prescribed reference that should be tracked with the minimum error is defined by

y∗. The error is measured in the norm || • ||Sy
= (•) · Strack

y (•) with scaling matrix Strack
y .

By the equations (32) and (33) we can express the initial conditions on the states, and

the equality and inequality constraints on the inputs and outputs, respectively.

x̃(T0) = x̃0, (32)

gtrack(ỹ(t), ũ(t)) ∈ [g(t)trackmin , g(t)trackmax ], ∀ t ∈ [T0, T ]. (33)

These constraints can be augmented or changed to model some effects based on the

conditions and requirements of the operation which can be limited control authority, per-

formance envelope protection of the vehicle, the presence of obstacles, emergency conditions,

etc.

The physical meaning of the multibody outputs ỹ is problem dependent. Typically,

outputs of the flight mechanics model represent global vehicle states which defines its overall

gross motion in terms of orientation, position, linear and angular velocities. Although

multibody model states are more than flight mechanics states, it is always possible to

compute some quantities that have the same physical meaning of the flight mechanics states.

This can be handled by mapping corresponding states one to another. Also in the aspect

of controls, those two models might have a different physical meaning. This problem will

be discussed in detail in the section 3.

If we try to solve the problem given by equation (30) for a ”perfect tracker case” we

expect a tracking error ỹ(t)− y∗(t) of zero. However, for this section we are assuming that

the reference trajectory is given to us. This does not guarantee that the trajectory given
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for the tracking problem is compatible with M̃ , especially when the vehicle is forcing the

limits of the performance envelope. Basically, it is difficult to generate feasible reference

trajectories, so y∗ might not be a possible solution of (29) and (31) subjected to (32) and

(33). Computing a quasi-feasible y∗ will be discussed later.

In order to make the solution of the equation (30) computationally feasible, we approx-

imate the solution of the tracking problem using a non linear model predictive controller

(NMPC).

4.1 Reduced Model

By the use of the reduced model we can have reasonable computational costs in solving the

optimal control problem. This non linear reduced model M with the set of states, controls

and parameters is represented by y, u, p respectively.

For this study, the reduced model parameters are based on the Neural Network parame-

ters (weights and biases) which are optimized in order to satisfy a proper matching between

reduced model outputs and full model outputs (y ≈ ỹ). Clearly, both of them should be

subjected to the same inputs.

We can define a reference model based on a mathematical model with the following

expression.

fref(ẏ, y, u) = 0. (34)

Since we are working with two different level of detailed models, we have to be careful

on the physical meanings of the controls. Controls of multibody model (ũ) might have

different correspondance on the flight mechanics controls (u). Detailed multibody model

may include hydraulic actuators connected to the swash plate while reduced model controls

include the rotor collective, longitudinal and lateral cyclics. Although these set of controls

are clearly different they will change the pitch settings of the rotor blades at any given

instant of time [1]. It is always possible to map one set of controls to another by the

following equations.
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ũ = m(u) (35a)

u = m−1(ũ) (35b)

To make it simple we can consider ũ = u in the following.

A reference model augmented by a neural network can be written with the governing

equation as

fref(ẏ, y, u) = d(ẏ, y, u), (36)

where d(ẏ, y, u) stands for the reference model error. The error is the defect of eq (34)

encountered in matching the states of two different models (reduced and full, ỹ = y ).

Now, we need to capture this defect d by using a single hidden layer neural network in

the following manner where W , Vẏ,Vy and Vu are matrices of weights and biases of the NN

structure.

d(ẏ, y, u) = W T σ(V T
ẏ ẏ + V T

y y + V T
u u) + ε, (37)

Symbol σ used in eq (37) is an activation function which we can write as a vector form.

Here, each element refers to corresponding hidden neuron.

σ(φ) = (σ(φ1), . . . , σ(φNh
))T (38)

This non-linear activation function is chosen as the sigmoid function for the hidden layer

where there are Nh number of hidden neurons. Also ε stands for functional reconstruction

error which can be bounded as ||ε||2 ≤ Cε, Cε > 0 for some appropriately large number of

hidden layer neurons [12].

As we mentioned before, parameters of the reduced model is defined as the synaptic

weights and biases of the network.

p = (. . . , Wij , . . . , Vẏ,ij , . . . , Vy,ij , . . . , Vu,ij , . . .)
T . (39)
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The neural network is responsible for minimizing the error between the network output

and the desired output. To ensure this, the network is subjected to the training procedure

with an effective learning algorithm, which is a gradient descent based error-correction

algorithm. Since we have the information on the multibody model (plant) from previous

steering, we can define the error between two models in the following way,

network output = W T σ(V T
ẏ

˙̃y∗ + V T
y ỹ∗ + V T

u u∗) (40a)

desired output = fref( ˙̃y
∗
, ỹ∗, u∗) (40b)

E = ||W T σ(V T
ẏ

˙̃y∗ + V T
y ỹ∗ + V T

u u∗) − fref( ˙̃y
∗
, ỹ∗, u∗)||2. (40c)

where ỹ∗ is the plant outputs and u∗ is the given control inputs.

Several methods are available in order to solve this optimization problem [13, 14].

By approximating the defect of the reference model with the neural network, we are

able to capture the complete output behavior and matching y ≈ ỹ. The success of this

approach is problem independent.

We can express the reduced model in a compact notation, which will be used during the

rest of the study.

f(ẏ, y, u, p) = 0. (41)

There can be two possibilities for parameters. Parameter p can be independent or

dependent of time. If p is independent of time, then it can define the reduced model

through the whole maneuver. If p is varying with time (p = p(t)), then the reduced model

parameters are based on local nature.

4.2 Model Predictive Tracking

As a main concept, we use the reduced model M in predicting the future behavior of the

plant M̃ steered by the control inputs. The principle of the model predictive tracking can

be seen in Figure (22).
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Figure 22: Model predictive control.

On a finite horizon (tracking window), we solve the open-loop optimal control problem

with a cost function for the reduced model. Tracking cost function is based on the tracking

error and some weighted control activity shown in equation (43). Also the optimizer ensures

the satisfaction of some input and output constraints. As a solution of this open-loop model

predictive tracking problem, we get some computed control actions that we can use to steer

the multibody model (plant) M̃ only a short time horizon (steering window). This steering

window should be short enough to capture the short period modes of the plant for better

performance.

As expected after steering the plant M̃, due to the mismatch between reduced model

and plant, the actual outputs will be different from the predicted ones. As a next step,

the tracking problem is solved again in a shifted horizon starting from the point where the

steering of plant is ended. This procedure is iteratively carried out until we reach the end

of the maneuver. By the receding horizon approach we apply the feedback to the problem.

Assuming that the reference outputs (y∗) are given or achieved by solving the trajec-

tory optimization problem for the whole maneuver by using the reduced model, we can

go through and explain the tracking and steering procedure by a mathematical formula-

tion. Also we can use some current estimation for model parameters (p∗) which are neural

network weights and biases.
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Beginning of the tracking and steering windows are defined as t = T track
0 = T steer

0 .

Also end of the tracking window is defined with the window size ∆T track, T track =

T track
0 + ∆T track. Given initial conditions on the plant states are x̃(T track

0 ) = x̃0. Output

initials conditions are defined as ỹ0 = h̃(x̃0). The model predictive tracking problem is

defined with the following equations.

min
y,u

J track, (42a)

with: J track =

∫ T track

T track
0

M(y, y∗, u) dt, (42b)

s.t.: f(ẏ, y, u, p∗) = 0, (42c)

gtrack(y, u) ∈ [gtrack
min , gtrack

max ], (42d)

y(T track
0 ) = ỹ0. (42e)

The tracking cost is defined by the following equation (43). The first term stands for

the tracking error, while the second and the third terms are the quadratic terms based

on control actions and control rates which are used to get smooth control behaviors by

changing the weighting matrices.

M(y, y∗, u) = ||y − y∗||Strack
y

+ ||u||Strack
u

+ ||u̇||Strack
u̇

(43)

For the plant steering formulation, we are using the controls u∗(t) that we have found

already with the solution of the problem (42). In this case, we define t ∈ Ωsteer =

(T steer
0 , T steer) where T steer = T steer

0 + ∆T steer is the end of the steering window with size

∆T steer. By the given controls u∗, the plant M̃ is subjected to the following standard initial

value problem :
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f̃( ˙̃x, x̃, λ̃, u∗) = 0, (44a)

c̃( ˙̃x, x̃) = 0, (44b)

x̃(T steer
0 ) = x̃0, (44c)

This problem provides a solution in terms of x̃(t) and λ̃(t) for t ∈ Ωsteer. The solution

that we get at the end of the steering window provides the new initial condition for the next

step.

Some important characteristic details of the model predictive control approach for the

solution of tracking problem are listed below:

• Future behavior prediction of the plant is based on the finite horizon, rather than

the infinite horizon (T∞), since shorter horizons require small computational costs.

However, longer horizons will provide improved stability and performance.

• By the computed controls from the optimizer, outputs of the system M̃ will shift away

from the predicted solutions. When we keep the steering window (∆T steer) longer,

this shift will be greater. However, longer windows will decrease the computational

cost by decreasing the number of model predictive tracking problems that need to be

solved.

• The modeling errors, causing a mismatch between the predicted and actual outputs,

can be augmented by the adaption of the neural network parameters (model param-

eters) with on-line training after each steering action is done for the corresponding

window.

• Using a non-linear model of the plant improves the performance in a way of matching

the plant dynamics.

• Trade-off’s are possible for the first and second comments in a sense of window length

of tracking and steering phase.
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4.3 Numerical Solution of the Model Predictive Tracking

and Steering Problems

For the solution of the model predictive tracking problem there can be two possible strate-

gies. First option is the indirect approach which is based on deriving the optimal control

equations i.e state, adjoint (co-state), control equations. These set of equations define an

infinite dimensional non-linear multi-point boundary value problem. Second option is the

direct approach, where one first discretizes the optimal control equations and renders the

problem finite dimensional by using a suitable discretization methodology and then opti-

mizes the problem.

There are some disadvantages of the indirect approach compared with the direct ap-

proach. These are mentioned below.

• Indirect approach requires the derivation of optimal control equations which can be

a complicated and tedious task for comprehensive systems or a rotorcraft. Also it is

not a flexible approach, since each time a new problem is posed and a new derivation

of the relevant derivatives is called.

• Indirect method resides in the necessity of providing suitable initial guesses for all

variables including states of the system and co-states (adjoint variables). The adjoint

variables are not physical quantities and is very nonintuitive so it is a difficult task

to initialize those values. Even with a reasonable guess the numerical solution of the

co-state equations will be ill-conditioned. This makes the method non-robust.

• In the indirect approach we need the constrained and unconstrained sub-arcs as a

priori for problems with state inequalities. This is quite difficult since if we don’t

know the number of constrained sub-ars, the number of iteration variables is also

unknown. Furthermore, the sequence of arcs is unknown which makes it difficult to

impose the correct junction conditions and define the arc boundaries. This reduces

the generality of the method.

Based on this information, we use the direct transcription methodology for the numerical

solution of the model predictive tracking problem (optimal control problem in a tracking
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window). The reduced model governing equations are discretized on a computational grid

of the tracking window. An appropriate numerical method is used for this process. As

a result of the discretization, we define a set of discrete state and control parameters on

this computational grid. Also we express the cost function and constraints in terms of the

discrete parameters. The problem turns to a non-linear programming problem. Numerical

solution of this non-linear discrete parameter optimization problem approximates its infinite

dimensional correspondent problem (42).

In order to describe the numerical solution more precisely, let us consider a temporal

domain as Ωtrack = (T track
0 , T track). This is temporal domain is partitioned as follows:

T track
0 ≡ t0 < t1 < . . . < tn−1 < tn ≡ T track, (45)

where n ≥ 1, and ti+1 = ti + hi, i = 0, . . . , n − 1. T track
h represents the grid, made of n

elements, associated with the partition. K represents a generic element. T i = [ti, ti+1] is

the time interval spanned by each element. Each element has a left vertex ∂KL contributed

with time ti and right vertex ∂KR contributed with time ti+1. We can write the size of

each element as hi = h = (T track − T track
0 )/n, since they are held constant throughout the

grid.

The infinite dimensional unknown fields y(t), u(t) are approximated with functions yh,

uh chosen within the finite dimensional spaces by the use of the finite element method.

The restriction of these approximations to generic element K, is noted by yh|K and uh|K .

The following equation shows that the state approximations evaluated on the right vertex

of an element Ki are equal to the state approximations evaluated on the left vertex of the

neighboring element Ki+1.

yh|∂KR
i

= yh|∂KL
i+1

(46)

Continuity of the states at the element interfaces provides the initial conditions on each

element as the value of the final states on the preceding element. However, there is no initial

conditions on the controls so that the control approximations uh should be discontinuous

across element interfaces.
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The functions yh and uh can be defined in terms of some discrete parameters yd, ud such

that yh = yh(yd) and uh = uh(ud) on the computational grid T track
h . Generally, the vector

of discrete parameters yd will contain the state unknowns at the grid nodes, y1, y2, . . . ,yn.

Also there will be additional ns internal unknowns (stages) per time step y1
i , y

2
i , . . . ,y

ns

i ,

for some schemes such as Runge-Kutta and finite element methods. The vector form of

discrete state parameters can be written in a general form as

yd = (. . . ,yi, y
1
i , y

2
i , . . . ,y

ns

i , yi+1, . . .)
T . (47)

Furthermore, the vector of the discrete control parameters ud can be written in a similar

way depending on the numerical method.

The discretized formulation of the model predictive tracking problem can be written as

min
yd,ud

J track
h , (48a)

with: J track
h =

∫ T track

T track
0

M(yh, y∗
h, uh) dt, (48b)

s.t.: fh(yh|K , uh|K , p∗) = 0 ∀K ∈ T track
h , (48c)

gtrack
h (yh|K , uh|K) ∈ [gtrack

min,K , gtrack
max,K ] ∀K ∈ T track

h , (48d)

yh(T track
0 ) = ỹ0. (48e)

In the equation (48), a discretized version of J track as given in (42b) is represented

by (48b) where the integral being evaluated with some appropriate quadratic rule. Equa-

tion (48c) represents a discretized version of reduced model governing equation (41) on

each element K of the computational grid. These equations are coupled from the conditions

mentioned in equation (46). Finally, another set of constraints represented by (48d) which

is a discretized version of input and output constraints of problem (42). Unknowns of the

optimization problem are the set of discrete state and control parameters yd, ud.

The transcription process is based on the finite element in time formulation of explained

detailed in Reference [17].
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Second phase of the problem is based on solving the initial value problem with known

control actions to steer the plant. T̃ steer
h is the grid used for advancing in time with the

multibody model in Ωsteer. In general, typical time step size in T̃ steer
h is smaller than the

typical time step size in T track
h . Much finer solution scales need to be resolved in steering

case. There is a need to map the controls u∗
h obtained on T track

h from the solution of

problem (48) onto the multibody steering grid T steer
h , since numerical method used for

integrating the multibody model equations can be different form the numerical method

used for discretizing the optimal control problem. This mapping is based on the grids and

numerical methods used at the tracking and steering levels which can be simply indicated

as follows

u∗
h|T̃ steer

h

= P(u∗
h|T track

h
), (49)

where P(•) is an appropriate mapping operator.

The discretized version of problem (44) can be written as

f̃h(x̃h|K , λ̃h|K , u∗
h|K) = 0 ∀K ∈ T̃ steer

h , (50a)

c̃h(x̃h|K) = 0 ∀K ∈ T̃ steer
h , (50b)

x̃h(T steer
0 ) = x̃0. (50c)

The discrete equations in (50a) and (50b) are solved on each element sequentially. Initial

conditions ar provided as in (50c) for the first element. For all subsequent elements they

are given by the conditions in equation (46). As a result the outputs are obtained as

ỹh|K = h̃(x̃h|K), ∀K ∈ T̃ steer
h . (51)

The numerical integration of the multibody dynamics equations is based on the methods

described in Reference [8] and references therein.

47



4.4 Model Adaption

In order to increase the reliability of the reduced model, we should get a reasonable match

between the predicted and actual outputs. We can minimize this mismatch subjecting the

reduced model and plant to the same control inputs and using a local adaption method to

augment the neural network based model parameters, iteratively.

Assuming u∗
h some given control inputs and ỹ∗

h the resulting multibody outputs, the

model adaption problem can be formulated as :

Jadapt
h =

∫ T adapt

T
adapt
0

Edt. (52)

For model augmentation with the neural network, the definition of E is given in equa-

tion (40c) where it represents the defect of the reference model.

In the local adaptation problem initial and final times are chosen to be T adapt
0 = T steer

0

and T adapt = T steer respectively.

The neural network augmented reference model are allowed to change based on the

parameters throughout the maneuver. The idea is totally based on using the local infor-

mation that we get from the previous steering window to correct the estimate parameters

(p = p(t)).

In the following formulation we can see that current parameters pcurr are adjusted to

the new parameters pnew.

pnew = pcurr + ∆p. (53)

Parameter correction ∆p can be found by the backpropagation algorithm [14] using the

steepest descent methodology with a learning rate of η.

∆p = − η
∂Jadapt

h

∂p

∣∣∣∣∣
pcurr

(54)
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4.5 Planning of Multibody Trajectories

As we mentioned before, generating feasible tracking trajectories for the multibody models

is a difficult problem. We have to ensure that the generated trajectory is compatible with

the vehicle dynamics. So far we assumed that this reference trajectory is given as y∗.

In order to plan a trajectory, we have to clearly define the problem and construct an

optimized cost function as a vehicle performance index with some additional constraints on

states and controls which are based on the maneuver requirements such as minimum time,

minimum power, etc...

If we try to solve the optimal control problem using the multibody model, we will not

achieve a feasible computational cost so the reduced model is used for this phase. As a

solution of this problem, we get controls, states and possibly the final time (T ), since we

assumed a free final time problem. In order to guarantee that the resulting trajectory is

trackable, M should represent the M̃ with sufficient accuracy.

Having some initialized neural network weights and biases represented as model param-

eters p∗, we can construct the optimal control problem as follows :

min
y,u,T

Jplan, (55a)

with: Jplan = φ(y, u)
∣∣
T

+

∫ T

T0

L(y, u) dt, (55b)

s.t.: f(ẏ, y, u, p∗) = 0, (55c)

gplan(y, u, T ) ∈ [gplan
min , gplan

max ], (55d)

ψ(y(T0)) ∈ [ψ0min
, ψ0max ], (55e)

ψ(y(T )) ∈ [ψTmin
, ψTmax

]. (55f)

The constraint equations (55d) represent point and integral constraints and bounds on

states and controls, while (55e) and (55f) are initial and final boundary conditions on the

states respectively.
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Methods for the optimal control problem are currently based on the discretization pro-

cess which makes the problem finite dimensional. Therefore, instead of first deriving the

equations and discretizing them, the reverse order is much more convenient to solve the

problem, where one discretizes the equations of equilibrium, constraints and the cost func-

tion in order to make the problem finite dimensional. Then this discrete problem is solved.

This is called direct approach or non-linear programming (NLP) problem [15]. The dis-

cretized problem is given below.

min
yd,ud,T

Jplan
h (56a)

with: Jplan
h = φ(yh, uh)

∣∣
T

+

∫ T

T0

L(yh, uh) dt (56b)

s.t.: fh(yh|K , uh|K , p∗) = 0 ∀K ∈ T plan
h (56c)

g
plan
h (yh|K , uh|K , T ) ∈ [gplan

min,K , gplan
max,K ] ∀K ∈ T plan

h (56d)

ψ(yh(T0)) ∈ [ψ0min
, ψ0max ] (56e)

ψ(yh(T )) ∈ [ψTmin
, ψTmax

] (56f)

First a crude grid is used with rough initial guesses. Then the solution of this NLP

problem is projected to a finer grid where the previous solution is used as an initial guess.

This yields to a reference trajectory y∗
h on the planning problem grid T plan

h .

4.6 Integrated Adaptive Planning and Tracking: the Multi-

Model Steering Algorithm

So far, we defined the methodology to get the reference trajectory and receding horizon

procedure to steer the plant M̃. Also we talked about the adaption procedure for the

reduced model in order to minimize the tracking errors based on the mismatch of these

two models in previous sections. Now we have to address the possible way to improve this

tracking performance.

We can alleviate the tracking performance by proposing an integrated adaptive planning

and tracking algorithm that tries to increase the compatibility between tracking trajectory,
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reference model and plant. This methodology is used in a similar application named as

multi-model steering algorithm (MMSA) in reference [2]. The idea is to iterate between

planning, tracking and adaption phases until we reach the desired error between the planned

and the realized trajectories. Error range should be small enough in order to ensure com-

patibility. Also, if we don’t recognize any further model improvement we should stop the

iterations.

The algorithm is discussed for overall procedure based on local adaption. We can go

through all the steps in order to make the discussion more clear. In order to reflect the local

characteristics of the solution, instead of using a single set of parameters as p we introduced

a set of reduced model parameters as pi (i defines the parameters for the corresponding

window during the maneuver).

As a first step, the trajectory planning problem (56) is solved with some randomly

selected initialized values of pi (small enough) which are neural network synaptic weights

and biases (used as model parameters). We got an estimated tracking trajectory y∗
h. After

that the multibody model (plant) is steered using model predictive tracking. During this

process the model predictive tracking problem is solved in order to get some controls. Since

these controls are on the tracking grid they are projected to the multibody (steering) grid.

Then the steering problem is solved.

Maneuver can be repeated several times. When the maneuver is repeated the sequence

of neural networks progressively learn how to correct the local prediction errors. An upper

bound can be set to stop the repetition of the maneuver. It can also be stopped either the

convergence of the tracking trajectory has been almost achieved or when it is recognized that

the neural network output doesn’t change much with the same inputs. The last realized

trajectory of the multibody model is reconstructed and accordingly the tracking error is

evaluated. In order to reduce this error a new planning / multiple-tracking-steering iteration

is initiated.

In order to solve problem (56) again, we need a single constant value of the model

parameters. However a sequence of parameters has been obtained with local adaption. For

this reason we need to generate a single set of parameters (global parameters) starting from
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the sequence of local parameters pi. One way of achieving this is to average the neural

network synaptic weights and biases. This averaged value is taken as a single set of global

parameters p∗. Accordingly replanning is carried out. Then multiple tracking and steering

steps are continued until desired convergence is achieved.
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CHAPTER V

NUMERICAL APPLICATIONS

The procedure of simulation of the multibody maneuvering has been proposed so far. Now,

we would like to assess the performance of this procedure by an application based on a

violent maneuvering of a rotorcraft.

The multibody model formulation is totally based on the comprehensive finite element

methodology [6]. Equations of equilibrium are written in cartesian inertial frame and La-

grange multiplier technique is used in modeling the constraints. Numerical integration of

DAEs’ are performed with non-linearly unconditionally stable energy decaying scheme [8, 9].

Multibody model is a standard medium size multi engine helicopter with a mass around

9000kg and includes four bladed articulated rotor modelled with beam elements and revolute

joints connected to a rigid fuselage. Effects such as unsteadiness, radial drag, tip losses,

sweep and twist are considered by using lifting line formulation. Inflow correction is used

for non-uniform inflow based on the theory given in reference [16].

Dynamic rotorcraft equations of the reference model are based on two dimensional lon-

gitudinal dynamics [3, 10]. Uniform inflow and blade element theory is used in computation

of rotor forces and moments. Also quasi-steady flapping dynamics are considered in finding

the attitude of the rotor. Furthermore, downwash angle at the tail due to the main rotor is

included.

Reduced model states and controls are defined as follows :

y = (X, Z, Θ, VX , VZ , q, ω) (57a)

u = (θ0MR
, θ0TR

, A1, B1, P ) (57b)

For states, X and Z (positive downward) represent the position vector of the vehicle

53



center of gravity. VX and VZ are their time rates. Θ (positive nose up) is the pitch angle

while q is the pitch rate. Also ω represents the angular velocity of the rotor.

For controls, θ0MR
is the main rotor collective, θ0TR

is the tail rotor collective, A1, B1

are lateral and longitudinal cyclics respectively and P represents the power available.

Helicopter Obstacle Avoidance Problem

The maneuver illustrated in figure (23) involves violent maneuvers in a hostile environ-

ment. In this example, the helicopter will be in level flight in the proximity of the ground.

Then in order to avoid from the obstacle the helicopter will be subjected to a violent pull

up and immediately violent pull down. The helicopter should achieve its low steady flight

condition back in minimum time.

Figure 23: Helicopter obstacle avoidance problem.

The planning part of the problem is characterized by an unknown final time (free final

time) T and an unknown internal event T1, T1 ∈ [T0, T ] which represent the instant when

the vehicle passes over the obstacle. The planning cost of the problem (55) can be expressed

by the following formulation:

Jplan = T +
1

T − T0

∫ T

T0

(
wB Ḃ2

1 + wθ θ̇2
0MR

+ wP Ṗ 2
)

dt. (58)

First term T enforces the minimum time condition that we need to achieve as a mission

requirement. The terms in the integral penalize high cyclic, collective and power rates [1].

Tunable weighting factors are chosen as wB = 1000, wθ = 500 and wP = 100 .

Throughout the maneuver we impose bounds on the collective and cyclic controls
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θ0MR
∈ [−5o, 20o], θ0TR

∈ [−10o, 30o] (59a)

A1 ∈ [−12o, 12o], B1 ∈ [−20o, 20o] (59b)

and on their rates

θ̇0MR
, θ̇0TR

, Ȧ1, Ḃ1 ∈ [−16os−1, 16os−1] (60)

on the rotor speed

ω ∈ [−207, 207]rpm (61)

on the unknown times

T1 ∈ [1s, 30s], T ∈ [1s, 20s] (62)

on the power and the power rate

P ≤ 2500hp, ˙P (t) ≤ 500hps−1 (63)

and finally on the obstacle avoidance condition T1

Z(T1) ≥ 60m. (64)

The initial conditions for equation (55e) correspond to level flight trim states which are

set as follows:

X(0) = Z(0) = 0 m, Θ(0) = 0.26 deg, VX(0) = 50 ms−1, VZ(0) = 0 ms−1, (65)

q(0) = 0 deg s−1 ω(0) = 207 rpm.

Finally, the final conditions are expressed as :

VX(T ) = 50 ms−1, VZ(T ) = 0 ms−1, q(T ) = 0 deg s−1. (66)
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The planning problem is solved by using a uniform grid of 40 time steps. Tracking and

steering windows were selected as ∆T track = 2.0s and ∆T steer = 0.2s respectively. The

activation frequency of the NMP controller and accordingly the frequency of the feedback

information is based on the steering window length. This window should be small enough

to capture the short period mode of the vehicle, which is approximately equal to 1s.

Figure (24) illustrates the effect of the local adaption on the final compatibility between

the planned trajectory and the effectively realized one. The procedure is ended after 14

planning / tacking-steering / adaption iterations since no improvement is realized after 14

iterations. Figure (25) and (26) show typical results of fuselage pitch and vehicle airspeed

respectively before and after the iterations. Lines marked with ∆ correspond to the solution

of the planning problem while the solid lines correspond to the realized multibody model

outputs. With respect to the initial solution before the adaption we can clearly see that the

tracking error is decreased. The planned and the tracked results are close compared with

the initial case. We can also see that the maneuver time is increasing when we move on the

replanning phase due to the adjustment in the reduced model. Also the controls are getting

smoother and bounded when we move on the procedure (27). As seen from the figures the

tracking error is reasonably small. Also another case is studied by decreasing the initial

speed of the helicopter to 30m/s. The figures are in the appendix A. Both cases showed

that the NMPC strategy with neural network promises good solutions for the future work

in this area.
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Figure 24: Helicopter obstacle avoidance maneuver with initial speed 50m/s. Trajectory
flown by the reduced (∆ line) and multibody (solid line) models, before (top), after (bottom)
fourteen planning / tracking steering / adaption iterations.
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Figure 25: Helicopter obstacle avoidance maneuver with initial speed 50m/s. Fuselage
pitch for the reduced (∆ line) and multibody (solid line) models, before (top), after (bottom)
fourteen planning / tracking steering / adaption iterations.
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Figure 26: Helicopter obstacle avoidance maneuver with initial speed 50m/s. Rotorcraft
speed for the reduced (∆ line) and multibody (solid line) models, before (top), after (bot-
tom) four planning / tracking steering / adaption iterations.
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Figure 27: Helicopter obstacle avoidance maneuver with initial speed 50m/s. Longitudi-
nal cyclic for the reduced (∆ line) and multibody (solid line) models, before (top), after
(bottom) four planning / tracking steering / adaption iterations.
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CHAPTER VI

OPTIMAL NEURAL NETWORK DESIGN FOR GIVEN

CLASS OF PROBLEMS

In this chapter, we will try to find the optimal neural network architecture for the introduced

class of problems with the information given in the previous chapters. Before designing the

architecture of the neural network, the role of the entire network must be defined. The

block diagram given in figure (28) is the structure of the NMPC with the feedback loop

used for the applications in this study.

S

-

+

NN
error

Plant

FM model +

NN updated

Optimal control

problem

FM model +  NN updated

update
u

y~

u

y~ y
.
,
~

y~
.

f(y,u)
~

Figure 28: NMPC with the feedback loop

6.1 Designing the Architecture

This critical portion of the study can affect the performance of the application dramatically.

The architecture of the neural network has a huge effect on the augmentation of the reference

model. In order to get good performance in terms of small tracking errors, we have to

optimize our NN.

First of all, a decision should be made on the number of hidden layers necessary for this
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design. There is a consensus based on theoretical considerations that one hidden layer is

sufficient [26]. Practically, most of the similar studies done so far have proven this fact by

proposing a promising performance with one hidden layer architectures.

Due to this fact, it is decided that the NN will have fully connected feedforward archi-

tecture with one hidden layer as previously shown in figure (5). Lets define the structure

of the layers one by one.

6.1.1 Input Layer

The input vector elements enter the network through this layer. The dimension of the

information fed to the network at each iteration will determine the number of neurons that

we need to use. The key idea is to determine the information that we should feed to the

network to get better performance. The objective is to predict the defect of the reduced

model(d( ˙̃y, ỹ, u)) which is a function of full model states, derivative of states (outputs of

plant) and controls. Input vector seen in equation (67) is selected in this manner.

Input vector =

[
Vx Vz q w θ θmr B1 V̇x V̇z q̇ ẇ

]T

(67)

When a parameter is constant during the maneuver, it provides no useful information.

It can be kept as it is or can be removed from the vector space, since no weight change will

be observed in contribution with that input.

One important step that should be taken here is the normalization of the inputs. Each

input variable should be preprocessed so that its mean value, averaged over the entire

training set, is close to zero or else it will be small compared to its standard deviation.

When we consider the extreme case, where the input variables are consistently positive, the

synaptic weights in the first hidden layer can only increase together or decrease together.

Accordingly, if the weight vector of that neuron is to change direction, it can only do so by

zigzagging its way through the error surface, which is typically slow and should therefore

be avoided.

In order to accelerate the back-propagation learning process, the normalization of the

inputs should also include two other measures given below:
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- The input variables contained in the training set should be uncorrelated.

- The decorrelated input variables should be scaled so that their covariances are approx-

imately equal, thereby ensuring that the different synaptic weights in the network learn at

approximately the same speed.

The normalization is defined by the formula given in equation (68) where p represents

the original parameter and pn represents the normalized value of the parameter while pmax

and pmin indicates the minimum and maximum values of that variable respectively, over

the entire training set.

pn = 2 ∗
p − pmin

pmax − pmin
− 1 (68)

In this study, maximum and minimum values of the parameters are estimated by adding

small amounts of deflection to the maximum and minimum values of the optimal solution

found by using the reduced model.

6.1.2 Hidden Layer

Decision on the hidden layer of the NN is the most difficult part among the overall archi-

tecture, and for this reason there is no way to determine the best number of hidden layer

neurons yet. Many heuristic techniques were suggested for finding the optimal number of

neurons in the hidden layer, and several of them are currently being used. Most of them

employ trial and error methods in which the NN starts with a small number of hidden layer

neurons and additional neurons are added until some performance goal is satisfied. In order

to do that several networks should be trained and the generalization error of each should

be computed.

It is known that too many neurons degrade the effectiveness of the model. In this case,

we can get low training error but still have high generalization error due to the overfitting

caused by the huge number of connection weights and high variance. This is not efficient

for the generalization capacity of the neural network [26].

It is also known that, too few hidden neurons may not capture the full complexity of the

data because of underfitting and high statistical bias. In this case, we will get high training
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error and high generalization error [26].

In real-life modelling, a small number of training examples can be available. Choosing

a large number of hidden neurons in a neural network leads to undesirable consequences

such as large number of connection weights in the model, long training times, local minima

and small generalization capacity.

The complexities determining the optimal number of hidden neurons, includes the num-

ber of input and output units, the number of training cases, the complexity of the function

or classification to be learned, the architecture, the type of hidden activation function and

the training algorithm.

As it is mentioned above, there are some rules that have been proposed to find the

optimal number of hidden layers. They include:

• Hidden layer size should be somewhere between the input layer size and output layer

size.

• This formulation is proposed for the calculation of the number of hidden layer neurons:

(Number of hidden layer neurons + number of output layer neurons)*(2/3).

• It should never be more than twice as large as the input layer.

However, we can not say that these rules are general and can be applied to any problem.

These can be helpful in finding the starting point. Reference [29] proposes a statistical

procedure for determining the optimal number of hidden neurons.

The other important issue is the selection of the activation function. The sigmoid

activation function defined in figure (2) ranges from 0 to 1. It is sometimes desirable to

have the activation function range from -1 to 1 in which case the activation function assumes

an antisymmetric form with respect to the origin. For the corresponding form of the sigmoid

function, hyperbolic tangent function issued by equation (69).

ϕ(ν) = tanh(ν) (69)
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For the convenience of the problem hyperbolic, tangent function is chosen as an ac-

tivation function where we can also have the negative range. In Matlab this function is

activated by ’tansig’ command.

The optimal number of hidden layer neurons are discussed in section 3.

6.1.3 Output Layer

The output layer of the network is concerned about the defect between two models. This

defect is defined in the accelerations domain by the formula (25d). Due to this reason, it

will be useful to define the the output vector in the following way as seen in equation (70)

which correspond to the predicted defect.

Output vector = d( ˙̃y, ỹ, u) (70)

The activation function used in this layer is a linear function which is activated by

’purelin’ command in Matlab.

Another important step that should be taken before starting training is the initialization

of the synaptic weights. Since there is no prior information available at the beginning of the

training, the weights and biases of the NN are initialized. In the beginning, initialization

is done by randomly selected values, small enough to guarantee not to affect the system’s

behavior. Also an evolutionary initialization methodology is proposed in reference [28].

6.2 Strategies for Training

The neural network architecture is defined in the previous section as 11-h-3 fully connected

feedforward network where h represents the optimal number of hidden layer neurons that

will be determined.

The next step is defining the strategy, used, in terms of algorithm, training mode and

learning rate.

6.2.1 Algorithm and Training Mode

As explained in previous chapters, we are using receding horizon methodology to provide

feedback to the system by the repetitive solution of the problem. Also during this phase, in
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order to improve the fidelity of the prediction, reduced model is adapted iteratively. After

steering the MB model, sufficient information is gathered to adapt the FM model until the

maneuver ends. The procedure includes more than the incremental mode, since there is more

than one example set for each steering window. In this part, batch training is preferred

specifically for the steering windows during the maneuver. Both batch and incremental

modes are taking place in the training procedure. The overall training procedure is based

on on-line training methodology, but the combination of training modes is referred to batch-

incremental mode for this class of applications.

In large applications, batch learning is experienced to be rather infeasible and instead

on-line learning is employed. It fits well into more natural or life-long learning since during

the on-line training, the learner receives new information at every moment and should

adapt to it, without having large memory for storing old data. With batch learning by

construction, changes typically go undetected and rather bad results can be obtained, since

we are likely to average over several rules , whereas on-line training, if operated properly

will track the changes and yield good approximation [25].

The training algorithm used in this study is the simplest gradient descent methodology

which is steepest descent. For the on-line training applications steepest descent can be

useful since the formulation of adaption is simple and this makes it convenient to track the

behavior of every variable during the process.

6.2.2 Learning Rate Strategy

The efficiency of the on-line learning is highly dependent on the learning rate. Approx-

imated value for the learning rate η, depending on time should be found. Practically, if

constant η is used, too small values will cause slow learning and is therefore not useful, too

large η spoils the convergence of the learning [25]. Trade-off between learning speed and

accuracy can be done in this case [27].

Constant Learning Rate

A feasible fixed value for η cannot be established priori because of primary problem in
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simulated surface travel, namely overshoot of the goal. Fixed value for η implies a finite step

length will be taken at every point on the error weight surface that is not extremum. The

length of step for a given nonzero gradient can always be shown to overshoot the unknown

goal state if the gradient occurs near enough to the goal as shown in figure (29).

Weight

Error

Gradient (-g)

Goal

-h *1 g

-h *2 g

h >h2 1

Figure 29: A step overshooting the goal.

In standard back-propagation algorithms, η is empirically determined. An initial arbi-

trary value is used and if this fails, further values are tried [23].

For this application, a constant value for learning rate is set and program launched. If

the unstable behavior of the system is observed, then this value is decreased. In this sense,

an optimal constant value found as 0.02 for the learning rate.

Adaptive Learning Rate

The idea of adaptively changing η is called adaptive learning rate or learning of the

learning rule. By making the η adaptive we can reduce the average training time with the

faster convergence. The approach here will be to use an optimal safe step size. Detailed
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information is given about finding the optimal step size is given in reference [23].

Adaptive learning strategy has been tried in some different ways in order to get better

performance and faster convergence.

Normally, Matlab has a standard training function for adaptive learning rate which is

based on the rule that; if the mean squared error (mse) between the desired output and

network output is decreased after the training, then the learning rate is increased by 5%,

otherwise it is decreased by 30%.

In our case, primarily we tried to decrease the error in all dimensions, rather than the

rms error. This is done by checking every component of the output vector. Decrement on

the error of every component is the necessity to approve the improvement of the NN. This

means that we can increase the learning rate little bit more and shoot to the goal with

a slightly larger step. Only one error component increase is enough to be considered as

non-improvement and η is decreased in order to shoot with a smaller step. Furthermore, if

an improvement is measured, then synaptic weights and biases are updated otherwise old

weights are kept and moved to the next step.

Also an upper bound is set for learning rate in order not to shoot too far away from

the goal. However, this adaptive methodology caused some problems such that after a

while during the iteration, learning rate hit level zero and stayed there until the end of the

iteration. Due to this reason, the strategy is switched to the original mse error check.

Everything mentioned above remained same, with the only change being the standard

mse error check.

For this case, several learning rate upper bounds have been tried, but in every case initial

learning rate increased to its upper limit and stayed there during the rest of the iterations.

This came to the same point as using a constant learning rate. It is also observed that the

upper bound value for the learning rate cannot be greater than 0.08 since the system tends

to show unstable behavior above that value.

The optimal value for upper bound is the 0.02 where the best performance was achieved.

As a conclusion, the adaptive learning rate did not pay off for these kind of problems. It

always tended to hit the upper bound and stayed there acting like a constant learning rate.
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The constant learning rate is preferred over the adaptive strategy for these type of

studies.

6.3 Decision on Optimal Architecture

So far the input and the output layer of the architecture has been built up. Now, the number

of the hidden layer neurons must be determined in order to get the optimal performance

from the network. To do this, we used the most common methodology, trial and error.

Regarding the complexity of the problem, the initial number of neurons selected was 20

which is high enough depending on the advice given in the previous chapter. Considerably

good results have been achieved with 20 hidden layer neurons, so all learning rate strategy

was developed with this architecture. The number of hidden layer neurons were decreased

sequently from 20 to 15 and finally 10. Almost no change was observed in the performance

of the algorithm. However, below 10 hidden layer neurons learning of the network started

to slow down. As an example, for the 6 hidden neurons case, it is observed that two more

replannings are needed to arrive the same performance of 10 hidden neurons.

Consequently, these results show that a robust neural network is created. Based on

this study, we can conclude that the optimal architecture can be 11-10-3 fully connected

feedforward network for the given class of problems.

As explained in detail in the previous section, constant learning rate is preferred over

adaptive. The optimal value experienced is to be 0.02.

6.4 Contributions of neural network to reduced model equa-

tions

Now, lets point out the contributions of the NN to the dynamic equations of the reduced

model. Since the reduced model parameters are the weights and biases of the NN, by

looking at the behavior of those parameters during the entire process, we can deem on which

parameters are most effective. The figures given below provides the important weight and

bias changes observed during the process.

As seen from the figures, contribution of the weights of pitch rate are highly effective.

Also in the output layer, angular acceleration component of the defect is large. It is safe
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to say that the main adjustment on the reduced model equations is on the pitch moment

equation given in reference [3].

The largest values of the weights were observed in the output layer biases. Also hidden

layer biases change more rapid compared with the others. Some other figures about the

weight analysis provided in the appendix B.

Figures (30-33) show that most of the weights of the neural network almost converged

to a specific value. This matches with the fact that no more improvement is possible after

sufficient replanning / multiple tracking and steering iterations are done.

6.5 Effect of neural network and NMPC methodology to

the system stability and convergence

In the case of full match between reduced and full models, non-linear model predictive

control methodology can ensure the stability of the closed-loop system and convergence to

the reference trajectory, under the assumptions of infinite prediction horizon in the tracking

phase.

However, in practice, the methodology is based on the use of finite prediction and control

horizons. It is also possible to achieve closed-loop stability with finite horizon, for example

by introducing some stability constraints. In this case, the system can be required to reach

the target solution in finite time by enforcing proper constraints in solving the tracking

problem.

Moreover, in this study, we have a reduced model which is a rough representation of the

plant. In this sense, the outputs of the plant and reference model will be different and these

have to be matched by reducing the mismatch between them. For example, the reference

model can be augmented by using a neural network. The universal approximation property

of neural networks [12] ensures that the reconstruction error in the equation (37) can be

bounded in a small region, so that the defect of the reference model can be captured with a

desired accuracy. Therefore, given a particular structure of the network, a set of parameters

of the adaptive element exist that give the desired accuracy of the reduced model. It is also

mentioned before that, above a critical value of the learning rate, the algorithm can show

70



unstable behaviors. In this research, we didn’t investigate the effect of the tuning algorithm

to the stability of the non-linear predictive controller.

In this study, the adaptive element of the reduced model is represented by the neu-

ral network and it is used in solving the optimal control problems in both planning and

tracking levels, so the system behavior is highly based on the correct augmentation of the

reference model. Although the adaptive algorithm in this research cannot be proved ana-

lytically to be efficient in finding the combination of parameters, there are some published

theoretical results show that an adaptive rule formulated in a correct way which guarantees

the convergence of the neural network parameters, can be constructed in some cases [30, 31].
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Figure 30: Weight contribution q
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Figure 31: Weight contribution from angular acceleration component of defect
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CHAPTER VII

CONCLUSION

In this study, a detailed procedure for the simulation of maneuvers with multibody models

has been proposed. Using a neural network as an adaptive controller results in a good

tracking performance and also provides the use of the reduced model for the path planning

phase. Some advantages of this procedure are as follows:

• We can maneuver vehicle models that have arbitrary complexity with large number

of degrees of freedom.

• We can compute compatible optimal trajectories with vehicle dynamics based on a

given task.

• Using non-linear model predictive controller in solving the tracking problem provides

improved tracking performance with respect to the other control strategies.

• The same software can be used for planning and tracking phase since they are both

based on the optimal control problem of a reduced model.

• Using neural network as an adaptive element increases the predictive capabilities of

the reduced model in a robust way.

It is experienced that the adaptive learning rate strategy doesn’t pay off for the given

class of problems, so constant learning rate could be preferred during the training procedure.

This constant rate should be chosen small enough in order not to overshoot the goal in the

error surface which can cause adaption of the model badly and can result in instabilities of

the reference solution.

The proposed adaptive element (neural network) ensured its robustness by providing

good results for different architectures. Basics of the given architecture can be applied to

further studies.
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The results of the obstacle avoidance problem proved that we can decrease the mis-

match between two models and come up with a close match between steering and tracking

trajectories by the proposed adaptive NMPC methodology in this study.

Pre-training (off-line training) is still an option which can be useful to start with better

initialized values of neural network parameters. However, ranges of states and controls must

be well determined in pre-training, in order to capture the bounds of the problem. This is

still an important issue because of high computational costs in creating pre-training data.

As a future work, other training algorithms mentioned in chapter(2) can be tried to

increase the performance of the neural network.

Furthermore, adaptive learning rate strategy tried in this study can be augmented with

different possible ideas that prevent the learning rate hitting zero level.

75



APPENDIX A

RESULTS FOR THE EXAMPLE WITH INITIAL SPEED

30M/S
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Figure 34: Helicopter obstacle avoidance maneuver with initial speed 30m/s. Trajectory
flown by the reduced (∆ line) and multibody (solid line) models, before (top), after (bottom)
fourteen planning / tracking steering / adaption iterations.

77



0 5 10 15
−15

−10

−5

0

5

10

15

Time [sec]

P
it

ch
 A

tt
it

u
d

e 
[d

eg
]

0 2 4 6 8 10 12 14 16
−15

−10

−5

0

5

10

15

Time [sec]

P
it

ch
 A

tt
it

u
d

e 
[d

eg
]

Figure 35: Helicopter obstacle avoidance maneuver with initial speed 30m/s. Fuselage
pitch for the reduced (∆ line) and multibody (solid line) models, before (top), after (bottom)
fourteen planning / tracking steering / adaption iterations.
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Figure 36: Helicopter obstacle avoidance maneuver with initial speed 30m/s. Rotorcraft
speed for the reduced (∆ line) and multibody (solid line) models, before (top), after (bot-
tom) four planning / tracking steering / adaption iterations.
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Figure 37: Helicopter obstacle avoidance maneuver with initial speed 30m/s. Longitudi-
nal cyclic for the reduced (∆ line) and multibody (solid line) models, before (top), after
(bottom) four planning / tracking steering / adaption iterations.
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APPENDIX B

WEIGHT CHANGES FOR THE 50 M/S CASE
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Figure 38: Weight contribution theta
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Figure 39: Weight contribution Vx
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