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SUMMARY

The Auger effect is characterized by the non-radiative de-
excitation of an atom, initially singly ionized in an inner shell, to
a final state consisting of a doubly ionized atom plus a free (Auger)
electron in the continuum, If the initial state vacancy is in the L
atomic shell while the final state vacancies are in the M shell, then
one speaks of an LMM Auger transition. The current effort presents
the results of a theoretical investigation of such transitions in the
elements titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr),
niobium (Nb), and molybdenum (Mo).

The principal results of this investigation are in the form of
1MM Auger transition probabilities and energies for the cited elements.
All calculations were performed in the framework of the non-relativistic
theory of the Auger effect due to Wentzel. Although molecular and solid
state effects were ignored in the calculations, their contribution is
considered and discussed in some detail. 1In order to achieve the most
reliable values for the transition probabilities, the pertinent electron
wave functions were obtained by the Hartree-Fock approach to the atomic
problem using the procedure developed by C. F. Fischer. Separate
Hartree-Fock calculations were carried out for each possible initial
and final state in order to account for the "relaxation" of the electron
orbitals during the transition., To provide the most general formulation

of the problem, the computations were performed in the formalism of
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intermediate coupling (IC). One conclusion of our results is that it
is unnecessary to use the IC limit when treating LMM transitions in
Ti, V, and Cr; it is a necessity, however, in Zr, Nb, and Mo. As a
final remark, it should be noted that the energy calculations were
accomplished by first computing the total energies of the initial and
final atomic states for each transition. The difference of these is,
by conservation of energy, the energy of the Auger electron., In order
to insure that the multiplet spectra obtained by this approach are in
agreement with that predicted on the basis of the Wentzel theory, two
distinct methods--the spectator and "exact"--were developed to compute
the total energies. The spectator approach is used for all atoms with
an incomplete M atomic shell; it was therefore used for the (Ti, V, Cr)
calculations. If the M shell is completely filled, then the "exact"
method is utilized. A detailed discussion is presented for both
methods.

The results obtained from this procedure are given in tabular
form and compared with the available experimental data, Due to a severe
shortage of such data for IMM transitions, this comparison did not
provide a meaningful test of the calculations. An additional experi-
mental effort is strongly suggested in order to provide reliable data
for comparison with the theoretically predicted LMM energies and transi-

tion probabilities,



CHAPTER I

INTRODUCTTION

Objective

An atom ionized in an inner shell is in an unstable configura-
tion, In a time of the order 10_14 - 10-17 seconds, the resulting
system will de-excite in one of two ways. First, the vacancy may be
filled by an electron from an outer shell accompanied by the emission
of a photon. BSuch a mode of de-excitation is commonly termed a
“"radiative'" (or an X-ray) transition. In the second mode, the outer
electron again fills the inner vacancy but an electron--rather than a
photon--is emitted. This "non-radiative" transition is called the Auger
effect. Since the effect involves ionization of the inner levels, it
is relatively insensitive to the behavior of the valence electrons.
Therefore, even if the atom is chemically bound--as might be the case
at or near a gas-solid interface--the Auger spectra from it will be
essentially unchanged from that of a free atom (there are differences,
of course; see Chapter IT). It is this characteristic of the Auger
process which is exploited in Auger spectroscopy.

In the typical experimental arrangement of this method, a sample
is isolated in an ultra-high vacuum system and then bombarded with
electrons of suitable energy. These electrons collide with surface or
even sub-surface atoms and produce excited atomic states. If the

excited state so formed is a result of electron ejection from the inner



shell of the atom, it may de-excite by the Auger mechanism. A monitor
of the electrons emanating from the sample then provides a method of
identifying the source of Auger electrons, i.e., the identity of the
atoms on or near the sample surface. It follows that a knowledge of
the Auger effect can provide a means of identifying surface impurities.
It is clear, however, that implementation of this approach re-
quires an unambiguous method of identifying the Auger electrons against
the background of the remaining electron current from the sample. There
are two distinct physical quantities which provide this method--the
Auger electron energy and the intensity of the Auger electron current.
In present applications only the energy is utilized in the spectra
identification, and even here the expected Auger energies are obtained
primarily by semi-empirical formulae. The errors inherent in the
predictions arising from such relations may be quite large--depending
on the atom and the particular Auger transition--and a far more desira-
ble procedure would be to use energies based on detailed theoretical
computation. Unfortunately, rigorous results are presently available
only for Auger processes arising from an initial inner vacancy in the
K-shell--i.e., the K-series (the series name being determined by the
shell of the initial vacancy). These are of little use in surface
investigations since the energy of electrons necessary to produce K-
shell ionization is so large for most atoms that the penetration past
the surface is also large. Hence, the resulting spectra may not truly
give a representation of the surface constituents. Instead, surface
studies require a knowledge of the higher Auger series--e.g., L-, M-

series--and here the theoretical work is not nearly so accurate,



Even when the energies are well known, an unambiguous spectra
identification may not be possible if there are several Auger transi-
tions with almost the same energy. It then becomes clear that to ob-
tain maximum advantage from Auger spectroscopy, the Auger intensities
should, if possible, be used. Here, however, theoretical work is
lacking to a greater degree than in the case of the energies. Indeed,
although the quantity of theoretical results for K-, L-, M-series
transitions is steadily increasing, the quality seems to remain the
same since little agreement with available experimental data is found.
In order to improve upon this situation, the present investigation was
undertaken. The objectives of this effort were to:

{(a) aid interpretation of Auger spectra for the elements (Ti, V,
Cr, Zr, Nb, Mo} by providing detailed energy predictions for LMM transi-
tions;

(b) provide the associated transition probabilities using the
best available wave functions; and

{(c) compare the results obtained with current theoretical results

to ascertain, if possible, where defects in the theory may exist,

Historical Survey

Theoretical
. 1,2 | .
The Auger effect was first observed by P. Auger in 1925 while
performing X-ray absorption experiments on gases in a Wilson cloud
chamber. He noted the presence of tracks in the chamber corresponding
to electrons with energies too small to be the expected photoelectrons.

By consideration of the energies involved, Auger explained the presence



of these electrons by a '"conversion" process. Thus if an atom is
excited in an inner level and de-excites by a radiative transition, a
photon is produced. Auger proposed that in some transitions this
photon does not escape the atom, Instead it is reabsorbed by a second
electron which is subsequently ejected from the atomic system.

This view of the Auger process was incorrect, and it remained
for Wentzel3 in 1927 to provide the correct interpretation. Wentzel
proposed that the Auger effect was actually a non-radiative process--
no photon being involved--arising from the coulomb interaction of only
those electrons directly involved in the Auger transition. Since only
two electrons change states in such a transition, it follows that
Wentzel's proposal is a two-electron view of the Auger effect. Wentzel
proceeded to develop a detailed non-relativistic theory of the Auger
process, a theory which is still widely used in describing Auger
phenomena, TFollowing this development, however, there was little
activity relating to the Auger effect. The first significant applica-
tion of Wentzel's theory was by Burhop4 (1935) who treated the KLL
transitions in silver (Ag). This effort was joined in the same year
by the work of Pincherle5 who treated K- and L-series intensities
{independent of atomic number). Both Burhop and Pincherle assumed
screened hydrogenic orbitals for the electron wave functions, Beyond
these investigations, the only efforts until 1955 were the non-
relativistic results of Ramberg and Richtmeyer6 (1937) on gold (Au)
and the first relativistic results for the Auger process by Massey and
Burhop7 (1937). There were several reasons for this lack of activity

in treating Auger phenomena, but two of the more significant were (1)



the lack of an accurate means to compute electronic wave functions (the
Hartree-Fock approximation is not feasible for most atoms without com-
puters) and (2) the lack of a reliable experimental method to measure
the Auger energies and intensities. Both of these drawbacks began to
disappear in the early 1950's with the result that a significant amount
of theoretical and experimental work has been carried out since 1955,
The resurgence of theoretical work began with the investigations
of Rubenstein and Snyders’9 in 1955, These workers treated the K-, L-,
M-series Auger transitions in argon, krypton and silver by assuming the
Russell-Sanders or LS-coupling limit for the process, The inadequacy
of such an assumption was demonstrated by Asaad and Burhoplo with their
formulation of Auger theory in the framework of intermediate coupling
(IC). This work applied specifically to KLL and KLM transitions and
predicted a 9-line Auger spectrum for the KLL case as opposed to the 5
or 6 lines expected on the basis of a pure 1LS- or jj-coupling treat-
ment. Several workers--notably Erman11 in the case of bromine and
Graham et al.12 for iodine and tellurium--have experimentally verified
this prediction of the IC formulation, Despite the apparent success
of IC in predicting the complexity of the Auger spectra, the quantita-
tive predictions of intensities were still badly in error. Omne poten-
tial cause for this discrepancy was the lack of accurate electron wave
functions to utilize in the computation of the transition amplitudes.
Callan13 (1961) attempted to remove this avenue of error by supplying
for a variety of elements the requisite tramsition integrals for KLL

transitions. Unfortunately, Callan used screened hydrogenic orbitals

for the discrete states so that the KLL amplitudes were not reliable.



The results were consistent, however, since the amplitudes for different
elements were all computed utilizing the same type of electron orbitals
for each case. Asaad14 (1963) took advantage of this fact and, using
the IC formalism, computed the KLL intensities for the elements treated
by Callan, Although the results of this computation were still in poor
agreement with available experimental data, it did enable Asaad to
determine the variation of the Auger intensities as a function of the
atomic number Z, 1In order to improve upon the theoretical predictions,
Asaad15 introduced configuration interaction (CI) into the theory in
1965 and demonstrated that this inclusion could well remove some of the
discrepancies between theory and experiment, Although subsequent
results16 imply that the particular success obtained by Asaad with CI
was fortuitous (being due to inaccurate binding energies in the compu-
tations), it does appear that the effects of CI can be important in
some Auger transitions and must be considered.

This introduction of CI into the theory has been followed by
extensive computations as opposed to further examination of the theory.
By assuming the basic validity of Wentzel's two-electron view of the
Auger process, several investigators have studied the K-series transi-
tions in still more detail, and treatments of L- and M-series transi-
tions are beginning to appear. It is the L-series results which
interest us in the present work, and we shall only cite the more exten-
sive K-series efforts. Foremost among these is the work of McGuire
who has computed in LS-coupling the total KLL and KLM transition rates
for beryllium to xenon. Unfortunately, several major approximations

mar the accuracy of his results. 1In addition to these computations,



Walters and Bhalla18 have treated KLL transitions with reasonable
success by utilizing Hartree-Fock-Slater electron orbitals while
Kostrum et al.19 have presented similar results with the difference
being their use of screened hydrogenic functions.

The L- and M-series results now becoming available represent a
large percentage of all such work which has been performed. In addi-
tion to the previously cited work of Rubenstein and Snyder only the
efforts by Asaadzo and Callan21 occurred prior to 1965, The treatment
of Asaad dealt with the L-spectra for Ar, Kr, and Ag with jj-coupling
assumed. This included Coster-Kronig transitions (the initial subshell
vacancy is filled by an electron from the same shell but different
subshell--e.g., a 2s vacancy filled by a 2p electron) as well as results
for ILMM and LMN transitions. The investigation of Callan was entirely
concerned with the L-shell Coster-Kronig transitions. Beyond these
treatments, the next consideration of L-series spectra was that by
Asaad and Mehlhorn22 who computed the transition rates for LZMM and
LBMM spectra in argon. Only very recently have additional results
become available for L-series transitions in more complex atoms. Thus
McGuire23 has presented predictions for the elements sodium (Na) through
thorium (Th). These results are in the form of total transition rates
so that the predictions are independent of the particular coupling
scheme employed. Information concerning particular transitions such
as LlMlM1 is not given. Walters and Bhalla24 have presented total
transition rates for the L2’3 shell transitions in the elements mag-
nesium to cesium and a few beyond. Crasemann et al.25 have considered

Ll-shell transitions for several elements from arsenic to astatine.



Very recent results by McGuire26 present M-shell transition rates. The
agreement of these results with the small amount of L-shell experimental
data has not been impressive thus far. This could be due to inaccurate
experimental data or, more likely, to the use of poor wave functions
and, possibly, an inaccurate theory. 1In any event the need for further
computations is apparent.

This survey has not included a complete list of all papers re-
lating to the Auger effect (theoretical), and the interested reader is
referred to the review articles by Listengarten,27 Bergstrom and
Nordling,28 Sevier29 and the work by Burhop30 for further information.
The consideration of relativistic treatments of the Auger process has
been omitted from the above survey. This was due partly to the fact
that the present problem was carried out in the non-relativistic
formalism and partly to the lack of relativistic calculations. Indeed,
in addition to the work of Massey and Burhop7 previously cited, only

Chattarji and Tulukdar,! Asaad,>Z and Listengarten->’-%

have presented
calculations based on the relativistic formalism of the Auger effect.
Since this formalism is known to be inaccurate, we shall not comment

further on this aspect of the theory.

Experimental

The measurement of Auger transition rates has not been quite as
extensive as the corresponding theoretical effort. This is due prima-
rily to the difficulty inherent in making such measurements--e.g., the
requirements of the experimental apparatus include both high resolution
(energy) and high sensitivity (intensities). Electrostatic and mag-

netic spectrometers, the chief means used thus far in Auger measurements,



possess these requisite features. 1In this brief survey, the experimen-
tal methods will not be discussed and for details the referenced
articles are recommended. We shall further confine our comments to

the more recent measurements and refer the reader to the aforementioned
review articles for additional information.

Perhaps the most significant study has been that of Toburen and
Albridge35 on the K-, L-, and M-series spectra of platinum (Pt). By
utilizing a magnetic spectrometer, these workers were able to identify
55 peaks in the L-series spectra, measuring both the energies and
relative intensities, The comparison of these results with theory
gives agreement only for the KLL energies predicted theoretically by

the semi-empirical results of H'cirnfeldt.36 Similar measurements by

Wolfson and Baerg37 on KLL transitions in gold alsoc do not find agree-
ment with theory. The measurement of the K-series spectra of neon (Ne)
has been carried out by Korber and Mehlhorn38 while Cleff and Mehlhorn39
have studied chlorine (Cl)--both efforts utilizing an electrostatic
spectrometer. In the neon case the measured relative intensities were
in disagreement with all theoretical calculations. It was shown, how-
ever, that agreement could be obtained by using improved wave functions
and by incorporating CI into the formalism. The chlorine wmeasurements
provided absolute energies and relative intensities for four of the KLL
transitions; once again, comparison of theory and experiment gave little
agreement., Further experimental data on KLL transitions is available
(e.g., Cu, Ge)--consult references 40-44 for the details,

The amount of experimental results for L-series (and higher)

spectra48 is quite limited with most of that which is available being



10

either for the noble gases or the heavier elements such as Tl and Bi.45

0f the recent results Mehlhorn and Stalherm's measurement46 of the L2,

L., spectra in argon is of interest since the relative intensities

3
obtained agreed in some instances with the predictions of Rubenstein9
but disagreed strongly in others. Such a situation indicates, probably,
that the theoretical results were incorrect with the instances of agree-
ment being fortuitous. Other measurements of L-series spectra using

the traditional techniques of electrostatic or magnetic spectrometers
have been carried out with Krause's result847forkrypton being notable,
In recent years, however, significant investigations of all elements
have been carried out with the new tools of Auger Electron Spectroscopy
(AES) and Electron Spectroscopy for Chemical Analysis (ESCA). Since

AES studies on Ti, V, and Cr prompted the present investigation, we
defer comment on this method to the next section. As regards ESCA,

16,49,50 are available which describe the method and

detailed reports
typical data arising from its use. We shall not treat this technique

in more detail in this work and refer to the reports for details,

Status of Auger Phenomena

Until the advent of Auger Electron Spectroscopy (AES), the study
of the Auger effect was primarily of academic interest with the goal
being to understand the basic physics underlying the effect. The
importance of this aspect of the study has, of course, not been dimin-
ished by AES§. Due to the practical importance of the method as a tool
in the investigation of surfaces, however, the basic study of the

effect is now amplified by the practical desire to know the Auger
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energies (and intensities) for use in the interpretation of AES spec-
tra., 1In order to place the present investigation in perspective rela-
tive to AES, it will be helpful to consider the technique in more
detail,

Auger Electron Spectroscopy

51-54,79-80 we shall

Since AES has been discussed exhaustively,
confine our comments to those aspects of the method which can affect
the interpretation of the data. TIn its most basic form, an electron
beam is directed onto the surface of a properly oriented sample. These
electrons cause excitation of electronic states in the solid and also
in impurity atoms on or near the sample surface. Several types of
interactions are possible for the electrons with the most prominent
being those such that (1) the electrons are elastically scattered and
diffracted by the lattice, (2) the electrons lose energy by exciting
plasmons (collective excitation of the electron "gas'), interband exci-
tations or both, (3) the electrons lose energy by exciting core levels
of impurity atoms or low-lying bands in interband tramnsitions, It is
case (3) whieh is of interest here since it is for this type of exci-
tation that an Auger process can occur. We expect, therefore, that a
fraction of the electrons emanating from the surface will arise from
Auger processes. Since the energies (and intensities) of Auger elec-
trons are characteristic of the atom from which they originate, it
follows that by monitoring these electrons one can obtain information

about surface impurities and/or solid state effect555_57’81_83 --

58,59

chemical shifts have also been observed. 1In the AES system

60
utilized by Tharp and Sheibner, this monitoring of electron current
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is accomplished by using a system of three spherical grids functioning

as a retarding field analyzer.

To understand this terminology let us consider one of the grids
and apply to 1t a retarding voltage capable of repelling ail electrons
from the detector with energies less than or equal to an energy E.

Then the current reaching the detector of the system will be the total
number of electrons emanating from the sample which have energy greater
than E. By now sweeping the retarding grid voltage from a minimum

(all electrons reach detector) to a maximum (none reach detector) we
obtain a curve representing this total current fraction as a function
of E--i.e., the retarding field curve (R{(E)). Unfortunately, the
information of this data is a little too general since it represents

an integrated contribution of all electrons with energies greater than
some energy E. The real quantity of interest is the number distribu-
tion (N(Eo)) of electrons in the beam from the sample--i.e., the number
of electrons with a particular energy Eo' This will then identify
those electrons which are elastically diffracted, excite plasmons, or
those which originate from Auger transitions. One can show from quite
general considerationsSl that N(Eo) may be obtained (within a multi-
plicative factor) from the retarding field curve by taking the deriva-
tive of R(E) and evaluating at Eo' This can be accomplished experi-
mentally by applying a small perturbing voltage to the control grid at
frequency w. As a result, ac fluctuations are induced in the current
reaching the detector and by "locking-in" on that component of this
current with frequency w, the derivative of R{E) is obtained. Although

this gives the desired distribution, in practice it is not generally
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sufficient for observation of Auger electrons. This is due partly to
the presence of a large background signal in the sample current and
partly to the small intensities of the Auger currents. As a result,
most AES measurements are of the second derivative of R(E) obtained by
"locking-in" on the ac current component of frequency 2w. The effect

of this additional derivative is to (1) accent the position of peaks

in energy aﬁd (2) totally obscure intensity information. It follows
from this that AES is presently capable only of identifying Auger
transitions by comparing peak energies with known (experimental or
theoretical) values of Auger transition energies in the various elements,
The method cannot, therefore, utilize Auger intensities at the present
time (although modifications of the technique may allow it in the
future~-~-see Chapter IV). This is not too severe a restriction now

since all theoretical results thus far generated show little agreement
with available data, but, as more refined computations continue, one

can expect the efforts of theory to become more successful. If AES is
to reach full potential as a method, it follows that it must be extended
to include utilization of intensities as well as energies.

Even with regard to the energies, the method is not free from
confusion. Indeed, the bulk of the theoretical efforts cited previously
dealt with only Auger intensities--not their energies. Only the work
by Asaad and Burhop10 considered energies, and they introduced semi-
empirical expressions to describe the KLL energies. These expressions,

6 . .
3 provide quite accurate values for

as later modified by Hornfeldt,
KLL energies--estimated at about .05 per cent. For any other case,

however, the only means to predict the expected Auger transitions for a
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given transition is to utilize a rather crude relation due to Bergstrom
andHill.68 Since this relation can--depending on the atom and particular
transition--be considerably in error, the experimentalist has little
aid in the interpretation of the observed spectra. Indeed, compilation
of an experimental "encyclopedia of Auger spectra" is justifiable due

to the poor state of theoretical predictions.,

There is, of course, a precise, well-defined procedure for com-
puting the Auger energies, Thus if we calculate the total energies of
the initial and final atomic states and then subtract one from the
other, this difference is, by conservation of energy, just the desired
Auger energy. This method, developed in Chapter II, is utilized in
the present work for all energy computations.

Problem and Method

This investigation was inspired as a result of difficulties
encountered in the interpretation of certain structure in the AES spec-
tra of Ti, V, and Cr. Due to the general lack of theoretical results
for L- (or higher) series transitions, a natural choice for the study
was the IMM transitions in these elements (Zr, Nb and Mo are also
treated). 1In order to carry out these computations in a consistent,
meaningful way, the following procedure was adopted:

(1) use Hartree-Fock wave functions thus insuring the best

available electron orbitals;

(2) work in the intermediate coupling (IC) limit;

(3) consider the transitions in isolated atoms;

{(4) work in non-relativistic limit; and

(5) assume basic validity of Wentzel theory.
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The significance of these assumptions will be made more precise
in Chapters II and III. 1In Chapter II we provide a detailed develop-
ment of Auger theory including energy and intensity formulae, angular
momentum coupling, and the changes in the theory due to solid-state
and/or molecular effects. The results of this chapter, although
viewed primarily as applying to IMM transitions, are given in a form
which is general enough for other transitions as well. Application of
the formalism to the LMM transitions in Ti, V, Cr, Zr, Nb, and Mo are
then presented in Chapter III along with a comparison to available
experimental data and other theoretical predictions when pertinent.

An additional comment pertaining to Chapter II is in order before clos-
ing this summary.

The general lack of agreement between experiment and theoretical
results based on the Wentzel formalism suggests that the formulation
itself may be in error. It is, of course, true that other explanations--
notably the use of poor wave functions in the calculations--are possible,
The disagreement 1Is so widespread, however, that it is meaningful to
examine the Wentzel theory. 1In this regard, perhaps the most striking

assertion of the theory is that the Auger effect is a two-electron

process., This is not obvious, and certainly it would not be expected

a priori. Indeed, it can be argued that a more valid view would have
the Auger dynamics arising from the coulomb interaction of all electrons
in the atom rather than the two of Wentzel's treatment., Such a view

of the process inevitably complicates the problem since it requires

the evaluation of matrix elements between many-particle states rather

than two particle states. Since the complexity of the procedure for
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coupling angular momentum increases rapidly with an increase in the
number of particles, the calculation becomes extremely tedious.
Nevertheless, a formalism capable of treating such matrix elements has
been developed, independently, by FanoGl and Shore.62 In order to
provide a complete view of the Auger theoretical formalism, we have
considered the results of Fano in some detail in Chapter II. The
discussion is sufficient only to indicate the basic approach, and for
a detailed calculation reference must still be to the original paper.
Finally, we present in Chapter IV our conclusions and recommen-

dations for future Auger activity.
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CHAPTER 1II
THEORY OF AUGER EFFECT

There are two important physical quantities of interest when
studying the Auger process, For a specified initial state, these are
(1) the energies of the Auger electrons arising from a particular
transition, and (2) the transition probabilities for each possible
Auger transition. The development of the theoretical formalism for
the computation of these quantities forms the basis of this chapter.

The discussion is divided into three sections with the first treating
the methods of computation for the Auger energies. The principal method
presented is based on a total-energy approach involving the initial and
final states; the Bergstrom-Hill relation is, however, briefly con-
sidered. The second section treats the problem of computing the tran-
sition probabilities. The conventional two-electron theory of Wentzel
is presented with emphasis being on selection rules and matrix element
evaluation in the 1S- and intermediate angular momentum coupling schemes,
A more general Auger theory is also considered--one which requires the
evaluation of N-electron matrix elements instead of the two-electron
variety encountered in the Wentzel theory. A formalism, due to Fano61,
is presented for the computation of such matrix elements. It should be
mentioned that all of the discussion in these sections assumes that the
transitions occur in isolated atoms. Since much of the current interest

in the Auger effect arises from transitions in molecular or solid-state
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systems, the third section presents the principal changes in the

formalism due to the effects of such systems.

Energies

The energy of the Auger electron is obtained directly by con-
sidering the general features of the Auger effect in conjunction with
conservation of energy. Thus the de-excitation of an atom, initially
singly ionized in an inner shell, by the Auger process is characterized
by the transition from a well-defined initial state to a final state
consisting of a doubly ionized atom plus a free (Auger) electron. By
conservation of energy, the total energies of the initial and final

states must be equal so that

Einitial B ESI Efinal - EDI + EAuger ! (L

E are the total energies of the singly and doubly ionized

where ESI’ DI

atomic states, respectively, and E is the energy of the Auger

Auger

electron. It follows immediately that

EAuger = ESI B EDI (2)

so that, if the total energies (E EDI) can be determined, the Auger

ST’
energy is easily obtained. Unfortunately, the determination of these
energies is generally a non-trivial task inveolving the solution of
Schrodinger's equation for the relevant atomiec states. Exact solutions

of this equation are possible only for hydrogen and, perhaps, the ground

E necessarily

state of helium so that most computations of ESI’ DI
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involve approximations. The use of (2) is further complicated by the
multiple line spectra associated with Auger transitions--e.g., for a
specified initial and final atomic state the Auger electron can have
several different energies. Tt is then evident from (2) that either
ESI or EDI (or both) must alsc possess a spectrum of values. Since
these multiple spectra originate from angular momentum coupling effects,

it is useful to examine these in some detail.

Angular Momentum States

The relationship of angular momentum to the energy of an atomic
system is most easily illustrated by considering a typical atomic
Hamiltonian (H). The Hamiltonian, of course, determines the energy of

the system through Schrodinger's equation

HY = EY , (3)

where Y represents the state vector or wave function of the atom and E

is the corresponding total energy. It is this equation which must bhe

solved in order to obtain the E E_. of equation (2). The form of the

SI” "DI

Hamiltonian dictates the complexity of this problem and, in the present

investigation, it is assumed that for an N-electron atom

N N
Y 2z:| 2 v i T2
k=1 k=1 k<j
I II I1I

where the separate terms are the electron kinetic (KE) and electron-

nuclear potential energies (I), the spin-orbit energy (II), and the
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mutual electron electrostatic energies (III)--all being expressed in
Rydbergs. We now wish to examine the solutions of equation (3) using
this form for H with particular emphasis on the angular momentum
dependence in the solutions., Detailed consideration of the actual
solution of (3) is not pertinent here, however, and for such details
one should consult the general references.63-65 In addition, the nature
of the various angular momenta which enter in the solutions is rather
involved so that the following discussion is confined only to general
results; details are given in Appendix A.

The nature of the angular dependence in the solutions of (3)
may be described by considering the relative sizes of the terms I, II,
II1 contained in H. Four of the more important relationships between
these terms will be discussed here. In the first case, the spin-orbit
(II) and mutual electrostatic (III) energies are very small contributors
to the total energy of the system. This case, therefore, reduces the
problem to essentially a collection of hydrogen-like systems (Appendix
A). As a result, the electrons are well described by the familiar one-
electron labels ls, 2s, 2p... encountered in solutions of the hydrogen
atom, and the energy is then given simply by specifying the electron
configuration in the atom--i,e., the occupancies of the various ni
levels. Hence in this limit each separate configuration (such as
152252 and 152252p in Be) would have only one energy level [compare with
Figure 1, case (a)).

As the terms ITI, III increase in their contribution to the total
energy, this situation changes and the energy of a given configuration

"splits" into several levels. Thus if the spin-orbit term (II)} remains
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negligible but the electrostatic energy (III) becomes significant,

then the atomic energy levels [E(L,S)] are characterized by definite
values of the total orbital (L) and spin (§) angular momenta of the
atom, The number of such levels is just the number of distinct (L,S)
pairs which are possible, and this can be computed easily by the method
of vector addition. For example, if one has a two-electron configura-
tion (nlL n,£.,), then the total momenta L,5 are constructed from the

17272

coupling

L=t +4
(5)
S = 51 + iz »
and then the possible L,S values are constrained to the limits
L] = Wq - 2,0 4y -]+ L, 1y 4
(6)
\g‘ = Isl - 52\, \sl - 32] +1,..., sy + Sy

Since individual electrons have spin %, it follows from (6) that § =
0,1 for any two-electron configuration considered. For configurations
of three or more electrons this same procedure can be applied succes-
sively to yield the L,S values and hence the number of energy levels

in this LS~ (or Russell-Saunders)66 coupling scheme. A word of caution
is required if the electrons are eguivalent (n1£1 = nsz) for in this
case the Pauli exclusion principle acts to forbid certain states. In-

deed, for two equivalent electrons it is such that (L+S) is an even
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. . . 2 . , .
integer. This can be illustrated for an np  configuration; one obtains

from (6) that

IL|

It
o
=

“
[

Is |

Il
o
"

-

are the possibilities in the general case, However, the exclusion

principle acts to allow only the cases

=
I
UO
W
Il
Q

[(2S+1)L] for 1LS§-

1 1
states, the allowed levels for a p2 configuration are 8, D, 3P (the

so that in the traditional spectroscopic notation

correspondence is $,P,D,F,G... ~L =0,1,2,3,4...). It may be also
observed that the total angular momentum of the atom may be constructed

from L,S by

J=L+3

(7)
lL-s|, |L-s| + 1,..., 148

1

so that there are several different values of J for specified L,S
values. In the limit of validity of LS-coupling (very small or zero
spin-orbit energy), however, the energy levels of the atom are all
degenerate in J [compare Figure 1, case (b)1].

This degeneracy is lifted as the spin-orbit energy becomes

comparable in importance with the electrostatic contribution. Thus
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the Russell-Saunders levels [E(L,S)] are now each split into a set of
levels--one for each J obtained from the coupling (7). As the spin-
orbit term increases further, this splitting becomes so pronounced
that it is no longer meaningful to designate the atomic levels by
values of L,S; instead it is only the total angular momentum J which
characterizes the energy states [E(J)]. The occurrence of this

phenomenon then marks the onset of the intermediate coupling (IC)

region, It is in this region, therefore, that the most general form
of angular momentum dependence, using the Hamiltonian (4), enters the
solutions of Schrodinger's equation (3). Since it is also the IC scheme
which is applied to LMM Auger transitions in this investigation, a
detailed consideration of IC functions is in order. For convenience,
this is reserved for Appendix A; the important point required here is
that the energy levels in the IC region are characterized only by the
values of the total angular momentum J [compare Figure 1, case (c)].

The final coupling case is approached if the spin-orbit term
(II) becomes so large that the electrostatic energy (III) is negligible.
In this region, the separate energy levels again become degenerate in
J with the relevant angular momenta instead being individual total
angular momenta., Thus, for the two-electron configuration (nl{lnzéz),
the individual orbital and spin momenta, (Llsl) and (Lzsz), are

coupled as

[
]

e
+
73

(8)

fan
1]
2=
+
| ta

(S
n
=N
=
+
[
b
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with the vector addition formulae (6) still wvalid. The values of

jl,j2 then characterize the energy of the atom in analogy to the L,S
characterization in Russell-Saunders coupling. This jj-coupling scheme
is of interest since it has been applied extensively to Auger studies.
Indeed, much of the interpretation of Auger spectra utilizes notation
arising from this scheme. For example, if one states that a L1L2M3
transition occurs, it is implicitly assumed that the jj-coupling limit

is valid when describing the electron energy states in the atom. Thus

from (8) one obtains for s, p, and d electrons the results

- O
s(4=0):j=0+ 2 i=3 R
= 1) - § = 1 ,_.1 3
P(‘f’*l)'l l+2 j 2: 2: (9)
- . s = 1...3 5.
4 =2 j=24373=35, 35

and for the K, L, and M shells the notation (n!;j ~ji=4&+ %)

K1 ~=lsl; L1 ~'Zsl; L2 ~ ZPl; L3 ~a2p§; Ml ﬁ'3sl
2 2 2 2 2
(10)
M2 ~'3pl; M3 A»3p§; M4 ~:3d§; M5 ~ 3q§
2 2 2 2

is then introduced. The designation of a L1L2M3 transition, therefore,

asserts that the individual 2s,2p,3p levels--degenerate in the L§-limit--
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are split as in (9) so that there are two 2p, two 3p (but only one 2s)
levels. If this were not true, then the transitions L1L2M3, L1L3M3,
lL3M2 could not be distinguished.

In order to illustrate these ideas, the energy level diagram

LleM2 and L

expected for a KLL Auger transition is presented in Figure 1 for the
various coupling limits. The splitting of levels in these limits is
well indicated. It is assumed that the coupling is in the almost
closed shells of the final state so that the spectrum is in accordance
with conventional Auger theory. The diagram is then precisely that
expected for KLL transitions in a noble gas, such as argon, when the
energy is computed by relation (2). For other elements, however, the
level diagram is based on an approximation to be discussed later. To
understand the diagram, note that there are three possible final con-

figurations in a KLL transition--i.e.,

25%2p° 252p° 2622p" (11)

In the hydrogenic limit, (a), each of these gives rise only to a single
energy. As the Russell-Saunders limit is approached, these single

; Lo 3 3 1 2, 4
levels each split as indicated. The "8, "D and P levels of the 2s 2p
configuration are forbidden by the exclusion principle in accordance
with previous remarks--these levels are thus shown dotted. 1In addition,
the 3p level is shown crossed since it is also forbidden in the pure
LS- limit due to parity restrictions--i.e., the parity of the initial

singly ionized state differs from that of the 3P final state (this
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~ L,L
kS " 0 e 1 -2
251 2pt P ip, ===
—————————————— . s -
.‘SPO
BP - “3 t \--..__ — L1L3
P, =
3P2
2s° 2p®
Tt T T 1, T T Tt T T I TTTTT
S So L,L,

(a) Central Field Limit [ I>>IT, III ]

(b) Russell-Saunders (LS-) Coupling Limit [ I~III>>1II ]
(c) Intermediate Coupling Region [ I~II~III }*

(d) jj-Coupling Limit [ IT~TII>>III ]

*General Notation for Auger Levels LyL, (*S5),L Lz (®P;),etc.

Figure 1. Schematic Energy Level Diagram for KLL Auger Transitions.
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evidently depends on the dypnamics assumed for the Auger process; for
details consult the section on tramsition probabilities). By simply
counting the levels in case (b), it 1s then evident that--1f LS-
coupling is the valid limit for a KLL transition--one expects a 5-line
spectrum,
In the intermediate coupling (IC) region, the degeneracy in J

is lifted. Note the quotation marks on some of the states. This indi-
cates that, since J is the only identifier of the energy levels in this
limit, the true (J = 0,1) states are mixtures of the pure (J = 0,1)
functions obtained directly from the LS-states (or, for that matter,
the jj-states), Thus in the 2522p4 configuration, the existence of

1

the S5 _, 1D

° 2 levels means that the true (J = 0,2) states are mixtures--

[130 and 3P°] and [1D2 and 3PZ]--so that transitions into the original
3P2, 3P0 levels are then allowed., This follows since the levels, no
longer being pure states, are not forbidden by the parity restriction
(recall that transitions into 1So, lD2 are allowed). It is then evident
that the IC formulation predicts a 9-line KLL spectrum, a prediction
that has been verified in some cases.ll’12
The onset of jj-coupling is indicated by the coalescing of the
IC levels into LlLl, L2L3, etc., with a 6-line spectrum being antici-
pated. TFor application to the LMM transitions, it is well to note
that the correspondence of the jj-levels with the appropriate IC levels
is different for complementary configurations (here complementary
refers to configurations such as [pz and pA], [d2 and d8], [d4 and d6],

etc.). Thus it can be shown that for the configurations [2s2p and

252p5], [2p2 and 2p4], one has the correspondences
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3 3
L,,L P, and POJ L

1l3 L

2s2p : [lPl and 3P2] - L 1Ly

[ P, and P ] - L.L, ,

252p5 :[1P1 and 3P0] - L.L )

172

(12)

2 1 1 3
2p° : [ 5, and D2] - L, 3,[ P. and P1] = LyLa, "B~ LyL, ,

4

2p [lD2 and 3P1] [ P and P 1-L,L s -L,L, .

2 3 373 0 272
The importance of these differences is essentially that between a two
electron and two "hole" view of the Auger process,

Before closing the discussion on angular momentum coupling, it
may be noticed that the labeling of a state or level in the IC region
is ambiguous since neither the L§- or jj-nomenclature is valid for
these levels. For purposes of Auger transitionslo, this ambiguity
is removed by the specification of both the LS- and jj-coupling limits
of a particular TIC level. Thus in the 252p5 level of Figure 1, one
writes the four IC levels as Ly L ( P ), Ly 2(BPO), L1L3(3Pl) and

L3(3P2).

This section has sought to demonstrate the significance of
angular momentum coupling effects in explaining the complexity of
Auger transitions; explicit attention has been given to KLL transitions,
Although much detail has been relegated to Appendix A, it is hoped
that this goal has been attained., In the next section, the application
of these ideas to the general case of Auger energies, primarily through

equation (2}, is presented.
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Energies for LMM Transitions

A general procedure for computing Auger electron energies can
now be described. Thus it is assumed that, for a given transition,
the complexity of the Auger energy spectrum is due to angular momentum
coupling effects in the initial and final atomic states. By specifying
the particular coupling limit {(i.e., LS=-, IC, or jj-), the total

energies E E can be computed in this scheme and by equation (2),

SI® DI
the Auger energies then follow immediately. 1In outline form, the steps
for this computational procedure are:

{(a) decide on appropriate coupling scheme;

(b) compute initial and final state energies in

this scheme;

(c) compute Auger energies by equation (2).

Since this procedure is exact in principle, it is unfortunate that it
canncot be performed exactly in practice. This is, of course, due
primarily to our inability to solve Schrodinger's equation, but other
difficulties alsoc exist. Since these can be significant, they are dis-
cussed below, where the computation of Auger energies for KLL and LMM
transitions is considered.

The case of KLL transitions is included in order to introduce
notation and to illustrate the above computational scheme. For these
reasons, the present analysis for argon is carried out in some detail--
argon being chosen for simplicity. It is assumed that KLL transitions
in argon can be adequately treated in the LS-coupling limit with the
coupling mechanism being applied to the initial and final states

separately., The configurations for these states can be written down
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at once. Thus the initial state is just an argon ion with a single 1s

vacancy so that the configuration is

2,6, 2.6
{(ST) : 1s2s72p 357 3p . {13)
The final atomic state is somewhat more complex since there are several
different configurations. TIndeed, the possible configurations represent
an argon atom doubly ionized in the L shell so that there are the three

possibilities

(0D : (a) 1322502p63323p6 ,
(b) 1s%2s 2p°35°3p° | (14)
{(c) 1522522p43523p6 .

The first of these corresponds to the (252) transition in that both of
the electrons which change states are from the 2s subshell. Similarly,
the second and third configurations correspond to the (2s2p) and (2p2)
transitions respectively. In order to proceed, it is now necessary to
obtain the energies of these configurations in the LS-coupling formalism.

63,64

This is easily done if it is recalled that closed atomic shells

{(e.g., 2p6, 3d10, 352, etc.) behave like 18 (L=8=0) states when
coupling of angular momentum is considered., Since the coupling of a

S state has no effect on multiplet structure, it follows that closed

subshells can be ignored when one is determining this structure for a
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given configuration. Hence the multiplet of configuration (13) is
simply that of a single ls electron--viz., a 2S state~--while for the
configurations (l4) the multiplets are obtained from the open shells
(the multiplet structure of complementary configurations are the same)

o 1
(a) - 2s =S ,

(b)) - 252p5 - 19,39 , (15)

4 1 1 13
(¢) -2p -8, D, P.
This structure is to be compared with the previous comments on KLL
transitions illustrated in Figure 1. Since the initial 2S state is a
single level, it follows from (2) and (5) that the possible Auger

energies are

Eg, (8) - E_((2s'5)

sI
2 1
ESI( 8) - EDI((ZSZP) Py ,
2 3
ESI( s) - EDI((282P) P) ,

(16)

2
B, Cs) - B (200

2 4.1
B (S) - B ((201) D)

4.3
B, ("S) - Ep ((2p)7P)
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Here the notation EDI((C)IS) is used with (C) referring to the configu-
ration or transition which produces the ls multiplet level. These
equations imply a six-line KLL Auger spectrum, but a computation of the
transition probabilities, in the two-electron view, indicates that the

transition
)% - (2p%)7p

is forbidden by parity restrictions (compare with Figure 1 and consult
discussion of transition probabilities for further details). The

results obtained in (16) are thus complete, and all that is needed now

is a computation of the relevant energies. The approximate method used
in this work for solving this aspect of the problem is that of the
Hartree-Fock approximation. Although it is possible to obtain direct
evaluation of the energies (16) by this method,67 this is not the case
for the corresponding expressions in the IC limit. It is then convenient
to rewrite the energies in (16) in order to facilitate application to
this IC scheme,

Using the results of Slater,63 recall that the multiplet energies
arising from a given configuration can be expressed relative to the
average energy of the configuration. This energy includes only those
contributions to the multiplet energies which are the same for each--
i.e., the kinetic energies, the electron-nuclear potential energies, and
the average electrostatic interaction energies. These latter quanti-
ties are easily obtained and, for convenience, expressions for pertinent
interactions (e.g., pz,sz,dz,sp,sd,pd) are given in Appendix B along

with a general formula for computing the average configuration energy.



33

It is worthwhile to note that the spin-orbit energy (term II in equa-
tion (3)) is not included in this definition of average energy. As a
result, the terminology is primarily suited for application to LS~-states,
but it is possible to use the average energy in the IC formalism as
well. The same definition of the average is used, however, in these lat-

ter cases. Now if one denotes the average energy of configuration C by

RCH

then the energy ESI can be written as

E(1s25°2p°3523p%; %)

1l

2
Egr(S)

(17)

2.6, 2.6 2
Eavg(lsZS 2p 387 3p ) + St(ls;"8) ,

where St(ls) is the "structure" term which describes the departure of
the multiplet energy (here the 2S level) from the average energy. This
is, of course, zero for the single electron and, in fact, the energy

of any configuration with only a single unpaired electron is just the

63 - .
average energy. Similarly, one can write

ol . 2.0, 6.2 6
Epp((287)78) = B, (15725%2p"3s73p")

EDI((ZSZP)1’3P) = Eavg(152232p53523p6)4—St(252p5(1’3P)) (18)

411 3 2,2 4. 2.6 4,1
EDI((2p ) S, D,P) = Eavg(ls 2s 2p 35 3p y+st(2p (5,

'5,%p))

so that now it is only necessary to obtain the expressions for the
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various structure energies. In terms of the traditional electrostatic

integrals Fk(ab) and Gk(ab) defined in Appendix B, these are just

St(282p5(3P)) = - % Gl(ZSZp) = St(ZSZP(BP))

St(252p5(1P)) = + % Gl(252p) = St(232p(1P))

se@p®(8)) = + 32 F(2p2p) = 5e(2°('5)) (19)
se2p*('0)) = + 2 FP(2p2p) = 5e(20° (D))

se2°(CR)) = - 2= F(2p2p) = 56(20°CP))

where the structure terms for the complementary configurations are also

included. It is to be emphasized that these expressions are valid only
. 5 4 2 2

if the average interaction energies of 2s2p™, 2p , 2s p and 2p~ are

included in the expression for Eavg; this is to be understood in all

future work as well. The energies for KLL transitions in argon can now

be expressed in terms of the average energies by combining (l6), (17},

(18), and (19) with the result being

EAuger((Zso)ls) =B (1®) - Eavg(2so)

Bpuger ((2520)19) =[5, (19) =, 2s29)] - 3 ¢ (2s2p)

Epuger ((2520)°D) = L 1+ G (2s2p)
Epuger ((2D'9) = (B, () - £, %) 1= 32 i (2pzp) (200
Bpuger (291D = [ 1- 2 P ap2p)
EAuger((Zpa)BP) = 1+ é% F2(2p2p)
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where the notation

_ 2,6, 2. 6
Eavg(ls) = Eavg(ISZS 2p 3s73p )

o, _ 2,0, 6.2 6
Eavg(zs ) = Eavg(ls 2s 2p 3s73p)
(21)

- 2 5,2 6
Eavg(252p) = Eavg(ls 2s2p™ 357 3p ")

4. 2, 2,4, 2.6
Eavg(2p ) = Eavg(ls 25 2p 387 3p )

is utilized, It is only necessary now to obtain by some means, such
as the Hartree-Fock approximation, the relevant average energies and
the indicated electrostatic integrals; the KLL Auger energies then
follow from (20).

Before proceeding to develop similar results for IMM transitions,
there remains one point of interest. Thus the spectrum obtained above
for the KLL transitions agrees with that exhibited in Figure 1 which,
in turn, is that obtained by the conventional two-electron theory of
the Auger process, This agreement is unfortunately fortuitous since,
in general, computation of spectra on the basis of the initial and

final state configurations will not agree with the two-electron coupling

predictions., In order to see this, consider the configurations for KLL

transitions in potassium~~they are

{(51) : 132322p63523p643

1) : 1s225°2p%3523p%s

6

) (22)
35 3p 4s

152252p5

2,2, 4, 2

1s%25%2p 35 3p64s .
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The uncoupled 4s electron prevents, in each case, the spectra obtained
with these configurations from being the same as that for the argen
configurations in (13) and (l4). As an example, note that the initial
state (8I) is a 2S for argon while for potassium it can be either a

1S or 3S (obtained from coupling the ls, 4s electrons). Results similar
to this are, of course, obtained for other than KLL transitions; the
only requirement is the existence of an open shell(s). If it is desired
that the Auger spectrum be that predicted via the conventional two-
electron theory, it then follows from these remarks that some type of
approximation is necessary when the total energy approach is used to

compute E . Such approximations have been considered in this work

Auger
and are discussed below where the expressions for the IMM transition
energies are derived.

This derivation will be carried out in the formalism of inter-
mediate coupling thus insuring that the results represent the most
general treatment for IMM transitions. In order to understand the
computations, it is necessary to consider the form of the energy prob-
lem in the IC limit, The wave function can be expressed in terms of

linear combinations of L$-states (see Appendix A); denoting by lLSJM)

these latter functions and by ?K(JM) the IC function, one finds

N
Y (IM) = L € (L87) [LsM) (23)
L,S

where the sum is over all the L,S pairs such that

L+s=J ,
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N is the number of such pairs, and CK(LSJ) are expansion coefficients,

The energy problem then is given by Schrddinger's equation (3), i.e.,

HY, (M) = E()¥, (M) (24)
or from (23)
N N
LJ C (LSDH|LSIM) = E(I) L Cy (LST) |Lsavy . (25)
L,S L,S

The LS-functions satisfy the orthonormality properties

&+ b, 6, (26)

tad ol ot _
<LSJM|L5JM)—6L,LSSJJMM

where 6LILésIS are the ordinary Kronecker deltas. It follows that by

premultiplying (25) by the function |L'S'JM) and integrating over all

coordinates one obtains

N
¥

/., Cp(Ls3) (L' s" M[n|Lsam) = E(J)CK(L’S’J) (27)
1,8

which can be written in the form

/, Cs [’ s M[u[LsIM) - E(I) 6

L,S

- e

Lés’s =0 . (28)

Since it is assumed that L', §' are one of N pairs which couple to give

J, it is evident that (28) constitutes a system of linear equations in
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the expansion coefficients CK(LSJ). For non-trivial solutions of these
quantities, the form of (28) then requires that the energies E(J) must
satisfy an NxN secular equation. This is easily illustrated for the
particular case where N is two so that there exist two (L,S) pairs,

say Llsl and LZSZ’ which can couple to give a specified J. Since in

(28) 1'S’ can be either L]_S1 or LZSZ’ one obtains at once the set of

equations

|
<o

CK(LISlJ)RLlSlJMlH L 5,9M) - E(D) I+ Cy (L850 (L,5,M|H \LZS ;M) =

Cp(Ly8,3) (L8, |n lLlleM> + € (L,8,0) [{L,s 0 |u |L282JM> -E(J)]

It
<

(29)

I1f the solutions CK(LlSlJ), CK(L282J) for this system are to be non-
trivial, the determinant of the coefficient matrix must vanish

(Cramer's rule)., Hence the requirement is

(LlSIJM|H|LlleM> - E(J) (LlSlJM|H|L282JM>

det =0 (30)

<L252JM|H|L181JM> (L,8, M1 |L,5 M) - E(2)

pa—

which is then the 2x2 secular equation obtained from (28); the analogous
NxN equation for N values greater than two follows in the same fashion,
Now when a secular equation of order N is solved, there will be N
solutions (or energies, E(J)) obtained. The K subscript in CK(LSJ)

is then used to distinguish the solutions VK(JM) which correspond to
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these different energy values, To complete this discussion, the pro-
cedure for obtaining CK(LSJ), once the energies are known, should be
mentioned. This, however, is primarily a mathematical exercise and not
necessary for the present development; it may be found in Appendix D.
The above formalism will now be used to obtain the Auger electron
energies for IMM transitions. In order to demonstrate the two different
approximations which are introduced, the analysis will be carried out
by using vanadium (V) and zirconium (Zr) as specific examples. To be-
gin, note that there are two possible initial states for an IMM tran-
sition as compared with one for KLL transitions. This situation corre-
sponds to the possibility that the initial state vacancy can be in
either the 2s or 2p subshells, Since the ground state configurations
of V and Zr are assumed to be

6 2
LA ls 25 2p 3323p63d34s

(31)
Zr : ls 22 22p63523p63d 4524p64d2552
one finds that the initial state configurations are
2
(1] 1is 252p63523p63d3452
(11] 1522522p53823p63d3452
(32)

1] 132232p63523p63d104 24p64d2552

[11] 1s25%2p°3523p03d 045 24p0ua?s5s2 .
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From these, one obtains the final state coanfigurations of vanadium as

while for zirconium

(b)
(¢)
(d)

(a) 1522522p63303p63d3452
(b) 3s 3p53d3
(c) 3s 3p63d2
(d) 3s23p%3d° (33)
(e) 3323p53d2
(£) 3323p63d
zr : (a) 1522522p235%3p%3a 05 24p04a% 52
3s 3p53d10
3s 3p63d9
3523p%3410 (34)
3523p°34°

(e)
(£)

As discussed previously,

3s23p%34% |

the existence of the open 3d and 4d shells in

these elements leads to difficulties if the Auger spectrum obtained by

(2) is to agree with the traditional two electron predictions. These

latter predictions are fairly well established experimentally and,

therefore, it is assumed that our computations should generate similar

spectra, This result can be accomplished by either of two approaches

which will now be explained.

Direct Approach.

To begin, consider the initial state (1] of

zirconium. If one does the problem exactly, the coupling of the 2s
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electron with the open 4d shell electrons should be taken into account.
This would, of course, introduce a splitting of the single 2s energy
level into several levels, But the 4d electrons are screened from the
2s electron by six closed shells, which weakens the 2s4d coupling. As
a result, the splitting introduced by the coupling will be extremely
small--too small to be observed experimentally--so that it is a good
approximation to treat the open 4d subshell in an average way. One
way to accomplish this is to include the 4d electrons only through their
contribution to the average energy of the configuration, structure
effects due to coupling being explicitly ignored. This then gives the
initial state configuration (Zr[I]) the same multiplet structure as an
analogous configuration with either an empty or completely filled 4d
shell--i,e,, the structure corresponding to a single 2s vacancy. Thus

one has in this approximation

E([1]) = E(1s%2s2p®3523p®3d 04 s2%4pPaa?ss?)

(35)
E Vg([l]) + §t(2s)
with the analogous results for the other configurations being
- 5

E([117) Eavg([II]) + St (2p7)

E(flal) = Eavg([a]) +5t(3s°)

B(b]) ~ £, ([b]) +5tQs3”)
(36)

E(led) >, (LD + st(3s3d” )
B(Ld)) ~ 5, () +se(3p")
E(led) >, (leD + st(3p>3d” )
ELED) =5, ([£]) + 503D .
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The spectrum obtained in this approximation is then clearly the same as
that encountered in the conventional two electron formalism; this is
true since the complementary configurations

9

[3s° - 352],[3s3p5 -3s3p],[353d9 -3s3d],[3p53d - 3p3d]

[3d8 - 3d2]

have the same multiplet structure (e.g., 3s3p and 353p5 both have the
LS~ multiplets 1P,3P). Hence the above approximation does yield the
desired result. 1Tt is evident, in fact, that it will always do so
unless the open shell(s) happens to be directly involved in the Auger
transition, This occurs for the 3d transition metals when IMM tran-
sitions are involved. Vanadium provides an excellent example of the
problems encountered, and it will now be examined.

In a cursory glance at the vanadium configurations in (31) and
(33), one may conclude that the method discussed above is applicable,.
This is incorrect, however, as is evident when an application is
actually tried. Thus in the two vanadium initial states and the final
configurations [a,b,d), it is necessary that the open 3d shell be
treated in an average way as in the zirconium case. This will then
give the appropriate two-electron spectrum. 1In those final states
arising from transitions which directly involve the 3d subshell, how-
ever, it is not possible to carry through the approximation. 1In
order to illustrate this difficulty, consider final state (c¢) of

(33)--i.e.,
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1522322p6383963d2452 . (37)

This final state corresponds to a transition in which the initial 2s
(or 2p) vacancy is filled by a 3s electron with the Auger electron
arising from the 3d subshell (or vice-versa). Hence one can designate
this as the 3s3d configuration and, on the basis of two-electron
theory, it is then expected that the Auger spectrum will be that aris-
ing from a 3s3d coupling. 1In order to get such a spectrum from (37),
part of the 3d subshell must be ignored while the other is not, clearly
a confusing way to proceed. The problem is made even more obvious if

the 3d2configuration

1522822p63523p63d 45 (38)

is considered. 1In this case, the spectrum anticipated is that of a 3d2
coupling and there is no way that such a spectrum can be achieved from
the single 3d electron in (38). It is then evident from these observa-
tions that application of the first method introduced is incorrect for
elements in which the transition considered is from an open shell. 1In
these cases the method is, at best, inconsistent and can, in cases such
as (38), be completely inapplicable, It was for this reason that the
alternate spectator approximation was developed.

Spectator Approach. Consider the configurations of vanadium

which correspond to the 3s3d transition filling an initial 2s vacancy--

i.e.,

(initial) : ls 2s 2p63523p63d3432

) (39)
(final) : 1s72s 2p 3s 3p ad 45
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where it is understood that the complete final state also includes the
Auger electron. By comparing the occupation numbers of the various
subshells in these two confipgurations, one finds that the only changes
are in the (2s, 3d, 3d) subshells. All electrons in other subshells
apparently remain passive to the tramsition--i.e., they seem to behave
as spectators.* The (2s, 3s, 3d) shells also contain spectators; for
example, the 2s subshell contains at least one electron in both configu-
rations which qualifies it as a spectator, Similarly, one finds a
single 3s and two 3d electron spectators. 1t follows that a spectator

configuration can be specified from the configurations (39) and it is

Sp ~ 152252p635 3p63d2482 . (40)

The fundamental assumption of the spectator approach is that this
configuration behaves like a 1S state--i.e., like a collection of closed
shells, 1If this is true, then one can separate the spectator state,
|Sp(ls)>, from the complete configurations (39) and obtain the initial

and final states as

ZS+1L )

(initial) : lSp(ls); 3s3d( 5

(41)
(final) |Sp(lS); 25(28%)> .

*
A justification for this view can be found from consideration of the
coulomb matrix element

<il1/r12lf>

where ]i) s If) are given in (39)--see section on transition probabili-
ties, Fano formalism, for details (equation (120)).
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The energies of these states can be computed, and it is clear that the
only structure will arise from the non-spectator electrons., Indeed,

one obtains

2S+1L

E(initial) = E(Sp(IS);353d( 1

))

(42}
ZS+1L

it

1
Eavg(Sp( §):353d) + St (3s3d( J))

E(final) = E(Sp(ls);Zs(ZS%))

1 2
Eavg(SP( S):;2s5) +5t(2s( S%))

where the notation assumes that Eavg contains the average electrostatic
energies not only of the spectator configuration but of (1) the inter-
action of 3s3d with this configuration and (2) the interaction of the
3s3d electrons as well. Note that the spin orbit energies are
gpecifically excluded from Eavg so that these are still included in

the structure term exactly as they are computed. The use of this type
of notation insures that the structure terms are identical with those
obtained for a two-electron configuration. Thus if one has a 3s3d

configuration and writes the energy as

E(353d(28+1LJ)) = Eavg(ss3d)-rsr(3sad(2s+lyj)) ; (43)

then the structure terms in (42) and (43) are identical, The above
notation for Eavg also allows a simplification in computing the relative

average energies in (42). Since it is true that
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1 2 6 6,,2, 2
Eavg(SP( §);2s) Eavg(ls 2s2p 3s3p 3d74s7;2s)

= Eavg(1322522p6333p63d2482) (44)
= Eavg(final)
and similarly
Eavg(Sp(ls);353d) = £, (initial) , (45)

it follows that (42) can be written as

E(initial) =~ E,  (initial) + St(353d(25+1LJ))
E(final) = Eavg(final) (46)
where the fact that
St(2s) = 0 &7

is used. These expressions for the energies are analogous to those
obtained by the direct approach in (35) and (36) so that a comparison
of the two methods--direct and spectator--can be easily carried out,
Before doing this, it should be noted that the forms obtained in (35),
(36), and (46) are general. Thus the same results are obtained in
(35) and (36), for any element, such as zirconium, with ¢losed M sub-
ghells when treated by the direct approach. Similarl}, the spectator
approach leads to expressions like (46) regardless of the transition

or element involved.
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Both of these approximations then lead to a two-electron type
spectrum., We now wish to examine how the predictions of the Auger
energies vary, if at all, in the two methods. For this purpose, the
discussion will again be confined to the case of 3s3d transitions but
only zirconium will be considered. 1In analogy with the results of (46),

it can be shown that the spectator approach applied to zirconium yields

25+1
St

B)

E(initial) = Eavg(lnltlal) + St(3s3d{(

(48)
E(final) ==Eavg(f1na1)

where (initial, final) refer to the configurations [Zr(I)] in (32) and

(Zr(c)] respectively. But, from (35) and (36), the direct approach
gives
E(initial) = Eavg(lnltial)

(49)
9 28+1L

E(final) = Eavg(final) + St(3s83d" ( ))

J

where (47) is used. 1If one now uses (2) to compute the Auger energy,

the two approaches give

. 2841 _ e s
{(Direct) : EAuger( LJ) = Eavg(lnltlal) - Eavg(final)
st (353d9(25+1LJ))
(50)
(Spectator) : E (ZS+1L } =E {initial) ~ E {(final)
Auger J avg avg
¥t (3s3d (35T )y

J
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which are remarkably similar in appearance. There are two distinct
differences, however, which must be mentioned. The most obvious of
these is the difference in sign (1) with which the structure terms
contribute to the Auger energy. The minus sign in the direct case is
expected since this is the result for an LMM transition in an element
such as krypton (Kr) where no approximation is required. Indeed, this
sign will prefix the structure term for any transition if the element
involved is a noble gas. These facts suggest that the expression
obtained by the spectator approach should also contain & minus sign on
the structure term in order to achieve the most accurate predictions,
One can examine this question in detail, however, only by considering
the differences of the structure term expressions. For this purpose,
recall that these terms arise from two sources--the coulomb interaction
between electrons and the spin-orbit interaction (compare (3)). The
convention adopted for Eavg’ however, insures that the structure arising
from the coulomb interaction is identical for complementary configura-
tions. Thus, if one ignores the spin-orbit interaction temporarily, it

is easily shown that

1
25+ 28+1,

E(3s3d( LJ)) = Eavg(353d) + 5t (383d( J))

and (51)

9 25+l _ 9 25+1
E(3s3d (7 L)) = E, (3s3d) + 5t(383a(7 L))

in analeogy with the results given in (19), It follows that the structure

terms in (50) can be divided into an electrostatic (EEL) and a spin-orbit
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(ESO) portion with the former being the same in each case. One

has

28+1 25+1

= 25+1
St (3s3d( LJ)) = EEL(3s3d( L

LJ)) + ESO(353d( 1

))

(52)

9,25+1 25+1 9 ZS+1L

St(3s3d" ( LJ)) = EEL(333d( LJ)) + ESO(BSSd ( 1))

J
so that the difference in the predictions of the direct and spectator

approaches is, by (50) and (52), }ust

1 25+1
EEL(353d(ZS+ L)) (g+1) + [qEg,(3s3d( 5+ L)) +

(53)

9 25+1L

Ego(353d ( »

J

where q is (*+ 1) according as the sign on the structure term in the
spectator approach is positive or negative. This is inserted in order
to check the discrepancies between the two approaches. Tt is evident
that a minimum difference in the predictions is obtained for a minus

gign since then

. _ 9 28+1 25+1
Spectator-Direct |=E 3s3d -
(Spe r ect] SO( s ( LJ)) ESO(353d( LJ)) . (54)

Hence if agreement hetween the two approximations is desired, it follows
that the structure term sign in the spectator result of (50} should be

changed to a minus. Since the direct approach is considered to be the
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most accurate, our future applications of the spectator approach will,
therefore, use a minus sign in the structure terms. For generality
in the present discussion, however, the sign will be left somewhat

arbitrary with g inserted instead; for example, one would write

2541
S+ 2541,

)

E(Sp(ls);353d( LJ)) = Eavg(initial) + qSt(3s3d(
in place of (42).

In summary of this discussion, two approximation methods have
been developed which predict a two-electron spectrum while using the
total energy expression (2). These methods are presented in schematic
form in Figures 2 and 3. Note once again that the applicability of
the direct approach (Figure 2) is to be confined to transitions from
closed shells or subshells. If transitions from open shells are
involved, such as the IMM transitions in 3d transition metals, then the
spectator approach should be used. The important point of each method
is, of course, the two-electron type spectrum. As a consequence, only
two-electron matrix elements need be considered when obtaining the
Auger energies through the equations (29) and (30). The first item we
need in order to obtain the LMM energies is, therefore, the possible
two-electron configurations resulting from these transitions, These
are obtained from (35) and (36) for the direct approach and the
spectator configurations are then the complements of these--i,e., one
has

Direct : 3s5°, 3s3p>, 3s3d°, 3p°3d°, 3p°, 3d°

Spectator : 352, 3s3p, 3s3d, 3p3d, 3p2, 3d2 (55)



Initial State  +—— Final State + Auger electron

(singly ionized) {(doubly ionized)

f

E(initial)=*EAvg(initia1)
E(fina1)=*EAvg(fina1) + St{final)

EAuger = Eayg(initial) -EAvg(final) - St(final)

Figure 2.

Direct Computation of Auger Energy: Block Diagram

51



Initial State ——a= Final State + Auger electron

(singly ionized) (doubly ionized)

V

Spectator Distribution

V

Initial=spectator+ny{ 054> —P—

{

Final=spectator+nl

i

Eayg(initial)=Epyg(spectator+m4 ngds)

EAvg (final)=Epyg(spectator +ml)

!

E(initial)~Eayg(initial)+St(n,4;npla)

‘l’

[

E(final) >~Epyg(final)

¥

1

1

EAuger = EAyg(initial) - Eavg(final) +St(n,4;nzts)

Figure 3. Computation of Auger Energy by Spectator Approach: Block Diagram

4]
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and the multiplets obtained for these configurations using the vector

addition formulae of (6) and the notation (28+1LJ), are then given by
1
(350,352) : 8
0
5 103
(3sdp”,3s83p) : Pl’ Po’l,2
9 1 3
(3s3d7,3s3d) : Dz, D1,2’3
(56)
5..9 1. .3 A R 1.3
(3p~3d7,3p3d) : Pl’ P0,1,2’ Dz, Dl,2,3’ F3, F2,3,4
4 2 1 1 3
Gp3p ) PS5 Dos By qa
8 2 i, .01 1. 3 L3
(3d7,3d™) : SO, D2, G4’ PO,1,2’ F2’3,4 s

These will now be utilized in the IC formalism presented in
equations (23) - (30) to obtain the LMM energies, Note that there are
35 states defined here so that with the two initial states, one eXpects
a 70-line Auger spectrum in the IC limit. Due to the relationship of
complementary confligurations and our convention for the average energiles,
it is sufficient to examine only the configurations encountered in the
spectator approach. The Hamiltonian used in computing the LMM energies
can, therefore, be confined to that of only two electrons; all effects
for other electrons are automatically included in the average energy.
In this respect, it is also to be noted that the average energy of the
two-electron configurations need not be written down since it is also
included in the average energy of the system. For example, if the
energy of the |3p3d(3P0)) state is needed, it will be written as (spin-

orbit interaction not included here)
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3 3 _ 3 12 105 3
{3p3d¢( PO)|H|3p3d( PO)>-E(3p3d( PO))-—5 F (3p3d) " %00 G7(3p3d) (57
rather than
1 2 105 3
Eavg(3p3d) + 5 F (3p3d) - %490 G (3p3d)

As regards the actual expressions for the energies, these will not be
explicitly computed here. 1Instead, the electrostatic energies are
obtained from the results of Slater63 while the spin-orbit energies
are from the work of Condon and Shortley.64 We can now proceed to the
actual computation of the structure terms and begin by considering the
order of the secular equations which one obtains by the IC formalism,
Recall that this is determined by the number of (L,S) pairs which
couple to give a particular J (only within a configuration since con-

figuration interaction is not included) so that the results are

382 . 1=0(1xl)

3s3p : IJ=0(1x1); J=1(2x2); J=2(1xD)
3s83d ; J=1(1x1); J=2(2x2); J=3(Llx1)

(58)
3p3d : I=0(1xLl); J=1(3x3); J=2(4x4); J=3(3x3); J=4(1x)

3p 1T = 0¢2x2); J = 1(1lx1y; J = 2(2x2)

3d 1 J=0(2%x2);J=1(1x1l); J=2(3%3); I=3(1xl); J=4(2x2)
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The scolution of the secular equations is trivial for the (lxl) cases
since the results are only written down; the (2x2) cases are also quite
easy. The cases of the (3x3) and (4x4) equations are more tedious,
however, and explicit evaluation is not attempted here. Instead, only
the general framewerk for the problems is presented. The case of the
(2x2) equation is well illustrated by the 3s3d transition; thus from

(30) and (56) it is clear that the secular equation for this case is

E(353d(1D2)) - E(2) (353d(1D2)|H|353d(3D2)>
det =0 . (59
(353d(3D2)|Hl353d(1D2)> E(353d(3D2)) -~ E(2)
The non-diagonal elements are easily obtained since only the spin-

orbit interaction gives non-zero results. Using results from Appendix

B and the work of Condon and Shortley, one then has

E(353d(lD2)) = f% G2(353d)

3 _ L2 1
E(3s3d( D2)) =-10C (353d)-—2 §3d (60)

1 3 _Al3 3 1

(3s3d("D,) |H|3s3d( D2)>-\f2 §aq = (383d( Dz)lH|353d( D,))

so that the secular equation takes the form

3 .2 NE!
15 © {3s3d) - E ) §3d

det =0 (61)
|’f§ 1 2 1
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which gives (write G2(353d) as G2)

3 2 1 2 1 3 2
(66 ~B(- 156 ~784 B ~384 =0
or
2 & 2
2 3 3d 2 2 2
B rE-S+ =) - 08t ey, +3 8,0 =0, (62)

This is clearly a quadratic in E and the solutions are just

2 g 2 g
_ G7(3s3d) 3d J_G_ _3d.2 3 2

B,™ 10 "% VG RPZT) t 35 (63)
which gives the required IC energies. A similar analysis can be

carried out for the other (2x2) secular equations which arise,.

The case of a (3x3) secular equation can be illustrated by the

3d2 transition with the multiplets 1D2, 3P2 , and 3F2’ The secular
equation is
21 21 23 21 23 o\ |
E(3d('D,)) - E (3d°("p,) [B]3d°Ce,)) (34D, [H]3a°CF,)D
2.3 21 2.3
det|(3d°C’?,) [#[3aC D) E(3A°CP)) - E 3a%Ce ) [u]3d%%r ) | =

3¢°Cr I]3a% 0,00 3a% e 11362y £3a2 ARy -k

(64)

but it is more convenient to write this in the form
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Bl -E Pl P2
det Pl B2-E P3 =0 (65)
P2 P3 B3-E

where Bl, B2,..., P3 are the relevant matrix elements from the first
expression. This form is not only easier to write, but it also makes
the nature of the secular equation more evident, Thus the equation

may be reduced at once to the cubic

3 2 _
(-E)” + 03(-E) = 02( E) + ¢, =0
where
C. = B14B24E3
3
C, = B2+B3+B1-B3+B1.B2-(P1) - (P2)%- (p3)° (66)
¢, = BL-B2-B3+2-P1-P2+P3-B2- (P2) >-Bl. (P3) >~B3- (P1)>

and this may be solved in a straightforward, though tedious, fashion.
The solutions for all 3x3 secular equations will, however, not be

listed explicitly. Instead, it will be assumed that the equation is
in the form (63) with the parameters Bl, B2,..., P3 being given. For

example, the 3d2 transition is specified by

_ 2 1 _ 13 50 4
Bl = E(3d°('D,)) = - 7537 F2(3d3d) + - 57 F (3d3d)

_ 2.3 _ 71 .2 70 4
B2 = E(3d"(°R,))) = 777 F (3d3d) - .77 F (3d3d) + &,

(67)

_ 2.3 _ 58 2 5 4

BI = E(3d"(°F,)) = - 377 F (3d3d) +57 F (3d3d) - 2 €,
1 \J&2 3

1 == — . 2 = 2\ = =
P 2 5 g3d’ P 5 §3d’ P3
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A convention similar to this is established for the 4x4 secular equa-

tion. Thus the form for the 3p3d case is

Bl - E 32 5y 373 5y 0
4 4
3/2 i
4 Pl B2 -E B3 16 Pl
det =0 (68)
3/3 g, P3 B3 - E L7 py
0 3
2 Vel
0 - 36 Pl 3 P2 B4 - E |

and the parameters are the quantities listed in the table of energies
(Table I)., TFor completeness we note that this equation reduces to

the quartic
4 3 2 _
(-E) +D4(-E) +D3(-E) +D2(-E)+Dl—0

where

D4 = B1l+B24+B3+B4
D3 = Bl-B2+B1+B3+Bl+BA+B2+B3+B2- B4+
ns . 355 2 55 2
B3 B4 Tia (PZ) - (P3) 55 (P1)
D2 = B1+B3:+B4+B2B3:B4+B1-B2:-B3+Bl-B2.B4
(69)
25/6
+ =55~ P1-P2.P3 - (P1) [7/6(B1+33)+9/8(B3+B4)]

- (P2) [7/9(131+32) + (Bz+34)]- (P3) (B1+B4)
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D, = 31-132=B3-B4+p1-p2-1=3( 96 p, . NE B1> - (p3)%B1.B4

1 8 9
2 2 27
- (P1Y " (7/6 BL*B34+9/8 B3°B4) - (P2)"(7/9 Bl.B2+ 16 B2+B4)
175 2 2
+ 39 (PLY"(P2)

The solutions of this equation are easily obtained by computer tech-
niques,

The intermediate coupling energies may now be written down, and
this is done in Table I. As discussed above, the (1xl) and (2x2)
secular equations are the only cases for which explicit solutions, in
terms of the coulomb integrals and the spin-orbit parameters, are
given. One more point needs to be made before these results are com-
plete, and this concerns the energies for the configurations complemen-
tary to those in (56); these are the values needed when the direct
approximation is used, As discussed previously, the electrostatic
contribution is the same in the two approaches due to our convention
regarding the average energies, It is, therefore, only the spin-orbit
energies which one needs to consider and this has been done by Condon
and Shortleyn64 They show that spin-orbit energies of complementary
configurations differ only in the sign of the spin-orbit parameter(s).

For example, one has

0

2.3 43 _
PP CR)) = - £, and B (0 CR)) = +E
(70)

3 _ 59,3 .

with similar results for other configurations. It follows from this
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that the only changes required in Table I in order to be applicable to

the direct approach are given by the substitutions

g - -¢ and £y~ - &y (71)

whenever the parameters occur. The table of results is thereby appli-
cable to both cases.

Bergstrom-Hill Relation, This section on Auger energies should

not be concluded without a brief discussion of the principal method for
computation now being used--i.e.,, the Bergstrom-Hill relation. To
understand this relation, let V correspond to the subshell of the
initial vacancy while T,S are the subshells of the final vacancies.
Then if an electron from T transits to £ill the V vacancy, one would

expect--in the simple Bohr picture--the energy liberated to be

EV(Z) - ET(Z) (72)

where EV(Z), ET(Z) are the electron binding energies in an atom of
atomic number Z, If this energy is given to the electron in S which
then exits the atom as the Avger electron, this simple view would give

the Auger energy as

E,(2) - E.(Z) - Ec(2) . (73)

. 68
Bergstrom and Hill pointed out that this approximate view of the pro-
cess could be made more precise by considering the fact that the S
electron "sees" a doubly ilonized atom as it exists the system. Hence

the binding energy of this level would be expected to increase beyond



Table 1. Structure terms for LMM Auger Energies in Intermediate Coupling. To obtain
the Auger energy, add the appropriate quantity (Eavg(initial) -Eavg(final), obtained
by the spectator (method 1) or direct (method 2) approaches, to the elements of
the table. Notation is ZPM, ZDM = £3, £34(method 1) and -f3p, -Zfad(method 2)

sy e
3s3p(°Pp) - G*(3s3p)/6 - ZPM

3s3p (°P,) G' (3s3p)/6 - ZPM/4 - J(GT/ 3-ZPM/4)° + Eap

3s3p(tP,) G'(3s3p) /6 - ZPM/4 + ./

3s%pCl2) ) - G(3s3p/etzM2
3s3d(°D,) - °(3s3d)/10 - # DM

353d(°D,) G° (3s3d) /10 - ZDM/4 - J/(G*/5+ ZDM/4)? + & E

3s3d(*Dy) G° (3s3d)/10 - ZDM/4 +

3s3aC0e) (- - G'(3s3d)/10 +zoM

3p° (°Py) - (3/25)F (3p3p) - ZPM/2

3p° (°Py) (9F° /25 - zPM)/2 - £ J(3FZ/5+ZPM)° + 8.},

3p° (185) (9F° /25 - zPM)/2 + 1/

3p° (°P2) zPM/4 - & J(6F /25 - ZPM/2)° + 28 5,

p°C¢o) et Esd
3p3d(3Po) F° (3p3d)/5 - 105 G3(3p3d)/490 + (ZPM - 3 ZDM)/2

3p3d (°Fy) 2F° (3p3d)/35 - G (3p3d)/3 + 15G6°(3p3d)/490 + ZDM + ZPM/2

19




Table 1. (continued)

3p3d(®P,) | Bl = FF(3p3d)/5 - 3 G3(3p3d)/14 -(ZPM - 3ZDM)/4; PL = (ZPM + 2DM)/./S
3p3d(iDy) | B2 =-F° (3p3d)/5 - 2G* (3p3d)/15 + 96> (3p3d)/70; P2 = (ZDM - ZPM)/J/5
3p3d(®p,) |B3 = -FF/5 + 4G/15 - 368/70 - (ZPM + 5ZDM)/12; P3 = /6(ZPM - 5ZDM)/12
3p3d(®F,) |B4 = 2F%/35 - G/3 + 15G%/490 - 2(ZPM + 2Z2DM)/3

3p3d(*P,) |Bl = F/5 + 26%/15 + 147G6%/490; Pl = %/2(ZPM + 3ZDM) /4
3p3d(®P,) |B2 = F°/5 - 36%/14 + (ZPM - 3ZDM)/4; P2 = 3/6(ZPM + ZDM)/4
3p3d(®°D,) |B3 = -F°/5 + 4G1/15 - 3G®/70 - (ZPM + 5ZDM)/4; P3 = ./3(ZDM - ZPM)/4&
3p3d(®D;) |BL = -F°/5 + 46G*/15 - 36°/70 + (ZPM + 52DM)/6; Pl = (ZPM + zDM)/,/6
3p3d(*F,) |[B2 = 2F7/35 + 7G*/15 + 27G®/490; P2 = ,/2(ZDM - ZBM)/3
3p3d(3F,) [B3 = 2F /35 - G1/3 + 15G3/490 - (ZPM + ZDM)/6; P3 =-(2ZDM - ZPM) /3
3@ (*D,) [Bl = -13 F°(3d3d)/441 + 50F* (3d3d) /44l ; Pl = /21 ZDM//10

3d° (°P,) {B2 = 11 F°/63 - 10F*/63 + ZDM/2 ; P2 =-2/.6 ZDM

38 (3Fp) B3 = -58 F° /441 + 5F* /441 - 2ZDM; P3 =0

3d° (*Sg) (31F° /63 + 10F*/63 - ZDM)/2 + % J/(F /7+10F /21+ZDM/2)" - 8zZDM(F°+10F*/3)/7

38 (°Pg) (31F° /63 + 10F* /63 - 2DM)/2 - 3 ./

3& °p,) 11F° /63 - 10F*/63 - ZDM/2

3& (°Fy) -58F /441 + 5F* /441 - ZDM/2

3 (*G,) £(-8F° /441 + 20F* /4461 + 3/22DM) + £/ (108F° /441 + 10F° /441 +3% ZDM)" - BZDM(LOSFHLTE" )hil

38 (°Fy)

(-8F° /441 + 20F* /441 + 3/2Z2DM)/2 - &/

9



63

the value for the neutral atom, A better approximation would be to use
the binding energy of the S level for the element with next higher
atomic number--i.,e,, Z+l--or some value in between the two values.
Bergstrom and Hill then introduced the parameter AZ and write the
Auger energy as

EAuger - EV(Z) B ET(Z) B ES(Z)

(74)
+ AZ[ES (2) - Eg (z+1) ]

where 0 € AZ <1, With this relaticn, quite reasonable estimates of the
Auger energy can be obtained although the accuracy varies. A compari-
son of the predictions of this relation with the methods described
earlier will be carried out in the next chapter to illustrate the use

of the relation. It should be noted that the scheme is expected to be
most accurate for heavy elements, such as lead (Pb), since it is
strictly valid only in the jj-coupling limit, This follows since the
specification of the levels V, T, S as distinct is meaningful only in
the jj-limit, The relation can be applied to LS-states if V, T, § are
interpreted in an appropriate fashion but an application to intermediate
coupling states is not possible. In this region, the AZ parameter be-
comes a J dependent variable thus destroying the simplicity of the

relation.

Transition Probabilities

The starting point for our consideration of transition proba-

bilities is the '"golden rule'" of time dependent perturbation theory.
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This rule asserts that the probability for the transition of a system

in state |i) to a final state |f) is given by

w 20 ¢elalo % (75)

i—- £

where A is an operator representing the dynamics of the tranmsition, P
is the density of states available to the system during the transition,
and h is Planck's constant divided by 2m. The application of this
relation to an Auger process evidently requires that the Auger dynamics
(A) be known. In this section two possibilities (or views} for A are
considered and, for each, the requisite formalism is developed. The
simplest and conventional view, due to Wentzel, is the two-electron
theory for Auger transitions.

Conventional Theory

In order to understand the nature of this theory, consider
Figure 4 where a schematic level diagram for a KLlL2 transition is
shown. Such a transition is, of course, characterized by a single ls
vacancy in the initial atomic state, a double L shell vacancy in the
final atomic state, plus the Auger electron in the continuum, Tt is
clear from this description that two electrons change states in the
transition, and this suggests a possible dynamics for the process.
Thus the conventional theory assumes that the transition arises from
the electrostatic interaction of only those electrons directly involved
in the process--i.e., those which change their states. This assumption,
for KLL transitions, means that in the initial state the two L shell

electrons interact and, as a result, one transits to fill the ls
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Figure 4. Schematic Diagram for the Two Electron Interaction

in the Auger Process



66

vacancy while the other is ejected from the atom. For the final state,
the interaction is between the continuum (Ek) electron, as it exits the
system, with the "new" ls electron. If the particular case of the
KLlL2 transition is used, these comments when combined with (75) then

give the pertinent transition probability as

2
21 e 2
@ = = [ QsEk| ——|2s2p)|% (76)
KigLy,  # 12
where
|i> = |232p)
|£) = |1sEK) .

This expression indicates that the dynamics A, in the conventional
2

theory, is just the electrostatic operator fi;n It is to be noted
that this form is not really complete since there are two ways (see
Figure 4) in which the (2s,2p) electrons can fill the lg wvacancy.

Thus the 2s electron can transit to the 1ls level with the 2p electron
being ejected from the atom or the reverse case can occur in which the
2p electron fills the ls level, This "exchange" case can be incorpo-
rated into (76) merely by requiring that the states by anti-symmetrized
and, unless otherwise stated, this assumption will be made in all
future work, The direct and exchange contributions will thus be
automatically included.

In order to make the discussion more general, it is worthwhile

to rewrite (76) for an arbitrary transition. Thus the initial vacancy
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will be assumed to have the quantum numbers niLi while the final
vacancies are in the subshells characterized by (n1£1, nzéz). Then it

is straightforward to show that (76) is replaced by

2
2m e 2
w = ";'I(niéiEkl ;I; |n1L1n2£2)| [ 77)
This may be extended still further by incorporating angular momentum

coupling into the formalism. From Appendix A, one has the two electron

L8-coupled function as
‘(nlélnziz)LSJM>12 =, (LMLSMS|JM)(&1m1L2m2|LML)* (78)

- - - - - - -
Gy by % by [SHGD [ny 2y my iy [n 2y @),
where (jlmlj2m2]j3m3) are Clebsch-Gordan coefficients and the

|nj2j mjuj> are one-electron functions; the sum is over all barred
quantities, The subscripts (1,2) correspond to the coordinates ry and
r, respectively; if no subscripts are included, it is assumed that the
function is anti-symmetrized. It then follows that, in the LS-coupling

limit, the transition probabilities are given by
.= (2T \'l((n ? EK)L S ¥ M \ez/ l(n,#.n ¢ )LSJM>|2 (79)
g =\ S0 eyt T2 181%™ :

The selection rules for an Auger transition follow at once from this

69
relation. Thus it may be shown ~ that
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& s (LSJM\l/r12|LSJM) (80)

1
[P S _
Ws' J'W | /ey, |Lsam) = 811867 ¢O 1 By i

so that only those transitions with

AL = 88 = AT =0 (81}

are allowed. We can, therefore, simplify (78) somewhat and write

“Ls T (25 °)|<(“i&iEk)L5JM|e%r12|(“1*1“2{2) wanl® @)

as the form for the Auger transition probability in the LS-1imit. One
further comment is necessary when nltl is the same as nsz--i.e., the
electrons are equivalent, Thus the form (82) assumes that the \LSJM)
states are both normalized and anti-symmetrized. It may be shown from
(78) that

+4,~L-8

1
_ £
|(n1&1n2L2)LSJM>-/2 [](nlLlnz{z)LSJM>12+(-l) 12 |(n2£2n1{1)LSJM>12]

(83)

and, if nlLl # n this state is normalized. For equivalent electrons,

2ts:

however, one obtains

1

](nl{l)ZLSJM> = /2 [1+ (-1)L+S]|(

)
ny4q) LSJM)12 (84)

which is not normalized. To see this, note that only L,S pairings such

that

L + S = even integer (85)
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are allowed and for such cases

((nl&l)zLSJMl(n1{1)2LS.JM) =2. (86)

It is then clear that for equivalent electrons, the expression (83)
should be multiplied by (1//2) in order that the function be normalied.

The general anti-symmetrized two electron LS-state is then

L L1+g-L-8
Kny2y0,4 )183m) =/20 a4 n 4, )18 3M) ) (- 1) 172 [(nyd,n 4 L8010, ]

1722 117272 2171
(87)
where
c=1 nlLl # n2L2
(88)
= 1//2 nl£1 = nzéz
Now, from (82), the general matrix element of interest is
{(n,L Ek)LSJMIEZIr | (n,4,0,2,)L8IM) (89)
Ri%s 121471 *%12%
which can be written as
Y o
c[pIr + (- 1y 27L-S pye | (90)

Here the quantities DIR, EXC are the matrix elements
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2
_ e
DIR =, ((n, 4, EROLSIM|® /x, | (n)2 0,2, )180M), ,

(91)
=) (n1yt1-42tL % R AN
) D (21,3 <k0‘{’0{’20>@10\{‘%10>Lkléz{fR (n 2 Ek,nydin,L,)
. .
EXC e )
= 12((nif,iEk)LSJM| /rlz\(nz{,znl{,l)LSJM 12
(92)
et i lson, 00 (1.0 |20, 0y 21 g (B KT R )
L ot SRUHMEY 2 Ll ) t
b
with the notation
[a,b,c...]% = /Zatl JObFL J2e¥L ... (93)

being used. The quantities
{a b e
d ¢ f

are the 6j symbols as defined by Edmonds.70 If follows from (89), (90),
(91), (92), and (82) that the Auger transition probability in the LS-

coupling limit may be written as

wo = (2—:p> lclpIR + (-1)

&I+&2_L-SEXC112 . (94)

It remains to consider the form for the transition probability
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if intermediate coupling is assumed in either the initial or final
states., This is straightforward from the formal standpoint. Thus one

has the IC functions

N _ XN
vo M = CB(LSJ)‘(ni&iEk)LSJM)

(Ls)

(95)
N
= I

\F?((JM) /. CK(LSJ).(nltlnz&z)LSJM>

(LS)

from which the IC transition probability is

W, . = (@o\: |(‘¥N(JM)lezlr |‘¥N(JM))|2 (96)
1C Ho B - 121"g )

This can be simplified by using (94) and (95) to obtain

'E,l'i‘{,z"L-S

CI;(LSJ)CE(LSJ)C[DIR+ (-1) gxcl|?,  (97)

(Ls)

and the result is quite general., There are complications, however,
which stem from the difficulty of applying the IC formalism to the
continuum state as in Wg(JM). Indeed, it is not at all clear that this
is meaningful since the interaction of ni{i and Ek is expected to be
primarily electrostatic. A better formulation of the problem is to
include IC only in the interaction of the (nl&l’ n2£2) electrons and

confine the ni{i, Ek coupling to the L8S-limit. If this is done, then
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one obtains the result

, 2 ~
_ ’Eﬂ N e . N, iy Pat 2
w= 5 o o A EROLSIM| /g, s C (LS D) (a4 n,t )L ST aM) |
w's’)

(98)

which, with (80) and (82), can be written as
o= |Mwsn |t . (99)

Y5

This expression, though formally correct, is not complete due to the
dependence on a particular set of 1,5 values. In order to understand
this, recall from the section on Auger energy analysis that the structure
is determined by the coupling of the (nl{l, n2£2) electrons and not by
the niLi, Ek coupling. This latter interaction serves to determine if
the transition is allowed through the selection rules in (8l), but it
does not influence the observed structure, It then follows that the
intensities for a particular J value should include the contribution

from all possible L,S pairings and, therefore, the appropriate expression

for the transition probabilities is given by

e = o 1N asn (100)
(LS)

where WIC’ rather than w is used to distinguish (100) from the more

Ic’

general result of (96), (97). This expression is evidently dependent

only on J and the CN values so that it does represent a meaningful
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quantity in comparison with the transition lines obtained by the two-
electron energy analysis. Note that the above result holds since the

IC functions in (95) are assumed normalized so that

S(NJ) = :; INsay|? =1 (101)
(LS)

If this is not the case, then (l00) should be divided by S(NJ).lO

Only a few more comments are necessary to complete this discus-
sion. We first observe that the orbital angular momentum, k, carried
by the Auger electron is not measured experimentally, As a result,
the expressions for W and/or W_  must be summed over all

P Ugs Wres and/or W
possible values of k., This requirement is not as complicated as one

might initially expect since, for a specified (L,S8) pairing, it is

necessary that

L.+ k=1
24 -~ =

which restricts k to those values such that
]Li -Ll sks2 +L. (102)

Further restrictions on k arise due to the requirement that parity be

71-72 :
conserved in the trapsition. Thus it may be shown 7 that the parity

of the two-electron I.S-state in (78) is given by

Pl (a4 n,L,)L8IM) = [(n 2 n,0,)L80M)

(103)
- . {1+L2-L
= (-1) | (n tyn,2, L8300,
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where P is the parity operator. Since the operator (l/rlz) is even
under parity, it then follows from parity conservation in the matrix

elements of (91), (92) that

(-1) (-1)

or

(104)

L1+42

n4te - .

Using the fact that (&i, k, £ Lz) are all integers this can also be

l,

written as
Lotk= L+, (105)

where the equality is modulo 2--i.e., the combinations ({i + k) and
(L1+L2) are both even or both odd. For any given transition, one then
has that the possible k values are limited by (105) as well as (102).
Finally, it must be noted that all the states involved in the transition

are degenerate in the J, value, M. Hence it is necessary that the

Z
expressions for the transition probabilities be summed over all possible
final states with the same J but different M and averaged over the
initial states. This is accomplished quite easily and introduces a
factor of (2J+1) into the results. Similarly, it is not possible to

ascertain the particular state of the initial ni{i vacancy so this

must also be averaged, a procedure which introduces a factor of
{1 \
2

relation for the computation of Auger transition probabilities, in the

When these various comments are combined, the requisite
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conventional theory, is given by

W A2 Mgy |2 w, (106)

Ic L L 2(ZLFD)
k (18)

S

with k being subject to the restrictions in (102) and (105). The
approximations introduced to obtain this relation should, of course,
be recalled in any application.

""Exact' Theory

Although the conventional theory described above provides a very
concise picture of the Auger progess, one may well ask if the problem
is not being oversimplified. This possibility is suggested by the poor
agreement between experimental intensities and those predicted by
conventional formulae such as (106). 1In addition, it is not at all
clear from the principal characteristic of the Auger effect--i.e., a
singly ionized initial state |i> de-exciting to a doubly ionized final
state plus a free electron lf;a)--that the dynamics for this transition
is simply the coulomb interaction of only two electrons. Alternate
possibilities to this view certainly exist and, in this section, one of
the most obvious will be considered.

The dynamics in this alternate view is also provided by electro-
static interactions but not between just two electrons. Instead, the
total coulomb interaction between the initial (|i)) and final (|f;a))
electrons is assumed to link these states. This is clearly a multi-
electron view for the Auger process since, for an N-electron system,

the total coulomb interaction is given by the operator
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v, N
Y- = =
A=y Tlryy= 8T8 (107>
i<j i<j

If one uses this result in (75), it then follows that the Auger transi-

tion probabilities are given by

2n o\ ]2
w=(Zo )| (ssalsl0)] (108)
where now
|1) = |singly ionized atomic state)
]f;a) = |doubly jonized atomic state + Auger electron).

The primary difference between this form and the conventional results
is then in the type of matrix elements which are computed. Thus the
calculations are no longer confined to the simple case of two-electron
matrix elements and, instead the general case of N interacting electrons
must be considered. The requisite analysis for evaluating these multi-
electron matrix elements has been carried ocut by several workers--
notably by Fano61 and Shore62--but the formalism is quite complex.
Since much of the problem is one of obtaining a precise notation for
the coupled, N-electron wave functions, we shall confine the present
discussion to an exposition of the notation introduced in the work by
Fano. Detailed formulae for the matrix elements are not given, and the
analytical details are reserved for the original Fano paper.

The basic problem is the evaluation of a matrix element such as

’ Br 7 o. B
(1s¥ 2s 2pY ... | L;gijlls 2s 2p.Y oo )
i<j
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where the occupation numbers of the various subshells need not be the
same. In order to obtain a definite notation for treating these ele~-

ments, the subshells will be denoted by nhlk where » = 1,2,3,... and

nILI = 10(1ls)

nz&z = 20(2s) n3L3 = 21(2p)

natq = 30(3s) n5{5 = 31(3p) n6£6 = 32(3d)
etc.

It follows that an atom with Nh electrons in the X subshell is repre-

sented by

16V126N22,N3 | - e (109)

where [T] is the conventional product symbol. Now the evaluation of
A

matrix elements with these configurations requires that the correspond-
ing wave functions be anti-symmetric inall electron spin(si) and
spatial (Ei) coordinates. To obtain such functions, note first that it
is fairly easy to form the anti-symmetric function for any individual
subshell (e.g., 2p4, 3d8,...) and, indeed, these functions have been
obtained by Racah?3 for the cases of (s,p,d) electrons. One procedure
to take, therefore, in obtaining the total wave function is to begin
with the anti-symmetrized functions of each ) subshell. It will be
assumed that these are coupled in the LS-limit. The notation for these
functions is then obtained by noting that the ) subshell is specified

by the N, coordinates (Si’Ei) which constitute the set

A
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Since each possible ordering of these coordinates is present in the
anti-symmetrized function, the set qh is prescribed to be ordered in
the direction of increasing (i). Any deviation from this ordering
then gives a factor of (£1) in the function, the particular value
being obtained only by considering the number of permutations required
to return to the natural or prescribed order. With these definitions,

the LS-coupled function for the ) subshell is then denoted by

Ny
(q In2, LS. (110)

which includes all possibilities for Mi , Mé . The quantity, ah,
)\ A

represents any other quantum numbers required to define the state,

An unsymmetrized total atomic wave function is now obtained by
successively coupling these anti-symmetrized subshell functions. In
order to illustrate the procedure and to introduce the notation, suppose

that one has three LS~-states as

L8 M, Msl); |L252ML2M82); lL353ML3MS3> . (111)

Then the composite LS-state formed from these functions is obtained by

first coupling Llsl and L252 as

L. .8 M, ) = (L L L y(s.M, S.M, |5, M
12°12" LMy By Tty Mg Bl 1810

12/
(112)

12

lLlslﬁL.lﬁSl>|LZS2ﬁLz 32>
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and then couple L3S3 to get

lLsum ) = <L12ﬁL 3ML |, )8, M s, 3 ;, |sm)
(113)

(L., M M dlL.sM M ).
12 12ML12 5,003 BML3 5,

The sums here are over the barred quantities. If one now inserts (l12)
into (113) and replaces the notation in (111) by that of (110), the
result is

hw%%>=L@n% 3mjmgﬂsm 3S|SM).

12 3

<LlﬁL ML |L12ML ACHINEI s, syl >

51 12 (114)
Ny o N, N,
?
(ay Iny 4 “1L151ML5%1?<q2‘“2*2 a,l SZMLM ><q3‘“3”3 383y s;

This is then a coupled, unsymmetrized wave function for (N1+N +N3)

2

electrons. It is anti-symmetric in the coordinates of the N1 electrons

of group ql,N2 electrons of group 4y and N, electrons of group q4-"

3
but it is not anti-symmetric under interchange of coordinates in sepa-
rate groups. This must still be accomplished.

The procedure outlined above for three groups or subshells can
evidently be extended easily. For an arbitrary number of such groups,
however, the exact expressions such as (l14) will be too cumbersome to

write ocut, and a notation for these states must be specified. This is

done by replacing (114) by
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Nh ~(oL8)
‘i’u(q ,O’LSMLMS) = !— ﬂ (q?\ N )\ a}\L?\S)\)J‘ " (115)
MM

where the (u) subscript indicates that the state is unsymmetrized in
the coordinates of different groups and q = {qk} represents one distri-
bution of N electrons arranged in groups of Nk electrons each. This
notation then implicitly contains all sums over the relevant angular
momentum components--such as MLl’ Mél’ ML2’ MSZ’ etc.--which appear in
the precise expression of (114). 1In order to obtain a function anti-
symmetric in all coordinates, we now note that such a function must
necessarily contain all possible distributions, q, for the N electrons--
i.e., all interchanges of electrons in different subshells must be in-
cluded (recall that the function is already anti-symmetric for inter-
change of coordinates within subshells), But if one is given a
particular distribution (q), then any interchange between subshells
gives a different distribution--say q' --and the number of such distribu-
tions is required if the final function is to be normalized. This result
follows at once if one notes that only interchanges between groups--not
within-=-produce different distributions. Hence the number of distribu-
tions is just that obtained by permuting N objects for which permutations

of objects within the groups {ql,qz...} are indistinguishable; the result

is then

N! N!
QM) = T = : (116}
A N IN, . N, !

since the number of elements of the set 9y is NR' The distribution 9,

which has the coordinates in the natural order 1,2,3,... is assigned an
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even parity and the corresponding state (115) appears with a plus
sign, The functions for all other distributions enter the total anti-

symmetrized function with the factor

(- )Pq (117)

where Pq is the number of permutations required to take the arbitrary
distribution into 9y It then follows that the total wave function for
the N electrons is obtained by combining functions like (113) for each
distribution and inserting the permutation factor (117) for each function

so that we have

P

¥ (alSM M) = 2'_‘(-1) q¢u(q,aLSMLMS) ; (118)
q

1
/)
the factor ( Jﬁ%ﬁ=)) is present for purposes of normalization.

A

The fundamental matrix element of interest may now be written in

terms of these anti-symmetrized states as

¢ lgly )y . (119)

Since the functions are anti-symmetric, it follows that the contributions
of each term in this expression are identical. Further, there are

- 137
1H£§—llj such terms so that (119) becomes

N(N-1 /
RO g L (120)

where one term is chosen for definiteness. This prescription thus reduces
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the problem to one in which only those electrons with coordinates
(N-1,8) interact. All others observe the process as "spectators" and
comprise the spectator configuration (compare with (39) and the subse-
quent discussion)., If we now insert the result (118) for Y and Y’,

the matrix element takes the form

@'glyy = MR aw o

(121)
(b, (@ L8 W ) gy - 1, (a.oL8M M)

so that the calculation is reduced to essentially a two-electron prob-
lem, 1In order to further simplify the computation, note that the
spectator configurations are the same in the initial and final states.

Thus a given distribution q is such that the coordinates are as

Spectator Active

(1-N-2) + (N-1,N)

Nal
]

= a + (active)

where a is the spectator configuration for q. But the matrix element

in (121) is then of the form
q ! active q active

with a’, a being completely unaffected by the interaction, The relevant

atomic orbitals being assumed orthonormal, it then follows at once that
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<-’ a = - -
a’la) bz (122)

i,e., the spectator configurations are the same, This configuration is

then specified by giving the occupation number ﬁl for each subshell so

that

(123)

As mentioned in the discussion on Auger energies, the values of ﬁl are
just the smaller occupation numbers of the initial and final states--

i.e.,

N. < min(N.’ ND (124)
It is also clear that

N. =N -2 (125)

. [‘\,//]I
-

since all but two electrons are spectators. These two criteria on NR
are sufficient to uniquely determine the spectator configuration if the
initial and final states differ by two electrons; this is, of course,
the case for Auger transitions. For the case where they differ by only
one or no electrons, however, several spectator configurations (i.e.,
various values for ﬁh) are permitted and a separate computation must be
performed for each.,

For Auger transitions, we can thus restrict our consideration

to a single spectator configuration {ﬁh}' The "active" or interacting
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electrons will be assumed to be in the subshells with » = p or A = ¢ so
that one can define three possibilities for ﬁk' Thus if a subshell is
such that ) # (p¢,0), then clearly the number of spectators in this shell

is just Nh--i.e.,

N, = N AN#p, O (126a)

similarly, if X = p, A # o then

Foew -1 (126b)
while A = P = ¢ gives

=N -2, (126¢)

With these results, the matrix elements in (121) can be simplified still
further, Thus the sums over q',q in that expression can be written as
sums over spectator distributions plus sums over the non-spectator
states. But from (122) the spectator configuratiocns are the same so

that (121) becomes

=k P +P ,
( =1y ' | b : - s ’
. 2 aaHamy po o GD TS Gy (asale )lgN-l,N |
a’

,a q
(127)

¢u(q;a;aLSMLMS)>
where (a’, a) refer to the active non-spectator distributions. Since

the spectator electrons are not affected by the operator (gN 1 N), it
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follows that the value of the matrix element in this result is independ-
ent of the particular spectator distribution q. Hence one need specify
only one a for the spectators and then multiply by all such possibili-

ties, The number of these is, in analogy with (116), just

'@,y - SRl (128)
ﬂNhl

and (127) then becomes

-% - P +p '
N(N-1) ’ o ‘= ", _ q q iR S N SU S AP
2 [QmA)QmAXJQ ®) 4 b Gy asa e LS iy Mg D gy ) ol
a,a
(129)
¥ (a3a;0LSMMS))

where a is now a particular spectator distribution, The sums over the
non-spectator distributions can also be treated in a simple fashion
since these distributions are specified essentially by the two coordi-

nates (N-1,N). Thus, using previous notation, if
n#op,0

so that all electrons in the subshell are spectators, it must be true

that
=g (130)

But if
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the situation is changed; in order to illustrate this, we first con-

sider the case

pto.

The distribution of the p subshell contains the spectator portion
{ap} plus an electron with one of the coordinates (N-1,N); the o sub-
shell then contains the spectator portion {ac} plus an electron with the
other coordinate. There are thus two possibilities for these distribu-

tions and they are

q, = {q,3 N -1} qp{qp; N}
or {131)
a, = {a_; N} 9, = lags ¥-13 .

These then specify the two non-spectator distributions to be included
in (129). ©Note that these can be combined by introducing the parameter

(¢) and writing

(€)

a]
n

{ip; N-1+¢)

(132)

(€ fa s N-€} .

L
Q
[}

Then 1f (¢ = 0,1) are the allowed values, it is easily shown that (132)
produces the distributions in (131). It follows from this that the sum
over the distributions ({a’}, {a}) in (129), which essentially inter-
changes the (N-1, N) coordinates, may be replaced by a sum over e(e’ for

{a’]). 1Indeed, one obtains the result
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- P +P ,
o ML Ty oy E @1y 909 (1-e6 (-6, 1)
€,e=0 (133)

(e

Gy Ca 0L s ) gy b a8 s )

where the substitution

-, (€
O 7 9
is made throughout and the relations
() _ -
qy = q, AN#p, O
(€&) _ (. xe ==
q')\ (qps N 1,N)6€O A=p=cC

are used in addition to (l32). The factors

Fa
(L-eb, Y(1-€8 o

+)

(€) ...qc(e)) are properly included

insure that the distributions (qpf
in the sums over (e,¢’) when one has (p=d) or (p'= c'). It remains to
evaluate the parity or permutation values, Pq and Pq;, in terms of the
parameters which have been introduced. This can be accomplished by
noting that the distribution q is now specified by (assume p = 0 for a

definite ordering)

(e)

a=a " =f{al, otla; N-1+el+1q; N-¢€]

(134)

{q;\} + (N-l+€)p + M-e)
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where the case (p#¢) is used and the notation
N-1l+¢
( )p

simply means that the p subshell has the coordinate (N-1+¢) within it.

The permutation Pq is then composed of the permutations required to

return the spectator distribution

q = {q,} (135)

to a natural order (P-) plus that required to return the (N-1,N) coordi-

nates to a4 natural order. But one has the correspondence, for € = 0,

N-1) )
A= 1,23, ..., Prreey Cyuus

so that, to obtain a natural order, the N coordinate must be permuted
through each subshell from (A=0+1) to the maximum required to exhaust
all filled subshells. Since each subshell has ﬁk electrons it follows
that the number of permutations for the N coordinate is

N

L A
=c+1

Similarly, for the (N-1) coordinate, the number of permutations is just

and one then has that
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w -]
P = P-4+ ) K R
q(0) Pq L Nt RN
h=p+1 A=0+1
o (136)
= - 4 p N
Pq L NX .
A=pt+l

If (e=1) is the situation, then (N-1,N) are interchanged and one extra
permutation is then required; a one (1) must then be added to (136).

The general case may, therefore, be written as

o]
(©) PR
P =P-+ + € ;
q 3 s NR € (137)
A=p+l
since it is also true that
01’
, T -
P.,(¢") = P- + ; N?\+€'
A=pQJ
one has
o o'
P()+P, ()= R + R /
q q L A LN)\+€+€ . (138)
A=p+l A=p+1l

But this equality is modulo 2--i.e., the only restriction is that both

sides be even or both odd--so that the same result is obtained for

either sign in the quantity
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P () £ P, ()
-1y 4 q

It is more convenient to use the minus case and we shall thus replace

(138) by
o o’
. ~ 5 Y= _ ot
Pq(E) - qu(e ) = SN /. Nk'+E €= AP+e-¢ . (139
A=p+l a=p’ +1
If these results are now combined with
o (®)) _ VN, (N -8 N7/ (NL =6 0 1) 60y
\/ ‘ N(N-1)
Q(NK)Q(NA)
it follows that
o lglv) = VN o s N s, ) (-1
proc pPOTp o pc
(141)

1
N

o
€ ,e=0

(€),

/(€ );a'L'S’ML’Ms’) loy-y v (a s ol M)

e-¢' y
(-1) (l-eépo) (l-¢€ 6;}'0 ,)wu(q

and the problem is thus reduced to one of evaluating the matrix elements
for unsymmetrized states. The computations for these, though straight-

forward, are tedious and the details are relegated to the Fanc paper.
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A procedure for computing the N-electron matrix elements is thus
available, and it may evidently be applied to the computation of Auger
transition probabilities when the multi-electron model for the transi-
tion dynamics is assumed. TUnfortunately, the calculations are quite
prohibitive if the number of open atomic subshells is very large for,
in this case, the number of angular momentum states is also large. As
a result of this, very few computations based on this model have yet
been performed. It should be recognized, however, that this is not due
to restrictions on the method.

Before closing this section, the effect of the density of states
factor (f) must be mentioned. Our comments will be confined to atomic
transitions here since the next section considers the difficulties
introduced by the solid state. $Since the discussion is for atomic
systems, all of the orbital states (such as (niti, nlil, nztz) in the
conventional view) are discrete. The density of states is thereby just
that available to the continuum electron. It is shown in Messiah

that the density of states for such an electron is determined by its

normalization. Indeed, if one normalizes the continuum state as

(E'L|EL) = 8’ - E) , (142)
the density of energy states is just

p(E) = 1 (143)

and, for this case, the factor (p) can be dropped from the relevent

formulae for the transition probabilities. This normalization is "per
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unit energy" and for Auger transitioms it can be interpreted as one
Auger electron emitted per unit energy. It is sometimes convenient,
however, to normalize to one electron emitted per unit energy per unit

time. This means that (l42) is replaced by

(E'4|ELY = h6(E’ - E) , (144)

where h is Planck's constant, and (143) then becomes

p(E) = 1/h . (145)

S

. . Ll .
In this normalization, therefore, the factor (%; p in the transition

formulae becomes

2
1
(1)

One must thus be cautious when considering the results obtained for
Auger transition probabilities since the normalization chosen for the

continuum function will affect the predicted values.

Solid State Effects

We now will consider briefly the effects introduced for Auger
transitions in molecular or solid state systems, The obvious new
feature in both systems involves the changes in the valence state wave
functions. The overlap of these states in the molecular or solid state
leads to a broadening of the energy levels as well as an alteration in

the wave function properties. 1Instead of atomic orbitals, therefore,
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one must use molecular orbitals or the appropriate solid state functions.
A second feature of the molecular and/or solid state is the importance
of the density of states factor, p. As we shall see, the structure in
this factor can have a pronounced effect on the observed Auger spectra,
Finally, the broadening of the intrinsic energy level widths can have an
effect on the observed Auger peak widths, Since this broadening is most
pronounced in solid state systems where energy bands are formed, we will
restrict the following comments to the solid (for a more detailed
treatment of solid state difficulties and for additional references,
consult Amelio74). The same conclusions, however, follow to a lesser
extent for the molecular case.

Now consider Figure 5 where a schematic level diagram, such as
might exist in a solid, is given. The band is labeled M1 while the
relatively unperturbed Ll’ L2, L3, K levels remain distinct. We have
the top of the band an energy ¢ below the so-called vacuum level while
the bottom of the band is ¢ below this level. Two types of Auger tran-
sitions involving the band are indicated~-one in which both final
vacancies are in the band and the second where only one vacancy is in
the band. Only the former case will be discussed here. Assuming a
Bergstrom-Hill type expression for the energy, the Auger electron will

have the energy

. (147)

Since E EC are band energies, it is then clear that the Auger electron

b!

may have a continuous range of values with the maximum value given when

EB + EC is a2 minimum~-i.e., when both electrons originate at the top of
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Figure 5, Level Diagram for Auger Transitions from

an Energy Band.
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the band. Similarly, the minimum Auger energy occcurs if E_ + EC is a

B
maximum-~i.e., both electrons originate at the bottom of the band.
Thus we can list explicitly the maximum and minimum energies as

E =E -2, E. =E_ - 2¢€ (148)

max min k

so that the intrinsic width of the Auger peak can be expected to have

at least a spread in energy of

AE = E -E ., = 2(e-p) = 2E

max min W’ (149)

i.e., twice the band width. Now such a broadening of the energy widths
may give rise to difficulty in interpreting Auger spectra if the peaks
are separated by amounts comparable with the band widths. 1In such
cases, the adjacent peaks will overlap and their resolution will thus
become increasingly difficult,

It is, therefore, of interest to examine what information --if
any--one may obtain from the peak intensities. Before this can be
properly done, however, observe that in addition to the use of solid
state band functions and the importance of the density of states, there
is one other complication to be included. Thus we note that the two
electrons may originate at different places within the band and still
give rise to the same Auger energy. It follows that the transition
probability or intensity of the peak for a given energy is actually a
sum of individual intensities. 1In order to understand how this situa-

tion occurs, consider Figure 6 where the transition of two electrons
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from the same level, -EB, is shown. The Auger energy is clearly just

E=E - 2E (150)

for this case., But it is evident that electrons which originate in the

symmetric levels

t
=
|

= -E, + b

(151}
-E_ - &

£
=1
]

will necessarily give the same Auger energy. Now all values of the &
parameter are not allowed since the energies {(151) must lie within the

band~-i.e., one has

- + < -
EB i o)

{1523
- - > -
EC A €

which can be written as

b= EB - e= A1.

< - =4 .
and A EB + € 5

It follows that one must have

0 <A< min(&l, bz) (153)
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and one can show that

min(Al, Az) = (154)

'€+¢>
- - R B S .
A € 5 EB = ( )

From this the allowed values of A are determined by (153). If one now
sums al1 transition probabilities associated with a particular energy

E, the result is

cbmax 1 2
TP(E) o | | (€7 r12|i)| p(hyda (155)

[
where the conventional view of an Auger transition is assumed, Recall
that this expression requires the use of solid state band functions
and/or molecular orbitals in place of the atomic orbitals assumed
previously, This clearly complicates the computations in (155). In
addition, the calculation of the density of states (p) is extremely
complex in itself. Tt follows from this that the introduction of the
solid state intoc an Auger problem significantly increases the labor
involved in making the computation for transition probabilities.

A final comment on computing energies for Auger transitions in a
solid is in order, Thus f% was assumed above that the Bergstrom-Hill
relation was valid in computing the energy. But from previous remarks
we expect that a far better procedure would utilize the total energy
approach of (2). Unfortunately, this approach is not feasible for

extremely large systems since (a) the computation of the energies
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become more complex and (b) the percentage change in the total energy
for the emission of a single electron decreases for such systems. For
these reasons, it is probably better to use a relation of the Bergstrom-

Hill type for solid state or large molecular systems,
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CHAPTER III

COMPUTATIONAL RESULTS

The formalism developed in the previous chapter is now applied
to the computation of LMM transition probabilities and energies for
the elements titaninum (Ti), vanadium (V), chromium (Cr), zirconium
(Zr), niobium (Nb), and molybdenum {(Mo). Before presenting the results,
however, it is worthwhile to consider the procedure adopted for carry-
ing out the necessary calculations, This procedure has already been
briefly described in Chapter I but, for convenience, the procedural
steps are repeated below:

{2a) use Hartree-Fock wave functions;

{(b) work in the intermediate coupling (IC) limit;

(¢) treat transitions in isclated atoms;

(d) work in the non-relativistic limit; and

{e) assume basic validity of Wentzel two-electron

theory.

In order to clarify the significance of these steps, each will be dis-
cussed separately; following this, the data obtained for the above
elements is presented.

The choice of Hartree-Fock wave functions was dictated by the
fact that this approach represents the best approximation to the actual
solutions obtained by solving Schrodinger's equation (3). It may be

recalled that exact solutions of (3) are not feasible for most atoms so
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the approximation is a necessity. By utilizing the Hartree-Fock
functions, it then follows from equations (94) and (l06) that the re-
sults obtained for the computed transition probabilities should be the
most accurate attainable in the absence of exact solutions to (3), In
addition, the coulomb integrals, Fk(n1 %1 nsz) and Gk(nl Ll nztz), are
produced in the Hartree-Fock treatment so that the energy calculations
are also improved by the approach. The particular computation carried
out in this work utilized the multi-configuration Hartree-Fock (MCHF)
program of C. F. Fischer.67 With this program it is possible to specify
the configuration of the atom in the LS-coupling limit and then obtain
the Hartree-Fock wave-functions, the average and total energy of the
configuration, and the relevant coulomb integrals for the calculations.
The use of this MCHF procedure was not restricted to the compu-
tation of a single configuration per element. Instead, an attempt was
made to account for the "relaxation" of the electron orbitals following
the excitation of the atom. Thus the removal of the inner shell elec-
tron to produce the excited initial state would be expected to alter
the electron binding energies and wave functions from that obtained for
the neutral atom, Similarly, the ejection of the Auger electron pro-
duces the doubly ionized atom whose electron properties will differ even
more from the neutral case. To account for this relaxation phenomenon,
separate Hartree-Fock calculations were carried out for the initial and
final atomic states involved in the Auger transition. From the comments
of equations (32)-(34), this means that, in general, two initial and
six final state MCHF computations were carried out for each of the

elements considered, 1In actual practice, however, only five final
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states were considered since the configuration resulting from the
ejection of both 3s electrons (compare (33a))presented difficulties.
The wave functions and energies for this configuration were obtained,
for each element, by using the coulomb integrals and wave functions
computed from the configuration for the 3s3p transition (compare (33b)).
It should be recalled from (52) that the structure terms involved in
the computation of the IMM intermediate coupling (IC) energies contain
the spin-orbit coupling parameters §3P’ §3d' The MCHF procedure also
computes these parameters utilizing an approximate approach due to
Fischer which attempts to extend the results of Blume and Watsono75
Since these results are expected to be more accurate than conventional
calculations, they were adopted for this work, The use of the Hartree-
Fock procedure can be summarized by noting that separate calculations
are performed for each atomic configuration, The coulomb, average,

and spin-orbit energies computed by the procedure are then utilized to
calculate the IMM Auger energies while the wave functions allow the
computation of the associated transition probabilities.

To complete this discussion on the electron wave functions, it
must be noted that the MCHF procedure is not capable of producing the
continuum electron function. Instead the approach taken is to assume
that the Auger electron moves in & central atomic potential as it exits
the atom so that it must satisfy the equation

2

[-%v2+vmj¢ = Ey . (156)

where E > 0 since the particle is not bound. The energy E is obtained
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by equation (2) for the relevant transition once the coulomb energies
are obtained via the MCHF computation. Hence it is necessary only to
obtain V(r) and then solve for the continuum function §. In this work
the form of V(r) was assumed to be that obtained by the Hartree-Fock-
Slater (HFS) approximation to the atomic problem. Then by using the
computer results developed by Hermann and Skillman76 for the HFS
approach, a potential V(r) was computed for each permitted final state
of each element. The results of this computation were inserted into a
computer program77 which numerically solves {156) for the continuum
function { and computes the relevant integrals Rk(ab,cd) encountered
in the computation of the transition probabilities (compare with (91)
and (92)). The normalization chosen for the continuum function was that
found in (142)--i.e., per unit energy. WNote that each of the programs
referenced here was modified in order to carry out the calculations of
this work.

The decision to treat the Auger process in the limit of inter-
mediate coupling (IC) was dictated by the complete lack of such computa-~
tions for IMM tramsitions. It was also suggested by the success
obtained by Asaad and Burhopl0 when they applied IC to the case of KLL
transitions. This treatment, therefore, serves as a check on the need
for the IC limit in the elements considered and provides as well the
most general formulation~~from the coupling viewpoint--of the problem.
As regards this latter remark, it is to be noted that intermediate
coupling is applied only to the interaction of those electrons which
transit to fill the initial vacancy and form the continuum electron.

The interaction of the continuum and initial (2s,2p) electrons (compare
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(77)) is treated in the LS-coupling limit. It follows from this that
the IMM transition probabilitiles are computed from (l06) rather than the
more general result of (97). Explicit expressions obtained from this
relation are presented in Appendix C for these transition rates.

The restriction of the treatment to isolated atoms obviously
ignores all molecular and solid state effects discussed in the final
section of Chapter II. This omission is justified, we believe, since
there exist no theoretical data for the elements in question, isolated
or otherwise (although some results have appeared recentlyza’za). In
addition, the contribution of the molecular and solid state effects is
primarily to broaden the observed peak widths with the basic position
{in energy) of the peaks being the same as for the case of isolated
atoms. It follows from this that a knowledge of IMM energies and in-
tensities, based on atomic calculations, is expected to be of interest
also in molecules and solids. This is especially true in elements such
as Zr, Nb, and Mo since LMM transitions in these atoms correspond to
“core" transitions. Hence the band effects caused by overlapping of
the valence orbitals should be quite small for these materials so that
atomic calculations represent a reliable treatment for IMM transitions
in such materials.

The use of the non-relativistic limit in treating the Auger
process was due principally to the lack of a valid, relativistic formu-
lation of the problem. Indeed, the only available treatment, which is
valid in the relativistic limit, is due to an approximation by Maller.78

This views the Auger process as arising from an indirect transition

wherein a photon is produced and then reabsorbed by the Auger electron
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{which is, of course, subsequently ejected from the atom). This is the

same view originally proposed by Auger and then discarded in the
Wentzel formulation of the theory. Since the view and formulation is
incorrect, it was felt that a relativistic treatment of the problem was
not justified.

Finally, the Wentzel formulation of the Auger problem was assumed
since experiment indicates that the Auger spectra observed does agree
fairly well with that predicted on the basis of this theory. This does
not, of course, mean that the two-electron formalism is correct since
it may be, for example, that other peaks are simply not being resolved.

Nevertheless, the basic validity seems to be indicated so our calcula-

tions assume a spectrum of the two electron type (compare Chapter II).

Results for Ti, V, Cr

The procedure cutlined above describes the general assumptions
made in carrying out this work. It does not, however, give the specific
program which incorporates these assumptions into a viable computational
scheme. Such a2 program was developed, of course, and it is presented
in Figure 7 as a block diagram., The essential features of the scheme
are readily apparent with the computation of the Hartree-Fock orbitals
being the fundamental step in the procedure. Once this has been
accomplished, the calculation of the Auger energies and intensities
follows in a straightforward fashion by utilizing the formalism
developed in Chapter 1I. As an aid in interpreting the steps and their
relation to the formalism, pertinent equations are referenced at each

step in the scheme. WNote that the only deviation in the program occurs
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Element

i

Compute Atomic Wavefunctions and

Coulomb Integrals by MCHF Procedure

spectator * by "exact"
approach Compute Atomic Total Energies, approach
B A . >
(eq. 39 - 50) then the Auger Energies (eq. 35 - 38)

Compute Relevant RK(ab,cd)

Integrals for each Auger Energy ¢
(eq. 92)

Compute Intermediate Coupling
Y Mixing Coefficients

(appendix D)

!

Compute LS-coupling Compute Intermediate Coupling
Transition Probabilities S Transition Probabilities
(eq. 94) (eq. 106)

Figure 7. Block Diagram for the Computation of LMM Auger

Energies and Transition Probabilities
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in the calculation of the Auger energies, a fact in agreement with
earlier observations, Thus it is necessary that one decide at the
outset on the use of the spectator or "exact'" approaches to the energy
evaluation. From Chapter II, this decision depends solely on whether
or not the M shell (for LMM transitions) is completely filled. If it
is, then one uses the "exact" approach; otherwise, the spectator
approach is required. Once the appropriate method is adopted, the
computation of the transition probabilities follows the well-defined
procedure of Figure 7,

In order to apply this program to the elements titanium (Ti),
vanadium (V), and chromium (Cr), these comments indicate that the
spectator approach must be utilized. It then follows at once from (55)
that the appropriate multiplet structure arising from angular momentum

coupling is obtained from the configurations

352, 3s3p, 3s3d, 3p2, 3p3d, 3d2 . (157)

The structure for these configurations is presented in schematic form
in Figure 8 for the (a2) hydrogenic, (b) LS-, (c) intermediate and (d)
jj-coupling limits. The similarity to Figure 1 for KLL transitions is
readily apparent with most of the notation remaining the same. As the
only exception, note that the presence of mixed states (compare (23))
in the intermediate coupling region is here denoted by an asterisk
rather than quotation marks., Due to this mixing we again have that
some levels, forbidden in the 1LS-limit, are allowed in the intermediate

case as evidenced, for example, by the 3p2(3P0 2) levels., Now in order
1]
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to compute the Auger energies in the desired coupling limit, it is
necessary that the average energies of the configurations (157) be
computed together with the energies of the structure terms appearing
in Figure 8., Thus in the case of the 3s3d configuration in the L§-
limit, the average energy (Eavg(initial) in Figure 3) locates the 3s3d
level in the hydrogenic limit (a) while the structure term energies

1D and 3D levels., The present work

determine the splitting of the
treats the system in the intermediate coupling region (c) so that the
structure term computation is somewhat more complex than the case of
the LS-limit. It is still readily accomplished, however, using the
results of Table 1.

Before proceeding to the results, a word about notation is
required due to the ambiguity inherent in specifying the levels in the
IC region. Following the convention set forth in the discussion
following (12), these levels are specified by giving both the LS- and
Jj- levels to which the given IC level tends in the appropriate limit.
Thus one has, for the 3s3p and 3p2 configurations, the levels specified
as

3

3 3 1
3s3p: Mle( PO, Pl)’ M1M3( P2, Pl)

2 3

3 . 3 . 1 1
3p ¢ M2M2( PO), M2M3( Pz, Pl), M3M3( SO’ D2)
with similar designations for the other configurations. It remains

to indicate whether the initial vacancy of the Auger process occurs in
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the 2s or 2p subshells, This is accomplished {compare (l0})) by using
the notation for these levels in the jj-limit, i.,e.,

2s ~ L and 2p ~ L L

27 73

from which it follows that a 2s transition is identified simply by
using the L1 label, Similarly, the 2p subshell should be specified by

or L, label. The MCHF procedure utilized in this

listing either the L 3

2
work, however, computes the orbitals and associated binding energies
in the L§-limit so that only a single 2p level is obtained--i.e., the
L2 and L3 levels are the same, It follows that our results should best

be specified by including both L2 and I_,3 in the transition label, As

a result the notation

1 3
2s: LlMlMl( SO), LlMlMZ( P2).oa

' 2,3 1. 1 0 ? 2,3 1 2 2 e

is used, in this work, to denote transitions to initial 2s or 2p vacancy
states,

The results for the IMM transition energies can now be presented,
and this is done in Table 2, Perhaps the most obvious feature reflected
by these results is the smallness of the splittings induced by the
spin-orbit interaction. Thus the maximum energy difference found for

intermediate levels such as

3 _ 3
3s3p: MM, CBy 1) IMMCRy)
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Table 2. IMM Auger Transition Energies in the
Intermediate Coupling Limit (electron volts)
Ti ' Cr

L1 Iz,3 L, 1z ,a L, | P
iy (o) | 40z.1 [ 302.0 [ 452.8 _| 3aa.6_ | st6.2 | 4042
MM (PPg) 437.7 337.7 491.0 382.8 548.2 436.1
MM, (°P,;) 437.0 337.0 490.2 382.0 547.2 435.1
MM, CPz) | 437.0 337.0 490.1 382.0 547.2 435.1
MpMs ( Py) 426.4 _ | 326.4 _ | 479.0 _ | 370.8 _ | 535.6 [ _423.5 _
MM, CDy) | 471.7 371.7 529,7 421.5 591.6 479.5
MM, D) | 471.6 371.7 529.7 421.5 591.6 479.5
M, Ms CD,) 471.6 371.6 529.6 421.4 591.5 479.4
M (Do) [ 467.6 | 367.6 | 525.2 | 417.0 [ S87.1 _f 475.0
MM (CBy) 464, 4 364, 4 520.0 411.8 578.4 466.3
MM (°P;) 464 .2 364.2 519.6 411.4 578.0 465.9
MaMa (" P2) 463.7 363.8 519.2 411.0 577 .4 465,3
M@MS(ng) 456.7 356.7 511.7 403.5 569.6 457.6
| MoMs (Do) | 461.0 | 361.0 | 516.3 | 408.1 _|_374.4 _|_462.3
MM, (CFp) 504,6 404.6 565.0 456,8 628.6 516.5
MM, CP,) 500.1 400.1 560.2 452.0 623.7 511.6
MaMe (PF3) 504.3 404, 3 564.7 456.5 628.1 516.0
MzMs (*Dz) 503.4 403.4 563.7 455.6 627.2 515.1
MaM, CPo) | 499.1 399,1 560.0 451.8 623.3 511.3
MaM, CP2) 500.2 400.3 560.4 4522 623.9 511.8
MM, ®Dy) | 499.5 399.5 559.6 451.4 623.0 510.9
MM, (®Dg) 499,3 399.3 559.4 451.2 622.8 510.7
MM (F,) | 503.9 403.9 564.2 456.1 627.6 515.5
MoMg (°D2) | 499.4 199, 4 559.5 451.,3 622.8 510.7
MMs C2) | 493.9 393.9 553.7 445.5 617.1 505.0
Mgt CFe) | 493.0 | 393.0 [ 552.7 [ 444.5 | 616.1 ) 504.0
MM, CF,) 538.5 438.,5 603.6 495.5 672.6 560.5
MM, (PBp) 536.8 436.8 601.4 493,2 670.4 558.3
M Ms (°F4) 538.4 438.4 603.6 495.4 672.5 560.4
MM CF,) 538.4 438.4 603.5 495.4 672.4 560, 3
MM (*Dy) 536.9 436.9 601.7 493.6 670.7 558.6
MM (3P, ) 536.8 436.8 601.4 493.2 670.3 558.3
MsMs (°P2) 536.8 436.8 601. 4 493.2 670.3 558.2
MsMs (CG,) 536.1 436.1 600.7 492.5 669.7 557.6
MM (* So) 532.4 432.4 596.5 488.3 665.5 553.4
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is one electron volt(ev) with the minimum difference being zero. From
the way the calculations are made, this small deviation reflects the
fact that the LS level of the configuration (3s3p(3P) in the above
example) is very little affected by the extension to intermediate
coupling or, equivalently, by the introduction of the spin-orbit inter-
action, An immediate conclusion of these small splittings is, there-
fore, that LMM Auger transitions in (Ti, V, Cr) need not be treated in
the intermediate coupling limit. This conclusion is wvalid, of course,
only until experiments are capable of resolving structure with separa-
tions less than one electron volt. For clarity, note that it is
assumed in the following discussion that one volt is the experimental
resolution.

In order to better assess the predictions of Table 2, they are
compared with available experimental data in Table 3. The experiments
cited were all taken by the technique of Auger Electron Spectroscopy
(AES) with the work performed by Simmons,84 Haas et al.,85 and

Palmberg.86 Some brief remarks are in order since the notation is

changed somewhat from that of Table 2. Thus transitions such as

Ge, p

3
Ly MM CPgs "Py) and L, JMMi(TP,)

are combined into the single symbol

3
Ly MMy 30 1 9) -

This is done since the separation of the Auger energles for these
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transitions is less than the experimental resolution, As a result the
different peaks or lines for these transitions will appear experimentally
as a single peak denoted by the above. Similar comments apply to the
other combined transition labels. It should also be noted that only

MM transitions are recorded in Table 3, This is due to the com-

Ly s

plete lack of experimental data on LlMM transitions. This deficiency
of data is probably due to inefficient ionization of the 2s subshell,
at least compared to the 2p subshell, but other factors may also
contribute. 1In any event, current experiments have not resolved these
peaks and future study is necessary.

The experimental peaks listed in Table 3 are interpreted on the
basis of the current theoretical predictions shown in the column
labeled "cale"., It should be noted that such an assignment of peak
identity does not generally agree with the original interpretation
given by the experimentalists. These workers had to interpret their
results on the basis of the Bergstrom-Hill (B-H) predictions so dis-
crepancies in interpretation are not surprising. As an example of the
type of discrepancy encountered, we have that the peak at 335 ev
observed by Simmonss4 in Ti was interpreted by him as arising from an
LleM1 transition~-i.e., arising from a 332 type transition. Our
interpretation, however, associates this peak with an L2,3M1M2,3(3P0,1’2)
line~~i.e., one which arises from a 3s3p type transition., The dis-
tinction between the two interpretations is then clearly fundamental.

Some of the new interpretations given to the experimental data

8
may seem questionable--especially for the Simmons and Haas > results,

For example, the assignment of the 384 ev peak in Ti to the 3s3d



Table 3. Comparison of IMM Energies with Experiment: Ti, V, Cr
(all data in electron volts)
Ti v Cr
% o * T * T
Lo, Calc.|B-H Exp. Calc. | B-H Exp. Calc. |B-H Exp.
MM, (S) 302 | 330 345 373 404 417
My My Py ) 326 || 455 [327° 72N N B 826 N1 4oy | us®
MM 5 (PPo,q,2) 337 | 335° 382 | 435
MaMa (* So) 357 || 3558, 350h | 403 ] 402%, 412t | 458 | 446°, 444?
MaMg (1D2) 361 [{383 |[361", 350P | 408 432 |395F, 410P | 462 483 | 4577, 469P
MaMs, 5 (°Po,1,2) 364 362P 411 466
M, Mg (*Dy) 368 [] 54, 1386°, 373 | 417 )] 44 4317, 420P | 475 4o | 4767
MM, ,s(3Dy,2,0) 372 || gol, 370P | 421 || 428P 480 489P
MyMg (1Py 51 Fp) 393 403;, 420% | 445 |] 438" 505 5115, 528P
Mo, sMy,5 (PPa,y1,2) | 400 418", 393P | 452 438P 512 490", 512°
M oMy ,5(®Dy,0,5) | 400 []419 {398P, s05P | 452 473 |470P 512 528 | 530", s30°
My ,aM,,s (1D2) 404 456 4459 516 492%, 497P
Mo,aMy,5(°Fo,5,4) | 404 456 516
MsMs (*Sg) 432 |] 4505, 4520 | 488 || 475", 510" | 553 | 5750
s
My,sMs,6 CPo,1,2) | 437 || 450 493 . 559 569 | 573
M, ,sMy,s (PFp,a,4) | 437 4367, 445P | 493 sosP, 490P | 559 570P
M, ,sM,, s (1Da;37G,) | 437 | 493 | 559 ||

#These values were obtained from equation (74) using AZ=1 for LzMM transitions;

required binding energies were taken from the report by Siegbahn, 16

**Experimental values are those by (s) Simmons ,84 (h) Haaset al.,

B5

and (p) Palmberg.86

711
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transition levels might be considered as an interpretation of doubtful
validity. 1In cases such as this, however, it must be recalled that

the technique of Auger spectroscopy, as now utilized (compare Chapter
I, Auger Electron Spectroscopy), is such that precise identification of
the peak energies is quite difficult. This arises from complications
encountered in calibration and, to a greater extent, from the fact that
the data is obtained by taking the derivative of the principal experi-
mental energy curve. This latter approach, though necessary, acts to
obscure the location of the central peak with the result being an
ambiguous assignment for the peak energy. This situation is, of course,
well illustrated by the broad scatter of the experimental data cited

in the table and, as a result, the identification of peaks is more
reasonable than one might at first suspect., Note that the data by
Palmberg86, which is the most recent, seems to provide better agreement
with our results than that of Haas85 or SimmonsB4 and, in this sense,

may be argued to be the most accurate, Even with this data, however,

there are discrepancies and the reasons for this need to be considered.
The most obvious criticism would be to suspect the calculations and the
associated computational scheme. This is best left for the discussion
of Chapter IV, however, and it is sufficient to note at this stage that
the neglect of relativistic effects is a possible error. In addition
to this source of error, the experiments were performed on solid state
samples rather than for isolated atoms as assumed in the calculations.
Although the basic results are not expected to change drastically be-
cause of this (compare with previous remarks), one should still

anticipate a work function correction being necessary. This could
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then introduce a discrepancy into the observed data. In conclusion,
we have found that the agreement with the available experimental
energy data is adequate and, in many instances, quite good. Possible
reasons for the discrepancies have been or will be discussed; the
important point, however, is the re-assignment of peaks corresponding
to different transitions than those obtained via Bergstrom-Hill
predictions.

The remaining feature of the computation is that of the transi-
tion probabilities for the cases of (Ti, V, Cr). These results are
presented in Table 4 and will now be discussed. Note that the data is
given in atomic time units (2.42 x 10-17 sec,) or, more correctly, in
inverse atomic time units. In these units the fundamental form of the

relationship for transition probabilities changes from (75) to

w, = = mlElal)] %o . (159)

with the energy units being Rydbergs (13.6 ewv). If one carries the

analysis of Chapter II through with this form, it is found to be

A
necessary that (%Ej} be everywhere replaced by (1) while the electro-

2
static operator, o , is replaced by _2__ With these slight
T12 T12

changes, all other results remain formally the same except that dif-
ferent units are in effect. Also we recall that the energy normaliza-
tion (142) is used in the calculations for the continuum function.

As a result, the density of states factor is unity (compare (143)) and

may be dropped from consideration. This, of course, represents an



117

Table 4. LMM Auger Transition Probabilities in the Intermediate
Coupling Limit (in atomic tlme units)
[multiply all entries by 107°
Ti v Cr
Ly Lasa Ly L2, L Lgsa
MMy CSo) | .sa1o | L0898 | .8113 |[_.0833 [_.8532 | .0872
MlMé( Po) 2367 2746 2330 2627 L2407 2694
M1Me( P,) 7126 .8237 7014 7880 7259 8077
MM, (3 Pa) 1.1582 1.3737 1.1664 1.3151 1.2063 1.3476
My Py | 2.0559 | 2406 ) 2.0222 [ .2331 | 2.0655 f 2395
M, M, (°D, ) 1736 0184 1738 0222 .1691 .0214
M1M4(3D2 2898 .0306 2904 0370 2820 .0357
( Dy) 4051 L0428 . 4063 0517 3945 .0500
Mz C2) _2.5040 ) .1067 | 2.6186 | .0886 | 2.5337 | 0722
MoMa (°Pg) 00104 3246 .00109 2898 .00062 .2729
MM, (5P,) 0. . 9656 0. .8600 0. .8071
MMy (3F2) 00026 | 1.6230 00067 | 1.4497 00022 | 1.3655
MSME( So) .1538 .7680 1229 .6697 0545 .6298
o0 (D2) | 0107 | 2.5335 _|_.0363 _| 2.2462 | 0090 _| 2.1132_
MM, (3Fp) 0168 0259 0142 0329 0127 .0350
MM, PPy ) 00658 1425 .0089 1668 00756 1458
MM (°Fg) 0248 0122 .0212 0115 0194 0108
MeMg( Do) 00076 4368 00083 L5171 00094 L4723
MaM, (CPo) 00250 0520 00362 .0635 00331 0585
MM, (°P3) 0114 2444 0159 2931 L0142 .2651
MM, (°D,) 00093 0550 00186 .0690 00236 .0723
MaM, (°Dg) 00038 0947 00085 .1019 00113 0940
MaMg (°F,) 0317 0143 0268 0125 0244 0108
MaMbs(SD2 00110 0826 00190 0964 00217 0940
MgMs 1Py ) 00275 6111 00444 7624 00493 .7056
M. Mg (1 Fy) 4276 1 2.2845 7548 2.8928 7150 2.6640
M4M4( Fz) 0000 .1682 00001 3340 00002 2872
MM, (°Py) .0000 .0060 .00001 0104 .00002 .0090
MMg (°F3) 0. 2353 | 0. 4674 | 0. .4018
M Ms (BF,) 00004 .3028 00012 .6015 00015 5172
MM (*Dz) 0127 2723 .0169 .6372 .0159 5317
MM (°P,) 0. 0180 0. .0311 0. 0269
M Mg (3Po) 00224 .0727 00026 .0605 00032 0548
mgrg(lc4) .4293 1.9228 9276 3.8571 8044 | 3.3088
MM (159) .0259 .0439 0510 .0816 .0450 .0700
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enormous simplification from the situation encountered for the solid
state system.

Now the data in Table 4 should be compared to experimental
results in order to determine the validity of the predictions. This
is, unfortunately, not possible for the elements in question since there
are essentially no experimental LMM Auger intensities. Even the area
of theoretical activity is relatively free of data but recently some
results have been forthcoming and, in the absence of experimental data,
these results are compared in Table 5 with the present computations.
The theoretical results are those of Walters and Bhalla24 and McGuire.23
The computations of the former authors are analogous to those performed
in this work with the basic difference being the use of the Hartree-
Fock-8later scheme (with an exchange term due to Herman, Van Dyke, and
Ortenburger87) rather than the more precise Hartree-Fock computation
used here. In addition, Walters and Bhalla computed total Auger transi-
tion rates (but only for initial 2p vacancies) so that they compute no
multiplet structure; instead, their results are given for the possible
configurations 352, 3s3p,..» » In order to compare with the present
results, it is therefore necessary that one form the total predicted
transition rates from Table 4 for the different configurations. This
is readily accomplished by adding the relevant results in the table,
For example, the total 3s3p transition rate is obtained by adding to-
gether the predictions for the lines

3 3 1
Lz,i“l“z( Py, 173 MMgCPys Bp)
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with the result being 2,7126 x 10-3 (au)-l. By proceeding 1in this
fashion for all the configurations, one achieves the results listed

in the row labeled "Present" in Table 5. As regards the work of
McGuire23, he performed the computations in the jj-coupling limit so
that the total rates are computed from his data as in the above. Tt
should be noted that the procedure used by MecGuire in the computations
involves, in our view, several major approximations which mar the value
of his results. 1In particular, the pertinent electron wave functions
were computed by utilizing an approximation to the appropriate Hermann-
Skilman potential, The details of this procedure are best left to the
referenced work; it is sufficient to note here that the Hermann-Skilman
potential can be significantly in error so that any approximation to

it must be made quite carefully.

Now consider the L1 data in Table 5. We note that the agreement
is fairly good for the configurations 332 and 3p2 but beyond this the
disagreement is apparent, It reaches a maximum in the case of the 3s34d
data with our results being larger than McGuire's by a factor of four.
The reascons for this large discrepancy presumably result from the
sources cited above, but it is not clear why the agreement and dis-

agreement vary so widely. As regards the L transition data, the

2,3
additional work of Walters and Bhalla24 is available for Ti, V, Cr with
McGuire data for Ti, Comparing these results, the general pattern is

one of disagreement. Only for the 332 and 3p2 configurations may
agreement be reasonably claimed and even for 3p2 there are discrepancies.

It is clear from the Ti data that McGuire's results sometimes agree

with the present data (352, 3p2), sometimes with that of Walters and
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Table 5. Comparison of LMM Auger Transition Rates with
Theory (in atomic units)

3s3s 3s3p 3s3d | 3p3p 3p3d 1§ 3d3d

L, transitions
Ti: McGuire .91 5.28 .86 .16 .192 .071
Present .84 4,16 3.37 175 .59 47

— o | —— | w— — — — — . | — —— — ——— —

Lz,s transitions

Ti: W & B .0820 1.61 .0505 5.69 1.22 1.38
McGuire . 0900 1.64 .0600 6,14 1.34 177
Present .0898 2.71 .198 6.21 4,06 3.04

Vi W&B .0830 1.62 L0744 5.74 1.93 4.52
Present .0833 2.60 .20 5.52 5.02 6.08

Cr: W &B .0808 1.55 107 5.48 2.87 1.24

Present 0872 2.66 .18 5.19 4.63 5.21

The data referenced is that of McGuire23 and Walters
and Bhallaza; all numbers multiplied by 10°.
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Bhalla (3s3p, 3s3d, 3p3d) and with neither in the 3d2 case, These
observations, when coupled with the analogous behavior in the Ly data,
suggest that the McGuire procedure for computations produces results
which are internally inconsistent--i.e., they fluctuate. This con-
clusion, of course, is valid only for comparison with theoretical re-
sults so that there may be no real significance to this apparent
behavior. The situation does, however, amplify the need for experi-
mental data to check the validity of the different treatments. The
general tone of disagreement, though more consistant, continues when
the Walters and Bhalla data fer (Ti, V, Cr) is compared with the current
results, Once again, the disagreement Is greatest in the 3p3d and 3d2
configurations although it still exists for the 3s3p and 3s3d cases.
One apparent anomaly is the sudden jump and subsequent drop in the

prediction by Walters and Bhalla for the 3d2 configuration. Thus in

proceeding from Ti to Cr, these authors predict the intensity sequence

Ti v Cr

1.38 4.52 1,24

whereas our results, though showing the jump and drop, are not nearly
so drastic--especially in going from V to Cr. A similar situation
occurs in the 3p3d data. Thus our results indicate that the total 3p3d
transition rate increases rather sharply (4.06 — 5.,02) in going from

Ti to V and then decreases slightly in Cr (5.02 - 4.63); in opposition
to this, the Walters and Bhalla data predicts a progressive rise in

the total rates with all values being less than those predicted by our
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results., The source of this general disagreement in the two predic-
tions presumably lies in the different methods (Hartree-Fock in our
work, Hartree-Fock-S5later in the other) utilized to get the electron
wave functions. Once again, however, the final appeal must be made
to experiment if the discrepancies are to be actually resolved.

As cited previously, experimental intensity data for LMM transi-
tions in (Ti, V, Cr) is practically non-existent. The only such data
available at this time appears to be that obtained by Haa388 for
vanadium. This data was obtained by Auger spectroscopy and is just the
N(E) curve described in Chapter I; it is shown in Figure 9. From the
nature of this curve, it then follows that intensity measurements can
be made of the various peaks. Due to the presence of an overall back-
ground signal in the data, however, these measurements are expressed
in Table 6 as relative intensities rather than absolute, The designa-
tions A, B, C... in this table refer to the peaks resolved in the data;
they were identified, with the aid of Table 3, and the identifications

are as follows:

3
A 385 ev M1M2‘3( PO,l,Z)
1 1
B 400 ev M3M3( SO’ D2)
" 412 ev M. M (3P )
272,3" "0,1,2
1
D 432 ev M3M5( F3) {160)
E 438 ev (all other 3p3d lines)
F 472 M, M (lG )
eV 4,5 4,5 4

G 510 ev (all other 3d2 line except 1SO) .
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Table 6. Relative Intensities in Vanadium: Comparison
with Experiment

A B C D E F G
Computed 1.00 1.23 1.10 1.22 .90 1.63 .90
Experiment 1,00 1.17 1.61 2,22 2.24 2,27 1.22

N(E) [Arbitrary Units]

] I | ]
350 400 450 500 550
E(ev)

Figure 9, N(E) vs. E Curve for Vanadium



124

It is clear from Table 6 that the agreement is quite poor, especially
for the D, E, F lines. There are, of course, many possible reasons for
this disagreement other than the computations being inherently wrong.
Thus the background signal in the data is not flat and, in fact, not
even linear. As a result, the contribution to the different peaks due
to this signal will change with their energy. It is then clear that
the ratio taken in obtaining the relative intensities will not entirely
eliminate the background contribution. 1In addition to this avenue of
error, it must be recognized that the data was obtained from a solid so
that the Auger electron, as it exits the sample, can undergo energy
loss processes via plasmon creation or excitation of ap interband
transition. Although the peaks observed do not seem to have energies
consistent with these energy loss mechanisms, the fact that they exist
must be recognized. Finally, it is possible that our Auger energy
predictions are sufficiently in error that the wrong assignment (160)
has been given to the peaks observed., This would obviously give rise
to incorrect intensities, perhaps leading to discrepancies such as
those shown in the table. Other possibilities which may explain some
of the disagreements (e.g., the experimental data could be in error)
also exist but a discussion of these is not necessary at this time.

We reserve the bulk of this type of comment to Chapter IV.

In conclusion, we have determined the IMM Auger energies and
transition probabilities for (Ti, V, Cr). A comparison of these re-~
sults with the available experimental data leads to a different interpre-
tation of the observed lines than that based on Bergstrdm-Hill predic-

tions. As for the transition probabilities, the agreement with the
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single experiment performed on V is quite poor. This only serves to

emphasize, however, the need for more experimental data.

Results for Zr, Nb, Mo

The computation of LMM Auger energies and transition probabili-
ties in zirconium (Zr), niobium (Nb), and molybdenum (Mo) will now be
discussed. The general procedure is again that shown in Figure 7 but
for these elements the "exact" method is used in computing the energies.
This gives rise to only slight changes in the formalism with the primary
one arising from the labels assigned to the intermediate coupling levels,
Thus the discussion following (51) in Chapter IT demonstrated that the
structure terms which enter the energy expressions contain a spin-orbit
and an electrostatic contribution. It was further shown that the
difference of the spectator and exact approaches was, except for average
energies, solely in the spin-orbit structure terms. $Since these terms
determine the degree to which pure jj-coupling is attained (Chapter
II), it then follows that the energy levels of the spectator and exact
views will have different labels in this limit. The difference is
illustrated in Figure 10 where the schematic level diagram for the exact
view is presented. The basic configurations of this view are just

350, 353p5, 3s3d9, 3p53d9, 3p4, 3d8

as follows from (55), and these are the levels of the central field
limit in the figure. Note the difference in the label assignments {(as
compared to Figure 8) to the levels in the jj-limit as well as the

correspondence of these states with those of the intermediate region.
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Thus one has the levels arising from the 3s3p5 configuration labeled

in the IC region as

1 3 3 3
MIMZ( Pl’ PO) and M1M3( Pl’ PZ)

while the analogous levels for the 3s3p configuration in the spectator

view are denoted by

3 3

Mle(BPO, Pl) and M1M3(1Pl, P2) .

There is, therefore, a different notation used when discussing Auger
transitions computed in the intermediate coupling 1imit. It should be
emphasized that only a difference in notation is involved, with the
particular notation being dependent only on the scheme, spectator or
exact, used in computing the Auger energies.

With this difference in notation now explained, the LMM Auger
energies for (Zr, Nb, Mo) are presented in Table 7. This form of the
data is again not particularly illuminating, but it is clear that the
effect of the spin-orbit interaction has markedly increased. Thus the
splitting arising from this interaction is as high as 17 ev in the
M1M2’3(3P) level of molybdenum. This is to be compared with a 1 ev
splitting for the same levels in Cr. A similar effect is evident for
the other transition levels as well though less pronounced in those
which correspond to the 3s3d, 3p3d and 3d2 transitions. These observa-
tions then clearly indicate the necessity of utilizing the formalism of

intermediate coupling for LMM transitions in those elements whose atomic

numbers (Z) are comparable with those of (Zr, Nb, Mo)--i.e., Z = 40.
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Table 7. 1MM Auger Transition Energies in the
Intermediate Coupling Limit (electron volts)
Zr Nb Mo
Ly Lz,3 Ly Lz,a L, Lz,a
gy CSo) | 1547.8_ | 1330.1 _| 1649.6 | 1425.6_| 1735.7 ) 1504.6_
MM (PP) 1639.0 1421.4 1743.8 1519.8 1832.8 1601.7
MM, (PP,) 1622.7 1405.1 1727.4 1503.4 | 1816.4 | 1585.3
MM, (3Py) 1652.2 1434.6 1758.7 1534.7 1849.7 1618.5
MM ®Py) |_1645.3 | _1427.7 | 1751.1 | 1527.1 | 1841.3 | 1610.2
MM, ¢D,) 1786.1 | 1568.5 | 1898.1 | 1674.1 | 1994.5 | 1763.4
M M, (*Dy) 1778.2 1560.5 1890.1 1666.1 1986.4 | 1755.3
M, M (°Dg) 1788.6 | 1571.0 | 1901.0 | 1677.0 | 1997.8 | 1766.7
MiMs (°pe) | 1787.3_|_1569.6 | 1899.5 | 1675.5 | 1996.1 | 1765.0
MM, (*S;) 1696.1 1478.5 1802.9 1578.9 1893.9 1662.8
MM, (PP, ) 1717.2 1499.5 1825.8 1601.8 1918.7 1687.6
Mots (*Dy) 1712.3 1494.7 1820.8 1596.7 1913.6 1682.5
MgMa ((Pg) 1722.1 1504, 5 1831.9 1607.9 1926.2 1695.1
| Mo CPp) | 1728.8 | 1511.2 | 1839.0 | 1615.0 [ 1933.8 | 1702.7
MM, CD;) 1862.0 1644.4 1976.9 1752.8 2076.1 1845.0
MM, CP;) 1851.0 1633.4 | 1965.3 1741.3 2064.0 1832.9
MoMs (FF5) 1851.8 1634.2 1966.6 1742.6 2065.9 1834.8
MoMs ((P2) 1866.9 1649.2 1981.6 1757.6 2080.7 1849.6
MM, (PPp) 1872.4 | 1654.7 1988.4 | 1764.4 | 2089.1 1858.0
MaM, (*Dy) 1874.0 1656.3 1990.1 1766.1 2090.8 1859.7
MM, (3D, ) 1867.6 1649.9 1983.5 | 1759.5 2084.0 1852.9
MM, (3D3) 1870.6 1653.0 1986.7 1762.7 2087.3 1856.2
MM (B°F,) 1884.,1 1666.5 2000.9 1776.9 2102.2 1871.1
MM (°Fp) 1881.4 1663.7 1997.9 1773.9 2099.1 1868.0
Mg (CP,) 1872.6 1654.9 1988.8 1764.7 2089.5 1858.4
MM (°F;) | 1878.8 | 1661.1 | 1995.0 | 1771.0 | 2095.8 | 1864.7
MM, (°P,) 2014.6 1796.9 2136.6 1912.6 2243.2 2012.1
MM, 254) 2002.4 | 1784.7 2123.9 1899.9 2230.1 1999.0
MM CF,) 2020.7 | 1803.1 | 2143.1 | 1919.1 | 2250.2 | 2019.1
M. Mg (1 G ) 2013.7 1796.1 2135.9 1911.8 2242.6 2011.5
MMz (*Dy) 2017.2 1799.5 2139.5 1915.5 2246.5 2015.4
M,Mg CP,) 2015.1 1797.4 | 2137.3 1913.2 22441 2013.0
MsMs (°Fg) 2020.0 1802.4 | 2142.5 1918.5 2249.6 2018.5
MsMs CF,) 2022.8 1805.2 2145.6 1921.6 2253.0 2021.9
MsMs (*Po) 2015.1 1797.4 | 2137.3 1913.3 2244.2 2013.1
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In order to further examine our results, a comparison with
available experimental data is shown in Table 8. This data was read
directly from the "Varian Chart of Auger Energies" compiled by Strausser
and Uebbing89 and, as a result, the uncertainty of the energies is
rather large. The experimental peaks in the table are thus given with
lower and upper bounds between which the true peak energy resides. The
problem is similar to that cited in the Auger data of (Ti, V, Cr)
although it is a little more severe in the present case. Allowing for
this difficulty, however, the table illustrates that the agreement be-
tween experiment and theory is quite good with the maximum deviation

being about 25 ev in the case of the MAM (180) transition in Nb. The

A
table also demonstrates the fact that the identification of a peak with

a given intermediate coupling label is ambiguous at best. Thus it is

not clear whether the experimental peak observed with the range 1510-1540
ev is due to the M2M3(1D2) transition or to one of the M2’3M3(3P0,1,2)
lines, All that can be asserted with confidence is that it corresponds
to one of these lines--i.e., the peak arises from a 3p2 type transitiocn--
with the result being that all possible assignments are given in the
table. Similar considerations for the other experimental points also
give rise to multiple peak assignments, and from these one concludes

that the observed peaks correspond to 3s3d, 3p3d, and 3d2 transitions

as well as those of the 3p2 type. One surprising feature of these
conclusions is the lack of a peak corresponding to a 3s3p transition,
Such a peak would be expected on the basis of our considerations with

the data for (Ti, V, Cr), and the fact that it was apparently not

resolved should be checked. Indeed, only if more experiments are



Table 8. Comparison of LMM Energies with Experiment for Zr, Nb, Mo (electron volts)

Zr Nb Mo
Lz,s Calc.|B-¥* Exp. ™™ Calcj B-H* | Exp.*™ calc . B-H¥ Exp.**
1
MMy (7D2) 1495 ]1515 1510 1597 }1599 1595 1683 l1685 1675
Mo M, (3P,) 1500 o 1602 o 1688 o
3
MaM; ("Po) 1505 }1529 1540 1608 }1615 1630 1695 ]1702 1710
MM, (PPy) 1511 | By 1703 |\
M, M, (*Dy) 1561 | 1584 1i35 1666 | 1672 1525 1755 | 1758 1200
o o] (o)
MM, & (®°Dy ;,2) 1570 1607 1565 1675 | 1675 1660_ _ | 1765 | 1762 1740 _
MM, g (PP T F3) 1633 | 1650 1742 ] 1750 1834 {] 1850
1 3
MaMy,g "Dz, %P0,1) (1655 || ;470 to 1765 || 76, to 1858 || ;o4 to
My ,aM, .5 (3Pz,%D,) [1650 to 1680 1759 {| ¢ 1780 1851 {| 1880
MM (3F,) 1664 1675 1774 1775 1868 1875
MM (°Fa) 1661 [[1%%7] o 1771 |[1781 to 1865 {1874 to
MyMs (°F,) 1667_ | 1720 EELJ —|— 1823 __ 1871 1 _ | 1925 _
M M, (*Sg) 1785 | 1832) 1755-1775 | 1900 {1933 | 1860-1875 |1999 | 2033 {1960-1980

* Values obtained from equation (74) using AZ=1 for LaMM transitions and Siegbahnl6
binding energies 89
*% Data read from 'Varian Chart of Auger Energies" prepared by Strausser and Uebbing.

0€T
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performed can the responsibility for this discrepancy be traced to
features in the theory or in the data,

It should also be noted that the peak assignments listed in
Table 8, though uncertain in the respect cited above, still differ from
those given in the chart of Auger energies. This is expected since the
latter assignments were made on the basis of the Bergstrom-Hill rela-
tion, and the situation is thus similar to that encountered in the re-
sults for (Ti, V, Cr). One added feature of our results is the
identification of the M4M4(1SO) peak listed in the table, This peak
was not labeled on the chart since no Bergstrom-Hill prediction gives
results which are close to the observed values. We have, therefore,
improved on the interpretation of the observed peaks beyond that
involved in a reassignment of the peak labels, A reversal of this

situation also exists since the chart lists the peaks

Zx Nb Mo
A 1840-1880 ev 1930-1980 ev 2020-2075 ev
(l6l)
B 1920-1950 ev 2025-2060 ev 2140-2175 ev
as corresponding to L3M4’5M4’5(A) and LZMh,5M4,5(B) lines--i.e., they

2 Y -
arise from 3d” type transitions., OQur results for such transitions,

however, indicate that energies for L lines are significantly

M M
2,374,5 4,5
less that these values (compare Table 7). As a result of this, we
considered the possibility of an alternate interpretation of these peaks.
If the "A" peak in zirconium is chosen for definiteness, it is evident

from Table 7 that the most likely candidate for this energy is a 3p3d

transition which fills an ipitial 2s vacancy (i.e., an L1M2 3Mh 5
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transition). Indeed, these results, when used in conjunction with the

transition probabilities cited in Table 9, indicate that the transition
1

L1M2M5( F3) is the appropriate label for the observed peak. It is

true, of course, that other transitions may contribute but the 1F3 line
is by far the most probable, A similar view can be taken for the A"
line in Nb and Mo with the conclusions being the same. The situation
is more confused with the "B" line, however, and it is not clear how
the peak should be assigned. The most likely candidate is again an
L1M2,3M4,5 type transition which would give discrepancies as small as
25 ev in the case of Nb., This is rather large for one to be confident
of the peak assignment so that no real decision can be made. Evidently,
the situation is again such that additional experimental data is
required before the problem can be resolved.

The intermediate coupling transition probabilities for (Zr, Kb,
Mo) are given in Table 9, Except for the slight changes in notation
already mentioned, the results are similar to those obtained in Table
4, oOne point which can be made at once concerns the data for the
L1M2,3Ma,5 transitions., The table ¢learly indicates that the most
probable of these transitions is that of the L1M2M5(1F3) line, This
observation is in obvious accord with the previous remarks made con-
cerning the assignment of the "A" peaks cited in (161). Further dis-
cussion of the data listed in Table 9 is once again handicapped by the
lack of experimental data. The comparisons which can be made are,
therefore, constrained to the case of theoretical results as with the

data for (Ti, V, Cr). Such a comparison, using the total transition

2
rates computed by McGuire23 and Walters and Bhalla a, is given in
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Table 9.

IMM Auger Transition Probabilities in the Intermediate
Coupling Limit (in atomic time units)

multiply all emtries by 10727

Zr Nb Mo
Ly Iz,3 L, Lasa L, Lz,3
MM (*So) | 1.1958 | 1079 | 1.2404 1076 | 1.2629 .1073
M, Mz  Po) 4061 3837 | .4055 | .3859 | L4187 | .3972°
M Mp (PPy) 3.0938 .4028 | 3.1101 L4219 | 3.1140 4455
rgp%( P,) 2.0064 1.9112 2.0065 1.9302 2.0964 | 1.9682
MM CP1) 1.3723 1.0786 1.4043 1.0729 1.4921 1.0861
MM, (D,) L4155 0633 L4199 .0687 .4380 L0711
M, M, (*Dz) 6.9939 .0311 7.2069 .0275 7.4094 0263
M, M (°Dy) .9639 .1478 .9769 .1603 1.0229 .1661
1ot CDa) | 8076 | .1041 | .8503 | 1124 [ .9289 | L1158
MoMs (1S0) .0571 L7994 .0570 .8057 .0546 .8103
MoMa CB1) | 0. 1.3024 | O. 1.3921 | o. 1.3700
MoM; (*Dz) 1835 3.0938 L1934 3.4088 .2031 3.3303
MaMé( Pg) L0345 L6342 .0362 .6825 0389 .6975
Mok C2) | 0381 | 2.5176 | 0424 | 2.4419 | 0467 | 24871
MxM, (°Dz) .0057 L4163 .00506 4225 .00467 L4251
MaM, (1P, ) .0804 1.6181 .0833 1.6360 .0867 1.7301
MoMs (FFa) 2.8122 6.4353 2.9075 6.6324 2.9648 6.9942
MaMs (°P2) 0133 . 5068 .0137 5353 .0151 .5652
My M, (BPp) 00553 .1585 .00577 .1656 .00601 1720
MaM, (*Dy) 00285 | 1.0566 .00308 | 1.1236 .00328 | 1.1847
MéM@(aDl) 0245 .5829 .0290 6620 .0363 .7326
MgM, (°Dy) 2513 L7434 .3120 .8818 L3774 1.0326
3MS( ¥,) 00655 .00531 .00560 .00415 .00476 .00380
My Ms (°Fz) 00977 . 32470 .0101 3388 .0103 .3518
MaMs (°P,) .0158 .4518 .0168 .4789 .0181 . 5064
Mols (°Fa) ,02490 | _ .0808 [ .0237 | .oses | .0218 [ 0914
MM, (°P2) .0839 1.3691 .0919 1.5039 .1028 1.6312
MM, (*Sg) .2838 .3841 .3009 .3981 .3160 L4240
M;Mg(e 3) 0. 1.7342 0. 1.8170 0. 1.8931
MM (FGy) 3.3272 |13.6030 3.4875 | 14,409 3.6268 | 15.052
MM, (D)) .0515 1.0789 L0433 1.0518 .0360 1.0190
M4M5(3Pl) 0. .1557 | 0. .1655 | O. 1791
MM CF,) .0338 1.4448 L0432 1.5588 .0561 1.6667
MM (°F,) L0404 2.3694 .0508 2.4971 .0618 2.6335
MgMs (°Pg) 0112 .0648 L0146 .0718 .0187 .0812
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Table 10. Comparison of Transition Rates with
Theory: Zr, Nb, Mo
3s3s 3s3p 3s3d 3p3p 3p3d 3d3d
L, Transitions
Zr: McGuire 1.17 7.08 9.06 .34 3.90 10.34
Present 1.20 6.88 9.18 .313] 3.25 3.83
lz,, Transitions
Zr: W& B ,0980¢ 2.07 .383] 8.05 14.7 22.5
MeGuire .100 1.96 .40 | 8.68 14.73 24 .34
Present .108 3.78 L3461 8.35 12.38 22.20
Nb: W& B L0994 1 2,11 .3961 8.24 15.3 23.6
Present .108 3.81 .369§ 8.73 12.97 23.47
Mo: W& B .101 2.16 409 8.42 15.9 24.7
Present .107 3.90 .379] 8.69 13.79 24.6

The referenced work is that of McGuire23
(data in atomic units, multiplied by 10%]

Bhalla. 2%

and Walters and
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Table 10. The similarity of this with Table 5 for (Ti, V, Cr) is
obvious and since the data derives from identical sources, it is un-
necessary to discuss the nature of these other calculations.

We concentrate at first on the LlMM predictions of McGuire.23
It is clear that the agreement of the two approaches is much better
for Zr than was the case in Ti. Indeed, it is only in the case of the
3d2 transitions that the disagreement is extreme with our result being
smaller by a factor of about three. It is, of course, difficult to
ascertain the correctness of either prediction without experiment but,
due to the excessive approximations in McGuire's work, it is most likely
that our results are the more accurate. This view is substantiated
when the comparison of data for L2,3 transitions is considered for the
3d2 transitions. Thus the results by Walters and BhallaZA, obtained
using a technique quite similar to the Hartree-Fock approach, compare
extremely well with our results for Zr, Nb and Mo. For the Zr case,
however, it is evident that the McGuire data is larger than either of
the other predictions. This implies that the McGuire results are too
large, at least for 3d2 transitions, when L2 3MM transitions are con-

s

sidered. Since the same technique is applied to LlMM transitions as
for the L variety, it is argued that the McGuire 3d2 results are

2,3
also too large in the case of L1 transitions, This, of course, means
that the 3d2 total transition rate for Ly transitions 1s approximately
4 (i.e., our results) and not 10 as obtained by McGuire.
An examination of the Zr data for transitions other than those

of the 3d2 type indicates that McGuire's results still have a tehdency

to fluctuate when compared with the other two approaches. Thus the
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McGuire values agree quite well with those of Walters and Bhalla for
the 3s3p, 3s3d and 3p3d transitions as well as the 352 case. Agreement
with our results is found in the 352 and 3p2 while the McGuire data is
inconsistent with either, as cited above, for the 3d2 transitions. If

one now extends the examination of the I, data to include Nb and Mo,

2,3
it becomes clear that discrepancies still exist between the present
results and those of Walters and Bhalla, These are, however, approxi-
mately the same as in the data for (Ti, V, Cr) indicating that the
deviations arise from the particular approach taken., Since the primary
difference in the two schemes is in the use of the Hartree-Fock-Slater
(HFS) procedure by Walters and Bhalla as compared with the use of
Hartree-Fock in our case, we conclude that the discrepancies in the

data arise basically from the different wave functions obtained with
these different procedures. A second difference in the two schemes

which could explain some of the deviation is the computation of the Auger
energies. Thus Walters and Bhalla24 utilize essentially a Bergstrom-
Hiil approach with the binding energies used being obtained from their
HFS results. This is evidently to be compared with our computations

via the total energy approach. Since this latter procedure is the most
accurate, we would conclude that our results are indeed the most

accurate of those considered here. Once again, however, a final deci-

sion must reside in experiment and there are, unfortunately, very few

experiments which have considered IMM transitions.



137

CHAPTER IV
CONCLUSIONS AND RECOMMENDAT IONS

This work has presented the results of computations for LMM
Auger energies and transition probabilities in the elements Ti, V, Cr,
Zr, Nb, and Mo. The calculation of the energies was made by a total
energy approach wherein the total energies of the initial (singly
ionized) and final (doubly ionized) atomic states were computed. By
taking the difference of these, the Auger energy was computed at once.
The situation was complicated somewhat by the existence of multiplet
spectra which produce several energies for the same Auger transition,
Thus in order to obtzin spectra in agreement with the predictions of
the traditional two-electron Auger theory of Wentzel,3 it was necessary
to introduce two separate methods--the spectator and '"exact'--for
computing the relevant total energies. The spectator approach is
utilized for all elements with incomplete M subshells (3s, 3p, 3d) and
was therefore used in the calculations for Ti, V, and Cr. If the
elements have complete M subshells, then the "exact" method is used.
This was then the method used in Zr, Nb, and Mo. Explicit formulae for
IMM energies which are valid in either of these schemes were obtained
and presented in tabular form. These results are for the case of
intermediate coupling between the two M shell electrons.

The computation of the LMM transition probabilities was straight-

forward, once the Auger energies were obtained, with the Wentzel
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formulae being used. The primary improvement instituted in these
calculations was in the use of the Hartree-Fock formalism to compute
the relevant bound state electron wave functions of the problem, The
results were further improved by carrying out a separate Hartree-Fock
computation for each initial and final atomic state. This served to,
at least partially, take into account the "relaxation" of the electron
orbitals due to the transition, The results obtained by this procedure
were then discussed in some detail. It should be noted that, in addi-
tion to these primary data, the formulae for LMM transition probabili-
ties as well as the pertinent intermediate coupling mixing coefficients
were also obtained (Appendices C and D).

In the discussion of the results obtained by the above proce-
dure, the most significant feature was the lack of experimental data
for all of the elements treated. Due to this deficiency, it was not
possible to properly analyze the theoretical results and, therefore,
the appraisal of the theory was necessarily incomplete. 71t was found
that the energy calculations gave results which differed significantly
from the traditional Bergstrom-Hill predictions for the IMM transi-
tions., As a result, the interpretation of the experimental data was
different from that presented in the original reports of the data.
Peaks originally identified, for example, as arising from a 3s~ type
transition in (Ti, V, Cr) were reinterpreted by our results as arising
from a 3s3p type transition. In addition to this reassessment of data,
a resolved but previously unlabeled peak in Zr, Nb and Mo was inter-
preted by our data as arising from a 3d2 type tramsition. All of this

was possible by a comparison of observed and theoretical energies. The
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almost complete lack of experimental intensity data for the elements in
question prevented any similar comparison of our transition rate data.
One conclusion which is possible without this data depends only on the
basic theoretical results. Thus the small splitting of LS-coupling
levels in going to the intermediate coupling (IC) formalism demonstrated
that it is not necessary to treat LMM transitions in (Ti, V, Cr) in the
IC limit, This then allows a significant simplification in treating
such transitions in these elements., For the case of Zr, Nb, and Mo,
however, the situation is changed as the splitting of the levels in the
IC region becomes significant, This serves to demonstrate the necessity
of using intermediate coupling when treating LMM transitions in these
elements.

One additional point regarding this work should be mentioned.
It is not clear that the Wentzel two-electron formulation for the Auger
theory is correct. Indeed an alternate and more reasonable view would
have the Auger dynamics arising from the electrostatic interaction of

all electrons in the atom rather than just two as in the Wentzel treat-
ment, Since Fan061 recently presented a formalism capable of computing
the matrix elements encountered in this view, a calculation was per-
formed which treated LMM transitions in potassium in the Wentzel and
this exact view. This served to introduce different spectra in the two
schemes since the exact view includes the 4s electron in potassium when
computing the Auger multiplet structure. Unfortunately, the results

of this computation were ambiguous in the sense that it was not clear

just how the predictions of the two views should be compared. The

problem was compounded by the extremely weak coupling of the 4s electron
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with the other electrons in potassium., As a result of these problems,
we have not presented the details of our calculations in this work. It
is sufficient to note the general result that the matrix elements
encountered differ in the final results only in the angular factors;
the radial integrals Rk(ab, cd) are the same. The differences intro-
duced by these angular factors are significant, however, and a calcula-
tion should be performed for an element for which ample experimental
data is available. 1In this way, a meaningful assessment of these two
views for the Auvger dynamics can be accomplished.

In the process of carrying out the calculations summarized above,
some potential deficiencies in the procedure have been noted. Since it
is impossible to state without more experimental data that these are
real defects in the treatment, we shall confine the present comments to
those features which seem the most likely to introduce errors. We have
stated several times that relativistic effects were neglected in per-
forming this calculation. It was argued that the lack of a correct
relativistic formulation of the Auger process made the inclusion of
such effects of doubtful usefulness. But it has been reported90 that
relativistic calculations of the energy levels in Ti give rise to a
shift in the 2s binding energy of as much as 40 ev. TIf this is true,
then clearly the relativistic treatment could produce significant
changes in the predicted energies. It should be noted that the reports
of this shift have not been confirmed thus far, If the results presented
here should be in error when reliable experimental data becomes avail-
able, however, then the inclusion of relativistic effects into the

calculation should be considered. This is especially true, of course,
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for the heavier elements (Zr, Nb, Mo) since the importance of relativis-
tic effects will increase with increasing atomic number,

In addition to this neglect of relativistic phenomena, it must
be recognized that the effects of the molecular and solid state have
been totally ignored. Although a justification for this has been given,
it may be that the effects are more significant than anticipated. This
is especially true for the case of the plasmon interaction and the
interband transition. An Auger electron can lose energy by these pro-
cesses and thereby be displaced from the correct energy by a corres-
ponding amount. This would then evidently lead to difficulties in
interpreting observed spectra solely with the aid of Auger energies.

In a similar fashion, the work function of a solid can effect the ob-
served peak energies. It may therefore be necessary to make this
adjustment in the observed energies.

As discussed in Chapter I, this calculation ignores the effect
of configuration interaction (CI) in treating the LMM transitions. This
was done despite the apparent success in the use of CI by Asaad in
treating KLL transitions, It was pointed out by Siegbahn,]'6 however,
that this success was probably fortuitous being due to the use of
inaccurate binding energies in Asaad's computations. On the basis of
this result, we felt that inclusion of CI was not justified at this
time., Subsequent results may, of course, alter this situation so that
one should be aware of the possible import of configuration interaction
when treating Auger transitions. A final possible improvement in the
present computations is in the treatment of the continuum electron wave

function. Thus we have noted in Chapter III that this function was
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determined by assuming the electron to move in a Hermann-skillman76
central potential and then numerically solving Schrodinger's equation
with this potential., A better treatment would utilize the Hartree-
Fock potential for the problem. Such a treatment will inevitably
introduce complications since this potential changes for each electron
in the atom. But the new treatment may also introduce significant
deviations in the continuum function characteristics. 1If this should
be the case, then the predicted Auger transition probabilities will be
altered as well since these quantities are extremely sensitive to the
wave function character.

Now throughout this work, it has repeatedly been emphasized
that there is a great need for more experimental data on IMM Auger
transitions, Indeed, it is hoped that the present effort will stimu-
late the production of such data. If this is to be the case, there
are two basic experimental techniques which will be utilized--the ESCA
technique developed by Siegbahn16 and the technique of Auger Electron
Spectroscopy (AES). The latter method was discussed in some detail in
Chapter I and is the one of primary interest here since results of AES
were responsible for inspiring the present calculations., In this regard,
we recall that the technique is, thus far, limited to an investigation
of materials through the Auger energies with intensity information
being lost, This arises due to the small inherent intensity of the
Auger peaks relative to the other signals which appear in Auger
spectroscopy and to the presence of an overall background signal. In
order to identify the presence of the Auger peaks, it is then nécessary

that one obtain the derivative of the intensity curve (the N(E) curve
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of Chapter I) and thereby destroy the meaningful intensity data. One
possibility for regaining this data exists, however, and perhaps the
technique can be perfected in the near future. Thus we note that the
derivative curve is such that it effectively removes the background
signal since this signal is almost linear over a broad range of energy.
If one were to integrate this curve, it then follows that the back-
ground contribution will be largely removed and, as a result, the Auger
peaks will appear more clearly. This would then enable a direct
measurement of the peak intensities thereby providing a second tool in
the analysis of Auger spectra. It would obviously also provide an
experimental method with which the theoretical predictions, such as
those produced here, could be compared. An improvement such as this
would thus improve considerably the utility of the method of Auger
Electron Spectroscopy.

In summary, it is hoped that the results of this work will stimu-
late further theoretical calculations as well as more experimental
effort in the measurement of Auger energies and intensities. If the
results should also play a part in inspiring the development of im-
provements in the AES techniques, then the present effort will have been

extremely rewarding.
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APPENDIX A
ANGULAR MOMENTUM PROPERTIES OF SOLUTIONS TO THE SCHRODINGER EQUATION

The purpose of this appendix is to indicate the nature of the
angular momentum dependences in the solutions of Schrbddinger's equa-
tion for an atomic system. Since this problem has been exhaustively

65

; 63- .
discussed, we shall be content with a presentation of the basic

results, To proceed, we introduce the atomic Hamiltonian to be used

here; it is (in MKS units)

N N
ol 2 2 - 2
' % 2 kZe ) L ke ‘

= - - + == : -
3=1 ’ ig M=l
where
1
k = .
4ﬂ€o

The various terms in this expression are identified by

2

}; ij ~ kinetic energy of jth electron,
2 .
- kZe mutual electrostatic interaction (A-2)
T, energy of jth electron with nucleus

] of charge + Ze,
ke2 mutual electrostatic interaction
r energy of electrons i and j,
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and

(SO)j ~ spin-orbit energy of jth electron,

To facilitate computations, it is somewhat simpler to use atomic units;

we therefore introduce

energy units ~ 1 Rydberg = k m; = 13.6 ev
2h
(A-3)
ﬁz
and length units ~ 1 Bohr radius = .
2
kme
In terms of these units, one obtains
) 2 2Z 2 \ 2
H= §J -V, - 7= +t o (X)L, +s5,) + — A-4
SRS ML TR A (a-4)
] i<j

where X, gives the displacement of the jth electron in Bohr radii so

]

that

The traditional form of the spin-orbit interaction energy has been

inserted into this expression with the operator

being the significant feature of the interaction. It is, of course,

clear that the quantities (4,, s,) are the orbital and spin angular

=3’ =3

momenta of the jth electron., As regards the quantities ¢ and §(Xj),
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these are the fine structure constant and the spin-orbit parameter
respectively.

Now Schrodinger's equation is given by

HY = EY (A-5)

where E is in Rydbergs if (A-4) is used for the Hamiltonian. The

angular momentum properties of V¥ can be examined most easily by con-
sidering the commutative properties of H with respect to the angular
momentum operators of the system. Thus if one finds that H commutes

with the operator L so that

[H,L]=HL -1LH =0,

then it follows that the solutions to (A-53) can be written as simul-
taneous eigenstates of the operators H and L. 1In the form of an

equation, this means that

HY = EY
L),y = my

2
LY = L(L+L)Y

are satisfied simultaneocusly. Waturally if H does not commute with L,
then one cannot obtain such states for H and L. Now in order to carry
out this type of commutative operator study, it is convenient in the

present case to write H as



148

H = Hl + Hz + H3
where
- V(.o 2, 22
By L(VJ X, /
j h|
H, = ; 2§ X)L, s A-6
27 Lo®PYy Ty 4-0)
j
=N 2
Hy = /X
i<j i}

which evidently is just a separation of the spin-orbit and mutual elec-
tron electrostatic comtributions to the total energy.

Viewed from the standpoint of perturbation theory, there are four
distinct cases which can be obtained from the total H given in (A-6).
Each of these gives rise to different angular momenta characterizing

the solutions of (A-5) and are, therefore, discussed below.

CASE I: H = H, ; Hl >> H,,H

1 2773

The commutation properties for this Hamiltonlan are

2 = = 2 = = -
(H,2,7) = [8,4p 0 = [,5,71 = [H,(8,) 1= 0 (A-7)
where 4 2 . L. 4, and s 2 . s, * s,. This then means that the eigen-
=] it I ! et A
states ¢1 in
Bivy = B
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are characterized by the quantum numbers {(eigenvalues) of the operators
2 2
(ij }, (ij)z, (gj )} and (gj)z. Further, we note that H, is just a sum

of hydrogenic Hamiltonians h, so that

3

One then has immediately that (neglecting antisymmetry of ¢1)

Vi = PPy By

(A-8)

<]
L]

1 Gl + €2 + ... t €

where
h,p, =
%57 4%

11

is used, But the properties of the qa are well-known to be such that
.20, = 4.4, +1)
IS TS Al RS

Lp,95 = ™%

(A-9)

|w
[

5

]

sj(sj-+ 1)qﬁ

(ﬁj)zwj A

5

so that ¢1 is indeed an eigenstate of the operators used in (A-9) as

stated above. For future use, we will indicate these qﬁ by the ket
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Py = lntm, ) (A-10)

where (4L, m ps) is the marker that the relations (A-9) are satisfied.

{!
Evidently the "j" subscript includes all of the quantum numbers indi-

cated in (A-10). We note for completeness that the "n' label in (A-10)

is the principal quantum number of hydrogenic (or central-field) theory.

CASE II: H = Hl + H3 ; Hl’ H3 >> H2

The commutation properties are here given in terms of the total
orbital (L) and spin (8) angular momenta of the system. These are

defined by

-1 =2
]
- (A-11)
8§ = 5 + s, + ... + 5T L Ej
]
and the commutative properties are
2 2
(H,L°] = [H,(L)Z] = [H,87]) = [H,(ﬁ)z] = 0. (A-12)

It should be noted that the basic change from the commutators listed

under Case I is the fact that one now has
[H,(gj)zj # 0 and [H,(gj)z] £0 . (A-13)

Hence the numbers (m{, us) are no longer meaningful in specifying the
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state of the system. Instead only their sum is conserved as evidenced
by the results (A-12) and the definitions in (A-11).

Now the Schrodinger equation for the system is

2
Ly, = L@+l)y,
2
4, = S(stl)y,
(A=14)
@)y, = M,
©) 4 = Wiy
we incorporate these symbolically by writing
b, = lyisMM) . (A-15)

Here the quantity v includes all additional necessary quantum numbers,
such as the principal wvalues (nl,nz, «++) and the individual orbital

and spin momenta (4 ) which couple to give L and §. These functions

572

can be expressed in terms of the hydrogenic functions of Case I but,
for more than two electrons, the dependence becomes rather involved.

For two electrons, it is relatively simple with the result being

IVLSM Mgy, = Cymydymy |1 ) Coy by s 5, SM)
m.m
1™ \
by by (a-16)
|ny2myug )y Ingomyuydy -
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The quantities (L1m1%2m2|LML) are Clebsch-Gordan coefficients while

the (1,2) subscripts in ]yLSMLMS>12 denote the electron co-ordinate

label. We note that this expansion is such that
2
4y " vLSM M), = Ll(%1+1)|yLSMLMS>12

and s 2 This follows from the fact

with similar results for ézz, S 5

=1
that these operators still commute with H and are, therefore, good
quantum numbers. A better notation for the LS-coupled (or Russell-

Saunders66) functions would then include these quantum numbers explicitly

as
|v(~t1{2)L(sls2) s MLMS>12 (A-17)

rather than the form of (A-16). This notation has the advantage of

indicating the order of the coupling of 4. and %2 to give the resultant

1
1759 coupling to S. 1In addition, the form (A-17)

is such that one can immediately identify the quantum numbers corre-

L and similarly for s

sponding to electron "1" and electron "2." Thus the first listed
numbers (&l,sl) are assumed to correspond to electron "1" with (Lz,sz)

being associated with electron "2.,"

Case III: H = Hl + H2 + H3 H

The commutative properties are now such that H commutes only with

the total angular momentum (J) of the system where

[
(]
I
+
1]

(A-18)
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with the relevant commutators being

[H,gzl = [H,(g)z] =0 . (A-19)

These relations also held for the Hamiltonians of Cases I, II, and IV
but the states are all degenerate in the J values for these cases,
Hence there is no need in utilizing it to specify a particular state
for such systems, It is necessary in the present case, however, and

one has that the solutions ¢3 of

can be written as (v not the same as in (4-15))

by = v

where

gzlyJM> = J(J+1) |yam)

(A-20)
@, [y = M[ya) .

Now it is possible to write these states as linear combinations of 1LS-
coupled functions in analogy with the expansion of (A-16); the results

are the intermediate coupling functions. In order to cbtain these, we

recall that the states of (A-16) and (A-17) are eigenstates of the
operators of (A-14). But for the present case, it would be more con-
venient to use functions which are eigenstates of Lz, §2, and (i)z.

Such functions are easily obtained from those of (A-16) since from (A-18),
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M= M M

so that

| vLsam) = z (LMLSMSIJM>|yLSMLMS> . (A-21)

oM

This relation follows when the properties of Clebsch-Gordan coefficients
{sometimes termed vector addition coefficients) are combined with the
definition (A-18).

To proceed further, we note that the operators Hl’H3 of the

Hamiltonian are both diagonal in the L,S quantum numbers, i.e.,

po s B

'yaL 107585 %' m (4-22)

(vL's'I'M |H, [visam) = &,
] Y
where j = 1,3. The spin-orbit term (H2) does not satisfy this relation,
however, and instead one finds a matrix element which links different
L,S states (a precise expression is given in (A-31) for two electrons).
it is this term, therefore, which causes the breakdown of LS-coupling
and necessitates the use of the intermediate coupling formalism. Due
to this term, all (L,S) states which couple to give the same J are
mixed to form the '"true" states characterized by this J. This mixture
enters as a sum over all the L,S pairs which can couple to give the

particular J value and one has the result

lvam)y = Z N (s |vLsaM) . (A-23)
L,S ‘
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To illustrate this relation, consider the case of a 3p2 configuration.

Then the possible multiplet states are

Po,1,2

so that the intermediate coupling J = 2 states are obtained by a mixing

3

of the (1D2 and P2) pure [S8-states. The result

lvaeDam = ¢ oy ly(opm + ¥ CeplvCepm @-24)

/

is thereby obtained from (A-23). We note that the coefficients CN (LSJ)
are termed the mixing coefficients. They are computed by solving a
secular equation (consult Chapter II and Appendix D} with the N’
variable indicating the coefficients which correspond to a particular
solution of this equation (Appendix D presents detailed results for the

mixing coefficients encountered in IMM transitions).

CASE 1V: H=H, +H

1 9 3 Hl’ H, >> H

2 3

This case corresponds to the total spin-orbit energy being
larger than the contribution of the mutual electron interaction energy.
This Hamiltonian is, therefore, only approximately correct even for the
very heavy elements, but it is still a useful case to consider. One
could proceed by again noting that H commutes with the total angular
momentum J and the z-component of this operator, but this is uninter-
esting here since all states are degenerate in these quantum numbers,

Instead the operators of interest correspond to the individual total
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angular momenta of each electron (ik) which are formed from the

coupling

=4 +5s , (A-25)

and from this one has
I=d v, et 1.
The commutation relations are then
1,3, 0 = T, (3,3 =0 (4~26)
= =k’ z

so that the solutions ¢4 of

Hy, = E

are such that
0, = 3 (3 41D
I vy h Gt Dy,

(a-27)
Ul by = ™Y,

These jj-coupled functions are usually denoted by (for two electrons)
ly]iszM) .

As might be expected, it is possible to write these states in terms of

the hydrogenic functions of Case I. To accomplish this, note that in
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analogy with (A-21) one has

|ntjm) = ia(&mLspljm)lanLu>
m, b
from which it follows that
.
Vi3 =/ Gymydpmy [ eyt 5wy Y lng2y3,m,) (A-28)

MMy

is the expanded jj-coupling function.
It is sometimes necessary to work in both the [§- and jj-limits

so that a knowledge of the recoupling coefficient connecting the states

of these two limits is desirable. Thus we have--for two electrons--the

result

|n 4 0,0,L80M) = [(4;2,)L(s;5,)S,IM) =

S A5 )3, (ys ) 3,0 M| (4 4,)L(s,s,)8, ID* (4~29)
i dy

| (415903, (480 3y, IMD
with the recoupling coefficient being

((Ay59)37 Ay8,) 3, JM|(L1&2)L(5152)5,Jm> .

The reason for calling this a recoupling coefficient is obvious since

the change in the two states is in the different coupling order of the
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3

6
individual angular momenta., It may be shown that this coefficient

is given by

(414,50

V23 + D 21D QL+ 1) (25 +1) 5,88 (A-30)

where { } is the Wigner 9-j symbol.64

By using this result, it is then straightforward to evaluate the matrix
element of the spin-orbit energy (HZ) in the LS-coupling scheme, This
is true since H, is diagonal in the jj-coupling limit. The result of

such a computation is just

2

w's’ | E; E L s lLsam) =
L

k=1 k

Llsljl £1£2L

r

- (23, +1)(23,+1) -
5\ [ 1 2 v, s

L 2
513,

% .
s LS E 4ys,0,0 (58,
v's’g 1 V31dpd

(A-31)

= [\\_‘,/'ﬁ

€ : s 3
m Ly [Jk(Jk4-l) -4 (D) - 42
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where the notation [L:]15 = JZIUF¥ T is used, The mixing of the
different LS~states is well-illustrated here in accordance with

previous remarks,
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APPENDIX B
EVALUATION OF AVERAGE AND STRUCTURE TERM ENERGIES

In this appendix the general formula for computing the average
energy of any electron configuration is given. The definition of the
average energy is that given by Slater63 and therefore does not include
the contribution from a spin-orbit interaction., Instead only the
contribution of the kinetic energy and electron-electron interaction
energies are considered. Using the notation introduced in Appendix A,
this means that only those terms which arise from matrix elements of
the H1 and H3 operators are considered.

The wave functions used in these matrix elements are of the

hydrogenic or central field type defined in (A-10). As a result, the

H1 contribution to the average energy is in terms of the quantities

e . 2
o RSV
I(nt) JOPnL(r)[ oy MG 2 P, (x) dr (B-1)

P (D)
where —2%;—— is the radial portion of the wave function. Similarly,

the H3 contribution is in terms of the radial integrals

k rm P 2r<k
R (ab,cd) =|% Jo ;_E;T Pa(rl)Pb(rz)Pc(rl)Pd(rz)drldr2 (B-2)
>

where Pa(r) corresponds to Pn 1 (r) in analogy with the functions of
a'a
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(B-1). WNote that (r , r ) are defined by the relations
<

<)

r
. >t [ < (B-3)
17T
T =r r =T

> 1 > 2

so that (B-2) can, if desired, be written as the sum of two integrals,
This definition for Rk(ab,cd) is valid for Rydberg units as is assumed
here for H1 and H3. Finally, it is frequently true that one has the

cases

(a=c¢ and b =4d) or (a=d and b = ¢)

in the definition (B-2). In these cases it is conventional to introduce

the notation

F¥(ab)

R (ab, ab)

and (B-4)

Gk(ab) Rk(ab, ba) .

In terms of these quantities, we now write down the average

energy for the configuration

15225 22p%35%3p™30% 52 (B-5)

which enables the calculation of the average energy of any 3d transi-
tion metal., To extend to elements of atomic number such that the 4s
shell is not filled, it is only necessary to treat all 4s contributions

as zero; a similar statement holds for the other orbitals. With
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these preliminary remarks, the average energy of (B-5) is

- -2 =2 -2
Eapg = o FiL(nyty) + EQs®) + E(2s%) + 15E(2p°)
j

+ EL%:ll £(3s%) + Eﬁ§lll E(3pl) + 2 ;'1 £ (3d%)

+ E(48%) + 4E(1s2s) + 12E(ls2p) + 2kE(ls3s)

+ 2mE (1s3p) + 2nE (1s3d) + 4E(ls4s) + 12E(2s2p) (B-6)
+ 2kE(2s3s) + 2mE(2s3s) + 2nE(2s3d) + &E(2s4s)

+ 6kE(2p3s) + 6aE (2p3p) + 6nE(2p3d) + 12E(2p4s)

+ kmE (3s3p) + knE(3s3d) + 2kE(3s4s) + mnE (3p3d)

+ 2mE (3p4s) + 2nE(3d4s)

The notation in this relation is such that E(nlélnztz) is the average

energy of the two electron configuration n1L1n2£2. We list below the
results for several average energies of this type. As for the parameter
fj, this is just the number of electrons in the orbital nj{j.

It is clear that the average energy of the total configuration
(B-5) has been expressed in terms of the average interaction energies

of all possible two electron configurations which can oecur in (B-5).

The results necessary to accomplish such an expansion are obtained from
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the fact that the average energy for a configuration (nILl)p(nZ&Z)q is
given by

P, 9, _ p q
Eavg({'l LZ ) Eavg(&l )+ Eavg(£2 )+ pg Eavg(&l&2)

and (B-7)

. (Llp) - R(p-1) o (&12)

avg h 2 avg

By using these expressions on (B-5) (or for any other configuration),
an expression such as (B-6) is obtained. It then remains to compute
the average energies of the two electron configurations. This is

straightforward since one has the results

= Lropo \ L
Eavg(Mt1npty) = 3 [2F°(nydynpty) -), IR (ny4ny4,) ]
f}

and (B-8)

24 +1
2 1
Eavg((nlil) ) =

o 3 £
o [2F° (ny4y0y29) =) gul£lF (ny2n;29) ]
1 2

where

2
({2,020(2,07)
2{2-+1

g
4,

The limits on £ in the above are in integer steps as 0,1,2, ... with

the upper limit being set by the properties of the Clebsch-Gordan
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le4

If the relations (B-8) are utilized, one can obtain the

following results for the configurations which occur for s, p, and d

electrons:

E(ss')

E(sp)

E(sd)

E(pp ")

E (pd)

E(dd ")

1

1l

Fo(ss)

F° (pp) -

¥ (dd) -

Fo(ss') -

F°(sp) -

F°(sd) -

F(pp’) -

F° (pd) -

Fo(dd ) -

FZ(PP)

2

4
63 F (dd)

> (dd) -

L org.
> G (ss )

% Gl(SP)
(B-9)

Gz(sd)

10

1
= 6" (pp ")

L2,
3 iz 6 (e ")

15

3
=5 G (pd)

clpd) -

1

35

1

10

L

&, ..
35 ctedd ") .

G°(dd") - Gz(dd') -

In these relations, the "n'" label has been dropped and, where necessary,

a prime is used to indicate that different n values are to be used.

As the final point, we write down the structure term energies

which are utilized in evaluating the LMM transition energies.

The fol-

lowing results are for LS-states and are obtained from the compilation

by Slater;63

for further details this reference should be consulted.
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It is to be noted that the average energies have been removed from
the following terms--i.e., the structure terms are with respect to the

average configuration energy and are not absolute. The results are

Configuration Structure Term

sp('?) 36 (sp)
sp () - 2 6 (sp)
sd(*p) & 6 ()
sd(°D) - -11—0 6% (sd)
pz(ls) % F* (pp)
o’ (‘p) 53; F* (pp)

(B-10)
o’ Cp) - 2 Fop)
pa(’r) Z v (pd) - 6 pd) + 755 62 (pa)
pd(’p) -3 Fpa) + 15 61 (pd) - =5 € (pa)
pa(’e) 3 Fed) - 722 &)
pd('F) Z F(pd) + 15 G (pd) + 755 C (pd)
pa(') -3 P 0d) - & 6oa) + 25 & (pd)

pd('P) -3 F(pd) + & 6L (pd) + 22 62 (o)
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(cont'd) Configuration Structure Term
d2(3F) 4181 Fz(dd) + —% Fa(dd)
d2(3P) 4171 Fz(dd) - zL—Ol F"(dd)
a® ey o Fo(dd) % 7% (d4)
dz(lD) 41431 Fz(dd) + % Fl‘(dd)
dz(ls) ii? Fz(dd) + % F4(dd) .

We note that the above terms also are valid for the complementary con-~
figurations of those shown. Thus (sp5) has the same structure splitting
as (sp), (sdg), the same as (sd), and similarly for the other configu-

rations.
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APPENDIX C
INTERMEDIATE COUPLING TRANSITION PROBABILITIES

The expression obtained for the LMM transition probabilities
are presented in this appendix. The results were obtained by using
equation (106) in Chapter II so that only the interaction of the M shell
electrons are treated in intermediate coupling. In addition, note that
the density of states factor, EEE or 1, depending on the units being
used, is omitted from the following results, Any application of these
relations must thus include these factors,

The results are first given for an initial 2s vacancy with the
notation being that used for the (Ti,V,Cr) lines. If {(Zr, Nb, Mo) or a

similar element is treated, the only changes are those illustrated in

Figure 10 of Chapter III. The 2s transition probabilities are then

2
1 0 2
L MM (CS,) = [R(25E0,35%) |
0 1.1
A=R (25E1,3s3p)-—§ R {(2sEl,3p3s)
2 1
B = A+ 3 R (2sE1,3p3s)
3 1,2
L MM, (") = 2|A|
L.M.M, (OP.)
1"172' 51

1 _ %[‘CN(3P1)|2‘A|2 + |CN(1P1)12|B|2 ]
LlMlMB( Pl)
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3 50,12
LMy C7y) = Slal

C = R0(25E2,333d)-% R2 (25E2,3d3s)

D=+ 2 R%(2sE2,3d3s)

5

3. 31,12

L,MM, (D)) = 2|c|
MM, Cp.)
L,MM, Dy
21 42 1 2

C| 2 1Moy 12lel? + 1o, 1% [p]? ]

LMM. (D))

3 71012
LM Mg (TDg) = =|c|

2
LM M (3P )
1M, C % )
= 3 1V 12[r" 2580, 3 |
1
L1M3M3( SU)
LMM, (P ) = 0
MM CFy
L.M.M. (CP.)
MM CFy ,
2 N1 201 2
. = 3 1Oy |7|R"(25E2,ep%) |
L M35 ¢ D))
a = - L2 r'2sE1,3030) - 22 R (2581, 303p)

B=- ’% R1(23E1,3p3d) + ’% R2(23E1,3d3p)

1 .1
c= 7 [R"(2sE3,3p3d) +

po L
- 1

R?(2sE3,3d3p) ]

wnw

[R1(23E3,3p3d) - R2(2SE3,3d3p)]

W
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3
L1M2M4 ( F2)

L.M.M. (D
1MoM5 (DY)

wn

- 2L Crp Plol? + I ey 121812

[V

3
L MM, CP,)

3
L1M3M5 ( D2) -

3
Ly MM, (°Py)

L™ Cep 121812 + [ e P18l

n
[ [

3
L]_M3M[+ ( Dl)

1
L1M3M5 ( P1 )

3
L \MMs (CFy)

k) 2 2 2
[N F3)l |D|2 + |CN(1F3)| lc| ]

o] L]

3 =
L MM, (UDy) =

1
L MM CFy)

3 ETRY:
LM, CPy) = 58]

L, MM (3F4) = 2pp

12
17375 2

3
L.MM, ("P.) 2
1

we o ] 3 1N¢s ) [?|r% 2sk0,30%) |

1
L1M5M5 ( SO)

|
(]

3
L1M4M5 ( Pl)

3
L MM, CF,) ,
1 2 N1 2.2 2
LMM (D) [ = 5 | (D) |7|rR (25E2,3d%) |

3
L1M5M5 ( PZ)
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3 -
L MM (CF) = 0
LMM(3F)
17475" "4 6\ N1 (2.2 2.2
1 33516y | |R" (28E4,3d4) |
LMM, (G, )
175750 Z4

In the case of the transition probabilities for an initial 2p

vacancy, the L2 3 shell label is not included. It is understood,
3

however, that it is necessary when specifying the tramsition, With

this preliminary remark, the expressions for L2 3 MM transitions are
2
1 1 1 2
MlMl( SO) = 3 |R (2pEl, 3s )|
1 1 0
A, = 3 R (2pE0,3s3p) F R (2pEO0,3p3s)
B, = -% RI(2pE2,353p) + *% R (2pE2,3p3s)

3 1 2 2
MM, CBg) = 2 [[a "+ [B_|"]

M1M2(3Pl) 1 1 2 2 2
. } 3 LI Cep 2 da*+13_ 1+ Ty 12 la, [+ 18,1 ]
M1M3( Pl)
3 5 2 2
wpy Cry = 2 Cla_ |2+ Ja12]

¢, = Yo (R'(2pE1,3834) = R'(2pE1,3d39) ]

3

D, = = [R'(2pE3,383d) = Z R (2pE3,3d3s) ]

+ /5

3 1 2 2
um, Cpp) =5 Ce |+ [ 7]
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3
MM, (°D,)
1M, (D) 5 01 N3 .2 2 2. N1 .2 2 2

. 2 L Cop 1 ode_|™p_[5H+1e" ("o 1o (le, 1%+ 1p) 57
MlMS( D2)

3 7 2 2
MM (Cpy) = ¢ [fe_|”+ |p_ ]

T = rRO(2pE1,3p2) + % R (2pEL,3p%)

Uu=r1 -~ 2 R2(2pE1,3p2)

5
2 _ 9 22050y an2y 17 4 B4 g2 2.2
Is1% = {1 - 55 R%(2pE1,3pD) | + S5 IR (2pE3,3p7) |
MM, (CP)
2728 70 L ..N1 2002, (N3 12,2
s el 1 e Pl
MM, (7S )
3. . 2
MM, CP) = U
MM, (CP.)
2 2 5 ¢1.N,1 21012 N3 12,2
3 } =3 Ue"Cop [Fs|® + |c" Crp |7 |ul™ ]
1
M M, ("Dy)
0 1 2 9 3
o, =R (2pE2,3p3d) +§ R™(2pE2,3p34d) iﬁ R™(2pE2,3d3p)
+ R1 2pE2,3d3
15 R (2pE2,3d3p)
~ 1 2 1.1
By = -v2 1 5 R7(2pE0,3p3d) = 3 R (2pE0,3d3p) ]
0 1 2 1.1
'Y:I: = R (2pE2,3p3d) oy R (2pE2,3p3d)} i—s' R (2pE2,3d3p)

3 .3
¥ 55 R (2pE2,3d3p)
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R0(2pE2,3p3d) + 525 R2(2pE2,3p3d) x ?2_; R1 (2pE2,3d3p)

Ui=
1 .3
+ 577 R (2pE2,3d3p)
€. = -6/3 [= RZ(2pE4,3p3d) + — R°(2pE4,3d3p) ]
+ 35 » 49 ,

3
MZMA( Fz)—
3
B L T, 2 N1 2p. (2
1 =2 LI Crp 1o |7+ {e 1D + [ Cop |7y, |
MM (D)
N 3.2y 2 3 42,0 12 2
M3MS(3D2)— + 1N Co ) Ty 12+ [N Cep tPcla 1t + o1
3
MZMA( Pl)
3 1 N3 42, )2 2 3121 12
w, Cop) | =5 Lle Cep1cla 1™+ Je_1H+ 1M Cop %y |
1
MM () + MR 1P oy 12+ 18,15
M2M5(3F3)
3 7 N3 120, 12 2 N3 2 (2
M, D) | = g LI Cr) (fo 17 + e 1D + [ Cpp Iy |
1
1
MMg (T ) + M Cr 2o, 12+ e, 5]

3 1 2 2
M M, ( PO)] g Ll |7+ {B_[7]

3 3 2 2
MM, CF,) S Lo 17+ [e19]

[2R1(2pE1,3d2) + % R3(2pE1,3d2)]

-1
I'= 75
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T -1 1 2 9 .3 2

iy 5/21 [7R" (2pEl,3d") + - R7(2pEl, 3d ) ]

\ 1.2

) = 3\}"7' (R (2pE3,3d%) + 1—72 R (2pE3,3d°) ]
2

,{31 2 1 3 2
33 LR (2pE3,3d") + -7 R (2pE3,3d") ]

B, =
= . 3248 3 2
B, = - 21\J;_R (2pE5,3d")
1 -1 2 3.3 2
o= 5 (R (2pE1,3d7) - = R (2pEL,3d9) ]

3

_ 2 - o1 2 3.3 2
K = 770 [ -R"(2pE3,3d") + = R™(2pE3,3d Y]

m, C2y) 1
| =3 U e P+ 1M sy PIrl? )
MSMS( SO)

3 2
MM (P = ]

3
MM, CF,)

N3 42,2 N1 2.5 (2
[lc ¢ F2)1 |x]© + |c"¢ Dz)! ;]

Wl

1 -
MM (D) | =

3 N. 3 2 2
MM (CP,) + |7 ( P2)| Iml4]

3 _ 2
MM CF) = |k |

4

W~

3
MM.('F,)

475" 4 2 2
0 e Pl + 1N e Pl 12+ 18,157

]
w

1
M5M5( GZ‘)
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One closing remark regarding the use of the above expressions
is necessary. Thus the values of the mixing coefficients to be
inserted in the given relations must be matched with the line being
treated, TFor example, if one desires to compute the L2’3'M4M4 (1PO)
transition probability, then the mixing coefficients should have the
values obtained when the energy of the Auger electron corresponds to

3 <
the M4M4( PD) transition.



175

APPENDIX D

INTERMEDIATE COUPLING MIXING COEFFICIENTS

This appendix presents the formalism required to compute the
intermediate coupling mixing coefficients which are encountered in
treating IMM Auger transitions. In addition, tables are given which
list the coefficients obtained for the elements Ti, V, Cr, Zr, Nb and
Mo. To begin, recall from equation (28) of Chapter II that the secular

N

equation arises from (C, = C of Appendix C).

K
N
\." ! f - = -
/. CpLsD L’ s" m|u|Ls ) E(3)8;/ 611 = 0 (D-1)
L,S

il

where H 1s the system Hamiltonian. For the case of (N 2}, the secu-

lar equation resulting from this relation is just (30) of Chapter 1I,

i.e.,

det =0 (D-2)

where

o) = <L131JMlHlLlleM) - E(D)
oy = 0y = (LS, IM[H[L,S,10) (D-3)
o, = {L,S,M lH|L252m> - E()
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The values LlSl and LZSZ are the two (L,5) pairs which couple to give
the total angular momentum J while E{J) is the desired energy eigen-

value, Now the relation (D-2) must hold since the system of equations

which results from (D-1) is

272
(D-4)
Cla3 + Czcz4 =0
where [Cl = C(Llle) and C2 = C(LZSZJ)] and non-trivial solutions for

C;»C, are desired. We shall now examine the system {D-4) for these non-
trivial solutions,

We have at once from (D-2) that
1% T %%3

which evidently requires

% %3
¢, = -—C, = -—=¢ , (D-5)
2 02 1 a4 1
provided that Ay, @ # 0.
But the wave function ¥(J) is
so that (D-5) gives
“1
¥{(J) = Cl(®1 N @2) .
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By now demanding that ¥(J) be normalized, we obtain
<w|‘y>=1=c2(1+—>
1 2

where it is assumed that the LS-coupled states (¢1, @2) are orthonormal.

But this then gives

C, = (D-7)

or

¥(I) = —/— ’ (D-8)

where the positive sign of (D-7) has been chosen for definiteness,
These results then provide the mixing coefficients and the resulting
normalized wave functions for a given solution E(J) to the secular
equation (D-2). It is straightforward to verify that there are two
solutions included in (D-8) and that they are, in fact, orthogonal.

Thus one has from (D-3) that

= ul(E) =a ~-E

Wy = Qg = b (D-9)



Using this notation, the secular equation of (D-2) gives

(a -E)(d - E) - b =0
or

g% - (a+d)E+ (ad - b%) = 0;

this then gives immediately the result that

_ (a%d) & V(ard)? - 4(ad-b?)
1,2 2

E

It is then clear that El and E2 are related by

ElE2 = ad-b and El-I-E2 = a+d
I1f we now adopt the notation

@ (E) = ogy 5 ) (Ey) =y,

we find two solutions Yl, Yz as

o o4
1 12
®1 T o ¢2 ¢l Oy ®2
- _——Z_———- =
Yl N and YZ - 3
A
1+ (_li ) 1+ (_lZ)
% %
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(D-10)

(D-11)

(D-12)

That these are normalized is easy to check as is their orthogonality,
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Thus the latter property follows since

o, o
1+ 11 712
2
(@,)
¥y ¥,) = = — (D-13)
Jl (0’11\ J ( 12)
+ | — 1+ —=
o, / @,
where the orthonormality of ¢1, @2 is used., But one has
oy, O (o )2+(a-E y(a-E,) b2 + E.E +a2-a(E +E,)
(@)’ (,)? ) b2
o, o,
which from (D-11) gives
b2 + .ad-b2 + a2- (a+d)a - 0
b2
Thus we have the result from (D-13) that
oy le,0 = o (D-14)

In a similar fashion, the normalization of Yl, Yz can be checked.

The mixing coefficients for a (3 x3) secular equation can be
obtained in the same manner. We shall not write down the detailed
matrix elements which enter this equation but treat it symbolically as

in (D-2). Then the system of equations encountered in the (3 x3) case

has the form
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Clai + Czaz + 0303 = 0
Clﬁh + 0203 + CBQG = {0 (D-15)
C.o, +Cho, + C,ao, = 0

177 278 3“9

so that the relevant secular equation is

1

[ % ) %

det 7 og o | = 0. (D-16)
0'7 Q'S 0'9

These results clearly indicate that the equations of (D-15) are linearly
dependent so that at least one of the equaticns is redundant and can be

ignored, If, for example, one has
o' O
2 3
det[ 0,
o5 gl *

then the result may be written as

Cray + Cyag = -Gy
(D-17)
0205 + C3°B = -CIOZ
from which the results
-6y o o -G
- C,o, o o - G
C2= 1 4 6 and C3= 2 14
@G % % 3
0*5 0,6 015 0'6

are obtained immediately. These can be rewritten as
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O, Cl, = O OF o 0, = OO
2 = aaa3-ala6 C1==k1C1 and C3 ozlozs--ozza'4 Cl = k2C1 (D-18)
276 375 276 375

respectively. The value of C1 is then obtained by requiring that

Y= Ci0) + Cpy + Cy05 = C (B + KBy + kydy)

be normalized; the result is then that the mixing coefficients for the

3 x3 secular equation are

(D-19)

It is to be noted that similar results will be obtained regardless of
which equation in (D-15) is ignored, so long as the relevent (2x2)
determinant in the (3 x3) coefficient matrix is different from zero.
Finally, we have the case of the (4 x4) secular equation which
is required when treating the (J=2) states of the 3p3d transitions.

The system of equations is

+ + -+ =
Cldl Czaz C3a3 Caa4 0
C,oo. +Cov, + Cov, + C,v, = 0
175 276 377 478
(D-20)
c.oo, + Coooy . ¥ Coev,, + C, o =0

179 2710 3711 4712

C,o, . + Cotx + C.oey_ + C 0

1%13 2%14 %15 4%16 ~
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from which the secular equation is

det =0 . (D-21)

If one again ignores the last equation as in the (3 x3) case and assume

that

D=det | o o, ag £0 ,

o) 0y @ ¥ % 9
C?_:lel: -det a5 oz., og Cl; C3=k2C1= -det e o 0’8 Cl’
% %11 %o %10 % %12
D D
- (D-22)
02 0’3 C.Yl
o o o ] 1

= C = ———r——
4 7371 1’ 1 ‘, 2 ) 2
1+k1 +k2 +k3
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The wvalue of C is, of course, determined by requiring that

1’

¥ = Cyp + CyB, + Cypy + C

191 4%

be normalized.

These results then give the relevant expressions for computing
the intermediate coupling (IC) mixing coefficients which occur in
treating LMM Auger transitions. The specific values of the coefficients
obtained in this work by using these results are listed in Tables 11-
16. A few remarks regarding the use of these tables is in order. Thus

we have used the symbol
N sy

to indicate an IC mixing coefficient with the understanding that "N"
denotes the solution of the secular equation--i.e., the energy eigen-
value--used when computing the coefficients.

In order to present these coefficients in tabular form, the
(L8J) values of the IC coefficients are listed in the leftmost column
of each box in the table, TFor example, the mixed levels for a 3s3p
transition are those of the 1P1 and 3P1 states; these symbols are
accordingly listed in the leftmost column of the "3s3p" box. The "N"
value for each coefficient is denoted by the headings of each column
with 1P and 3P being appropriate for the 3s3p transition. It is per-
haps clear that these headings correspond to the possible L§-multiplets

obtainable from the configuration listed in the table. This is, of

course, not an accident as may be seen by examining one case in detail.
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For reasons of simplicity, the case chosen i1s that of the 3s3p
transition. One has that the IC wave functions and energies for this

system are given by (compare Table I and Equation (D-6))

N 1 1 N .3 3
Y= = CrpyCep + AR

and

where it is assumed that

E1 n'E+ and E2 ~E_ .

The functions ¢(1Pl), ¢(3P1) are pure LS-coupled states as defined in

Appendix A, 1In addition, the N variable has two values corresponding

to whether E, or E, is used to compute the IC coefficients. QOne could

1 2
label this variable with the values (1,2), but then it would not be

particularly clear which solution is involved. A better procedure is

possible since we have

1
{D~24)

1
E, = - G g323gg _ E(3P)
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where the final step follows from (B-10) of Appendix B. Thus it
follows that, in the 1limit of a zero spin-orbit interaction, the

1 .
energy E1 reduces to the energy for the pure P state; similarly E2
corresponds to the energy of the pure 3P state, One can, therefore,

label the energies E by the LS-state to which they cerrespend

1,2
when the spin-orbit parameter vanishes. The "N" label of CN(LSJ) can
then be denoted by these same LS-state labels, and this is done in
the tables., To illustrate the use of this notation, we can list the

results for the 3s3d and 3s3p transitions in Ti obtained from Table 11.

Thus one has

3s3p: E(P) ~ 1; cl(lpl) = .999550 cl(3pl) = .030002
ECP) ~ 2; cz(lpl) = .030005 02(3P1) = - .999550

3s3d: E(D) ~ 1; cl(lnz) = .999974 C1(3D2) - .007227
ECD) ~ 2 cz(lnz) = .007142 02(3])_,_) = - .999974

with similar results for the remaining configurations.

A final remark concerning the accuracy of the coefficlents
listed in the tables is in order. 1In all cases, the normalization of
the IC function is accurate to 7 decimal places, assuming that the LS-
states are also normalized (to 1). The IC states are also orthogonal
with the maximum deviation being a value of (.0005) for the overlap

3

integral between the 3P and “F IC functions of the 3d2 transition in

Cr.



Table 11.

3s3p p Sp
1P, .999550 .030005
®p1 030002 -,999550

3s3d 1p 3p
‘D, .999974 .007142
®D, .007227 -.999974

Titanium Intermediate Coupling Mixing Goefficents for LMM Transitions

3p° 's 5p : 'p ap
15, .996641 .081886 | 1D, .993174 .116628
3p, -.081890 ,996642 laPa .116639 -, 993176

3 1p Sp °F
1D, .921841 .386912 .022587 Is,
8P, -.387001 .922079 -.000458 | ap,
¥, -.020971 - 008306 .999745I

3p3d 3p ip 3p SF '
SP, .954685 .069842 .289178 ,008621 |
1p, .073787 -976905 -.001682 -200532 |
°D, .287925 .029353 - 956764 ﬂ029027:
°F, -.015227 .199791 ,031256 ﬂ979219=

____________________ |
| 1g 3p | ¢ 3p

.999912 013187 | 1G, .999945 .010283
-013232 .999913 | 2F, .010459 -,999947

3p | °p lp 3p

P, .998329 .044356 .037011 | ®D; .998711 .029793 .041086
3p, ~028562 .935879 - 351156 | *F, -, 028941 .999356 - 021197

®Dp, -.050232 .349519 .935585 :BFS -.041683 .019994 .998931
I

981



Table 12, Vanadium Intermediate Coupling Mixing Coefficients for LMM Transitions

3s3p lp *p
'P, .999395 .034784
°p, .034787 -.999395

3s3d 'p *D
1D, .999961 .008766
®D, .008788 -.999962

3p° ig 3p D 3p
1Sp 995621 +.093477| 1Dy .990771 .135544

°p, -.093477 995621 °p, 135543 -.990772

1

— ——

3 p 3p 3F ‘s 3p 1g 3

1 |
Dz .992212 121784 026027 1 1q 999873 015883 G, .999936 .011358

3 -
Pp -121831 992554 -.000330 1 ap _ 915913 .999874 1 3F, .011356 -.999936
98, -.025920 -.002491 999661 | !

|
3p3d 3p p D 5F | lp 3p 5p : %D if 3F
3
_Te +942755 .OBLEE7 323143 '010859: p, .997762 .054399 .038881| ®D, .998284 .034684 .047198
Dz 086383971607 000992 =.220245  'ap _ 33410 .909288 -.414811 | “Fy -.033564 999140 -,024349

a - -
Dp .321499 035012 -.945702 ~.032610 o, _ 057999 412597 .909077| °F, -.047990 .022738 .998589
3F, -.019742 .219274 034996 ﬂ974839: ;

L81




Table 13, Chromium Intermediate Coupling Mixing Coefficients for LMM Transitions

3s3p

lp °p
1P, .999202 -.039940
°P, .039942 -,999202

3s3d

3p

3d°

3p3d

1p 5p
1n. .999946 ,010365
®D, .010381 -, 999946

s °p ; D 5p
1Sy .994338 .106262 | ‘D, .987583 .157090
2Py - 106262 .994338: 3p, .157098 -,987584

————— e ——— - ———— -

I
) 3p 3 : g 3p : el 3F
1
Dy .989572 .140648 031393 lyo = yo0015 019308} 16, .999904 .013820

3p - |
Pz ~ 140618 990051 - 000766 |ap 019331 .999814 1 °F, .013856 -.999904
3F, -.031199 -.004180 .999507 ’

3p lp p 3 1 lp 3p 1p o 3p i 3F

|
3
Pz 927704 097344 359980 '013760I P, .996872 .067803 040592 | D, .992594 .041235 .055722
l - -
Dz .103982 -.964839 .003773 241370 Lap 439505 872447 - 487104 { LF, -.039659 .998789 029111
3 -
D .357564 .044224 -.932094 ~.037310 | 5y, _ 068454 .483982 .872400 | °F; 056855 026833 998022

3F, -.026488 239867 .040025 -.969618: |

881



Table 14.

3s3p

3s3d

3p

&

3p3d

lp 3p
1p, .957692 .287796
5p, -.287796 .957692

1p, .990817 .135208
%D, -.135211 ,990817

|
lg °P 'p 3p
'S .8009162.598787: 1p, .910327 .413890
P, .598776-n800908: 8P, -.413890 .910323

D °p °F | lg
1p, .551728 .703472 .448060 | 1
®p, .722576 -.671384 164449 |
3F, .416510 .233175 n878748:

So 980614

3P, .369932 .561589 .684686 .281111 :1P1
1p, -.456293 .120192 -.204264 .857701 |3P1
Dy -.375790 -.617745 .688901 .050691 :3D1
SF, -.716749 .537180 .122047 n427500I

Zirconium Intermediate Coupling Mixing Coefficients for LMM Transitions

.195946

| 3P, .195950 -.980615 | °F, -.110072 .993926

. 254722 ~.936998 n239124|
431755 , 331412 -.838876 | °F, 344580 ,184365 -.920463

g 3F

|

3

P
:1G4 993924 .110048

lp 3p cp | D lp 2f

.865277 .110456 .488985 | °D; .893291 .237050 .381912

llFa .288610 -,953843 -,083016

681



Table 15.
3s3p tp 3p
P, .949699 .313166
Sp, = 313165 .949698
1 3
3s3d D D
1p, .988445 151579
®D, -.151581 .988445
____________ '
3p° lg °p : 1p °p
1S, 785269 .619155| 1D, .904960 .425496
%Py .619155 -J85269: Sp, -.425496 .904960
________________ i_______
3d° p Sp °F g
1 |
Dy .493737 .714368 .495886 | 'S0 976476
Py 733380 -.648480 .204002 | ap
3F, .467309 .262966-.844086I
bkl s
3p3d °p D °D °F
I

Niobium Intermediate Coupling Mixing Coefficients for LMM Transitions

®P, .338501 .568980 .687526 .298303 |1,
1
ip, ~ 461817 .081982 -.212416 .857252 :SP
1
°D, - 346599 - 641744 682725 043825 | 5
1

SF, -.742975 .507647 .126785 -A17389=

.215627 -.976477 | °F,

SP lG GF

.215623 | G, .992869 .119208

| -.119211 .992869

3p 1 3F

.849327 ,122586 .513433 | 3D3 .873167 .253619 .416245
. 268257 ﬂ937934-ﬂ219816l lF3 .313312 -.946214 -, 080712
454622 324427 n829498: 3F5 .373384 .200890 -.905663

061



Table 16.

Meolybdenum Intermediate Coupling Mixing Coefficients for LMM Transitions

3s83p

3s3d

3p2

3d°

3p3d

lp
.940757
- 339082

.985582
-.169201

3p

.339082
. 940757

————— —— —— — — —

.169161
.985589

Sp

| 1p Sp

|
.770528 .637405 | ng .899843 .436212

.637406

[
.430588 .722514 .S540883 | 's,
.739970 -.625646 .246768 |
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