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Neural-Network Augmentation of Existing Linear Controllers
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A method to augment existing linear controllers with a multilayer neural network is presented. The neural
network is adapted online to ensure desired closed-loop response in the face of parametric plant uncertainty; no
off-line training is required. The benefit of this scheme is that the neural-network output is simply added to the
nominal control signal, thereby preserving the existing control architecture. Furthermore, the nominal control
signal is only modified if the desired closed-loop response is not met. This method applies to a large class of modern
and classical linear controllers. Stability guarantees are provided via Lyapunov-like analysis, and the efficacy of
this scheme is illustrated through two numerical examples.

Introduction

N EURAL-NETWORK (NN)-BASED adaptive control meth-
ods in various forms have emerged as enabling technologies

for practical control when either plant parameters or operating envi-
ronment, or both, are uncertain. A popular use of NNs for control is
in conjunction with dynamic inversion. In this setting, an adaptive
NN is used to cancel errors that arise from inexact inversion of the
plant dynamics. This approach has been investigated extensively
in the area of flight control, particularly for missile and aircraft
applications.1−3

One drawback to this approach is that unless the existing con-
trol architecture is already based on inversion, it must be replaced
with one that is. This can be undesirable if the plant already has a
controller that performs well within its operational envelope, or if
the control variable is nonminimum phase. In such a case it is more
expedient to augment the existing controller with an NN than to
replace it entirely. In this setting, the NN provides augmentation to
ensure that commands are still tracked when the existing controller
is deficient.

Kim and Lewis present an approach that augments an optimal con-
troller with an NN for application to robotic manipulators.4 Their
approach takes advantage of the structure of the dynamical equa-
tions for robots to treat the problem. A method applicable to more
general nonlinear plants is presented by McFarland and Stansberry.5

However, this work is limited to second-order systems with full rela-
tive degree. Rovithakis presents an approach applicable to nonlinear,
affine systems, and allows for nonlinear controllers.6 However, this
work only allows uncertainties in the internal systems dynamics,
that is, the control influence function (g(x)) is required to be known
exactly. Additionally, only the regulation problem is addressed.

Although none of the work in the preceding references explicitly
accounts for dynamic compensators, an approach that does so is
presented in Ref. 7. This work applies to plants that are locally
linear and allows for linear dynamic compensators. However, its
architecture does not allow for compensation in the feedback path
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and implicitly assumes that all compensator states go to zero when
command tracking is achieved.

The work presented herein extends that of Refs. 4, 5, and 7 by
expanding upon the class of existing controllers to which an NN-
based adaptive element can be added. The existing control archi-
tecture considered includes several classical and modern forms, in-
cluding multi-input/multi-output (MIMO) dynamic compensators,
to provide greater generality. Full-state feedback is required, which
is also the case in the references already cited. However, output
tracking is treated with no restrictions on relative degree. As in the
cited references, uncertainties in the plant model are assumed to
satisfy the matching condition. This restriction arises from the fact
that the developed approach does not seek to modify the control
architecture.

This paper begins by presenting the control architecture to which
an NN can be augmented. Subsequently, the details of augmenting
the control signal with an NN output and the construction of the
tracking error (to be used for NN update) is presented. The NN
architecture along with weight update rules is given next. Two nu-
merical examples to illustrate the effectiveness of the design are also
included.

Design Methodology
System Definition

This section establishes the architecture under which an NN will
be augmented to an existing closed-loop system. To begin, consider
the nonlinear dynamical system Gp , given by

ẋ(t) = f (x(t), u(t)) (1)

where x(t) ∈ R
n , u(t) ∈ R

m , and f : R
n × R

m → R
n . Additionally

let Gp0 , given by

ẋ0(t) = Ax0(t) + Bu(t) (2)

with x0 ∈ R
n , represent the linear approximation of this system used

to build the existing linear controller. Here, A and B are constant
matrices of appropriate dimensions. It is assumed that the nonlinear
system Gp in Eq. (1) can be written in terms of Gp0 as

ẋ(t) = Ax(t) + B[u(t) + �(x(t), u(t))] (3)

where �(·, ·) : R
n × R

m → R
m is a nonlinear function that rep-

resents the modeling error between Gp and Gp0 . The presence of
modeling error might be caused by plant nonlinearities and errors
that arise when the system operates away from its linearization point.
The form of Eq. (3) implicitly assumes that the modeling error is
matched, that is, �(·, ·) lies in the column space of B. Furthermore,
the full-state feedback nature of the current architecture does not
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Fig. 1 Existing control architecture.

allow uncertainty in the plant output. However, recent extensions
to output feedback that are not limited by the matching assumption
can be found in Refs. 8 and 9.

To address a large set of control applications, suppose that the
existing controller can be cast into a form consisting of two loops:
an inner loop with a dynamic compensator in the feedback path and
an outer loop with a dynamic compensator in the feedforward path,
as illustrated in Fig. 1.

Let the plant output be composed of two signals

y(t) =
[

C1

C2

]
x(t) (4)

=
[

yφ

yξ

]
(5)

where yφ ∈ R
k and yξ ∈ R

l represent the measurements provided to
the compensatorsGφ andGξ , respectively. Thus, y ∈ R

k + l represents
the total plant output. In addition, let yφ be designated the controlled
output, thus the command yc is required to be of the same dimension
as yφ . Further assume that the closed-loop system is stable and
achieves the desired response when �(·, ·) = 0.

Let the inner-loop compensator Gξ be given by

ξ̇ (t) = Aξ ξ(t) + Bξ yξ (t) (6)

uξ (t) = Cξ ξ(t) + Dξ yξ (t) (7)

where ξ(t) ∈ R
p; uξ (t) ∈ R

m ; and Aξ , Bξ , Cξ , Dξ are constant matri-
ces of appropriate dimension. Additionally, let the outer-loop com-
pensator Gφ be given by

φ̇(t) = Aφφ(t) + Bφ[yc(t) − yφ(t)] (8)

uφ(t) = Cφφ(t) + Dφ[yc(t) − yφ(t)] (9)

where φ(t) ∈ R
q ; uφ(t) ∈ R

m ; and Aφ , Bφ , Cφ , Dφ are also constant
matrices of appropriate dimension. Then the nominal control u0

can be constructed as a sum of the contributions from Gξ and Gφ ,
and the nominal controller defined as the combination of these two
compensators.

u0(t) = uξ (t) + uφ(t) (10)

Now a closed-loop description of the plant and the compensators
Gξ and Gφ can be constructed as
ξ̇ (t)

φ̇(t)

ẋ(t)


 =


 Aξ 0 Bξ C2

0 Aφ −BφC1

BCξ BCφ A + B(Dξ C2 − DφC1)





ξ(t)

φ(t)

x(t)




+


 0

Bφ

B Dφ


 yc(t) +


0

0

B


�(x(t), u(t)) (11)

yφ(t) = [0 0 C1]


ξ(t)

φ(t)

x(t)


 (12)

which can be written more compactly as

ż(t) = Âz(t) + B̂ yc(t) + B��(x(t), u(t)) (13)

yφ(t) = Cz(t) (14)

where z(t) ∈ R
n + p + q . It is assumed that Â is Hurwitz, and that

in the absence of modeling error, that is, �(·, ·) = 0, the nominal
controller provides the desired closed-loop dynamics. Furthermore,
the realization in Eqs. (13) and (14) is assumed to be minimal;
however, if it is not, one that is can be easily constructed.

Construction of Error Dynamics and Control Augmentation
To form an error signal representing the deviation of the true plant

response from that desired, a model representing the ideal closed-
loop dynamics Gm is used. Let Gm be given by

żm(t) = Âzm(t) + B̂ yc(t) (15)

ym(t) = Czm(t) (16)

where zm(t) ∈ R
n + p + q , ym ∈ R

k , and Â, B̂, C must be the same
matrices as those in Eq. (13). If both the response model and the
controller are fed the same reference signal yc, an error between the
closed-loop plant and the response model can be formed. Let this
error be defined as

e(t)
�= zm − z (17)

From this, the error dynamics can be expressed as

ė(t) = Âe(t) − B��(x(t), u(t)) (18)

Thus when the model error �(·, ·) ≡ 0, any tracking error, possi-
bly because of different initial conditions in the closed-loop plant
and response model, decays asymptotically to zero. However if the
model error is nonzero, it acts as an undesirable forcing term on the
error dynamics.

Consider, then, the following augmentation of the nominal
control,

u(t) = u0(t) − uc(t) (19)

where u0(t) is the output of the nominal controller in Eq. (10) and
uc = uad − νr represents a corrective signal that will serve to reduce
the effects of the model-error �(·, ·). It will also ensure that the
desired response is achieved under off-nominal conditions.5 Apply-
ing the augmented-control signal in Eq. (19) to the plant yields the
following closed-loop dynamics:

ż(t) = Âz(t) + B̂ yc(t) + B�[�(x(t), u(t)) − uc(t)] (20)

which allows the error dynamics in Eq. (18) to be rewritten as

ė(t) = Âe(t) + B�[uc(t) − �(x(t), u(t))] (21)

Thus, if the corrective signal uc can be constructed so that it cancels
the effect of the uncertainty �(·, ·), stability of the error dynam-
ics is guaranteed, whereby tracking of the response model is also
achieved. Augmentation of the nominal controller in this way is
illustrated in Fig. 2.
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Fig. 2 Neural-network augmented control loop.

Restrictions on the Uncertainty
The requirement for the corrective signal to cancel the uncertainty

in Eq. (21) brings up additional restrictions because, by Eq. (19),
�(·, ·) is a function of uc itself, that is, �(x, u) ≡ �(x, u0 − uc).
Thus the existence of a solution to the fixed-point problem

uc = �(x, u0 − uc) (22)

is required. A sufficient condition for the existence of a solution to
this problem is that �(·, ·) be a contraction mapping,10 that is,

∥∥∥∥ ∂�

∂uc

∥∥∥∥ < 1 (23)

(Although any norm on R
n can be used, the Euclidean norm is used

here for convenience.) An expression for �(·, ·) can be obtained by
differencing Eqs. (1) and (3) and multiplying by (BT B)−1 BT from
the left to get

� = (BT B)−1 BT [ f (x, u) − Ax − Bu] (24)

Then, the contraction mapping requirement is satisfied when

∥∥∥∥ ∂�

∂uc

∥∥∥∥ =
∥∥(BT B)−1 BT [ fu − B]

∥∥ < 1 (25)

where fu = ∂ f /∂u.
To gain further insight, consider the single-input case, and let

b ∈ R
n represent the control-input vector. This simplifies Eq. (25)

to ∥∥bT [ fu − b]
∥∥/‖b‖2 < 1 (26)

and leads to the conditions

bT fu

/‖b‖2 > 0 and bT fu

/‖b‖2 < 2 (27)

which are essentially conditions on the projection of fu onto b.
However because the control designer cannot choose fu , they can
instead be interpreted as restrictions on b. In a geometric sense, the
first of these conditions requires that θ ∈ (−π/2, π/2), where θ is
the angle between b and fu , that is, there should be no unexpected
control reversal.

The second condition places a restriction on the estimated control
power, and can be simplified to

‖b‖ > 1
2 ‖ fu‖ cos θ (28)

In the most restrictive case, when the two vectors are parallel, this
condition requires that the linearized plant not underestimate the
true control power by more than a factor of two. These conditions
are independent of the NN architecture and the type of adaptation
law employed.

Fig. 3 Multilayer neural-network structure.

Neural Network
The development of the control augmentation in the preceding

sections is sufficiently general to allow the use of any adaptive el-
ement capable of approximating the model error. However, the re-
maining development proceeds with a specific NN, the three-layer
perceptron shown in Fig. 3, to construct the corrective signal uad

online. The input-output map of the network is given in matrix form
by

uad = W T
2 σ

(
W T

1 x̄
)

(29)

where x̄ represents the NN input,σ(·) is a vector of scalar, sigmoidal
activation functions σ0(·), which represent the firing of neurons, and
W1 and W2 are the network interconnection weights. The NN input
and the interconnection matrices include elements that account for
bias signals that are a part of the network. The structure of these
matrices is not defined here, but can be found in Refs. 1 and 11. The
scalar activation function σ0(·) is given by

σ0(w) = 1/(1 + e−āw) (30)

where the constant parameter ā is known as the activation potential.
The Universal Approximation Theorem ensures that, given a suf-

ficient number of hidden-layer neurons, there exist a set of constant
weights W1 and W2 such that the network approximates the model
error to arbitrary accuracy.12 These weights need not be known and
are not required for implementation. They are introduced only to
derive a stable adaptive algorithm. During operation, the network
weights are computed online and designated Ŵ1 and Ŵ2. Ŵ1,2 are
not required to converge to their ideal values to ensure command
tracking, and in practice they generally do not converge.

To ensure that the NN weights remain bounded, the NN output is
augmented by a robustifying term. The construction of this term is
given here:

νr = Kz(‖Ẑ‖F + Z̄)(ζ/‖ζ‖)‖e‖ + Kvζ (31)

Ẑ =
[

Ŵ1 0

0 Ŵ2

]
(32)

ζ = eT P B� (33)

In Eq. (31), Kz , Kv > 0 are constant gains, ‖Ẑ‖F is the Frobenius
norm of the current Ẑ matrix, and Z̄ is an upper bound on Z (the
matrix of ideal NN weights). The term ζ can be viewed as a filtered
error, and it is what drives the update of the network. The error term
e is defined in Eq. (17), and P is the positive-definite solution to
the Lyapunov equation ÂT P + P Â + Q = 0, where Â, B� are from
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Eq. 13 and Q is a positive-definite matrix. Commonly, Q = I is
used, but Q can be selected by the designer to weight the tracking
of some of the states above others. The interconnection weights
between different layers represent the states of the network, and the
expressions defining their update are given by

˙̂W 1 = −
1

[
x̄ζ Ŵ T

2 σ̂′ + λ1|ζ |Ŵ1

]
˙̂W 2 = −
2

[
ζ
(
σ̂ − σ̂′Ŵ T

1 x̄
)
ζ + λ2|ζ |Ŵ2

]
(34)

where σ̂ is a vector of the activation functions in Eq. (30) evaluated
at Ŵ T

1 x̄ and σ̂′ = dσ̂(w)/dw is the Jacobian of σ̂. The remaining
terms are constants: 
1,2 = 
T

1,2 > 0 are the learning rates of the first
and second network layers, and λ1,2 > 0 are e-modification gains.
The adaptation law in Eq. (34) employs e-modification, which is
a commonly used technique to prevent parameter drift in adaptive
systems.13 However, a number of alternatives to e-modification are
available, such as σ -modification,13 incorporation of dead zones,14

and parameter projection.15 This now leads to the main result of this
paper.

Theorem: If the following assumptions hold—
1) The command signal yc is bounded and continuously

differentiable;
2) The matrix Â in Eq. (13) is Hurwitz;
3) The condition in Eq. (25) is met;
4) The NN input is chosen as x̄ = [zT yc ẏc νad ‖Ẑ‖ 1];
5) The bound on the ideal weights is known, ‖Z∗‖F ≤ Z̄;
6) The NN weights are updated as in Eq. (34)—

then all signals in the system comprised of Eqs. (21) and (34) remain
bounded.

Proof: See Refs. 3 and 16 for details. �

Remark: Assumption 4 requires a fixed-point iteration because
the NN output uad is also used as an input. In practice, this algebraic
loop can be broken by delaying the feedback of uad to the NN by
one step. Numerous applications have confirmed that this yields
essentially the same solution as that obtained by iterating the NN
map until a fixed-point solution is obtained. This also implies that the
NN itself possess a fixed-point solution for uad, which is guaranteed
by use of bounded NN-basis functions. A different approach that
avoids the fixed-point assumption using the mean value theorem
can be found in Refs. 17 and 18. However, it introduces a difficult-
to-verify assumption regarding a bound on the derivative of fu .

Simple Example
Plant and Controller

As a demonstration of the methodology presented herein, con-
sider the plant and controller depicted in the block diagram in Fig. 4,
with the nominal plant and controller given by

A =
[

0 1

−1 −2

]
, B =

[
0

1

]
, C1 = [

1 0
]

(35)

K = [
4 8

]
(36)

K p = 7.3, Ki = 2.2 (37)

Fig. 4 Block diagram of nominal plant and controller.

Fig. 5 Command and response with nominal control.

Fig. 6 States with nominal control.

The dynamics of the true plant is given by

[
ẋ1

ẋ2

]
=

[
x2

−x1 + 2x2 − x2
1 x2

]
+

[
0
1
2

]
u (38)

so that

�(x, u) = 4x2 − x2
1 x2 − 1

2 u (39)

The open-loop plant is unstable and exhibits a limit cycle. The nom-
inal controller is unable to stabilize the true plant, though the states
remain bounded. Figure 5 shows the command and the response of
both the true plant and the response model. A phase portrait of the
plant and corresponding reference model states is given in Fig. 6.

Reference Model and Neural Network
The reference model for the desired response is identical to the

nominal closed-loop dynamics and is given by

żm(t) = Âzm(t) + B̂ yc(t)

Â =


 0 −2.2 0

0 0 1

7.3 −16.3 −6


 , B̂ =


2.2

0

7.3


 , zm =


φ

x1

x2




(40)
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Table 1 Simple example neural-network parameters

Parameter Value


1 100

2 1000
λ 0.01
Kz 10
Kv 1
Z̄ 100
ā 1

Fig. 7 Command and response with augmented control.

Fig. 8 States with augmented control.

where x1, x2, φ ∈ R are the plant and integrator states respectively.
The output of the NN is added to the control signal as shown in
Fig. 2. The inputs to the network are the plant and controller states,
and the learning rates and associated parameters are given in Table 1.

Numerical Results
Results from a numerical simulation of the true plant with aug-

mented control are given in Figs. 7–12. These results demonstrate
that the NN aids the existing controller in stabilizing the plant and
providing the desired response. Figure 7 shows the command and
the response of both the plant and the response model, and Fig. 8
shows a phase portrait of the plant and corresponding reference
model states. The tracking errors are given in Fig. 9, where e1 is
the integrator-state error, and e2 and e3 are the position and velocity
tracking errors respectively. This figure shows that the position er-
ror is kept to 2.5% of the peak value of ym . The magnitude of these

Fig. 9 Tracking errors.

Fig. 10 Plant uncertainty.

errors can be further reduced (or relaxed) by adjusting the NN learn-
ing rates appropriately. A time history of the uncertainty �(·, ·), is
shown in Fig. 10. Figure 11 shows the nominal and adaptive control
signals along with the augmented control signal. This figure shows
that the NN output is smooth and illustrates that the magnitude of
the augmented control is on the same order as the nominal control.
Finally, Fig. 12 gives select NN weight histories to show that they
remain bounded.

Flight-Control Example
For further illustration of the application of the control method

developed herein, a flight-control example is also included. Let the
short-period dynamics of an aircraft be given by[

α̇

q̇

]
=

[
Zα/U0 1

Mα Mq

][
α

q

]
+

[
Zδ/U0

Mδ

]
δ (41)

where α, q, and δ denote angle of attack, pitch rate, and elevator
deflection, respectively. The dynamics in Eq. (41) can also be rep-
resented in transfer function form as

Gα,δ = (Zδ/U0)(s + MδU0/Zδ − Mq)

s2 − (Zα/U0 + Mq)s + Zα Mq/U0 − Mα

= kα(s + aα)

D(s)

(42)

Gq,δ = Mδ[s + (Mα Zδ − Mδ Zα)/U0 Mδ]

s2 − (Zα/U0 + Mq)s + Zα Mq/U0 − Mα

= kq(s + aq)

D(s)

(43)
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Fig. 11 Control signals.

Fig. 12 Select neural-network weights.

Because of the presence of U0 and Mδ in the numerator of Eq. (42),
the zero of the α transfer function is often much faster than its
poles. This holds true for a large class of aircraft whose control
effectors are primarily moment-producing devices, for example,
tail-controlled aircraft. Neglecting this zero simplifies Eq. (42) to
Gα,δ = kαaα/D(s) and allows a transfer function from q to α to be
constructed as

Gα,q = kαaα

kq(s + aq)
(44)

Baseline Autopilot
The baseline autopilot used in this example is an α command

system composed of two loops: an inverting inner loop and a
classical outer loop. The inner loop has an explicit model fol-
lowing form and inverts the pitch-rate transfer function Gq,δ in
Eq. (43). The details of the inverting design are not included here
for brevity, but are given in Refs. 1–3. When the aerodynamic sta-
bility and control derivatives of the aircraft are perfectly known,
the inverting controller yields closed-loop q dynamics of the form
q(s)/qc(s) = 1/(τq s + 1), where τq is a design parameter to specify
the desired closed-loop bandwidth.

The outer loop is designed through an analysis of the block
diagram in Fig. 13. Assuming perfect plant knowledge, that is,
�(·, ·) = 0, the loop gain can be written as

G(s) = K pkαaα(s + Ki )

kq s(τq s + 1)(s + aq)
(45)

Fig. 13 Example 2: control architecture.

Then selecting Ki = aq creates a pole-zero cancellation and simpli-
fies the expression for the loop gain to

G(s) = K pkαaα

kq s(τq s + 1)
(46)

from which the closed-loop transfer function can be constructed as

H(s) = K pkαaα/kqτq

s2 + (1/τq)s + (K pkαaα/kqτq)
(47)

Because this transfer function is in the standard second-order form,
the values for K p , Ki , and τq needed to provide the desired closed-
loop response are

Ki = aq , K p = kqωn/2ζkαaα, τq = 1/2ζωn (48)

This result hinges on accurate knowledge of the plant dynamics.
If the dynamics are uncertain, as is often the case, the closed-loop
dynamics will not have the expected second-order response—unless
an NN is used to accommodate the plant uncertainties.

Neural-Network Augmentation
In this example, NN augmentation is performed by treating the

inner-loop controller and the transfer function Gα,q from Eq. (44)
as the plant and the proportional–integral (PI) gain as the controller
as shown in Fig. 13. This representation allows the terms required
for the augmentation described in Eq. (20) to be specified as

Gp0 ∼




−aq
kαaα

kq
0

0
−1

τq

1

τq

1 0 0




(49)

Gφ ∼
[

0 1
K p Ki K p

]
(50)

with Gξ = 0. Finally, because the autopilot is required to track α
commands, but the plant contains some unmatched uncertainties,
the NN training error is weighted towards α error and integral of α
error to improve tracking performance. This weighting is done by
appropriately selecting the matrix Q. The values used for the design
parameters are summarized in Table 2.

Simulation Results
The evaluation of both the baseline and augmented autopilots was

performed using a nonlinear, three-degree-of-freedom (pitch-plane)
simulation of a flying-wing aircraft. The simulation uses table-look-
up aerodynamics that include compressibility effects. Second-order
actuator models with bandwidth, position, and rate limits represen-
tative of those used in unmanned combat air vehicle (UCAV) class
aircraft were also included.
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Table 2 Flight-control example neural-network parameters

Parameter Value


1 100

2 100
λ 0.001
Kz 1
Kv 2
Z̄ 10
ā 0.001
Q diag{10, 1, 0.1}

Fig. 14 Example 2: command tracking (V = 300 ft/s).

Fig. 15 Example 2: NN output (V = 300 ft/s).

For the purpose of illustration, it is assumed that the values for
the aerodynamic parameters in Eq. (41) are only known for a single
flight condition (V = 300 ft/s, alt = 5000 ft). Then the gains K p and
Ki are designed for this flight condition only, and no gain scheduling
is performed. Figure 14 gives α tracking from both the baseline and
augmented autopilots at the nominal flight condition. The signifi-
cant features of these results are that the baseline autopilot provides
reasonable closed-loop response at the design condition, and the re-
sponse from the augmented controller is nearly identical to that from
the baseline autopilot. Hence the NN is not very active at the design
condition. The latter point is also illustrated in Fig. 15, which gives
the NN output νc. No dead zones are used to achieve these results.

Next, the aircraft is flown at a speed of 600 ft/s (same alti-
tude). Figure 16 gives the response of the baseline autopilot, alone,

Fig. 16 Example 2: command tracking without NN (V = 600 ft/s).

Fig. 17 Example 2: command tracking with NN (V = 600 ft/s).

Fig. 18 Example 2: elevator deflection (V = 600 ft/s).
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Fig. 19 Example 2: NN output (V = 600 ft/s).

at this condition and shows that it does not provide satisfactory
command tracking. In fact, the vehicle departs around t = 57 s.
Note that magnitude of the command doublets is the same as
the previous test condition, but the aircraft is trimmed at a lower
α as a result of increased speed. Figure 17 shows the α track-
ing response from the augmented autopilot and shows that it is
able to maintain stability and provide good closed-loop response.
Figures 18 and 19 give the control signal and NN output for this case
and show that these signals are reasonable in magnitude and well
behaved.

Conclusions
An approach to augment existing linear controllers with a neural-

network-based adaptive element is presented. The proposed scheme
provides the benefit of adaptation to cancel errors in the plant model
and ensure command tracking with minimal changes to the exist-
ing control architecture. The plant must be affine in the control,
and plant uncertainties are required to satisfy a matching condition.
Furthermore, full-state information is required. The viability of the
method is illustrated through two examples.
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