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SUMMARY 

The purpose of this investigation was to establish the relation­

ship between footing depth and bearing capacity for a medium uniform sand. 

This purpose was accomplished by load tests of 2 inch by 12 inch footings 

at the surface and buried at k depths in sand placed at four different 

densitiesThe footings were arranged so that the base and the lateral 

surface could be loaded separately, and the magnitude of point and skin 

resistance examined separately. Checks of density and homogeneity were 

made by soundings with a small penetrometer. 

These tests show that for a footing buried in a relatively homo­

geneous mass of sand, bearing capacity increases with depth at a con­

stantly decreasing rate. Since all theories so far presented predict a 

linear increase of bearing capacity with depth,, even those which predict 

the lowest bearing capacities are unconservative after some depth. 

The resistance to penetration by a small penetrometer is from 

two to four times as great as bearing capacity (defined by some limiting 

settlement) of a footing in the same mass of sand, the difference in­

creasing with depth and with the density of the sand. 

Measured values of average skin friction seem to be fairly con­

stant for sand which is placed by the same method, regardless of density. 

Skin friction for models built by dropping the sand into place is about 

55 per cent of skin friction for models built compacting the sand by 

vibration. 
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Pulling tests for determination of skin friction indicate that 

for compacted sands, the skin friction which acts during the initial 

downward loading may "be more than twice as great as that which acts 

when the foundation is pulled upward. 

Valuable extensions of this study can be made by determination 

of the effect of the absolute size of the footing and penetrometers 

used, and separation of the effects of changes in angle of internal 

friction and changes in relative density. Also qualitative tests to 

discover the phenomenon of foundation failure would contribute greatly 

to a solution of the problem. 



1 

CHAPTER I 

INTRODUCTION 

The practical, problem of computing the bearing capacity of a real 

foundation is usually idealized as shown in Fig. la (shallow) and Fig. 

1c (deep). The shallow foundation is treated as a loaded strip at the 

surface of a semiinfinite mass. The properties of this mass are assumed 

to be completely described by the constants c, and 7 (see Appendix). 

Further it is assumed that the strength of the mass can be expressed by 

Coulomb's equation for failure; 

t = c + a tan $ 

and that the mass behaves as a rigid-plastic material. No consideration 

Is given to strain before failure, so that the problem of ultimate bear­

ing capacity is treated separately from that of settlement. 

The surface outside the loaded strip may be loaded with a sur­

charge, q_. 

Prandtl solved this problem for the special case of soil without 

weight (7 - 0 ) . The solution is of the form 

*ULT = C N c + * \ 

where N c and N are dimensionless bearing capacity factors and are func­

tions of 0 only, Terzaghi solved another special case for cohesionless 

soil (c = 0) with weight (7 4 0)• When q = 0 the solution takes the form 
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Ault '' 7 

where N is also a dimensionless factor which is a function of Gf only. 7 
Since a closed solution of the general case (c J 0, y 4 0) has 

net yet been made, it has been suggested by Terzaghi (l) and others that 

for the general case the. special cases can be added so that the solution 

takes the form 

q .. , - cN + qN + hym *ult c 1 q ^ 7 

At failure three distinct zones form under the foundation, as shown In 

Fig, lb. Zone I is a dense elastic zone which moves down with the founda­

tion^ zone II is a zone of radial shear (Prandtl zone) which moves gen­

erally horizontally, and zone III is a passive Rankine zone which moves 

up,- Prandtlss solution gave for the angle \|/, Fig. lb, + 0/2. Terzaghi 

assumed that this would be the case only for a perfectly smooth base, 

because any roughness would make it possible for the major principal, 

stress, a to be non-vertical, thus reducing the extent of the elastic 

wedge and the shear zones and reducing the bearing capacity. 

De Beer and Vei-lc (2) have shown by model tests at the surface that: 

(1) the phenomenon is as theory predicts for dense sands (R^ > 0067)9 

(2) the angle \|r is always greater than or equal to k-5 + 0/2, and (3.) this 

theory gives values of which show close agreement with the experimental., 

as determined by tests on model footings which varied in width up to 3"« 

The problem of determination of the ultimate bearing capacity of 

a. deep foundation is usually separated into two parts: determination of 



point resistance and lateral or skin resistance. The total "bearing capac­

ity., Q̂ ., is usually expressed as 

Q t = % + % 

where Q, = iDoint resistance and Q = skin resistance, p s 
Skin resistance is usually rationally computed. Some average skin 

resistance q is computed so that 

Q = q A s s s 

In the general case of deep foundations In materials with "both cohesion 

and internal friction, q g is composed of an adhesion term and a friction 

term. 

q = mc + kj D K tan 6 s . *- s 

where m is a dimensionless constant less than or equal to one; expressed 

as a ratio,, m - adhesion/cohesion. The above formula assumes that the 

adhesion term is constant over the lateral surface and that the friction 

term varies linearly with vertical pressure. The tangent of the skin 

friction angle, 6, is usually assumed to be some constant, a, times tan­

gent 0\ The value of OL depends on the roughness of the lateral surface 

of the foundation and is always less than or equal to one. 

We may now express the unit skin resistance as 

<1Q = iy D K g a tan 0 

for foundations in cohesionless materials. Although Q may be a large 
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part of Q in the case of a deep foundation in a cohesive material, it is 

usually only 10 per cent to 20 per cent of for deep foundations in 

cohesionless materials. That Q is small in the ordinary case may be seen 
5 

from the values of q^ and q g given in Tables 5 and 6, respectively. Be­

cause it is small it is usually of only secondary importance, and the 

problem of determining point resistance is the main one in materials with 

no cohesion. 

The ultimate point load, Q , can be expressed by 
1? 

% - A
P 

where is the average ultimate pressure which may develop on the point, 

The results of most theories which have been advanced can be expressed in 

the form 

a ^ = cN + 7 D N + hy BN Tilt c q 7 

N y N , and N are dimensionless factors and are all of the same order of 

magnitude. Because B is small compared to D for deep foundations, the 

term \y BN^ is usually neglected and is given by 

V T = c N c + •> D \ 

Coulomb's equation for the failure envelope 

t = c + a tan 0 

may also be written 

t = (c cot 0 + o) tan 0 
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may "be derived from "by use of this fact, and is found to be 

N = (N - l) cot 0. Thus the determination of K is the only problem, c q q. 
The bearing capacity theory for shallow foundations may be used 

directly for deep foundations if it is assumed that the soil above the 

level of the base acts only as a surcharge, q = 7D. This method does 

net take into account any of the properties of that part of the mass 

above the base except the weight. 

There are several theories which attempt to take into account the 

strength of the soil around the foundation as well as below its base (3)» 

These theories usually assume some general shape for a figure of rupture 

and then determine the position and size for this figure which makes the 

ultimate pressure a minimum. Fig. Id shows two such rupture figures. 

One theory which has been advanced is different from the others in 

that it assumes no rupture figure, but instead that the ultimate pressure 

is the same as that required to expand a sphere inside the material with 

its center at the same level as the base of the foundation. This is an 

extension to materials with internal friction of a theory by Bishop, Hill 

and Mott (k) concerning the resistance to punching metals. This approach 

in its original form was used for determination of bearing capacity of 

deep foundations in frictionless materials and gave results which agree 

with experiments as well as other theories. 

The theories so far presented differ somewhat in assumptions and 
values of N . They give values of N which vary from 50 to 150 for 0. q 
0 - 3 0 ° and from 190 to 1000 for 0 = 40°. They all give a constant value 

of N , at least after some minimum depth (enough to contain the full 

rupture figure). That is to say, they all predict a linear increase of 

bearing capacity with depth for depths over some minimum value. 
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The purpose of this investigation was to establish the relation­

ship between footing depth and bearing capacity for a medium uniform 

sando This was accomplished by load tests of model, footings buried at 

various depths in sand placed at different densitiesc 

The soil, mechanics literature contains a great number of reports 

of load tests performed in the field on full scale piles» Although load 

tests at the site may be the single most valuable aid to design of a pile 

foundation, such tests contribute little toward formulation of a theory 

of bearing capacity„ Two things usually seriously reduce the value of 

field tests for comparison with theory: (l) when load tests are made, 

they are not often preceded by extensive subsoil investigation, and (2) 

foundations which are load-tested are usually driven piles; they present 

complex conditions and must be considered under more complicated theories, 

Load tests of deep foundations under controlled, well known condi­

tions are relatively few. Valuable contributions have recently been made 

for cohesive soils (5) and for sands (6) also, Many questions, both 

quantitative and qualitative, about the actual physical behavior of deep 

foundations still remain unanswered. 

Load tests under refined conditions which approach the theoretical 

conditions serve both as a quantitative check on the practical results of 

existing theories and may provide clues to development of new theories, 
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CHAPTER II 

EQUIPMENT AND PROCEDURE 

Construction of Models 

As used here, model means both the footing which was buried 

and the sand in which it was buried. Construction consists of placing 

both the sand and the footing. In building these models, every effort 

was made to keep them as homogeneous as possible with respect to density. 

The technique used to achieve this homogeneity was to drop the sand into 

place from a definite height. For any given set of equipment an empiri­

cal relationship may be established between height of free fall of the 

sand and the density corresponding. 

Equipment 

In order to use this technique the following equipment is necessary: 

(1) a dry sand, (2) a box in which to deposit the sand, (3) a device (de­

scribed here as a funnel) from which the sand can be discharged, with 

zero initial velocity, in a uniform pattern over the desired area, (h) an 

elevated reservoir of sand from which the funnel can be supplied, (5) a 

means of adjusting the height of fall of the sand. 

The box in which the models were constructed was steel, 50 inches 

square, JO inches deep, see Fig. 2. One side of the box had two doors, 

one above the other, to facilitate emptying. The funnels used were de­

veloped by trial and error. Those eventually used were 6 inches wide, 

and 13 inches and 23 inches in length. From rectangular bottoms of the 
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c. FOOTING 

Figure 2. Sketches of Equipment. 



10 

dimensions given they tapered up, pyramid-like, for 12 inches to 2-J- inch 

rubber hoses. These hoses were nine feet long and connected to a 55 gal­

lon drum at their upper end. At mid-height each had a valve for regulating 

the flow of sand to the funnels. The bottom of the funnels was a piece 

of perforated hardboard, with 3/l6 inch diameter holes on \ inch square 

centers. This pattern gives 11 per cent open area. To keep the surface 

smooth for the intermediate heights of fall, the rate of flow was decreased 

by closing half of the holes (every other line) with masking tape. The 

full open area was used for the \ inch height of fall and for placing the 

sand prior to vibration to achieve the most dense state in order to save 

time. 

Calibration.--Before any models were built, the relationship of height of 

fall and resulting density was established. The result of this calibra­

tion is shown in Fig. 3« A shallow box (12" deep) of approximately half 

the area (24" by 48") of the box in which the models were constructed was 

used for this calibration. This box was placed on a 1600 lb. capacity 

scale and filled using the same procedure used in building the models. 

In the first trials the box was not filled completely. This procedure 

gave a greater scattering of the points attained than filling the box 

completely, because of the difficulty of estimating the volume which had 

been filled. The calibration was completed by overfilling the box and 

cutting the surface of the sand level with the top. A box of this size 

was used in order to approximate the conditions under which the models 

were built. The curve shown in Fig. 3 applies only when there is rela­

tively free flow of air around and through the falling sand. The density 



Figure 3* Density of Sand as a Function of Height of Fall. 
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achieved is a direct function (empirically a log function) of the energy 

expended in compaction. Compactive effort increases, however, only so 

long as the velocity and thus the kinetic energy increases with height 

of fall. There is a terminal velocity of sand falling freely through 

air, and this velocity is decreased very appreciably by restriction of 

air flow around the falling sand. Some observations, by the author, in 

forming triaxial samples by the same method indicate that when air flow 

is severely restricted the maximum density obtainable at any height of 

fall is of the order = O .3 . 

Similarly, checks were made in the laboratory of the effectiveness 
( 

of vibration before any models were built by this method. The variables 

are many: vibrator power, vibrator frequency, plate thickness, time of 

vibration, additional surcharge, layer thickness and density before vibra­

tion. Although this is an extremely complicated problem, most of these 

factors were set arbitrarily and only layer thickness and time of vibra­

tion varied until a convenient method was found which yielded a high de­

gree of compaction, = 0.9- The sand was deposited in a four inch 

layer, with no adjustment of height, from an average height of 30". The 

sand was subjected to vibration at its surface for three minutes. Two 

electric vibrators were used; input power 275 watts each, frequency 36OO 

cycles per minute. Although amplitude is variable on these vibrators, 

maximum amplitude, about l/32 inch, was used at all times in order to have 

maximum acceleration (7)* The vibrators were attached at the centers of 

two J- inch steel plates 2k inches by kQ inches. 
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Method of Construction 

The filling procedure was as follows. For \ inch (average) height 

of fall: the barrel, with hoses attached to its under side was lifted 

into position over the box and its height adjusted so that the funnels 

hung one inch from the surface of the sand already deposited. The six 

inch by 13 inch funnel was held in one corner of the box and the valve 

opened, allowing sand to run into the funnel, and from the funnel into 

the box. This position was held until sand had filled up to the bottom 

of the funnel, stopped flow from the funnel, and the funnel and hose 

above it were full of sand- Then the valve was closed, and the funnel 

moved slowly along the side of the box perpendicular to the long side of 

the funnel, allowing sand to fill the entire one inch before the funnel 

was moved on. In this way two strips of sand 13 inches wide were depos­

ited on opposite sides of the box. Then, with the 6 inch by 23 inch 

funnel, a strip was laid down in the center of the box, between those 

previously deposited. The unfilled areas (which had the appearance of 

valleys), always present at the edge of the box, were filled with a 3 A-

inch hose which had a valve at its end. No attempt was made to keep 

this sand at the same density, since it was at the sides of the box and 

its character probably quite unimportant to the quality of the model. 

After each one inch layer was deposited, the barrel was raised one inch 

and the process repeated. Those footings whose bases were below the 

surface were buried; that is, the sand was deposited around them after 

they had been fixed carefully in place with their bases in contact with 

the sand beneath. Construction above the bases of the footings was done 

by depositing the sand from the 6 inch by 23 inch funnel only in two 
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strips, one on either side of the footing. Both immediately "beneath the 

footings and at the top of the box the sand was cut to a level surface 

with a thin piece of metal sharpened on one edge. When the box was filled 

to the required height the frame which had supported the footings was re­

moved and the loading and deflection measuring equipment was set in place. 

For 6 inch and 30 inch (average) heights of fall a similar pro­

cedure was used, with the exception that the funnels were moved back and 

forth over the surface beginning immediately when the valve was opened. 

The funnel heights were set at 6jj inches for the 6 inch drop and a one 

inch layer was deposited; at 31 inches for the 30 inch drop and a two 

inch layer was deposited (since at greater heights density is relatively 

insensitive to small changes in height). For the vibrated density the 

sand was deposited in a four inch layer, with no adjustment of height, 

from an average height of 30 inches. Then the sand was subjected to 

vibration at its surface for three minutes. During vibration the plates 

were moved from side to side, always butting against one another to pre­

vent formation of a less dense area at their junction. On one side these 

plates had a removable plug inch larger than one half of the footing. 

Above the base of the footing they were placed around the footing and 

vibration was done as before, except that the plates were held still and 

not allowed to touch the footing. 

Load Tests 

Footings 

Two different types of footing were used in these tests. For sur­

face tests a 2 inch by 12 inch aluminum plate l/2 inch thick was used. 
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For tests beneath the surface, steel footings, shown in Fig. 2, were used. 

These footings were built with a telescoping arrangement so that the point 

could be pushed first, separate from the skin, then the skin could be 

pushed separately, then both as a unit. The first three ten-inch deep 

tests were made without the cap, but with this arrangement sand flowed 

between the point and the skin during the loading of the skin causing 

high mechanical friction. This mechanical friction was larger than the 

skin friction which was being measured. To overcome this the cap was added, 

changing the point from 2 inches by 12 inches to 2.44 inches by 12.44 

inches. This reduced the mechanical friction to a very small amount. 

Loading Procedure 

For surface tests two different loading devices were used. Tests 

1, 2, and 3 were made using an aluminum beam with a small screw jack for 

application of load. This beam was quite flexible, and near the end of 

tests 1 and 2 it had approximately a 3/4 inch bow in it. This is of inter­

est and importance because it changed the character of load application. 

If a very rigid beam is used for the jack reaction, load application is 

essentially strain controlled although the load is applied in increments 

of stress. This is because if the footing deflects a very small amount, 

the stress is reduced appreciably; that is, the footing can "run away" 

from the load by deflecting a very small amount. On the other hand, if 

the loading beam deflects a large amount a small deflection of the foot­

ing will not appreciably reduce the load, and the loading is more nearly 

stress- than strain-controlled. This was very obvious at the end of the 

tests 1 and 2 when the footings jumped into the sand at ultimate load. 
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No such jump could have occurred with the screw jack used, if the loading 

beam had been rigid. A hydraulic jack attached to the rigid load frame 

was used for the other surface test, l 6 . For all surface tests the foot­

ing was attached rigidly to the bottom of the proving ring used to measure 

load. This proving ring was attached to the bottom of the jack. With 

this arrangement loading could start from zero pressure because the foot­

ing was initially suspended from the proving ring rather than resting on 

the sand. Two dial gages were used to measure settlement, one on either 

side of the proving ring. Two gages serve as a check on each other as 

well as indicating any tilt in the footing. An average of the separate 

gage readings was taken for axial settlement. Load was applied in incre­

ments of l/l5 of the estimated ultimate load at one minute intervals. 

Settlement dials were read immediately before the next load increment was 

applied. 

For tests beneath the surface three separate loadings were made. 

First, with the skin clamped in position, the point was loaded using the 

same procedure as for a surface test. In all deep tests a hydraulic jack 

connected to the rigid loading frame was used for load application. After 

the point had been loaded, the skin was undamped and it was loaded in 

increments of l/lO of the estimated ultimate load. It was pushed until 

it had settled the same amount and returned to its original position rela­

tive to the point. Deflection and load were measured in the same way as 

for surface tests and deep point load. After the skin was loaded both 

point and skin were loaded as a unit. The main purpose of this loading 

was to check that the load required was approximately equal to the loads 

required to push the point and skin separately. 
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Penetrometer Soundings 

In order to check the homogeneity of each model, at least two pene­

trometer soundings were made in each model after the load test. The pene­

trometer used was l/2 inch in diameter at the point and had a 3/8 inch 

diameter skin. It was built on the same telescoping principle as the 

footings. These soundings were static, rather than dynamic. The pene­

trometer was pushed by a screw-jack at about four inches per minute. The 

result of the soundings is a graph of penetrometer resistance vs. depth. 

Because of the fact that the skin of the penetrometer was l/8 inch smaller 

than the point, and because there was always mechanical friction between 

point and skin, skin friction measurements were not consistent, and are 

not believed to be accurate. However, because the force required to 

push the point was always about 90 to 95 per cent of the force required 

to push point and skin together, total resistance plotted as pressure on 

the point is very near the true point resistance. When used this way, 

the soundings are more consistent and valuable. 

As will be shown later, there is no bearing capacity theory which 

will give the density as a function of point resistance, even when the 

relation between density and angle of internal friction has been estab­

lished. For this reason, it was necessary to establish this relation­

ship empirically by a controlled calibration. A box 2.k inches wide, l6 

inches long and 60 inches deep was placed on a l600 pound capacity scale 

and filled by the same method as used for building the models. The same 

care was exercised to keep the sand homogeneous with respect to density. 

When the box had been filled and the average density checked, two pene­

trometer soundings were made in this box using the same method as for 
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sounding in the models. The results of these tests are curves of pene­

trometer resistance vs. depth for various average densities, Fig. 4. 

Using these curves an estimate of the density of the load-test models 

in the vicinity of the point can "be made. Further comments on the re­

sults of this calibration and the penetrometer soundings will be made 

in Chapter III. 

Physical Properties of the Sand 

The sand used in building these models was a medium, uniform, 

subangular micaceous Chattahoochee River sand. It was air dried and 

sieved through a window screen (about equivalent to a standard number 16 

sieve). A grain-size curve is shown in Fig. 5« Minimum density was 

79'0 lb/ft , maximum density was 102.5 lb/ft . Normal triaxial tests 

(compression tests with constant) were made for this sand at densities 

of 84, 90, 95, and 98 lb/ft3. Lateral pressures of 5, 10, 20, 40, and 

80 lb/in were used for each density. The result of these tests is the 

curve shown in Fig. 6, giving the angle of internal friction as a func­

tion of the void ratio, e. Also some triaxial tests were made in which 

the ratio a2_/a^ w a s kept at a constant value while was increased. 

Tests were made for the same four densities and ratios aiL/a-^ of 1 .5; 2.0, 

3.0, and 4 .0. Not all of these ratios could be used for the less dense 

samples, because they failed immediately when the test began. The main 

value of these tests is in determining the modulus of deformation, E, 

as a function of density and lateral pressure ratio. Curves showing 

tangent modulus of deformation, E,, as a function of the ratio CRN/CR = k 
t l j 

are given in Fig. 7* from the normal triaxial tests as a function of 

a Q is given in Fig. 8. 
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CHAPTER III 

DISCUSSION OF RESULTS 

The first step in analyzing these data was to establish a failure 

or ultimate load criterion. In those cases where load reaches a true 

maximum and drops off or remains constant with increased settlement this 

is not difficult. But for all tests "below a depth of 20 inches and for 

all tests where the sand was at relative density 0.5 or less, no apparent 

maximum was reached. In order to simplify the analysis and make the re­

sults of the tests consistent, the following criterion was adopted (8): 

ultimate pressure was taken as the pressure which corresponded to the 

amount of settlement at which the most dense model, at the same depth, 

failed. Although this is not true failure, adoption of some such cri­

terion is necessitated "by the fact that all "but the most dense sands are 

compressible, and very great strains occur with no failure. The adoption 

of this criterion reduced the problem to determination of ultimate pres­

sure for only the most dense models. At depths of 0, 10, and 20 inches 

at the highest density a true maximum pressure was reached. At the depths 

of 30 and 40 inches, however, a sharp increase in the rate of settlement 

(similar to yield of a ductile metal) was taken as failure. In this way 

limiting values of settlement were determined and the ultimate pressures 

were taken from the other load-settlement curves. The footings at the 

surface failed at 10.5 per cent of the width, B. Settlement at ultimate 

load changed very little with depth from 10 inches to 40 inches; 
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settlements of 25-2 per cent B were found for 10 inches deep tests and 26 

per cent B for 40 inches deep tests. Table 5 shows point load-settlement 

data for all 20 tests. Fig. 9 shows load-settlement curves for tests 20 

inches and 40 inches deep. 

Tests 1, 2, 3 and l6 were load tests of a 2 inch by 12 inch foot-
o 

ing at the surface, with densities ranging from 84.0 to 96.4 lb/ft . 

These tests served as a starting point for the other tests. Many similar 

tests have been made by other observers (9) (10), and the theoretical 

bearing capacity factor found to be in good agreement with experiment. 

In tests 16 (Rp = 0.8), 1 (RD = O.69), and 2 (Rp = 0 .6l) , the phenomenon 

called general shear failure occurred. When the soil under a footing 

fails in general shear, the load decreases rapidly, and the soil on one 

side (sometimes both) rises. Fig. 10a shows this in a photograph of test 

l6 after failure. The shear zone has come to the surface and is clearly 

visible and well-defined. Similar shear zones, smaller in extent, were 

observed for the less dense tests 1 and 2. 

From these surface tests values of the dimensionless quantity, 

It !5l 
7B 

, can be computed. A comparison of this quantity determined from 

the surface load tests is made with the theoretical factors N in Fig. 1 1 . 
y 

To eliminate the effect of surcharge and cohesion it is necessary to make 

two corrections to the pressure at failure. The first is ~Q.N^ where 

q = (density) (settlement at failure). This is small, of the order of 

0.5 lb/in . Of greater magnitude and importance is the correction ~CNQ> 

The bearing capacity factor N c varies from 33 to 72 for these tests. 

Unfortunately, the small cohesion of this air-dried sand cannot be meas­

ured easily, and is not known. Fig. 12b shows the portion of total 
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a. GENERAL SHEAR FAILURE 

b. AN UNBRACED CUT IN THE SAND 

Photographs a. General Shear Failure and b 
Unbraced Cut in the Sand. 
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bearing capacity contributed by cohesion as a function of footing width. 

A cohesion as small as 0.5 lb/in*1 can account for 85 per cent of total 

bearing capacity for a two-inch wide footing. In Fig. 12a are shown the 

values of cohesion which would make these surface load tests agree exactly 
2 

with theoretical values. This cohesion is 0.55 lb/in for the least 

void ratio (O.725) and decreases rapidly to practically zero at e = O .85. 

On the same figure is shown the apparent cohesion found from the tri­

axial tests. This cohesion is caused by the interlocking of grains, 

capillary forces, the membrane used and other factors in the triaxial 

tests which have not been accounted for (ll). Howevever, Chen has shown 

that even when all these factors are taken into account, there is still 

some small amount of cohesion which is a property of the sand. Terzaghi 

suggests the failure envelope is curved near the origin for dense sands. 

Representing a curved failure envelope by a single angle of internal 

friction, requires either a shear intercept greater than zero (cohe­

sion) or an overestimation of strength at high normal stress, or both. 

Fig. 10b shows the sand in the box in which the models were built after 

the door was opened to empty it. The lines on the side of the box are 

one inch apart. It can be seen here that the sand will stand free 

vertically for about three inches. Although this is not an accurate 

measure of the amount of cohesion the sand possesses because of vibra­

tions while the slope was forming, it shows that the sand does have some 

cohesion. 

The 16 load tests numbered k through 20 with the exception of 

number l6 , were load tests of footings beneath the surface. Table 1 

gives a summary of the significant results of these tests. 



Table 1. Summary of Significant Results from Footing Load Tests 

Test Footing Depth Density Pressure p/B Et 
0 No. Width Length at Corre­

Et 
0 ?° 

0 
(lb/ft3) 

Failure sponding 1-v 2 1-v 2 

(inches) (inches) (inches) (lb/ft3) (lb/in2) (per cent) (lb/in2) (lb/: 

16 2 12 0 96.4 47.0 10.5 1370 1110 
1 2 12 0 93 .6 14.5 10.5 309 280 
2 2 12 0 91.9 7-8 10.5 154 153 
3 2 12 0 84.0 1.4 .10.5 29 28 

17 2.44 12.44 10 95-0 126 25.2 3600 1270 
4 2 12 10 94.0 48.5 25.2 660 417 
5 2 12 10 91 .1 27.O 25.2 386 231 
6 2 12 10 83.8 8.0 25.2 80 67 

18 2.44 12.44 20 95-1 160 25.6 3300 1540 
7 2.44 12.44 20 93.8 71 25.6 1360 605 
8 2.44 12.44 20 90.9 37.5 25.6 960 309 
9 2.44 12.44 20 82.0 ll.l 25.6 183 101 

19 2.44 12.44 30 96.4 178 25.8 3640 i64o 
10 2.44 12.44 30 94.2 81.0 25.8 2060 795 
n 2.44 12.44 30 91.8 44.0 25.8 1710 365 
12 2.44 12.44 30 82.0 12.3 25.8 320 114 
20 2.44 12.44 4o 96.5 185 26.0 4640 1815 
13 2.44 12.44 4o 94 .1 82.8 26.0 1470 775 
l 4 2.44 12.44 4o 90.7 42.5 26.0 1750 365 
15 2.44 12.44 4o 82.O 14.2 26.0 447 139 
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Of these tests only numbers 17 and 18, the most dense tests 10 and 

20 inches deep, showed a true ultimate pressure. Load-settlement curves 

for tests 20 inches and kO inches deep are shown in Fig. 9« In none of 

these tests did any shear appear at the surface. When the soil failed 

under the footing in test 17, however, the footing "began to move laterally 

at the top perpendicular to its longer axis. A passive Rankine zone 

formed on one side of the footing and an active Rankine zone formed on the 

other. This was most probably because the rupture zone shown in Fig. Id 

had formed to a limited extent and the wedge and the base of the founda­

tion with it were traveling along one of the boundaries of this shear 

zone. This caused the base of this foundation to move laterally as well 

as vertically down, and the top of the foundation to move laterally in the 

opposite direction. 

A comparison of the theoretical and experimental ultimate pressures 

with depth is made in Fig. 13• These were determined by first plotting 

ultimate pressure against density for each depth, drawing smooth curves 

through the points, and then picking off the values plotted in Fig. 1 3 . 

This was necessary because there was some variation in density between 

different models even though they were formed by the same method. The 

theory used for this comparison is the "shallow" theory (12) which is 

usually applied to footings at the surface and depths of one foundation 

width or less. It does not take into account any of the strength of the 

soil above the level of the base of the footing and so gives N values 
q. 

which are considerably less than those from the "deep" theories. The 

"deep" theory which gives the largest N values was presented by Meyer-

hof (13); "the one which gives the smallest values of N was presented 
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by Hansen ( l 4 ) . Shallow N 's are from 12 per cent to 37 per cent for 
Q. 

0 = 30° and from 2.9 per cent to 34 per cent for $ = 45° of the N values 

from deep theories, depending on which theory is chosen for comparison. 

However, as can be seen in Fig. 13. even the shallow theory over­

estimates the bearing capacity after some depth. The reason for this 

dissonance is not in the quantitative values yielded by the theory, but 

in the fact that theory predicts a linear increase of bearing capacity 

with depth. Bearing capacity of this sand as determined by these tests 

increases with depth at a constantly decreasing rate. There is no theory 

which predicts an ultimate bearing capacity regardless of depth, nor one 

which predicts an increase at nearly such a slow rate as indicated by the 

final slopes of the curves shown in Fig. 13. These curves show that N 
q. 

decreases constantly with depth. Average N values for the first and 
last ten inches are shown in Table 2 below. These values were determined 

by dividing the increase in bearing capacity by the increase in vertical 

pressure. 

Table 2 . Average N Values 

84 90 94 96 

31.6 35-4 37-6 38.8 

Avg. for 
0-10 inches 14 29 59 115 

Avg. N for 
q 

30-40 inches 3-3 3-8 4.6 8.1 
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The two curves for the greatest densities, 9^ and 96 lb/ft , show agree­

ment -with the corresponding theoretical straight lines at one point be­

neath the surface. These theoretical curves were drawn assuming that 

the sand actually possesses the amount of cohesion necessary to satisfy 

q l̂i_(experimental) = cNc + \y B 

where ĉ -̂ . is from the surface tests. If the cohesion had been measured 

and was not equal to the cohesion assumed, the theoretical curves would 

be shifted either right or left, changing the depth at which theory and 

experiment are in agreement. The curves for densities of Qk and 90 lb/ft 

lie below the corresponding theoretical curves at all depths beneath the 

surface. The relative densities for these densities are 0.25 and O.^k 

respectively. Various empirical corrections have been suggested, to be 

made to the angle 0 or to bearing capacity directly, which would make 

theoretical (corrected) bearing capacity agree with observed values. Us­

ing for the upper ten inches as shown in Table 1 angles 0 can be found 

which correspond. We can call this angle 0 for effective angle of inter 

nal friction. These values, with the relative density and the ratio of 

0„ to the angle of internal friction, 0 from normal triaxial tests are 
hi 

shown in Table 3' 

The slopes of the depth-pressure curves or rate of increase of 

bearing capacity indicated by these N values are those which would apply 

to foundations in this sand at a depth 5B or less. 
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Table 3. Angle of Friction <fi Deduced from Load Tests. 
E 

(Upper ten inches only) 

\ \ h V* 
Relative Experimental 
Density 

(dimensionless) (dimensionless) (degrees) (dimensionless) 

O.78 115 kk 1.13 

0.71 59 39.4 1.05 

0.54 29 33-8 0.95 

0.25 lh 28.5 0.90 

Fig. lh shows the ratio as a function of relative density. 
E 

Also shown in this figure is the curve 

0E/0f = 0.90 + 0 .6 l(R D)^ 

which is a good approximation of the observed values over the range of 

measurement. The number of observations is too small to warrant sug­

gestion of this expression for general use. 

In Fig. 13 it can be seen that after a depth of about 20 inches 

(approximately 8B) there is little increase of bearing capacity with 

depth. From this depth to ho inches there is at most a 27 per cent 

increase in bearing (for 7 = 84 lb/ft ) and the increase is only 12 per 

cent for 7 = 96 lb/ft3. 

The penetrometer soundings which were made primarily as a check 

on the density are themselves load tests of very small footings. The 

procedure is different, however, in that load settlement data are not 
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recorded as they are in a footing load test, where settlement is measured 

very carefully and the load applied in increments. The soundings are per­

formed "by pushing the penetrometer at a constant rate and recording the 

average force required to push it for each inch which it penetrates. 

This load is then converted to pressure on the point and is plotted 

against depth. 

A comparison is made in Fig. 15 "between "bearing capacity and pene­

tration resistance. It can "be seen that at a depth of kO inches the ulti­

mate "bearing capacity is only from 25 per cent to 50 per cent of resis­

tance to penetration, the difference between the two increasing with 

density. 

There is an essential difference between these two types of tests, 

and the results are not directly comparable. In the footing load tests, 

the ultimate pressure or bearing capacity was chosen as that load which 

corresponded to some limiting value of settlement. In determination of 

resistance to penetration, settlement is not involved. Thus it is cer­

tain that for the same size loaded area, whether penetrometer or footing, 

that resistance to penetration will be greater than bearing capacity. 

Recently evidence has been found that resistance to penetration 

is a function of the size of the penetrometer, higher unit resistance 

being realized for smaller penetrometers ( 1 5 ) . 

Table k gives the ultimate unit skin friction q and settlement 
^s 

at failure for all tests in which skin friction was measured. As ex­

plained in Chapter I, skin friction is usually rationally computed by 

q = \y D K a tan 0 
S 5 
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Table 4 . Summary of Results from Skin Load Tests 

Test Depth Density Skin Settlement Coefficient*** 
No. Friction Corresponding of Skin 

Pressure, k 
7 e (inches) (lb/ft3) (-Win2) (inches) 

18 20 95-1 0.272 0.07 0.640 

7 20 93-8 O.169 0.13 0.424 

8 20 90.9 0.148 0.14 0.428 

9 20 82.0 0.125 0.10 0.449 

19 30 96.4 0.455 0.10 0.70 

0.160* 0.04 0.246 

10 30 94.2 O.283 0.19 0.465 

11 30 91.8 0.210 0.17 O.398 

12 30 82.0 0.152 0.16 0.357 

20 40 96.5 0.675 0.15 0.775 

0.205* 0.04 0.235 

O.265** 0.17 0.304 

13 40 94 .1 0.270 0.11 0.330 

14 40 90.7 0.210 0.12 0.296 

15 40 82.0 0.188 0.15 0.328 

* Pulled after pushing 

** Pushed again after pulling 

*** Computed assuming cc = 1.0. 
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If it is assumed that a = 1 , values of k may be computed from the 
s 

above expression. Table k also includes k computed in this way. It may 
s be noted that k generally decreases with density, from an average of s 

0.71 for 7 = 96 lb/ft3 to O.38 for y = Qk lb/ft3. The average k g values 

for 7 = 90 lb/ft3 and 7 = 9k lb/ft3 are O.38 and O.kl respectively. Thus 

k seems to depend on the method of placing the sand for the most part. 
s 
The high values of k g for the compacted sand are in agreement with values 

of k noted by Terzaghi (16) and Tschebotarioff ( 1 7 ) ' k and k are dif-
o O S 

ferent coefficients of earth pressure, k is the coefficient of earth 
o 

pressure at rest, the ratio a^/a^ where acts in a horizontal direction 
inside an earth mass, k is the coefficient of pressure which acts at 

s 
an angle to the horizontal on the lateral surface of a foundation. It 

seems, however, that they are of the same order and probably subject to 

the same influences, i.e., wedging in of sand grains during compaction. 

The results of three tests to measure skin friction, not conducted 

in the ordinary manner, are also reported in Table k. Those values 

marked * were determined by pulling the skin up after all other load 

tests were completed, and the one marked ** was determined by measuring 

the force required to push the skin a second time after pulling it. 

These tests showed q g values which were considerably less than those de­

termined on the initial loading. This indicates that the structure of 

the sand placed with vibration is disturbed by pulling the foundation 

up, and skin friction measured this way is lower than that which acts 

during initial loading. Complete skin load settlement data are given in 

Table 6. 
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A comparison was made of the force required to push the point and 

skin separately and that required to push point and skin together. The 

latter would be expected to be greater, because the pressure generally 

continues to increase with depth as explained above. The force required 

to push point and skin together was from 101 per cent to 129 P e r cent of 

the sum of the forces required to push them separately. The average was 

122 per cent. This fact seems to exclude the possibility that there was 

a large amount of mechanical friction between the two sections of the 

model footing. This was also indicated by the smooth settlement of the 

skin under load, evidenced by the general smoothness of skin load-

settlement curves. 

Also computed from the point load settlement curves was the quan-

tity E/l - v . This quantity is used for the prediction of immediate 

settlement of foundations by 

Where the load settlement curve is known, E/l - vd may be deduced. Two 
2 2 values of E/l - v were computed; an initial tangent modulus E^/l - v 

and a secant modulus e ^ q A - v for the first 50 per cent of the load 

settlement curve. Values of I of 1.7 for the 2 inch by 12 inch foot-
P 

ings and 1.6 for the 2.44 inch by 12.44 inch footings were used in compu­

tations. Since v has limiting values of 0 and 0.5 for real materials, 
E can be computed within a maximum error of + 15 per cent by assuming 

2 

1 - v = 0.88 (corresponding to v = O .38). Comparison of the values 

of E found in this way with those shown in Fig. 7 show that the ratio 
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a^/a^ must have been about 4 or greater for surface tests and about 3*5 

for the deepest tests, intermediate values applying to intermediate depths. 

E/l - v as a function of depth is shown in Fig. l 6 . 
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CHAPTER IV 

CONCLUSIONS 

(1) For a foundation "buried in a relatively homogeneous mass of 

sand, hearing capacity increases with depth at a constantly decreasing 

rate. 

(2) Unit resistance to penetration determined by a small diameter 

penetrometer may be as much as four or five times as great as the ulti­

mate bearing capacity of a model footing, the difference increasing both 

with relative density and depth. 

(3) Estimates of skin friction made by pulling a foundation up 

may give apparent values of q which are as little as 30 per cent of the 
s 

skin friction which acts when the foundation is pushed. 
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CHAPTER V 

RECOMMENDATIONS 

(1) Load tests for determination of ultimate bearing capacity 

should be made on other sands. This will aid in the separation of the 

effects of changes in angle of internal friction and changes in relative 

density. 

(2) Larger model tests in this same sand should be made, as well 

as penetrometer soundings with a larger penetrometer. These investiga­

tions should attempt to find the effects of actual size of the footing 

or penetrometer, and the importance of the depth ratio, D/B. 

(3) Tests of a qualitative nature should be performed to dis­

cover the phenomenon which occurs when a deep foundation fails. 
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APPENDIX 
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NOTATION 

B = width of footing (inches) 

c = cohesion in Coulomb's equation (lb/in ) 

D = depth of base of foundation (inches) 

E, = initial tangent modulus of deformation (lb/in ) 

E,--. = secant modulus of deformation for the first 50 per cent of a 
50 

2 load-settlement curve (lb/in ) 
e = void ratio 

e = void ratio in loosest state max 
e . = void ratio in densest state min 
I = influence value for settlement P 
K = ratio of major to minor principal stress 

K g = coefficient of skin pressure 

m = ratio of adhesion to cohesion 

N c = bearing capacity factor 

= bearing capacity factor 

N = bearing capacity factor 

= point load on a deep foundation (lbs) 

Q = skin load on a deep foundation (lbs) 
5 

= total load on a deep foundation (lbs) 
2 

q^ = unit point resistance of a deep foundation (lb/in ) 
2 

q = unit skin resistance of a deep foundation (lb/in ) 
5 
q^^ = ultimate pressure* the soil can exert on the base of the founda-

2 
tion (lb/in ) 
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NOTATIONS (Continued) 

R_ = relative density ( (e -e) / (e -e . ) ) D J v v max ' ' v max miir 
V = total vertical load on a shallow footing (Ids) 

QL = ratio of tan 6 to tan 0 

y = unit weight (lb/ft3) 

& = angle of friction between the sand and the lateral surface of 

a deep foundation (degrees) 

v = Poissonfs ratio 

p = settlement (inches) 

a = effective normal stress (lb/in ) (bar may be omitted) 

°^ a^ - major, minor principal stress (lb/in ) 

0 = angle of internal friction (degrees) 

- angle (degrees) 

~ means approximately 
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Table 5« Load-Settlement Data for Point Loads 

Test No. 1 
2 inches x 12 inches 
At surface „ 
Density 93.6 lb/ft^ 

Test No. 2 
2 inches x 12 inches 
At surface „ 
Density 91.9 lb/ft^ 

Pressure Deflection 
on Base (inches 
(lb/in2) 10,000) 

Pressure Deflection 
on Base (inches 
(lb/in2) 10,000) 

0.00 0 0.00 0 
0.93 159 0.46 138 
1.85 26l 0.94 244 
2.78 360 1.39 3^0 
3.70 46l 1.85 445 
4.63 537 2.34 5^5 
5.55 666 2.80 64o 
6.46 740 3-24 734 
7.40 902 3.70 864 
8.26 1027 4.20 962 
9.29 1213 4.63 1055 

10.20 1370 5.10 1175 
11 .10 1517 5.50 1300 
12.05 1690 6.05 1^57 
12.95 1845 6.54 1585 
13.90 2030 6.94 1706 
14.80 2195 7 .4 i 1862 
15.75 2397 7.85 2027 
16.62 2572 8.35 2202 
17.60 2770 8.77 2378 
18.48 3007 9.27 2600 
19.40 3170 9.66 2753 
20.30 3570 10.20 3043 
21.20 3855 10.57 3271 
22.20 4025 11 .10 3611 

8.15 11.60 4070 
11 .10 5870 
8.90 8385 
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Table 5 (Continued) 

Test No.3 
2 inches x 12 inches 
At surface _ 
Density 84.0 lb/ftJ 

Test No. 4 
2 inches x 12 inches 
At surface 
Density 94.0 Ib/ft^ 

Pressure 
on Base 
(lb/in2) 

Deflection 
(inches 
10,000) 

Pressure 
on Base 
(lb/in2) 

Deflection 
(inches 
10,000) 

0.00 0 
0.12 80 
0.24 225 
0.35 385 
0.48 540 
0.60 737 
0.71 928 
0.83 1125 
0.95 1315 
1.08 1495 
1.20 1707 
1.32 1885 
1.42 2175 
I.56 2355 
1.66 2576 
1.77 2890 
1.92 3252 
2.04 3531 
2.14 3862 
2.29 4230 
2.37 4570 
2.49 4964 
2.62 5400 
2.73 5790 
2.87 6252 
2.99 6700 
3.12 7135 
3.22 7515 
3.34 7890 
3.48 8300 
3.55 8650 
3.70 9132 
3.82 9570 
3.92 9935 
4.05 10570 
4.16 10725 
4.30 11600 
4.42 12190 
4.52 12300 

1.0 0 
4.7 586 
8.2 807 

1 1 . 9 1042 
15.6 13^0 
19.2 1606 
23.1 1950 
27.2 2400 
30.6 2737 
34.4 3240 
37.2 3601 
42.2 4270 
45.5 4750 
49.4 5496 
52.8 6195 
53-6 84i8 
55.1 12432 
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Table 5 (Continued) 

Test No. 5 
2 inches x 12 inches 
10 inches Deep 
Density 91 .1 lb/ft3 

Test No. 6 
2 inches x 12 inches 
10 inches Deep 
Density 83.8 lb/ftJ 

Pressure Deflection 
on Base (inches 
(lb/in) 10,000) 

Pressure Deflection 
on Base (inches 
(lb/in2) 10,000) 

1.22 0 
3*04 
4.70 24l 
6.13 412 
8.24 649 

10.25 985 
11.90 1284 
13.90 l6o4 
15.60 1931 
18.40 2408 
19.70 2658 
21.90 3168 
23.30 3469 
25.10 4036 
26.20 4450 
29.20 5470 
30.90 6080 
32.40 6919 
33.80 8573 
36.00 10920 
38.30 12785 

1.0 0 
1.57 253 
2 .11 480 
2.69 710 
3.22 1025 
3.85 1465 
4.34 1772 
4.91 2253 
5.47 2669 
5.89 3175 
6.57 3572 
7.07 3957 
7.70 4505 
8.19 4940 
8.81 5540 
9.42 63^0 
9-92 6760 

10.40 7280 
10.95 8048 
11.56 8502 
12.10 9222 
12.60 10122 
13.15 10787 
13.75 11897 
14.21 13102 
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Table 5 (Continued) 

Test No. 7 
2.44 inches x 12.44 inches 
20 inches Deep 
Density 93-8 lb/ftJ 

Test No. 8 
2.44 inches x 12.44 inches 
20 inches Deep 
Density 90.9 lb/ftJ 

Pressure 
on Base 
( W i n 2 ) 

Deflection 
(inches 
10,000) 

Pressure 
on Base 
(lb/in2) 

Deflection 
(inches 
10,000) 

1.00 0 
5.50 365 
9o90 491 

14.20 698 
18.90 973 
23.00 1291 
27.30 1553 
31.70 1879 
36. ko 2283 
4o.6o 2620 
45.80 3060 
49.50 3466 
53.50 3911 
59.10 4583 
63.70 5215 
67.30 5658 
70.20 6194 
76.50 7265 
80.50 8631 
84.20 12921 

1.0 0 
3.9 85 
6.6 193 
9.6 461 

12 .5 855 
15 .5 1309 
19 .3 1980 
21 .6 2415 
24.5 3072 
27.6 3744 
30.6 4361 
33.5 5152 
35.8 5822 
39.4 6866 
42.0 9082 
44.9 10874 
47.O 13030 
50.0 14402 



Table 5 (Continued) 

Test No. 9 
2.44 inches x 12.44 inches 
20 inches Deep 
Density 82.0 lb/ftJ 

Test No. 10 
2.44 inches x 12.44 inches 
30 inches Deep 
Density 94.2 lb/ft^ 

Pressure Deflection 
on Base (inches 
(lb/in ) 10,000) 

Pressure Deflection 
on Base (inches 
(lb/in2) 10,000) 

1.00 0 
2.50 341 
3.90 373 
5.30 760 
6.75 1677 
8.20 2976 
9.80 4681 

11 .10 6370 
12.60 8245 
13.50 9375 
14.20 10792 
15.10 11850 
15.90 12737 

1.2 0 
6.2 4o 

1 1 . 4 92 
15.6 218 
21.0 482 
26.5 647 
31.6 929 
36.5 1207 
41.8 1548 
46.5 1834 
52.2 2221 
57.3 2612 
61.7 2984 
66.6 3421 
71.0 4432 
76.7 5340 
79.8 6034 
84.2 7365 
87.2 8772 
92.5 11787 
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Table 5 (Continued) 

Test No. 11 
2.44 inches x 12.44 inches 
30 inches Deep 
Density 91.8 lb/ft^ 

Test No. 12 
2.44 inches x 12.44 inches 
30 inches Deep 
Density 82.0 lb/ft5 

Pressure 
on Ba.se 
(lb/in2) 

Deflection 
(inches 
10,000) 

Pressure 
on Base 
(lb/in2) 

Deflection 
(inches 
10,000) 

1.2 0 
4.1 372 
7.2 - 44i 
9-9 585 

12.9 815 
15.7 1097 
18.9 1005 
21.8 1997 
24,9 2537 
27.4 2955 
30.4 3614 
3J+.5 4370 
36.9 4823 
39.9 5585 
42.4 6150 
45.2 6891 
48.4 7857 
50.2 8987 
54,3 10437 
57-1 12943 

1.2 0 
2.4 5 
3.6 143 
4.7 484 
5-9 891 
7.0 1425 
8.3 2373 
9.3 3148 

10.6 4205 
1 1 . 9 5363 
13.0 6775 
14.3 8185 
15.4 9096 
16.5 10471 
17.9 12240 

http://Ba.se


56 

Table 5 (Continued) 

Test 13 
2.44 inches x 12.44 inches 
40 inches Deep 
Density 94.1 lb/ft^ 

Test 14 
2.44 inches x 12.44 inches 
40 inches Deep „ 
Density 90.7 lb/ft^ 

Pressure 
on Base 
(lb/in2) 

Deflection 
(inches 
10,000) 

Pressure 
on Base 
(lb/in2) 

Deflection 
(inches 
10,000) 

1.4 0 1.4 0 
8.6 293 5.1 257 

15.0 464 8.8 339 
21.8 805 12.3 556 
31.0 1122 15.9 1042 
37.6 1540 20.3 1744 
45.4 1957 23.6 2200 
51.9 2451 27.4 2921 
59.9 2947 31.3 3562 
65.9 3561 34.3 4291 
74.3 4849 38.2 5225 
81.4 6024 42.0 6202 
87A 7899 45.0 7095 
92.3 8768 49.1 8573 
93.8 10860 52.0 10870 

55.0 12483 
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Table 5 (Continued) 

Test 15 Test 16 
2.44 inches x 12.44 inches 2 inches x 12 inches 
40 inches Deep At Surface 
Density 82.0 lb/ft0 Density 96.4 lb/ftJ 

Pressure Deflection Pressure Deflection 
on Base (inches on Base (inches 
(lb/in2) 10,000) (lb/in2) 10,000) 

1.40 0 3.0 145 
2.60 32 5.9 217 
3.60 48 8.9 285 
4.70 141 1 1 . 9 360 
5.65 620 14.8 434 
6.9O 1070 17.5 500 
8.00 1526 20.9 586 
9.10 2081 24.0 681 

10.25 2781 26.6 764 
11.50 3430 28.3 870 
12.40 4322 33-3 1043 
13.40 5595 35.5 1132 
14.70 6789 38.4 1303 
15.60 7566 41.7 1560 
16.70 8598 44.5 1848 
17.90 9632 47.O 2185 
18.55 10543 30.2 4770 

33.8 9102 



58 

Table 5 (Continued) 

Test 17 
2.44 inches x 12.44 inches 
10 inches Deep „ 
Density 95-0 lb/ftJ 

Test 18 
2.44 inches x 12.hk inches 
20 inches Deep ~ 
Density 95.1 lb/ft5 

Pressure Deflection 
on Base (inches 
(lb/in2) 10,000) 

1.0 0 
8.3 315 

15.6 383 
22.4 468 
31.0 578 
36.1 680 
44.3 832 
51.5 996 
58.2 1242 
66.0 1450 
72.6 1822 
80,5 2242 
87.8 2688 
95-7 3205 

102.8 3698 
110.2 4230 
118.0 4780 
123.7 5420 
121.5 . 73^0 
117.3 8680 
120.3 12467 

Pressure Deflection 
on Base (inches 
(lb/in2) 10,000) 

1.0 0 
11 .8 133 
21.6 256 
34.1 409 
44.8 580 
55.1 793 
65.9 1043 
76.I 1398 
87.7 1792 
97.0 2100 

112.0 2737 
120.0 3071 
133.0 3727 
143 0 2 4423 
153.8 5145 
159.8 6245 
152.0 8945 
152.0 10560 
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Table 5 (Continued) 

Test 19 
2.44 inches x 12.44 inches 
30 inches Deep 
Density 96.4 lb/ft3 

Test 20 
2.44 inches x 12.44 inches 
40 inches Deep 
Density 96.5 lb/ft3 

Pressure Deflection 
on Base (inches 
(lb/in2) 10,000) 

Pressure Deflection 
on Base (inches 
(lb/in2) 10,000) 

1.4 0 1.6 0 
i4 .o 204 13.9 214 
26.6 300 26.0 317 
39.3 534 38.4 474 
52.3 757 49.9 646 
64.6 1022 63.O 855 
75.8 1402 76.O 1206 
89.9 1803 87.2 1475 

101.7 2135 99-6 1785 
117.9 2684 1 1 1 . 5 2102 
128.3 3093 124.5 2456 
l4l.l 3680 136.7 2880 
155 . 4 4443 149.6 3499 
163.7 5294 164.1 4102 
178.2 6432 172.9 4445 
185.4 9151 177.8 5122 
187.4 1558 193.7 78OO 
189A 2554 197.0 8418 

201.6 10858 
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Table 6. Load Settlement Data for Skin Loads 

Test No. 7 Test No. 8 
2 inches x 12 inches 2 inches x 12 inches 
20 inches Deep 0 20 inches Deep ' 
Density 93-.8 lb/fV Density 90.9 lb/ftJ 

Average Deflection Average Deflection 
Skin (inches Skin (inches 
Friction 10,000) Friction 10,000 

% 0 (lb/in2) (lb/in 

0.054 0 0.053 0 
0.094 325 0.070 195 
0.133 738 0.084 286 
0.168 2284 0.100 413 
O .I76 3674 0.116 6l4 
0.179 5866 0.131 932 
0.188 7210 0.147 1405 
O.198 8554 0.161 3550 
0.205 8958 0.183 8739 
0.214 9568 0.197 11197 
0.223 9734 0.212 12242 
0.230 10219 0.229 12912 
0.238 10411 
0.246 10506 
0.254 10664 
0.271 10801 
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Table 6 (Continued) 

Test Wo. 9 
2 inches x 12 inches 
20 inches Deep 
Density 82.0 lb/ft3 

Test No. 10 
2 inches x 12 inches 
30 inches Deep 
Density 94.2 lb/ft5 

Average Deflection Average Deflection 
Skin (inches Skin (inches 
Friction 10,000) Friction 10,000) 

qs 
(lb/in2) 

Is „ qs 
(lb/in2) (lb/in2) 

0.054 0 0.043 0 
0.066 263 0.070 574 
O.O78 313 0.097 605 
0.090 398 0.124 665 
0.102 552 0.150 772 
0.113 827 0.178 854 
0.124 1275 0.204 986 
0.136 2497 0.228 1214 
0.151 6010 0.261 1920 
0.164 8733 0.282 2456 
0,176 9865 0.298 9740 
0.185 10457 10025 
0.210 10799 10567 
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Table 6 (Continued) 

Test No, 1 1 
2.44 inches x 12.44 inches 
30 inches Deep ~ 
Density 91 .8 lb/ftJ 

Test No. 12 
2.kk inches x 12.kk inches 
30 inches Deep „ 
Density 82.0 lb/ft^ 

Average 
Skin 
Friction 

% 
(lb/in2) 

Deflection 
(inches 
10,000) 

Average 
Skin 

Friction 

( W i n 2 ) 

Deflection 
(inches 
10,000) 

0 . 0 4 3 0 0 . 0 4 3 0 
0.059 281 0.055 26 
0.076 320 0.066 56 
0,092 3 8 4 0.077 173 
0.109 454 O .O87 2 1 4 

0.125 540 0.098 305 
0.142 652 0.112 371 
O . 1 5 8 771 0,120 518 
0.176 988 0.132 692 
0.190 1430 0.143 1000 
0.208 1985 0.153 1600 
0.224 896O 0.159 8900 
0.235 IO887 0.159 10660 
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Table 6 (Continued) 

Test No. 13 
2.44 inches x 12.44 inches 
ho inches Deep _ 
Density 94.1 lb/ft3 

Test No. lh 
2.44 inches x 12.44 inches 
40 inches Deep _ 
Density 90-7 lh/ft^ 

Average 
Skin 
Friction 

% 
(lb/in2) 

Deflection 
(inches 
10,000) 

o.o4o 0 
0.059 10 
0.078 26 
0.097 78 
0.117 125 
0.136 197 
0.155 250 
0.174 335 
0.195 476 
0.213 550 
0.231 706 
0.250 883 
0.270 i i4o 
0.275 7549 

Average Deflection 
Skin (inches 
Friction 10,000) 

% 
(lb/in ) 

0.040 0 
0.052 140 
O.O67 148 
O.O78 170 
0.090 224 
0.102 275 
0.114 325 
0.127 381 
0.135 443 
0.150 509 
O . I 63 590 
0.175 694 
O.I87 830 
0.198 1007 
0.210 1356 
0.235 8810 



Table 6 (Continued) 

Test No. 15 
2.44 inches x 12.44 inches 
40 inches Deep „ 
Density 82.0 lb/ft 5 

Average Deflection 
Skin (inches 
Friction 

a 
1 0 , 0 0 0 ) 

s 
(lb/in2) 

0 . 0 41. 0 

0 .053 244 
O . 0 6 7 2 8 3 

0 . 0 7 9 3 8 5 
0 = 0 9 2 466 
0 . 1 0 3 552 
0 , 1 1 5 6 5 1 
O . I 2 6 ?4o 
o . i4o 8 9 7 
0.153 1 0 0 9 
0.167 1 1 0 5 

0.177 1 3 5 8 
0 . 188 1 7 1 5 
0 . 2 0 6 5 6 9 0 
0 . 2 1 2 8 7 6 3 

Test No. 18 
2.44 inches x 12.44 inches 
20 inches Deep ~ 
Density 95-1 lb/ftJ 

Average Deflection 
Skin (inches 
Friction 10,000) 

(lb/in ) 

0.051 0 
0.072 46 
0.086 83 
0.106 91 
0.120 100 
0.138 112 
0.155 141 
0.170 170 
O . I87 203 
0.204 246 
0.221 302 
0.238 437 
0.255 565 
0.272 725 
0.281 1092 
0.299 3602 
0.298 8325 



Table 6 (Continued) 

Test Wo. 19 
2.Mi- inches x 12.44 inches 
30 inches Deep 
Density 96.4 lb/ft3 

Average Deflection 
Skin (inche s 
Friction 

Q 
10,000) 

(lb/in2) 

0.042 0 
0.072 34 
0.097 59 
0.124 114 
0.152 178 
0.179 310 
0.207 518 
0.235 778 
0.264 838 
0„284 872 
0,318 939 
0.350 996 
O.368 1048 
0.398 1145 
0.430 1310 
0.456 1510 
0.484 2304 
0.515 8112 
0.454 9936 
0.476 10425 

Test No. 19* 
2.44 inches x 12.44 inches 
30 inches Deep 
Density 96.4 lb/ft3 

Average 
Skin 
Friction 

(lb /m 2 ) 

Deflection 
(inches 
10,000) 

+0.042 0 
+0.024 3 
+0.007 1 
-0.008 3 
-0.058 4 
-0.075 29 
-0.092 53 
-0.109 81 
-0.126 114 
-0.145 146 
-0.160 378 
-0.152 7267 
-0.138 8644 

* Pull skin after pushing 
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Table 6 (Continued) 

Test No. 20 
2.44 inches x 12.44 inches 
40 inches Deep 
Density 96.5 lb/ft5 

Test No. 20* 
2.44 inches x 12.44 inches 
40 inches Deep „ 
Density 96.5 lb/ft5 

Average Deflection 
Skin (inches 
Friction 10,000; 

% 
(lb/in2) 

0 . 0 4 1 0 
O.O78 239 
0.101 258 
o.i4o 266 
0.174 283 
0.208 298 
0,241. 316 
0.272 335 
0.306 355 
0.339 379 
0.368 409 
o.4o6 456 
0.437 497 
0.472 550 
0,513 621 
0.538 674 
0.570 775 
0,596 914 
0.631 1079 
0.673 1715 
0.711 2835 
0.744 4287 
0.754 6378 
0.752 8646 

Average Deflection 
Skin (inches 
Friction 10,000) 

(lb/in) 

+0.040 0 
+0.020 0 
-0.008 8 
-0.025 19 
-0.041 32 
-0.068 59 
-0.081 86 
-0.153 215 
-0.162 234 
-0.182 285 
-0.202 371 
-0.216 8728 

* Pull skin after pushing 



Table 6 (Continued) 

Test No. 20** 
2.44 inches x 12.44 inches 
40 inches Deep _ 
Density 96.5 lb/ft3 

Average Deflection 
Skin (inches 
Friction 10,000) 

% 
(lb/in2) 

o.o4o 0 
0.073 4io 
O 0 I O 3 482 
0.136 608 
O . I 6 9 786 
0.205 1090 
0.233 1490 
0.266 2132 
0.300 3595 
0.334 57^7 
0,360 8321 

**• Push skin again after pulling 
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