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SUMMARY

The major goal of the investigation is the use of recursively
generated orthogonal polynomials for constructing sclutions to
initial-value problems of certain countable systems of ordinary dif-
ferential equations. The infinite systems considered have the form
y' = My or y'"'= My, where M is an infinite tri-diagonal matrix of
real constants. For any positive integer N, an Nth-order tri-diagonal
matrix MN can be formed from the infinite tri-diagonal matrix M simply
by deleting from M all but its first N rows and columns. The analysis

concentrates on the two natural pairs

(1) Y My with its truncation YN = MNYN ,

L

2 % » r ] ﬁﬂ=
(i1) vy My with its truncation yi'= My, ,
where YN denotes a column vector of N functions.
The elements of the infinite matrix M are used to determine the

coefficients in a three-term recurrence of the form

(x) = (Anx + Bn)Pn(x) -CP {x),n>0

Pn+l n n-1

(where P_. = © and P = 1}, which then generates a sequence {Pn(x)}

1
of polynomials; a simple {(necessary and sufficient) condition on these
elements insures that the corresponding polynomials Pn are orthogonal.
For each of the two pairs of systems (i) and (ii) a solution y of the

infinite system and the sclution Yy of the finite truncation are given

in terms of the orthogonal polynomials Pn (when they exist). Estimates

of the difference between the nt' components of y and yy, (for any n < N)



vii

are deduced, so that the initial N-seagment of y can be used as an
approximation to Yy The procedure for solving a given infinite system
(or for approximating the solution of a given finite system with the fur-
nished solution of an infinite system for which the finite system is a
truncation) is illustrated in two detailed examples.

Of necessity a considerable part of the discussion is devoted to
orthogonality of the recursively generated polynomials Pnu The known
cases of the classical Sturm-Liouville polynomials are mentioned and, in
addition, a one-parameter family of non-classical polynomials is intro-
duced; it is shown that the latter are orthogonal over the interval
[-1,1] with weight w(x) = |x!® (where a > -1 and a« # 0).

The countable systems of differential equations considered may be
used as models for various physical systems -- for example, coupled har-
monic oscillators or ladder networks. A number of these physical systems,
accompanied by their mathematical models with solutions, are catalogued

in an appendix.



CHAPTER I
INTRCDUCTION

The pages to follow recount the results of an investigation
which is closely related to previous work by J. W. Jayne [ 13] and F. L.
Cook [4]. As might be inferred from the title, the principal object is
to exhibit solutions of some countable systems of linear ordinary dif-
ferential egquations with constant coefficients. A number of the problems
considered are, in a suitable sense, mathematical models of readily con-
ceivable physical systems; two of these models have been investigated in
some detail by H. W, Gatzke [6].

For denumerable systems of ordinary differential equations with
constant coefficients [9], theorems on existence, uniqueness and proper-
ties of solutions are known in numerous cases [11,12,15-20]. 1In the pres-
ent study such questions are not considered. No existence theorems are
proved; no conditions are stated which are sufficient to guarantee the
uniqueness of a solutionj and there is no listing of properties of solu-
tions., The goal is simply to construct solutions -- in the elementary
sense of finding sequences of sufficiently differentiable functions which
reduce all the differential equations to identities and satisfy prescribed
initial conditions. Whenever the goal is attained, an existence theorem
has clearly been proved.

Various properties of orthogonal polynomials and several ideas



associated with the classical moment problem* are frequently used. The
explanation begins with these concepts, since orthogonal polynomials gen-
erated by suitable three-term recurrence relations play a crucial role

in the method presented for solving the infinite differential systems
discussed.

A three-term recurrence

Po(x) =1,
Pl(x) = on + BO ,
Pn+1(x) = (Anx + Bn)Pn(x) - Cnpn—l(")’ n>1l, (1)

where A (n>0), B (n > 0) and o (n > 1) are real numbers for which

AC 4 #0 (n=0,1,2,...), generates a sequence {Pn} of polynomials

in which Pn is of degree exactly n., Some (but not all) sequences so gen-
erated consist of orthogonal polynomials associated with a distribution
da{x) over some interval [a,b] of the real line; that is, they are poly-
nomials for which there exists an integrator a(x) such that in the Stieltjes

sense

b

I P.(x)P.(x)da(x) =0, i#3, (2)
a * J

#
The classical moment problem may be stated as follows: For a
given sequence {pn} (n > 0) with b, = 1, what properties of the sequence

will insure the existence of an integrator a(x) of a prescribed type

b n
[3] over some interval [a,b] so that B = I x da{x) for n = 0,1,2,... 7
a
When such an integrator exists, the B, {(n > 0) are called the moments of
da{x) over [a,b].




where a{x) is bounded, is non-decreasing and assumes infinitely many
different values over [a,b]. It is demonstrated that a necessary and
sufficient condition for such orthogonality of the polynomials Pn is

that the coefficients in the recurrence (1) satisfy the relation

>0, n=1,2,3,... - (3)
n n-1

Whenever the distribution da(x) has the property that da(x) = w{x)dx,
where (x) is non-negative and Riemann integrable (perhaps improperly)
on [a,b], the Stieltjes integral (2) reduces to a Riemann integral and
the polynomials Pn are orthogonal polynomials with weight w(x) over the
interval [a,b]. The weight and interval can be determined, for example,
if the coefficients in the recurrence (1) are such that the polynomials
Pn constitute a Sturm-Liouville sequence [10]. The general problem of
finding a practicable construction for the weight and interval {when they
exist) in terms of the coefficients in (1) is as yet, however, unsolved., ™

When (3) holds, the polynomials P can be used to construct solu-
tions to countable systems of ordinary differential equations in which
the (constant) coefficients are intimately related to the coefficients

in the recurrence {1). The explanation of this remark comprises a large

*A related problem of some interest is that of specifying reason-
able conditions on the coefficients in the recursion (1) which are suf-
ficient to insure that the polynomials P_ are orthogonal in the sense (2)
on a finjte interval. Some necessary and sufficient conditions for the
existence of certain types of weights over finjte intervals are known in
terms of prospective moments of a weight [2], but it appears difficult
to reformulate these conditions in a practicable way in terms of the
coefficients in the recurrence (1).



part of the body of the thesis. However, some indication of the connec-
tion between the orthogonal polynomials and the differential equations
is given in the following paragraph.

The countably infinite systems considered are initial-value
problems for differential equations of the form y' = My or y" = My,
where M is an infinite tri-diagonal matrix of constants. For any posi-
tive integer N, an Nthmorder tri-diagonal matrix MN can be formed from
the infinite tri-diagonal matrix M simply by deleting from M all but its
first N rows and columns. The analysis to follow concentrates on the

two natural pairs:

¥ : : : 'R
(i) vy My with its truncation y\ = Myyy ,

MYy

"

(i1} vy My with its truncation yf,

where Yy denotes a column vector of N functions. The elements of the
infinite matrix M are used to construct a recurrence of the form (1),
which then yields a sequence {Pn} of polynomials that are orthogonal
if (3) is satisfied. For each of the two pairs of systems (i) and (ii)
a solution of the infinite system and the solution of the finite trunca-
tion are given in terms of the orthogonal polynomials Pn. In each case
the solution of the truncation involves the zeros of PN’ but the solu-
tion furnished for the infinite system has the attractive feature that
no zeros of the Pn need be known. The initial N-segment of the given
solution y of the infinite system may be used as an approximation to

the solution YN of the corresponding truncation. Estimates of the error
incurred by doing so (that is, estimates of the difference between the

nth components of y and Yn for any n < N) are deduced.



The remarks of Chapter I are primarily for orientation. In Chap-
ter II a detailed study of the recurrence polynomials Pn is undertaken.

A device, apparently introduced by J. Favard [5], is used to generate
recursively a sequence {vn} of real numbers in terms of the coeffi-
cients in the recurrence (1). It is shown that {vn} is a moment
sequence for a distribution da(x) over an interval [a,b] if and only if
the polynomials Pn of the recurrence (1) are orthogonal polynomials asso-
ciated with da(x) over [a,b]. Conditions (3) imply, however, that {vn}
is a moment sequence for some distribution; hence the recurrence poly-
nomials are orthogonal whenever (3) holds. The converse of this last
statement is also proved -- namely, that conditions (3) follow from ortho-
gonality of the polynomials P_. Thus conditions (3) are necessary and
sufficient for orthogonality of the Pn (with respect to a distribution
over an interval) -- which is probably the most important point in Chapter
II.

The two classes of countable systems of ordinary differential
equations are introduced in Chapter III. Their solutions (when condi-
tions (3) hold) are given in terms of orthogonal polynomials Pnp along
with the error estimates mentioned previously. It is also noted that for
any n < N the nth component of the given solution y of the infinite system
(n)) and the nth component of the solution YN of the truncation

(n) {n)

(say A ) have an interesting connection: (a) the finite sum yy 1is a

Riemann-Stieltjes sum for the integral y(n); {(b) when the interval of

(n) (n)
N

(say y

orthogonality is finite, y, ‘(t) => y' ' /{t) as N > .
Chapter IV consists of a study of a one-parameter family of poly-

nomials which are orthogonal over the interval [-1,1] with weight



w(x) = |x|® (where o > -1). These polynomials are prescribed by a
recurrence of the form (1) and the proof of their orthogonality given
here 1llustrates the techniques discussed in Chapter II. It is also
shown with the aid of [10] that these polynomials are Sturm-Liouville
polynemials if and only if ¢ = O,

Three examples are examined, in some detail, in Chapter V. The
splutions presented for these three systems illustrate the techniques
developed in preceding chapters; they also serve to indicate related but
unanswered questions in the study of infinite systems of differential
equations.

The countable systems introduced in Chapter III may be used as
models for various physical systems -- for example, coupled linear har-
monic oscillators or lossless transmission lines (see, also, [7] and [23]).
A number of these physical systems, accompanied by their mathematical
models with solutions, are catalogued in the Appendix for reference pur-

poses.



CHAPTER 1II

RECURSIVELY GENERATED (ORTHOGONAL) POLYNCMIALS

Polynomials Determined by a Three-Term Recurrence

The principal geals of this chapter are to deduce necessary and
sufficient conditions for orthogonality of polynomials generated by a
recurrence (1) and to infer certain properties of the polynomials so
generated. The chapter consists of a series of definitions and lemmas
which culminate in Theorem 2.

In trying to decide whether the polynomials Pn generated by (1)
are orthogonal it is convenient to consider a sequence of polynomials
o, which are simply scalar multiples of the Pn; certainly any ortho-

gonality property of either sequence is inherited by the other. To this

end, let
B,
bn =3 s N 20,
n
C
¢, T FR - N > 1, (4)
n n-1
¢, = 1
and Pors = TR P P20
n 012000 n

It is readily seen from (1) and (4) that



q’o(x) = 1’

wl(x) = x + b0
and Poa (¥) = (x + b )g (x) -c g (x), n21, (5)
where ﬂqf O for n =1,2,3,.00

Let {Vn} be the sequence of real numbers determined iteratively

from recurrence (5) as follows:

4 n n-1 n-2
= + +.‘. + +
if vn(x) X a ;X +a X ajx+a_, then
v =1
° ’ (6)
= - +
Von-1 = “lan1Vonoa tangtong T oy tagv )i n2,

and

<
i

- - + + LI + + L)
on-2 = L2 1Vona*3, 2Vonoa 81V 3.0l N2 2

Such a sequence {vn} will be called the sequence of quasi-moments gen-

erated by the @n.* Further, let L be the linear operator which maps all

real polynomials onto the real numbers in accordance with the rule

b

#

Notice that if 'f mi(x) @j(x)du(x) =0, i1#3j, then
a

b -
J ?n(x)xn ldu(x) =0 forn>l
a

b -
j @n(x)xn 2da(x) =0 forny 2.
a

and

If these two conditions are written in the form (6), then the quasi-
moments v, which they generate are in fact the moments of da{x) over

[a,b].



n n-1
+ +.es + =
L(dnx dn X +dlx do) dnvn-+dn

.1 v +.,. +d

h1 ¥ lvl-+dov . (7)

-1 s]

Lemma_l. For the polynomials P given by the recurrence (5),

L(wi(x)¢j(x)) = 0 whenever i ¥ j

n-2)

if and only if L(p_(x)x"™!) = 0 for n > 1 and L{p_(x)x""%) = 0 for n > 2.

Proof. (a) 1If L(qi(x)?j(x)) = O whenever i # j, then L(mn(x)xn_l) = 0

for n > 1, since X" can be written as a linear combination of Por P2

n-2)

PoreeesPr ) and L is a linear operator. Similarly L(vn(x)x =0 for

n> 2.

n-l)

(b) Suppose L(mn(x)x =0 for n > 1 and L(wn(x)xn_2)= 0 for

n > 2. For each integer k > 1 let Tk be the statement

"for each m = 1,2,3,ooo,k, L(q)n(X)Xn-m) =0 for all n _>- m."

It will first be shown, by an induction argument, that 'I'k is true for

each k = 1,2,3,... . By hypothesis Tl and T2 are true. To show that

T, implies T n—[k+l]) =0

K it is sufficient to demonstrate that L(wn(x)x

k+1
for all n > (k + 1) since, by the induction hypothesis, L(@n(x)xn-m) =0

(whenever n > m) for each m = 1,2,3,...,k. For any n > {k + 1), multi-

n-L k+1]

plication throughout the recurrence (5) by x , followaed by one

application of the operator L, yields

L(q’n(x)"n_[k-‘ﬂ]) = L(e 1(x)xn‘k) +bn-lL(¢n-1(x)xna[k+l])

n-

- cn_lL(wn_Q(x)xn_[k+l])o

[i] L(@n_l(x)xn_k) = L(g (x)x[n-l]_m), where m = k - 1. By

n-1

the induction hypothesis, the right side here vanishes for
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all (n-1) > m since m < kj that is, it vanishes for all
n > k and hence for all n > (k+l).
Lii] As in part (i], L(mn_l(x)xn'Lk+l]) = L(wn_l(x)xtn"l]-k) =0

for all (n-1) > k; that is, for all n > {k+1).

[1ii] L(Qn_2(x)xn_[k+1]) = L(mn_g(x)x[n'QJ'm) where

m=k ~1 and, thus, m < k. As in the preceding parts, the
right side is zero for all (n-2) > m--i.e., for all n > (k+l).

Hence the induction is completed and T, is true for all k > 1. Now, for

k
any integer j > 1, the statement Tj yields in particular that L(wj(x)xjﬂ“)=c
for m = 1,2,3,...,j3 equivalently, L(Qj(x)xm) =0 for m= 0,1,2,...,3-1.
But, since L is linear, L(pj(x)wi(x)) = Q0 for any i < j, which completes
the proof.

n-l)

Observe that (6) describes the conditions L(mn(x)x = 0 for

n—2)

n> 1 and L(wn(x)x = 0 for n > 2. Conseguently the recurrence poly-

nomials ®. have the property
L(wi(X)@j(X)) = 0 (whenever i # j) . (8)

As will be shown in Lemma 3, the operator L and the quasi-moments
v, have significant interpretations if the recurrence polynomials o
{or Pn) are orthogenal. Prior to Lemma 3, another notable property of the
L {or of the Pn) is deduced as Lemma 23 and then, with the aid of Lemma
3, it is shown that this property also has a significant interpretation
{see (11)) if the pelynomials ® are orthogonal.

Lemma 2. For n > 0, let

-
|

= Lip, (x))

(9)

L= Lp 2 (x)

Y
i

and
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Then
(2) v, = ¢ ¢ erec forn 0
A (10)
= -2
and (b) ¢ = A C,C\Cpe-:C, for n >0,
where ¢ =C =] ,

0 [+

Proof. {a) Since x" can be written as a linear combination of 95:%1s
®opeees®  and L(mk(x)mn(x)) = 0 if k < n, it is easy to see that
L(wn(x)xn) = L(@r?(x)) for n > 0. Multiplication throughout the recur-

n-l, followed by one use of the operator L, shows that

rence (5) by x
- n n-1 =

0= L(¢n(x)x ) - an(¢n_1(x)x ) for n > 1, whence Yn = Carn—l for

n> 1. But, from the definition of L, Yo © 1l; and a simple induction

yields that Yn = Clc2c3"°cn for n > 1 -- which is precisely asserticn

(a).

(b) From (4), L(P2(x)) =[AAA, ... A1 Lp2(x))

-
— 2 -
= [A0A1A2 oee An_l] CiCheaaly
- 2

= (A A, oA ]

”~

C c, C c
) [A:}\][AEJ[Ai] o )
l'o 271 32 n n-1

A
£

A
n

C1C2C3 sae Cn forn> 1,

and assertion (b) follows at once.

Definition 1. Let a{(x) be a function which is bounded and non-decreasing

and assumes infinitely many different values over an interval [a,b] on

b
which it is defined (here - < a < b < + ). Further, let | da(x) = 1
a
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b
( f da(x) = a(b) - afa) > 0 and n(x) can be scaled). Then da{x) will
a

be called a distribution over the interval [a,b]. The moments of a dis-

tribution da{x) over an interval [a,b] are the numbers B given by:

b
By =‘r x'da(x), n=0,1,2,... .
a

Definition 2. Let {Qn} be a sequence of polynomials in which Qn has

degree exactly n for n = 0,1,2,... . If there exists a distribution

b
da{x) over an interval [a,b] for which I Qi(x)Qj(x)da(x) = 0 (when-
a

ever i £ j), then the polynomials Q, n> 0, will be called orthogonal

polynomials associated with the distribution da{x) over the interval

[a,b]. 1f, in addition, the orthogonal polynomials Qn are normalized,

b
that is, I Q;z(x)du(x) =1 for n > 0, then they will be called ortho-
a

normal polynomials associated with the distribution da(x) over the interval

[a,0].* Finally, if there exists a function w{x) such that da(x) = y(x)dx

for a < x < b then orthogonal (orthonormal) polynomials associated with

the distribution da(x) over the interval [a,b] are called orthogonal

(orthonormal) polynomials with weight y(x) over the interval £3i21°
Lemma 3. Let da(x) be a distribution over an interval [a,b]. The fol-
lowing three statements are equivalent.

(a) The quasi-moments v are the moments of da(x) over [a,b].

(b) The operator L has the form

#
Such orthonormal polynomials are also called the orthogonal

polynomials associated with the distribution da{x) when they are stan-

dardized so that the ccefficient of the highest power of x is positive

[22].
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b
L(p(x)) = [ p(x)da(x)

a

for any real pelynomial p{(x).
(¢) The recurrence polynomials o are orthogonal polynomials
associated with da(x) over [a,b].

b

Proof. [1] ((a) = (b)). Suppose v =‘r x'da(x) for n = 0,1,2,...
a

Then, from (7),

n-1
x +... +d1x+do)

n
+... +
I"(dnx +d:’l-l dn‘”n'hdn-l"'n-l +dl"'l do\’o

b n-1
I x “da(x)+...+
a

b
n
dn Ia x da (x) +dn-l

b b
d, Ia xda (x) + d, Ia da (x)

b
n n-1
ja {dnx +d g x ... td)x +d0} da {x)

n-1

n
for any real polynomial dnx + dn X + ... dlx + do.

-1
[1i] ({b) = (c¢)). Suppose L(p(x)) =Ibp(x)da(x) for any real
a

b
polynomial p{x). Then, from (8), I (pi(x)tpj(x)da(x) = 0 whenever
a

i# 3 -- that is, the P, N > O, are orthogonal polynomials associated
with da(x) over [a,b].

[411] {(c) = (a)). Suppose the recurrence polynomials o, are
orthogonal polynomials associated with the distribution da(x) over the

. b -
interval [a,b]. Then f q:n(x)xn l4a(x) = 0 for n >1 and
b _ a
I cpn(x)xn 2dm(x) = 0 for n » 23 in other words, the moments o of da{x)
a

over [a,b] satisfy (6). But the quasi-moments v generated by the g
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also satisfy (6) and a simple induction argument, using (6), verifies that
A for n = 0,1,2,... . This completes the proof of Lemma 3.

In case the polynomials Py given by recurrence (5) are orthogonal
polynomials associated with a distribution da(x) over an interval [a,bl,
the operator L is integration and Lemma 2 takes a very useful form:

b A
g ¢ J"a Pn2(x)du(x)=—§ € CCy - C forn0. (11)
That is, the square of the norm of Pn can be computed directly from the
coefficients in the three-term recurrence satisfied by the Pn.

It is demonstrated in the next section that if ¢, > 0 forn2l,
then the sequence {vn} of quasi-moments generated by the recurrence
polynomials ?, is the sequence of moments of some distribution da (x)
over some interval {a,b]. Hence, by Lemma 3, if <, > 0 for n > 1 then
the polynomials ? generated by (5) are orthogonal polynomials associated
with some distribution da(x) over some interval [a,b]. The converse of

this last assertion is also proved, which then gives the important equiva-

lent of orthogonality described in Lemma 5.

Conditions for Orthogonality of the Recurrence Polynomials

Let o, n > 0, be the polynomials given by the recurrence (5) and
let {vn} be the sequence of quasi-moments generated by the P Let

be the (n+1)st Hankel determinant for

Ao Z£1 and, for n 2 0, let An+l

the sequence {vn} ; that is,



o} 1 2
\Jl V2 V3 .
17 V2 Y3 Va o
Vi Vatrl Vn#2

Lemma 4. Suppose that, in (5), ¢, > 0 for

_ .ntl n_n-1 3
An+l = cO Cl c2 < Cop

Proof. It is first shown that L(p2(x)) is

real polynomial p(x); this fact is used to
= {

implies that An+l coclcz...cn)an for n

.V
n
Vntl

© Vo for n >
. V2n
n> l. Then

2
€h-1 Spr D 2 0.

15

0. (12)

(13)

positive for any non-zero

show that & # 0,

=0,1,2,... « An

argument with this last relation then verifies the assertion

Lemma.

exist constants ko, kl, k .o,kn, not all

27"

+ + ...
k k2¢2 +kn¢pn and hence

1%

L{p2(x))

J=o0 | i=0
3 2 2

= ) kL2 ()
j=o

Let p{x) be any non-zero real polynomial of degree n

zero, such that p

n n
L z kjcpj(x) z k @, (x)
j=o0 i:o

no[ron
X z kik s Lig; (x)g;(x))

which
induction
of the

2 0. There

il

+
kOq,O
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where (8) and (10) have been used. Thus, L(pz(x)) is a sum of non-

negative terms of which at least one is positive; so L(p2(x)) > 0.

n n-1
x) = ceo + +d; t
Further, let p(x) dnx + dn_lx + dlx do’ then

13 o]l
L Z: d.x1

i
\Li=o

n

E: ii didjL(xi+j)

i=¢ j=o

]

0 < L(p2(x))

n
Z didj vi+j

n
W~

i=o j=o
non
where (7) has been used. That is, the quadratic form E: (vi+j)didJ
i=o Ji=o0
in the n+l variables d dl’d °"dn is positive definite; hence the
determinant of the form, namely An+1’ is positive. Since Al =V, = =1,
the relation 4 | = (¢ o° c2a,.cn)An holds when n = 0. For n > O let
n n- l n-2 .
= + s i i
¢n(x) a x a X an_2x + + a,x ta; where o, is given

by (5) and a 1. Now for i =0,1,2,...,n-l

n

i = =

L(¢n(x)x ) = E:ajvi+j o,
j=o0
and for 1 = n
N
i, _ E: - _
L(@n(x)x ) = 35V = SoC1%00 Sy L
j=o

since L(¢n(x)xn) = L{p 2 (x)).
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These ntl relations together can be written

v, Vi e e e Vo réo 0
! Vo oV |2 0
] . < L] - o ’
Yn-1 'n © o 0 Vona ah-1 0
_vn Vet o v2n - _1 _ _Ynd

where the coefficient matrix is non-singular since An+1 > 0, One use

of Cramer's Rule for the last component in the solution followed by a
YnAn
i i i = = oo A
simple Laplace expansion gives 1 A or & ., (coclc2 cn) N

for n = 1,2,3,..- - A direct induction argument with this last rela-
tion completes the proof.

Since each Hankel determinant An+ for the sequence {un\ is

1
positive (when c, >0 forn 1), it follows [8] that there exists a
distribution da(x) over some interval [a,b] such that the v are the
moments of da(x) over [a,b]. This fact, combined with Lemma 3, yields
an important result, due to J. Favard [5]; which may be stated as
Theorem 1. Let ®.5 N > 0, be the polynomials generated by the recur-
rence (5) and suppose that ¢ >0 forn=1,2,3,... . Then there exists
a distribution da(x) over some interval [a,b] such that the polynomials
o, are orthogonal polynomials associated with da(x) over [a,b].

A converse to Theorem 1 holds: when polynomials Pn are orthogonal

polynomials associated with a distribution da(x) over an interval [a,b],

they [22] satisfy a three-term recurrence of the type (1) and hence the
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multiples o, of these polynomiale satisfy a recurrence (5). It follows
that each . is necessarily positive. For suppose that the polynomials
o, given by (5) are orthogonal polynomials associated with some distribu-
tion da{x) over some interval [a,b]. Multiplication throughout the
recurrence by mnwl(x)’ followed by integration and use of the orthogonal -

ity, shows that

b b
0 = r xmn_l(x)¢n(x)du(x) - < f miml(x)du(x)
a

L%

d

or

b 2 b 3
Ia . (x)da{x) = <, Ia mnul(x)da(x) for n=1,2,3,... -

But a(x) has an infinite number of points of increase over [a,b] which
implies [22, p. 431 that fk)mjz(x)da(x) >0 for j » 0. Consequently
<, is a quotient of positivz numbers and hence is positive for n 2 1.

This last result combined with Theorem 1 is stated in the nota-
tion of recurrence (1) to give
Lemma 5. A necessary and sufficient condition for the polynomials Pn
(given by recurrence (1)) to be orthogonal polynomials associated with
some distribution over some interval is that Cn/(AnAnwl) be positive
for all n 2> 1.

Lemma 5 can be invoked, incidentally, to illuminate a point
raised by H. L. Krall and O. Frink [14, p. 114]. The Bessel polynomials
satisfy a recurrence of the form (1) in which B0 = 1, Bn =0 fornyl,
An = 2ntl for n 2 O and Cn = -1 for n» 1, It is also known [14] that

they are orthogonal polynomials with weight w(x) = exp(-2/x} around the
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unit circle in the complex plane. Krall and Frink observe that the
Bessel polynomials are not orthogonal polynomials associated with a
(non-negative valued) weight over an interval. In point of fact more can
be said: Lemma 5 shows that the Bessel polynomials are not even orthog-

onal polynomials associated with a distributign over an interval.

Formulation of Results

A number of the properties of the recursively generated poly-
nomials Pn are used in the subsequent analysis. Some of these results
are described in the preceding material but are stated for the poly-
nomials L They are included in Theorem 2 in terms of the coefficients
A, B and C_ of the recurrence (1).

n’ “n n
Suppose conditions (3) hold so that the recurrence polynomials

Pn are orthogonal polynomials associated with a distribution da{x)
1

E__ n’
n

orthonormal polynomials associated with da{x) over [a,b]y and the zeros

over an interval [a,b]. The polynomials Q = n > 0, are

of P are precisely those of Q . It is well known [22] that for each

n > 1 the zeros of Qn are real and distinct and lie in (a,b)s in addi-
tion, the zeros of Qn separate the zeros of Qn+l° These facts together
with Lemma 5 and relation (11) give

Theorem 2. Let Pos for n > C, be the polynomiais generated by the

recurrence {1) and suppose that Cn/(AnAn ) is positive for n=1,2,3,... -

-1

Then (a) there exists a distribution da{x) over some interval [a,b] such

that

b

Ja P, ()P (x)da(x) = 0 1f 1 /33



(c)

20

for each n > O

p )

b
_ 2 - ° =1).
Cn = ja P (x)da(x) = i CoC1C2 oe C (where C0 =1);

=3

for each n > 1 the zeros of Pn are real and distinct ard
lie in (a,b). Furthermore, no zero of Pn can be a zero of

Pn+l -
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CHAPTER IiI

TRI-DIAGONAL COUNTABLE SYSTEMS OF LINEAR

ORDINARY DIFFERENTIAL EQUATIONS

The investigation in this chapter covers the solutions of cer-
tain countable systems of first- and second-order linear ordinary dif-
ferential equations with (constant) coefficient matrices that are
tri-diagonal. The entries in a coefficient matrix are used for the
coefficients in a recurrence (1) and, under the hypothesis (3) on
these elements, the orthogonal polynomials Pn are employed for con-
structing solutions to both the infinite system and a finite trunca-
tion of the system. The initial seament of the solution to the infinite
system can be conveniently taken as an approximation to the more cumber-
some solution of the finite system since error estimates for such an
approximation are included in the development.

The well known [22] relation between a Stieltjes integral and
one of its Riemann-Stieltjes sums in which the summand has Christoffel
numbers for its coefficients is an important one for the following
analysis. It is introduced in the next section, reformulated in terms

of the notation (1) and summarized as Theorem 3 (The Quadrature Formula)}.

The Quadrature Formula

Suppose conditions (3) hold so that the recurrence polynomials
Pn are orthogonal polynomials associated with a distribution da(x) over

an interval {a,b]. Let N > 2 be an integer and let Z)s ZpseessZy bE
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the zeros of P,. For j =1,2,...,N let {Kj} be the Christoffel

N
numbers associated with the zeros {zj%; i.e., using tne orthonormal
X 1
polynomials Q_ = P,
S N
Yn
s
TN+

A for j = 1,2,.44,N . (14)

i QN+1(zj)Qﬂ(zj)

Let f{x) be any function which is continuous over [a,b] and for which
f(QN)(x) is continuous over [a,b]; then [22, p. 369] there exists a
E in [a,b] such that

b N (20

= { +
[ #0dan = ) rjitz) + Sy (15)
a )
i=1

Substituting from (10) and (4) into (14} and (1%) leads to
Theorem 3 (The Quadrature Formula). Suppose conditions (3) hold so that
the polynomials Pn are orthogonal polyncmials associated with a distribu-

tion da(x) over an interval [a,b]. Let N > 2 be an integer and let

Z)3Zoseess2y be the zeros of PN. For j = 1,2,...,N let

N AOClC2,nﬁCN

n . (16)
j PN+l(zj)PN(zj)

Let f(x) be continuous and have a continuous 2Nth-order derivative over
[a,b]. Then there exists a ¥ in [a,b] such that
b

f £(x)da(x) =

a

1=

kjf(zj) +E, (17)

[
—

3
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where

clcz.,.cN f(QN)(E)

E =
2. 2 2 {(2N)!
AR Ay vl Ay

(18)

The Quadrature Formula has an interesting interpretation: the

Tchebi cheff-Markhoff-Stieltjes Separation Theorem [22, p. 49] shows that
N b

E: kjf(zj) has the character of a Riemann-Stieltjes sum for f f{x)da(x).
. a
j=1

Solutions of Initial-Value Problems for First- and
Second-Order Countable Systems

The discussion in this section concentrates first on a pair of
countable second-order systems and then on a pair of first-order systems.
It will be assumed throughout that the coefficients An(n > 0) and Cn(nng)
satisfy conditions (3) so that the polynomials P given by (1) are
orthogonal polynomials associated with a distribution da(x) over an
interval [a,b]| and thus the Quadrature Formula (17) holds.

Let k be a prescribed non-negative integer which is less than the

integer N > 2, and let a, and Bk be specified constants. Consider the

k

two systems
3 = B -
AsY o¥o T N

MYy = Gy ¥ By -y,

Ag¥y = -Covy + By, = vy (19)
Anyn = -Cnyn—l + Bnyn - Yn+l (n=1 ,2,on.,N'2)

AviYN-1 T Cnein-2 T OBnaiYie
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and

Ao o Boyo R4
MY, = Oy, By - v,
(20)
Aj¥y = Coyy * Boyp - v
AVn = CaV¥nar ¥ By, - yn+1’(n 2 1),
both subject to the initial conditions
yn(O) = Qn(O) =0 forngk, (21)
yk(O) = a, and yk(O) =B, -
For each non-negative integer n, for t > O and for any x let
fn(x,t) = Pn(x)F(x,t),
where
1 ﬁk
7 Pk(x) a, cosh (t o/~x )+ —= sinh (t /-x)|, x< 0
k -X )
F(x,t) = (22)
1 Bk W
E——Pk(x) o) cos (t,‘/x_) + —= sin (t ¥x )|, x>0.
k WX
Theorem 4. Suppose that, in system (20}, | An >0 forn=1,2,3,..0 .
n n-1

Let P (n > 0) be the polynomials prescribed by recurrence (1) -- thus
these polynomials are orthogonal polynomials asscciated with a distribu-

tion da(x) over an interval [a,b]. For n = 0,1,2,...N let



25

N
x (1) = iz 1) (23)
j=1
and for n > 0 let
b
x (t) =fa £ (x,t)da(x) . (24)
Suppose that for each t > O
; ® 5 . > 3%
Xn(t) =‘r 8t fn(x,t)da(x) and Xn(t) = I > fn(x,t)du(x), (29)
a a Bt
(n>0).

Then: (a) the X (t) {n > O} constitute a solution of the infinite
initial-value problem (20)-(21} for t > O;
{b) the xn(t) (n =0,1,2,...,N-1) constitute the solution of
the finite initial-value problem (19) and (21} for t > C;
(¢) for any n = 0,1,2,...,N-1 and any fixed t > O there exists

a £ in [a,b] such that

n X
where
C.C....C N
Ex - 1 22 2N 5 a = fn(x’t) . (26)
[(2) A A°%A7 .. a0 Ay ox (x,t) = (€, %)

Proof. It is evident from the orthogonality of the polynomials Pn (and the
first of hypotheses {25)) that the functions Xn(t), n > 0, satisfy the

initial conditions (21). Also, for each n = 0,1,2,...,N-1
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N
a
_ rw S _ —E . ) .
xn(O) = i: ?\jfn(zj)9 where fn(x) = Kk Pn(x)Pk(x) is a polynomial of
j=1

degree at most 2N-2, and hence from the Quadrature Formula

b

fa T (0dal(x) = xj’f“n(zj) = x (0) .

Xn(O)
j=1

Similarly in(O) = §n(0) so that the functions xn(t) satisfy the same

initial conditions as the functions Xn(t) {n=0,1,2,,..,N-1} -- namely

those in (21). Clearly assertion (¢) is a restatement of the Quadrature
Formula for the functions fn(x,t)o Hence it remains to show that {Xn(t)}

satisfies the system (20) and {in(t)} satisfies (19). From (22),

2
2__ fn(x,t) = -xfn(x,t) for n > 0, any t > 0 and any x3; for convenience
at

of notation in the remainder of the proof, let X  (t) = x-z(t) = Q.

1
[i1 For each t > 0,

mAnﬁn(t) -Cc X L (t) + Ban(t) - X A{t)

n n-1 ntl

b b
-A_ Ja [ﬁxPn(x)F(x,t)]du(x) - C Ia Pn,l(x)F(Xst)dG(X)

b b
+8 [P F(GDda(x) - [ P (0)F(x,t)dalx)
a a

b
Ia [(Anx + Bn)Pn(x) -CnPn_l(x) - Pn+l(x)]F(x,t)du(x)

0 ferny 0.

This completes the proof of assertion {(a).

[ii] Similarly, for each t > O,
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(t)

(¢) + ann(t) - X4

N
= ) Lz, #BOF (2 - C P (2) <P L (2016 (2, 8)

=0 forn=20,1,2,...,N-1

(note that the last equation of {19) is satisfied since
XN(t) = 0); this gives assertion (b) and hence the proof
of the theorem is complete.

The next theorem treats the case of a corresponding pair of count-
able first-order systems. Those detalls of proof which parallel portions
of the proof for Theorem 4 are omitted but other major parts are included.

Let k be a prescribed non-negative integer which is less than the

integer N > 2 and let & be & specified constant. Consider the two sys-

k
tems
Aoyo = Boyo ) y1
My, = Ciyg * By -y,
Ao¥o = =Covy + Boyy - yg
(27)
AV, = -Cly, 1 *B Y, " Yo (n=1,2;...,N-2)
Ag-1n-1 = Ono1Yn-2 PBuoina
and
Ay = -
0’0 BYo = V3
Ayp = C1Ye F BT - Y (28)
Aoy, = Loy + Boyy - vy

ApYn = -Cnyn—l-*Bnyn "Vt (n2 1),
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both subject to the initial conditions

yn(O) =0 forn#k

(29)
and yk(o) =€,
For each non-negative integer n, for t > 0 and for any x let
gn(xyt) = Pn(X)G(Xpt) ’
(30)
x -tx
where G{x,t) = 7= P (x)e .
S k
Cn
Theorem 5. Suppose that, in system {28}, Fao— > 0 for n=1,2,3,...
n n-l
Let Pn’ n > 0, be the polynomials prescribed by recurrence (1) -- thus

these polynomials are orthogonal polynomials associated with a distribu-

tion da(x) over an interval [a,b). For n = C,1,2,...,N let

N
V) = ) gtz 1) (31)
j=1
and for n > 0 let
b
v (1) = ja g, (x,t)da(x) . (32)

Suppose that for each t > 0
Y bﬁ_
Vn(t) = ot gn(x,t)dc.(x) (n>0). (33)

Then: (a) the Vn(t) (n > 0) constitute a solution of the infinite

initial-value problem (28) - (29) for t > 0
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(b) the vn(t) (n =0,1,2,...,N-1) constitute the solution of
the finite initial-value problem (27) and (29):
(c) for any n = 0,1,2,..,,N-1 and any fixed t > C there

exists a ¥ in [a,b] such that

Vn(t) = Vn(t) + E ]

v
C,C,...-C. 2N
where Ev = 1222 N 5 2 N gn(x,t) . {34)
3 :(
[2N:]A ASAS .. AL (A Ax (x,t)=(z,t)

Proof. The orthogonality of the polynomials Pn implies that the functions
Vn(t) (n = 0,1,2,...) meet the initial conditions (29). For each
n=0,1,2,...,N-1 the Quadrature Formula shows that vn(O) = Vn(O); hence
the functions vn(t) also satisfy (29). Assertion {34) is a reformulation
of the Quadrature Formula for the functions gn(x,t)a For c¢onvenience of
notation let an(t) = v_l(t) £ 0. Since gn(xgt) = —xPn(x)G(x,t) for

At
n> 0, any t > 0 and any x,there follows:

[i] for each t > O, ~AnVn(t) - Cnvnmlct)'*BnVn(t) —Vn+l(t) =
. b
- \'- T =[)
ja [(a x+B )P (x) = C P (x}-P__ (x)]6(x,t)da(x) =0
for n > 1

and [ii] similarly, for each t > O, -A Gl(t)—cnv 9 +E v (t)-v. {(t)=0
for n = 0,1,2,...,N-1, where vN(t) =0,
which completes the proef of the Theorem.
If the interval of orthogonality [a,b] is finite, conclusions addi-
tional to the ones in Theorems 4 and 5 c¢an be reached. In particular,
hypotheses (25) and (33) are satisfied while E.~>0and E, >0 as

N —»e 3 these statements are justified in Lemmas 6 and 7 below.
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Lemma 6. Suppose the interval of orthogonality [a,b] is finite. Then
hypothesis (25) is satisfied; furthermore, for any fixed integer n > O
and any fixed t > 0O, xn(t) i Xn(t) as N —» o3 that is, in (26),

Ex => 0 as N —»c,

Proof. a{x) is a bounded non-decreasing function over the finite
interval a < x < b and thus is of bounded variation there. Let T be
an arbitrary positive number. It can be easily verified that for n2 0

2

a_ 8__
fn(x,t)p e fn(xst) and I f

(xyt) are all continuous at each point
(x,t) of the plane region a < x < b, ~T < t < T, Consequently a standard
theorem* can be invoked twice to show that (25) holds. The result Ex -> 0
as N —» o is well known [22, p. 3421,

Since gn(xgt) and g;-gn(x,t) are both continuous over the plane
region a ¢ x < b, -T < t ¢ T (for arbitrary T > 0), a completely anaiogous
proof to the preceding one establishes
Lemma 7. Suppose the interval of orthogonality [a?b] is finite. Then
hypothesis (33) is satisfied; furthermore, for any fixed integer n > O
and any fixed t > O, vn(t) - Vn(t) as N —»eo,

It might be noted at this juncture that finiteness of the interval
of orthogonality is a sufficient condition for hypotheses (25) and (33)
to be satisfied but is by no means necessary. For example;, the Laguerre
polynomials Ln(x) are orthogonal with weight w{x) = e * over the interval
[0, )3 using the analog of (33) say, tne Weierstrass M-Test insures

absolute and uniform convergence of the integrals in question and hence

*
See, for example, T. M. Apostol, Mathematical Apnalysis, Addison-
Wesley Publishing Co. {1960), p. 21%.
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oo (e )
da AR T S S Bt coyy foy.mE¥X_eX ,
rs Jo Ln(x)Lk\x)e e dx = fo AT [1.!_1(x)kax)e e "Jdx for t> 0.
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CHAPTER 1V

A NON-CLASSICAL FAMILY OF POLYNOMIALS ORTHOGONAL

OVER A FINITE INTERVAL

Since many of the polynomial sequences determined by a recur-
rence (1) are composed of familiar Sturm-Liouville polynomials [10],
it seems desirable to have available sequences of polynomials which are
not of this classical type. Just such a one-parameter family is described
below in {39). It is demonstrated that these polynomials are orthogonal
polynomials with weight w(x) = [x{%® (a > -1 a parameter) over the inter-
val [-1,1] but are not Sturm-Liouville polynomials if a # 0. The proof
of their orthogonality given here illustrates a number of points raised
in Chapter II and, as indicated in Lemma 9, also depends on the evalua-

tion of an interesting determinant Dn.

The Non-Classical |x|% Polynomials

Let @ > -1 be a parameter and let Sﬁa) {(n > 0) be the polynomials

determined by:

1}
—

(a)
5, {x)

X (35)

w
o
=+
o
——
>
~—
H

S(u)(x) = X Siu)(x) - en8£fi(x), n>l,

where

r 2
nta sin’ 3
En = (2[‘1 +a - l)(?_n 4+ a + l) for n Z 1 .
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Note that (3%) has the form of recurrence (5) in which bn =0 forn2> 0

and ¢. = e_ forn> 1l. Now let
n n -

8= (2, -b, -bo)[(bl-b0)2 +aley +c))] + 9¢ (b -by)

2

g,(n) = [{n+1)b . + (1-r)b_-b, -b J[(b -b )" + 4(c, +c,)1/3¢c,

+ [(—2n—l)bn+ + (2n-3)bn +b, + 3bo] , n2l,

1

and

- 2 2
92(n) = [(n+1)bnbn+l -nb “-b b +c, -(2n+1L)<:nJrl +(2n-3)cn][(b1 bo) +4(c1+c2)1/3c2

2 2
+ [(—2n-l)bnbn+l +(2n-1)bn * b b +b "+ dnc_ . + (-4n+8)cn], n>l.

To prove that the polynomials Sﬁn)(x) (n > 0) are not Sturm-Liouville
polynomials if a # O, it suffices to show [10] that 4 = O but that it is

not the case that g,{n) = g.(n) = O for every positive integer n. It
1

2

is readily seen here that A=0, g (n) =0 for n > 1 and

1

gQ(n) = [el -(2n+l)r=\n_.__1 +(2n-3)en][4(el+92)j/3e2-+4nen+1-+(-4n+8)en,r|21.

The substitution for ey €5 € and e then yields that

n+l
2 . 2.0 2oty 3 2
 (14q) (3+) (a“+6a+3) [a {sin“( 5 -sin (”?f_)} 1]n"+h n“+h n+h,
3n + h4n + h5n + h6

where hl’ hz,no,h6 are independent of n. To show that the condition

g?(n) =0 for n21 (37)

is not satisfied when a # 0, it is sufficient to show that lim gz(n)
n-»>o
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either does not exist or is not zero -- this result will be demonstrated
through an examination of 95 at odd and even integers.

It can be easily computed from (36) that

3 2

lim g (2m+1) = & ha g“ ta
m=> "
and
3 2
lim g, (2m) = 2 6; -
m =»co

Now if lim 92(2m + 1) £ lim 92(2m), lim gQ(n) does not exist. So
m=>® m=>o no>w

the only values of a for which 1lim gz(n) does exist are those for which
new

(a3 + 62’ + a)/3 = (-a” - 60° - 50)/3 or ala + 3+ #6 )(a+3-4/6 ) = 0;
that is, a = 0, -3 - 4@7 or -3+ 4@7. But the first two values are

excluded, since a # 0 and a > -1; and for a = -3 +/6 ,

3 2
lim g (n) = lim g,(2nt1) = & toa ta 6 g (6 £0.

3
n e m »eo

Consequently condition (37) is not satisfied and thus the polynomials

(a) . . . #
S~ are not Sturm-Liouville polynomials if a £ 0.

#
If « = 0, then & = 0 and gb(n) = gz(n) = 0 for n > !, which
imply [10] that the polynomials S£ ) are Sturm-Liouville polynomials.
But the Legendre polynomials Pn satisfy a recurrence (1} where

AL = (2n+1)/(n+1) for n > O, B =0 forn>0 and C_= n/(n+l) for
n > 1, so that the corresponding polynomials o, = [A0A1A2°°°An_1}'l Pn
satisfy recurrence {5). However, (5) here is precisely the recurrence

{(35) with a = 0 and hence Sno = o3 in other words

600y = 02" [(n-1)1]?
n {(2n-1)1
where the P (n = 0,1,2,...) are the Legendre polynomials.

Pn(x), n>l,
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Orthogonality and Other Properties of the [xla Polynomials

It has been shown that the polynomials s N2> G, are not

gla)
n

Sturm-Liouville polynomials if a # 0. Some other interesting proper-
ties of these polynomials (particularly their orthogonality over a

finite interval) appear in the following development. The first prop-

(a)

n

erty given (concerning the evenness and oddness of S and the vanish-

ing of the corresponding quasi-moments) is a basic one for the subsequent

discussion.

(a)

An elementary induction argument with (3%) shows that Sn is an

#*
even or odd function according as n is an even or odd integer. Now let

{Tn} be the sequence of quasi-moments generated by the Sﬁu). It is

readily seen, using the even-odd property of {Siu)}, that T2j+l = Q
for j = 0,1,2,... .
In preparation for the basic lemma used in proving orthegonality,

let {Vn} be the sequence of Hankel determinants for {Tn}; that is,

let

#
In fact, a direct but tedious induction argument using the
recurrence (35) verifies that

[l"l/QJ n/2
S(a)(x)'—"xn+ Z (- %)k [k]>

n
k=1

n+l n+l )n+1

{ont2a+(-1)""" -1} {ontoa+(-1) 5} ... {2n+2a+(-]

'4k+3} n-2k
X
{(2n+a -1){(2n+a -3) .., (2n+a -2k +1)

for n » 0, where [r] denotes the greatest integer which is less than or
equal to r.
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v =1
o
1 T n
T, T, - Ta
and Vo = for n = 0,1,2,... . (38)
o Ty Ta v v Toan
Tn Tntl Ttz 0t Ton

Lemma 8. Let {yn}, n > 0, be a sequence of real numbers for which

Yo = 1 and Y2j+l =0 for j = 0,1,2,..., and let
H =1
°

Yo M) 72 SR A

1o Y2 Vg oot Y
and &w1=

Y2 Y3 Y4 " Yato

Yo Yl Yot * o Yon
for n > 0. If Hn = Vn for n > 0, then Ve = 7T for all k 2 Q.

k

Proof. It is clear that Yo = 7T and y, =7 It will be shown that if

0 1°
¥ =T for j = 0,1,2,...,2m then y5 =Ty for j = 0,1,2,...,{2m+2). But
Yomtl = 0= Tontl " hence it need only be shown that Yomt2 = Tomto®

In view of Lemma 4, (38) and (35) yield that

v - Ml m m-l e2e
m+2 1 2°3 " Tm oTmtl

and Laplace expansion of V by its last column thus gives

m+2
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. _ mtl m m-1 2
ToraoVray T E(T 2T s ToseessTy ) =€) Tepes  aiiete o, (39)
2m+]
( ) E: A and A, d he cof
where f TorTyoToreensTo 4yl = T,AL an $ enotes the cofactor
i=o

of T, for i = 0,1,2,...,(2m+1). By the induction hypothesis

Vo = H 4 and, sincey, =T, L, f(TO,Tl,rz,,,,,Tm+l) =

f(yo,yl,yz,a,,,ym+l), On the other hand, Laplace expansion of Hm+2

then gives

e e e‘e (40)

) = em+1 m m-1 2
1 "2°3 """m

\ + f(To,Tl,T

Yom+2Ym+1 mtl

2,.«.,12m+1

But v, # 0 (by Lemma 4) and a comparison of (39) and (4C) shows that

Yomto = Tomto which completes the proof of the Lemma.

The goal of the remaining discussion is the verification that the

{a)

polynomials Sn

are orthogonal polynomials associated with the weight
+
wix) = ETSL |x|® over the interval [-1,17.

For n > 0, let

1
+1 n
By = g7§—.f x| x]|%dx 3 (41)
-1
that is,
Bo = 1,
(42)
p2j+l 0 for j 0,1,2,..
_ . a+1 _
and pQJ " 3T+ a 41 for 3 = 0,1,2,... .

Further, let
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and D41 = for n > 0. (43)

Pn Fnper HFato o 00 Bop

Observe that Dn+1 is positive (for n > 0) since it is the determinant

of the quadratic form described by

n n
Z E: ddp,,. =L (d x"+d_ "4, +d, x+d )2 |x|%x

n n-1 1 o
i=o0 j
and the right side is positive for any real do’ dl’°'°’ dn (not all zero).
I+ will be shown, by evaluating Dn+1’ that Dn+l = vn+l (n=0,1,2,.00)

and hence from Lemma 8 that «_ =p_ for n > O. But then {Tn}. is the

+
moment sequence for wlx) = &jsi |x]% wnich implies (from Lemma 3)

orthogonality of the polynomials Sﬁa)o
Lemma 9. For any n > 1 ,
_ _n_n=1_n=2 P
Pl T €1 % f3 oo %%y v

where e is given in {35).

Proof. It will be shown that Dn+l = (ele2,uoen)Dn or, what is simpler
here, that D, = (eleQ°°“en)[ele2°°°en-10nml] {n > 2), from which the
assertion follows by a direct induction. The proof falls naturally into

two cases according as n is an even or odd integer. In each case the
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verification is somewhat detailed; hence merely a recipe for the proof

is given.

Case 1: let n > 3 be an even integer. Then

n+l

[1]
[i1]

[111]

[iv]

[v]

[vi]

at+l atl a+l a+l

a+l 0 a+3 0 ' ag+4n-l 0 a+n+l
a+l a+l at+l

0 at+3 0 a+s ° " 0 a+n+l 0

atl 0 at+l 0 a+l 0 a+l
at+3 a+% ° a+ntl a+n+3

a+l a+l 0 L, a+l 0 a+l
a+ntl a+n+3 a+2n-1 a+2n+]

Multiply each of the n+l rows by E%T .

Multiply Tows 1 and 2 by (a+n+l), rows 3 and 4 by
(a+n+3),..., Tows {n-1) and n by (a+2n-1}, and row (nt+l)}
by (a+2ntl).

Subtract column (n+l) from column 1, from column 3,...,
from column (n-3), and from column {n-1). Subtract
¢column n from column 2, from column 4,..., from column
(n-4), and from column (n-2).

Multiply column 1 by % , columns 2 and 3 by ;%3 s columns

1

4 and 5 by ., and columns (n-2) and {(n-1) by 5

3 s
Multiply columns 1 and 2 by (¢ + n + 1), columns 3 and 4

by (a + n+ 3),..., columns (n-3) and (n-2) by (a + 2n - 3),
and column (n-1) by {a +2n -1).

Subtract row {n+l) from row 1, from row 3,..., and from row

(n-1). Subtract row n from row 2, from row 4,..., and from
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row {n-2).
[vii] Multiply row 1 by % , Tows 2 and 3 by ;%5 , rows 4 and 5

by yese, and rows (n-2) and (n-1) by %.

n-4

[viii] Multiply each of the first n-1 rows by (a+l).

Then,
a+tl at+l a+tl
atl 0 a3 © . ¢ a1 2 90
atl atl atl
0 a+3 0 ath ° a+n-1 0 0 0
a+l atl atl 0 O
at3 T T s)
Doy = Y, L (44)
at+l atl atl
sint 0 awmir 0 -0 0O N5 000
0] 1 0 1 ... 1 4] 1 4]
1 ] 1 0 . o] 1 0 1
(a+1)2 [2%4%62 ... (n-2)°n 2
where Y = — . {45)

[ (a+n+1)2(a+n+3) 2. .. (a+2n-3) 22 (a+2n-1)3(a+2n+l)

In (44), two Laplace expansions (by a last column) give immediately

2 2 2 2

that Dn =YD It can be verified directly that e ey eq ...

+1 n n-1°

and thus the proof for Case 1 is complete.

Case 2: let n > 2 be an odd integer. Then



n+l

[i]
[ii]

{i11]

[iv]

[v]

[vi]

[vii]

[viii]

4]

a+l a+l a+)
atl 0 at3 0 e s atn 0
atl a+l a+l
0 at3 0 a5 0 atntD
a+l a+l a+l
a+t+3 0 a+5 0 T atnt2 0
0 atl atl 0 a+l
atn+2 a+nt4 ° * ° a+2ntl

Multiply each of the n+l rows by E%T .
Multiply row 1 by {a+n), rows 2 and 3 by (a+nt2), rows 4

and 5 by {a+n+4),..., rows {n-1) and n by («+2n-1), and

row (n+l} by {a+2n+l).

Subtract column {n+l} from column 2, from column 4,..., and
from column (n-1). Subtract column n from column 1, from
column 3,..., and from column (n-2).

Multiply columns 1 and 2 by ;%T ; columns 3 and 4 by ;%3 gasey
and columns (n-2) and (n-1) by % .

Multiply column 1 by (a+n), columns 2 and 3 by (a+nt+2),
columns 4 and 5 by (a+n+4),..., columns {n-3) and (n-2) by
{a+2n-3), and column (n-1} by (a+2n-1).

Subtract row (n+l) from row 2, from row 4,..., and from row
{n-1). Subtract row n from row 1, row 3,..., and from row
(n-2).

Multiply rows 1 and 2 by L , Tows 3 and 4 by

n-1
and rows (n-2) and (n-1) by % .

PR RERY

Multiply each of the first n-l1 rows by (a+l).
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As in Case 1, it now follows that

Pat1 = ZnPhoy o

(a+1) 2 22222 ... (n-1)2]
[ (a+n) 2(a+n+2) %, .. (a+2n-3)2]? (a+2n-1)>(a+2n+1)

where Z =

which completes the proof of the Lemma.

n_n-1_n-2 2
4 = o wn :
By Lemma 4, Vn+l e &y ey en-1%n} consequently
Vn+1 = Dn+l for n > 0. Hence, by Lemma 8, Th T Eg for n » 03 that

is, the quasi-moment sequence {Tn} is the moment sequence for

1k

wix) = 5 over [-1,1]. But then Lemma 3 implies that the cor-

respording polynomials Sﬁa) (n=0,1,2,...} are orthogonal polynomials

+
with weight w(x) = EEL Ix|® over the interval [-1,1].
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CHAPTER V

ILLUSTRATIVE EXAMPLES AND COMMENTS

The presentation in this chapter is framed around three examples
of countable systems of ordinary differential equations. The solutions
presented for these systems illustrate many of the techniques developed
in preceding chapters; in addition, they serve to indicate related but
unanswered questions in the study of infinite differential systems. In
each case the example is preceded by a discussion of some of the proper-

ties to be illustrated.

Example 1

The example below, which illustrates many ¢f the methods
developed in Chapters II and III, alsc shows that the solution fur-
nished for the infinite system may, in some cases, be represented in a
(simpler) form which is quite different in appearance from the original
one. The differential system considered here may be interpreted as a
model for an infinite vertical stack of flat plates, sliding horizontally
with respect to each other, with viscous friction between adjacent plates
(see the Appendix).

Consider the infinite system

m e _
p Yo & Yo *y

m ° _ _

p Yl - YO 2‘!’1 + Y2 (46)
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{? Vo = Yoy - 2, T Yy (21,
subject to the initial conditions

y,(0) =0 for n#k (47)
and yk(O) =€ s

where m and p are positive constants and k is a fixed non-negative integer.
When (46) is expressed in the form of the infinite system (28)

and the coefficients are identified, there results

An =Y for n» 0,
B)=1 and B =2 forn]l (48)
and Cn =1 forn2 1.

Let P_ (n = 0,1,2,...) be the polynomials generated by the recurrence
(1) in which the coefficients An, Bn and Cn have the values given in

(48). According to (4) and (5), the polynomials

n n
and P = (=)o P for n21 (49)

satisfy the recurrence
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cF‘n(x) =1,
o, (x) = x + b (50)
and mn+l(x) = (x+bn)¢ {(x) -cnwn_l(x),tnzl ,
where b =-2 ., b =-2 frn>1 (51)
) m n m <
02
and c =—= for n>1
n m2 =

From [10], the polynomials mn(x) are (apart from a linear change of the
independent variable and multiplicative factors which may depend on n

but not on x) Jacobi polynomials satisfying the differential equation

(-3 + 2 g0 (x) + [-x + 279 (x) + HL o (4) < g (52)

- = 2 2 = 2 .
for n = 0,1,2,... . Let x = 7=t + = and q,n(t) —q;n(m t+2£—),

then (52) takes the form

(-2 + LRt (2) + [-2t - 1]y (t) +nlnt1)y (t) =0 (53)

for n = 0,1,2,... . Identification of (53) with the Jacobi differential

equation
[-t2417y" + [p -a -(a +8 +2)t]y* + n(n+a +p +1)y = O

1 1
shows that a = 5 g = - 5

(/2 -2/2

and the polynomials ¢n(t) are thus the Jacobi

polynomials P apart from multiplicative factors which may

depend on n but not on t). These Jacobi polynomials satisfy the recurrence
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Pgl/z"l/z)(t) =1,

p1/2 -1/2)(4) < ¢+ (54)

and

n+l n+l n 2n{2nt+2)

n>1l.

The Jacobi polynomials Pﬁl/z’ -1/2)(t) are orthogonal over the

T 1
interval -1 < t < 1 with weight W{t) = M=t here f wit)dt = 1.
n 1t -1
But t = gf - 1 and hence the polynomials Pn satisfy
= (1/2r '1/2) mx =
Pn(x) = qP. (2p -1} (n=0,1,2,...} (55)

for some constants qo,ql,qz,... and are orthogonal over the interval

0< x< %s with weight

( m v4p - mX
wlx) = ’
2pm ofmx
%
where f wi{x)dx = 1. The multiplicative terms q, can be determined
0

as follows: let R_ (n > 0) be the polynomials described by

R (x) = p{1/2) “1/2)(5;;5 S . (56)
Then (54) yields
Ro(x) =1,
R (%) = & x - % (57)

pl1/2, <1/2)((y _ 20tl | ,(1/2, -1/2) () _ (2n-1)(2nt1) pr(i{z’,—l/m(t),
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_ rm{2n+i 2n+1 {2n-1) {(2n+1)
snd R 00 = [T * - S IR0 - > S5imiay - Raa (%) n2 1. (57)

From recurrence (1) (where the coefficients are given in (48)), the

coefficient of the highest power of x in Pn(x) is

nn
AA A, A= Cm o rrny. (58)

Similarly, from (57), the coefficient of the highest power of x in Rn(x)

is

2n"[ (2n-1) 1]
npnan[ (n-l) :]2

forn> 1. (59)

Consequently relations (55) through (59) show that q, = 1 and
n n .
(-»)" m; = q, 2m [(20-1) ¢] for n > 1.
n,n 12 -
p np 4 [{n-1)!]
Hence,
q, =1
and B (CV (VIS (60)
n S (an-1)1] 2 "2t
4p
Now r g f m wix)dx =1
! 0
o
and, from (11),
4p
™

d QI Pn2(x)u(x)dx =1 forn>l.
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Theorem 5 shows that a solution of the initial-value problem (46)-(47)

is thus given by

Vn(t) = kf x)P (x)w(x)e X dx
4
i kq qk J« 1/2 -1/2 ) (1/2 -1/2) 1)
p 2p
Map -~mx -tx
A~/ mx
£,9._0 7 )
Lok kJ' P(l/z"l/Q)(-cos B)P(l/z’ 1/2)(-1.:05 8)
T o D k
Ji¥cos o 2mp'(-1 +cos 0)t
¢+ —=———— sin 8 e de,n > 0.
J1 -cos 8
\ o
) ) cos{(QJ +1)%
But, from [22, p. 59], P(.l/z’ l/2)(-cos 8) = 62} for j > O3
J a; cos ('2')

and thus it is true that

3 !

Valt) = ;(I °°5{(2“+1)%} cos {(2k+1)g}[ 1 +cos @ sin e )]

o 1l -cos e cos

gﬂ% (-1 +cos B)t
e de

. 2 (4 8)t
= 8—5 j‘nz cos {(2n+l)g} cos{(2k+l)g} e o de
O

e 2 (-1 +cos 6kt
- X f [cos{(n+k+1)8}+ cos {(n-k)o}]e™ “o8 de

2 (-1 +cos nx)t

1
=g I [cos{(ntk+1)nx} + cos {(n-k)nx}]e " dx,
0
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for n = 0,1,2,... . This last expression has a very different appearance

from the form first given for Vn(t).

Example 2

In this section, after some preliminary remarks, an example is
given in which the furnished sclution of an infinite system is a good
approximation to the solution of its finite truncation over a consider-
able range of the independent variable.

It is indicated in Chapter III that the solution given for the
infinite system may be conveniently used to approximate the solution of
a finite truncation, although there is no assurance of a "close" approxi-
mation. Error estimates for such approximations are supplied in Theorems
4 and 53 and in Lemmas 6 and 7 it is shown that if the interval of ortho-
gonality is finite, the errors approach zero with increasing N (where N
is the order of the finite system). However, the problem of obtaining
practicable upper bounds for these errors for fixed N appears to be a
difficult one which has not, as yet, been subjected to a detailed inves-
tigation.

The furnished solution for the infinite system has a computationally
simple form, whereas the solution of the truncation is cumbersome and
requires that the zeros of a certain polynomial (of degree the order of
the system) be known. Consequently a solution of the infinite system is
always an attractive approximation; it is also a useful one whenever the
error incurred can be shown to be small.

The approximation Xn(t) ~ xn(t) (or Vn(t) ~ vn(t)) is, in many

cases, an accurate approximation for small values of t. However, there
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may be large values of t at which the error incurred by using the approxi-
mation is no longer small; the reader is referred to [6] for an inter-
esting illustration in a physical setting.

A finite first-order differential system is considered below as
an illustration. The first component of the sclution is approximated
by the first component of a solution to an infinite system for which the
given system is a truncation. The error estimate for the pair of systems
is also examined. This particular example was deliberately chosen to show
that there exist non-trivial problems in which a solution of the infinite
system is a good approximation to the solution of the finite system even
when +the order of the system is relatively small and t is reasonably
large.

Consider the system

Aoyo = Boyo - yl

Y = - + -
ATy C1¥o * Byyy - v

3 - . - = p 61
Ay =-Cy | +By -y, (n=1,2,3,...,9) (61)

ArooY100 = Cr00¥99 t BrooY100 ¢

with initial conditions

Yo(o) = %

(62)

and y (0)

n ¢ forn=1,2,3,...,100,

where
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A—M fornzo

no nt2 ’
(1) (63)
_ =4(nt]
By = Tnt2) (20¢1) forn20
and ¢ = ,Di2nd3 for n 3 1

n n+2) ( 2n+l

Let Pn (n > 0) be the polynomials generated by the recurrence (1) in which
the coefficients An’ En and Cn have the values given in (63). It can

#
be shown that the polynomials Pn are (apart from a linear change of the

independent variable and multiplicative factors which may depend on n but

(0,1)'

n It then follows that the poly-

not on x) the Jacobi polynomials P
nomials Pn(x) are orthogonal over the interval 0 < x < 1 with weight
w({x) = 2x. Theorems 2 and 5 show that the first component of the solution
to the injtial-value problem (61} - (62) may be written

0 -tz

101 i

-
Vo(t) = EO[AOC]_CQCan.'C].Ol] Z 102(2_‘])}3.{01(?) ? (64)

J=1

where Zy3Z5500052 are the zeros of P However, the first component

101 101°

of the corresponding solution to the infinite problem has the simple form

1
_ -tx
Vo(t) =e_ f; e {(2x)}dx
[-xe-tx e—tx]l
= 2¢ -
o} t t2
o)
250(1 - e“t - te‘t)
= > . (65)
t

#
See the preceding example for a detailed illustration of the
procedure followed here,
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Furthermore, at any t > 0

E, 9V (t) - v (1)

e (CCCy -ov Cppp )t £ 202 o-th
= ; - A 52 VI , for some £ in [0,1]
((202):] A ATAZAS - -« ATooM 01
4,202, -tE

50(102) f{io1):1 't

(203)°[ (202)1]3

*
A direct computation shows that for any t 2 0,

E < 50(10)"50O (6.0702)t°0% &

-500 202

< e (10) (6.0702)t

Thus, for example, if 0 < t £ 250 then

-15
=
E, < (1.47)(10) e, -

Example 3

The infinite linear differential system introduced below invelves
both first and second derivatives and hence is not of a type considered
in Theorems 4 and 5. Consequently none of the techniques described
earlier will supply a sclution,

The class of systems having both first- and second-derivative
terms is a natural area to consider for extending the methods of Chap-

ter III. The example presented here suggests that further investigation

3
See M, Alliaume, Tables Jusqu'd n = 120C des Factorielles n.,
Louvain, Librairie Universitaire (1928)a
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of this area may be rewarding.

The infirite system discussed can be considered as & model for an
infinite system of coupled harmonic oscillators in which the spring con-
stants k_ (n 2 0), the masses m {n > 0) and the damping coefficients

d_ (n > 0) have the form

n
k =kr" forn>0
n 0 ° <~ v
n )
mo=mr for n > 0 (66)
n
and d =dr forn > 0,
n o =~

where k , m_, d_ and r are positive constants (see Figure 1).

ko kl k2 k3

Mg :]mm ™ R "2 (- -~

do_‘:) db db

Figure 1. An Infinite System of Coupled Harmonic Oscillators
with Viscous Damping.

QL
=

With q = ;2 apnd B = 52 , the equations of motion are
o o

Y, -ay

o] o B(1+r)y° + Bryl

By. = ay, - B(l+r)y, + Bry
o 1 1 2 (67)

]

¥y = By, - a¥, - plitr)y, + pry,

° o

% =8y ont —a(leele 4 _
Yo = By, -o¥, -BQ4r)y +Bry ., n>i.
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Let prescribed initial conditions be

Yn(o) Qn(O) =0 for n gk,

(68)

yk(O) a, and 9k(o) = B, (for some fixed k 2 0.

k

Then a direct induction argument and a simple check for the initial coen-
ditions (68) show that a solution of the infinite initial-value problem

(67)-(68) is

[ng

a
_ 1% T2 p ) sinf(nt1)ax)sin (kt)nx] =
Xn(t) = (;%9 e .ro 22010 3?x§1 X {(2ﬂk+aku)51nh[tv(x)]

+ 2ukv(x)cosh[tv(x)I}dx , for n=0,1,2,...,

where

2
v(x) =dﬂ%f - ﬁ(l+r)-+2ﬁg§_cos X .

Note that for each x in [0,1], v(x) is either real and non-negative or
pure imaginary. It is of some interest that {Xn(t)} is a solution of

(67) - {68) for any constants a and f {not necessarily positive).
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APPENDIX

A number of physical counterparts of the infinite second- and
first-order systems discussed in Theorems 4 and 5 are presented in the
subsequent pages. Both a physical and electrical analog are given for
each system, along with a tabulation of solutions in a number of cases.

The following conventions are retained throughout the remaining
material:

[1] Pga’ﬁ), n > 0, are the Jacobi polynomials described in
Szegd [22];

[ii] Lﬁu), n > 0, are the Laguerre polynomials described in
Szego [22];

[ii1] Siu), n > 0, are the polynomials described in Chapter IV.



FINITE PROTOTYPES

Coupled Harmonic Oscillators

o 1 2 -1 N

tdmr\— Mo a0y My - -3 My

Figure 2(a}. A Finite System of Coupled
Harmonic Oscillators.

INFINITE PROTOTYPES

Coupled Harmonic Oscillators

My Oy ) MY Mo - -

Figure 2(b). An Infinite System of Coupled
Harmonic Oscillators.

For n > 0, let kn be the spring

st

constant for the {n+l) spring
and let m_be the (n+1)St mass.

For n = 0,1,2,...,N-1, let xn(t)
denote the displacement of mass
m. at time t, measured positively
to the right from the position
which m_ occupies when ail the

springs are unstressed.

For n = 0,1,2,..., let Xn(t) denote
the displacement of mass m. at time
t, measured positively to the riaht
from the position which m occupies

when all the springs are unstressed.

39



o

Ladder Network

£, L,
— S —T—00500—
id—f> 11—%>
C1 C2

N-1

Figure 3(a).

For n

A Finite Ladder Network.

Ladder Network

Eo E1 EZ
— S —— S —— T — - — —
i id——*__ il‘—i_ ié“iﬂ_
E ﬁ._:f ~._F: o
Cl C2 C3 L

Figure 3(b).

For n > 0, let Eh be the inductance

of the (n+1)°t

capacitance of the (n+l)St capacitor.

the quantity g _{t), where
Y 9,

q.(t) = I

0

in(T)dT

and q_l(t) = qN(t)

[Note: The charge Qn(t) on the capacitor

+

qn(0+)

0

En (0<n<N)isq ,(t) - q(t).]

= 0,1,2,.0.,N-1, let xn(t) denote

inductor and ¢ the

For n =

An Infinite Ladder Network.

0,1,2,..., let Xn(t) denote

the quantity qn(t), where

t

q,(t) = [ i (x)dr + q (0"

Q

and q_l(t) =0,

[Note: The charge Qn(t) on the capacitor

n

€ (n20)isq _ (t)

- q (t).]

LS



FINITE MODEL (corresponding to the harmonic- INFINITE MODEL {corresponding to the harmonic-

oscillator prototype) oscillator prototype)
System Systen
Ag%s = B% ~ %1 Ao.io B B X
A¥p = €% T BIX T % AX) = -CX, +BIX) - Xy
A, = -Cox; + Byx, = X, AQKQ = ~C.X| +BX, - Xg
ALK = 'énxn-l +BX S X (n =1,2,...,N-2) Anin = ‘én;nil B X X 0 (n=1,2,3,...).

& * 1 ]

. A
Aua1®n-1 T N2 B Nar o

Initial Conditions Initial Conditions
x (0) = % (0) =0 for n ¥k, X (0) = in(o) =0 for n # k,
xk(O) =a, and ik(O) =By - Xk(O) =a,  and ik(O) =B, -
Solution Soluiion
N b
xn(t) = Z: ijn(zj)F(zj,t) for n=0,1,2,...,N-1. Xn(t) = fa Pn(x)F(x,t)u(x)dx for n=0,1,2,...
j=1

(For F(x,t), see equation (22), p. 24.)

. . = - =1+
For the'harmonlc oscillators, A mn/kn+l (for n > Ol, BT 1 kn/kn+l {(for n > 0) and
C, = k/k o\ (for n > 1). The replacement of k_ by (Cn) and m_ by tn here ard in Table 1

yields mathematical models and various solutions for the ladder network.

8¢



kn m L, Pn(x) [a,b]) w(x)
n n 1 (1/2,1/2); "o Pty ks 2 % 2 Z 2
1. kor y N20 m.T - ann ' (——x- =1, [m_(l-“/t_) ,;l—(l'i’,/r_) 1 m 2kom°(l+r)x-m°x
I
2k°~ﬁr QMGT o [+] 5 2
{r constant) (r constant) -k (1-r)
n,nr_, .
- (-1)"a [n!T[(nt1)?] Qﬂkg r
(/) [(2nt1)1]
1/2,-1/2 4k
2. ko =0, m 1 an£ /2,-V/ )(gf -1, [o, :r] m 4k - mx
k =k, n21} {m constant) n 2 2km Amx
(k ROV CHECEYH
constant) q,= CTSI
_ i 3" pl0,0) m 2k m
3. k, =0 (2n+idm o -n- e G x-1) (o, =1 o
kn=w,n21 (m constant)
(x constant)
m
0 - &
a, k =0, m 1 L£ } (% x) [0, =) E . K x
k =nk, n21l (m constant)
(k constant)
2
. m_ (1) (m _ms
5. k =k, n>0 —T ntl L (k x) [0, =) 2 5 x
(k constant) {m constant) x;ﬁ e
- | {(a)m \ 2k
6. k =0, (2n+14a)m l+a |qS (< x-1), (o, =1 mla+l) m L
k_f+s.%mqu ( tang) |2V n 'k " 7 i x-il
no eSS m constant _(-1)"(a+1){a+3). .. (a+2n-1)
for n21 n

{k constant}

(140)(2)(3+ ) (4) .. . (n sin’[ D)

=

F. L. Cook has shcwn [4] that it is impossible to choose an infinite sequence of values for the spring constants and
an infinite sequence of values for the masses in such a way that every truncation of the correspending infinite chain of
harmonic oscillators has a secular polynomial P, (x) which is {apart from a linear change of the independent variable and

multiplicative factors which may depend on n bu

not on x) an Hermite polyromial,

‘1 819l
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FINITE PROTOTYPES

Sliding Plates

INFINITE PROTOTYPES

Sliding Plates

m :] mo
0 v—_po “'_‘po
m [ m 1
=Py 5P
Mo, —1 my ]
s p
. Po m.y E::fj—‘ 2
M oy, :
Figure 4(a). A Finite Stack of Sliding Figure 4(b). An Infinite Stack of Sliding
Plates., Plates.

For n = 0,1,2,...,N-1, let vn(t) be
the velocity of the (n+1)St plate

at time t.

For n > 0, let m_be the mass of

the (n+1)5t plate and p  the coef-
ficient of viscous friction at the
)st

bottom of the (n+l plate.

For n = 0,1,2,..., let V,(t) be
the velocity of the (n+1)St plate

at time t.

09



Ladder Network Ladder Network

N-1

Figure 5(a). A Finite Ladder Network. Figure 5(b). An Infinite Ladder Network.

For n > 0, let tn be the inductance
of the (n+1)®! inductor and R_ the

resistance of the {n+t1)%! resistor.

For n = 0,1,2,...,N-1, let vn(t) For n = 0,1,2,..., let Vn(t) be
be the current through the the current through the (n+1)St
(n+1)St resistor at time t. resistor at time t.

19



FINITE MODEL (corresponding to the sliding-
plate prototype)

System
Av = Bv -w
o0 (s ] 1
Alvl = -Clvo + Blvl - V2
A2v2 = 1C2v1 + B2v2 - v3
Anvn - _Cnvn.-l + ann - Vn+1 (n=1,2’3,0-0,N"2)

Avaa¥N-17 CnoiVhe2 Y BuaMnert

Initial Conditions

vn(O) =0 for n £ k
and vk(O) =€ -
Solution
N
vn(t) = E:hjpn(zj)G(zj,t} for n=0,1,2,...,N-1,
j=1

INFINITE MODEL (corresponding to the sliding-
plate prototype}

sttem

AV = BV -V
00 c o 1
Alv1 = -ClV +BV -V,
AVy = LoV + BV, -V,

Initial Conditions

Vn(O) =0 forn £k
and Vk(O) <€ -
Solution
b
v (1) =j P_(x)6(x,t)u(x)dx for n=0,1,2,...
a

(For G(x,t), see equation 30, p. 28.)

For the sliding plates, A = -m /p_ (for n > 0), B,

n

C_ = pn-l/pn (for n > 1). The replacement of m by L

1, B =1 +npn-l/pn (for n > 1) and

“ and P, by Rn here and in Table 2 yields

mathematical medels and various soclutions for the ladder network.

Z9



Table 2, Scolutions for Stacks of Sliding Plates.
P, m Cn Pn(x) [a,b] wx)
b m 1 qnpil/Q,-l/Q)(%f - 1), LO,%E} ma4p - mx
(p constant) (m constant) 2w Amx
_n(-1)"4"[ (n-1)]°
n 2{ (2n-1)1]
(nt1)p (2n+1)m ] (-1)"p {00 @ ) 0,2 n
2n+l n m 2
{p constant) (m constant)
(ntl+a sinz(n+1)’§‘)p (2n+1+a)m 1 +a an(u) (g x-1), [0,2“‘:—1 ’“(;%l I;ﬂx-li"‘
(p constant) (m constant) 2ntlta
_(-1)™(a+1) (a+3) ... (a+2n-1)
" (14a)(2) (3+a) (4)... (rha sin’[ZE))
(0) m m
(n+l)p m 1 L. (p x) (o) |m 5 X
(p constant) (m constant) ’ P

€9
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