
1

A Framework for Low Level Analysis and Synthesis to
Support High Level Authoring of Multimedia Documents

Scott E. Hudson
Chen-Ning Hsi

Graphics Visualization and Usability Center
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

ABSTRACT

This paper describes a low level hierarchical
framework for composition of multimedia documents
that is designed to support the types of analysis, error
checking, and synthesis techniques needed for rich
user support in a high level authoring system. This
framework supports flexible synchronization and flow
control primitives as well as a range of interactive,
continuous, and discrete media in a uniform fashion.
The compositional approach taken in this work
supports a style of analysis similar to the semantic
analysis performed in programming language
translation. This analysis capability provides a robust
base upon which a number of potential high-level
authoring facilities can be built.

Keywords: multimedia, composition, analysis,
synthesis, synchronization, flow control, interactivity,
authoring systems, continuous media, discrete media.

1. INTRODUCTION

The area of multimedia applications has been growing
rapidly as new forms of interactive presentation media
become accessible and affordable on various
platforms. The use of new information channels, such
as video, audio, and animation improves the
expressive power of the computer as well as the
attractiveness of applications. However, these richer
sources of information also imply the need for
powerful new tools for creating and controlling
multimedia documents. New continuous media, such
as audio and video, offer new challenges for authoring
systems because they introduce a temporal aspect to
document design. Dealing with the scheduling and
synchronization issues that this implies (on top of the
other normal artistic design, composition, and
presentation issues) can greatly increase the difficulty
of producing a successful multimedia document.

Techniques to support authoring of materials with a
temporal component have primarily fallen into four
categories: supporting time varying continuous media
only as annotations to discrete (static) media, use of
timeline notations, general concurrency specification
techniques, and compositional approaches.

 This work was supported in part by the National Science
Foundation under grants IRI-9015407 and DCA-9214947.

The simplest form of support for time varying media
is the use of continuous media annotations. to
conventional (static) documents. This approach can
be seen as a form of hypertext enhancement where the
user "jumps" to the continuous media presentation
then returns to the static text. Paradise, Metacard and
Etherphone [Zell88] fall into this category.

Scheduling and synchronization issues under this
approach are easy since control over these aspects of
the continuous media are always placed directly in the
user's hands (i.e., a single continuous media object
plays at a time based on specific actions or requests
by the user). However, this approach provides very
little opportunity to combine different media in
flexible ways and relies entirely on the user for pacing
and control.

The second primary type of temporal specification is
the use of a timeline. Under this approach, time is
explicitly represented as a metered timeline similar to
a musical staff. Media presentation objects are then
laid down along the timeline to define their start,
duration, and relative timing. The MAEstro system
[Geor91], for example, falls into this category.

This approach allows both the start time and the end
time of a media object to be specified and
synchronized with the start and end times of other
objects in a flexible and easy to understand manner.
However, this approach requires that the exact
duration and pacing of media objects be known in
advance so that they may be placed on the fixed time
line in a lock-step fashion. This makes it very
awkward to deal with media containing user
interaction or other unpredictable elements. Limited
support for these media types typically can be
provided only outside the timeline via commands that
manipulate (e.g. explicitly stop or reposition) the
clock controlling the overall timeline.

To overcome these limitations and provide a great
deal of control over scheduling and synchronization
issues, a third approach — use of general purpose
concurrent programming notations — has been
applied in several systems. These systems typically
employ or adapt one of the high-level specification
methods developed for concurrent programming (such
as path expressions [Camp74, Alle83, Hoep91] or
Petri-nets [Pete81, Stot89]).

2

These approaches support interactive and other
unpredictable media cleanly and provide a great deal
of expressive power. However, these systems —
precisely because of their generality and power — are
often difficult to understand and debug. In some
sense they tend to be too powerful and generally too
low level for direct use by authors. (Related to these
techniques, but perhaps striking a better balance, are
new approaches for specifying general
synchronization through temporal constraints
[Buch92a, Buch92b, Kumm91]).

In this work we attempt to find a middle ground
between the flexibility and control of general
concurrency specifications and the ease of use of
timeline and annotation approaches. To do this we
employ the fourth primary approach to temporal
specification — the compositional approach.

Under the compositional approach (see for example
[Fium87, Gibb91]), multimedia documents are
constructed by composing small presentations into
larger ones. Temporal relationships are created using
special scheduling and synchronization composition
operators. This approach allows techniques such as
timelines or general synchronization notations to be
applied, but only in a structured hierarchical setting.
This restriction to a hierarchy can be limiting in some
cases, since arbitrary temporal relationships across
hierarchical boundaries cannot be expressed.
However, this loss of power is not a problem for most
documents in practice and, as we will demonstrate in
this work, the hierarchical structure provides other
advantages. In particular, in this work we will show
how a hierarchical composition structure can be used
to support sophisticated new analysis and synthesis
techniques which can be used to provide very high-
level authoring support.

Although as usable as other systems of the same type,
we believe that the specific compositional framework
described here is still probably too low-level to be
effective for direct use in many authoring tasks. The
intent of this framework will be to form a solid
underlying basis upon which higher-level authoring
facilities can be built rather than to provide the sole
authoring interface in itself.

Because of this approach, emphasis has been placed
on the generality and uniformity of the framework and
on support for new techniques that can be used to
provide analysis, error checking, and automatic
synthesis of candidate solutions for detected
problems.

Specifically, the framework presented here offers four
central advantages. First, it allows interactive media
— that is media whose action and timing is
determined at least in part by the end-user — to be
treated uniformly with other types of media. Second,
it supports flexible flow control abstractions which
will allow media of many different types to be
scheduled and synchronized at a relatively high level
and which will support explicit control by the end-

user when desired. Third, by introducing a new
abstraction for continuous media which separates the
active control of timing from the more passive media
specific presentation, it provides facilities for easy
fine-grained scheduling, synchronization, and
composition. Finally, and most importantly, it
provides a framework for new error checking,
analysis, and synthesis techniques that can provide
very high level support in an authoring system.

An example of the kind of high-level authoring tools
which we propose to support through analysis
techniques might be an automated resource conflict
detection and correction facility. This facility would
use the analysis capabilities of the framework to
detect and then isolate specific places where resource
limitations could be exceeded in a presentation (e.g.
points at which two audio tracks might need to be
played on a single audio output device). Based on
additional analysis of the context in which the
problem occurs, the system might then be able to offer
several ways to introduce additional specifications to
solve the problem. For example, one audio
presentation could be given unconditional priority
over the other to resolve the conflict. Alternately, if
analysis indicates that timing constraints will always
temporally align the presentations, the material might
be preprocessed by mixing it into a single
presentation. Based on the analysis, the user could be
allowed to either select a suggested solution, or create
one of their own. If a suggested solution is utilized,
the system could automatically synthesize the
compositions and property settings necessary to carry
it out.

A second example might be a synchronization
constraint checking facility. This mechanism would
automatically check to ensure scheduling feasibility
— reporting for example that two presentations are
required to start and end at the same time, but are of
different lengths. The facility could then go on to
suggest several ways to overcome this problem such
as modifying the synchronization composition
operator to truncate the slower presentation or wait
until both are finished. Alternately, if analysis
indicates that the media types involved support it (or
if certain "wrapper" compositions could be applied),
several ways of stretching or shrinking presentations
could be suggested.

By providing a uniform framework for composition,
analysis, and synthesis, we believe that a number of
these very high-level authoring aids can be
constructed. In the rest of this paper we will explore
the framework and how it can be used to support these
goals. The next section will consider a unified
abstract representation that can be used to model a
variety of media types. Section 3 will consider the
common properties of this abstraction across all object
types. Section 4 will then go on to describe a
powerful set of composition operators, and Section 5
will consider their common properties. Section 6 will
then describe an example multimedia document
constructed with a prototype of our system and

3

Section 7 will go on to describe the analysis and
synthesis techniques supported by the framework.
Finally, Section 8 will provide a conclusion and
discuss directions for future work.

2. A UNIFIED APPROACH TO VARYING MEDIA TYPES

In order to be able to perform interesting analyses on
a variety of different multimedia object types, the
framework described here employs an abstract
representation which models objects with a range of
different characteristics in a unified manner. This
representation is used to support both time varying
continuous media and static or discrete media. It is
also used to model both primitive media objects and
composed objects built up from other primitive or
composed components.

In this abstract representation, each object is modeled
as having four parts: A content, a set of resource
requirements, a timing engine, and a presentation
driver.

The content of an object is type dependent and
contains the information that is actually to be
presented (such as text, graphics, audio samples, or
video frames).

The resource requirements of an object indicate what
hardware or other resources it needs to create its
presentation. These resource requirements are
expressed in a resource profile which contains a list of
resource needs and the time intervals associated with
the (potential) need for that resource. For primitive
media objects this profile will typically contain only
one time interval (matching the duration of the object)
for one resource. However, for composite objects the
profile may be more complex.

The timing engine and presentation driver together
control the actual delivery of an object's presentation.
The timing engine is an active component that
controls the timing of various parts of the presentation
(the when of the presentation). The presentation
driver is a passive component responsible for the
actual manipulation and presentation of the object's
contents based on timing triggers received from the
timing engine (the how and what of the presentation).
As will be indicated in Section 4, this splitting of
responsibilities will enable more powerful
compositions to be supported.

Note that some media types (for example, compressed
video displays) may inherently internalize and
combine the timing engine and presentation driver.
However, in the system we will still model these
aspects separately — typically providing a "fake"
timing engine which logically corresponds to the
actual engine embedded in the media hardware or
software implementation of the presentation driver.
This will allow compositions for fine-grained
synchronization (as described in Section 4) to operate
on these objects in a unified fashion.

Presentation drivers will typically be quite media type
dependent. Some timing engines may also be media
type dependent, but most will come from (or at least
be modeled by) a library of reusable engines.

The simplest engine type is the periodic timer which
simply fires at a set frequency. This would be used,
for example, to drive or model video media with a
fixed frame rate. Other timing engines may be more
complex, producing timing triggers at varying
intervals based on their own internal state. One of
these later types of engines is the cyclic timer which
repeatedly cycles through a list of scheduled triggers.
Another type is the external program engine. This
type of engine is used to support timing that is driven
by events from an external program (for example,
from a simulation or algorithm execution that is being
visualized with an animation). Finally, a special
series of user controlled timing engines are used to
support interactive components. These engines are
controlled and activated by user input actions.

3. PROPERTIES OF MEDIA MULTIMEDIA OBJECTS

Each multimedia object is typed and this type may
imply limitations on the four components that make
up the object. For example, each type typically only
supports the use of a very small number of different
presentation drivers (often just one). Similarly,
particular types may place restrictions on the timing
engines that may be used to control them (e.g. a video
object may require a periodic timer with a particular
frequency and an interactive object may require a user
controlled timing engine of a particular type).

Although we will not explore this in detail here,
adaptability to varying hardware platforms can be
supported by providing multiple alternate presentation
drivers (e.g. low frame rate software-only video
drivers for low-end machines versus full frame rate
hardware supported drivers for others). Similarly, a
series of very interesting effects can be achieved by
substituting alternate timing engines.

The type of an object and the four components that
make it up imply certain properties and parameters
that the object may have. These properties and
parameters define the object's behavior and
characteristics. A small set of these properties are
common among all objects. These common
properties are the key to the analysis and synthesis
capabilities which are the central motivation for this
framework.

Common properties supported by the system currently
include: duration, stretchability, and flow control
capabilities. For primitive objects, these properties
are primarily controlled by the object's type and
components. For composite objects, these properties
are generally computed from the properties of the
objects that they compose. Below we describe each
common property.

4

Duration

The duration of an object defines the length of time
that an object will be presented. Duration is a
property of its content, but may be restricted by the
object's type. The duration of an object may be in one
of three states: determined, not-determined, or
indeterminate. A duration is determined if it has been
fixed to a particular value at authoring time. It is not-
determined if no specific duration has been assigned.
Finally, an object's duration is indeterminate if it
cannot be determined at authoring time and can only
be determined at run-time.

An object's possible durations are further described by
three values: natural , minimum, and m a x i m u m
durations. This treatment is similar to the boxes and
glue abstraction used in the spatial domain by TeX
[Knut84] and the InterViews user interface toolkit
[Lint87] as well as the temporal layout algorithm
described in [Buch92b]. The natural duration
describes how long the presentation length would
naturally last, while the minimum and maximum
durations describe limits on how the object's duration
may be manipulated.

Finally, each object with determined duration also
maintains a record of its scheduled duration. This
indicates the duration actually assigned to the object
at authoring time.

By supporting a special infinite value for duration,
this framework can model a wide range of media
characteristics. A discrete media object such as a
static picture would be modeled initially as "not-
determined" with a minimum of zero, maximum of
infinite, and natural of infinite. If the object is later
constrained by a scheduling composition it might be
changed to "determined" and assigned a specific
scheduled duration.

An interactive component which blocks waiting for
input would be modeled as "indeterminate" with
minimum of zero, maximum of infinite, and natural of
infinite. However, an interactive component with a
timeout (such as a selector that made a default choice
after a certain period) would be modeled as
"indeterminate" with a fixed maximum and natural
duration that corresponded to its timeout.

Finally, objects such as video clips which have an
inherent fixed duration would be modeled as
"determined" with the same minimum, maximum,
natural, and scheduled duration values.

Stretchability

Stretchability defines the ability of an object to
change its duration and the specific methods that are
available to do this. Stretchability is derived from
properties of both the timing engine and the
presentation driver of the object.

An object can be stretchable or non-stretchable, and
compressible or non-compressible. Depending on the
timing engine and presenation driver employed by the
object, a number of different methods could be used
to stretch it. Common methods include: repeating the
material, filling with blank or default material, and
slowing down the presentation speed. Common
methods to compress an object include: truncating the
material and accelerating the presentation speed.

Each primitive object type that supports stretching (or
compressing) has a default stretch (or compression)
method. This default method can be changed by the
author after experimentation during the authoring
process.

The stretchability property is important in analysis
techniques designed to detect an infeasible
synchronization in a design (e.g. a non-stretchable
object is required to have a duration different from its
natural duration).

Flow Control Capabilities

The final common property of an object is the set of
flow control capabilities that it supports. This aspect
of an object is also a property of both the timing
engine and the presentation driver, and indicates the
ways in which the global flow of the presentation can
be manipulated. These capabilities include the ability
to stop, resume, abort, change direction, relocate, and
change the playing speed of a presentation.

For a primitive object, flow controllability is
determined by the timing engine and presentation
driver in use. For composite objects, the flow
controllability of the object is computed from the
nature of the composition and the capabilities of the
child objects. For primitive objects, each supported
flow control operation is implemented by the timing
engine or presentation driver internally. For
composite objects the flow control operations are
implemented by the composition object in terms of
the flow control operations of the objects it composes
(as described in Section 5 below).

4. COMPOSITION OPERATORS

In this section, we describe eight composition
operators used to create composite objects. These are
operators for sequential, parallel, timeline, escape,
continuous synchronization, conditional, selection and
repetition composition. Each of these composition
operators has one or more parameters that define its
characteristics.

Composition operators are hierarchical in nature. As
a result each composite object is structured as a tree
with the leaf nodes occupied by primitive media
objects and the internal nodes by composition
operator objects. The tree structure is decorated by
the properties of the primitive media and the
parameters of the composition operators respectively.
This decorated tree structure forms the basis of the

5

synthesis and analysis performed within the
framework.

The remainder of this section, will consider each of
the composition operators of the framework in turn.

General Sequential Composition

The general sequential composition operator is used to
schedule the start of one object after the start of
another. This composition is controlled by one
parameter — the overlap factor. This parameter
adjusts the overlap between sequential objects. As an
example, Figure 2 shows two sequential compositions
with zero and non-zero overlap.

Fig. 2 Two sequential compositions.

Parallel Composition

The composite object created using the parallel
composition operator schedules its child objects
concurrently. The timing relationships that can be
expressed among the child objects are weak in that
they simply play at the same time and are not affected
by what happens to the other objects. A sequence of
slides shown with background music is an example
application of this operator. If a certain slide is held
by the user, the background music will continue to
play.

One parameter controlling the parallel composition
operator is the termination criteria. This parameter
determines when a parallel object ends. It can be set
to either arbitrary or selected and is accompanied by a
count. In the case of an arbitrary termination, the
parallel object ends when the specified number of
child objects end regardless of which objects they are.
In case of a selected termination, the parallel object
ends only when a specifically designated child object
ends. This setup covers a range of interesting
termination conditions. These include a user
controlled ending (e.g. via a selected termination
controlled by an interactive child object) as well as

termination after the first finishing object (using an
arbitrary termination criteria with count 1) or
termination after all objects have completed (using an
arbitrary termination criteria with a count equal to the
number of children).

Generalized Timeline Composition

Often one media object is used as the major
presentation with other media being driven by its
timing. The generalized timeline operator provides
this kind of composition. Among the children of a
timeline object, one is designated as the major
presentation with the others subordinate to it. The
timeline object schedules its major child to play at the
beginning and the others according to the progress of
the major child. A conventional timeline, which does
not distinguish a major object from other children, can
be simulated using an empty presentation with
specific duration as the major object.

The relationship between the major child and the
other children of an timeline object is stronger than
that among the children of a parallel object. When the
flow of the major child is controlled, such as stopped
or aborted, the subordinate children will be affected.
Figure 3 illustrates use of an animation object, an1,
composed with two audio objects, au1 and au2. If the
animation an1 is stopped at time t1, then the audio
object au1 will be stopped and the schedule to start
au2 will be delayed accordingly.

Fig. 3 An example of timeline composition.

Escape Composition

The escape composition is similar to the generalized
timeline composition in that one of its children is
designated as the major object. Here the major object
is termed the caller and the others callees. The escape
composition is different from the timeline
composition in that when a callee is played, the caller
is paused until the callee ends. Optionally the caller
can be set to abort rather than pause. By employing
interactively controlled conditional compositions
(described below) this can provide the kind of "jump"
semantics found in typical hypertext.

6

Continuous Synchronization Composition

Although the timeline and escape composition
provide synchronization at start points and end points
among different objects this is not sufficient in some
situations. The continuous synchronization
composition provides an ability to synchronize
different media at a fine grain.

The continuous synchronization composition achieves
this finer grain by combining the timing engines of its
child objects into a single engine to drive all their
presentations. Figure 4 illustrates this process.
Initially, object O1 and object O2 are driven by
engine a and engine b with, for example, frequency fa
and fb respectively. After they are composed using
the continuous synchronization composition, a new
engine ab with frequency fab is created to drive both
objects.

Fig. 4 Combining timing engines using the
continuous synchronization composition.

Conditional Composition

The conditional composition operator provides the
ability to create conditional presentations. User
interaction, and the history of the presentation of other
objects can be used to determine whether the
composed object is presented or not.

How the operator decides whether to present its child
is controlled by its condition parameter. This
parameter can be set to operate based on several styles
of user interaction or based on presentation histories.
Presentation history conditions supported include
comparisons against actual presentation times, the exit
status of various presentations, and previously applied
flow controls. Currently additional aspects of
presentation status are being explored for use in
conditions.

Selection Composition

The selection composition operator allows the user to
choose between a number of possible presentations
using several styles of user interaction. Several
parameters control the behavior of a selection
composition. These include the optional parameter
which, when set "on", allows selections of "none",
the exclusive parameter which determines whether
only one object at a time may be selected, and the
reselectable parameter which controls whether objects
may be selected more than once over the lifetime of
the presentation.

The user input required by both user-triggered
conditional objects and selection objects is supplied
by an interaction object (such as a simulated button)
that is controlled and displayed by the composition
operator. Two additional parameters that control the
user interaction are the timeout and the default action
parameters. The timeout parameter specifies the
maximal waiting time of the interaction and the
default action parameter defines what user action is
simulated when the interaction has timed out. A
blocking interaction can be achieved using an infinite
timeout.

Repetition Composition

The repetition composition provides a looping ability.
The parameter that controls the behavior of the
repetition composition is the repetition factor. It
specifies the number of the repetition of the composite
object. This parameter can be set to infinite to support
continuous looping.

5. PROPERTIES OF COMPOSITION OPERATORS

There are two properties common to each of the
composition operators. These are their schedule and
control translation.

Schedule

The schedule defines the actual duration and the start
time for each child of a composite object. The
scheduled duration for a child can be missing meaning
that the natural duration is the actual duration.
Otherwise, the scheduled duration will be assigned
directly to the corresponding child object. Stretching
or compression needs to be performed if the assigned
duration is different from the natural duration.

The start times in the schedule define the time to start
playing each child. They can be a constant, or an
indicator of the end event of another child. In case of
a constant start time, the child object will be played at
that time relative to the start time of the composite
object. In case of the end event indicator, the child
will be started when object being waited on ends. As
a result, the start times of the child objects are defined
relative to the start time of the composite object,
either explicitly or implicitly.

7
Fig.5 A multimedia document in action and its simplified structure.

Scheduling at this level only handles the starting of
objects. After that, the timing of each object is
handled by its timing engine. When the engine drives
an object to its end, it will remove the associated
presentation and inform the top level scheduler.
Under this arrangement, the top level scheduler only
has to keep track of its local elapsed time and process
the end events of its children in order to be able to
trigger its children to start on schedule.

Control Translation

Like primitive objects, composite objects also have
the ability to control the flow of the presentation.
Unlike primitive objects, however, flow control
commands directed a composite object need to be
forwarded to the child objects. For example, stopping
a composite object built from an audio object
scheduled in parallel with an animation object might
be done by stopping both the audio object and the
animation object. However, a control command to a
composite object is not always implemented by
simply forwarding the same control to its children.
Using the same example, if the audio object is just
background music for the animation object, then the

stop on the composite object can be implemented by
forwarding the stop control only to the animation
object without holding the audio object.

Control translation is used to enhance the flexibility of
the flow control implementation of a composite
object. For each type of flow control supported by a
composite object, the control translation property
defines the control action(s) that should be invoked
for each child object This framework allows
interesting and flexible flow control. For example, a
composite object with an audio object, which is able
jump forward and backward but can only play at a
constant speed, with a video object, which can play at
different speeds, can now have a fast forward control
with the video playing in the faster speed, and the
audio playing in a "play m out of n*m then jump
forward (n-1)*m distance" fashion (where n is the
speedup ratio and m is the length of an acceptable
audio segment).

Both schedule and control translation are implicitly or
explicitly assembled by the author during the
composition process to express a design. Problems
occur when a specified design cannot be honored.
Possible causes include resource conflicts and

8

attempts to stretch non-stretchable objects. Tools to
locate the problem, to provide modification
suggestions, or even to make the correction
automatically can be made available on demand. The
analysis capability of the framework which make it
possible to construct such utilities for high level
authoring will be discussed in Section 7.

6. AN EXAMPLE DOCUMENT

To test our framework, a small prototype system has
been built for constructing multimedia documents
along with a sample document which excersizes its
features. This document is a small music tutor
entitled "The Mini Music World". This document
introduces a number of basic music terms and
instruments, and teaches the correct way of listening
to music.

The document in action and its simplified structure is
shown in Figure 5. It starts with a welcome message
and picture followed by a selection from either the
introduction of the basic terms, music instruments, or
instruction on listening. Each music term, e.g. term1,
is introduced by a recorded audio segment with
corresponding text shown on the screen. Some terms,
e.g. term2, are introduced with picture annotations.
Listening is taught by a recorded speech segment,
talk3, with the text, t1, shown at the same time.
During the speech, several terms, t2 and t3, in the text
can be chosen to explore their meanings. The lesson
is followed by a practice session which is composed
of music and a text animation. The continuous
synchronization composition is used to ensure that
when a certain musical instrument starts playing, the
corresponding text will be highlighted.

Properties of some basic objects and parameters of
some composite objects that make this multimedia
more interesting are also shown in the structure. The
translation of the stop control of term1 is set to (talk1:
default, text1: stop). This creates the effect that when
term1 is stopped, the audio will be stopped and a
default musical clip will start playing. The schedule
of term1 is set to (talk1: 2 seconds, text1: 0 seconds)
to start the text a little ahead of the audio for a
smoother beginning. The repetition factor of
mini_music is set to infinite so that the lesson will
repeat forever. The timeout factor of the body is set
to 10 seconds with the audio help as the default so the
help message will be played when the user seems to
have trouble making a decision.

7. ANALYSIS

As described in the preceding sections, a multimedia
document constructed in the framework described
here is expressed in the form of the tree structure
decorated with properties and parameters. Although
the hierarchical nature of the system eliminates some
potential mistakes, errors can still occur. A dangling
partial composition not attached to the main tree,
objects with infinite duration but without an
accessible abort control, and resource conflicts in a

schedule are some examples. Fortunately, the
structure developed here has been carefully designed
to afford opportunities for a number of different
analyses intended to help the author detect, localize,
and fix the problems. In addition, some of the
analysis results can be made available to the end-user
to enhance the overall utility of a multimedia
document before it is actually played. Information of
this type which is useful to the end-user includes the
types of media used in a document and the
corresponding size of each type, the minimal and
maximal durations to browse the whole document,
and whether interaction is necessary to browse a
document.

The analysis supported by our framework is based on
property synthesis within media objects. During
composition, the properties of a composite object will
be synthesized from the properties of its children in a
bottom-up fashion (e.g. resource profiles) or
assembled, either explicitly or implicitly, by the
author (e.g. control translations and schedules), and
then if necessary, the properties of the composite
object can be used to modify the properties of its child
objects in a top-down fashion (e.g. assignment of
scheduled durations).

In the bottom-up stage, if the synthesized properties
indicate a problem, such as a resource conflict, a top-
down analysis can be started to localize the source of
the problem in order to provide detailed feedback to
the author. Similarly in the top-down stage, if there
are problems in modifying child properties, an
analysis can also be started to localize the problem.

Figures 6 and 7 provide detailed examples of how
error detection and localization is performed. In
Figure 6(a), a parallel composition is used to compose
two previously separate animations, both with a
number of audio annotations. In the bottom-up
analysis stage, the audio device profile in the resource
property of the composition object is synthesized and
the result is shown in Figure 6(b). Assuming only one
audio device is available and can only be used
exclusively, a resource conflict occurs. A localization
analysis is therefore started to determine the specific
source of the problem as shown in Figure 6(c). This
information can then be used to give detailed
feedback to the author about the problem and
potentially to form the basis for automatically
suggested solutions.

In Figure 7, a timeline composition is used to
compose a video object with another parallel object.
Assuming that the timeline composition imposes a
longer scheduled duration for the parallel object,
topic1, the duration of the parallel object needs to be
changed in the top-down stage. However, a problem
occurs because the parallel object does not have the
necessary stretchability. In this case a localization
analysis will be started from the parallel object
downward and the problem will be localized to the
audio object. Again, the system can use this
information to provide detailed feedback and in this

9

case suggest several standard ways to convert the non-
stretchable audio object into a stretchable object.

(a) A parallel composition of two animations.

(b) Synthesis of the audio device usage profile.

(c) The conflict information is flowing down the tree
to locate the problem sources.

Fig. 6 Analysis Example 1

Fig.7 Analysis Example 2

As implied by the above discussion, when a problem
is found during synthesis of the properties of a
composite object, an analysis will be started to
localize the cause(s) of the problem and inform the
author. For many types of problems there will be a
standardized solution schema that can be applied to
fix a problem. In these cases, the system can list a set
of suggested modifications or even simply choose
one, allowing the author to accept or reject it. As an
example, when an object with infinite duration but
without an abort capability that is accessible to the
user is found, an abort button can be added in the
interface to fix the problem.

The analysis and synthesis capability of our
framework can be integrated into a graphical editor
making up part of a high-level authoring environment.
For each action which causes a new composition,
synthesis and analysis of properties will be started to
verify the integrity of the design. If problems occur,
the sources of the problems will be localized and if
feasible, a number of correction can be suggested.
The authoring task therefore becomes an interactive
process. The author creates the multimedia
documents by applying various composition operators
on a set of selected media material, and the system
automatically performs integrity checks and provides
information and suggestions when problems occur.
Problems can be found and fixed in place during the
authoring process instead of after the whole
composition is complete.

In addition to providing debugging aids, the analysis
and synthesis capacity can also be applied to support
other kinds of design aids. As we have seen in
Section 4, a number of parameters need to be set when
a composition operator is applied during the
composition process. Although most of the
parameters have default values, it is likely that the
author will change them to create more interesting
designs. Unfortunately, it can be time consuming to
find the right value for each parameter because the
value may need to be evaluated by actually playing
the composition. In addition, the proposed values
may cause problems, such as resource conflicts,
triggering a debugging session.

Although debugging activity is necessary to
experiment with different designs, information
indicating potential problems in advance would be
useful to keep the author from making unnecessary
errors and to guide the authoring process. The
analysis and synthesis capacity can help the author to
choose a composition operator as well as to set its
parameters in the following way. When a set of
objects are chosen for composition, an analysis can be
started against all types of composition operators to
find out the range of the values each parameter can be
assigned without causing problems. This information
can be used in the authoring interface to guide the
composition process.

Using Figure 6 again as an example, when animation1
and animation2 are selected for composition, the
range of the scheduled durations for both animation
objects resulting from the analysis on a parallel
composition operator are empty sets. This implies
that when the parallel composition is used, changes of
the properties of the animation objects, such as
shifting the start times of the audio annotations, would
be necessary. This fact can be reflected in the
interface to convey this situation in advance.

Using the composition of a number of audio objects as
another example, from the analysis against the
sequential composition, the only possible value for the
overlap factor parameter is 0. The system can

10

therefore suggest 0 as the value of the overlap factor
when the sequential composition operator is applied.

Testing and experimenting with different parts of a
composition can also be done by isolating the
corresponding piece (a subtree) of the composition for
presentation and analysis. By intelligent use of
analysis results, a set of truly high level authoring
tools can be delivered. All of these advantages are
made possible by the analysis capability of the
framework.

8. CONCLUSION AND FUTURE WORK

In this paper, we have describes a hierarchical
framework for low level analysis and synthesis to
support high level authoring of interactive multimedia
documents. Interactivity is achieved by treating user
interaction as a primitive type of media. This allows
user interaction to be synchronized and regulated with
other media objects. By inclusion of the treatment of
flow control and scheduling during the composition
process, a multimedia document can support more
flexible synchronization and control. Finally, the
analysis capabilities afforded by the framework open
the door to a series of high level authoring support
mechanisms.

To evaluate our framework, a prototype system has
been built on a Sun Sparc workstation using the
Artkit user interface toolkit [Henr90]. A multimedia
document applying a variety of composition operators
has been created using this prototype. The results are
promising. However, there is still room for
improvement. We conclude this paper with issues for
future work.

In our overall plan, the framework described here will
provide the underlying support layer for a high level
authoring environment. Although it is possible to
author a multimedia document at the level of the
framework we have provided, without additional aids,
it will be rather cumbersome and difficult to move
between the multimedia specifications and the actual
multimedia presentation to make adjustments and
understand the consequences of changes. A good
graph editor for the specification may be better than a
textual editor for illustrating the composition
structure. However, switching between the
specification, the presentation, and the various
designing aid will still be required.

A good interactive paradigm to embed the
functionality of our framework in will be critical to a
successful authoring system. A two-view approach
[Avra89] previously employed in user interfaces
development tools is an attractive alternative, but
difficult to implement in this environment because of
the dynamic nature of the document being edited. We
are currently examining several other paradigms for
our high-level authoring environment including script-
based editors [Fium87], iconic visual programming
languages [Koeg92], programming by rehearsal
[Finz84], and the walk-through metaphor. A number

of techniques to enhance the framework described
here are also in our future plans. These include:
inclusion of more types of interactive objects and
more flexible use of them in compositions, a macro
utility for common constructions, optional automatic
modification of a problematic composition, and
spatial layout support.

REFERENCES

[Alle83] Allen, J.F., "Maintaining Knowledge about
Temporal Intervals", Communications of
ACM, vol. 26, no. 11, Nov. 1983. pp. 832-
843.

[Avra89] Avrahami, G, Brooks, K.P., and Brown,
M., "A Two-View Approach to
Constructing User-Interfaces", ACM
Computer Graphics, v.23, no. 3, July 1989,
pp. 137-146.

[Buch92a] Buchanan M.C. and Zellweger, P.,
"Specifying Temporal Behavior in
Hypermedia Documents", Proc. of the
European Conference on Hypertext 1992,
Milan, Italy, December 1992.

[Buch92b] Buchanan M.C. and Zellweger P.,
"Scheduling Multimedia Documents Using
Temporal Constraints", Proc. of the Third
International Workshop on Network and
Operating System Support for Digital
Audio and Video, San Diego, CA.,
November 1992.

[Camp74] Campbell, R.H. and Habermann,
A.N., "The Specification of Process
Synchronization by Path Expression",
Lecture Notes in Computer Science no. 16,
Operating Systems ed. G. Goos and J.
Hartmanis, Springer-Verlag, 1974, pp. 89-
102.

[Finz84] Finzer, W., "Programming by Rehearsal",
Byte Magazine, June 1984, pp. 187-210.

[Fium87] Fiume, E., Tsichritzis, D. and Dami, L, "A
Temporal Scripting Language for Object-
Oriented Animation", Proceedings of
Eurographics 1987, pp. 129-141.

[Geor91] George D. Drapeau and Howard
Greenfield. "MAEstro — A Distributed
Multimedia Authoring Environment",
Proc. Summer Usenix Conference, 1991.

[Gibb91] Gibbs, S., Dami, L. and Tsichritzis, D.,
"An Object-Oriented Framework for
Mul t imed ia Compos i t i on and
Synchronization", Proceedings of the First
Workshop, Stockholm, Sweden, April
1991, pp. 101-111.

[Henr90] Henry, T.R., Hudson, S.E., Newell, G.L.,
"Integrating Gesture and Snapping into a
User Interface Toolkit", Proceedings of the
ACM Symposium on User Interface
Software and Technology, October 1990,
pp. 112-121.

[Hoep91] Hoepner, P. "Synchronizing the
Presentation of Multimedia Objects —
ODA Extensions", Multimedia: System,
Interaction, and Applications, 1st

11

Eurographics Workshop, Stockholm,
Sweden, April 1991, 87-100.

[Koeg92] Koegel, J.F., Rutledge, J.L and Heines, J.
"Visual Programming Abstractions for
Interactive Multimedia Presentation
Authoring", IEEE Workshop on Visual
Languages, October 1989, Rome, pp. 231-
233.

[Knut84] Knuth, D. "The TeXbook", Addison-
Wesley, Reading, Mass., 1984.

[Kumm91] Kummer, M. and Kuhn W. "ASE —
Audio and Synchronization Extension of
Compound Documents. Multimedia",
System, Interaction, and Applications. 1st
Eurographics Workshop, Stockholm,
Sweden, April 1991, pp. 112-125.

[Lint87] Linton, M.A., and Calder, P.R., “The
design and implementation of InterViews”,
Proceedings of USENIX Association C++
Workshop, pp. 256-267, 1987.

[Pete81] Peterson, J.L. "Petri Net Theory and the
Modeling of Systems",. Prentice-Hall,
Englewood Cliffs, N.J. 1981.

[Stot89] Stotts, P.D. and Furuta, R. "Petri-Net-
Based HyperText: Document Structure
with Browsing Semantics", ACM
Transactions on Information Systems, v.7,
no. 1, January 1989, pp. 3-29

[Zell92] Zellweger, P.T. "Toward a Model for
Active Multimedia Documents",
Multimedia Interface Design, ed. M.
Blattner and R. Dannenberg, ACM Press,
1992, pp. 39-52.

[Zell88] Zellweger, P., Terry, D., and Swinehart, D.
"An overview of the Etherphone system
and its applications", Proc. 2nd IEEE
Computer Workstations Conference,
Santa Clara, CA, March 1988, pp. 160-
168.

[Zell89] Zellweger, P.T. "Scripted Documents: A
Hypermedia Path Mechanism", Hypertext
Proceedings, 1989, pp. 1-14.

