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GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3f52 

April 7, 1983 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 
Contract No .. DMK70-79-D-00.87-0015 
"Interactive Monitoring of Distributed Sys.tems" 
Contractor: Georgia Tech Research Institute 
Month: March, 1983 

Dear Sirs: 

During the month of March, tha principal investigator attended the A01 
SIGPLAN/SIGSOFT Software Engineering Symposium on High-Level Debugging. 
At this symposium, I was able to talk to other researchers working on 
distributed debugging in order to compare approaches. It appears that by 

• using the structural infonnation available in a PRONET program, we will 
indeed be taking a unique•approach to monitoring distributed programs. 

Since the time the proposal was submitted, work has been completed on the 
PRONET implementation on the PRJl-£ computers in the ICS Computing Laboratory. 
Experience with this implementation ha.S shown that these machines are not a 
practical host for a language like PRONET, which requires the dynamic creation 
of processes. Thus we have decided to implement our monitor on Three Rivers 
Perq workstations running the Accent operating system which was developed at 
Carnegie-Mellon University. This will necessitate our reimplementing PRONET 
on this new system, which will lengthen the time needed to perform Task 1. 
Hol'lever, Accent is much more supportive of the features of a language like 
PRONET than Primos is, so the other tasks should be easier~ 

RJL/np 

Sincerely, 

Richard J. LeBlanc Jr., 
Principal Investigator 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

AM EOUAL ECUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 

I 



AIRMICS 
115 O'Keefe Building 
Georgia .Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: March, 1983 

No man-hours were charged to this project this month. 

Cumulative total to date: 0 

Percentage of total expended to date: 0.0% 

Total Funds Expended 

Travel: $985.59 

Cumulative total to date: $985.59 

Percentage of total expended to date: 0.6% 

Work Completion 

Percentage of total work completed to date: O% 

Richard J. LeBlanc Jr., 
Principal Investigator 



GEORGIA INSTITUTE OF TE.CHNDLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA. GEORGIA 30332 • (404) 894-3152 

May 9, 1983 

AIRMICS · 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 
Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 
Month: April, 1983 

Dear Sirs: 

During the month of April, 1983, two graduate students began working 
under this contract. Chu-Chung Liu has been assigned to Task 1, the 
PRONET interface, and Arnold Robbins is working on the communications 
monitor of Task 2. 

We have decided to implement a status monitor first, in order to 
gain some experience•with distributed program monitoring issues, 
before proceeding with the interactive monitor originally planned. 
The static monitor will be similar to the interactive one, except 
that the pro·grammer will on"'iy be able to look at a replay of message 
traffic recorded by the monitor. Thus we will essentially be 
constructing prototypes for the programs described in Tasks 2 and 3. 

The contractually prescribed effort appears sufficient to achieve 
the objectives of the contract. 

RJL/np 

Sincerely, 

- Richard J. LeBlanc Jr., 
Principal Investigator 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

'\r'! ~C'-.:.'. !.. 'EC'JC.I'.T!~t-! .~r-m '!MPt.O't'Ml:N! OP~OA!U~ITY !NSTlT!JTION 



AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: April, 1983 

Man-hours Expended 

Task 1: 88 
Task 2: 103 

Cumulative total to date: 191 

Percentage of total expended to date: 3.4% 

Total Funds Expended 

Task 1: $2856.95 
Task 2: $3514.69 
Other: $ 170.31 

Cumulative total to date: $7527.54 

Percentage of total expended to date: 4.5% 

Work Completion 

Task 1: 4% 
Task 2: 2% 
Task 3: O% 
Task 4: 0% 

Percentage of total work completed to date: 1.4% 

Richard J. LeBlanc Jr., 
Principal Investigator 
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GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-31-S2 

June 10, 1983 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 
Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 
Month: May, -1983 

Dear Sirs: 
• 

Work on designs for the software to be developed in Tasks 1 and 2 
proceeded during May. We have run into one major difficulty with 
using our Perqs: they don't have enough memory to run Accent 
effectively. Thus we have been delayed in familiarizing ourselves 
with the Accent envitonment. No testing of design ideas has been 
possible. 

\'/e have obtained funding from the School of ICS to purchase the 
additional memory we need. It has been ordered from Three Rivers. 
Delivery is expected during June. 

The contractually prescribed effort appears sufficient to achieve 
the objectives of the contract. 

RJL/np 

Sincerely, 

- Richard J. LeBlanc Jr., 
Principal Investigator 

·-------· 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

t>.~~ I!O!JAL !:r:)!JC,\T!ON P.NO ~~!.~ .OYMENT O~?ORTUN~r INST!Tl!T!Of'! 



AIRHICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: May, 1983 

Han-hours Expended 

Task 1: 88 
Task 2: 78 
Task 3: 25 

Cumulative total to date: 382 · 

Percentage of total expended to date: 6.9% 

Total Funds Expended 

Work 

Task 1: 
Task 2: 
Task 3: 
Other: 

$2856.95 
$2661.61 
$853.08 
$575.32 

Cumulative total to date: $14,474.50 

Percentage of total expended to date: 8.6% 

Completion 

Task 1 : 6% 
Task 2: 4% 
Task 3: 2% 
Task 4: 0% 

Percentage of total work completed to date: 4.4% 

Richard J. LeBlanc Jr., 
Principal Investigator 



GEORGIA INSTITUTE OF TE-CHNOLOGY -
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

R&D Status Report 

July 12, 1983 

RE: 
Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 
Month: June, 1983 

Dear Sirs: • 
The memory for the Perqs we have been expecting has not arrived, 
so we have continued with only design work. Since Robbins has 
been with us only through August, he has begun working on a 
design for the interface (Task 3) to go along with his static 
communication monitor (Task 2). He will present these two designs 
as the main products described in his M.S. thesis. 

~-

Our study of the requirements for implementing PRONET and the 
capabilities provided by Accent continued during June. We have 
determined that the features of the extended Pascal supported by 
Accent are sufficiently powerful that we can use a pre-processor -
implementation approach. Programs written in ALSTEN and NETSLA, 
the two sublanguages of PRONET, will be translated to Pascal 
rather than compiled to Perq Q-code. This approach \vill greatly 
simplify our implementation task. Work on the ALSTEN pre-processor 
has begun, using the Zuse parser generator on our VAX 11/780. 

The contractually prescribed effort appears sufficient to achieve 
the objectives of the contrac~. 

RJL/np 

Sincerely, 

Richard J. LeBlanc Jr., 
Principal Investigator 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

Af\! !::OIJP.~ ~UCt.TlO:'-l AI'-!D E \1 Pl .OYME!'-!i OPPOr-r;UN!TY INSTJT1JTICN 

--- --~ 



AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: June, 1983 

Man-hours Expended 

Task 1: 88 
Task 2: 50 
Task 3: 53 

Cumulative total to date: 573 

Percentage of total expended to date: 10.3% 

Total Funds Expended 

Work 

Task 1: 
Task 2: 
Task 3: 
Other: 

$2856.95 
$1706.16 
$1808.53 
$575.32 

Cumulative total to date: $21,421.46 

Percentage of total expended to date: 12.7% 

Completion 

Task 1 : 10% 
Task 2: 4% 
Task 3: 4% 
Task 4: O% 

Percentage of total work completed to date: 8.8% 

Richard J. LeBlanc Jr., 
Principal Investigator 



e GEORGIA INSTITUTE OF TECHNOLOGy· 
. 

- SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA. GEORGIA 30332 • (404) 894-3152 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 

August 15, 1983 

Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 
Month: July, 1983 

• 
Dear Sirs: 

The memory we needed has arrived and Accent is now running. 
However, the availability of a running system has highlighted its 
lack of documentatioR. Robbins has . completed the prototype 
communications monitor design (Task 2) but is having difficulties 
with the interface design (Task 3) due to lack of information 
about the Canvas graphics package. In attempting to test some 
aspects of his implementation for ALSTEN, the process description 
component of PRONET (Task 1), Lin has been unable to even make 
process creation work correctly. We are attempting to obtain 
more information from Carnegie-Mellon. 

Presuming we can overcome these problems in the near future, the . 
contractually prescribed effort appears sufficient to achieve 
the objectives of the contract. 

RJL/np 

Sincerely, 

Richard J. LeBlanc Jr., 
Principal Investigator 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

A:'-l O:Q'Jr".L ED!.:~.'.T ~ Cf'.! f.~Q ~\'l P!.OY~~'= NT O?fiORTUNITY INSTlTUT !?~l 



AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: July, 1983 

Man-hours Expended 

Task 1: 25 
Task 2: 8 
Task 3: 8 

Cumulative total to date: 614 

Percentage of total expended to date: 11.0% 

Total Funds Expended 

Work 

Task 1: 
Task 2: 
Task 3: 
Other: 

$473.16 
$131.66 
$131.66 

Cumulative total to date: $22,157.89 

Percentage of total expended to date: 13.1% 

Completion 

Task 1 : 10% 
Task 2: 4% 
Task 3: 4% 
Task 4: O% 

Percentage of total work completed to date: 13.2% 

Richard J. LeBlanc Jr., 
Principal Investigator 



.GEORGIA INSTITUTE OF TE.CHNOLOG¥ · 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA. GEORGIA 30332 • (404) 894-31S2 

AI&\fiCS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

R&D Status Report 

September 12, 1983 

RE: 
Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 
Month: August, 1983 

near Sirs: 

considerable progress was made this month. The process creation 
problem in the ALSTEN implementation has been solved and the 
preprocessor has been transported from the Vax to the Perq. It 
is now fully functional and Task 1 effort can turn toward imple
menting NETSLA, the process interconnection component of PRONET. 

Arnold Robbins has finishe~·his designs for the Task 2 and 3 
prototypes and has completed his M.S. thesis entitled "Design of 
a Passive Monitor for Distributed Programs.'' His interface design 
(Task 3) is dependent on some unverified assumptions about Canvas. 

The contractually prescribed effort appears sufficient to achieve 
the objectives of the contract. 

RJL/np 

Sincerely, 

Richard J. LeBlanc Jr., 
Principal Investigator 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

~. ~! ECIJAL E!:lUCt\itm! AND E~~~LCYME ~·IT OPPOP.TUNITV INSilTU.T!ON 
/ I 



AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: August, 1983 

Man-hours Expended 

Task 1: 25 
Task 2: 4 
Task 3: 12 

Cumulative total to date: 655 

Percentage of total expended to date: 11.8% 

Total Funds Expended 

Work 

Task 1: 
Task 2: 
Task 3: 
Other: 

$473. 16 
$ 65.82 
$197.45 
$ 18.52 

Cumulative total to date: $22,912.84 

Percentage of total expended to date: 13.6% 

Completion 

Task 1 : 10% 
Task 2: 2% 
Task 3: 6% 
Task 4: 0% 

Percentage of total work completed to date: 17.6% 

Richard J. LeBlanc Jr., 
Principal Investigator 



-

GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEO~GIA 30332 • (404) 894-31S2 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 

October 11, 1983 

Contract Noo DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 
Month: September, 1983 

Dear Sirs: 

\~ork has begun on the NBTSLA sublanguage preprocessor (Task 1). 
A grammar has been written which meets the constraints of the 
parser generator. The Pascal code sequences to be generated 

· for each of the NETSLA features are being planned. 

Arnold Robbins has graduated and is no longer working on the 
project. He has been replaced by a new graduate student, Keith Harp, 
who will implement Arnold's _prototype monitor design (Tasks 2 and 3). 
Roy Mongiovi, a member of tbe ICS Laboratory Staff is also partici
pating in the implementation efforts now. 

The contractually prescribed effort appears sufficient to achieve 
the objectives of the contract. 

RJL/np 

Sincerely, 

Richard J. LeBlanc Jr., 
·Principal Investigator 

e_·-

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

-_;. 

. -~ 

.. : •.· 



AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: September, 1983 

Man-hours Expended 

Task 1: 35 
Task 2: 21 
Task 3: 25 
Clerical: 16 

Cumulative total to date: 752 

Percentage of total expended to date: 13.5% 

Total Funds Expended 

Work 

Task 1: 
Task 2: 
Task 3: 
Other: 

$709.22 
$453.52 
$519.34 
$281.02 

Cumulative total to date: $24,875.94 

Percentage of total expended to date: 14.8% 

Completion 

Task 1 : 10% 
Task 2: 2% 
Task 3: 2% 
Task 4: 0% 

Percentage of total work completed to date: 20.8% 

Richard J. LeBlanc Jr., 
Principal Investigator 



GEORGIA INSTITUTE OF TECHNOLOGY --
scHooL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA. GEORGIA 30332 • (404) 894·3152 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 

November 16, 1983 

Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 
Month: October, 1983 

Dear Sirs: 

A new release of Accent was feceived from Carnegie~ellon University at the 
beginning of this month. Difficulties with bringing it up on our machines.and 
time spent studying the documentation which arrived with the new release 
accounted for about half our effort this month. 

Work continued on the NETSLA sublanguage preprocessor (Task l). The focus this 
month was still design of Pascal code sequences corresponding to NETSLA features. 

The work on the prototype monitor design (Tasks 2 and 3) has been slow while the 
new personnel on the project have been familiarizing themselves with Accent and 
the existing design. With the new release, we received the documentations we 
needed on the Canvas graphics package. 

The contractually prescribed effort appears sufficient to achieve the 
objectives of the contract. 

RJL/np 

Sincerely, 

Richard J. LeBlanc _Jr., 
Principal Investigator 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA I -



AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: October, 1983 

Man-hours Expended 

Task 1: 85 
Task 2: 57 
Task 3: 57 
Task 4: 0 
Clerical: 16 

Cumulative total to date: 967 

Percentage of total expended to date: 17.37% 

Total Funds Expended 

Task 1: 
Task 2: 
Task 3: 
Task 4: 
Other: 

$2173.47 
$1390.48 
$1390.48 

0 
$ 176.64 

Cumulative total to date: $30,007.01 

Percentage of total expended to date: 17.81% 

Work Completion 

Task 1: 5% 
Task 2: 2% 
Task 3: 2% 
Task 4: 0% 

Percentage of total work completed to date: 23% 

Richard J. LeBlanc Jr., 
Principal Investigator 



GEORGIA INSTITUTE OF TECHNOLOGY:. 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894·3152 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 

December 13, 1983 

Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 
Month: November, 1983 • 

Dear Sirs: 

Work continued on the NETSLA sublanguage implementation of Task 1~ Effort this 
month has included design of the. required run-time support routines as well as 
work on the pre-processor. 

Code is now being written to implement the prototype monitor (Tasks 2 and 3). 

The contractually prescribed effort appears sufficient to achieve the 
objectives of the contract. 

RJL/np 

Sincerely, 

Richard J.~LeBlanc Jr.~ 
Principal Investigator 

A UNIT nF THE UNIVERSITY SYSTEM OF GEORGIA 

" 



AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: November, 1983 

Man-hours Expended 

Task 1 : 85 
Task 2: 57 
Task 3: 57 
Task 4: 0 
Clerical: 16 

Cumulative total to date: 1182 

Percentage of total expended to date: 21.23% 

Total Funds Expended 

Work 

Task 1: 
Task 2: 
Task 3: 
Task 4: 
Other: 

Cumulative total to date: $35,138.08 

Percentage of total expended to date: 20.85% 

Completion 

Task 1 : 10% 
Task 2: 3% 
Task 3: 3% 
Task 4: 0% 

Percentage of total work completed to date: 26.8% 

Richard J. LeBlanc Jr., 
Principal Investigator 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA. GEORGIA 30332 • (404) 894-3152 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 

January 10, 1984 

Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 
Month: December, 1983 

Dear Sirs: 

Some diff1culties have been encountered in using.our parser generator to 
produce the NETSLA preprocessor (Task 1) apparently due to the size of the 
grammar. We are currently experimenting with ways to solve this problem. 

Coding has continued on the prototype monitor (Tasks 2 and 3), with some 
testing also accomplished. This early testing has been done particularly 
to verify our understanding of the capabilities of canvas. 

The contractually prescribed effort appears sufficient to achieve the 
objectives of the contract. 

RJL/np 

Sincerely, 

Richard Ja ' LeBlanc Jr. ; 
Principal Investigator 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 



AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: December, 1983 

Man-hours Expended 

Task 1 : 85 
Task 2: 57 
Task 3: 57 
Task 4: 0 
Clerical: 16 

Cumulative total to date: 1397 

Percentage of total expended to date: 25.09% 

Total Funds Expended 

Work 

Task 1: 
Task 2: 
Task 3: 
Task 4: 
Other: 

Cumulative total to date: $40,269.15 

Percentage of total expended to date: 23.9% 

Completion 

Task 1 : 10% 
Task 2: 3% 
Task 3: 3% 
Task 4: O% 

Percentage of total work completeJ to date: 30.6% 

Richard J. LeBlanc Jr., 
Principal Investigator 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

AIRMICS 
115 O'Keefe Buildirtg 
Georgia Institute of Technology 
Atlanta, Georgia 30332 

RE: R&D Status Report 

March 23, 1984 

Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contract: Georgia Tech Research Institute 
Month: January 

Dear Sirs: 

The NETSLA preprocessor has been completed (Task 1). A small amount of work 
remains to be done on the run-time support routines required to support 
PRONET. We will soon begin integration testing of the two preprocessors 
and the run-time routines •. 

Coding of the prototype monitor has essentially been completed (Tasks 2 & 3). 
Testing will now be our main focus. 

The contractually prescribed effort appears sufficient to achieve the 
objectives of the contract. 

RJL/np 

Sincerely, 

Richard J. LeBlanc Jr., 
Principal Investigator 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 



AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-7~-D-0087-0015 

ninteractive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: January, 1984 

Man-hours Expended 

Task 1 : 63 
Task 2: 25 
Task 3: 43 
Task 4: 0 
Clerical: 16 

Cumulative total to date: 1544 

Percentage of total expended to date: 27.7% 

Total Funds Expended 

Task 1 : $1565.55 
Task 2: $ 658.33 
Task 3: $1185.99 
Task 4: 0 
Other: $ 276.76 

Cumulative total to date: $43,955.79 

Percentage of total expended to date: 26.1% 

Work Completion 

Task 1: 7% 
Task 2: 3% 
Task 3: 3% 
Task 4: O% 

Percentage of total work completed to date: 33.8% 

Richard J. LeBlanc Jr., 
Principal Investigator 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

AIRMICS 
!15 O'Keefe Building 
Georgia Institute of Technology 
Atlanta, Georgia 30332 

RE: R&D Status Report 

March 23, 1984 

Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 
Month: February 

Dear Sirs: 

Testing of the PRONET implementation is in progress (Task 1). Programs using 
a small subset of the language features have been executed successfully. 

Testing of the prototype monitor is also in progress (Task 2 & 3). 

The contractually prescribed effort appears sufficient to achieve the 
objectives of the contract. 

RJL/np 

Sincerely, 

Richard J.vLeBlanc Jr., 
Principal Investigator 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 



AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: February, 1984 

Man-hours Expended 

Task 1 : 63 
Task 2: 25 
Task 3: 43 
Task 4: 0 
Clerical: 16 

Cumulative total to date: 1692 

Percentage of total expended to date: 30.4% 

Total Funds Expended 

Work 

Task 1 : $1565.55 
Task 2: $ 658.33 
Task 3: $1185.90 
Task 4: 0 
Other: $ 276.76 

Cumulative total to date: $47,642.43 

Percentage of total expended to date: 28.3% 

Completion 

Task 1 : 7% 
Task 2: 3% 
Task 3: 3% 
Task 4: O% 

Percentage of total work completed to date: 37% 

Richard J. LeBlanc Jr., 
Principal Investigator 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

May 3, 1984 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Re: R&D Status Report 
Contract No. DAAK70-79-D-0087-.Q015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 
Month: March 

Dear Sirs: 

Testing of the PRONET implementation is in progress (Task 1). 
All features of the process sublanguage (ALSTEN) are now 
working. 

Testing of the prototype monitor is also in progress 
(Tasks 2 and 3). All remaining problems are in the display 
interface routines. 

The contractually prescribed effort appears sufficient to 
achieve the objectives of the contract. 

Sincerely, 

Richard J. LeBlanc Jr., 
Principal Investigator 

RJL/kkh 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 



AIRMICS 
115 O'Keefe Building 

. Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: March 

Man-hours Expended 

Task 1 : 63 
Task 2: 21 
Task 3: 47 
Task 4: 16 

Cumulative total to date: 1838 

Percentage of total expended to date: 33.01% 

Total Funds Expended 

Task 1 : 1559.51 
Task 2: 583.72 
Task 3: 1260.79 
Task 4: 0.00 
Other: 276.80 

Cumulative total to date: 51311.61 

Percentage of total expended to date: 30.45% 

Work Completion 

Task 1: 2 
Task 2: 3 
Task 3: 3 
Task 4: 0 

Percentage of total work completed to date: 39.2% 

Richard J. LeBlanc Jr., 
Principal Investigator 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

May 3, 1984 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Ins.titute 
Atlanta, Georgia 30332 

RE: R&D Status Report 
Contract No. DAAK70-79-D--0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 
Month : April 

Dear Sirs: 

All currently implemented features of PRONET are working (Task 1). 
Only structured events and failure handling remain to be 
implemented. 

The prototype monitor is now operational (Tasks 2 and 3) and was 
demonstrated during the IPR this month. The interface between 
PRONET programs and the monitor has been tested by hand construc
tion. We must now have PRONET generate it automatically. 

The contractually prescribed effort appears sufficient to 
achieve the objectives of the contract. 

Sincerely, 

Richard J. LeBlanc J t ., 
Principal Investigator 

RJL/kkh 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 



AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

· Month: April 

Man-hours Expended 

Task 1 : 63 
Task 2: 17 
Task 3: 51 
Task 4: 16 

Cumulative total to date: 1985 

Percentage of total expended to date: 35.65 

Total Funds Expended 

Task 1 : 1559.51 
Task 2: 509.04 
Task 3: 1335.47 
Task 4: 0.00 
Other: 276.80 

Cumulative total to date: 54992.43 

Percentage of total expended to date: 32.63% 

Work Completion 

Task 1 : 2 
Task 2: 3 
Task 3: 3 
Task 4: 0 

Percentage of total work completed to date: 41 .4% 

Richard J. LeBlanc Jr., 
Principal Investigator 



AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
A.t1anta, Georgia 30332 

R&D Status Report 

June 20, 1984 

RE: 
Contract No. DAAK70~79-D-0087-0015 
"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 
Month: May, 1984 

Dear Sirs: 

Work has begun to adapt the PRONET implementation for multiple machine 
operation (Task 1). Progress has been slow due to some networking 
hardware difficulties. 

The interface between the prototype monitor is now being automated. 
The first step in this process is extending the ALSTEN and NETSLA 
preprocessors so that they generate code to collect the necessary 
information at run-time. Substantial progress has been made on this 
effort. 

The contractually prescribed effort ·appears sufficient to achieve 
the objectives of the· contract. 

RJL/kkh 

Sincerely, 

I 

Richard J. LeBlanc Jr., 
Principal Investigator 



AIRMICS 
ll5 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems. 
Contractor: Georgia Tech Research Institute 

Month: May 1984 

Man-hours Expended 

Task 1: 63 
Task 2: 11 
Task 3: 57 
Task 4: 0 
Clerical: 40 

Cumulative total to date: 2156 

Percentage of total expended to date: 

Total Funds Expended 

Task 1: $1,559.51 
Task 2: $ 320.36 
Task 3: $1,524.15 
Task 4: ..... a-
Other: $1,852.67 

(clerical and computing charges) 

Cumulative total to date: $60,249.12 

Percentage of total expended to date: 

Work Completion 

Task 1: 2% 
Task 2: 1% 
Task 3: 5% 
Task 4: 0% 

38.7% 

35.8% 

Percentage of total work completed to date: 43.6% 

Richard J~ LeBlanc Jr .~1, 
Principal Investigator 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 

July 24, 1984 

Contract No. DAAK70--79-D-0087-0015 
Contractor: Georgia Tech Research Institute 
Month: June 1984 

Dear Sirs: 

Progress has been limited this month because of vacations during 
quarter break and lack of availability of our computers for over 
a week (when they were moved from our old offices to the ICS Lab). 
Efforts to resolve system problems have slowed work on multiple 
operation of PRONET (Task 1). Work on automating the interface 
between the preprocessors and the monitor has continued Tasks 2 
and 3, though progress was limited as described above. 

The contractually prescribed effort appears sufficient to achieve 
the objectives of the contract. 

RJL/kkh 

SinrPrPlv _ 

Richard /J. LeBlanc rJr. , 
Principal Investigator 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 



AIRMICS 
5 O'Keefe Building 

11 gia Tech Research Institute 
Geor . 
Atlanta, Georg~a 30332 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: June 1984 

Man-hours Expended 

Task 1: 63 
Task 2: 11 
Task 3: 57 
Task 4: 0 
Clerical: 40 

cumulative total to date: 2327 

Percentage of total expended to date: 41.7% 

Total Funds Expended 

Task 1: $ 1,559.51 
Task 2: 320.36 
Task 3: 1,524.15 
Task 4: -a-
Other: 3,046.45 

(clerical, supplies and comp~ti.ng charges) 

Cumulative total to date: $64,918.51 

Percentage of total expended to date: 38.5% 

Work Completion 

Task 1: 1% 
Task 2: 1% 
Task 3: 3% 
Task 4: Q% 

Percentage of total work completed to date: 45.0% 

R.It/kkh 

I 
Richard J. LeBlanc Jr., 
Principal Investigator 
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GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 

September 20, 1984 

Contract No, DA.Al<70~79~n~ao87-Q015 
'"'Interactive Monitoring of Dis,tributed Systems'~ 
Contractor: Georgia Tech ReseaTch Institute 
Month: August, 1984 

Dear Sirs: 

The efforts under Task 1 continued to involve furth.er extension of our 
preprocessors and run-time system to handle more Pronet features. A 
new version of Accent was received at the end of the month, which should 
allow us to proceed with work on multi-machine operation in the near 
future. 

The work on autoli}a~ing t.ha_ - ~qnito;r; int.e.rface (~asks 2 & 3) is nearing 
completi'on. 

The contractually prescribed effort appears sufficient to achieve the 
objectives of the contract. 

R.JL/kkh 

Si.ncerely, 

Richard J. LeBlanc, Jr. 
Principal Investigator 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 

Month: August, 1984 

Man-hours Expended 

Task 1: 92 
Task 2: 50 
Ta,sk 3: 107 
Task 4: 0 
Cler±,ca,l; 24 

cumulative tota,l to da;te.: _ 2869_ 

Percentage· of total expended · to date -: · 51._5% 

Total Funds Expende.d 

Task 1: $2,609~63 
Task 2: 1,380.61 
Task 3: 3,326.99 
Task 4: -a-
Other: 2,533.75 

(clerical and co1qputip.g ch.a,rges) 

Cumula,tive total to da;te: $86,905.,73 

Percentage of total expended to date: 51 ~. 6% 

Work. Completion 

Task 1: 1% 
Task '2: 2% 
Task 3: 3% 
Task 4: 0%' 

Percen_tage of tQt~l wo:t;k comple.te.d to date..: 49 . 3% , 

~cnar<1 J ' . Le.Hl.anc, J'r. 
Principal Investigator 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

October 16, 1984 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 
Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 
Month: September, 1984 

Dear Sirs: 

Due to vacations between the summer and fall quarters and continuing 
difficulties with the Accent operating system, very little progress 
was made this month on any of the tasks. 

The contractually prescribed effort appears sufficient to achieve the 
objectives of the contract. 

Sincerely, 

Richard J. LeBlanc Jr., 
Principal Investigator 

RJLjr/kkh 

A UNIT OF THE UN I VERSITY SYSTEM OF GEORGIA 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

October 16, 1984 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: September 1984 

Man-hours Expended 

Task 1: 92 
Task 2: 50 
Task 3: 107 
Task 4: 0 
Clerical: 24 

Cumulative total to date: 3142 

Percentage of total expended to date: 56.4% 

Total Funds Expended 

Task 1: $2,609.63 
Task 2: 1380.61 
Task 3: 3,326.99 
Task 4: -0-
Other: 2,533.75 

(clerical and computing charges) 

Cumulative total to date: $96,756.71 

Percentage of total expended to date: 57.4% 

Work Completion 

Task 1: 0 
Task 2: 1 
Task 3: 1 
Task 4: 0 

Percentage of total work completed to date: 49.9% 
l 

~ ~ . 

Richard J. LeBlanc Jr. -~ -
Principal Investigator 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA. GEORGIA 30332 • (404) 894-3152 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 

December 12, 1984 

Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 
Month: October, 1984 

Dear Sirs: 

Progress this month was limited by continuing difficulties with 
the Accent operating system. Some progress was made on interfac
ing with advanced Pronet features (Task 1). Work is continuing 
on the development of a Pronet program _ to test the usability of 
the prototype monitor (Tasks 2 and 3). 

The contractually prescribed effort appears sufficient to achieve 
the objectives of the contract, but the prescribed calendar time 
will be insufficient. An extension of the completion date has 
been requested. 

S_incerely, 

• v , 
R1chard J. LeBlant Jr., 
Principal Investigator 

RJL/kkh 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA. 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: October, 1984 

Man-hours Expended 

Task 1: 76 
Task 2: 42 
Task 3: 83 
Task 4: 0 
Clerical: 24 

Cumulative total to date: 3367 

Percentage of total expended to date: 60.5% 

Total Funds Expended 

Task 1: $1,613.45 
Task 2: $ 882.52 
Task 3: $1,832.72 
Task 4: -a-
Other: $2,533.75 

(clerical and computing charges) 

Cumulative total to date: $103,619.14 

Percentage of total expended to date: 61.5% 

Work Completion 

Task 1: 1 
Task 2: 1 
Task 3: 1 
Task 4: 0 

Pe;centage of total work completed to date: 

~1chard J: LeB1ancVJr. 
Principal Investigator 

RJLj r /kkh 

50.7% 

A UNIT OF THE UNIVERSITY SYSTEM ·OF GEORGIA 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 

D e c .em b e r 1 2 , 1 9 8 4 

Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 
Month: November, 1984 

Dear Sirs: 

Progress has again been limited by operating system difficulties. 
As of the date of this report, we have apparently received the 
new software we need, but it has not yet been installed. The 
only progress this month was continued work on testing the 
usability of the prototype monitor (Ta~ks 2 & 3). 

The contractually prescribed effort appears sufficient to achieve 
the objectives of the contract. 

Sincerely, 

Richard J. LeBlartc Jr., 
Principal Investigator 

RJL/kkh 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: November, 1984 

Man-hours Expended 

Task 1: 76 
Task 2: 42 
Task 3: 83 
Task 4: 0 
Clerical: 24 

Cumulative total to date: 3592 

Percentage of total expended to date: 64.5% 

Total Funds Expended 

Task 1: $1,613.45 
Task 2: $ 882.52 
Task 3: $1,832.72 
Task 4: -a-
Other: $2,533.75 

(clerical and computing charges) 

Cumulative total to date: $110,481.58 

Percentage of total expended to date: 65.5% 

Work Completion 

Task 1: 0 
Task 2: 1 
Task 3: 1 
Task 4: 0 

Percentage of total work completed to date: 

K1chard J~ LeBlan~ Jr. 
Principal Investigator 

RJLjr/kkh 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

51.3% 
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GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 

February 18, 1985 

Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring ·of Distributed Systems 
Contractor: Georgia Tech Research Institute 
Month: December, 1984 

Dear Sirs: 

The new Accent operating system has been installed but changes 1n 
the terminal inter~ace it provides require significant 
modifications in all of our existing programs. This 
modificiation work is currently in progress. 

The contractually prescribed effort appears sufficient to achieve 
the objectives of the contract. 

Sincerely, 

Richard J: LeBlanc Jr J , 
Principal Investigator 

RJL/kkh 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 



Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 

Month: December, 1984 

Man-hours Expended 

Task 1: 
PI 4 
GRAS 72 
TOTAL 76 

Task 2: 
PI 2 
GRAS 40 
TOTAL 42 

Task 3: 
PI 6 
GRAs 77 
TOTAL 83 

Task 4: 
PI 0 
GRAs 0 
TOTAL 0 

Clerical: 24 

Cumulative total · to date: 3817 

Perc~ntage of total expended to date: 68.55% 

PI rate 
GRA Rate 
CLer Rate 

Total Funds Expended 

Task 1: 
Task 2: 
Task 3: 
Task 4: 
Clerical 
Computing 
Supplies 

Other: 

$1,613.45 
$ 882.52 
$1' 832.72 

-0-
$ 415.20 
$1,364.17 

-o
$2,533.75 

Cumulative total- to date: $117,344.02 

Percentage of total expended to date: 69.63% 

"~~nara J. LeBlanc Jr. ~ 

Principal Investigator 

RJLjr /kkh 

Work Completion 
(current) 

Task 1: 0 
Task 2: 1 
Task 3: 1 
Task 4: 0 

Work Completion 
(cumulative total) 

Task 1 99 
Task 2 50 
Task 3 57 
Task 4 0 

Percentage to date 51.9% 



GEORG~A INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

AIRMICS 
115 O'Keefe Building 
Georgia Tech· Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 

February 18, 1985 

Contract No. DAAK70-79-D-0087-0015 
"Interactive Mon-itoring ·of Distributed Systems 
Contractor: Georgia Tech Research Institute 
Month: January 1985 

Dear Sirs: 

Most program modifications to run with the new version of Accent 
are complete. However, we are still having difficulties making 
access to ports work across the network. Work has begun on Task 
4~ interfacing with a single process monitor, using the existing 
Accent debugging program. 

A paper on our work has been accepted for the 5th International 
Conference on Distributed Comp~ting Systems and will be presented 
there in May. Work on a final verison of that paper is in 
progress. 

The contractually prescribed effort appears sufficient to achieve 
the objectives of the contract. 

Sincerely, 

K1chard J. LeBlanc Jr., 
Principal Investigator 

RJL/kkh 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 

AN EQUAL 



Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems 
·contractor: Georgia Tech Research Institute 

Month: January, 1985 

Man-hours Expended 

Task 1: 
PI 2 
GRAS 20 
TOTAL 22 

Task 2: 
PI 2 
GRAs 30 
TOTAL 32 

Task 3: 
PI 4 
GRAs 50 
TOTAL 54 

Task 4: 
PI 4 
GRAs 20 
TOTAL 24 

Clerical: 24 

Cumulative total to date: 3973 

Percentage of total expended to date: 71.35% 

PI rate 
GRA Rate 
CLer Rate 

Total Funds Expended · 

Task 1: 
Task 2: 
Task 3: 
Task 4: 
Clerical 
Computing 
Supplies 

Other: 

$ 503.52 
$ 693.02 
$1,196.55 

628.05 
$ 415.20 
$1 J 364.17 

-o
$2,533.75 · 

Cumulative total to date: $122,898.91 

Percentage of total expended to date: 72.93% 

Rlchard J. LeBlanc Jr. 1 
Principal Investigator 

RJLjr/kkh 

Work Completion 
(current) 

Task 1: 0 
Task 2: 1 
Task 3: 1 
Task 4: 5 

Work Completion 
(cumulative total) 

Task 1 99 
Task 2 51 
Task 3 58 
Task 4 5 

Percentage to date 53.5% 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

AIRMICS 
115 O'Keefe Building . 
Georgia Tech Research Inst1tute 
Atlanta, Georgia 30332 

R&D Status Report 

April 11, 1985 

IE: 
Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 
Month: February, 1985 

Dear Sirs: 

We are now operating successfully with the new vers1on of Accent, 
except that name server problems limit us to programs running on 
a single workstation. 

The final version of our paper for the 5th International 
Conference on Distributed Computing Systems has been completed. 

Work has begun on Task 4, integrating a single process debugger 
with Radar. 

The contractually prescribed effort appears sufficient to achieve 
the objectives of the contract. 

Sincerely, 

i cliard J. LeBlanc Jr., ' 
Principal Investigator 

RJL/kkh 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia Tech Research Institute 

Month: February, 1985 

Man-hours Expended 

Task 1: 22 
Task 2: 27 
Task 3: 27 
Task 4: 56 
Cler ica 1 : 24 

cumulative total to date: 4129 

Percentage of total expended to date: 74.16% 

Total Funds Expended 

Task 1: $ 503.52 
Task 2: $ 598.27 
Task 3: $ 598.27 
Task 4: $1,321.07 
Other: $2,533.75 

(clerical and computing charges) 

Cumulative total to date: $128,453.79 

Percentage of total expended to date: 76.23% 

Work Completion 

Task 1: o 
Task 2: 3 
Task 3: 3 
Task 4: 5 

Percentage of total work completed to date: 56.3% 

~cnarct J. LeBlanc Jr 
Pri · ' • nclpal Investigator 

RJLjr/kkh 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA. GEORGIA 30332 • (404) 894-3152 

May 3, 1985 

AIRMICS 
ll5 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

RE: R&D Status Report 
Contract No. DAAK70-79-D-0087-0015 
"Interactive Monitoring of Distributed Systems" 
Contractor: Georgia T~ch Research Institute 
Month: March, 1985 

Dear Sirs: 

Due to spring breaks here and at CMU, we still haven't resolved the 
name server problem with Accent. 

Work is continui~g on Task 4, integrating a single process debugger 
with Radar. We are using the Kraut debugger distributed with Accent. We 
are also considering use of some concepts from Kraut as the basis of 
refinements to the Radar interface (Tasks 2 and 3). 

The contractually prescribed effort appears sufficient to achieve the 
objectives of the contract. 

Sincerely, 

Richard J. LeBlanc, Jr., 
Principal Investigator 

RJL/kkh 

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA 



Performance and Cost Report 
Contract No. DAAK70-79-D-0087-0015 

.. I n t era c t i v e Mo n i tor i n g of D i s t r i but e d Systems 
Contractor: Georgia Tech Research Institute 

Month: March, 1985 

Man-hours Expended 

Task 1 : 20 

T&sk 2: 22 

Task 3: 22 

T&Sk 4: 68 

Clerical 24 

cumu 1 at i v e tot a I to date: 4 2 8 5 

Percentage of total expended to date: 76.96'1t 

Tot&l Funds Expended 

Task 1 : $ 379.00 
T&sk 2: 503.52 
Task 3: 503.52 
Task 4: 1,635.09 
Other: 2,533.75 
(clerical and computing charges> 

Cumulative total to date: $134,008.68 

Percentage of total expended to date: 79.52% 

Work Completion 

Task 1 : 0 
Task 2: 3 
Task 3: 3 
Task 4: 30 

Percentage of total work completed to date: 64. 10ft 

Richard J. LeBlanc Jr., 
Principal Investigator 

f 
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[)ESJGNJNG TOMORROW TODAY 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Re: R&D Status Report 
Contract No. DAAK70-79-D-0087-0015 
Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 
Month: April, 1985 

Dear Sirs: 

Georgia Institute of Technology 
School of Information and Computer Science 
Atlanta. Georgia 30332-0280 
(404) 894-3152 

The name server problems with Accent are still unresolved; as a result, we 
remain unable to do any testing of Radar involving multiple machines. Our 
testing is thus limited to multiple processes on single machines. Although 
Accent makes machine boundaries invisible to processes, giving processes the 
same logical relationship regardlessof where they are located, we would still 
prefer to do some testing involving programs running on both of our Perqs. 
Because of the name server problem, little progress has been made on further 
work with the replay mechanism of Radar. 

Work has continued on Task 4, integrating the single process debugger with 
Radar. One major problem has been encountered: dealing with conditional 
receive statements within the process being debugged. By using a message 
stream to simulate the rest of the program, messages are always available. 
Thus the "else branch" of the conditional receive will never be used during 
the debugging session. Dealing with this problem is now our highest prior
ity. 

The contractually prescribed effort appears sufficient to achieve the objec
tives of the contract. 

Sincerely, 

Richard J. LeBlanc Jr., 
Principal Investigator 

An Equal Educat1on and Employment Opportunity Institution A Unit of the Un1vers1ty System of Georg1a 
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o£51GNJNG TOMORROW TODAY 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Re: R&D Status Report 
, Contract No. DAAK70-79-D-0087-0015 

Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 
Month: May, 1985 

Dear Sirs: 

Georgia Institute of Technology 
School of Information and Computer Science 
Atlanta. Georgia 30332-0280 
(404) 894-3152 

The name server problems remain 
of this version of accent as we 
in our efforts to do anything. 
lease from CMU. 

unresolved. We do not have the source code 
did with the last, so we have been hindered 
We are trying to get the source for this re-

Our paper on Radar was presented at the International Conference on Distri
buted Computing Systems this month. It was included in a session with two 
other distributed program debugging papers, which presented some interesting 
contrasting approaches to the problem. 

Our problem with conditional receive statements in single process debugging 
(Task 4) has been solved by making execution of an else branch another kind 
of event to be recorded in the log file. This event is ignored by the mul
tiple process replay driver. It is, of course, used in the single process 
debugging mode. The single process debugger is now finished and ready for 
testing. 

We now have a new user who was not part of the implementation team attempt
ing to implement a distributed program using Pronet on the Perqs. His exper
ience is intended to provide feedback on our design and to further test our 
tools. His initial focus will be on the value of the multiple process replay 
(Tasks 2 and 3) in debugging a multiple process implementation of a minimal 
spanning tree algorithm. 

The contractually prescribed effort appears sufficient to achieve the objec
tives of the contract. 

Sincerely, 

Richard J. LeBlanc Jr., 
Principal Investigator 

An Equal Education and Employment Opportunity Institution A Unit of the Un1vers1ty System of Georg1a 
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D£Sic;HING TOMORROW TODAY 

AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Re: R&D Status Report 
Contract No. DAAK70-79-D-0087-0015 
Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 
Month: June, 1985 

Dear Sirs: 

Georgia Institute of Technology 
School of Information and Computer Science 
Atlanta. Georgia 30332-0280 
(404) 894-31 52 

The Accent name server problem remains unresolved. We have been promised 
source code from CMU, but have received nothing yet. Another problem has 
arisen due to the lack of source code. We are no longer able to produce 
templates for all messages, since we had done some compiler modifications 
in order to obtain the templates for records. 

Work is proceeding slowly toward the goal of testing our system using a min
imal spanning tree program. 

The single process debugging capability (Task 4) has been tested by the imple
mentor and is now ready for user testing. It will be used in debugging the 
minal spanning tree program when that effort reaches the appropriate point. 

The Vax 780 in the ICS Lab which we use for some of our development work and 
where must read any tapes we get from CMU has recently been converted to 
version 4.2 of Berkeley Unix. Since that time, our file transfer program, 
which we have in object form only, no longer works. We will try to obtain 
another one from CMU or from someone on Usenet (the source of our current 
version). 

Because of our problems with Accent and other software problems, it is un
likely that the contractually prescribed effort remaining will enable us to 
make any further refinements to Radar. 

Sincerely, 

Richard J. LeBlanc Jr., 
Principal Investigator 

An Equal Education and Employment Opportunity lnst1tut1on A Un1t of the Un1vers1ty System of Georg1a 
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AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Re: R&D Status Report 
Contract No. DAAK70-79-D-0087-0015 
Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 
Month: July, 1985 

Dear Sirs: 

Georgia Institute of Technology 
School of Information and Computer Sc ience 
Atlanta. Georgia 30332-0280 
(404) 894-3152 

we still have not received the source code for Accent from CMU. Apparently 
the configuration of our Perqs is suffiently out-of-date that what we need 
must be recreated from backups, which nobody has gotten around to doing for 
us. We also still lack a working file transfer program to move programs be
tween the Vax and the Perqs. 

Progress with the minimal spanning tree program, to be used to evaluate Radar 
(Tasks 2 and 3) has been slow due to the need to fix problems with Pronet, 
compounded by out lack of file transfer capabilities. 

In our work to develop a higher level interface to Radar, we are exploring 
the possibility of borrowing some ideas from a data compression technique. 
The essence of this approach will be to present the user with information 
about recurring groupings of events, which contrasts to our previously re
jected alternative that required the user to describe the groupings he ex
pected. The limited amount of contract effort remaining will not enable us 
to do more than just study this new approach. 

Sincerely, 

Richard J. LeBlanc Jr., 
Principal Investigator 

An Equal Ed · 
ucat1on and Employment Opportun1ty lnst1tut1on A Un1t of the Un1vers1ty System of Georg1a 
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AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Re: R&D Status Report 
Contract No. DAAK70-79-D-0087-0015 
Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 
Month: August, 1985 

Dear Sirs: 

Georgia Institute of Technology 
School of Information and Computer Science 
Atlanta. Georgia 30332-0280 
(404) 894-3152 

We still are waiting for the required Accent source code from CMU. Appar
ently their work on our request has uncovered some problems with their file 
backup system that they have not yet resolved. At this point, we don't really 
expect to receive anything from them before the end of the project, so we 
will remain unable to actually test Radar on programs executed on multiple 
machines. 

Our file transfer program has been fixed by one of the ICS lab staff who took 
the object code of the old version and substituted in Unix 4.2 system calls 
where necessary. His efforts have been very valuable to us. 

Our Radar evaluation effort (Tasks 2 and 3) has finally succeeded in getting 
the minimal spanning tree program executing on the Perqs. Just we hoped might 
be the case, the initial version contains at least one bug that can be used 
as an application for Radar. Unfortunately, that bug causes the program to 
loop and when we abort execution, we lose the log files required to drive 
Radar. This is a very fundamantal problem that will be a significant dis
advantage of the replay style of debugging if we can't solve it. 

We have identified a data compression algorithm which we hope will be satis
factory to implement our event grouping concept. Due to lack of man-hours 
remaining in the project, we will not have a chance to implement this exten
sion to Radar, but will be limited to studying its potential and related im
plementation issues. 

Sincerely, 

Richard J. LeBlanc Jr., 
Pr· · ~nc~pal Investigator 

An Equal Ed 
ucat1on and Employment Opportun1ty lnst1tut1on A Unit of the Un1vers1ty System of Georg1a 
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AIRMICS 
115 O'Keefe Building 
Georgia Tech Research Institute 
Atlanta, Georgia 30332 

Re: R&D Status Report 
Contract No. DAAK70-79-D-0087-0015 
Interactive Monitoring of Distributed Systems 
Contractor: Georgia Tech Research Institute 
Month: September, 1985 

Dear Sirs: 

Georgia Institute of Technology 
School of Information and Computer Science 
Atlanta. Georgia 30332-0280 
(404) 894-3152 

As expected, there have been no further developments involving Accent. 

We have been successful in providing a capability to abort looping programs 
so that their log files are not lost. Since there is a "master process" con
trolling the execution of a Pronet program, we can have it periodically look 
for a command from the keyboard to abort the program. It can then send emer
gency messages to the processes, requiring them to terminate. This is not 
as general a · solution as might be desired, since it depends on particular 
properties of Accent and Pronet. Any other application of the technology 
we have developed will have to consider handling the problem of looping pro
grams an important constraint. 

The bugs in the minimal spanning tree program were independently discovered 
while this problem with Pronet was being fixed, so Radar was not used very 
significantly in debugging it. However, this effort did contribute consid
erably to the removal of problems in Pronet and the data collection system 
upon which Radar is based. 

Our studies of the data compression concept have led us to the conclusion 
that it will require some extensions, since the basic algorithm for compres
sion works on a single data stream. Events in from a Pronet program, while 
they can be linearized, actually come from multiple streams, one for each 
process. We have identified an ICS student who is interested in continuing 
work on this problem as his senior design project, so work on this aspect 
of the problem will continue beyond the end of the contract. 

Sincerely, 

Richard J. LeBlanc Jr., 
Principal Investigator 

An Equal Education and Employment Opportunity lnst1tut1on A Unit of the Un1vers1ty System of Georg1a 



USING PRONET AND RADAR 

ile a Netsla program NetslaFileName.n: 
1'o cotnP 

1) anslate NetslaFileName.n into NetslaFileName.pas 
1. 1) ~~ich is a Pascal version of the program. 

% netsla NetslaFileName.n 

1 .2) 
compile NetslaFileName.pas: 

% com NetslaFileName.pas 

mpile a Alsten program AlstenFileName.a: 
l) To co 

) translate AlstenFileName.a into AlstenFileName.pas 
2· 1 which is a Pascal version of the program. 

% alsten AlstenFileName.a 

2 . 2) compile AlstenFileName.pas: 

% com AlstenFileName.pas 

l) To run a Pronet program, just type 

% NetslaFileName 

4) To replay program execution, just type 

% replay NetslaFileName 

At any time during the event replay the user can stop execution by 
causing a keyboard interrupt. This invokes an interrupt handler which 
presents the following menu: 

1. Change To/From Single-Step/Continuous Operation. 
2 • Change The Number of Seconds Per Event . 
3. Skip Ahead to A Specific Event Number. 
4. Display Contents of the Message Under the Mouse. 
5. Instant Replay. 
6. Start Displaying From Scratch. 
7 • Exit REPLAY. 
8. Help. 
9 . Never Mind. 

After the interrupt handler does what the user wishes, the program 
returns to where it was executing before the interrupt occurred. 

5) Single process debugging 

5.1) to prepare log files for single process debugging 

% ucap NetslaFileName ProcessName 

Where ProcessName is the name of the process to be debugged. 

5 ·2) to start debugging a process instance 

% NetslaFileName -k ProcessName ProcessiD 

Where ProcessiD is the Pronet ID that has been assigned to 



the particular process instance. 

The user then has to create a window for KRAUFT which is a 
process debugger for the Accent operating system. 

After KRAUFT is invoked, the user should resume the execution 
of the debugged program by typing a key on the keyboard. 



************* ••** ••** rocessors * 
ftD~ pr;~*********** 
r":••••*** .... 
~.a code which specifies the steps to be taken by the Alsten 

~tion essor during translation. 
prep roc 

~.n code which specifies the steps to be taken by the Netsla 
~tioncessor during translation. 
prepro 

~onst.a declarations for Alsten preprocessor. constant 

~~~t~t declarations for Netsla preprocessor. 

~S:~~fied version of grammar.a which has been compressed to 
facilitate use by the Alsten preprocessor. 

~S:~~fied version of grammar.a which has been compressed to 
tacilitate use by the Alsten preprocessor. 

IJ,select. a 
Reformatted Alsten grammar which contains the productions numbered 
in increasing order by line number from the orginal Alsten grammar. 

IJ,select.n 
Reformatted Netsla grammar which contains the productions numbered 
in increasing order by line number from the orginal Netsla grammar. 

LLsup.a 
The support routines referenced in the Alsten preprocessor or the 
action code. 

LLsup.n 
the support routines referenced in the Netsla preprocessor or the 
action code. 

LLtype.a 
TYPe declarations for the Alsten preprocessor. LLtype.a is included 
into alsten.pas (the Alsten preprocessor.) 

LL~.n 
TYPe declarations for the Netsla preprocessor. LLtype.n is included 
into netsla.pas (the Netsla preprocessor.) 

LLvar.a 
Variable declarations for the Alsten preprocessor. 

LLvar.n 
Variable declarations for the Netsla preprocessor. 

LLwrt.n 
~support routines referenced in the Netsla preprocessor. Used to 
~~rate Pascal code. 

tables 
Parsing table that will be read by the Alsten preprocessor. 

sten.Pas 
T.he Alsten preprocessor. 



~pas am which accepts a translation grammar as input and generates 
y-~pr0~1 files which will be needed for the language preprocessor. 

sever a 

~ar.a for Alsten. 
9"Li(l) grammar 

gr~ij0grammar for Netsla. 

la pas 
ne~·Netsla preprocessor. 

n~!~:ing table that will be read by the Netsla preprocessor. 

~****************** ******~ 
-.n:"T' runtime library * 

PRO~~~****************** ***** .. 

--'"!Vi ties .pas 
~~~rting routines which are called to actually perform the 

Netsla and the Alsten activities. 

lster'Lsupt. pas 
a Additional supporting routines to handle Alsten activities such 

as the message reception and the message transmission. 

alstenini t. pas 
Initialization code to set up parameters of a child process 
When it is created. 

chilcLlib. pas 
Library routines that are referenced by child processes. 

cl)_procs . pas 
Routines that create and maintain the run-time database of a 
Pronet program. 

db_ types. pas 
Declarations of data types that are used in the database. 

decl_types . pas 
Type declarations. 

defs.pas 
Definitions of some system parameters. 

events.pas 
Event handlers. Defines steps to be taken when an event occurrs. 

netslaini t. pas 
~s to initialize a network. 

******** 
RADAR• 

******** 

8'1ent~s. pas 
~s module is broken out separate from the rest of radartypes because it 
1~ the only one needed to do logging of events, and using all those 

entifiers when only these are needed is begging for doubly-defined 



idetltifiers 

11es.pas dling module for REPLAY system, isolates getting 
fil~t event from all the log files. 
thB ne~ 

~orY·Pa~tained module for handling history of events, to help 
self corforming the Instant Replay of RADAR. 
~pe 

~.pas __ keep track of what is on the screen. 
screen 

~~ti~a~ontaining miscellanious small support routines 
- ~ . ModUthe RADAR monitoring system. 

tor 
~late.pas . 
- Routines to generate template f1les. 

~.pa~efinitions for RADAR, pronet/clouds ~onitor 
~module is not designed to be actually compiled on the Perqs. 
I is used to put all the type definitions in one place. It then exports 
~se definitions. It includes fudgemod.p only so that the module will 
be syntactically valid for the perqref cross referencing program. 

UC&E·pas up Close and Personal -- message filtering program to aid 
1n single process debugging of Pronet process scripts. 

vars.pas 
variable declarations for RADAR -- pronet/clouds monitor 

proc.pas 
Procedures for RADAR 

process. pas 
Processhandl ing 

ndarlog.pas 

keep track of actual processes, ports, destinations 

Radarlog -- module which performs logging fnnction for RADAR 

**************** 
Test programs * 

**************** 
MSTnetnp. pas 

t.pas 
odel.pas 
ode2.pas 
ode3.pas 
ode4.pas 

Pronet programs that implement a distributed algorithm of minimum 
&panning tree . 

1nt.n 
1nt.pas 
acan.a 
IIC:an.pas 
l*rse . a 
l*rse .pas 
lleman .a 
lleman .pas 



. ~ 
l.pas 
2.pas 

eel·· 
ccl·pas 
cc2.Pas 
cc2·• 
eel·• ccl.pas 
cd2·• 
cd2·pas 

.a 

.pas 
ce2·• 

.pas 
n.a n.pas 
t2.a 

cf2.pas 
c:gCJ.a 
~.pas 
~.a 
~.pas 
cgl.a 
c:g2.pas 
cg3.a 
c:g3.pas 

.Pas 

.pas 
pc.n 
pc.pas 
~.n 
pd.pas 

.n 

.pas 
t.n 
t.pas 

pg.n 
pg.pas 

l.a 
l.pas 
l.a 

that implement a simple arithmetic interpreter. 

that implement the message broadcasting . 

Programs to test various features of Pronet. 
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~ction 1 

INTRODUCTION 

!.!Problems with Monitoring Distributed Programs 

In a conventional ~ogramming environment, there are two princip3l 

purp:>ses for moni taring the run-time behavior of a program: performance 

measurement and deb~ging. (By "monitoring" Y.e refer to some mechanism for 

obtaining information aoout the performance of a program, external to the 

program itself.) Performance measurement is a relatively mU1dane application 

of moni taring in soch an environment, being principally concerned with the 

processor time requirements of various };Brts of a program and requiring little 

or no interactive intervention by a programmer. Deb~ging is considerably 

more interesting, requiring extensive programmer interaction by its very 

nature. 

When we generalize our thinking to a distributed system from a 

traditional single-processor environment, the uses of monitoring become 

somev.ha t different and we must develop a new conceptual view of a major p3rt 

of the monitoring task. we are, of course, still interested in performance 

measurement and deb~ging, but these tasks become quthis new environment. The 

reason for this difference is that Y.e are now concerned with distributed 

programs - programs which cannot be monitored by considering a single address 

space on a single machine. Rather, we must now be concerned with the com

rnlllication between the various parts of a program, for these interactions will 

Play a crucial part in the moni taring task. 

Ferformance measurement in a distributed system is made more complex by a 

number of new considerations. COmmunication costs and the overall time it 
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takes to execute a program, which is affected by the potential for parallel 

execution of slbtasks and by time spent w:li ting for messages, are equally im

portant considerations in many situations. Further, it is much more difficult 

for a measurement Irogram to monitor an entire program, since the monitored 

program may be distributed arbitrarily across a network of machines. It will 

be necessary for any monitoring program to obtain information about the dis

tribution of a program arrl about its conmunica tion 1 inkage and behavior. 

'!his need to obtain information from distributed execution sites 

naturally applies to debU3gers as well as to performance monitors. In fact, 

it is a more complex txoblem in the case of a debu:Jger since the debu:Jget" must 

somehow assist a programner in compreherrling the "state" of a program which 

consists of a number of processes running asynchronously on several machines. 

Cbnventional debugging tools are certainly of little use in this situation, 

since they are typically oriented tow:lrd monitoring the operation of what 

W":>uld only be a single process of a distributed program. O'lce again, tools 

W'lich provide information about the status of process interactions will be 

required. (Such tools should also have the capability to interface with more 

traditional monitoring tools Which can be used on the individual processes.) 

Just as communication should play an important part in distributed per

formance measurement, it should also have a crucial role in debugging distrib

uted programs. 'Ihe correctness of such programs will undotbtedly deperrl on 

the correctness of the contents and sequencing of messages transmitted between 

their constituent processes. 'Ihus a distributed debugging tool must deal with 

communication as a major part of its job. Ih fact, it is conceivable that a 

comnunication monitor may be the debugger at the interprocess level, com

Plementing traditional debu:Jgers Which operate on individual processes. 
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As a final difficulty, any kind of monitoring of a distributed program 

will potentially generate a great deal of information, which must be conveyed 

to a programmer in a comprehensible manner. It will presumably not be satis

factory to produce all of this information independently for each of the 

processes. R:lther, the information must be aggregated in some manner consis

tent with the nature of the monitoring task being performed. 

1.2Proposed Solutions Using PRONET 

'nle network descriptors of PRCJ.JET will provide an excellent basis for the 

operation of distributed monitoring tools. The interconnection information 

these networks provide is exactly what is requi r~ by a monitor so that it can 

easily recognize the structure of an entire program. 'Ihus the implementation 

of a distributed ~rformance monitor or debt.gger can use our PROOET work as 

its basis. 

As vas indicated in the previous section, a comrmnication_ monitor will be 

a crucial part of any of these tools. The interconnection specifications in 

PROOET networks, as currently designed, provide the minim Lin amomt of informa-

tion needed by a communication monitor. That is, they provide a listing of 

the message p3 ths between processes and the types of the messages Yhich may be 

transmitted. 'nle task of a monitor will be to provide a prograrrmer with in-

formation about message transmission between processes. Fbr ~rformance 

measurement purposes, the most important information will probably involve 

s~h factors as message queue lengths and the amomt of time processes s~nd 

Y.ei tin:3 for messages. A distributed debt.gger, on the other hand, will be · 

concerned Wl.. th the · f d · h h · sequencutg o messages an Wl t t e1r contents. It will 

Probably also be required to provide some capabilities to examine the opera

tion of individLBl processes, which may be accomplished by interfacing with 
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traditional single process debuggers. 

1• 3overview of Project Status 

Page 4 

'!he project ~s originally planned to inclt.rle the following tasks as 

described in the original statement of work: 

~sk 1 - PRONET Interface 

PRrnET, a langtBge that provides a high level description of interprocess 

communication, is currently being implemented on the full distributed 

system at <£orgia Institute of 'Iechnology. 'fue task is to develop an in

terface between PRONET and a distributed monitor. 

TI:tsk 2 - Canrmnication t-bni tor 

'lhe contractor shall determine vtlat data should be collected by the 

monitor to facilitate developnent, debugging and maintenance of pro:Jrams. 

'lhis task is to develop a monitoring program that interfaces with the 

communication features of the operating system and collects the necessary 

data. 

'!ask 3 - Interface to the <hmmmication t-bni tor 

The contractor shall determine what data should be collected by the 

monitor to facilitate developnent, debugging and maintenance of programs. 

The task is to develop a moni torirg pro:Jram that interfaces with the com

munication features of the operating system and collects the necessary 

data. 

'!ask 4 - Interface with a Process-level r:Ebugger 

The contractor shall develop an interface with the communications monitor 

and an existing symbolic debugger. If this approach is infeasible, then 
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a symbolic debugger for individual processes must .be implemented and in

terfaced with the sirgle process debugger. 

Since this Iroject \>aS initiated, some changes in the tasks have been 

made. '!he new approach to the project is described in the followirg list of 

tasks and justification for the changes: 

'!ask 1: Implement PRONET on Perq computers and provide a monitor interface. 

rrask 2: Build a prototype monitor. 

rrask 3: Build a full monitor. 

rrask 4: Interface with a process-level debugger. 

'!he charge in task 1 involves use of different hardv.ere than originally 

planned. 'Ihe main reason for this change \>aS that v.e found the implementation 

of PRONET on our Primes too expensive to be practical. 'Ihe operatirg system 

on these machines does not effectively support dynamic process creation. The 

kcent .operating system available on the Perqs, on the other hand, supports 

dynamic fCocess creation as \tell as message p3ssing between processes on 

different machines. 'Ihus it rna kes PRONET implementation moch simpler than on 

the Primes. 

'Ihe ~rqs also have high-resolution, bit-mapped displays. 'Ihis feature 

gives considerable support to the development of a very effective user inter

face to our monitoring system. 

'Ihe other major change in our approach involves the initial development 

of a prototype monitor rather than inmed ia te development of the final system. 

This change has t'M:> motivations. First, it will give us some experience in 

dealin;J with distributed programs short of a full-scale implementation. Since 

the prototype will fCovide only a historical replay of program events, the 
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second motivation for this approach is that it allows us to address the har

dest problem last. '!hat problem is the question of how v.e will deal with real 

time interaction with the processes of a distributed program. 

The following four sections describe various aspects of the design of the 

prototype monitor, called RADr\R. 'fuey are extracted from Arnold lbbbins' M.s. 

thesis. '!hey are followed by sections on the PRONET implementation, the 

monitor implementation status and our plans for further Y.Ork. 
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Section 2 

RAIY\R DESIGN 

2.lDistributed Programs 

'Ihe RAmR monitor is intended to supPJrt Pronet [Macc82], a message 

based language specifically designed for writing pr03rams which can take 

advantage of the environment offered by an FOPS. Ibv.ever, it could be easily 

adapted to supPJrt other message-based pr03rarrming systems. 'Ihe relevant 

features of Pronet will be discussed in the section 3.1. 

2.2The RAD.l\R System 

The RADAR system takes a passive approach to monitoring distributed 

programs. Because it is not interactive the term "monitor" is used to 

describe it, and not the term "deb~ger." 

RAIYffi is designed to supPJrt Pronet on PERQ computers [ 3RCC82] • 'Ihe PERQ 

is a single user rrachine with a high resolution bit-mapped display and a 

mouse. 

Pronet consists of two sublangt.ages: NETSIA for describing carum.nication 

networks, and ALSTEN for describing processes. The Pronet compiler provides 

the· monitor with information concerning the connectivity of the processes. 

'Ihis information is collected from the NETSLA runtime system. ALSTEN programs 

are loaded with a special communications library which records every standard 

or user-defined event during execution, and rrakes a copy of every message 

sent. 'Ihe exact nature of the information supplied by the NETSIA runtime 



section 2 
RAmR DESIGN Page 8 

t
em and the structure of AISTEN event records will be described in section 

sys 
'ttlis canp::>nent of RAmR is known as the RAIY\RLOG. 

). 2. 

After the program has completed executing, the REPLAY comp::>nent of RAmR 

is invoked to provide a graphical "replay" of the execution. Each message or 

event is stamped with a global event number. '!his imp::>ses a p3rtial ordering 

on events. 'Ihe monitor then displays events one at a time. 'Ihe programmer is 

able to YB tch the comml.l1ications traffic amongst the processes. Processes 

have names in Pronet, so it is easy for the prograrrmer to see which process is 

carumnicating with v.hich other ~ocesses. 

REPlAY provides the user with the ability to view the contents of any 

message currently represented on the screen. Messages are represented on the 

screen as small boxes. 'Ihe user places the PERQ' s mouse over the message 

which oo wishes to examine. REPLAY then opens a new window in which the con-

tents of the chosen message will be displayed in a formatted fashion. Fbr in-

stance, if the message contained an integer and two floating point numbers, 

the message would be displayed as an integer and two floating p::>int numbers, 

not as 10 octal bytes. When the user is throt.gh with the message the new 

window disappears. 

REPLAY also provides the ability to replay a certain number of events 

which have already happened. '!his can be done at any p:>int during the 

display. 'lhe user can "rewind the video tape," so to speak. 'Ihis replay is 

limited to a reasonable maximun nunber of previous events. '!his feature is 

knoW'l as an "Instant Replay." 

Finally, as a separate utility, the user can name a given process and 

have all of the messages which were sent to that process selected from the 

recorded message traffic. '!his single process may then be run by itself with 

its messages derived fran the stored messages. '!his feature is designed to 
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facilitate si03le process debu;Jgio;J usio;J real input data (messages). 'Ihis 

~y, it is possible to observe a process' behavior under realistic conditions, 

withoUt havinj to worry about con troll io;J the rest of the processes of the 

distributed program. 
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Section 3 

COLLECTING INFORMATI~ 

~ is interned to · support Pronet, a language designed for writing 

programs Which can execute in a distributed processing environment. Pronet 

stands for Processes and Netw:>rks. 'Ihe introduction to Cllapter 2 of [M3cc82] 

sunmarizes the description and design goals of_ Pronet: 

PRONET is composed of tY.O complementary sublanguages: a netw:>rk 
specification langLBge, NETSI.A, and a process description langLBge, 
AI.STEN. Programs written in PRONET are comiX>sed of network specifications 
and process descriptions. Network specifications initiate process exec
utions aoo oversee the operations of the processes they have initiated. 
'!he overseeing cafBci ty of network specifications is limited to the main
tenance of a communication environment for a collection of related 
processes. 'Ihe processes initiated by a netw:>rk specification can be 
simple processes, in which case the activities of the processes are 
described by AI.STEN programs, or they can be "comp:>si te processes", in 
which case their activities are described by a "lower-level" netw:>rk 
srecification. 

AISTEN is an extension of Pascal Which enables programmers to describe 
the activities of sequential processes. During their execution, processes 
may perform operations that cause events to be announced in their over
seeing network specification. Netw:>rk specifications, written in NETSLA, 
describe the _activities to be performed when an executing process 'an
nounces' an event •••• TWo principles have influenced the design of these 
features: independence of process descriptions and distributed execution 
of network specifications. 

This section first describes the features of Pronet relevant to in-

terprocess conmunication. '!hen it descri~ · the information provided to the 

monitor by the· NETSI.A and AISTEN compilers. Finally, ~ t presents the format 

of the information collected at run-time by the special communications 

library. 
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).!The Features of Pronet 

'!his presentation is derived from Chapter 2 of [Macc82]. 

3.1.1ALSTEN 

ALSTEN is essentia.lly an extension of Pascal [Jens74]. 'fue file concept 

haS been removed entirely from the language. Processes communicate only 

throu:Jh locally declared "p:>rts", using the inline send and receive statements 

which are analogous to Pascal's read and write. Fbrts have a direction, 

either in or out. Fbrts may be placed together into p:>rt groups. O"le could 

define a duplex channel as: 

port channel (incoming in bit; outgoing out bit} ; 

'lb accomoda te the notion of a server process, which serves many other 

processes, AI.STEN provides port sets and port tag variables. A port set is a 

collection of port groups or simple ports identified by one name. Fbr ins

tance, if a p:>rt set is a set of p:>rt groups, a receive on a p:>rt set y.ould 

set a port tag variable to iooicate which element of the set W3S actually used 

for comrm.nication. 'lhis tag may then be used in a send operation for sending 

replies to the process which originated the message. 

'lhe syntax of the send and receive statements is shown in Figure 1. 

' 
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<send strnt> :: = 
send [ <expr>] to <bourrl port denoter> 

<receive strnt> ::= <simple receive> 
I <conditional receive> 

<simple receive> ::= 
receive [<variable>] from <free port denoter> 

<conditional receive> ::= when 
---r<receive part>} 

[<otherwise p:irt>] 
end 

<receive p:irt> ::= <simple receive> [do <strnt>] 

<otherwise part> ::= otherwise <strnt> 

Figure 1 -- Send and Ieceive Statements in ALSTEN 

A type is associated with every port. Only expressions of the type as-

sociated with a given p:>rt may be sent to or received from that p:>rt. 

'!he <expr> is optional. In these forms of the serd and recei ve 

statements, the p:>rt is of type signal. A signal is a message with no con-

tents. Signals are often useful for sending control information, such as tel-

ling a process to start a ~rticular task. 

'!he syntax for p6rt declarations is sqown in Figure 2. 

' 

.I 
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<port decl> ::= <simple port decl> 
I <port group decl> 

<simple port decl> : := 
port <port id> <direction> <msg type> 

<port id> ::= <id> 

<direction> ::= in out 

<msg type> : : = <type id> 

<port group decl> : := 
port [set] <port id> ' (' <subport list> ') ' 

<subpart list> ::= 
<subport decl> {';' <subport decl>} 

<stbpo~t decl> : := 
<subport id> <direction> <msg type> 

<st..iJp:>rt id> : := <id> 

<port tag type> : := tag of <port id> 

Figure 2 -- FOrt and FOrt 'lag IEclarations in ·AI.STEN 

lege 13 

As stated earlier, the purpose of NETSIA specifications is to initiate 

and control the communications environment of A~TEN processes: 

'Ihe features of NETSIA are aimed at specifying the inl. tial configura
tion and sUbsequent modifications of a communication environment for 
processes. The overriding principle followed in the design of these 
features is that of "centralized · expression--decentralized execution" 
[Live8Q]. <Entral ized expression is im{X>rtant in presenting the abstrac
tion to be supported by network specifications. All of the inter-process 
relationships that describe a communication environment appear in a single 
network specification. lbwever, this corrununication environment is not 
maintained in a centralized fashion. Processes maintain their communica
tion envirornlent indirectly. When they execute send or announce 
operations, processes perform the activities . s~cified by their overseeing 
network specifications; however, the nature of these activities are unk
nown to the process. [Macc82] 

' 
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'!he syntax of network specifications is shown in Figure 3. 

<network specification> ::= <network header> 
{<process class specification>} 
{<event handling clause>} 
[<initialization clause>] 

end <iqentifier> 

<network header> ::= network <net id> 
{ <p:>rt decl>} 
{<event decl>} 

<process class specification> 
process class <process id> 

~
process attributes>] 

{ port decl>} 
event decl>} 

end <process id> 

.. -.. -

<process attributes> 
<field list> 

end attributes 

. ·.. - attributes · 

' 

' . ' , 

Figure 3 --- Network Specifications in NETSLA 

Fage 14 

When a network starts to run, its initialization clause is executed. The 

initialization clause is used to create instances of processes and connect the 

output p:>rts of one process to the input p:>rts of another. A simple network 

specification is presented in Figure 4; a graphical representation of the net-

~rk is shov.n in Figure 5. 

, 
• 
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network static net 
process class proc class 

port input in integer; 
port output out integer; 

errl proc _class --

initial 
create procl proc class; 
create proc2 proc-class; 
create proc3 proc class; 
connect procl.output to proc3.input; 
connect proc2.output to proc3.input; 
connect proc3.output to procl.input; 
connect proc3.output to proc2.input; 

end stat1c net 

Figure 4 --- A Simple tet\\Ork Specification 

I \ I \ 
I procl I I proc2 I 
\ I \ I 

input I II-output input! II-output 
~ !___________ ~ I 
I I I I v-,----- 1 

I 11' 
output I I . I input 

~-- -\ 
I proc3 I 
\ I 

Figure 5 --- A Graphical Iepresentation of the Simple tet\\Ork 

If one output port is connected to more than one input port, the messages 

sent out on it are replicated. This occurs in a manner invisible to the 

process sending the message. 'Ihis allows one-to-one, one-to-many, and many-to 

one connections between ports. 

' 
f 
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Processes may define events. These events can then be announced by the 

processes in their overseeing network specifications. NETSI.A provides 

features for handling these events when they are announced. The programmer 

specifies W"lat actions to take, su:h as aborting processes or creating new 

ones. Other actions are also possible. 

Pronet IX"edefines several standard events. Fbr instance, when a process 

terminates nonnally, the standard event 'done' is announced in its net\\brk. 

~ssage transmission and reception are considered to be events. 'lhey 

simply have a separate syntax. 'Ihe other standard events and the syntax of 

event declarations and handlers are discussed fully in [Macc82]. 

Since Pronet is oriented around events, so is RAI:Y\R. 'Ihe special runtime 

routines record all the events and messages. '1he REPLAY program presents the 

user with a visual replay of the events that occurred during the execution of 

the program. '1he majority of events will be message transmission and 

reception. When a different type of event occurs, that event will be 

p:>rtrayed. 

3.2Information Supplied By The Pronet Compilers 

'Ihe Pronet compilers and runtime system provide RADl\R with the framework 

upon which to build the later description of events. 

3. 2. lALSTEN 

Ports in Pronet are alv.ays associated with a type. 01ly messages of the 

type associated with a port may be sent to or received from that port. 

In any given ALSTEN program, there will be a fixed nunber of differe~t 

message types, i.e. the types associated with ports. 
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'!he ALSTEN canpiler will generate a file with a list of message 

A template looks like 

1 Identifier I size I total no elements list of elements 

Figure 6 -- Message 'Iemplates 

The list of elements is simply an ordered listing of the fields in a message. 

For instance, 

I real array character 19 int long 

Figure 7 --- Fields In A ~ssage 

If a field of a message is itself a record with further subfields, the 

compiler will expand it in line down to its basic elements. Elements can be 

bytes, integers, long integers, reals, or one dimensional arrays of these 

types. Bytes are treated as tnsigned integers, even thoUJh they may have 

actually been signed quantities. If necessary, RADAR may be modified to allow 

specifying Yhether or not soch nunbers ~re signed or tnsigned. Elements 

smaller than one byte occupy a byte to themselves. This implies that the 

Fascal keY'AOrd packed has no effect. ldmi ttedly, this is a constraint on the 

compiler; see Section 5 of the thesis for further discussion of this cons

traint. 

'Ihe purp:>se o.f the list of message templates is to allow the decoding of 

imividual messages. A user can select any message on , the screen with the 

PERQ's mouse. Wlen he does so, RAD\R will open a sei=5rate window and format 

, 
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the contents of the message in it. Each message carries its type with it. 

'!he message is decoded accordio;J to the correspondio;J template and printed ac

cordingly. Ole dimensional arrays are allowed, princip:llly for use in 

displaying character strio;Js. REPLAY will treat arrays as if they are indexed 

fran 1. 

3. 2. 2NETSLA 

NETS LA controls process and p:> rt creation and the interconnecting of 

output ports to input ports. 

'Ihe information generated by the NETSI.A system is a file describing each 

process. A process is described as follows: 

machine proc num proc name nunber p:>rt groups 
nunber of simple ports Tn each group - -

direction nunber name type { DESTINATIONS } 
direction number name type { DESTINATIONS } 

number of simple p:>rts in each group 
direction number name type { DESTINATIONS } 
direction number name type { DESTINATIONS } 

Figure 8 --- rEscription Cf A Process 

The {} pairs enclose optional information. 011 y if a p:>rt is an output 

port does it have one or more destinations associated with it. 'Ihe DES-

T~TIONS field in Figure 8 above represents the nunber of destinations to 

which an output port sends its messages, and the destinations themselves. A 

destination is uniquely identified by the destination machine, the process 

nunber on that machine, and the port number of the process to which the mes-

sage is directed. , 
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M3chine and process id' s are hidden from the programmer, but the NETS LA 

runtime system and the t.nderlying global operating system must know about 

them, since they actually arrange for execution of the processes. 

When REPLAY first starts up, it builds a table of records describing 

processes with all these stroctures attached to each element in the table. 

rater, when a send event occurs, REPLAY determines \\hich process is the des

tination and depicts a message moving from the source process to the destina-

tion '(Xocess. 

3.3Information Collected At Run-Time 

M:>st of the information that ~R needs is collected at nn-time. 

Special rtmtime routines log every event that occurs. 'Ihese routines are kept 

in a sep3rate module called RAmRLOG. 

BJents may be one of the followi~: 

eventtype = (createprocess, destroyprocess, 
message transmission, message reception, 
portcreation, failed, done -
aborted, userevent); 

Figure 9 --- 'JYpes Of E.\Tents 

'Ihe 'message_transmission' and 'message_reception' events are logged by 

the~ and receive routines respectively. 'Ihe other events are logged by 

the announce routine. 

'Ihe ArSTEN compiler inserts a procedure call to the routine makelog as 

the very first executable statement in a program. '!his routine creates the 

log file and annotmces the process creation event. Before the final end of 
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~rcTEN main program, the compiler inserts a call to the routine closelog, 
the 1'\J.Jt-J 

which closes the log file aoo announces the starrlard event 'done.' 

'!he structure of the log file records for each event is as follows. 

rmessage-transmission machine id I process }d I count I 
-- 1 uniqueMesgid I success I checkpointing f mesg type I 

1 bufsize I ',' I buffer I 

Tmessage-reception machine-id I process-id I count I 
I success I { UniqueMesgiD } 

1 userevent I machine-id I process-id count eventname 

T createprocess machine-id process-id count 

T destroyprocess machine-id process-id count 

portcreation I machine-id process-id count 

failed I machine-id process-id count 

done I machine-id process-id count 

aborted I machine-id process-id count 

Figure 10 -- Event Iecords 

Each process keeps a cotmt of the events it has announced, inclu:ling mes-

sage transmission and reception. The event count starts at one and is 

incremented with each event. 

When a process sends a message, it includes the value of its local event 

counter. If the receiving process' event count is lower than that of the sen-
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the r eceiver sets its count equal to that of the sender. After der's, 

receivin;J the message, the process logs the message_reception event. If the 

message reception succeeded, the process logs the lhique~sg Id of the message 

it received. Since message_reception is an event like any other, the local 

event cot.mt is incremented before the event is logged. 'Ihus, the 

message_reception event's sequence number will be one greater than the event 

count of the sender. 'Ihis insures that there will be at least a partially 

correct ordering on events. In p:trticular, interrelated events will alv.eys be 

correctly ordered. 

Placing an ordering on events in a distributed system is a difficult 

task. One solution is to use the times on local clocks to time-stamp each 

event. '!his method is not acceptable since it is imp::>ssible to synchronize 

all the clocks on all the machines. 'Ihis introduces the p::>ssibility of recor~ 

ding events out of order. E.g., it would be p:>ssible, d ~ to synchronization 

errors among clocks, to record the reply to a message as having occured 

"before" the sending of the initial message. 

By having the receiver of a message set its event cot.mt equal to that of 

the sender, and then incrementing the comt before logging the message 

reception, the synchronization problem is avoided. 'Ihe reply to a message 

will al vays be sent "after" the sending of the initial message. 

Using this method, it is possible to have several events occuring at the 

same "time," i.e. several events might all have the same event number. In 

this case, it is imp::>ssible to determine the ordering of these events, but in 

fact, the ordering is ll'limp::>rtant. 'Ihe fact that these events all have the 

same number indicates that they are not interrelated, since if one event 

de~nded on another to precede it, its event sequence number v.ould have been 

greater than the sequence number of its predecessor. 
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FUrthennore, this method makes no extra demands on the underlying global 

operating system to keep clocks synchronized across machines. It also fits in 

\¥ell with Pronet, which has no concept of global time. 

3• 4Discussion 

Keeping a record of every event, along with a description of message con

tents and the interconnectivity of every port, provides a complete record of 

W'la t \-tent on. 

CDpying all the messages allow:; the user to view \\hat vas actually sent; 

the message description makes the message contents understandable, and the 

connectivity data allow:; graphically depicting the movement of a message from 

its source to its destination. 

A valid question to raise here concerns the cost of recording all the 

messages and events. H:>w moch does the extra disk I/O affect the computation 

in frogress? 'Ihis is the Heisenberg lhcertainty Principle as applied to deb

t.qJing, sometimes called the "Heisenbug" Principle [ACM83b]. he can present 

no definite answer to the question here. It is expected that the disk 

operations actually buffer to memory until the buffer fills up. If this is 

the case, there should be little extra overhead since the system will suspend 

a process only when its I/O buffers must be flushed. 'Ihe main problem is that 

W"lile one process is suspended, others can continue to n.m on other machines. 

It can be argued that the fact that one process on one machine has been 

stop~d should not affect the other processes on other machines, since the 

ALSTEN receive is defined to be a blocking operation. 'Ihe other processes may 

Y.ei t longer to complete the receive than they otherwise ~uld have to, but ul

timately, the same actions should be accomplished. 

, 
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suspending one process for disk I/O can affect other processes which con

tinue to run, in a different manner. The ALSTEN receive can specify several 

alternatives; in effect it can be non-detenninistic; receiving from port sets 

is actually non-deterministic, since the programmer can not know v.hich element 

of the set will be used. For instance, if there are three processes A, B, and 

c, and Process B YBS supfX>sed to receive a message from Process A, but A YBS 

suspended, B could errl up receiving a message from Process C instead. 'Ihis 

should not affect the ultimate semantics of the p:-og ram, since the receive 

could happen on any specified port. It merely changes the path by which the 

program arrives at its goal. 

, 
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Section 4 

REPlAYING PROORAM EXECUTIOO 

'!he major component of the RAmR system is the REPlAY pr<:x;Jram. After a 

Pronet {X"ogram has executed and all the information described above has been 

collected, REPLAY is invoked to graphically display event occurences. f¥hre 

imiDrtantl y, it also displays the message traffic amongst processes. 

The PERQ's screen is a high resolution, bit-mapped black and white 

display. The PERQ has hardw:tre and firm\oare instructions, called fester cps, 

for manipulating the screen. REPLAY uses the Canvas graphics package 

[Ball81], which '{Xovides a higher-level, more usable interface to control the 

screen. 

This section discusses the algorithms REPLAY uses, describes the view of 

the pr<:x;Jram REPIAY presents to the user, arrl presents the user interface. 

4.10utline of the Algorithm 

The overall algorithm is fairly simple. It is based on the notion of 

events as defined in previously. Since each event is nunbered when recorded, 

an ordering of events is automatically made possible. 

'lhe general algori thn for event replaying is given in pseooo-cooe in 

Figure 11. 

get first event 

while more events 
if event in { send a message' receive a message } 

do something visible with the message 
else 

announce the event conventionally 
end if 
get next event 

I 
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errl while 

Figure 11 -- 'lbp Level REPLAY Algorithm 

M:>st of the work is involved with displayio;J events. REPLAY basically 

haS to keep track of four things. 

1) W1ich processes are represented on the screen and \\here they are~ 

2) Which messages are represented on the screen and where they are. 

3) Rate of event display (see below). 

4) Hbw full the screen is; i.e., is there room for more processes? 

Processes and the messages w:1 i ting in input queues take up the majority 

of the room on the screen. Most of the other events can be displayed simply 

by printing out a line on the screen of the form "Process P annot.mces BJent E 

as event Nunber N," in a prominent place. D..lring the interval that the 

process is annot.mcing an event, it changes color (actually a different shade 

of gray) so that it is clear which process is involved. 

In fact, REPLAY provides a rLD1ning narrative of this form. lb\\ever, when 

a process is created or destroyed, or a message is sent or received, REPLAY 

will depict this graphically. l'ewly created processes will be drawn into a 

free s{X>t on the screen. ~ssages are depicted as small boxes movio;J from the 

the sender's output tnrt to the receiver's input tnrt. W"len each message is 

received, its box disappears. 

M..Jch of the work involves doing all the bookkeeping necessary in as 

efficient a manner as {X>ssible. (It should be "efficient" in terms of both 

Sp:ice and time • ) 

' 
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4•2The user Interface 

This section discusses various aspects of the operation of REPLAY's user 

interface· 

4.2.1What the User Sees 

'!he user sees IX"Ocesses and messages queued on input p:>rts. A process 

with one input port, one output port and a message just leavi~ the output 

port, is shoW'l in Figure 12. 

I <Process Name> 
I 1 in 1 out 
I 
I I \ 
Triput --1 

port I 
[+] 

message 

output 
port 

Figure 12 -- Picture of A Process and A ~ssage 

'!he drawirg of a process indicates the nunber of input and output ports 

associated with that IX"ocess. It is not p:>ssible to draw each p:>rt, since the 

notion of port sets allows a process to have a very large nunber of ports. 

W"len an output p:>rt sends a message, the p:>rt appears on the IX"OCess' border. 

It closes up after the message arrives at its destination. Similarly, when a 

message arrives for an input p:>rt, the p:>rt opens up, and messages queue up in 

front of it. When all the queued messages have been received, the input port 

closes back up. The process name and identification appear inside the box, so 

that it is clear at a glance which process it is. 
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Figure 13 depicts an event replay on the PERQ' s screen. '!he process 

proc _B is shown sending a message to Proc A. It has changed color dur ing• the 

event. A third process, Proc_C, is shown with one message \\aiti~ at its 

input p:>rt. 'Ihe event narration at the top of the screen indicates W'lat is 

happenir¥j. 

Process Proc B sends a message to Proc A. ElTent 9. 

Proc A Proc C 
3 in 4 out 1 in 1 out 

I \ 
-- [+] -----

. [+] 

* * 
**** *********** 
* * * Proc B * 
* 2 in 5 out * 
******************** 

Figure 13 --- A Process Serrling A M:ssage 

M interesting problem concerns the speed at W1ich the rep1 ayi n:; occurs. 

If events are described and messages move across the screen without any 

delays, events will happen too fast for the user to follow. 

'Ib solve ~his problem, REPLAY asks the user how many seconds to take to 

display each event. 'Ihe default is three seconds per event. Bien in single 

step mode (see below) , each event takes the full N seconds (whatever the user 
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entered) to transpire. This is to allow the process to change color, and to 

remain on the screen in a different color for enough time to make an impres

sion on the user before it changes back to normal. 

4.2.2Single Stepping 

REPLAY gives the user the choice of either single stepped or continoous 

operation. Ih the second mode, events (message transmissions, process 

creation, etc.) occur continoousl y, without stopping. Continoous operation 

allows the user to v.atch the general pattern of message traffic and event occ

urences. '!his is useful for getting an overall idea of Ythat the program did. 

Single-stepping allows the user to v.atch what happened at a more detailed 

level and at a slo\\er pace. Ih this mode, after each event occurs, REPI.AY 

\tai ts on the user to hit a key on the keyboard before continuing with the next 

event. '!his mode gives the progranuner more time to consider his program's 

actions, without the continuing need to keep up with his program. 

FUrthermore, the user can toggle back and forth bet\\een the single 

stepped and continoous modes; he is not forced to single step through hundreds 

of messages. 'llie nunber of seconds per event is also changeable at any time, 

to allow the user to speed up or slow down the rate of event display. 

4.2.3Displaying Messages 

M:ssages on the screen are simply small boxes, queued on the input p.Jrts 

of their destination processes. Ih this form, the only information that they 

convey is the fact of their existence. This is only minimally useful. 

REPI.AY allows the user to actually see what his processes are sending to 

each other. l.Sing the mouse, the user places the cursor over the p3rticular 

message he wants to see and interrupts the event display. REPI.AY will prompt 
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with a menu of actions available. '!he user will select the option for viewing 

a message. 

REPLAY first finds the message indicated by the mouse. The message's 

type is an element in the Pascal record describing messages. '!his type in

dicates which of the message templates is to be used in decoding the contents 

of the message. 

REPLAY then b~ns a new window on the screen. It step; throUjh the mes-

sage buffer and formats the raw bytes into characters, integers, or reals, as 

dictated by the message template. Ehumerated types are treated as integers. 

Altho~h this is not perfect, it is no more unreasonable than the restriction 

in standard Rlscal against reading and writing enumerated types to and from 

text files. M=ssage templates were described in Section 2. 2.1. 

\.\hen the user is through looking at the message, he isst..es the command to 

close the window. REPlAY then goes back to displaying events. 

The valt..e of this "Freeze Frame" facility should be clear. 'Ihe user can 

verify not only that processes are sending messages to the right places, but 

that those messages have the right contents. Fbrmatting message contents is 

absolutely necessary. Simply displaying the values of integers, characters 

and reals in octal gives the user no immediately understandable information 

(except in the rare case of the true hacker who can decode octal into its 

equivalent floating p:>int or ASCII valoos). FUrthermore, messages are 

displayed as a unit, unlike S:hiffenbauer's system which displays small data 

t:ackets in octal. 
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4
•2.4Selective Replaying of Events 

It is IX>Ssible \thile YB tching a program's actions that a p3rticularly in

teresting sequence of events will occur which warrants further review. 1b ac

comodate this, REPlAY keep5 a history of a fixed nunber of events \thich have 

occurred. At any time, the user can stop the normal replay arrl ask to see an 

"rnstant !€play" of ~ ~evious events. 'Ihe maximun nunber of events that can 

be replayed is a compile-time constant in one of the Pascal source code mod-

ules. 

\\hen this facility is invoked, REPlAY saves the screen state and marks 

toose processes that were on the screen at the time. It clears the screen and 

starts as if the first event requested Y.ere the very first event to occur. 

Processes and messages are drawn as needed. 

Some information \thich Yas on the screen but \thich may not relate to the 

.!!. events bei03 replayed will be lost during the instant replay. '!his loss is 

not ~rmanent, · since REPlAY restores the screen at the end of the instant 

replay. The user can run the instant replay as many times as desired before 

returning to the regular display. 'Ihis facility is analogous to the rewinding 

of video tape arrl replayi03 an interesti03 series of events during a sports 

broadcast, hence the name "Instant Fe play." 

When the instant replay is throu:Jh, the screen is restored arrl the 

processes Which were marked as being saved are unmarked. Display then con

tinues as before. 

As a final IX>Ssibility, the user may choose to restart the entire program 

replay from scratch. This provides the convenience of not having to quit the 

Program and then start -it again from the command level. SJch snall 

conveniences are often the most useful. 
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2 5REPLAY Menu Options 4. • 

At any time during the event replay the user can stop execution by 

causi~ a keyboard interrupt • . 

'lhis invokes an interrupt handler v.hich presents the menu shoW'l in Figure 

14-

1. Cllange 'Ib/From Single-Step/Continuous cperation 

2. <llange 'Ihe Nt.tnber of Seconds Per Event 

3. Skip Ahead 'Ib A Specific Event N.Jmber 

4. Display Contents of the ~ssage lklder the M:>use 

5. Instant Ieplay 

6. Start Displaying From Scratch 

7. EXit REPlAY 

8. ~lp 

9. t-ever Mind 

Figure 14 --- REPlAY ~nu Options 

'Ihe user may skip ahead to a given event, specified by the event sequence 

number. REPlAY will then skip to the first event which has the sequence 

number entered by the user. 'fuis is useful if the user knot.V'3 that his program 

stopped working after a given event. ~ can make his changes, rertn the 

program, and then skip directly to v.here the change should have an effect. 

'Ihe ~lp stbsystern provides general infonnation on how to use the RAill\R 

monitor. 
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The 'Never Mind' option allows the user to recover in case he acciden

tallY caused · a keyboard interrupt. It does nothing. 

In all cases, after the interrupt handler does what the user wishes, the 

program returns to \there it \ISS executing before the interrupt occurred. 
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fection 5 

INTERFACE WITH PRONET 

5• 1ALSTEN 

'!he ALSTEN pre-processor will generate extra code for RAmR that is 

invisible to the user. These will be chiefly variable declarations and 

procedure calls. 'Ihere will then be two different run-time libraries. 'Ihe 

normal · library routines will pass their arguments on to the appropriate Accent 

routines. '!he monitoring library will perform the data logging functions out

lined above, and then call .the Accent routines. Ih the case of the procedure 

\tbich creates the log file, in the normal library it will simply announce the 

•process_creation' event. 

'!he value of using ~·invisible" code and two 1 ibraries is clear. Ih order 

to use the RAD.l\R system, a progranmer only has to re-link (load) his program 

-- he does not have to recompile it. 

Furthermore, using Perq Rlscal, it is f:OSSible to keep both versions of 

the library routines in a single source file. It provides a conditional com

pilation feature Which allows selective inclusion of code at compile time, 

similar to the macro processing facilities of C and PL/1. Fbr instance, 
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procedure librarycall; 
const 

RAIY\R = true { or false, deperrling } 

beg~n 
i fc RAIY\R then} 

(* 
* RAIY\R code 
*) 

{$elsec} 
(* 
* normal code 
*) 

{$endc} 

(* code common to both, i.e. al vays needed *) 
end; 

Figure 15 -- Conditional Compilation in Ferq Pascal 

Page 34 

This feature will greatly aid development and maintenance of the RADAR 

library routines, since only one file has to be kept current, not two. 

As mentioned previously, when one output port is connected to more than 

one input p:>rt, messages are automatically replicated. Ib\\ever, the send 

routine cannot be called twice (or however many times needed) , because the 

duplication occurs behind the scenes. 'Ihe routines in REPLAY which keep track 

of interport connections will keep track of this, and will replicate the mes-

sage Yhen displaying the send event. 

5.2NETSLA 

The actions in NETSrA network specifications are compiled into rLD1-time 

calls on a Run-time Support r.bdule (RTSM). Calls on the system may come from 

multiple sites; ho\\ever, in the PERQ implementation, the RTSM itself will only 

be at one node. A single site DMS is merely a degenerate case of the distrib

uted DMS. 
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There are two reasons for implementing NETSLA this way initially. First, 

it is mu:h easier to do. ~corrl, the Cl.ooos envirortnent currently under 

development is expected to provide most if not all of the necessary distrib

uted data management facilities, since it will need some of these facilities 

itself. Allowirg CloLrls to eventually provide the distributed data management 

is in keeping with the f,hilosophy of "let someone else do the hard p:irt." 

[Kern76] 

In any case, the R'J9t1 will provide the information concerning process 

location arrl port connectivity. 'Ihe RAmR system will assune that this in

formation will be available in the form it needs. 'Ihe exact strocture of the 

data was described above. 
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Section 6 

PRcm!T IMPLEMENTATIOO 

ro implementation of PRONET is being developed for a 'lhree Rivers Comp

uter Cor{X>ration PERQ computer nmning t.nder revision 2. 0 of ACCENT, which is 

a cOilllltmication oriented net\\Ork operating system. '!he run-time support 

libraries develo~d for this implementation make use of ACCENT message and 

process primitives thro~h a procedure-like interface to the kernel. 

'lWo langLBge freprocessors, one for ALSTEN and another for NETSLA, have 

been developed. These t\\0 preprocessors both translate a PRONET source 

program into a Fascal frogram. 'lhen, the Fascal program generated can be com

piled using the PERQ Rlscal compiler. 

In the current state, the implementation is being develo~d for a single 

processor environment with each active process being assigned a portion of the 

display screen. 

6.1The Preprocessors 

'!he preprocessor actLBlly consists of two p:irts: a scanner and a p:irser; 

both are table-driven. '1he table-driven approach makes the preprocessor very 

langtBge inde~ndent; i.e., it can translate either ALSTEN or NETSI.A so long 

as appropriate tables are provided. 

'lhe scanner tables are generated by LEXGEN from a description of each 

token that may occur as input to the scanner. 'lbkens are described by using a 

standard regular expression syntax. The p:irser tables are generated by ZUSE 

fran LL(l) grarrmars (see Ap~ndix A and Apperrlix B) which have action codes 

embedded into them. 'Ihe action codes s~cify the steps to be taken by the 

parser during parsing. 
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'!he preprocessor accepts a scanner table, a parser table arrl source 

program as input and generates a sequence of Pascal codes as a result of 

parser actions. The Pascal code generated can then be compiled by using 

pERQ Pascal compiler. 

the 

Figure 16 below illustrates the overall structure of the preprocessors. 

PRO NET 
source code 

I 
I 

~-----~------~ token I scanner table I scanner I 
description---! generator 1------------ table----1 

I I I 
I 

action codes I PREPROCESSOR 
--r translation __ ! parser I 

LL(1) grammar _I-- grammar I table I p:1rser I 
lgeneratorl--table --1 
I I ----~-------

I 
Pascal code 

I 
I 

~----P-ER-Q------~1 

Pascal Compiler I 
I ------...,.....------

I 
.SEG file 

Figure 16 --- Preprocessor Strocture 

The approach of preprocessing has the following advantages although it is 

less efficient than direct compilation: 

1. Ease of implanentation. 

2. All ACCENT kernel primitives are made available by calling to a PASCAL 

library of kernel interface procedures and functions. 
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Ih the current state, both preprocessors are operational and do not per

form type checking. 

6•2Module Structures 

'!he NETSrA preprocessor generates two code modules for each network 

specification: an "event handler module" arrl a "network specification module" 

(see ~pendices C, D and E) • 

'!he event handler specifies the actions that must be performed Y.hen a 

particular event (either predefined or process-<lefined) occurs. The code in 

this module is stroctured as a nested "case" statement. '!he highest level 

case statement performs a selection based on the event type argument (message 

transmission, process-defined event, etc.). Lower level case statements are 

used to distinguish between process classes, port sets and process-<lefined 

events. 

The network specification module consists of the initialization clause 

which specifies the static network. After the execution of the initialization 

clause, every process instance created in the network will be activated by the 

root process • 

In addition to these two preprocessor-generated modules, there are two 

more modules in each NETSLA runnable file: a "DB manipulation module" and a 

"NETSrA run-time supiX>rt module." The IB manipulation module contains all the 

routines that are needed to create and maintain the network representation. 

1he NETSrA run-time supiX>rt module consists of routines that implement t.OOse 

NETSLA activities (process creation, port creation, connection, etc ••• ) 

based on ACCENT kernel primitives. 
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Figure 17 below illustrates the structure of the object module generated 

tor each NETSIA program. It is imfQrtant to realize that both event handler 

module aoo network specification module are netY.t>rk specific codes while the 

other two modules are conunon to all netY.t>rk instances. 'nle IB manipulation 

module aoo the NETSLA run-time support module are separately precompiled and 

imJDrted by the main body of the NETSIA program. 

:00 M:lnipulation r.bdule I comnon code 
NETSIA Run-time SupfX)rt M>dule I (libraries) 
-------------------------------1-------------
Event H:lndler M>dule I netVJOrk 
Network Specification Module I specific 

Figure 17 --- NETSIA Cbject M>dule Structure 

'!he AI.STEN preprocessor generates a single code module for each process 

script (see Appendices F, G, Hand I). 'nlis module is a simple translation of 

the process script which makes use of AI.STEN run-time support facilities for 

performing ALSTEN operations (send, receive, announce, etc ••• ) • 

6.3Processes and Ports 

Both ACCENT and PRONET use the notions of "processes" and "'fX)rts", but 

they are at different levels of abstraction. ve implement the PRONET proces-

ses(fQrts) by using ACCENT processes(fQrts) and hide the details of the ACCENT 

processes(ports) from PRONET programmers. 

A PRONET network specification is implemented as an ACCENT process from 

which any number of ACCENT child processes can be created to represent the 

PRONET process instances. Since v.e do not consider the case of "comfQsi te 

Processes" in this implementation, the netY.t>rk can be thou::Jht of as a tree of 
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t~ 
levels with the network specification process as the root. Cbmposite 

proeesses can be implemented without moch effort later. 

Pn ACCENT p:>rt is a protected kernel object and is used for sendi03 and 

receiving messages. With each p:>rt the kernel associates send and receive 

(and ownership) rights. The process that creates the port possesses all three 

rights. In this implementation, ~ use ACCENT ports for two different 

puriX>ses. 

rur ing the execution of the program, an ACCENT port will be allocated 

~en a CONNEX::T activity is performed. This ACCENT port is usoo for transmit

ting the PRGJET messages and will be deallocated \\hen the corresponding 

DIOCONNOCT activity is performed. Initially, the receivi03 process possesses 

the receive and send rights • 'nlen the send right wi 11 be p3 ssed to the sen

dill3 process so that PRONET messages can be transmitted throt.gh this port. 

'!here are three ACCENT ports allocated to each child process at the 

process creation time for the purpose of communicating with the root process 

(event handling request, port cap3bilities p3ssing, etc ••• ) • 

6.4The Network Representation 

A representation of the logical network described by a PROOET program is 

maintained in the address space of the root process. This representation 

reflects the hierarchical structure expressed in the program by maintaining a 

tree of network class and network instance representations. The logical net

\\t>rk representation also contains information about the connectivity among the 

ports of network instances. The root of this tree is a network class 

representation, the leaves are network instance representations \\hich contain 

information about the currently active processes in the logical network. 
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The codes for manipulating the logical network representation also resirle 

in the address space of the root process. All creations, updates and reads of 

the entities in the network representation must be performed by calling from 

the root process an appropriate procedure in the IB manipulation module. 

This centralized approach of maintaining the logical network representa

tion lov.ers the degree of p3rallelism but redoces the cost of message trans-

mission. 

6.5Event Generation and Handling 

E.Vent generation can be either upw:trd or downYBrd. 'Ihe term "upYBrd 

event generation" is used to denote the generation of an event in the over

seeing network ¥.bile "downYBrd event generation" is used to denote the genera

tion of an event in a process instance. 

~Yard event generation of an event will occur ¥hen a process instance 

announces an event using the "announce" activity or transnits a message using 

the "send" statement. IbwnW3rd event generation occurs ¥hen a network 

specification creates or removes a port instance on a process instance or 

sends a message to a process instance. 

E.Vent handling codes are generated by the NETSIA preprocessor and reside 

in the address space of the root process during run-time. ~v.ard event 

generation is implemented by sending a message to the root process. This mes

sage includes all the information relevant to the event generated. '!his kind 

of message arrives at a p:>rt Yhich belongs to the root process and h::>lds at 

most four messages at a time due to the 1 imitation of the size of the backlog 

for an ACCENT p:>rt. 
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upon receiving a message from a child process, the root process will call 

an appropriate event handling routine based on the event type and other in

formation incl t.rled in the message. BJent handler executions are per formed in 

a serial fashion. 'nlis centralized approach of event handling has the 

disadvantage of a low degree of parallelisn. 

6.6Current Status 

Up to the p:-esent, we have implemented the complete set of features of 

ALSTEN arrl a subset of the features of NETSLA. 'Ihe NETSLA features that have 

been implemented are IXocess creation, port creation, connection, message 

transmission and disconnection. Structured activities will be implemented by 

a~..gmenting the implementation of simple activities later. W"len the implemen

tation for a single processor is complete, \I.e will extend it to a mul

tiprocessor environment. 
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Section 7 

IMPLEMENTATICN CF THE RAilMt SYSTEM 

'!he RA~ system, a p3ssive monitor for distributed programs, vas 

designed by Arnold Robbins for his master's thesis. The main component of 

thiS systern is a program that graphically displays the interaction of the 

various processes in the distributed program. 'Ihis rnoni tor is designed to 

~rk within the Pronet environnent, based on information provided by the 

NETSIA run-time database, the AISTEN preprocessor, and run-time calls to the 

debugging log routines in RADARLOG. 

This information consists of three types of files: 

message template file -- supplied by ALSTEN preprocessor .- contains the 
types of the various values sent in a message, allows RA!l\R to show values 
as characters, integers, reals, etc, instead of as octal bytes. 

process information file ~- supplied by NETS~ run-time database - con
tains the process class-or-each process. 

log files -- supplied by run-time calls to RA!l\RLOG - contains a log of 
the events (note that message sending and message reception are just 
special events) including the 'time' at Which the event occurred. 

'!his concept of time in the context of Pronet, which has no idea of a 

global time clock, is an interesting one, and one solution to maintaining an 

order for replaying is discussed in Robbins' thesis, section 2.3. 

'Ihe implernenta tion of the system is being done on the 'Ihree Ri. vers 

Corporation PERQ computer under the SPICE environnent (developed at Carnegie 

Mallon lliiversi ty) , an operating system and set of utili ties designed for 

message-p3ssing distributed systems. one package of routines available in the 

SPICE environnent is Glnvas, a set of graphics routines for the PERCP Which 

support the graphics capabilities of the bit-mapped screen of the PERQs at a 

more usable level. 'Ihe use of Glnvas vas probably the biggest factor in lbb-
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bins' being t.nable to do a complete implementation of the RAil\R system, since 

little or 

design. 

no documentation existed on Canvas while lbbbins YaS doing his 

N:>w that docunentation has become available, the task of finishing the 

implementation of RAJ::Y\R has been centered around correction of concepts which, 

once implemented, no longer w:::>rk as they v.ere designed, and implementation of 

screen display and control. 

r-aj or implementation errors v.ere surprisingly rare, in view of .the '· fact 

that R:>bbins Yas unable to test many of his features on the Perqs. B:lsically, 

the only soch error \4lich has surfaced so far vas in assuning that message 

contents could alYays be written out as bytes by writing out the corresponding 

character code. 'Ihis scheme saved both time and sp3ce, but has the disadvan

tage that encodi~ an eight bit valoo in a seven bit code does not alYays 

produ::e the desired results. Bytes are now written out as integers in the 

range 0 •• 511. Other problems of this nature may exist in the interface bet

~en ALSTEN and RArnR, but none have yet sur faced • 

'Ihe user interface presented for a RAJ::Y\R user is divided into two 

stbscreens or windows. 'Ihe top window shows a running textt.al display of \4lat 

events are occuring. At the same time, the lower window has a graphic 

representation of the same events. ffi an event is announced in the upper 

wiooow, the box corresponding to that process changes color and remains that 

color for an appropriate delay (selectable by the user) • If that event is a 

message_transmission, a box representing the message appears on the border of 

the sending process, and moves to the receiving process. If the event is a 

message_reception, the box representing that message disappears, and any other 

messages queued to that p:>rt move forvard in the queue. At any time, one may 

stop the replay of the events by hitting a key on the keyboard, which halts 
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the action arrl presents a menu of choices in the upper window. 

'lhese windows are implanented as "sub-canvasses" Lnder the canvas 

graphics systan. '!his means that each window can be treated by the pro;Jrammer 

as a completely se{:Brate entity for input, output, and scaling of the size of 

the objects. 'lhus, the upper window is configured for text input and output, 

\ttlile the bottom window is structured for graphics. In fact, the bottom 

wiroow is set up to scale appropriately to the size of the window available on 

the ~rq at the time, thus al\\Bys allowing the maximun nunber of processes to 

appear on the screen. fbwever, since Canvas does not yet support the sealing 

of text, the labels on each process indicating the name of the process and the 

nunber of incomio:J arrl outgoio:J ports become unreadable if the screen space 

allotted for the program is too small. 

With no examples to serve as guides, the hardest {:art of the screen im-

plementation for any particular routine was often the trial and error process 

by which procedures \\ere fol.D'ld to prodoce the desired results. M:lny of these 

changes are t.minterestio:J in their detail, as one good example Y.Ould have 

eliminated 90% of the problans in implanenting them. fb\\ever, three ~oced-

ures had interesting problems and solutions: namely, how to quickly know 

\\hether or not a message is in the area '[X> in ted to by the mouse, how to inter-

rupt the replay of events in order to get the replay menu, and how to move 

messages snoothly across the screen at a speed that will make them arrive at 

their destination at a time whereby the user-specified time for an event to 

occur will have elapsed. 

Ps a tem'[X>rary measure, the original design matched a message with the 

mouse only when they were exact matches. This restriction was unreasonable 

for ease of use, so a more relaxed specification 'laS needed. fb\\ever, the 

idea of a hash table to firrl the message was still appealing, as the time to 
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search throt.gh all the messages of a busy system v.as prohibitive. '!he solu

tion WlS to have a hash function Y.hich hashed regions to the same hash valoo, 

which is easily enough done by dividing the original x and y by the error 

factor before using the x and y in the normal hash function: 

new hash (x ,y integer) : = 

old_hash (round(x/x_error), round(y/y_error)) 

using the error factor as the divisor also ensures that only four hash values 

(x ~ x_error ,y + y_error) need to be checked, which, for a table size of 37 as 

is currently used in the RADAR implementation, eliminates around 80% of the 

sp3ce on the s: reen • 

'fue design of RAIYffi assuned that SPICE would provide some type of 

~yboard interrupt, since PERQ Bascal provides quite nice exception handlers, 

and soch an interrupt is a natural extension used in several of the SPICE 

utilities (via a Ctrl-C as a "kill the process" interrupt). Ibwever, the only 

place that SPICE provided soch a utility \.as labelled with the words "Subject 

to Olange, Ib not lEe if You vent q>ward Comp3tibility with Future Versions." 

As a substitoo for such a utility, the delay routine, which is called very 

frequently, w:1s used to check for the existence of a keypress. If one exists, 

then the exception is raised. This substitute works very well, as delay is 

called frequently enough that no perceptible delay occurs between the keypress 

and the appearance of the menu of choices discussed in Section 3. 5 of R:>bbins' 

thesis. 

Moving messages across the screen is not as hard as it might be, since 

Canvas provides sane very handy procedures for drawing rectangles, as well as 

more interesting icons, and even provides an INVERSE color for drawing, which 

allows a message to p3ss through a process without destroying the process 

While maintaining visibility. More interesting, is the method for delivering 



section 7 
IMPLEMENTATICN CF THE AA~ SYSTEM Page 47 

in a certain nunber of seconds. First, throt.t;Jh experimention, a conmessages 

t \tBS folll"rl which represented the approximate nunber of times the program 
stan 

could roove the message in one second. 'lhis nunber is used to compute the 

ntJnber of moves that should be made for the user-specified time. From this 

nl.Jt\ber, the given starting and ending locations, and the proper delta x and 

· delta_Y are computed, and the message is moved. This routine still lacks one 

feature, ho\\ever. \\hen a "(X>rt is broadcasting to more than one "(X>rt, each in

dividual message transmission currently takes up the entire number of seconds 

\\hich the entire event is sup"(X>sed to use, while the design specifies that 

each instruction is to take that long. 

OJrrently, the feeprocessor does not generate the calls to the RAD\RLOG 

routines, nor does it produce the message_template file. However, such calls 

have been hand-edited into some Pascal files produ:::ed by the preprocessor, and 

the replaying system of AAIY\R ~rks on these files. 'lhus, the features which 

still need to be implemented or changed are primarily interface related. 'fuat 

is, the user interface needs to made bomb-proof and more usable, with ad-

ditions of a real help facility. 'lhe preprocessor needs to generate the in-

terface to the log calls and the message template information. Also, the run 

time sup"(X>rt module needs to generate the process file information. 

'Ihe AAJ:Y\R system design also incllrles one other feature which is not yet 

implernented. 'lhis feature is the OCAP which can sep3rate those messages sent 

to a single process in a distributed program. 'Ihese messages can then be used 

to debt.t;J a single process with a standard single-process debt.t;Jger without for

ci~ the programner to make up artificial test data which may or may not 

reflect the kind of input a program will encounter in actual use. '1he main 

implementation problem this facility has is in interfacing to the conventional 

debugger, as the rest of the facility is already available. 
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Section 8 

PIAN FOR FURTHER WORK 

There is further work to be done in several areas. The most obvious of 

these are the efforts described in this re{X)rt. 'Ihe PROOET implementation 

\\'ill require the followi~ work in order to be complete: 

1. Interface with the debLgger • .lrld some code to both prepr-ocessors so that 

the infonna tion needed by the debLgger can be genera ted. The debLgger 

needs two kinds of information from a Pronet program: 

1) templates : generated at preprocessor execution time, 

2) a log : generated at Pronet program execution time. 

2. Oamplete the implementation of simple activities in NETSLA. Simple 

activities that have not been implemented: 

1) value construction, 

2) event announcement, 

3) attribute assignment. 

3. Implement structured activities in NETSLA. Netsla prepr-ocessor needs to 

be augmented. Structured activities inclooe: 

1) alternation, 

2) iteration, 

3) location. 

4. Implement type checking in both preprocessors. 

5. f.bdify the window allocation procedure so that arbitrary nunber of process 

instance windows can be allocated. 

6. Implement PRONET for a multiprocessor environment. This will be done when 

the implementation for a single processor environment is complete. 



section 8 PLAN FOR FURTHER WORK Page 50 

'Ihe ACCENT global namin;) scheme must be stooied. 'fue hard\\are problem 

of 1 in kin;) tw:> PER(); together must be solved. 

'!he implementation of RAD\R also needs to be completed, finishing the 

development of our prototype monitoring capability. Action .items for work on 

~R inclt.rle: 

1• t}5er interface needs to be improved. 

a. bomb-proofed (don't read reals as reals, but as characters,etc 

b. help facility added. 

c. optionally, beautified, as using the icon facilities to represent 

messages as letters or some such, rather than boxes. 

2. 'fue ocreen layout should be imp:>rved. 

a. A better ~y to set up the screen for a given nunber of processes 

should be implemented. 

b. 'fue restriction on the nunber of processes on the screen at one 

time should be eliminated • 

c. 9)me representation of existing connections between processes 

should be available (perhaps as an option, since lines 

representing connections might badly clutter the display) • 

3. '!he UCAP feature must be implemented. 

a. make sure it pulls out messages correctly. 

b. interface it with Kraut or other single-process debugger. 

After this work completes our prototype monitor, we intend to evaluate it 

by building aoo debugging some distributed programs. A likely candidate for 

implementation is a distributed database update algorithm designed by J. All

chin as part of his recent fh. D. research in our department. It should 

Provide a significant test for the monitor, as far as determining \\bether it 
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provides sufficient infonnation to understand the execution of a complex dis

tributed program. 

After this evaltBtion period, t~ lines of ~rk can be considered. 01e 

approach would be to convert our prototype into a monitor which displays 

program activity dynamically as a program executes. SUch a monitor would have 

the advantage of providing more immediate information about an execution, but 

it \\OUld have to interfere more with the timing of events in that execution. 

If our prototype evaluation shows that a historical replay is sufficient for 

our purposes, we Will instead concentrate our efforts on providing more 

IX>~rful tools for use of the replay. For example, if a programner can 

specify that a some related collection of program events constitutes some 

"higher-level" event, it might be possible to replay executions in terms of 

soch high-level events, thereby redocing the nunber of events the programmer 

needs to interpret. 

Finally, ~ will evaltBte our tools and techniques concerning their ap

plicability to an Ada programming environment. 
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APPENDIX A 

'lhe LL(l) Gramnar of NETSLA 

c;rarrroar prodoctions with selection sets added: 

Prod # Prodoction 

1 network spec = net head const pt type pt port_decl_pt 
evnt-decl pt proc decl 10 evnt clse-10 
init-clseO end identifTer 
%net~rk ; 

2 net head = network identifier 
%netv.ork ; 

3 proc decl 10 = 
%arrive-end enter initial leave When 

4 proc decl 10 = process_decl proc_decl_l1 
%process ; 

5 proc decl 11 = 
%arrive-end enter i~itial leave When ; 

6 proc decl 11 = process_decl proc_decl_l1 
%process 

7 evnt else 10 = 
%end initial ; 

8 evnt else 10 = event clause evnt else 11 
%arrive-enter leave-when 

9 evnt else 11 = 
%errl inTtial 

10 evnt else 11 = event clause evnt else 11 
%arrive-enter leave-when ; 

11 ini t clseO = 
%end ; 

12 init clseO = initial activity_lst 
%initial 

13 const pt = 

14 

%arrive end enter event initial leave 
port process type when ; 

const_pt = const con def list 
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15 

16 

17 

18 

19 

%const 

con def list = const def next con def 
%identifier ; 

next con def = 
%arrive end enter event initial leave 

port process type when ; 

next con def = const def next con def 
%identifier 

const def = new const id = 
%identifier 

new const id = 
%Tdentirier 

identifier 

constant ; 

20 constant = signed_ const 
%+ - ; 

21 constant = lllsigned con 
%char const identifier int const real const string_const 

22 signed const = sign after_sign 
%+ _- ; 

23 after sign = real const 
%rea"! const 

24 after sign = int const 
%int const ; 

25 after sign = const id 
%identifier 

26 unsigned con = identifier 

27 

28 

29 

30 

31 

%identifier 

unsigned con = 
%int const ; 

unsigned con = 
%char const 

int const 

char const 

unsigned con = string_const 
%string_const ; 

unsigned con = 
%real const 

scalar const = 
%identifier 

real const 

identifier 
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37 
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scalar const = non id s con 
%+ --char_const int_const 

non_id_s_con = sign id or int 
%+ -

non id s con = int const 
%Int=const ; 

non id s con = char const 
%Char const 

id or int = const id 
%identifier ; 

id or int = int const 
iint const ; 

38 const id = identifier 
%identifier 

39 type pt = 

40 

%arrive end enter event initial leave 
port process when ; 

type pt = type 
%tyPe 

typ_def_list 

41 typ def list = type def next_ typ_def 
%Tdenti fier 

42 next typ def = 
%arrive end enter event initial leave 

port process when 

43 next typ def = type_ def next_ typ_def 
%identifier 

44 

45 

type def = new type id = 
%identifier - -

new type id = 
%fdenti fier 

identifier 

types ; 

46 types = type easel 
%identifier- ; 

47 types = type case2 

48 

%( +-array char const int const 
packed record set 

type _easel = identifier type_tail 
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49 

50 

%identifier 

type tail = 
%)-; case end 

type-tail = •• 
% •• 

scalar const 

51 type case2 = non id s con scalar const 
%+-- char const-int const ; 

52 

53 

type case 2 = stroct type 
%array packed record set 

type _case2 = ( 
%( 

enu id list 

non id type = non id simp 54 
%( +-- char_const identifier int const ; 

55 non id type = stroct type 
%array packed record set 

56 simple type = type_ id simp_ ty_ tail 

57 

58 

%identifier ; 

simple type = enu id list 
%( ; 

simple type = non id s con 
%+ --char const Tnt-const 

59 simp ty tail = 

60 

61 

%) -, ; ] case end ; 

simp_ ty_ tail = •• 
% •• 

non id simp = 
%( -

scalar const 

enu id list 

scalar const 

62 non id simp = subrange con scalar const 
%"+ --char const identifier int const ; 

63 pt class nam = identifier 
%identifier 

64 enu id list = identifier enumer tail 
%Tdentifier ; 

65 enumer tail = 
%) ; 
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66 

67 

68 

69 

enuner _tail = identifier 
%, ; 

subra~e con 
%identTfier 

= identifier 

subra~e con = non id s con 
%+ - cnar_const int_const 

type id = identifier 
%identifier ; 

enuner tail 

70 struct type = p3ck prefix tn{:acked 
%array packed record set 

71 p3ck prefix = p3cked 
%packed 

72 p3ck prefix = 

73 

%array record set 

unp3cked = array 
types 

%array ; 

indx_ty_list ] of 

74 lt'lp3cked = record head field list end 

75 

%record 

unp3cked = set of 
%set ; 

simple_ type 

76 record head = record 
%record 

77 indx ty list = simple type index tail 
%(-+ = char_const identifier int const 

78 index tail = 

79 

%] ; 

index tail = 
%, 

simple_ type index tail 

80 field list = rec sec list with variant 
%) ; case end identifier ; 

81 rec sec list = rec section rec sec tail 
%) ; case end identifier 

82 rec sec tail = 
%) case end ; 

83 rec sec tail = rec section rec sec tail 
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84 

85 

%; 

rec section = fieldid list 
%Tdenti fier ; 

rec section = 
%) ; case end 

types 

86 fieldid list = 
%identifier 

identifier field id end 

' 87 wi. th variant = 
%)-end 

88 with variant = variant_pref variant_list 
%case 

89 field id end = 

90 

91 

%: 

field id end = 
%, 

variant pref = case 
%case- ; 

identifier field id end 

tag_ type_ ids of 

92 tag type ids = tagfield_id tag_typ_tail 
%Identifier 

93 tag typ tail = 
%of -

94 tag_typ_tail = scalar_ty_id 
%: ; 

95 tag field id = identifier 
%identTfier 

96 scalar ty id = identifier 
%identifier ; 

97 variant list = variant variant tail 
%) + = ; char const end 

identifier Tnt const ; 

98 variant = case 1 list : field head field list 
) 

%+ - char const identifier int const ; 

99 variant = 
%) ; end 

100 field head = 
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101 

102 

103 

%) ; case identifier 

variant tail = 
%) end 

variant_ tail 
%; 

= variant variant tail 

case 1 list = scalar canst caselabelend 
%+---char_conit identifier int canst ; 

1o4 caselabelend = 
%: 

105 

106 

107 

caselabelend = 
%, 

scalar canst caselabelend 

port decl pt = 
%arrive-end enter event initial leave 

process when ; 

p:>rt_decl_pt = pt_decl_list 
%port ; 

108 pt decl list = port_decl pt_decl_ tail 
iport-

109 p:>rt_decl = port_ head pt_dir _mtype 
%port ; 

110 pt_dir_mtype = in type_id 
%in ; 

111 pt dir mt~ = out type _id 
%out- ; 

· 112 pt dir mtype = port_group 
i( ; 

113 pt decl tail = 
%arrive end enter event initial leave 

process when 

114 pt_decl_tail = port_decl pt_decl_tail 
%port 

115 port head = p:>rt port_ tail 
%~rt 

116 p:>rt tail = identifier 
%identifier 

117 p:>rt_ tail = set identifier 
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118 

119 

120 

121 

122 

123 

124 

125 

%set 

{X)rt_group = ( sbptdecllist ) 
%( ; 

sbptdecllist = sub{:X)rt_decl next_ sub{:X)rt 
%identifier ; 

subp::>rt decl = sub{:X)rt_name direct_ type 
%identifier 

direct_type = in type_id 
%in ; 

direct type = out type_id 
%out-

sub~rt name = 
%identifier 

next subp:>rt = 
%)-

next_ subport 
%; 

= 

identifier 

subp:>rt_decl next_ subport 
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126 process decl = process head attri_declsO port_decl_pt evnt_decl_pt 
end Tdentifier 

127 

%process 

process head = process class 
%process 

128 attri declsO = 
%end event port ; 

identifier 

129 attri declsO = attri head attri sec ls attri tail 
%attributes ; 

130 attr i head = attributes 
%attributes 

131 attri tail = end attributes 
%end 

132 attri sec ls = attri sec attri secl 
%; end identifier 

133 attri secl = 
%end ; 

134 attri secl = ; attri sec 
%; ; 
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135 

136 

137 

138 

139 

140 

attri sec = attri id ls 
%identifier 

attri sec = 
%; end ; 

types 

attri id ls = identifier attri id lsl 
%identT fier 

attri id lsl = 
%: 

attri id lsl = , identifier 
%, ; 

evn t decl pt = 
%arrive-end enter initial leave process 

when 

141 evnt decl_pt = event decl next event 
%event 

142 next event = 
%arrive end enter initial leave process 

when 

143 next event = event decl next event 

144 

145 

146 

147 

148 

149 

150 

151 

%eVent ; 

event decl 
%event 

about ptnmO 
%; -; 

about ptrmO 
%about ; 

event clause 
%arrive 

event clause 
%enter 

event clause 
%leave ; 

event clause 
%when 

arriv clause 
%arrive 

= event identifier about_ptnmO ; 

= 

= about identifier 

= arriv clause 

== enter clause 

== leave clause 

== when clause 

== arrive head activity_lst close end arrive 
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152 

153 

154 

155 

156 

157 

158 

arrive head = arrive open arrive bind do 
%arrTve 

arrive bind =message idO on arrive_port from_procesO 
%identifier on -

message_ idO 
%on 

= 

message idO = identifier 
_%identifier 

arrive port = identifier arrive_portl 
%identifier ; 

arrive p:>rtl = 
%do !rom 

arrive_p:>rtl 
%: 

= identifier 

159 arrive portl = of port_bind 
%of-

160 {X)rt bind = identifier {X)rt_bind1 
%identifier 

161 port bindl = 
%do from 

162 port_bindl = identifier 
%: 

163 from procesO = 
%do 

164 from procesO = from process_bind 
%from 

165 process bind = identifier proces_bindl 
%identifier ; 

166 proces bind1 = 
%about do 

167 proces bind1 = identifier 

168 

%: -

enter clause = enter head activity_lst close end enter 
%enter ; 

enter head = enter open port_bind do 
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170 

171 

172 

173 

174 

175 

%enter ; 

leave clause = leave head activity_lst close end leave 
%leave ; 

leave head = leave open port_bind do 
%leave 

when clause = when head activity_lst close end when 
%~en 

when head = when open identifier announced by process_bind 
about partO do 

%when-; 

about partO = 
%do-

about partO =about port_bind 
%abOut 

176 . activity 1st = activity activities 
%) ; announce case connect constroct 

create disconnect else end find identifier 
ra03e remove serrl terminate ; 

177 activities = 
%) else end ; 

178 activities = ; activity activities 
%; ; 

179 activity = 
%) ; else end 

180 activity = simple act 

181 

182 

183 

184 

185 

%announce connect construct create disconnect identifier 
remove send terminate 

activity = control act -%case find range 

simple act = creation 
%create 

simple act = termination 
%terrnina te 

simple act = removal 
%remove· ; 

simple act = connection 
%connect 
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186 

187 

188 

189 

190 

simple act = disconnecton 
%di seonnec t 

simple act = msg_transfer 
%send 

simple act = construction 
%construct 

simple act = attri_assign 
%identifier 

simple act = event trans 
%anno lJ"l ce 

191 simple bind = object_ id 
%identifier 

identifier simple_bindl 

192 object id = identifier 
%identifier 

193 simple bindl = 
%do where 

194 simple_bindl = on .proc_denoter 
%on 

195 obj denoter = lhs 
%Tdenti fier 

196 port denoter = obj_denoter 
%identifier ; 

197 proc denoter = identifier 
%identifier ; 

198 creation = create create tail 

199 

%create 

create tail = 
%identifier 

200 create taill = 
%) ;-else end 

identifier identifier create taill 

201 create taill =:= on proc_denoter 

202 

203 

%on ; 

termination = terminate proc_denoter 
%terminate ; 

renoval = remove obj_ denoter 
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%remove 

204 connection = connect port_denoter to p:>rt_denoter 

%connect 

2o5 disconnecton = disconnect port_denoter from_p:>rtO 
%disconnect 

206 

207 

208 

fran p:>rtO = 
%) -; else end 

from portO = from port_denoter 
%from 

msg transfer = send expcO to port_denoter 
%send 

209 exprO = 
%to ; 

210 exprO = expr 

211 

212 

%( + - [ char const identifier 
int const not real const string_const 

construction = construct hd 
%construct 

field as 1st 

construct hd 
%constrlict 

= construct object_id : identifier 

213 field as 1st = field_assign fd_assignl 
%identifier ; 

214 fd assign! = 
%] 

215 fd _assign! = field _assign 

216 

217 

218 

%; ; 

field assign = lhs .- expr 
%identifier 

attri assign = lhs ·- expr .-
%identifier 

event trans = announce event id about_p:>rtO 
%announce ; 

219 about p:>rtO = 
%) ; else end 

220 about_p:>rtO =about port_denoter 
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221 

222 

223 

224 

%about 

control act = alternation 
%case-

control act = selection 
%find- i 

control act = iteration 
%range 

alternation = alternate lrl 
%case 

225 alternate lrl = case expr of 
%case 

case list else_partO 

226 case list = case element case listl 
%+-- char canst-identifier int const ; 

227 case listl = 
%else end ; 

228 case list! = case element case list! 
%+-- char const Tdentifier int const 

end case 

229 case element = const list : ( open activity_lst close 
) 

%+ - char const identifier int const ; 

230 const list = scalar const const listl 
%+ = char const identifier int-const ; 

231 const list! = 
%: i 

232 const list! = scalar const 
%, i 

233 select crite = simple_bind where clausO 
%identifier 

234 selection = find head do activity_lst close else_partO end 

235 

find 
%find 

find head = find open object_id 
%f1nd ; 

236 find headl = string 
%string 

find head! 

find headl = identifier simple_bindl where clausO 
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%identifier 

238 iteration = range open select crite do activity_lst close 

239 

240 

241 

242 

else partO end range 
%range 

else partO = 
%efrl 

else partO =else open activity_lst close 
%else 

where clausO = 
%do- ; 

where clausO = where expr 
%where 

243 open = 
%) ; announce case connect construct 

create disconnect end find identifier on 
range ranove send terminate ; 

244 close = 
%) else end 

245 id list = identifier id list tail 
%identifier ; 

246 id list tail = 

247 

248 

% ; 

id list tail = 
%, 

actual p3rms = 
%( -

identifier id list tail 

actual_parm next_a_parm 

249 actual p3rm = p:3rm expr field width 
%( +-- [ char const identifier 

int const not real const string_const 

250 next a parm = 

251 

%)--

next a parm = 
%,-; 

actual_parrn next_a _parm 

252 lhs = identifier rec_ary_ptr 
%identifier 

253 vars = identifier rec_ary_ptr 
%identifier 
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254 rec ary ptr = 
%T * + , -

I : := ; = ] 
and div do else end from 
in mod noneqrelop of or to 

255 rec _ary_ptr = • 
%. 

identifier rec_ary_ptr 

256 rec ary ptr = 
%[ -

index list rec _ary_ptr 

257 index list = index next index 
%( +- [ char canst identifier 

int canst not real canst string_const ; 

258 next irrlex = , 
%,-

irrlex 

259 next irrlex = 
%]-

260 index - expr 
%( + - [ char canst identifier 

int canst not real canst string_const 

261 expr = p3rm expr 
%( +- [ cnar canst identifier 

int_const not real_const string_const ; 

262 parm expr = simple expr parm exp end 
%(-+- [ char canst identifTer-

int canst not real canst string_const 

263 pa rm exp end = 
%)-, .-: • ; ] 

do else end of to ; 

264 parm exp end = rel op simple_expr 
%=-in noneqrelop -; 

265 rel expr = simple expr rel op simple_expr 
%1 + - [ char canst identifier 

int canst not real canst string_const ; 

266 rel op --
%-;; ; 

267 rel op = in 
%Tn 

268 rel_op = noneqrelop 
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269 

270 

%noneqrelop ; 

simple ex pr = 
%char const 

char const add term 

simple expr = string_const add term 
%strTng_const 

271 simple_expr = sign term add term 

272 

273 

274 

%+ - ; 

simple expr = term add term 
%( (-identifier int const not real const 

add term = 
%) , • • i = 

] do else end in noneqrelop 
of to 

add term 
%+ - or 

= add_op term add term 

275 term = factor mul t factor 
%( ( identifier int const not real const ; 

276 mul t factor = 
%)-+ , - •• : 

; = ] do else end 
in noneqrelop of or to ; 

277 mul t factor = mul t op factor mul t factor 
%*-/ and div mod 

278 factor = identifier var funccall 
%identifier 

279 factor = real const 
%real const 

280 factor = int const 

281 

282 

283 

284 

%int const 

factor = ( expr 
%( ; 

factor = elem list 
%[ 

factor = not factor 
%not ; 

var funccall = rec_ary_ptr 
%) * + , - • 
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285 

.. I : ; = [ 
] and div do else end 
in mod noneqrelop of or to 

var funccall = actLBl_{arms 
%( 

286 add_op = sign 
%+ -

287 add op = or 
%or 

288 mult op = * 
%*-

289 mul t op 
%r; 

= I 

290 mul t op = div 
%dTv 

291 mul t op = and 
%and 

292 mul t op = mod 
%mod 

293 variable = identifier rec_ary_ptr 
%identifier 

294 field width = 

295 

%) -; ; 

field width = 
%: ; 

expr more field 

296 more field = 

297 

%) -, ; 

more field = 
%:- ; 

expr 

298 elem list = 
%] 

299 elem list = elem next elem 
%(-+- [ char const Tdentifier 

int_const not real_const string_const ; 

300 elem = expr elem tail 
%( + - [ char canst identifier 

int const not real const string_const 
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301 

302 

303 

304 

305 

next elem = 
%] 

next elan = elan next elan 
%, ; 

elem tail = 
%, -] 

elem tail = expr 
% •• 

proc id = identifier 
%identifier 

306 rec var list = variable next rec var 
%1denti fier 

307 next rec var = 

308 

%; 
next rec var = 

%, 
variable next rec var 

309 subpart = 
% ; 

310 st.i:>p:>rt_ id 

311 pt class id = identifier 
%identifier ; 

312 subpart id = identifier 
%identifier 

313 expressionO = 
% ; 

314 expressionO = expr 
%( +- [char canst identifier 

int canst not real canst string_const 

315 event id = identifier 
%identifier 

316 sign = + 
%+ 

317 sign = 
%- ; 
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APPENDIX B 

'lhe LL ( 1) Granmar of ALSTEN 

Grammar productions with selection sets added: 

Prod # Production 

1 camp unit = prog_head prog 
%@-process 

2 prog_head = process script prog_id 
%process 

3 prog id = identifier 
%identifier 

4 prog = p:>rt decl pt label pt const pt type pt evnt_decl_pt var_pt 
proc fct pt - stmt pt 

%begin const event function label p:>rt 
procedure type var 

5 block = label pt const pt type pt var pt proc fct pt stmt_pt 
%begin canst-function-label procedure type 

6 

var ; 

label pt = label 
%label 

7 label pt = 

label list ; 

%begin const event function procedure type 
var ; 

8 label list = labels next label 
%identifier int const 

9 next label = 
%; 

10 next label = labels next label 
%, ; 

11 labels = int const 
%int const 

12 labels = identifier 
%identifier 

13 oonst pt = 
%begin event function procedure type var ; 
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14 canst pt = canst 
%canst ; 

con def list 

15 con def list = canst def next con def 
%identifier 

next con def = 16 
%begin-event function procedure type var ; 

17 next con def = canst def next con def 
%iaentTfier ; 

18 

19 

canst def = new canst id = 
%identifier 

new canst id = 
%Tdentitier 

identifier 

20 constant = signed_const 
%+ - ; 

21 constant = unsigned con 

constant ; 

%char canst identifier int canst real canst string_const ; 

22 signed canst = sign after_sign 
%+ _- ; 

23 after sign = real canst 
%real canst ; 

24 after sign = int canst 
%int canst ; 

25 after sign = canst id 
%identifier ; 

26 unsigned con = identifier 

27 

%ident1fier ; 

unsigned con = 
%int canst 

int canst 

28 unsigned con = char canst 
%char canst ; 

29 unsigned con = string_const 
%string_const ; 

30 

31 

unsigned con = 
%real canst 

scalar canst = 
%identifier 

real canst 

identifier 
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32 

33 

34 

35 

scalar const = non id s con 
%+ _-char const int const 

non id s con = sign id or int 
%+ _--

non id s con = 
%Tnt-const 

int const 

non id s con = char const 
%char const ; 

36 id or int = const id 
iidenti fier 

37 id or int = int const 
%int const 

38 const id = identifier 
%identifier 

39 type pt = 

40 

41 

%beg in event flllction procedure var ; 

type pt = t~ 
%tyPe ; 

typ def list = 
%identifier ; 

typ_def_list 

type_def next_typ_def 

42 next typ def = 
%begin-event function pcocedure var ; 

43 next typ def = type _def next_typ_def 
%iaentTfier ; 

44 

45 

type def = new type id = 
%iaentifier ; -

new type id = 
%Tdenti fier 

identifier 

types 

46 types = type case 1 
%identifier- ; 

types = type case2 
%( + -array char const int const 

packed ptr record set tag-

type easel = 
%identifier 

identifier type_ tail 
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49 

50 

type tail = 
%)-; case end 

type tail = •• 
%.:-

scalar const 

51 type case 2 = non id s con scalar const 
%+-- char const-int const 

52 type case 2 = struct type 
%array packed record set ; 

53 type _case2 = ptr identifier 
%ptr 

54 type case2 = enu id list 
% (- ; 

55 type _case2 = tag of pt_class_nam 
%tag 

56 non id type = non id simp 
%( +-- char const identifier int const 

tag -

57 non id type = struct type 
%array IBcked record set 

58 non id type = ptr 
%ptr- ; 

identifier 

59 simple type = type _id simp_ ty_ tail 

60 

61 

%identifier ; 

simple type = 
%( -

enu id list 

simple type = non id s con 
%+ --char const Tnt-const ; 

scalar const 

62 simple_type = tag of pt_class_nam 
%tag 

63 simp ty tail = 

64 

65 

66 

%) -, ; ] case end 

simp ty tail = •• 
%.7 ; 

non id simp = 
%( -

scalar const 

enu id list 

non_id_sirnp = st.Drange_con scalar const 
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61 

68 

69 

%+ - char const identifier int const - -
non id simp = tag of pt_class_nam 

%tag- ; 

pt class nam = identifier 
%ident1fier ; 

enu id list = identifier enumer tail 
%identifier ; 

70 enumer tail = 

71 

%) ; 

enumer tail = 
%, 

identifier enumer tail 

72 stbrange con = 
%ident1fier 

identifier 

73 stbrange con = non id s con 
%+ - char const int const 

74 type id = identifier 
%identifier 

75 struct type = 'fBCk prefix tnp:tcked 
%array packed record set 

76 pack prefix = p:1cked 
%picked 

77 pack prefix = 

78 

%array record set 

unp:tcked = array 
types 

%array 

indx_ty_list ] of 

79 unpacked = record head field list end 
%record 

80 unpacked = set of simple_ type 
%set ; 

81 record head = record 
%record ; 

82 indx ty list = simple type index tail 
%(-+~char const identifier int const 

tag ; -

83 index tail = 
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84 

85 

86 

%] 

index tail = 
%, 

simple_ type index tail 

field list = rec sec list with variant 
%) ; case errl ident1fier 

rec sec list = rec section rec sec tail 
% T ; case errl identifier ; 

87 rec sec tail = 
%) case end 

88 

89 

rec sec tail = 
%; ; 

rec section rec sec tail 

rec section = fieldid list 
%Tdentifier 

types 

90 rec section = 
%) ; case end 

91 fieldid list = identifier field id end 
%identifier ; 

92 with variant = 

93 

%)-end 

with variant = 
%case 

variant_pref variant_list 

94 field id end = 

95 

%: ; 

field id end = 
%, 

variant_pref = case 
%case 

identifier field id end 

tag_ type_ ids of 

tag type ids = tagfield_id tag_ typ_ tail 
%Tdenti fier 

tag typ tail = 
%of -

tag typ tail = 
%7" -

scalar_ ty_id 

tag field id = identifier 
%ident1fier ; 
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101 

102 

103 

104 

105 

scalar ty id = 
%identiTier 

identifier 

variant list = variant variant tail 
%) + ~ ; char const end 

identifier Tnt const 

variant = case 1 list : field head field list 
) 

%+ - char const identifier int const ; 

variant = 
%) ; end 

field head = 
%) ; case identifier 

106 variant tail = 
%) eoo 

107 variant tail = ; 
%; 

variant variant tail 

108 case 1 list = scalar const caselabelend 
%+---char const identifier int const 

109 caselabelend = 

110 

%: 

caselabelend = 
%, ; 

scalar const caselabelend 

111 port decl pt = 
%t:>€gin const event ft.nction label procedure 

type var ; 

112 port decl pt = pt_decl list 
%part -

113 pt decl list = port_decl pt_decl_tail 
%port-

114 port decl = port_head pt_dir_mtype 
%port 

115 pt dir mtype = in type _id 
%in-

116 pt dir mtype = out type_id 
%out- ; 

117 pt dir mtype = port_group 
%( -
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118 

119 

120 

pt decl tail = 
%bEgin const event function label procedure 

type var 

pt decl tail = p:>rt_decl pt_ decl_ tail 
ip:>rt-

p:>rt head = p:>rt p:>rt_ tail 
%p:>rt ; 

121 port tail = identifier 
%identifier 

122 p:>rt tail = set identifier 
%set ; 

123 PJ rt group = sbptdecll ist 
% (-

124 sbpt.dec1list = sub{X>rt_decl next_ subp:>rt 
%identifier 

125 st.i::>{X>rt decl = subp:>rt_ name direct_ type 
%identifier ; 

126 direct_ type = in type _id 
%in 

direct type = out type_ id 
%out-

127 

128 subp:>rt name = identifier 
%identifier ; 

129 next subp:>rt = 
%)-

130 next_ subp:>rt = subp:>rt_decl next_ subp:>rt 
%; ; 

131 evnt dec1 pt = 
%beg in function procedure var 

132 evnt decl pt = event decl next event 
%event -; 

133 next event = 
%oegin function '(rocedure var ; 

next event = event decl next event 
%event ; 
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135 

136 

137 

138 

139 

event decl = event event id about_partO 
%event ; 

about partO = 
%; -

about partO =about pt_class_id 
%abOut 

var pt = 
%15eg in function '{Xoced ure 

var pt = var var decl 1st 
%var 

140 var decl 1st = var decl var decl end 
%TdentTfier 

141 var decl end = 
%15egin-function procedure ; 

142 var decl end = var decl var decl end 

143 

%TdentTfier 

var decl = id list 
%Tdenti fier -; 

144 proc fct pt = 
%~in-

types 

145 proc fct pt = pf decl list 
%fiinctTon '{Xoceaure -; 

146 pf decl list = pf decl pf decl tail 
%function procedure - -

147 pf decl tail = 
%begin 

148 pf decl tail = pf decl pf decl tail 
%function procedure 

149 pf decl = pf head ; blkorfwd 
%function procedure 

150 blkorfwd = forward 
%forward 

151 blkorfwd = block ; 
%begin const function label procedure type 

var 

152 proc_start = 
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% ( : ; 

153 pf head = procedure proc_id _dec proc_start p_head_ tail 
%procedure 

154 pf head = function ftnc id dec proc_start f head tail 
%function 

155 p _head_ tail = 
%; 

156 p head tail = 
-%( -; 

fpsl ) 

157 f head tail = 
-%; 

158 f head tail = parm _type _id 

159 

%: ; 

f head tail = ( 
parrn type id 

%( - -

fpsl ) 

160· proc id dec = identifier 
%identifier ; 

161 func id dec = identifier 
%identifier 

162 fpsl = f p3rm sect fpsl_ tail 
%identifier var 

163 fpsl tail = -%) 

164 fpsl tail = f _Il3 rm _sect -%; 

165 f p3rm sect = p3rm _group 
-%identifier 

fpsl 

166 f parm sect = var p3rm _group 
-%var- ; 

tail -

167 parm type id = type _id p3rm _ ty_ tail 
%identifier 

pa rm type id = stroc t type 
%array packed record-set ; 

parm type id = ( enu id list 
%(-; -
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170 

171 

172 

173 

174 

175 

parm type id = tag of pt_class_nam 
%tag -

pa rm type id = non id s con 
%+-- char const i'nt const 

scalar const 

- -
parm _type _id = ptr 

%ptr 

tail parm_ty_ = 
%) ; ; 

parm _ ty_ tail = 
% •• ; 

parm_group = id list 
%identifier 

identifier 

scalar const 

parm_type_ id 

176 id list = identifier id list tail 
iidenti fier 

177 id list tail = 
%: ; 

178 id list tail = ' 
identifier id list tail 

%, . ; 

179 body start = 

180 

%announce begin case for goto identifier 
if int const receive repeat send when 
W'lile With ; 

stmt_pt = begin 

%begin 

body_start stmt list end 

181 strnt = label prefix U1labeled st 
%announce beg in case for go to if 

int const receive repeat send when While 
with 

182 strnt = stmt with id 
%identifier ; 

183 stmt with id = identifier asgn_cal_lab 
%identifier ; 

unlabeled st = begin stmt list end 
%begin ; 

unlabeled st = goto labels 
%go to 
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186 unlabeled st = case head case_list otherwise_pt end 
%case 

187 unlabeled st = re~at stmt list tntil 
%repeat 

mlabeled st = if stmt 
%if ; 

188 

189 mlabeled st = for stmt 
%for 

190 unlabeled st = while stmt 
%while ; 

191 unlabeled st =with stmt 
%with ; 

192 tnlabeled st = receive stmt 
%receive when 

193 unlabeled st = send stmt 
%send 

194 unlabeled st = announcestmt 
%announce ; 

asgn_cal lab = rec_ary_ptr := 
%. := 1 ptr ; 

195 

asgn_cal lab = actLBl _p3rms -196 
%( 

197 asgn cal lab = 
%:- -

unlabeled st 

198 asgn cal lab = 
%;-else errl otherwise until 

expr 

199 actual parms = ( 
%( -

actual_parm next_a_parm 

200 actLBl ~rm = p3rm expr field width 
%( +-- [ char const identifier 

expr 

int const nTl not real const string_const ; 

201 next_a_parm = 
%) 

202 next_ a _t:a rm = actLBl_parm next_a_t:arm 
%, ; 
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203 if stmt = if head stmt if tail 
%if ; 

204 if tail = else stmt 
%else 

205 if tail = 
%; end otherwise tntil 

206 for stmt = for head do stmt 
%tor 

207 Yfhile stmt = while head stmt 
%while ; 

208 with stmt =with head stmt 
%wlth 

209 if head = if expr then 
%if ; 

210 while head = while expr do 
%while 

211 label prefix = 
%announce begin case for goto if 

receive repeat send when while with 

212 label prefix = int canst 
%int canst 

213 lhs = identifier rec ary ptr 
%identifier ; - -

214 vars = identifier rec_ary_ptr 
%identifier 

215 rec ary ptr = 
%) * + ' - •• 

I : := ; = J 
and div do downto else end 
from in mod noneqrelop of or 
otherwise then to tn til 

rec ary ptr = • 
%7 ;-

identifier rec_ary_ptr 216 

217 rec ary ptr = 
%T ;-

index list 

rec ary ptr = ptr rec_ary_ptr 
%ptr -; 

rec _ ary_ptr 
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219 

220 

index list = index next index 
% ( + - [ char const identifier 

int const nTl not real const string_const 

next index = , 
%, ; 

index 

221 next index = 

222 

223 

224 

225 

226 

%] 

index = expr 
%( +- [ char const identifier 

int const nTl not real const string_const 

expr = parm expr 
%( +- [ char const identifier 

int const nil not real const string_const 

parm_expr = simple expr parm exp end 
%( + - [ char const identifier -

int const nTl not real const string_const 

pa rm exp end = 
%) -, .: : ; 

do downto else errl of otherwise 
then to until ; 

pa rm exp end = rel op simple_ expr 
%=-in noneqrelop -; 

227 rel_expr = simple expr rel op simple_expr 
%( +- [ char const identifier 

int const nTl not real const string_const ; 

228 rel op - -
%= 

229 rel op = in 
%Tn ; 

230 rel op = noneqrelop 
%noneqrelop 

231 simple expr = char const add term 
%char const ; 

232 simple expr = string_const add term 
%strTng_const 

233 simple expr = sign term add term 
%+ _- ; 

234 simple_expr = term add term 
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235 

236 

237 

%{ [ identifier int const nil not 
real const 

add term = 
%) ' • • : ; = 

] do downto else end in 
noneqrelop of otherwise then to LD1til ; 

add term 
%+ - or 

= add_op term add tenn 

term = factor mul t factor 
%{ [ identifier int const nil not 

real const 

238 mul t factor = 
%) - + ' - • • : 

; = ] do downto else 
end in noneqrelop of or otherwise 
then to until 

239 mul t factor = mul t op factor mul t factor 
%*/ and div mod ; 

240 factor = identifier var fl..D1ccall 
%identifier ; 

241 factor = nil 
%nil 

242 factor = real const 
%real const ; 

243 factor = int const 
%int const 

244 factor = { expr 
%{ ; 

245 factor = elan list 
%[ 

246 factor = not factor 
%not 

247 var funccall = rec_ary_ptr 
%) * + ' - • 

. . I : ; = [ 
l and div do downto else 
end in mod noneqrelop of or 
otherwise ptr then to until 

248 var funccall = actual_parms 

Page 85 



AP~ndix B 

%( 

249 add_op = sign 
%+ -

250 add op = or 
%or 

251 mult op = * 
%*- ; 

252 mult op = I 
%/-

253 mult op = div 
%dTv 

254 mul t op = and 
%and 

255 mult op = mod 
%mod 

256 variable = identifier rec_ary_ptr 
%identifier 

257 field width = 

258 

%) -; 

field width = 
%: 

expr more field 

259 more field = 

260 

%)-, 

rrore field = 
%: 

expr 

261 elem list = 
%] 

262 elem list ·= elem next elem 
%(-+- [ char const Tdentifier 

int const nTl not real const string_const 

263 elem = expr elem tail 
%( + - [ char canst identifier 

int const nil not real const string_const 

next elern = 
%]-

next elem = elem next elem 
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266 

267 

268 

269 

270 

271 

272 

%, ; 

elem tail = 
%, -] 

elan tail = expr 
%.:-

proc id = identifier 
%identifier 

stmt list = stmt more stmt 
%announce begin case-for goto identifier 

if int const receive repeat send Yhen 
while With 

more stmt = 
%end t.ntil 

more stmt = 
%;-

case head = case 
%case 

stmt more stmt 

expr of 

273 case list = case elem case elems 
%+-- char canst-identifier int const ; 

274 case elems = 

275 

%errl otherwise 

case elems = 
%;- ; 

case elem case elems 

276 case elem = case labels stmt 
%+-- char canst-identifier int const ; 

277 otherwise trl = otherwise 
%otherwise ; 

278 case labels = scalar const next scalar 
%+-- char const identifier int-const 

279 next scalar = 

280 

%:-

next scalar = 
%, 

281 otherwise_pt = 
%end 

scalar const next scalar 

282 otherwise _pt = otherwise trl stmt list 
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%otherwise 

283 for head = for 
to part expr 

%for ; 

identifier .- expr 

284 to part = to 
%to 

285 to part = down to 
%do\\nto ; 

286 rec var list = variable next rec var 
%ldenti fier 

287 next rec var = 
%do 

288 next rec var = 
%,- ; 

variable next rec var 

289 with head = with 
%with ; 

rec var list do 

290 receive stmt = simple_rcv 
%receTve ; 

291 receive stmt = when stmt 
%when-

292 simple rev = receive variableO 
port denoter freebindingO 

%receTve ; 

293 variableO = 
%from 

294 variableO = variable 
%identifier 

from 

295 port denoter = pt_ class_ id subport 
%iaenti fier 

296 subport = 

297 

%; do else end otherwise set 
until use ; 

subfX)rt = • 
%. 

298 pt class id = identifier 
%identTfier 
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299 sUbport id = identifier 
%identifier 

300 freebindingO = 
%; do else end otherwise tntil 

301 freebindingO = use . variable 
%use ; 

302 freebindingO = set variable 
%set 

303 when stmt = when head receives else _~rtO end 
%when ; 

304 when head = when 
%When ; 

305 receives = receive pt next receive 
%; end otherwise receive ;-

306 next receive = 
%erii otherwise ; 

307 next receive = ; 
%; ; 

receive_pt next receive 

308 receive pt = 

309 

%; end otherwise 

receive pt = simple_rcv 
%receTve 

310 else ~rtO = 
%end 

do stmt 

311 else ~rtO = otherwise strnt 

312 

%otherwise 

send strnt = 
use ~rtO 

%send ; 

313 expressionO = 
%to ; 

send expressionO to 

314 expressionO = expr 
%( + - [ char const identifier 

'(X>rt_denoter 

int const nTl not real const string_const 

315 use partO = 
%7 else end otherwise tntil ; 
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316 use partO = use variable 
%Use ; 

317 announcestmt = announce event id about bindO 
%announce 

318 event id = identifier 
%identifier ; 

319 about bindO = 
%; e"lse end otherwise until 

320 about bindO = about pt_class_id use_partO 
%about ; 

321 sign = + 
%+ ; 

322 sign = 
%-
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APPENDIX C 

An EXample NETSIA program - Broadcasting 

network broadcast; 
process class sender 
port inport in integer; 
·p:>rt out{X:>rt out integer; 
end sender 

process c1ass receiver 
port inp in integer; 
p:>rt outp out integer; 
errl receiver 

initial 
create sender : sender; 
create receiver! : receiver; 
create receiver2 : receiver; 
connect sender.outport to receiverl.inp; 
connect sender.out{X:>rt to receiver2.inp 

errl broadcast 
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APPENDIX D 

A Network Specification MOdule 

This code was generated by the Netsla preprocessor." 

procedure ini t; 
beg in (*ini t*) 
p id := 0; 
alive := 0; 
total procs := 0; 
initialized := false; 
Gr := AllocateR>rt(KernelR>rt, OlildtoParR>rt, MAXBACKLOG); 
Gr := AllocateR>rt(KernelR>rt, ENentR>rt, MAXBACKux;); 
build net('broadcast'); 
build-proc('sender'); 
build-port('inport'); 
build-port('outport'); 
build-proc('receiver'); 
build-port('inp'); 
build-port('outp'); 
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Gr :=-a creation pr (theroot,'sender' ,'sender' ,'sender.RUN' ,p list head); 
Gr := a-creation-pr (theroot,'receiver' ,'receiverl' ,•receiver~RUN'~p_list_head); 
Gr . := a-creation-pr (theroot,'receiver' ,'receiver2','receiver.RUN' ,p list head); 
Gr := connection(theroot,'sender' ,'outport' ,'' ,'receiverl' ,'inp' ,''); 
Gr := connection(theroot,'sender' ,'outport' ,'' ,'receiver2' ,'inp' ,''); 
vakeup; 
end; (*ini t*) 
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APPENDIX E 

'lhe E»ent Rlndling M:>dule 

a,ntMsg. ~ad. weal R:>rt : = EYentR:>rt; 
quit := False; 
while (quit=FALSE) do 
begin 
writeln('Events before receive req'); 
.Gr := Receive(B/ntMsg.~ad, 0, LOCALPT, RECEIVEIT); 
i f Gr=SOCCESS then 
case shrink (BintMsg. ~ad. ID) of 
1: begin (* message transmission. *) 

wri teln ('fend Msg Iequest Ieceived.'); 
Gr : = send msg (the root, BJn tM;g) ; 
if Gr=SOCCESS then 

wr i teln ('fend M;g Fe quest Completed.') 
else -

writeln('***Send_Msg Request NOT Completed.'); 
arrive evnt; 

end; -
2: begin (* message transmission. w/ tag *) 

wri teln ('fend Msg (w/ 'lag) !€quest Received.'); 
Gr := send ms9 tag (theroot, BJntM;g); 
if Gr=SOCCESS then 

wri teln( 'Send M;g (w/ 'lag) Request Completed.') 
else -

wri teln ('***Send M;g (w/ 'lag) Request NOT Completed.'); 
arrive evnt; -

end; -
3: begin (* enter event *) 

enter evnt; 
end; -

4: begin (* leave event *) 
leave evnt; 

end; -
5: begin (* ¥then evnt *) 

when evnt; 
end; -

6: begin (* ¥then evnt. w/ about p:lrt *) 
when evnt; 

end; -
19: begin (* connectivity inquiry *) 

wri teln ( 'Cbnn Inq !€quest Ieceived'); 
Gr := inquiry(theroot, BJntMsg); 
if Gr=SOCCESS then 

writeln( 'Cbnn Inquiry Completed') 
else 

writeln('Conn Inquiry NOT Completed'); 
end; 

99: begin (* termination of a process instance *) 
with vparray[vpnap[BJntMsg .IBta2]] do 
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begin 
r.Eletecanvas ( canvs) ; 
PaintRectangle(UserCanvas,White,xO+l,xO+xlen-3,y0+2,yO+ylen-2); 
Used : = False; 

end; 
alive := alive-1; 
if alive=O then 
begin 

quit:=TRUE; 
Eraseeanvas (Usercanvas ,W'li te) ; 
{IeleteCanvas (User Canvas);} 

end; 
end; 

(* more come here *) 
otherwise: 

begin 
end 

end; (* case *) 
end; (* while *) 
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APPENDIX F 

A Script for Sender Processes 

process script sender; 
port inport in integer; 
port outport out integer; 
var 

i :integer; 
begin 

vtlile i<>999 do 
begin 

end 
end. 

wr i te ( ' Integer : ' ) ; 
readln(i); 
send i to outport 
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APPENDIX G 

The Preprocessor-generated Cbde for Sender Processes 

program sender; 
imports Child lib from Child_lib; 

var 
i :integer; 
var 
pinport 
p:>utp:>rt 

type 

p:>rt; 
: p:>rt; 

signal = boolean; 

accentmsg = record 
head : msg; 
ipcname2 : Ty~~; 
arg2 : integer; 
ipcname3 : ~~; 
arg3 : string[lO]; 
ipcname4 : ~~; 
arg4 : string[lO]; 
ipcname5 : ~~; 
arg5 : integer; 
ipcname6 : ~~; 
arg6 : string[20]; 
ipcnamel : ~~; 
case integer of 

1 (msignal : signal) ; 
2 ( msg inp:>rt : integer) ; 
3 : ( msgoutp:>rt : integer) ; 

end; 

var 
xxmsg : a ccen tmsg ; 
gr : generalreturn; 
whenflag boolean; 
xxsignal : signal; 
canmp:>rt : p:>rt; 
p array : FortBitArray; 
pstr : string[l2]; 

{$INCLUDE Alsten supt.pas} 
begin -
{ $IN:LUDE Alstenini t .pas} 
Ini tMs:jn (Null Fort); 
Gr := Child ack; 
while i<>999 do 
begin 
write ( 1 Integer : 1 

) ; 

Page 96 



Ap~ndix G 

readln(i); 
begin (* send *) 
xxmsg.head.id := 1; 
xxmsg.head.remoteport := InFOrtsA[l]; 
xxmsg .head .localport .- D:ltaFOrt; 
xxmsg .msgoutport :=i; 
xxmsg.arg2 := p id; 
xxmsg .arg3 := 'outport'; 
xxmsg .arg4 := ' '; 
gr := send(xxmsg.head,O,wait) 
end (* send *) 

end 
; goaYB y ;end • 
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APPENDIX H 

A Script for the leceiver Processes 

process script receiver; 
port inp in integer; 
port outp out integer; 
var 

j :integer; 
begin 

while j<>999 do 
begin 

end 
end. 

receive j from inp; 
wri teln( j) 
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APPENDIX 'I 

The Preprocessor-generated Cbde for Receiver Processes 

program receiver; 
imports Child lib from Child_lib; 

var 
j :integer; 
var 
pinp : port; 
poutp : port; 

type 
signal = boolean; 

accentmsg = record 
head : msg; 
i ~name 2 : Type Type ; 
arg2 : integer; 
i ~name 3 : Type Type ; 
arg3 : string[10]; 
i ~name 4 : Type Type; 
arg4 : string[10]; 
i ~name 5 : Type Type; 
argS : integer; 
i~name6 : Type~; 
arg6 : string[20]; 
i pcname 1 : Type Type ; 
case integer of 

1 (msignal : signal) ; 
2 ( msginp : integer); 
3 : ( msgoutp : integer) ; 

end; 

var 
xxmsg : accentmsg; 
gr : generalreturn; 
Yklenflag : boolean; 
xxsignal : signal; 
commJX>rt : port; 
p array : FortBitArray; 
pstr : string[12]; 

{$INCLUDE Alsten supt.pas} 
begin -
{ $IOCLUDE Alstenini t .pas} 
Ini tMs3n (Null Fort) ; 
Gr := Child ack; 
while j<>999 do 
begin 
begin (* receive *) 
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rcv('inp' ,'' ,999,l,rcv_result); 
if rev result then 
j : :::xxm~ .m~ inp; 
ero (* receive *) 

~riteln(j) errl 
;goa \>BY ;end. 
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Section 1 

INTRODUCTION 

1.1 Problems with Monitoring Distributed Programs 

In a conventional programming environment, there are two principal purposes for 

monitoring the run-time behavior of a program: performance measurement and debugging. 

(By ''monitoring" we refer to some mechanism for obtaining information about the 

performance of a program, external to the program itself.) Performance measurement is a 

relatively mundane application of monitoring in such an environment, being principally 

concerned with the processor time requirements of various parts of a program and requiring 

little or no interactive intervention by a programmer. Debugging is considerably more 

interesting, requiring extensive programmer interaction by its very nature. 

When we generalize our thinking to a distributed system from a traditional single-processor 

environment, the uses of monitoring become somewhat different and we must develop a new 

conceptual view of a major part of the monitoring task. We are, of course, still interested in 

performance measurement and debugging, but these tasks become quite different in this new 

environment. The reason for this difference is that we are now concerned with distributed 

programs - programs which cannot be monitored by considering a single address space on a 

single machine. Rather, we must now be concerned with the communication between the 

various parts of a program, for these interactions will play a crucial part in the monitoring task. 

Performance measurement in a distributed system is made more complex by a number of 

new considerations. Communication costs and the overall time it takes to execute a program, 

which is affected by the potential for parallel execution of subtasks and by time spent waiting 

for messages, are equally important considerations in many situations. Further, it is much more 

difficult for a measurement program to monitor an entire program, since the monitored 

program may be distributed arbitrarily across a network of machines. It will be necessary for 
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any monitoring program to obtain information about the distribution of a program and about its 

communication linkage and behavior. 

This need to obtain information from distributed execution sites naturally applies to 

debuggers as well as to performance monitors. In fact, it is a more complex problem in the case 

of a debugger since the debugger must somehow assist a programmer in comprehending the 

"state" of a program which consists of a nmnber of processes running asynchronously on several 

machines. Conventional debugging tools are certainly of little use in this situation, since they 

are typically oriented toward monitoring the operation of what would only be a single process of 

a distributed program. Once again, tools which provide information about the status of process 

interactions will be required. (Such tools should also have the capability to interface with more 

traditional monitoring tools which can be used on the individual processes.) 

Just as communication should play an important part in distributed performance 

measurement, it should also have a crucial role in debugging distributed programs. The 

correctness of such programs will undoubtedly depend on the correctness of the contents and 

sequencing of messages transmitted between their constituent processes. Thus a distributed 

debugging tool must deal with communication as a major part of its job. In fact, it is 

conceivable that a communication monitor may be the debugger at the interprocess level, 

complementing traditional debuggers which operate on individual processes. 

As a !mal difficulty, any kind of monitoring of a distributed program will potentially 

generate a great deal of information, which must be conveyed to a programmer in a 

comprehensible manner. It will presumably not Be satisfactory to produce all of this 

information independently for each of the processes. Rather, the information must be 

aggregated in some manner consistent with the nature of the monitoring task being performed. 

1.2 Proposed Solutions Using PRONE!' 

The solution we have explored is based on our programming language PRONET [Macc82]. 
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The network descriptors of PRONET provide an excellent basis for the operation of distributed 

monitoring tools. The interconnection information these descriptors provide is exactly what is 

required by a monitor so that it can easily recOgnize the structure of an entire program. 

As was suggested in the previous section, a communication monitor is a crucial part of our 

tools. The interconnection specifications in PRONET networks provide the mirtimum amount 

of information needed by a communication monitor. That is, they provide a listing of the 

message paths between processes and the types of the messages which may be transmitted. The 

task of a monitor will be to provide a programmer with information about message transmission 

between processes, including information about the sequencing of messages and about their 

contents. The capability to examine the operation of individual processes (accomplished by 

interfacing with a traditional single process debugger) is an important part of our tool set. 

1.3 Overview of Project Organization 

The project was originally planned to include the following tasks as described in the original 

statement of work: 

Task 1 - PRONET Interface 

PRONET, a language that provides a high level description of interprocess 

communication, is currently being implemented on a distributed system of Prime 

computers at Georgia Institute of Technology. The task is to develop an interface 

between PRO NET and a distributed monitor. 

Task 2 - Communication Monitor 

The contractor shall determine what data should be collected by the monitor to 

facilitate development, debugging and maintenance of programs. This task is to 

develop a monitoring program that interfaces with the communication features of the 

operating system and collects the necessary data. 

Task 3 - Interface to the Communication Monitor 

The contractor shall develop a convenient user interface to the communications 
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monitor. The user interface will provide a graphical display of information collected 

by the monitor. Also, it will do additional automated processing of the data to 

consolidate into meaningful form the information generated by the monitor. 

Task 4 - Interface with a Process-level Debugger 

The contractor shall develop an interface with the communications monitor and an 

existing symbolic debugger. If this approach is infeasible, then symbolic debugger 

for individual processes must be implemented and interfaced. with the single process 

debugger. 

During the course of the project, some changes from the initial plans were found to be 

necessary. The most prominent change involved the use of different hardware than originally 

planned. The main reason for this change was that we found the implementation of PRONET 

on our Primes too inefficient to be practical. The operating system on these machines does not 

effectively support dynamic process creation. The Accent operating system available on our 

Perq computers, on the other hand, supports dynamic process creation as well as message 

passing between processes on different machines. Thus we chose to do the work using our Perq 

workstations, which meant that more work on the implementation of Pronet than originally had 

been planned turned out to be necessary. However, this work was minimized by implementing 

Pronet through use of a pre-processor which generates Perq pascal code. 

The Perqs also have high-resolution, bit-mapped displays. This feature gave considerable 

support to the development of a very effective graphical user interface to our monitoring 

system. We consider this interface one of the most successful aspects of the project. 

The other major change in our approach involved the development of a passive event 

recording system rather than a monitor which supports interaction with distributed programs 

during execution. This passive approach was initially seen as a prototype. However, we found 

that a simulated replay of program execution using the information we record during execution 

provides an effective visualization of a distributed programs, so it remained the focus of our 
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work throughout the project. 

Only task 4 went just as it was originally planned. Our program replay system interfaces 

with the Kraut debugger, which is a standard high-level debugger under Accent. 

1.4 Summary of Pro jed Results 

As discussed in the previous section, we made use of the bit-mapped displays on our Perq 

computers to develop a graphical user interface to our monitoring systems. In effect, it 

produces a high-level, animated view of program execution. We say this view is "high-level" 

because it includes only events visible at the process interconnection level (e.g., process creation 

and interprocess communication). This graphical display approach has proved to be an excellent 

technique for managing the large quantity of information collected in monitoring a distributed 

program. 

One of the hardest issues to be dealt with in the design of a distributed program monitor or 

debugger is how to minimize the impact it has on the execution of a program under 

examination. Our ultimate decision to concentrate on passive monitoring followed by a replay 

was heavily influenced by this consideration. We believe we have developed tools which can be 

effectively used to debug applications level distributed programs, based on this minimally 

obtrusive passive monitoring approach. 

Part of our methodology for making use of passive monitoring involves what we call multi

level debugging. In addition to looking at the high-level animation of execution described 

above, the user also has the ability to focus on the execution of a single process, once the source 

of a failure has been isolated. Our technique integrating of our monitoring system with an 

existing single-process debugger is the key to making multi-level debugging available. 

The results of this project were reported at the 5th International Conference on Distributed 

Computing Systems in a paper by R. J. LeBlanc and A. D. Robbins, entitled "Event-Driven 

Monitoring of Distributed Programs''. 
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1.5 Report Overview 

The following three sections describe various aspects of the design of the prototype monitor, 

called RADAR. They are extracted from Arnold Robbins' M.S. thesis. They are followed by 

sections on the PRONET implementation, the monitor implementation and the conclusions we 

have drawn from our research. 



-7-

Section 2 

RADAR DESIGN 

2.1 Distributed Programr 

The RADAR monitor is intended to support Pronet [Macc82], a message based language 

designed as a part of previous research on distnbuted computing at Georgia Tech. However, it 

could be easily adapted to support other message-based programming systems. The relevant 

features of Pronet will be discussed in section 3.1. 

2.2 The RADAR System 

The RADAR system takes a passive approach to monitoring distributed programs. Because 

it is interactive the term "monitor" is used to describe it, and not the term "debugger." 

RADAR is designed to support Pronet on PERQ computers [3RCC82]. The PERQ is a 

single user machine with a high resolution bit-mapped display and a mouse. 

Pronet consists of two sublanguages: NETSLA for describing communication networks, and 

AI.SfEN for describing processes. The Pronet compiler provides the monitor with information 

concerning the connectivity of the processes. This information is collected from the NETSLA 

runtime system. AI.SfEN programs are loaded with a special communications library which 

records every standard or user-defined event during execution, and makes a copy of every 

message sent. The exact nature of the information supplied by the NETSLA runtime system 

and the structure of AI.SfEN event records will be described in section 3.2. This component of 

RADAR is· known as the RADARLOG. 

After the program has completed executing, the REPLAY component of RADAR is 

invoked to provide a graphical "replay" of the execution. Each message or event is stamped 

with a global event nmnber. This imposes a partial ordering on events. The monitor then 

displays events one at a time. The programmer is able to watch the communications traffic 
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amongst the processes. Processes have names in Pronet, so it is easy for the programmer to see 

which process is communicating with which other processes. 

REPLAY provides the user with the ability to view the contents of any message currently 

represented on the screen. Messages are represented on the screen as small boxes. The user 

places the PERQ's mouse over the message which he wishes to examine. REPLAY then opens 

a new window in which the contents of the chosen message will be displayed in a formatted 

fashion. For instance, if the message contained an integer and two floating point numbers, the 

message would be displayed as an integer and two floating point numbers, not as 10 octal bytes. 

When the user is through with the message the new window disappears. 

REPLAY also provides the ability to replay a certain number of events which have already 

happened. This can be done at any point during the display. The user can "rewind the video 

tape," so to speak. This replay is limited to a reasonable maximum number of previous events. 

This feature is known as an ''Instant Replay." 

Finally, as a separate utility, the user can name a given process and have all of the messages 

which were sent to that process selected from the recorded message traffic. This single process 

may then be run by itself with its messages derived from the stored messages. This feature is 

designed to facilitate single process debugging using real input data (messages). This way, it is 

possible to observe a process' behavior under realistic conditions, without having to worry about 

controlling the rest of the processes of the distributed program. 
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Section 3 

COLLECTING INFORMATION 

RADAR is intended to support Pronet, a language designed for writing programs which can 

execute in a distributed processing environment. Pronet stands for Processes and Networks. 

The introduction to Chapter 2 of [Macc82] smnmarizes the description and design goals of 

Pronet: 

PRONET is composed of two complementary sublanguages: a network 
specifiCation language, NETSLA, and a process description language, AI.SrEN. 
Programs written in PRONET are composed of network specifications and process 
descriptions. Network specifications initiate process executions and oversee the 
operations of the processes they have initiated. The overseeing capacity of network 
specifteations is limited to the maintenance of a communication environment for a 
collection of related processes. The processes initiated by a network specification 
can be simple processes, in which case the activities of the processes are described by 
AI..SrEN programs, or they can be "composite processes", in which case their 
activities are described by a "lower-level" network specification. 

AI..SrEN is an extension of Pascal which enables programmers to describe the 
activities of sequential processes. During their execution, processes may perform 
operations that cause events to be announced in their overseeing network 
specification. Network specifications, written in NETSLA, describe the activities to 
be performed when an executing process 'announces' an event.. . Two principles 
have influenced the design of these features: independence of process descriptions 
and distnbuted execution of network specifications. 

This section frrst describes the features of Pronet relevant to interprocess communication. 

Then it describes the information provided to the monitor by the NETSLA and ALSTEN 

compilers. Finally, it presents the format of the information collected at run-time by the special 

communications library. 

3.1 The F eatw"es cf Pronet 

This presentation is derived from Chapter 2 of [Macc82]. 

3.1.1 AISI'EN 

AI..SrEN is essentially an extension of Pascal [Jens74] . The file concept has been removed 
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entirely from the language. Processes communicate only through locally declared ports, using 

send and receive statements which are analogous to Pascal's read and write. Ports have a 

direction, either in or out. Ports may be combined into port groups. One could define a duplex 

channel as: 

port channel (incoming in bit; outgoing out bit); 

To accomodate the notion of a server process, which serves many other processes, ALSTEN 

provides ports sets and port tag variables. A port set is a collection of port groups or simple 

ports identified by one name. For instance, if a port set is a set of port groups, a receive on a 

port set would set a port tag variable to indicate which element of the set was actually used for 

communication. This tag may then be used in a send operation for sending replies to the 

process which originated the message. 

The syntax of the send and receive statements is shown in Figure 1. 

<send stmt> :: = 
send [<expr>] to <bound port denoter> 

<receive stmt> :: = <simple receive> 
I <conditional receive> 

<simple receive> ::= 
receive [<variable>] from <free port denoter> 

<conditional receive> :: = when 
{<receive part>} 
[<otherwise part>] 

end 

<receive part>::= <simple receive> [do stmt>] 

<otherwise part> :: = otherwise <stmt> 

Figure 1 - Send and Receive Statements in ALSTEN 

A type is associated with every port. Only expressions of the type associated with a given 

port may be sent to or received from that port. 
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The <expr> is optional. In these forms of the send and receive statements, the port is of 

type signal. A signal is a message with no contents. Signals are often useful for sending control 

information, such as telling a process to start a particular task. 

The syntax for port declarations is shown in Figure 2. 

<~rt decl> :: = <simple port decl> 
I <port group decl> 

<simple port decl> :: = 
port <port id> <direction> <msg type> 

<port id> ::= <id> 

<direction> :: = In I out 

<msg type> ::= <type id> 

<port group decl> ::= 
port [set] <port id> '(' <subport list> ')' 

<subport list>::= 
<subport decl> {';' <subport decl>} 

<subport decl> ::= 
<subport id> <direction> <msg type> 

<subport id> :: = <id> 

<port tag type> :: = tag m <port id> 

Figure 2 - Port and Port Tag Declarations in ALSIEN 

3 .1.2 NEI'SLA 

As stated earlier, the purpose of NETSLA specifications is to initiate and control the 

communications environment of ALSIEN processes: 

The features of NETSLA are aimed at specifying the initial configuration and 
subsequent modifications of a communication environment for processes. The 
overriding principle followed in the design of these features is that of "centralized 
expression-decentralized execution" [Live80]. Centralized expression is important 
in presenting the abstraction to be supported by network specifications. All of the 
inter-process relationships that describe a communication environment appear in a 
single network specification. However, this communication environment is not 
maintained in a centralized fashion. Processes maintain their communication 
environment indirectly. When they execute send or announce operations, processes 
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perform the activities specified by their overseeing network specifications; however, 
the nature of these activities is unknown to the process (since network specifications 
are not visible to processes). [Macc82] 

The syntax of network specifications is shown in Figure 3. 

<network specification>::= <network header> 
{<process class specification>} 
{<event handling clause>} 
[<initialization clause>] 

end <identifier> 

<network header>::= network <net id> ';' 
{<port decl>} 
{<event decl>} 

<process class specification>::= 
process class <process id> 

[<process attributes>] 
{<port decl>} 
{<event decl>} 

end <process id> 

<process attributes>::= attributes 
<field list> 

end attributes 

Figure 3 -- Network Specifications in NETSLA 

When a network starts to run, its initialization clause is executed. The initialization clause is 

used to create instances of processes and connect the output ports of one process to the input 

ports of another. A simple network specification is presented in Figure 4; a graphical 

representation of the network is shown in Figure 5. 
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network staticJlet 
process class proc_class 

port input In integer; 
port output out integer; 

end proc_class 

initial 
create procl: proc_class; 
create proc2 : proc_class; 
create proc3 : proc_class; 
connect procl.output to proc3.input; 
connect proc2.output to proc3.input; 
connect proc3.output to procl.input; 
connect proc3.output to proc2.input; 

end staticJlet 

Figure 4 - A Simple Network Specification 

R 
input 

1 1 

~~-o_u_t_p_u_t--------~ 

output 

proc3 

proc2 

output 

Figure 5 ---A Graphical Representation of a Simple Network 

If one output port is connected to more than one input port, the messages sent out on it are 

replicated. This occurs in a manner invisible to the process sending the message. This allows 

one-to-one, one-to-many, and many-to-one connections between ports. 

Processes may define events. These events. can then be announced by the processes in their 

overseeing network specifications. NETSLA provides features for handling these events when 

they are announced. The programmer specifies what actions to take, such as aborting processes 
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or creating new ones. Other actions are also possible. 

Pronet predefines several standard events. For instance, when a process terminates 

nonnally, the standard event 'done' is announced in its network. 

Message transmission and reception are considered to be events. They simply have a 

separate syntax. The other standard events and the syntax of event declarations and handlers 

are discussed fully in [Macc82]. 

Since Pronet is oriented around events, so is RADAR. The special runtime routines record 

all the events and messages. The REPLAY program presents the user with a visual replay of 

the events that ocauTed during the execution of the program. The majority of events will be 

message transmission and reception. When a different type of event occurs, that event will be 

portrayed. 

3.2 Information Supplied By T~ Pronet Compilers 

The Pronet compilers and runtime system provide RADAR with the framework upon which 

to build the later description of event. 

3.2 .1 AI.SI'EN 

Ports in Pronet are always associated with a type. Only messages of the type associated with 

a port may be sent to or received from that port. 

In any given ALSrEN program, there will be a fixed number of different message types, 

i.e. the types associated with ports. 

The AI..SrEN compiler will generate a file with a list of lTU!ssage templates. A template 

looks like 

Identifier total no elements list of elements 

Figure 6 ---Message Templates 
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The list of elements is simply an order listing of the fields in a message. For instance, 

I real !array character 19 lnt llong I 
Figure 7 ---Fields In A Message 

If a field of a message is itself a record with further subfields, the compiler will expand it in 

line down to its basic elements. Elements can be bytes, integers, long integers, reals, or one 

dimensional arrays of these types. Bytes are treated as unsigned integers, even though they 

may have actually been signed quantities. If necessary, RADAR may be modified to allow 

specifying whether or not such m.nnbers were signed or unsigned. Elements smaller than one 

byte occupy a byte to themselves. This implies that the Pascal keyword packed has no effect. 

Admittedly, this is a constraint on the compiler; see Section 5 of the thesis for further discussion 

of this constraint. 

The purpose of the list of message templates is to allow the decoding of individual messages. 

A user can select any message on the screen with the PERQ's mouse. When he does so, 

RADAR will open a separate window and format the contents of the message in it. Each 

message carries its type with it. The message is decoded according to the corresponding 

template and printed accordingly. One dimensional arrays are allowed, principally for use in 

displaying character strings. REPLAY will treat arrays as if they are indexed from 1. 

3.2.2 NETSLA 

NETSLA controls process and port creation and the interconnecting of output ports to input 

ports. 

The information generated by the NETSLA system is a file describing each process. A 

process is described as follows: 
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machine procJlum proc_Jlame number_port_groups 
number of simple ports in each group 

direction number name type { DESTINATIONS } 
direction number name type { DESTINATIONS } 

number of simple ports in each group 
direction number name type {DESTINATIONS } 
direction number name type { DESTINATIONS } 

Figure 8 - Description Of A Process 

The { } pairs enclose optional information. Only if a port is an output port does it have one 

or more destinations associated with it. The DESTINATIONS field in Figure 8 above 

represents the number of destinations to which an output port sends its messages, and the 

destinations themselves. A destination is uniquely identified by the destination machine, the 

process number on that machine, and the port number of the process to which the message is 

directed. 

Machine and process id's are hidden from the programmer, but the NETSLA runtime 

system and the underlying global operating system must know about them, since they actually 

arrange for execution of the processes. 

When REPLAY frrst starts up, it builds a table of records describing processes with all these 

structures attached to each element in the table. Later, when a send event occurs, REPLAY 

determines which process is the destination and depicts a message moving from the source 

process to the destination process. 

3.3 Information Collected At Run-Time 

Most of the information that RADAR needs is collected at run-time. Special runtime 

routines log every event that occurs. These routines are kept in a separate module called 

RADARLOG. 
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Events may be one of the following: 

type 
eventtype = ( createprocess, destroyprocess, 

message_transmission, messageJeception, 
~eation,failed,done 
aborted, userevent); 

Figure 9 - Types of Events 

The 'message_transmission' and 'messageJeception' events are logged by the send and 

receive routines respectively. The other events are logged by the QIU'IL)unce routine. 

The ALSfEN compiler inserts a procedure call to the routine makelog as the very first 

executable statement in a program. This routine creates the log itle and announces the process 

creation event. Before the imal end of the AI.SrEN main program, the compiler inserts a call 

to the routine closelog, which closes the logftle and announces the standard event 'done'. 

message-reception 

I failed I machine-id I process-id fount I 
I done I machine-id I process-id I count I 
I aborted lmachine-id j process-id lcount I 

Figure 10--- Event Records 



- 18-

Each process keeps a count of the events it has announced, including message transmission 

and reception. The event count starts at one and is incremented with each event. 

When a process sends a message, it includes the value of its local event counter. If the 

receiving process' event count is lower than that of the sender's, the receiver sets its count equal 

to that of the sender. After receiving the message, the process logs the messageJeception 

event. If the message reception succeeded, the process logs the UniqueMesg Id of the message 

it r~ived. Since messageJeception is an event like any other, the local event count is 

incremented before the event is logged. Thus, the messageJeception event's sequence nwnber 

will be one greater than the event count of the sender. This insures that there will be at least a 

partially correct ordering on events. In particular, interrelated events will always be correctly 

ordered. 

Placing an ordering on events in a distributed system is a difficult task. One solution is to 

use the times on local clocks to time-stamp each event. This method is not acceptable since it is 

impossible to synchronize all the clocks on all the machines. This introduces the possibility of 

recording events out of order. For example it would be possible, due to synchronization errors 

among clocks, to record the reply to a message as having occured ''before" the sending of the 

initial message. 

By having the receiver of a message set its event count equal to that of the sender, and then 

incrementing the count before logging the message reception, the synchronization problem is 

avoided. The reply to a message will always be sent "after" the sending of the initial message. 

Using this method, it is possible to have several events occurring at the same "time," i.e. 

several events might all have the same event nwnber. In this case, it is impossible to determine 

the ordering of these events, but in fact, the ordering is unimportant. The fact that these events 

all have the same nwnber indicates that they are not interrelated, since if one event depended on 

another to precede it, its event sequence number would have been greater than the sequence 

nwnber of its predecessor. 
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Furthermore, this method makes no extra demands on the underlying global operating 

system to keep clocks synchronized across machines. It also fits in well with Pronet, which has 

no concept of global time. 

3.3.0.1 Summary 

Keeping a record of every event, along with a description of message contents and the 

interconnectivity of every port, provides a complete record of what went on. 

Copying all the message allows the user to view what was actually sent; the message 

description makes the message contents understandable, and the connectivity data allows 

graphically depicting the movement of a message from its source to its destination. 
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Section 4 

REPLAYING PROGRAM EXECUTION 

The major component of the RADAR system is the REPLAY program. After a Pronet 

program has exeruted and all the information described above has been collected, REPLAY is 

invoked to graphically display event occurrences. More importantly, it also displays the 

message traffic amongst processes. 

The PERQ's screen is a high resolution, bit-mapped black and white display. The PERQ 

has hardware and fmnware instructions, called Raster Ops, for manipulating the screen. 

REPLAY uses the Sapphire graphics package which provides a higher-level, more usable 

interface to control the screen. 

This section discusses the algorithms REPLAY uses, describes the view of the program 

REPLAY presents to the user, and presents the user interface. 

4.1 Outline if the Algorithm 

The overall algorithm is fairly simple. It is based on the notion of events as defined 

previously. Since each event is nmnbered when recorded, an ordering of events is automatically 

made possible. 

The general algorithm for event replaying is given in pseudo-code in Figure 11. 

get frrst event 

while more events 
if event in { send_a_Jllessage, receive_a_Jllessage} 

do something visible with the message 
else 

announce the event conventionally 
end if 
get next event 
end while 

Figure 11 - Top Level REPLAY Algorithm 
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Most of the work is involved with displaying events. REPLAY basically has to keep track 

of four things. 

1) Which processes are represented on the screen and where they are. 

2) Which messages are represented on the screen and where they are. 

3) Rate of event display (see below). 

4) How full the screen is; i.e., is there room for more processes? 

Processes and the messages waiting in input queues take up the majority of the room on the 

screen. Most of the other events can be displayed simply by printing out a line on the screen of · 

the form "Process P announces Event E as event Nmnber N," in a prominent place. During the 

interval that the process is announcing an event, it changes color (actually a different shade of 

gray) so that it is clear which process is involved. 

In fact, REPLAY provides a running narrative of this form. However, when a process is 

created or destroyed, or a message is sent or received, REPLAY will depict this graphically. 

Newly created processes will be drawn into a free spot on the screen. Messages are depicted as 

small boxes moving from the sender's output port to the receiver's input port. When each 

message is received, its box disappears. 

Much of the work involves doing all the bookkeeping necessary in as efficient a manner as 

possible. (It should be "efficient" in terms of both space and time). 

4.2 The User Interface 

This section discusses various aspects of the operation of REPLAY's user interface. 

4.2.1 What the User Sees 

The user sees processes and messages queued on input ports. A process with one input port, 
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one output port and a message just leaving the output port, is shown in Figure 12. 

<Process Name> 

1 in 1 out 

input '---l output 
port port 

[ +] 
message 

Figure 12- Picture of a Process and a message 

The drawing of a process indicates the number of input and output ports associated with that 

process. It is not possible to draw each port, since the notion of port sets allows a process to 

have a very large number of ports. When an output port sends a message, the port appears on 

the process' border. It closes up after the message arrives at its destination. Similarly, when a 

message arrives for an input port, the port opens up, and messages queue up in front of it. 

When all the queued messages have been received, the input port closes back up. The process 

name and identification appear inside the box, so that it is clear at a glance which process it is. 

Figure 13 depicts an event replay on the PERQ's screen. The process Proc....:S is shown 

sending a message to Proc_,A, while process Proc_C is shown with one message waiting at its 

input port. The event narration at the top of the screen indicates what is happening. Appendix 
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J contains a sequence of figures portraying a more extended example. 

I Process Proc_ B sends a message to Proc_A. Event 9. I 

Proc - A Proc c -
3in 4out 1 in 1 out 

L/ \. 

[ +] [+] 

. . . . . 
~-_I: I 

Proc B -
2in 5 out 

Figure 13 --- A Process Sending A Message 

An interesting problem concerns the speed at which the replaying occurs. If events are 

described and messages move across the screen without any delays, events will happen too fast 

for the user to follow. 

To solve this problem, REPLAY asks the user how many seconds to take to display each 

event. The default is three seconds per event. Even in single step mode (see below), each 

event takes the full n seconds (whatever the user entered) to transpire. This is to allow the 

process to change color, and to remain on the screen in a different color for enough time to 

make an impression on the user before it changes back to normal. 
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4.2.2 Single Stepping 

REPLAY gives the user the choice of either single stepped or continuous operation. In the 

second mode, events (message transmission, process creation, etc.) occur continuously, without 

stopping. Continuous operation allows the user to watch the general pattern of message traffic 

and event occurences. This is useful for getting an overall idea of what the program did. 

Single-stepping allows the user to watch what happened at a more detailed level and at a 

slower pace .. In this mode, after each event occurs, REPLAY waits on the user to hit a key on 

the keyboard before continuing with the next event. This mode gives the programmer more 

time to consider his program's actions, without the continuing need to keep up with his 

program. 

Furthermore, the user can toggle back and forth between the single stepped and continuous 

modes; he is not forced to single step through hundreds of messages. The number of seconds 

per event is also changeable at any time, to allow the user to speed up or slow down the rate of 

event display. 

4.2.3 Displaying Messages 

Messages on the screen are simply small boxes, queued on the input ports of their 

destination processes. In this form, the only information that they convey is the fact of their 

existence. This is only minimally useful. 

REPLAY allows the user to actually see what his processes are sending to each other. 

Using the mouse, the user places the cursor over the particular message he wants to see and 

interrupts the event display. REPLAY will prompt with a menu of actions available. The user 

will select the option for viewing a message. 

REPLAY frrst finds the message indicated by the mouse. The message's type is an element 

in the Pascal record describing messages. This type indicates which of the message templates is 

to be used in decoding the contents of the message. 
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REPLAY then opens a new window on the screen. It steps through the message buffer and 

formats the raw bytes into characters, integers, or reals, as dictated by the message template. 

Enumerated types are treated as integers. Although this is not perfect, it is no more 

unreasonable than the restriction in standard Pascal against reading and writing enumerated 

types to and from text ftles. Message templates were described in Section 2.2.1. 

When the user is through looking at the message, he issues the command to close the 

window. REPLAY then goes back to displaying events. 

The value of this "Freeze Frame" facility should be clear. The user can verify not only that 

processes are sending messages to the right places, but that those messages have the right 

contents. Formatting message contents is absolutely necessary. Simply displaying the values of 

integers, characters and reals in octal gives the user no immediately understandable information 

(except in the rare case of the true hacker who can decode octal into its equivalent floating point 

or ASCII values). Furthermore, messages are displayed as a unit, unlike Schiffenbauer's 

system which displays small data packets in octal. 

4.2.4 Selective Replaying if Events 

It is possible while watching a program's actions that a particularly interesting sequence of 

events will occur which warrants further review. To accomodate this, REPLAY keeps a history 

of a fixed number of events which have occurred. At any time, the user can stop the normal 

replay and ask to see an ''Instant Replay" of n previous events. The maximum number of 

events that can be replayed is a compile-time constant in one of the Pascal source code modules. 

When this facility is invoked, REPLAY saves the screen state and marks those processes 

that were on the screen at the time. It clears the screen and starts as if the first event requested 

were the very frrst event to occur. Processes and messages are drawn as needed. 

Some information which was on the screen but which may not relate to the n events being 

replayed will be lost during the instant replay. This loss is not permanent, since REPLAY 
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restores the screen at the end of the instant replay. The user can run the instant replay as many 

times as desired before returning to the regular display. This facility is analogous to the 

rewinding of video tape and replaying an interesting series of events during a sports broadcast, 

hence the name ''Instant Replay." 

When the instant replay is through, the screen is restored and the processes which were 

marked as being saved are unmarked. Display then continues as before. 

As a !mal possibility, the user may choose to restart the entire program replay from scratch. 

This provides the convenience of not having to quit the program and then start it again from the 

command level. Such small conveniences are often the most useful. 

4.2.5 REPLAY Menu Options 

At any time during the event replay the user can stop execution by causing a keyboard 

interrupt. 

This invokes an interrupt handler which presents the menu shown in Figure 14. 

1. Change To/From Single-Step/Continuous Operation 

2. Change The Nmnber of Seconds Per Event 

3. Skip Ahead To A Specific Event Number 

4. Display contents of the Message Under the Mouse 

5. Instant Replay 

6. Start Displaying From Scratch 

7. Exit REPLAY 

8. Help 

9. Never Mind 

Figure 14- REPLAY Menu Options 

The user may skip ahead to a given event, specified by the event sequence nmnber. 
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REPLAY will then skip to the f'rrst event which has the sequence nmnber entered by the user. 

This is useful if the user knows that his program stopped working after a given event. He can 

make his changes, rerun the program, and then skip directly to where the change should have an 

effect. 

The help subsystem provides general information on how to use the RADAR monitor. 

The 'Never Mind' option allows the user to recover in case he accidentally caused a keyboard 

interrupt. It does nothing. 

In all cases, after the interrupt handler does what the user wishes, the program returns to 

where it was executing before the interrupt occurred. 
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Section 5 

PRONET IMPLEl\fENTATION 

An implementation of PRONET has been developed for PERQ computers running under 

revision 2.0 of ACCENT, which is a communication oriented network operating system. The 

run-time libraries developed for this implementation make use of ACCENT message and 

process primitives through a procedure-like interface to the kernel. 

Two language preprocessors, one for ALSTEN and another for NETSLA, have been 

developed. These two preprocessors both translate a PRONET source program into a Pascal 

program. Then, the Pascal program generated can be compiled using the PERQ Pascal 

compiler. 

5.1 The Preprocessors 

The preprocessor actually consists of two parts: a scanner and a parser; both are table

driven. The table-driven approach makes the preprocessor very language independent; i.e., it 

can translate either ALSfEN or NETSLA so long as appropriate tables are provided. 

The scanner tables are generated by the LEXGEN scanner generator from a description of 

each token that may occur as input to the scanner. LEXGEN is similar to the standard Unix 

LEX program except that it produced no program, only tables. These tables may then be used 

in a scanner written in any language (PERQ Pascal, in this case). Tokens are described by 

using a standard regular expression syntax. The parser tables are generated by ZUSE from 

LL(l) grammers (see Appendix A and Appendix B) which have action codes embedded into 

them. ZUSE is similar to the Unix YACC program except that it generates a parsing program 

in Pascal rather than C. The action codes provide program fragments steps to be executed ·as 

the parser recognizes syntactic structures in the input. In the case of this preprocessor, 

appropriate Pascal codes is generated by these fragments. 
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The preprocessor accepts a scanner table, a parser table and source program as input and 

generates a sequence of Pascal codes as a result of parser actions. The Pascal code generated 

can then be compiled by using the PERQ Pascal compiler. 

Figure 15 below illustrates the overall structure of the preprocessors. 

token 
description --

scanner table 
generator 

action codes I translation 

.. J grammer 
LL (1) grammer 

scanner 
1--- table --

PRO NET 
source code 

PREPROCESSOR 

parser parser _ 
table table "-----T----' 

generator 1 

Pascal code 

I 

.SEG file 

Figure 15 --Preprocessor Structure 

The approach of preprocessing has two important advantages, although it is less efficient 

than direct compilation. The first is that it was far easier to implement than a compiler would 

have been. The second is that it makes the full power of PERQ Pascal, particularly access to 

ACCENT kemal primitives, available to Pronet programmers, since kernel primitives are 

accessable through calls to kernel interface procedures and functions in the Pascal library. The 

preprocessors do no type checking, leaving that task to the Pascal compiler. 

5.2 Module Structw"es 

The NETSLA preprocessor generates two code modules for each network specification: an 

"event handler module" and a ''network specification module" (see Appendices C, D and E). 
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The event handler specifies the action that must be performed when a particular event 

(either predefmed or process-defmed) occurs. The code in this module is structured as a nested 

"case" statement. The highest level case statement performs a selection based on the event type 

argwnent (message transmission, process-defmed event, etc.). Lower level case statements are 

used to distinguish between process classes, port sets and process-defmed events. 

The network specification module consists of the initialization clause which specifies the 

static network. After the execution of the initialization clause, every process instance created in 

the network will be activated by the root process. 

In addition to these two preprocessor-generated modules, there are two more modules in 

each NETSLA runnable file: a "DB manipulation module" and a ''NETSLA run-time support 

module." The DB manipulation module contains all the routines that are needed to create and 

maintain the network representation. The NETSLA run-time support module consists of 

routines that implement those NETSLA activities (process creation, port creation, connection, 

etc ... ) based on ACCENT kernel primitives. 

Figure 16 below illustrates the structure of the object module generated for each NETSLA 

program. It is important to realize that both the event handler module and the network 

specification module are network specific while the other two modules are common to all 

network instances. The DB manipulation module and the NETSLA run-time support module 

are separately precompiled and imported by the main body of the NETSLA program. 

DB Manipulation MOdule 

NETSLA Run-time Support Module 

Event Handler Module 

Network Specification Module 

common code 

(libraries) 

network 

specific 

Figure 16--- NETSLA Object Module Structure 

The ALSTEN preprocessor generates a single code module for each process script (see 
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Appendices F, G, H and I). This module is a simple translation of the process script which 

makes use of ALSfEN run-time support facilities for performing ALSfEN operations (send, 

receive, announce, etc ... ) . 

5.3 Processes and Ports 

Both ACCENT and PRONET use the notions of "processes" and "ports", but they are at 

different levels of abstraction. We implement PRONET processes and ports by using 

ACCENT processes and ports; the details of this mapping are hidden from PRONET 

programmers. 

A PRONET network specification is implemented as an ACCENT process from which any 

nwnber of ACCENT child processes can be created to represent the PRONET process 

instances. Since we do not consider the case of "composite processes" in this implementation, 

the network can be thought of as a tree of two levels with the network specification process as 

the root. Composite processes can be implemented without much effort later. 

An ACCENT port is a protected kernel object and is used for sending and receiving 

messages. With each port the kernel associates send and receive (and ownership) rights. The 

process that creates the port possesses all three rights. In this implementation, we use 

ACCENT ports for two different purposes. 

During the execution of the program, an ACCENT port will be allocated when a 

CONNECf activity is performed. This ACCENT port is used for transmitting the PRONET 

messages and will be deallocated when the corresponding DISCONNECf activity is performed. 

Initially, the receiving process possesses the receive and send rights. Then the send right will be 

passed to the sending process so that PRO NET messages can be transmitted through this port. 

There are three ACCENT ports allocated to each child process at the process creation time 

for the purpose of communicating with the root process. One is for the root process to send the 

child its process ID, the second is for implementing dynamic port connections and the third is 
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needed to implement port groups. 

5.4 TN! Network Representation 

A representation of the logical network described by a PRONET program is maintained in 

the address space of the root process. This representation reflects the hierarchical structure 

expressed in the program by maintaining a tree of network class and network instance 

representations. The logical network representation also contains information about the 

connectivity among the ports of network instances. The root of this tree is a network class 

representation, the leaves are network instance representations which contain information about 

the currently active processes in the logical network. 

The codes for manipulating the logical network representation also reside in the address 

space of the root process. All creations, updates and reads of the entities in the network 

representation must be performed by calling from the root process an appropriate procedure in 

the DB manipulation module. 

This centralized approach of maintaining the logical network representation lowers the 

degree of parallelism but reduces the cost of message transmission. 

5.5 Event Generation and Handling 

Event generation can be either upward or downward. The term ''upward event generation" 

is used to denote the generation of an event in the overseeing network while "downward event 

generation" is used to denote the generation of an event in a process instance. 

Upward event generation occurs when a process instance announces an event using the 

"announce" statement of PRONET or transmits a message using the "send" statement. 

Downward event generation occurs when a network specification creates or removes a port 

instance on a process instance or sends a message to a process instance. 

Event handling codes are generated by the NETSLA preprocessor and reside in the address 
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space of the root process during run-time. Upward event generation is implemented by sending 

a message to the root process. This message includes all the information relevant to the event 

generated. This kind of message arrives at a port which belongs to the root process and holds at 

most four messages at a time due to the limitation of the size of the backlog for an ACCENf 

port. 

Upon receiving a message from a child process, the root process will call an appropriate 

event handling routine based on the event type and other information included in the message. 

Event handler executions are performed in a serial fashion. This centralized approach of event 

handling has the disadvantage of a low degree of parallelism. 

5.6 Implementation limitations 

All of the features of ALSTEN and NETSLA have been implemented and tested on a single 

machine. However, because of continuing problems with Aa:ent, we have never been able to 

successfully run a program with processes located at more than one site. Thus all of our testing 

of PRONET and RADAR has involved programs consisting of multiple processes running on a 

single machine. 
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Section 6 

RESULTS AND CONCLUSIONS 

The principal results of our efforts, task by task, were: 

Task 1 - implementation of Pronet on our Perq workstations, through use of pre-processors 

which generate Perq Pascal code. 

Task 2 - the development of a passive event recording system for multi-process Pronet 

programs. 

Task 3 - the development of a replay system which produces a high-level graphical simulation of 

distributed program execution. 

Task 4 - integration of the replay system with a single-process debugger. 

6.1 Passive Event Recording 

The decision to go with a passive monitor rather than an interactive debugger was one major 

change in our philosophy during the course of this work. This change in approach resulted from 

consideration of the basic conceptual problem presented by active interaction with a distributed 

program: the intrusiveness of interaction might substantially change the behavior of the program 

being debugged. Thus we chose to minimize the intrusiveness of Radar, but there still remains 

the question of just how non-intrusive our monitor is. 

Radar relies on the collection of information during the normal execution of a program. The 

program runs to completion without any external interference or control. In particular, the data 

collection is invisible, since it is done inside the AI.STEN message and event primitives. 

How much does the extra disk I/0 affect the computation in program? This is the 

Heisenberg Uncertainty Principle as applied to Debugging, sometimes called the 'Heisenbug" 

Principle [ACM83]. We can present no definite answer here. It is expected that the disk 
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operations actually buffer to memory until the buffer fills up. If this is the case, there should be 

little extra overhead since the system will suspend a process only when its I/0 buffers must be 

flushed. The main problem is that while one process is suspended, others can continue to run 

on other machines. 

It can be argued that the fact that one process on one machine has been stopped should not 

affect the other processes on other machines, since the AI..SfEN receive is defined to be a 

blocking operation. The other processes may wait longer to complete the receive than they 

otherwise would have to, but ultimately, the same actions should be accomplished. 

Suspending one process for disk 110 can affect other processes which continue to run, in a 

different manner. The ALSTEN receive can specify several alternatives; in effect it can be 

non-deterministic; receiving from port sets is actually non-deterministic, since the programmer 

can not know which element of the set will be used. For instance, if there are three processes 

A,B, and C, and process B was supposed to receive a message from process A, but A was 

suspended, B could end up receiving a message from process C instead. This should not affect 

the ultimate semantics of the program, since the receive could happen on any specified port. it 

merely changes the path by which the program arrives at its goal. 

One practical problem we encountered in initially using our recording and replay system 

concerned programs which had to be aborted due to a loop in one or more processes. Simply 

having Accent abort the processes caused the event files they produced to be discarded. It was 

necessary to build a special capability into the root process representing the Pronet runtime 

system to have it terminate the processes in an orderly manner. The basic lesson here is that 

any passive monitor must make sure that it saves information in a way that will keep that 

information available under adverse circumstances, because that is just when the information 

will be needed. 



-36-

6.2 Graphical Replay of Program Execution 

The Perqs have high-resolution, bit-mapped black-and-white displays. This feature gave 

considerable support to the development of a very effective graphical user interface to our 

monitoring system. We consider this interface one of the most successful aspects of the project. 

In the introduction, we noted that one of the most difficult aspects of designing a tool to 

support distributed programming debugging was fmding a comprehensible way to display 

information about the program to a user. The graphical replay provided by Radar attacks this 

problem by providing an abstract view of the behavior of the individual processes. The 

information provided by the replay involves only activities at the "network" level: process 

creation and deletion, establishment of connections between ports, message sending and 

retrieving, etc. None of these activities is exclusively concerned with the internal state of a 

single process. Thus the replay provides a user with a view of program execution at the "process 

interaction" level. Only after an erroneous pattern of interaction is identified at that level is it 

necessary to consider the internal details of any of the processes. 

The alternative approach, only possible for a more intrusive debugger active during actual 

program execution, would be to provide a multi-window display, with each window displaying 

state information about and allowing interaction with a single process. For programs with more 

than a few processes, all of the windows wouldn't fit on the screen at the same time. Further, 

so much detail about individual process activity would be available that it would be virtually 

impossible to perceive the higher level structure that our replay system makes so apparent. 

Thus, given our linkage to a single-process debugger, we believe that our more abstract 

representation of program execution is a superior design choice. 

After the program has completed executing, Radar is invoked to provide a graphical 

"replay" of the execution. Each message or event is stamped with an event number, imposing 

a partial ordering on events. The monitor then displays events one at a time. The programmer 

is able to watch the communications traffic amongst the processes. Processes have names in 
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Pronet, so it is easy for the programmer to see which process is communicating with which other 

processes. 

Radar provides the user with the ability to view the contents of any message currently 

represented on the screen. Messages are represented on the screen as small boxes. The user 

places the PERQ's mouse over the message which he wishes to examine. Radar then displays 

the contents of the chosen message in a formatted fashion. For instance, if the message 

contained an integer and two floating point nmnbers, the message would be displayed as an 

integer and two floating point nmnbers, not as 10 octal bytes. 

Radar also provides the ability to replay a certain nmnber of events which have already 

happened. This can be done at any point during the display. The user can "rewind the video 

tape," so to speak. This replay is limited to a fiXed maximmn nmnber of previous events. The 

user also has the choice of watching a continuous stream of events ( occuring at an interactively 

settable rate), or single-stepping through events. This prevents information from flowing too 

fast to be comprehended. 

Finally, as a separate utility, the user can name a given process and have all of the messages 

which were sent to that process selected from the recorded message traffic. This single process 

may then be run by itself with its messages derived from the stored messages. This feature is 

designed to facilitate single process debugging under realistic conditions, without having to 

worry about controlling the rest of the processes of the distributed program. 

6.3 Integration with a Single-Process Debugger 

Only task 4 went just as it was originally planned. Our program replay system interfaces 

with the Kraut debugger, which is a standard high-level debugger under Accent. All of the 

messages to a single process can be collected from the event files. Then that process may be 

executed again, along with a special driver that simulates the rest of the program. Note that the 

selected process is actually executed, not simulated; however, the rest of the program is 
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simulated. The driver simulates the rest of the program by providing messages received by the 

selected process as they are needed. Thus the process under examination should execute just as 

it did when the event files were originally collected. 

The debugging methodology these mechanisms support works as follows. A program is 

executed with event ftles being collected. Its execution is replayed by Radar until the user 

identifies some particular process as exihibiting inappropriate behavior. Such behavior might be 

such things as inappropriate or missing message transmission, incorrect contents in a message or 

any other event visible at the network level. The user than asks for a re-execution of that 

process and examines its internal state during this replay using Kraut. Whenever the process 

executes a message receive statement, the Radar driver supplies the appropriate message. 

Whenever the process sends a message, the driver discards it. This process continues until the 

cause of the inappropriate behavior can be determined and (hopefully) corrected. 

There is only one problem with the above scenario. ALSfEN includes a conditional receive 

statement which allows the program to go on executing rather than blocking if it tries to receive 

a message and none is available in its incoming message buffer. Such an unsuccessful attempt 

to receive is not an externally visible event and thus was not originally recorded in the event 

flies. During re-execution with the special Radar driver and Kraut, messages are always 

available upon request. Thus a process whose execution originally included unsuccessful 

conditional receives would not execute in exactly the same way during re-execution. We found 

it necessary to begin recording unsuccessful conditional receives so that it would be possible to 

faithfully re-execute processes in this situation. 

The ability to examine program execution at the two different levels of abstraction provided 

by Radar and Kraut provide a very effective technique for tackling the information overload 

problem of monitoring distributed programs. This idea of replaying a process using stored 

messages has also appeared recently in a slightly different context: crash recovery in a message 

based distributed system ([Borg83] and [Powe83]). 



-39-

6.4 Approaches Taken by Other Researchers 

Bates and Wileden [Bate83] take the approach of viewing the 'Behavioral Abstraction' of a 

program's execution. Basically, the system is viewed 'in terms of its activity rather than its 

state.' They provide for primitive events such as process creation, page faulty, message 

transmission, and message reception. Higher level events or 'event abstractions' are built up by 

designating sequences of primitive events. The debugger then recognizes higher level events 

an~ displays these for the programmer, while filtering out other unimportant events. 

Gross and Zwaenepoel [Gros83] discuss those aspects of a distributed system both necessary 

and desirable for easy debugging. They do not present an actual debugging system. The 

system they propose would support the debugger as a separate process, with kernel facilities 

which would allow the debugger control over the program's execution, memory and kernel 

calls. They also make a distinction between the micro level of execution, which is the 

computations made by each process, and the macro level, where the overall computation 

proceeds via messages passed amongst the processes. 

Schiffenbauer [Schi81] presents an ambitious project implemented on a network of Xerox 

Alto minicomputers. He gives an introduction to the problems of distributed debugging and 

then a discussion of the major issues in designing a debugging facility. The two major issues are 

transparency of the debugger (a practical consideration), and the theoretical consideration of 

causality and logical clocks. He then described the implementation of his debugging facility. 

One of the more important parts of his work is his implementation of 'logical clocks' and his 

proof that through the use of logical (rather than actual) clocks, his debugger simulates a valid 

execution of the distributed program. He further proves that the debugger simulates a probable 

execution of the program, i.e. that the program behaves the same while being debugged as it 

probably would have behaved had it been allowed to execute unmonitored. 

Curti~ and Wittie [Curt82] present their design of a debugging system for parallel 

programming environments. A parallel programming environment is either a conventional 
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multiprogramming single processor system, or a 'network computer,' an ensemble of 

semiautonomous nodes, each with its own memory, peripherals, and communication links. The 

nodes communicate by passing messages over their links. 

The debugging system consists of local event monitors on each node, a central database 

system, and a user interface. The user interface is based on production rules, which the user 

expands into sequences of symbols describing what events he wants recorded, what variables 

saved, and what actions are to be taken upon the occurrence of any given event. This debugger, 

like that of Bates and Wileden, must be programmed. 

Harter [Hart85] proposes a debugging system which includes a standard sequential debugger 

plus an assertion language, based on temporal logic, to control the automatic monitoring of 

distributed programs. The system allows a programmer to expand the assertion set 

interactively. It also includes a graphics interface to display and filter information about 

program execution. 

Our work described below attempts to present a higher level view of message traffic that 

Schiffenbauer's minimally intrusive view of program execution. We agree with and support the 

distinction between micro and macro levels of execution suggested by Gross & Zwaenepoel. 

The interface to our system is simpler than those provided by Harter, Curtis & Wittie and Bates 

& Wileden, since it need not be programmed~ 

6.5 Possibilities for Further Research 

When a user watches the replay of a program using Radar, he quickly begins to recognize 

"patterns" consisting of sequences of several events. It would be desirable if Radar had some 

capability to display execution in terms os such higher-level events. An important question is 

how such structuring might be made to take place. 
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6.5.1 A Common Structuring Methalology 

One very prevalent and well understood method of imposing structure on incoming 

information is via lexical analysis and/or parsing techniques. These techniques are well 

understood, and often easy to use. 

Breugege [Breu84] uses Path Expressions, an extension of Regular Expressions. A path 

expression describes a sequence of events to be looked for, and actions to be executed when that 

sequence is matched, or not matched. The notation provides good flexibility of description, and 

would seem to supply a good method for RADAR to use for dealing with its stream of Pronet 

events. 

6.5 .2 The Probletm with Path Expressions 

Path expressions, or more generally, regular expressions and LALR( 1) parsing techniques, 

are a natural flrst choice for the computer scientist wishing to impose structure on a data stream. 

Here however, it may be a case of using a useful, but inappropriate, tool for the job. 

Why? In this case, the major flaw with these techniques, particularly path expressions, is 

that they are predictive. The debugging programmer must describe what he expects the 

debugger to see, and then what to do. But is a program is bug-ridden, it may never do what the 

programmer expects it to, even if he is looking for aberrant behavior! So, an interesting and 

possibly important stream of events could conceivably end up being missed by the debugger, 

and therefore by the programmer. In sum, a debugger should present a distillation of what 

happened, not what the programmer expected to happened. 

A secondary, although in our view still major, flaw is that this kind of debugger has to be 

programmed. The user must learn (and remember!) yet another kind of notation, and yet 

another set of commands. If a debugger is hard to use, it may not get used at all. One of the 

major RADAR design goals was that it should not have to be programmed. 
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6.5.3 Using a Data Compression Approach 

If regular expressions, LALR( 1) grammers, and path expressions are not the answer, what 

is? For the reasons we are about to present, we feel that an approach based on data 

compression would be an interesting area for future research. 

6.5.4 Why a Data Compression Approach? 

When one stops to think about it, it becomes clear that the problem is really one of data 

compression. We want to replace Sequences of low level events with a shorter symbol that 

represents that sequence. This is exactly what data compression techniques do, although usually 

they are just acting upon simple byte streams. 

The shorter symbol can be given a name that describes the sequence in a "higher level" 

fashion. For example, replace the sequence ''f'md Fred's number in the phone book", "lift the 

phone handset", "listen for dial tone", and "dial the number", with, "call Fred". 

This approach has several advantages. First, it is not predictive, looking for one thing and 

missing another. Instead, it is empirical, condensing what is there. It represents all the event 

sequences as they happened. Second, it fits in very well with RADAR's current passive, post

mortem approach to program monitoring. Third, the machine does the work of detecting event 

sequences and condensing them, not the programmer. There are no new notations or 

commands to learn. 

6.5.5 Possible Implementation Plan 

There are numerous data compression techniques. A recently developed, and very powerful 

technique is the Adaptive Lempel-Ziv Compression described in [Welc84]. On "normal" files 

of English text it often achieves compression of 50% or greater. One of its strongest points is 

that it tends to compress the longest possible sequence into a single code. 

RADAR gives unique identifies (numbers) to each kind of Pronet message. A single 

RADAR event would consist of the sending process id, the receiving process id, and the 
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message type. These events should be representable as unique integers of at most two bytes. A 

frrst (conceptual) pass over the recorded data would build a table of event triples (sender, 

destination, message type) and their corresponding integers. 

Next, the second pass performs Adaptive Lempel-Ziv compression on the integer stream, 

saving the compressed output. As part of the compression algorithm, the Lempel-Ziv method 

builds a table of codes and what each code represents. 

After compression, this table is presented to the user. RADAR presents each sequence and 

asks for a high level name for that sequence ("call Fred''). 

Once that is done, the compressed data is then "decompressed"; but not back into an integer 

stream. Instead, as each higher level code is recognized, the corresponding high level event is 

displayed graphically on the screen. 

6.5 .6 Problems with This Approach 

The method outlined above is not without its problems. In particular, the ordering of events 

that RADAR imposes is only a partial ordering. Events are sometimes depicted on the screen 

in an order different from that in which they actually occurred. Only related events are 

guaranteed to be ordered. This is because RADAR currently works by merging multiple event 

streams into a single event stream for display. The problem with this approach is that 

nonrelated events end up being interleaved with each other. This could conceivably affect the 

data compression algorithm. Non-related events could be compressed together, i.e. treated as 

related! (instead of being compressed with their related events). 

A major thrust of any future research would be to see if a data compression approach is 

feasible, and to learn whether or not non related interleaved events would detrimentally affect 

the data compression, or if the nature of the algorithm is such that it would not matter. Another 

goal would be to see if some approach could be found to work directly from the original 

multiple data streams, instead of from the merged single data stream. 
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As an alternative, some sort of knowledge-based pattern recognition approach might be 

tried. The data compression approach is essentially syntactic; a pattern recognition mechanism 

could conceivably work better by making use of information in messages or about network 

interconnections. Relative computational demands of these two approaches are an obvious 

tradeoff. 

6.6 Conclusions 

Finally, we restate our principal conclusions: 

Graphical display of information is an excellent technique for providing information about 

the execution of a distributed program. 

Passive monitoring and simulated replaying is a successful approach for minimizing the 

impact of the monitor on the execution of the program under examination. 

Multi-level tools are required to deal effectively with all aspects of distributed program 

debugging. 

We must state that these conclusions are based on relatively little experience with Radar. 

Because Accent has not been as stable as we had anticipated, there is really no user community 

on the Perqs other than the people who have worked on the Radar project. A much more 

extensive evaluation of our tools would be highly desirable. 
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Appendix A 

APPENDIX A 

'lhe LL(l) Grrumnar of NETSIA 

ararrmar prodoctions with selection sets added: 

Prod I Produ:tion 

1 network spec = net head 
evnt-decl pt proc decl 10 
init-clseO end identifier 
%net~rk ; 

const pt type pt ll' rt decl pt 
evnt clse-10 - -

2 net head = network identifier ; 
%net'-'Ork ; 

3 proc decl 10 = 
%arrive-end enter initial leave when ; 

4 proc decl 10 = process_decl proc_decl_ll 
%process ; 

5 proc decl 11 = 
%arrive-end enter initial leave When ; 

6 proc decl 11 = process_decl proc_decl_ll 
%process ; 

7 evnt else 10 = 
%end initial 

8 evnt else 10 = event clause evnt else 11 
%arrive-enter leave-when 

9 evnt else 11 = 
%errl initial ; 

10 evnt else 11 = event clause evnt else 11 
%arrive-enter leave-when ; 

11 init clseO = 
%end ; 

12 init clseO = initial activity_lst 
%initial 

13 const pt = 
%arrive end enter event initial leave 

port process type when 

14 const_pt = const con def list 

Fage 47 
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%const ; 

15 con def list = const def next con def 
%identifier 

16 next con def = 
%arrive end enter event initial leave 

port process type when ; 

17 next con def = const def next con def 

18 

%identifier ; 

const def = new const id = 
%identifier ; 

19 new const id = identifier 
%Tdenti!ier ; 

20 constant = signed_const 
%+ -

21 constant = unsigned con 

constant ; 

... 
\ 

%char const identifier int const real const string_const 

22 signed const = sign after_sign 
%+ _-

23 after sign = real const 
%real const 

24 after sign = int const 
%int const ; 

25 after sign = const id 
%identifier 

26 unsigned con = identifier 
%identifier ; 

27 unsigned con = int const 
%int canst 

28 unsigned con = char const 
%char const 

29 unsigned con = string_const 
%string_const 

30 unsigned con = real const 

31 

%real const 

scalar canst = 
%identifier 

identifier 

. 
I 
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32 scalar canst = non id s con 
%+ _-char_const int_const ; 

33 non id s con = sign id or int 
%+ _--: 

' I 

34 non id s con = int canst 
- --%int canst 

35 ron id s con = char canst 
%Char canst 

36 id or int = canst id 
iidenti fier 

37 id or int = int canst 
iint canst ; 

38 oonst id = identifier 
%identifier ; 

39 type pt = 

40 

%arrive errl enter event initial leave 
port process when 

type pt = type 
%t~ ; 

typ_def_list 

41 typ def list = type def next_typ_def 
%identifier ; 

42 next typ def = 
%arrive errl enter event initial leave 

port process when ; 

43 next typ def = type_def next_typ_def 
%identifier 

44 

45 

type def = new type id = 
%identifier - -

new type id = 
%Identifier ; 

identifier 

types ; 

46 types = type case 1 
%identifier- ; 

4 7 types = type case 2 

48 

%( +-array char canst int canst 
packed record set ; 

type _easel = identifier type_tail 
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%identifier ; 

49 type tail = 

50 

%) -; case end ; 

type tail - •• 
%.7 

scalar const 

51 type case2 = non id s con scalar const 
%+-- char const-int const ; 

52 type case 2 = struct type 
%array packed record set ; 

53 

54 

type case 2 = ( 
%(-

enu id list 

non id type = non id simp 
%( +-- char_const identifier int const 

55 oon id type = struct type 
%array packed record set ; 

56 simple type = type_id simp_ty_tail 
%identifier ; 

57 · simple type = ( 
%( ; 

enu id list 

. 
I 

58 simple type = non id s con scalar const 
%+ --char const Tnt-const ; 

59 simp ty tail = 

60 

61 

%) -, ; ] case end ; 

simp ty tail = 
%.7 ; 

non id simp = ( 
%( ; 

scalar const 

enu id list 

62 non id simp = subrange con scalar const 
%+ --char const identifier int const ; 

63 pt class nam = identifier 
%identifier ; 

64 enu id list = identifier enuner tail. 
%Identifier ; 

65 enuner tail = 
%) ; 
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66 enuner tail = 
%, i 

identifier enumer tail 

67 subrange con = identifier 
%identifier ; 

68 stbrange con = non id s con 
%+ - cnar_const int_const ; 

69 tY£=e id = identifier 
%identifier ; 

70 struct tY£=e = p3ck prefix tnp:3cked 
%array packed record set ; 

71 ~ck prefix = Facked 
%packed ; 

72 p:1ck prefix = 
%array record set 

73 LD1packed = array 
types 

indx_ty_list ] of 

%array ; 

7 4 tnp:lcked = record head field 1 ist end 
%record 

75 LD1Facked = set of simple_ type 
%set 

76 record head = record 
%record 

77 indx ty list = simple tY£=e index tail 
%(-+ = char_const identifier int const 

78 index tail = 

79 

%] ; 

index tail = 
%, ; 

simple_ type index tail 

80 field list = rec sec list with variant 
%) ; case end identifier ; 

81 rec sec list = rec section rec sec tail 
%) ; case end identifier . 

I 

82 rec sec tail = 
%) case end 

83 rec sec tail = rec section rec sec tail 
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84 

%; ; 

rec section = fieldid list 
%ldenti fier ; 

85 rec section = 
%) ; case end 

types 

86 fieldid list = identifier field id end 
%identifier 

87 with variant = 
%) -end ; 

88 with variant = variant_pref variant_ list 
%case ; 

89 field id end = 

90 

91 

%: ; 

field id end = 
%, 

variant pref = case 
%case- ; 

identifier field id end 

tag_type_ids of 

92 tag type ids = tagfield_id tag_typ_tail 
%ldenti fier 

93 tag typ tail = 

94 

%of ; 

tag_typ_tail = 
%: 

scalar_ty_id 

95 tag field id = identifier 
%identifier ; 

96 scalar ty id = identifier 
%identifier ; 

97 variant list = variant variant tail 
%) + = ; char const end 

identifier Tnt const 

98 variant = case 1 list : field head field list 
) 

%+ - char const identifier int const ; 

99 variant = 
%) ; end ; 

100 field head = 
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%) ; case identifier ; 

101 variant tail = 
%) end ; 

102 variant tail = ; variant variant tail 
%; 

103 case 1 list = scalar const caselabelend 
%+---char_conjt identifier int const ; 

104 caselabelend = 

105 

%: 

caselabelend = 
%, i 

scalar const caselabelend 

106 rnrt decl pt = 
%arrive-end enter event initial leave 

process when ; 

107 rnrt decl pt = pt_decl_list 
%~rt ; 

108 pt decl list = rnrt_decl pt_decl_tail 
ip::>rt- ; 

109 tnrt_decl = rnrt_head pt_dir_mt~ 
%p::>rt 

110 pt dir mt~ = in t~_id ; 
%in-

111 pt dir mt~ = out t~_id ; 
%out- ; 

112 pt dir mt~ = port_group ; 
i( -

113 pt decl tail = 
iarr ive errl enter event initial leave 

process when 

114 pt_decl_tail = tnrt_decl pt_decl_tail 
%p:>rt 

115 p:>rt head = p:>rt rnrt_ tail 
%~rt 

116 p:>rt tail = identifier 
%identifier 

117 p:>rt_tail =set identifier 
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%set 

118 p:>rt group = sbptdecllist 
% (- ; 

119 sbptdecllist = subp:>rt_decl next_ subp:>rt 
%identifier 

120 sub};l)rt decl = sub};l)rt_ name direct_ type 
%identifier ; 

121 direct_type = in type_id 
%in ; 

122 direct type = out type_id 
%out- ; 

123 sUbport name = identifier 
%identifier 

124 next stb};l)rt = 
%)- ; 

125 next stbp:>rt = ; sub};l)rt_ decl next_ subp:>rt 
%;-

126 process decl = process head attri_declsO port_decl_pt evnt_decl_pt 
end Tdentifier -

%process ; 

127 process head = process class identifier 
%process 

128 attri declsO = 
%end event p:>rt 

129 attri declsO = attri head attri sec ls attri tail 
%attributes 

130 attri head = attributes 
%attributes 

131 attri tail = end attributes 
%end 

132 attri sec ls = attri sec attri secl 
%; end identifier 

133 attri sec1 = 
%end ; 

134 attri secl = ; attri sec 
%; 
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135 

136 

attri sec = attri id ls types 
%identifier ; - -

attri sec = 
%; end ; 

137 attri id ls = identifier attri id lsl 
%identifier 

138 attri id ls1 = 
%: 

139 attri id lsl = , identifier ,, ; 

140 evnt decl pt = 
\arrive-end enter initial leave process 

when ; 

141 evnt decl_pt = event decl next event 
%event ; 

142 next event = 

143 

144 

%arrive end enter initial leave process 
when ; 

next event 
%eVent ; 

event decl 
%event ; 

= event decl next event 

= event identifier about_ptnmO ; 

145 about ptnmO = 
%; -

146 about ptnmO = about identifier 
%abOut ; 

147 event clause = arriv clause 
%arrive ; 

148 event clause = enter clause 
%enter ; 

149 event clause = leave clause 
%leave ; 

150 event clause = when clause 
%when 

151 arriv clause = arrive head activity_lst close end arrive 
%arrive 
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152 

153 

arrive head = arrive open arrive bind do 
%arrive 

arrive bind = message idO on arrive_port from_procesO 
%identifier on ; -

154 roossage idO = 
%on ; 

155 message idO = identifier 
%identifier ; 

156 arrive port = identifier arrive_portl 
%identifier ; 

157 arrive port! = 
%do !rom 

158 arrive_portl = identifier 
%: ; 

159 arrive port1 = of port_bind 
%of-

160 port bind = identifier port_bindl 
%identifier ; 

161 port bind1 = 
%do from 

162 port bind1 = identifier 
%:-

163 from procesO = 
%do 

164 from procesO = from process_bind 
%from ; 

165 process bind = identifier proces_bind1 
%identifier ; 

166 proces bind1 = 
%about do ; 

167 proces bind1 = identifier 

168 

16~ 

%: -

enter clause 
%enter ; 

enter head 

= enter_head activity_lst close end enter 

= enter open port_ bind do 
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%enter ; 

170 leave clause = leave head activity_lst close end leave 
%leave ; 

171 leave head = leave o~n p:>rt_bind do 
%leave ; 

172 When clause =when head activity_lst close end when 
%wfi'en 

173 when head =when open identifier announced by process_bind 
abOut partO do 

%when-; 

174 about partO = 
%do-

175 about partO =about port_bind 
%abOut ; 

176 activity 1st =activity activities 
%) ; announce case connect constroct 

create disconnect else end find identifier 
ra03e remove serrl tennina te ; 

177 activities = 
%) else end ; 

178 activities = ; activity activities 
%; ; 

179 activity = 
%) ; else end 

180 activity = simple act 
%announce connect constroct create disconnect identifier 

remove serrl terminate ; 

181 activity = control act 
%case firrl raf¥3e -

182 simple act = creation 
%create ; 

183 simple act = termination 
%teriilina te ; 

184 simple act = removal 
%remove ; 

185 simple act = connection 
%connect 
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186 

187 

188 

189 

190 

simple act = disconnecton 
%disconnect ; 

simple act = msg_transfer 
%seoo ; 

simple act = construction 
%construct ; 

simple act = attri_assign 
%identifier ; 

simple act = event trans 
%annomce 

191 simple bind = object id 
%identifier ; -

identifier simple_bindl 

192 object id = identifier 
%identifier ; 

193 simple bind1 = 
%do Where 

194 simple_bindl = on proc _denoter 
%on ; 

195 obj denoter = lhs 
%Tdenti fier 

196 port denoter = obj_denoter 
%identifier 

197 proc denoter = identifier 
%identifier 

198 creation = create create tail 

199 

%create 

create tail = 
%identifier 

200 create taill = 

identifier . 
I 

%) ;-else end ; 

identifier create taill 

201 create tail1 =on proc_denoter 
%on 

tennination = tenninate proc_denoter 
%terminate ; 

renoval = remove obj_denoter 
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%remove ; 

204 connection = connect port_denoter to p:>rt_ denoter 

%connect ; 

205 disconnecton = disconnect port_denoter fram_p:>rtO 
%disconnect ; 

206 from portO = 
%)-; else end ; 

207 from portO = from port_denoter 
%from ; 

208 msg transfer = send exprO to port_denoter 
%send 

209 exprO = 
%to ; 

210 exprO = expr 
%( + - [ char const identifier 

int const not real const string_const 

211 constru:tion = construct h::1 [ field _as_lst ] 

212 

%constroct ; 

construct l'rl 
%constroct 

= construct object_id : identifier 

213 field as 1st = fie1d_assign fd_assignl 
%identifier 

214 fd assign! = 
%] ; 

215 fd assign! = ; field_assign 
i; ; 

216 field assign = lhs := expr 
%identifier ; 

217 attri assign = lhs := expr 
%identifier 

218 event trans = announce event id about_portO 
%announce 

219 about portO = 
%) ; else end 

220 about_p:>rtO = about port_denoter 
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221 

222 

223 

%about ; 

control act = alternation 
%case- ; 

control act = selection 
%find- ; 

control act = iteration 
%ra~e 

224 alternation =alternate hd case_list else_partO end case 
%case ; 

225 alternate hd = case expr of 
%case ; 

226 case list = case element case listl 
%+-- char const-identifier int const ; 

227 case listl = 
%else end ; 

228 case listl = case element case listl 
%+-- char const Identifier int const ; 

229 case element = const list : ( open activity_lst close 
) 

%+ - char const identifier int const 

230 const list = scalar const const listl 
%+ = char const identifier int-const ; 

231 const listl = 
%: ; 

232 const listl = , scalar const 
%, ; 

233 select crite = simple_bind Where clausO 
%identifier 

234 selection = find head do activity_lst close else_partO end 
find 

235 

%find 

find head = find open object_ id 
%find 

236 find headl = string 
%string 

find headl 

237 find head! = identifier simple_bindl where_clausO 
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%identifier ; 

238 iteration = range open select_crite do activity_lst close 
else partO end range 

%range ; 

239 else partO = 
%eoo 

240 else partO =else open activity_lst close 
%else ; 

241 \\here clauso = 
%do- ; 

242 \\here clausO = where expr 
%where 

243 open = 
%) ; announce case connect construct 

create disconnect end find identifier on 
range ranove send terminate ; 

244 close = 
%) else end ; 

245 id list = identifier id list tail 
lidenti fier ·; 

246 id list tail = 

247 

248 

% ; 

id list tail = 
i, 

actual };arms = 
%( ; 

identifier id list tail 

actual_p:irm next_a _};arm 

249 acttal parm = p:irm expr field width 
%( +-- [char const identifier 

int const not real canst string_const ; 

250 next a parm = 
%)-; 

251 next a parm = , actual_J;arm next_a _parm ,,--
252 lhs = identifier rec_ary_ptr 

%identifier ; 

253 vars = identifier rec_ary_ptr 
%identifier 
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254 rec ary ptr = 
%T * + , - •• 

I . ·- . = ] • •- I 

and div do else end from 
in mod noneqrelop of or to ; 

255 identifier rec_ary_ptr 

256 rec ary ptr = 
%[ ;-

index_list ] 

257 index list = index next index 
%( +- [ char const identifier 

rec_ary_ptr 

int const not real const string_const 

258 next irrlex = , ,,- ; 
irrlex 

259 next index = 
%]-

260 index = expr 
%( + - [ char const identifier 

int const not real_const string_const 

261 expr = IBrm expr 
%( +- [ cnar const identifier 

int_const not real_const string_const ; 

262 parm expr = simple expr parm exp end 
% (-+ - [ char const identi ffer -

int const not real const string_const ; 

263 pa rrn exp end = 
%)-, .-: : i ] 

do else end of to ; 

264 parm exp end = rel op simple expr 
%=-in noneqrelop-; -

265 rel expr = simple expr rel op simple_expr 
. %1 + - [ char const identifier 

int const not real const string_const ; 

266 rel op --
%~ ; 

267 rel op = in 
%Tn ; 

268 r~l_op = noneqrelop 
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%noneqrelop ; 

269 simple expr = char const add teon 
%Char const ; 

270 simple expr = string_const add term 
%string_const ; 

271 simple expr = sign term add term 
%+ _-

272 simple expr = term add term 
%( [-identifier int const not real const ; 

273 add term = 
%) ' • • : i = 

] do else end in noneqrelop 
of to ; 

274 add teon = add_op term add_ term 
%+- or ; 

275 term = factor mul t factor 
%( [ identifier int const not real const 

276 mul t factor = 
%) -+ ' - . . : 

; = ] do else end 
in noneqrelop of or to 

277 mul t factor = mul t op factor mul t factor 
%*-/ and div mod -; 

278 factor = identifier var funccall 
%identifier ; 

279 factor = real const 
%real const ; 

280 factor = int const 
%int const 

281 factor = ( expr 
%( 

282 factor = elem list 
%[ ; 

283 factor = not factor 
%not ; 

284 var funccall = rec_ary_ptr 
%) * + ' - • 
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.. I : ; = [ 
] and div do else end 
in mod noneqrelop of or to ; 

285 var funccall = actt.al_{:arrns 
%( ; 

286 add op = sign 
%+ - ; 

287 add op = or 
%or ; 

288 mult op = * 
%*- ; 

289 mul t op = I 
'r; 

290 mul t op = div 
%dTv 

291 mul t op = and 
%and ; 

292 mul t op = mod 
%mod 

293 variable = identifier rec_ary_ptr 
%identifier ; 

294 field width = 

295 

%) ; ; 

field width = 
%: 

expr more field 

296 more field = 
%) -, ; 

297 more field = expr 

298 elem list = 
%] ; 

299 elan list = elan next elem 
%(-+- [ char const Tdentifier 

int_const not real_const string_const ; 

300 elem = expr elem tail 
%( + - [ char const identifier 

int const not real canst string_const ; 
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301 next elem = 
%] ; 

302 next elan = , elem next elem -%, ; 

303 elem tail = ,,-] ; 

304 elem tail = expr 
%.7 ; 

305 proc id = identifier 
%identifier 

306 rec var list = variable next rec var 
%Identifier 

307 next rec var = 

308 

,; 
next rec var = ,,- ; 

variable next rec var 

309 subport = 
% ; 

310 subp:>rt = stbp:>rt_ id 
%. ; 

311 pt class id = identifier 
\identifier 

312 subport id = identifier 
%identifier ; 

313 expressionO = 
% ; 

314 expressionO = expr 
%( +- [char const identifier 

int const not real const string_const ; 

315 event id = identifier 
%identifier 

316 sign = + 
%+ ; 

317 sign = 
%- ; 
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APPENDIX B 

'lhe LL ( 1) Granmar of ALSTEN 

Granmar produ:tions with selection sets added: 

Prod I Produ:tion 

1 camp unit = prog_head prog 
%@-process ; 

2 prog_head = process script prog_id ; 
%process ; 

3 prog id = identifier 
%identifier ; 

4 prog = IX>rt decl pt label pt const pt type pt evnt decl pt var pt 
proc fct pt - stmt pt- • - - - - -

%beg in const event function label IX>rt 
procedure type var ; 

5 block = label pt const pt type pt var pt proc_fct_pt stmt_pt 
%begin const-function-label procedure type 

var ; 

6 label pt = label label list ; 
%label ; 

7 label pt = 
%begin const event function procedure type 

var 

8 label list = labels next label 
%identifier int const ; 

9 next label = 

10 

%; 

next label = 
,, i 

labels next label 

11 labels = int const -%int const ; 

12 labels = identifier 
%identifier ; 

13 oonst pt = 
%begin event function procedure type var 
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14 oonst pt = const con def list 
%const ; 

15 con def list = const def next con def 
%identifier ; 

16 next con def = 
%begin-event function procedure type var ; 

17 next con def = const def next con def 
%iaentTfier 

18 const def = new const id = constant ; 
%identifier ; 

19 new const id = identifier 
%identitier ; 

20 constant = signed_const 
%+ -

21 constant = unsigned con 
%char const identifier int const real const string_const 

22 signed const ~ sign after_sign 
%+ _- ; 

23 after sign = real const 

24 

%real const ; 

after sign = 
%int const 

int const 

25 after sign = const id 
%identifier ; 

26 unsigned con = identifier 
%ident1fier 

27 unsigned con = int const 
%int const 

28 unsigned con = char const 
%char const 

29 

30 

31 

lD'lsigned con = 
%string_const 

lD'lsigned con = 
%real const 

scalar const = 
%identifier 

i 

. 
I 

i 

string_ const 

real const 

identifier 
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32 scalar const = non id s con 
%+ --char const i'nt const ; 

33 non id s con = sign id_or_int 
%+ --; 

34 non id s con = int const 
%Tnt-const ; 

35 oon id s con = char const 
%Char const 

36 id or int = const id 
iidenti fier 

37 id or int = int const 
i'int const ; 

38 const id = identifier 
%identifier ; 

39 type pt = 
%begin event fll'lction procedure var ; 

40 type pt = typ! typ_def_list 
%type ; 

41 typ def list = type_def next_typ_def 
%Tdenti fier ; 

42 next typ def = 
%begin-event fll'lction procedure var ; 

43 next typ def = type def next typ def 
%iaentTfier ; - - -

44 type def = new type id = types ; 
%iaentifier ; 

45 new type id = identifier 
%TdentTfier 

46 types = type case 1 
%identifier- ; 

47 types = type case2 
%( + -array char const int const 

packed ptr record set tag- ; 

48 type easel = identifier type_tail 
%identifier 
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49 type tail = 

50 

%)-; case errl ; 

type tail - •• 
%.7 ; 

scalar const 

51 type case 2 = non id s con scalar const 
%+-- char_const-int_const ; 

52 type case 2 = struct type 
%array packed record set ; 

53 type_case2 = ptr identifier 
%ptr 

54 type case2 = enu id list 
% (- ; 

55 type_case2 = tag of pt_class_nam 
%tag ; 

56 non id type = non id simp 
%( +-- char const identifier int const 

tag ; -

57 non id type = struct type 
%array p3cked record set ; 

58 non id type = ptr 
%ptr-

identifier 

59 simple type = type_id simp_ty_tail 
%identifier 

60 simple type = enu id list 
%( -

61 simple type = non id s con scalar const 
%+ --char const Tnt-canst ; 

62 simple_type = tag of pt_class_nam 
%tag ; 

63 simp ty tail = 
%) -, ; ] case end ; 

64 simp ty tail = • • scalar const 
%.7 ; 

65 non id simp = ( enu id list 
%( ; 

66 non_id_simp = st.Drange_con scalar const 
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%+ - char_const identifier int_const ; 

67 non id simp = tag of pt_class_nam 
%tag- i 

68 pt class nam = identifier 
iidentTfier ; 

69 enu id list = identifier enumer tail 
%Identifier 

70 enumer tail = 

71 

%) i 

enumer tail = , 
%, i 

identifier enumer tail 

72 subrange con = identifier 
%identTfier ; 

73 subrange con = non id s con 
%+ - ch'ar_const int_const i 

74 type id = identifier 
%identifier 

75 struct type = p3ck prefix Lnp:lcked 
%array packed record set 

76 pack prefix = p3cked 
%packed 

77 pack prefix = 
%array record set ; 

78 unp:1cked = array indx_ ty_list ] of 
types 

%array ; 

79 unp3cked = record head field list end 
%record 

80 unp3cked 
%set . 

I 

= set of simple_ type 

81 record head = record 
%record 

82 indx ty list = simple type index tail 
%(-+=char const identifier int const 

tag ; -

83 irrlex tail = 
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%] ; 

84 index tail = simple_type index_tail 
%, . 

' 
85 field list = rec sec list with variant 

%) ; case errl identTfier ; 

86 rec sec list = rec section rec sec tail 
%) ; case en:l identifier ; 

87 rec sec tail = 
%) case end ; 

88 rec sec tail = ; rec section rec sec tail 

89 

%; 

rec section = fieldid list 
%Tdenti fier ; 

90 rec section = 
%) ; case end ; 

types 

91 fieldid list = identifier field id end 
%identifier ; 

92 with variant = 
%)end ; 

93 with variant = variant_pref variant_ list 
%case ; 

94 field id end = 

95 

%: ; 

field id end = 
%, ; 

identifier field id end 

96 variant_pref = case tag_type_ids of 
%case 

97 tag type ids = tagfield_id tag_typ_tail 
%identifier ; 

98 tag typ tail = 

99 

%of ; 

tag typ tail = ,: - scalar_ ty_id 

100 tag field id = identifier 
%identifier ; 



Apperrlix B 

101 scalar ty id = identifier 
%identffier ; 

102 variant list = variant variant tail 
%) + :: ; char canst end -

identifier Tnt canst 

103 variant = case 1 list : ( field head field list 
) --

%+ - char canst identifier int canst 

104 variant = 
%) ; end ; 

105 field head = 
%) ; case identifier 

106 variant tail = 
%) eoo ; 

. 
I 

107 variant tail = ; variant variant tail 
%; 

108 case 1 list = scalar canst caselabelend 
%+---char canst identifier int canst ; 

109 caselabelend = 
%: i 

110 caselabelend = 
%, 

scalar canst caselabelend 

111 "fX)rt decl pt = 
%~in canst event function label procedure 

type var 

112 port decl pt = pt_decl_list 
%pOrt -

113 pt decl list = port_decl pt_decl_tail 
%port- ; 

114 port decl = port_head pt_dir_mtype 
%port ; 

115 pt dir mtype = in type_id 
iin -; 

116 pt dir mtype = out type_id 
iout- ; 

117 pt dir mtype = port_group ; 
i( -

; 
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118 pt decl tail = 
%beg in const event function label . procedure 

type var ; 

119 pt decl tail = I=Ort_ decl pt_ decl_ tail 
i{X>rt- ; 

120 port head = I=Ort tnrt_ tail 
%port ; 

121 port tail = identifier 
%identifier ; 

122 port tail = set identifier 
%set ; 

123 port group = ( sbptdecll ist ) 
%(-

124 sbptdecllist = subport_decl next_subport 
%identifier 

125 st.bport decl = subport_ name direct_ type 
%identifier ; 

126 direct_type = in type_id 
%in ; 

127 direct type = out type_id 
%out-

128 st.btnrt name = identifier 
%identifier ; 

129 next_ subport = 
%) ; 

130 next_ subport = ; subport_ decl next_ subpart 
%; 

131 evnt decl pt = 
%beg in function procedure var ; 

132 evnt decl pt = event decl next event 
%event -; 

133 next event = 
%oegin function procedure var 

134 next event = event decl next event 
%eV"ent 
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135 event decl = event event id about_partO 
%event ; 

136 about partO = 
%; -; 

137 about partO =about pt_class_id 
%abOut 

138 var pt = 
%0egin function {X'ocedure 

139 var pt = var var decl 1st 
%var ; 

140 var decl 1st = var decl var decl end 
%ldentffier ; 

141 var decl end = 
%0egin-function procedure ; 

142 var decl end = var decl var decl end 

143 

%identifier ; 

var decl = id list 
%identifier -; 

144 proc fct pt = 
%begin- ; 

types ; 

145 proc fct pt = pf decl list 
%fiilction {X'oceaure -; 

146 pf decl list = pf decl pf decl tail 
%function procedure ; - -

147 pf decl tail = 
%begin ; 

148 pf decl tail = pf decl pf decl tail 
%function procedure ; 

149 pf decl = pf head ; blkorf\trl 
%function procedure ; 

150 blkorfw:l = for¥Brd ; 
%forward ; 

151 blkorfwd = block ; 
%beJ in const fll"lction label procedure type 

var ; 

152 proc_start - . 
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% ( : ; ; 

153 pf head = procedure proc_id_dec {X'oc_start p_head_tail 
%procedure 

154 pf head = ftmction ft.nc_id_dec proc_start f head tail 
ifLD1ction ; 

155 p head tail = 

156 

-,; ; 

p head tail = 
-,( ; 

157 f head tail = 

158 

159 

-%; ; 

f head tail = -%: ; 

f head tail = ( 
parm type id 

%( ;- -

fpsl ) 

parm _type_ id 

fpsl ) 

160 proc id dec = identifier 
%identifier ; 

161 func id dec = identifier 
%identifier 

162 fpsl = f ~rm sect fpsl_tail 
%identifier var 

163 fpsl tail = 

164 

%)-

fpsl tail = 
%;-

f_~rm_sect fpsl_tail 

165 f ~rm sect = ~rm group 
-%identifier ; 

166 f ~rm sect = var ~rm _group 
-%var- ; 

167 parm type id = type_id FSrm_ty_tail 
%identifier 

168 parm type id = stru:t type 
%array packed record-set ; 

169 pa rm type id = 
%(-; -

enu id list 



Appendix B 

170 parm type id = tag of pt_class_nam 
%tag ;-

171 pa rm type id = non id s con 
%+-- chir_const int_const ; 

scalar const 

172 parm_type_ id = ptr identifier 
%ptr ; 

173 parm _ ty_ tail = 
%) ; ; 

174 parm _ ty_ tail = scalar const 
% •• ; 

175 parm group = id list : parm_type_id 
%identifier ; 

176 id list = identifier id list tail 
iidenti fier ; 

177 id list tail · = 
%: 

178 id list tail = 
%, ; 

179 body start = 

identifier id list tail 

%announce begin case for goto identifier 
if int const receive repeat send when 
W"lile Wi. th 

180 stmt_pt = begin 

%begin 

body_ start stmt_list end 

181 stmt = label prefix 1..11labeled st 
%announce b~in case for gotO if 

int const receive re~a t send \\hen v.hile 
with 

182 stmt = stmt with id 
%identifier ; -

183 stmt with id = identifier asgn_cal_lab 
%identifier 

184 unlabeled st = begin stmt list end 
%begin -; 

185 unlabeled_st = goto labels 
%goto ; 
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186 unlabeled st = case head · case_list otherwise_pt end 
%case 

187 t.nlabel ed st = rep!at strnt list mtil 
\repeat-

188 mlabel ed st = if stmt 
%if ; 

189 mlabeled st = for strnt 
%for 

190 LD'llabeled st = while strnt 
%while -; 

191 mlabeled st = with stmt 
%with ; 

192 unlabeled st = receive strnt 
%receive when 

193 unlabeled st = send strnt 
%send ; 

194 llllabeled st = announcestrnt 
%anno Lmce ; 

195 asgn cal lab = rec_ary_ptr := eKpr 
\.-:= 1 ptr ; 

196 aS]n cal lab = acttal_p:irms 
%(- ; -

197 

198 

asgn cal lab = 
%:- ; -

asgn cal lab = 

unlabeled st 

%;-else errl otherwise ootil . 
' 

199 actual parms = ( actual_parm next_a _parm 
%( -

200 actt.al I=Brm = {arm expr field width 
% ( +-- [ char const identifier . 

expr 

int const nil not real const string_const ; 

.201 next a parm = 
%)-; 

202 next a p3rm = , actual_p:lrm next_a_p3rm ,,--
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203 if stJnt = if head stJnt if tail 
%if ; 

204 if tail = else stJnt 
l'else ; 

205 if tail = 
i; end otherwise mtil ; 

206 for stJnt = for head do stmt 
%tor 

207 v.bile stJnt = while head stmt 
%while ; 

208 with stmt = with head stmt 
%with 

209 if head = if expr then 
iif ; 

210 while head = while expr do 
%while ; 

211 label prefix = 
%annomce begin case for goto if 

receive repeat serrl when while with ; 

212 label_prefix = int_const 
%int const ; 

213 lhs = identifier rec ary ptr 
%identifier ; - -

214 vars = identifier rec_ary_ptr 
%identifier 

215 rec ary ptr = 
%) * + ' - .. 

I . ·- . - ] • .- I -

and d i v do down to else end 
fran in mod noneqrelop of or 
otherwise then to m til ; 

216 rec ary ptr = • 
%7 ;-

identifier rec_ary_ptr 

217 rec ary ptr = ( index list 
%T ;- rec _ary_ptr 

218 rec ary ptr = ptr rec_ary_ptr 
%ptr -; 

Page 78 



Ap~ndix B 

219 irx:lex list = index next index 

220 

% ( + - ( char const identifier 
int const nil not real const string_const ; 

next index = , ,,- ; 
iooex 

221 next index = 
%]- ; 

222 index = expr 
%( +- ( char const identifier 

int const nTl not real const string_const ; 

223 expr = parm expr 
%( +- ( cnar const identifier 

int const nil not real const string_const 

224 parm_expr = simple expr parm exp end 
%( + - [ char const identifier -

int const nil not real const string_const 

225 parm exp end = 
%)-, .: : ; 

do downto else erx:l of otherwise 
then to until ; 

226 parm exp end = rel op simple expr 
%=-in noneqrelop -; -

227 rel_expr = simple expr rel op simple_expr 
%( +- [ char const identTfier 

int const nil not real const string_const ; 

228 rel op - -
%= ; 

229 rel op = in 
%Tn ; 

230 rel op = noneqrelop 
%noneqrelop ; 

231 simple expr = char const add term 
%char const ; 

232 simple expr = string_const add term 
%string_ const 

233 simple expr = sign term add term 
%+ -- ; 

234 simple_expr = term add term 
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%( [ identifier int const nil not 
real const ; 

235 add term = 
%T , • • : ; = 

] do downto else end in 
noneqrelop of otherwise then to LD'ltil ; 

236 add term = add op term add term 
%+- or ; - -

237 term = factor mul t factor 
%( [ identifier int const nil not 

real const ; 

238 mul t factor = 
%)-+ , - •• : 

; = ] do downto else 
end in noneqrelop of or otherwise 
then to until ; 

239 mul t factor = mul t op factor mul t factor 
%*-/ arrl div mod ; 

240 factor = identifier var funccall 
%identifier 

241 factor = nil 
%nil 

242 factor = real const 
%real const ; 

243 factor = int const 
%int ·const ; 

244 factor = ( expr 
%( ; 

245 factor = elan list 
%[ 

246 factor = not factor 
%not ; 

247 var funccall = rec_ary_ptr 
%) * + , -

.. I : ; = [ 
] arrl div do downto else 
end in mod noneqrelop of or 
otherwise ptr then to until ; 

248 var funccall = ac~Lal_t:arms 
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%( 

249 add op = sign 
%+ - ; 

250 add op = or 
%or ; 

251 mul. t op = * ,.- ; 

252 mul. t op =I 
%/- ; 

253 mul. t op = div 
%dTv ; 

254 mul. t op =and 
tand ; 

255 mul. t op =mod 
%mod ; 

256 variable = identifier rec_ary_ptr 
%identifier 

257 field width = 
%) -; ; 

258 field width = expr more field 
%: 

259 more field = 
%)-, ; 

260 more field = expr 

261 elem list = 

262 

263 

%] ; 

elem list = elem next elem 
%(-+- [ char const Identifier 

int const nil not real const string_const 

elem = expr elem tail 
%( + - [ char canst identifier 

int const nil not real_const string_const 

264 next elem = 
%]- ; 

265 next elem = elem next elem 

. 
I 

; 
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%, ; 

266 elem tail = ,,-] ; 

267 elem tail = expr 
%.7 ; 

268 proc id = identifier 
%identifier 

269 stmt list = stmt more stmt 

270 

271 

272 

%ailnounce beg in case -for go to identifier 
if int const receive rep:!at send \\hen 
while With ; 

more st:mt = 
%eoo Llltil .. 

I 

more stmt = ; stmt more stmt -%; ; 

case head = case expr of 
%case 

273 case list = case elem case elems 
%+-- char canst-identifier int const ; 

274 case elems = 
%eoo otherwise ; 

275 case elems = case elem case elems 
%;- ; 

276 case elem = case labels strnt 
%+-- char canst-identifier int const ; 

277 otherwise trl = otherwise 
%otherwise ; 

278 case labels = scalar const next scalar 
%+-- char const identifier int-const ; 

279 next scalar = 
%:- ; 

280 next scalar = ,,- ; 

281 otherwise _pt = 
%end ; 

scalar const next scalar 

282 otherwise _pt = otherwise trl strnt 1 ist 
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%otherwise ; 

283 for head = for identifier := expr 
to part expr 

%for ; 

284 to part = to 
ito ; 

285 to part = downto 
%doW'lto ; 

286 rec var list = variable next rec var 
%identifier 

287 next rec var = 

288 

tdo ; 

next rec var = , ,,- ; 
variable next rec var 

289 with head = with rec var list do 
%wlth i 

290 receive st:mt = simple_rcv 
%receTve ; 

291 receive st:mt = when st:mt 
%when- ; 

292 simple rev = receive variableO from 
port denoter freebindingO 

%receTve ; 

293 variableO = 
%fran 

294 variableO = variable 
%identifier ; 

295 port denoter = pt_class_id subport 
%iaenti fier 

296 subport = 

297 

%; do else eoo otherwise set 
until use ; 

subp:>rt = • 
%. ; 

stbp:>rt_ id 

298 pt class id = identifier 
iidentTfier ; 
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299 subport id = identifier 
%identifier ; 

300 freebindingO = 
%; do else eoo otherwise tntil 

301 freebindingO = use variable 
%use ; 

302 freebindingO = set variable 
%set ; 

303 when stmt = when head receives else _r:artO end 
%when ; 

304 when head = when 
%When ; 

305 receives = receive pt next receive 
%; end otherwise receive ;-

306 next receive = 
%efij otherwise ; 

307 next receive = ; 
%; 

receive_pt next receive 

308 receive pt = 
%; end otherwise 

309 receive pt = simple_rcv do stmt 
%receive ; 

310 else partO = 
%end ; 

311 else partO = otherwise stmt 

312 

%otherwise ; 

send stmt = 
use partO 

%send ; 

313 expressionO = 
%to i 

send expressionO to 

314 expressionO = expr 
%( + - [ char const identifier 

{l)rt_denoter 

int const nil not real const string_const 

315 use partO = 
%7 else end otherwise L1'ltil i 
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316 use partO = use variable 
%Use ; 

317 announcestmt = announce event id about bindO 
%announce ; 

318 event id = identifier 
%identifier ; 

319 about bindO = 
%; else eoo otherwise until ; 

320 about bindO = about pt_ class_ id use_partO 

321 

322 

%about ; 

sign = + 
%+ . 

' 
sign = 

%- ; 
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APPENDIX C 

An EXample NETSIA program - BroadcastiD; 

network broadcast; 
process class seooer 
port inport in integer; 
p;:>rt outiX>rt out integer; 
end seooer 

process class receiver 
port inp in integer; 
port outp out integer; 
eoo receiver 

initial 
create sender : sender ; 
create receiver! : receiver; 
create receiver2 : receiver; 
connect sender.outport to receiverl.inp; 
connect sender .outport to receiver2.inp 

end broadcast 
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APPENDIX D 

A Network Specification MOdule 

This code was generated by the Netsla preprocessor." 

procedure ini t; 
begin (*ini t*) 
p id := 0; 
afive := 0; 
total procs := 0; 
initialized := false; 
Gr := AllocateR>rt(KernelR>rt, OlildtoFarR>rt, MAXBACKLOG); 
Gr := AllocateR>rt(KernelR>rt, EWentR>rt, MAXBACKr.cx:;); 
build net('broadcast'); 
build-proc('sender'); 
build-port('inport'); 
build-port('outport'); 
build-proc('receiver'); 
build-port('inp'); 
build-port('outp'); 
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Gr :=-a creation pr (theroot,'sender' ,'sender' ,•sender.RUN',p list head); 
Gr := a-creation-pr (theroot,'receiver' ,•receiver!' ,•receiver7RUN'~p list head); 
Gr := a-creation-pr (theroot,'receiver' ,•receiver2','receiver.RUN' ,p-list-head); 
Gr := connection(theroot,•sender' ,•outport' ,•• ,•receiver!' ,'inp' , 11 ); . -

Gr := connection(theroot,'sender' ,•outport' ,•• ,'receiver2','inp' ,''); 
wakeup; 
end; (*ini t*) 
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APPENDIX E 

'lhe ENent Rlndling Mxlule 

Blnt~. ~ad. local FOrt : = BlentFOrt; 
quit := False; 
while (quit=FALSE) do 
ba;Jin 
writeln('Events before receive req'); 
Gr := leceive (BintMsg. ~ad, 0, LOCALPT, R~EIVEIT); 
i f Gr=SOCCESS then 
case shrink ( BlntMsg. ~ad. ID) of 
1: ba;Jin (* message transmission. *) 

wri teln ('Send Msg Iequest FEceived.'); 
Gr := send ms9<theroot, Blntrvt;g); 
if Gr=SOCCESS then 

wr i teln ('Send Msg Iequest Completed.') 
else -

writeln( 1 ***Send_Msg Request Nar Completed.'); 
arrive evnt; 

end; -
2: ba;Jin (* message transmission. w/ tag *) 

wri teln ( 1 Send Msg (w/ 'lag) Iequest ~Eceived. 1 ); 

Gr := send ms9 tag (theroot, B!ntrvt;g); 
if Gr=SOCCESS then 

wri te1n( 1 Send Msg (w/ Tc:lg) Request Completed • 1
) 

else -
wri teln( 1 ***Send rvt;g (w/ 'lag) Request Nar Completed. 1 ); 

arrive evnt; -
end; -

3: begin (* enter event *) 
enter evnt; 

end; -
4: begin (* leave event *) 

leave evnt; 
end; -

5: begin (* v.hen evnt *) 
when evnt; 

end; -
6: begin (* W'len evnt. w/ about p3rt *) 

when evnt; 
end; -

19: begin (* connectivity inquiry *) 
wri teln ( 1 Conn Inq Iequest ~Eceived 1 ); 

Gr := inquiry(theroot, EVntMsg); 
if Gr=SUCCESS then 

wr i teln ( 1 Conn Inquiry Cbmpl eted 1 ) 

else 
wr i tel n ( 'Conn Inquiry Nar Completed') ; 

end; 
99: begin (* termination of a process instance *) 

with vparray[vpnap[EVntMsg .I:Bta2]] do 
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begin 
I:eletecanvas ( canvs) ; 
PaintRectangle(Usercanvas,White,xO+l,xO+xlen-3,y0+2,yO+ylen-2); 
Used : = False; 

end; 
alive := alive-1; 
if ali ve=O then 
begin 

quit:=TRUE; 
Erasecanvas (Usercanvas ,W'li te) ; 
{~letecanvas (User canvas);} 

end; 
end; 

(* more come here *) 
otherwise: 

begin 
end 

end; (* case *) 
end; (* while *) 
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APPENDIX F 

A Script for Sender Processes 

process script sender; 
p:>rt inp:>rt in integer; 
port outport out integer; 
var 

i :integer; 
begin 

\\bile i<>999 do 
begin 

write ( 1 Integer: 1 ); 

readln(i); 
send i to outp:>rt 

.end 
end. 
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APPENDIX G 

The Preprocessor-generated Cbde for Sender Processes 

program sender; 
imports Child_lib from Child_lib; 

var 
i :integer; 
var 
pinport : port; 
poutport : port; 

type 
signal = boolean; 

accenbnsg = record 
head : msg; 
ipcname2 : ~~; 
arg2 : integer; 
ipcname3 : ~~; 
arg3 : string [ 10]; 
ipcname4 : ~~; 
arg4 : string [ 10]; 
i pcname 5 : Type Type ; 
arg5 : integer; 
ipcname6 : ~Tfpe; 
arg6 : string[20]; 
i pcname 1 : Tfpe Tfpe ; 
case integer of 

1 (msignal : signal) ; 
2 ( msginport: integer); 
3: ( msgoutport :integer); 

end; 

var 
xxmsg accentmsg; 
gr : generalreturn; 
whenfl ag : boolean ; 
xxsignal : signal; 
canmiX>rt : port; 
p array : FbrtBitArray; 
pstr : string[12]; 

{$INCLUDE Alsten supt.pas} 
begin -
{$INCLUDE Alstenini t.pas} 
Ini tM93n (Null Fbrt) ; 
Gr := Child ack; 
while i<>999 do 
begin 
write ( 'Integer : ') ; 
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readln(i); 
beg in ( * send *) 
xxmsg.head.id := 1; 
xxmsg .head .remotep:>rt := Infbrts ... ( 1]; 
xxmsg .head .local port := I:Btafbrt; 
xxmsg .msgoutp:>rt :=i; 
xxmsg.arg2 := p id; 
xxmsg.arg3 := 'outp:>rt'; 
xxmsg .arg4 := ' •; 
gr := send(xxmsg.head,O,wait) 
end (* send *) 

end 
;goa\tay;end. 

• 
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APPENDIX H 

A Script for the Iecei ver Proce~s 

process script receiver; 
port inp in integer; 
port outp out integer; 
var 

j :integer; 
begin 

W'lile j<>999 do 
begin 

end 
eoo. 

receive j from inp; 
wri teln{j) 
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T.he Preprocessor-generated Cbde for Receiver Processes 

program receiver; 
imports Child_lib from Child_lib; 

var 
j :integer; 
var 
pinp : port; 
poutp : port; 

type 
signal = boolean; 

accenbnsg = record 
head : ms;J; 
ip::name2 : ~~; 
arg2 : integer; 
i p::name 3 : ~Type ; 
arg3 : string [ 10]; 
i p::name4 : Type~; 
arg4 : string[lO]; 
ip::nameS : ~~; 
argS : integer; 
i pcname6 : Type Type ; 
arg6 : string[20]; 
i pcname 1 : ~Type ; 
case integer of 

1 (msignal :signal); 
2 ( ms;)inp : integer); 
3: ( msgoutp: integer); 

end; 

var 
xxms;) : accentms;J; 
gr : generalreturn; 
\\hen flag : boolean; 
xxsignal : signal; 
commp:>rt : port; 
p array : PortBitArray; 
pstr : string [.12]; 

{$INCLUDE Alsten supt.pas} 
begin -
{$INCLUDE Alsteninit.pas} 
Ini tMs;Jn (Null Port) ; 
Gr := Child ack; 
while j<>999 do 
begin 
begin (* receive *) 
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rcv('inp' ,'',999,l,rcv resUlt); 
if rev result then -
j:=xxmsg.msginp; 
erd (* receive *) 
i 
writeln(j) erd 
;goa w:t y ;errl • 
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APPENDIXJ 

Event Replay Example 

The following figures show a sequence of 6 events taken from a multiprocess arithmetic 

expression interpreter program developed during this project for testing and demonstrations. 

The SCANNER process reads an expression from the keyboard and then produces two 

messages: one containing token classifications for the PARSER and one containing token 

values (of constants and identifiers) for the INTERPRETER. The PARSER sends a message 

to the INTERPRETER describing the syntactic structure of the expression. This structure 

drives the interpratation. 

Dotted lines are included in the figures to indicate port connections. These are not present in 

the actual presentation done by our replay system. 

Sending a message is represented by two pictures. The ftrst shows a message box leaving an 

output port, while the second shows it arriving at an input port. The second picture represents 

the static state of the display after completion of the event. These two pictures show the 

beginning and end of the presentation of the event. In the actual presentation, the message box 

moves smoothly across the screen from the output port to the input port. 

Receiving a message is represented by a single picture that shows the state of the display 

after the message box is removed from the input queue of the appropriate port. 



Figure J -1 
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SCANNER sends message to PARSER 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

i Q ________ j l ________ j : 
I I 
~-------------------------------~ 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

i l ________ 9 l ________ J 1 
I I 
~-------------------------------~ 

Figure J-2 

SCANNER send message to INTERPRETER 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

A I 9 I 1 
U I ,I _________ J I 

I ~-------- I 
I I 
L-------------------------------1 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

: ; _________ Q ; _________ j 9 
I I 
L-------------------------------1 
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PARSER rereives message from SCANNER 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

I I I I 1 : L ________ j L ________ j I 

I I 
L------~------------------------1 

Figure J- 4 

PARSER recaves message from SCANNER 

SCANNER PARSER INTERPRETER l 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

! L ________ J Q ________ J 9 
I I 
L------------~------------------1 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

I 
I 

I 
I I L ________ j I 

! _________ p 
I --------------------------------· 

I 
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INTERPRETER receives message from PARSER 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

: L ________ J l _________ J 9 
I I 
L-------------------------------1 

Figure J -6 

iNTERPRETER receives message from SCANNER 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

I 1 I I I I : L ________ j L ________ j : 

I I 
L-------------------------------1 
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