Notlitvic vl »LUIHIRSLUGT WV TWwE Wi IR AV I PRI T WYY

PROJECT ADMINISTRATION DATA SHEET

|) X ORIGINAL REVISION NO.
G-36-605_¢ y GTRI}GHF DATE 4/25/83
Oject No. T
sject Director: R. i LeBlanc a".."“\ School A 1Cs

MERADCOM, Procurement & Production Directorate, Ft. Belvoir, VA

nsor:

Agreement: D.O0. #0015 under BOA DAAK70-79-D-0087 (AIRMICS) (OCA File #42)
pe ekl

ward Period: From 3/7/83 To (Performance) === (Reports)
wsor Amount: Total Estimated: §__ 168,519 ° 8 Funded: § 78,385(Est. through 12/31/83)

st Sharing Amount: $ None Cost Sharing No: N/A
tle: Interactive Monitoring of Distributed Systems
ADMINISTRATIVE DATA OCA Contact William F. Brown Ext. 4820
Sponsor Technical Contact: 2) Sponsor Admin/Contractual Matters:
Mr. Kearns/ACSC-CLD T. A Aryaft /) -y
ATRMICS ONR RR\gfS ,,«Qé& A 5/ ‘
115 0'Keefe Bldg. Campus e
Georgia Institute of Technology , /
Atlanta, GA 30332 (40"{ 881-4213

(404) 894-3110

fense Priority Rating: _DO-S1 Military Security Classification: None
(or) Company/Industrial Proprietary:

STRICTIONS

e Attached Gov't y Supplemental Information Sheet for Additional Requirements.

‘gavel: Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor
approval where total will exceed greater of $500 or 125% of approved proposal budget category.

‘Buipment: Title vests with ___Government; however none proposed

MMENTS:
Note: Request is being made to Sponsor to revise delivery date for Data_Items A0O1
: [XATLPY
R LR EOc0)
. PPIES TO:

search Administrative Network Hieseu curity Servi Research Communications (2)
Search Property Management V.Rgant_s_Coordig_ggs__(_Oi;D Project File
Ounting GTRI Other LeBlanc

Curement/EES Supply Services Library Other T Newton

ORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION

20 SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

Date 9/4/86

ject No. G-36-605 ' : School /KZ& ICS

judes Subproject No.(s) N/A

ject Director(s)wnc GTRC /33X

ective Completion Date: 9/30/85 . (Performance) (Reports)

nt/Contract Closeout Actions Remaining:

D None

——

Final Invoice or Final Fiscal Report

Closing Documents

Govt. Property Inventory & Related Certificate

Classified Material Certificate

(]
[x]
[::l Final Report of Inventions - Questionnaire sent to P.I.
[x]
]
]

Other

tinues Project No. Continued by Project No.

Library

earch Administrative Network SRR

arch Property Management Research Communications (2)
Project File
Other A. Jones

I. Newton
R. Embry

M OCA gq o5

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE » ATLANTA, GEORGIA 30332 « (404) 894-3152

April 7, 1983

AIRMICS e
115 O'Keefe Building
Georgia Tech Research Institute

Atlanta, Georgia 30332

RE: RGD Status Report

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: March, 1983

Dear Sirs:

During the month of March, the principal investigator attended the AQM
SIGPLAN/SIGSOFT Software Engineering Symposium on High-Level Debugging.
At this symposium, I was able to talk to other researchers working on
distributed debugging in order to compare approaches. It appears that by
using the structural information available in a PRONET program, we will
indeed be taking a uniquecapproach to monitoring distributed programs.

Since the time the proposal was submitted, work has been completed on the
PRONET implementation on the PRIME computers in the ICS Computing Laboratory.
Experience with this implementation haS shown that these machines are not a
practical host for a language like PRONET, which requires the dynamic creation
of processes. Thus we have decided to implement our monitor on Three Rivers
Perq workstations running the Accent operating system which was developed at
Carnegie-Mellon University. This will necessitate our reimplementing PRONET
on this new system, which will lengthen the time needed to perform Task 1.
However, Accent is much more supportive of the features of a language like
PRONET than Primos is, so the other tasks should be easier.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

RJL/np

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AM EQUAL ECUCATION ANC EMPLOYMENT OPPORTUNITY INSTITUTION

AIRMICS
115 0'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332
Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: March, 1983
No man-hours were charged to this project this month.
Cumulative total to date: 0O

Percentage of total expended to date: 0.0%

Total Funds Expended
Travel: $985.59
Cumulative total to date: $985.59
Percentage of total expended to date: 0.6%
Work Completion

Percentage of total work completed to date: 0%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE * ATLANTA, GEORGIA 30332 ¢ (404) 894-3152
May 9, 1983

AIRMICS

115 O'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R§D Status Report

Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: April, 1983

Dear Sirs:

During the month of April, 1983, two graduate students began working
under this contract. Chu-Chung Liu has been assigned to Task 1, the
PRONET interface, and Arnold Robbins is working on the communications
monitor of Task 2.

We have decided to implement a status monitor first, in order to
gain some experience *with distributed program monitoring issues,
before proceeding with the interactive monitor originally planned.
The static monitor will be similar to the interactive one, except
that the programmer will only be able to look at a replay of message
traffic recorded by the monitor. Thus we will essentially be
constructing prototypes for the programs described in Tasks 2 and 3.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

Sincerely,

“‘Richard J. LeBlanc Jr.,
Principal Investigator

RJL/np

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AN EQUAL EDUTATION AMND SMPLOYMENT OPPORTUNITY INSTITUTION

AIRMICS

115 0 Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: April, 1983

Man-hours Expended

Task 1: 88
Task 2: 103

Cumulative total to date: 191

Percentage of total expended to date: 3.4%

Total Funds Expended
Task 1: $2856.95
Task 2: $3514.69
Other: $ 170.31
Cumulative total to date: $7527.54

Percentage of total expended to date: 4.5%

Work Completion

Task 1: 49
Task 2: 2%
Task 3: 0%
Task 4: 0%

Percentage of total work completed to date: 1.4%

Richard J. LeBlanc Jr.,
Prineipal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE * ATLANTA, GEORGIA 30332 » (404) 894-3152
June 10, 1983

AIRMICS o
115 O'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R§D Status Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: May, 1983

Dear Sirs:

Work on designs for the software to be developed in Tasks 1 and 2
proceeded during May. We have run into one major difficulty with
using our Perqs: they don't have enough memory to run Accent
effectively. Thus we have been delayed in familiarizing ourselves
with the Accent envirfonment. No testing of design ideas has been
possible. :

We have obtained funding from the School of ICS to purchase the
additional memory we need. It has been ordered from Three Rivers.
Delivery is expected during June.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

Sincerely,

" Richard J. LeBlanc Jr.,
Principal Investigator

RJL/np

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AP CQUAL ERUCATION AMD SMPILOYMENT OPPCRTUNITY INSTITUTION

AIRMICS

115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: May, 1983

Man-hours Expended

Task 1: 88
Task 2: 178
Task 3: 25

Cumulative total to date: 382"

Percentage of total expended to date: 6.9%

Total Funds Expended
Task 1: $2856.95
Task 2: $2661.61
Task 3: $853.08
Other: $575.32
Cumulative total to date: $14,474.50

Percentage of total expended to date: 8.6%

IWOrk Completion

Task 1: 6%
Task 2: 4%
Task 3: 2%
Task 4: 0%

Percentage of total work completed to date: 4.49%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE ATLANTA, GEORGIA 30332 « (404) 894-3152
July 12, 1983

AIRMICS)
115 O0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: RED Status Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: June, 1983

Dear Sirs: .

The memory for the Perqs we have been expecting has not arrived,
so we have continued with only design work. Since Robbins has

been with us only through August, he has begun working on a

design for the interface (Task 3) to go along with his static
communication monitor (Task 2). He will present these two designs
as the main products described in his M.S. thesis.

P
Our study of the requirements for implementing PRONET and the
capabilities provided by Accent continued during June. We have
determined that the features of the extended Pascal supported by
Accent are sufficiently powerful that we can use a pre-processor
implementation approach. Programs written in ALSTEN and NETSLA,
the two sublanguages of PRONET, will be translated to Pascal

rather than compiled to Perq Q-code. This approach will greatly
simplify our implementation task. Work on the ALSTEN pre-processor
has begun, using the Zuse parser generator on our VAX 11/780.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract. '

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

RJL/np

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AM EQUAL EDUCATION AND EMPT OYMENT OPPORTUNITY INSTITUTICN

AIRMICS

115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: June, 1983

Man-hours Expended

Task 1: 88
Task 2: 50
Task 3: 53

Cumulative total to date: 573

Percentage of total expended to date:

Total Funds Expended

Work

Task 1: $2856.95
Task 2: $1706.16
Task 3: $1808.53
Other: $575.32
Cumulative total to date: $21,421.46

Percentage of total expended to date:

Completion

Task 1: 10%

Task 2: 49
Task 3: 4%
Task 4: 0%

10.3%

12.7%

Percentage of total work completed to date: 8.8%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE « ATLANTA, GEORGIA 30332 (404) 894-3152
August 15, 1983

AIRMICS o
115 O'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R§D Status Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: July, 1983

Dear Sirs:

The memory we needed has arrived and Accent is now running.
However, the availability of a running system has highlighted its
lack of documentatiorr. Robbins has completed the prototype
communications monitor design (Task 2) but is having difficulties
with the interface design (Task 3) due to lack of information
about the Canvas graphics package. In attempting to test some
aspects of his implementation for ALSTEN, the process description
component of PRONET (Task 1), Lin has been unable to even make
process creation work correctly. We are attempting to obtain
more information from Carnegie-Mellon.

Presuming we can overcome these problems in the near future, the
contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

RJL/np

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AN ZQUAL EDUCATICM AND EMPLOYMENT CPPCRTUNITY INSTITUTION

AIRMICS

115 0‘Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAKT70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: July, 1983

Man-hours Expended

Task 1: 25
Task 2: 8
Task 3: 8

Cumulative total to date: 614

Percentage of total expended to date: 11.0%

Total Funds Expended

Work

Task 1: $473.16

Task 2: $131.66

Task 3: $131.66

Other:

Cumulative total to date: $22,157.89

Percentage of total expended to date: 13.1%

Completion

Task 1: 10%

Task 2: 4%
Task 3: 4%
Task 4: 0%

Percentage of total work completed to date: 13.2%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY:

SCHOOL OF INFORMATION AND COMPUTER SCIENCE » ATLANTA, GEORGIA 30332 ¢ (404) 894-3152
September 12, 1983

IRMICS
?15 O0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R§D Status Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: August, 1983

pear Sirs: .

Considerable progress was made this month. The process creation
problem in the ALSTEN implementation has been solved and the
preprocessor has been transported from the Vax to the Perq. It
is now fully functional and Task 1 effort can turn toward imple-
menting NETSLA, the process interconnection component of PRONET.

Arnold Robbins has finishedr-his designs for the Task 2 and 3
prototypes and has completed his M.S. thesis entitled "Design of

a Passive Monitor for Distributed Programs.' His interface design
(Task 3) is dependent on some unverified assumptions about Canvas.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

Sincerely,

Richard J. LeBlanc JT . 5
Principal Investigator

RJL/np

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AM EQUAL EDUCATION AND EMPLOYMENMT OPPORTUNITY INSTITUTION

AIRMICS

115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: August, 1983

Man-hours Expended

Task 1: 25
Task 2: 4
Task 3: 12

Cumulative total to date: 655 ‘

Percentage of total expended to date: 11.8%

Total Funds Expended
Task 1: $473.16
Task 2: §$ 65.82
Task 3: $197.45
Other: $ 18.52
Cumulative total to date: $22,912.84

Percentage of total expended to date: 13.6%

Work Completion

Task 1: 10%

Task 2: 2%
Task 3: 6%
Task 4: 09

Percentage of total work completed to date: 17.69%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE « ATLANTA, GEORGIA 30332 » (404) 894-3152

October 11, 1983

IRMICS
?15 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: September, 1983

Dear Sirs:

Work has begun on the NETSLA sublanguage preprocessor (Task 1).
A grammar has been written which meets the constraints of the
parser generator. The Pascal code sequences to be generated
for each of the NETSLA features are being planned.

Arnold Robbins has graduated and is no longer working on the

project. He has been replaced by a new graduate student, Keith Harp,
who will implement Arnold's prototype monitor design (Tasks 2 and 3).
Roy Mongiovi, a member of the ICS Laboratory Staff is also partici-
pating in the implementation efforts now.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

RJL/np

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQLAL TDUNATION AND SR DYMENT OPPORTUMITY INSTITUTION

AIRMICS

115 0 Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAKT70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: September, 1983

Man-hours Expended

Task 1: 35
Task 2: 21
Task 3: 25

Clerical: 16
Cunulative total to date: 752

Percentage of total expended to date: 13.5%

Total Funds Expended
Task 1: $709.22
Task 2: $453.52
Task 3: $519.34
Other: $281.02
Cumulative total to date: $24,875.94

Percentage of total expended to date: 14.8%

Work Completion

Task 1: 109

Task 2: 2%
Task 3: 2%
Task 4: 0%

Percentage of total work completed to date: 20.8%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE * ATLANTA, GEORGIA 30332 » (404) 894-3152
November 16, 1983

AIRMICS
115 O0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: October, 1983

Dear Sirs:

A new release of Accent was feceived from Carnegie-Mellon University at the
beginning of this month. Difficulties with bringing it up on our machines.and
time spent studying the documentation which arrived with the new release
accounted for about half our effort this month.

Work continued on the NETSLA sublanguage preprocessor (Task 1). The focus this
month was still design of Pascal code sequences corresponding to NETSLA features.

The work on the prototype monitor design (Tasks 2 and 3) has been slow while the
new personnel on the project have been familiarizing themselves with Accent and
the existing design. With the new release, we received the documentations we
needed on the Canvas graphics package.

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

- - RIS - TaY e SR T L VI TE E- b Sl BOT PN

ATRMICS

115 0*Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: October, 1983

Man-hours Expended

Task 1: 85
Task 2: 57
Task 3: 57
Task U4: 0

Clerical: 16
Cumulative total to date: 967

Percentage of total expended to date: 17.37%

Total Funds Expended
Task 1: $2173.47
Task 2: $1390.48
Task 3: $1390.48
Task 4: 0
Other: $ 176.64
Cumulative total to date: $30,007.01

Percentage of total expended to date: 17.81%

Work Completion

Task 1: 5%
Task 2: 2%
Task 3: 2%
Task 4: 0%

Percentage of total work completed to date: 23%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE » ATLANTA, GEORGIA 30332 « (404) 894-3152
December 13, 1983

AIRMICS
115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: Ré&D Status Report

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: November, 1983 |

Dear Sirs:

Work continued on the NETSLA sublanguage implementation of Task 1. Effort this
month has included design of the required run~time support routines as well as
work on the pre-processor.

Code is now being written to implement the prototype monitor (Tasks 2 and 3).

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

Sincerely, S0 e

Richard J. LeBlanc Jr.!
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA _

AIRMICS

115 O0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAKT0-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: November, 1983

Man-hours Expended

Task 1: 85
Task 2: 57
Task 3: 57
Task 4: 0

Clerical: 16
Cumulative total to date: 1182

Percentage of total expended to date: 21.23%

Total Funds Expended

Work

Task 1:
Task 2:
Task 3:
Task 4:
Other:

Cumulative total to date: $35,138.08

Percentage of total expended to date: 20.85%

Completion

Task 1: 10%

Task 2: 3%
Task 3: 3%
Task 4: 0%

Percentage of total work completed to date: 26.89%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE * ATLANTA, GEORGIA 30332 ¢ (404) 894-3152

January 10, 1984

AIRMICS

115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: December, 1983

Dear Sirs:

Some difficulties have been encountered in using our parser generator to
produce the NETSLA preprocessor (Task 1) apparently due to the size of the
grammar. We are currently experimenting with ways to solve this problem.
Coding has continued on the prototype monitor (Tasks 2 and 3), with some
testing also accomplished. This early testing has been done particularly

to verify our understanding of the capabilities of canvas.

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

RJIL/np

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

AIRMICS

115 O0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAKT70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: December, 1983

Man-hours Expended

Task 1: 85
Task 2: 57
Task 3: 57
Task U4: 0

Clerical: 16
Cumulative total to date: 1397

Percentage of total expended to date: 25.09%

Total Funds Expended

Work

Task 1:
Task 2:
Task 3:
Task 4:
Other:

Cumulative total to date: $40,269.15

Percentage of total expended to date: 23.9%

Completion

Task 1: 10%

Task 2: 3%
Task 3: 3%
Task 4: 0%

Percentage of total work completed to date: 30.6%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE ¢ ATLANTA, GEORGIA 30332 » (404) 894-3152

March 23, 1984

AIRMICS

115 0'Keefe Building

Georgia Institute of Technology
Atlanta, Georgia 30332

RE: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contract: Georgia Tech Research Institute
Month: January

Dear Sirs:

The NETSLA preprocessor has been completed (Task 1). A small amount of work
remains to be done on the run-time support routines required to support
PRONET. We will soon begin integration testing of the two preprocessors

and the run-time routines.

Coding of the prototype monitor has essentially been completed (Tasks 2 & 3).
Testing will now be our main focus.

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

AIRMICS

115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: January, 1984

Man-hours Expended

Task 1: 63
Task 2: 25
Task 3: 43
Task 4: 0
Clerical: 16

Cumulative total to date: 1544

Percentage of total expended to date: 27.7%

Total Funds Expended

Task 1: $1565.55
Task 2: $ 658.33
Task 3: $1185.99
Task 4: 0

Other: §$ 276.76
Cumulative total to date: $43,955.79

Percentage of total expended to date: 26.1%

Work Completion

Task 1: 7%
Task 2: 3%
Task 3: 3%
Task U4: 0%

Percentage of total work completed to date: 33.8%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE « ATLANTA, GEORGIA 30332 » (404) 894-3152

March 23, 1984

AIRMICS
115 0'Keefe Building
Georgia Institute of Technology

Atlanta, Georgia 30332

RE: R&D Status Report

Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: February

Dear Sirs:

Testing of the PRONET implementation is in progress (Task 1). Programs using
a small subset of the language features have been executed successfully.

Testing of the prototype monitor is also in progress (Task 2 & 3).

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

Sincerely,

Richard J.'LeBlanc Jr.,
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

AIRMICS

115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: February, 1984

Man-hours Expended

Task 1: 63
Task 2: 25
Task 3: 43
Task 4: 0
Clerical: 16

Cumulative total to date: 1692

Percentage of total expended to date: 30.4%

Total Funds Expended

Task 1: $1565.55
Task 2: $ 658.33
Task 3: $1185.90
Task 4: 0

Other: §$ 276.76

Cumulative total to date: $47,642.43

Percentage of total expended to date: 28.3%

Work Completion

Task 1: 7%
Task 2: 3%
Task 3: 3%
Task 4: 0%

Percentage of total work completed to date: 37%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE * ATLANTA, GEORGIA 30332 « (404) 894-3152

May 3, 1984

AIRMICS

115 O0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Re: R&D Status Report

Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: March

Dear Sirs:

Testing of the PRONET implementation is in progress (Task 1).
All features of the process sublanguage (ALSTEN) are now
working.

Testing of the prototype monitor is also in progress

(Tasks 2 and 3). All remaining problems are in the display

interface routines.

The contractually prescribed effort appears sufficient to
achieve the objectives of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

ATIRMICS

115 0 Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems

Contractor: Georgia Tech Research Institute
Month: March

Man-hours Expended

Task 1: 63
Task 2: 21
Task 3: 47
Task 4: 16

Cumulative total to date: 1838

Percentage of total expended to date: 33.01%

Total Funds Expended

Task 1: 1559.51
Task 2: 583%.72
Task 3: 1260.79
Task 4: 0.00
Other: 276.80

Cumulative total to date: 513%11.61

Percentage of total expended to date: 30.45%

Work Completion

Task 1: 2
Task 2: 3
Task 3: 3
Task 4: O

Percentage of total work completed to date: 39.2%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE ¢ ATLANTA, GEORGIA 30332 » (404) 894-3152

May 3, 1984

AIRMICS

115 O0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: April

Dear Sirs:

All currently implemented features of PRONET are working (Task 1).
Only structured events and failure handling remain to be
implemented.

The prototype monitor is now operational (Tasks 2 and 3) and was
demonstrated during the IPR this month. The interface between
PRONET programs and the monitor has been tested by hand construc-
tion. We must now have PRONET generate it automatically.

The contractually prescribed effort appears sufficient to
achieve the objectives of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

AIRMICS

115 0 Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
- Month: April

Man-hours Expended

Task 1: 63
Task 2: 17
Task 3: 51
Task 4: 16

Cumulative total to date: 1985

Percentage of total expended to date: 35.65

Total Funds Expended

Work

Task 1: 1559.51
Task 2: 509.04
Task 3: 1335.47
Task 4: 0.00
Other: 276.80

Cumulative total to date: 54992.43

Percentage of total expended to date: 32.63%

Completion
Task 1: 2
Task 2: 3
Task 3: 3
Task 4: O

Percentage of total work completed to date: 41.4%

Richard J. LeBlanc Jr.,
Principal Investigator

June 20, 1984

TRMICS .
?15 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
"Tnteractive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: May, 1984

Dear Sirs:

Work has begun to adapt the PRONET implementation for multiple machine
opefation (Task 1). Progress has been slow due to some networking
hardware difficulties.

The interface between the prototype monitor is now being automated.
The first step in this process is extending the ALSTEN and NETSLA
preprocessors so that they generate code to collect the necessary
information at run-time. Substantial progress has been made on this
effort.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

Sincerely,

Richard J.-LeBlanc Jrj,
Principal Investigator

RJL/Kkkh

AIRMICS
115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: May 1984

Man-hours Expended

Task 1: 63
Task 2: 11
Task 3: 57
Task 4: 0
Clerical: 40

Cumulative total to date: 2156

Percentage of total expended to date: 38.7%

Total Funds Expended

Task 1: $1,559.51

ffask 2: S 320.36

Task 3: $1,524.15

Task 4: -Q-

Other: $1,852.67

(clerical and computing charges)

Cumulative total to date: $60,249.12

Percentage of total expended to date: 35.8%

Work Completion

Task 1: 27
Task 2: 1%
Task 3: 5%
Task 4: 0%

Percentage of total work completed to date: 43.6%

Richard J. LeBlanc Jr.k
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE * ATLANTA, GEORGIA 30332 ¢ (404) 894-3152

July 24, 1984

AIRMICS

115 O'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

Contract No. DAAK70-79-D-0087-0015
Contractor: Georgia Tech Research Institute
Month: June 1984

Dear Sirs:

Progress has been limited this month because of vacations during
quarter break and lack of availability of our computers for over
a week (when they were moved from our old offices to the ICS Lab).
Efforts to resolve system problems have slowed work on multiple
operation of PRONET (Task 1). Work on automating the interface
between the preprocessors and the monitor has continued Tasks 2
and 3, though progress was limited as described above.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

Sincerelv.

Richard.ﬁ) LeBlanc[Jr.,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

CS

i
AIRM tgeefe Building

0
éizrgia Tech Research Institute
stlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: June 1984

Man-hours Expended

Task 1: 63
Task 2: 11
Task 3: 57
Task &4: 0

Clerical: 40

Cumulative total to date: 2327

percentage of total expended to date: 41.7%

Total Funds Expended

Task 1: $ 1,559.51

Task 2: 320.36
Task 3: 1,524.15
Task 4: -0-
Other: 3,046.45

(clerical, supplies and computing charges)
Cumulative total to date: $64,918.51

Percentage of total expended to date: 38.5%

Work Completion

Task 1: 1%
Task 2: 1%
Task 3: 3%
Task 4: 0%

Percentage of total work completed to date: 45.0%

i i
Richard J. LeBlanc Jr.,
Principal Investigator

LIBRARY DOES NOT HAVE

R & D Status Report, July 1984

F18-6A

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE » ATLANTA, GEORGIA 30332 ¢ (404) 894-3152

September 20, 1984

AIRMICS

115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report
Contract No. DAAK70-79-D<0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: August, 1984

Dear Sirs:

The efforts under Task 1 continued to involve further extension of our
preprocessors and run-time system to handle more Pronet features. A
new version of Accent was received at the end of the month, which should
allow us to proceed with work on multi-machine operation in the near
future.

The work on automating the monitor interface (Tasks 2 & 3) is nearing
completion.

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

Sincerely,

‘Richard J. LeBlanc, Jr.
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE » ATLANTA, GEORGIA 30332 ¢ (404) 894-3152

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: August, 1984

Man-hours Expended

Task 1: 92
Task 2: 50
Task 3: 107
Task 4: 0
Clerical: 24

Cumulative total to date: 2869

Percentage of total expended to date: 51.5%

Total Funds Expended

Task 1: $2,609.63

Task 2: 1,380.61

Task 3: 3,326.99

Task &4: -0~

Other: 2,533.75

(clerical and computing charges)

Cumulative total to date: $86,905.73

Percentage of total expended to date: 51,67

Work Completion

Task 1: 1%
Task 2: 2%
Task 3: 3%
Task 4: 0%

Percentage of total work completed to date: 49.3% .

Richard J. LeBlanc, Jr.
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE ¢ ATLANTA, GEORGIA 30332 ¢ (404) 894-3152

October 16, 1984

AIRMICS

115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: September, 1984

Dear Sirs:
Due to vacations between the summer and fall quarters and continuing
difficulties with the Accent operating system, very little progress

was made this month on any of the tasks.

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

RJLjr/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE ¢ ATLANTA, GEORGIA 30332 » (404) 894-3152

October 16, 1984

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: September 1984

Man-hours Expended

Task 1: 92
Task 2: 50
Task 3: 107
Task 4: 0

Clerical: 24
Cumulative total to date: 3142

Percentage of total expended to date: 56.4%

Total Funds Expended

Task 1: $2,609.63
Task 2: 1380.61
Task 3: 3,326.99
Task 4: -0-
Other: 2,533.75

(clerical and computing charges)
Cumulative total to date: $96,756.71

Percentage of total expended to date: 57.4%

Work Completion

Task 1:
Task 2:
Task 3:
Task 4:

oOHKFHO

Percentage of total work completed to date: 49.9%

A L
Richard J. LeBlanc Jr.,
Principal Investigator

]

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE * ATLANTA, GEORGIA 30332 » (404) 894-3152

December 12, 1984

AIRMICS .

115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: October, 1984

Dear Sirs:

Progress this month was limited by continuing difficulties with
the Accent operating system. Some progress was made on interfac-
ing with advanced Pronet features (Task 1). Work is continuing
on the development of a Pronet program to test the usability of
the prototype monitor (Tasks 2 and 3).

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract, but the prescribed calendar time
will be insufficient. An extension of the completion date has
been requested.

Sincerely,

Richard 'J. LeBland Jr.,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE « ATLANTA, GEORGIA 30332 » (404) 894-3152

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: October, 1984

Man-hours Expended

Task 1: 76
Task 2: 42
Task 3: 83
Task 4: 0
Clerical: 24

Cumulative total to date: 3367

Percentage of total expended to date: 60.5%

Total Funds Expended

Task 1: $1,613.45

Task 2: $ 882.52

Task 3: $1,832.72

Task 4: -0-

Other: $2,533.75

(clerical and computing charges)

Cumulative total to date: $103,619.14

Percentage of total expended to date: 61.5%

Work Completion

Task
Task
Task
Task

* oo oo

SN =
O = -

.
.

Percentage of total work completed to date: 50.7%

Kichard J. LeBlanc/Jr.
Principal Investigator

RILjr/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

PUTE P TP e

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE ¢ ATLANTA, GEORGIA 30332 » (404) 894-3152

December 12, 1984

AIRMICS

115 0'Keefe Building

Georgia Tech Research Instltute
Atlanta, Georgia 30332

RE: R&D Status Report

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: November, 1984

Dear Sirs:

Progress has again been limited by operating system difficulties.
As of the date of this report, we have apparently received the
new software we need, but it has not yet been installed. The
only progress this month was continued work on testing the

usability of the prototype monitor (Tasks 2 & 3).

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

Sincerely,

Richard J. LeBlatde Jr.,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

TITLITIOAL

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE « ATLANTA, GEORGIA 30332 « (404) 894-3152

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: November, 1984

Man-hours Expended

Task 1: 76

Task 2: 42

Task 3: 83

Task 4: 0

Clerical: 24

Cumulative total to date: 3592

Percentage of total expended to date: 64.5%

Total Funds Expended

Task 1: $1,613.45
Task 2: $§ 882.52
Task 3: $1,832.72
Task 4: -0-

Other: $2,533.75

(clerical and computing charges)
Cumulative total to date: $110,481.58

Percentage of total expended to date: 65.5%

Work Completion

Task 1: 0
Task 2: 1
Task 3: 1
Task 4: 0
Percentage of total work completed to date: 51.3%

Kichard J. LeBlant Jr.
Principal Investigator

RILjr/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE * ATLANTA, GEORGIA 30332 » (404) 894-3152

February 18, 1985

AIRMICS

115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: December, 1984

Dear Sirs:

The new Accent operating system has been installed but changes in
the terminal interface it provides require significant
modifications in all of our existing programs. This

modificiation work is currently in progress.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

Sincerely,

Richard J. LeBlanc Jrj,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSI
1

Per formance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: December, 1984

Man-hours Expended Work Completion

k1 (current)
Tas

72 Task 1: 0
- 7 Task 2: 1
g ° Task 3: 1
e % 2 Task 4: 0
B Zg ' Work Completion
TOEAg (cumulative total)
Tas 3

7? Task 1 99
k. 83 Task 2 50
R Task 3 57
- ¢ 0 Task 4 0
gg@ZL g Percentage to date
Clerical: 24

Cumulative total- to date: 3817
Percentage of total expended to date: 68.55%

PI rate
GRA Rate
CLer Rate

Total Funds Expended

Task 1: $1,613.45
Task 2: $ 882.52
Task 3: $1,832.72
Task 4: -0-
Clerical $ 415.20
Computing $1,364.17
Supplies -0-
Other: $2,533.75

Cumulative total to date: $117,344.02
Percentage of total expended to date: 69.63%

sscnard J. LeBlanc Jr.\
Principal Investigator

RJLjr /kkh

51.92

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE ¢ ATLANTA, GEORGIA 30332 (404) 894-3152

February 18, 1985

AIRMICS

115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: January 1985

Dear Sirs:

Most program modifications to run with the new version of Accent
are complete. However, we are still having difficulties making

access to ports work across the network. Work has begun on Task
4, interfacing with a single process monitor, using the existing
Accent debugging program.

A paper on our work has been accepted for the 5th International
Conference on Distributed Computing Systems and will be presented
there in May. Work on a final verison of that paper is in
progress.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

Per formance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: January, 1985

Man-hours Expended Work Completion
(current)

Task 1:

PI 2 Task 1: 0
GRAs 20 Task 2: 1
TOTAL - 22 Task 3: 1
Task 2: Task 4: 5

PI 2

GRAs 30 Work Completion
TOTAL 32 (cumulative total)
Task 3:

PI 4 Task 1 99
GRAs 50 Task 2 51
TOTAL 54 Task 3 58
Task 4: Task 4 5

PI 4

GRAs 20 Percentage to date
TOTAL 24

Clerical: 24

Cumulative total to date: 3973

Percentage of total expended to date: 71.35%
PI rate

GRA Rate

CLer Rate

Total Funds Expended -

Task 1: $ 503.52
Task 2: $ 693.02
Task 3: $1,196.55
Task 4: 628.05

Clerical $ 415.20
Computing $1,364.17
Supplies -0-
Other: $2,533.75

Cumulative total to date: $122,898.91

Percentage of total expended to date: 72.93%

Richard J. LeBlanc Jr. /
Principal Investigator

RJLjr/kkh

53.5%

April 11, 1985

IRMICS e

115 0'Keefe Building

lf,gia Tech Research Institute
tlanta, Georgia 30332

R&D Status Report

Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: February, 1985

c
Jear Sirs:
e are now operating successfully with the new version of Accent,
xcept that name server problems limit us to programs running on
ﬂfingle workstation.
he final version of our paper for the 5th International
fiference on Distributed Computing Systems has been completed.

?ft has begun on Task 4, integrating a single process debugger
ith Radar.

MM: contractually prescribed effort appears sufficient to achieve
he objectives of the contract.

1lncerely,

lichard J. LeBlanc Jr.,
‘fincipal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE * ATLANTA, GEORGIA 30332 (404) 894-3152

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE ¢ ATLANTA, GEORGIA 30332 « (404) 894-3152

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: February, 1985

Man-hours Expended

Task 1: 2z
Task 2: 27
Task 3: 27
Task &4: 56

Clerical: 24
Cumulative total to date: 4129

percentage of total expended to date: 74.16%

Total Funds Expended

Task 1: $ 503.52
Task 2: $ 598.27
Task 3: $ 598.27
Task 4: $1,321.07
Other : $2,533.75

(clerical and computing charges)
Cumulative total to date: $128,453.79

Percentage of total expended to date: 76.23%

Work Completion

Task 1: 0
Task 2: 3
Task 3: 3
Task 4: 5

Petcentage of total work completed to date: 56.3%

;Lfnafd J. LeBlanc, Jr.
Tlncipal Investigator

RILjr /kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

May 3, 1985

AIRMICS '
115 0'Keefe Building
Georgia Tech Research Institute

Atlanta, Georgia 30332

RE: R&D Status Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: March, 1985

Dear Sirs:

Due to spring breaks here and at CMU, we still haven't resolved the
pame server problem with Accent.

Work is continuing on Task 4, integrating a single process debugger
with Radar. We are using the Kraut debugger distributed with Accent.
are also considering use of some concepts from Kraut as the basis of
refinements to the Radar interface (Tasks 2 and 3).

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

Sincerely,

Richard J. LeBlanc, J;.,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE « ATLANTA, GEORGIA 30332 « (404) 894-3152

We

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: March, 1985

Man-hours Expended

Task 1: 20
Task 2: 22
Task 3: -
Task 4: 68
Clerical: 24

Cumulative total to date: 4285

percentage of total expended to date: 76.96%

Total Funds Expended

Task 1 $ 379.00
Task 2: 503.52
Task 3: 503.52
Task 4: 1,635.09
Other: 2,8383.75

(clerical and computing charges)
Cumulative total to date: $134,008 .68

Percentage of total. expended to date: 79.52%

Work Completion

Task 1: 0
Task 2: 3
Task 3: 3
Task 4: 30
Percentage of total work completed to date: 64.1%

Richard J. LeBlanc Jr.,
Principal Investigator

& 2 17
é - %(5 ¥ ‘\i\ 2 15

Georgia Institute of Technology
School of Information and Computer Science
Atlanta, Georgia 30332-0280

GEORGIA TECH 18851985 (404) 894-3152

DESIGNING TOMORROW TODAY

—

AIRMICS
115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Re: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: April, 1985

Dear Sirs:

The name server problems with Accent are still unresolved; as a result, we
remain unable to do any testing of Radar involving multiple machines. Our
testing is thus limited to multiple processes on single machines. Although
Accent makes machine boundaries invisible to processes, giving processes the
same logical relationship regardlessof where they are located, we would still
prefer to do some testing involving programs running on both of our Pergs.
Because of the name server problem, little progress has been made on further
work with the replay mechanism of Radar.

Work has continued on Task 4, integrating the single process debugger with
Radar. One major problem has been encountered: dealing with conditional
receive statements within the process being debugged. By using a message
stream to simulate the rest of the program, messages are always available.
Thus the "else branch" of the conditional receive will never be used during
the debugging session. Dealing with this problem is now our highest prior-
ity.

The contractually prescribed effort appears sufficient to achieve the objec-

tives of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

An Equal Education and Employment Opportunity Institution A Unit of the University System of Georgia

O 0 "o

Georgia Institute of Technology

School of Information and Computer Science
Atlanta, Georgia 30332-0280

Mﬂ;cu 1885-1985 (404) 894-3152

DESIGNING TOMORROW TODAY

—

AIRMICS
115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Re: R&D Status Report
- Contract No. DAAK70-79-D-0087-0015
Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: May, 1985

Dear Sirs:

The name server problems remain unresolved. We do not have the source code

of this version of accent as we did with the last, so we have been hindered

in our efforts to do anything. We are trying to get the source for this re-
lease from CMU.

Our paper on Radar was presented at the International Conference on Distri-
buted Computing Systems this month. It was included in a session with two
other distributed program debugging papers, which presented some interesting
contrasting approaches to the problem.

Our problem with conditional receive statements in single process debugging
(Task 4) has been solved by making execution of an else branch another kind
of event to be recorded in the log file. This event is ignored by the mul-
tiple process replay driver. It is, of course, used in the single process
debugging mode. The single process debugger is now finished and ready for
testing.

We now have a new user who was not part of the implementation team attempt-
ing to implement a distributed program using Pronet on the Perqs. His exper-
ience is intended to provide feedback on our design and to further test our
tools. His initial focus will be on the value of the multiple process replay
(Tasks 2 and 3) in debugging a multiple process implementation of a minimal
Spanning tree algorithm.

The contractually prescribed effort appears sufficient to achieve the objec-

tives of the contract.

Sincerely,

Righard J. LeBlanc Jr.,
Principal Investigator

An
Equal Education and Employment Opportunity Institution A Unit of the University System of Georgia

(::" b 0§
Georgia Institute of Technology

School of Information and Computer Science
Atlanta. Georgia 30332-0280
(404) 894-3152

AIRMICS
115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Re: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: June, 1985

Dear Sirs:

The Accent name server problem remains unresolved. We have been promised
source code from CMU, but have received nothing yet. Another problem has
arisen due to the lack of source code. We are no longer able to produce
templates for all messages, since we had done some compiler modifications
in order to obtain the templates for records.

Work is proceeding slowly toward the goal of testing our system using a min-
imal spanning tree program.

The single process debugging capability (Task 4) has been tested by the imple-
mentor and is now ready for user testing. It will be used in debugging the
minal spanning tree program when that effort reaches the appropriate point.

The Vax 780 in the ICS Lab which we use for some of our development work and
where must read any tapes we get from CMU has recently been converted to
version 4.2 of Berkeley Unix. Since that time, our file transfer program,
which we have in object form only, no longer works. We will try to obtain

another one from CMU or from someone on Usenet (the source of our current
version).

Because of our problems with Accent and other software problems, it is un-
likely that the contractually prescribed effort remaining will enable us to
make any further refinements to Radar.

Sincerely,

Ri?hard J. LeBlanc Jr.,
Principal Investigator

An E
Qual Education and Employment Opportunity Institution A Unit of the University System of Georgia

LC. - (~"K
3 -0 " e

Georgia Institute of Technology
School of Information and Computer Science
Atlanta, Georgia 30332-0280

1885-1985 (404) 894-3152
Wnc"

JING TOMORROW TODAY

—

AIRMICS
115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Re: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: July, 1985

Dear Sirs:

We still have not received the source code for Accent from CMU. Apparently
the configuration of our Pergs is suffiently out-of-date that what we need
must be recreated from backups, which nobody has gotten around to doing for
us. We also still lack a working file transfer program to move programs be-
tween the Vax and the Pergs.

Progress with the minimal spanning tree program, to be used to evaluate Radar
(Tasks 2 and 3) has been slow due to the need to fix problems with Pronet,
compounded by out lack of file transfer capabilities.

In our work to develop a higher level interface to Radar, we are exploring
the possibility of borrowing some ideas from a data compression technique.
The essence of this approach will be to present the user with information
about recurring groupings of events, which contrasts to our previously re-
jected alternative that required the user to describe the groupings he ex-
pected. The limited amount of contract effort remaining will not enable us
to do more than just study this new approach.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

An Equal £
du
Cation and Employment Opportunity Institution A Unit of the University System of Georgia

Georgia Institute of Technology

School of Information and Computer Science
Atlanta, Georgia 30332-0280
(404) 894-3152

AIRMICS '
115 0'Keefe Building
Georgia Tech Research Institute

Atlanta, Georgia 30332

Re: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: August, 1985

Dear Sirs:

We still are waiting for the required Accent source code from CMU. Appar-
ently their work on our request has uncovered some problems with their file
backup system that they have not yet resolved. At this point, we don't really
expect to receive anything from them before the end of the project, so we

will remain unable to actually test Radar on programs executed on multiple
machines.

Our file transfer program has been fixed by one of the ICS lab staff who took
the object code of the old version and substituted in Unix 4.2 system calls
where necessary. His efforts have been very valuable to us.

Our Radar evaluation effort (Tasks 2 and 3) has finally succeeded in getting
the minimal spanning tree program executing on the Perqs. Just we hoped might
be the case, the initial version contains at least one bug that can be used

as an application for Radar. Unfortunately, that bug causes the program to
loop and when we abort execution, we lose the log files required to drive
Radar. This is a very fundamantal problem that will be a significant dis-
advantage of the replay style of debugging if we can't solve it.

We have identified a data compression algorithm which we hope will be satis-
factory to implement our event grouping concept. Due to lack of man-hours
remaining in the project, we will not have a chance to implement this exten-

sion to Radar, but will be limited to studying its potential and related im-
Plementation issues.

Sincerely,

Ri?hard J. LeBlanc Jr.,
Principal Investigator

An E
Qual Education and Employment Opportunity Institution A Unit of the University System of Georgia

Georgia Institute of Technology

School of Information and Computer Science
Atlanta, Georgia 30332-0280

SEORGIA TECH 18851985 (404) 894-3152

DESIGNING TOMORROW TODAY

—

AIRMICS
115 0'Keefe Building

Georgia Tech Research Institute
Atlanta, Georgia 30332

Re: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: September, 1985

Dear Sirs:

As expected, there have been no further developments involving Accent.

We have been successful in providing a capability to abort looping programs
so that their log files are not lost. Since there is a "master process" con-
trolling the execution of a Pronet program, we can have it periodically look
for a command from the keyboard to abort the program. It can then send emer-
gency messages to the processes, requiring them to terminate. This is not

as general a solution as might be desired, since it depends on particular
properties of Accent and Pronet. Any other application of the technology

we have developed will have to consider handling the problem of looping pro-
grams an important constraint.

The bugs in the minimal spanning tree program were independently discovered
while this problem with Pronet was being fixed, so Radar was not used very
significantly in debugging it. However, this effort did contribute consid-
erably to the removal of problems in Pronet and the data collection system
upon which Radar is based.

Our studies of the data compression concept have led us to the conclusion
that it will require some extensions, since the basic algorithm for compres-
sion works on a single data stream. Events in from a Pronet program, while
they can be linearized, actually come from multiple streams, one for each
Process. We have identified an ICS student who is interested in continuing
work on this problem as his senior design project, so work on this aspect

of the problem will continue beyond the end of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

An
Equal Education and Employment Opportunity Institution A Unit of the University System of Georgia

o7 o0 puw

USING PRONET AND RADAR

1e a Netsla program NetslaFileName.n:

1ate NetslaFileName.n into NetslaFileName.pas
which is a Pascal version of the program.

4 netsla NetslaFileName.n
compile NetslaFileName.pas:
9, com NetslaFileName.pas

To compile a Alsten program AlstenFileName.a:

1) translate AlstenFileName.a into AlstenFileName.pas
2.1) which is a Pascal version of the program.

9 alsten AlstenFileName.a
2.2) compile AlstenFileName.pas:

9 com AlstenFileName.pas

To run a Pronet program, just type
% NetslaFileName
To replay program execution, just type
% replay NetslaFileName
At any time during the event replay the user can stop execution by

causing a keyboard interrupt. This invokes an interrupt handler which
presents the following menu:

[

Change To/From Single-Step/Continuous Operation.

2. Change The Number of Seconds Per Event.

3. Skip Ahead to A Specific Event Number.

4. Display Contents of the Message Under the Mouse.
S. Instant Replay.

6. Start Displaying From Scratch.

7. Exit REPLAY.

8. Help.

9. Never Mind.

After the interrupt handler does what the user wishes, the program
returns to where it was executing before the interrupt occurred.

Single process debugging

S.1) to Prepare log files for single process debugging

% ucap NetslaFileName ProcessName

where ProcessName is the name of the process to be debugged.
3.2) to Start debugging a process instance

% NetslaFileName -k ProcessName ProcessID

where ProcessID is the Pronet ID that has been assigned to

he particular process instance.

user then has to create a window for KRAUET
ocess debugger for the Accent operating syStem‘:’hich is a

pPr
After KRAUET is invoked, the user should resume th
of the debugged program by typing a key on theekeyleaog)rfgc.:ution

ank**® eprocessors *
pé *

ﬁONET e

ank# o

M'ion code which specifies the steps to be taken by the Alsten
Ac gprocessor' during translation.
pr‘

n i ifies the steps to be taken by the Netsla
II,‘CC e which spec P Y
AC:p ggcgggor during translation.
p'r

U‘onst{—_:n t declarations for Alsten preprocessor.

n‘cm"n:{—gnt declarations for Netsla preprocessor.

Mamégified version of grammar.a which has been compressed to
facilitate use by the Alsten preprocessor.

wa:égified version of grammar.a which has been compressed to
facilitate use by the Alsten preprocessor.

LLselect.a
Reformatted Alsten grammar which contains the productions numbered

in increasing order by line number from the orginal Alsten grammar.

LLselect.n .
Reformatted Netsla grammar which contains the productions numbered

in increasing order by line number from the orginal Netsla grammar.

.a
UJ& support routines referenced in the Alsten preprocessor or the
action code.

.n
u.'%e support routines referenced in the Netsla preprocessor or the
action code.

LL .a
tme declarations for the Alsten preprocessor. LLtype.a is included
into alsten.pas (the Alsten preprocessor.)

LL .n
t@;e declarations for the Netsla preprocessor. LLtype.n is included
into netsla.pas (the Netsla preprocessor.)

LLvar.a

Variable declarations for the Alsten preprocessor.
LLvar.n

Variable declarations for the Netsla preprocessor.
Llwrt.n

SUpport routines referenced in the Netsla preprocessor. Used to
g€nerate Pascal code.

.tagles
arsing table that will be read by the Alsten preprocessor.
alsten.pas

Alsten preprocessor.

am which accepts a translation grammar as input and generates

;egggg‘; files which will be needed for the language preprocessor.

! r.a

, qrgﬂa ammar for Alsten.
oL (1) ar

grﬂrza({)’ngrannnar for Netsla.

ﬁ#;'ggts:sla preprocessor.

ﬂ"‘g},ﬁ:ing table that will be read by the Netsla preprocessor.

runtime library *

k¥
*
PorTiE

S .pas
‘Cti"i:potigtigg routines which are called to actually perform the

Netsla and the Alsten activities.

supt.pas
d%tgnalf supporting routines to handle Alsten activities such

as the message reception and the message transmission.

nit.pas
Initialigation code to set up parameters of a child process
when it is created.

child_lib.pas
Library routines that are referenced by child processes.

db_procs.pas
utines that create and maintain the run-time database of a
Pronet program.

db_types.pas
Declarations of data types that are used in the database.

decl_types.pas
Type declarations.

defs.pas
Definitions of some system parameters.

events.pas
Event handlers. Defines steps to be taken when an event occurrs.

Retslainit.pas
S o initialize a network.

LL 2 T T T
¢ *
LL L T T

'Valttypes .pas

ih Module is broken out separate from the rest of radartypes because it
1dente only one needed to do logging of events, and using all those
ifiers when only these are needed is begging for doubly-defined

pas dling module for REPLAY system, isolates getting

jehan t from all the log files.

11€” xt even

E

q-pagtained module for handling history of events, to help
;grforming the Instant Replay of RADAR.
when

'praenéfe’gs__ keep track of what is on the screen.
scr

rt:'gazontaining miscellanious small support routines
for the RADAR monitoring system.

late.pas

tines to generate template files.

types P2 :efinitions for RADAR, pronet/clouds monitor
m: module is not designed to be actually compiled on the Pergs.
It is used to put all the type definitions in one place. It then exports
se definitions. It includes fudgemod.p only so that the module will
pe syntactically valid for the perqref cross referencing program.

'p(a:iose and Personal -- message filtering program to aid
in single process debugging of Pronet process scripts.

V;gi:ble declarations for RADAR -- pronet/clouds monitor

Pl:'?aochures for RADAR

.pas
Processhandling -- keep track of actual processes, ports, destinations

radarlog.pas
Radarlog -- module which performs logging function for RADAR

REARRA kX kkkkkk* kK

~ * Test programs *
*

RERRkk Xk k% * %k k k%

‘ .pas
- BStnet.pas
%.pas
.pas
.Ubde3.gas
BStnode4 .pas
Pronetnpl"ggrams that implement a distributed algorithm of minimum
g tree.

i

s

[
7]

¢ programs that implement a simple arithmetic interpreter.

~ast.n

st .pas

" a

“‘,l oa

!_éggsograms that implement the message broadcasting.

0g ams to test various features of Pronet.

INTERIM REPORT

. Prepared for

| U.S. ARMY

~ Institute for Research in

Management Information and Computer Science
- Atlanta, Georgia 30332

Under
' Contract No. DAAK70-79-D-0087-0015
- GIT Project No. G36-605

May 1984

' GEORGIA INSTITUTE OF TECHNOLOGY

. AUNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
. SCHOOL OF INFORMATION AND COMPUTER SCIENCE

Interactive Monitoring of Distributed Systems
Interim Report

Richard J. IeBlanc

My, 1984

U.S. Army Institute For Research in
Management Information and Computer Science
Atlanta, Georgia 30332

Contract No. DAAK70-79-D-0087-0015
GIT Project No. G36-605

Page ii

TABLE OF CONTENTS

Page

Section 1 INTRODUCTION.Q-.IIlI.-lll.l.t..-..lt.llcltticl'..ll.....‘.... 1

—

.1 Problems with Monitoring DiStPibuted PPOgPamS....---...........-...
.2 Proposed Solutions Using PRONET....cecceecccesne B 6 % e B E RS e 3
.3 OvePVieW of PPOjeCt SEAtUS s seuvseamsanssscesssssss sesessssesosssens 4

Section 2 RADAR DESIGN.'O!'OI..CC.u..ll..l....l.lul.l.l!llC.llull.l..o. 7

.1 DiStPibuted PPOgPamS...---..-......-...-........................-.-
.2 The RADAR System.....-.-.........-......-..---....-..-.-...........

~ =

Section 3 COLLECTING INFORMATION..eecccecocecscccsccsccsccsascsossccssacass 10

.1 The Features of Pronet.ccccececcccscececcscecoscccscscscsscscassssssacassance 11

o] ALSTEN.ceecceseosesessesssassscncssssnesoscsssscssssssscsaseessscas 11
e NETSLAscssvsssssasssssssssssssnasaossssnusassasssnssensssvasnsess 13
.2 Information Supplied By The Pronet CompilerSc.ccceccecscscssssssssass 10
51 ALSTEN:«ssssecssscsssssssessssssssssssasasssenanssssssansssesssse 10
L2 NETSLA: i o506 s0neeosnsscessotnssosossessaisasisssasssssssosssvonass 10
.3 Information Collected At RUn=TimE.sccecccecccscaosscccsacscssscssassses 19
BIBD] ScuSS1iO0Nssssssssssssnsssaissasisssnssaesaisseassvesssosassssasaans 22

Sectionu REPLAYING PROGRAM EXECUTIONI'.'...‘.'.I..'........I'.......‘. 2)4

.1 Outline of the AlgOrithmMe.ecececceccecoccscsacscssssssscacnassnscsssscans 24
Bl The User Interfacicsscsascssssssassnsasssnsssncssvsssenasssssassnsss 20
.1 What the User SeeS.cecececccscccssscssssscsscsscccscsssssscsssssssass 20
«2 Single StepPPiNg.ccecsscccecsscccsessscssssscccsssssssssccccsnasse 28
«3 Displaying MesSsageS.ssissssssssssoosnssonssesissssssnoissvssosiss 20
.4 Selective Replaying of EventS.cceeececcscecsccsscccassssscssnace 30
+5 REPLAY Menu OptionS.:cesssesscsccssasssssssassnsssssssasnsssossase 31

Seetions INTERFACEWITH PRONET'.I.C.I".....l.I.....l...'.‘..."...... 33

'1 ALSTEN....'I.....'.l..l.l.l..ll".'.....".l!l'..l.l.'l'....l'!.... 33

'2 NETSLA...l.'.'l.'..l‘...l.OCI...l.I.l..l..‘...COI.III.......II..QI. 3“

Section 6 PRONET IMPLEMENTATION....eeeeececcecsocccsscsssscccasanssscae 36

*1 The PrepProCESSOrS.ceeeeeececessececseesssasssssassseassssacasansses 30
*2 MOdULe StrUCLUIrES.eeeececeeccscasescsscsccosssacsccasscssssssssanee 38
*3 Processes and POrtS..cececececeeesecacesaesssasassscassssscassacacs 39
4 The Network RepresentatioN..eeeeeesecceceseeesececseasncesenaseneas U0
*5 Event Generation and HandliNg..e.eeeeeeeeeeeeeseesscsncsncencenons . M
0 CUPPENt SEALUS.eeeeeenneeeneeseeeasceeaseasascasanseccsnncasanseane U2

Page iii

section 7 IMPLEMENTATION OF THE RADAR SYSTEM........cieeeiicinnecnennns 43
section 8 PLAN FOR FURTHER WORK....evueeeenenaneeanncaeenenccnnccncannns 49
appendix A The LL(1) Grammar of NETSLA.sssssaesssssesesssssnasssesssens D2
appendix B The LL(1) Grammar of ALSTEN...ccccscscccsssossssscoscnsasonas T[]
Appendix C An Example NETSLA program - Broadcasting..eccceeeeccscscecees 91

pppendix D A Network Specification Module.....cceecceereecceennacnanas 92

Appendix E The Event Handling Module€....cccececcccccesccscsacacsenesees 93
Appendix F A Script for Sender ProcesseS...cceececccceccccscscacescceee 95
Appendix G The Preprocessor-generated Code for Sender ProcesseS........ 96
Appendix H A Script for the Receiver ProcesseS..ccecccccecccccccceccess 98
Appendix I The Preprocessor-generated Code for Receiver Processes...... 99

Bibliogr'aphy ® © 0 000000000 G 000000000000 000000000 COE00E00E0OSIOOIOSEEEECEEOTSsSOSTETS 101

Page iv

LIST OF ILLUSTRATIONS

Figure

1

© o =3

1
12
' 13
14
15
16
17

Send and Receive Statements in ALSTEN..:eceeececccesccscscaccsnccs
Port and Port Tag Declarations in ALSTEN..:ccececoccocsascscscocnscs
Network Specifications in NETSLA::ececcceosevcoccascasosscssocoscscss
A Simple Network SpecificatioNecececcccccccsosccccccccocscscsocansseess
A Graphical Represéntation of the Simple NetworK.eeeeeseeooooesens
Message TEMDLAGES: o5 6.0 o sieis oo oes@e e sione o oo elenss s 66 56 65eess s s
Pields In A MeSSagesmessmes euesssassevess sesesesssssssssesssssssss
BesCription Of A ProCeSS. e s s e e esiesseeosssssssssnsesssssssesss
[EYDES OF ‘BVENUSs oe1a e sieiens o aoie-eeeis s e & eees oFes e s es 6eE s eme /e
BYONt ReCOrdS.cesssosssenssssnsssssasossrssssessasunnsnnsnnassssss
ffop Level REPLAY Algorithm,.cseessscsossssososanisnoiossiossssnessos
Picture of A Process and A MeSSagE.ceccecessccscscsscssccsscsccssscas
B Process Sending A MeSSagB.cccncsocssssasscsessansssvsnssssssssss
REPLAY MeNU OPtiONS. sssseeeeseenssnnnnnnssseeseeeeeesonnnnnnnnnnns
Londitional Compilation in Perq Pascali.sssssssssssssssssassannsens
FrEpracossor BErUotulrB. cesss s ssesssssssar sy eenssesispasaneeossesnn

NETSLA Object Module StrUCLUIr@..cceeececescececosesasoscacaseonanes

Page

12
13
14
15
15
17
17
18
19
20
25
26
27
31
34
37
39

INTRODUCTION Page 1

Section 1

INTRODUCTION

1.1problems with Monitoring Distributed Programs

In a conventional programming environment, there are two principal
pur poses for monitoring the run-time behavior of a program: performance
measurement and debugging. (By "monitoring" we refer to some mechanism for

obtaining information about the performance of a program, external to the
program itself.) Performance measurement is a relatively mundane application

of monitoring in such an environment, being principally concerned with the
processor time requirements of various parts of a program and requiring little
or no interactive intervention by a programmer. Debugging is considerably

more interesting, requiring extensive programmer interaction by 1its very
nature.

When we generalize our thinking to a distributed system from a
traditional si'ngle-processor environment, the uses of monitoring become
somewhat different and we must develop a new conceptual view of a major part
of the monitoring task. We are, of course, still interested in performance

measurement and debugging, but these tasks become quthis new environment. The

reason for this difference is that we are now concerned with distributed
Programs - programs which cannot be monitored by considering a single address
Space on a single machine. Rather, we must now be concerned with the com-

mnication between the various parts of a program, for these interactions will
Play a crucial part in the monitoring task.

Per formance measurement in a distributed system is made more complex by a

Number of new considerations. Communication costs and the overall time it

gection 1 INTRODUCTION Page 2
takes to execute a program, which is affected by the potential for parallel
execution of subtasks and by time spent waiting for messages, are equally im-
portant considerations in many situations. Further, it is much more difficult

for a measurement program to monitor an entire program, since the monitored
program may be distributed arbitrarily across a network of machines. It will

pe necessary for any monitoring program to obtain information about the dis-
tribution of a program and about its communication linkage and behavior.

This need to obtain information from distributed execution sites
naturally applies to debuggers as well as to performance monitors. In fact,

it is a more complex problem in the case of a debugger since the debugger must
somehow assist a programmer in comprehending the "state" of a program which

consists of a number of processes running asynchronously on several machines.

Conventional debugging tools are certainly of little use in this situation,
since they are typically oriented toward monitoring the operation of what
would only be a single process of a distributed program. Once again, tools
wvhich provide information about the status of process interactions will be
required. (Such tools should also have the capability to interface with more
traditional monitoring tools which can be used on the individual processes.)
Just as communication should play an important part in distributed per-
formance measurement, it should also have a crucial role in debugging distrib-
uted programs. The correctness of such programs will undoubtedly depend on
the correctness of the contents and sequencing of messages transmitted between
their constituent processes. Thus a distributed debugging tool must deal with
commnication as a major part of its job. In fact, it is conceivable that a
Communication monitor may be the debugger at the interprocess level, com-

Plementing traditional debuggers which operate on individual processes.

ection 1 INTRODUCTION Page 3

As a final difficulty, any kind of monitoring of a distributed program
will potentially generate a great deal of information, which must be conveyed
to a programmer in a comprehensible manner. It will presumably not be satis-
factory to produce all of this information independently for each of the
processes . Rather, the information must be aggregated in some manner consis-

tent with the nature of the monitoring task being performed.

1.2pProposed Solutions Using PRONET

The network descriptors of PRONET will provide an excellent basis for the
operation of distributed monitoring tools. The interconnection information
these networks provide is exactly what is required by a monitor so that it can
easily recognize the structure of an entire program. Thus the implementation
of a distributed performance monitor or debugger can use our PRONET work as
its basis.

As was indicated in the previous section, a communication monitor will be
a crucial part of any of these tools. The interconnection specifications in
PRONET networks, as currently designed, provide the minimum amount of informa-
tion needed by a communication monitor. That is, they provide a 1listing of
the message paths between processes and the types of the messages which may be
transmitted. The task of a monitor will be to provide a programmer with in-
formation about message transmission between processes. For performance
measurement purposes, the most important information will probably involve
Sweh factors as message queue lengths and the amount of time processes spend
waiting for messages. A distributed debugger, on the other hand, will be
Concerned with the sequencing of messages and with their contents. It will
Probably also be required to provide some capabilities to examine the opera-

tion of individual processes, which may be accomplished by interfacing with

gection 1

INTRODUCT ION Page 4

traditional single process debuggers.

1 joverview of Project Status

The project was originally planned to include the following tasks as

gescribed in the original statement of work:

Task

Task

Task

Task

1 - PRONET Interface

PRONET, a language that provides a high level description of interprocess
communication, is currently being implemented on the full distributed
system at Georgia Institute of Technology. The task is to develop an in-

terface between PRONET and a distributed monitor.

2 - Communication Monitor

The contractor shall determine what data should be collected by the
monitor to facilitate development, debugging and maintenance of programs.
This task is to develop a monitoring program that interfaces with the

communication features of the operating system and collects the necessary

data.

3 - Interface to the (ommunication Monitor

The contractor shall determine what data should be collected by the
monitor to facilitate development, debugging and maintenance of programs.
The task is to develop a monitoring program that interfaces with the com-
munication features of the operating system and collects the necessary

data. .

4 - Interface with a Process-level Debugger
The contractor shall develop an interface with the communications monitor

and an existing symbolic debugger. If this approach is infeasible, then

gection 1 INTRODUCT ION Page 5
a symbolic debugger for individual processes must be implemented and in-
terfaced with the single process debugger.
since this project was initiated, some changes in the tasks have been

made. The new approach to the project is described in the following 1list of

tasks and justification for the changes:

sk 1: Implement PRONET on Perq computers and provide a monitor interface.
mask 2: Build a prototype monitor.

sk 3: Build a full monitor.

Task 4: Interface with a process-level debugger.

The change in task 1 involves use of different hardware than originally
planned. The main reason for this change was that we found the implementation
of PRONET on our Primes too expensive to be practical. The operating system
on these machines does not effectively support dynamic process creation. The
Accent operating system available on the Pergs, on the other hand, supports
dynamic process creation as well as message passing between processes on
different machines. Thus it makes PRONET implementation much simpler than on
the Primes.

The Pergs also have high-resolution, bit-mapped displays. This feature
gives considerable support to the development of a very effective user inter-
face to our monitoring system.

The other major change in our approach involves the initial development
of a prototype monitor rather than immediate development of the final system.
This change has two motivations. First, it will give us some experience in
dealing with distributed programs short of a full-scale implementation. Since

the Prototype will provide only a historical replay of program events, the

gection 1 INTRODUCTION Page 6
second motivation for this approach is that it allows us to address the har-
dest problem last. That problem is the question of how we will deal with real
time interaction with the processes of a distributed program.

The following four sections describe various aspects of the design of the
prototype monitor, called RADAR. They are extracted from Arnold Robbins' M.S.
thesis. They are followed by sections on the PRONET implementation, the

monitor implementation status and our plans for further work.

section 2 RADAR DESIGN Page 7

Section 2

RADAR DESIGN

2.1Distributed Programs

The RADAR monitor is intended to support Pronet [Macc82], a message
‘pased language specifically designed for writing programs which can take
 advantage of the enviromment offered by an FDPS. However, it could be easily
adapted to support other message-based programming systems. The relevant

features of Pronet will be discussed in the section 3.1.

2.2The RADAR System

The RADAR system takes a passive approach to monitoring distributed
programs. Because it is not interactive the term "monitor" is wused to
describe it, and not the term "debugger."

RADAR is designed to support Pronet on PERQ computers [3RCC82]. The PERQ
is a single user machine with a high resolution bit-mapped display and a
mouse .

Pronet consists of two sublanguages: NETSIA for describing communication
~ Networks, and ALSTEN for describing processes. The Pronet compiler provides
the monitor with information concerning the connectivity of the processes.
This information is collected from the NETSLA runtime system. ALSTEN programs
a'—'? loaded with a special communications library which records every standard
Or user—defined event during execution, and makes a copy of every message

Sent. The exact nature of the information supplied by the NETSIA runtime

RADAR GN Page 8
tion 2 DESI g

'ystem and the structure of ALSTEN event records will be described in section
S
3.2. This component of RADAR is known as the RADARLOG.

After the program has completed executing, the REPLAY component of RADAR
;!s invoked to provide a graphical "replay" of the execution. Each message or
.l Bt is stamped with a global event number. This imposes a partial ordering
‘on events. The monitor then displays events one at a time. The programmer is
'?.able to watch the communications traffic amongst the processes. Processes
I—have names in Pronet, so it is easy for the programmer to see which process is
communicating with which other processes.

REPLAY provides the user with the ability to view the contents of any
message currently represented on the screen. Messages are represented on the
 screen as small boxes. The user places the PERQ's mouse over the message
|: which he wishes to examine. REPLAY then opens a new window in which the con-
~ tents of the chosen message will be displayed in a formatted fashion. For in-
stance, if the message contained an integer and two floating point numbers,
the message would be displayed as an integer and two floating point numbers,
not as 10 octal bytes. When the user is through with the message the new
window disappears.

REPIAY also provides the ability to replay a certain number of events
which have already happened. This can be done at any point during the

- display. The user can "rewind the video tape," so to speak. This replay is
limited to a reasonable maximum number of previous events. This feature is
known as an "Instant Replay."

Finally, as a separate utility, the user can name a given process and
have all of the messages which were sent to that process selected from the
Fécorded message traffic. This single process may then be run by itself with

its MesSsages derived from the stored messages. This feature is designed to

Bion 2 RADAR DESIGN Page 9
facilitate single process debugging using real input data (messages). This
it is possible to observe a process' behavior under realistic conditions,

wayrs
vwithout having to worry about controlling the rest of the processes of the

‘gistributed program.

gction 3 COLLECTING INFORMATION Page 10

Section 3
COLLECTING INFORMATION

RADAR is intended to support Pronet, a language designed for writing
programs which can execute in a distributed processing environment. Pronet

stands for Processes and Networks. The introduction to Chapter 2 of [Macc82]

sunmarizes the description and design goals of Pronet:

PRONET is composed of two complementary sublanguages: a network
specification language, NETSIA, and a process description language,
ALSTEN. Programs written in PRONET are composed of network specifications
and process descriptions. Network specifications initiate process exec-
utions and oversee the operations of the processes they have initiated.
The overseeing capacity of network specifications is limited to the main-
tenance of a communication environment for a collection of related
processes. The processes initiated by a network specification can be
simple processes, in which case the activities of the processes are
described by ALSTEN programs, or they can be "composite processes", in
which case their activities are described by a "lower-level" network
specification. _

ALSTEN is an extension of Pascal which enables programmers to describe
the activities of sequential processes. During their execution, processes
may perform operations that cause events to be announced in their over-
seeing network specification. Network specifications, written in NETSLA,
describe the activities to be performed when an executing process 'an-
nounces' an event.... Two principles have influenced the design of these
features: independence of process descriptions and distributed execution

of network specifications.

This section first describes the features of Pronet relevant to in-
terprocess comnlinication; Then it descritﬁs the information provided to the
monitor by the NETSLA al;ud I;LSTEN compilers. Finally, it presents the format
of the information collected at run-time by the special communications

library.

gection 3 COLLECTING INFORMATION Page 11

3,1The Features of Pronet

This presentation is derived from Chapter 2 of [Macc82].

3.1.1ALSTEN

ALSTEN is essentially an extension of Pascal [Jens74]. The file concept
has been removed entirely from the language. Processes communicate only
through locally declared "ports", using the inline send and receive statements
which are analogous to Pascal's read and write. Ports have a direction,
either in or out. Ports may be placed together into port groups. he could
define a duplex channel as:

port channel (incoming in bit; outgoing out bit);

To accomodate the notion of a server process, which serves many other

processes, ALSTEN provides port sets and port tag variables. A port set is a
collection of port groups or simple ports identified by one name. For ins-
tance, if a port set is a set of port groups, a receive on a port set would
set a port tag variable to indicate which element of the set was actually used
for conmunication. 'Ihis.tag may then be used in a send operation for sending
replies to the process which originated the message.

The syntax of the send and receive statements is shown in Figure 1.

B ction 3 COLLECTING INFORMATION Page 12

<send stmt> ::=

send [<expr>] to <bound port denoter>

<receive stmt> ::= <simple receive>
| <conditional receive>

<simple receive> ::=
receive [<variable>] from <free port denoter>

<conditional receive> ::= when
[<receive part>}
[<otherwise part>]

end

<receive part> ::= <simple receive> [do <stmt>]

<otherwise part> ::= otherwise <stmt>

Figure 1 —- Send and Receive Statements in ALSTEN

A type 1is associated with every port. Only expressions of the type as-
sociated with a given port may be sent to or received from that port.

The <expr> is optional. In these forms of the send and receive
statements, the port is of type signal. A signal is a message with no con-
tents. Signals are often useful for sending control information, such as tel-
ling a process to start a particular task.

The syntax for port declarations is shown in Figure 2.

COLLECTING INFORMATION Fage 13

tion 3
<port decl> ::= <simple port decl>
| <port group decl>
<simple port decl> ::=
port <port id> <direction> <msg type>
<port id> ::= <id>
<direction> ::= 1in | out
<msg type> ::= <type id>
<port group decl> ::=
port [set] <port id> ' (' <smbport list> ')!
<subport list> ::=
<subport decl> {';' <subport decl>}
<subport decl> ::=
<subport id> <direction> <msg type>
<subport id> ::= <id>
<port tag type> ::= tag of <port id>
Figure 2 —- Port and Port Tag Declarations in ‘ALSTEN
L 4
3.1.2NETSLA

As stated earlier, the purpose of NETSIA specifications is to initiate

- and control the communications enviromment of ALSTEN processes:
)

The features of NETSIA are aimed at specifying the initial configura-
tion and subsequent modifications of a communication environment for
Processes. The overriding principle followed in the design of these
features is that of "centralized expression--decentralized execution"
[Live80]. @entralized expression is important in presenting the abstrac-
tion to be supported by network specifications. All of the inter-process
relationships that describe a communication environment appear in a single
network specification. However, this communication environment is not
Mmaintained in a centralized fashion. Processes maintain their communica-
tion environment indirectly. When they execute send or announce
Operations, processes perform the activities specified by their overseeing
Network specifications; however, the nature of these activities are unk-
nown to the process. [Macc82])

gection 3 ~ COLLECTING INFORMATION Page 14

The syntax of network specifications is shown in Figure 3.

<network specification)> ::= <network header>
{<process class specification>}
{<event handling clause>}
[<initialization clause>]
end <identifier>

<network header> ::= network <net id> ';'
{<port decl>}
{<event decl>} [

<process class specification> ::=
process class <process id>
[fprocess attributes>]
port decl>}
<event decl>}
end <process id>

<process attributes> ::= attributes
<field list>

end attributes
A)

Figure 3 ——- Network Specifications in NETSLA

When a network starts to run, its initialization clause is executed. The
initialization clause is used to create instances of processes and connect the
output ports of one process to the input ports of another. A simple network

specification is presented in Figure 4; a graphical representation of the net-

work is shown in Figure 5.

eection 3 COLLECTING INFORMATION Page 15

network static net
process class proc class
port input in integer;
port output out integer;
end proc_class

initial
create procl : proc class;
create proc2 : proc class;
create proc3 : proc class;
connect procl.output to proc3.input;
connect proc2.output to proc3.input;
connect proc3.output to procl.input;
connect proc3.output to proc2.input;
end static net —

Figure 4 -—— A Simple Network Specification

/ \ / \

| procl | | proc2 |

\ o \ -
input T T | output input T T | output
A | A |
| l T | |

Figure 5 ——— A Graphical Representation of the Simple Network

If one output port is connected to more than one input port, the messages
Sent out on it are replicated. This occurs in a manner invisible to the

Process sending the message. This allows one-to-one, one-to-many, and many-to

one connections between ports.

Section 3 COLLECTING INFORMATION Page 16
processes may define events. These events can then be announced by the
processes in their overseeing network specifications. NETSLA provides

features for handling these events when they are announced. The programmer
specifies what actions to take, such as aborting processes or creating new
ones. Other actions are also possible.

pronet predefines several standard events. For instance, when a process
terminates normally, the standard event 'done' is announced in its network.

Message transmission and reception are considered to be events. They
simply have a separate syntax. The other standard events and the syntax of
event declarations and handlers are discussed fully in [Macc82].

Since Pronet is oriented around events, so is RADAR. The special runtime
routines record all the events and messages. The REPLAY program presents the
user with a visual replay of the events that occurred during the execution of

the program. The majority of events will be message transmission and

reception. When a different type of event occurs, that event will be

portrayed.

3.2Information Supplied By The Pronet Compilers

The Pronet compilers and runtime system provide RADAR with the framework

upon which to build the later description of events.
3.2.1ALSTEN

Ports in Pronet are always associated with a type. (nly messages of the
type associated with a port may be sent to or received from that port.

In any given ALSTEN program, there will be a fixed number of differeft

message types, i.e. the types associated with ports.

gection 3 COLLECTING INFORMATION Page 17

The ALSTEN compiler will generate a file with a 1list of message

Lei_“,El_?_Ee—s-' A template looks like

| Identifier | size | total no elements | list of elements |

Figure 6 —- Message Templates

The list of elements is simply an ordered listing of the fields in a message.

For instance,

| real | array character 19 | int | long |

Figure 7 ——— Fields In A Message

If a field of a message is itself a record with further subfields, the
compiler will expand it in line down to its basic elements. Elements can be
bytes, integers, long integers, reals, or one dimensional arrays of these
types. Bytes are treated as unsigned integers, even though they may have
actually been signed quantities. If necessary, RADAR may be modified to allow
Specifying whether or not such numbers were signed or unsigned. Elements
Smaller than one byte occupy a byte to themselves. This implies that the
Pascal keyword packed has no effect. Admittedly, this is a constraint on the
compiler ; see Section 5 of the thesis for further discussion of this cons-
traint.

/

The purpose of the list of message templates is to allow the decoding of

individual messages. A user can select any message on the screen with the

PERQ's mouse. when he does so, RADAR will open a separate window and format

. 3 COLLECTING INFORMATION Page 18
&ctlon

the contents of the message in it. Each message carries its type with Iit.

message is decoded according to the corresponding template and printed ac-

The

cordingly- e dimensional arrays are allowed, principally for wuse in
~ gisplaying character strings. REPLAY will treat arrays as if they are indexed

fran 1.

3,2.2NETSLA

NETSLA controls process and port creation and the interconnecting of
 output ports to input ports.
The information generated by the NETSIA system is a file describing each

process. A process is described as follows:

machine proc num proc name number port groups
number of simple ports in each group g
direction number name type { DESTINATIONS }
direction number name type { DESTINATIONS }
number of simple ports in each group
direction number name type { DESTINATIONS }
direction number name type { DESTINATIONS }

Figure 8 -—- Description Of A Process

The {} pairs enclose optional information. nly if a port is an output
Port does it have one or more destinations associated with it. The DES-
TINATIONS field in Figure 8 above represents the number of destinations to
which an output port sends its messages, and the destinations themselves. A
destination is uniquely identified by the destination machine, the process
Number on that machine, and the port number of the process to which the mes-

Sage is directed.]

'gction 3 COLLECTING INFORMATION Page 19
machine and process id's are hidden from the programmer, but the NETSLA

puntime system and the underlying global operating system must know about

: them, since they actually arrange for execution of the processes.

when REPLAY first starts up, it builds a table of records describing

processes with all these structures attached to each element in the table.

tater, when a send event occurs, REPLAY determines which process is the des-

tination and depicts a message moving from the source process to the destina-

tion process.

3.3Information Collected At Run-Time

Most of the information that RADAR needs 1is collected at run-time.
Special runtime routines log every event that occurs. These routines are kept
in a separate module called RADARLOG.

Events may be one of the following:

type
eventtype = (createprocess, destroyprocess,
message_transmission, message reception,
portcreation, failed, done
aborted, userevent) ;

'

Figure 9 ——— Types Of Events

The ‘'message transmission' and 'message reception' events are logged by
the Send and receive routines respectively. The other events are 1logged by
the announce routine.

The ALSTEN compiler inserts a procedure call to the routine makelog as
the very first executable statement in a program. This routine creates the

log file and announces the process creation event. Before the final end of

/

éection 3 COLLECTING INFORMATION Page 20
the ALSTEN main program, the compiler inserts a call to the routine closelog,
which closes the logfile and announces the standard event 'done.’'

The structure of the log file records for each event is as follows.

message—transmission [machine-id | process-id | count |
— [UniqueMesgId | success | checkpointing | mesg-type |
[bufsize [',' | buffer |

Tﬁssage—reception | machine-id | process-id | count |
E | success | { UniqueMesgID } |

[userevent | machine-id | process-id | count | eventname |

T createprocess | machine-1d | process-id | count |

T destroyprocess | machine-id | process-id | count |

| portcreation | machine-id | process-id | count |

| failed | machine-id | process-id | count |

| done | machine-id | process-id | count |

| aborted | machine-id | process-id | count |

Figure 10 —— Event Records

Each process keeps a count of the events it has announced, including mes-
Sage transmission and reception. The event count starts at one and is
incremented with each event.

When a process sends a message, it includes the value of its local event

Counter. If the receiving process' event count is lower than that of the sen-

gection 3 COLLECTING INFORMATION Page 21

der'ss the receiver sets its count equal to that of the sender. After
» . the message, the process logs the message reception event. If the
pessage reception succeeded, the process logs the UniqueMesgId of the message
it received. Since message reception is an event like any other, the local

event count is incremented before the event 1is 1logged. Thus, the

message__reception event's sequence number will be one greater than the event
cont of the sender. This insures that there will be at least a partially

 correct ordering on events. In particular, interrelated events will always be

correctly ordered.

Placing an ordering on events in a distributed system is a difficult
task. One solution is to use the times on local clocks to time-stamp each
event. This method is not acceptable since it is impossible to synchronize
all the clocks on all the machines. This introduces the possibility of recor-
ding events out of order. E.g., it would be possible, due to synchronization
errors among clocks, to record the reply to a message as having occured
"before" the sending of the initial message.

By having the receiver of a message set its event count equal to that of
the sender, and then incrementing the count before logging the message
reception, the synchronization problem is avoided. The reply to a message
will always be sent "after" the sending of the initial message.

Using this method, it is possible to have several events occuring at the
Same "time," i.e. several events might all have the same event number. In
this case, it is impossible to determine the ordering of these events, but in
fact, the ordering 1is unimportant. The fact that these events all have the

Same number indicates that they are not interrelated, since if one event

depended on another to precede it, its event sequence number would have been

greater than the sequence number of its predecessor.

.Section " COLLECTING INFORMATION Page 22
Furthermore, this method makes no extra demands on the underlying global
ng system to keep clocks synchronized across machines. It also fits in

omfati
well with pronet, which has no concept of global time.

3, 4Discussion
__———_—___.

Keeping a record of every event, along with a description of message con-
tents and the interconnectivity of every port, provides a complete record of
what went on.

Copying all the messages allows the user to view what was actually sent;
the message description makes the message contents understandable, and the
connectivity data allows graphically depicting the movement of a message from
its source to its destination.

A valid question to raise here concerns the cost of recording all the
messages and events. How much does the extra disk I/O affect the computation
in progress? This is the Heisenberg Uncertainty Principle as applied to deb-
ugging, sometimes called the "Heisenbug" Principle [ACM83b]. We can present
no definite answer to the question here. It is expected that the disk
operations actually buffer to memory until the buffer fills up. If this is
the case, there should be little extra overhead since the system will suspend
a process only when its I/O buffers must be flushed. The main problem is that
while one process is suspended, others can continue to run on other machines.

It can be argued that the fact that one process on one machine has been
Stopped should not affect the other processes on other machines, since the
ALSTEN receive is dt-efined to be a blocking operation. The other processes may
Wait longer to complete the receive than they otherwise would have to, but ul-

timately, the same actions should be accomplished.

tion 3 COLLECTING INFORMATION Page 23
suspending one process for disk I/0 can affect other processes which con-
tinve to run, in a different manner. The ALSTEN receive can specify several

'altematives; in effect it can be non-detemministic; receiving from port sets

is actually non-deterministic, since the programmer can not know which element
i of the set will be used. For instance, if there are three processes A, B, and
" ¢, and Process B was supposed to receive a message from Process A, but A was
.suspendedr B could end up receiving a message from Process C instead. This
should not affect the ultimate semantics of the program, since the receive
could happen on any specified port. It merely changes the path by which the

program arrives at its goal.

Agction 4 REPLAYING PROGRAM EXECUTION Page 24

Section 4

REPLAYING PROGRAM EXECUTION

The major component of the RADAR system is the REPLAY program. After a

pronet program has executed and all the information described above has been
.~ collected, REPLAY is invoked to graphically display event occurences. More
'importantlyy it also displays the message traffic amongst processes.

The PERQ's screen is a high resolution, bit-mapped black and white
display. The PERQ has hardware and firmware instructions, called Raster Ops,
for manipulating the screen. REPIAY uses the Canvas graphics package
- [Ball8l], which provides a higher-level, more usable interface to control the
screen.

» This section discusses the algorithms REPLAY uses, describes the view of

the program REPLAY presents to the user, and presents the user interface.

v

- 4.10utline of the Algorithm

The overall algorithm is fairly simple. It is based on the notion of
events as defined in previously. Since each event is numbered when recorded,
an ordering of events is automatically made possible.

The general algorithm for event replaying is given in pseudo-code in

Figure 11.

get first event

while more events
if event in { send a message, receive a message }
do something visible with the message
else
announce the event conventionally
end if
get next event

tion 4 REPLAYING PROGRAM EXECUTION Page 25

end while

Figure 11 -— Top Level REPLAY Algorithm

Most of the work is involved with displaying events. REPLAY basically
has to keep track of four things.

1) Which processes are represented on the screen and where they are.

2) Which messages are represented on the screen and where they are.

3) Rate of event display (see below).

4) How full the screen is; i.e., is there room for more processes?

Processes and the messages waiting in input queues take up the majority

of the room on the screen. Most of the other events can be displayed simply

by printing out a line on the screen of the form "Process P announces Event E
as event Number N," in a prominent place. During the interval that the

process is announcing an event, it changes color (actually a different shade
- of gray) so that it is clear which process is involved.

| In fact, REPLAY provides a running narrative of this form. However, when

a process is created or destroyed, or a message is sent or received, REPLAY
will depict this graphically. Newly created processes will be drawn into a

free spot on the screen. Messages are depicted as small boxes moving from the

the sender's output port to the receiver's input port. When each message is

received, its box disappears.

Mich of the work involves doing all the bookkeeping necessary in as
efficient a manner as possible. (It should be "efficient" in terms of both

~ Space and time.)

gection 4 REPLAYING PROGRAM EXECUTION Bage 26

4.2The User Interface
.

This section discusses various aspects of the operation of REPLAY's user

inter face.

4.2.1What the User Sees

The user sees processes and messages queued on input ports. A process
with one input port, one output port and a message just leaving the output

port, is shown in Figure 12.

I

| <Process Name>
] 1 in 1 out
[
|

Tnput | | output
port | | port
[+]

message

Figure 12 ——— Picture of A Process and A Message

The drawing of a process indicates the number of input and output ports
associated with that process. It is not possible to draw each port, since the
- notion of port sets allows a process to have a very large number of ports.
When an output port sends a message, the port appears on the process' border.
It closes up after the message arrives at its destination. Similarly, when a
Méssage arrives for an input port, the port opens up, and messages queue up in
front of it. When all the queued messages have been received, the input port

Closes back up. The process name and identification appear inside the box, so

that it is clear at a glance which process it is.

gaction 4 REPLAYING PROGRAM EXECUTION PFage 27

Figure 13 depicts an event replay on the PERQ's screen. The process

is shown sending a message to Proc_A. It has changed color duringethe

- proc B

:-event- A third process, Proc_C, is shown with one message waiting at its
jnput port. The event narration at the top of the screen indicates what is
happening -

Process Proc_B sends a message to Proc A. Bvent 9.

1 [
I I
| I
| |
| I
S | | [.
| | Proc A | | Proc C | |
| | 3in 4 out | | 1in 1 out | |
| | I | Ionh P
| | AL ! [
I [+] |
I [+] I
| . I
I . |
I . I
I ®g | |
| *kkk de ke k k ko kkkkk |
| * . I
| * Proc B * |
| * 2in ~ 5out * |
| kkkkkkkkkkkkkkkkkkkk |
I l
Figure 13 -—— A Process Sending A Message

An intereSting problem concerns the speed at which the replaying occurs.
If events are described and messages move across the screen without any
delays, events will happen too fast for the user to follow.

To solve this problem, REPLAY asks the user how many seconds to take to

display each event. The default is three seconds per event. Even in single

Step mode (see below), each event takes the full N seconds (whatever the user

l. gection 4 REPLAYING PROGRAM EXECUTION Page 28

entered) to transpire. This is to allow the process to change color, and to
remain on the screen in a different color for enough time to make an impres-

sion on the user before it changes back to normal.

4.2.25ingle Stepping

REPLAY gives the user the choice of either single stepped or continuous
operation. In the second mode, events (message transmissions, process
creation, etc.) occur continuously, without stopping. Continuous operation
allows the user to watch the general pattern of message traffic and event occ-
urences. This is useful for getting an overall idea of what the program did.

Single-stepping allows the user to watch what happened at a more detailed
level and at a slower pace. In this mode, after each event occurs, REPLAY
waits on the user to hit a key on the keyboard before continuing with the next
event. This mode gives the programmer more time to consider his program's

. actions, without the continuing need to keep up with his program.

Fur thermore, the user can toggle back and forth between the single
stepped and continuous modes; he is not forced to single step through hundreds
of messages. The number of seconds per event is also changeable at any time,

to allow the user to speed up or slow down the rate of event display.

4.2.3Displaying Messages

Messages on the screen are simply small boxes, queued on the input ports
of their destination processes. In this form, the only information that they
Convey is the fact of their existence. This is only minimally useful.

REPLAY allows the user to actually see what his processes are sending to

®ach other. Using the mouse, the user places the cursor over the particular

MeSsage he wants to see and interrupts the event display. REPLAY will prompt

gcti on 4 REPLAYING PROGRAM EXECUTION Page 29

4ith a menu of actions available. The user will select the option for viewing
ReprAY first finds the message indicated by the mouse. The message's

type is an element in the Pascal record describing messages. This type in-

dicates which of the message templates is to be used in decoding the contents
Vof the message.

REPLAY then opens a new window on the screen. It steps through the mes-
sage puffer and formats the raw bytes into characters, integers, or reals, as
dictated by the message template. Enumerated types are treated as integers.
Although this is not perfect, it is no more unreasonable than the restriction
in standard Pascal against reading and writing enumerated types to and from
~ text files. Message templates were described in Section 2.2.1.

When the user is through looking at the message, he issues the command to
close the window. REPLAY then goes back to displaying events.

The value of this "Freeze Frame" facility should be clear. The user can
verify not only that processes are sending messages to the right places, but
that those messages have the right contents. Formatting message contents is
absolutely necessary. Simply displaying the values of integers, characters
and reals in octal gives the user no immediately understandable information
(except in the rare case of the true hacker who can decode octal into its
equivalent floating point or ASCII values). Furthermore, messages are

! displayed as a unit, unlike Schiffenbauer's system which displays small data

g packets in octal.

gection 4 REPLAYING PROGRAM EXECUTION Fage 30

4 2.4Selective Replaying of Events

It is possible while watching a program's actions that a particularly in-
teresting sequence of events will occur which warrants further review. T ac-
comodate this, REPLAY keeps a history of a fixed number of events which have
occurred. At any time, the user can stop the normal replay and ask to see an
nmmstant Replay" of n previous events. The maximum number of events that can
pe replayed is a cdmpile—time constant in one of the Pascal source code mod-
ules.

when this facility is invoked, REPLAY saves the screen state and marks
those processes that were on the screen at the time. It clears the screen and
starts as if the first event requested were the very first event to occur.
Processes and messages are drawn as needed.

Some information which was on the screen but which may not relate to the
n events being replayed will be lost during the instant replay. This loss is
not permanent, since REPLAY restores the screen at the end of the instant
replay. The user can run the instant replay as many times as desired before
returning to the regular display. This facility is analogous to the rewinding
of video tape and replaying an interesting series of events during a sports
broadcast, hence the name "Instant Replay."

When the instant replay is through, the screen is restored and the
Processes which were marked as being saved are unmarked. Display then con-
tinues as before.

As a final possibility, the user may choose to restart the entire program
replay from scratch. This provides the convenience of not having to quit the

Program and then start -it again from the command level. Such small

Conveniences are often the most useful.

gection 4

REPLAYING PROGRAM EXECUTION Page 31

SREPLAY Menu Options

a2

At any time during the event replay the user can stop execution by

cauﬁiflg a keyboard interrupt.

This invokes an interrupt handler which presents the menu shown in Figure

14.

4.
5.

6.

Change To/From Single-Step/Continuous QOperation
Change The Number of Seconds Per Event

Skip Zhead To A Specific Event Number

Display Contents of the Message Under the Mouse
Instant Replay

Start Displaying From Scratch

Exit REPLAY
Help
Never Mind
Figure 14 -—- REPLAY Menu Options

The user may skip ahead to a given event, specified by the event sequence

number. REPLAY will then skip to the first event which has the sequence

number entered by the user. This is useful if the user knows that his program

Stopped working after a given event. He can make his changes, rerun the

Program, and then skip directly to where the change should have an effect.

The Help subsystem provides general information on how to use the RADAR

monitor.

tion 4 REPLAYING PROGRAM EXECUTION Page 32

The 'Never Mind' option allows the user to recover in case he acciden-

tally caused a keyboard interrupt. It does nothing.

in all cases, after the interrupt handler does what the user wishes, the

ogram returns to where it was executing before the interrupt occurred.

pr

vSection 5 INTERFACE WITH PRONET Page 33

Section 5

INTERFACE WITH PRONET

5. 1ALSTEN

The ALSTEN pre-processor will generate extra code for RADAR that is
invisible to the wuser. These will be chiefly variable declarations and
procedure calls. There will then be two different run-time 1libraries. The |
normal library routines will pass their arguments on to the appropriate Accent ‘
routines. The monitoring library will perform the data logging functions out-
1ined above, and then call the Accent routines. In the case of the procedure
which creates the log file, in the normal library it will simply announce the
'process crea tion' event.

The value of using "invisible" code and two libraries is clear. In order

to use the RADAR system, a programmer only has to re-link (load) his program

—- he does not have to recompile it.

Fur thermore, using Perq Pascal, it is possible to keep both versions of
the 1library routines in a single source file. It provides a conditional com-
pilation feature which allows selective inclusion of code at compile time,

|
similar to the macro processing facilities of C and PL/1. For instance, !
|

gection 5 INTERFACE WITH PRONET Page 34

procedure librarycall;

const
RADAR = true { or false, deperding } ;

begln
Sifc RADAR then}

(*
* RADAR code
*)
{Selsec}
(*
* normal code
*)
{$endc}
(* code common to both, i.e. always needed *)
end;
Figure 15 ——— Conditional Compilation in Perq Pascal

This feature will greatly aid development and maintenance of the RADAR
library routines, since only one file has to be kept current, not two.

As mentioned previously, when one output port is connected to more than

one input port, messages are automatically replicated. However, the send

routine cannot be called twice (or however many times needed), because the

duplication occurs behind the scenes. The routines in REPLAY which keep track

of interport connections will keep track of this, and will replicate the mes-

sage when displaying the send event.

5.2NETSLA

The actions in NETSIA network specifications are compiled into run-time

calls on a Run-time Support Module (RTSM). Calls on the system may come from

multiple sites; however, in the PERQ implementation, the RTSM itself will only
be at one node. A single site DMS is merely a degenerate case of the distrib-

uted pMs.

gection 5 INTERFACE WITH PRONET Page 35
There are two reasons for implementing NETSLA this way initially. First,
.it is much easier to do. Second, the Clouds enviromment currently under
: gevelopment is expected to provide most if not all of the necessary distrib-
' uted data management facilities, since it will need some of these facilities
: jtself. Allowing Clouds to eventually provide the distributed data management
is in keeping with the philosophy of "let someone else do the hard part."
[Kern76]

In any case, the RTSM will provide the information concerning process
location and port connectivity. The RADAR system will assume that this in-

formation will be available in the form it needs. The exact structure of the

data was described above.

gction 6 PRONET IMPLEMENTATION Fage 36

Section 6
PRONET IMPLEMENTATION

M implementation of PRONET is being developed for a Three Rivers Comp-
uter Corporation PERQ computer running under revision 2.0 of ACCENT, which is
a communication oriented network operating system. The run-time support
libraries developed for this implementation make use of ACCENT message and
process primitives through a procedure-like interface to the kernel.

Two language preprocessors, one for ALSTEN and another for NETSLA, have
peen developed. These two preprocessors both translate a PRONET source
program into a Pascal program. Then, the Pascal program generated can be com-—
piled using the PERQ Pascal compiler.

In the current state, the implementation is being developed for a single
processor enviromment with each active process being assigned a portion of the

display screen.

6.1The Preprocessors

The preprocessor actually consists of two parts: a scanner and a parser;
both are table-driven. The table-driven approach makes the preprocessor very
language independent; i.e., it can translate either ALSTEN or NETSIA so long
as appropriate tables are provided.

The scanner tables are generated by LEXGEN from a description of each
token that may occur as input to the scanner. Tokens are described by using a
Standard regular expression syntax. The parser tables are generated by ZUSE
from LL(1) grammars (see Appendix A and Appendix B) which have action codes
embedded into them. The action codes specify the steps to be taken by the

Parser during parsing.

ection 6 PRONET IMPLEMENTATION Page 37

The preprocessor accepts a scanner table, a parser table and source

‘ptogfam as input and generates a sequence of Pascal codes as a result of

Jparser actions. The Pascal code generated can then be compiled by using the
PERQ pascal compiler.

Figure 16 below illustrates the overall structure of the preprocessors.

PRONET
source code
|
|
[

token | scanner table | scanner | |

description-——| generator { table II :
|

I |

action codes | PREPROCESSOR |

T T __translation T parser | | |

LL(l) grammar |~ grammar | table | parser | }

|generator| table |
I I |
|
Pascal code
|
|
| PERQ |
| Pascal Compiler|
| |
|

.SEGIfile H

Figure 16 —-—- Preprocessor Structure

The approach of preprocessing has the following advantages although it is
less efficient than direct compilation:
1. Ease of implementation.
2. All ACCENT kernel primitives are made available by calling to a PASCAL

library of kernel interface procedures and functions.

gection 6 PRONET IMPLEMENTATION Page 38

In the current state, both preprocessors are operational and do not per-

form typPe checking.

6.2Module Structures

The NETSLA preprocessor denerates two code modules for each network
Specification: an "event handler module" and a "network specification module"
(see pppendices C, Dand E).

The event handler specifies the actions that must be performed when a
particular event (either predefined or process—-defined) occurs. The code in
this module is structured as a nested "case" statement. The highest level
case statement performs a selection based on the event type argument (message
transmission, process-defined event, etc.). [ower level case statements are
used to distinguish between process classes, port sets and process-defined
events.

The network specification module consists of the initialization clause
which specifies the static network. After the execution of the initialization
clause, every process instance created in the network will be activated by the
root process.

In addition to these two preprocessor-generated modules, there are two
more modules in each NETSLA runnable file: a "DB manipulation module" and a
"NETSIA run-time support module." The DB manipulation module contains all the
routines that are needed to create and maintain the network representation.
The NETSIA run-time support module consists of routines that implement those
NETSLA activities (process creation, port creation, connection, etc ...)

based on ACCENT kernel primitives.

Section 6 PRONET IMPLEMENTATION Page 39

Figure 17 below illustrates the structure of the object module generated
for each NETSIA program. It is important to realize that both event handler
module and network specification module are network specific codes while the
other two modules are common to all network instances. The DB manipulation
module and the NETSLA run-time support module are separately precompiled and

imported by the main body of the NETSIA program.

DB Manipulation Module | common code
NETSLA Run-time Support Module | (libraries)
I
Event Handler Module | network
Network Specification Module | specific
Figure 17 ——— NETSIA (bject Module Structure

The ALSTEN preprocessor generates a single code module for each process
script (see Appendices F, G, Hand I). This module is a simple translation of
the process script which makes use of ALSTEN run-time support facilities for

performing ALSTEN operations (send, receive, announce, etc ...).

6.3Processes and Ports

Both ACCENT and PRONET use the notions of "processes" and "ports", but
they are at different levels of abstraction. We implement the PRONET proces-
Ses(ports) by using ACCENT processes(ports) and hide the details of the ACCENT
Processes(ports) from PRONET programmers.

A PRONET network specification is implemented as an ACCENT process from
which any number of ACCENT child processes can be created to represent the
PRONET process instances. Since we do not consider the case of "composite

Processes" in this implementation, the network can be thought of as a tree of

gection 6 PRONET IMPLEMENTATION Page 40

w0 jevels with the network specification process as the root. Composite
processes can be implemented without much effort later.

An ACCENT port is a protected kernel object and is used for sending and
receiving messages. With each port the kernel associates send and receive
(and ownership) rights. The process that creates the port possesses all three
rights. In this implementation, we use ACCENT ports for two different
purposes .

puring the execution of the program, an ACCENT port will be allocated
when a CONNECT activity is performed. This ACCENT port is used for transmit-
ting the PRONET messages and will be deallocated when the corresponding
DISCONNECT activity is performed. Initially, the receiving process possesses
the receive and send rights. Then the send right will be passed to the sen-
ding process so that PRONET messages can be transmitted through this port.
There are three ACCENT ports allocated to each child process at the

process creation time for the purpose of communicating with the root process

(event handling request, port capabilities passing, etc ...).

6.4The Network Representation

A representation of the logical network described by a PRONET program is
maintained in the address space of the root process. This representation
reflects the hierarchical structure expressed in the program by maintaining a
tree of network class and network instance representations. The logical net-
work representation also contains information about the connectivity among the
Ports of network instances. The root of this tree is a network class

Tepresentation, the leaves are network instance representations which contain

information about the currently active processes in the logical network.

) ce ction 6 PRONET IMPLEMENTATION Page 41
The codes for manipulating the logical network representation also reside
in the address space of the root process. All creations, updates and reads of
the entities in the network representation must be performed by calling from
the root process an appropriate procedure in the DB manipulation module.
This centralized approach of maintaining the logical network representa-

tion lowers the degree of parallelism but reduces the cost of message trans-

mission.

6.5Event Generation and Handling

Event generation can be either upward or downward. The term "upward
event generation" is used to denote the generation of an event in the over-
seeing network while "downward event generation" is used to denote the genera-
tion of an event in a process instance.

Upward event generation of an event will occur when a process instance
announces an event using the "announce" activity or transmits a message using
the "send" statement. Downward event generation occurs when a network
specification creates or removes a port instance on a process instance or
sends a message to a process instance.

Event handling codes are generated by the NETSIA preprocessor and reside
in the address space of the root process during run-time. Upward event
generation is implemented by sending a message to the root process. This mes-
sage includes all the information relevant to the event generated. This kind
of message arrives at a port which belongs to the root process and holds at

most four messages at a time due to the limitation of the size of the backlog

for an ACCENT port.

gection 6

Upon receiving a message from a child process, the root process will call
;'an appropr iate event handling routine based on the event type and other in-
formation included in the message. Event handler executions are performed in
a serial fashion. This centralized approach of event handling has the

gisadvantage of a low degree of parallelism.

~ g.6Current Status

Up to the present, we have implemented the complete set of features of
ALSTEN and a subset of the features of NETSLA. The NETSLA features that have
~ been implemented are process creation, port creation, connection, message
~ transmission and disconnection. Structured activities will be implemented by
aumenting the implementation of simple activities later. When the implemen-

tation for a single processor is complete, we will extend it to a mul-

~ tiprocessor environment.

PRONET IMPLEMENTATION Page 42

IMPLEMENTATION OF THE RADAR SYSTEM Page 43

Section 7
IMPLEMENTATION OF THE RADAR SYSTEM

The RADAR system, a passive monitor for distributed programs, was
gesigned by Arnold Robbins for his master's thesis. The main component of
this system is a program that graphically displays the interaction of the
various processes in the distributed program. This monitor is designed to
work within the = Pronet environment, based on information provided by the
NETSIA run-time database, the ALSTEN preprocessor, and run-time calls to the
debugging log routines in RADARLOG.

This information consists of three types of files:

message template file — supplied by ALSTEN preprocessor — contains the

types of the various values sent in a message, allows RADAR to show values
as characters, integers, reals, etc, instead of as octal bytes.

process information file — supplied by NETSIA run-time database - con-
tains the process class of each process.

log files —- supplied by run-time calls to RADARLOG - contains a log of
the events (note that message sending and message reception are just
special events) including the 'time' at which the event occurred.

This concept of time in the context of Pronet, which has no idea of a

global time clock, is an interesting one, and one solution to maintaining an
order for replaying is discussed in Robbins' thesis, section 2.3.

The implementation of the system is being done on the Three Rivers
Corporation PERQ computer under the SPICE enviromment (developed at Carnegie
Mellon thiversity), an operating system and set of wutilities designed for
Message-passing distributed systems. (ne package of routines available in the

SPICE enviromment is Ganvas, a set of graphics routines for the PERQs which
Support the graphics capabilities of the bit-mapped screen of the PERQs at a

More usable level. The use of CGanvas was probably the biggest factor in Rob-

Section 7 IMPLEMENTATION OF THE RADAR SYSTEM Page 44

pins' peing wnable to do a complete implementation of the RADAR system, since
little or no documentation existed on Canvas while Robbins was doing his

design.
Now that documentation has become available, the task of finishing the

implementation of RADAR has been centered around correction of concepts which,
once implemented, no longer work as they were designed, and implementation of
screen display and control.

Major implementation errors were surprisingly rare, in view of the - fact
that Robbins was unable to test many of his features on the Pergs. Basically,
the only such error which has surfaced so far was in assuming that message
contents could always be written out as bytes by writing out the corresponding
character code. This scheme saved both time and space, but has the disadvan-
tage that encoding an eight bit value in a seven bit code does not always
- produce the desired results. Bytes are now written out as integers in the
range 0..511. Other problems of this nature may exist in the interface bet-
ween ALSTEN and RADAR, but none have yet surfaced.

The user interface presented for a RADAR user is divided into two
subscreens or windows. The top window shows a running textual display of what
events are occuring. At the same time, the lower window has a graphic
representation of the same events. As an event is announced in the upper
window, the box corresponding to that process changes color and remains that
color for an appropriate delay (selectable by the user). If that event is a
message transmission, a box representing the message appears on the border of
the sending process, and moves to the receiving process. If the event is a
Meéssage reception, the box representing that message disappears, and any other
Messages queued to that port move forward in the queue. At any time, one may

Stop the replay of the events by hitting a key on the keyboard, which halts

Section 7 IMPLEMENTATION OF THE RADAR SYSTEM Page 45
the action and presents a menu of choices in the upper window.

These windows are implemented as "sub-canvasses" under the Gnvas
gl,aphics system. This means that each window can be treated by the programmer
as a completely separate entity for input, output, and scaling of the size of
the objects. Thus, the upper window is configured for text input and output,
while the bottom window is structured for graphics. In fact, the bottom
window is set up to scale appropriately to the size of the window available on
the Perq at the time, thus always allowing the maximum number of processes to
appear on the screen. However, since Canvas does not yet support the scaling
of text, the labels on each process indicating the name of the process and the
number of incoming and outgoing ports become unreadable if the screen space
allotted for the program is too small.

With no examples to serve as guides, the hardest part of the screen im-

plementation for any particular routine was often the trial and error process

by which procedures were found to produce the desired results. Many of these

changes are uninteresting in their detail, as one good example would have
eliminated 90% of the problems in implementing them. However, three proced-

ures had interesting problems and solutions: namely, how to quickly know
whether or not a message is in the area pointed to by the mouse, how to inter-
rupt the replay of events in order to get the replay menu, and how to move
messages smoothly across the screen at a speed that will make them arrive at
their destination at a time whereby the user-specified time for an event to
occur will have elapsed.

As a temporary measure, the original design matched a message with the
Mouse only when they were exact matches. This restriction was unreasonable

for ease of use, so a more relaxed specification was needed. However, the

ldea of a hash table to find the message was still appealing, as the time to

e tion 7 IMPLEMENTATION OF THE RADAR SYSTEM Page 46

search through all the messages of a busy system was prohibitive. The solu-
tion was to have a hash function which hashed regions to the same hash value,
which is easily enough done by dividing the original x and y by the error
factor before using the x and y in the normal hash function:

new_hash(x,y : integer) :=

old hash (round(x/x_error), round(y/y error))
Using the error factor as the divisor also ensures that only four hash values
(x + x_error,y + y error) need to be checked, which, for a table size of 37 as
. js currently used in the RADAR implementation, eliminates around 80% of the
space on the screen.

The design of RADAR assumed that SPICE would provide some type of
keyboard interrupt, since PERQ Pascal provides quite nice exception handlers,
and suwch an interrupt is a natural extension used in several of the SPICE
utilities (via a Ctrl-C as a "kill the process" interrupt). However, the only
place that SPICE provided such a utility was labelled with the words "Subject
to Change, Do not Use if You Want Upward Compatibility with Future Versions."
As a suwbstitue for such a utility, the delay routine, which is called very
frequently, was used to check for the existence of a keypress. If one exists,
then the exception is raised. This substitute works very well, as delay is
called frequently enough that no perceptible delay occurs between the keypress
and the appearance of the menu of choices discussed in Section 3.5 of Robbins'
thesis.

Moving messages across the screen is not as hard as it might be, since
Canvas provides some very handy procedures for drawing rectangles, as well as
More interesting icons, and even provides an INVERSE color for drawing, which
allows a message to pass through a process without destroying the process

While maintaining visibility. More interesting, is the method for delivering

IMPLEMENTATION OF THE RADAR SYSTEM Page 47

nessages in a certain number of seconds. First, through experimention, a con-

stant was found which represented the approximate number of times the program

could move the message in one second. This number is used to compute the

number of moves that should be made for the user-specified time. From this
 pumber, the given starting and ending locations, and the proper delta x and
".delta__y are computed, and the message is moved. This routine still lacks one
~ feature, however. When a port is broadcasting to more than one port, each in-
“ dividual message transmission currently takes up the entire number of seconds
| which the entire event is supposed to use, while the design specifies that
each instruction is to take that long.

Currently, the preprocessor does not generate the calls to the RADARLOG
routines, nor does it produce the message template file. However, such calls

have been hand-edited into some Pascal files produced by the preprocessor, and
the replaying system of RADAR works on these files. Thus, the features which
still need to be implemented or changed are primarily interface related. That
is, the user interface needs to made bomb-proof and more usable, with ad-
ditions of a real help facility. The preprocessor needs to generate the in-
terface to the log calls and the message template information. Also, the run
time support module needs to generate the process file information.

The RADAR system design also includes one other feature which is not yet
implemented. This feature is the UCAP which can separate those messages sent
to a single process in a distributed program. These messages can then be used
to debug a single process with a standard single-process debugger without for-
cing the programmer to make up artificial test data which may or may not
reflect the kind of input a program will encounter in actual use. The main
implementation problem this facility has is in interfacing to the conventional

debugger, as the rest of the facility is already available.

IMPLEMENTATION OF THE RADAR SYSTEM Page 48

gection 7

gection 8 PLAN FOR FURTHER WORK Page 49

Section 8
PLAN FOR FURTHER WORK

There is further work to be done in several areas. The most obvious of
these are the efforts described in this report. The PRONET implementation

will require the following work in order to be complete:

1. Interface with the debugger. Add some code to both preprocessors so that
the information needed by the debugger can be generated. The debugger

needs two kinds of information from a Pronet program:

1) templates : generated at preprocessor execution time,
2) a log : generated at Pronet program execution time. |
2. Complete the implementation of simple activities in NETSLA. Simple
activities that have not been implemented:
1) value construction,
2) event announcement,
3) attribute assignment.
3. Implement structured activities in NETSIA. Netsla preprocessor needs to
be augmented. Structured activities include:
1) alternation,
2) iteration,
3) location.
4. Implement type checking in both preprocessors.
5. Modify the window allocation procedure so that arbitrary number of process
instance windows can be allocated.

6. Implement PRONET for a multiprocessor environment. This will be done when

the implementation for a single processor enviromment is complete.

gection 8 PLAN FOR FURTHER WORK Page 50
The ACCENT global naming scheme must be studied. The hardware problem
of linking two PERQs together must be solved.

The implementation of RADAR also needs to be completed, finishing the

development of our prototype monitoring capability. Action items for work on

~ RADAR include:

1. User interface needs to be improved.

a. bomb-proofed (don't read reals as reals, but as characters,etc)

b. help facility added.

c. optioﬁally, beautified, as using the icon facilities to represent
messages as letters or some such, rather than boxes.

2. The screen layout should be imporved.

a. Abetter way to set up the screen for a given number of processes
should be implemented.

b. The restriction on the number 6f processes on the screen at one
time should be eliminated.

c. Some representation of existing connections between processes
should be available (pérhaps as an option, since lines
representing connections might badly clutter the display) .

3. The UCAP feature must be implemented.

a. make sure it pulls out messages correctly.

b. interface it with Kraut or other single-process debugger.

After this work completes our prototype monitor, we intend to evaluate it
by building and debugging some distributed programs. A likely candidate for
implementation is a distributed database update algorithm designed by J. All-
chin as part of his recent Ph.D. research in our department. It should

Provide a significant test for the monitor, as far as determining whether it

gection 8 PLAN FOR FURTHER WORK Page 51

ovides sufficient information to understand the execution of a complex dis-

pr
tr iputed program.

After this evaluation period, two lines of work can be considered. (he
approach would be to convert our prototype into a monitor which displays
program activity dynamically as a program executes. Such a monitor would have
the advantage of providing more immediate information about an execution, but
it would have to interfere more with the timing of events in that execution.
If our prototype evaluation shows that a historical replay is sufficient for
our purposes, we will instead concentrate our efforts on providing more
powerful tools .for use of the replay. For example, if a programmer can
specify that a some related collection of program events constitutes some
"higher-level" event, it might be possible to replay executions in terms of
such high-level events, thereby reducing the number of events the programmer
needs to interpret.

Finally, we will evaluate our tools and techniques concerning their ap-

plicability to an Ada programming environment.

Page 52

APPENDIX A

The LL(1) Grammar of NETSLA

Grammar productions with selection sets added:

prod # Production

1 network spec = net head const pt type pt port decl pt
evnt “decl _pt proc ¢ decl 10 evnt clse 10
init clse0 end identifier
gnetwork ;
2 net head = network identifier ;

snetwork ;

3 proc_decl 10 =
gsarrive end enter initial leave when ;

4 proc_decl 10 = process decl proc decl 11
gprocess ;

5 proc decl 11 =
garrive end enter initial leave when ;

6 proc_decl 11 = process decl proc decl 11
Yprocess ;

7 evnt clse 10 =
gend initial ;

8 evnt clse 10 = event clause evnt clse 11
sarrive enter leave when ;

9 evnt clse 11 =
gend initial ;

10 evnt clse 11 = event clause evnt clse 11
farrive enter leave when ;

11 init clse0
send ;
12 init clse0 = initial activity lst
ginitial ;
13 const pt =
garrive end enter event initial leave
port process type when ;

14 const pt = const con def list

sarrive end enter event initial leave

= const_def next_con_def

.
’

port process type when ;

gidentifier

new_const_id =

= const_def next_con__def

’

= identifier

’

signed_const

unsigned_con
%char_const identifier int const real_const string_const

= sign after_sign

real_const

int const

.
’

const_id

.
’

identifier

~e

int_const

= cha r_const

.
’

= string_const

= real const

’

Wrﬂix A
gconst ;
15 con_def_list
gidentifier
16 next con def
17 next con def
gidentifier
18 const_def =
gidentifier
19 new const id
gidentifier
20 constant =
3+ -
21 constant =
22 signed const
+ -
23 after_sign =
freal const
24 after_sign =
$int const
25 after_sign =
g¢identifier
26 unsigned con
gidentifier
27 unsigned_con
$int_const
28 unsigned_con
%char_const
29 unsigned con
' 3string const ;
30 unsigned con
3real const
31 scalar const

= identifier

constant

Page 53

Appendix A Page 54

scalar const = non id s con

1 %+ - char _const int const ;

| 33 non id s con sign id or_int

"~ 3

34 non id s con = int const
gint const ;

35 non id s con = char const

gchar_const ;

36 id or_int = const_id
gidentifier ;

37 id or_int = int const
$int const ;

38 const id = identifier
gidentifier ;

39 type_pt

sarrive end enter event initial leave

port process when ;
40 type pt type typ def list
stype

~e |l

41 typ def list = type def next typ def
gidentifier ;

42 next typ def =
[garrive end enter event initial leave
port process when ;

43 next typ def = type def next typ def
gidentifier ;

44 type def = new type id = types ;
gidentifier ;

45 new type id = identifier
g¢identifier ;

I
: 46 types = type casel
gidentifier ;

47 types = type case2
$(+ - array char _const int const
packed record set ;

B 48 type casel = identifier type tail

pppendix A

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

gidentifier ;

type tail =
%) ; case end ;

type tail = .. scalar_const
Fee

type case2 =non id s con .. scalar_const
%+ — char_ const 1nt const ;

type case2 = struct type
garray packed record set ;

type case2 = (enu id list)
$(3

non id type = non id_simp
$(+ - char_ const identifier int const ;

non id type = struct type
gsarray packed record set ;

simple type = type id simp ty tail
gsidentifier ;

simple type = (enu id list)
8(i

simple type = non id s con .. scalar_const
%+ - char const 1nt —const ;

simp_ty tail =
%) , ;] case end ;
simp ty tail = .. scalar_const
%o
non_id simp = (enu id list)
8(s
non id simp = subrange con .. scalar_const

=+ - char const identifier int const ;

pt_class nam = identifier
gidentifier ;

enu_id_list = identifier enumer_tail
g¢identifier ;

enumer_ta il =
%)

Page 55

Page 56

Appndix A

l66 enumer_tail =, identifier enumer tail
%, i

67 subrange con = identifier

gidentifier ;

68 subrange con = non id s con
%+ - char_const int const ;

69 type_id = 1identifier
gidentifier ;

70 struct type = pack prefix unpacked
garray packed record set ;

71 pack prefix = packed
gpacked ;

72 pack prefix =
garray record set ;

73 unpacked = array [indx _ty list] of

types
sarray ;

74 unpacked = record head field list end
grecord ;

75 unpacked = set of simple type
gset ;

76 record_head = record
grecord ;

77 indx ty list = simple type index_tail
$(+ - char_const identifier int const ;

78 index tail =
3]

79 index_tail =, simple type index_tail
%,

80 field list = rec_sec list with variant

%) ; case end identifier ;

81 rec_sec list = rec_section rec sec tail
%) ; case end identifier ; —

82 rec sec tail =
%) case end ;

83 rec_sec tail = ; rec_section rec_sec tail

pppendix A

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

%; i

rec section =

gidentifier

fieldid list :

types

rec section =
%) ; case end ;

fieldid_list
gidentifier

with_variant
%) end ;

wi th_variant
gcase ;

fi eld_id__end
%

fi eld_id__end
%

variant pref
gcase ;

tag_type ids
gidentifier

tag_typ tail
sof ;

tag_typ tail
% 3

tagfield id =

gidentifier

scalar_ty id
gidentifier

variant list

= identifier field__id_end

’

variant pref variant list

. identifier field id_end

case tag_type ids of

tagfield id tag_typ tail

.
’

scalar_ty id

identifier

’

= identifier

’

= variant variant_tail

%) + - ; char const end
identifier int const ;

variant = case 1 list : (

)

f ield_head field 1 ist

%+ - char_const identifier int const ;

variant =
%) ; end

-.

f ield_head

appendix A

101
102
103
104
105

106

107
108
1-09
110
111
112

113

114
115
116

117

g) ; case identifier ;

variant_tail =

%) end ;

variant_tail = 3 variant variant tail
% 7

case 1 list = scalar const caselabelend

%+ - char_congt identifier int const ;

caselabelend
% 3

caselabelend
%, H

- scalar_const caselabelend

port decl pt =
gsarrive end enter event initial leave

process when ;

port decl pt = pt decl list
gport ;

pt decl list = port decl pt decl tail
gport ;

port decl = port head pt_dir mtype
gport ;

pt dir mtype = in type id ;
gin ;

pt_dir_mtype out type id ;

gout ;

pt_dir mtype port group ;
3(
pt decl tail =
garrive end enter event initial leave
process when ;

pt_decl tail = port decl pt decl tail
gport ;

port head = port port tail
gport ;

port tail = identifier
gidentifier ;

port__tail = set identifier

Page 58

118
119
120
121
122
123
124
125

126

127
128
129
130
131
13
133

134

Page 59

port group = (sbptdecllist)
$(7

sbptdecllist = subport decl next subport
gidentifier ;

subport decl = subport name direct type
gidentifier ;

direct _type = in type_id
gin ;

direct_type = out type id
gout ;

subport name = identifier

gidentifier ;

next subport
L

next subport ; subport _decl next subport
;i

process decl = process head attri_declsO port decl pt evnt decl pt
end Identifier
gprocess ;

process head = process class identifier
gprocess ;

attri_declso =
gend event port ;

attri_declso = attri_head attri__sec_ls attri_tail
gsattributes ;

attri__head = attributes
sattributes ;

attri tail = end attributes
%¢end ;

attri_sec__ls = attri_sec attri__secl
%; end identifier ;

attr i_sec 1 =
%end ;

attri secl ; attri_sec
%

appendix A

135
136
137
138
139

140

141

142

143
144
145
146
147
148
149
150

151

attri sec = attri id 1ls : types

gidentifier

attri_sec =
g; end ;

’

attri id 1s = identifier attri id 1sl

gidentifier
attri_id 1sl
%:

attri_id 1sl
% H

evnt decl pt
garrive end
when ;

evnt decl pt
gevent ;

next event =
sarrive end

when ;
next event =
gevent ;
event decl =
gevent ;
about _ptnm0
% i
about_ptnm0
sabout ;

event_clause
garrive ;

event clause
genter ;

event_clause
$leave ;

event_clause
swhen ;

arriv clause
garrive ;

’

, identifier

enter initial leave process

= event_decl next_event

enter initial leave process

event__decl nex t_event

event identifier about ptnmO ;

about identifier

arriv_clause

enter_clause

leave clause

when_clause

arrive _head activity lst close end arrive

Page 60

152 arrive head = arrive open arrive bind do
garrive ;

153 arrive bind = message id0 on arrive port from proces0
g¢identifier on ;

154 message_id0 =
%on ;

155 message_id0 = identifier
gidentifier ;

156 arrive port = identifier arrive portl
g¢identifier ;

157 arrive portl =
3do from ;

158 arrive portl = : identifier
$:-

159 arrive portl = of port bind
sof ;

» 160 port bind = identifier port bindl

gidentifier ;

161 port bindl =
¢do from ;

162 port bindl = : identifier
%:

163 from proces0 =
3do ;

164 from proces0 = from process bind
g$from ;

165 process bind = identifier proces bindl
gsidentifier ;

166 proces bindl =
gabout do ;

167 proces bindl = : identifier
% 3

168 enter _clause = enter_head activity lst close end enter
genter ;

169

enter head = enter open port bind do

Page 61

Page 62

pppendix A
genter ;

170 leave_clause = leave head activity 1st close end leave
gleave ;

leave head = leave open port bind do

171 e
gleave ;

172 when clause = when head activity lst close end when
swhen ;

173 when head = when open identifier announced by process bind
about part0 do

swhen ;

174 about part0 =
$do ;

175 about part0 = about port_bind
%about ;

176 activity 1lst = activity activities

%) ; announce case connect construct
create disconnect else end find identifier
range remove send termminate ;

177 activities =
%) else end ;

178 activities ; activity activities
LT

179 activity =
%) ; else end ;

180 activity = simple act
: gannounce connect construct create disconnect identifier
remove serd terminate ;

181 activity = control act
g%case find range ;

182 simple act = creation
¥create ;

183 simple act = termination
sterminate ;

184 simple act = removal
gremove ;

connection

185 simple act
$connect

~

Appendix A Page 63

simple act = disconnecton

86
1 g¢disconnect ;

187 simple act = msg_transfer
gsend ;

188 simple act = construction
gconstruct ;

189 simple act = attri assign
gidentifier ;
190 simple act = event trans
%announce ;
191 simple bind = object id : identifier simple bindl
g¢identifier ;
192 object id = identifier
g¢identifier ;
193 simple bindl =
$do where ;

194 simple bindl = on proc_denoter
%on ;

195 obj denoter = lhs
gidentifier ;

196 port denoter = obj_denoter
g¢identifier ;

197 proc_denoter = identifier
gidentifier ;

198 creation = create create_tail
%create ;
199 create tail = identifier : identifier create taill

gidentifier ;

200 create taill =
%) ; else end ;

201 create taill =on proc denoter
son ; x

202 termination = terminate proc denoter
$terminate ; r

203 removal = remove obj denoter

Page 64

Aplnndix A
gremove ;
204 connection = connect port denoter to port denoter

gconnect ;

205 disconnecton = disconnect port denoter from port0
gdisconnect ;

206 from port0 =
%) ; else end ;

207 from port0 = from port denoter
gsfrom ;

208 msg_transfer = send expr0 to port denoter

gsend ;
209 expr0 =
g$to ;
210 expr0 = expr
$(+ - [char _const identifier

int const not real const string const ;

211 construction
gconstruct

construct hd [field as 1lst]

- |l

: 212 construct hd construct object id : identifier

gconstruct ;

213 field as 1st = field assign fd assignl
g¢identifier ;

214 fd_assignl
3]

215 fd_assignl ; field assign
%;

216 field assign lhs := expr

gidentifier ;
217 attri_assign = lhs := expr
gidentifier ;

218 event trans

;| = announce event id about port0
%announce ; s .

219 about port0

%) ; else end ;

220 about port0 = about port denoter

Page 65

appendix A
gabout ;

221 control act = alternation
gcase ;

222 control act = selection
¢find ;

223 control act = iteration

grange ;

alternate hd case list else part0 end case

224 alternation
gcase ;

R25 alternate hd = case expr of
gcase ;

226 case_list = case_element case listl
%+ - char_const identifier int const ;

227 case listl =
gelse end ;

, 228 case_listl = case element case__listl
| $+ - char_const Identifier int const ;

229 case_element = const list : (open activity 1st close

)

%+ - char_const identifier int const ;

230 const list = scalar_const const listl
%+ - char_const identifier int const ;

~ 231 const listl

: g 3
232 const listl =, scalar_const
%, H
233 select crite = simple bind where claus0

gidentifier ;

234 selection = find head do activity 1lst close else_part0O end
find
$find ;

235 find head = find open object id : find headl
3find ; = -

236 find_headl
gstring ;

string

237 find headl

identifier simple bindl where_claus0

appendix A Page 66

gidentifier ;

238 iteration = range open select crite do activity 1st close
else part0 end range
grange ;

239 else part0
%end ;

240 else part0 else open activity lst close

gelse ;

241 where claus0 =

3do ;

242 vhere claus0 = where expr
gwhere ;

243 open =

%) ; announce case connect construct
create disconnect end find identifier on
range remove send terminate ;

244 close =
%) else end ;

245 id_list = identifier id_list_tail
gidentifier ;

246 id list tail
% ;

247 id_l i st_ta il
%,

. identifier id list tail

248 actual parms
3(

(actual parm next a parm

249 actual parm = parm expr field width
%$(+ - [char_const identifier
int const not real const string const ;

250 next a parm =

%)

251 next a parm =, actual parm next a parm
% 7

252 lhs = identifier rec_ary ptr

gidentifier ;

253 vars = identifier rec_ary ptr
gidentifier ;

Append ix A Page 67

4 rec ary ptr =
B a7, -
/3 =5 =]
and d1v do else end from
in mod nonegrelop of or to ;

255 rec_ary ptr =. identifier rec ary ptr
%.

256 rec_ary ptr [index list] rec_ary ptr

i

257 index list = index next index
$(+ - [char const identifier
int const not real const string_const

~e

258 next index =, index |
3 i \

259 next_index
%] |

260 index = expr
$(+ - [char_const identifier
int const not real const string const

-.

$(+ - [char const identifier
int ._const not real _const strlng const

~e

262 parm expr = simple expr parm_exp_ end
$(+ - [char_ const identifier
1nt_const not real const string const

-e

261 expr = parm expr g
E
§

263 parm _exp end =
%) 4 oo 2 ;1]
do else end of to ;

264 parm_exp_ end = rel op simple expr
%= in noneqrelop ;

265 rel expr = simple expr rel op simple expr
$(+ - [char const identifier
int const not real const string const ;

266 relop ==
%= ; }

267 rel op = in
$in ;

| 268 rel op = nonegrelop

pppendix A Page 68

gnoneqgrelop ;

269 simple expr = char_const add_term i
gchar_const ; m

270 simple expr = string const add_term
gstring const ;

271 simple expr = sign term add_term
&+ - 7

272 simple expr = term add term
$([identifier int const not real const ;

273 add _term =
%) 5 e 2 ;=
] do else end in nonegrelop
of to ;

274 add_term = add _op term add_term
$+ — or ;

275 term = factor mult_factor
$([identifier int const not real const ;

276 mult factor =
%) +, — .0 2
; =] do else end
in nonegrelop of or to ;

.

277 mult factor = mult op factor mult factor
¢* / and div mod ;

278 factor = identifier var funccall
gidentifier ;

279 factor = real const
greal const ;

280 factor = int const
$int const ;

281 factor = (expr)
s(7
282 factor = [elem list]
sl s
283 factor = not factor
gnot ;
284 var_funccall = rec ary ptr |

%) *+, - .

Appendix A Page 69

e /2 5 =1
] and div do else end
in mod nonegrelop of or to ;

285 var_funccall = actual_parms) |
$(s |
286 add op = sign
- |
{
287 add op = or ‘
gor ; |
288 mult op = *
% ;
289 mult op =/
s/ ;
290 mult op = div
sdiv ;

291 mult op = and

sand ;
292 mult op = mod
smod ;
293 variable = identifier rec_ary ptr

g¢identifier ;

294 field width

%) H

295 field width : expr more field !
%: 1

296 more field
%) H

]

297 more field = : expr
% 3
298 elem list =
%1
299 elem list = elem next elem

$(+ - [char_const Identifier
int _const not real_const string const ;

300 elem = expr elem tail ‘J
%(+ - [char_const identifier !
int _const not real const string const ; |

pppendix A Page 70

ol next_elem =
y %]

302 next elem + elem next elem

% H

303 elem tail =
LTI

304 elem tail = .. expr
$ee

305 proc_id = identifier
gsidentifier ;

306 rec var_list = variable next rec var
gidentifier ;

307 next rec var =
% ;
|
308 next rec var =, variable next rec var |
% H

309 subport
% 7

310 subport
. i

. suwport id

311 pt class id = identifier
g¢identifier ;

F I/ N2 7/ B TYRI TR E : 22,74

312 subport id = identifier
gidentifier ;
313 expression0 =

%

314 expression0 = expr
$(+ - [char_const identifier
int _const not real_const string const

~e

315 event id = identifier
g¢identifier ;
316 sign = +
¥+ ;
; 317 sign = -
= i

appendix B Page 71

APPENDIX B

The LL(1) Grammar of ALSTEN

grammar productions with selection sets added:

prod # Production

1 comp unit = prog_head prog
%@ process ;

2 prog_head = process script prog_id ;
gprocess ;

3 prog_id = identifier
gidentifier ;

4 prog = port decl pt label pt const pt type pt evnt decl pt var_pt

proc_ fct . pt stmt pt .
$begin Const event function label port

procedure type var ;

5 block = label pt const pt type pt var_pt proc_ fct pt stmt pt
%begln const function label procedure type
var ;

label label list ;

B e g T

6 label pt
$label

~ |l

7 label pt =
sbegin const event function procedure type

var ;

Sl i e

8 label list = labels next label

gidentifier int const 7

9 next 1 abel

%

10 next label =, labels next label
%y

11 labels = int const

gint _const ;

12 labels = identifier
gidentifier ;

13 const pt =
$begin event function procedure type var

-

14 const _pt const con def list

gconst ;

15 con def list = const def next con def
gidentifier ; |

16 next con def =
gbegin event function procedure type var ; |

17 next con def = const def next con def
gidentifier ;

18 const_ def = new const id = constant ;
g¢identifier ;

19 new const id = identifier
g¢identifier ;

20 constant = signed const
¥ =7

21 constant = unsigned_con |
gchar_const identifier int const real const string const ;

greal const ;

22 signed const = sign after_sign !
4+ - ; |
23 after sign = real const '

24 after sign = int const
$int const

-

25 after sign = const_id
g¢identifier ;

26 unsigned con = identifier
gidentifier ;

27 unsigned con = int const
$int const ;

28 unsigned con = char const
$char_const ;

29 unsigned con = string_const

gstring const ;

; 30 unsigned con = real const
' freal const ;

31 scalar_const = identifier
; gidentifier ;

appendix B Page 73

82 scalar const = non id s con
%+ - char const int const ;

33 non id s con = sign id or_int
$+ -
34 non id s con int const

~e |l

$Int const

35 non_id s con char_const
$char_const ;
36 id or_int = const id
gidentifier ; |

37 id or_int = int const
gint const ; |

38 const id = identifier
gidentifier ;

39 type pt =
gbegin event function procedure var

40 type pt = type typ def list
type ;

41 typ def list = type_def next typ def
g¢identifier ;

-
-m vmew w secewmaoas =
A e e

42 next typ def =
sbegin event function procedure var

-e
. mew sesevasm

43 next typ def = type def next typ def
gidentifier ;

44 type def = new type id = types ;
gidentifier 7

45 new type id = identifier
gidentifier ;

46 types = type casel
gidentifier ;

47 types = type case2
%(+ - array char_const int const
packed ptr record set tag ;

48 type casel = identifier type tail
| gidentifier ; - i

Appendix B

49

50

51

52

B3

54

55

56

57

58

59

60

61

62

63

64

65

66

type tail =
%) ; case end ;

type tail = .. scalar_const
%e. 3

type case2 =non id s con .. scalar_const
$+ — char const int const ;

type case2 = struct type
gsarray packed record set ;

type case2 = ptr identifier
sptr ;

type case2 = (enu id list)
3(s

type case2 = tag of pt class nam
tag ;

non_id type = non_id_simp
$(+ - char_const identifier int const
tag ;

non_id type = struct type
garray packed record set ;

non _id type = ptr identifier
sptr ;
simple type = type id simp ty tail

gidentifier ;

simple type = (enu id list)
$(s

simple type = non id s con .. scalar_const
%+ - char_const int const ;

simple type = tag of pt class nam
$tag ;

simp ty tail =
%) , ;] case end ;

simp ty tail = .. scalar_const

oo ’

non_id simp
8(

(enu id list)

non id simp

subrange con .. scalar const

Page 74

Appendix B Page 75

$+ - char_const identifier int const ;

67 non_id_simp = tag of pt class nam |
s$tag ; |
68 pt class nam = identifier

gidentifier ;

69 enu id list = identifier enumer tail
gidentifier ;

70 enumer_tail
%)

71 enumer_tail =, identifier enumer tail |
%y 7 {‘
72 subrange con = identifier

gidentifier ;

73 subrange con = non id s con
%+ — char_const int const ;

74 type id = identifier
gidentifier ;

75 struct _type = pack prefix unpacked
sarray packed record set ;

76 pack prefix = packed
gpacked ;

|
77 pack prefix = :

sarray record set ; ;
J 78 unpacked = array [indx_ty list] of

types
sarray

~e

79 unpacked = record head field list end
srecord ; .

80 unpacked = set of simple type
' 3set ; =

81 record head = record
grecord ;

82 indx ty list = simple type index_ tail
' %("+ - char_const identifier int const
tag ;

83 index tail =

Appendix B
%]

84 index tail =
% 7

85 field list =

86 rec sec list

87 rec_sec_tail
%) case end

88 rec_sec_tail
%

89 rec section
gidentifier

90 rec_section
%) ; case end

91 fieldid list
g¢identifier

92 wi th_variant
%) end ;

93 wi th var iant
gcase ;

94 field id end
Q1T

95 field id end
%, H

96 variant pref
gcase ;

87 tag _type ids
gidentifier

98 tag_typ tail
sof ;

99 tag_typ tail
TR

100 tagfield id

, simple type index tail

rec sec list with_variant

%) ; case end identifier ;

= rec section rec_sec tail

%) ; case end identifier ;

gidentifier

.
r’

= ; rec_section rec_sec tail

’

= fieldid list : types

’

~e

= identifier field_id_end

variant pref variant list

b identifier field id end

case tag_type ids of

= tagfield id tag_typ tail

~e

: scalar_ty id

identifier

’

Page 76

Append ix B Page 77

101 scalar ty id = identifier
gsidentifier ;

102 variant list = variant variant tail
%) + - ; char const end
identifier Int const ;

103 variant = case 1 list : (field head field list
)

$+ - char_const identifier int const ; %

104 variant =
%) ; end ;

105 field head =
%) ; case identifier ;

106 variant tail =

%) end ;

107 variant tail = ; variant variant tail
%

108 case 1 list = scalar const caselabelend

3+ - char_const identifier int const ;

109 caselabelend

%:..;
%, H

111 port decl pt
g$begin const event function label procedure

110 caselabelend ; scalar_const caselabelend 1
type var ; }

112 port decl pt
gport ;

pt_decl list

113 pt_decl list port decl pt decl tail
gport ; - -

114 port decl = port head pt dir_mtype
gport ;

115 pt _dir_mtype

in type id : |
%in ; .

116 pt_dir mtype
sout ;

out type id :

117 pt_dir mtype
3(s

port group ;

appendix B Page 78

118 pt decl tail =
%begin const event function label procedure

type var ;
119 pt decl tail = port decl pt decl tail
gport ;
120 port head = port port tail
gport ;
121 port tail = identifier

gidentifier ;

g22 port tail = set identifier
gset ;

123 port group = (sbptdecllist)
$(

124 sbptdecllist = subport decl next subport
gidentifier ;

125 suwbport decl = subport name direct type
gidentifier ;

126 direct type = in type_id

$in ;
127 direct _type = out type id
' $out ;
128 subport name = identifier

gidentifier ;

129 next subport
%)

130 next subport ; subport decl next subport
%; i

131 evnt decl pt =
$begin function procedure var ;

132 evnt decl pt = event decl next event
sevent ~;
: 133 next event =

g$begin function procedure var ;

134 next event = event decl next event
gevent ;

Appendix B Page 79

135 event decl = event event id about part0 ; \‘I
gevent ; I

136 about part0
¥ u»'

137 about_part0 about pt class id]

gabout ;)

138 var pt =
$begin function procedure ;

139 var_pt var var_decl 1st

140 var_decl 1st = var_decl var_decl_end
g¢identifier ;

141 var _decl end =
$begin function procedure ;

142 var decl end = var_decl var_decl__end |
$identifier ;]

143 var decl = id list : types ;
%identifier —;

144 proc_fct pt = |
gbegin ; ,

145 proc fct pt = pf decl list
gfunction procedure ~;

146 pf decl list = pf_decl pf decl tail
%function procedure ; !

147 pf decl tail =
%begin ;

148 pf decl tail = pf decl pf decl tail |
¢function procedure ; |

149 pf decl = pf head ; blkorfwd
gfunction procedure ;

150 blkorfwd = forward H
gsforward ;

151 blkorfwd = block ;
$begin const function label procedure type
var ;

152 proc_start = l
|
|

appendix B Page 80 |

%(7 7

153 pf head = procedure proc_id_dec proc_start p_head_tail ‘
sprocedure ; ’

154 pf head = function func_id dec proc_start f head tail ,
sfunction ; I

155 p head tail

l
% |
|
156 p_head_tail = (fpsl) }
3 s [
157 f head_tail = |
% ‘
158 f head tail = : parm_tym_id I
Ty ;
159 f head tail = (fpsl) :
parm type id
2(;
160 proc id dec = identifier

gidentifier ;

161 func_id_dec = identifier
gidentifier ;

162 fpsl = £ parm sect fpsl_: tail
%1dent1f1er var ;

163 fpsl_tail
3

]
B S S RN

164 fpsl_tail ; £ parm sect fpsl_tail
¥ i

165 f parm_sect = parm_group !
gidentifier ; ‘;‘
166 f parm sect = var parm _group
svar ;

167 parm _type id = type id parm_ty tail
gidentifier ;

168 parm_type id = struct type
sarray packed record set ;

169 parm_type id = (enu id list) s
3(s 5

Appendix B Page 81

170 parm type id = tag of pt class nam

ttag ;

171 parm type id = non id s con .. scalar_const -
%+ - char_const int const ;

172 parm_type id = ptr identifier
sptr ;

173 parm_ty tail
%) ;

174 parm_ty tail .. scalar_const

Ree 7

175 parm group = id list : parm_type id
gidentifier ;

176 id_list = identifier id_list_tail
gidentifier ;

177 id list tail
X

178 id_l ist_ta il
% 7

i identifier id_list tail

179 body start =
gannounce begin case for goto identifier
if int const receive repeat send when

while with ;
180 stmt pt = begin body start stmt list end
gbegin ;

|
i
1

181 stmt = label prefix unlabeled st
gannounce begin case for goto if
int const receive repeat send when while
with ;

182 stmt = stmt with id
gidentifier ;

183 stmt with id = identifier asgn cal lab
gidentifier ; T

184 unlabeled st = begin stmt list end
gbegin ; .

185 unlabeled st = goto labels
%goto ;

Append ix B Page 82

186 unlabeled st case head case list otherwise pt end

gcase ;

187 unlabeled st repeat stmt list until expr

grepeat ;

188 unlabeled st = if stmt
sif ;

189 unlabeled st = for stmt
sfor ;

190 unlabeled st = while stmt
gwhile ;

191 unlabeled st = with stmt

swith 3

192 unlabeled st = receive stmt
greceive when ;

193 unlabeled st = send_stmt

gsend

194 unlabeled st = announcestmt
sannounce ;

195 asgn cal lab = rec ary ptr := expr

$. =T ptr ;

196 asgn cal lab

] actual parms)
3(

197 asgn _cal lab
%:

s unlabeled st
198 asgn cal lab =
%; else end otherwise until ;

199 actual parms = (actual_parm next_a_pafm
8(;

200 actual_parm = parm expr field width
%(+ - [char const identifier
int const nil not real const string const ;

201 next a parm =
3)

202 next a parm

S actual_parm next a parm

appendix B Page 83

203 if stmt if head stmt if tail
©E = -

204 if tail else stmt

Zelse

~ |l

205 if tail
%; end otherwise until ;

206 for stmt = for head do stmt
gfor ;

207 while stmt = while head stmt
gwhile ;

208 with stmt = with head stmt
gwith ;

209 if head = if expr then
$if ;

210 while head = while expr do
gwhile ;

211 label prefix =
gannounce begin case for goto if
receive repeat send when while with ;

212 label prefix = int const :
gint const ;

213 lhs = identifier rec_ary ptr
gidentifier ;

214 vars = identifier rec ary ptr
gidentifier ;

215 rec_ary ptr =
%) *+, - ..
/oioi=g =]
and div do downto else end
from in mod nonegrelop of or
otherwise then to until ;

216 rec ary ptr = . identifier rec ary ptr

.
3 ’

]

217 rec_ary ptr

[index list] rec_ary ptr
sT ; 6

218 rec_ary ptr
sptr ;

ptr rec_ary ptr

Appendix B Page 84

219 index list = index next index
$(+ - [char const identifier
int const nil not real const string const

~e

220 next index . index

% 7

221 next index
LI

222 index = expr
$(+ — [char const identifier
int const nil not real const string const

-

223 expr = parm expr
$(+ - [char const identifier
int_const nil not real const string const

~e

224 parm expr = simple expr parm exp _end
$("+ - [char const identifier
int const nil not real const string const

~e

225 parm_exp end =

%) r e 3}] l
do downto else end of otherwise

then to until ;

226 parm_exp end = rel op simple expr
%= in noneqrelop H

227 rel expr = simple expr rel op simple expr
%(+ - [char const identifier
int const nil not real_const string const

~e

228 rel op ==

%= ;
229 rel op = in
$in ;
230 rel op = nonegrelop

$noneqgrelop ;

231 simple expr = char const add term
$char _const ;

232 simple expr = string const add_term
$string const ;

"

233 simple_expr sign term add_term

%+ - ;

234 simple expr

term add_term

235

236

237

238

239

240

241

242

243

244

245

246

247

248

prnd ix B

%([identifier int_const nil not
real const ;

add_term =
%)) ee o HE
] do downto else end in
nonegrelop of otherwise then to until

add_term = add op term add term
%+ — or ;

term = factor mult_factor
%$([identifier int const nil not
real const ;

mult factor =
)+, - .. 2
; =] do downto else
end in noneqgrelop of or otherwise
then to until ;

mult factor = mult op factor mult factor
$* / and div mod ;

factor = identifier var_ funccall
gidentifier ;

factor = nil
gnil ;
factor = real const

greal const ;

factor = int const

gint const ;

factor = (expr)

$(;

factor = [elem list]
[

factor = not factor
gnot ;

var_funccall = rec_ary ptr

%-)— Ty =a
eu /- & p=n
1] and div do downto else
end in mod nonegrelop of or
otherwise ptr then to until ;

var_funccall = actual parms)

Page 85

’

Page 86

Apmndix B
3(3 |

249 add op = sign |
+ - ;

250 add op = or |
%or ; i

l

251 mult op = * |
¥ ;

252 mult op =/ |
8/ |

553 mult op = div l
sdiv ;

254 mult op = and

sand ;
255 mult op = mod
gmod ;
256 variable = identifier rec_ary ptr

gidentifier ;

257 field width

%)+

258 field width : expr more field : !
%: 1
|

259 more__field
%) o H

260 more field =: expr |
CH |
. |
261 elem list = ‘
%] |

262 elem list = elem next elem

$(+ - [char_const Identifier
int const nil not real const string_const

~e

263 elem = expr elem tail
1 $(+ - [char _const identifier
int const nil not real const string const

~e

264 next elem =
3]
265 next elem =, elem next elem

Appendix B Page 87

%,

266 elem tail
% 1

267 elem tail s ©OXPX

. ;

268 proc_id = identifier
gidentifier ;

269 stmt list = stmt more stmt
' gannounce begin case for goto identifier
if int const receive repeat send when
while with ;

270 more stmt =
$end until

~e

271 more_stmt = ; stmt more_stmt
%

272 case head case expr of

3case ;

273 case_list case_elem case_elems
%+ — char_const identifier int const

-~

274 case_elems =
send otherwise ;

275 case_elems = ; case elem case_elems
¥ i
276 case elem = case labels : stmt

3+ - char_const—identi fier int const

~e

277 otherwise hd otherwise :

gotherwise ;

278 case_labels = scalar_const next_scalar
%+ - char_const identifier int const

e

279 next scalar =
%:

280 next scalar =, scalar_const next scalar
% 7 N

281 otherwise pt
gend ;

282 otherwise pt

otherwise hd stmt 1 ist

Apml’ﬂ ix B

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

gotherwise ;

for head = for
to part expr
gfor ;

to part = to
gto ;

identifier := expr

to part = downto

%downto ;

rec var_1 ist =
gidentifier

nex t_rec var
$do ;

nex t_rec var
% H

variable next rec var

r variable next rec var

with head = with rec var_list do

gwith ;

receive stmt
-
grecelive ;

receive stmt
swhen ;

simple rcv =
port denoter
freceive ;

variable0 =
gfrom ;

variable0 =
gidentifier

port denoter =
gidentifier

suwport =

simple rcv
when stmt

receive variable0 from
freebinding0

variable

pt class id subport

%; do else end otherwise set

until use

subport = . subport id

Ka s

pt class id =
gidentifier

identifier

Page 88

appendix B Page 89

299 suwbport id = identifier
gidentifier ;

300 freebindingd =
%; do else end otherwise until ;

301 freebindingd = use variable
fuse ;

set variable

302 freebinding0
gset ;

303 when stmt when_head receives else part0 end

swhen ;
304 when head = when
gwhen ;
305 receives = receive pt next receive

%; end otherwise receive ;

306 next receive =
' gend otherwise ;

307 next receive = ; receive pt next receive
%;
308 receive pt =

%; end otherwise ;

309 receive pt = simple rcv do stmt
freceive ;

310 else part0
gend ;

311 else part0 = otherwise stmt
gotherwise ;

312 send stmt = send expression0 to port denoter
use part0
$send ;

313 expression0 =
gto ;

314 expression0 = expr
%(+ - [char const identifier
int const nil not real const string const ;

315 use part0 =
%; else end otherwise until ;

appendix B Page 90
316 use part0 = use variable

fuse ; {
317 announcestmt = announce event id about_bind0

fgannounce ;

318 event id = identifier
gidentifier ;

319 about bind0 =
%; else end otherwise until ;

320 about bind0 = about pt class _id use part0

sabout ;
321 sign = +
¥+
il
322 sign - |

~e |l

%—

appendix C Page 91

APPENDIX C

An Example NETSLA program - Broadcasting

network broadcast;
process class sender

port inport in integer;
port outport out integer;
end sender

process class receiver
port inp in integer;
port outp out integer;
end receiver

initial
create sender : sender;
create receiverl : receiver;
create receiver2 : receiver;
connect sender .outport to receiverl.inp;
connect sender .outport to receiver2.inp
end broadcast

appendix D Page 92

APPENDIX D

A Network Specification Module

This code was generated by the Netsla preprocessor."

procedure init;

begin (*init¥*)

p id := 0;

‘ alive := 0;

. total procs := 0;

initialized := false;

Gr := AllocatePort(KernelbPort, ChildtoParPort, MAXBACKLOG);
Gr := AllocatePort(KernelPort, EventPort, MAXBACKLOG) ;
build net('broadcast');

build proc('sender');

¢ build port('inport');

build port('outport');

build proc('receiver');

build port('inp');

build port(‘'outp');

= a creation . pr (theroot,'sender','sender"','sender .RUN',p list ._head) ;

Gr :=

Gr := a creation | | pr (theroot,'receiver’', 'recelverl' 'receiver .RUN';,] ,p_list head);
Gr := a creation | | pr (theroot,'receiver', 'rece1ver2' 'receiver .RUN',p) 1ist | -_head) ;
Gr := connection(theroot,'sender' 'outport' 'recelverl' Linp',"');

Gr := connection(theroot,'sender','outport' ', 'receiver2','inp',"'");

wakeup;

end; (*init¥)

J
:

Append ix E

APPENDIX E

The Event Handling Module

pvntMsg.Head.localPort := EventPort;
quit := False;
while (quit=FALSE) do
begin
writeln('Events before receive req');
Gr := Receive (BvntMsg.Head, 0, LOCALPT, RECEIVEIT);
if Gr=SUCCESS then
case shrink (BvntMsg.Head.ID) of
1: begin (* message transmission. *)
writeln('Send Msgy Request Received.');
Gr := send_msg(theroot, EvntMsg);
if Gr=SUCCESS then
writeln('Send Msg Request Completed.')
else
writeln('***Send Msg Request NOT Completed.');
arrive evnt;
end; i
2: begin (* message transmission. w/ tag *)
writeln('Send Msg(w/ Tag) Request Received.');
Gr := send msg tag(theroot, BvntMsg);
if Gr=SUCCESS then
writeln('Send Msg(w/ Tag) Request Completed.')
else
writeln('***Send Msg(w/ Tag) Request NOT Completed.');
arrive evnt; i
end; v
3: begin (* enter event ¥*)
enter evnt;
end; .
4: begin (* leave event ¥*)
leave evnt;

end;
5: begin (* when evnt *)
when evnt;
end;
6: begin (* when evnt. w/ about part *)
when evnt;
end;

19: begin (* connectivity inquiry *)
writeln('Conn Ing Request Received');
Gr := inquiry(theroot, EvntMsqg);
if Gr=SUCCESS then
writeln('Conn Inquiry Completed')
else
writeln('Conn Inquiry NOT Completed');
end;
99: begin (* termination of a process instance *)
with vparray[vpmap[B/ntMsg.Data2]] do

Page 93

appendix E Page 94

begin
DeleteCanvas(canvs) ;
PaintRectangle (UserCanvas,White ,x0+1,x0+xlen-3,y0+2,y0+ylen-2);
Used := False;
end;
alive := alive-1;
if alive=0 then
begin
quit:=TRUE;
EraseCanvas(UserCanvas, White) ;
{DeleteCanvas (User Canvas) ; }
end;
end;
(* more come here *)
otherwise:
begin
end
end; (* case ¥*)
end; (* while ¥*)

pppendix F Page 95

APPENDIX F

A Script for Sender Processes

process script sender;
rt inport in integer;
port outport out integer;

var
i :integer;

in

while i<>999 do

begin
write('Integer: ');
readln(i);
send i to outport

end

- end.

appendix G Page 96

APPENDIX G

The Preprocessor-generated Code for Sender Processes

program sender ;
imports Child 1lib from Child lib;

' var
i:integer;

var

pinport : port;
poutport : port;

! type
signal = boolean;

accentmsg = record
head : msg;
ipcname2 : TypeType;
arg2 : integer;
ipcname3 : TypeType;
arg3 : string[10];
) ipcnamed4 : TypeType;
arg4 : string[10];
ipcname5 : TypeType;
arg5 : integer;
ipcname6 : TypeType;
arg6 : string[20];
ipcnamel : TypeType;
case integer of
1 : (msignal : signal);
2 : (msginport : integer);
3 : (msgoutport : integer);

RPE—

end;

t var
XXxmsg : accentmsg;

| gr : generalreturn;
whenflag : boolean;
xxsignal : signal;

: commport : port;

l p array : PortBitArray;

} pstr : string[12];

{SINCLUDE Alsten supt.pas}
begin .

' {SINCLUDE AlstenInit.pas}

InitMsgn (NullPort) ;

Gr := Child ack;

while i<>999 do

begin

write('Integer: ');

Appendix G

readln(i);

begin (* send *)

xxmsg .head.id := 1;

xxmsg .head .remoteport := InPorts™[1];
xxmsg .head .localport := DataPort;
Xxxmsg .msgoutport:=i;

xxmsg.arg2 := p_id;

xxmsg.arg3 := 'outport';

xxmsg .argd := '';

gr := send (xxmsg.head,0,wait)

end (* send *)

end

;goaway;end.

Page 97

Appendix H

APPENDIX H

A Script for the Receiver Processes

process script receiver;
port inp in integer;
port outp out integer;
var
j:integer;
begin '
while j<>999 do
begin
receive j from inp;
writeln(j)
end
end.

Page 98

appendix I Page 99

APPENDIX I

The Preprocessor—generated Code for Receiver Processes

program receiver;
imports Child 1ib from Child lib;

var
j:integer;
var

t pinp : port;

poutp : port;

type
signal = boolean;

accentmsg = record
head : msg;
ipcname2 : TypeType;
arg2 : integer;
ipcname3 : TypeType;
arg3 : string[10];
} ipcname4 : TypeType;
arg4 : string[10];
ipcname5 : TypeType;
arg5 : integer;
ipcname6 : TypeType;
arg6 : string[20];
ipcnamel : TypeType;

! case integer of
1 : (msignal : signal);
2 : (msginp : integer);
3 : (msgoutp : integer);

end;

var
XXmsg : accentmsg;
gr : generalreturn;
whenflag : boolean;
xxsignal : signal;
) commport : port;
p array : PortBitArray;
pstr : string[12];

{$INCLUDE Alsten supt.pas}
begin
' {SINCLUDE AlstenInit.pas}
InitMsgn (NullPort) ;
Gr := Child ack;
while j<>999 do
begin
begin (* receive *)

| dix T Page 100

fcv(' inp','',999,1,rcv_result);
if rcv—feSUlF then

j s =xXXmsg 'm%i iRp s
end (* receive ¥*)
writeln(j) end
;goaway ;end.

e —

L W

Bibliography Page 101

BIBLIOGRAPHY

[3RCC82]Perq System Software Reference Manual; Three Rivers Computer Corp.;
Pittsburgh, Pa., May 1982.

[ACM83a] Symposium on High Level Debugging Preprints; Preprints of Session
Summaries and letter to conference participants. Mark Scott Johnson,

Symposium Chairman. July, 1983.

[ACM83b] Proceedings of the ACM Symposium on High Level Debugging; SIGPLAN
Notices, Vol. 18, MNo. 8, August 1983.

(Ball8l]Canvas: The Spice Graphics Package; E.J. Ball; Working paper,
Computer Scilence Department, Carnegie Mellon University, April 1981.

[Jens74] Pascal User Manual and Report; K. Jensen, N. Wirth; Springer-Verlag,
1974.

[Rern76] Software Tools; B.W. Kernighan, P.J. Plawger; Addison-Wesley,
Reading Mass., 1976.

[Live80]Run-Time Control in a Transaction Oriented Environment; N.J.
Livesey; PhD. Thesis, University of Waterloo (1980).

[Macc82]Language Features For Fully Distributed Processing Systems; A.B.

Maccabe; Technical Report GIT-ICS-82/12, School of Information and
Computer Science, Georgia Institute of Technology, August 1982.

" FINAL REPORT
GIT Project No. G36-605

" INTERACTIVE MONITORING OF
DISTRIBUTED SYSTEMS

Richard J. LeBlanc

Prepared by

U.S. Army Institute For Research in
. Management Information and Computer Science
- Atlanta,Georgia 30332

»iv," Under
Contract No. DAAK70-79-D-0087-0015

July 16, 1986

GEORGIA INSTITUTE OF TECHNOLOGY

. AUNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
. SCHOOL OF INFORMATION AND COMPUTER SCIENCE
i ATLANTA, GEORGIA 30332

Interactive Monitoring of Distributed Systems
Final Report

Richard J. LeBlanc

July 16, 1986

Atlanta, Georgia 30332

Contract No. DAAK70-79-D-0087-0015

| U.S. Army Institute For Research in
Management Information and Computer Science
GIT Project No. G36-605

ﬂ
|
|
l

Section
Section
Section
Section
Section

Section

6

Page ii

TABLE OF CONTENTS

Page
INTRODUCTION: oo ¢ o o osenisiosassesessonessasessssessessssssssss 1
RADAR DESIGN...... A N S N T 7
COLLECTING INFORMATION..:cccoeccsscssccssscscsccscsccscscsccsss 9
REPLAYING PROGRAM EXECUTION..::eeceoeeecccccsccccsoscnsscs . 20
PRONET IMPLEMENTATION..c.cccccccccccccccscsccccsconsnsnos cos. 28

RESULTS AND CONCLUSIONS.:.:eeceececsasascccoascsssscecccsonss 3k

BEBLIOGRAFHY . oo s snossnansanmbshabsssennaosenonsssnnvsssnssssnnnnssnnes W

APPENDIX A The LL(l) Grammar of NETSLA.....cceeeeeecennaconnosonnnsss 47

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

B

c

The LL(1) Grammar of ALSTEN....ccceeeccccccccssscsassses ... 66
An Example NETSLA program - Broadcasting.......cccceeeee.. 86
A Network Specification Module....ccoeeceecscccccascecocasss 87
The Event Handling Module.....eceeeeeeessscccccccccceceass 88
A Script for Sender ProcesSeS.....ceeececccccccnnes 2Ty slisla s . 90
The Preprocessor-generated Code for Sender Processes...... 91
A Script for the Receiver ProcesseS.......... Sa e serinse | 9

The Preprocessor-generated Code for Receiver Processes.... 94

Event Replay EXample..cccccceccescoscacnccscscncsness Sstsisseier 00

Section 1

INTRODUCTION

1.1 Problems with Monitoring Distributed Programs

In a conventional programming environment, there are two principal purposes for
monitoring the run-time behavior of a program: performance measurement and debugging.
(By “monitoring” we refer to some mechanism for obtaining information about the
performance of a program, external to the program itself.) Performance measurement is a
relatively mundane application of monitoring in such an environment, being principally

concerned with the processor time requirements of various parts of a program and requiring

little or no interactive intervention by a programmer. Debugging is considerably more

interesting, requiring extensive programmer interaction by its very nature.

When we generalize our thinking to a distributed system from a traditional single-processor

’ environment, the uses of monitoring become somewhat different and we must develop a new

conceptual view of a major part of the monitoring task. We are, of course, still interested in

performance measurement and debugging, but these tasks become quite different in this new
environment. The reason for this difference is that we are now concerned with distributed
programs - programs which cannot be monitored by considering a single address space on a
single machine. Rather, we must now be concerned with the communication between the

various parts of a program, for these interactions will play a crucial part in the monitoring task.

Performance measurement in a distributed system is made more complex by a number of
new considerations. Communication costs and the overall time it takes to execute a program,
which is affected by the potential for parallel execution of subtasks and by time spent waiting
for messages, are equally important considerations in many situations. Further, it is much more
difficult for a measurement program to monitor an entire program, since the monitored

program may be distributed arbitrarily across a network of machines. It will be necessary for

T S N ST e w8

I —

any monitoring program to obtain information about the distribution of a program and about its

communication linkage and behavior.

This need to obtain information from distributed execution sites naturally applies to
debuggers as well as to performance monitors. In fact, it is a more complex problem in the case
of a debugger since the debugger must somehow assist a programmer in comprehending the
“state” of a program which consists of a number of processes running asynchronously on several
machines. Conventional debugging tools are certainly of little use in this situation, since they
are typically oriented toward monitoring the operation of what would only be a single process of
a distributed program. Once again, tools which provide information about the status of process
interactions will be required. (Such tools should also have the capability to interface with more
traditional monitoring tools which can be used on the individual processes.)

Just as communication should play an important part in distributed performance
measurement, it should also have a crucial role in debugging distributed programs. The
correctness of such programs will undoubtedly depend on the correctness of the contents and
sequencing of messages transmitted between their constituent processes. Thus a distributed
debugging tool must deal with communication as a major part of its job. In fact, it is
conceivable that a communication monitor may be the debugger at the interprocess level,

complementing traditional debuggers which operate on individual processes.

As a final difficulty, any kind of monitoring of a distributed program will potentially
generate a great deal of information, which must be conveyed to a programmer in a
comprehensible manner. It will presumably not be satisfactory to produce all of this
information independently for each of the processes. Rather, the information must be

aggregated in some manner consistent with the nature of the monitoring task being performed.

1.2 Proposed Solutions Using PRONET

The solution we have explored is based on our programming language PRONET [Macc82].

The network descriptors of PRONET provide an excellent basis for the operation of distributed
monitoring tools. The interconnection information these descriptors provide is exactly what is

required by a monitor so that it can easily recognize the structure of an entire program.

As was suggested in the previous section, a communication monitor is a crucial part of our
tools. The interconnection specifications in PRONET networks provide the minimum amount
of information needed by a communication monitor. That is, they provide a listing of the
message paths between processes and the types of the messages which may be transmitted. The
task of a monitor will be to provide a programmer with information about message transmission
between processes, including information about the sequencing of messages and about their
contents. The capability to examine the operation of individual processes (accomplished by

interfacing with a traditional single process debugger) is an important part of our tool set.

1.3 Overview of Project Organization

The project was originally planned to include the following tasks as described in the original

statement of work:

Task 1 - PRONET Interface
PRONET, a language that provides a high level description of interprocess
communication, is currently being implemented on a distributed system of Prime
computers at Georgia Institute of Technology. The task is to develop an interface
between PRONET and a distributed monitor.

Task 2 - Communication Monitor
The contractor shall determine what data should be collected by the monitor to
facilitate development, debugging and maintenance of programs. This task is to
develop a monitoring program that interfaces with the communication features of the
operating system and collects the necessary data.

Task 3 - Interface to the Communication Monitor

The contractor shall develop a convenient user interface to the communications

monitor. The user interface will provide a graphical display of information collected
by the monitor. Also, it will do additional automated processing of the data to
consolidate into meaningful form the information generated by the monitor.

Task 4 - Interface with a Process-level Debugger
The contractor shall develop an interface with the communications monitor and an
existing symbolic debugger. If this approach is infeasible, then symbolic debugger
for individual processes must be implemented and interfaced with the single process

debugger.

During the course of the project, some changes from the initial plans were found to be
necessary. The most prominent change involved the use of different hardware than originally
planned. The main reason for this change was that we found the implementation of PRONET
on our Primes too inefficient to be practical. The operating system on these machines does not
effectively support dynamic process creation. The Accent operating system available on our
Perq computers, on the other hand, supports dynamic process creation as well as message
passing between processes on different machines. Thus we chose to do the work using our Perq
workstations, which meant that more work on the implementation of Pronet than originally had
been planned turned out to be necessary. However, this work was minimized by implementing

Pronet through use of a pre-processor which generates Perq pascal code.

The Pergs also have high-resolution, bit-mapped displays. This feature gave considerable
support to the development of a very effective graphical user interface to our monitoring

system. We consider this interface one of the most successful aspects of the project.

The other major change in our approach involved the development of a passive event
recording system rather than a monitor which supports interaction with distributed programs
during execution. This passive approach was initially seen as a prototype. However, we found
that a simulated replay of program execution using the information we record during execution

provides an effective visualization of a distributed programs, so it remained the focus of our

work throughout the project.

Only task 4 went just as it was originally planned. Our program replay system interfaces
with the Kraut debugger, which is a standard high-level debugger under Accent.

1.4 Summary of Project Results

As discussed in the previous section, we made use of the bit-mapped displays on our Perq
computers to develop a graphical user interface to our monitoring systems. In effect, it
produces a high-level, animated view of program execution. We say this view is “high-level”
because it includes only events visible at the process interconnection level (e.g., process creation
and interprocess communication). This graphical display approach has proved to be an excellent
technique for managing the large quantity of information collected in monitoring a distributed

program.

One of the hardest issues to be dealt with in the design of a distributed program monitor or
debugger is how to minimize the impact it has on the execution of a program under
examination. Our ultimate decision to concentrate on passive monitoring followed by a replay
was heavily influenced by this consideration. We believe we have developed tools which can be
effectively used to debug applications level distributed programs, based on this minimally

obtrusive passive monitoring approach.

Part of our methodology for making use of passive monitoring involves what we call multi-
level debugging. In addition to looking at the high-level animation of execution described
above, the user also has the ability to focus on the execution of a single process, once the source
of a failure has been isolated. Our technique integrating of our monitoring system with an

existing single-process debugger is the key to making multi-level debugging available.

The results of this project were reported at the 5th International Conference on Distributed
Computing Systems in a paper by R. J. LeBlanc and A. D. Robbins, entitled “Event-Driven

Monitoring of Distributed Programs”.

e i

1.5 Report Overview

The following three sections describe various aspects of the design of the prototype monitor,
called RADAR. They are extracted from Amold Robbins’ M.S. thesis. They are followed by
sections on the PRONET implementation, the monitor implementation and the conclusions we

have drawn from our research.

Section 2

RADAR DESIGN

2.1 Distributed Programs

The RADAR monitor is intended to support Pronet [Macc82], a message based language
designed as a part of previous research on distributed computing at Georgia Tech. However, it
could be easily adapted to support other message-based programming systems. The relevant
features of Pronet will be discussed in section 3.1.

2.2 The RADAR System

The RADAR system takes a passive approach to monitoring distributed programs. Because

it is interactive the term “monitor”’ is used to describe it, and not the term “debugger.”

RADAR is designed to support Pronet on PERQ computers [3RCC82]. The PERQ is a
single user machine with a high resolution bit-mapped display and a mouse.

Pronet consists of two sublanguages: NETSLA for describing communication networks, and
ALSTEN for describing processes. The Pronet compiler provides the monitor with information
concerning the connectivity of the processes. This information is collected from the NETSLA
runtime system. ALSTEN programs are loaded with a special communications library which
records every standard or user-defined event during execution, and makes a copy of every
message sent. The exact nature of the information supplied by the NETSLA runtime system
and the structure of ALSTEN event records will be described in section 3.2. This component of
RADAR is known as the RADARLOG.

After the program has completed executing, the REPLAY component of RADAR is
invoked to provide a graphical “replay” of the execution. Each message or event is stamped
with a global event number. This imposes a partial ordering on events. The monitor then

displays events one at a time. The programmer is able to watch the communications traffic

amongst the processes. Processes have names in Pronet, so it is easy for the programmer to see

which process is communicating with which other processes.

REPLAY provides the user with the ability to view the contents of any message currently
represented on the screen. Messages are represented on the screen as small boxes. The user
places the PERQ’s mouse over the message which he wishes to examine. REPLAY then opens
a new window in which the contents of the chosen message will be displayed in a formatted
fashion. For instance, if the message contained an integer and two floating point numbers, the
message would be displayed as an integer and two floating point numbers, not as 10 octal bytes.

When the user is through with the message the new window disappears.

REPLAY also provides the ability to replay a certain number of events which have already
happened. This can be done at any point during the display. The user can “rewind the video
tape,” so to speak. This replay is limited to a reasonable maximum number of previous events.

This feature is known as an “Instant Replay.”

Finally, as a separate utility, the user can name a given process and have all of the messages
which were sent to that process selected from the recorded message traffic. This single process
may then be run by itself with its messages derived from the stored messages. This feature is
designed to facilitate single process debugging using real input data (messages). This way, it is
possible to observe a process’ behavior under realistic conditions, without having to worry about

controlling the rest of the processes of the distributed program.

Section 3

COLLECTING INFORMATION

RADAR .is intended to support Pronet, a language designed for writing programs which can
execute in a distributed processing environment. Pronet stands for Processes and Networks.
The introduction to Chapter 2 of [Macc82] summarizes the description and design goals of

Pronet:

PRONET is composed of two complementary sublanguages: a network
specification language, NETSLA, and a process description language, ALSTEN.
Programs written in PRONET are composed of network specifications and process
descriptions. Network specifications initiate process executions and oversee the
operations of the processes they have initiated. The overseeing capacity of network
specifications is limited to the maintenance of a communication environment for a
collection of related processes. The processes initiated by a network specification
can be simple processes, in which case the activities of the processes are described by
ALSTEN programs, or they can be ‘“composite processes”, in which case their
activities are described by a “lower-level”” network specification.

ALSTEN is an extension of Pascal which enables programmers to describe the
activities of sequential processes. During their execution, processes may perform
operations that cause events to be announced in their overseeing network
specification. Network specifications, written in NETSLA, describe the activities to
be performed when an executing process ‘announces’ an event... Two principles
have influenced the design of these features: independence of process descriptions
and distributed execution of network specifications.

This section first describes the features of Pronet relevant to interprocess communication.
Then it describes the information provided to the monitor by the NETSLA and ALSTEN
compilers. Finally, it presents the format of the information collected at run-time by the special

communications library.
3.1 The Features of Pronet

This presentation is derived from Chapter 2 of [Macc82].

3.1.1 ALSTEN

ALSTEN is essentially an extension of Pascal [Jens74]. The file concept has been removed

-10 -

entirely from the language. Processes communicate only through locally declared ports, using
send and receive statements which are analogous to Pascal’s read and write. Ports have a
direction, either in or out. Ports may be combined into port groups. One could define a duplex
channel as:

port channel (incoming in bit; outgoing out bit);

To accomodate the notion of a server process, which serves many other processes, ALSTEN ‘
provides ports sets and port tag variables. A port set is a collection of port groups or simple i
ports identified by one name. For instance, if a port set is a set of port groups, a receive on a i
port set would set a port tag variable to indicate which element of the set was actually used for
communication. This tag may then be used in a send operation for sending replies to the |

process which originated the message.

The syntax of the send and receive statements is shown in Figure 1.
<send stmt> ::= [
send [<expr>] to <bound port denoter>

<receive stmt> ::= <simple receive>
| <conditional receive>

<simple receive> ::=
receive [<variable>] from <free port denoter>

<conditional receive> ::= when
{<receive part>}
[<otherwise part>]
end \
<receive part> ::= <simple receive> [do stmt>] i

<otherwise part> ::= otherwise <stmt>

Figure 1 -- Send and Receive Statements in ALSTEN

A type is associated with every port. Only expressions of the type associated with a given
port may be sent to or received from that port.

—

1

The <expr> is optional. In these forms of the send and receive statements, the port is of
type signal. A signal is a message with no contents. Signals are often useful for sending control
information, such as telling a process to start a particular task.

The syntax for port declarations is shown in Figure 2.

< decl> ::= <simple port decl>
<port group decl>

<simple port decl> ::=
port <port id> <direction> <msg type>

<port id> ;1= <id>
<direction> ::= in | out
<msg type> ::= <type id>

<port group decl> ::=
port [set] <port id> ‘(" <subport list>)’

<subport list> ::=
<subport decl> {*;” <subport decl>}

<subport decl> ::=
<subport id> <direction> <msg type>

<subport id> ::= <id>

<port tag type> ::= tag of <port id>
Figure 2 --- Port and Port Tag Declarations in ALSTEN

3.1.2 NETSLA
As stated earlier, the purpose of NETSLA specifications is to initiate and control the

communications environment of ALSTEN processes:

The features of NETSLA are aimed at specifying the initial configuration and
subsequent modifications of a communication environment for processes. The
overriding principle followed in the design of these features is that of “centralized
expression--decentralized execution” [Live80]. Centralized expression is important
in presenting the abstraction to be supported by network specifications. All of the
inter-process relationships that describe a communication environment appear in a
single network specification. However, this communication environment is not
maintained in a centralized fashion. Processes maintain their communication
environment indirectly. When they execute send or announce operations, processes

-12-

perform the activities specified by their overseeing network specifications; however,
the nature of these activities is unknown to the process (since network specifications
are not visible to processes). [Macc82]

The syntax of network specifications is shown in Figure 3.

<network specification> ::= <network header>
{<process class specification>}
{<event handling clause>}
[<initialization clause>]
end <identifier>

<network header> ::= network <net id> *;’
{<port decl>}
{<event decl>}

<process class specification> ::=
process class <process id>
[<process attributes>]
{<port decl>}
{<event decl>}
end <process id>

<process attributes> ::= attributes
<field list>
end attributes

Figure 3 --- Network Specifications in NETSLA

When a network starts to run, its initialization clause is executed. The initialization clause is
used to create instances of processes and connect the output ports of one process to the input

ports of another. A simple network specification is presented in Figure 4; a graphical

representation of the network is shown in Figure 5.

«18-

network static_net
process class proc_class
port input in integer;
port output out integer;
end proc_class

initial
create procl : proc_class;
create proc2 : proc_class;
create proc3 : proc_class;
connect procl.output to proc3.input;
connect proc2.output to proc3.input;
connect proc3.output to procl.input;
connect proc3.output to proc2.input;
end static_net

Figure 4 --- A Simple Network Specification

proci proc2

output input output

output input

|V

proc3

Figure 5 --- A Graphical Representation of a Simple Network

If one output port is connected to more than one input port, the messages sent out on it are
replicated. This occurs in a manner invisible to the process sending the message. This allows

one-to-one, one-to-many, and many-to-one connections between ports.

Processes may define events. These events can then be announced by the processes in their
overseeing network specifications. NETSLA provides features for handling these events when

they are announced. The programmer specifies what actions to take, such as aborting processes

-14-

or creating new ones. Other actions are also possible.

Pronet predefines several standard events. For instance, when a process terminates

normally, the standard event ‘done’ is announced in its network.

Message transmission and reception are considered to be events. They simply have a
separate syntax. The other standard events and the syntax of event declarations and handlers

are discussed fully in [Macc82].

Since Pronet is oriented around events, so is RADAR. The special runtime routines record
all the events and messages. The REPLAY program presents the user with a visual replay of
the events that occurred during the execution of the program. The majority of events will be
message transmission and reception. When a different type of event occurs, that event will be

portrayed.

3.2 Information Supplied By The Pronet Compilers

The Pronet compilers and runtime system provide RADAR with the framework upon which

to build the later description of event.

3.2.1 ALSTEN
Ports in Pronet are always associated with a type. Only messages of the type associated with

a port may be sent to or received from that port.

In any given ALSTEN program, there will be a fixed number of different message types,
i.e. the types associated with ports.

The ALSTEN compiler will generate a file with a list of message templates. A template
looks like

Identifier | size Itotal no elements |list of elements

Figure 6 --- Message Templates

-15-

The list of elements is simply an order listing of the fields in a message. For instance,

real |array character 19 |nt |long

Figure 7 --- Fields In A Message

If a field of a message is itself a record with further subfields, the compiler will expand it in
line down to its basic elements. Elements can be bytes, integers, long integers, reals, or one
dimensional arrays of these types. Bytes are treated as unsigned integers, even though they
may have actually been signed quantities. If necessary, RADAR may be modified to allow
specifying whether or not such numbers were signed or unsigned. Elements smaller than one
byte occupy a byte to themselves. This implies that the Pascal keyword packed has no effect.
Admittedly, this is a constraint on the compiler; see Section 5 of the thesis for further discussion
of this constraint.

The purpose of the list of message templates is to allow the decoding of individual messages.
A user can select any message on the screen with the PERQ’s mouse. When he does so,
RADAR will open a separate window and format the contents of the message in it. Each
message carries its type with it. The message is decoded according to the corresponding
template and printed accordingly. One dimensional arrays are allowed, principally for use in
displaying character strings. REPLAY will treat arrays as if they are indexed from 1.

3.2.2 NETSLA

NETSLA controls process and port creation and the interconnecting of output ports to input

ports.

The information generated by the NETSLA system is a file describing each process. A

process is described as follows:

-16 -

machine proc_num proc_name number_port_groups
number of simple ports in each group
direction number name type { DESTINATIONS }
direction number name type { DESTINATIONS }
number of simple ports in each group
direction number name type { DESTINATIONS }
direction number name type { DESTINATIONS }

Figure 8 --- Description Of A Process

The { } pairs enclose optional information. Only if a port is an output port does it have one
or more destinations associated with it. The DESTINATIONS field in Figure 8 above
represents the number of destinations to which an output port sends its messages, and the
destinations themselves. A destination is uniquely identified by the destination machine, the
process number on that machine, and the port number of the process to which the message is
directed.

Machine and process id’s are hidden from the programmer, but the NETSLA runtime
system and the underlying global operating system must know about them, since they actually

arrange for execution of the processes.

When REPLAY first starts up, it builds a table of records describing processes with all these
structures attached to each element in the table. Later, when a send event occurs, REPLAY
determines which process is the destination and depicts a message moving from the source

process to the destination process.

3.3 Information Collected At Run-Time

Most of the information that RADAR needs is collected at run-time. Special runtime

routines log every event that occurs. These routines are kept in a separate module called

RADARLOG.

« 1P

Events may be one of the following:

type
eventtype = (createprocess, destroyprocess,
message_transmission, message_reception,
portcreation, failed, done
aborted, userevent);

Figure 9 --- Types of Events

The ‘message_transmission’ and ‘message_reception’ events are logged by the send and

receive routines respectively. The other events are logged by the announce routine.

The ALSTEN compiler inserts a procedure call to the routine makelog as the very first
executable statement in a program. This routine creates the log file and announces the process
creation event. Before the final end of the ALSTEN main program, the compiler inserts a call

to the routine closelog, which closes the logfile and announces the standard event ‘done’.

| message-transmission [machine-id |process-id |count |

UniqueMesgld I success |checkpointing | mesg-type]
bufsizel 4 l buffer l

I message-reception hachine-id ,process—id k:ountl
|5uccess \{ UniqueMesgID ﬂ

I userevent |machine-id-\process-id lcount Ieventnan'il

[createprocess |machine-id lprocess-id kount |

[destroyprocess [machine-id Iprocess-id [:ount]

I portcreation [machine-idl process-id |count |

I failed[machine-id Lprocess-id lcounﬂ

[done |machine-id I process-id [iount I

I aborted Imachine-id | process-id Icounq

Figure 10 --- Event Records

18-

Each process keeps a count of the events it has announced, including message transmission

and reception. The event count starts at one and is incremented with each event.

When a process sends a message, it includes the value of its local event counter. If the
receiving process’ event count is lower than that of the sender’s, the receiver sets its count equal
to that of the sender. After receiving the message, the process logs the message_reception
event. If the message reception succeeded, the process logs the UniqueMesg Id of the message
it received. Since message_reception is an event like any other, the local event count is
incremented before the event is logged. Thus, the message_reception event’s sequence number
will be one greater than the event count of the sender. This insures that there will be at least a
partially correct ordering on events. In particular, interrelated events will always be correctly
ordered.

Placing an ordering on events in a distributed system is a difficult task. One solution is to
use the times on local clocks to time-stamp each event. This method is not acceptable since it is
impossible to synchronize all the clocks on all the machines. This introduces the possibility of
recording events out of order. For example it would be possible, due to synchronization errors
among clocks, to record the reply to a message as having occured "before" the sending of the

initial message.

By having the receiver of a message set its event count equal to that of the sender, and then
incrementing the count before logging the message reception, the synchronization problem is

avoided. The reply to a message will always be sent "after” the sending of the initial message.

Using this method, it is possible to have several events occurring at the same "time," i.e.

several events might all have the same event number. In this case, it is impossible to determine

the ordering of these events, but in fact, the ordering is unimportant. The fact that these events
all have the same number indicates that they are not interrelated, since if one event depended on
another to precede it, its event sequence number would have been greater than the sequence

number of its predecessor.

R R e e O |

Furthermore, this method makes no extra demands on the underlying global operating

system to keep clocks synchronized across machines. It also fits in well with Pronet, which has

no concept of global time.

3.3.0.1 Summary
Keeping a record of every event, along with a description of message contents and the

interconnectivity of every port, provides a complete record of what went on.

Copying all the message allows the user to view what was actually sent; the message
description makes the message contents understandable, and the connectivity data allows

graphically depicting the movement of a message from its source to its destination.

Section 4

REPLAYING PROGRAM EXECUTION

The major component of the RADAR system is the REPLAY program. After a Pronet
program has executed and all the information described above has been collected, REPLAY is
invoked to graphically display event occurrences. More importantly, it also displays the

message traffic amongst processes.

The PERQ’s screen is a high resolution, bit-mapped black and white display. The PERQ
has hardware and firmware instructions, called Raster Ops, for manipulating the screen.
REPLAY uses the Sapphire graphics package which provides a higher-level, more usable

interface to control the screen.

This section discusses the algorithms REPLAY uses, describes the view of the program

REPLAY presents to the user, and presents the user interface.

4.1 Outline of the Algorithm

The overall algorithm is fairly simple. It is based on the notion of events as defined
previously. Since each event is numbered when recorded, an ordering of events is automatically

made possible.

The general algorithm for event replaying is given in pseudo-code in Figure 11.
get first event

while more events

if event in { send_a_message, receive_a_message }
do something visible with the message

else
announce the event conventionally

end if

get next event

end while

Figure 11 — Top Level REPLAY Algorithm

-21.-

Most of the work is involved with displaying events. REPLAY basically has to keep track
of four things.
1) Which processes are represented on the screen and where they are.
2) Which messages are represented on the screen and where they are.
3) Rate of event display (see below).

4) How full the screen is; i.e., is there room for more processes?

Processes and the messages waiting in input queues take up the majority of the room on the
screen. Most of the other events can be displayed simply by printing out a line on the screen of
the form “Process P announces Event E as event Number N,” in a prominent place. During the
interval that the process is announcing an event, it changes color (actually a different shade of

gray) so that it is clear which process is involved.

In fact, REPLAY provides a running narrative of this form. However, when a process is
created or destroyed, or a message is sent or received, REPLAY will depict this graphically.
Newly created processes will be drawn into a free spot on the screen. Messages are depicted as
small boxes moving from the sender’s output port to the receiver’s input port. When each

message is received, its box disappears.

Much of the work involves doing all the bookkeeping necessary in as efficient a manner as

possible. (It should be “efficient” in terms of both space and time).
4.2 The User Interface
This section discusses various aspects of the operation of REPLAY’s user interface.

4.2.1 What the User Sees

The user sees processes and messages queued on input ports. A process with one input port,

one output port and a message just leaving the output port, is shown in Figure 12.

<Process Name >

1in 1 out
/ \
input I Ioutput
port port
[+]
message

Figure 12 - Picture of a Process and a message

The drawing of a process indicates the number of input and output ports associated with that
process. It is not possible to draw each port, since the notion of port sets allows a process to
have a very large number of ports. When an output port sends a message, the port appears on
the process’ border. It closes up after the message arrives at its destination. Similarly, when a
message arrives for an input port, the port opens up, and messages queue up in front of it.
When all the queued messages have been received, the input port closes back up. The process

name and identification appear inside the box, so that it is clear at a glance which process it is.

Figure 13 depicts an event replay on the PERQ’s screen. The process Proc_B is shown

sending a message to Proc_A, while process Proc_C is shown with one message waiting at its

input port. The event narration at the top of the screen indicates what is happening. Appendix

J contains a sequence of figures portraying a more extended example.

'
Process Proc__ B sends a message to Proc__A. Event 9.] 1;
Proc _A Proc_C
1
3in 4 out 1in 1 out |
N) N
[+] [+]
Proc_B j
2in 5out |
i

Figure 13 --- A Process Sending A Message

An interesting problem concerns the speed at which the replaying occurs. If events are
described and messages move across the screen without any delays, events will happen too fast

for the user to follow.

To solve this problem, REPLAY asks the user how many seconds to take to display each
event. The default is three seconds per event. Even in single step mode (see below), each
event takes the full n seconds (whatever the user entered) to transpire. This is to allow the
process to change color, and to remain on the screen in a different color for enough time to

make an impression on the user before it changes back to normal.

—

4.2.2 Single Stepping

REPLAY gives the user the choice of either single stepped or continuous operation. In the
second mode, events (message transmission, process creation, etc.) occur continuously, without
stopping. Continuous operation allows the user to watch the general pattern of message traffic

and event occurences. This is useful for getting an overall idea of what the program did.

Single-stepping allows the user to watch what happened at a more detailed level and at a
slower pace. In this mode, after each event occurs, REPLAY waits on the user to hit a key on
the keyboard before continuing with the next event. This mode gives the programmer more
time to consider his program’s actions, without the continuing need to keep up with his
program.

Furthermore, the user can toggle back and forth between the single stepped and continuous

modes; he is not forced to single step through hundreds of messages. The number of seconds
per event is also changeable at any time, to allow the user to speed up or slow down the rate of

event display.

4.2.3 Displaying Messages

Messages on the screen are simply small boxes, queued on the input ports of their
destination processes. In this form, the only information that they convey is the fact of their
existence. This is only minimally useful.

REPLAY allows the user to actually see what his processes are sending to each other.
Using the mouse, the user places the cursor over the particular message he wants to see and

interrupts the event display. REPLAY will prompt with a menu of actions available. The user

will select the option for viewing a message.

REPLAY first finds the message indicated by the mouse. The message’s type is an element
in the Pascal record describing messages. This type indicates which of the message templates is
to be used in decoding the contents of the message.

I \

REPLAY then opens a new window on the screen. It steps through the message buffer and
formats the raw bytes into characters, integers, or reals, as dictated by the message template.
Enumerated types are treated as integers. Although this is not perfect, it is no more 1
unreasonable than the restriction in standard Pascal against reading and writing enumerated

types to and from text files. Message templates were described in Section 2.2.1. i

When the user is through looking at the message, he issues the command to close the

window. REPLAY then goes back to displaying events.

The value of this “Freeze Frame” facility should be clear. The user can verify not only that
processes are sending messages to the right places, but that those messages have the right
contents. Formatting message contents is absolutely necessary. Simply displaying the values of
integers, characters and reals in octal gives the user no immediately understandable information
(except in the rare case of the true hacker who can decode octal into its equivalent floating point
or ASCII values). Furthermore, messages are displayed as a unit, unlike Schiffenbauer’s |
system which displays small data packets in octal. |

4.2.4 Selective Replaying of Events
It is possible while watching a program’s actions that a particularly interesting sequence of
events will occur which warrants further review. To accomodate this, REPLAY keeps a history

of a fixed number of events which have occurred. At any time, the user can stop the normal
replay and ask to see an “Instant Replay” of n previous events. The maximum number of

events that can be replayed is a compile-time constant in one of the Pascal source code modules.

When this facility is invoked, REPLAY saves the screen state and marks those processes
that were on the screen at the time. It clears the screen and starts as if the first event requested

were the very first event to occur. Processes and messages are drawn as needed.

Some information which was on the screen but which may not relate to the n events being

replayed will be lost during the instant replay. This loss is not permanent, since REPLAY

R TR T ST SR A

restores the screen at the end of the instant replay. The user can run the instant replay as many
times as desired before returning to the regular display. This facility is analogous to the
rewinding of video tape and replaying an interesting series of events during a sports broadcast,

hence the name “Instant Replay.”

When the instant replay is through, the screen is restored and the processes which were

marked as being saved are unmarked. Display then continues as before.

As a final possibility, the user may choose to restart the entire program replay from scratch.
This provides the convenience of not having to quit the program and then start it again from the

command level. Such small conveniences are often the most useful.

4.2.5 REPLAY Menu Options
At any time during the event replay the user can stop execution by causing a keyboard

interrupt.

This invokes an interrupt handler which presents the menu shown in Figure 14.

(o=
.

Change To/From Single-Step/Continuous Operation
Change The Number of Seconds Per Event

Skip Ahead To A Specific Event Number

Display contents of the Message Under the Mouse
Instant Replay

Start Displaying From Scratch

Exit REPLAY

Help

e W N & B AW N

Never Mind

Figure 14 --- REPLAY Menu Options

The user may skip ahead to a given event, specified by the event sequence number.

REPLAY will then skip to the first event which has the sequence number entered by the user.
This is useful if the user knows that his program stopped working after a given event. He can
make his changes, rerun the program, and then skip directly to where the change should have an

effect.
The help subsystem provides general information on how to use the RADAR monitor.

The ‘Never Mind’ option allows the user to recover in case he accidentally caused a keyboard
interrupt. It does nothing.

In all cases, after the interrupt handler does what the user wishes, the program returns to

where it was executing before the interrupt occurred.

Section 5

PRONET IMPLEMENTATION

An implementation of PRONET has been developed for PERQ computers running under
revision 2.0 of ACCENT, which is a communication oriented network operating system. The
run-time libraries developed for this implementation make use of ACCENT message and

process primitives through a procedure-like interface to the kernel.

Two language preprocessors, one for ALSTEN and another for NETSLA, have been
developed. These two preprocessors both translate a PRONET source program into a Pascal
program. Then, the Pascal program generated can be compiled using the PERQ Pascal

compiler.

5.1 The Preprocessors

The preprocessor actually consists of two parts: a scanner and a parser; both are table-
driven. The table-driven approach makes the preprocessor very language independent; i.e., it
can translate either ALSTEN or NETSLA so long as appropriate tables are provided.

The scanner tables are generated by the LEXGEN scanner generator from a description of
each token that may occur as input to the scanner. LEXGEN is similar to the standard Unix
LEX program except that it produced no program, only tables. These tables may then be used
in a scanner written in any language (PERQ Pascal, in this case). Tokens are described by
using a standard regular expression syntax. The parser tables are generated by ZUSE from
LL(1) grammers (see Appendix A and Appendix B) which have action codes embedded into
them. ZUSE is similar to the Unix YACC program except that it generates a parsing program
in Pascal rather than C. The action codes provide program fragments steps to be executed as

the parser recognizes syntactic structures in the input. In the case of this preprocessor,

appropriate Pascal codes is generated by these fragments.

-29.

The preprocessor accepts a scanner table, a parser table and source program as input and
generates a sequence of Pascal codes as a result of parser actions. The Pascal code generated
can then be compiled by using the PERQ Pascal compiler.

Figure 15 below illustrates the overall structure of the preprocessors.

PRONET
source code
scanner table
t‘.’ke." generator scanner
description ‘ table. —
i
PREPROCESSOR
SUORG translation parser parser __|
grammer —| table —table
LL (1) grammer generator |
Pascal code
PERQ

Pascal Compiler

.SEG file

Figure 15 --- Preprocessor Structure

The approach of preprocessing has two important advantages, although it is less efficient
than direct compilation. The first is that it was far easier to implement than a compiler would
have been. The second is that it makes the full power of PERQ Pascal, particularly access to
ACCENT kernal primitives, available to Pronet programmers, since kernel primitives are
accessable through calls to kernel interface procedures and functions in the Pascal library. The
preprocessors do no type checking, leaving that task to the Pascal compiler.

5.2 Module Structures

The NETSLA preprocessor generates two code modules for each network specification: an

“event handler module” and a “network specification module” (see Appendices C, D and E).

The event handler specifies the action that must be performed when a particular event
(either predefined or process-defined) occurs. The code in this module is structured as a nested
“case” statement. The highest level case statement performs a selection based on the event type
argument (message transmission, process-defined event, etc.). Lower level case statements are

used to distinguish between process classes, port sets and process-defined events.

The network specification module consists of the initialization clause which specifies the
static network. After the execution of the initialization clause, every process instance created in

the network will be activated by the root process.

In addition to these two preprocessor-generated modules, there are two more modules in
each NETSLA runnable file: a “DB manipulation module” and a “NETSLA run-time support
module.” The DB manipulation module contains all the routines that are needed to create and
maintain the network representation. The NETSLA run-time support module consists of
routines that implement those NETSLA activities (process creation, port creation, connection,

etc ...) based on ACCENT kernel primitives.

Figure 16 below illustrates the structure of the object module generated for each NETSLA
program. It is important to realize that both the event handler module and the network
specification module are network specific while the other two modules are common to all
network instances. The DB manipulation module and the NETSLA run-time support module
are separately precompiled and imported by the main body of the NETSLA program.

DB Manipulation MOdule common code
NETSLA Run-time Support Module | (libraries)

Event Handler Module network

Network Specification Module specific

Figure 16 --- NETSLA Object Module Structure

The ALSTEN preprocessor generates a single code module for each process script (see

S e O TN RS P R R ST

-31-

Appendices F, G, H and I). This module is a simple translation of the process script which
makes use of ALSTEN run-time support facilities for performing ALSTEN operations (send,

receive, announce, etc ...).

5.3 Processes and Ports

Both ACCENT and PRONET use the notions of “processes” and “ports”, but they are at
different levels of abstraction. We implement PRONET processes and ports by using
ACCENT processes and ports; the details of this mapping are hidden from PRONET

programmers.

A PRONET network specification is implemented as an ACCENT process from which any
number of ACCENT child processes can be created to represent the PRONET process
instances. Since we do not consider the case of “composite processes” in this implementation,
the network can be thought of as a tree of two levels with the network specification process as

the root. Composite processes can be implemented without much effort later.

An ACCENT port is a protected kernel object and is used for sending and receiving
messages. With each port the kernel associates send and receive (and ownership) rights. The
process that creates the port possesses all three rights. In this implementation, we use

ACCENT ports for two different purposes.

During the execution of the program, an ACCENT port will be allocated when a
CONNECT activity is performed. This ACCENT port is used for transmitting the PRONET
messages and will be deallocated when the corresponding DISCONNECT activity is performed.
Initially, the receiving process possesses the receive and send rights. Then the send right will be
passed to the sending process so that PRONET messages can be transmitted through this port.

There are three ACCENT ports allocated to each child process at the process creation time

for the purpose of communicating with the root process. One is for the root process to send the

child its process ID, the second is for implementing dynamic port connections and the third is

- 30

needed to implement port groups.

5.4 The Network Representation

A representation of the logical network described by a PRONET program is maintained in
the address space of the root process. This representation reflects the hierarchical structure
expressed in the program by maintaining a tree of network class and network instance
representations. The logical network representation also contains information about the
connectivity among the ports of network instances. The root of this tree is a network class
representation, the leaves are network instance representations which contain information about

the currently active processes in the logical network.

The codes for manipulating the logical network representation also reside in the address
space of the root process. All creations, updates and reads of the entities in the network

representation must be performed by calling from the root process an appropriate procedure in
the DB manipulation module.

This centralized approach of maintaining the logical network representation lowers the

degree of parallelism but reduces the cost of message transmission.

5.5 Event Generation and Handling

Event generation can be either upward or downward. The term “upward event generation”
is used to denote the generation of an event in the overseeing network while “downward event

generation” is used to denote the generation of an event in a process instance.

Upward event generation occurs when a process instance announces an event using the
“announce” statement of PRONET or transmits a message using the “send” statement.
Downward event generation occurs when a network specification creates or removes a port

instance on a process instance or sends a message to a process instance.

Event handling codes are generated by the NETSLA preprocessor and reside in the address

I T o

-33-

space of the root process during run-time. Upward event generation is implemented by sending
a message to the root process. This message includes all the information relevant to the event
generated. This kind of message arrives at a port which belongs to the root process and holds at

most four messages at a time due to the limitation of the size of the backlog for an ACCENT
port.

Upon receiving a message from a child process, the root process will call an appropriate
event handling routine based on the event type and other information included in the message.

Event handler executions are performed in a serial fashion. This centralized approach of event
handling has the disadvantage of a low degree of parallelism.

5.6 Implementation Limitations

All of the features of ALSTEN and NETSLA have been implemented and tested on a single
machine. However, because of continuing problems with Accent, we have never been able to
successfully run a program with processes located at more than one site. Thus all of our testing
of PRONET and RADAR has involved programs consisting of multiple processes running on a
single machine.

Section 6
RESULTS AND CONCLUSIONS

The principal results of our efforts, task by task, were:

Task 1 - implementation of Pronet on our Perq workstations, through use of pre-processors

which generate Perq Pascal code.

Task 2 - the development of a passive event recording system for multi-process Pronet

programs.

Task 3 - the development of a replay system which produces a high-level graphical simulation of

distributed program execution.

Task 4 - integration of the replay system with a single-process debugger.

6.1 Passive Event Recording

The decision to go with a passive monitor rather than an interactive debugger was one major

change in our philosophy during the course of this work. This change in approach resulted from

consideration of the basic conceptual problem presented by active interaction with a distributed
program: the intrusiveness of interaction might substantially change the behavior of the program
being debugged. Thus we chose to minimize the intrusiveness of Radar, but there still remains

the question of just how non-intrusive our monitor is.

Radar relies on the collection of information during the normal execution of a program. The

program runs to completion without any external interference or control. In particular, the data

collection is invisible, since it is done inside the ALSTEN message and event primitives.

How much does the extra disk I/O affect the computation in program? This is the
Heisenberg Uncertainty Principle as applied to Debugging, sometimes called the "Heisenbug”
Principle [ACMS83]. We can present no definite answer here. It is expected that the disk

—

-35-

operations actually buffer to memory until the buffer fills up. If this is the case, there should be
little extra overhead since the system will suspend a process only when its I/O buffers must be
flushed. The main problem is that while one process is suspended, others can continue to run
on other machines.

It can be argued that the fact that one process on one machine has been stopped should not
affect the other processes on other machines, since the ALSTEN receive is defined to be a
blocking operation. The other processes may wait longer to complete the receive than they

otherwise would have to, but ultimately, the same actions should be accomplished.

Suspending one process for disk I/O can affect other processes which continue to run, in a
different manner. The ALSTEN receive can specify several alternatives; in effect it can be
non-deterministic; receiving from port sets is actually non-deterministic, since the programmer
can not know which element of the set will be used. For instance, if there are three processes
A,B, and C, and process B was supposed to receive a message from process A, but A was

suspended, B could end up receiving a message from process C instead. This should not affect

the ultimate semantics of the program, since the receive could happen on any specified port. it

merely changes the path by which the program arrives at its goal.

One practical problem we encountered in initially using our recording and replay system
concerned programs which had to be aborted due to a loop in one or more processes. Simply
having Accent abort the processes caused the event files they produced to be discarded. It was

necessary to build a special capability into the root process representing the Pronet runtime
system to have it terminate the processes in an orderly manner. The basic lesson here is that
any passive monitor must make sure that it saves information in a way that will keep that
information available under adverse circumstances, because that is just when the information

will be needed.

—

6.2 Graphical Replay of Program Execution

The Pergs have high-resolution, bit-mapped black-and-white displays. This feature gave
considerable support to the development of a very effective graphical user interface to our

monitoring system. We consider this interface one of the most successful aspects of the project.

In the introduction, we noted that one of the most difficult aspects of designing a tool to
support distributed programming debugging was finding a comprehensible way to display
information about the program to a user. The graphical replay provided by Radar attacks this
problem by providing an abstract view of the behavior of the individual processes. The
information provided by the replay involves only activities at the "network” level: process
creation and deletion, establishment of connections between ports, message sending and
retrieving, etc. None of these activities is exclusively concerned with the internal state of a
single process. Thus the replay provides a user with a view of program execution at the "process
interaction” level. Only after an erroneous pattern of interaction is identified at that level is it

necessary to consider the internal details of any of the processes.

The alternative approach, only possible for a more intrusive debugger active during actual

program execution, would be to provide a multi-window display, with each window displaying
state information about and allowing interaction with a single process. For programs with more
than a few processes, all of the windows wouldn’t fit on the screen at the same time. Further,
so much detail about individual process activity would be available that it would be virtually
impossible to perceive the higher level structure that our replay system makes so apparent.
Thus, given our linkage to a single-process debugger, we believe that our more abstract

representation of program execution is a superior design choice.

After the program has completed executing, Radar is invoked to provide a graphical
“replay” of the execution. Each message or event is stamped with an event number, imposing
a partial ordering on events. The monitor then displays events one at a time. The programmer

‘ is able to watch the communications traffic amongst the processes. Processes have names in

B R N A RO e VS P

-37-

Pronet, so it is easy for the programmer to see which process is communicating with which other

processes.

Radar provides the user with the ability to view the contents of any message currently
represented on the screen. Messages are represented on the screen as small boxes. The user
places the PERQ’s mouse over the message which he wishes to examine. Radar then displays
the contents of the chosen message in a formatted fashion. For instance, if the message
contained an integer and two floating point numbers, the message would be displayed as an

integer and two floating point numbers, not as 10 octal bytes.

Radar also provides the ability to replay a certain number of events which have already
happened. This can be done at any point during the display. The user can “rewind the video
tape,” so to speak. This replay is limited to a fixed maximum number of previous events. The
user also has the choice of watching a continuous stream of events (occuring at an interactively
settable rate), or single-stepping through events. This prevents information from flowing too

fast to be comprehended.

Finally, as a separate utility, the user can name a given process and have all of the messages
which were sent to that process selected from the recorded message traffic. This single process
may then be run by itself with its messages derived from the stored messages. This feature is
designed to facilitate single process debugging under realistic conditions, without having to
worry about controlling the rest of the processes of the distributed program.

6.3 Integration with a Single-Process Debugger

Only task 4 went just as it was originally planned. Our program replay system interfaces
with the Kraut debugger, which is a standard high-level debugger under Accent. All of the
messages to a single process can be collected from the event files. Then that process may be

executed again, along with a special driver that simulates the rest of the program. Note that the

selected process is actually executed, not simulated; however, the rest of the program is

-38-

simulated. The driver simulates the rest of the program by providing messages received by the
selected process as they are needed. Thus the process under examination should execute just as

it did when the event files were originally collected.

The debugging methodology these mechanisms support works as follows. A program is
executed with event files being collected. Its execution is replayed by Radar until the user
identifies some particular process as exihibiting inappropriate behavior. Such behavior might be
such things as inappropriate or missing message transmission, incorrect contents in a message or
any other event visible at the network level. The user than asks for a re-execution of that
process and examines its internal state during this replay using Kraut. Whenever the process
executes a message receive statement, the Radar driver supplies the appropriate message.
Whenever the process sends a message, the driver discards it. This process continues until the

cause of the inappropriate behavior can be determined and (hopefully) corrected.

There is only one problem with the above scenario. ALSTEN includes a conditional receive
statement which allows the program to go on executing rather than blocking if it tries to receive
a message and none is available in its incoming message buffer. Such an unsuccessful attempt
to receive is not an externally visible event and thus was not originally recorded in the event
files. During re-execution with the special Radar driver and Kraut, messages are always
available upon request. Thus a process whose execution originally included unsuccessful
conditional receives would not execute in exactly the same way during re-execution. We found
it necessary to begin recording unsuccessful conditional receives so that it would be possible to

faithfully re-execute processes in this situation.

The ability to examine program execution at the two different levels of abstraction provided
by Radar and Kraut provide a very effective technique for tackling the information overload
problem of monitoring distributed programs. This idea of replaying a process using stored
messages has also appeared recently in a slightly different context: crash recovery in a message

based distributed system ([Borg83] and [Powe83]).

-39-

6.4 Approaches Taken by Other Researchers

Bates and Wileden [Bate83] take the approach of viewing the ‘Behavioral Abstraction’ of a
program’s execution. Basically, the system is viewed ‘in terms of its activity rather than its
state.” They provide for primitive events such as process creation, page faulty, message
transmission, and message reception. Higher level events or ‘event abstractions’ are built up by
designating sequences of primitive events. The debugger then recognizes higher level events

and displays these for the programmer, while filtering out other unimportant events.

Gross and Zwaenepoel [Gros83] discuss those aspects of a distributed system both necessary
and desirable for easy debugging. They do not present an actual debugging system. The
system they propose would support the debugger as a separate process, with kernel facilities
which would allow the debugger control over the program’s execution, memory and kernel
calls. They also make a distinction between the micro level of execution, which is the
computations made by each process, and the macro level, where the overall computation

proceeds via messages passed amongst the processes.

Schiffenbauer [Schi81] presents an ambitious project implemented on a network of Xerox
Alto minicomputers. He gives an introduction to the problems of distributed debugging and
then a discussion of the major issues in designing a debugging facility. The two major issues are
transparency of the debugger (a practical consideration), and the theoretical consideration of
causality and logical clocks. He then described the implérnentation of his debugging facility.
One of the more important parts of his work is his implementation of ‘logical clocks’ and his
proof that through the use of logical (rather than actual) clocks, his debugger simulates a valid
execution of the distributed program. He further proves that the debugger simulates a probable
execution of the program, i.e. that the program behaves the same while being debugged as it
probably would have behaved had it been allowed to execute unmonitored.

Curtis and Wittie [Curt82] present their design of a debugging system for parallel

programming environments. A parallel programming environment is either a conventional

multiprogramming single processor system, or a ‘network computer,” an ensemble of
semiautonomous nodes, each with its own memory, peripherals, and communication links. The

nodes communicate by passing messages over their links.

The debugging system consists of local event monitors on each node, a central database
system, and a user interface. The user interface is based on production rules, which the user
expands into sequences of symbols describing what events he wants recorded, what variables
saved, and what actions are to be taken upon the occurrence of any given event. This debugger,

like that of Bates and Wileden, must be programmed.

Harter [Hart85] proposes a debugging system which includes a standard sequential debugger
plus an assertion language, based on temporal logic, to control the automatic monitoring of
distributed programs. The system allows a programmer to expand the assertion set
interactively. It also includes a graphics interface to display and filter information about

program execution.

Our work described below attempts to present a higher level view of message traffic that
Schiffenbauer’s minimally intrusive view of program execution. We agree with and support the
distinction between micro and macro levels of execution suggested by Gross & Zwaenepoel.
The interface to our system is simpler than those provided by Harter, Curtis & Wittie and Bates

& Wileden, since it need not be programmed.

6.5 Possibilities for Further Research

When a user watches the replay of a program using Radar, he quickly begins to recognize
“patterns” consisting of sequences of several events. It would be desirable if Radar had some

capability to display execution in terms os such higher-level events. An important question is

how such structuring might be made to take place.

-l -

6.5.1 A Common Structuring Methodology
One very prevalent and well understood method of imposing structure on incoming
information is via lexical analysis and/or parsing techniques. These techniques are well

understood, and often easy to use.

Breugege [Breu84] uses Path Expressions, an extension of Regular Expressions. A path
expression describes a sequence of events to be looked for, and actions to be executed when that
sequence is matched, or not matched. The notation provides good flexibility of description, and
would seem to supply a good method for RADAR to use for dealing with its stream of Pronet

events.

6.5.2 The Problems with Path Expressions
Path expressions, or more generally, regular expressions and LALR(1) parsing techniques,
are a natural first choice for the computer scientist wishing to impose structure on a data stream.

Here however, it may be a case of using a useful, but inappropriate, tool for the job.

Why? In this case, the major flaw with these techniques, particularly path expressions, is
that they are predictive. The debugging programmer must describe what he expects the
debugger to see, and then what to do. But is a program is bug-ridden, it may never do what the
programmer expects it to, even if he is looking for aberrant behavior! So, an interesting and
possibly important stream of events could conceivably end up being missed by the debugger,
and therefore by the programmer. In sum, a debugger should present a distillation of what
happened, not what the programmer expected to happened.

A secondary, although in our view still major, flaw is that this kind of debugger has to be
programmed. The user must learn (and remember!) yet another kind of notation, and yet
another set of commands. If a debugger is hard to use, it may not get used at all. One of the

major RADAR design goals was that it should not have to be programmed.

-42-

6.5.3 Using a Data Compression Approach
If regular expressions, LALR(1) grammers, and path expressions are not the answer, what
is? For the reasons we are about to present, we feel that an approach based on data

compression would be an interesting area for future research.

6.5.4 Why a Data Compression Approach?

When one stops to think about it, it becomes clear that the problem is really one of data
compression. We want to replace sequences of low level events with a shorter symbol that
represents that sequence. This is exactly what data compression techniques do, although usually

they are just acting upon simple byte streams.

The shorter symbol can be given a name that describes the sequence in a “higher level”
fashion. For example, replace the sequence “find Fred’s number in the phone book™, “lift the
phone handset”, “listen for dial tone™, and “dial the number”, with, “call Fred”.

This approach has several advantages. First, it is not predictive, looking for one thing and
missing another. Instead, it is empirical, condensing what is there. It represents all the event
sequences as they happened. Second, it fits in very well with RADAR’s current passive, post-
mortem approach to program monitoring. Third, the machine does the work of detecting event
sequences and condensing them, not the programmer. There are no new notations or

commands to learn.

6.5.5 Possible Implementation Plan

There are numerous data compression techniques. A recently developed, and very powerful
technique is the Adaptive Lempel-Ziv Compression described in [Welc84]. On “normal” files
of English text it often achieves compression of 50% or greater. One of its strongest points is

that it tends to compress the longest possible sequence into a single code.

RADAR gives unique identifies (numbers) to each kind of Pronet message. A single

RADAR event would consist of the sending process id, the receiving process id, and the

-85 -

message type. These events should be representable as unique integers of at most two bytes. A
first (conceptual) pass over the recorded data would build a table of event triples (sender,

destination, message type) and their corresponding integers.

Next, the second pass performs Adaptive Lempel-Ziv compression on the integer stream,
saving the compressed output. As part of the compression algorithm, the Lempel-Ziv method
builds a table of codes and what each code represents.

After compression, this table is presented to the user. RADAR presents each sequence and
‘ asks for a high level name for that sequence (“‘call Fred”).
. Once that is done, the compressed data is then “decompressed”’; but not back into an integer
l stream. Instead, as each higher level code is recognized, the corresponding high level event is
displayed graphically on the screen.
i
6.5.6 Problems with This Approach
| The method outlined above is not without its problems. In particular, the ordering of events

that RADAR imposes is only a partial ordering. Events are sometimes depicted on the screen
in an order different from that in which they actually occurred. Only related events are
guaranteed to be ordered. This is because RADAR currently works by merging multiple event
streams into a single event stream for display. The problem with this approach is that
li nonrelated events end up being interleaved with each other. This could conceivably affect the
data compression algorithm. Non-related events could be compressed together, i.e. treated as

related! (instead of being compressed with their related events).

| A major thrust of any future research would be to see if a data compression approach is

feasible, and to learn whether or not non related interleaved events would detrimentally affect

the data compression, or if the nature of the algorithm is such that it would not matter. Another
goal would be to see if some approach could be found to work directly from the original

multiple data streams, instead of from the merged single data stream.

D e T TR

-

v

As an alternative, some sort of knowledge-based pattern recognition approach might be
tried. The data compression approach is essentially syntactic; a pattern recognition mechanism
could conceivably work better by making use of information in messages or about network
interconnections. Relative computational demands of these two approaches are an obvious

tradeoff.

6.6 Conclusions

Finally, we restate our principal conclusions:

- Graphical display of information is an excellent technique for providing information about
the execution of a distributed program.

- Passive monitoring and simulated replaying is a successful approach for minimizing the

impact of the monitor on the execution of the program under examination.

- Multi-level tools are required to deal effectively with all aspects of distributed program
debugging.

We must state that these conclusions are based on relatively little experience with Radar.

Because Accent has not been as stable as we had anticipated, there is really no user community

on the Pergs other than the people who have worked on the Radar project. A much more

extensive evaluation of our tools would be highly desirable.

[3RCC82]

[ACMB83]

[Bate83]

[Borg83]

[Breu83]

[Curt82]

[Gross83]

[Hart85]

[Jens74]

-45-

BIBLIOGRAPHY

Perq System Software Reference Manual; Three Rivers Computer Corp.;
Pittsburgh, Pa., May 1982.

Proceedings of the ACM Symposium on High Level Debugging; SIGPLAN Notices,
Vol. 18, No. 8, August 1983.

- “An Approach to High Level Debugging of Distributed Systems”; P.C. Bates,

J.C. Wiledon; Proceedings of the ACM SIGSOFT/SIGPLAN Symposium on High
Level Debugging SIGPLAN Notices, Vol. 18, No. 8, August 1983, pp. 107-111.

“A Message System Supporting Fault Tolerance™; A. Borg, J. Baumback and S.
Glazer; Ninth ACM Symposium on Operating Systems Principles, October 1983, pp.
90-99.

“Generalized Path Expressions - A High Level Debugging Mechanism™; B.
Breugege, P. Hibbard; Jowrnal of Systems and Software, Vol. 3, 265-276.

“Bugnet: A Debugging System for Parallel Programming Environments”; R.
Curtis, L. Wittie; Proceedings of 3rd International Conference on Distributed

Computing Systems, Fort Lauderdale, Florida, August, 1982, pp. 394-399.

“System Support For Multi-Process Debugging”; T. Gross, W. Zwaenepoel;
Conference Preprints from the ACM SIGSOFT/SIGPLAN Symposium on High
level Debugging, March, 1983; pp. 192-196.

“IDD: An Interactive Distributed Debugger”; P. K. Harter, Jr., D M.
Heimbigner, R. King; Preceedings of The 5th International Conference on
Distributed Computing Systems, Denver, Colorado, May, 1985, pp. 498-506.

Pascal User Manual and Report; K. Jensen, N. Wirth; Springer-Verlag, 1974.

[Live80]

[Macc82]

[Powe83]

[Schi81]

[Welc84]

Run-Time Control in a Transaction Oriented Environment; N. J. Livesey; Ph.D.

Thesis, University of Waterloo 1980.

Language Features For Fully Distributed Processing Systems; A. B. Maccabe;
Ph.D. Thesis; Technical Report GIT-ICS 82/12, School of Information and
Computer Science, Georgia Institute of Technology, August 1982.

“Publishing: A Reliable Broadcast Communications Mechanism”; M. L. Powell
and D. L. Presotto, Ninth ACM Symposium on Operating System Principles,
October 1983, pp. 100-109.

Interactive Debugging In A Distributed Computational Environment; R. D.
Schiffenbauer; Master’s Thesis, Massachusetts Institute of Technology, August
1981.

“A Technique for High-Performance Data Compression,” T. A. Welch, IEEE

Computer, Vol. 17, No. 6, pp 8-19.

Appendix A Page 47

APPENDIX A

The LL(1) Grammar of NETSLA

Grammar productions with selection sets added:

Prod # Production

1 network spec = net head const pt type pt port decl pt
evnt decl pt proc decl 10 evnt _clse 10
init clse0 end identifier
tnetwork ;

2 net head = network identifier ;
gnetwork ;

3 proc_decl 10 =
garrive end enter initial leave when ;

4 proc decl 10 = process decl proc decl 11
$process ;

5 proc decl 11 =
' garrive end enter initial leave when ;

6 proc_decl 11 process decl proc decl 11

¥process ;

7 evnt clse 10 =
%end initial ;

8 evnt_clse__lo = event_clause evnt_clse_ll
gsarrive enter leave when ;

9 evnt clse 11 =
gsend initial ;

10 evnt clse 11 = event clause evnt_clse_ll
gsarrive enter leave when ;

11 init_clseo
gend ;

12 init clse0 = initial activity 1st
g¢initial ;

13 const pt = :
sarrive end enter event initial leave
port process type when ;

14 const pt = const con def list

appendix A

fconst ;

15 con__def_list
gidentifier

16 next con def
garrive end

= const__def next con def

’

enter event initial leave

port process type when ;

17 next con def
gidentifier

18 const def =
gidentifier

19 new const id
gidentifier

new const id =

= const_def nex t_con_def

’

constant ;

’

= identifier

’

20 constant = signed const

¥+ -

21 constant = unsigned con

$cha r_const

22 signed_const
=+ -

23 after_sign =
freal const

24 after_sign =
$int_const

25 after_sign =
gidentifier

26 unsigned _con
gidentifier

27 unsigned_con
tint_const

28 unsigned con
%char_const

29 unsigned con

identifier int const real const string const ;

sign after_sign

real_const

.
’

int const

-.

const_id

.
’
~

identi fier

-

= int const
;

= cha r_const

’

= string_const

¥string const ;

30 unsigned con
freal const

31 scalar_const
gidentifier

= real_const

’

= identifier

°
’

Page 48

Appendix A Page 49

32 scalar const = non_id_s__con
$+ - char_const int const ;

33 non id s con = sign id or_int
$+ - . ;

34 non id s con = int _const
$int const ;

35 non id s con = char_const

tchar_const ;

36 id_or__int = const_id
gidentifier ;

37 id_or_int = int_const
gint _const

~e

38 const id = identifier
gsidentifier ;

39 type pt =
garrive end enter event initial leave
port process when ;

40 type pt = type typ def list
stype

41 typ def list = type def next typ def
gidentifier ;

42 next typ def =
garrive end enter event initial leave
port process when ;

43 next typ def = type def next typ def
tidentIfier ;

44 type def = new type id = types ;
gsidentifier ;

45 new type id = identifier
gidentifier ;

46 types = type casel
gidentifier ;

47 types = type case2
$(+ - array char_const int const
packed record set ;

48 type casel = identifier type tail

Appendix A Page 50

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

sidentifier ;

type tail =

%) ; case end ;

type tail = .. scalar_const
B anat

type case2 =non id s con .. scalar_const
%+ - char_const int const ;

type_case2 = struct type
sarray packed record set ;

type_case2 = (enu_ id list)
$(

non id_type = non_id simp
%(+ - char_const identifier int const ;

non_id_type = struct type
garray packed record set ;

simple type = type id simp_ty tail
gsidentifier ;

simple type = (enu_id list)
8(

simple_type = non id_s con .. scalar_const
%+ - char_const Int const ;

simp_ty tail =
%) , ;] case end ;

simp ty tail = .. scalar_const
$e's .3

non_id_simp = (enu_ id list)
8(s

non id_simp = subrange con .. scalar_const
$+ - char_const identifier int const ;

pt _class nam = identifier
gidentifier ;

enu id list = identifier enumer_tail.
gidentifier ;

enumer_tail =
%)

Appendix A Page 51
66 enumer_tail =, identifier enumer tail
%
67 subrange con = identifier

gidentifier ;

68 subrange con = non_id s con
%+ - char_const int const ;

69 type id = identifier
gidentifier ;

70 struct _type = pack prefix unpacked
garray packed record set ;

71 pack prefix = packed
spacked ;

72 pack prefix =
garray record set ;

73 unpacked = array [indx ty list] of

types
garray

~e

74 unpacked
grecord ;

record_head field_list end
75 unpacked = set of simple type
gset ;

76 record_head = record
grecord ;

77 indx_ty list = simple type index tail
$(+ - char_const identifier int__const ;

78 index_tail =
)

79 index_ta il
%

+ simple type index tail

80 field list = rec sec list with_variant

%) ; case end identifier ;

81 rec_sec_list = rec_section rec_sec_tail
%) ; case end identifier ;

82 rec_sec tail =
%) case end ;

83 rec_sec_tail = ; rec_section rec_sec_tail

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

%

rec_section = fieldid list : types

sidentifier

rec section

’

$) ; case end ;

fieldid_list
gidentifier

with_variant
%) end ;

with_variant

gcase ;
field_id_end
Surr;

fi eld_id_end
%

variant pref
§case ;

tag_type ids
gidentifier

tag_typ tail
gof ;

tag_typ tail
X1 s

= identifier field_id_end

.
’

variant pref variant list

' identifier field id end

case tag_type ids of

tagfield id tag_typ tail

!

scalar_ty id

tagfield id = identifier

gidentifier

scalar_ty id
gidentifier

variant list

.
’

= identifier

= variant variant tail

$) + - ; char _const end
identifier int_const H

variant = case 1 list : (field head field list

)

%+ - char_const identifier int const ;

variant =
%) ; end

-.

£ ield_head

Appendix A Page 53

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

%) ; case identifier ;

Variant_tail =

$) end ;

variant tail = ; variant variant tail
%

case 1 list = scalar const caselabelend

%+ - char_congt identifier int const ;

caselabelend
$:0 ;

caselabelend ’ scalar_const caselabelend
%

port decl pt =
garrive end enter event initial leave
process when ;

port decl pt = pt decl list ;
gport ; |
pt decl_list = port decl pt decl tail ‘
$port” ; ' |
port decl = port head pt_dir mtype |
gport ; ‘
pt_dir_mtype = in type id H ‘
gin ; -
pt_dir mtype = out type id ;
sout ; Gl
pt_dir mtype = port group ;
8(s
pt decl tail = \

Rarrive end enter event initial leave
process when ;

pt_decl _tail = port decl pt_decl tail

gport ;
port head = port port tail
gport ; -
port tail = identifier

gidentifier ;

port tail = set identifier

Appendix A Page 54

gset ;

118 port group = (sbptdecllist)
$(

119 sbptdecllist = subport decl next subport
gidentifier ;

120 subport _decl = subport name direct type
gidentifier ;

121 direct type = in type id
$in ;

122 direct type = out type id
sout ;

123 subport name = identifier

gidentifier ;

124 next subport
%)

125 next subport ; Subport decl next subport
%

126 process decl = process head attri_decls0 port decl pt evnt decl pt
end Tdentifier |
{process ; |

127 process head = process class identifier
fprocess ;

128 attri decls0 =
gend event port ;

129 attr i_decls 0 = attr i_head attr i_sec__ls attr i__ta i1
gattributes ;

130 attri_head = attributes ‘
gattributes ;

131 attri_tail = end attributes
g¢end ;

132 attri_sec_ls = attri_sec attri_secl
%$; end identifier ;

133 attri_secl
gend ;

134 attri_secl = ; attri_sec
%

Appendix A

135 attri sec = attri_id 1s : types

gidentifier

136 attri sec =
$; end ;

’

137 attri id 1s = identifier attri_id 1sl

sidentifier

138 attri_id 1sl
$: ;

139 attri_id 1sl
%

140 evnt decl pt
garrive end
when ;

141 evnt decl pt
gevent ;

142 next event =
garrive end
when ;

143 next event
sevent ;

144 event decl
gevent ;

145 about_ptnm0
%

146 about_ptrm0
sabout ;

147 event_clause
garrive ;

148 evenq_plause
genter ;

149 event clause
gleave ;

150 event clause
swhen ;

151 arriv_clause
sarrive ;

’

, identifier

enter initial leave process

= event__decl next event

enter initial leave process
event_decl next event

event identifier about ptrm0 ;

about identifier

arriv clause

enter_clause

leave clause

when_clause

arrive_head activity lst close end arrive

Page 55

Appendix A ; Page 56

152 arrive head = arrive open arrive bind do
sarrive ;

153 arrive bind = message id0 on arrive port from proces0
g¢identifier on ;

154 message_id0 =
son ;

155 message_id0 = identifier
gidentifier ;

156 arrive port = identifier arrive portl
gidentifier ;

157 arrive portl =
%do from ;

158 arrive portl : identifier
$:

159 arrive portl
0f. .3

of port _bind
160 port bind = identifier port bindl
gidentifier ;

161 port bindl =
%do from ;

162 port bindl : identifier

- T

163 from proceso0
gdo ;

164 from proces0

|] from process bind
gfrom ;

165 process bind identifier proces bindl

sidentifier ;

166 proces bindl =
gabout do ;

167 proces _bindl : identifier
$:

168 enter clause

a enter_head activity lst close end enter
fenter ;

169 enter_head = enter open port bind do

Page 57

Apperdix A
genter ;

170 leave clause = leave head activity lst close end leave
gleave ;

171 leave head = leave open port bind do
gleave ;

‘ 172 when clause = when head activity lst close end when

swhen ;
173 when head = when open identifier announced by process bind
: about part0 do
swhen ; .

174 about part0
gdo ;

175 about_part0
gabout ;

about port bind

176 activity lst = activity activities
%) ; announce case connect construct
create disconnect else end find identifier
range remove send terminate ;

177 activities =
%) else end ;

s ik - =V e H K

178 activities = ; activity activities
8

-

179 activity =
%) ; else end ;

— e -

180 activity = simple act
$announce connect construct create disconnect identifier
remove serd terminate ;

181 activity = control act |
gcase find range ; |

. 182 simple act = creation |
' ¥create ; |
183 simple act = termination |

sterminate ;

184 simple act = removal
fremove ;

185 simple act = connection
$connect ;

|

s T

e — D -

- - - P

— O

;
{

Appendix A Page 58

186 simple act = disconnecton
gdisconnect ;

187 simple act = msg_transfer
$send ;

188 simple act = construction
fconstruct ;

189 simple act = attri_assign
gidentifier ;

190 simple act = event trans
fannounce ;

191 simple bind = object _id : identifier simple bindl
gidentifier ;

192 object id = identifier
gidentifier ;

193 simple bindl =
%do where ;

194 simple bindl = on proc_denoter
son ; .

195 obj denoter = lhs
sidentifier ;

196 port denoter = obj_denoter
gidentifier ;

197 proc_denoter = identifier
gidentifier ;

198 creation = create create__tail
gcreate ;
199 create tail = identifier : identifier create taill

gsidentifier ;

200 create_taill =
%) ; else end ;

201 create_taill =on proc_denoter
son ;

202 termination = terminate proc_denoter
$terminate ;

203 removal = remove obj_denoter

Appendix A Page 59

gremove ;
¢ 204 connection = connect port denoter to port denoter
$connect ;
' 205 disconnecton = disconnect port denoter from port0
: ¢disconnect ;
, 206 from port0 =
1 %) ; else end ;
:
207 from port0 = from port denoter
' sfrom ;
208 msg_transfer = send expr0 to port denoter
$send ;
!
i 209 expr0 =
i $to ;
210 expr0 = expr
$(+ - [char_const identifier
int const not real const string const ;
\ £ 5 >,
.
211 construction = construct hd [field as 1lst]
| gconstruct ;
‘I
212 construct hd = construct object id : identifier
gconstruct ;
$ 213 field as 1st = field assign fd assignl
‘ gidentifier ;
214 fd assignl =
, 8]
' 215 fd_assignl = ; field assign

%

216 field assign = lhs := expr
gidentifier ;

— W —

217 attri_assign = lhs := expr
gidentifier ;

218 event trans

1 = announce event id about port0
gannounce ; B =,

219 about port0 =

i —

%) ; else end ;

220 about_port0 = about port_denoter

_

Page 60

appendix A
%about ;

221 control act = alternation
%case ;

222 control act = selection
$find ;

223 control act = iteration

frange ;

224 alternation
$case ;

alternate hd case list else part0 end case

225 alternate hd = case expr of
gcase ;

226 case_list = case_element case_listl
$+ - char_const identifier int const

~e

227 case_listl =
gelse end ;

228 case__listl = case element case_listl
%+ - char_const Identifier int const ;

229 case_element = const list : (open activity lst close

)

%+ - char_const identifier int const ;

, 230 const_list = scalar_const const_listl
. %+ - char const identifier int_const

.

231 const 1 istl

%:
232 const_listl =, scalar_const
T %
233 select crite = simple bind where claus0

gidentifier ; ;

234 selection
find
$find ;

find_head do activity lst close else_part0 end

235 find head
$find ;

find open object id : find headl

236 find headl = string
gstring ;

237 find headl = identifier simple bindl where claus0

Appendix A Page 61

gidentifier ;

238 iteration = range open select crite do activity_lst close
else part0 end range
frange ;

239 else_part0
gend ;

240 else part0) = else open activity lst close
gelse ;

241 where_clauso
gdo ;

242 where_clauso
gwhere ;

where expr

243 open =
%) ; announce case connect construct
create disconnect end find identifier on
range remove send terminate ;

244 close =
%) else end ;

245 id_list = identifier id_list_tail
gsidentifier ;

246 id list tail =
Bt

247 id 1i st_tail ; identifier id_list tail
%

248 actual parms (actual parm next a parm
$(
249 actual parm = parm expr field width
%(+ - [char_const identifier
int_const not real const string_const ;

250 next a parm =

%)

251 next a parm =, actual parm next a parm
%, -

252 lhs = identifier rec_ary ptr

gidentifier ;

253 vars = identifier rec_ary ptr
gidentifier ;

Appendix A Page 62

254 rec ary ptr =
3 *F, - ..
/s =5 =1
and div do else end from
in mod noneqrelop of or to ;

255 rec_ary ptr . identifier rec_ary ptr

Rl a3

256 rec_ary ptr [index list] rec_ary ptr

$[

257 index list = index next index
$(+ - [char_const identifier
int _const not real const string const

-e

258 next_index = 5 index
%, H

259 next_index
‘ %]

260 index = expr
$(+ - [char_const identifier
int const not real const string const

‘ 261 expr = parm expr
$(+ - [char_const identifier
int _const not real const string_const

e

, 262 parm expr = simple expr parm exp_ end
‘ $(C+ - [char_ const identifler
- int_const not real const string_const

-,

’ 263 parm exp end =
%) 4 oot ;]
do else end of to ;

264 parm exp end = rel op simple_expr
$= in noneqrelop ~;

265 rel expr = simple expr rel . OP simple_expr
${ + - [char_const identifier
int _const not real const string const ;

\ 266 rel op ==
| 3= ;

| 267 rel op = in
gin ;

268 rel_op = noneqrelop

Appendix A Page 63

g$noneqgrelop

269 simple expr = char_const add_term
$char_const ;

270 simple expr = string_const add_term
tstring const ;

271 simple expr = sign term add term
¥+ -

272 simple expr = term add term
$([identifier int_const not real const

273 add_term =
%) y ee o+ ;=
] do else end in noneqrelop
of to ;

274 add_term = add_op term add_term
$+ —-or ;

275 term = factor mult factor
$([identifier int const not real const ;

276 mult__factor =
) +, - .. ¢
; =] do else end
in nonegrelop of or to ;

) 277 mult factor = mult op factor mult factor
$* / and div mod ;

278 factor = identifier var_funccall
' gidentifier ;

279 factor = real const

freal const ;

‘ 280 factor = int_const
%int_const ;

'

‘ 281 factor = (expr)
$(

i 282 factor = [elem list]

s

\
l 283 factor
gnot

not factor

.
’

284 var_funccall = rec_ary ptr
%) * + r T .

/
f

Appendix A Page 64

e/t =1
] and div do else end
in mod noneqgrelop of or to ;

285 var_funccall = acttal_pafms)
8(

286 add op = sign
+ -

287 add_op
sor ;

or

288 mult op

¥

]
~N

i 289 mult op
8/

: 290 mult op
¥div ;

div :

291 mult op = and
gand ;

292 mult op = mod
fmod ;

293 variable = identifier rec_ary ptr
gidentifier ;

294 field width

%),

295 f ield_wid th
R0

: expr more_field

296 more_field
%) . H

297 more field
Rsesss

T expr

\ 298 elen_list =
3]

299 elem list = elem next elem
$(+ - [char_const Tdentifier
Int_const not real_const string const ;

300 elem = expr elem tail
$(+ - [char_const identifier
int _const not real const string const ;

Appendix A Page 65

301 next elem
3]

302 next elem + elem next elem

%

303 elem tail =
%] 3

304 elem tail = .. expr
.. H
305 proc id = identifier

sidentifier ;

306 rec var_list = variable next rec var
gidentifier ;

307 next rec var =
3 ;

308 next rec var =, variable next rec var
E-Y) H

309 subport =
%

310 subport
el abe

. subport _id

311 pt _class id = identifier
gidentifier ;

312 subport _id = identifier
gidentifier ;

313 expression0 =
% ;

314 expression0 = expr
$(+ - [char_const identifier
int_const not real_const string const ;

315 event_id = identifier
gidentifier ;

316 sign = +
+
317 sign -

~

%—

Appendix B Page 66

APPENDIX B

The LL(l1) Grammar of ALSTEN

Grammar productions with selection sets added:

Prod # Production

1 comp unit = prog_head prog
%@ process ;

2 prog_head = process script prog_id ;
gprocess ;

3 prog_id = identifier
gidentifier ;

4 prog = port decl pt label pt const pt type pt evnt decl pt var_pt
proc fct pt stmt pt .
$begin const event function label port
procedure type var ;

- block = label pt const pt type pt var_pt proc_fct pt stmt pt
%begm const function label procedure type
var ;

6 label pt label label list ;
glabel ;
7 label pt =
$begin const event function procedure type
var ;

8 label list = labels next label
gidentifier int const ;

9 nex t_label

¥ 7

10 next label =, labels next label
%

11 labels = int const

sint const ;~

12 labels = identifier
gidentifier ;

13 const pt =
$begin event function procedure type var ;

Appendix B Page 67

=

14 const pt = const con def list
gconst ;

15 con__def_list = const_def next_con__def
gidentifier ;

16 next con def =
$begin event function procedure type var ;

17 next con def = const def next__con_def
h sidentifier ;

18 const def = new const id = constant ;
gidentifier ;

19 new const id = identifier
: sidentifier ;

20 constant
g+ -

signed_const

21 constant = unsigned_con
$char_const identifier Int const real const string_const ;

22 signed const = sign after_sign
+ - ;
23 after_sign = real const
] $real const ;
24 after_sign = int const
$int const ;
25 after_sign = const_id
- gidentifier ;
26 unsigned con = identifier
gsidentifier ;
27 unsigned con = int const
. $int const ;
28 unsigned con = char const |
$char_const ; ’
1 29 unsigned con = string_const
§string const ; |
’ 30 unsigned con = real const
freal const ;
:
p 31 scalar const = identifier

gidentifier

.
’

Appendix B
32 scalar_const = non_id s con
$+ - char_const int const ;
33 non id s con = sign id or_int
$+ -
34 non id s con = int const
sint const ;
35 non id s con = char_const
tchar const ;
36 id or_int = const id
gidentifier ;
37 id or_int = int const
$int const ;
38 const_id = identifier
gidentifier ;
39 type pt =
g$begin event function procedure var
40 type pt = type typ def list
$type ;
41 typ def list = type def next typ def
gidentifier ;
42 next typ def =
gbegin event function procedure var
43 next typ def = type def next typ def
gsidentifier ;
44 type def = new type id = types ;
gidentifier 7
45 new type id = identifier
tidentifier ;
46 types = type casel
gidentifier ;
47 types = type case2
$(+ - array char_const int const
packed ptr record set tag ;
48 type casel = identifier type_tail

gidentifier ;

~e

Page 68

Appendix B Page 69

49 type_tail =
%) ; case end ;

50 type tail = .. scalar_const

$.. ;

! 51 type case2 = non id s con .. scalar_const
$+ - char_const int const ;

52 type _case2 = struct type
gsarray packed record set ;

53 type case2 ptr identifier

sptr ;

54 type case2
$(

(enu id list)

55 type case2
ttag ;

tag of pt_class nam

56 non_id type = non_id_simp
$(+ — char_const identifier int_const
tag ;

57 non_id type = struct type
garray packed record set ;

58 non_id type = ptr identifier
sptr ;
59 simple type = type id simp ty tail

gsidentifier ;

60 simple type = (enu_ id list)
: N3

61 simple type = non id s con .. scalar_const
$+ - char_const int const ;

62 simple type = tag of pt class nam
) ttag ;

63 simp_ty tail =
%) , ;] case end ;

64 simp ty tail = .. scalar_const
65 non_id simp = (enu_id list)
8(s
66 non _id_simp = suwbrange con .. scalar_const

—

Apperdix B Page 70

$+ - char_const identifier int const ;

67 non_id simp = tag of pt class nam
ttag ;
‘ 68 pt_class nam = identifier
gidentifier ;

69 enu id__list = identifier enumer_tail
sidentifier ;

. 70 enumer tail

%) 7
71 enumer_tail =, identifier enumer_ tail
%
f 72 subrange con = identifier

gidentifier ;

73 suwbrange con = non id s con
$+ - char_const int const ;

74 type id = identifier
sidentifier ;

75 struct type = pack prefix unpacked
garray packed record set ;

76 pack prefix = packed
gpacked ;

77 pack prefix =
garray record set ;

78 unpacked = array [indx_ty list] of

types
array

-

79 unpacked
srecord ;

record_head field_list end
80 unpacked = set of simple type
gset ; e

81 record head = record
grecord ;

82 indx_ty list = simple type index tail
$(+ - char_const identifier int const
tag ;

¥ 83 index tail =

. " |

Appendix B
' 3]
}
84 index tail =, simple type index tail
%
85 field list = rec_sec list with variant
%) ; case end identifier ;
86 rec_sec_list = rec_section rec_sec_tail
%) ; case end identifier ;
’ 87 rec_sec_tail =
%) case end ;
88 rec_sec tail = ; rec_section rec_sec tail
%
! 89 rec section = fieldid list : types
gsidentifier ;
90 rec_section =
%) ; case end ;
' 91 fieldid list = identifier field id end
gidentifier ;
92 with variant =
%) end ;
: 93 with variant = variant pref variant list
gcase ;
94 field id end =
Sieky s
‘ 95 field id end =, identifier field id end
¥ i
96 variant pref = case tag_type ids of
%case ;
97 tag_type ids = tagfield id tag_typ tail
gidentifier ;
98 tag_typ tail =
sof ;
99 tag_typ tail = : scalar_ty id
100 tagfield id = identifier
gsidentifier ;

Page 71

—

Appendix B Page 72

101 scalar ty id = identifier
gidentifier ;

102 variant list = variant variant_tail
%) + - ; char const end
: identifier Int const ;

103 variant = case 1 list : (field head field list
)
$+ - char_const identifier int const ;

4 104 variant =
%) ; end ;

105 field head =
%) ; case identifier ;

106 variant tail =

%) end ;
107 variant tail = ; wvariant variant tail
i

108 case_l_list = scalar_const caselabelend
$+ - char_const identifier int const ;

109 caselabelend
$:

110 caselabelend
%, H

x scalar__const caselabelend

111 port decl pt
g$begin const event function label procedure

type var ;

112 port_decl pt
gport ;

pt_decl list

113 pt_decl list
gport ;

port decl pt decl tail

114 port decl = port head pt dir mtype
gport ; i LT,

115 pt_dir mtype
%in ;

in type id

~e

116 pt_dir mtype = out type id ;
sout ; -

117 pt_dir_mtype
$(s

—

port group ;

Appendix B Bage 73

118 pt decl tail =
¥begin const event function label procedure

type var ;
y 119 pt decl tail = port decl pt decl_tail
gport ;
120 port head = port port tail
gport ;
. 121 port tail = identifier

gidentifier ;

122 port tail = set identifier
gset ;

: 123 port group = (sbptdecllist)
$(

124 sbptdecllist = subport decl next subport
gidentifier ;

125 swport decl = subport name direct type
gidentifier ;

126 direct _type = in type_id
sin ;

127 direct type = out type id
sout ;

128 swport name = identifier
gidentifier ;

129 next subport =
%)

130 next subport = ; subport decl next subport
3

; 131 evnt decl pt =
$begin function procedure var ;

132 evnt decl pt = event decl next event
gevent ;

‘ 133 next event =
tbegin function procedure var ;

134 next event = event decl next event
gevent ;

—

Appendix B Page 74

135 event decl = event event_id about part0 ;
gevent ;

136 about part0
8

137 about part0

) about pt class id
gabout ;

138 var pt
tbegin function procedure ;

139 var pt var var_decl lst

140 var_decl 1st = var_decl var_decl_end
gidentifier ;

141 var decl end =
$begin function procedure ;

142 var decl end = var_decl var__decl_end
gidentifier ;

143 var decl = id list : types ;
gidentifier ~;

144 proc_fct pt =
gbegin ;

145 proc fct pt = pf decl list
sfunction procedure ~;

146 pf decl list = pf decl pf decl tail
$function procedure ;

147 pf decl tail =
—%begin H

148 pf_decl tail = pf decl pf decl tail
sfunction procedure ;)

149 Pf decl = pf head ; blkorfwd
gfunction procedure ;

150 blkorfwd = forward :
sforward ;

151 blkorfwd = block ;
$begin const function label procedure type
var ;

. 152 proc_start =.

—

’ Appendix B Page 75

$(:;

153 pf head = procedure proc_id _dec proc_start p head tail
gprocedure ;

3 154 pf head = function func_id_dec proc_start f head tail
$function ;

155 p_head tail =

LT
' 156 p_head tail = (fpsl)
$(
157 f head _tail =
%
‘ 158 f head tail =: parm_type id
$:
159 f head tail = (fpsl) :
parm type id
8 ;
160 proc id dec = identifier

sidentifier ;

- 161 func_id dec = identifier
gidentifier ;

162 fpsl = f parm sect fpsl tail
gidentifier var ;

163 fpsl _tail =
%)

164 fpsl_tail ; f_parm_sect fpsl tail
%

165 f parm sect = parm group
gidentifier ;

166 f parm sect = var parm group
var ; ¥

167 parm_type id = type id parm_ty tail
gidentifier ;

168 parm_type id = struct type
sarray packed record set ;

169 parm_type id .= (enu_id list)
. $(

—

' Appendix B Page 76

170 parm type id = tag of pt class nam
% -

’

171 parm_type id = non id s con .. scalar_const
' $+ - char_const int const ;

172 parm_type id = ptr identifier
sptr ;

173 parm_ty tail
' $) ;

174 pamm_ty tail
-yt

o' scalar_const

175 parm group = id list : parm_type id
gidentifier ;

176 id 1list = identifier id list tail
gidentifier ;

177 id_list tail - =

i
178 id_list_tail =, identifier id_list_tail
%, H

179 body start =
gsannounce begin case for goto identifier
if int const receive repeat send when ‘
while with ; 3

180 stmt pt = begin body start stmt list end
gbegin ;

181 stmt = label prefix unlabeled st
sannounce begin case for goto if
int_const receive repeat send when while
with ;

182 stmt = stmt_with_id
gidentifier ;

183 stmt with id = identifier asgn cal lab
gidentifier ; gl e

184 unlabel ed st
gbegin ;

begin stmt list end

185 unlabeled_st
. %goto ;

—

goto labels

Appendix B Page 77

186 unlabeled st case_head case list otherwise pt end

gcase ;

187 unlabeled st repeat stmt list until expr

frepeat ;

188 unlabeled st = if_stmt
sif ;

189 unlabeled st = for stmt
sfor ; 5

190 unlabeled_st = while stmt
swhile ; o

191 unlabeled st = wi th stmt

: gwith 7

192 Lnlabeled_st receive_stmt:
greceive when ;

193 unlabel ed_st send_stmt
gsend ;

194 mlabeled_st = announcestmt
fannounce ;

195 asgn cal lab rec ary ptr := expr
Sintecfoptr g2 7

196 asgn _cal 1lab

X actual parms)
3 ;

197 asgn_cal lab
St

- unlabel ed_st

198 asgn cal lab =
$; else end otherwise until ;

199 actual parms = (actual parm next a_parm

s
200 actwal parm = parm expr field width
%(+ - [char const identifier
int_const nIl not real_const string const ;

201 next a parm =

202 next a parm » actual _parm next a parm
%

Appendix B Page 78

203 if stmt if head stmt if_tail
Jif

204 if tail else stmt

$else

~ |l

205 if tail
%; end otherwise until ;

1

206 for stmt = for_head do stmt
gfor ;

207 while stmt = while head stmt
gwhile ;

208 with stmt = with head stmt
swith ;

209 if head = if expr then
sif ;

210 while head = while expr do
gwhile ;

211 label prefix =
gsannounce begin case for goto if
receive repeat send when while with

-,

212 label prefix = iht_const $
gint const ;

213 lhs = identifier rec_ary ptr
gidentifier ;

214 vars = identifier rec_ary ptr
gidentifier ; -

215 rec_ary ptr =
%) * + 9 T e
/3=y =]
and div do downto else end
from in mod nonegrelop of or
otherwise then to until ;

216 rec_ary ptr . identifier rec_ary ptr

217 rec ary ptr
s

[index_list] rec_ary ptr

218 rec_ary ptr
tptr ;

ptr rec_ary ptr

Appendix B Page 79

219 index list = index next index
$(+ - [char const identifier
int const nil not real const string_const

e

220 next index . index

%

221 next_index
W

222 index = expr
$(+ - [char const identifier
int_const nil not real const string_const

-

223 exXpr = parm expr
$(+ - [char_const identifier
int_const nil not real const string_const

e

224 parm expr = simple expr parm exp end
$("+ - [char const identifier
int_const nil not real const string const

-e

' 225 pamm _exp end =
Bt een2 ;id
do downto else end of otherwise
then to until ;

226 parm_exp_ end = rel op simple expr
$= in nonegrelop ;

227 rel expr = simple expr rel _op simple expr
$(+ - [char const identifier
int _const nil not real_const string_const

-.

228 rel op = =
%= ;

229 rel _op = in
$in ;

230 rel op = noneqgrelop
$noneqrelop ;

231 simple expr = char const add term
fchar_const ; & =t

232 simple expr = string const add term
$string_const ; i =

233 simple expr = sign term add term
&+ - o

- 234 simple expr = term add_term

—

Appendix B Page 80

$([identifier int_const nil not
real_const ;

235 add term =
%T P ee o ;7 =
] do downto else end in
i noneqrelop of otherwise then to until

236 add_term = add op term add_temm
8+ - or ;

237 term = factor mult factor
$([identifier int const nil not
real_const ;

238 mult factor =
) + 4, = o0 ¢
! ; =] do downto else
end in nonegrelop of or otherwise
then to until ;

239 mult factor = mult op factor mult factor
$* / and div mod ;

240 factor = 1identifier var_funccall
gidentifier ;

241 factor = nil
¢nil ;

: 242 factor = real const
greal const ;

243 factor = int_const
$int const ;

244 factor
$(

(expr)

245 factor
[

[elem list]

246 factor = not factor
snot ;
247 var funccall = rec_ary ptr

$) *+, - .
oo /2 "2 =l
] and div do downto else
end in mod nonegrelop of or
otherwise ptr then to until ;

248 var_funccall = actual_parms)

_

Appendix B Fage 81

$(

249 add op = sign
¢+ - ;

250 add op =or
sor ;

251 mult op = *
% ;

252 mult op =/
Y

253 mult op = div
sdiv ;

254 mult op = and
gand ;

255 mult op = mod
gmod ;

256 variable = identifier rec ary ptr
gsidentifier ;

257 field width

%) .

258 field width
$:

: expr more field

259 mre_field
%) H

260 more field

%

expr

261 elem list =
LI

262 elem list = elem next elem
$(+ - [char_const Identifier
int const nil not real_const string const

“e

263 elem = expr elem tail
8(+ - [char_const identifier
int _const nil not real const string const

“e

264 nex t_el em =
L] .

265 next elem 7 elem next elem

—

' Appendix B Page 82

%

266 elen_tail
%] H

267 elem tail = .. expr
fee
268 proc id = identifier

gsidentifier ;

269 stmt_list = stmt more_stmt
sannounce begin case for goto identifier
if int const receive repeat send when

while with ;
270 more_stmt =
gend until ;
271 more stmt = ; stmt more_stmt
L
272 case_head = case expr of
gcase ;
273 case list = case elem case elems

$+ - cha r_const identifier int const

-

274 case_elems =
g¢end otherwise ;

275 case_elems = ; case_elem case elems
3

276 case_elem = case_labels 2 stmt
$+ - char_const identifier int_const

~e

277 otherwise_hd = otherwise :
gotherwise ;

278 case_labels = scalar_const next_scalar
$+ - char_const identifier int const ;

279 next_scalar

-
280 next_scalar =, scalar_const next scalar
%, H -

281 otherwise pt
gend ;

282 otherwise pt

—

otherwi se_hd stmt_list

’ Page 83

Appendix B

$otherwise ;

283 for head = for identifier := expr

to_part expr
gfor ;
284 to part = to
3to ;
285 to part = downto
tdownto ;
286 rec var_list = variable next rec_var

sidentifier ;

287 next rec var

sdo ;
288 next rec var =, variable next rec var
%
289 with head =with rec_var_list do
gwith ;
290 receive stmt = simple rcv
sreceive ;
291 receive stmt = when_stmt
swhen ;
292 simple rcv = receive variable0 from

port denoter freebinding0
$receive ;

293 variable0 =
$from ;

294 variable0 = variable
gidentifier ;

295 port denoter = pt class id subport
sidentifier ; -

296 subport =
%; do else end otherwise set
until use ;

297 subport = . suwbport id
% i i

298 pt_class id = identifier
gidentifier ;

—

Appendix B Page 84

299 swport id = identifier
gsidentifier ;

300 freebindingd =
%; do else end otherwise until ;

301 freebindingd = use variable
tuse ;

set variable

302 freebinding0

gset ;

303 when stmt = when;_head receives else part0 end
swhen ;

304 when head = when
swhen ;

305 receives = receive pt next receive

$; end otherwise receive ;

306 next_receive =
gend otherwise ;

307 next receive = ; receive pt next receive
¥
308 receive pt =
' $; end otherwise ;

309 receive pt = simple rcv do stmt
freceive ;

310 else part0
gend ;

311 else part0 = otherwise stmt
fotherwise ;

312 send stmt = send expression0 to port denoter
use_part0 -
$send ;

313 expression0 =
gto ;

314 expression0 = expr
$(+ - char_._const identifier
int_const nil not real const string const ;

315 use part0 =
%; else end otherwise until ;

T ———

Appendix B Page 85

316 use part0 = use variable
guse ;

317 announcestmt = announce event_id about_bindo
fannounce ;

318 event_id = identifier
gidentifier ;

319 about bind0 =
%; else end otherwise until ;

320 about bind0 = about pt class_id use part0

fabout ;
321 sign = +

+
322 sign

e |l
]

-

Appendix C Page 86

APPENDIX C

An Example NETSLA program - Broadcasting

network broadcast;
process class sender
port inport in integer;
port outport out integer;
end sender

process class receiver
port inp in integer;
port outp out integer;
end receiver

initial
create sender : sender;
create receiverl : receiver;
create receiver2 : receiver;
connect sender .outport to receiverl.inp;
connect sender .outport to receiver2.inp
end broadcast

Appendix D Rage 87

APPENDIX D

A Network Specification Module

This code was generated by the Netsla preprocessor."

procedure init;
begin (*init¥*)
p id := 0;
alive := 0;
total procs :
initialized := false-

Gr := AllocatePort(KernelPort, ChildtoParPort, MAXBACKLOG);
Gr := AllocatePort(KernelPort, EventPort, MAXBACKLOG) ;

build net('broadcast');
build proc('sender');
build port('inport');
build port('outport');
build:ptoc (‘receiver');
build port('mp Y3

build | port('outp');
Gr := a_creation pr (theroot,'sender','sender','sender.RUN' P_ list ._head) ;

Gr := a creation | | pr (theroot,'receiver', 'recelverl' ‘receiver .RUN',] /P_list head);

Gr :=a creatlon | pr (theroot,'receiver','receiver2','receiver .RUN',p) 1ist | ._head) ;
G := connectlon(theroot, sender’ 'outport' 58 'recelverl' ltinp','");

Gr := connection(theroot,'sender','outport’','','receiver2','inp','');

wakeup;

end; (*init¥)

Appendix E Page 88

APPENDIX E

The Event Handling .Nbdule

BvntMsg.Head.localPort := EventPort;
quit := False;
while (quit=FALSE) do
begin
writeln('Events before receive req');
Gr := Receive(BvntMsg.Head, 0, LOCALPT, RECEIVEIT);
if Gr=SUCCESS then
case shrink (BvntMsg.Head.ID) of
1: begin (* message transmission. *)
writeln('Send Msg Request Received.');
Gr := send_msg(theroot, EvntMsq);
if Gr=SUCCESS then
writeln('Send Msg Request (ompleted.')
else
writeln('***Send_ng Request NOT Completed.');
arrive_evnt;
end;
2: begin (* message transmission. w/ tag *)
writeln('Send Msg(w/ Tag) Request Received.');
Gr := send_msg_tag(theroot, BvntMsqg);
if Gr=SUCCESS then
writeln('Send Msg(w/ Tag) Request Completed.')
else
writeln('***Send Msg(w/ Tag) Request NOT Completed.');
arrive evnt;
end; 5
3: begin (* enter event *)
enter_evnt;

end;
4: begin (* leave event ¥*)
leave evnt;
end; 2y
5: begin (* when evnt ¥*)
when _evnt;
end;
6: begin (* when evnt. w/ about part *)
when evnt;
end;

19: begin (* connectivity inquiry *)
writeln('Conn Ing Request Received');
Gr := inquiry(theroot, B/ntMsg);
if Gr=SUCCESS then
writeln('Conn Inquiry Completed')
else
writeln('Conn Inquiry NOT Completed');
end;
99: begin (* termination of a process instance *)
with vparray[vmmap(B/ntMsg.Data2]] do

| t

Appendix E Page 89

begin
DeleteCanvas(canvs) ;
PaintRectangle(UserCanvas,hWhite ,x0+1,x0+x1len-3,y0+2,y0+ylen-2);
Used := False;
end;
alive := alive-1;
if alive=0 then
begin
quit:=TRUE;
EraseCanvas(UserCanvas,hWhite) ;
{DeleteCanvas (UserCanvas);}
end;
end;
(* more come here *)
otherwise:
begin
end
end; (* case *)
end; (* while *)

Appendix F Page 90

APPENDIX F

A Script for Sender Processes

process script sender;
port inport in integer;
port outport out integer;
var
i:integer;
begin
while i<>999 do
begin
write('Integer: ');
readln(i);
send i to outport
erd
end.

Appendix G Page 91

APPENDIX G

The Preprocessor-generated Code for Sender Processes

program sender ;
imports Child lib from Child lib;

var
i:integer;

var

pinport : port;
poutport : port;

type
signal = boolean;

accentmsg = record
head : msg;
ipcname2 : TypeType;
arg2 : integer;
ipcname3 : TypeType;
arg3 : string[10];
ipcnamed : TypeType;
arg4 : string[10];
ipcnameS : TypeType;
arg5 : integer;
ipcname6 : TypeType;
arg6 : string[20];
ipcnamel : TypeType;
case integer of
(msignal : signal);
(msginport : integer);
(msgoutport : integer);

2
3

end;

var
Xxmsg : accentmsg;
gr : generalreturn;

whenflag : boolean;
xxsignal : signal;
commport : port;

p_array : PortBitArray;
pstr : string[12];

{SINCLUDE Alsten supt.pas}

begin =

{SINCLUDE AlstenInit.pas}

InitMsgn(NullPort);

Gr := Child ack;

while i<>999 do

begin l

write('Integer: ');

Appendix G Page 92

readln(i);

begin (* send *)

xxmsg .head.id := 1;

xxmsg .head .remoteport := InPorts®[1];
xxmsg .head .localport := DataPort;
XxXmsg .msgoutport:=i;

xxmsg.arg2 := p_id;

xxmsg.arg3 := 'outport';

Xxxmsg .arg4 := '';

gr := send(xxmsg.head,0,wait)

end (* send *)

end

;goaway;end.

Appendix H Page 93

APPENDIX H

A Script for the Receiver Processes

process script receiver;
port inp in integer;
port outp out integer;
var
j:integer;
begin
while j<>999 do
begin
receive j from inp;
writeln(j)
end
end.

Appendix I Page 94

APPENDIX I

The Preprocessor-generated Code for Receiver Processes

program receiver;
imports Child lib from Child lib;

var
j:integer;
var

pinp : port;
poutp : port;

type
signal = boolean;

accentmsg = record

head : msg;

ipcname2 : TypeType;

arg2 : integer;

ipcname3 : TypeType;

arg3 : string[10];

ipcname4 : TypeType;

arg4 : string([10];

ipcnameS : TypeType;

arg5 : integer;

ipcname6 : TypeType;

arg6 : string([20];

ipcnamel : TypeType;

case integer of
1 : (msignal : signal);
2 : (msginp : integer);
3 : (msgoutp : integer);

end;

var
XXmsg : accentmsg;
gr : generalreturn;

whenflag : boolean;
xxsignal : signal;
commport : port;

p_array : PortBitArray;
pstr : string[12];

{SINCLUDE Alsten supt.pas}
begin

{SINCLUDE AlstenInit.pas}
InitMsgn(NullPort) ;

Gr := Child ack;

while j<>999 do

begin

begin (* receive *)

—

Appendix I Page 95

rcv('inp','',999,1,rcv_result);
if rcv_result then

j :=xxmsg .msginp;

end (* receive *)

writeln(j) end
;goaway;end.

Page 96

APPENDIX J
Event Replay Example

The following figures show a sequence of 6 events taken from a multiprocess arithmetic
expression interpreter program developed during this project for testing and demonstrations.
The SCANNER process reads an expression from the keyboard and then produces two
messages: one containing token classifications for the PARSER and one containing token
values (of constants and identifiers) for the INTERPRETER. The PARSER sends a message
to the INTERPRETER describing the syntactic structure of the expression. This structure

drives the interpratation.

Dotted lines are included in the figures to indicate port connections. These are not present in

the actual presentation done by our replay system.

Sending a message is represented by two pictures. The first shows a message box leaving an
output port, while the second shows it arriving at an input port. The second picture represents
the static state of the display after completion of the event. These two pictures show the
beginning and end of the presentation of the event. In the actual presentation, the message box

moves smoothly across the screen from the output port to the input port.

Receiving a message is represented by a single picture that shows the state of the display

after the message box is removed from the input queue of the appropriate port.

Figure J -1

Page 97

SCANNER sends message to PARSER

SCANNER PARSER INTERPRETER
OUT1 OUT2 INT ouT 1 INT IN2
A = Ll 3 Fec - T
SCANNER PARSER INTERPRETER
OUT1 OUT 2 IN1 OuUT 1 IN1 IN2
i [& st e
Figure J-2
SCANNER send message to INTERPRETER
SCANNER PARSER INTERPRETER
OUT1 OUT 2 IN1 OuUT 1 IN1 IN2
irp ! p] L ITER
SCANNER PARSER INTERPRETER
OUT1 OUT 2 IN1 OUT 1 IN1 IN2

. Page 98
Figure J-3

PARSER receives message from SCANNER

SCANNER PARSER INTERPRETER
OUT1 OUT2 IN1 OUT1 INT N2
- j e o0
Figure J—4

PARSER receives message from SCANNER

SCANNER PARSER INTERPRETER
OUT1 OUT 2 IN1 ouT1 IN1 IN2
P x-S j L i PO
SCANNER PARSER INTERPRETER
OUT1 OUT 2 IN1 OouUT 1 IN1 IN2

. : Page 99
Figure J-5

INTERPRETER receives message from PARSER

SCANNER PARSER INTERPRETER
OUT1 OUT2 IN1 OuT 1 INT IN2
ST I j (L S PO
Figure J—-6

INTERPRETER receives message from SCANNER

SCANNER | PARSER INTERPRETER

OouUT1 OUT 2 IN1 OouT 1

	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098
	img099
	img100
	img101
	img102
	img103
	img104
	img105
	img106
	img107
	img108
	img109
	img110
	img111
	img112
	img113
	img114
	img115
	img116
	img117
	img118
	img119
	img120
	img121
	img122
	img123
	img124
	img125
	img126
	img127
	img128
	img129
	img130
	img131
	img132
	img133
	img134
	img135
	img136
	img137
	img138
	img139
	img140
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img163
	img164
	img165
	img166
	img167
	img168
	img169
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img197
	img198
	img199
	img200
	img201
	img202
	img203
	img204
	img205
	img206
	img207
	img208
	img209
	img210
	img211
	img212
	img213
	img214
	img215
	img216
	img217
	img218
	img219
	img220
	img221
	img222
	img223
	img224
	img225
	img226
	img227
	img228
	img229
	img230
	img231
	img232
	img233
	img234
	img235
	img236
	img237
	img238
	img239
	img240
	img241
	img242
	img243
	img244
	img245
	img246
	img247
	img248
	img249
	img250
	img251
	img252
	img253
	img254
	img255
	img256
	img257
	img258
	img259
	img260
	img261
	img262
	img263
	img264
	img265
	img266
	img267
	img268
	img269
	img270
	img271

