
PROJ E T A l>~11 N ISTRATION DATA SH EET

[;:] ORIGINAL D REVISION NO. ---

G-36-6057. GTRI,)OPf DATE 4/25/83
oject No. _:_----=~---------A-:1:-: .. ~~~......lt- ----------

R. ~ LeBlanc tor~ \ School iS! ICS
oject Director: ---L--------------..-t------- -------------

MERADCOM, Procurement & Production Directorate, Ft. Belvoir, VA
nsor: ~---~~----

pe Agreel)lent:
D.O. 00015 under BOA DAAK10-79-D-0087 (AIRMICS) (OCA File #42)

__ 3_/_7_/_8_3 ____ To ~5" !Performance) --- !Reports)

onsor Amount: Total Estimated: $ 168,519 ~ Funded: s· 78,385 (Est. through 12/31/83)

st Sharing Amount~ $ None Cost S_haring No: __ N_/_A __________ _

Interactive t-tonitoring of Distributed Systems

OMINISTRATIVE DATA OCA Contact __ W_i_l_1_i_a_m_F_. _B_r_o_wn~ ____ E_x_t_._4_8_2_0_---=--_

Sponsor Technical Contact: 2) Sponsor Admin/Contractual Matters:

Mr. Kearns/ACSC-CLD

AIIU-UCS

115 O'Keefe Bld •

Geor ia Institute of Technolo y

Atlanta, GA 30332

(404) 894-3110

tense Priority Rating: DO-Sl ----------- Mil itary Security Classification: None -----------
(or) Company/1 ndustrial Proprietary:

STRICTIONS

e Attached __ __::G=o=-v=--' t""---...:.........--- Supplemental Informat ion Sheet for Additional Requirements. ·

Foreign travel must have prior approval - Contact OCA in ea-ch case. Domestic travel requires sponsor

approval where total will exceed greater of S500 or 125% of approved propo~al budget category.

uipment: Title vests with __ G_o_v_e;_r_n_m_e_n__;;_t.~...; _;h_o_w.....;;e_v_e.....;;r_;n;_o.:...n=e.;::..__..._p;_r_:;o_Lp_o....::s:.....:e:.....:d:::;__ ________________ _

MMENTS :

Note: Request is being made to Sponsor to rev ise delivery date

search Administrative Network

search Property Management
ounting

CUrement/E ES Supply Services

GTRI

Library

Research Communications (2)

Project File

Other LeBlanc
Other __ ~I--~N~e~wut~a~nL_ _______ _

ORGIA INSTITUTE.OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

G-36-605 School/XU ICS ---------------------

N/A

GT R C /Yllf!lX

MERADCOm

Interactive Monitoring of Distributed

___ 9_/_3_0_/_8_5 _____________ (Performance) _______ _

nt/Contract Closeout Actions Remaining:

D None

-[iJ Final Invoice or Final Fiscal Report

[!] Closing Documents

D Final Report of Inventions Questionnaire sent to P.I.

[!] Govt. Property Inventory & Related Certificate

D Classified Material Certificate

D Other _______________;._ ___________ _

library
GTRC
Research Communications (2)
Project File
Other A. Jones

I. Newton
R. ~bry

~
~

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3f52

April 7, 1983

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report
Contract No .. DMK70-79-D-00.87-0015
"Interactive Monitoring of Distributed Sys.tems"
Contractor: Georgia Tech Research Institute
Month: March, 1983

Dear Sirs:

During the month of March, tha principal investigator attended the A01
SIGPLAN/SIGSOFT Software Engineering Symposium on High-Level Debugging.
At this symposium, I was able to talk to other researchers working on
distributed debugging in order to compare approaches. It appears that by

• using the structural infonnation available in a PRONET program, we will
indeed be taking a unique•approach to monitoring distributed programs.

Since the time the proposal was submitted, work has been completed on the
PRONET implementation on the PRJl-£ computers in the ICS Computing Laboratory.
Experience with this implementation ha.S shown that these machines are not a
practical host for a language like PRONET, which requires the dynamic creation
of processes. Thus we have decided to implement our monitor on Three Rivers
Perq workstations running the Accent operating system which was developed at
Carnegie-Mellon University. This will necessitate our reimplementing PRONET
on this new system, which will lengthen the time needed to perform Task 1.
Hol'lever, Accent is much more supportive of the features of a language like
PRONET than Primos is, so the other tasks should be easier~

RJL/np

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AM EOUAL ECUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

I

AIRMICS
115 O'Keefe Building
Georgia .Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: March, 1983

No man-hours were charged to this project this month.

Cumulative total to date: 0

Percentage of total expended to date: 0.0%

Total Funds Expended

Travel: $985.59

Cumulative total to date: $985.59

Percentage of total expended to date: 0.6%

Work Completion

Percentage of total work completed to date: O%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TE.CHNDLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA. GEORGIA 30332 • (404) 894-3152

May 9, 1983

AIRMICS ·
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: April, 1983

Dear Sirs:

During the month of April, 1983, two graduate students began working
under this contract. Chu-Chung Liu has been assigned to Task 1, the
PRONET interface, and Arnold Robbins is working on the communications
monitor of Task 2.

We have decided to implement a status monitor first, in order to
gain some experience•with distributed program monitoring issues,
before proceeding with the interactive monitor originally planned.
The static monitor will be similar to the interactive one, except
that the pro·grammer will on"'iy be able to look at a replay of message
traffic recorded by the monitor. Thus we will essentially be
constructing prototypes for the programs described in Tasks 2 and 3.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

RJL/np

Sincerely,

- Richard J. LeBlanc Jr.,
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

'\r'! ~C'-.:.'. !.. 'EC'JC.I'.T!~t-! .~r-m '!MPt.O't'Ml:N! OP~OA!U~ITY !NSTlT!JTION

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: April, 1983

Man-hours Expended

Task 1: 88
Task 2: 103

Cumulative total to date: 191

Percentage of total expended to date: 3.4%

Total Funds Expended

Task 1: $2856.95
Task 2: $3514.69
Other: $ 170.31

Cumulative total to date: $7527.54

Percentage of total expended to date: 4.5%

Work Completion

Task 1: 4%
Task 2: 2%
Task 3: O%
Task 4: 0%

Percentage of total work completed to date: 1.4%

Richard J. LeBlanc Jr.,
Principal Investigator

e . .

I

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-31-S2

June 10, 1983

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: May, -1983

Dear Sirs:
•

Work on designs for the software to be developed in Tasks 1 and 2
proceeded during May. We have run into one major difficulty with
using our Perqs: they don't have enough memory to run Accent
effectively. Thus we have been delayed in familiarizing ourselves
with the Accent envitonment. No testing of design ideas has been
possible.

\'/e have obtained funding from the School of ICS to purchase the
additional memory we need. It has been ordered from Three Rivers.
Delivery is expected during June.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

RJL/np

Sincerely,

- Richard J. LeBlanc Jr.,
Principal Investigator

·-------·

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

t>.~~ I!O!JAL !:r:)!JC,\T!ON P.NO ~~!.~ .OYMENT O~?ORTUN~r INST!Tl!T!Of'!

AIRHICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: May, 1983

Han-hours Expended

Task 1: 88
Task 2: 78
Task 3: 25

Cumulative total to date: 382 ·

Percentage of total expended to date: 6.9%

Total Funds Expended

Work

Task 1:
Task 2:
Task 3:
Other:

$2856.95
$2661.61
$853.08
$575.32

Cumulative total to date: $14,474.50

Percentage of total expended to date: 8.6%

Completion

Task 1 : 6%
Task 2: 4%
Task 3: 2%
Task 4: 0%

Percentage of total work completed to date: 4.4%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TE-CHNOLOGY -
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

R&D Status Report

July 12, 1983

RE:
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: June, 1983

Dear Sirs: •
The memory for the Perqs we have been expecting has not arrived,
so we have continued with only design work. Since Robbins has
been with us only through August, he has begun working on a
design for the interface (Task 3) to go along with his static
communication monitor (Task 2). He will present these two designs
as the main products described in his M.S. thesis.

~-

Our study of the requirements for implementing PRONET and the
capabilities provided by Accent continued during June. We have
determined that the features of the extended Pascal supported by
Accent are sufficiently powerful that we can use a pre-processor -
implementation approach. Programs written in ALSTEN and NETSLA,
the two sublanguages of PRONET, will be translated to Pascal
rather than compiled to Perq Q-code. This approach \vill greatly
simplify our implementation task. Work on the ALSTEN pre-processor
has begun, using the Zuse parser generator on our VAX 11/780.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contrac~.

RJL/np

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

Af\! !::OIJP.~ ~UCt.TlO:'-l AI'-!D E \1 Pl .OYME!'-!i OPPOr-r;UN!TY INSTJT1JTICN

--- --~

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: June, 1983

Man-hours Expended

Task 1: 88
Task 2: 50
Task 3: 53

Cumulative total to date: 573

Percentage of total expended to date: 10.3%

Total Funds Expended

Work

Task 1:
Task 2:
Task 3:
Other:

$2856.95
$1706.16
$1808.53
$575.32

Cumulative total to date: $21,421.46

Percentage of total expended to date: 12.7%

Completion

Task 1 : 10%
Task 2: 4%
Task 3: 4%
Task 4: O%

Percentage of total work completed to date: 8.8%

Richard J. LeBlanc Jr.,
Principal Investigator

e GEORGIA INSTITUTE OF TECHNOLOGy·
.

- SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA. GEORGIA 30332 • (404) 894-3152

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

August 15, 1983

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: July, 1983

•
Dear Sirs:

The memory we needed has arrived and Accent is now running.
However, the availability of a running system has highlighted its
lack of documentatioR. Robbins has . completed the prototype
communications monitor design (Task 2) but is having difficulties
with the interface design (Task 3) due to lack of information
about the Canvas graphics package. In attempting to test some
aspects of his implementation for ALSTEN, the process description
component of PRONET (Task 1), Lin has been unable to even make
process creation work correctly. We are attempting to obtain
more information from Carnegie-Mellon.

Presuming we can overcome these problems in the near future, the .
contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

RJL/np

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

A:'-l O:Q'Jr".L ED!.:~.'.T ~ Cf'.! f.~Q ~\'l P!.OY~~'= NT O?fiORTUNITY INSTlTUT !?~l

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: July, 1983

Man-hours Expended

Task 1: 25
Task 2: 8
Task 3: 8

Cumulative total to date: 614

Percentage of total expended to date: 11.0%

Total Funds Expended

Work

Task 1:
Task 2:
Task 3:
Other:

$473.16
$131.66
$131.66

Cumulative total to date: $22,157.89

Percentage of total expended to date: 13.1%

Completion

Task 1 : 10%
Task 2: 4%
Task 3: 4%
Task 4: O%

Percentage of total work completed to date: 13.2%

Richard J. LeBlanc Jr.,
Principal Investigator

.GEORGIA INSTITUTE OF TE.CHNOLOG¥ ·
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA. GEORGIA 30332 • (404) 894-31S2

AI&\fiCS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

R&D Status Report

September 12, 1983

RE:
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: August, 1983

near Sirs:

considerable progress was made this month. The process creation
problem in the ALSTEN implementation has been solved and the
preprocessor has been transported from the Vax to the Perq. It
is now fully functional and Task 1 effort can turn toward imple
menting NETSLA, the process interconnection component of PRONET.

Arnold Robbins has finishe~·his designs for the Task 2 and 3
prototypes and has completed his M.S. thesis entitled "Design of
a Passive Monitor for Distributed Programs.'' His interface design
(Task 3) is dependent on some unverified assumptions about Canvas.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

RJL/np

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

~. ~! ECIJAL E!:lUCt\itm! AND E~~~LCYME ~·IT OPPOP.TUNITV INSilTU.T!ON
/ I

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: August, 1983

Man-hours Expended

Task 1: 25
Task 2: 4
Task 3: 12

Cumulative total to date: 655

Percentage of total expended to date: 11.8%

Total Funds Expended

Work

Task 1:
Task 2:
Task 3:
Other:

$473. 16
$ 65.82
$197.45
$ 18.52

Cumulative total to date: $22,912.84

Percentage of total expended to date: 13.6%

Completion

Task 1 : 10%
Task 2: 2%
Task 3: 6%
Task 4: 0%

Percentage of total work completed to date: 17.6%

Richard J. LeBlanc Jr.,
Principal Investigator

-

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEO~GIA 30332 • (404) 894-31S2

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

October 11, 1983

Contract Noo DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: September, 1983

Dear Sirs:

\~ork has begun on the NBTSLA sublanguage preprocessor (Task 1).
A grammar has been written which meets the constraints of the
parser generator. The Pascal code sequences to be generated

· for each of the NETSLA features are being planned.

Arnold Robbins has graduated and is no longer working on the
project. He has been replaced by a new graduate student, Keith Harp,
who will implement Arnold's _prototype monitor design (Tasks 2 and 3).
Roy Mongiovi, a member of tbe ICS Laboratory Staff is also partici
pating in the implementation efforts now.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

RJL/np

Sincerely,

Richard J. LeBlanc Jr.,
·Principal Investigator

e_·-

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

-_;.

. -~

.. : •.·

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: September, 1983

Man-hours Expended

Task 1: 35
Task 2: 21
Task 3: 25
Clerical: 16

Cumulative total to date: 752

Percentage of total expended to date: 13.5%

Total Funds Expended

Work

Task 1:
Task 2:
Task 3:
Other:

$709.22
$453.52
$519.34
$281.02

Cumulative total to date: $24,875.94

Percentage of total expended to date: 14.8%

Completion

Task 1 : 10%
Task 2: 2%
Task 3: 2%
Task 4: 0%

Percentage of total work completed to date: 20.8%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY --
scHooL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA. GEORGIA 30332 • (404) 894·3152

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

November 16, 1983

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: October, 1983

Dear Sirs:

A new release of Accent was feceived from Carnegie~ellon University at the
beginning of this month. Difficulties with bringing it up on our machines.and
time spent studying the documentation which arrived with the new release
accounted for about half our effort this month.

Work continued on the NETSLA sublanguage preprocessor (Task l). The focus this
month was still design of Pascal code sequences corresponding to NETSLA features.

The work on the prototype monitor design (Tasks 2 and 3) has been slow while the
new personnel on the project have been familiarizing themselves with Accent and
the existing design. With the new release, we received the documentations we
needed on the Canvas graphics package.

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

RJL/np

Sincerely,

Richard J. LeBlanc _Jr.,
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA I -

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: October, 1983

Man-hours Expended

Task 1: 85
Task 2: 57
Task 3: 57
Task 4: 0
Clerical: 16

Cumulative total to date: 967

Percentage of total expended to date: 17.37%

Total Funds Expended

Task 1:
Task 2:
Task 3:
Task 4:
Other:

$2173.47
$1390.48
$1390.48

0
$ 176.64

Cumulative total to date: $30,007.01

Percentage of total expended to date: 17.81%

Work Completion

Task 1: 5%
Task 2: 2%
Task 3: 2%
Task 4: 0%

Percentage of total work completed to date: 23%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY:.
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894·3152

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

December 13, 1983

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: November, 1983 •

Dear Sirs:

Work continued on the NETSLA sublanguage implementation of Task 1~ Effort this
month has included design of the. required run-time support routines as well as
work on the pre-processor.

Code is now being written to implement the prototype monitor (Tasks 2 and 3).

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

RJL/np

Sincerely,

Richard J.~LeBlanc Jr.~
Principal Investigator

A UNIT nF THE UNIVERSITY SYSTEM OF GEORGIA

"

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: November, 1983

Man-hours Expended

Task 1 : 85
Task 2: 57
Task 3: 57
Task 4: 0
Clerical: 16

Cumulative total to date: 1182

Percentage of total expended to date: 21.23%

Total Funds Expended

Work

Task 1:
Task 2:
Task 3:
Task 4:
Other:

Cumulative total to date: $35,138.08

Percentage of total expended to date: 20.85%

Completion

Task 1 : 10%
Task 2: 3%
Task 3: 3%
Task 4: 0%

Percentage of total work completed to date: 26.8%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA. GEORGIA 30332 • (404) 894-3152

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

January 10, 1984

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: December, 1983

Dear Sirs:

Some diff1culties have been encountered in using.our parser generator to
produce the NETSLA preprocessor (Task 1) apparently due to the size of the
grammar. We are currently experimenting with ways to solve this problem.

Coding has continued on the prototype monitor (Tasks 2 and 3), with some
testing also accomplished. This early testing has been done particularly
to verify our understanding of the capabilities of canvas.

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

RJL/np

Sincerely,

Richard Ja ' LeBlanc Jr. ;
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: December, 1983

Man-hours Expended

Task 1 : 85
Task 2: 57
Task 3: 57
Task 4: 0
Clerical: 16

Cumulative total to date: 1397

Percentage of total expended to date: 25.09%

Total Funds Expended

Work

Task 1:
Task 2:
Task 3:
Task 4:
Other:

Cumulative total to date: $40,269.15

Percentage of total expended to date: 23.9%

Completion

Task 1 : 10%
Task 2: 3%
Task 3: 3%
Task 4: O%

Percentage of total work completeJ to date: 30.6%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

AIRMICS
115 O'Keefe Buildirtg
Georgia Institute of Technology
Atlanta, Georgia 30332

RE: R&D Status Report

March 23, 1984

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contract: Georgia Tech Research Institute
Month: January

Dear Sirs:

The NETSLA preprocessor has been completed (Task 1). A small amount of work
remains to be done on the run-time support routines required to support
PRONET. We will soon begin integration testing of the two preprocessors
and the run-time routines •.

Coding of the prototype monitor has essentially been completed (Tasks 2 & 3).
Testing will now be our main focus.

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

RJL/np

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-7~-D-0087-0015

ninteractive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: January, 1984

Man-hours Expended

Task 1 : 63
Task 2: 25
Task 3: 43
Task 4: 0
Clerical: 16

Cumulative total to date: 1544

Percentage of total expended to date: 27.7%

Total Funds Expended

Task 1 : $1565.55
Task 2: $ 658.33
Task 3: $1185.99
Task 4: 0
Other: $ 276.76

Cumulative total to date: $43,955.79

Percentage of total expended to date: 26.1%

Work Completion

Task 1: 7%
Task 2: 3%
Task 3: 3%
Task 4: O%

Percentage of total work completed to date: 33.8%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

AIRMICS
!15 O'Keefe Building
Georgia Institute of Technology
Atlanta, Georgia 30332

RE: R&D Status Report

March 23, 1984

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: February

Dear Sirs:

Testing of the PRONET implementation is in progress (Task 1). Programs using
a small subset of the language features have been executed successfully.

Testing of the prototype monitor is also in progress (Task 2 & 3).

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

RJL/np

Sincerely,

Richard J.vLeBlanc Jr.,
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: February, 1984

Man-hours Expended

Task 1 : 63
Task 2: 25
Task 3: 43
Task 4: 0
Clerical: 16

Cumulative total to date: 1692

Percentage of total expended to date: 30.4%

Total Funds Expended

Work

Task 1 : $1565.55
Task 2: $ 658.33
Task 3: $1185.90
Task 4: 0
Other: $ 276.76

Cumulative total to date: $47,642.43

Percentage of total expended to date: 28.3%

Completion

Task 1 : 7%
Task 2: 3%
Task 3: 3%
Task 4: O%

Percentage of total work completed to date: 37%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

May 3, 1984

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Re: R&D Status Report
Contract No. DAAK70-79-D-0087-.Q015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: March

Dear Sirs:

Testing of the PRONET implementation is in progress (Task 1).
All features of the process sublanguage (ALSTEN) are now
working.

Testing of the prototype monitor is also in progress
(Tasks 2 and 3). All remaining problems are in the display
interface routines.

The contractually prescribed effort appears sufficient to
achieve the objectives of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

AIRMICS
115 O'Keefe Building

. Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: March

Man-hours Expended

Task 1 : 63
Task 2: 21
Task 3: 47
Task 4: 16

Cumulative total to date: 1838

Percentage of total expended to date: 33.01%

Total Funds Expended

Task 1 : 1559.51
Task 2: 583.72
Task 3: 1260.79
Task 4: 0.00
Other: 276.80

Cumulative total to date: 51311.61

Percentage of total expended to date: 30.45%

Work Completion

Task 1: 2
Task 2: 3
Task 3: 3
Task 4: 0

Percentage of total work completed to date: 39.2%

Richard J. LeBlanc Jr.,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

May 3, 1984

AIRMICS
115 O'Keefe Building
Georgia Tech Research Ins.titute
Atlanta, Georgia 30332

RE: R&D Status Report
Contract No. DAAK70-79-D--0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month : April

Dear Sirs:

All currently implemented features of PRONET are working (Task 1).
Only structured events and failure handling remain to be
implemented.

The prototype monitor is now operational (Tasks 2 and 3) and was
demonstrated during the IPR this month. The interface between
PRONET programs and the monitor has been tested by hand construc
tion. We must now have PRONET generate it automatically.

The contractually prescribed effort appears sufficient to
achieve the objectives of the contract.

Sincerely,

Richard J. LeBlanc J t .,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

· Month: April

Man-hours Expended

Task 1 : 63
Task 2: 17
Task 3: 51
Task 4: 16

Cumulative total to date: 1985

Percentage of total expended to date: 35.65

Total Funds Expended

Task 1 : 1559.51
Task 2: 509.04
Task 3: 1335.47
Task 4: 0.00
Other: 276.80

Cumulative total to date: 54992.43

Percentage of total expended to date: 32.63%

Work Completion

Task 1 : 2
Task 2: 3
Task 3: 3
Task 4: 0

Percentage of total work completed to date: 41 .4%

Richard J. LeBlanc Jr.,
Principal Investigator

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
A.t1anta, Georgia 30332

R&D Status Report

June 20, 1984

RE:
Contract No. DAAK70~79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: May, 1984

Dear Sirs:

Work has begun to adapt the PRONET implementation for multiple machine
operation (Task 1). Progress has been slow due to some networking
hardware difficulties.

The interface between the prototype monitor is now being automated.
The first step in this process is extending the ALSTEN and NETSLA
preprocessors so that they generate code to collect the necessary
information at run-time. Substantial progress has been made on this
effort.

The contractually prescribed effort ·appears sufficient to achieve
the objectives of the· contract.

RJL/kkh

Sincerely,

I

Richard J. LeBlanc Jr.,
Principal Investigator

AIRMICS
ll5 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems.
Contractor: Georgia Tech Research Institute

Month: May 1984

Man-hours Expended

Task 1: 63
Task 2: 11
Task 3: 57
Task 4: 0
Clerical: 40

Cumulative total to date: 2156

Percentage of total expended to date:

Total Funds Expended

Task 1: $1,559.51
Task 2: $ 320.36
Task 3: $1,524.15
Task 4: a-
Other: $1,852.67

(clerical and computing charges)

Cumulative total to date: $60,249.12

Percentage of total expended to date:

Work Completion

Task 1: 2%
Task 2: 1%
Task 3: 5%
Task 4: 0%

38.7%

35.8%

Percentage of total work completed to date: 43.6%

Richard J~ LeBlanc Jr .~1,
Principal Investigator

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

July 24, 1984

Contract No. DAAK70--79-D-0087-0015
Contractor: Georgia Tech Research Institute
Month: June 1984

Dear Sirs:

Progress has been limited this month because of vacations during
quarter break and lack of availability of our computers for over
a week (when they were moved from our old offices to the ICS Lab).
Efforts to resolve system problems have slowed work on multiple
operation of PRONET (Task 1). Work on automating the interface
between the preprocessors and the monitor has continued Tasks 2
and 3, though progress was limited as described above.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

RJL/kkh

SinrPrPlv _

Richard /J. LeBlanc rJr. ,
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

AIRMICS
5 O'Keefe Building

11 gia Tech Research Institute
Geor .
Atlanta, Georg~a 30332

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: June 1984

Man-hours Expended

Task 1: 63
Task 2: 11
Task 3: 57
Task 4: 0
Clerical: 40

cumulative total to date: 2327

Percentage of total expended to date: 41.7%

Total Funds Expended

Task 1: $ 1,559.51
Task 2: 320.36
Task 3: 1,524.15
Task 4: -a-
Other: 3,046.45

(clerical, supplies and comp~ti.ng charges)

Cumulative total to date: $64,918.51

Percentage of total expended to date: 38.5%

Work Completion

Task 1: 1%
Task 2: 1%
Task 3: 3%
Task 4: Q%

Percentage of total work completed to date: 45.0%

R.It/kkh

I
Richard J. LeBlanc Jr.,
Principal Investigator

LIBRARY DOES NOT HAVE

R & D Status Report, July 1984

F18-6A

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

September 20, 1984

Contract No, DA.Al<70~79~n~ao87-Q015
'"'Interactive Monitoring of Dis,tributed Systems'~
Contractor: Georgia Tech ReseaTch Institute
Month: August, 1984

Dear Sirs:

The efforts under Task 1 continued to involve furth.er extension of our
preprocessors and run-time system to handle more Pronet features. A
new version of Accent was received at the end of the month, which should
allow us to proceed with work on multi-machine operation in the near
future.

The work on autoli}a~ing t.ha_ - ~qnito;r; int.e.rface (~asks 2 & 3) is nearing
completi'on.

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

R.JL/kkh

Si.ncerely,

Richard J. LeBlanc, Jr.
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute

Month: August, 1984

Man-hours Expended

Task 1: 92
Task 2: 50
Ta,sk 3: 107
Task 4: 0
Cler±,ca,l; 24

cumulative tota,l to da;te.: _ 2869_

Percentage· of total expended · to date -: · 51._5%

Total Funds Expende.d

Task 1: $2,609~63
Task 2: 1,380.61
Task 3: 3,326.99
Task 4: -a-
Other: 2,533.75

(clerical and co1qputip.g ch.a,rges)

Cumula,tive total to da;te: $86,905.,73

Percentage of total expended to date: 51 ~. 6%

Work. Completion

Task 1: 1%
Task '2: 2%
Task 3: 3%
Task 4: 0%'

Percen_tage of tQt~l wo:t;k comple.te.d to date..: 49 . 3% ,

~cnar<1 J ' . Le.Hl.anc, J'r.
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQUAL EDUCATION AND EMPLOYMENT OPPORTUNITY INSTITUTION

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

October 16, 1984

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: September, 1984

Dear Sirs:

Due to vacations between the summer and fall quarters and continuing
difficulties with the Accent operating system, very little progress
was made this month on any of the tasks.

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

RJLjr/kkh

A UNIT OF THE UN I VERSITY SYSTEM OF GEORGIA

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

October 16, 1984

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: September 1984

Man-hours Expended

Task 1: 92
Task 2: 50
Task 3: 107
Task 4: 0
Clerical: 24

Cumulative total to date: 3142

Percentage of total expended to date: 56.4%

Total Funds Expended

Task 1: $2,609.63
Task 2: 1380.61
Task 3: 3,326.99
Task 4: -0-
Other: 2,533.75

(clerical and computing charges)

Cumulative total to date: $96,756.71

Percentage of total expended to date: 57.4%

Work Completion

Task 1: 0
Task 2: 1
Task 3: 1
Task 4: 0

Percentage of total work completed to date: 49.9%
l

~ ~ .

Richard J. LeBlanc Jr. -~ -
Principal Investigator

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA. GEORGIA 30332 • (404) 894-3152

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

December 12, 1984

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: October, 1984

Dear Sirs:

Progress this month was limited by continuing difficulties with
the Accent operating system. Some progress was made on interfac
ing with advanced Pronet features (Task 1). Work is continuing
on the development of a Pronet program _ to test the usability of
the prototype monitor (Tasks 2 and 3).

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract, but the prescribed calendar time
will be insufficient. An extension of the completion date has
been requested.

S_incerely,

• v ,
R1chard J. LeBlant Jr.,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA.

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: October, 1984

Man-hours Expended

Task 1: 76
Task 2: 42
Task 3: 83
Task 4: 0
Clerical: 24

Cumulative total to date: 3367

Percentage of total expended to date: 60.5%

Total Funds Expended

Task 1: $1,613.45
Task 2: $ 882.52
Task 3: $1,832.72
Task 4: -a-
Other: $2,533.75

(clerical and computing charges)

Cumulative total to date: $103,619.14

Percentage of total expended to date: 61.5%

Work Completion

Task 1: 1
Task 2: 1
Task 3: 1
Task 4: 0

Pe;centage of total work completed to date:

~1chard J: LeB1ancVJr.
Principal Investigator

RJLj r /kkh

50.7%

A UNIT OF THE UNIVERSITY SYSTEM ·OF GEORGIA

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

D e c .em b e r 1 2 , 1 9 8 4

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: November, 1984

Dear Sirs:

Progress has again been limited by operating system difficulties.
As of the date of this report, we have apparently received the
new software we need, but it has not yet been installed. The
only progress this month was continued work on testing the
usability of the prototype monitor (Ta~ks 2 & 3).

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

Sincerely,

Richard J. LeBlartc Jr.,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: November, 1984

Man-hours Expended

Task 1: 76
Task 2: 42
Task 3: 83
Task 4: 0
Clerical: 24

Cumulative total to date: 3592

Percentage of total expended to date: 64.5%

Total Funds Expended

Task 1: $1,613.45
Task 2: $ 882.52
Task 3: $1,832.72
Task 4: -a-
Other: $2,533.75

(clerical and computing charges)

Cumulative total to date: $110,481.58

Percentage of total expended to date: 65.5%

Work Completion

Task 1: 0
Task 2: 1
Task 3: 1
Task 4: 0

Percentage of total work completed to date:

K1chard J~ LeBlan~ Jr.
Principal Investigator

RJLjr/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

51.3%

a
VI

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

February 18, 1985

Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring ·of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: December, 1984

Dear Sirs:

The new Accent operating system has been installed but changes 1n
the terminal inter~ace it provides require significant
modifications in all of our existing programs. This
modificiation work is currently in progress.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

Sincerely,

Richard J: LeBlanc Jr J ,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute

Month: December, 1984

Man-hours Expended

Task 1:
PI 4
GRAS 72
TOTAL 76

Task 2:
PI 2
GRAS 40
TOTAL 42

Task 3:
PI 6
GRAs 77
TOTAL 83

Task 4:
PI 0
GRAs 0
TOTAL 0

Clerical: 24

Cumulative total · to date: 3817

Perc~ntage of total expended to date: 68.55%

PI rate
GRA Rate
CLer Rate

Total Funds Expended

Task 1:
Task 2:
Task 3:
Task 4:
Clerical
Computing
Supplies

Other:

$1,613.45
$ 882.52
$1' 832.72

-0-
$ 415.20
$1,364.17

-o
$2,533.75

Cumulative total- to date: $117,344.02

Percentage of total expended to date: 69.63%

"~~nara J. LeBlanc Jr. ~

Principal Investigator

RJLjr /kkh

Work Completion
(current)

Task 1: 0
Task 2: 1
Task 3: 1
Task 4: 0

Work Completion
(cumulative total)

Task 1 99
Task 2 50
Task 3 57
Task 4 0

Percentage to date 51.9%

GEORG~A INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

AIRMICS
115 O'Keefe Building
Georgia Tech· Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report

February 18, 1985

Contract No. DAAK70-79-D-0087-0015
"Interactive Mon-itoring ·of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: January 1985

Dear Sirs:

Most program modifications to run with the new version of Accent
are complete. However, we are still having difficulties making
access to ports work across the network. Work has begun on Task
4~ interfacing with a single process monitor, using the existing
Accent debugging program.

A paper on our work has been accepted for the 5th International
Conference on Distributed Comp~ting Systems and will be presented
there in May. Work on a final verison of that paper is in
progress.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

Sincerely,

K1chard J. LeBlanc Jr.,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

AN EQUAL

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems
·contractor: Georgia Tech Research Institute

Month: January, 1985

Man-hours Expended

Task 1:
PI 2
GRAS 20
TOTAL 22

Task 2:
PI 2
GRAs 30
TOTAL 32

Task 3:
PI 4
GRAs 50
TOTAL 54

Task 4:
PI 4
GRAs 20
TOTAL 24

Clerical: 24

Cumulative total to date: 3973

Percentage of total expended to date: 71.35%

PI rate
GRA Rate
CLer Rate

Total Funds Expended ·

Task 1:
Task 2:
Task 3:
Task 4:
Clerical
Computing
Supplies

Other:

$ 503.52
$ 693.02
$1,196.55

628.05
$ 415.20
$1 J 364.17

-o
$2,533.75 ·

Cumulative total to date: $122,898.91

Percentage of total expended to date: 72.93%

Rlchard J. LeBlanc Jr. 1
Principal Investigator

RJLjr/kkh

Work Completion
(current)

Task 1: 0
Task 2: 1
Task 3: 1
Task 4: 5

Work Completion
(cumulative total)

Task 1 99
Task 2 51
Task 3 58
Task 4 5

Percentage to date 53.5%

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

AIRMICS
115 O'Keefe Building .
Georgia Tech Research Inst1tute
Atlanta, Georgia 30332

R&D Status Report

April 11, 1985

IE:
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute
Month: February, 1985

Dear Sirs:

We are now operating successfully with the new vers1on of Accent,
except that name server problems limit us to programs running on
a single workstation.

The final version of our paper for the 5th International
Conference on Distributed Computing Systems has been completed.

Work has begun on Task 4, integrating a single process debugger
with Radar.

The contractually prescribed effort appears sufficient to achieve
the objectives of the contract.

Sincerely,

i cliard J. LeBlanc Jr., '
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

"Interactive Monitoring of Distributed Systems"
Contractor: Georgia Tech Research Institute

Month: February, 1985

Man-hours Expended

Task 1: 22
Task 2: 27
Task 3: 27
Task 4: 56
Cler ica 1 : 24

cumulative total to date: 4129

Percentage of total expended to date: 74.16%

Total Funds Expended

Task 1: $ 503.52
Task 2: $ 598.27
Task 3: $ 598.27
Task 4: $1,321.07
Other: $2,533.75

(clerical and computing charges)

Cumulative total to date: $128,453.79

Percentage of total expended to date: 76.23%

Work Completion

Task 1: o
Task 2: 3
Task 3: 3
Task 4: 5

Percentage of total work completed to date: 56.3%

~cnarct J. LeBlanc Jr
Pri · ' • nclpal Investigator

RJLjr/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA. GEORGIA 30332 • (404) 894-3152

May 3, 1985

AIRMICS
ll5 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

RE: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
"Interactive Monitoring of Distributed Systems"
Contractor: Georgia T~ch Research Institute
Month: March, 1985

Dear Sirs:

Due to spring breaks here and at CMU, we still haven't resolved the
name server problem with Accent.

Work is continui~g on Task 4, integrating a single process debugger
with Radar. We are using the Kraut debugger distributed with Accent. We
are also considering use of some concepts from Kraut as the basis of
refinements to the Radar interface (Tasks 2 and 3).

The contractually prescribed effort appears sufficient to achieve the
objectives of the contract.

Sincerely,

Richard J. LeBlanc, Jr.,
Principal Investigator

RJL/kkh

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

Performance and Cost Report
Contract No. DAAK70-79-D-0087-0015

.. I n t era c t i v e Mo n i tor i n g of D i s t r i but e d Systems
Contractor: Georgia Tech Research Institute

Month: March, 1985

Man-hours Expended

Task 1 : 20

T&sk 2: 22

Task 3: 22

T&Sk 4: 68

Clerical 24

cumu 1 at i v e tot a I to date: 4 2 8 5

Percentage of total expended to date: 76.96'1t

Tot&l Funds Expended

Task 1 : $ 379.00
T&sk 2: 503.52
Task 3: 503.52
Task 4: 1,635.09
Other: 2,533.75
(clerical and computing charges>

Cumulative total to date: $134,008.68

Percentage of total expended to date: 79.52%

Work Completion

Task 1 : 0
Task 2: 3
Task 3: 3
Task 4: 30

Percentage of total work completed to date: 64. 10ft

Richard J. LeBlanc Jr.,
Principal Investigator

f

(lltJ8GJA TECH 1885-1915

[)ESJGNJNG TOMORROW TODAY

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Re: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: April, 1985

Dear Sirs:

Georgia Institute of Technology
School of Information and Computer Science
Atlanta. Georgia 30332-0280
(404) 894-3152

The name server problems with Accent are still unresolved; as a result, we
remain unable to do any testing of Radar involving multiple machines. Our
testing is thus limited to multiple processes on single machines. Although
Accent makes machine boundaries invisible to processes, giving processes the
same logical relationship regardlessof where they are located, we would still
prefer to do some testing involving programs running on both of our Perqs.
Because of the name server problem, little progress has been made on further
work with the replay mechanism of Radar.

Work has continued on Task 4, integrating the single process debugger with
Radar. One major problem has been encountered: dealing with conditional
receive statements within the process being debugged. By using a message
stream to simulate the rest of the program, messages are always available.
Thus the "else branch" of the conditional receive will never be used during
the debugging session. Dealing with this problem is now our highest prior
ity.

The contractually prescribed effort appears sufficient to achieve the objec
tives of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

An Equal Educat1on and Employment Opportunity Institution A Unit of the Un1vers1ty System of Georg1a

~
~~-
_,aGJA TICK 1845-1985

o£51GNJNG TOMORROW TODAY

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Re: R&D Status Report
, Contract No. DAAK70-79-D-0087-0015

Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: May, 1985

Dear Sirs:

Georgia Institute of Technology
School of Information and Computer Science
Atlanta. Georgia 30332-0280
(404) 894-3152

The name server problems remain
of this version of accent as we
in our efforts to do anything.
lease from CMU.

unresolved. We do not have the source code
did with the last, so we have been hindered
We are trying to get the source for this re-

Our paper on Radar was presented at the International Conference on Distri
buted Computing Systems this month. It was included in a session with two
other distributed program debugging papers, which presented some interesting
contrasting approaches to the problem.

Our problem with conditional receive statements in single process debugging
(Task 4) has been solved by making execution of an else branch another kind
of event to be recorded in the log file. This event is ignored by the mul
tiple process replay driver. It is, of course, used in the single process
debugging mode. The single process debugger is now finished and ready for
testing.

We now have a new user who was not part of the implementation team attempt
ing to implement a distributed program using Pronet on the Perqs. His exper
ience is intended to provide feedback on our design and to further test our
tools. His initial focus will be on the value of the multiple process replay
(Tasks 2 and 3) in debugging a multiple process implementation of a minimal
spanning tree algorithm.

The contractually prescribed effort appears sufficient to achieve the objec
tives of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

An Equal Education and Employment Opportunity Institution A Unit of the Un1vers1ty System of Georg1a

11\GI•
,.,atJJA TICH 1115-1915

D£Sic;HING TOMORROW TODAY

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Re: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: June, 1985

Dear Sirs:

Georgia Institute of Technology
School of Information and Computer Science
Atlanta. Georgia 30332-0280
(404) 894-31 52

The Accent name server problem remains unresolved. We have been promised
source code from CMU, but have received nothing yet. Another problem has
arisen due to the lack of source code. We are no longer able to produce
templates for all messages, since we had done some compiler modifications
in order to obtain the templates for records.

Work is proceeding slowly toward the goal of testing our system using a min
imal spanning tree program.

The single process debugging capability (Task 4) has been tested by the imple
mentor and is now ready for user testing. It will be used in debugging the
minal spanning tree program when that effort reaches the appropriate point.

The Vax 780 in the ICS Lab which we use for some of our development work and
where must read any tapes we get from CMU has recently been converted to
version 4.2 of Berkeley Unix. Since that time, our file transfer program,
which we have in object form only, no longer works. We will try to obtain
another one from CMU or from someone on Usenet (the source of our current
version).

Because of our problems with Accent and other software problems, it is un
likely that the contractually prescribed effort remaining will enable us to
make any further refinements to Radar.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

An Equal Education and Employment Opportunity lnst1tut1on A Un1t of the Un1vers1ty System of Georg1a

iiQ·
(llt#IJA TECH 1185-1985

D£51GNJNG TOMORROW TODAY

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Re: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: July, 1985

Dear Sirs:

Georgia Institute of Technology
School of Information and Computer Sc ience
Atlanta. Georgia 30332-0280
(404) 894-3152

we still have not received the source code for Accent from CMU. Apparently
the configuration of our Perqs is suffiently out-of-date that what we need
must be recreated from backups, which nobody has gotten around to doing for
us. We also still lack a working file transfer program to move programs be
tween the Vax and the Perqs.

Progress with the minimal spanning tree program, to be used to evaluate Radar
(Tasks 2 and 3) has been slow due to the need to fix problems with Pronet,
compounded by out lack of file transfer capabilities.

In our work to develop a higher level interface to Radar, we are exploring
the possibility of borrowing some ideas from a data compression technique.
The essence of this approach will be to present the user with information
about recurring groupings of events, which contrasts to our previously re
jected alternative that required the user to describe the groupings he ex
pected. The limited amount of contract effort remaining will not enable us
to do more than just study this new approach.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

An Equal Ed ·
ucat1on and Employment Opportun1ty lnst1tut1on A Un1t of the Un1vers1ty System of Georg1a

_,aGlA TECH 1115-1915

0£51GI'fiNG TOMORROW TODAY

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Re: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: August, 1985

Dear Sirs:

Georgia Institute of Technology
School of Information and Computer Science
Atlanta. Georgia 30332-0280
(404) 894-3152

We still are waiting for the required Accent source code from CMU. Appar
ently their work on our request has uncovered some problems with their file
backup system that they have not yet resolved. At this point, we don't really
expect to receive anything from them before the end of the project, so we
will remain unable to actually test Radar on programs executed on multiple
machines.

Our file transfer program has been fixed by one of the ICS lab staff who took
the object code of the old version and substituted in Unix 4.2 system calls
where necessary. His efforts have been very valuable to us.

Our Radar evaluation effort (Tasks 2 and 3) has finally succeeded in getting
the minimal spanning tree program executing on the Perqs. Just we hoped might
be the case, the initial version contains at least one bug that can be used
as an application for Radar. Unfortunately, that bug causes the program to
loop and when we abort execution, we lose the log files required to drive
Radar. This is a very fundamantal problem that will be a significant dis
advantage of the replay style of debugging if we can't solve it.

We have identified a data compression algorithm which we hope will be satis
factory to implement our event grouping concept. Due to lack of man-hours
remaining in the project, we will not have a chance to implement this exten
sion to Radar, but will be limited to studying its potential and related im
plementation issues.

Sincerely,

Richard J. LeBlanc Jr.,
Pr· · ~nc~pal Investigator

An Equal Ed
ucat1on and Employment Opportun1ty lnst1tut1on A Unit of the Un1vers1ty System of Georg1a

_,aGJA TICK 181S-1915

o£5lGNJNG TOMORROW TODAY

AIRMICS
115 O'Keefe Building
Georgia Tech Research Institute
Atlanta, Georgia 30332

Re: R&D Status Report
Contract No. DAAK70-79-D-0087-0015
Interactive Monitoring of Distributed Systems
Contractor: Georgia Tech Research Institute
Month: September, 1985

Dear Sirs:

Georgia Institute of Technology
School of Information and Computer Science
Atlanta. Georgia 30332-0280
(404) 894-3152

As expected, there have been no further developments involving Accent.

We have been successful in providing a capability to abort looping programs
so that their log files are not lost. Since there is a "master process" con
trolling the execution of a Pronet program, we can have it periodically look
for a command from the keyboard to abort the program. It can then send emer
gency messages to the processes, requiring them to terminate. This is not
as general a · solution as might be desired, since it depends on particular
properties of Accent and Pronet. Any other application of the technology
we have developed will have to consider handling the problem of looping pro
grams an important constraint.

The bugs in the minimal spanning tree program were independently discovered
while this problem with Pronet was being fixed, so Radar was not used very
significantly in debugging it. However, this effort did contribute consid
erably to the removal of problems in Pronet and the data collection system
upon which Radar is based.

Our studies of the data compression concept have led us to the conclusion
that it will require some extensions, since the basic algorithm for compres
sion works on a single data stream. Events in from a Pronet program, while
they can be linearized, actually come from multiple streams, one for each
process. We have identified an ICS student who is interested in continuing
work on this problem as his senior design project, so work on this aspect
of the problem will continue beyond the end of the contract.

Sincerely,

Richard J. LeBlanc Jr.,
Principal Investigator

An Equal Education and Employment Opportunity lnst1tut1on A Unit of the Un1vers1ty System of Georg1a

USING PRONET AND RADAR

ile a Netsla program NetslaFileName.n:
1'o cotnP

1) anslate NetslaFileName.n into NetslaFileName.pas
1. 1) ~~ich is a Pascal version of the program.

% netsla NetslaFileName.n

1 .2)
compile NetslaFileName.pas:

% com NetslaFileName.pas

mpile a Alsten program AlstenFileName.a:
l) To co

) translate AlstenFileName.a into AlstenFileName.pas
2· 1 which is a Pascal version of the program.

% alsten AlstenFileName.a

2 . 2) compile AlstenFileName.pas:

% com AlstenFileName.pas

l) To run a Pronet program, just type

% NetslaFileName

4) To replay program execution, just type

% replay NetslaFileName

At any time during the event replay the user can stop execution by
causing a keyboard interrupt. This invokes an interrupt handler which
presents the following menu:

1. Change To/From Single-Step/Continuous Operation.
2 • Change The Number of Seconds Per Event .
3. Skip Ahead to A Specific Event Number.
4. Display Contents of the Message Under the Mouse.
5. Instant Replay.
6. Start Displaying From Scratch.
7 • Exit REPLAY.
8. Help.
9 . Never Mind.

After the interrupt handler does what the user wishes, the program
returns to where it was executing before the interrupt occurred.

5) Single process debugging

5.1) to prepare log files for single process debugging

% ucap NetslaFileName ProcessName

Where ProcessName is the name of the process to be debugged.

5 ·2) to start debugging a process instance

% NetslaFileName -k ProcessName ProcessiD

Where ProcessiD is the Pronet ID that has been assigned to

the particular process instance.

The user then has to create a window for KRAUFT which is a
process debugger for the Accent operating system.

After KRAUFT is invoked, the user should resume the execution
of the debugged program by typing a key on the keyboard.

************* ••** ••** rocessors *
ftD~ pr;~***********
r":••••***
~.a code which specifies the steps to be taken by the Alsten

~tion essor during translation.
prep roc

~.n code which specifies the steps to be taken by the Netsla
~tioncessor during translation.
prepro

~onst.a declarations for Alsten preprocessor. constant

~~~t~t declarations for Netsla preprocessor. 

~S:~~fied version of grammar.a which has been compressed to 
facilitate use by the Alsten preprocessor. 

~S:~~fied version of grammar.a which has been compressed to 
tacilitate use by the Alsten preprocessor. 

IJ,select. a 
Reformatted Alsten grammar which contains the productions numbered 
in increasing order by line number from the orginal Alsten grammar. 

IJ,select.n 
Reformatted Netsla grammar which contains the productions numbered 
in increasing order by line number from the orginal Netsla grammar. 

LLsup.a 
The support routines referenced in the Alsten preprocessor or the 
action code. 

LLsup.n 
the support routines referenced in the Netsla preprocessor or the 
action code. 

LLtype.a 
TYPe declarations for the Alsten preprocessor. LLtype.a is included 
into alsten.pas (the Alsten preprocessor.) 

LL~.n 
TYPe declarations for the Netsla preprocessor. LLtype.n is included 
into netsla.pas (the Netsla preprocessor.) 

LLvar.a 
Variable declarations for the Alsten preprocessor. 

LLvar.n 
Variable declarations for the Netsla preprocessor. 

LLwrt.n 
~support routines referenced in the Netsla preprocessor. Used to 
~~rate Pascal code. 

tables 
Parsing table that will be read by the Alsten preprocessor. 

sten.Pas 
T.he Alsten preprocessor. 



~pas am which accepts a translation grammar as input and generates 
y-~pr0~1 files which will be needed for the language preprocessor. 

sever a 

~ar.a for Alsten. 
9"Li(l) grammar 

gr~ij0grammar for Netsla. 

la pas 
ne~·Netsla preprocessor. 

n~!~:ing table that will be read by the Netsla preprocessor. 

~****************** ******~ 
-.n:"T' runtime library * 

PRO~~~****************** ***** .. 

--'"!Vi ties .pas 
~~~rting routines which are called to actually perform the 

Netsla and the Alsten activities.

lster'Lsupt. pas
a Additional supporting routines to handle Alsten activities such

as the message reception and the message transmission.

alstenini t. pas
Initialization code to set up parameters of a child process
When it is created.

chilcLlib. pas
Library routines that are referenced by child processes.

cl)_procs . pas
Routines that create and maintain the run-time database of a
Pronet program.

db_ types. pas
Declarations of data types that are used in the database.

decl_types . pas
Type declarations.

defs.pas
Definitions of some system parameters.

events.pas
Event handlers. Defines steps to be taken when an event occurrs.

netslaini t. pas
~s to initialize a network.

RADAR•

8'1ent~s. pas
~s module is broken out separate from the rest of radartypes because it
1~ the only one needed to do logging of events, and using all those

entifiers when only these are needed is begging for doubly-defined

idetltifiers

11es.pas dling module for REPLAY system, isolates getting
fil~t event from all the log files.
thB ne~

~orY·Pa~tained module for handling history of events, to help
self corforming the Instant Replay of RADAR.
~pe

~.pas __ keep track of what is on the screen.
screen

~~ti~a~ontaining miscellanious small support routines
- ~ . ModUthe RADAR monitoring system.

tor
~late.pas .
- Routines to generate template f1les.

~.pa~efinitions for RADAR, pronet/clouds ~onitor
~module is not designed to be actually compiled on the Perqs.
I is used to put all the type definitions in one place. It then exports
~se definitions. It includes fudgemod.p only so that the module will
be syntactically valid for the perqref cross referencing program.

UC&E·pas up Close and Personal -- message filtering program to aid
1n single process debugging of Pronet process scripts.

vars.pas
variable declarations for RADAR -- pronet/clouds monitor

proc.pas
Procedures for RADAR

process. pas
Processhandl ing

ndarlog.pas

keep track of actual processes, ports, destinations

Radarlog -- module which performs logging fnnction for RADAR

Test programs *

MSTnetnp. pas

t.pas
odel.pas
ode2.pas
ode3.pas
ode4.pas

Pronet programs that implement a distributed algorithm of minimum
&panning tree .

1nt.n
1nt.pas
acan.a
IIC:an.pas
l*rse . a
l*rse .pas
lleman .a
lleman .pas

. ~
l.pas
2.pas

eel··
ccl·pas
cc2.Pas
cc2·•
eel·• ccl.pas
cd2·•
cd2·pas

.a

.pas
ce2·•

.pas
n.a n.pas
t2.a

cf2.pas
c:gCJ.a
~.pas
~.a
~.pas
cgl.a
c:g2.pas
cg3.a
c:g3.pas

.Pas

.pas
pc.n
pc.pas
~.n
pd.pas

.n

.pas
t.n
t.pas

pg.n
pg.pas

l.a
l.pas
l.a

that implement a simple arithmetic interpreter.

that implement the message broadcasting .

Programs to test various features of Pronet.

INTERIM REPORT

INTERACTIVE MONITORING OF DISTRIBUTED SYSTEMS

Prep a red for

U .. S. ARMY
Institute for Research in
Management Information and Computer Science

·Atlanta, Georgia 30332

Contract No. DAAK70-79-D-0087-0015
GIT Project No. G36-605

May 1984

GEORGIA INSTITUTE OF TECHNOLOGY
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
SCHOOL OF INFORMATION AND COMPUTER SCIENCE
ATLANTA, GEORGIA 30332

Interactive r-bni toring of Distributed Systems
Interim Feport

Richard J. leBlanc

Mly' 1984

u.s. 'Prnty Institute Fbr Fe search in
M:inagement Information and Computer Ecience

Atlanta, Georgia 30332

Oontract Nb. DAAK70-79-D-0087-0015
GIT Project No. G36-605

Page ii

TABLE OF CONTENTS

Page

section 1 INTRODUCTION • •••.••••••

.1 Problems with Monitoring Distributed Programs...................... 1

.2 Proposed Solutions Using PRONET.................................... 3

.3 Overview of Project Status... 4

section 2 RADAR DESIGN • •• 7

.1 Distributed Programs... 7

.2 The RADAR System.. 7

Section 3 COLLECTING INFORMATION ••••••••••••••••••••••••••••••••••••••• 10

.1 The Features of Pronet •••.• 11
• 1 ALSTEN. • 11
.2 NETSLA.. 13

.2 Information Supplied By The Pronet Compilers....................... 16
.1 ALSTEN •• 16
• 2 NETSL A • •••••••••••••••••••••• o • 1 8

.3 Information Collected At Run-Time •••••••••••••••••••••••••••••••••• 19

.4 Discussion ••• 22

Section 4 REPLAYING PROGRAM EXECUTION •••••••••••••••••••••••••••••••••• 24

• 1 Outline of the Algorithm ••• 24
.2 The User Interface ••• 26

.1 What the User Sees •• 26

.2 Single Stepping ••• 28

.3 Displaying Messages ••• 28

.4 Selective Replaying of Events ••••••••••••••••••••••••••••••••••• 30

.5 REPLAY Menu Options... 31

Section 5 INTERFACE WITH PRONET •• 33

• 1 ALSTEN. • 3 3
.2 NETSLA ••••••••••••••••• ~... 34

Section 6 PRONET IMPLEMENTATION •• 36

• 1 The Preprocessors •• 36
.2 Module Structures •• 38
·3 Processes and Ports ••••••••••••••••••••••• • •••••••••••••••••••••• •• 39
.4 The Network Representation ••• 40
.5 Event Generation and Handling •••••••••••••••••••••••••••••••••••••• 41
.6 Current Status ••• 42

Page iii

secti on 7 IMPLEMENTATION OF THE RADAR SYSTEM ••••••••••••••••••••••••.• • 43

section 8 PLAN FOR FURTHER WORK •• 49

Appendix A The LL(1) Grammar of NETSLA ••••••••••••••••••••••••••••••••• 52

Appendix B The LL(1) Grammar of ALSTEN •••••••••••••••••••••••••••••••• • 71

Appendix C An Example NETSLA program- Broadcasting ••••••••••••••••••. • 91

Appendix D A Network Specification Module ••••••••••••••••••••••••••••.• 92

Appendix E The Event Handling Module ••••••••••••••••••••••••••••••••••• 93

Appendix F A Script for Sender Processes ••••••••••••••••••••••••••••.•• 95

Appendix G The Preprocessor-generated Code for Sender Processes •••••••• 96

Appendix H A Script for the Receiver Processes......................... 98

Appendix I The Preprocessor-generated Code for Receiver Processes •••••• 99

Bibliography . • . • . • . • • . • • • . • • . . • . • . • . • • • • . • . • • • 10 1

Page iv

LIST OF ILLUSTRATIONS

Figure Page

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

send and Receive Statements in ALSTEN •.•••.••••••••••..•••.•.••• . . 12

Port and Port Tag Declarations in ALSTEN •••••••••••••••••••••••••.

Network Specifications in NETSLA ••••••••••••••••••.•••••.••••••..•

A Simple Network Specification •••••••••••••••••••••••••••••

A Graphical Representation of the Simple Network •••••••••••••••..•

Message Templates •••

Fields In A Message •••

Description Of A Process ••

Types Of Events ••••••••• ..
Event Records •••

Top Level REPLAY Algorithm ••••••••••••••••••••••••••••••••••••••

Picture of A Process and A Message •••••••••••••••••••••••••••

A Process Sending A Message •••••••••••••••••••••••••••••••••••••••

REPLAY Menu Options •••

Conditional Compilation in Perq Pascal ••••••••••••••••••••••••••••

Preprocessor Structure •••••••••••••••
NETSLA Object Module Structure ••••••••••••••••••••••••••••••••••••

13

14

15

15

17

17

18

19

20

25

26

27

31

34

37

39

section 1 INTRODOCTICN Page 1

~ction 1

INTRODUCTION

!.!Problems with Monitoring Distributed Programs

In a conventional ~ogramming environment, there are two princip3l

purp:>ses for moni taring the run-time behavior of a program: performance

measurement and deb~ging. (By "monitoring" Y.e refer to some mechanism for

obtaining information aoout the performance of a program, external to the

program itself.) Performance measurement is a relatively mU1dane application

of moni taring in soch an environment, being principally concerned with the

processor time requirements of various };Brts of a program and requiring little

or no interactive intervention by a programmer. Deb~ging is considerably

more interesting, requiring extensive programmer interaction by its very

nature.

When we generalize our thinking to a distributed system from a

traditional single-processor environment, the uses of monitoring become

somev.ha t different and we must develop a new conceptual view of a major p3rt

of the monitoring task. we are, of course, still interested in performance

measurement and deb~ging, but these tasks become quthis new environment. The

reason for this difference is that Y.e are now concerned with distributed

programs - programs which cannot be monitored by considering a single address

space on a single machine. Rather, we must now be concerned with the com

rnlllication between the various parts of a program, for these interactions will

Play a crucial part in the moni taring task.

Ferformance measurement in a distributed system is made more complex by a

number of new considerations. COmmunication costs and the overall time it

section 1 INTRODOCTION Fege 2

takes to execute a program, which is affected by the potential for parallel

execution of slbtasks and by time spent w:li ting for messages, are equally im

portant considerations in many situations. Further, it is much more difficult

for a measurement Irogram to monitor an entire program, since the monitored

program may be distributed arbitrarily across a network of machines. It will

be necessary for any monitoring program to obtain information about the dis

tribution of a program arrl about its conmunica tion 1 inkage and behavior.

'!his need to obtain information from distributed execution sites

naturally applies to debU3gers as well as to performance monitors. In fact,

it is a more complex txoblem in the case of a debu:Jger since the debu:Jget" must

somehow assist a programner in compreherrling the "state" of a program which

consists of a number of processes running asynchronously on several machines.

Cbnventional debugging tools are certainly of little use in this situation,

since they are typically oriented tow:lrd monitoring the operation of what

W":>uld only be a single process of a distributed program. O'lce again, tools

W'lich provide information about the status of process interactions will be

required. (Such tools should also have the capability to interface with more

traditional monitoring tools Which can be used on the individual processes.)

Just as communication should play an important part in distributed per

formance measurement, it should also have a crucial role in debugging distrib

uted programs. 'Ihe correctness of such programs will undotbtedly deperrl on

the correctness of the contents and sequencing of messages transmitted between

their constituent processes. 'Ihus a distributed debugging tool must deal with

communication as a major part of its job. Ih fact, it is conceivable that a

comnunication monitor may be the debugger at the interprocess level, com

Plementing traditional debu:Jgers Which operate on individual processes.

section 1 IN'IRODOCTICJ.J Page 3

As a final difficulty, any kind of monitoring of a distributed program

will potentially generate a great deal of information, which must be conveyed

to a programmer in a comprehensible manner. It will presumably not be satis

factory to produce all of this information independently for each of the

processes. R:lther, the information must be aggregated in some manner consis

tent with the nature of the monitoring task being performed.

1.2Proposed Solutions Using PRONET

'nle network descriptors of PRCJ.JET will provide an excellent basis for the

operation of distributed monitoring tools. The interconnection information

these networks provide is exactly what is requi r~ by a monitor so that it can

easily recognize the structure of an entire program. 'Ihus the implementation

of a distributed ~rformance monitor or debt.gger can use our PROOET work as

its basis.

As vas indicated in the previous section, a comrmnication_ monitor will be

a crucial part of any of these tools. The interconnection specifications in

PROOET networks, as currently designed, provide the minim Lin amomt of informa-

tion needed by a communication monitor. That is, they provide a listing of

the message p3 ths between processes and the types of the messages Yhich may be

transmitted. 'nle task of a monitor will be to provide a prograrrmer with in-

formation about message transmission between processes. Fbr ~rformance

measurement purposes, the most important information will probably involve

s~h factors as message queue lengths and the amomt of time processes s~nd

Y.ei tin:3 for messages. A distributed debt.gger, on the other hand, will be ·

concerned Wl.. th the · f d · h h · sequencutg o messages an Wl t t e1r contents. It will

Probably also be required to provide some capabilities to examine the opera

tion of individLBl processes, which may be accomplished by interfacing with

section 1 INTRODOCTirn

traditional single process debuggers.

1• 3overview of Project Status

Page 4

'!he project ~s originally planned to inclt.rle the following tasks as

described in the original statement of work:

~sk 1 - PRONET Interface

PRrnET, a langtBge that provides a high level description of interprocess

communication, is currently being implemented on the full distributed

system at <£orgia Institute of 'Iechnology. 'fue task is to develop an in

terface between PRONET and a distributed monitor.

TI:tsk 2 - Canrmnication t-bni tor

'lhe contractor shall determine vtlat data should be collected by the

monitor to facilitate developnent, debugging and maintenance of pro:Jrams.

'lhis task is to develop a monitoring program that interfaces with the

communication features of the operating system and collects the necessary

data.

'!ask 3 - Interface to the <hmmmication t-bni tor

The contractor shall determine what data should be collected by the

monitor to facilitate developnent, debugging and maintenance of programs.

The task is to develop a moni torirg pro:Jram that interfaces with the com

munication features of the operating system and collects the necessary

data.

'!ask 4 - Interface with a Process-level r:Ebugger

The contractor shall develop an interface with the communications monitor

and an existing symbolic debugger. If this approach is infeasible, then

section 1 INTRODt.rriCN Page 5

a symbolic debugger for individual processes must .be implemented and in

terfaced with the sirgle process debugger.

Since this Iroject \>aS initiated, some changes in the tasks have been

made. '!he new approach to the project is described in the followirg list of

tasks and justification for the changes:

'!ask 1: Implement PRONET on Perq computers and provide a monitor interface.

rrask 2: Build a prototype monitor.

rrask 3: Build a full monitor.

rrask 4: Interface with a process-level debugger.

'!he charge in task 1 involves use of different hardv.ere than originally

planned. 'Ihe main reason for this change \>aS that v.e found the implementation

of PRONET on our Primes too expensive to be practical. 'Ihe operatirg system

on these machines does not effectively support dynamic process creation. The

kcent .operating system available on the Perqs, on the other hand, supports

dynamic fCocess creation as \tell as message p3ssing between processes on

different machines. 'Ihus it rna kes PRONET implementation moch simpler than on

the Primes.

'Ihe ~rqs also have high-resolution, bit-mapped displays. 'Ihis feature

gives considerable support to the development of a very effective user inter

face to our monitoring system.

'Ihe other major change in our approach involves the initial development

of a prototype monitor rather than inmed ia te development of the final system.

This change has t'M:> motivations. First, it will give us some experience in

dealin;J with distributed programs short of a full-scale implementation. Since

the prototype will fCovide only a historical replay of program events, the

section 1 INTRODOCTICN Page 6

second motivation for this approach is that it allows us to address the har

dest problem last. '!hat problem is the question of how v.e will deal with real

time interaction with the processes of a distributed program.

The following four sections describe various aspects of the design of the

prototype monitor, called RADr\R. 'fuey are extracted from Arnold lbbbins' M.s.

thesis. '!hey are followed by sections on the PRONET implementation, the

monitor implementation status and our plans for further Y.Ork.

section 2
RAD.l\R DESIGN Page 7

Section 2

RAIY\R DESIGN

2.lDistributed Programs

'Ihe RAmR monitor is intended to supPJrt Pronet [Macc82], a message

based language specifically designed for writing pr03rams which can take

advantage of the environment offered by an FOPS. Ibv.ever, it could be easily

adapted to supPJrt other message-based pr03rarrming systems. 'Ihe relevant

features of Pronet will be discussed in the section 3.1.

2.2The RAD.l\R System

The RADAR system takes a passive approach to monitoring distributed

programs. Because it is not interactive the term "monitor" is used to

describe it, and not the term "deb~ger."

RAIYffi is designed to supPJrt Pronet on PERQ computers [3RCC82] • 'Ihe PERQ

is a single user rrachine with a high resolution bit-mapped display and a

mouse.

Pronet consists of two sublangt.ages: NETSIA for describing carum.nication

networks, and ALSTEN for describing processes. The Pronet compiler provides

the· monitor with information concerning the connectivity of the processes.

'Ihis information is collected from the NETSLA runtime system. ALSTEN programs

are loaded with a special communications library which records every standard

or user-defined event during execution, and rrakes a copy of every message

sent. 'Ihe exact nature of the information supplied by the NETSIA runtime

section 2
RAmR DESIGN Page 8

t
em and the structure of AISTEN event records will be described in section

sys
'ttlis canp::>nent of RAmR is known as the RAIY\RLOG.

). 2.

After the program has completed executing, the REPLAY comp::>nent of RAmR

is invoked to provide a graphical "replay" of the execution. Each message or

event is stamped with a global event number. '!his imp::>ses a p3rtial ordering

on events. 'Ihe monitor then displays events one at a time. 'Ihe programmer is

able to YB tch the comml.l1ications traffic amongst the processes. Processes

have names in Pronet, so it is easy for the prograrrmer to see which process is

carumnicating with v.hich other ~ocesses.

REPlAY provides the user with the ability to view the contents of any

message currently represented on the screen. Messages are represented on the

screen as small boxes. 'Ihe user places the PERQ' s mouse over the message

which oo wishes to examine. REPLAY then opens a new window in which the con-

tents of the chosen message will be displayed in a formatted fashion. Fbr in-

stance, if the message contained an integer and two floating point numbers,

the message would be displayed as an integer and two floating p::>int numbers,

not as 10 octal bytes. When the user is throt.gh with the message the new

window disappears.

REPLAY also provides the ability to replay a certain number of events

which have already happened. '!his can be done at any p:>int during the

display. 'lhe user can "rewind the video tape," so to speak. 'Ihis replay is

limited to a reasonable maximun nunber of previous events. '!his feature is

knoW'l as an "Instant Replay."

Finally, as a separate utility, the user can name a given process and

have all of the messages which were sent to that process selected from the

recorded message traffic. '!his single process may then be run by itself with

its messages derived fran the stored messages. '!his feature is designed to

section 2
RAil\R DESIGN Page 9

facilitate si03le process debu;Jgio;J usio;J real input data (messages). 'Ihis

~y, it is possible to observe a process' behavior under realistic conditions,

withoUt havinj to worry about con troll io;J the rest of the processes of the

distributed program.

section 3 COLLECTING INFORMATION Fage 10

Section 3

COLLECTING INFORMATI~

~ is interned to · support Pronet, a language designed for writing

programs Which can execute in a distributed processing environment. Pronet

stands for Processes and Netw:>rks. 'Ihe introduction to Cllapter 2 of [M3cc82]

sunmarizes the description and design goals of_ Pronet:

PRONET is composed of tY.O complementary sublanguages: a netw:>rk
specification langLBge, NETSI.A, and a process description langLBge,
AI.STEN. Programs written in PRONET are comiX>sed of network specifications
and process descriptions. Network specifications initiate process exec
utions aoo oversee the operations of the processes they have initiated.
'!he overseeing cafBci ty of network specifications is limited to the main
tenance of a communication environment for a collection of related
processes. 'Ihe processes initiated by a netw:>rk specification can be
simple processes, in which case the activities of the processes are
described by AI.STEN programs, or they can be "comp:>si te processes", in
which case their activities are described by a "lower-level" netw:>rk
srecification.

AISTEN is an extension of Pascal Which enables programmers to describe
the activities of sequential processes. During their execution, processes
may perform operations that cause events to be announced in their over
seeing network specification. Netw:>rk specifications, written in NETSLA,
describe the _activities to be performed when an executing process 'an
nounces' an event •••• TWo principles have influenced the design of these
features: independence of process descriptions and distributed execution
of network specifications.

This section first describes the features of Pronet relevant to in-

terprocess conmunication. '!hen it descri~ · the information provided to the

monitor by the· NETSI.A and AISTEN compilers. Finally, ~ t presents the format

of the information collected at run-time by the special communications

library.

section 3 COLLECTING INFORMATION Page 11

).!The Features of Pronet

'!his presentation is derived from Chapter 2 of [Macc82].

3.1.1ALSTEN

ALSTEN is essentia.lly an extension of Pascal [Jens74]. 'fue file concept

haS been removed entirely from the language. Processes communicate only

throu:Jh locally declared "p:>rts", using the inline send and receive statements

which are analogous to Pascal's read and write. Fbrts have a direction,

either in or out. Fbrts may be placed together into p:>rt groups. O"le could

define a duplex channel as:

port channel (incoming in bit; outgoing out bit} ;

'lb accomoda te the notion of a server process, which serves many other

processes, AI.STEN provides port sets and port tag variables. A port set is a

collection of port groups or simple ports identified by one name. Fbr ins

tance, if a p:>rt set is a set of p:>rt groups, a receive on a p:>rt set y.ould

set a port tag variable to iooicate which element of the set W3S actually used

for comrm.nication. 'lhis tag may then be used in a send operation for sending

replies to the process which originated the message.

'lhe syntax of the send and receive statements is shown in Figure 1.

'

section 3 COLLECTING INFORMATICN Page 12

<send strnt> :: =
send [<expr>] to <bourrl port denoter>

<receive strnt> ::= <simple receive>
I <conditional receive>

<simple receive> ::=
receive [<variable>] from <free port denoter>

<conditional receive> ::= when
---r<receive part>}

[<otherwise p:irt>]
end

<receive p:irt> ::= <simple receive> [do <strnt>]

<otherwise part> ::= otherwise <strnt>

Figure 1 -- Send and Ieceive Statements in ALSTEN

A type is associated with every port. Only expressions of the type as-

sociated with a given p:>rt may be sent to or received from that p:>rt.

'!he <expr> is optional. In these forms of the serd and recei ve

statements, the p:>rt is of type signal. A signal is a message with no con-

tents. Signals are often useful for sending control information, such as tel-

ling a process to start a ~rticular task.

'!he syntax for p6rt declarations is sqown in Figure 2.

'

.I

section 3

3. 1. 2NETSLA

COLLECTING INFORMATION

<port decl> ::= <simple port decl>
I <port group decl>

<simple port decl> : :=
port <port id> <direction> <msg type>

<port id> ::= <id>

<direction> ::= in out

<msg type> : : = <type id>

<port group decl> : :=
port [set] <port id> ' (' <subport list> ') '

<subpart list> ::=
<subport decl> {';' <subport decl>}

<stbpo~t decl> : :=
<subport id> <direction> <msg type>

<st..iJp:>rt id> : := <id>

<port tag type> : := tag of <port id>

Figure 2 -- FOrt and FOrt 'lag IEclarations in ·AI.STEN

lege 13

As stated earlier, the purpose of NETSIA specifications is to initiate

and control the communications environment of A~TEN processes:

'Ihe features of NETSIA are aimed at specifying the inl. tial configura
tion and sUbsequent modifications of a communication environment for
processes. The overriding principle followed in the design of these
features is that of "centralized · expression--decentralized execution"
[Live8Q]. <Entral ized expression is im{X>rtant in presenting the abstrac
tion to be supported by network specifications. All of the inter-process
relationships that describe a communication environment appear in a single
network specification. lbwever, this corrununication environment is not
maintained in a centralized fashion. Processes maintain their communica
tion envirornlent indirectly. When they execute send or announce
operations, processes perform the activities . s~cified by their overseeing
network specifications; however, the nature of these activities are unk
nown to the process. [Macc82]

'

section 3 COLLECTING INFORMATION

'!he syntax of network specifications is shown in Figure 3.

<network specification> ::= <network header>
{<process class specification>}
{<event handling clause>}
[<initialization clause>]

end <iqentifier>

<network header> ::= network <net id>
{ <p:>rt decl>}
{<event decl>}

<process class specification>
process class <process id>

~
process attributes>]

{ port decl>}
event decl>}

end <process id>

.. -.. -

<process attributes>
<field list>

end attributes

. ·.. - attributes ·

'

' . ' ,

Figure 3 --- Network Specifications in NETSLA

Fage 14

When a network starts to run, its initialization clause is executed. The

initialization clause is used to create instances of processes and connect the

output p:>rts of one process to the input p:>rts of another. A simple network

specification is presented in Figure 4; a graphical representation of the net-

~rk is shov.n in Figure 5.

,
•

section 3 COLLECTING INFORMATION Fage 15

network static net
process class proc class

port input in integer;
port output out integer;

errl proc _class --

initial
create procl proc class;
create proc2 proc-class;
create proc3 proc class;
connect procl.output to proc3.input;
connect proc2.output to proc3.input;
connect proc3.output to procl.input;
connect proc3.output to proc2.input;

end stat1c net

Figure 4 --- A Simple tet\\Ork Specification

I \ I \
I procl I I proc2 I
\ I \ I

input I II-output input! II-output
~ !___________ ~ I
I I I I v-,----- 1

I 11'
output I I . I input

~-- -\
I proc3 I
\ I

Figure 5 --- A Graphical Iepresentation of the Simple tet\\Ork

If one output port is connected to more than one input port, the messages

sent out on it are replicated. This occurs in a manner invisible to the

process sending the message. 'Ihis allows one-to-one, one-to-many, and many-to

one connections between ports.

'
f

section 3 COLLECTING INFORMATION FBge 16

Processes may define events. These events can then be announced by the

processes in their overseeing network specifications. NETSI.A provides

features for handling these events when they are announced. The programmer

specifies W"lat actions to take, su:h as aborting processes or creating new

ones. Other actions are also possible.

Pronet IX"edefines several standard events. Fbr instance, when a process

terminates nonnally, the standard event 'done' is announced in its net\\brk.

~ssage transmission and reception are considered to be events. 'lhey

simply have a separate syntax. 'Ihe other standard events and the syntax of

event declarations and handlers are discussed fully in [Macc82].

Since Pronet is oriented around events, so is RAI:Y\R. 'Ihe special runtime

routines record all the events and messages. '1he REPLAY program presents the

user with a visual replay of the events that occurred during the execution of

the program. '1he majority of events will be message transmission and

reception. When a different type of event occurs, that event will be

p:>rtrayed.

3.2Information Supplied By The Pronet Compilers

'Ihe Pronet compilers and runtime system provide RADl\R with the framework

upon which to build the later description of events.

3. 2. lALSTEN

Ports in Pronet are alv.ays associated with a type. 01ly messages of the

type associated with a port may be sent to or received from that port.

In any given ALSTEN program, there will be a fixed nunber of differe~t

message types, i.e. the types associated with ports.

section 3 COLLECTING INFORMATION Page 17

'!he ALSTEN canpiler will generate a file with a list of message

A template looks like

1 Identifier I size I total no elements list of elements

Figure 6 -- Message 'Iemplates

The list of elements is simply an ordered listing of the fields in a message.

For instance,

I real array character 19 int long

Figure 7 --- Fields In A ~ssage

If a field of a message is itself a record with further subfields, the

compiler will expand it in line down to its basic elements. Elements can be

bytes, integers, long integers, reals, or one dimensional arrays of these

types. Bytes are treated as tnsigned integers, even thoUJh they may have

actually been signed quantities. If necessary, RADAR may be modified to allow

specifying Yhether or not soch nunbers ~re signed or tnsigned. Elements

smaller than one byte occupy a byte to themselves. This implies that the

Fascal keY'AOrd packed has no effect. ldmi ttedly, this is a constraint on the

compiler; see Section 5 of the thesis for further discussion of this cons

traint.

'Ihe purp:>se o.f the list of message templates is to allow the decoding of

imividual messages. A user can select any message on , the screen with the

PERQ's mouse. Wlen he does so, RAD\R will open a sei=5rate window and format

,

3 .
section

COLLECTING INFORMATICN Page 18

the contents of the message in it. Each message carries its type with it.

'!he message is decoded accordio;J to the correspondio;J template and printed ac

cordingly. Ole dimensional arrays are allowed, princip:llly for use in

displaying character strio;Js. REPLAY will treat arrays as if they are indexed

fran 1.

3. 2. 2NETSLA

NETS LA controls process and p:> rt creation and the interconnecting of

output ports to input ports.

'Ihe information generated by the NETSI.A system is a file describing each

process. A process is described as follows:

machine proc num proc name nunber p:>rt groups
nunber of simple ports Tn each group - -

direction nunber name type { DESTINATIONS }
direction number name type { DESTINATIONS }

number of simple p:>rts in each group
direction number name type { DESTINATIONS }
direction number name type { DESTINATIONS }

Figure 8 --- rEscription Cf A Process

The {} pairs enclose optional information. 011 y if a p:>rt is an output

port does it have one or more destinations associated with it. 'Ihe DES-

T~TIONS field in Figure 8 above represents the nunber of destinations to

which an output port sends its messages, and the destinations themselves. A

destination is uniquely identified by the destination machine, the process

nunber on that machine, and the port number of the process to which the mes-

sage is directed. ,

section 3 COLLECTING INFORMATION R:lge 19

M3chine and process id' s are hidden from the programmer, but the NETS LA

runtime system and the t.nderlying global operating system must know about

them, since they actually arrange for execution of the processes.

When REPLAY first starts up, it builds a table of records describing

processes with all these stroctures attached to each element in the table.

rater, when a send event occurs, REPLAY determines \\hich process is the des

tination and depicts a message moving from the source process to the destina-

tion '(Xocess.

3.3Information Collected At Run-Time

M:>st of the information that ~R needs is collected at nn-time.

Special rtmtime routines log every event that occurs. 'Ihese routines are kept

in a sep3rate module called RAmRLOG.

BJents may be one of the followi~:

eventtype = (createprocess, destroyprocess,
message transmission, message reception,
portcreation, failed, done -
aborted, userevent);

Figure 9 --- 'JYpes Of E.\Tents

'Ihe 'message_transmission' and 'message_reception' events are logged by

the~ and receive routines respectively. 'Ihe other events are logged by

the announce routine.

'Ihe ArSTEN compiler inserts a procedure call to the routine makelog as

the very first executable statement in a program. '!his routine creates the

log file and annotmces the process creation event. Before the final end of

section 3 COLLECTING INFORMATION Page 20

~rcTEN main program, the compiler inserts a call to the routine closelog,
the 1'\J.Jt-J

which closes the log file aoo announces the starrlard event 'done.'

'!he structure of the log file records for each event is as follows.

rmessage-transmission machine id I process }d I count I
-- 1 uniqueMesgid I success I checkpointing f mesg type I

1 bufsize I ',' I buffer I

Tmessage-reception machine-id I process-id I count I
I success I { UniqueMesgiD }

1 userevent I machine-id I process-id count eventname

T createprocess machine-id process-id count

T destroyprocess machine-id process-id count

portcreation I machine-id process-id count

failed I machine-id process-id count

done I machine-id process-id count

aborted I machine-id process-id count

Figure 10 -- Event Iecords

Each process keeps a cotmt of the events it has announced, inclu:ling mes-

sage transmission and reception. The event count starts at one and is

incremented with each event.

When a process sends a message, it includes the value of its local event

counter. If the receiving process' event count is lower than that of the sen-

section 3 COLLECTING INFORMATION Page 21

the r eceiver sets its count equal to that of the sender. After der's,

receivin;J the message, the process logs the message_reception event. If the

message reception succeeded, the process logs the lhique~sg Id of the message

it received. Since message_reception is an event like any other, the local

event cot.mt is incremented before the event is logged. 'Ihus, the

message_reception event's sequence number will be one greater than the event

count of the sender. 'Ihis insures that there will be at least a partially

correct ordering on events. In p:trticular, interrelated events will alv.eys be

correctly ordered.

Placing an ordering on events in a distributed system is a difficult

task. One solution is to use the times on local clocks to time-stamp each

event. '!his method is not acceptable since it is imp::>ssible to synchronize

all the clocks on all the machines. 'Ihis introduces the p::>ssibility of recor~

ding events out of order. E.g., it would be p:>ssible, d ~ to synchronization

errors among clocks, to record the reply to a message as having occured

"before" the sending of the initial message.

By having the receiver of a message set its event cot.mt equal to that of

the sender, and then incrementing the comt before logging the message

reception, the synchronization problem is avoided. 'Ihe reply to a message

will al vays be sent "after" the sending of the initial message.

Using this method, it is possible to have several events occuring at the

same "time," i.e. several events might all have the same event number. In

this case, it is imp::>ssible to determine the ordering of these events, but in

fact, the ordering is ll'limp::>rtant. 'Ihe fact that these events all have the

same number indicates that they are not interrelated, since if one event

de~nded on another to precede it, its event sequence number v.ould have been

greater than the sequence number of its predecessor.

section 3 COLLECTING INFORMATION FBge 22

FUrthennore, this method makes no extra demands on the underlying global

operating system to keep clocks synchronized across machines. It also fits in

\¥ell with Pronet, which has no concept of global time.

3• 4Discussion

Keeping a record of every event, along with a description of message con

tents and the interconnectivity of every port, provides a complete record of

W'la t \-tent on.

CDpying all the messages allow:; the user to view \\hat vas actually sent;

the message description makes the message contents understandable, and the

connectivity data allow:; graphically depicting the movement of a message from

its source to its destination.

A valid question to raise here concerns the cost of recording all the

messages and events. H:>w moch does the extra disk I/O affect the computation

in frogress? 'Ihis is the Heisenberg lhcertainty Principle as applied to deb

t.qJing, sometimes called the "Heisenbug" Principle [ACM83b]. he can present

no definite answer to the question here. It is expected that the disk

operations actually buffer to memory until the buffer fills up. If this is

the case, there should be little extra overhead since the system will suspend

a process only when its I/O buffers must be flushed. 'Ihe main problem is that

W"lile one process is suspended, others can continue to n.m on other machines.

It can be argued that the fact that one process on one machine has been

stop~d should not affect the other processes on other machines, since the

ALSTEN receive is defined to be a blocking operation. 'Ihe other processes may

Y.ei t longer to complete the receive than they otherwise ~uld have to, but ul

timately, the same actions should be accomplished.

,

section 3 COLLECTING INFORMATION R:lge 23

suspending one process for disk I/O can affect other processes which con

tinue to run, in a different manner. The ALSTEN receive can specify several

alternatives; in effect it can be non-detenninistic; receiving from port sets

is actually non-deterministic, since the programmer can not know v.hich element

of the set will be used. For instance, if there are three processes A, B, and

c, and Process B YBS supfX>sed to receive a message from Process A, but A YBS

suspended, B could errl up receiving a message from Process C instead. 'Ihis

should not affect the ultimate semantics of the p:-og ram, since the receive

could happen on any specified port. It merely changes the path by which the

program arrives at its goal.

,

section 4
REPIA YING PRcrnAM EXECuriON Fage 24

Section 4

REPlAYING PROORAM EXECUTIOO

'!he major component of the RAmR system is the REPlAY pr<:x;Jram. After a

Pronet {X"ogram has executed and all the information described above has been

collected, REPLAY is invoked to graphically display event occurences. f¥hre

imiDrtantl y, it also displays the message traffic amongst processes.

The PERQ's screen is a high resolution, bit-mapped black and white

display. The PERQ has hardw:tre and firm\oare instructions, called fester cps,

for manipulating the screen. REPLAY uses the Canvas graphics package

[Ball81], which '{Xovides a higher-level, more usable interface to control the

screen.

This section discusses the algorithms REPLAY uses, describes the view of

the pr<:x;Jram REPIAY presents to the user, arrl presents the user interface.

4.10utline of the Algorithm

The overall algorithm is fairly simple. It is based on the notion of

events as defined in previously. Since each event is nunbered when recorded,

an ordering of events is automatically made possible.

'lhe general algori thn for event replaying is given in pseooo-cooe in

Figure 11.

get first event

while more events
if event in { send a message' receive a message }

do something visible with the message
else

announce the event conventionally
end if
get next event

I

section 4
REPLAYING PROGRAM EXECUTION R:lge 25

errl while

Figure 11 -- 'lbp Level REPLAY Algorithm

M:>st of the work is involved with displayio;J events. REPLAY basically

haS to keep track of four things.

1) W1ich processes are represented on the screen and \\here they are~

2) Which messages are represented on the screen and where they are.

3) Rate of event display (see below).

4) Hbw full the screen is; i.e., is there room for more processes?

Processes and the messages w:1 i ting in input queues take up the majority

of the room on the screen. Most of the other events can be displayed simply

by printing out a line on the screen of the form "Process P annot.mces BJent E

as event Nunber N," in a prominent place. D..lring the interval that the

process is annot.mcing an event, it changes color (actually a different shade

of gray) so that it is clear which process is involved.

In fact, REPLAY provides a rLD1ning narrative of this form. lb\\ever, when

a process is created or destroyed, or a message is sent or received, REPLAY

will depict this graphically. l'ewly created processes will be drawn into a

free s{X>t on the screen. ~ssages are depicted as small boxes movio;J from the

the sender's output tnrt to the receiver's input tnrt. W"len each message is

received, its box disappears.

M..Jch of the work involves doing all the bookkeeping necessary in as

efficient a manner as {X>ssible. (It should be "efficient" in terms of both

Sp:ice and time •)

'

section 4 REPLAYING PROGRAM EXECUTION Rlge 26

4•2The user Interface

This section discusses various aspects of the operation of REPLAY's user

interface·

4.2.1What the User Sees

'!he user sees IX"Ocesses and messages queued on input p:>rts. A process

with one input port, one output port and a message just leavi~ the output

port, is shoW'l in Figure 12.

I <Process Name>
I 1 in 1 out
I
I I \
Triput --1

port I
[+]

message

output
port

Figure 12 -- Picture of A Process and A ~ssage

'!he drawirg of a process indicates the nunber of input and output ports

associated with that IX"ocess. It is not p:>ssible to draw each p:>rt, since the

notion of port sets allows a process to have a very large nunber of ports.

W"len an output p:>rt sends a message, the p:>rt appears on the IX"OCess' border.

It closes up after the message arrives at its destination. Similarly, when a

message arrives for an input p:>rt, the p:>rt opens up, and messages queue up in

front of it. When all the queued messages have been received, the input port

closes back up. The process name and identification appear inside the box, so

that it is clear at a glance which process it is.

section 4 REPLAYING PROGRAM EXECUTION Fage 27

Figure 13 depicts an event replay on the PERQ' s screen. '!he process

proc _B is shown sending a message to Proc A. It has changed color dur ing• the

event. A third process, Proc_C, is shown with one message \\aiti~ at its

input p:>rt. 'Ihe event narration at the top of the screen indicates W'lat is

happenir¥j.

Process Proc B sends a message to Proc A. ElTent 9.

Proc A Proc C
3 in 4 out 1 in 1 out

I \
-- [+] -----

. [+]

* *
**** ***********
* * * Proc B *
* 2 in 5 out *

Figure 13 --- A Process Serrling A M:ssage

M interesting problem concerns the speed at W1ich the rep1 ayi n:; occurs.

If events are described and messages move across the screen without any

delays, events will happen too fast for the user to follow.

'Ib solve ~his problem, REPLAY asks the user how many seconds to take to

display each event. 'Ihe default is three seconds per event. Bien in single

step mode (see below) , each event takes the full N seconds (whatever the user

section 4 REPI.AYING PR<XiRAM EXEClJI'ION FBge 28

entered) to transpire. This is to allow the process to change color, and to

remain on the screen in a different color for enough time to make an impres

sion on the user before it changes back to normal.

4.2.2Single Stepping

REPLAY gives the user the choice of either single stepped or continoous

operation. Ih the second mode, events (message transmissions, process

creation, etc.) occur continoousl y, without stopping. Continoous operation

allows the user to v.atch the general pattern of message traffic and event occ

urences. '!his is useful for getting an overall idea of Ythat the program did.

Single-stepping allows the user to v.atch what happened at a more detailed

level and at a slo\\er pace. Ih this mode, after each event occurs, REPI.AY

\tai ts on the user to hit a key on the keyboard before continuing with the next

event. '!his mode gives the progranuner more time to consider his program's

actions, without the continuing need to keep up with his program.

FUrthermore, the user can toggle back and forth bet\\een the single

stepped and continoous modes; he is not forced to single step through hundreds

of messages. 'llie nunber of seconds per event is also changeable at any time,

to allow the user to speed up or slow down the rate of event display.

4.2.3Displaying Messages

M:ssages on the screen are simply small boxes, queued on the input p.Jrts

of their destination processes. Ih this form, the only information that they

convey is the fact of their existence. This is only minimally useful.

REPI.AY allows the user to actually see what his processes are sending to

each other. l.Sing the mouse, the user places the cursor over the p3rticular

message he wants to see and interrupts the event display. REPI.AY will prompt

section 4 REPrA YING PRa;RAM EXECt.rr ION Rlge 29

with a menu of actions available. '!he user will select the option for viewing

a message.

REPLAY first finds the message indicated by the mouse. The message's

type is an element in the Pascal record describing messages. '!his type in

dicates which of the message templates is to be used in decoding the contents

of the message.

REPLAY then b~ns a new window on the screen. It step; throUjh the mes-

sage buffer and formats the raw bytes into characters, integers, or reals, as

dictated by the message template. Ehumerated types are treated as integers.

Altho~h this is not perfect, it is no more unreasonable than the restriction

in standard Rlscal against reading and writing enumerated types to and from

text files. M=ssage templates were described in Section 2. 2.1.

\.\hen the user is through looking at the message, he isst..es the command to

close the window. REPlAY then goes back to displaying events.

The valt..e of this "Freeze Frame" facility should be clear. 'Ihe user can

verify not only that processes are sending messages to the right places, but

that those messages have the right contents. Fbrmatting message contents is

absolutely necessary. Simply displaying the values of integers, characters

and reals in octal gives the user no immediately understandable information

(except in the rare case of the true hacker who can decode octal into its

equivalent floating p:>int or ASCII valoos). FUrthermore, messages are

displayed as a unit, unlike S:hiffenbauer's system which displays small data

t:ackets in octal.

Section 4 REPlAYING PR~ EXEClJriON Rige 30

4
•2.4Selective Replaying of Events

It is IX>Ssible \thile YB tching a program's actions that a p3rticularly in

teresting sequence of events will occur which warrants further review. 1b ac

comodate this, REPlAY keep5 a history of a fixed nunber of events \thich have

occurred. At any time, the user can stop the normal replay arrl ask to see an

"rnstant !€play" of ~ ~evious events. 'Ihe maximun nunber of events that can

be replayed is a compile-time constant in one of the Pascal source code mod-

ules.

\\hen this facility is invoked, REPlAY saves the screen state and marks

toose processes that were on the screen at the time. It clears the screen and

starts as if the first event requested Y.ere the very first event to occur.

Processes and messages are drawn as needed.

Some information \thich Yas on the screen but \thich may not relate to the

.!!. events bei03 replayed will be lost during the instant replay. '!his loss is

not ~rmanent, · since REPlAY restores the screen at the end of the instant

replay. The user can run the instant replay as many times as desired before

returning to the regular display. 'Ihis facility is analogous to the rewinding

of video tape arrl replayi03 an interesti03 series of events during a sports

broadcast, hence the name "Instant Fe play."

When the instant replay is throu:Jh, the screen is restored arrl the

processes Which were marked as being saved are unmarked. Display then con

tinues as before.

As a final IX>Ssibility, the user may choose to restart the entire program

replay from scratch. This provides the convenience of not having to quit the

Program and then start -it again from the command level. SJch snall

conveniences are often the most useful.

section 4 REPlAYING PRCXlW-1 EXECuriON Rlge 31

2 5REPLAY Menu Options 4. •

At any time during the event replay the user can stop execution by

causi~ a keyboard interrupt • .

'lhis invokes an interrupt handler v.hich presents the menu shoW'l in Figure

14-

1. Cllange 'Ib/From Single-Step/Continuous cperation

2. <llange 'Ihe Nt.tnber of Seconds Per Event

3. Skip Ahead 'Ib A Specific Event N.Jmber

4. Display Contents of the ~ssage lklder the M:>use

5. Instant Ieplay

6. Start Displaying From Scratch

7. EXit REPlAY

8. ~lp

9. t-ever Mind

Figure 14 --- REPlAY ~nu Options

'Ihe user may skip ahead to a given event, specified by the event sequence

number. REPlAY will then skip to the first event which has the sequence

number entered by the user. 'fuis is useful if the user knot.V'3 that his program

stopped working after a given event. ~ can make his changes, rertn the

program, and then skip directly to v.here the change should have an effect.

'Ihe ~lp stbsystern provides general infonnation on how to use the RAill\R

monitor.

section 4
REPI.AYING PR~ EXECUI'ION Eage 32

The 'Never Mind' option allows the user to recover in case he acciden

tallY caused · a keyboard interrupt. It does nothing.

In all cases, after the interrupt handler does what the user wishes, the

program returns to \there it \ISS executing before the interrupt occurred.

section 5 INTERFACE WITH PRONET Page 33

fection 5

INTERFACE WITH PRONET

5• 1ALSTEN

'!he ALSTEN pre-processor will generate extra code for RAmR that is

invisible to the user. These will be chiefly variable declarations and

procedure calls. 'Ihere will then be two different run-time libraries. 'Ihe

normal · library routines will pass their arguments on to the appropriate Accent

routines. '!he monitoring library will perform the data logging functions out

lined above, and then call .the Accent routines. Ih the case of the procedure

\tbich creates the log file, in the normal library it will simply announce the

•process_creation' event.

'!he value of using ~·invisible" code and two 1 ibraries is clear. Ih order

to use the RAD.l\R system, a progranmer only has to re-link (load) his program

-- he does not have to recompile it.

Furthermore, using Perq Rlscal, it is f:OSSible to keep both versions of

the library routines in a single source file. It provides a conditional com

pilation feature Which allows selective inclusion of code at compile time,

similar to the macro processing facilities of C and PL/1. Fbr instance,

section 5
INTERFACE WITH PRGJET

procedure librarycall;
const

RAIY\R = true { or false, deperrling }

beg~n
i fc RAIY\R then}

(*
* RAIY\R code
*)

{$elsec}
(*
* normal code
*)

{$endc}

(* code common to both, i.e. al vays needed *)
end;

Figure 15 -- Conditional Compilation in Ferq Pascal

Page 34

This feature will greatly aid development and maintenance of the RADAR

library routines, since only one file has to be kept current, not two.

As mentioned previously, when one output port is connected to more than

one input p:>rt, messages are automatically replicated. Ib\\ever, the send

routine cannot be called twice (or however many times needed) , because the

duplication occurs behind the scenes. 'Ihe routines in REPLAY which keep track

of interport connections will keep track of this, and will replicate the mes-

sage Yhen displaying the send event.

5.2NETSLA

The actions in NETSrA network specifications are compiled into rLD1-time

calls on a Run-time Support r.bdule (RTSM). Calls on the system may come from

multiple sites; ho\\ever, in the PERQ implementation, the RTSM itself will only

be at one node. A single site DMS is merely a degenerate case of the distrib

uted DMS.

section 5 INTERFACE WITH PRCNET Page 35

There are two reasons for implementing NETSLA this way initially. First,

it is mu:h easier to do. ~corrl, the Cl.ooos envirortnent currently under

development is expected to provide most if not all of the necessary distrib

uted data management facilities, since it will need some of these facilities

itself. Allowirg CloLrls to eventually provide the distributed data management

is in keeping with the f,hilosophy of "let someone else do the hard p:irt."

[Kern76]

In any case, the R'J9t1 will provide the information concerning process

location arrl port connectivity. 'Ihe RAmR system will assune that this in

formation will be available in the form it needs. 'Ihe exact strocture of the

data was described above.

section 6 PRONET IMPLEMENI'ATION Rlge 36

Section 6

PRcm!T IMPLEMENTATIOO

ro implementation of PRONET is being developed for a 'lhree Rivers Comp

uter Cor{X>ration PERQ computer nmning t.nder revision 2. 0 of ACCENT, which is

a cOilllltmication oriented net\\Ork operating system. '!he run-time support

libraries develo~d for this implementation make use of ACCENT message and

process primitives thro~h a procedure-like interface to the kernel.

'lWo langLBge freprocessors, one for ALSTEN and another for NETSLA, have

been developed. These t\\0 preprocessors both translate a PRONET source

program into a Fascal frogram. 'lhen, the Fascal program generated can be com

piled using the PERQ Rlscal compiler.

In the current state, the implementation is being develo~d for a single

processor environment with each active process being assigned a portion of the

display screen.

6.1The Preprocessors

'!he preprocessor actLBlly consists of two p:irts: a scanner and a p:irser;

both are table-driven. '1he table-driven approach makes the preprocessor very

langtBge inde~ndent; i.e., it can translate either ALSTEN or NETSI.A so long

as appropriate tables are provided.

'lhe scanner tables are generated by LEXGEN from a description of each

token that may occur as input to the scanner. 'lbkens are described by using a

standard regular expression syntax. The p:irser tables are generated by ZUSE

fran LL(l) grarrmars (see Ap~ndix A and Apperrlix B) which have action codes

embedded into them. 'Ihe action codes s~cify the steps to be taken by the

parser during parsing.

section 6 PRONET L~PLEMENTATION Rlge 37

'!he preprocessor accepts a scanner table, a parser table arrl source

program as input and generates a sequence of Pascal codes as a result of

parser actions. The Pascal code generated can then be compiled by using

pERQ Pascal compiler.

the

Figure 16 below illustrates the overall structure of the preprocessors.

PRO NET
source code

I
I

~-----~------~ token I scanner table I scanner I
description---! generator 1------------ table----1

I I I
I

action codes I PREPROCESSOR
--r translation __ ! parser I

LL(1) grammar _I-- grammar I table I p:1rser I
lgeneratorl--table --1
I I ----~-------

I
Pascal code

I
I

~----P-ER-Q------~1

Pascal Compiler I
I ------...,.....------

I
.SEG file

Figure 16 --- Preprocessor Strocture

The approach of preprocessing has the following advantages although it is

less efficient than direct compilation:

1. Ease of implanentation.

2. All ACCENT kernel primitives are made available by calling to a PASCAL

library of kernel interface procedures and functions.

=ection 6 PRONET IMPLEMENTATION Fage 38

Ih the current state, both preprocessors are operational and do not per

form type checking.

6•2Module Structures

'!he NETSrA preprocessor generates two code modules for each network

specification: an "event handler module" arrl a "network specification module"

(see ~pendices C, D and E) •

'!he event handler specifies the actions that must be performed Y.hen a

particular event (either predefined or process-<lefined) occurs. The code in

this module is stroctured as a nested "case" statement. '!he highest level

case statement performs a selection based on the event type argument (message

transmission, process-defined event, etc.). Lower level case statements are

used to distinguish between process classes, port sets and process-<lefined

events.

The network specification module consists of the initialization clause

which specifies the static network. After the execution of the initialization

clause, every process instance created in the network will be activated by the

root process •

In addition to these two preprocessor-generated modules, there are two

more modules in each NETSLA runnable file: a "DB manipulation module" and a

"NETSrA run-time supiX>rt module." The IB manipulation module contains all the

routines that are needed to create and maintain the network representation.

1he NETSrA run-time supiX>rt module consists of routines that implement t.OOse

NETSLA activities (process creation, port creation, connection, etc •••)

based on ACCENT kernel primitives.

section 6 PRONET IMPLEMENTATION Rlge 39

Figure 17 below illustrates the structure of the object module generated

tor each NETSIA program. It is imfQrtant to realize that both event handler

module aoo network specification module are netY.t>rk specific codes while the

other two modules are conunon to all netY.t>rk instances. 'nle IB manipulation

module aoo the NETSLA run-time support module are separately precompiled and

imJDrted by the main body of the NETSIA program.

:00 M:lnipulation r.bdule I comnon code
NETSIA Run-time SupfX)rt M>dule I (libraries)
-------------------------------1-------------
Event H:lndler M>dule I netVJOrk
Network Specification Module I specific

Figure 17 --- NETSIA Cbject M>dule Structure

'!he AI.STEN preprocessor generates a single code module for each process

script (see Appendices F, G, Hand I). 'nlis module is a simple translation of

the process script which makes use of AI.STEN run-time support facilities for

performing ALSTEN operations (send, receive, announce, etc •••) •

6.3Processes and Ports

Both ACCENT and PRONET use the notions of "processes" and "'fX)rts", but

they are at different levels of abstraction. ve implement the PRONET proces-

ses(fQrts) by using ACCENT processes(fQrts) and hide the details of the ACCENT

processes(ports) from PRONET programmers.

A PRONET network specification is implemented as an ACCENT process from

which any number of ACCENT child processes can be created to represent the

PRONET process instances. Since v.e do not consider the case of "comfQsi te

Processes" in this implementation, the netY.t>rk can be thou::Jht of as a tree of

fection 6 PRGJET IMPLEMENTATION Page 40

t~
levels with the network specification process as the root. Cbmposite

proeesses can be implemented without moch effort later.

Pn ACCENT p:>rt is a protected kernel object and is used for sendi03 and

receiving messages. With each p:>rt the kernel associates send and receive

(and ownership) rights. The process that creates the port possesses all three

rights. In this implementation, ~ use ACCENT ports for two different

puriX>ses.

rur ing the execution of the program, an ACCENT port will be allocated

~en a CONNEX::T activity is performed. This ACCENT port is usoo for transmit

ting the PRGJET messages and will be deallocated \\hen the corresponding

DIOCONNOCT activity is performed. Initially, the receivi03 process possesses

the receive and send rights • 'nlen the send right wi 11 be p3 ssed to the sen

dill3 process so that PRONET messages can be transmitted throt.gh this port.

'!here are three ACCENT ports allocated to each child process at the

process creation time for the purpose of communicating with the root process

(event handling request, port cap3bilities p3ssing, etc •••) •

6.4The Network Representation

A representation of the logical network described by a PROOET program is

maintained in the address space of the root process. This representation

reflects the hierarchical structure expressed in the program by maintaining a

tree of network class and network instance representations. The logical net

\\t>rk representation also contains information about the connectivity among the

ports of network instances. The root of this tree is a network class

representation, the leaves are network instance representations \\hich contain

information about the currently active processes in the logical network.

section 6 PRONET IMPLEMENTATION Fage 41

The codes for manipulating the logical network representation also resirle

in the address space of the root process. All creations, updates and reads of

the entities in the network representation must be performed by calling from

the root process an appropriate procedure in the IB manipulation module.

This centralized approach of maintaining the logical network representa

tion lov.ers the degree of p3rallelism but redoces the cost of message trans-

mission.

6.5Event Generation and Handling

E.Vent generation can be either upw:trd or downYBrd. 'Ihe term "upYBrd

event generation" is used to denote the generation of an event in the over

seeing network ¥.bile "downYBrd event generation" is used to denote the genera

tion of an event in a process instance.

~Yard event generation of an event will occur ¥hen a process instance

announces an event using the "announce" activity or transnits a message using

the "send" statement. IbwnW3rd event generation occurs ¥hen a network

specification creates or removes a port instance on a process instance or

sends a message to a process instance.

E.Vent handling codes are generated by the NETSIA preprocessor and reside

in the address space of the root process during run-time. ~v.ard event

generation is implemented by sending a message to the root process. This mes

sage includes all the information relevant to the event generated. '!his kind

of message arrives at a p:>rt Yhich belongs to the root process and h::>lds at

most four messages at a time due to the 1 imitation of the size of the backlog

for an ACCENT p:>rt.

fection 6 PRONET IMPLEMENI'ATION Page 42

upon receiving a message from a child process, the root process will call

an appropriate event handling routine based on the event type and other in

formation incl t.rled in the message. BJent handler executions are per formed in

a serial fashion. 'nlis centralized approach of event handling has the

disadvantage of a low degree of parallelisn.

6.6Current Status

Up to the p:-esent, we have implemented the complete set of features of

ALSTEN arrl a subset of the features of NETSLA. 'Ihe NETSLA features that have

been implemented are IXocess creation, port creation, connection, message

transmission and disconnection. Structured activities will be implemented by

a~..gmenting the implementation of simple activities later. W"len the implemen

tation for a single processor is complete, \I.e will extend it to a mul

tiprocessor environment.

fection 7 IMPLEMENTATION CF THE RAI.lt\R SYSTEM Rige 43

Section 7

IMPLEMENTATICN CF THE RAilMt SYSTEM

'!he RA~ system, a p3ssive monitor for distributed programs, vas

designed by Arnold Robbins for his master's thesis. The main component of

thiS systern is a program that graphically displays the interaction of the

various processes in the distributed program. 'Ihis rnoni tor is designed to

~rk within the Pronet environnent, based on information provided by the

NETSIA run-time database, the AISTEN preprocessor, and run-time calls to the

debugging log routines in RADARLOG.

This information consists of three types of files:

message template file -- supplied by ALSTEN preprocessor .- contains the
types of the various values sent in a message, allows RA!l\R to show values
as characters, integers, reals, etc, instead of as octal bytes.

process information file ~- supplied by NETS~ run-time database - con
tains the process class-or-each process.

log files -- supplied by run-time calls to RA!l\RLOG - contains a log of
the events (note that message sending and message reception are just
special events) including the 'time' at Which the event occurred.

'!his concept of time in the context of Pronet, which has no idea of a

global time clock, is an interesting one, and one solution to maintaining an

order for replaying is discussed in Robbins' thesis, section 2.3.

'Ihe implernenta tion of the system is being done on the 'Ihree Ri. vers

Corporation PERQ computer under the SPICE environnent (developed at Carnegie

Mallon lliiversi ty) , an operating system and set of utili ties designed for

message-p3ssing distributed systems. one package of routines available in the

SPICE environnent is Glnvas, a set of graphics routines for the PERCP Which

support the graphics capabilities of the bit-mapped screen of the PERQs at a

more usable level. 'Ihe use of Glnvas vas probably the biggest factor in lbb-

section 7 IMPLEMENTATIOO OF THE RAIY\R SYSTEM Page 44

bins' being t.nable to do a complete implementation of the RAil\R system, since

little or

design.

no documentation existed on Canvas while lbbbins YaS doing his

N:>w that docunentation has become available, the task of finishing the

implementation of RAJ::Y\R has been centered around correction of concepts which,

once implemented, no longer w:::>rk as they v.ere designed, and implementation of

screen display and control.

r-aj or implementation errors v.ere surprisingly rare, in view of .the '· fact

that R:>bbins Yas unable to test many of his features on the Perqs. B:lsically,

the only soch error \4lich has surfaced so far vas in assuning that message

contents could alYays be written out as bytes by writing out the corresponding

character code. 'Ihis scheme saved both time and sp3ce, but has the disadvan

tage that encodi~ an eight bit valoo in a seven bit code does not alYays

produ::e the desired results. Bytes are now written out as integers in the

range 0 •• 511. Other problems of this nature may exist in the interface bet

~en ALSTEN and RArnR, but none have yet sur faced •

'Ihe user interface presented for a RAJ::Y\R user is divided into two

stbscreens or windows. 'Ihe top window shows a running textt.al display of \4lat

events are occuring. At the same time, the lower window has a graphic

representation of the same events. ffi an event is announced in the upper

wiooow, the box corresponding to that process changes color and remains that

color for an appropriate delay (selectable by the user) • If that event is a

message_transmission, a box representing the message appears on the border of

the sending process, and moves to the receiving process. If the event is a

message_reception, the box representing that message disappears, and any other

messages queued to that p:>rt move forvard in the queue. At any time, one may

stop the replay of the events by hitting a key on the keyboard, which halts

section 7 IMPLEMENI'ATION CF THE RAmR SYSTEM ltlge 45

the action arrl presents a menu of choices in the upper window.

'lhese windows are implanented as "sub-canvasses" Lnder the canvas

graphics systan. '!his means that each window can be treated by the pro;Jrammer

as a completely se{:Brate entity for input, output, and scaling of the size of

the objects. 'lhus, the upper window is configured for text input and output,

\ttlile the bottom window is structured for graphics. In fact, the bottom

wiroow is set up to scale appropriately to the size of the window available on

the ~rq at the time, thus al\\Bys allowing the maximun nunber of processes to

appear on the screen. fbwever, since Canvas does not yet support the sealing

of text, the labels on each process indicating the name of the process and the

nunber of incomio:J arrl outgoio:J ports become unreadable if the screen space

allotted for the program is too small.

With no examples to serve as guides, the hardest {:art of the screen im-

plementation for any particular routine was often the trial and error process

by which procedures \\ere fol.D'ld to prodoce the desired results. M:lny of these

changes are t.minterestio:J in their detail, as one good example Y.Ould have

eliminated 90% of the problans in implanenting them. fb\\ever, three ~oced-

ures had interesting problems and solutions: namely, how to quickly know

\\hether or not a message is in the area '[X> in ted to by the mouse, how to inter-

rupt the replay of events in order to get the replay menu, and how to move

messages snoothly across the screen at a speed that will make them arrive at

their destination at a time whereby the user-specified time for an event to

occur will have elapsed.

Ps a tem'[X>rary measure, the original design matched a message with the

mouse only when they were exact matches. This restriction was unreasonable

for ease of use, so a more relaxed specification 'laS needed. fb\\ever, the

idea of a hash table to firrl the message was still appealing, as the time to

Section 7 IMPLEMENTATION CF THE RAmR SYSTEM Fage 46

search throt.gh all the messages of a busy system v.as prohibitive. '!he solu

tion WlS to have a hash function Y.hich hashed regions to the same hash valoo,

which is easily enough done by dividing the original x and y by the error

factor before using the x and y in the normal hash function:

new hash (x ,y integer) : =

old_hash (round(x/x_error), round(y/y_error))

using the error factor as the divisor also ensures that only four hash values

(x ~ x_error ,y + y_error) need to be checked, which, for a table size of 37 as

is currently used in the RADAR implementation, eliminates around 80% of the

sp3ce on the s: reen •

'fue design of RAIYffi assuned that SPICE would provide some type of

~yboard interrupt, since PERQ Bascal provides quite nice exception handlers,

and soch an interrupt is a natural extension used in several of the SPICE

utilities (via a Ctrl-C as a "kill the process" interrupt). Ibwever, the only

place that SPICE provided soch a utility \.as labelled with the words "Subject

to Olange, Ib not lEe if You vent q>ward Comp3tibility with Future Versions."

As a substitoo for such a utility, the delay routine, which is called very

frequently, w:1s used to check for the existence of a keypress. If one exists,

then the exception is raised. This substitute works very well, as delay is

called frequently enough that no perceptible delay occurs between the keypress

and the appearance of the menu of choices discussed in Section 3. 5 of R:>bbins'

thesis.

Moving messages across the screen is not as hard as it might be, since

Canvas provides sane very handy procedures for drawing rectangles, as well as

more interesting icons, and even provides an INVERSE color for drawing, which

allows a message to p3ss through a process without destroying the process

While maintaining visibility. More interesting, is the method for delivering

section 7
IMPLEMENTATICN CF THE AA~ SYSTEM Page 47

in a certain nunber of seconds. First, throt.t;Jh experimention, a conmessages

t \tBS folll"rl which represented the approximate nunber of times the program
stan

could roove the message in one second. 'lhis nunber is used to compute the

ntJnber of moves that should be made for the user-specified time. From this

nl.Jt\ber, the given starting and ending locations, and the proper delta x and

· delta_Y are computed, and the message is moved. This routine still lacks one

feature, ho\\ever. \\hen a "(X>rt is broadcasting to more than one "(X>rt, each in

dividual message transmission currently takes up the entire number of seconds

\\hich the entire event is sup"(X>sed to use, while the design specifies that

each instruction is to take that long.

OJrrently, the feeprocessor does not generate the calls to the RAD\RLOG

routines, nor does it produce the message_template file. However, such calls

have been hand-edited into some Pascal files produ:::ed by the preprocessor, and

the replaying system of AAIY\R ~rks on these files. 'lhus, the features which

still need to be implemented or changed are primarily interface related. 'fuat

is, the user interface needs to made bomb-proof and more usable, with ad-

ditions of a real help facility. 'lhe preprocessor needs to generate the in-

terface to the log calls and the message template information. Also, the run

time sup"(X>rt module needs to generate the process file information.

'Ihe AAJ:Y\R system design also incllrles one other feature which is not yet

implernented. 'lhis feature is the OCAP which can sep3rate those messages sent

to a single process in a distributed program. 'Ihese messages can then be used

to debt.t;J a single process with a standard single-process debt.t;Jger without for

ci~ the programner to make up artificial test data which may or may not

reflect the kind of input a program will encounter in actual use. '1he main

implementation problem this facility has is in interfacing to the conventional

debugger, as the rest of the facility is already available.

section 7 IMPLEMENTATICN OF THE RA!ll\R SYSTEM Page 48

section 8 PIAN FOR FlRTHER WORK Page 49

Section 8

PIAN FOR FURTHER WORK

There is further work to be done in several areas. The most obvious of

these are the efforts described in this re{X)rt. 'Ihe PROOET implementation

\\'ill require the followi~ work in order to be complete:

1. Interface with the debLgger • .lrld some code to both prepr-ocessors so that

the infonna tion needed by the debLgger can be genera ted. The debLgger

needs two kinds of information from a Pronet program:

1) templates : generated at preprocessor execution time,

2) a log : generated at Pronet program execution time.

2. Oamplete the implementation of simple activities in NETSLA. Simple

activities that have not been implemented:

1) value construction,

2) event announcement,

3) attribute assignment.

3. Implement structured activities in NETSLA. Netsla prepr-ocessor needs to

be augmented. Structured activities inclooe:

1) alternation,

2) iteration,

3) location.

4. Implement type checking in both preprocessors.

5. f.bdify the window allocation procedure so that arbitrary nunber of process

instance windows can be allocated.

6. Implement PRONET for a multiprocessor environment. This will be done when

the implementation for a single processor environment is complete.

section 8 PLAN FOR FURTHER WORK Page 50

'Ihe ACCENT global namin;) scheme must be stooied. 'fue hard\\are problem

of 1 in kin;) tw:> PER(); together must be solved.

'!he implementation of RAD\R also needs to be completed, finishing the

development of our prototype monitoring capability. Action .items for work on

~R inclt.rle:

1• t}5er interface needs to be improved.

a. bomb-proofed (don't read reals as reals, but as characters,etc

b. help facility added.

c. optionally, beautified, as using the icon facilities to represent

messages as letters or some such, rather than boxes.

2. 'fue ocreen layout should be imp:>rved.

a. A better ~y to set up the screen for a given nunber of processes

should be implemented.

b. 'fue restriction on the nunber of processes on the screen at one

time should be eliminated •

c. 9)me representation of existing connections between processes

should be available (perhaps as an option, since lines

representing connections might badly clutter the display) •

3. '!he UCAP feature must be implemented.

a. make sure it pulls out messages correctly.

b. interface it with Kraut or other single-process debugger.

After this work completes our prototype monitor, we intend to evaluate it

by building aoo debugging some distributed programs. A likely candidate for

implementation is a distributed database update algorithm designed by J. All

chin as part of his recent fh. D. research in our department. It should

Provide a significant test for the monitor, as far as determining \\bether it

section 8 PLAN FOR FURTHER WORK Page 51

provides sufficient infonnation to understand the execution of a complex dis

tributed program.

After this evaltBtion period, t~ lines of ~rk can be considered. 01e

approach would be to convert our prototype into a monitor which displays

program activity dynamically as a program executes. SUch a monitor would have

the advantage of providing more immediate information about an execution, but

it \\OUld have to interfere more with the timing of events in that execution.

If our prototype evaluation shows that a historical replay is sufficient for

our purposes, we Will instead concentrate our efforts on providing more

IX>~rful tools for use of the replay. For example, if a programner can

specify that a some related collection of program events constitutes some

"higher-level" event, it might be possible to replay executions in terms of

soch high-level events, thereby redocing the nunber of events the programmer

needs to interpret.

Finally, ~ will evaltBte our tools and techniques concerning their ap

plicability to an Ada programming environment.

APpendix A

APPENDIX A

'lhe LL(l) Gramnar of NETSLA

c;rarrroar prodoctions with selection sets added:

Prod # Prodoction

1 network spec = net head const pt type pt port_decl_pt
evnt-decl pt proc decl 10 evnt clse-10
init-clseO end identifTer
%net~rk ;

2 net head = network identifier
%netv.ork ;

3 proc decl 10 =
%arrive-end enter initial leave When

4 proc decl 10 = process_decl proc_decl_l1
%process ;

5 proc decl 11 =
%arrive-end enter i~itial leave When ;

6 proc decl 11 = process_decl proc_decl_l1
%process

7 evnt else 10 =
%end initial ;

8 evnt else 10 = event clause evnt else 11
%arrive-enter leave-when

9 evnt else 11 =
%errl inTtial

10 evnt else 11 = event clause evnt else 11
%arrive-enter leave-when ;

11 ini t clseO =
%end ;

12 init clseO = initial activity_lst
%initial

13 const pt =

14

%arrive end enter event initial leave
port process type when ;

const_pt = const con def list

Page 52

APpeooix A

15

16

17

18

19

%const

con def list = const def next con def
%identifier ;

next con def =
%arrive end enter event initial leave

port process type when ;

next con def = const def next con def
%identifier

const def = new const id =
%identifier

new const id =
%Tdentirier

identifier

constant ;

20 constant = signed_ const
%+ - ;

21 constant = lllsigned con
%char const identifier int const real const string_const

22 signed const = sign after_sign
%+ _- ;

23 after sign = real const
%rea"! const

24 after sign = int const
%int const ;

25 after sign = const id
%identifier

26 unsigned con = identifier

27

28

29

30

31

%identifier

unsigned con =
%int const ;

unsigned con =
%char const

int const

char const

unsigned con = string_const
%string_const ;

unsigned con =
%real const

scalar const =
%identifier

real const

identifier

Page 53

36

37

Ap~ndix A

scalar const = non id s con
%+ --char_const int_const

non_id_s_con = sign id or int
%+ -

non id s con = int const
%Int=const ;

non id s con = char const
%Char const

id or int = const id
%identifier ;

id or int = int const
iint const ;

38 const id = identifier
%identifier

39 type pt =

40

%arrive end enter event initial leave
port process when ;

type pt = type
%tyPe

typ_def_list

41 typ def list = type def next_ typ_def
%Tdenti fier

42 next typ def =
%arrive end enter event initial leave

port process when

43 next typ def = type_ def next_ typ_def
%identifier

44

45

type def = new type id =
%identifier - -

new type id =
%fdenti fier

identifier

types ;

46 types = type easel
%identifier- ;

47 types = type case2

48

%(+-array char const int const
packed record set

type _easel = identifier type_tail

Page 54

APpendix A

49

50

%identifier

type tail =
%)-; case end

type-tail = ••
% ••

scalar const

51 type case2 = non id s con scalar const
%+-- char const-int const ;

52

53

type case 2 = stroct type
%array packed record set

type _case2 = (
%(

enu id list

non id type = non id simp 54
%(+-- char_const identifier int const ;

55 non id type = stroct type
%array packed record set

56 simple type = type_ id simp_ ty_ tail

57

58

%identifier ;

simple type = enu id list
%(;

simple type = non id s con
%+ --char const Tnt-const

59 simp ty tail =

60

61

%) -, ;] case end ;

simp_ ty_ tail = ••
% ••

non id simp =
%(-

scalar const

enu id list

scalar const

62 non id simp = subrange con scalar const
%"+ --char const identifier int const ;

63 pt class nam = identifier
%identifier

64 enu id list = identifier enumer tail
%Tdentifier ;

65 enumer tail =
%) ;

Page 55

AP~ndix A

66

67

68

69

enuner _tail = identifier
%, ;

subra~e con
%identTfier

= identifier

subra~e con = non id s con
%+ - cnar_const int_const

type id = identifier
%identifier ;

enuner tail

70 struct type = p3ck prefix tn{:acked
%array packed record set

71 p3ck prefix = p3cked
%packed

72 p3ck prefix =

73

%array record set

unp3cked = array
types

%array ;

indx_ty_list] of

74 lt'lp3cked = record head field list end

75

%record

unp3cked = set of
%set ;

simple_ type

76 record head = record
%record

77 indx ty list = simple type index tail
%(-+ = char_const identifier int const

78 index tail =

79

%] ;

index tail =
%,

simple_ type index tail

80 field list = rec sec list with variant
%) ; case end identifier ;

81 rec sec list = rec section rec sec tail
%) ; case end identifier

82 rec sec tail =
%) case end ;

83 rec sec tail = rec section rec sec tail

Page 56

APperoix A

84

85

%;

rec section = fieldid list
%Tdenti fier ;

rec section =
%) ; case end

types

86 fieldid list =
%identifier

identifier field id end

' 87 wi. th variant =
%)-end

88 with variant = variant_pref variant_list
%case

89 field id end =

90

91

%:

field id end =
%,

variant pref = case
%case- ;

identifier field id end

tag_ type_ ids of

92 tag type ids = tagfield_id tag_typ_tail
%Identifier

93 tag typ tail =
%of -

94 tag_typ_tail = scalar_ty_id
%: ;

95 tag field id = identifier
%identTfier

96 scalar ty id = identifier
%identifier ;

97 variant list = variant variant tail
%) + = ; char const end

identifier Tnt const ;

98 variant = case 1 list : field head field list
)

%+ - char const identifier int const ;

99 variant =
%) ; end

100 field head =

Page 57

APp:!ndiX A

101

102

103

%) ; case identifier

variant tail =
%) end

variant_ tail
%;

= variant variant tail

case 1 list = scalar canst caselabelend
%+---char_conit identifier int canst ;

1o4 caselabelend =
%:

105

106

107

caselabelend =
%,

scalar canst caselabelend

port decl pt =
%arrive-end enter event initial leave

process when ;

p:>rt_decl_pt = pt_decl_list
%port ;

108 pt decl list = port_decl pt_decl_ tail
iport-

109 p:>rt_decl = port_ head pt_dir _mtype
%port ;

110 pt_dir_mtype = in type_id
%in ;

111 pt dir mt~ = out type _id
%out- ;

· 112 pt dir mtype = port_group
i(;

113 pt decl tail =
%arrive end enter event initial leave

process when

114 pt_decl_tail = port_decl pt_decl_tail
%port

115 port head = p:>rt port_ tail
%~rt

116 p:>rt tail = identifier
%identifier

117 p:>rt_ tail = set identifier

Page 58

APpendi)C A

118

119

120

121

122

123

124

125

%set

{X)rt_group = (sbptdecllist)
%(;

sbptdecllist = sub{:X)rt_decl next_ sub{:X)rt
%identifier ;

subp::>rt decl = sub{:X)rt_name direct_ type
%identifier

direct_type = in type_id
%in ;

direct type = out type_id
%out-

sub~rt name =
%identifier

next subp:>rt =
%)-

next_ subport
%;

=

identifier

subp:>rt_decl next_ subport

Page 59

126 process decl = process head attri_declsO port_decl_pt evnt_decl_pt
end Tdentifier

127

%process

process head = process class
%process

128 attri declsO =
%end event port ;

identifier

129 attri declsO = attri head attri sec ls attri tail
%attributes ;

130 attr i head = attributes
%attributes

131 attri tail = end attributes
%end

132 attri sec ls = attri sec attri secl
%; end identifier

133 attri secl =
%end ;

134 attri secl = ; attri sec
%; ;

APpendix A

135

136

137

138

139

140

attri sec = attri id ls
%identifier

attri sec =
%; end ;

types

attri id ls = identifier attri id lsl
%identT fier

attri id lsl =
%:

attri id lsl = , identifier
%, ;

evn t decl pt =
%arrive-end enter initial leave process

when

141 evnt decl_pt = event decl next event
%event

142 next event =
%arrive end enter initial leave process

when

143 next event = event decl next event

144

145

146

147

148

149

150

151

%eVent ;

event decl
%event

about ptnmO
%; -;

about ptrmO
%about ;

event clause
%arrive

event clause
%enter

event clause
%leave ;

event clause
%when

arriv clause
%arrive

= event identifier about_ptnmO ;

=

= about identifier

= arriv clause

== enter clause

== leave clause

== when clause

== arrive head activity_lst close end arrive

Page 60

APpendiX A

152

153

154

155

156

157

158

arrive head = arrive open arrive bind do
%arrTve

arrive bind =message idO on arrive_port from_procesO
%identifier on -

message_ idO
%on

=

message idO = identifier
_%identifier

arrive port = identifier arrive_portl
%identifier ;

arrive p:>rtl =
%do !rom

arrive_p:>rtl
%:

= identifier

159 arrive portl = of port_bind
%of-

160 {X)rt bind = identifier {X)rt_bind1
%identifier

161 port bindl =
%do from

162 port_bindl = identifier
%:

163 from procesO =
%do

164 from procesO = from process_bind
%from

165 process bind = identifier proces_bindl
%identifier ;

166 proces bind1 =
%about do

167 proces bind1 = identifier

168

%: -

enter clause = enter head activity_lst close end enter
%enter ;

enter head = enter open port_bind do

Page 61

APpendiX A

170

171

172

173

174

175

%enter ;

leave clause = leave head activity_lst close end leave
%leave ;

leave head = leave open port_bind do
%leave

when clause = when head activity_lst close end when
%~en

when head = when open identifier announced by process_bind
about partO do

%when-;

about partO =
%do-

about partO =about port_bind
%abOut

176 . activity 1st = activity activities
%) ; announce case connect constroct

create disconnect else end find identifier
ra03e remove serrl terminate ;

177 activities =
%) else end ;

178 activities = ; activity activities
%; ;

179 activity =
%) ; else end

180 activity = simple act

181

182

183

184

185

%announce connect construct create disconnect identifier
remove send terminate

activity = control act -%case find range

simple act = creation
%create

simple act = termination
%terrnina te

simple act = removal
%remove· ;

simple act = connection
%connect

Page 62

APpendix A

186

187

188

189

190

simple act = disconnecton
%di seonnec t

simple act = msg_transfer
%send

simple act = construction
%construct

simple act = attri_assign
%identifier

simple act = event trans
%anno lJ"l ce

191 simple bind = object_ id
%identifier

identifier simple_bindl

192 object id = identifier
%identifier

193 simple bindl =
%do where

194 simple_bindl = on .proc_denoter
%on

195 obj denoter = lhs
%Tdenti fier

196 port denoter = obj_denoter
%identifier ;

197 proc denoter = identifier
%identifier ;

198 creation = create create tail

199

%create

create tail =
%identifier

200 create taill =
%) ;-else end

identifier identifier create taill

201 create taill =:= on proc_denoter

202

203

%on ;

termination = terminate proc_denoter
%terminate ;

renoval = remove obj_ denoter

Page 63

AP~ndix A

%remove

204 connection = connect port_denoter to p:>rt_denoter

%connect

2o5 disconnecton = disconnect port_denoter from_p:>rtO
%disconnect

206

207

208

fran p:>rtO =
%) -; else end

from portO = from port_denoter
%from

msg transfer = send expcO to port_denoter
%send

209 exprO =
%to ;

210 exprO = expr

211

212

%(+ - [char const identifier
int const not real const string_const

construction = construct hd
%construct

field as 1st

construct hd
%constrlict

= construct object_id : identifier

213 field as 1st = field_assign fd_assignl
%identifier ;

214 fd assign! =
%]

215 fd _assign! = field _assign

216

217

218

%; ;

field assign = lhs .- expr
%identifier

attri assign = lhs ·- expr .-
%identifier

event trans = announce event id about_p:>rtO
%announce ;

219 about p:>rtO =
%) ; else end

220 about_p:>rtO =about port_denoter

Page 64

APperrlix A

221

222

223

224

%about

control act = alternation
%case-

control act = selection
%find- i

control act = iteration
%range

alternation = alternate lrl
%case

225 alternate lrl = case expr of
%case

case list else_partO

226 case list = case element case listl
%+-- char canst-identifier int const ;

227 case listl =
%else end ;

228 case list! = case element case list!
%+-- char const Tdentifier int const

end case

229 case element = const list : (open activity_lst close
)

%+ - char const identifier int const ;

230 const list = scalar const const listl
%+ = char const identifier int-const ;

231 const list! =
%: i

232 const list! = scalar const
%, i

233 select crite = simple_bind where clausO
%identifier

234 selection = find head do activity_lst close else_partO end

235

find
%find

find head = find open object_id
%f1nd ;

236 find headl = string
%string

find head!

find headl = identifier simple_bindl where clausO

Page 65

APpendix A

%identifier

238 iteration = range open select crite do activity_lst close

239

240

241

242

else partO end range
%range

else partO =
%efrl

else partO =else open activity_lst close
%else

where clausO =
%do- ;

where clausO = where expr
%where

243 open =
%) ; announce case connect construct

create disconnect end find identifier on
range ranove send terminate ;

244 close =
%) else end

245 id list = identifier id list tail
%identifier ;

246 id list tail =

247

248

% ;

id list tail =
%,

actual p3rms =
%(-

identifier id list tail

actual_parm next_a_parm

249 actual p3rm = p:3rm expr field width
%(+-- [char const identifier

int const not real const string_const

250 next a parm =

251

%)--

next a parm =
%,-;

actual_parrn next_a _parm

252 lhs = identifier rec_ary_ptr
%identifier

253 vars = identifier rec_ary_ptr
%identifier

Page 66

AP~ndix A

254 rec ary ptr =
%T * + , -

I : := ; =]
and div do else end from
in mod noneqrelop of or to

255 rec _ary_ptr = •
%.

identifier rec_ary_ptr

256 rec ary ptr =
%[-

index list rec _ary_ptr

257 index list = index next index
%(+- [char canst identifier

int canst not real canst string_const ;

258 next irrlex = ,
%,-

irrlex

259 next irrlex =
%]-

260 index - expr
%(+ - [char canst identifier

int canst not real canst string_const

261 expr = p3rm expr
%(+- [cnar canst identifier

int_const not real_const string_const ;

262 parm expr = simple expr parm exp end
%(-+- [char canst identifTer-

int canst not real canst string_const

263 pa rm exp end =
%)-, .-: • ;]

do else end of to ;

264 parm exp end = rel op simple_expr
%=-in noneqrelop -;

265 rel expr = simple expr rel op simple_expr
%1 + - [char canst identifier

int canst not real canst string_const ;

266 rel op --
%-;; ;

267 rel op = in
%Tn

268 rel_op = noneqrelop

Page 67

AP~nd ix A Page 68

269

270

%noneqrelop ;

simple ex pr =
%char const

char const add term

simple expr = string_const add term
%strTng_const

271 simple_expr = sign term add term

272

273

274

%+ - ;

simple expr = term add term
%((-identifier int const not real const

add term =
%) , • • i =

] do else end in noneqrelop
of to

add term
%+ - or

= add_op term add term

275 term = factor mul t factor
%((identifier int const not real const ;

276 mul t factor =
%)-+ , - •• :

; =] do else end
in noneqrelop of or to ;

277 mul t factor = mul t op factor mul t factor
%*-/ and div mod

278 factor = identifier var funccall
%identifier

279 factor = real const
%real const

280 factor = int const

281

282

283

284

%int const

factor = (expr
%(;

factor = elem list
%[

factor = not factor
%not ;

var funccall = rec_ary_ptr
%) * + , - •

APpendix A

285

.. I : ; = [
] and div do else end
in mod noneqrelop of or to

var funccall = actLBl_{arms
%(

286 add_op = sign
%+ -

287 add op = or
%or

288 mult op = *
%*-

289 mul t op
%r;

= I

290 mul t op = div
%dTv

291 mul t op = and
%and

292 mul t op = mod
%mod

293 variable = identifier rec_ary_ptr
%identifier

294 field width =

295

%) -; ;

field width =
%: ;

expr more field

296 more field =

297

%) -, ;

more field =
%:- ;

expr

298 elem list =
%]

299 elem list = elem next elem
%(-+- [char const Tdentifier

int_const not real_const string_const ;

300 elem = expr elem tail
%(+ - [char canst identifier

int const not real const string_const

Page 69

APpendix A

301

302

303

304

305

next elem =
%]

next elan = elan next elan
%, ;

elem tail =
%, -]

elem tail = expr
% ••

proc id = identifier
%identifier

306 rec var list = variable next rec var
%1denti fier

307 next rec var =

308

%;
next rec var =

%,
variable next rec var

309 subpart =
% ;

310 st.i:>p:>rt_ id

311 pt class id = identifier
%identifier ;

312 subpart id = identifier
%identifier

313 expressionO =
% ;

314 expressionO = expr
%(+- [char canst identifier

int canst not real canst string_const

315 event id = identifier
%identifier

316 sign = +
%+

317 sign =
%- ;

Page 70

AP~ndix B
Page 71

APPENDIX B

'lhe LL (1) Granmar of ALSTEN

Grammar productions with selection sets added:

Prod # Production

1 camp unit = prog_head prog
%@-process

2 prog_head = process script prog_id
%process

3 prog id = identifier
%identifier

4 prog = p:>rt decl pt label pt const pt type pt evnt_decl_pt var_pt
proc fct pt - stmt pt

%begin const event function label p:>rt
procedure type var

5 block = label pt const pt type pt var pt proc fct pt stmt_pt
%begin canst-function-label procedure type

6

var ;

label pt = label
%label

7 label pt =

label list ;

%begin const event function procedure type
var ;

8 label list = labels next label
%identifier int const

9 next label =
%;

10 next label = labels next label
%, ;

11 labels = int const
%int const

12 labels = identifier
%identifier

13 oonst pt =
%begin event function procedure type var ;

APperrliX 8

14 canst pt = canst
%canst ;

con def list

15 con def list = canst def next con def
%identifier

next con def = 16
%begin-event function procedure type var ;

17 next con def = canst def next con def
%iaentTfier ;

18

19

canst def = new canst id =
%identifier

new canst id =
%Tdentitier

identifier

20 constant = signed_const
%+ - ;

21 constant = unsigned con

constant ;

%char canst identifier int canst real canst string_const ;

22 signed canst = sign after_sign
%+ _- ;

23 after sign = real canst
%real canst ;

24 after sign = int canst
%int canst ;

25 after sign = canst id
%identifier ;

26 unsigned con = identifier

27

%ident1fier ;

unsigned con =
%int canst

int canst

28 unsigned con = char canst
%char canst ;

29 unsigned con = string_const
%string_const ;

30

31

unsigned con =
%real canst

scalar canst =
%identifier

real canst

identifier

Page 72

APpendix B

32

33

34

35

scalar const = non id s con
%+ _-char const int const

non id s con = sign id or int
%+ _--

non id s con =
%Tnt-const

int const

non id s con = char const
%char const ;

36 id or int = const id
iidenti fier

37 id or int = int const
%int const

38 const id = identifier
%identifier

39 type pt =

40

41

%beg in event flllction procedure var ;

type pt = t~
%tyPe ;

typ def list =
%identifier ;

typ_def_list

type_def next_typ_def

42 next typ def =
%begin-event function pcocedure var ;

43 next typ def = type _def next_typ_def
%iaentTfier ;

44

45

type def = new type id =
%iaentifier ; -

new type id =
%Tdenti fier

identifier

types

46 types = type case 1
%identifier- ;

types = type case2
%(+ -array char const int const

packed ptr record set tag-

type easel =
%identifier

identifier type_ tail

Page 73

AP~ndix B

49

50

type tail =
%)-; case end

type tail = ••
%.:-

scalar const

51 type case 2 = non id s con scalar const
%+-- char const-int const

52 type case 2 = struct type
%array packed record set ;

53 type _case2 = ptr identifier
%ptr

54 type case2 = enu id list
% (- ;

55 type _case2 = tag of pt_class_nam
%tag

56 non id type = non id simp
%(+-- char const identifier int const

tag -

57 non id type = struct type
%array IBcked record set

58 non id type = ptr
%ptr- ;

identifier

59 simple type = type _id simp_ ty_ tail

60

61

%identifier ;

simple type =
%(-

enu id list

simple type = non id s con
%+ --char const Tnt-const ;

scalar const

62 simple_type = tag of pt_class_nam
%tag

63 simp ty tail =

64

65

66

%) -, ;] case end

simp ty tail = ••
%.7 ;

non id simp =
%(-

scalar const

enu id list

non_id_sirnp = st.Drange_con scalar const

Fage 74

APperrlix B

61

68

69

%+ - char const identifier int const - -
non id simp = tag of pt_class_nam

%tag- ;

pt class nam = identifier
%ident1fier ;

enu id list = identifier enumer tail
%identifier ;

70 enumer tail =

71

%) ;

enumer tail =
%,

identifier enumer tail

72 stbrange con =
%ident1fier

identifier

73 stbrange con = non id s con
%+ - char const int const

74 type id = identifier
%identifier

75 struct type = 'fBCk prefix tnp:tcked
%array packed record set

76 pack prefix = p:1cked
%picked

77 pack prefix =

78

%array record set

unp:tcked = array
types

%array

indx_ty_list] of

79 unpacked = record head field list end
%record

80 unpacked = set of simple_ type
%set ;

81 record head = record
%record ;

82 indx ty list = simple type index tail
%(-+~char const identifier int const

tag ; -

83 index tail =

Page 75

Appendix B

84

85

86

%]

index tail =
%,

simple_ type index tail

field list = rec sec list with variant
%) ; case errl ident1fier

rec sec list = rec section rec sec tail
% T ; case errl identifier ;

87 rec sec tail =
%) case end

88

89

rec sec tail =
%; ;

rec section rec sec tail

rec section = fieldid list
%Tdentifier

types

90 rec section =
%) ; case end

91 fieldid list = identifier field id end
%identifier ;

92 with variant =

93

%)-end

with variant =
%case

variant_pref variant_list

94 field id end =

95

%: ;

field id end =
%,

variant_pref = case
%case

identifier field id end

tag_ type_ ids of

tag type ids = tagfield_id tag_ typ_ tail
%Tdenti fier

tag typ tail =
%of -

tag typ tail =
%7" -

scalar_ ty_id

tag field id = identifier
%ident1fier ;

Page 76

APpendix B

101

102

103

104

105

scalar ty id =
%identiTier

identifier

variant list = variant variant tail
%) + ~ ; char const end

identifier Tnt const

variant = case 1 list : field head field list
)

%+ - char const identifier int const ;

variant =
%) ; end

field head =
%) ; case identifier

106 variant tail =
%) eoo

107 variant tail = ;
%;

variant variant tail

108 case 1 list = scalar const caselabelend
%+---char const identifier int const

109 caselabelend =

110

%:

caselabelend =
%, ;

scalar const caselabelend

111 port decl pt =
%t:>€gin const event ft.nction label procedure

type var ;

112 port decl pt = pt_decl list
%part -

113 pt decl list = port_decl pt_decl_tail
%port-

114 port decl = port_head pt_dir_mtype
%port

115 pt dir mtype = in type _id
%in-

116 pt dir mtype = out type_id
%out- ;

117 pt dir mtype = port_group
%(-

R:lge 77

APpendix B

118

119

120

pt decl tail =
%bEgin const event function label procedure

type var

pt decl tail = p:>rt_decl pt_ decl_ tail
ip:>rt-

p:>rt head = p:>rt p:>rt_ tail
%p:>rt ;

121 port tail = identifier
%identifier

122 p:>rt tail = set identifier
%set ;

123 PJ rt group = sbptdecll ist
% (-

124 sbpt.dec1list = sub{X>rt_decl next_ subp:>rt
%identifier

125 st.i::>{X>rt decl = subp:>rt_ name direct_ type
%identifier ;

126 direct_ type = in type _id
%in

direct type = out type_ id
%out-

127

128 subp:>rt name = identifier
%identifier ;

129 next subp:>rt =
%)-

130 next_ subp:>rt = subp:>rt_decl next_ subp:>rt
%; ;

131 evnt dec1 pt =
%beg in function procedure var

132 evnt decl pt = event decl next event
%event -;

133 next event =
%oegin function '(rocedure var ;

next event = event decl next event
%event ;

Page 78

AP~ndix B

135

136

137

138

139

event decl = event event id about_partO
%event ;

about partO =
%; -

about partO =about pt_class_id
%abOut

var pt =
%15eg in function '{Xoced ure

var pt = var var decl 1st
%var

140 var decl 1st = var decl var decl end
%TdentTfier

141 var decl end =
%15egin-function procedure ;

142 var decl end = var decl var decl end

143

%TdentTfier

var decl = id list
%Tdenti fier -;

144 proc fct pt =
%~in-

types

145 proc fct pt = pf decl list
%fiinctTon '{Xoceaure -;

146 pf decl list = pf decl pf decl tail
%function procedure - -

147 pf decl tail =
%begin

148 pf decl tail = pf decl pf decl tail
%function procedure

149 pf decl = pf head ; blkorfwd
%function procedure

150 blkorfwd = forward
%forward

151 blkorfwd = block ;
%begin const function label procedure type

var

152 proc_start =

Page 79

APpendix B

% (: ;

153 pf head = procedure proc_id _dec proc_start p_head_ tail
%procedure

154 pf head = function ftnc id dec proc_start f head tail
%function

155 p _head_ tail =
%;

156 p head tail =
-%(-;

fpsl)

157 f head tail =
-%;

158 f head tail = parm _type _id

159

%: ;

f head tail = (
parrn type id

%(- -

fpsl)

160· proc id dec = identifier
%identifier ;

161 func id dec = identifier
%identifier

162 fpsl = f p3rm sect fpsl_ tail
%identifier var

163 fpsl tail = -%)

164 fpsl tail = f _Il3 rm _sect -%;

165 f p3rm sect = p3rm _group
-%identifier

fpsl

166 f parm sect = var p3rm _group
-%var- ;

tail -

167 parm type id = type _id p3rm _ ty_ tail
%identifier

pa rm type id = stroc t type
%array packed record-set ;

parm type id = (enu id list
%(-; -

Page 80

Appendix B

170

171

172

173

174

175

parm type id = tag of pt_class_nam
%tag -

pa rm type id = non id s con
%+-- char const i'nt const

scalar const

- -
parm _type _id = ptr

%ptr

tail parm_ty_ =
%) ; ;

parm _ ty_ tail =
% •• ;

parm_group = id list
%identifier

identifier

scalar const

parm_type_ id

176 id list = identifier id list tail
iidenti fier

177 id list tail =
%: ;

178 id list tail = '
identifier id list tail

%, . ;

179 body start =

180

%announce begin case for goto identifier
if int const receive repeat send when
W'lile With ;

stmt_pt = begin

%begin

body_start stmt list end

181 strnt = label prefix U1labeled st
%announce beg in case for go to if

int const receive repeat send when While
with

182 strnt = stmt with id
%identifier ;

183 stmt with id = identifier asgn_cal_lab
%identifier ;

unlabeled st = begin stmt list end
%begin ;

unlabeled st = goto labels
%go to

Rlge 81

AP~ndix B

186 unlabeled st = case head case_list otherwise_pt end
%case

187 unlabeled st = re~at stmt list tntil
%repeat

mlabeled st = if stmt
%if ;

188

189 mlabeled st = for stmt
%for

190 unlabeled st = while stmt
%while ;

191 unlabeled st =with stmt
%with ;

192 tnlabeled st = receive stmt
%receive when

193 unlabeled st = send stmt
%send

194 unlabeled st = announcestmt
%announce ;

asgn_cal lab = rec_ary_ptr :=
%. := 1 ptr ;

195

asgn_cal lab = actLBl _p3rms -196
%(

197 asgn cal lab =
%:- -

unlabeled st

198 asgn cal lab =
%;-else errl otherwise until

expr

199 actual parms = (
%(-

actual_parm next_a_parm

200 actLBl ~rm = p3rm expr field width
%(+-- [char const identifier

expr

int const nTl not real const string_const ;

201 next_a_parm =
%)

202 next_ a _t:a rm = actLBl_parm next_a_t:arm
%, ;

Page 82

APpendix B

203 if stmt = if head stmt if tail
%if ;

204 if tail = else stmt
%else

205 if tail =
%; end otherwise tntil

206 for stmt = for head do stmt
%tor

207 Yfhile stmt = while head stmt
%while ;

208 with stmt =with head stmt
%wlth

209 if head = if expr then
%if ;

210 while head = while expr do
%while

211 label prefix =
%announce begin case for goto if

receive repeat send when while with

212 label prefix = int canst
%int canst

213 lhs = identifier rec ary ptr
%identifier ; - -

214 vars = identifier rec_ary_ptr
%identifier

215 rec ary ptr =
%) * + ' - ••

I : := ; = J
and div do downto else end
from in mod noneqrelop of or
otherwise then to tn til

rec ary ptr = •
%7 ;-

identifier rec_ary_ptr 216

217 rec ary ptr =
%T ;-

index list

rec ary ptr = ptr rec_ary_ptr
%ptr -;

rec _ ary_ptr

Page 83

AP~ndix B

219

220

index list = index next index
% (+ - [char const identifier

int const nTl not real const string_const

next index = ,
%, ;

index

221 next index =

222

223

224

225

226

%]

index = expr
%(+- [char const identifier

int const nTl not real const string_const

expr = parm expr
%(+- [char const identifier

int const nil not real const string_const

parm_expr = simple expr parm exp end
%(+ - [char const identifier -

int const nTl not real const string_const

pa rm exp end =
%) -, .: : ;

do downto else errl of otherwise
then to until ;

pa rm exp end = rel op simple_ expr
%=-in noneqrelop -;

227 rel_expr = simple expr rel op simple_expr
%(+- [char const identifier

int const nTl not real const string_const ;

228 rel op - -
%=

229 rel op = in
%Tn ;

230 rel op = noneqrelop
%noneqrelop

231 simple expr = char const add term
%char const ;

232 simple expr = string_const add term
%strTng_const

233 simple expr = sign term add term
%+ _- ;

234 simple_expr = term add term

Page 84

APpendix B

235

236

237

%{ [identifier int const nil not
real const

add term =
%) ' • • : ; =

] do downto else end in
noneqrelop of otherwise then to LD1til ;

add term
%+ - or

= add_op term add tenn

term = factor mul t factor
%{ [identifier int const nil not

real const

238 mul t factor =
%) - + ' - • • :

; =] do downto else
end in noneqrelop of or otherwise
then to until

239 mul t factor = mul t op factor mul t factor
%*/ and div mod ;

240 factor = identifier var fl..D1ccall
%identifier ;

241 factor = nil
%nil

242 factor = real const
%real const ;

243 factor = int const
%int const

244 factor = { expr
%{ ;

245 factor = elan list
%[

246 factor = not factor
%not

247 var funccall = rec_ary_ptr
%) * + ' - •

. . I : ; = [
l and div do downto else
end in mod noneqrelop of or
otherwise ptr then to until

248 var funccall = actual_parms

Page 85

AP~ndix B

%(

249 add_op = sign
%+ -

250 add op = or
%or

251 mult op = *
%*- ;

252 mult op = I
%/-

253 mult op = div
%dTv

254 mul t op = and
%and

255 mult op = mod
%mod

256 variable = identifier rec_ary_ptr
%identifier

257 field width =

258

%) -;

field width =
%:

expr more field

259 more field =

260

%)-,

rrore field =
%:

expr

261 elem list =
%]

262 elem list ·= elem next elem
%(-+- [char const Tdentifier

int const nTl not real const string_const

263 elem = expr elem tail
%(+ - [char canst identifier

int const nil not real const string_const

next elern =
%]-

next elem = elem next elem

Page 86

APpendix B

266

267

268

269

270

271

272

%, ;

elem tail =
%, -]

elan tail = expr
%.:-

proc id = identifier
%identifier

stmt list = stmt more stmt
%announce begin case-for goto identifier

if int const receive repeat send Yhen
while With

more stmt =
%end t.ntil

more stmt =
%;-

case head = case
%case

stmt more stmt

expr of

273 case list = case elem case elems
%+-- char canst-identifier int const ;

274 case elems =

275

%errl otherwise

case elems =
%;- ;

case elem case elems

276 case elem = case labels stmt
%+-- char canst-identifier int const ;

277 otherwise trl = otherwise
%otherwise ;

278 case labels = scalar const next scalar
%+-- char const identifier int-const

279 next scalar =

280

%:-

next scalar =
%,

281 otherwise_pt =
%end

scalar const next scalar

282 otherwise _pt = otherwise trl stmt list

Page 87

APperrlix B

%otherwise

283 for head = for
to part expr

%for ;

identifier .- expr

284 to part = to
%to

285 to part = down to
%do\\nto ;

286 rec var list = variable next rec var
%ldenti fier

287 next rec var =
%do

288 next rec var =
%,- ;

variable next rec var

289 with head = with
%with ;

rec var list do

290 receive stmt = simple_rcv
%receTve ;

291 receive stmt = when stmt
%when-

292 simple rev = receive variableO
port denoter freebindingO

%receTve ;

293 variableO =
%from

294 variableO = variable
%identifier

from

295 port denoter = pt_ class_ id subport
%iaenti fier

296 subport =

297

%; do else end otherwise set
until use ;

subfX)rt = •
%.

298 pt class id = identifier
%identTfier

Page 88

AP~ndix s

299 sUbport id = identifier
%identifier

300 freebindingO =
%; do else end otherwise tntil

301 freebindingO = use . variable
%use ;

302 freebindingO = set variable
%set

303 when stmt = when head receives else _~rtO end
%when ;

304 when head = when
%When ;

305 receives = receive pt next receive
%; end otherwise receive ;-

306 next receive =
%erii otherwise ;

307 next receive = ;
%; ;

receive_pt next receive

308 receive pt =

309

%; end otherwise

receive pt = simple_rcv
%receTve

310 else ~rtO =
%end

do stmt

311 else ~rtO = otherwise strnt

312

%otherwise

send strnt =
use ~rtO

%send ;

313 expressionO =
%to ;

send expressionO to

314 expressionO = expr
%(+ - [char const identifier

'(X>rt_denoter

int const nTl not real const string_const

315 use partO =
%7 else end otherwise tntil ;

Page 89

APperrlix B

316 use partO = use variable
%Use ;

317 announcestmt = announce event id about bindO
%announce

318 event id = identifier
%identifier ;

319 about bindO =
%; e"lse end otherwise until

320 about bindO = about pt_class_id use_partO
%about ;

321 sign = +
%+ ;

322 sign =
%-

Page 90

Appendix C

APPENDIX C

An EXample NETSIA program - Broadcasting

network broadcast;
process class sender
port inport in integer;
·p:>rt out{X:>rt out integer;
end sender

process c1ass receiver
port inp in integer;
p:>rt outp out integer;
errl receiver

initial
create sender : sender;
create receiver! : receiver;
create receiver2 : receiver;
connect sender.outport to receiverl.inp;
connect sender.out{X:>rt to receiver2.inp

errl broadcast

Page 91

Appendix D

APPENDIX D

A Network Specification MOdule

This code was generated by the Netsla preprocessor."

procedure ini t;
beg in (*ini t*)
p id := 0;
alive := 0;
total procs := 0;
initialized := false;
Gr := AllocateR>rt(KernelR>rt, OlildtoParR>rt, MAXBACKLOG);
Gr := AllocateR>rt(KernelR>rt, ENentR>rt, MAXBACKux;);
build net('broadcast');
build-proc('sender');
build-port('inport');
build-port('outport');
build-proc('receiver');
build-port('inp');
build-port('outp');

Page 92

Gr :=-a creation pr (theroot,'sender' ,'sender' ,'sender.RUN' ,p list head);
Gr := a-creation-pr (theroot,'receiver' ,'receiverl' ,•receiver~RUN'~p_list_head);
Gr . := a-creation-pr (theroot,'receiver' ,'receiver2','receiver.RUN' ,p list head);
Gr := connection(theroot,'sender' ,'outport' ,'' ,'receiverl' ,'inp' ,'');
Gr := connection(theroot,'sender' ,'outport' ,'' ,'receiver2' ,'inp' ,'');
vakeup;
end; (*ini t*)

Ap~ndix E

APPENDIX E

'lhe E»ent Rlndling M:>dule

a,ntMsg. ~ad. weal R:>rt : = EYentR:>rt;
quit := False;
while (quit=FALSE) do
begin
writeln('Events before receive req');
.Gr := Receive(B/ntMsg.~ad, 0, LOCALPT, RECEIVEIT);
i f Gr=SOCCESS then
case shrink (BintMsg. ~ad. ID) of
1: begin (* message transmission. *)

wri teln ('fend Msg Iequest Ieceived.');
Gr : = send msg (the root, BJn tM;g) ;
if Gr=SOCCESS then

wr i teln ('fend M;g Fe quest Completed.')
else -

writeln('***Send_Msg Request NOT Completed.');
arrive evnt;

end; -
2: begin (* message transmission. w/ tag *)

wri teln ('fend Msg (w/ 'lag) !€quest Received.');
Gr := send ms9 tag (theroot, BJntM;g);
if Gr=SOCCESS then

wri teln('Send M;g (w/ 'lag) Request Completed.')
else -

wri teln ('***Send M;g (w/ 'lag) Request NOT Completed.');
arrive evnt; -

end; -
3: begin (* enter event *)

enter evnt;
end; -

4: begin (* leave event *)
leave evnt;

end; -
5: begin (* ¥then evnt *)

when evnt;
end; -

6: begin (* ¥then evnt. w/ about p:lrt *)
when evnt;

end; -
19: begin (* connectivity inquiry *)

wri teln ('Cbnn Inq !€quest Ieceived');
Gr := inquiry(theroot, BJntMsg);
if Gr=SOCCESS then

writeln('Cbnn Inquiry Completed')
else

writeln('Conn Inquiry NOT Completed');
end;

99: begin (* termination of a process instance *)
with vparray[vpnap[BJntMsg .IBta2]] do

Page 93

APpendix E

begin
r.Eletecanvas (canvs) ;
PaintRectangle(UserCanvas,White,xO+l,xO+xlen-3,y0+2,yO+ylen-2);
Used : = False;

end;
alive := alive-1;
if alive=O then
begin

quit:=TRUE;
Eraseeanvas (Usercanvas ,W'li te) ;
{IeleteCanvas (User Canvas);}

end;
end;

(* more come here *)
otherwise:

begin
end

end; (* case *)
end; (* while *)

Page 94

AP~ndix F

APPENDIX F

A Script for Sender Processes

process script sender;
port inport in integer;
port outport out integer;
var

i :integer;
begin

vtlile i<>999 do
begin

end
end.

wr i te (' Integer : ') ;
readln(i);
send i to outport

Page 95

Ap~ndix G

APPENDIX G

The Preprocessor-generated Cbde for Sender Processes

program sender;
imports Child lib from Child_lib;

var
i :integer;
var
pinport
p:>utp:>rt

type

p:>rt;
: p:>rt;

signal = boolean;

accentmsg = record
head : msg;
ipcname2 : Ty~~;
arg2 : integer;
ipcname3 : ~~;
arg3 : string[lO];
ipcname4 : ~~;
arg4 : string[lO];
ipcname5 : ~~;
arg5 : integer;
ipcname6 : ~~;
arg6 : string[20];
ipcnamel : ~~;
case integer of

1 (msignal : signal) ;
2 (msg inp:>rt : integer) ;
3 : (msgoutp:>rt : integer) ;

end;

var
xxmsg : a ccen tmsg ;
gr : generalreturn;
whenflag boolean;
xxsignal : signal;
canmp:>rt : p:>rt;
p array : FortBitArray;
pstr : string[l2];

{$INCLUDE Alsten supt.pas}
begin -
{ $IN:LUDE Alstenini t .pas}
Ini tMs:jn (Null Fort);
Gr := Child ack;
while i<>999 do
begin
write (1 Integer : 1

) ;

Page 96

Ap~ndix G

readln(i);
begin (* send *)
xxmsg.head.id := 1;
xxmsg.head.remoteport := InFOrtsA[l];
xxmsg .head .localport .- D:ltaFOrt;
xxmsg .msgoutport :=i;
xxmsg.arg2 := p id;
xxmsg .arg3 := 'outport';
xxmsg .arg4 := ' ';
gr := send(xxmsg.head,O,wait)
end (* send *)

end
; goaYB y ;end •

Fage 97

Appendix H

APPENDIX H

A Script for the leceiver Processes

process script receiver;
port inp in integer;
port outp out integer;
var

j :integer;
begin

while j<>999 do
begin

end
end.

receive j from inp;
wri teln(j)

Page 98

Appendix I

APPENDIX 'I

The Preprocessor-generated Cbde for Receiver Processes

program receiver;
imports Child lib from Child_lib;

var
j :integer;
var
pinp : port;
poutp : port;

type
signal = boolean;

accentmsg = record
head : msg;
i ~name 2 : Type Type ;
arg2 : integer;
i ~name 3 : Type Type ;
arg3 : string[10];
i ~name 4 : Type Type;
arg4 : string[10];
i ~name 5 : Type Type;
argS : integer;
i~name6 : Type~;
arg6 : string[20];
i pcname 1 : Type Type ;
case integer of

1 (msignal : signal) ;
2 (msginp : integer);
3 : (msgoutp : integer) ;

end;

var
xxmsg : accentmsg;
gr : generalreturn;
Yklenflag : boolean;
xxsignal : signal;
commJX>rt : port;
p array : FortBitArray;
pstr : string[12];

{$INCLUDE Alsten supt.pas}
begin -
{ $IOCLUDE Alstenini t .pas}
Ini tMs3n (Null Fort) ;
Gr := Child ack;
while j<>999 do
begin
begin (* receive *)

Page 99

APpendix I

rcv('inp' ,'' ,999,l,rcv_result);
if rev result then
j : :::xxm~ .m~ inp;
ero (* receive *)

~riteln(j) errl
;goa \>BY ;end.

Page 100

Bibliography Page 101

BmLIOGRAPHY

[3RCC82]Perq System Software Reference Manual; Three Rivers Cbmputer Cbrp.;
---pfttsburgh, Pa., r.By 1982.

[ACM83a]Symposium ~High Level Debugging Preprints; Preprints of session
Summaries and letter to conference part1cipants. Mark Scott JOhnson,
Symp:>si un Ola i rman. July, 1983.

[ACM83b]Proceedings of the ACM Symposium on High Level Debugging; SIGPLAN
Not1ces, \bl.-r8, N:>. 8, Augustl9~

[Ball8l]canvas: The Spice Graphics Package; E.J. Ball; Wbrking paper,
. COmputer Sclence r:Eparbnent, carnegie ~llon lhiversi ty I ~ril 1981.

[Jens74] Pascal User Manual and Report; K. Jensen, N. Wirth; Springer-Verlag,
1974.-- --

[Kern76]Software Tools; B.W. Kernighan, P.J. PlaUJer; Addison-wesley,
Readin:J r.Bss., 1976.

[Live80]Run-Time Control in a Transaction Oriented Environment; N.J.
Livesey; PhD. ThesiS, University of waterloo (1980).

[Macc82]Language Features For Fully Distributed Processing Systems; A.B.
Maccabe; Techn1car-1€port GIT-ICS-82/12, S:hool of Information and
Cbmputer S:ience, Ceorgia Institute of 'Iechnology, h.lgust 1982.

Interactive Monitoring of Distributed Systems
Final Report

Richard J. LeBlanc

July 16, 1986

U.S. Army Institute For Research in
Management Information and Computer Science

Atlanta, Georgia 30332

Contract No. DAAK70-79-D-0087-0015
GIT Project No. G36-605

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Page ii

TABLE OF CONTENTS

Page

INTRODUCTION. . . . • . . • . • • . . . • • . . . • • . . • • . • • • • . . . • . • • • 1

RA.DAR DESIGN. • . • • • • • . . • • . • • • • • • . . . • . • • . • • . . • 7

COLLECTING INFORMATION. • • • . • • • • • • • • . 9

REPLAYING PROGRAM EXECUTION••••.••...••..•.•••••••.•••• 20

PRONET IMPLEMENTATION. • • • • • . • . • • • • • • . . . • • . 28

RESULTS AND CONCLUSIONS •....•...•.•••.....•.••.•••.•.•..... 34

BIBLIOGRAPHY. • . • • . . • . • . . . • . • • • • • • • • • • . • . . . • . • . . • . • • • • . • • • . • . . . 45

APPENDIX A The LL(1) Grammar of NETSLA ...••..•••••••...•••.•....••.•. 47

APPENDIX B The LL(1) Grammar of ALSTEN •..•..•••••.•••........•••..•.• 66

APPENDIX C An Example NETSLA program- Broadcasting•..•........ 86

APPENDIX D A Network Specification Module .••••••.••.................. 87

APPENDIX E The Event Handling Module••...•..•....••••.•.•.•... 88

APPENDIX F A Script for Sender Processes•.•••••...••...... 90

APPENDIX G The Preprocessor-generated Code for Sender Processes 91

APPENDIX H A Script for the Receiver Processes •.........•....•.•..... 93

APPENDIX I The Preprocessor-generated Code for Receiver Processes 94

APPENDIX J Event Replay Example. . . • • . • • • . . • • . • . . . • . . . 96

- 1-

Section 1

INTRODUCTION

1.1 Problems with Monitoring Distributed Programs

In a conventional programming environment, there are two principal purposes for

monitoring the run-time behavior of a program: performance measurement and debugging.

(By ''monitoring" we refer to some mechanism for obtaining information about the

performance of a program, external to the program itself.) Performance measurement is a

relatively mundane application of monitoring in such an environment, being principally

concerned with the processor time requirements of various parts of a program and requiring

little or no interactive intervention by a programmer. Debugging is considerably more

interesting, requiring extensive programmer interaction by its very nature.

When we generalize our thinking to a distributed system from a traditional single-processor

environment, the uses of monitoring become somewhat different and we must develop a new

conceptual view of a major part of the monitoring task. We are, of course, still interested in

performance measurement and debugging, but these tasks become quite different in this new

environment. The reason for this difference is that we are now concerned with distributed

programs - programs which cannot be monitored by considering a single address space on a

single machine. Rather, we must now be concerned with the communication between the

various parts of a program, for these interactions will play a crucial part in the monitoring task.

Performance measurement in a distributed system is made more complex by a number of

new considerations. Communication costs and the overall time it takes to execute a program,

which is affected by the potential for parallel execution of subtasks and by time spent waiting

for messages, are equally important considerations in many situations. Further, it is much more

difficult for a measurement program to monitor an entire program, since the monitored

program may be distributed arbitrarily across a network of machines. It will be necessary for

-2-

any monitoring program to obtain information about the distribution of a program and about its

communication linkage and behavior.

This need to obtain information from distributed execution sites naturally applies to

debuggers as well as to performance monitors. In fact, it is a more complex problem in the case

of a debugger since the debugger must somehow assist a programmer in comprehending the

"state" of a program which consists of a nmnber of processes running asynchronously on several

machines. Conventional debugging tools are certainly of little use in this situation, since they

are typically oriented toward monitoring the operation of what would only be a single process of

a distributed program. Once again, tools which provide information about the status of process

interactions will be required. (Such tools should also have the capability to interface with more

traditional monitoring tools which can be used on the individual processes.)

Just as communication should play an important part in distributed performance

measurement, it should also have a crucial role in debugging distributed programs. The

correctness of such programs will undoubtedly depend on the correctness of the contents and

sequencing of messages transmitted between their constituent processes. Thus a distributed

debugging tool must deal with communication as a major part of its job. In fact, it is

conceivable that a communication monitor may be the debugger at the interprocess level,

complementing traditional debuggers which operate on individual processes.

As a !mal difficulty, any kind of monitoring of a distributed program will potentially

generate a great deal of information, which must be conveyed to a programmer in a

comprehensible manner. It will presumably not Be satisfactory to produce all of this

information independently for each of the processes. Rather, the information must be

aggregated in some manner consistent with the nature of the monitoring task being performed.

1.2 Proposed Solutions Using PRONE!'

The solution we have explored is based on our programming language PRONET [Macc82].

-3-

The network descriptors of PRONET provide an excellent basis for the operation of distributed

monitoring tools. The interconnection information these descriptors provide is exactly what is

required by a monitor so that it can easily recOgnize the structure of an entire program.

As was suggested in the previous section, a communication monitor is a crucial part of our

tools. The interconnection specifications in PRONET networks provide the mirtimum amount

of information needed by a communication monitor. That is, they provide a listing of the

message paths between processes and the types of the messages which may be transmitted. The

task of a monitor will be to provide a programmer with information about message transmission

between processes, including information about the sequencing of messages and about their

contents. The capability to examine the operation of individual processes (accomplished by

interfacing with a traditional single process debugger) is an important part of our tool set.

1.3 Overview of Project Organization

The project was originally planned to include the following tasks as described in the original

statement of work:

Task 1 - PRONET Interface

PRONET, a language that provides a high level description of interprocess

communication, is currently being implemented on a distributed system of Prime

computers at Georgia Institute of Technology. The task is to develop an interface

between PRO NET and a distributed monitor.

Task 2 - Communication Monitor

The contractor shall determine what data should be collected by the monitor to

facilitate development, debugging and maintenance of programs. This task is to

develop a monitoring program that interfaces with the communication features of the

operating system and collects the necessary data.

Task 3 - Interface to the Communication Monitor

The contractor shall develop a convenient user interface to the communications

-4-

monitor. The user interface will provide a graphical display of information collected

by the monitor. Also, it will do additional automated processing of the data to

consolidate into meaningful form the information generated by the monitor.

Task 4 - Interface with a Process-level Debugger

The contractor shall develop an interface with the communications monitor and an

existing symbolic debugger. If this approach is infeasible, then symbolic debugger

for individual processes must be implemented and interfaced. with the single process

debugger.

During the course of the project, some changes from the initial plans were found to be

necessary. The most prominent change involved the use of different hardware than originally

planned. The main reason for this change was that we found the implementation of PRONET

on our Primes too inefficient to be practical. The operating system on these machines does not

effectively support dynamic process creation. The Accent operating system available on our

Perq computers, on the other hand, supports dynamic process creation as well as message

passing between processes on different machines. Thus we chose to do the work using our Perq

workstations, which meant that more work on the implementation of Pronet than originally had

been planned turned out to be necessary. However, this work was minimized by implementing

Pronet through use of a pre-processor which generates Perq pascal code.

The Perqs also have high-resolution, bit-mapped displays. This feature gave considerable

support to the development of a very effective graphical user interface to our monitoring

system. We consider this interface one of the most successful aspects of the project.

The other major change in our approach involved the development of a passive event

recording system rather than a monitor which supports interaction with distributed programs

during execution. This passive approach was initially seen as a prototype. However, we found

that a simulated replay of program execution using the information we record during execution

provides an effective visualization of a distributed programs, so it remained the focus of our

-5-

work throughout the project.

Only task 4 went just as it was originally planned. Our program replay system interfaces

with the Kraut debugger, which is a standard high-level debugger under Accent.

1.4 Summary of Pro jed Results

As discussed in the previous section, we made use of the bit-mapped displays on our Perq

computers to develop a graphical user interface to our monitoring systems. In effect, it

produces a high-level, animated view of program execution. We say this view is "high-level"

because it includes only events visible at the process interconnection level (e.g., process creation

and interprocess communication). This graphical display approach has proved to be an excellent

technique for managing the large quantity of information collected in monitoring a distributed

program.

One of the hardest issues to be dealt with in the design of a distributed program monitor or

debugger is how to minimize the impact it has on the execution of a program under

examination. Our ultimate decision to concentrate on passive monitoring followed by a replay

was heavily influenced by this consideration. We believe we have developed tools which can be

effectively used to debug applications level distributed programs, based on this minimally

obtrusive passive monitoring approach.

Part of our methodology for making use of passive monitoring involves what we call multi

level debugging. In addition to looking at the high-level animation of execution described

above, the user also has the ability to focus on the execution of a single process, once the source

of a failure has been isolated. Our technique integrating of our monitoring system with an

existing single-process debugger is the key to making multi-level debugging available.

The results of this project were reported at the 5th International Conference on Distributed

Computing Systems in a paper by R. J. LeBlanc and A. D. Robbins, entitled "Event-Driven

Monitoring of Distributed Programs''.

-6-

1.5 Report Overview

The following three sections describe various aspects of the design of the prototype monitor,

called RADAR. They are extracted from Arnold Robbins' M.S. thesis. They are followed by

sections on the PRONET implementation, the monitor implementation and the conclusions we

have drawn from our research.

-7-

Section 2

RADAR DESIGN

2.1 Distributed Programr

The RADAR monitor is intended to support Pronet [Macc82], a message based language

designed as a part of previous research on distnbuted computing at Georgia Tech. However, it

could be easily adapted to support other message-based programming systems. The relevant

features of Pronet will be discussed in section 3.1.

2.2 The RADAR System

The RADAR system takes a passive approach to monitoring distributed programs. Because

it is interactive the term "monitor" is used to describe it, and not the term "debugger."

RADAR is designed to support Pronet on PERQ computers [3RCC82]. The PERQ is a

single user machine with a high resolution bit-mapped display and a mouse.

Pronet consists of two sublanguages: NETSLA for describing communication networks, and

AI.SfEN for describing processes. The Pronet compiler provides the monitor with information

concerning the connectivity of the processes. This information is collected from the NETSLA

runtime system. AI.SfEN programs are loaded with a special communications library which

records every standard or user-defined event during execution, and makes a copy of every

message sent. The exact nature of the information supplied by the NETSLA runtime system

and the structure of AI.SfEN event records will be described in section 3.2. This component of

RADAR is· known as the RADARLOG.

After the program has completed executing, the REPLAY component of RADAR is

invoked to provide a graphical "replay" of the execution. Each message or event is stamped

with a global event nmnber. This imposes a partial ordering on events. The monitor then

displays events one at a time. The programmer is able to watch the communications traffic

-8-

amongst the processes. Processes have names in Pronet, so it is easy for the programmer to see

which process is communicating with which other processes.

REPLAY provides the user with the ability to view the contents of any message currently

represented on the screen. Messages are represented on the screen as small boxes. The user

places the PERQ's mouse over the message which he wishes to examine. REPLAY then opens

a new window in which the contents of the chosen message will be displayed in a formatted

fashion. For instance, if the message contained an integer and two floating point numbers, the

message would be displayed as an integer and two floating point numbers, not as 10 octal bytes.

When the user is through with the message the new window disappears.

REPLAY also provides the ability to replay a certain number of events which have already

happened. This can be done at any point during the display. The user can "rewind the video

tape," so to speak. This replay is limited to a reasonable maximum number of previous events.

This feature is known as an ''Instant Replay."

Finally, as a separate utility, the user can name a given process and have all of the messages

which were sent to that process selected from the recorded message traffic. This single process

may then be run by itself with its messages derived from the stored messages. This feature is

designed to facilitate single process debugging using real input data (messages). This way, it is

possible to observe a process' behavior under realistic conditions, without having to worry about

controlling the rest of the processes of the distributed program.

-9-

Section 3

COLLECTING INFORMATION

RADAR is intended to support Pronet, a language designed for writing programs which can

execute in a distributed processing environment. Pronet stands for Processes and Networks.

The introduction to Chapter 2 of [Macc82] smnmarizes the description and design goals of

Pronet:

PRONET is composed of two complementary sublanguages: a network
specifiCation language, NETSLA, and a process description language, AI.SrEN.
Programs written in PRONET are composed of network specifications and process
descriptions. Network specifications initiate process executions and oversee the
operations of the processes they have initiated. The overseeing capacity of network
specifteations is limited to the maintenance of a communication environment for a
collection of related processes. The processes initiated by a network specification
can be simple processes, in which case the activities of the processes are described by
AI..SrEN programs, or they can be "composite processes", in which case their
activities are described by a "lower-level" network specification.

AI..SrEN is an extension of Pascal which enables programmers to describe the
activities of sequential processes. During their execution, processes may perform
operations that cause events to be announced in their overseeing network
specification. Network specifications, written in NETSLA, describe the activities to
be performed when an executing process 'announces' an event.. . Two principles
have influenced the design of these features: independence of process descriptions
and distnbuted execution of network specifications.

This section frrst describes the features of Pronet relevant to interprocess communication.

Then it describes the information provided to the monitor by the NETSLA and ALSTEN

compilers. Finally, it presents the format of the information collected at run-time by the special

communications library.

3.1 The F eatw"es cf Pronet

This presentation is derived from Chapter 2 of [Macc82].

3.1.1 AISI'EN

AI..SrEN is essentially an extension of Pascal [Jens74] . The file concept has been removed

- 10-

entirely from the language. Processes communicate only through locally declared ports, using

send and receive statements which are analogous to Pascal's read and write. Ports have a

direction, either in or out. Ports may be combined into port groups. One could define a duplex

channel as:

port channel (incoming in bit; outgoing out bit);

To accomodate the notion of a server process, which serves many other processes, ALSTEN

provides ports sets and port tag variables. A port set is a collection of port groups or simple

ports identified by one name. For instance, if a port set is a set of port groups, a receive on a

port set would set a port tag variable to indicate which element of the set was actually used for

communication. This tag may then be used in a send operation for sending replies to the

process which originated the message.

The syntax of the send and receive statements is shown in Figure 1.

<send stmt> :: =
send [<expr>] to <bound port denoter>

<receive stmt> :: = <simple receive>
I <conditional receive>

<simple receive> ::=
receive [<variable>] from <free port denoter>

<conditional receive> :: = when
{<receive part>}
[<otherwise part>]

end

<receive part>::= <simple receive> [do stmt>]

<otherwise part> :: = otherwise <stmt>

Figure 1 - Send and Receive Statements in ALSTEN

A type is associated with every port. Only expressions of the type associated with a given

port may be sent to or received from that port.

- 11-

The <expr> is optional. In these forms of the send and receive statements, the port is of

type signal. A signal is a message with no contents. Signals are often useful for sending control

information, such as telling a process to start a particular task.

The syntax for port declarations is shown in Figure 2.

<~rt decl> :: = <simple port decl>
I <port group decl>

<simple port decl> :: =
port <port id> <direction> <msg type>

<port id> ::= <id>

<direction> :: = In I out

<msg type> ::= <type id>

<port group decl> ::=
port [set] <port id> '(' <subport list> ')'

<subport list>::=
<subport decl> {';' <subport decl>}

<subport decl> ::=
<subport id> <direction> <msg type>

<subport id> :: = <id>

<port tag type> :: = tag m <port id>

Figure 2 - Port and Port Tag Declarations in ALSIEN

3 .1.2 NEI'SLA

As stated earlier, the purpose of NETSLA specifications is to initiate and control the

communications environment of ALSIEN processes:

The features of NETSLA are aimed at specifying the initial configuration and
subsequent modifications of a communication environment for processes. The
overriding principle followed in the design of these features is that of "centralized
expression-decentralized execution" [Live80]. Centralized expression is important
in presenting the abstraction to be supported by network specifications. All of the
inter-process relationships that describe a communication environment appear in a
single network specification. However, this communication environment is not
maintained in a centralized fashion. Processes maintain their communication
environment indirectly. When they execute send or announce operations, processes

- 12-

perform the activities specified by their overseeing network specifications; however,
the nature of these activities is unknown to the process (since network specifications
are not visible to processes). [Macc82]

The syntax of network specifications is shown in Figure 3.

<network specification>::= <network header>
{<process class specification>}
{<event handling clause>}
[<initialization clause>]

end <identifier>

<network header>::= network <net id> ';'
{<port decl>}
{<event decl>}

<process class specification>::=
process class <process id>

[<process attributes>]
{<port decl>}
{<event decl>}

end <process id>

<process attributes>::= attributes
<field list>

end attributes

Figure 3 -- Network Specifications in NETSLA

When a network starts to run, its initialization clause is executed. The initialization clause is

used to create instances of processes and connect the output ports of one process to the input

ports of another. A simple network specification is presented in Figure 4; a graphical

representation of the network is shown in Figure 5.

- 13-

network staticJlet
process class proc_class

port input In integer;
port output out integer;

end proc_class

initial
create procl: proc_class;
create proc2 : proc_class;
create proc3 : proc_class;
connect procl.output to proc3.input;
connect proc2.output to proc3.input;
connect proc3.output to procl.input;
connect proc3.output to proc2.input;

end staticJlet

Figure 4 - A Simple Network Specification

R
input

1 1

~~-o_u_t_p_u_t--------~

output

proc3

proc2

output

Figure 5 ---A Graphical Representation of a Simple Network

If one output port is connected to more than one input port, the messages sent out on it are

replicated. This occurs in a manner invisible to the process sending the message. This allows

one-to-one, one-to-many, and many-to-one connections between ports.

Processes may define events. These events. can then be announced by the processes in their

overseeing network specifications. NETSLA provides features for handling these events when

they are announced. The programmer specifies what actions to take, such as aborting processes

- 14-

or creating new ones. Other actions are also possible.

Pronet predefines several standard events. For instance, when a process terminates

nonnally, the standard event 'done' is announced in its network.

Message transmission and reception are considered to be events. They simply have a

separate syntax. The other standard events and the syntax of event declarations and handlers

are discussed fully in [Macc82].

Since Pronet is oriented around events, so is RADAR. The special runtime routines record

all the events and messages. The REPLAY program presents the user with a visual replay of

the events that ocauTed during the execution of the program. The majority of events will be

message transmission and reception. When a different type of event occurs, that event will be

portrayed.

3.2 Information Supplied By T~ Pronet Compilers

The Pronet compilers and runtime system provide RADAR with the framework upon which

to build the later description of event.

3.2 .1 AI.SI'EN

Ports in Pronet are always associated with a type. Only messages of the type associated with

a port may be sent to or received from that port.

In any given ALSrEN program, there will be a fixed number of different message types,

i.e. the types associated with ports.

The AI..SrEN compiler will generate a file with a list of lTU!ssage templates. A template

looks like

Identifier total no elements list of elements

Figure 6 ---Message Templates

- 15-

The list of elements is simply an order listing of the fields in a message. For instance,

I real !array character 19 lnt llong I
Figure 7 ---Fields In A Message

If a field of a message is itself a record with further subfields, the compiler will expand it in

line down to its basic elements. Elements can be bytes, integers, long integers, reals, or one

dimensional arrays of these types. Bytes are treated as unsigned integers, even though they

may have actually been signed quantities. If necessary, RADAR may be modified to allow

specifying whether or not such m.nnbers were signed or unsigned. Elements smaller than one

byte occupy a byte to themselves. This implies that the Pascal keyword packed has no effect.

Admittedly, this is a constraint on the compiler; see Section 5 of the thesis for further discussion

of this constraint.

The purpose of the list of message templates is to allow the decoding of individual messages.

A user can select any message on the screen with the PERQ's mouse. When he does so,

RADAR will open a separate window and format the contents of the message in it. Each

message carries its type with it. The message is decoded according to the corresponding

template and printed accordingly. One dimensional arrays are allowed, principally for use in

displaying character strings. REPLAY will treat arrays as if they are indexed from 1.

3.2.2 NETSLA

NETSLA controls process and port creation and the interconnecting of output ports to input

ports.

The information generated by the NETSLA system is a file describing each process. A

process is described as follows:

- 16-

machine procJlum proc_Jlame number_port_groups
number of simple ports in each group

direction number name type { DESTINATIONS }
direction number name type { DESTINATIONS }

number of simple ports in each group
direction number name type {DESTINATIONS }
direction number name type { DESTINATIONS }

Figure 8 - Description Of A Process

The { } pairs enclose optional information. Only if a port is an output port does it have one

or more destinations associated with it. The DESTINATIONS field in Figure 8 above

represents the number of destinations to which an output port sends its messages, and the

destinations themselves. A destination is uniquely identified by the destination machine, the

process number on that machine, and the port number of the process to which the message is

directed.

Machine and process id's are hidden from the programmer, but the NETSLA runtime

system and the underlying global operating system must know about them, since they actually

arrange for execution of the processes.

When REPLAY frrst starts up, it builds a table of records describing processes with all these

structures attached to each element in the table. Later, when a send event occurs, REPLAY

determines which process is the destination and depicts a message moving from the source

process to the destination process.

3.3 Information Collected At Run-Time

Most of the information that RADAR needs is collected at run-time. Special runtime

routines log every event that occurs. These routines are kept in a separate module called

RADARLOG.

- 17-

Events may be one of the following:

type
eventtype = (createprocess, destroyprocess,

message_transmission, messageJeception,
~eation,failed,done
aborted, userevent);

Figure 9 - Types of Events

The 'message_transmission' and 'messageJeception' events are logged by the send and

receive routines respectively. The other events are logged by the QIU'IL)unce routine.

The ALSfEN compiler inserts a procedure call to the routine makelog as the very first

executable statement in a program. This routine creates the log itle and announces the process

creation event. Before the imal end of the AI.SrEN main program, the compiler inserts a call

to the routine closelog, which closes the logftle and announces the standard event 'done'.

message-reception

I failed I machine-id I process-id fount I
I done I machine-id I process-id I count I
I aborted lmachine-id j process-id lcount I

Figure 10--- Event Records

- 18-

Each process keeps a count of the events it has announced, including message transmission

and reception. The event count starts at one and is incremented with each event.

When a process sends a message, it includes the value of its local event counter. If the

receiving process' event count is lower than that of the sender's, the receiver sets its count equal

to that of the sender. After receiving the message, the process logs the messageJeception

event. If the message reception succeeded, the process logs the UniqueMesg Id of the message

it r~ived. Since messageJeception is an event like any other, the local event count is

incremented before the event is logged. Thus, the messageJeception event's sequence nwnber

will be one greater than the event count of the sender. This insures that there will be at least a

partially correct ordering on events. In particular, interrelated events will always be correctly

ordered.

Placing an ordering on events in a distributed system is a difficult task. One solution is to

use the times on local clocks to time-stamp each event. This method is not acceptable since it is

impossible to synchronize all the clocks on all the machines. This introduces the possibility of

recording events out of order. For example it would be possible, due to synchronization errors

among clocks, to record the reply to a message as having occured ''before" the sending of the

initial message.

By having the receiver of a message set its event count equal to that of the sender, and then

incrementing the count before logging the message reception, the synchronization problem is

avoided. The reply to a message will always be sent "after" the sending of the initial message.

Using this method, it is possible to have several events occurring at the same "time," i.e.

several events might all have the same event nwnber. In this case, it is impossible to determine

the ordering of these events, but in fact, the ordering is unimportant. The fact that these events

all have the same nwnber indicates that they are not interrelated, since if one event depended on

another to precede it, its event sequence number would have been greater than the sequence

nwnber of its predecessor.

- 19-

Furthermore, this method makes no extra demands on the underlying global operating

system to keep clocks synchronized across machines. It also fits in well with Pronet, which has

no concept of global time.

3.3.0.1 Summary

Keeping a record of every event, along with a description of message contents and the

interconnectivity of every port, provides a complete record of what went on.

Copying all the message allows the user to view what was actually sent; the message

description makes the message contents understandable, and the connectivity data allows

graphically depicting the movement of a message from its source to its destination.

-20-

Section 4

REPLAYING PROGRAM EXECUTION

The major component of the RADAR system is the REPLAY program. After a Pronet

program has exeruted and all the information described above has been collected, REPLAY is

invoked to graphically display event occurrences. More importantly, it also displays the

message traffic amongst processes.

The PERQ's screen is a high resolution, bit-mapped black and white display. The PERQ

has hardware and fmnware instructions, called Raster Ops, for manipulating the screen.

REPLAY uses the Sapphire graphics package which provides a higher-level, more usable

interface to control the screen.

This section discusses the algorithms REPLAY uses, describes the view of the program

REPLAY presents to the user, and presents the user interface.

4.1 Outline if the Algorithm

The overall algorithm is fairly simple. It is based on the notion of events as defined

previously. Since each event is nmnbered when recorded, an ordering of events is automatically

made possible.

The general algorithm for event replaying is given in pseudo-code in Figure 11.

get frrst event

while more events
if event in { send_a_Jllessage, receive_a_Jllessage}

do something visible with the message
else

announce the event conventionally
end if
get next event
end while

Figure 11 - Top Level REPLAY Algorithm

-21-

Most of the work is involved with displaying events. REPLAY basically has to keep track

of four things.

1) Which processes are represented on the screen and where they are.

2) Which messages are represented on the screen and where they are.

3) Rate of event display (see below).

4) How full the screen is; i.e., is there room for more processes?

Processes and the messages waiting in input queues take up the majority of the room on the

screen. Most of the other events can be displayed simply by printing out a line on the screen of ·

the form "Process P announces Event E as event Nmnber N," in a prominent place. During the

interval that the process is announcing an event, it changes color (actually a different shade of

gray) so that it is clear which process is involved.

In fact, REPLAY provides a running narrative of this form. However, when a process is

created or destroyed, or a message is sent or received, REPLAY will depict this graphically.

Newly created processes will be drawn into a free spot on the screen. Messages are depicted as

small boxes moving from the sender's output port to the receiver's input port. When each

message is received, its box disappears.

Much of the work involves doing all the bookkeeping necessary in as efficient a manner as

possible. (It should be "efficient" in terms of both space and time).

4.2 The User Interface

This section discusses various aspects of the operation of REPLAY's user interface.

4.2.1 What the User Sees

The user sees processes and messages queued on input ports. A process with one input port,

-22-

one output port and a message just leaving the output port, is shown in Figure 12.

<Process Name>

1 in 1 out

input '---l output
port port

[+]
message

Figure 12- Picture of a Process and a message

The drawing of a process indicates the number of input and output ports associated with that

process. It is not possible to draw each port, since the notion of port sets allows a process to

have a very large number of ports. When an output port sends a message, the port appears on

the process' border. It closes up after the message arrives at its destination. Similarly, when a

message arrives for an input port, the port opens up, and messages queue up in front of it.

When all the queued messages have been received, the input port closes back up. The process

name and identification appear inside the box, so that it is clear at a glance which process it is.

Figure 13 depicts an event replay on the PERQ's screen. The process Proc....:S is shown

sending a message to Proc_,A, while process Proc_C is shown with one message waiting at its

input port. The event narration at the top of the screen indicates what is happening. Appendix

-23-

J contains a sequence of figures portraying a more extended example.

I Process Proc_ B sends a message to Proc_A. Event 9. I

Proc - A Proc c -
3in 4out 1 in 1 out

L/ \.

[+] [+]

.
~-_I: I

Proc B -
2in 5 out

Figure 13 --- A Process Sending A Message

An interesting problem concerns the speed at which the replaying occurs. If events are

described and messages move across the screen without any delays, events will happen too fast

for the user to follow.

To solve this problem, REPLAY asks the user how many seconds to take to display each

event. The default is three seconds per event. Even in single step mode (see below), each

event takes the full n seconds (whatever the user entered) to transpire. This is to allow the

process to change color, and to remain on the screen in a different color for enough time to

make an impression on the user before it changes back to normal.

-24-

4.2.2 Single Stepping

REPLAY gives the user the choice of either single stepped or continuous operation. In the

second mode, events (message transmission, process creation, etc.) occur continuously, without

stopping. Continuous operation allows the user to watch the general pattern of message traffic

and event occurences. This is useful for getting an overall idea of what the program did.

Single-stepping allows the user to watch what happened at a more detailed level and at a

slower pace .. In this mode, after each event occurs, REPLAY waits on the user to hit a key on

the keyboard before continuing with the next event. This mode gives the programmer more

time to consider his program's actions, without the continuing need to keep up with his

program.

Furthermore, the user can toggle back and forth between the single stepped and continuous

modes; he is not forced to single step through hundreds of messages. The number of seconds

per event is also changeable at any time, to allow the user to speed up or slow down the rate of

event display.

4.2.3 Displaying Messages

Messages on the screen are simply small boxes, queued on the input ports of their

destination processes. In this form, the only information that they convey is the fact of their

existence. This is only minimally useful.

REPLAY allows the user to actually see what his processes are sending to each other.

Using the mouse, the user places the cursor over the particular message he wants to see and

interrupts the event display. REPLAY will prompt with a menu of actions available. The user

will select the option for viewing a message.

REPLAY frrst finds the message indicated by the mouse. The message's type is an element

in the Pascal record describing messages. This type indicates which of the message templates is

to be used in decoding the contents of the message.

-25-

REPLAY then opens a new window on the screen. It steps through the message buffer and

formats the raw bytes into characters, integers, or reals, as dictated by the message template.

Enumerated types are treated as integers. Although this is not perfect, it is no more

unreasonable than the restriction in standard Pascal against reading and writing enumerated

types to and from text ftles. Message templates were described in Section 2.2.1.

When the user is through looking at the message, he issues the command to close the

window. REPLAY then goes back to displaying events.

The value of this "Freeze Frame" facility should be clear. The user can verify not only that

processes are sending messages to the right places, but that those messages have the right

contents. Formatting message contents is absolutely necessary. Simply displaying the values of

integers, characters and reals in octal gives the user no immediately understandable information

(except in the rare case of the true hacker who can decode octal into its equivalent floating point

or ASCII values). Furthermore, messages are displayed as a unit, unlike Schiffenbauer's

system which displays small data packets in octal.

4.2.4 Selective Replaying if Events

It is possible while watching a program's actions that a particularly interesting sequence of

events will occur which warrants further review. To accomodate this, REPLAY keeps a history

of a fixed number of events which have occurred. At any time, the user can stop the normal

replay and ask to see an ''Instant Replay" of n previous events. The maximum number of

events that can be replayed is a compile-time constant in one of the Pascal source code modules.

When this facility is invoked, REPLAY saves the screen state and marks those processes

that were on the screen at the time. It clears the screen and starts as if the first event requested

were the very frrst event to occur. Processes and messages are drawn as needed.

Some information which was on the screen but which may not relate to the n events being

replayed will be lost during the instant replay. This loss is not permanent, since REPLAY

-26-

restores the screen at the end of the instant replay. The user can run the instant replay as many

times as desired before returning to the regular display. This facility is analogous to the

rewinding of video tape and replaying an interesting series of events during a sports broadcast,

hence the name ''Instant Replay."

When the instant replay is through, the screen is restored and the processes which were

marked as being saved are unmarked. Display then continues as before.

As a !mal possibility, the user may choose to restart the entire program replay from scratch.

This provides the convenience of not having to quit the program and then start it again from the

command level. Such small conveniences are often the most useful.

4.2.5 REPLAY Menu Options

At any time during the event replay the user can stop execution by causing a keyboard

interrupt.

This invokes an interrupt handler which presents the menu shown in Figure 14.

1. Change To/From Single-Step/Continuous Operation

2. Change The Nmnber of Seconds Per Event

3. Skip Ahead To A Specific Event Number

4. Display contents of the Message Under the Mouse

5. Instant Replay

6. Start Displaying From Scratch

7. Exit REPLAY

8. Help

9. Never Mind

Figure 14- REPLAY Menu Options

The user may skip ahead to a given event, specified by the event sequence nmnber.

-27-

REPLAY will then skip to the f'rrst event which has the sequence nmnber entered by the user.

This is useful if the user knows that his program stopped working after a given event. He can

make his changes, rerun the program, and then skip directly to where the change should have an

effect.

The help subsystem provides general information on how to use the RADAR monitor.

The 'Never Mind' option allows the user to recover in case he accidentally caused a keyboard

interrupt. It does nothing.

In all cases, after the interrupt handler does what the user wishes, the program returns to

where it was executing before the interrupt occurred.

-28-

Section 5

PRONET IMPLEl\fENTATION

An implementation of PRONET has been developed for PERQ computers running under

revision 2.0 of ACCENT, which is a communication oriented network operating system. The

run-time libraries developed for this implementation make use of ACCENT message and

process primitives through a procedure-like interface to the kernel.

Two language preprocessors, one for ALSTEN and another for NETSLA, have been

developed. These two preprocessors both translate a PRONET source program into a Pascal

program. Then, the Pascal program generated can be compiled using the PERQ Pascal

compiler.

5.1 The Preprocessors

The preprocessor actually consists of two parts: a scanner and a parser; both are table

driven. The table-driven approach makes the preprocessor very language independent; i.e., it

can translate either ALSfEN or NETSLA so long as appropriate tables are provided.

The scanner tables are generated by the LEXGEN scanner generator from a description of

each token that may occur as input to the scanner. LEXGEN is similar to the standard Unix

LEX program except that it produced no program, only tables. These tables may then be used

in a scanner written in any language (PERQ Pascal, in this case). Tokens are described by

using a standard regular expression syntax. The parser tables are generated by ZUSE from

LL(l) grammers (see Appendix A and Appendix B) which have action codes embedded into

them. ZUSE is similar to the Unix YACC program except that it generates a parsing program

in Pascal rather than C. The action codes provide program fragments steps to be executed ·as

the parser recognizes syntactic structures in the input. In the case of this preprocessor,

appropriate Pascal codes is generated by these fragments.

-29-

The preprocessor accepts a scanner table, a parser table and source program as input and

generates a sequence of Pascal codes as a result of parser actions. The Pascal code generated

can then be compiled by using the PERQ Pascal compiler.

Figure 15 below illustrates the overall structure of the preprocessors.

token
description --

scanner table
generator

action codes I translation

.. J grammer
LL (1) grammer

scanner
1--- table --

PRO NET
source code

PREPROCESSOR

parser parser _
table table "-----T----'

generator 1

Pascal code

I

.SEG file

Figure 15 --Preprocessor Structure

The approach of preprocessing has two important advantages, although it is less efficient

than direct compilation. The first is that it was far easier to implement than a compiler would

have been. The second is that it makes the full power of PERQ Pascal, particularly access to

ACCENT kemal primitives, available to Pronet programmers, since kernel primitives are

accessable through calls to kernel interface procedures and functions in the Pascal library. The

preprocessors do no type checking, leaving that task to the Pascal compiler.

5.2 Module Structw"es

The NETSLA preprocessor generates two code modules for each network specification: an

"event handler module" and a ''network specification module" (see Appendices C, D and E).

-30-

The event handler specifies the action that must be performed when a particular event

(either predefmed or process-defmed) occurs. The code in this module is structured as a nested

"case" statement. The highest level case statement performs a selection based on the event type

argwnent (message transmission, process-defmed event, etc.). Lower level case statements are

used to distinguish between process classes, port sets and process-defmed events.

The network specification module consists of the initialization clause which specifies the

static network. After the execution of the initialization clause, every process instance created in

the network will be activated by the root process.

In addition to these two preprocessor-generated modules, there are two more modules in

each NETSLA runnable file: a "DB manipulation module" and a ''NETSLA run-time support

module." The DB manipulation module contains all the routines that are needed to create and

maintain the network representation. The NETSLA run-time support module consists of

routines that implement those NETSLA activities (process creation, port creation, connection,

etc ...) based on ACCENT kernel primitives.

Figure 16 below illustrates the structure of the object module generated for each NETSLA

program. It is important to realize that both the event handler module and the network

specification module are network specific while the other two modules are common to all

network instances. The DB manipulation module and the NETSLA run-time support module

are separately precompiled and imported by the main body of the NETSLA program.

DB Manipulation MOdule

NETSLA Run-time Support Module

Event Handler Module

Network Specification Module

common code

(libraries)

network

specific

Figure 16--- NETSLA Object Module Structure

The ALSTEN preprocessor generates a single code module for each process script (see

-31-

Appendices F, G, H and I). This module is a simple translation of the process script which

makes use of ALSfEN run-time support facilities for performing ALSfEN operations (send,

receive, announce, etc ...) .

5.3 Processes and Ports

Both ACCENT and PRONET use the notions of "processes" and "ports", but they are at

different levels of abstraction. We implement PRONET processes and ports by using

ACCENT processes and ports; the details of this mapping are hidden from PRONET

programmers.

A PRONET network specification is implemented as an ACCENT process from which any

nwnber of ACCENT child processes can be created to represent the PRONET process

instances. Since we do not consider the case of "composite processes" in this implementation,

the network can be thought of as a tree of two levels with the network specification process as

the root. Composite processes can be implemented without much effort later.

An ACCENT port is a protected kernel object and is used for sending and receiving

messages. With each port the kernel associates send and receive (and ownership) rights. The

process that creates the port possesses all three rights. In this implementation, we use

ACCENT ports for two different purposes.

During the execution of the program, an ACCENT port will be allocated when a

CONNECf activity is performed. This ACCENT port is used for transmitting the PRONET

messages and will be deallocated when the corresponding DISCONNECf activity is performed.

Initially, the receiving process possesses the receive and send rights. Then the send right will be

passed to the sending process so that PRO NET messages can be transmitted through this port.

There are three ACCENT ports allocated to each child process at the process creation time

for the purpose of communicating with the root process. One is for the root process to send the

child its process ID, the second is for implementing dynamic port connections and the third is

-32-

needed to implement port groups.

5.4 TN! Network Representation

A representation of the logical network described by a PRONET program is maintained in

the address space of the root process. This representation reflects the hierarchical structure

expressed in the program by maintaining a tree of network class and network instance

representations. The logical network representation also contains information about the

connectivity among the ports of network instances. The root of this tree is a network class

representation, the leaves are network instance representations which contain information about

the currently active processes in the logical network.

The codes for manipulating the logical network representation also reside in the address

space of the root process. All creations, updates and reads of the entities in the network

representation must be performed by calling from the root process an appropriate procedure in

the DB manipulation module.

This centralized approach of maintaining the logical network representation lowers the

degree of parallelism but reduces the cost of message transmission.

5.5 Event Generation and Handling

Event generation can be either upward or downward. The term ''upward event generation"

is used to denote the generation of an event in the overseeing network while "downward event

generation" is used to denote the generation of an event in a process instance.

Upward event generation occurs when a process instance announces an event using the

"announce" statement of PRONET or transmits a message using the "send" statement.

Downward event generation occurs when a network specification creates or removes a port

instance on a process instance or sends a message to a process instance.

Event handling codes are generated by the NETSLA preprocessor and reside in the address

- 33-

space of the root process during run-time. Upward event generation is implemented by sending

a message to the root process. This message includes all the information relevant to the event

generated. This kind of message arrives at a port which belongs to the root process and holds at

most four messages at a time due to the limitation of the size of the backlog for an ACCENf

port.

Upon receiving a message from a child process, the root process will call an appropriate

event handling routine based on the event type and other information included in the message.

Event handler executions are performed in a serial fashion. This centralized approach of event

handling has the disadvantage of a low degree of parallelism.

5.6 Implementation limitations

All of the features of ALSTEN and NETSLA have been implemented and tested on a single

machine. However, because of continuing problems with Aa:ent, we have never been able to

successfully run a program with processes located at more than one site. Thus all of our testing

of PRONET and RADAR has involved programs consisting of multiple processes running on a

single machine.

-34-

Section 6

RESULTS AND CONCLUSIONS

The principal results of our efforts, task by task, were:

Task 1 - implementation of Pronet on our Perq workstations, through use of pre-processors

which generate Perq Pascal code.

Task 2 - the development of a passive event recording system for multi-process Pronet

programs.

Task 3 - the development of a replay system which produces a high-level graphical simulation of

distributed program execution.

Task 4 - integration of the replay system with a single-process debugger.

6.1 Passive Event Recording

The decision to go with a passive monitor rather than an interactive debugger was one major

change in our philosophy during the course of this work. This change in approach resulted from

consideration of the basic conceptual problem presented by active interaction with a distributed

program: the intrusiveness of interaction might substantially change the behavior of the program

being debugged. Thus we chose to minimize the intrusiveness of Radar, but there still remains

the question of just how non-intrusive our monitor is.

Radar relies on the collection of information during the normal execution of a program. The

program runs to completion without any external interference or control. In particular, the data

collection is invisible, since it is done inside the AI.STEN message and event primitives.

How much does the extra disk I/0 affect the computation in program? This is the

Heisenberg Uncertainty Principle as applied to Debugging, sometimes called the 'Heisenbug"

Principle [ACM83]. We can present no definite answer here. It is expected that the disk

-35-

operations actually buffer to memory until the buffer fills up. If this is the case, there should be

little extra overhead since the system will suspend a process only when its I/0 buffers must be

flushed. The main problem is that while one process is suspended, others can continue to run

on other machines.

It can be argued that the fact that one process on one machine has been stopped should not

affect the other processes on other machines, since the AI..SfEN receive is defined to be a

blocking operation. The other processes may wait longer to complete the receive than they

otherwise would have to, but ultimately, the same actions should be accomplished.

Suspending one process for disk 110 can affect other processes which continue to run, in a

different manner. The ALSTEN receive can specify several alternatives; in effect it can be

non-deterministic; receiving from port sets is actually non-deterministic, since the programmer

can not know which element of the set will be used. For instance, if there are three processes

A,B, and C, and process B was supposed to receive a message from process A, but A was

suspended, B could end up receiving a message from process C instead. This should not affect

the ultimate semantics of the program, since the receive could happen on any specified port. it

merely changes the path by which the program arrives at its goal.

One practical problem we encountered in initially using our recording and replay system

concerned programs which had to be aborted due to a loop in one or more processes. Simply

having Accent abort the processes caused the event files they produced to be discarded. It was

necessary to build a special capability into the root process representing the Pronet runtime

system to have it terminate the processes in an orderly manner. The basic lesson here is that

any passive monitor must make sure that it saves information in a way that will keep that

information available under adverse circumstances, because that is just when the information

will be needed.

-36-

6.2 Graphical Replay of Program Execution

The Perqs have high-resolution, bit-mapped black-and-white displays. This feature gave

considerable support to the development of a very effective graphical user interface to our

monitoring system. We consider this interface one of the most successful aspects of the project.

In the introduction, we noted that one of the most difficult aspects of designing a tool to

support distributed programming debugging was fmding a comprehensible way to display

information about the program to a user. The graphical replay provided by Radar attacks this

problem by providing an abstract view of the behavior of the individual processes. The

information provided by the replay involves only activities at the "network" level: process

creation and deletion, establishment of connections between ports, message sending and

retrieving, etc. None of these activities is exclusively concerned with the internal state of a

single process. Thus the replay provides a user with a view of program execution at the "process

interaction" level. Only after an erroneous pattern of interaction is identified at that level is it

necessary to consider the internal details of any of the processes.

The alternative approach, only possible for a more intrusive debugger active during actual

program execution, would be to provide a multi-window display, with each window displaying

state information about and allowing interaction with a single process. For programs with more

than a few processes, all of the windows wouldn't fit on the screen at the same time. Further,

so much detail about individual process activity would be available that it would be virtually

impossible to perceive the higher level structure that our replay system makes so apparent.

Thus, given our linkage to a single-process debugger, we believe that our more abstract

representation of program execution is a superior design choice.

After the program has completed executing, Radar is invoked to provide a graphical

"replay" of the execution. Each message or event is stamped with an event number, imposing

a partial ordering on events. The monitor then displays events one at a time. The programmer

is able to watch the communications traffic amongst the processes. Processes have names in

-37-

Pronet, so it is easy for the programmer to see which process is communicating with which other

processes.

Radar provides the user with the ability to view the contents of any message currently

represented on the screen. Messages are represented on the screen as small boxes. The user

places the PERQ's mouse over the message which he wishes to examine. Radar then displays

the contents of the chosen message in a formatted fashion. For instance, if the message

contained an integer and two floating point nmnbers, the message would be displayed as an

integer and two floating point nmnbers, not as 10 octal bytes.

Radar also provides the ability to replay a certain nmnber of events which have already

happened. This can be done at any point during the display. The user can "rewind the video

tape," so to speak. This replay is limited to a fiXed maximmn nmnber of previous events. The

user also has the choice of watching a continuous stream of events (occuring at an interactively

settable rate), or single-stepping through events. This prevents information from flowing too

fast to be comprehended.

Finally, as a separate utility, the user can name a given process and have all of the messages

which were sent to that process selected from the recorded message traffic. This single process

may then be run by itself with its messages derived from the stored messages. This feature is

designed to facilitate single process debugging under realistic conditions, without having to

worry about controlling the rest of the processes of the distributed program.

6.3 Integration with a Single-Process Debugger

Only task 4 went just as it was originally planned. Our program replay system interfaces

with the Kraut debugger, which is a standard high-level debugger under Accent. All of the

messages to a single process can be collected from the event files. Then that process may be

executed again, along with a special driver that simulates the rest of the program. Note that the

selected process is actually executed, not simulated; however, the rest of the program is

- 38-

simulated. The driver simulates the rest of the program by providing messages received by the

selected process as they are needed. Thus the process under examination should execute just as

it did when the event files were originally collected.

The debugging methodology these mechanisms support works as follows. A program is

executed with event ftles being collected. Its execution is replayed by Radar until the user

identifies some particular process as exihibiting inappropriate behavior. Such behavior might be

such things as inappropriate or missing message transmission, incorrect contents in a message or

any other event visible at the network level. The user than asks for a re-execution of that

process and examines its internal state during this replay using Kraut. Whenever the process

executes a message receive statement, the Radar driver supplies the appropriate message.

Whenever the process sends a message, the driver discards it. This process continues until the

cause of the inappropriate behavior can be determined and (hopefully) corrected.

There is only one problem with the above scenario. ALSfEN includes a conditional receive

statement which allows the program to go on executing rather than blocking if it tries to receive

a message and none is available in its incoming message buffer. Such an unsuccessful attempt

to receive is not an externally visible event and thus was not originally recorded in the event

flies. During re-execution with the special Radar driver and Kraut, messages are always

available upon request. Thus a process whose execution originally included unsuccessful

conditional receives would not execute in exactly the same way during re-execution. We found

it necessary to begin recording unsuccessful conditional receives so that it would be possible to

faithfully re-execute processes in this situation.

The ability to examine program execution at the two different levels of abstraction provided

by Radar and Kraut provide a very effective technique for tackling the information overload

problem of monitoring distributed programs. This idea of replaying a process using stored

messages has also appeared recently in a slightly different context: crash recovery in a message

based distributed system ([Borg83] and [Powe83]).

-39-

6.4 Approaches Taken by Other Researchers

Bates and Wileden [Bate83] take the approach of viewing the 'Behavioral Abstraction' of a

program's execution. Basically, the system is viewed 'in terms of its activity rather than its

state.' They provide for primitive events such as process creation, page faulty, message

transmission, and message reception. Higher level events or 'event abstractions' are built up by

designating sequences of primitive events. The debugger then recognizes higher level events

an~ displays these for the programmer, while filtering out other unimportant events.

Gross and Zwaenepoel [Gros83] discuss those aspects of a distributed system both necessary

and desirable for easy debugging. They do not present an actual debugging system. The

system they propose would support the debugger as a separate process, with kernel facilities

which would allow the debugger control over the program's execution, memory and kernel

calls. They also make a distinction between the micro level of execution, which is the

computations made by each process, and the macro level, where the overall computation

proceeds via messages passed amongst the processes.

Schiffenbauer [Schi81] presents an ambitious project implemented on a network of Xerox

Alto minicomputers. He gives an introduction to the problems of distributed debugging and

then a discussion of the major issues in designing a debugging facility. The two major issues are

transparency of the debugger (a practical consideration), and the theoretical consideration of

causality and logical clocks. He then described the implementation of his debugging facility.

One of the more important parts of his work is his implementation of 'logical clocks' and his

proof that through the use of logical (rather than actual) clocks, his debugger simulates a valid

execution of the distributed program. He further proves that the debugger simulates a probable

execution of the program, i.e. that the program behaves the same while being debugged as it

probably would have behaved had it been allowed to execute unmonitored.

Curti~ and Wittie [Curt82] present their design of a debugging system for parallel

programming environments. A parallel programming environment is either a conventional

-40-

multiprogramming single processor system, or a 'network computer,' an ensemble of

semiautonomous nodes, each with its own memory, peripherals, and communication links. The

nodes communicate by passing messages over their links.

The debugging system consists of local event monitors on each node, a central database

system, and a user interface. The user interface is based on production rules, which the user

expands into sequences of symbols describing what events he wants recorded, what variables

saved, and what actions are to be taken upon the occurrence of any given event. This debugger,

like that of Bates and Wileden, must be programmed.

Harter [Hart85] proposes a debugging system which includes a standard sequential debugger

plus an assertion language, based on temporal logic, to control the automatic monitoring of

distributed programs. The system allows a programmer to expand the assertion set

interactively. It also includes a graphics interface to display and filter information about

program execution.

Our work described below attempts to present a higher level view of message traffic that

Schiffenbauer's minimally intrusive view of program execution. We agree with and support the

distinction between micro and macro levels of execution suggested by Gross & Zwaenepoel.

The interface to our system is simpler than those provided by Harter, Curtis & Wittie and Bates

& Wileden, since it need not be programmed~

6.5 Possibilities for Further Research

When a user watches the replay of a program using Radar, he quickly begins to recognize

"patterns" consisting of sequences of several events. It would be desirable if Radar had some

capability to display execution in terms os such higher-level events. An important question is

how such structuring might be made to take place.

-41-

6.5.1 A Common Structuring Methalology

One very prevalent and well understood method of imposing structure on incoming

information is via lexical analysis and/or parsing techniques. These techniques are well

understood, and often easy to use.

Breugege [Breu84] uses Path Expressions, an extension of Regular Expressions. A path

expression describes a sequence of events to be looked for, and actions to be executed when that

sequence is matched, or not matched. The notation provides good flexibility of description, and

would seem to supply a good method for RADAR to use for dealing with its stream of Pronet

events.

6.5 .2 The Probletm with Path Expressions

Path expressions, or more generally, regular expressions and LALR(1) parsing techniques,

are a natural flrst choice for the computer scientist wishing to impose structure on a data stream.

Here however, it may be a case of using a useful, but inappropriate, tool for the job.

Why? In this case, the major flaw with these techniques, particularly path expressions, is

that they are predictive. The debugging programmer must describe what he expects the

debugger to see, and then what to do. But is a program is bug-ridden, it may never do what the

programmer expects it to, even if he is looking for aberrant behavior! So, an interesting and

possibly important stream of events could conceivably end up being missed by the debugger,

and therefore by the programmer. In sum, a debugger should present a distillation of what

happened, not what the programmer expected to happened.

A secondary, although in our view still major, flaw is that this kind of debugger has to be

programmed. The user must learn (and remember!) yet another kind of notation, and yet

another set of commands. If a debugger is hard to use, it may not get used at all. One of the

major RADAR design goals was that it should not have to be programmed.

-42-

6.5.3 Using a Data Compression Approach

If regular expressions, LALR(1) grammers, and path expressions are not the answer, what

is? For the reasons we are about to present, we feel that an approach based on data

compression would be an interesting area for future research.

6.5.4 Why a Data Compression Approach?

When one stops to think about it, it becomes clear that the problem is really one of data

compression. We want to replace Sequences of low level events with a shorter symbol that

represents that sequence. This is exactly what data compression techniques do, although usually

they are just acting upon simple byte streams.

The shorter symbol can be given a name that describes the sequence in a "higher level"

fashion. For example, replace the sequence ''f'md Fred's number in the phone book", "lift the

phone handset", "listen for dial tone", and "dial the number", with, "call Fred".

This approach has several advantages. First, it is not predictive, looking for one thing and

missing another. Instead, it is empirical, condensing what is there. It represents all the event

sequences as they happened. Second, it fits in very well with RADAR's current passive, post

mortem approach to program monitoring. Third, the machine does the work of detecting event

sequences and condensing them, not the programmer. There are no new notations or

commands to learn.

6.5.5 Possible Implementation Plan

There are numerous data compression techniques. A recently developed, and very powerful

technique is the Adaptive Lempel-Ziv Compression described in [Welc84]. On "normal" files

of English text it often achieves compression of 50% or greater. One of its strongest points is

that it tends to compress the longest possible sequence into a single code.

RADAR gives unique identifies (numbers) to each kind of Pronet message. A single

RADAR event would consist of the sending process id, the receiving process id, and the

-43-

message type. These events should be representable as unique integers of at most two bytes. A

frrst (conceptual) pass over the recorded data would build a table of event triples (sender,

destination, message type) and their corresponding integers.

Next, the second pass performs Adaptive Lempel-Ziv compression on the integer stream,

saving the compressed output. As part of the compression algorithm, the Lempel-Ziv method

builds a table of codes and what each code represents.

After compression, this table is presented to the user. RADAR presents each sequence and

asks for a high level name for that sequence ("call Fred'').

Once that is done, the compressed data is then "decompressed"; but not back into an integer

stream. Instead, as each higher level code is recognized, the corresponding high level event is

displayed graphically on the screen.

6.5 .6 Problems with This Approach

The method outlined above is not without its problems. In particular, the ordering of events

that RADAR imposes is only a partial ordering. Events are sometimes depicted on the screen

in an order different from that in which they actually occurred. Only related events are

guaranteed to be ordered. This is because RADAR currently works by merging multiple event

streams into a single event stream for display. The problem with this approach is that

nonrelated events end up being interleaved with each other. This could conceivably affect the

data compression algorithm. Non-related events could be compressed together, i.e. treated as

related! (instead of being compressed with their related events).

A major thrust of any future research would be to see if a data compression approach is

feasible, and to learn whether or not non related interleaved events would detrimentally affect

the data compression, or if the nature of the algorithm is such that it would not matter. Another

goal would be to see if some approach could be found to work directly from the original

multiple data streams, instead of from the merged single data stream.

-44-

As an alternative, some sort of knowledge-based pattern recognition approach might be

tried. The data compression approach is essentially syntactic; a pattern recognition mechanism

could conceivably work better by making use of information in messages or about network

interconnections. Relative computational demands of these two approaches are an obvious

tradeoff.

6.6 Conclusions

Finally, we restate our principal conclusions:

Graphical display of information is an excellent technique for providing information about

the execution of a distributed program.

Passive monitoring and simulated replaying is a successful approach for minimizing the

impact of the monitor on the execution of the program under examination.

Multi-level tools are required to deal effectively with all aspects of distributed program

debugging.

We must state that these conclusions are based on relatively little experience with Radar.

Because Accent has not been as stable as we had anticipated, there is really no user community

on the Perqs other than the people who have worked on the Radar project. A much more

extensive evaluation of our tools would be highly desirable.

-45-

BmLIOGRAPHY

[3RCC82] Perq System Software Reference Manual; Three Rivers Computer Corp.;

Pittsburgh, Pa., May 1982.

[ACM83] Proceedings of the ACM Symposium on High Level Debugging,· SIGPLAN Notices,

Vol. 18, No. 8, August 1983.

[Bate83] · "An Approach to High Level Debugging of Distributed Systems"; P.C. Bates,

J .C. Wiledon; Proceedings of the ACM SIGSOFIISIGPLAN Symposium on High

Level Debugging SIGPLAN Notices, Vol. 18, No. 8, August 1983, pp. 107-111.

[Borg83]

[Breu83]

[Curt82]

"A Message System Supporting Fault Tolerance"; A. Borg, J. Bamnback: and S.

Glazer; Ninth ACM Symposium on Operating Systetru Principles, October 1983, pp.

90-99.

"Generalized Path Expressions - A High Level Debugging Mechanism"; B.

Breugege, P. Hibbard; Journal of Systems and Software, Vol. 3, 265-276.

''Bugnet: A Debugging System for Parallel Programming Environments"; R.

Curtis, L. Wittie; Proceedings of 3rd International Conference on Distributed

Computing Systems, Fort Lauderdale, Florida, August, 1982, pp. 394-399.

[Gross83] "System Support For Multi-Process Debugging"; T. Gross, W. Zwaenepoel;

Conference Preprints from the ACM SIGSOFT/SIGPLAN Symposimn on High

level Debugging, March, 1983; pp. 192-196.

[Hart85] ''IDD: An Interactive Distributed Debugger"; P. K. Harter, Jr., D M.

[Jens74]

Heimbigner, R. King; Preceedings of The 5th International Conference on

Distributed Computing Systems, Denver, Colorado, May, 1985, pp. 498-506.

Pascal User Manual and Report,· K. Jensen, N. Wirth; Springer-Verlag, 1974.

-46-

[Live80] Run-Time Control in a Transaction Oriented Enviro111'1U!nt,· N. J. Livesey; Ph.D.

Thesis, University of Waterloo 1980.

[Macc82] Language Features For Fully Distributed Processing Systems,· A. B. Maccabe;

Ph.D. Thesis; Technical Report GIT-ICS 82/12, School of Information and

Computer Science, Georgia Institute of Technology, August 1982.

[Powe83] ''Publishing: A Reliable Broadcast Communications Mechanism"; M. L. Powell

and D. L. Presotto, Ninth ACM Symposium on Operating System Principles,

October 1983, pp. 100-109.

[Schi81]

[Welc84]

Interactive Debugging In A Distributed Computational Environment; R. D.

Schiffenbauer; Master's Thesis, Massachusetts Institute of Technology, August

1981.

"A Technique for High-Performance Data Compression," T. A. Welch, IEEE

Computer, Vol. 17, No.6, pp 8-19.

Appendix A

APPENDIX A

'lhe LL(l) Grrumnar of NETSIA

ararrmar prodoctions with selection sets added:

Prod I Produ:tion

1 network spec = net head
evnt-decl pt proc decl 10
init-clseO end identifier
%net~rk ;

const pt type pt ll' rt decl pt
evnt clse-10 - -

2 net head = network identifier ;
%net'-'Ork ;

3 proc decl 10 =
%arrive-end enter initial leave when ;

4 proc decl 10 = process_decl proc_decl_ll
%process ;

5 proc decl 11 =
%arrive-end enter initial leave When ;

6 proc decl 11 = process_decl proc_decl_ll
%process ;

7 evnt else 10 =
%end initial

8 evnt else 10 = event clause evnt else 11
%arrive-enter leave-when

9 evnt else 11 =
%errl initial ;

10 evnt else 11 = event clause evnt else 11
%arrive-enter leave-when ;

11 init clseO =
%end ;

12 init clseO = initial activity_lst
%initial

13 const pt =
%arrive end enter event initial leave

port process type when

14 const_pt = const con def list

Fage 47

_Appendix A

%const ;

15 con def list = const def next con def
%identifier

16 next con def =
%arrive end enter event initial leave

port process type when ;

17 next con def = const def next con def

18

%identifier ;

const def = new const id =
%identifier ;

19 new const id = identifier
%Tdenti!ier ;

20 constant = signed_const
%+ -

21 constant = unsigned con

constant ;

...
\

%char const identifier int const real const string_const

22 signed const = sign after_sign
%+ _-

23 after sign = real const
%real const

24 after sign = int const
%int const ;

25 after sign = const id
%identifier

26 unsigned con = identifier
%identifier ;

27 unsigned con = int const
%int canst

28 unsigned con = char const
%char const

29 unsigned con = string_const
%string_const

30 unsigned con = real const

31

%real const

scalar canst =
%identifier

identifier

.
I

Page 48

Ap~ndix A

32 scalar canst = non id s con
%+ _-char_const int_const ;

33 non id s con = sign id or int
%+ _--:

' I

34 non id s con = int canst
- --%int canst

35 ron id s con = char canst
%Char canst

36 id or int = canst id
iidenti fier

37 id or int = int canst
iint canst ;

38 oonst id = identifier
%identifier ;

39 type pt =

40

%arrive errl enter event initial leave
port process when

type pt = type
%t~ ;

typ_def_list

41 typ def list = type def next_typ_def
%identifier ;

42 next typ def =
%arrive errl enter event initial leave

port process when ;

43 next typ def = type_def next_typ_def
%identifier

44

45

type def = new type id =
%identifier - -

new type id =
%Identifier ;

identifier

types ;

46 types = type case 1
%identifier- ;

4 7 types = type case 2

48

%(+-array char canst int canst
packed record set ;

type _easel = identifier type_tail

Page 49

Ap~ndix A Rlge 50

%identifier ;

49 type tail =

50

%) -; case end ;

type tail - ••
%.7

scalar const

51 type case2 = non id s con scalar const
%+-- char const-int const ;

52 type case 2 = struct type
%array packed record set ;

53

54

type case 2 = (
%(-

enu id list

non id type = non id simp
%(+-- char_const identifier int const

55 oon id type = struct type
%array packed record set ;

56 simple type = type_id simp_ty_tail
%identifier ;

57 · simple type = (
%(;

enu id list

.
I

58 simple type = non id s con scalar const
%+ --char const Tnt-const ;

59 simp ty tail =

60

61

%) -, ;] case end ;

simp ty tail =
%.7 ;

non id simp = (
%(;

scalar const

enu id list

62 non id simp = subrange con scalar const
%+ --char const identifier int const ;

63 pt class nam = identifier
%identifier ;

64 enu id list = identifier enuner tail.
%Identifier ;

65 enuner tail =
%) ;

Appendix A

66 enuner tail =
%, i

identifier enumer tail

67 subrange con = identifier
%identifier ;

68 stbrange con = non id s con
%+ - cnar_const int_const ;

69 tY£=e id = identifier
%identifier ;

70 struct tY£=e = p3ck prefix tnp:3cked
%array packed record set ;

71 ~ck prefix = Facked
%packed ;

72 p:1ck prefix =
%array record set

73 LD1packed = array
types

indx_ty_list] of

%array ;

7 4 tnp:lcked = record head field 1 ist end
%record

75 LD1Facked = set of simple_ type
%set

76 record head = record
%record

77 indx ty list = simple tY£=e index tail
%(-+ = char_const identifier int const

78 index tail =

79

%] ;

index tail =
%, ;

simple_ type index tail

80 field list = rec sec list with variant
%) ; case end identifier ;

81 rec sec list = rec section rec sec tail
%) ; case end identifier .

I

82 rec sec tail =
%) case end

83 rec sec tail = rec section rec sec tail

Rige 51

· APpeooix A Page 52

84

%; ;

rec section = fieldid list
%ldenti fier ;

85 rec section =
%) ; case end

types

86 fieldid list = identifier field id end
%identifier

87 with variant =
%) -end ;

88 with variant = variant_pref variant_ list
%case ;

89 field id end =

90

91

%: ;

field id end =
%,

variant pref = case
%case- ;

identifier field id end

tag_type_ids of

92 tag type ids = tagfield_id tag_typ_tail
%ldenti fier

93 tag typ tail =

94

%of ;

tag_typ_tail =
%:

scalar_ty_id

95 tag field id = identifier
%identifier ;

96 scalar ty id = identifier
%identifier ;

97 variant list = variant variant tail
%) + = ; char const end

identifier Tnt const

98 variant = case 1 list : field head field list
)

%+ - char const identifier int const ;

99 variant =
%) ; end ;

100 field head =

Ap~ndix A Il:lge 53

%) ; case identifier ;

101 variant tail =
%) end ;

102 variant tail = ; variant variant tail
%;

103 case 1 list = scalar const caselabelend
%+---char_conjt identifier int const ;

104 caselabelend =

105

%:

caselabelend =
%, i

scalar const caselabelend

106 rnrt decl pt =
%arrive-end enter event initial leave

process when ;

107 rnrt decl pt = pt_decl_list
%~rt ;

108 pt decl list = rnrt_decl pt_decl_tail
ip::>rt- ;

109 tnrt_decl = rnrt_head pt_dir_mt~
%p::>rt

110 pt dir mt~ = in t~_id ;
%in-

111 pt dir mt~ = out t~_id ;
%out- ;

112 pt dir mt~ = port_group ;
i(-

113 pt decl tail =
iarr ive errl enter event initial leave

process when

114 pt_decl_tail = tnrt_decl pt_decl_tail
%p:>rt

115 p:>rt head = p:>rt rnrt_ tail
%~rt

116 p:>rt tail = identifier
%identifier

117 p:>rt_tail =set identifier

Appendix ~ Page 54

%set

118 p:>rt group = sbptdecllist
% (- ;

119 sbptdecllist = subp:>rt_decl next_ subp:>rt
%identifier

120 sub};l)rt decl = sub};l)rt_ name direct_ type
%identifier ;

121 direct_type = in type_id
%in ;

122 direct type = out type_id
%out- ;

123 sUbport name = identifier
%identifier

124 next stb};l)rt =
%)- ;

125 next stbp:>rt = ; sub};l)rt_ decl next_ subp:>rt
%;-

126 process decl = process head attri_declsO port_decl_pt evnt_decl_pt
end Tdentifier -

%process ;

127 process head = process class identifier
%process

128 attri declsO =
%end event p:>rt

129 attri declsO = attri head attri sec ls attri tail
%attributes

130 attri head = attributes
%attributes

131 attri tail = end attributes
%end

132 attri sec ls = attri sec attri secl
%; end identifier

133 attri sec1 =
%end ;

134 attri secl = ; attri sec
%;

App:!ndix A

135

136

attri sec = attri id ls types
%identifier ; - -

attri sec =
%; end ;

137 attri id ls = identifier attri id lsl
%identifier

138 attri id ls1 =
%:

139 attri id lsl = , identifier ,, ;

140 evnt decl pt =
\arrive-end enter initial leave process

when ;

141 evnt decl_pt = event decl next event
%event ;

142 next event =

143

144

%arrive end enter initial leave process
when ;

next event
%eVent ;

event decl
%event ;

= event decl next event

= event identifier about_ptnmO ;

145 about ptnmO =
%; -

146 about ptnmO = about identifier
%abOut ;

147 event clause = arriv clause
%arrive ;

148 event clause = enter clause
%enter ;

149 event clause = leave clause
%leave ;

150 event clause = when clause
%when

151 arriv clause = arrive head activity_lst close end arrive
%arrive

~ge 55

Apperxiix A

152

153

arrive head = arrive open arrive bind do
%arrive

arrive bind = message idO on arrive_port from_procesO
%identifier on ; -

154 roossage idO =
%on ;

155 message idO = identifier
%identifier ;

156 arrive port = identifier arrive_portl
%identifier ;

157 arrive port! =
%do !rom

158 arrive_portl = identifier
%: ;

159 arrive port1 = of port_bind
%of-

160 port bind = identifier port_bindl
%identifier ;

161 port bind1 =
%do from

162 port bind1 = identifier
%:-

163 from procesO =
%do

164 from procesO = from process_bind
%from ;

165 process bind = identifier proces_bind1
%identifier ;

166 proces bind1 =
%about do ;

167 proces bind1 = identifier

168

16~

%: -

enter clause
%enter ;

enter head

= enter_head activity_lst close end enter

= enter open port_ bind do

Page 56

APperrlix A Page 57

%enter ;

170 leave clause = leave head activity_lst close end leave
%leave ;

171 leave head = leave o~n p:>rt_bind do
%leave ;

172 When clause =when head activity_lst close end when
%wfi'en

173 when head =when open identifier announced by process_bind
abOut partO do

%when-;

174 about partO =
%do-

175 about partO =about port_bind
%abOut ;

176 activity 1st =activity activities
%) ; announce case connect constroct

create disconnect else end find identifier
ra03e remove serrl tennina te ;

177 activities =
%) else end ;

178 activities = ; activity activities
%; ;

179 activity =
%) ; else end

180 activity = simple act
%announce connect constroct create disconnect identifier

remove serrl terminate ;

181 activity = control act
%case firrl raf¥3e -

182 simple act = creation
%create ;

183 simple act = termination
%teriilina te ;

184 simple act = removal
%remove ;

185 simple act = connection
%connect

Appendix A

186

187

188

189

190

simple act = disconnecton
%disconnect ;

simple act = msg_transfer
%seoo ;

simple act = construction
%construct ;

simple act = attri_assign
%identifier ;

simple act = event trans
%annomce

191 simple bind = object id
%identifier ; -

identifier simple_bindl

192 object id = identifier
%identifier ;

193 simple bind1 =
%do Where

194 simple_bindl = on proc _denoter
%on ;

195 obj denoter = lhs
%Tdenti fier

196 port denoter = obj_denoter
%identifier

197 proc denoter = identifier
%identifier

198 creation = create create tail

199

%create

create tail =
%identifier

200 create taill =

identifier .
I

%) ;-else end ;

identifier create taill

201 create tail1 =on proc_denoter
%on

tennination = tenninate proc_denoter
%terminate ;

renoval = remove obj_denoter

Fage 58

Ap~ndix A Page 59

%remove ;

204 connection = connect port_denoter to p:>rt_ denoter

%connect ;

205 disconnecton = disconnect port_denoter fram_p:>rtO
%disconnect ;

206 from portO =
%)-; else end ;

207 from portO = from port_denoter
%from ;

208 msg transfer = send exprO to port_denoter
%send

209 exprO =
%to ;

210 exprO = expr
%(+ - [char const identifier

int const not real const string_const

211 constru:tion = construct h::1 [field _as_lst]

212

%constroct ;

construct l'rl
%constroct

= construct object_id : identifier

213 field as 1st = fie1d_assign fd_assignl
%identifier

214 fd assign! =
%] ;

215 fd assign! = ; field_assign
i; ;

216 field assign = lhs := expr
%identifier ;

217 attri assign = lhs := expr
%identifier

218 event trans = announce event id about_portO
%announce

219 about portO =
%) ; else end

220 about_p:>rtO = about port_denoter

APperrlix A Page 60

221

222

223

%about ;

control act = alternation
%case- ;

control act = selection
%find- ;

control act = iteration
%ra~e

224 alternation =alternate hd case_list else_partO end case
%case ;

225 alternate hd = case expr of
%case ;

226 case list = case element case listl
%+-- char const-identifier int const ;

227 case listl =
%else end ;

228 case listl = case element case listl
%+-- char const Identifier int const ;

229 case element = const list : (open activity_lst close
)

%+ - char const identifier int const

230 const list = scalar const const listl
%+ = char const identifier int-const ;

231 const listl =
%: ;

232 const listl = , scalar const
%, ;

233 select crite = simple_bind Where clausO
%identifier

234 selection = find head do activity_lst close else_partO end
find

235

%find

find head = find open object_ id
%find

236 find headl = string
%string

find headl

237 find head! = identifier simple_bindl where_clausO

Appeooix A Page 61

%identifier ;

238 iteration = range open select_crite do activity_lst close
else partO end range

%range ;

239 else partO =
%eoo

240 else partO =else open activity_lst close
%else ;

241 \\here clauso =
%do- ;

242 \\here clausO = where expr
%where

243 open =
%) ; announce case connect construct

create disconnect end find identifier on
range ranove send terminate ;

244 close =
%) else end ;

245 id list = identifier id list tail
lidenti fier ·;

246 id list tail =

247

248

% ;

id list tail =
i,

actual };arms =
%(;

identifier id list tail

actual_p:irm next_a _};arm

249 acttal parm = p:irm expr field width
%(+-- [char const identifier

int const not real canst string_const ;

250 next a parm =
%)-;

251 next a parm = , actual_J;arm next_a _parm ,,--
252 lhs = identifier rec_ary_ptr

%identifier ;

253 vars = identifier rec_ary_ptr
%identifier

Ap~ndix A

254 rec ary ptr =
%T * + , - ••

I . ·- . =] • •- I

and div do else end from
in mod noneqrelop of or to ;

255 identifier rec_ary_ptr

256 rec ary ptr =
%[;-

index_list]

257 index list = index next index
%(+- [char const identifier

rec_ary_ptr

int const not real const string_const

258 next irrlex = , ,,- ;
irrlex

259 next index =
%]-

260 index = expr
%(+ - [char const identifier

int const not real_const string_const

261 expr = IBrm expr
%(+- [cnar const identifier

int_const not real_const string_const ;

262 parm expr = simple expr parm exp end
% (-+ - [char const identi ffer -

int const not real const string_const ;

263 pa rrn exp end =
%)-, .-: : i]

do else end of to ;

264 parm exp end = rel op simple expr
%=-in noneqrelop-; -

265 rel expr = simple expr rel op simple_expr
. %1 + - [char const identifier

int const not real const string_const ;

266 rel op --
%~ ;

267 rel op = in
%Tn ;

268 r~l_op = noneqrelop

Page 62

Ap~ooix A Page 63

%noneqrelop ;

269 simple expr = char const add teon
%Char const ;

270 simple expr = string_const add term
%string_const ;

271 simple expr = sign term add term
%+ _-

272 simple expr = term add term
%([-identifier int const not real const ;

273 add term =
%) ' • • : i =

] do else end in noneqrelop
of to ;

274 add teon = add_op term add_ term
%+- or ;

275 term = factor mul t factor
%([identifier int const not real const

276 mul t factor =
%) -+ ' - . . :

; =] do else end
in noneqrelop of or to

277 mul t factor = mul t op factor mul t factor
%*-/ and div mod -;

278 factor = identifier var funccall
%identifier ;

279 factor = real const
%real const ;

280 factor = int const
%int const

281 factor = (expr
%(

282 factor = elem list
%[;

283 factor = not factor
%not ;

284 var funccall = rec_ary_ptr
%) * + ' - •

Appendix A Page 64

.. I : ; = [
] and div do else end
in mod noneqrelop of or to ;

285 var funccall = actt.al_{:arrns
%(;

286 add op = sign
%+ - ;

287 add op = or
%or ;

288 mult op = *
%*- ;

289 mul t op = I
'r;

290 mul t op = div
%dTv

291 mul t op = and
%and ;

292 mul t op = mod
%mod

293 variable = identifier rec_ary_ptr
%identifier ;

294 field width =

295

%) ; ;

field width =
%:

expr more field

296 more field =
%) -, ;

297 more field = expr

298 elem list =
%] ;

299 elan list = elan next elem
%(-+- [char const Tdentifier

int_const not real_const string_const ;

300 elem = expr elem tail
%(+ - [char const identifier

int const not real canst string_const ;

Appendix A

301 next elem =
%] ;

302 next elan = , elem next elem -%, ;

303 elem tail = ,,-] ;

304 elem tail = expr
%.7 ;

305 proc id = identifier
%identifier

306 rec var list = variable next rec var
%Identifier

307 next rec var =

308

,;
next rec var = ,,- ;

variable next rec var

309 subport =
% ;

310 subp:>rt = stbp:>rt_ id
%. ;

311 pt class id = identifier
\identifier

312 subport id = identifier
%identifier ;

313 expressionO =
% ;

314 expressionO = expr
%(+- [char const identifier

int const not real const string_const ;

315 event id = identifier
%identifier

316 sign = +
%+ ;

317 sign =
%- ;

Fege 65

Ap~ndix B Fage 66

APPENDIX B

'lhe LL (1) Granmar of ALSTEN

Granmar produ:tions with selection sets added:

Prod I Produ:tion

1 camp unit = prog_head prog
%@-process ;

2 prog_head = process script prog_id ;
%process ;

3 prog id = identifier
%identifier ;

4 prog = IX>rt decl pt label pt const pt type pt evnt decl pt var pt
proc fct pt - stmt pt- • - - - - -

%beg in const event function label IX>rt
procedure type var ;

5 block = label pt const pt type pt var pt proc_fct_pt stmt_pt
%begin const-function-label procedure type

var ;

6 label pt = label label list ;
%label ;

7 label pt =
%begin const event function procedure type

var

8 label list = labels next label
%identifier int const ;

9 next label =

10

%;

next label =
,, i

labels next label

11 labels = int const -%int const ;

12 labels = identifier
%identifier ;

13 oonst pt =
%begin event function procedure type var

Apperrlix B

14 oonst pt = const con def list
%const ;

15 con def list = const def next con def
%identifier ;

16 next con def =
%begin-event function procedure type var ;

17 next con def = const def next con def
%iaentTfier

18 const def = new const id = constant ;
%identifier ;

19 new const id = identifier
%identitier ;

20 constant = signed_const
%+ -

21 constant = unsigned con
%char const identifier int const real const string_const

22 signed const ~ sign after_sign
%+ _- ;

23 after sign = real const

24

%real const ;

after sign =
%int const

int const

25 after sign = const id
%identifier ;

26 unsigned con = identifier
%ident1fier

27 unsigned con = int const
%int const

28 unsigned con = char const
%char const

29

30

31

lD'lsigned con =
%string_const

lD'lsigned con =
%real const

scalar const =
%identifier

i

.
I

i

string_ const

real const

identifier

Page 67

Appendix B

32 scalar const = non id s con
%+ --char const i'nt const ;

33 non id s con = sign id_or_int
%+ --;

34 non id s con = int const
%Tnt-const ;

35 oon id s con = char const
%Char const

36 id or int = const id
iidenti fier

37 id or int = int const
i'int const ;

38 const id = identifier
%identifier ;

39 type pt =
%begin event fll'lction procedure var ;

40 type pt = typ! typ_def_list
%type ;

41 typ def list = type_def next_typ_def
%Tdenti fier ;

42 next typ def =
%begin-event fll'lction procedure var ;

43 next typ def = type def next typ def
%iaentTfier ; - - -

44 type def = new type id = types ;
%iaentifier ;

45 new type id = identifier
%TdentTfier

46 types = type case 1
%identifier- ;

47 types = type case2
%(+ -array char const int const

packed ptr record set tag- ;

48 type easel = identifier type_tail
%identifier

~ge 68

Ap~rrlix B

49 type tail =

50

%)-; case errl ;

type tail - ••
%.7 ;

scalar const

51 type case 2 = non id s con scalar const
%+-- char_const-int_const ;

52 type case 2 = struct type
%array packed record set ;

53 type_case2 = ptr identifier
%ptr

54 type case2 = enu id list
% (- ;

55 type_case2 = tag of pt_class_nam
%tag ;

56 non id type = non id simp
%(+-- char const identifier int const

tag ; -

57 non id type = struct type
%array p3cked record set ;

58 non id type = ptr
%ptr-

identifier

59 simple type = type_id simp_ty_tail
%identifier

60 simple type = enu id list
%(-

61 simple type = non id s con scalar const
%+ --char const Tnt-canst ;

62 simple_type = tag of pt_class_nam
%tag ;

63 simp ty tail =
%) -, ;] case end ;

64 simp ty tail = • • scalar const
%.7 ;

65 non id simp = (enu id list
%(;

66 non_id_simp = st.Drange_con scalar const

Rige 69

Appeooix B Page 70

%+ - char_const identifier int_const ;

67 non id simp = tag of pt_class_nam
%tag- i

68 pt class nam = identifier
iidentTfier ;

69 enu id list = identifier enumer tail
%Identifier

70 enumer tail =

71

%) i

enumer tail = ,
%, i

identifier enumer tail

72 subrange con = identifier
%identTfier ;

73 subrange con = non id s con
%+ - ch'ar_const int_const i

74 type id = identifier
%identifier

75 struct type = p3ck prefix Lnp:lcked
%array packed record set

76 pack prefix = p3cked
%packed

77 pack prefix =
%array record set ;

78 unp:1cked = array indx_ ty_list] of
types

%array ;

79 unp3cked = record head field list end
%record

80 unp3cked
%set .

I

= set of simple_ type

81 record head = record
%record

82 indx ty list = simple type index tail
%(-+=char const identifier int const

tag ; -

83 irrlex tail =

Appendix B Rige 71

%] ;

84 index tail = simple_type index_tail
%, .

'
85 field list = rec sec list with variant

%) ; case errl identTfier ;

86 rec sec list = rec section rec sec tail
%) ; case en:l identifier ;

87 rec sec tail =
%) case end ;

88 rec sec tail = ; rec section rec sec tail

89

%;

rec section = fieldid list
%Tdenti fier ;

90 rec section =
%) ; case end ;

types

91 fieldid list = identifier field id end
%identifier ;

92 with variant =
%)end ;

93 with variant = variant_pref variant_ list
%case ;

94 field id end =

95

%: ;

field id end =
%, ;

identifier field id end

96 variant_pref = case tag_type_ids of
%case

97 tag type ids = tagfield_id tag_typ_tail
%identifier ;

98 tag typ tail =

99

%of ;

tag typ tail = ,: - scalar_ ty_id

100 tag field id = identifier
%identifier ;

Apperrlix B

101 scalar ty id = identifier
%identffier ;

102 variant list = variant variant tail
%) + :: ; char canst end -

identifier Tnt canst

103 variant = case 1 list : (field head field list
) --

%+ - char canst identifier int canst

104 variant =
%) ; end ;

105 field head =
%) ; case identifier

106 variant tail =
%) eoo ;

.
I

107 variant tail = ; variant variant tail
%;

108 case 1 list = scalar canst caselabelend
%+---char canst identifier int canst ;

109 caselabelend =
%: i

110 caselabelend =
%,

scalar canst caselabelend

111 "fX)rt decl pt =
%~in canst event function label procedure

type var

112 port decl pt = pt_decl_list
%pOrt -

113 pt decl list = port_decl pt_decl_tail
%port- ;

114 port decl = port_head pt_dir_mtype
%port ;

115 pt dir mtype = in type_id
iin -;

116 pt dir mtype = out type_id
iout- ;

117 pt dir mtype = port_group ;
i(-

;

Page 72

Appendix B

118 pt decl tail =
%beg in const event function label . procedure

type var ;

119 pt decl tail = I=Ort_ decl pt_ decl_ tail
i{X>rt- ;

120 port head = I=Ort tnrt_ tail
%port ;

121 port tail = identifier
%identifier ;

122 port tail = set identifier
%set ;

123 port group = (sbptdecll ist)
%(-

124 sbptdecllist = subport_decl next_subport
%identifier

125 st.bport decl = subport_ name direct_ type
%identifier ;

126 direct_type = in type_id
%in ;

127 direct type = out type_id
%out-

128 st.btnrt name = identifier
%identifier ;

129 next_ subport =
%) ;

130 next_ subport = ; subport_ decl next_ subpart
%;

131 evnt decl pt =
%beg in function procedure var ;

132 evnt decl pt = event decl next event
%event -;

133 next event =
%oegin function procedure var

134 next event = event decl next event
%eV"ent

Rige 73

Ap~ooix B

135 event decl = event event id about_partO
%event ;

136 about partO =
%; -;

137 about partO =about pt_class_id
%abOut

138 var pt =
%0egin function {X'ocedure

139 var pt = var var decl 1st
%var ;

140 var decl 1st = var decl var decl end
%ldentffier ;

141 var decl end =
%0egin-function procedure ;

142 var decl end = var decl var decl end

143

%identifier ;

var decl = id list
%identifier -;

144 proc fct pt =
%begin- ;

types ;

145 proc fct pt = pf decl list
%fiilction {X'oceaure -;

146 pf decl list = pf decl pf decl tail
%function procedure ; - -

147 pf decl tail =
%begin ;

148 pf decl tail = pf decl pf decl tail
%function procedure ;

149 pf decl = pf head ; blkorf\trl
%function procedure ;

150 blkorfw:l = for¥Brd ;
%forward ;

151 blkorfwd = block ;
%beJ in const fll"lction label procedure type

var ;

152 proc_start - .

Page 74

Ap~nd ix B R:lge 7 5

% (: ; ;

153 pf head = procedure proc_id_dec {X'oc_start p_head_tail
%procedure

154 pf head = ftmction ft.nc_id_dec proc_start f head tail
ifLD1ction ;

155 p head tail =

156

-,; ;

p head tail =
-,(;

157 f head tail =

158

159

-%; ;

f head tail = -%: ;

f head tail = (
parm type id

%(;- -

fpsl)

parm _type_ id

fpsl)

160 proc id dec = identifier
%identifier ;

161 func id dec = identifier
%identifier

162 fpsl = f ~rm sect fpsl_tail
%identifier var

163 fpsl tail =

164

%)-

fpsl tail =
%;-

f_~rm_sect fpsl_tail

165 f ~rm sect = ~rm group
-%identifier ;

166 f ~rm sect = var ~rm _group
-%var- ;

167 parm type id = type_id FSrm_ty_tail
%identifier

168 parm type id = stru:t type
%array packed record-set ;

169 pa rm type id =
%(-; -

enu id list

Appendix B

170 parm type id = tag of pt_class_nam
%tag ;-

171 pa rm type id = non id s con
%+-- chir_const int_const ;

scalar const

172 parm_type_ id = ptr identifier
%ptr ;

173 parm _ ty_ tail =
%) ; ;

174 parm _ ty_ tail = scalar const
% •• ;

175 parm group = id list : parm_type_id
%identifier ;

176 id list = identifier id list tail
iidenti fier ;

177 id list tail · =
%:

178 id list tail =
%, ;

179 body start =

identifier id list tail

%announce begin case for goto identifier
if int const receive repeat send when
W"lile Wi. th

180 stmt_pt = begin

%begin

body_ start stmt_list end

181 stmt = label prefix 1..11labeled st
%announce b~in case for gotO if

int const receive re~a t send \\hen v.hile
with

182 stmt = stmt with id
%identifier ; -

183 stmt with id = identifier asgn_cal_lab
%identifier

184 unlabeled st = begin stmt list end
%begin -;

185 unlabeled_st = goto labels
%goto ;

Rige 76

Apt=endix B

186 unlabeled st = case head · case_list otherwise_pt end
%case

187 t.nlabel ed st = rep!at strnt list mtil
\repeat-

188 mlabel ed st = if stmt
%if ;

189 mlabeled st = for strnt
%for

190 LD'llabeled st = while strnt
%while -;

191 mlabeled st = with stmt
%with ;

192 unlabeled st = receive strnt
%receive when

193 unlabeled st = send strnt
%send ;

194 llllabeled st = announcestrnt
%anno Lmce ;

195 asgn cal lab = rec_ary_ptr := eKpr
\.-:= 1 ptr ;

196 aS]n cal lab = acttal_p:irms
%(- ; -

197

198

asgn cal lab =
%:- ; -

asgn cal lab =

unlabeled st

%;-else errl otherwise ootil .
'

199 actual parms = (actual_parm next_a _parm
%(-

200 actt.al I=Brm = {arm expr field width
% (+-- [char const identifier .

expr

int const nil not real const string_const ;

.201 next a parm =
%)-;

202 next a p3rm = , actual_p:lrm next_a_p3rm ,,--

Rlge 77

Ap~ndix B

203 if stJnt = if head stJnt if tail
%if ;

204 if tail = else stJnt
l'else ;

205 if tail =
i; end otherwise mtil ;

206 for stJnt = for head do stmt
%tor

207 v.bile stJnt = while head stmt
%while ;

208 with stmt = with head stmt
%with

209 if head = if expr then
iif ;

210 while head = while expr do
%while ;

211 label prefix =
%annomce begin case for goto if

receive repeat serrl when while with ;

212 label_prefix = int_const
%int const ;

213 lhs = identifier rec ary ptr
%identifier ; - -

214 vars = identifier rec_ary_ptr
%identifier

215 rec ary ptr =
%) * + ' - ..

I . ·- . -] • .- I -

and d i v do down to else end
fran in mod noneqrelop of or
otherwise then to m til ;

216 rec ary ptr = •
%7 ;-

identifier rec_ary_ptr

217 rec ary ptr = (index list
%T ;- rec _ary_ptr

218 rec ary ptr = ptr rec_ary_ptr
%ptr -;

Page 78

Ap~ndix B

219 irx:lex list = index next index

220

% (+ - (char const identifier
int const nil not real const string_const ;

next index = , ,,- ;
iooex

221 next index =
%]- ;

222 index = expr
%(+- (char const identifier

int const nTl not real const string_const ;

223 expr = parm expr
%(+- (cnar const identifier

int const nil not real const string_const

224 parm_expr = simple expr parm exp end
%(+ - [char const identifier -

int const nil not real const string_const

225 parm exp end =
%)-, .: : ;

do downto else erx:l of otherwise
then to until ;

226 parm exp end = rel op simple expr
%=-in noneqrelop -; -

227 rel_expr = simple expr rel op simple_expr
%(+- [char const identTfier

int const nil not real const string_const ;

228 rel op - -
%= ;

229 rel op = in
%Tn ;

230 rel op = noneqrelop
%noneqrelop ;

231 simple expr = char const add term
%char const ;

232 simple expr = string_const add term
%string_ const

233 simple expr = sign term add term
%+ -- ;

234 simple_expr = term add term

R:lge 79

Appendix B

%([identifier int const nil not
real const ;

235 add term =
%T , • • : ; =

] do downto else end in
noneqrelop of otherwise then to LD'ltil ;

236 add term = add op term add term
%+- or ; - -

237 term = factor mul t factor
%([identifier int const nil not

real const ;

238 mul t factor =
%)-+ , - •• :

; =] do downto else
end in noneqrelop of or otherwise
then to until ;

239 mul t factor = mul t op factor mul t factor
%*-/ arrl div mod ;

240 factor = identifier var funccall
%identifier

241 factor = nil
%nil

242 factor = real const
%real const ;

243 factor = int const
%int ·const ;

244 factor = (expr
%(;

245 factor = elan list
%[

246 factor = not factor
%not ;

247 var funccall = rec_ary_ptr
%) * + , -

.. I : ; = [
] arrl div do downto else
end in mod noneqrelop of or
otherwise ptr then to until ;

248 var funccall = ac~Lal_t:arms

Page 80

Ap~ooix s

%(

249 add op = sign
%+ - ;

250 add op = or
%or ;

251 mul. t op = * ,.- ;

252 mul. t op =I
%/- ;

253 mul. t op = div
%dTv ;

254 mul. t op =and
tand ;

255 mul. t op =mod
%mod ;

256 variable = identifier rec_ary_ptr
%identifier

257 field width =
%) -; ;

258 field width = expr more field
%:

259 more field =
%)-, ;

260 more field = expr

261 elem list =

262

263

%] ;

elem list = elem next elem
%(-+- [char const Identifier

int const nil not real const string_const

elem = expr elem tail
%(+ - [char canst identifier

int const nil not real_const string_const

264 next elem =
%]- ;

265 next elem = elem next elem

.
I

;

atge 81

Ap~ooix B

%, ;

266 elem tail = ,,-] ;

267 elem tail = expr
%.7 ;

268 proc id = identifier
%identifier

269 stmt list = stmt more stmt

270

271

272

%ailnounce beg in case -for go to identifier
if int const receive rep:!at send \\hen
while With ;

more st:mt =
%eoo Llltil ..

I

more stmt = ; stmt more stmt -%; ;

case head = case expr of
%case

273 case list = case elem case elems
%+-- char canst-identifier int const ;

274 case elems =
%eoo otherwise ;

275 case elems = case elem case elems
%;- ;

276 case elem = case labels strnt
%+-- char canst-identifier int const ;

277 otherwise trl = otherwise
%otherwise ;

278 case labels = scalar const next scalar
%+-- char const identifier int-const ;

279 next scalar =
%:- ;

280 next scalar = ,,- ;

281 otherwise _pt =
%end ;

scalar const next scalar

282 otherwise _pt = otherwise trl strnt 1 ist

R:lge 82

Appeoo ix B Page 83

%otherwise ;

283 for head = for identifier := expr
to part expr

%for ;

284 to part = to
ito ;

285 to part = downto
%doW'lto ;

286 rec var list = variable next rec var
%identifier

287 next rec var =

288

tdo ;

next rec var = , ,,- ;
variable next rec var

289 with head = with rec var list do
%wlth i

290 receive st:mt = simple_rcv
%receTve ;

291 receive st:mt = when st:mt
%when- ;

292 simple rev = receive variableO from
port denoter freebindingO

%receTve ;

293 variableO =
%fran

294 variableO = variable
%identifier ;

295 port denoter = pt_class_id subport
%iaenti fier

296 subport =

297

%; do else eoo otherwise set
until use ;

subp:>rt = •
%. ;

stbp:>rt_ id

298 pt class id = identifier
iidentTfier ;

App!ndix B

299 subport id = identifier
%identifier ;

300 freebindingO =
%; do else eoo otherwise tntil

301 freebindingO = use variable
%use ;

302 freebindingO = set variable
%set ;

303 when stmt = when head receives else _r:artO end
%when ;

304 when head = when
%When ;

305 receives = receive pt next receive
%; end otherwise receive ;-

306 next receive =
%efij otherwise ;

307 next receive = ;
%;

receive_pt next receive

308 receive pt =
%; end otherwise

309 receive pt = simple_rcv do stmt
%receive ;

310 else partO =
%end ;

311 else partO = otherwise stmt

312

%otherwise ;

send stmt =
use partO

%send ;

313 expressionO =
%to i

send expressionO to

314 expressionO = expr
%(+ - [char const identifier

{l)rt_denoter

int const nil not real const string_const

315 use partO =
%7 else end otherwise L1'ltil i

Rige 84

Appeooix a

316 use partO = use variable
%Use ;

317 announcestmt = announce event id about bindO
%announce ;

318 event id = identifier
%identifier ;

319 about bindO =
%; else eoo otherwise until ;

320 about bindO = about pt_ class_ id use_partO

321

322

%about ;

sign = +
%+ .

'
sign =

%- ;

Page 85

Apt:endix C

APPENDIX C

An EXample NETSIA program - BroadcastiD;

network broadcast;
process class seooer
port inport in integer;
p;:>rt outiX>rt out integer;
end seooer

process class receiver
port inp in integer;
port outp out integer;
eoo receiver

initial
create sender : sender ;
create receiver! : receiver;
create receiver2 : receiver;
connect sender.outport to receiverl.inp;
connect sender .outport to receiver2.inp

end broadcast

R:tge .86

Appeooix o

APPENDIX D

A Network Specification MOdule

This code was generated by the Netsla preprocessor."

procedure ini t;
begin (*ini t*)
p id := 0;
afive := 0;
total procs := 0;
initialized := false;
Gr := AllocateR>rt(KernelR>rt, OlildtoFarR>rt, MAXBACKLOG);
Gr := AllocateR>rt(KernelR>rt, EWentR>rt, MAXBACKr.cx:;);
build net('broadcast');
build-proc('sender');
build-port('inport');
build-port('outport');
build-proc('receiver');
build-port('inp');
build-port('outp');

A3ge 87

Gr :=-a creation pr (theroot,'sender' ,'sender' ,•sender.RUN',p list head);
Gr := a-creation-pr (theroot,'receiver' ,•receiver!' ,•receiver7RUN'~p list head);
Gr := a-creation-pr (theroot,'receiver' ,•receiver2','receiver.RUN' ,p-list-head);
Gr := connection(theroot,•sender' ,•outport' ,•• ,•receiver!' ,'inp' , 11); . -

Gr := connection(theroot,'sender' ,•outport' ,•• ,'receiver2','inp' ,'');
wakeup;
end; (*ini t*)

Ap~ndix E

APPENDIX E

'lhe ENent Rlndling Mxlule

Blnt~. ~ad. local FOrt : = BlentFOrt;
quit := False;
while (quit=FALSE) do
ba;Jin
writeln('Events before receive req');
Gr := leceive (BintMsg. ~ad, 0, LOCALPT, R~EIVEIT);
i f Gr=SOCCESS then
case shrink (BlntMsg. ~ad. ID) of
1: ba;Jin (* message transmission. *)

wri teln ('Send Msg Iequest FEceived.');
Gr := send ms9<theroot, Blntrvt;g);
if Gr=SOCCESS then

wr i teln ('Send Msg Iequest Completed.')
else -

writeln(1 ***Send_Msg Request Nar Completed.');
arrive evnt;

end; -
2: ba;Jin (* message transmission. w/ tag *)

wri teln (1 Send Msg (w/ 'lag) Iequest ~Eceived. 1);

Gr := send ms9 tag (theroot, B!ntrvt;g);
if Gr=SOCCESS then

wri te1n(1 Send Msg (w/ Tc:lg) Request Completed • 1
)

else -
wri teln(1 ***Send rvt;g (w/ 'lag) Request Nar Completed. 1);

arrive evnt; -
end; -

3: begin (* enter event *)
enter evnt;

end; -
4: begin (* leave event *)

leave evnt;
end; -

5: begin (* v.hen evnt *)
when evnt;

end; -
6: begin (* W'len evnt. w/ about p3rt *)

when evnt;
end; -

19: begin (* connectivity inquiry *)
wri teln (1 Conn Inq Iequest ~Eceived 1);

Gr := inquiry(theroot, EVntMsg);
if Gr=SUCCESS then

wr i teln (1 Conn Inquiry Cbmpl eted 1)

else
wr i tel n ('Conn Inquiry Nar Completed') ;

end;
99: begin (* termination of a process instance *)

with vparray[vpnap[EVntMsg .I:Bta2]] do

Rlge 88

App!ndix E

begin
I:eletecanvas (canvs) ;
PaintRectangle(Usercanvas,White,xO+l,xO+xlen-3,y0+2,yO+ylen-2);
Used : = False;

end;
alive := alive-1;
if ali ve=O then
begin

quit:=TRUE;
Erasecanvas (Usercanvas ,W'li te) ;
{~letecanvas (User canvas);}

end;
end;

(* more come here *)
otherwise:

begin
end

end; (* case *)
end; (* while *)

R:lge 89

Ap~ooix F

APPENDIX F

A Script for Sender Processes

process script sender;
p:>rt inp:>rt in integer;
port outport out integer;
var

i :integer;
begin

\\bile i<>999 do
begin

write (1 Integer: 1);

readln(i);
send i to outp:>rt

.end
end.

Rlge 90

Ap~ndix G

APPENDIX G

The Preprocessor-generated Cbde for Sender Processes

program sender;
imports Child_lib from Child_lib;

var
i :integer;
var
pinport : port;
poutport : port;

type
signal = boolean;

accenbnsg = record
head : msg;
ipcname2 : ~~;
arg2 : integer;
ipcname3 : ~~;
arg3 : string [10];
ipcname4 : ~~;
arg4 : string [10];
i pcname 5 : Type Type ;
arg5 : integer;
ipcname6 : ~Tfpe;
arg6 : string[20];
i pcname 1 : Tfpe Tfpe ;
case integer of

1 (msignal : signal) ;
2 (msginport: integer);
3: (msgoutport :integer);

end;

var
xxmsg accentmsg;
gr : generalreturn;
whenfl ag : boolean ;
xxsignal : signal;
canmiX>rt : port;
p array : FbrtBitArray;
pstr : string[12];

{$INCLUDE Alsten supt.pas}
begin -
{$INCLUDE Alstenini t.pas}
Ini tM93n (Null Fbrt) ;
Gr := Child ack;
while i<>999 do
begin
write ('Integer : ') ;

Rige 91

Ap~rxlix G

readln(i);
beg in (* send *)
xxmsg.head.id := 1;
xxmsg .head .remotep:>rt := Infbrts ... (1];
xxmsg .head .local port := I:Btafbrt;
xxmsg .msgoutp:>rt :=i;
xxmsg.arg2 := p id;
xxmsg.arg3 := 'outp:>rt';
xxmsg .arg4 := ' •;
gr := send(xxmsg.head,O,wait)
end (* send *)

end
;goa\tay;end.

•
R:lge 92

Appendix H

APPENDIX H

A Script for the Iecei ver Proce~s

process script receiver;
port inp in integer;
port outp out integer;
var

j :integer;
begin

W'lile j<>999 do
begin

end
eoo.

receive j from inp;
wri teln{j)

R:ige 93

Appendix I

APPENDIX t

T.he Preprocessor-generated Cbde for Receiver Processes

program receiver;
imports Child_lib from Child_lib;

var
j :integer;
var
pinp : port;
poutp : port;

type
signal = boolean;

accenbnsg = record
head : ms;J;
ip::name2 : ~~;
arg2 : integer;
i p::name 3 : ~Type ;
arg3 : string [10];
i p::name4 : Type~;
arg4 : string[lO];
ip::nameS : ~~;
argS : integer;
i pcname6 : Type Type ;
arg6 : string[20];
i pcname 1 : ~Type ;
case integer of

1 (msignal :signal);
2 (ms;)inp : integer);
3: (msgoutp: integer);

end;

var
xxms;) : accentms;J;
gr : generalreturn;
\\hen flag : boolean;
xxsignal : signal;
commp:>rt : port;
p array : PortBitArray;
pstr : string [.12];

{$INCLUDE Alsten supt.pas}
begin -
{$INCLUDE Alsteninit.pas}
Ini tMs;Jn (Null Port) ;
Gr := Child ack;
while j<>999 do
begin
begin (* receive *)

A:lge 94

Appendix I

rcv('inp' ,'',999,l,rcv resUlt);
if rev result then -
j:=xxmsg.msginp;
erd (* receive *)
i
writeln(j) erd
;goa w:t y ;errl •

,Fage 95

- 1-
Page 96

APPENDIXJ

Event Replay Example

The following figures show a sequence of 6 events taken from a multiprocess arithmetic

expression interpreter program developed during this project for testing and demonstrations.

The SCANNER process reads an expression from the keyboard and then produces two

messages: one containing token classifications for the PARSER and one containing token

values (of constants and identifiers) for the INTERPRETER. The PARSER sends a message

to the INTERPRETER describing the syntactic structure of the expression. This structure

drives the interpratation.

Dotted lines are included in the figures to indicate port connections. These are not present in

the actual presentation done by our replay system.

Sending a message is represented by two pictures. The ftrst shows a message box leaving an

output port, while the second shows it arriving at an input port. The second picture represents

the static state of the display after completion of the event. These two pictures show the

beginning and end of the presentation of the event. In the actual presentation, the message box

moves smoothly across the screen from the output port to the input port.

Receiving a message is represented by a single picture that shows the state of the display

after the message box is removed from the input queue of the appropriate port.

Figure J -1
Page 97

SCANNER sends message to PARSER

SCANNER PARSER INTERPRETER
OUT1 OUT2 IN1 OUT1 IN1 IN2

i Q ________ j l ________ j :
I I
~-------------------------------~

SCANNER PARSER INTERPRETER
OUT1 OUT2 IN1 OUT1 IN1 IN2

i l ________ 9 l ________ J 1
I I
~-------------------------------~

Figure J-2

SCANNER send message to INTERPRETER

SCANNER PARSER INTERPRETER
OUT1 OUT2 IN1 OUT1 IN1 IN2

A I 9 I 1
U I ,I _________ J I

I ~-------- I
I I
L-------------------------------1

SCANNER PARSER INTERPRETER
OUT1 OUT2 IN1 OUT1 IN1 IN2

: ; _________ Q ; _________ j 9
I I
L-------------------------------1

Figure J -3
Page 98

PARSER rereives message from SCANNER

SCANNER PARSER INTERPRETER
OUT1 OUT2 IN1 OUT1 IN1 IN2

I I I I 1 : L ________ j L ________ j I

I I
L------~------------------------1

Figure J- 4

PARSER recaves message from SCANNER

SCANNER PARSER INTERPRETER l
OUT1 OUT2 IN1 OUT1 IN1 IN2

! L ________ J Q ________ J 9
I I
L------------~------------------1

SCANNER PARSER INTERPRETER
OUT1 OUT2 IN1 OUT1 IN1 IN2

I
I

I
I I L ________ j I

! _________ p
I --------------------------------·

I

Figure J -5
Page 99

INTERPRETER receives message from PARSER

SCANNER PARSER INTERPRETER
OUT1 OUT2 IN1 OUT1 IN1 IN2

: L ________ J l _________ J 9
I I
L-------------------------------1

Figure J -6

iNTERPRETER receives message from SCANNER

SCANNER PARSER INTERPRETER
OUT1 OUT2 IN1 OUT1 IN1 IN2

I 1 I I I I : L ________ j L ________ j :

I I
L-------------------------------1

	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098
	img099
	img100
	img101
	img102
	img103
	img104
	img105
	img106
	img107
	img108
	img109
	img110
	img111
	img112
	img113
	img114
	img115
	img116
	img117
	img118
	img119
	img120
	img121
	img122
	img123
	img124
	img125
	img126
	img127
	img128
	img129
	img130
	img131
	img132
	img133
	img134
	img135
	img136
	img137
	img138
	img139
	img140
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img163
	img164
	img165
	img166
	img167
	img168
	img169
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img197
	img198
	img199
	img200
	img201
	img202
	img203
	img204
	img205
	img206
	img207
	img208
	img209
	img210
	img211
	img212
	img213
	img214
	img215
	img216
	img217
	img218
	img219
	img220
	img221
	img222
	img223
	img224
	img225
	img226
	img227
	img228
	img229
	img230
	img231
	img232
	img233
	img234
	img235
	img236
	img237
	img238
	img239
	img240
	img241
	img242
	img243
	img244
	img245
	img246
	img247
	img248
	img249
	img250
	img251
	img252
	img253
	img254
	img255
	img256
	img257
	img258
	img259
	img260
	img261
	img262
	img263
	img264
	img265
	img266
	img267
	img268
	img269
	img270
	img271

