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Abstract

In this paper we present a recovery-conscious framework for
improving the fault resiliency and recovery efficiency of highly
concurrent embedded storage software systems. Our frame-
work consists of a three-tier architecture and a suite of recovery
conscious techniques. In the top tier, we promote fine-grained
recovery at the task level by introducing recovery groups to
model recovery dependencies between tasks. At the middle tier
we develop highly effective mappings of dependent tasks to pro-
cessor resources through careful tuning of recovery efficiency
sensitive parameters. At the bottom tier, we advocate the use of
recovery-conscious scheduling by careful serialization of de-
pendent tasks, which provides high recovery efficiency without
sacrificing system performance. We develop a formal model
to guide the understanding and the development of techniques
for effectively mapping fine-grained tasks to system resources,
aiming at reducing the ripple effect of software failures while
sustaining high performance even during system recovery. Our
techniques have been implemented on a real industry-standard
storage system. Experimental results show that our techniques
are effective, non-intrusive and can significantly boost system
resilience while delivering high performance.
Keywords: Storage, Software, Fault resilience, Performance,
Availability.
Category: Storage, Database, Transactional Systems

1. Introduction

Today enterprises and even end users are dealing with un-
precedented amounts of digital information creating new op-
portunities and challenges for mass storage and on-demand
storage services. Enterprise systems and services riding the
crest of these new trends are placing increasing performance
and availability (moving close to 7 nines) demands on storage
systems. On the other hand, with software failures and bugs be-
coming an accepted fact, fast and efficient recovery has become
more important than ever in many modern storage systems. In
current system architectures, even with redundant controllers,
most microcode failures trigger system-wide recovery [6, 7]
causing the system to lose availability for at least a few sec-
onds, and then wait for higher layers to redrive the operation.
This unavailability is visible to customers as service outage and

will only increase as the platform continues to grow under the
legacy architecture.

With the growing popularity of multi-core architectures
legacy system are pushed to adapt to rapidly advancing hard-
ware and increasing system size. Under these architectures an
effective way to reduce the recovery time of system failures is
to perform fine-grained recovery that only recovers failed tasks.
However, ensuring that the effects of fine-grained recovery per-
colate to the level of system availability while guaranteeing
good performance is challenging. System resilience and recov-
ery efficiency depend on a number of factors including the abil-
ity to implement fine-grained recovery, the scope of a recov-
ery action taking into account complex dependencies between
components and tasks and resource availability for normal op-
eration even during failure recovery. Finally, since we are deal-
ing with a large legacy architecture (> 2M lines of code) we
must ensure feasibility of techniques in terms of development
time and cost and minimize changes to the architecture.

With these observations in mind, in this paper we develop
a recovery conscious framework for multi-core architectures
and a suite of techniques for improving the failure resiliency
and recovery efficiency of highly concurrent embedded stor-
age software systems. The main contributions of our recovery
conscious framework include (1) a task-level recovery model,
which consists of mechanisms for classifying storage tasks into
recovery groups based on both programmer specification at a
coarser granularity and system-defined recovery scopes at a
finer granularity; (2) a recovery conscious mapping of system
resources such as number of cores to dependent tasks through
careful identification of recovery-sensitive parameters such as
number of scheduler queues and recoverability constraints; and
(3) the development of recovery-conscious scheduling, which
enforces some serializability of failure-dependent tasks in order
to reduce the ripple effect of software failures and improve the
availability of the system. Each tier of the framework progres-
sively improves the system resilience and recovery efficiency
by embedding “recovery-consciousness” into various operating
layers of the system.

Concretely, in this paper we develop a formal model to guide
the understanding and the development of techniques for effec-
tively mapping fine-grained tasks to system resources, aiming
at improving system resilience while sustaining high perfor-
mance both during normal operation and during system recov-
ery. We explore the effects of serialization of dependent tasks
on the trade-off between recovery time and system performance
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Figure 1. Storage Subsystem Architecture

with varying system size and complexity. Our techniques for
fine-grained recovery have been implemented in a real-world
enterprise class storage system. Based on our analysis and ex-
perimental results, we present guidelines for choosing effective
recovery strategies for highly scalable, high-performance sys-
tems that can be retrofitted into existing systems with minimal
architectural design changes. Experimental results show that
our techniques are non-intrusive and can significantly boost
system resilience while delivering high performance.

2. Motivation and Technical Challenges

In this section we motivate this research and illustrate the
problem we address by considering the storage controllers of
some representative storage system. We focus on system re-
coverability from software failures. Storage controllers are
embedded systems that add intelligence to storage and pro-
vide functionalities such as RAID, I/O routing, error detection
and recovery. Failures in storage controllers are typically more
complex and more expensive to recover if not handled appro-
priately. We believe that most of the concepts and problems
pertaining to software failures in a storage controller are also
applicable to other highly concurrent system software.

Figure 1 gives a conceptual representation of a storage sub-
system. This is a single storage subsystem node consisting
of hosts, devices, a processor complex and the interconnects.
In practice, storage systems may be composed of one or more
such nodes in order to avoid single-points-of-failure. The pro-
cessor complex provides the management functionalities for
the storage subsystem. The system memory available within
the processor complex serves as program memory and may also
serve as the data cache. The memory is accessible to all the pro-
cessors within the complex and holds the job queues through
which functional components dispatch work. As shown in Fig-
ure 1, this processor complex has a single job queue and is an
N-way SMP node. Any of the N processors may execute the
jobs available in the queue.

The storage controller software typically consists of a num-
ber of interacting components, each of which performs work
through a large number of asynchronous, short-running threads
(∼ µsecs). We refer to each of these threads as a ‘task’. Tasks
are enqueued onto the job queues by the components and then
dispatched to run on one of the many available processors each

of which runs an independent scheduler. Tasks interact both
through shared data-structures in memory as well as through
message passing.

With this architecture, when one thread encounters an ex-
ception that causes the system to enter an unknown or incor-
rect state, the common way to return the system to an accept-
able, functional state is by restarting and reinitializing the en-
tire system. Since the system state may either be lost, or can-
not be trusted to be consistent, some higher layer must now
redrive operations after the system has performed basic con-
sistency checks of non-volatile metadata and data. While the
system reinitializes and waits for the operations to be redriven
by a host, access to the system is lost contributing to the down-
time. This recovery process is widely recognized as a barrier to
achieving high(er) availability. Moreover, as the system scales
to larger number of cores and as the size of the in-memory
structures increase, such system-wide recovery will no longer
scale.

The necessity to embark on system-wide recovery to deal
with software failures is mainly due to the complex interactions
between the tasks which may belong to different components.
Due to the high volume of tasks (more than 20 million/minute
in a typical workload), their short-running nature and the in-
volved semantics of each task, it becomes infeasible to main-
tain logs or perform database-style recovery actions in the pres-
ence of software failures. Often such software failures need to
be explicitly handled by the developer. However, the number
of scenarios are so large, especially in embedded systems, that
the programmer cannot realistically anticipate every possible
failure. Also, an individual developer may only be aware of the
clean-up routines for the limited scope being handled by them.
This knowledge is insufficient to recover the entire system from
failures, given that often task interactions and execution paths
are determined dynamically.

Many software systems, especially legacy systems, do not
satisfy the conditions outlined as essential for micro-rebootable
software [1]. For instance, even though the storage software
may be reasonably modular, component boundaries, if they ex-
ist, are very loosely defined and the scope of a recovery action
is not limited to a single component.

The discussion above highlights some of the key problems
that need to be addressed in order to improve system availabil-
ity and provide scalable recovery from software failures. Con-
cretely, we must answer the following questions:

• How do we implement fine-grained recovery in a highly
concurrent storage system?

• Can we identify recovery dependencies across tasks and
construct efficient recovery scopes?

• How do we ensure availability of the system during a re-
covery process? What are important factors that will im-
pact the recovery efficiency?

In addition to maintaining system performance while reduc-
ing the time to recovery, another key challenge in develop-
ing a scalable solution is to ensure that the recovery-conscious
framework is non-intrusive and thus minimize re-architecting
of the legacy application code.

2



 

TIER 1:  Fine grained recovery 

Recovery Strategy Granularity Recovery Groups 

TIER 3:  Recovery Conscious Scheduling 

TIER 2:  Cores    RCS Queues   Recovery Groups               

Recovery Time Constraints Performance 

Static Partially   Dynamic Dynamic 

Figure 2. Recovery-Conscious Framework

3. Recovery-Conscious Framework

In this section we give an overview of our recovery-
conscious framework, which is designed for improving recov-
ery efficiency and system fault resilience. By fault-resilience,
we mean that our framework and techniques provide the abil-
ity to reduce system recovery time, enhance availability and
sustain good performance even during failure recovery. We
achieve this objective by embedding recovery conscious tech-
niques into various operating layers to infuse fault resilience
and recovery efficiency in the system and its run-time environ-
ment.

The unique characteristics of our framework is its three
tier architecture and a suite of techniques that can easily be
retrofitted even into legacy systems. Figure 2 provides a sketch
of our framework. The top tier analyzes the recovery dependen-
cies among concurrent tasks in embedded storage components,
identifies the recovery scopes and organizes tasks into recovery
groups. The middle tier configures the system resources such
as the processors queues through recovery-conscious mapping
of recovery groups to system resources. The bottom tier works
with a given number of cores and a given number of resource
queues and tries to bound recovery time and provide fault
resiliency through careful scheduling of resource queues as-
signed to each recovery group. We show that each tier progres-
sively improves the recovery efficiency of the overall system
by embedding recovery consciousness into its various operat-
ing layers.

3.1 Fine Grained Group Formation

Transactional recovery in relational DBMSs is a success
story of fine-grained error recovery, where the set of operations,
their corresponding recovery actions and their recovery scopes
are well-defined in the context of database transactions. How-
ever, this is not the case in many legacy storage systems. For
example, consider the embedded storage controller in which
tasks executed by the system are involved in more complex op-
erational semantics, such as dynamic execution paths and com-
plex interactions with other tasks. Under these circumstances,
in order to implement task-level recovery, we have to deal with
both the semantics of recovery and the identification of recov-
ery scopes.

Recovery from a software failure involves choosing an ap-
propriate strategy to treat/recover from the failure. The choice

of recovery strategy depends on the nature of the task, the con-
text of the failure, and the type of failure. For example, within
a single system, the recovery strategy could range from contin-
uing the operations (ignoring the error), retrying the operation
(fault treatment using environmental diversity) or propagating
the fault to a higher layer. In general, with every failure context
and type, we could associate a recovery action. In addition,
to ensure that the system will return to a consistent state, we
must also avoid deadlock or resource hold-up situations by re-
linquishing resources such as locks, devices or data sets that are
in the possession of the task.

Briefly, we refer to the context of a failure as a recovery
point and provide mechanisms for developers to define clean-
up blocks which are recovery procedures and re-drive strate-
gies. A clean-up block is associated with a recovery point and
encapsulates failure codes, the associated recovery actions, and
resource information. The specification of the actual recovery
actions in each of the clean-up blocks is left to the developers
due to their task-specific semantics. As the task moves through
its execution path, it passes through multiple recovery points
and accumulates clean-up blocks. When the task leaves a con-
text, the clean-up actions associated with the context go out of
scope. The clean-up blocks are gathered and carried along dur-
ing task execution but are not invoked unless a failure occurs.

In order to characterize the dependencies between tasks we
define the concept of Recovery groups. A recovery group is
the unit of a localized recovery operation, i.e., the set of tasks
that undergo recovery concurrently. When recovery procedures
are initiated for one task within a recovery group, all tasks
within the group that are executing concurrently with the failed
task also need to undergo recovery in order to restore the sys-
tem to a consistent state. We refer to the scope of this localized
recovery operation as the recovery scope.

The top tier of our framework provides the capabilities of
defining the recovery scope at task level through a careful
combination of both the programmer’s specification at much
coarser granularity and the system-determined recovery scope
at finer-granularity. The key issues in the tier one design is how
to adequately identify the recovery scopes or boundaries, and
how to concretely determine what are the set of tasks that need
to undergo recovery upon a failure?

3.2 Mapping Recovery Groups to System
Resources

Multi-core processors are delivering huge system-level ben-
efits to embedded applications. An important goal for provid-
ing fine-grained recovery (task or component level) is to im-
prove recoverability and make efficient use of resources on the
multi-core/SMP architectures. This ensures that resources are
available for normal system operation in spite of some local-
ized recovery being underway and that the recovery process is
bounded both in time and in resource consumption especially
since recovery takes orders of magnitude longer (ranging from
milliseconds to seconds) compared to normal operation ( µ
secs).

The middle tier of the framework is dedicated to the de-
velopment of highly effective mapping of dependent tasks to
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both resource queues and processor resources in order to en-
sure system availability through reduced recovery time while
meeting the performance requirements. Concretely, we iden-
tify four recovery-efficiency sensitive parameters: the num-
ber of resource queues (i.e. scheduler queues in the current
context), number of recovery groups, the type of mapping be-
tween recovery groups and resource queues and recoverability
constraints. A recoverability constraint is specified for each
group and prescribes the maximum number of concurrently ex-
ecuting tasks permissible for that group.

Our framework maps recovery groups to processor re-
sources using the scheduler queues, (henceforth referred to as
‘RCS queues’) as intermediate data structures. The key chal-
lenges in this tier are determining configurations for recovery-
efficiency sensitive parameters. A number of factors such as
system size, distribution of tasks between recovery groups, task
recovery time and variation of service time with the number of
scheduler queues are critical in determining the right configu-
rations for recovery-sensitive parameters.

3.3. Recovery-Conscious Scheduling (RCS)

Once the number of resource queues and the number of re-
covery groups under a given number of cores (processor re-
sources) are determined at the middle tier, the system enters
the bottom tier where the decision will be made regarding how
to schedule the resource consumption of a recovery group to
achieve higher recovery efficiency while maintaining good sys-
tem performance. Without careful design, it is possible that
more dependent tasks are dispatched before a recovery process
can complete, resulting in an expansion of the recovery scope
or an inconsistent system state. Also a dangerous situation may
arise where it is possible that many or all of the threads that are
concurrently executing are dependent, especially since tasks of-
ten arrive in batches. Then the recovery process could consume
all system resources essentially stalling the entire system.

The concept of resource pools is used as a method to parti-
tion the overall set of resources into a smaller independent units
of resources called resource pools. A resource pool is a unit of
resource allocation amongst RCS queues and although we re-
strict ourselves to processing resources in this work, it can be
extended to any system resource such as metadata or data repli-
cas. Processors in each resource pool dispatch tasks from the
RCS queues assigned to them.

The key idea of recovery-conscious scheduling (RCS) is to
ensure bounded recovery time and provide fault resiliency by
optimal allocation of resources to recovery groups. In our first
prototype, we have developed three RCS algorithms to imple-
ment different methods of mapping recovery groups to resource
pools: Static, partially dynamic, and dynamic. Each mapping
technique representing different trade-offs between recovery
time, availability, and system performance.

Static scheduling of resource pools to recovery groups deter-
mines the resource allocation at compile time and thus is inde-
pendent of the run-time situations and is only effective in situa-
tions where task level dependencies with respect to recoverabil-
ity are well understood and the workloads are stable. Dynamic

scheduling of recovery groups to resource pools represents an-
other end of the spectrum by promoting dynamic assignment
of resources to recovery groups and works effectively in the
presence of frequently changing workloads. Dynamic RCS al-
gorithms is more effective in utilizing resources, but is more
costly in terms of scheduling management. Between the two
ends of the spectrum are the partially dynamic scheduling al-
gorithms, which utilize partially static scheduling for those re-
covery groups whose resource consumption demand is stable
and well understood and apply dynamic scheduling to the rest
of the recovery groups.

Compared to the performance oriented scheduling (POS),
which uses a single centralized queue from which tasks are
dispatched, under RCS, with “recovery-consciousness” infused
into the scheduler, the scheduler enforces some serialization of
dependent tasks through recovery groups, thereby controlling
the extent of a localized recovery operation within the bound-
ary of a recovery group.

Due to the space constraints, in this paper we focus on the
design issues and challenges associated with the middle tier and
develop optimal configuration regarding the number of RCS
queues and the number of recovery groups for a given number
of processing cores. Dynamic RCS algorithms are used as they
are are best suited for changing or uncharacterized workload.
Tasks are organized into recovery groups with recoverability
constraints specified for each group. Under dynamic RCS, all
resource pools are mapped to all RCS queues. The scheduler
cycles through all RCS queues giving preference to groups that
are still within their recoverability bounds. If no such group
is found, then tasks are dispatched while trying to minimize
resource consumption by any individual recovery group.

4. Recovery-Conscious Mapping

The goal of recovery conscious system configuration in-
volves the analysis and the decision on how to set the recov-
erability constraints, the number of queues and the number of
recovery groups a storage system should have under a specific
recovery efficiency and system availability objective. The main
idea is to improve system availability by bounding the resource
consumption of recovering processes and thereby ensuring the
availability of resources to normal operation even during a lo-
calized recovery process.

4.1. Impact of Recovery Groups on System
Resilience

The number of outstanding tasks belonging to a single re-
covery group and hence the degree of serialization has a direct
bearing on the time-to-recovery of the system. For example,
in the worst case where all tasks running at the time of failure
belong to the same recovery group, massive system-wide re-
covery will have to be initiated. Intuitively, the recovery time
increases with increasing size of the system and with decreas-
ing number of recovery groups.

Based on the definition of recovery groups, we assume that
when a task t belonging to the kth recovery group fails, all tasks
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belonging to the group that are executing concurrently with the
failed task t need to undergo recovery.

Let λk represent the failure rate and µk represent the repair
rate for failures in the kth recovery group. The number of pro-
cessors or cores in the system is represented by variable m and
let αk(i) represent that probability that i outstanding tasks be-
longing to the kth recovery group are executing concurrently at
the time of failure.

We assume that the recovery process executes serially even
for concurrently executing threads in order to restore the system
to a consistent state. As a result, the time to complete system
recovery is a product of the number of recovering processes
and the individual task recovery time. Then the mean time to
complete system recovery is given by:

µ = αk(1)× 1
µk

+ αk(2)× 2
µk

+ . . .+ αk(m)× m

µk

Assume that there are R active (i.e. with tasks) recovery
groups and let γk represent the probability that a task belongs
to recovery group k. Then using the poisson approximation
for the binomial probability mass function, the probability that
there are i outstanding tasks belonging to the kth recovery
group is given by:

αk(i) = b(i;m, γk) =
e−γkm(γkm)i

i!

With performance-oriented scheduling (POS), there is no
notion of bounding the recovery process. Interdependent tasks
belonging to the same recovery group can potentially be ex-
ecuting on all processors. As a result up to m dependent
tasks may be executing concurrently at the time of failure.
Under these circumstances the system mean-time-to-recovery
(MTTR) for POS given that the failure occurred in the kth re-
covery group denoted by MTTRPOS |k is:

MTTRPOS |k =
m∑
i=1

e−γkm(γkm)i

i!
× i

µk

On the other hand, RCS enforces constraints on recovery
groups there by ensuring some degree of serialization of depen-
dent tasks. Let us assume that the constraint on the maximum
number of concurrent tasks of the kth recovery group is given
by ck. Then the system mean-time-to-recovery (MTTR) for
RCS given that the failure occurred in the kth recovery group
denoted by MTTRRCS |k is:

MTTRRCS |k =
ck∑
i=1

e−γkck(γkck)i

i!
× i

µk

However, with dynamic RCS, a more flexible mapping of re-
source pools to recovery groups is employed in order to reduce
resource idling and improve utilization. Under this scheme in
the event that there are spare idle resources even after all tasks
have been dispatched according to recoverability constraints,
keeping in mind the high-performance requirements of the sys-
tem, the constraints are selectively violated. Recall that the

number of active recovery groups in the system is denoted by
R. Let ck be the constraint specified on the maximum number
of concurrent tasks for the kth recovery group. Without loss of
generality we assume that there are idle resources only when∑R
i=1 ci ≤ m. For the sake of simplicity let us assume that

the available spare resources m −
∑R
i=1 ci is allocated evenly

amongst all groups. Then in the worst case violation of a con-
straint ck, denoted as ck is given by:

ck = ck +

[
(m−

∑R
i=1 ci)− (m−

∑R
i=1 ci) mod R

R

]
+ 1

Thus, the system recovery time with dynamic RCS is obtained
by replacing the constraint ck by ck in the expression for system
recovery time for RCS (MTTRRCS |k).

Clearly, the system availability under POS is affected by the
failure rate λk, the repair rate µk for failures in the kth recovery
group, the number m of processors or cores in the system, and
the probability γk that a task belongs to recovery group k. In
contrast, with RCS, availability is also influenced by additional
parameters such as the number R of active recovery groups in
the system and the constraint ck on the maximum number of
concurrent tasks of the kth recovery group. Our results show
that the right choice of constraints for a recovery group given
the system size, task recovery time and the distribution of tasks
between recovery groups can improve recovery time by an or-
der of magnitude compared to POS which fails to take any of
these factors into consideration (see Section 5.3).

While the number of RCS queues do not affect the system
time to recovery, the number of RCS queues and degree of se-
rialization do impact the system performance. In general, per-
formance oriented scheduling operates over a single centralized
queue. Due to lock contention issues, centralized queue sched-
ulers do not scale beyond a few processors [2]. On the other
hand recovery conscious scheduling utilizes multiple queues
to which the recovery groups are mapped and from which all
processors choose tasks for dispatching. While operating over
multiple distributed queues for scheduling reduces lock con-
tention, there by improving scheduler performance, keeping
track of recoverability constraints increases scheduler overhead
potentially causing an increase in service time.

4.2. Impact of RCS Queues on System Perfor-
mance

In this section we present analysis that shows the impact of
RCS queues on the system performance and based on these re-
sults we describe criteria for the selection of RCS queue param-
eters for efficient scheduling. For the purpose of this analysis
we assume that each recovery group is mapped on to a single
RCS queue and the serialization constraints enforced on that
queue are applied to all recovery groups mapped to it.

While evaluating system performance, we must take into
consideration both the good-path (i.e. normal operation) and
bad-path (during failure recovery) performance. Good path
performance is primarily impacted by the efficiency of the
scheduler. On the other hand, bad-path performance will be
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impacted by the extent of failure and recovery (i.e. the degree
of serialization) and the availability of resources for normal op-
eration during local recovery.

Variation of service rate with RCS queues : We model
the variation of service rate with the number of queues as a hy-
poexponential distribution with 2 phases where the first phase
describes the scenario where the service rate increases with the
number of queues due to reduced lock contention. The second
phase models the scenario where the increase in the number
of queues causes the service rate to drop due to the additional
scheduling overhead. Figure 3 shows this model for variation
of service rate with the number of queues.

In order to study the impact of recovery-consciousness on
the performance of the system, we model both POS and RCS
with varying system size and during good-path and bad-path
operation. In order to model utilization, response time and
throughput we adopt the models for M/M/m queuing sys-
tems [18].

Consider a system where tasks arrive as a Poisson process
with rate λa and service times for all cores are independent,
identically distributed random variables. Let the mean service
rate for performance oriented scheduling be denoted by µpos
and for recovery conscious scheduling be denoted by µrcs. We
assume that the service times include the time required to de-
queue tasks from the job queue(s) and iterate through queues
(for RCS). Let m denote the total number of cores in the sys-
tem.
Good-path Performance : During good-path operation, all
system resources are available and storage controller perfor-
mance is limited only be scheduler efficiency. Accordingly, the
average number of jobs, N, in the system is given by:

E [N ] = mρ+ ρ
(mρ)m

m!
p0

(1− ρ)2

where p0, the steady state probability that there are no jobs in
the system is given by:

p0 =

[
m−1∑
k=0

(mρ)k

k!
+

(mρ)m

m!
1

(1− ρ)

]−1

For POS, the value ρ, the traffic intensity, is given by,
ρpos = λa

mµpos
and that for RCS is given by ρrcs = λa

mµrcs
.

EPOS [N ] and ERCS [N ] are obtained by substituting ρ by
ρpos and ρrcs respectively in the expressions for E [N ] and p0.

In each case, based on Little’s formula [17] the average re-
sponse time for performance -oriented scheduling (EPOS [R])
and RCS (ERCS [R]) is given by:

EPOS [R] = EP OS [N ]
λa

and ERCS [R] = ERCS [N ]
λa

Assuming that our system utilizes a non-preemptive model
where individual tasks complete execution within the service
time allocated to them on system cores, the system throughput
T can be modeled as follows:

EPOS [T ] = µposU
pos
0 and ERCS [T ] = µrcsU

rcs
0

where U0 the utilization of the system is given by U0 = 1− p0

and the values for utilization with POS (Upos0 ) and RCS (Urcs0 )
are obtained by substituting appropriate values for p0.

Bad-path Performance : In order to model system perfor-
mance during bad-path operation we assume that the amount of
system resources consumed by the recovery process is propor-
tional to the extent (number of tasks) of the recovery process.

As described in the Section 4.1, with POS, the extent of the
recovery process is unbounded and can potentially span all the
available cores in the system. As with the analysis of system
availability, assume that a task t belonging to the kth recovery
group encounters a failure causing in all executing tasks be-
longing to the kth recovery group to under go recovery. Let
fposk and frcsk denote the extent of the failure-recovery. Let,
mpos and mrcs denote the expected number of cores avail-
able for normal operation during failure recovery. Then, as
explained in Section 4.1

mpos = m− fposk = m−
m∑
i=0

e−γkm(γkm)i

i!
× i

mrcs = m− frcsk = m− ck
Then the expected response time and throughput during bad-
path: E′POS [R], E′POS [T ] and E′RCS [R], E′RCS [T ] for POS
and RCS respectively can be computed by substituting m in
the original expressions with mpos and mrcs respectively.

Based on the above analysis we have established that system
performance with both POS and RCS is dependent on the num-
ber of RCS queues during good-path operation and on the num-
ber of recovery groups as well as the number of RCS queues
during bad-path.

5. Experimental Results

We have implemented our recovery-conscious scheduling
algorithms on a real industry-standard storage system. Our im-
plementation involved no changes to the functional architecture
of a legacy application of nearly 2 million lines of code. In
this section we present both analytical and experimental results
on the impact of several recovery-sensitive parameters such as
the number of recovery groups, RCS queues and recoverabil-
ity constraints on performance and fault resilience. Our re-
sults provide valuable insights into the impact and effective-
ness of our proposed framework, techniques to tune these criti-
cal parameters and show us that through suitable choice of pa-
rameters, significant improvements in fault resilience can be
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Figure 4. Cache-Standard

achieved while continuing to deliver good performance even
during failure recovery.

5.1 Experimental Setup

Our algorithms were implemented on a high-capacity, high-
performance and highly reliable enterprise storage system built
on proprietary server technology due to which some of the
setup and architecture details presented in this paper have been
desensitized. The system is a storage facility that consists of a
storage unit with two redundant 8-way server processor com-
plexes (controllers), memory for I/O caching, persistent mem-
ory (Non-Volatile Storage) for write caching, multiple FCP, FI-
CON or ESCON adapters connected by a redundant high band-
width (2 GB) interconnect, fiber channel disk drives, and man-
agement consoles. The system is designed to optimize both
response time and throughput.

The embedded storage controller software is similar to the
model presented in Section 2. The system has a number of in-
teracting components which dispatch a large number of short
running tasks. For the experiments in this paper we identi-
fied 16 recovery groups based on explicit recovery dependency
specifications.

5.2 Workload

We use the z/OS Cache-Standard workload to evaluate our
algorithms. The z/OS Cache-standard workload is considered
comparable to typical online transaction processing in a z/OS
environment. The workload has a read/write ratio of 3, read hit

ratio of 0.735, destage rate of 11.6% and a 4K average trans-
fer size. The setup for the cache-standard workload was CPU-
bound. Figure 4 shows the number of tasks dispatched per-
recovery group under the workload over 30 minutes. We use
this workload to measure throughput and response times in our
prototype experiments. Group 4 has the highest task workload
( 6.5M tasks/min) followed by group 5 ( 5M/min). Eight of the
groups which have nearly negligible workload are not visible in
the graph. Task arrival rate λa was set at 3×106tasks/second.
The variation of core/processor service rate with the number of
RCS queues was modeled as the hypoexponential distribution
shown in Figure 3 and the services rates for all cores were as-
sumed to be identical.

5.3 Effect on System Recovery Time

Figure 5 and Figure 6 show the number of cores that re-
main available in a 60 core system during failure recovery as
the number of recovery groups and constraints (for RCS) vary
under POS and RCS respectively. For the purpose of this anal-
ysis, it is assumed that the tasks are equally distributed across
recovery groups, although this assumption can be relaxed with-
out any modifications to the model and do not affect our con-
clusions.

Under both approaches, as the number of recovery groups
increase, the expected number of outstanding tasks belonging
to the failed recovery group at the time of failure decreases.
However, for a system with only a small number of recovery
groups, with POS, a large number of cores may become un-
available at the time of recovery in the average case. In the
worst case, all resources may become unavailable if all out-
standing jobs belong to the failing recovery group.

On the other hand, with RCS, more resources remain avail-
able even during bad-path operation compared to POS. Fig-
ure 6 shows that as the constraints on the maximum concur-
rent tasks per recovery group become larger, i.e., more lenient,
the expected number of available resources during failure re-
covery decreases, but still remains higher than POS even for
small number of recovery groups. As in the case of POS, as
the number of recovery groups increase, the expected number
of available resources increases.

Figure 7 shows the variation in system recovery time by
varying individual task recovery time, the number of cores, and
the distribution of tasks between groups. The figure is gen-
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erated based on the model for MTTRPOS and MTTRRCS
described in Section 4.1. The lower surface (in red) depicts
the recovery time variation for RCS and the upper surface (in
gray) depicts the recovery time variation under POS. The x-
axis represents the variable mγk where m represents the num-
ber of cores in the system and γk represents the probability
that a task belongs to the failing recovery group k. Intuitively
the x-axis can be thought of as the number of cores per recov-
ery group. The y-axis represents individual task recovery time
in seconds and the z-axis represents the total system recovery
time in seconds. The constraint for RCS is set as ck = 10. As
the graph shows, for POS, the system recovery time increases
rapidly with increasing task recovery time andmγk. The extent
of recovery may increase either due to increase in system size
or due to a large proportion of tasks belonging to the failing re-
covery group. On the other hand, with RCS, the recoverability
constraint ensures that the system recovery time remains low
by restricting the number of cores assigned per recovery group.

5.4 Effect on System Response Time

In this section we study the impact of the number of RCS
queues on system response time during good path operation.
The response time values are based on the analysis presented
in Section 4.2. Figure 8 shows the change in response time for
POS and RCS with varying number of RCS queues and system
size. The upper surface (gray) represents POS and the lower
surface (colored) represents RCS. The constraint for RCS was
set as ck = 10. Based on this service rate function, Figure 8
depicts the variation in response time with increasing number
of queues in the case of RCS as initially dropping and then
gradually increasing to eventually exceed that of performance
oriented scheduling. On the other hand, POS (upper surface)
which operates over a single queue remains nearly constant
even with increasing system size. Figure 9 presents a closer
picture of the variation of response time with the number of
queues when system size is fixed at 60 cores and Figure 10
shows the regions where RCS gains significantly over POS for
the same system size.

Two key points to be noted are (1) response time is nearly
independent of system size and more significantly influenced
by service time and (2) the benefit of RCS to response time
during normal operation primarily accrues from the effect of

number of scheduler queues on service time.

5.5 Effect on System Throughput

In this section we study the impact of the number of RCS
queues on system throughput during good path operation based
on the model for throughput developed in Section 4.2.

Figure 11 shows two surfaces - the gray surface represents
POS which operates over a single queue and thus remains un-
affected by the number of RCS queues. The colored surface
represents the variation of throughput with RCS. As the figure
shows, in both cases throughput increases with increasing sys-
tem size. With RCS, throughput initially increases benefiting
from the improved service time, but with increasing number of
RCS queues gradually drops to eventually become lower than
that with POS.

Figures12 and 13 are two dimensional projections of Fig-
ure 11 under 60 cores and 30 RCS queues respectively, pre-
sented for better understanding of the variation. In Figure 12,
throughput with POS remains constant since POS uses a single
centralized queue. However, the figures show that for carefully
chosen number of RCS queues, significant benefits in through-
put can be achieved under the current model.

More importantly, the figures show that it is possible to sus-
tain good throughput during normal operation with RCS, since
the primary focus of recovery-consciousness is to ensure sys-
tem availability during failure recovery. Thus, although the
models for service rate variation may be different across sys-
tems, our numbers prove that in general it is possible to sus-
tain (if not improve) performance even with the overhead of
“recovery-consciousness”.

5.6 Bad-Path System Performance

Figure 14 and 15 depict the system throughput and response
time respectively under bad-path operation, i.e., during failure
recovery with a system size of 60 cores. The numbers are based
on our analytical models for bad-path performance developed
in Section 4.2. The constraint for RCS was assumed to be 10,
i.e. ck = 10.

Figure 14 shows the variation of throughput with the number
of recovery groups. We assume that each group is mapped to
one RCS queue and that tasks are evenly distributed between
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Figure 16. Impact of RCS
queues

recovery groups. In a system with only one recovery group,
failure of that recovery group corresponds to system wide fail-
ure. Thus with both RCS and POS, with a single recovery
group, the throughput drops to zero. However, as the number
of recovery groups increase, RCS performs significantly better
than POS sustaining good path throughput even during failure
recovery. For example, with 5 recovery groups, throughput of
POS dropped by nearly 17.2% while that of RCS dropped by
only 3.3% compared to good path operation.

Recall that with POS, as the number of groups increase, as-
suming that tasks are distributed evenly across groups, the re-
silience to failure improves since the probability that a large
proportion of tasks belong to the failed recovery group drops.
As a result, the performance of POS gradually improves as the
number of recovery groups increase (provided tasks are fairly
evenly distributed between groups).

Figure 15 represents the variation of response time with the
number of groups during bad-path. As the figure shows, RCS
retains a significant advantage over POS even during failure
recovery. However, with both RCS and POS the response time
during bad-path operation is very close to that during normal
operation. This can be attributed to the fact that response time is
dominated by the service rate factor and is nearly independent
of the number of available cores. As a result even when fewer
cores are available, the system is able to continue operating
with nearly the same response time.

However, note that these numbers still represent only the
average case. In the worst case, all cores may become unavail-
able with POS since no care is taken to bound the resources
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Figure 17. Storage System Task Dispatches:
Bad Path

consumed by a single group. However, RCS can ensure both
system resilience, i.e. reduce the time to recovery (Figure 7)
and ensure good performance (Figures 14- 15).

5.7 Prototype Experiments

We have implemented the proposed recovery conscious
techniques in storage controller micro-code. By conducting ex-
periments with our prototype implementation, we observe that
our recovery conscious architecture improved system through-
put by 16.3% and response time by 22.9% during failure recov-
ery compared to POS. The throughput with POS was observed
to be 107 KIOps and 87.8 KIOps during good-path and bad-
path respectively and with RCS 105 KIOps during both good-
path and bad-path. Similarly, the response time with POS was
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observed to be 13.3 ms and 16.6 ms during good-path and bad-
path respectively and with RCS 13.5 ms during both good-path
and bad-path.

Concretely, our techniques were evaluated using the stan-
dard Z/OS cache standard workload. In order to understand the
impact on system throughput and response time when localized
recovery is underway, we inject faults into the cache standard
workload. We choose a candidate task belonging to recovery
group 5 and introduce faults at a fixed rate (1 for each 10000
dispatches). Recovery from each fault takes approximately 20
ms. On an average this introduces an overhead of 5% to aggre-
gate execution time per minute of the task. During localized re-
covery, all tasks belonging to the same recovery group that are
currently executing in the system and that are dispatched dur-
ing the recovery process also experience a recovery time of 20
ms each. We measured performance (throughput and latency)
averaged over 30 minutes.

Figure 16 shows the average number of task dispatches per
minute over 30 minutes with varying number of RCS queues.
As the figure shows, the number of dispatches increases (al-
though modestly) with the increase in the number of RCS
queues. For instance, when the number of queues increase from
1 to 16, the number of dispatches increase by nearly 13%. This
experiment was used to establish the preferred number of RCS
queues as 16 for further experimentation.

Figure 17 shows the average number of task dispatches per
minute per recovery group and in total under POS and RCS.
Based on the previous experiment, the number of queues for
RCS was chosen to be 16. The figure shows the number of
dispatches under normal operation (which are nearly identical
for POS and RCS) and those under bad-path for RCS and POS.
Clearly, under bad-path operation, the number of dispatches
with POS drops by nearly 14.4% while the number of dis-
patches for RCS drops by only 3%, which corresponds to a
16.3% improvement in throughput and 22.9% improvement in
response time of RCS over POS, in the average case. In the
worst case POS may cause complete system unavailability.

6. Discussion

We have presented analytical and experimental study on sev-
eral recovery-sensitive parameters such as the number of recov-
ery groups, RCS queues and an effective mapping of recovery
groups to RCS queues, and show that these parameters not only
determine the recovery efficiency and failure resiliency of the
system but also impact system performance.

Our analysis and experimental results give us valuable and
interesting insights into the impact of the proposed framework
and the parameter tuning techniques on the overall system per-
formance. In particular, we see that
• The number of recovery groups in the system and the con-

straints on these recovery groups are critical factors in de-
termining both system recovery time and fault resiliency.

• Depending upon the distribution of the tasks between re-
covery groups and the variation of service rate, the decision
on the number of queues can impact performance both dur-
ing normal operation and failure recovery.

• Recovery group granularity has a direct bearing on resource
availability during failure recovery and hence system per-
formance during bad-path operation.

As the number of recovery groups in the system increases, in-
dicating a finer granularity of recovery, a natural resiliency de-
velops in the system, thus improving availability in the average
case. However, the rate at which the resource availability im-
proves tends to decrease as the granularity of recovery group
is getting finer. The benefit from recovery groups at a given
granularity is determined by the following factors: distribution
of tasks between groups, task recovery time, and system size.
Depending on these parameters we can predict the expected re-
covery time in the event of a failure. Based on the maximum re-
covery time, one can determine the unavailability of resources,
the bad-path performance that can be tolerated, as well as con-
straints and granularity of groups.

Depending upon the model for variation of service rate with
the number of scheduler queues, the performance impact of
the number of scheduler queues varies. In general, beyond a
system-specific threshold, the scheduling overhead outweighs
the benefit of decreased lock contention. However, lock con-
tention can be serious for a centralized queue. In fact, in our
implementation the centralized queue lock had the highest con-
tention accounting for nearly 30% of all lock contentions. In
order to effectively enforce recoverability constraints, we must
map groups appropriately to queues which are the data struc-
tures on which the constraints are actually imposed. A naive
method would be to choose as many queues as recovery groups.
For example, based on in-depth offline analysis we have iden-
tified 200 recovery groups where the single largest group con-
tains 60% of the tasks. However, given the system size of 8
cores, utilizing 200 RCS queues may only hurt performance
without delivering significant benefits in recoverability. Thus
in order to choose an appropriate number of queues to which
groups would be mapped, we must analyze the variation in sys-
tem performance as described in previous sections of this paper.

By appropriate selection of recovery groups and RCS
queues, we would be able to derive maximum benefit from
recovery-consciousness. Since our recovery-conscious frame-
work requires minimal changes to the software architecture it
can be easily incorporated even in legacy systems. In addi-
tion, RCS can match good path performance of performance
oriented scheduling and at the same time significantly improve
performance under localized recovery and minimize resource
unavailability. We believe that the recovery conscious frame-
work and techniques described in this paper represent a promis-
ing direction for systems that need to adapt to rapidly growing
multi-core architectures.

7. Related Work

Our work is largely inspired by previous work in the area of
software fault tolerance and storage system availability. Tech-
niques for software fault tolerance can be classified into fault
treatment and error processing. Fault treatment aims at avoid-
ing the activation of faults through environmental diversity, for
example by rebooting the entire system [4], micro-rebooting

10



sub-components of the system [1], through periodic rejuvena-
tion [8, 3] of the software, or by retrying the operation in a dif-
ferent environment [10]. Error processing techniques are pri-
marily checkpointing and recovery techniques [5], application-
specific techniques like exception handling [15] and recovery
blocks [12] or more recent techniques like failure-oblivious
computing [13].

In general our recovery conscious approaches are comple-
mentary to the above techniques. However, the need to mini-
mize re-architecting the system and the tight coupling between
components makes both micro-reboots and periodic rejuvena-
tion tricky. Rx [10] demonstrates an interesting approach to
recovery by retrying operations in a modified environment but
it requires checkpointing of the system state in order to allow
‘rollbacks’. However given the high volume of requests (tasks)
experienced by the embedded storage controller and their com-
plex operational semantics, such a solution may not be feasi-
ble in this setup. While the idea of localized recovery such as
transactional recovery in DBMSs [9], application-specific re-
covery mechanisms such as recovery blocks [12], and excep-
tion handling [15] have been used before, the implications of
localized recovery on system availability and performance in a
multi-core environment where interacting tasks are executing
concurrently is not very well understood.

In earlier work [14] we presented three alternative recovery-
conscious scheduling algorithms each representing one way to
trade-off between recovery time and system performance. The
recovery-conscious scheduling algorithms help bound the re-
covery process in time and resource consumption assuming that
effective configurations for recovery-sensitive parameters have
been identified.

Much work in the virtualization context has been focused on
improving system reliability [11] by isolating VMs from fail-
ures at other VMs. In contrast, our development focuses more
on improving system availability by distributing resources
within an embedded storage software system. Compared to ear-
lier work on improving storage system availability at the RAID
level [16], we are concerned with the embedded storage soft-
ware reliability. These techniques are at different levels of the
storage system and are complementary.

8. Conclusion

We have presented a recovery-conscious framework for im-
proving system dependability in terms of fault resiliency and
recovery efficiency of highly concurrent embedded storage
software systems. Our framework consists of a three-tier ar-
chitecture and a suite of recovery conscious techniques. In
addition to overview of the recovery group formation tier, the
recovery conscious system configuration tier and the recovery
conscious scheduling tier, we focused on developing highly
effective mappings of dependent tasks to processor resources
through careful tuning of recovery efficiency sensitive param-
eters. We presented a formal model to guide the understand-
ing and the development of techniques for effectively mapping
fine-grained tasks to system resources, aiming at reducing the
ripple effect of software failures while sustaining high perfor-

mance even during system recovery. Our proposed recovery
conscious framework and techniques have been implemented
on an enterprise storage controller. Through our analysis and
experimentation we have shown that through careful tuning of
the system configuration and parameters that affect recovery
efficiency, it is possible to improve the system resiliency while
sustaining good performance even during failure recovery.
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