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SUMMARY 

 

The southeast United States is a critical place to study the effects of climate 

change on biodiversity because it contains the highest richness of plants and amphibians 

in the contiguous U.S. and has high levels of habitat fragmentation, limiting the abilities 

of these diverse fauna to track their habitats. We characterize the species distributions and 

species richness across the regions in current conditions and in the future under different 

climate scenarios. Our study examines ~300 vertebrate species that live in the 

southeastern U.S. including birds with limited dispersal abilities, mammals, reptiles, and 

amphibians. We identify the biodiversity hotspots today and in the future, investigate the 

current and future representation of species in protected areas in the Southeast, and 

identify potential areas of high conservation priority with respect to future range shifts 

due to climate change. We develop a methodological framework that starts with raw 

occurrence data from GBIF, uses careful subsampling approaches, Maxent distribution 

modeling based on climate covariates, and combines this with several ensembles of 

climate projections from the present to 2070. Within this framework, we extrapolate a 

consensus model given the suite of projected distributions. We identify which species 

will be most at risk of extinction, which will require movement connectivity to track their 

niches, and which will interact with urbanized areas. 
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CHAPTER 1 

INTRODUCTION 

 

Species have migrated in response to climate change in the past. However, current 

circumstances such as urbanization and the rapid speed of climate change resulting from 

greenhouse gas emissions pose new limitations as to where and how species can migrate 

[1]. Because of human presence in most of the world, current species will need to 

overcome obstacles that their ancestors did not. The statistics are startling: “less than 17% 

of the terrestrial landscape has escaped the direct impact of human activities, 

approximately half of the land surface has been converted to, and less than 1% of the 

world’s rivers remain unaffected by humans” [1]. Not only do modern species need to 

navigate developed areas, but also many species may not be able to migrate fast enough 

to keep up with their rapidly changing climate. On average, 9.2% of mammals will not be 

able to migrate at the pace of their climate due to their dispersal distance, and “87% of 

mammalian species are expected to experience reductions in range size and 20% of these 

range reductions will likely be due to limited dispersal abilities as opposed to reductions 

in the area of suitable climate” [2]. In particular, the southeastern region of the USA has 

been identified as a region “with projected high density of climate-driven movement,” as 

well as a highly urbanized region [1], which is why we chose this region for our project. 

Although analysis has been done of the southeast, there has been no overall study focused 

on the Southeast that includes all terrestrial species. Research in this area would help us 

determine what decisions can be made for the greater good of most species in the 

southeast.  
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The focus of this project is to determine how climate change and human 

development in the Southeast will affect ~300 terrestrial species’ habitat and their ability 

to migrate. Using datasets of species presence records and modern climate data, we can 

estimate species distribution models to find each species’ habitat niche and the locations 

of suitable habitat. Applying these models to projections of future climates, we can 

predict how the species suitable habitat will change over time. Once complete, these 

distribution maps will show the habitat suitability from 2010-2070 based on four different 

climate scenarios: Representative Concentration Pathways (RCP) 2.6, 4.5, 6.0, and 8.5. 

One of our objectives is to use the current and projected species distributions to estimate 

the expansion and shrinkage of species habitat over time, as well as the spatio-temporal 

changes in overall biodiversity. We will also estimate the percentage of habitat in 

protected areas [3] and in urbanized areas [4], as well as the distance that we expect the 

species' climatic niche to shift [5, 6]. This will help us identify individual or group of 

species that are particularly vulnerable. Using all four RCPs will show us how species 

will be affected not only by climate change and urbanization in general, but also by 

humans’ rate of greenhouse gas production. This data might potentially demonstrate that 

if we can reduce greenhouse gas emissions, we can dramatically affect a species’ chance 

of survival, which is a powerful motivational tool to convince people to be 

environmentally conscious. The second main objective is to calculate the migration 

corridors that each species must travel every decade in order to keep up with the 

changing climate, while taking into account the species-specific dispersal distance limits 

(following [7]). Analyzing the migration corridors for a large number of species will help 

us identify geographical areas in the Southeast that are critical to a large number of 
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species’ ability to survive their new obstacles. Our results will help inform policy-makers 

how to prioritize conservation efforts in the southeastern USA, which is the ultimate goal 

of our project. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 In our project, we plan to create species distribution models for about 300 species 

in the southeastern US that show each species’ climatic niche, and then project these 

models onto a variety of climates to see how each species will be affected by climate 

change. There are multiple steps to this project, including finding accurate climate data to 

use for training and projections, creating distribution models that account for as many 

biases as possible, and finding the trends in an overwhelming number of species. Luckily, 

there exists prior research in most steps of our project so that we can either reproduce 

certain methods or make modifications that suit our own study. Species distribution 

modeling is a relatively new area of interest in ecology and climate change research, and 

these models are being used for a variety of purposes. Some research papers focus on 

comparing the habitat range of different species in order to make conclusions about the 

relationships between these species [8], or they attempt to alleviate the negative effects of 

immediate landscape change on specific endangered species where there is a lack of data 

[9]. However, because in our study we are using our species distribution models to 

project onto future climate data, we will be mostly focusing on literature that either 

discusses methods to make species distribution models as accurate as possible, or those 

that involve future projected climate models. 

 There are many species distribution modelling algorithms available, but we are 

using one called Maxent, or “maximum entropy modeling” [10] because it is one of the 

highest performing algorithms [11] and in general does not require many modifications 
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other than the default algorithm settings. While in many studies, the Maxent algorithm is 

used as-is, there are other data preprocessing techniques to alleviate sampling bias in the 

species occurrence locations, the location of species’ absences (if we know where a 

species is located, where can we infer that they are not?), and how to limit autocorrelation 

in the environmental data layers. There were two different papers published in 2014 that 

propose similar methods to alleviate sampling bias in species occurrence locations using 

environmental filtering instead of the old standard of geographic filtering [12, 13]. 

Sampling bias can occur in species occurrence location points because when researchers 

are searching for a specific species, they have a much higher chance of searching for 

these species near roads, civilization, or conservation units. Both studies’ results 

indicated that using environmental filtering instead of geographic filtering or no filtering 

resulted in more accurate model predictions. However, de Oliveira’s study [13] used 

actual species presence data to train the study while Varela’s study [12] used a virtually 

created species with an artificially created sampling bias. While we preferred de 

Oliveira’s study because of its evaluation of real species data, both these studies came to 

the same conclusion. Therefore we plan to use environmental filtering in our study. There 

have been multiple papers published on where to select pseudo-absences from species 

presence points [14, 15], but none of these papers address absences in Maxent because it 

is considered to be primarily a ‘presence-only’ algorithm. However, the Maxent software 

artificially creates its own variation of pseudo-absences called background points, so 

Maxent is not truly a presence-only software [10, 16]. Maxent chooses its background 

points randomly from the background area of inputted environmental data layers in order 

to decrease computation time, but we believe that it is possible to make this process more 
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accurate by creating buffered ranges around the occurrence points and selecting 

background points from within this range. 

 We are not the first people to use Maxent with future climate projections. 

However, we are the first to use future climate projections with such a large number of 

species within the southeast US. Another study which uses a large number of species is 

one by J. J. Lawler in 2013 that observes “Projected climate-driven faunal movement 

routes” [1]. The purpose of Lawler’s study was to observe the distributions of 2903 

vertebrate species in the western hemisphere, and the extent to which the species that 

need to migrate because of climate change, will be obstructed by “human-dominated 

landscapes” [1]. Lawler succeeded in finding key areas of concern; the southeastern 

United States was an area identified with “both projected high densities of climate-driven 

movements” as well as an area “heavily impacted by human activities” [1] and therefore 

is an area of concern. While Lawler’s study identifies these areas of concern, it does not 

propose what can be done within the areas to aid with conservation planning and to 

preserve as many species as possible. According to Lawler, “there is ample opportunity 

for analytical innovations that could lead to more fine-grained analyses in the future.” [1] 

This is why our study focuses on the southeast and looks at a much smaller scale to see 

locations that will benefit many southeastern species in their migrations.  

 Once we have our projected species distribution models, we plan to calculate the 

migration corridors for each species to identify the migration paths, as affected by both 

climate change and urbanization. A study by Steven J. Phillips in 2008 calculates the 

dispersal corridors for the Cape Proteaceae, a family of endemic plants [7]. This paper 

provides a method that will be useful to us in calculating our migration corridors using 
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network flow [7]. Much like our study is focused on the southeast US, this study is 

focused on the geographic location of the Western Cape of South Africa. However, 

Phillips’s study was investigating a specific family of plants, while we are applying 

similar methods to multiple species of terrestrial animals. The goal in Phillips’s methods 

was to find the “smallest possible newly protected area” using the dispersal corridors in 

order to more efficiently prioritize conservation efforts for this species. This application 

of computer science and mathematical principles to the ecology field is one of the main 

reason we are attracted to this topic, and Phillip’s paper is a great example of an 

application these principles. However, the methods will have to be modified for our 

geographic location and different types of species. 

 A major factor in calculating the migration corridors is the dispersal distance for 

each species. If we do not take into account a reasonable distance that each species can be 

expected to migrate every decade, we could be predicting migration corridors that are 

impossible for the species. This is important to take into consideration because it has 

been indicated as an area of concern for mammals [2]. This study also used a relatively 

large number of species in their observations, with a total of 493 mammals in the Western 

Hemisphere and their dispersal distances to observe if the species will be able to keep up 

with their rapidly changing climates. Logistically, it is difficult to find the reasonable 

dispersal distance for each species, so it is helpful to see this study’s approach to the 

issue. In calculated the dispersal distances, the study assumed that “successful 

reproduction occurs at the youngest age biologically possible and that the offspring in 

each generally survive to dispersal age and successfully disperse” when “in reality, 

dispersal has high associated mortality” [2]. Another study that required the dispersal 
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distances of their species by providing surveys to “experts” and asking them to estimate 

the dispersal distance, which we feel is both impossible, given our number of species, and 

prone to human error [17]. Regardless of the method we will eventually use in finding 

these dispersal distances, we know that they are important to consider on our migration 

corridors. 

 Although many studies have been done in this field, few exist that perform a 

collective examination that considers all terrestrial species in a geographic area and their 

projected habitats. We hope that our study will be able to provide detailed insight into 

what actions can be taken in the southeast US to assist in the survival of as many species 

as possible, with an emphasis on protecting already endangered species. These results can 

be used to inform policy makers where to prioritize their conservation efforts. In order to 

make these results as accurate as possible, it is important for us to consider the papers 

which detail useful methods. These methods can enhance both the species distribution 

modeling algorithms and processing the results in intuitive ways. 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1 Data 

 Our collection of species to study was obtained from the Southeast Gap Analysis 

Project [18]. We obtained our occurrence locations for each of these species from the 

Global Biodiversity Information Facility (GBIF) [19] library. The GBIF database holds 

records of where and when species samples were collected. We obtained environmental 

data layers to train our species occurrence models from WorldClim [20], and the models 

were projected on different climate data to get future species’ habitat predictions for 

2030, 2050, and 2070 [21]. All together, we have thirteen habitat suitability data layers: 

one for the modern data/2010, and 4 for each year 2030, 2050, and 2070 for each RCP 

emissions scenario. Each species in our list will have its own Maxent species distribution 

model and 13 habitat suitability data layers. We found protected area data from the 

United States Geological Survey (USGS) [3] and projected urbanized data from 2010-

2100 [4]. Data that shows the land cover type for all of the USA can be found at the 

Multi-Resolution Characteristic Consortium (MRLC)'s National Land Cover Database 

(NLCD). Water data layers were used to create a distance to water raster [22] to help train 

the models, and remove bodies of water from our maps so that habitats were not 

predicted to be in water. 

3.2 Methods 

We use the occurrence locations as presence points for each species, and remove 

all duplicates from the dataset. While Maxent provides the option to automatically select 

background points, this process is computationally expensive for multiple repetitions as 
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the raster data of the background points must be extracted for each run. Therefore, we 

used a different method for selecting background points. First, we created a convex hull 

around the occurrence points using a tool in the SDM Toolbox. The convex hull was 200 

km way from the points. These convex hull polygons were used as a mask against the 

modern environmental rasters. Using a Maxent tool, we extracted 100,000 points from 

these clipped rasters. The 100,000 points were randomly partitioned into 100 different 

background point files. Our number of background points for each run in the experiments 

was 10,000, the same number used by Maxent.  

The occurrence points are then environmentally subsampled using the 

methodology in Varela’s paper [12]. Environmental subsampling of the data has been 

shown to improve model accuracy by removing points that are too similar according to 

the environmental data. The alternative method of sampling is geographic sampling, 

which removes points that are physically too close together. Varela’s paper showed that 

environmentally subsampling data is more effective. We created 100 different versions of 

the subsampling data. Varela’s method initially just chose the first point in each category, 

but we randomized each set of points by choosing a random point in the category where 

many occurrences were considered too environmentally similar.  

These presence points and the current environmental data are loaded into Maxent 

species distribution software [10] to generate the species distribution models. These 

models are then projected onto the different future climatic data. After creating binary 

presence/absence maps that show where a species could survive [6, 9, 23-25], we can 

continue with our processing at another time. We also found the percentage of the 

distributions that are in a protected area [3] or an urbanized area [4]. To observe the range 
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shifts, we found the change in centroid of the suitable areas and created a map that shows 

the location of each species during each time period [5, 6].  

The most important visualization that we have done with this data is creating 

maps that show the location of species over the four decades using a color-coded binary 

encoding. Because of the four time periods, there were sixteen binary encodings 

corresponding to either 1: present in this time period, or 0: not present in this time period 

(eg. 0000 means the species was never present in this pixel, 1000 means the species is 

only in this pixel in 2010). These maps allow us to view the habitat range shifts.  

3.3 Future Methods 

 The resistance to movement layers that we need to find the movement corridors 

must be created for each species. The easiest design for these resistance layers is the 

inverse of the habitat suitability distribution data, but we plan to make resistance layers 

that account for land cover type. This way, we can assign a resistance value to different 

land cover types, such as urbanized areas [4], water [22], elevated regions, etc. Each 

species also has a dispersal distance that is a distance reasonable for the species to 

migrate to in a given year in order to stay with its climatic niche [2]. This will have to be 

collected for each species and can be used in the resistance layers. We will use the 

resistance layers to find the migration corridors for each species over the years 2010-

2070. Because we are using a collection of 300 species, when we assemble all of the 

corridors we will be able to identify geographic regions with a high anticipated amount of 

migration. We can infer that these areas are high priority for conservation, because if they 

are urbanized or developed, many species may not be able to migrate to a climate where 

they can survive. 
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 This project has been done primarily though programming using the language R 

[26]. Many of the R scripts use R-packages, including rgbif [27], raster [28], biomod2 

[29], parallel, and graphics. These packages can be used for visualization of both plots 

and the maps, but we are also using ArcGIS Desktop [30] to visualize the species 

distribution maps and the species occurrence points. All scripts are available for public 

use and are available for download at https://github.gatech.edu/rbach3/SDM_Project. 

Because much of this project was in developing our methodology and automating the 

process using R scripts, time was devoted to creating an R package for easier use in the 

future.  

https://github.gatech.edu/rbach3/SDM_Project
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CHAPTER 4 

RESULTS 

  

 We were able to obtain results for forty seven species. The distribution of these 

species is as follows: 

Total Species # > 80% in SE # Mammals # Reptiles # Amphibians 

47 44 6 12 28 

Although we were not able to obtain results for every species, we prioritized those 

with the highest percentage of occurrences in the southeast, as this region was the focus 

of our study. 

4.1 Species Specific Results 

One of our species, the Heterodon simus, will be used as an example to 

demonstrate the results we have for every species.  
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Projection Number of Cells

Cell Change 

from 2010

Number Cells in 

Protected Land

Number of Cells 

in Urbanized Land T1notT2 T2notT1 Overlap Centroid X Centroid Y

2010 421257 0 84543 305340 0 0 0 -82.33468826 31.01648015

RCP2.62030 761363 340106 110955 516770 6391 346497 414866 -83.67549466 32.17296023

RCP2.62050 804888 383631 112908 498107 15105 398736 406152 -82.31430251 33.07785737

RCP2.62070 1011461 590204 123805 617697 10496 600700 410761 -83.26584915 33.70864653

RCP4.52030 983727 562470 131705 659777 872 563342 420385 -82.73029968 33.14294371

RCP4.52050 958531 537274 121048 613986 12812 550086 408445 -83.5018154 33.33976216

RCP4.52070 1193280 772023 141384 740367 3909 775932 417348 -84.36944021 33.61963083

RCP6.02030 673165 251908 110816 441332 5747 257655 415510 -82.4590086 32.26141093

RCP6.02050 1022365 601108 125494 650581 4442 605550 416815 -83.84003795 33.02446051

RCP6.02070 1270605 849348 138965 779343 13736 863084 407521 -84.10339695 33.76545586

RCP8.52030 921455 500198 123932 624790 3828 504026 417429 -83.10882365 33.28827981

RCP8.52050 1166105 744848 133430 756163 20239 765087 401018 -83.29920009 34.38249657

RCP8.52070 1585350 1164093 164008 1028189 17312 1181405 403945 -84.13080119 34.9479531  

4.2 Overall Results 

We also collected results that involved all of the species. The following maps are 

a sum of the number of species with a presence in that cell. This function produces 

biodiversity, or richness maps. These figures were made for all species, and also for all 

species in each class (amphibians, mammals, and reptiles). 
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These figures were created for every projection. 
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CHAPTER 5 

DISCUSSION 

 

 Although we were happy with our results, these figures were not the ultimate goal 

of the project. We made these figures to begin to understand our data and our outputs, as 

it is difficult to individually observe thirteen projections for all of the species in our study. 

The information we wanted to gain from these results was: 

1. How closely our models match with “official” ranges, like the published IUCN 

Red List ranges 

2. The types of shifts we can expect to see in future work (contractions, growths, 

etc.) 

3. What post-processing will need to be done on our results (smoothing algorithms, 

removing “outlier” habitat) 

4. Which species are viable to use in future work (have habitats in all time periods, 

exhibit “interesting” movement) 

 Once we have finished running our experiments for all of our species, we will be 

better equipped to make these observations. During this study we did not spend much 

time looking at the outputs and the figures, except to confirm that the methodology 

produced accurate results for a few test species. 

 In general, we want the species distribution models for each species to use in 

future research. In our given time frame, we were not able to begin calculating the 

migration corridors. This is the next step in the project, but it could not be done without 

first collecting the data in this study. 
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 Not only will we continue to use the data collected for the species in this study, 

the methodology that was developed and tested can be used in any research involving 

species distribution models and their projections. Because most of our time was spent 

developing and automating these methods, our R scripts and documentation might be the 

most important outcome of this project. Given environmental data and species occurrence 

points, the entire process can be easily replicated for any experiment. 
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CHAPTER 6 

CONCLUSIONS 

 

 Species distribution models are constantly being used in the field of ecology, and 

although software such as Maxent exists to make the process much easier, there are still 

many decisions to be made in the methodology to increase model accuracy. Many of the 

steps are lengthy and repetitive if they need to be applied to many species. This is why it 

was important in our study to spend the time developing these methods and R scripts. It 

would be infeasible to collect the species distribution data for about 300 species in a 

reasonable timeframe without an “easy to use” workflow.  

 Using the R scripts also made it easier to test our methods and ensure that we 

were happy with every step in the process. For example, subsampling the occurrence 

points and generating our own background points were not added until very late in our 

study. However, we did not need to make any changes to our previous work to add this 

new step because it was simple to add these methods to the pipeline.  

 Although we were not able to finish getting results for all of our species, the 

experiments can now be run with minimal observation. If we decide to change the list of 

species or our chosen environmental rasters, it is easy to switch data in and out. We hope 

that our process will be helpful not only for our own future work, but also for others.  
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