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SUMMARY 

 

After a Radiological Dispersal Device (RDD) event, there will not be time to 

transport people to a whole-body-counter (WBC), since it is a specialized instrument.  

This work will assess the feasibility of using handheld spectrometers for measuring the 

radioactivity that may have been inhaled by a victim as a consequence of an RDD event.   

Measurements were made with a handheld isotope identifier using a slab phantom and 

several radioactive point sources.  A Lawrence Livermore National Laboratory (LLNL) 

Realistic Torso Phantom and a set of phantoms based on Medical Internal Radiation Dose 

(MIRD) reports were also used in this work.  These phantoms include the human skeleton 

and have tissue-equivalent organs.  Computational models were developed of all of the 

phantoms using the Monte Carlo Transport code MCNP.  After validation of the 

computer model, MCNP runs were conducted using other sources that are likely to be 

used in a RDD.  Calculations were then done to find the Minimum Detectable Activity 

(MDA) of all sources used.  The Minimum Detectable Dose (MDD) was then calculated 

for the MIRD phantoms at various times after inhalation. 
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CHAPTER 1 

INTRODUCTION 

 

 A Radiological Dispersal Device (RDD) is any device that would potentially 

release radionuclides into the environment and is the most likely means of terrorist attack 

involving nuclear or radiological weapons.  Between October 1996 and September 2001, 

1,495 radioactive sources were reported lost or stolen in the U.S., any of which could be 

used for a dispersal device (Brodsky et al., 2004).  This work assesses the ability of using 

a handheld detector for measuring radioactive materials inhaled from an RDD event.  The 

detector used is a gamma detector, therefore only gamma emitting sources were studied 

in this work.  The photon emitting radioisotopes of highest concern for RDDs include 
137Cs, 60Co, 241Am, and 192Ir (Ferguson, 2003).  Also of concern is 90Sr/90Y, which emits 

electrons through beta decay.  These electrons will, however, produce bremsstrahlung 

photons.  All of these radionuclides, in addition to 131I, are considered in this work.   

 After an RDD event occurs, there will be many people rushing to hospitals and 

other locations who are unsure if they have inhaled radioactive materials.  Hospitals will 

most likely not be equipped to prescribe medication to all of these people.  A method 

needs to be developed to triage patients to determine which patients should receive 

medication.  If medication is needed, it generally needs to be taken soon after the 

radioactive materials enter the body.   

 A Whole Body Counter (WBC) is a device designed for identifying and 

measuring the concentration of radioactive materials located inside a person�s body.  It 

uses very sensitive radiation detectors and has shielding to reduce the background 

radiation.  Even though WBCs would be the best device to measure the radioactivity 

levels inhaled by a victim of an RDD event, they are usually only available at distant 

locations from urban centers and the number of people to be counted would make them 
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an impractical approach to the problem.  Handheld detectors are readily available in large 

cities.  Handheld spectrometers are not as sensitive as a WBC, but they could be used to 

quickly determine the radioactivity levels in lungs of victims.  To determine the 

usefulness of a handheld detector for this specific application, computational models of 

several phantoms were run.  From these data, the Minimum Detectable Activity (MDA) 

was determined for the handheld detector.  The Minimum Detectable Intake (MDI) was 

back calculated from the MDA for several times after intake over the period of one week.  

The Minimum Detectable Dose (MDD) was then calculated from the MDI for these 

counting times. 
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CHAPTER 2 

HANDHELD SPECTROMETER 

 

 The detector used in this work was the Exploranium GR-130 miniSPEC.  This 

portable gamma-ray spectrometer is used to locate and identify radionuclides in real-time.  

This detector has a 4.5 cubic inch sodium-iodide crystal doped with thallium (NaI(Tl)) 

and weighs 5.5 lbs.  It can be used to measure the count rate or perform a spectral 

analysis of a radiation source.  The GR-130 detector and the orientation referenced in this 

paper are shown in Figure 2.1.  The efficiency is highest at the front of the detector, so 

the front face should be placed against or directed toward the radiation source being 

measured. 

 

 

Figure 2.1:  Detector Orientation 

 

Popular uses for this device include surveying contaminated soil and hazard 

identification in addition to spectral analysis.  It can operate in survey mode, dose rate 

mode, and nuclide identification mode.  Before any measurements are made, the detector 
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must be calibrated using a 0.214 µCi 137Cs source, which accompanies the instrument 

from the manufacturer.  The sensitivity of the GR-130 to high-energy gamma rays is low, 

as with many sodium iodide detectors (Peterson et al., 2005).   

While this detector could work well for triaging patients after an RDD event, it 

also has several disadvantages for this application.  In the spectrum mode, if a pulse-

height exceeds 65,535 counts in any channel (or if 65,535 cps are recorded in survey 

mode), saturation occurs and a display message will appear.  The system will also 

overload if the dead time exceeds seventy percent.  These factors place a limit on the 

activity and counting time that can be measured.  Also, the air at a measurement location 

after an RDD event could have a radiation background in excess of the natural 

background.  This would require subtraction of background counts at the measurement 

location.  Similarly, if the patient has any external contamination it will read a higher 

activity than that which is present in the lungs.  This could be corrected if a person is 

measured for external contamination before lung counting is performed.  
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CHAPTER 3 

EXPERIMENTAL SETUP 

 

 A slab phantom and several anthropomorphic phantoms were used to simulate the 

transport of photons inside the human body for this work.  The slab phantom was 

measured at various slab thicknesses using point sources to validate the computational 

model.  Several distributed sources inside the anthropomorphic phantoms were then 

studied.   

Slab Phantom 

 The slab phantom is composed of thin slabs of Plexiglas that can be configured to 

provide different attenuation thicknesses between the source and detector.  Each slab has 

a height and width of 30 cm with thicknesses ranging from 3 mm to 2.5 cm.  When all of 

the slabs are loaded they have a combined thickness of 13.8 cm, and when the thickness 

of the outer two Plexiglas casings are included the total thickness is 15 cm.  The actual 

material of the slab phantom is polymethyl-methacrylate (PMMA), (C5O2H8)n, and was 

assumed to have a nominal density of 1.19 g/cm³.  

Measurements were made using both a 60Co and a 137Cs point source taped on the 

center of the outer Plexiglas casing.  The activities of the 60Co and 137Cs sources were 

8.914 µCi and 10.15 µCi respectively.  Both sources had assay dates of May 1st 2001 but 

the uncertainties of the source activities were not reported.  The detector was placed on 

the other side of the case, in which the center of the detector crystal was lined up with the 

source (Figure 3.1).  A one-minute reading was done when no slabs were in the case and 

when the case was fully loaded (13.8 cm).  In addition, measurements were taken when 
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there were 2.5, 5, 7.5, and 10 cm thick slabs inside the case.  These distances include only 

the thickness of the slabs loaded inside the case.  The true Plexiglas thickness between 

the source and the detector would be the slab thickness plus 1.2 cm (for the 6 mm thick 

Plexiglas casing on both sides). 

 

 

Figure 3.1:  Slab Experiment Configuration 

 

Background measurements were taken immediately before and after the slab 

measurements were made.  These background measurements were used for all of the 

work presented here.  The measurements were taken at a laboratory at Georgia Institute 

of Technology.  The background spectrum in this lab could differ greatly from that at the 

location in which actual patients would be measured.  Differences in background values 
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could have a large influence on all of the results obtained.  This is discussed in greater 

detail in Chapter 5.    

Realistic Torso Phantom 

 The LLNL Realistic Torso Phantom is an anthropomorphic phantom that is used 

to calibrate detectors for the measurement of radionuclides which are deposited in organs 

and is considered to be �the de facto standard phantom for lung counting� (Kramer et al., 

1991).  Anthropomorphic phantoms are designed to represent the radiation attenuation 

and geometry of the human body.  This phantom is based on a deceased LLNL plutonium 

worker and as a result is larger than reference man listed in ICRP 23 and later updated in 

ICRP 89 (Kramer et al., 1997; ICRP, 1975; ICRP, 2003).  This phantom includes the 

human head and torso and is molded around a synthetic skeleton.  The interior of the 

phantom is hollow and filled with both simulated organs and spacer blocks, which are 

equivalent to human tissue.  The heart, kidneys, and thyroid organs are hollow and can be 

filled with water.  Radioactive sources can be placed inside the liver and lungs of the 

phantom.  The tissue, skeleton, lungs, and liver are all made of polyurethane-based 

substitutes (ICRU, 1992).  The chest plate cover has a thickness of 1.63 cm (Kramer et 

al., 1998).  Figure 3.1 shows the Realistic Torso Phantom that was used to construct a 

computational model for this work. 
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Figure 3.2:  The LLNL Realistic Torso Phantom 

 

While the Realistic Torso Phantom is one of the most popular phantoms for lung 

counting it does have several deficiencies.  The lungs of the phantom are short compared 

to those of most people.  They are approximately 10 cm shorter than the lungs in ICRP 23 

(Kramer, 2004; ICRP, 1975).  The phantom was modeled on a cadaver that was similar to 

the average plutonium worker at LLNL.  Even though the cadaver was kept cool, some 

decomposition occurred between the time of death and the modeling.  This 

decomposition led to a �gas build up that pushed the heart and lungs higher in the chest 

cavity, hence leading to short lungs� (Kramer, 2004).  This decomposition is also the 

reason for the large chest curvature of the phantom.  The phantom also has a large heart 

that blocks out a significant fraction of the left lung.  The left and right lungs have a 

volume ratio of 43.5 to 56.5 (Kramer et al., 1998).  The chest wall thickness is almost 

constant around the whole phantom, unlike real people which are usually thinner in the 

middle and thicken towards the outer edges (Kramer et al., 1998).           

There are very little data on NaI(Tl) detectors being used in conjunction with the 

LLNL Realistic Torso Phantom.  When the phantom was first manufactured lung 
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counting was commonly performed using phoswich detectors.  That is why the chest 

plate contains circles that show the optimum placement for this type of detector.  

Technology has improved since the phantom development and now germanium detector 

arrays are much more common for lung counting.  No literature could be found in which 

a small sodium-iodide detector was used with the LLNL phantom. 
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CHAPTER 4 

COMPUTATIONAL MODELS 

 

The computational modeling was performed with the Monte Carlo N-Particle 

transport code version 5 (MCNP5) (X-5 Monte Carlo Team, 2003).  When creating an 

input file, the user specifies the geometry and material makeup/density of the system.  

The user also gives details on the radiation source and tally, which is how you specify 

what results you want.  An f8 tally, known as a pulse-height tally, was used in all models.  

This tally records the energy deposited in a cell by each source particle and its secondary 

particles (X-5 Monte Carlo Team, 2003).  Table 4.1 shows information on the primary 

gammas emitted for the radioisotopes used in the MCNP models.  The Region of Interest 

(ROI) is the energy range that is integrated over in determining the detector efficiency. 

 

Table 4.1:  Radioisotope Gamma Data 

 Cs-137 Co-60 Am-241 Ir-192 I-131 
γ-ray Energy (keV) 662 1173, 1333 59.5 296-612 364.5, 637 
γ-ray Intensity     0.851 1, 1 0.359 2.13 0.812, 0.073 
ROI (keV) 601-723 1075-1427 36-73 267-650 322-407 

 

 

 A Gaussian Energy Broadening (GEB) treatment was used to simulate the 

resolution of the detector.  This treatment uses three parameters to define the resolution 

of the detector at a specific energy by: 

 

 



 

  11

[4.1] 

where:  

E = the peak energy (MeV)  

fwhm = the full width at half maximum of a Gaussian resolution function 

   centered at E 

a = unknown parameter 

b = unknown parameter 

c = unknown parameter 

 

To solve for a, b, and c, measured spectra for 137Cs and 60Co point sources were 

used to determine the fwhm of the three photopeaks (662 keV peak for 137Cs, 1.17 MeV 

and 1.33 MeV peaks for 60Co).  The parameters were then solved using GNUfit and were 

found to be a = -0.0050254, b = 0.0700037, and c = -0.0784113.  Plugging these values in 

at an energy of 662 keV gives a resolution of 7.59%.  The GR-130 manual states that the 

resolution at 662 keV should be 7.2%±0.5% (Exploranium Radiation Detection Systems, 

2001).    

Handheld Detector 

The model of the Exploranium GR-130 was constructed as best as possible 

without having detailed blueprints of the detector available.  The manual of the detector 

reported that the crystal had a diameter and height of 3.8 cm (1.5 inch) and 5.7 cm (2.2 

inch), respectively.  The detector is placed 0.21 cm from the front face of the detector box 

and was centered in the other two directions.  Data were taken using a 137Cs point source 

located 20 cm and 10 cm from the front face of the detector case.  This same 

²cEEbafwhm ++=
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configuration was then modeled in MCNP.  Integrating over the 137Cs 662 keV peak 

gives a difference between measured and calculated data of 2.1% and 0.7% at 20 cm and 

10 cm, respectively.     

Slab Phantom Model 

For the model of the slab phantom, the detector was placed in the same way as 

described in the experimental setup.  In the computational model multiple slabs were 

considered to be one large parallelepiped, which does not take small air gaps in between 

the slabs into consideration.  Figure 4.1 shows the setup with a combination of slabs 

totaling 5-cm thick inside the case.  After the model was validated against the measured 

data additional runs were performed with a 15-cm thick slab behind the point source.  

This showed the contribution of backscattering and allows for a more realistic model, 

since a person has tissue behind their lungs.  Models were run when the case was empty, 

with slab thicknesses of 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 7.5, and 10 cm, and with all of the slabs 

loaded (13.8 cm).    
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Figure 4.1:  MCNP Model with a 5 cm Thick Slab 



 

  14

LLNL Phantom Model 

 A voxel phantom was used to model the LLNL phantom because it would be too 

difficult to model using regular geometry.  To achieve this, a CT scan was taken of the 

phantom at Emory University Hospital.  The Digital Imaging and Communications in 

Medicine (DICOM) files from the scan were then loaded into the Scan2MCNP program, 

developed by White Rock Science (White Rock Science, 2003).   

Scan2MCNP converts the CT scan data contained in the DICOM images into an 

MCNP input file.  Each DICOM file is a two dimensional image or slice taken during the 

CT scan.  The operator can set the spacing of the slices; for our scan, a slice was taken 

every 5 mm.  For this work the x, y, and, z axes are the transverse, anteroposterior, and 

vertical axes respectively.  Each pixel of a DICOM image has a corresponding intensity 

that is related to the density of the material.  The user can create partitions that represent 

ranges of pixel intensities.  Then each partition can be used to represent a specific 

material.  The input file generated contains only the geometry and materials of the region 

that was scanned.  Figure 4.2 shows a DICOM image, the image loaded in the 

Scan2MCNP program, the image with partitions, and the same slice as an MCNP input 

file. 
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Figure 4.2:  A Slice of the LLNL Phantom from a DICOM Image to an MCNP Input 
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The user specifies how big to make the voxels; for this work voxels are 1 cm in 

the x and y directions and 2 cm in the z direction.  These dimensions were chosen to keep 

the number of cells in the input file low.  If the input file had more than around 5,000 

cells, problems were experienced and the code would not run properly.  If a voxel 

contains more than one material, the user can choose to either create a new fraction-

weighted material or use the material that has the highest fraction.  The program also 

contains an algorithm that can be used to combine neighboring cells of the same material.  

The use of this algorithm helps reduce the number of cells in the MCNP input file.  This 

was only used for combining cells in the x and y directions, since combining cells in the z 

direction is not very efficient.  The Scan2MCNP manual states that �combining in the z 

results in only a few more cells being combined at the expense of a much larger 

computational time� (White Rock Science, 2003).   

When the scan was taken, all of the organs were empty, which is why the heart 

shows up as air in the picture above.  The kidneys and heart were filled with water 

manually in the MCNP input.  The density of the lung material was so low that it also 

appeared as air and was converted to lung equivalent tissue.  Other manual touchups were 

done to the input including areas where air gaps were present.  Table 4.2 shows the 

densities of the various materials used in the model of the phantom. 

 

Table 4.2:  Densities of Materials in LLNL Model 

 Density (g/cm³) 
Tissue 1.04 
Skeleton 1.40 
Lungs 0.25 
Liver 1.11 
Kidneys 1.00 
Heart 1.00 
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 The model used extends from the waistline to the neck of the phantom.  This was 

done to reduce the number of total cells in the model.  Large parallelepipeds using the 

same tissue material were added above and below this region to represent the head and 

waist of the phantom.   All of the cells that comprise the lungs were combined into 10 

large cells.  The source definition used contains the V option, which makes probabilities 

proportional to the cell volume, so that a distributed source in the lungs is achieved.  This 

assumption that the radioactive material deposition is uniformly distributed in the lungs 

may not be valid.  The particle distribution is a function of particle size, breathing rate, 

and health of the person (Kramer et al., 1997).  The results obtained from a uniformly 

contaminated lung versus a lung with highly localized activity could be drastically 

different.  It was reported that when assuming a homogenous distribution in the lungs the 

activity can be underestimated by a factor of four or overestimated by a factor of 26 when 

radioisotopes are actually heterogeneously located (Kramer et al., 1997). 

 The model of the detector was then inserted into the model of the LLNL phantom.  

The front face of the detector was placed against the chest of the phantom.  This 

configuration might not seem optimal, since it is more natural to hold the detector in such 

a way that the bottom of the detector touches the chest.  It is also more difficult to read 

the display when the front of the detector is against the chest.  The efficiency obtained 

from this method is, however, significantly higher due to the detector location.  The 

center of the detector was lined up on the chest surface with the center of the right lung.  

This gives a better efficiency than over the left lung because of the lung volume ratio 

described in Chapter 3.  It was reported that centering the detector above the midpoint of 

the right lung gave maximum efficiency regardless of photon energy when using 
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germanium detectors (Kramer et al., 1999).  It was assumed that the same was true when 

using a sodium-iodide detector.   

 

 

Figure 4.3:  MCNP Model of the LLNL Phantom with the GR-130 Detector 
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MIRD Phantom Models 

 Models of anthropomorphic phantoms based on the Medical Internal Radiation 

Dose (MIRD) reports were also constructed.  Five different models were made using the 

BodyBuilder program (White Rock Science, 2004).  Models of a male, female, adipose 

male, adipose female, and 10-year-old androgynous child were used for this work.  All of 

the organs available in the BodyBuilder program were included in the models.  Unlike 

the LLNL model, the MIRD models are not composed of voxels.  The detector was lined 

up with the center of the right lung similar to the LLNL phantom.  For the two female 

models the detector was placed against the back for higher efficiency.  A picture of the 

model and detector placement used on the male MIRD phantom is shown below (Figure 

4.4).   

 

 

Figure 4.4:  Male MIRD Phantom 
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CHAPTER 5 

RESULTS 

 

The data obtained from the GR-130 can be sent to a computer using the SpecView 

program.  The spectral analysis given from this program is given in counts per minute.  

The data are given in 256 channels, but the energy of each channel is not specified.  

Known peaks were used to assign the energy of each channel. 

The energy bins in the MCNP input file were assigned to match the channels of 

the detector.  The data from the MCNP tally are given in pulse-height per source gamma-

ray or beta particle.  This can be converted to counts per minute by multiplying by the 

activity (in decays per minute) and the emission probability.   

Slab Results 

The MCNP model was compared to measured data for two point sources at six 

different slab thicknesses.  Table 5.1 shows the ratio of measured efficiency to computed 

efficiency for 137Cs and 60Co found by integrating over the ROIs shown in Table 4.1.  The 

uncertainty in the listed activity for both point sources was unknown.  A nominal 

uncertainty of 3% was assumed for both sources.  

 

Table 5.1:  Measured/Computed Efficiency 

Slab 
Thickness 
(cm) 

0 2.5 5 7.5 10 13.8 

Cs-137 1.00±0.033 0.99±0.033 1.02±0.034 1.06±0.035 1.04±0.036 1.05±0.038
Co-60 0.97±0.034 0.95±0.035 0.95±0.036 0.98±0.037 0.97±0.038 0.99±0.040
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From Table 5.1 it can be seen that the measured and computed values always had 

a difference of 6% or less.  The average difference between the measured and computed 

efficiencies was 3.2%.  The measured values were generally higher than the computed 

values for 137Cs while the opposite was true for 60Co, which could partially be due to the 

error associated with the reported activities.  After this code validation, a more complex 

model was constructed in which a 15 cm thick slab was placed behind the point source.  

This model was run with the following sources: 137Cs, 60Co, 241Am, 192Ir, and 131I.   

The efficiency was calculated for a variety of thicknesses (Table 5.2).  The 

efficiency of all the primary gamma emitters decreases as slab thickness increases.  This 

is expected since more photons will be absorbed for larger slab thicknesses.  The 

calculated error only includes the statistical uncertainty, which is governed by the 

efficiency and number of particles run.  Other factors such as the error in the cross-

section libraries were not accounted for.    

 

Table 5.2:  Calculated Efficiency of the Slab Model 

 

 

0.0 0.091 ± 1E-03 0.054 ± 7E-04 0.658 ± 3E-03 0.206 ± 1E-03 0.169 ± 1E-03
0.5 0.088 ± 9E-04 0.053 ± 7E-04 0.655 ± 3E-03 0.201 ± 1E-03 0.163 ± 1E-03
1.0 0.085 ± 9E-04 0.052 ± 7E-04 0.645 ± 3E-03 0.195 ± 1E-03 0.156 ± 1E-03
1.5 0.082 ± 9E-04 0.050 ± 7E-04 0.631 ± 3E-03 0.188 ± 1E-03 0.149 ± 1E-03
2.0 0.078 ± 9E-04 0.048 ± 7E-04 0.609 ± 2E-03 0.182 ± 1E-03 0.142 ± 1E-03
2.5 0.075 ± 9E-04 0.047 ± 7E-04 0.591 ± 2E-03 0.175 ± 1E-03 0.135 ± 1E-03
3.0 0.072 ± 8E-04 0.045 ± 7E-04 0.568 ± 2E-03 0.168 ± 1E-03 0.130 ± 1E-03
4.0 0.066 ± 8E-04 0.043 ± 7E-04 0.522 ± 2E-03 0.155 ± 1E-03 0.118 ± 1E-03
5.0 0.060 ± 8E-04 0.040 ± 6E-04 0.477 ± 2E-03 0.144 ± 1E-03 0.107 ± 1E-03
7.5 0.048 ± 7E-04 0.034 ± 6E-04 0.371 ± 2E-03 0.119 ± 1E-03 0.085 ± 9E-04
10.0 0.040 ± 6E-04 0.029 ± 5E-04 0.282 ± 2E-03 0.097 ± 1E-03 0.066 ± 8E-04
13.8 0.028 ± 5E-04 0.023 ± 5E-04 0.188 ± 1E-03 0.072 ± 8E-04 0.046 ± 7E-04

Slab Thickness 
(cm) Cs-137

Absolute Efficiency (%)
Co-60 Am-241 Ir-192 I-131
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LLNL Phantom Results 

The MCNP model of the LLNL phantom was run with the same sources used in 

the slab model (137Cs, 60Co, 241Am, 192Ir, and 131I).  The efficiency data of the LLNL 

phantom are shown below (Table 5.3). 

 

Table 5.3:  Efficiency of the LLNL Phantom Model  

 

 

MIRD Phantom Results 

 The results using the five different MIRD models are shown below (Table 5.4).  

Appendix C contains the spectral data for all of the anthropomorphic phantoms.    

 

Table 5.4:  Efficiency of the MIRD Phantom Models 

 

 

Phantom Comparison 

 The efficiencies of the LLNL phantom and the male MIRD phantom lie within 

5% of each other for all of the isotopes used.  When comparing the efficiencies of the 

0.077 ± 4E-04 0.047 ± 3E-04 0.183 ± 6E-04 0.396 ± 9E-04 0.142 ± 5E-04

Absolute Efficiency (%)
Cs-137 Co-60 Ir-192 Am-241 I-131

Male 0.076 ± 4E-04 0.050 ± 3E-04 0.186 ± 6E-04 0.386 ± 9E-04 0.139 ± 5E-04
Female 0.093 ± 4E-04 0.060 ± 3E-04 0.226 ± 7E-04 0.463 ± 1E-03 0.170 ± 6E-04
Adipose Male 0.029 ± 2E-04 0.021 ± 2E-04 0.072 ± 4E-04 0.127 ± 5E-04 0.049 ± 3E-04
Adipose Female 0.034 ± 3E-04 0.025 ± 2E-04 0.084 ± 4E-04 0.144 ± 5E-04 0.059 ± 3E-04
Child 0.104 ± 5E-04 0.067 ± 4E-04 0.253 ± 7E-04 0.522 ± 1E-03 0.190 ± 6E-04

Model Cs-137 Co-60 Ir-192 Am-241 I-131
Absolute Efficiency (%)
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slab model with that of the anthropomorphic phantoms, it can be seen that the efficiency 

of the LLNL and male MIRD phantoms with a distributed source generally falls between 

a slab thickness of 1.5 to 3 cm in the slab phantom using a point source.  

Minimum Detectable Activity 

The Minimum Detectable Activity (MDA) is the minimum activity that can be 

distinguished above background 95% of the time.  This value is dependent upon the 

background count rate and the efficiency of the detector in the ROI.  The MDA is 

determined by: 

 

[5.1] 

 

where:  

B = background counting rate in the ROI (cps) 

ε = absolute efficiency (the sum of the f8 tally over the ROI) 

tc = counting time (s) 

Pγ = emission probability of the gammas in the ROI 

 

The MDA was calculated for a counting time of 1, 5, and 10 minutes and reported 

in nCi.  These data are shown in Tables 5.5 for the slab phantom and the errors of these 

values are reported in the appendix (Table A.1).  The error includes the statistical error 

from the MCNP run as well as the background count rate error.  The gamma-ray emission 

probability error was assumed to be negligible.  The MDAs for the MIRD phantoms are 

shown in Table 5.6.  The time column in these tables represents the counting time used.   

γεPt
Bt

MDA
c

c65.43 +
=
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Table 5.5:  MDA Calculated From Computational Results in a Slab Phantom 

 

Cs-137 Co-60 Am-241 Ir-192 I-131
0.0 46.9 30.3 28.4 24.2 43.7
0.5 48.2 30.7 28.6 24.8 45.3
1.0 50.2 31.7 29.0 25.6 47.3
1.5 52.2 32.7 29.7 26.5 49.4
2.0 54.4 33.8 30.7 27.4 51.8
2.5 56.9 35.0 31.7 28.5 54.4
3.0 59.4 36.1 33.0 29.6 56.9
4.0 64.7 38.1 35.9 32.1 62.4
5.0 70.5 40.6 39.2 34.7 68.8
7.5 87.9 47.9 50.4 42.0 86.8
10.0 107.6 55.5 66.4 51.3 111.2
13.8 149.8 72.3 99.6 69.7 159.7
0.0 20.6 13.2 12.6 10.7 19.3
0.5 21.1 13.4 12.6 11.0 20.0
1.0 22.0 13.8 12.8 11.4 20.9
1.5 22.9 14.3 13.1 11.8 21.8
2.0 23.8 14.8 13.6 12.2 22.9
2.5 24.9 15.3 14.0 12.7 24.0
3.0 26.0 15.8 14.6 13.1 25.1
4.0 28.3 16.7 15.9 14.3 27.6
5.0 30.9 17.7 17.3 15.4 30.4
7.5 38.5 20.9 22.3 18.6 38.3
10.0 47.1 24.2 29.4 22.8 49.1
13.8 65.6 31.6 44.1 31.0 70.5
0.0 14.5 9.3 8.9 7.6 13.6
0.5 14.8 9.4 8.9 7.8 14.1
1.0 15.5 9.7 9.0 8.0 14.7
1.5 16.1 10.1 9.3 8.3 15.4
2.0 16.8 10.4 9.6 8.6 16.1
2.5 17.5 10.7 9.9 8.9 16.9
3.0 18.3 11.1 10.3 9.3 17.7
4.0 19.9 11.7 11.2 10.1 19.4
5.0 21.7 12.5 12.2 10.9 21.4
7.5 27.1 14.7 15.7 13.2 27.0
10.0 33.2 17.0 20.7 16.1 34.6
13.8 46.2 22.2 31.1 21.9 49.7

MDA (nCi)

1

5

10

Time 
(minutes)

Slab 
Thickness 

(cm)
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Table 5.6:  MDA Calculated Using MIRD Phantom Models 

 

Minimum Detectable Dose 

After determining the minimum detectable activity for all of the isotopes, it is 

important to determine the minimum detectable dose (MDD).  The MDD will be the 

determining factor in evaluating the usefulness of handheld detectors for this application.  

As time passes the inhaled materials will be dissolved into the blood while undergoing 

radioactive decay.  For the isotopes considered in this work the biological absorption will 

be the limiting factor in a time span of one week after inhalation.  Particles are classified 

into three classes based on their solubility into blood from the repertory tract.  Type F 

particles are readily absorbed, type M have intermediary absorption rates, and type S are 

nearly insoluble.  Intake retention fractions (IRF) were corrected for radioactive decay 

using Equation 5.2, which is determined by intake data developed for ICRP 68 (Potter, 

2002).  This led to the IRF values shown in Table 5.7. 

1 56.2 ± 6.0% 32.9 ± 6.7% 26.8 ± 2.8% 48.4 ± 3.2% 52.8 ± 3.6%
5 24.6 ± 6.0% 14.4 ± 6.7% 11.9 ± 2.8% 21.4 ± 3.2% 23.3 ± 3.6%
10 17.3 ± 6.0% 10.1 ± 6.7% 8.4 ± 2.8% 15.1 ± 3.2% 16.4 ± 3.6%
1 45.9 ± 6.0% 27.0 ± 6.7% 22.1 ± 2.8% 40.4 ± 3.2% 43.2 ± 3.6%
5 20.1 ± 6.0% 11.8 ± 6.7% 9.8 ± 2.8% 17.9 ± 3.2% 19.1 ± 3.6%
10 14.1 ± 6.0% 8.3 ± 6.7% 6.9 ± 2.8% 12.6 ± 3.2% 13.5 ± 3.6%
1 147.2 ± 6.1% 77.4 ± 6.8% 68.9 ± 2.8% 146.9 ± 3.2% 148.9 ± 3.6%
5 64.5 ± 6.1% 33.8 ± 6.8% 30.6 ± 2.8% 65.0 ± 3.2% 65.7 ± 3.6%
10 45.4 ± 6.1% 23.8 ± 6.8% 21.6 ± 2.8% 45.8 ± 3.2% 46.3 ± 3.6%
1 126.6 ± 6.1% 65.5 ± 6.8% 59.4 ± 2.8% 129.8 ± 3.2% 125.8 ± 3.6%
5 55.4 ± 6.1% 28.6 ± 6.8% 26.4 ± 2.8% 57.4 ± 3.2% 55.5 ± 3.6%
10 39.0 ± 6.1% 20.1 ± 6.8% 18.6 ± 2.8% 40.5 ± 3.2% 39.2 ± 3.6%
1 41.1 ± 6.0% 24.3 ± 6.7% 19.7 ± 2.8% 35.8 ± 3.2% 38.7 ± 3.6%
5 18.0 ± 6.0% 10.6 ± 6.7% 8.8 ± 2.8% 15.8 ± 3.2% 17.1 ± 3.6%
10 12.7 ± 6.0% 7.5 ± 6.7% 6.2 ± 2.8% 11.2 ± 3.2% 12.1 ± 3.6%

Child

Time 
(minutes)

Male

Female

Adipose 
Male

Adipose 
Female

Cs-137 Co-60 Ir-192
MDA (nCi)

Am-241 I-131
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[5.2]  

 

where: 

 IRFR = intake retention fraction corrected for radioactive decay 

 IRFT = biological intake retention fraction 

 λ = radioactive decay constant 

 t = time after intake 

    

Table 5.7:  Intake Retention Fractions for the Lung 

Cs-137 Co-60 Am-241 Ir-192 I-131 Sr-90/Y-90 Days 
Post 

Intake F M S M F M S F F S 
0.25 0.264 0.326 0.333 0.326 0.263 0.325 0.332 0.258 0.264 0.333
0.50 0.205 0.265 0.272 0.265 0.204 0.264 0.271 0.196 0.205 0.272
0.75 0.160 0.219 0.225 0.219 0.159 0.217 0.223 0.150 0.160 0.225
1.00 0.125 0.182 0.189 0.182 0.124 0.180 0.187 0.115 0.125 0.189
1.25 0.097 0.154 0.161 0.154 0.096 0.152 0.159 0.087 0.097 0.161
1.50 0.075 0.132 0.139 0.132 0.074 0.130 0.137 0.066 0.075 0.139
1.75 0.059 0.115 0.122 0.115 0.058 0.113 0.120 0.051 0.059 0.122
2.00 0.046 0.102 0.109 0.102 0.045 0.100 0.107 0.039 0.046 0.109
2.25 0.036 0.091 0.098 0.091 0.035 0.090 0.096 0.029 0.036 0.098
2.50 0.028 0.083 0.090 0.083 0.027 0.081 0.088 0.022 0.028 0.090
2.75 0.022 0.077 0.084 0.077 0.021 0.075 0.082 0.017 0.022 0.084
3.00 0.017 0.072 0.079 0.072 0.016 0.070 0.077 0.013 0.017 0.079
4.00 0.006 0.061 0.068 0.061 0.006 0.058 0.065 0.004 0.006 0.068
5.00 0.002 0.056 0.063 0.056 0.002 0.053 0.060 0.001 0.002 0.063
6.00 0.001 0.053 0.061 0.054 0.001 0.051 0.058 0.001 0.001 0.061
7.00 3.1E-04 0.052 0.060 0.052 2.9E-04 0.049 0.056 1.7E-04 3.1E-04 0.060

  

From the IRF data the Minimum Detectable Intake (MDI) can be determined 

using Equation 5.3.  The MDI and subsequent MDD are based on the MDA with a 10 

minute counting time using the MIRD phantoms.  The MDI for the various MIRD 

phantoms are shown in Tables 5.8-5.12.  The last row in these tables list the MDA values 

t
TR eIRFIRF λ−=
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used to determine the respective MDI values.  The errors associated with the IRF, half-

life, and dose conversion coefficient data were assumed to be negligible.  This means that 

the error in the MDI and MDD are the same as in Table 5.6 for each corresponding 

isotope and phantom model.  The appendix shows the MDI and MDD for the LLNL 

phantom, which agrees well with that of the male MIRD phantom.       

 

                 [5.3] 

 
RIRF

MDAMDI =
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Table 5.8:  Minimum Detectable Intake for the Male MIRD Phantom (nCi) 

 

Cs-137 Am-241 I-131
F M S M F M S F

0.25 65.6 31.0 30.4 46.3 31.9 25.8 25.3 63.7
0.50 84.4 38.2 37.2 57.0 41.1 31.8 31.0 83.8
0.75 108.2 46.2 45.0 69.0 52.8 38.6 37.6 109.7
1.00 138.5 55.6 53.5 83.0 67.8 46.5 44.8 143.4
1.25 178.4 65.7 62.9 98.1 87.5 55.1 52.7 188.9
1.50 229.3 76.7 72.8 114.4 112.7 64.5 61.2 247.9
1.75 294.4 88.0 83.0 131.4 145.0 74.2 69.9 325.3
2.00 378.0 99.2 92.9 148.1 186.7 83.8 78.4 426.7
2.25 484.9 110.6 102.9 165.1 240.0 93.6 87.1 559.3
2.50 622.7 121.4 112.1 181.1 309.0 103.0 95.1 733.9
2.75 801.4 131.5 120.5 196.2 398.6 111.8 102.5 965.2
3.00 1024.3 140.6 128.2 209.8 510.6 119.9 109.2 1260.5
4.00 2792.3 167.2 149.6 249.3 1404.9 143.7 128.7 3745.3
5.00 7593.6 181.6 160.3 270.7 3856.4 157.6 139.1 1.1E+04
6.00 2.1E+04 189.1 165.6 281.8 1.1E+04 165.6 145.0 3.3E+04
7.00 5.6E+04 193.9 168.7 288.8 2.9E+04 171.3 149.1 9.7E+04

Based on 
10 Minute 
MDA (nCi)

17.3 10.1 10.1 15.1 8.4 8.4 8.4 16.4

Days Post 
Intake

Co-60 Ir-192
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Table 5.9:  Minimum Detectable Intake for the Female MIRD Phantom (nCi) 

 

Cs-137 Am-241 I-131
F M S M F M S F

0.25 53.5 25.4 24.9 38.7 26.3 21.3 20.8 52.1
0.50 68.9 31.3 30.5 47.6 33.9 26.2 25.6 68.6
0.75 88.3 37.8 36.8 57.6 43.6 31.8 31.0 89.8
1.00 113.1 45.5 43.9 69.3 55.9 38.4 37.0 117.4
1.25 145.7 53.8 51.5 81.9 72.2 45.5 43.5 154.6
1.50 187.2 62.8 59.6 95.6 93.0 53.2 50.5 203.0
1.75 240.4 72.1 68.0 109.7 119.7 61.2 57.7 266.3
2.00 308.6 81.3 76.1 123.7 154.0 69.1 64.7 349.3
2.25 395.9 90.6 84.3 137.9 198.0 77.3 71.8 457.9
2.50 508.4 99.4 91.8 151.3 254.9 85.0 78.5 600.8
2.75 654.3 107.7 98.7 163.8 328.8 92.2 84.5 790.1
3.00 836.3 115.2 105.0 175.2 421.2 98.9 90.1 1031.8
4.00 2279.8 136.9 122.6 208.2 1159.0 118.6 106.1 3065.8
5.00 6200.0 148.8 131.4 226.1 3181.3 130.0 114.8 9087.6
6.00 1.7E+04 154.9 135.7 235.4 8726.7 136.6 119.6 2.7E+04
7.00 4.6E+04 158.8 138.2 241.2 2.4E+04 141.3 123.0 8.0E+04

Based on 
10 Minute 
MDA (nCi)

14.1 8.3 8.3 12.6 6.9 6.9 6.9 13.5

Days Post 
Intake

Co-60 Ir-192



 

  30

Table 5.10:  Minimum Detectable Intake for the Adipose Male MIRD Phantom (nCi) 

 

Cs-137 Am-241 I-131
F M S M F M S F

0.25 171.8 72.9 71.4 140.6 82.0 66.4 65.0 179.4
0.50 221.3 89.7 87.4 172.9 105.9 81.9 79.8 236.0
0.75 283.6 108.6 105.7 209.3 136.0 99.3 96.7 309.0
1.00 363.0 130.7 125.8 251.8 174.4 119.8 115.4 404.1
1.25 467.7 154.5 147.7 297.6 225.3 141.9 135.8 532.2
1.50 600.9 180.2 171.1 347.2 290.2 166.0 157.6 698.6
1.75 771.6 206.9 195.0 398.5 373.5 190.9 180.0 916.6
2.00 990.7 233.3 218.3 449.3 480.6 215.8 201.9 1202.3
2.25 1271.0 260.0 241.8 500.9 618.0 241.1 224.2 1576.1
2.50 1632.2 285.3 263.5 549.5 795.5 265.2 244.9 2068.1
2.75 2100.7 309.1 283.3 595.2 1026.2 287.9 263.9 2719.7
3.00 2685.0 330.6 301.3 636.6 1314.6 308.6 281.2 3551.8
4.00 7319.2 392.9 351.7 756.3 3617.2 370.1 331.3 1.1E+04
5.00 2.0E+04 426.8 376.9 821.4 9928.8 405.7 358.2 3.1E+04
6.00 5.4E+04 444.5 389.3 855.1 2.7E+04 426.3 373.4 9.3E+04
7.00 1.5E+05 455.7 396.6 876.3 7.5E+04 441.0 383.8 2.7E+05

Based on 
10 Minute 
MDA (nCi)

45.4 23.8 23.8 45.8 21.6 21.6 21.6 46.3

Days Post 
Intake

Co-60 Ir-192
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Table 5.11:  Minimum Detectable Intake for the Adipose Female MIRD Phantom (nCi) 

 

Cs-137 Am-241 I-131
F M S M F M S F

0.25 147.8 61.8 60.5 124.2 70.7 57.3 56.0 151.5
0.50 190.3 76.0 74.0 152.8 91.3 70.6 68.8 199.4
0.75 243.8 92.0 89.5 184.9 117.2 85.6 83.3 261.0
1.00 312.1 110.7 106.6 222.5 150.4 103.3 99.4 341.4
1.25 402.2 130.8 125.1 262.9 194.2 122.3 117.0 449.6
1.50 516.8 152.6 144.9 306.7 250.1 143.1 135.9 590.2
1.75 663.5 175.2 165.1 352.1 321.9 164.6 155.1 774.3
2.00 851.9 197.5 184.9 397.0 414.2 186.0 174.1 1015.7
2.25 1092.9 220.2 204.8 442.5 532.7 207.8 193.3 1331.5
2.50 1403.5 241.6 223.2 485.5 685.7 228.6 211.1 1747.1
2.75 1806.4 261.8 239.9 525.9 884.5 248.1 227.5 2297.6
3.00 2308.9 280.0 255.1 562.4 1133.2 266.0 242.4 3000.5
4.00 6293.9 332.7 297.8 668.2 3117.9 319.0 285.5 8915.2
5.00 1.7E+04 361.5 319.2 725.6 8558.3 349.7 308.7 2.6E+04
6.00 4.7E+04 376.5 329.7 755.4 2.3E+04 367.5 321.8 7.8E+04
7.00 1.3E+05 386.0 335.9 774.2 6.4E+04 380.2 330.8 2.3E+05

Based on 
10 Minute 
MDA (nCi)

39.0 20.1 20.1 40.5 18.6 18.6 18.6 39.2

Days Post 
Intake

Co-60 Ir-192
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Table 5.12:  Minimum Detectable Intake for the Child MIRD Phantom (nCi) 

 

 

  

Cs-137 Am-241 I-131
F M S M F M S F

0.25 48.0 22.9 22.4 34.3 23.5 19.0 18.6 46.7
0.50 61.8 28.2 27.5 42.2 30.3 23.5 22.8 61.4
0.75 79.2 34.1 33.2 51.0 38.9 28.4 27.7 80.4
1.00 101.3 41.1 39.6 61.4 49.9 34.3 33.0 105.2
1.25 130.6 48.6 46.4 72.5 64.5 40.6 38.9 138.5
1.50 167.8 56.6 53.8 84.6 83.1 47.5 45.1 181.8
1.75 215.4 65.0 61.3 97.2 106.9 54.7 51.5 238.6
2.00 276.6 73.3 68.6 109.5 137.6 61.8 57.8 313.0
2.25 354.8 81.7 76.0 122.1 176.9 69.0 64.2 410.3
2.50 455.7 89.7 82.8 134.0 227.8 75.9 70.1 538.3
2.75 586.5 97.2 89.1 145.1 293.8 82.4 75.6 707.9
3.00 749.6 103.9 94.7 155.2 376.4 88.4 80.5 924.5
4.00 2043.4 123.5 110.6 184.4 1035.7 106.0 94.9 2746.9
5.00 5557.0 134.2 118.5 200.2 2842.9 116.2 102.6 8142.3
6.00 1.5E+04 139.7 122.4 208.4 7798.4 122.1 106.9 2.4E+04
7.00 4.1E+04 143.3 124.7 213.6 2.1E+04 126.3 109.9 7.1E+04

Based on 
10 Minute 
MDA (nCi)

12.7 7.5 7.5 11.2 6.2 6.2 6.2 12.1

Days Post 
Intake

Co-60 Ir-192
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After obtaining the MDI, the MDD can be calculated using Dose Conversion 

Coefficients (DCC).  The inhalation values using the Committed Effective Dose 

Equivalent (CEDE) were reported by the Environmental Protection Agency and are 

derived from data in ICRP Publication 26 (EPA, 1998; ICRP, 1977).  The Committed 

Effective Dose (CED) values are from ICRP Publication 60 (ICRP, 1991).  The dose 

values obtained from both of these conversion factors is the effective dose experienced 

by a person after a 50 year period after inhalation.  The DCC values are shown in Table 

5.13.  ICRP 60 uses different tissue weighting factors than ICRP 26.  Publication 60 also 

uses radiation weighting factors instead of the previously used quality factors.  It should 

be noted that the DCC of 241Am is several orders of magnitude higher than for any of the 

other isotopes.  This is due to the fact that 241Am is an alpha emitter.   

 

Table 5.13:  Dose Conversion Coefficients (mrem/nCi) 

CEDE 
(ICRP 26) 

CED 
(ICRP 60) 

CED  
(ICRP 60) Radioisotope Particle 

Class 
Adult Adult 10-yr-old 

Cs-137 F 0.032 0.017 0.014 
M 0.033 0.037 0.056 Co-60 
S 0.219 0.115 0.148 

Am-241 M 444.0 156.0 148.0 
F 0.019 0.007 0.012 
M 0.018 0.019 0.028 Ir-192 
S 0.028 0.024 0.035 

I-131 F 0.033 0.027 0.070 
F 0.239 0.089 0.152 Sr-90/Y-90 
S 1.299 0.593 0.667 

 

 The MDD can now be calculated using Equation 5.4.  The MDD values 

calculated at several different times post exposure using both ICRP 26 and 60 conversion 

factors are shown in Tables 5.14-5.23 and are reported in mrem. 
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[5.4] 

 

Table 5.14:  MDD for the Male MIRD Phantom (CEDE) (ICRP 26) (mrem) 

 

 

Table 5.15:  MDD for the Male MIRD Phantom (CED) (ICRP 60) (mrem) 

DCCMDIMDD ×=

Cs-137 Am-241 I-131
F M S M F M S F

0.25 2.09 1.03 6.64 2.06E+04 0.60 0.47 0.71 2.09
0.50 2.70 1.26 8.13 2.53E+04 0.78 0.57 0.87 2.76
0.75 3.45 1.53 9.83 3.06E+04 1.00 0.70 1.06 3.61
1.00 4.42 1.84 11.71 3.69E+04 1.28 0.84 1.26 4.72
1.25 5.70 2.17 13.74 4.36E+04 1.65 1.00 1.48 6.21
1.50 7.32 2.54 15.9 5.08E+04 2.13 1.16 1.72 8.16
1.75 9.40 2.91 18.1 5.83E+04 2.74 1.34 1.97 10.70
2.00 12.07 3.28 20.3 6.58E+04 3.52 1.51 2.21 14.04
2.25 15.5 3.66 22.5 7.33E+04 4.53 1.69 2.45 18.4
2.50 19.9 4.02 24.5 8.04E+04 5.83 1.86 2.68 24.1
2.75 25.6 4.35 26.4 8.71E+04 7.52 2.02 2.89 31.7
3.00 32.7 4.65 28.0 9.32E+04 9.64 2.16 3.08 41.5
4.00 89.2 5.53 32.7 1.11E+05 26.5 2.60 3.62 123.2
5.00 242 6.01 35.1 1.20E+05 72.8 2.85 3.92 365
6.00 659 6.26 36.2 1.25E+05 200 2.99 4.08 1082
7.00 1789 6.41 36.9 1.28E+05 547 3.09 4.20 3201

Days Post 
Intake

Co-60 Ir-192

Cs-137 Am-241 I-131
F M S M F M S F

0.25 1.11 1.15 3.49 7.23E+03 0.21 0.50 0.62 1.74
0.50 1.44 1.41 4.28 8.89E+03 0.27 0.61 0.76 2.30
0.75 1.84 1.71 5.17 1.08E+04 0.35 0.74 0.92 3.00
1.00 2.35 2.06 6.16 1.29E+04 0.45 0.90 1.09 3.93
1.25 3.03 2.43 7.23 1.53E+04 0.58 1.06 1.29 5.17
1.50 3.90 2.84 8.37 1.79E+04 0.75 1.24 1.49 6.79
1.75 5.00 3.26 9.54 2.05E+04 0.97 1.43 1.71 8.91
2.00 6.43 3.67 10.68 2.31E+04 1.24 1.62 1.91 11.69
2.25 8.24 4.09 11.83 2.58E+04 1.60 1.81 2.12 15.3
2.50 10.59 4.49 12.89 2.83E+04 2.06 1.99 2.32 20.1
2.75 13.62 4.87 13.86 3.06E+04 2.66 2.16 2.50 26.4
3.00 17.4 5.20 14.74 3.27E+04 3.41 2.31 2.67 34.5
4.00 47.5 6.18 17.2 3.89E+04 9.37 2.77 3.14 102.6
5.00 129.1 6.72 18.4 4.22E+04 25.7 3.04 3.39 304
6.00 351 7.00 19.0 4.40E+04 70.6 3.20 3.54 901
7.00 953 7.17 19.4 4.51E+04 193 3.31 3.64 2667

Days Post 
Intake

Co-60 Ir-192
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Table 5.16:  MDD for the Female MIRD Phantom (CEDE) (ICRP 26) (mrem) 

 

 

Table 5.17:  MDD for the Female MIRD Phantom (CED) (ICRP 60) (mrem) 

 

Cs-137 Am-241 I-131
F M S M F M S F

0.25 1.71 0.84 5.44 1.72E+04 0.50 0.38 0.59 1.71
0.50 2.20 1.03 6.66 2.11E+04 0.64 0.47 0.72 2.26
0.75 2.82 1.25 8.06 2.56E+04 0.82 0.57 0.87 2.95
1.00 3.61 1.51 9.59 3.08E+04 1.05 0.69 1.04 3.86
1.25 4.65 1.78 11.26 3.64E+04 1.36 0.82 1.22 5.09
1.50 5.98 2.08 13.04 4.24E+04 1.75 0.96 1.42 6.68
1.75 7.67 2.39 14.86 4.87E+04 2.26 1.10 1.62 8.76
2.00 9.85 2.69 16.6 5.49E+04 2.91 1.25 1.82 11.49
2.25 12.64 3.00 18.4 6.12E+04 3.74 1.39 2.02 15.1
2.50 16.2 3.29 20.1 6.72E+04 4.81 1.53 2.21 19.8
2.75 20.9 3.56 21.6 7.27E+04 6.20 1.67 2.38 26.0
3.00 26.7 3.81 23.0 7.78E+04 7.95 1.79 2.54 33.9
4.00 72.8 4.53 26.8 9.24E+04 21.9 2.14 2.99 100.8
5.00 198 4.92 28.7 1.00E+05 60.0 2.35 3.23 299
6.00 538 5.12 29.7 1.05E+05 165 2.47 3.37 885
7.00 1461 5.25 30.2 1.07E+05 451 2.55 3.46 2621

Days Post 
Intake

Co-60 Ir-192

Cs-137 Am-241 I-131
F M S M F M S F

0.25 0.91 0.94 2.86 6.04E+03 0.18 0.41 0.51 1.43
0.50 1.17 1.16 3.50 7.43E+03 0.23 0.51 0.62 1.88
0.75 1.50 1.40 4.24 8.99E+03 0.29 0.61 0.76 2.46
1.00 1.92 1.69 5.04 1.08E+04 0.37 0.74 0.90 3.22
1.25 2.48 1.99 5.92 1.28E+04 0.48 0.88 1.06 4.24
1.50 3.18 2.32 6.86 1.49E+04 0.62 1.03 1.23 5.56
1.75 4.09 2.67 7.82 1.71E+04 0.80 1.18 1.41 7.30
2.00 5.25 3.01 8.75 1.93E+04 1.03 1.33 1.58 9.57
2.25 6.73 3.35 9.69 2.15E+04 1.32 1.49 1.75 12.55
2.50 8.64 3.68 10.56 2.36E+04 1.70 1.64 1.91 16.5
2.75 11.12 3.99 11.36 2.56E+04 2.19 1.78 2.06 21.6
3.00 14.22 4.26 12.08 2.73E+04 2.81 1.91 2.20 28.3
4.00 38.8 5.07 14.10 3.25E+04 7.73 2.29 2.59 84.0
5.00 105.4 5.50 15.1 3.53E+04 21.2 2.51 2.80 249
6.00 286 5.73 15.6 3.67E+04 58.2 2.64 2.92 738
7.00 778 5.88 15.9 3.76E+04 160 2.73 3.00 2183

Days Post 
Intake

Co-60 Ir-192
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Table 5.18:  MDD for the Adipose Male MIRD Phantom (CEDE) (ICRP 26) (mrem) 

 

 

Table 5.19:  MDD for the Adipose Male MIRD Phantom (CED) (ICRP 60) (mrem) 

Cs-137 Am-241 I-131
F M S M F M S F

0.25 0.91 0.94 2.86 6.04E+03 0.18 0.41 0.51 1.43
0.50 1.17 1.16 3.50 7.43E+03 0.23 0.51 0.62 1.88
0.75 1.50 1.40 4.24 8.99E+03 0.29 0.61 0.76 2.46
1.00 1.92 1.69 5.04 1.08E+04 0.37 0.74 0.90 3.22
1.25 2.48 1.99 5.92 1.28E+04 0.48 0.88 1.06 4.24
1.50 3.18 2.32 6.86 1.49E+04 0.62 1.03 1.23 5.56
1.75 4.09 2.67 7.82 1.71E+04 0.80 1.18 1.41 7.30
2.00 5.25 3.01 8.75 1.93E+04 1.03 1.33 1.58 9.57
2.25 6.73 3.35 9.69 2.15E+04 1.32 1.49 1.75 12.55
2.50 8.64 3.68 10.56 2.36E+04 1.70 1.64 1.91 16.5
2.75 11.12 3.99 11.36 2.56E+04 2.19 1.78 2.06 21.6
3.00 14.22 4.26 12.08 2.73E+04 2.81 1.91 2.20 28.3
4.00 38.8 5.07 14.10 3.25E+04 7.73 2.29 2.59 84.0
5.00 105.4 5.50 15.1 3.53E+04 21.2 2.51 2.80 249
6.00 286 5.73 15.6 3.67E+04 58.2 2.64 2.92 738
7.00 778 5.88 15.9 3.76E+04 160 2.73 3.00 2183

Days Post 
Intake

Co-60 Ir-192

Cs-137 Am-241 I-131
F M S M F M S F

0.25 2.92 2.70 8.21 2.19E+04 0.55 1.28 1.59 4.91
0.50 3.76 3.32 10.05 2.70E+04 0.71 1.58 1.95 6.47
0.75 4.82 4.02 12.15 3.26E+04 0.91 1.92 2.36 8.47
1.00 6.17 4.84 14.47 3.93E+04 1.16 2.31 2.82 11.07
1.25 7.95 5.71 17.0 4.64E+04 1.50 2.74 3.31 14.58
1.50 10.22 6.67 19.7 5.42E+04 1.94 3.20 3.85 19.1
1.75 13.12 7.65 22.4 6.22E+04 2.49 3.69 4.39 25.1
2.00 16.8 8.63 25.1 7.01E+04 3.21 4.16 4.93 32.9
2.25 21.6 9.62 27.8 7.81E+04 4.12 4.65 5.47 43.2
2.50 27.7 10.56 30.3 8.57E+04 5.31 5.12 5.98 56.7
2.75 35.7 11.44 32.6 9.29E+04 6.84 5.56 6.44 74.5
3.00 45.6 12.23 34.6 9.93E+04 8.77 5.96 6.86 97.3
4.00 124.4 14.54 40.4 1.18E+05 24.1 7.14 8.08 289
5.00 338 15.8 43.3 1.28E+05 66.2 7.83 8.74 857
6.00 920 16.4 44.8 1.33E+05 182 8.23 9.11 2539
7.00 2497 16.9 45.6 1.37E+05 498 8.51 9.36 7514

Days Post 
Intake

Co-60 Ir-192
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Table 5.20:  MDD for the Adipose Female MIRD Phantom (CEDE) (ICRP 26) (mrem) 

 

 

Table 5.21:  MDD for the Adipose Female MIRD Phantom (CED) (ICRP 60) (mrem) 

Cs-137 Am-241 I-131
F M S M F M S F

0.25 4.72 2.04 13.22 5.51E+04 1.33 1.03 1.58 4.98
0.50 6.08 2.51 16.2 6.78E+04 1.72 1.27 1.94 6.56
0.75 7.79 3.04 19.6 8.21E+04 2.21 1.55 2.35 8.59
1.00 9.97 3.66 23.3 9.88E+04 2.84 1.86 2.80 11.23
1.25 12.84 4.33 27.4 1.17E+05 3.66 2.21 3.29 14.79
1.50 16.5 5.05 31.7 1.36E+05 4.72 2.58 3.83 19.4
1.75 21.2 5.80 36.1 1.56E+05 6.07 2.97 4.37 25.5
2.00 27.2 6.53 40.4 1.76E+05 7.82 3.36 4.90 33.4
2.25 34.9 7.28 44.8 1.96E+05 10.05 3.75 5.44 43.8
2.50 44.8 7.99 48.8 2.16E+05 12.94 4.13 5.94 57.5
2.75 57.7 8.66 52.5 2.33E+05 16.7 4.48 6.40 75.6
3.00 73.7 9.26 55.8 2.50E+05 21.4 4.80 6.83 98.7
4.00 201 11.01 65.1 2.97E+05 58.8 5.76 8.04 293
5.00 547 11.96 69.8 3.22E+05 161 6.31 8.69 869
6.00 1485 12.45 72.1 3.35E+05 443 6.64 9.06 2575
7.00 4033 12.77 73.4 3.44E+05 1214 6.86 9.31 7621

Days Post 
Intake

Co-60 Ir-192

Cs-137 Am-241 I-131
F M S M F M S F

0.25 2.51 2.29 6.95 1.94E+04 0.47 1.10 1.37 4.15
0.50 3.24 2.81 8.51 2.38E+04 0.61 1.36 1.68 5.46
0.75 4.15 3.40 10.29 2.88E+04 0.78 1.65 2.03 7.15
1.00 5.31 4.09 12.26 3.47E+04 1.00 1.99 2.43 9.35
1.25 6.84 4.84 14.39 4.10E+04 1.30 2.36 2.86 12.32
1.50 8.79 5.65 16.7 4.79E+04 1.67 2.76 3.31 16.2
1.75 11.28 6.48 19.0 5.49E+04 2.15 3.18 3.79 21.2
2.00 14.48 7.31 21.3 6.19E+04 2.76 3.59 4.25 27.8
2.25 18.6 8.15 23.6 6.90E+04 3.55 4.01 4.72 36.5
2.50 23.9 8.94 25.7 7.57E+04 4.57 4.41 5.15 47.9
2.75 30.7 9.68 27.6 8.20E+04 5.90 4.79 5.55 63.0
3.00 39.3 10.36 29.3 8.77E+04 7.56 5.13 5.91 82.2
4.00 107.0 12.31 34.3 1.04E+05 20.8 6.16 6.97 244
5.00 291 13.38 36.7 1.13E+05 57.1 6.75 7.53 724
6.00 791 13.93 37.9 1.18E+05 157 7.09 7.85 2145
7.00 2147 14.28 38.6 1.21E+05 429 7.34 8.07 6348

Days Post 
Intake

Co-60 Ir-192
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Table 5.22:  MDD for the Child MIRD Phantom (CEDE) (ICRP 26) (mrem) 

 

 

Table 5.23:  MDD for the Child MIRD Phantom (CED) (ICRP 60) (mrem) 

 

Cs-137 Am-241 I-131
F M S M F M S F

0.25 1.53 0.76 4.91 1.52E+04 0.44 0.34 0.52 1.54
0.50 1.97 0.93 6.01 1.87E+04 0.57 0.42 0.64 2.02
0.75 2.53 1.13 7.27 2.27E+04 0.73 0.51 0.78 2.65
1.00 3.24 1.36 8.65 2.73E+04 0.94 0.62 0.93 3.46
1.25 4.17 1.61 10.16 3.22E+04 1.22 0.73 1.09 4.56
1.50 5.36 1.87 11.76 3.76E+04 1.57 0.86 1.27 5.98
1.75 6.88 2.15 13.40 4.31E+04 2.02 0.99 1.45 7.85
2.00 8.83 2.43 15.0 4.86E+04 2.60 1.12 1.63 10.29
2.25 11.33 2.70 16.6 5.42E+04 3.34 1.25 1.81 13.49
2.50 14.55 2.97 18.1 5.95E+04 4.30 1.37 1.97 17.7
2.75 18.7 3.21 19.5 6.44E+04 5.54 1.49 2.13 23.3
3.00 23.9 3.44 20.7 6.89E+04 7.10 1.60 2.27 30.4
4.00 65.2 4.09 24.2 8.19E+04 19.5 1.91 2.67 90.4
5.00 177 4.44 25.9 8.89E+04 53.6 2.10 2.89 268
6.00 482 4.62 26.8 9.26E+04 147.2 2.20 3.01 793
7.00 1309 4.74 27.3 9.49E+04 403 2.28 3.09 2348

Days Post 
Intake

Co-60 Ir-192

Cs-137 Am-241 I-131
F M S M F M S F

0.25 0.66 1.27 3.32 5.07E+03 0.29 0.53 0.66 3.29
0.50 0.85 1.57 4.07 6.24E+03 0.37 0.66 0.80 4.33
0.75 1.08 1.90 4.92 7.55E+03 0.47 0.80 0.97 5.66
1.00 1.39 2.28 5.85 9.09E+03 0.61 0.96 1.16 7.41
1.25 1.79 2.70 6.87 1.07E+04 0.79 1.14 1.37 9.75
1.50 2.30 3.15 7.96 1.25E+04 1.01 1.34 1.59 12.80
1.75 2.95 3.62 9.07 1.44E+04 1.30 1.54 1.81 16.8
2.00 3.79 4.08 10.16 1.62E+04 1.68 1.74 2.04 22.0
2.25 4.86 4.55 11.25 1.81E+04 2.16 1.94 2.26 28.9
2.50 6.24 4.99 12.26 1.98E+04 2.78 2.13 2.47 37.9
2.75 8.03 5.40 13.18 2.15E+04 3.58 2.32 2.66 49.8
3.00 10.27 5.78 14.02 2.30E+04 4.59 2.48 2.83 65.1
4.00 28.0 6.87 16.4 2.73E+04 12.64 2.98 3.34 193
5.00 76.1 7.46 17.5 2.96E+04 34.7 3.26 3.61 573
6.00 207 7.77 18.1 3.09E+04 95.1 3.43 3.76 1698
7.00 562 7.97 18.5 3.16E+04 261 3.55 3.87 5026

Days Post 
Intake

Co-60 Ir-192
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For 241Am the bone surface dose will be much higher than the effective dose.  The 

CEDE (ICRP 26) and CED (ICRP 60) conversion coefficients are 8.03 rem/nCi and 6.30 

rem/nCi respectively.  These will lead to the MDD values shown in Table 5.24. 

 

Table 5.24:  MDD to the Bone Surface for 241Am (rem) 

 

 

It can be seen from the tables above that the MDD for 241Am is much larger than 

for all of the other isotopes.  This very large MDD means that using this detector to 

measure 241Am inhaled by a victim of an RDD would not be feasible under most 

circumstances.  For the other isotopes considered, the MDD is fairly low.  As long as the 

analysis happens within four days, the MDD will always be below 1 rem.        

Strontium/Yttrium 

Secondary photons created by the radioisotope 90Sr were also looked at.  This 

isotope undergoes beta decay with a half-life of 28.79 years.  When an isotope undergoes 

beta decay, a neutron is converted into a proton and an electron is ejected.  So 90Sr will 

decay into 90Y, which then decays into 90Zr, which is a stable isotope.  The isotope 90Y 

has a half-life of 64 hours.  When a parent nuclide has a much longer half-life than its 

Phantom 0.25 1.00 2.00 3.00 5.00 7.00
3.7E+02 6.7E+02 1.2E+03 1.7E+03 2.2E+03 2.3E+03
2.9E+02 5.2E+02 9.3E+02 1.3E+03 1.7E+03 1.8E+03
3.1E+02 5.6E+02 9.9E+02 1.4E+03 1.8E+03 1.9E+03
2.4E+02 4.4E+02 7.8E+02 1.1E+03 1.4E+03 1.5E+03
1.1E+03 2.0E+03 3.6E+03 5.1E+03 6.6E+03 7.0E+03
8.9E+02 1.6E+03 2.8E+03 4.0E+03 5.2E+03 5.5E+03
1.0E+03 1.8E+03 3.2E+03 4.5E+03 5.8E+03 6.2E+03
7.8E+02 1.4E+03 2.5E+03 3.5E+03 4.6E+03 4.9E+03
2.8E+02 4.9E+02 8.8E+02 1.2E+03 1.6E+03 1.7E+03
2.2E+02 3.9E+02 6.9E+02 9.8E+02 1.3E+03 1.3E+03

Days Post Intake

Male CEDE (ICRP 26)
CED (ICRP 60)

Female CEDE (ICRP 26)
CED (ICRP 60)

Child CEDE (ICRP 26)
CED (ICRP 60)

Adipose Male CEDE (ICRP 26)
CED (ICRP 60)

Adipose Female CEDE (ICRP 26)
CED (ICRP 60)
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daughter, the two isotopes are assumed to be in secular equilibrium (both have equal 

activities) after seven daughter half-lives.  It was assumed for this work that the isotopes 

are in secular equilibrium.  The maximum electron energy emitted in a beta decay is 500 

keV for 90Sr and 2.2 MeV for 90Y. 

A computational model of the male MIRD phantom with a 90Sr/90Y source was 

run.  This was the only model run because electron transport requires more computations 

than photons.  Electron transport was only considered inside the lungs (the importance in 

all of the other cells was set to zero).  This was done to speed up computational time.  

Figures 5.1-5.2 shows the electron spectrum of 90Sr/90Y used in the MCNP input and the 

photon spectrum tallied by the detector in MCNP.  If this spectrum was observed on 

actual patients, it would not be possible to identify the radionuclide because there is no 

gamma peak.  This is not of concern for this application though, since the isotope used in 

an RDD would be determined before scanning patients.   

The energy range that was integrated over in determining the efficiency was the 

entire range of the detector (up to 1.5 MeV).  The efficiency obtained for this model was 

7x10-5±5x10-7, nearly an order of magnitude lower than for all of the other isotopes 

studied.  This is expected since many electrons will not create bremsstrahlung photons.  

The MDA data for the male MIRD phantom are shown in Table 5.25 and have an 

uncertainty of 1.2%. 
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Figure 5.1:  Electron Spectrum for 90Sr/90Y 
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Figure 5.2:  Photon Spectrum for 90Sr/90Y 
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Table 5.25:  MDA for 90Sr/90Y in the Male MIRD Phantom   

Counting Time 
(Minutes) 

MDA 
(µCi) 

1 1.7 
5 0.7 
10 0.5 

 

 

As observed with the efficiency, the MDA is also much higher for 90Sr/90Y than 

the other isotopes studied.  The MDI and MDD for 90Sr/90Y based on ten-minute counting 

times are shown in Table 5.26.  

 

Table 5.26:  MDI and MDD for 90Sr/90Y in the Male MIRD Phantom 

MDI (µCi) MDD (mrem) using CEDE MDD (mrem) using CED Days 
Post 

Intake Type F Type S Type F Type S Type F Type S 
0.25 2.1 1.6 493 2121 183 968 
0.50 2.7 2.0 635 2597 236 1186 
0.75 3.4 2.4 814 3139 302 1433 
1.00 4.4 2.9 1042 3737 387 1706 
1.25 5.6 3.4 1342 4387 498 2003 
1.50 7.2 3.9 1725 5082 640 2320 
1.75 9.2 4.5 2214 5790 822 2644 
2.00 11.9 5.0 2843 6480 1056 2959 
2.25 15.2 5.5 3647 7179 1354 3278 
2.50 19.6 6.0 4684 7823 1739 3572 
2.75 25.2 6.5 6028 8410 2239 3840 
3.00 32.2 6.9 7705 8942 2861 4083 
4.00 87.7 8.0 2.1E+04 1.0E+04 7800 4765 
5.00 238.6 8.6 5.7E+04 1.1E+04 2.1E+04 5104 
6.00 648.5 8.9 1.6E+05 1.2E+04 5.8E+04 5272 
7.00 1760.8 9.1 4.2E+05 1.2E+04 1.6E+05 5368 
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 The MDD for 90Sr/90Y is much higher than all of the other isotopes excluding 

241Am.  It is still possible to detect 90Sr/90Y, but counting should be performed very 

quickly after inhalation to achieve lower MDDs.   

Background Spectrum Effects 

The ambient background radiation levels used for this work were measured at a 

laboratory at Georgia Institute of Technology.  This background spectrum could differ 

greatly from that at a site used to measure patients.  The total background count rate at 

the laboratory was approximately 12,000 counts per minute.  The background rate 

contained in the ROI of each isotope is shown below (Table 5.27). 

 

Table 5.27 Background Count Rates 

Radioisotope ROI (keV) Background 
(cpm) 

Cs-137 601-723 277 ± 17 
Co-60 1075-1427 223 ± 15 
Am-241 36-73 993 ± 32 
Ir-192 267-650 1314 ± 36 
I-131 322-407 779 ± 28 
Total 0-1.5 MeV 12037 ± 110 

 

 

Since the background could be very different and this will significantly affect the 

MDA, different background spectrums were studied.  Background rate multipliers were 

used to determine the effect on the MDA.  The ratio of the MDA at a new background to 

the MDA at the original measured background varies very little for the different isotopes 

studied.  All of the curves closely follow the curve described by:  
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[5.4] 

 

where: 

 x = background multiplication factor 

 y = MDA multiplication factor 

 

Equation 5.4 applies for a background multiplication factor between the values of 

0.5 and 5 (100-1000 total cps).  From this equation, the ratio of the new background to 

the rate listed in Table 5.27 is plugged in for x.  Then the MDA value listed in Table 5.6 

for the isotope and phantom being considered is multiplied by y.  This will approximate 

the MDA using the new background spectrum. 

Tissue Thickness Determination 

 The tissue thicknesses between the lungs and the skin of a person will play a role 

in determining the amount of scattering present.  As a person�s tissue thickness increases, 

the counts in the photopeak region decrease but the number of counts recorded at lower 

energies increase.  For these reasons, the peak counts divided by the total counts was 

computed for all of the phantoms used (Table 5.28 and Table 5.29).  The tissue thickness 

listed in Table 5.28 is the tissue thickness from the center of the lung to the outside of the 

body where the detector is centered over.  The ROIs for determining the photopeak 

counts are the same as in Table 4.1.  These data might possibly be used to determine the 

inhaled activity for people with differing tissue thicknesses.  It should be noted that the 

241Am data are probably not as reliable as the data for other radionuclides in this study.  

Since 241Am only has one low-energy gamma (59.5 keV), the only non-zero channels that 

479.0530.0²037.0 ++−= xxy
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are not located in the ROI are the lowest four energy channels.  The detector would 

probably not give accurate readings at such low energies.  For 241Am it would probably 

be better to just look at the efficiency for the different models as shown in Table 5.4.   

 

Table 5.28:  Ratio of Peak Counts to Total Counts for the MIRD Phantoms 

Phantom 
Tissue 

Thickness 
(cm) 

Cs-137 Co-60 Am-241 Ir-192 I-131 

M MIRD 9.26 0.140 0.115 0.858 0.285 0.216 
F MIRD 9.06 0.143 0.117 0.861 0.287 0.219 
AM 

MIRD 14.31 0.084 0.074 0.839 0.188 0.129 
AF MIRD 14.16 0.086 0.077 0.840 0.192 0.134 
C MIRD 7.71 0.149 0.122 0.855 0.298 0.227 

 

 

Table 5.29:  Ratio of Peak Counts to Total Counts for the Slab Phantom 

Peak Counts/Total Counts Slab 
Thickness 

(cm) Cs-137 Co-60 Am-241 Ir-192 I-131 
0.0 0.190 0.149 0.869 0.338 0.281 
0.5 0.178 0.141 0.863 0.318 0.261 
1.0 0.166 0.132 0.859 0.300 0.244 
1.5 0.157 0.125 0.856 0.285 0.230 
2.0 0.147 0.119 0.853 0.272 0.217 
2.5 0.138 0.113 0.851 0.259 0.204 
3.0 0.131 0.107 0.847 0.248 0.194 
4.0 0.119 0.099 0.841 0.228 0.175 
5.0 0.108 0.092 0.836 0.212 0.160 
7.5 0.087 0.076 0.822 0.181 0.130 

10.0 0.072 0.066 0.807 0.155 0.106 
13.8 0.053 0.050 0.798 0.123 0.079 
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CHAPTER 6 

CONCLUSIONS 

 

The purpose of this work was to determine if a handheld detector could be used to 

measure the radioactivity levels in lungs inhaled by a victim of an RDD.  To determine 

this, measurements were made using the GR-130 with a slab phantom.  Computational 

models were created for various isotopes utilizing both the slab phantom and 

anthropomorphic phantoms.  The measured and calculated efficiencies for the slab 

phantom agreed within 6%.  A voxel model was made of the LLNL phantom using 

Scan2MCNP.  Five different MIRD phantom models were made using the BodyBuilder 

program.   

The computed detector efficiency in the photopeak ROI for the GR-130 was 

generally between 0.05% and 0.4% using any of the primary gamma-emitting isotopes 

for the male MIRD phantom and LLNL voxel phantom.  This led to MDA values ranging 

from approximately 5 to 150 nCi.  From these MDA�s, MDD values were calculated at a 

number of different elapsed times after intake up to one week.  It was found that this 

detector could be used to triage patients for all of the isotopes studied except Am241.  

Counting should be performed quickly after inhalation to obtain a low MDD when 

measuring bremsstrahlung photons from 90Sr/90Y.  The ambient background radiation 

levels at the measurement site after an RDD event could be different from the 

background data used in this work, so the effect of the background radiation level on the 

MDA was studied.  
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APPENDIX A 

ADDITIONAL SLAB PHANTOM DATA 
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Table A.1:  MDA Uncertainty for the Slab Model 

MDA Uncertainty (%) Slab 
Thickness 

(cm) Cs-137 Co-60 Am-241 Ir-192 I-131 
0.0 6.10 6.83 3.20 2.85 3.66 
0.5 6.10 6.84 3.20 2.85 3.67 
1.0 6.11 6.84 3.20 2.85 3.67 
1.5 6.11 6.84 3.20 2.85 3.68 
2.0 6.11 6.85 3.20 2.86 3.68 
2.5 6.12 6.85 3.20 2.86 3.68 
3.0 6.12 6.86 3.20 2.86 3.69 
4.0 6.13 6.87 3.20 2.87 3.70 
5.0 6.14 6.88 3.21 2.88 3.71 
7.5 6.18 6.91 3.22 2.91 3.74 

10.0 6.22 6.95 3.23 2.94 3.79 
13.8 6.29 7.02 3.26 3.00 3.87 

 

 

Table A.2:  Efficiency of the Slab Phantom without a Slab behind the Source 

Absolute Efficiency (%) Slab 
Thickness 

(cm) Cs-137 Co-60 Am-241 Ir-192 I-131 
0.0 0.091 0.054 0.444 0.206 0.169 
0.5 0.088 0.053 0.439 0.201 0.163 
1.0 0.085 0.051 0.432 0.195 0.156 
1.5 0.082 0.050 0.424 0.188 0.149 
2.0 0.078 0.048 0.411 0.182 0.142 
2.5 0.075 0.047 0.401 0.175 0.135 
3.0 0.072 0.045 0.388 0.168 0.130 
4.0 0.066 0.043 0.362 0.155 0.118 
5.0 0.060 0.040 0.335 0.144 0.107 
7.5 0.048 0.034 0.270 0.119 0.085 
10.0 0.040 0.029 0.210 0.097 0.066 
13.8 0.028 0.023 0.145 0.072 0.046 
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Table A.3:  MDA for the Slab Phantom without a Slab behind the Source  

MDA (nCi) Time 
(minutes) 

Slab 
Thickness 

(cm) Cs-137 Co-60 Am-241 Ir-192 I-131 
0.0 46.9 30.3 42.2 24.2 43.7 
0.5 48.2 30.8 42.6 24.8 45.3 
1.0 50.2 31.8 43.3 25.6 47.3 
1.5 52.2 32.8 44.1 26.5 49.4 
2.0 54.4 33.9 45.5 27.4 51.8 
2.5 56.9 35.0 46.6 28.5 54.4 
3.0 59.4 36.2 48.2 29.6 56.8 
4.0 64.7 38.2 51.7 32.2 62.4 
5.0 70.5 40.6 55.9 34.8 68.7 
7.5 87.9 47.9 69.4 42.0 86.7 
10.0 107.6 55.5 89.0 51.4 111.3 

1 

13.8 149.8 72.4 129.5 69.8 159.6 
0.0 20.6 13.3 18.7 10.7 19.3 
0.5 21.1 13.5 18.9 11.0 20.0 
1.0 22.0 13.9 19.2 11.4 20.9 
1.5 22.9 14.4 19.5 11.8 21.8 
2.0 23.8 14.8 20.1 12.2 22.9 
2.5 24.9 15.3 20.6 12.7 24.0 
3.0 26.0 15.8 21.3 13.2 25.1 
4.0 28.3 16.7 22.9 14.3 27.6 
5.0 30.9 17.7 24.7 15.4 30.4 
7.5 38.5 20.9 30.7 18.7 38.3 
10.0 47.1 24.2 39.4 22.8 49.1 

5 

13.8 65.6 31.6 57.3 31.0 70.5 
0.0 14.5 9.3 13.2 7.6 13.6 
0.5 14.8 9.5 13.3 7.8 14.1 
1.0 15.5 9.8 13.5 8.0 14.7 
1.5 16.1 10.1 13.7 8.3 15.4 
2.0 16.8 10.4 14.2 8.6 16.1 
2.5 17.5 10.8 14.5 8.9 16.9 
3.0 18.3 11.1 15.0 9.3 17.7 
4.0 19.9 11.7 16.1 10.1 19.4 
5.0 21.7 12.5 17.4 10.9 21.4 
7.5 27.1 14.7 21.6 13.2 27.0 
10.0 33.2 17.0 27.8 16.1 34.6 

10 

13.8 46.2 22.2 40.4 21.9 49.7 
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APPENDIX B 

ADDITIONAL LLNL PHANTOM DATA 
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Table B.1:  MDA for the LLNL Realistic Torso Phantom 

 

 
 

Table B.2:  MDI for the LLNL Phantom (nCi) 
 

 

Cs-137 Am-241 I-131
F M S M F M S F

0.25 64.7 32.5 31.8 45.2 32.5 26.3 25.7 62.5
0.50 83.4 39.9 38.9 55.6 41.9 32.4 31.6 82.2
0.75 106.8 48.3 47.0 67.3 53.8 39.3 38.3 107.6
1.00 136.7 58.2 56.0 81.0 69.1 47.4 45.7 140.7
1.25 176.2 68.7 65.8 95.7 89.2 56.2 53.8 185.3
1.50 226.4 80.2 76.2 111.6 114.9 65.7 62.4 243.2
1.75 290.7 92.1 86.8 128.1 147.9 75.6 71.3 319.1
2.00 373.2 103.8 97.2 144.5 190.3 85.5 80.0 418.6
2.25 478.8 115.8 107.6 161.1 244.7 95.5 88.8 548.8
2.50 614.9 127.0 117.3 176.7 315.0 105.0 97.0 720.1
2.75 791.4 137.6 126.1 191.4 406.4 114.0 104.5 946.9
3.00 1011.5 147.1 134.1 204.7 520.6 122.2 111.4 1236.6
4.00 2757.3 174.9 156.5 243.2 1432.5 146.6 131.2 3674.4
5.00 7498.5 190.0 167.7 264.1 3931.9 160.7 141.8 1.1E+04
6.00 2.0E+04 197.9 173.3 274.9 1.1E+04 168.8 147.9 3.2E+04
7.00 5.5E+04 202.9 176.5 281.8 3.0E+04 174.7 152.0 9.5E+04

Based on 
10 Minute 
MDA (nCi)

17.1 10.6 10.6 14.7 8.6 8.6 8.6 16.1

Co-60 Ir-192Days Post 
Intake

1 55.5 ± 6.0% 34.4 ± 6.7% 27.3 ± 2.8% 47.2 ± 3.2% 51.8 ± 3.6%
5 24.3 ± 6.0% 15.0 ± 6.7% 12.1 ± 2.8% 20.9 ± 3.2% 22.9 ± 3.6%
10 17.1 ± 6.0% 10.6 ± 6.7% 8.6 ± 2.8% 14.7 ± 3.2% 16.1 ± 3.6%

Time (minutes) Cs-137 Co-60 Ir-192 Am-241 I-131
MDA (nCi)
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Table B.3:  MDD for the LLNL Phantom with a 10 Minute MDA (CEDE) (ICRP 26) 
 

 
 
 

Table B.4:  MDD for the LLNL Phantom with a 10 Minute MDA (CED) (ICRP 60) 
 

 

Cs-137 Am-241 I-131
F M S M F M S F

0.25 2.07 1.07 6.95 2.01E+04 0.61 0.47 0.73 2.05
0.50 2.66 1.32 8.51 2.47E+04 0.79 0.59 0.89 2.70
0.75 3.41 1.60 10.29 2.99E+04 1.02 0.71 1.08 3.54
1.00 4.37 1.92 12.25 3.59E+04 1.30 0.86 1.29 4.63
1.25 5.63 2.27 14.38 4.25E+04 1.68 1.01 1.51 6.09
1.50 7.23 2.65 16.7 4.96E+04 2.17 1.19 1.76 8.00
1.75 9.28 3.05 19.0 5.69E+04 2.79 1.37 2.01 10.50
2.00 11.92 3.43 21.2 6.41E+04 3.59 1.54 2.25 13.77
2.25 15.3 3.83 23.5 7.15E+04 4.62 1.72 2.50 18.1
2.50 19.6 4.20 25.6 7.85E+04 5.94 1.90 2.73 23.7
2.75 25.3 4.55 27.6 8.50E+04 7.67 2.06 2.94 31.1
3.00 32.3 4.87 29.3 9.09E+04 9.82 2.21 3.14 40.7
4.00 88.0 5.78 34.2 1.08E+05 27.0 2.65 3.69 120.9
5.00 239 6.28 36.7 1.17E+05 74.2 2.90 3.99 358
6.00 651 6.54 37.9 1.22E+05 204 3.05 4.16 1061
7.00 1767 6.71 38.6 1.25E+05 558 3.15 4.28 3141

Days Post 
Intake

Co-60 Ir-192

Cs-137 Am-241 I-131
F M S M F M S F

0.25 1.10 1.20 3.65 7.05E+03 0.22 0.51 0.63 1.71
0.50 1.42 1.48 4.48 8.67E+03 0.28 0.63 0.77 2.25
0.75 1.82 1.79 5.41 1.05E+04 0.36 0.76 0.93 2.95
1.00 2.32 2.15 6.44 1.26E+04 0.46 0.92 1.11 3.86
1.25 3.00 2.54 7.56 1.49E+04 0.60 1.08 1.31 5.08
1.50 3.85 2.97 8.76 1.74E+04 0.77 1.27 1.52 6.66
1.75 4.94 3.41 9.98 2.00E+04 0.99 1.46 1.74 8.74
2.00 6.34 3.84 11.17 2.25E+04 1.27 1.65 1.95 11.47
2.25 8.14 4.28 12.38 2.51E+04 1.63 1.84 2.17 15.0
2.50 10.45 4.70 13.49 2.76E+04 2.10 2.03 2.37 19.7
2.75 13.45 5.09 14.50 2.99E+04 2.71 2.20 2.55 25.9
3.00 17.2 5.44 15.4 3.19E+04 3.47 2.36 2.72 33.9
4.00 46.9 6.47 18.0 3.79E+04 9.55 2.83 3.20 100.7
5.00 127.5 7.03 19.3 4.12E+04 26.2 3.10 3.46 298
6.00 346 7.32 19.9 4.29E+04 71.9 3.26 3.61 884
7.00 941 7.51 20.3 4.40E+04 197 3.37 3.71 2616

Days Post 
Intake

Co-60 Ir-192
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APPENDIX C 

PHANTOM SPECTRAL DATA 
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Figure C.1:  MCNP Simulated 137Cs Spectral Data 
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Figure C.2:  MCNP Simulated 60Co Spectral Data 
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Figure C.3:  MCNP Simulated 192Ir Spectral Data 
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Figure C.4:  MCNP Simulated 241Am Spectral Data 
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Figure C.5:  MCNP Simulated 131I Spectral Data 

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

0.00E+00 1.00E-01 2.00E-01 3.00E-01 4.00E-01 5.00E-01 6.00E-01 7.00E-01

Energy (MeV)

C
ou

nt
s/

So
ur

ce
 P

ho
to

n
Male MIRD

Female MIRD

Adipose Male MIRD

Adipose Female MIRD

Child MIRD

LLNL Phantom



 

  59

APPENDIX D 

SLAB PHANTOM MCNP INPUT FILE 
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Slab Phantom with a 2.5 cm Slab Loaded 
C Cell Cards 
c   Exploranium GR-130 
C   Detector Crystal 
500 7 -3.667   -15 16 -17 
C   Detector Housing 
501 8 -.94   4 -5 6 -8 
502 8 -.94   7 -5 -6 
503 8 -.94   15 -3 5 
504 8 -.94   4 -7 -6 
505 8 -.94   -15 -16 5 
C   Aluminum Plate 
506 9 -1   10 -4 -8 
C   Foam-like Material 
507 10 -.92   -2 3 
508 10 -.92   -3 8 -5 
C   Casing 
509 9 -1   -1 9 -11 
C   Air Between casing & foam 
510 1 -1.293e-3   -9 2 
C   Rubber top 
511 11 -1.34   -1 9 11 
C   Plexiglas case 
512 2 -1.19   12 -13 
C   Plexiglas or air inside case 
513 1 -1.293e-3   -12 -14 
514 2 -1.19 -12 14 
C   Air outside case 
515 1 -1.293e-3   1 13 18 -99 
c   Back Plexiglas 
516 2 -1.19   -18 
C   Outside Universe 
999 0     99 
 
C Surface Cards 
C   Outer Casing 
1   rpp -5.5 5.5 0 10 0 23.5 
C   Foam-like Covering 
2   rpp -3 3 2 8 4.5 23.3 
3   rpp -2.4 2.4 2.6 7.4 4.9 23.29 
C   Aluminum Plate 
4   pz 5 
c   Detector housing 
5   pz 14.5 
6   c/z 0 5 1.9 
7   pz 10.7 
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8   c/z 0 5 2.3   
9   rpp -5.3 5.3 .2 9 .2 23.3 
10  pz 4.9 
11  py 9 
C   Plexiglas Case 
12  rpp -14.9 14.9  -9.9 20.5 24.1 37.9 
13  rpp -15.5 15.5 -10.5 20.5 23.5 38.5 
c   This plane determines the thickness of the slab 
c   For this input, the slab is 2.5 cm thick 
c   37.9-35.4=2.5 
14  pz 35.4 
c   Detector Crystal 
15  c/z 0 5.16 1.9 
16  pz 17.59 
17  pz 23.29 
c   Back Plexiglas 
18  rpp -15.5 15.5 -10.5 20.5 38.7 53.7 
99  rpp -100 100 -100 100 -100 100 
 
C Material Cards 
c Material 1: Air 
m1 7000 -.7552 8000 -.2319 18000 -.0129 
C Material 2: Plexiglas 
m2 6000 .3333 8016 .1333 1001 .5334 
c Material 7: NaI 
m7 11000 .5 53000 .5 
c Material 8: Low density glass 
m8 14000 .3333 8000 .6667 
c Material 9: Low Density Aluminum 
m9 1000 .6667 6000 .3333 
c Material 10: Foam-like material 
m10 1000 .6667 6000 .3333 
c Material 11: Rubber 
m11 1000 .6 6000 .4 
sdef pos=0 5 38.6 erg=d2 
c si2 l 1.17 1.33 $Co-60 
c sp2 0.9986 0.9998 
c si2 l 0.6617 $Cs-137 
c sp2 0.851 
si2 l 0.0595 $Am-241  
sp2 0.359 
c si2 l .3645 .637 $I-131  
c sp2 0.812 0.0727 
c si2 l 0.316508 0.468071 0.308457 0.295958 0.604415 0.612466 & 
c    0.588584 0.484578 0.374485 0.416471 0.489039 0.884542 & 
c    0.283267 $Ir-192 
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c sp2 0.828112 0.478317 0.300025 0.286692 0.0823143 0.0530902 & 
c    0.0451487 0.0318395 0.00721065 0.00664146 0.00442905 & 
c    0.00292323 0.00262431 
f8:p 500 
ft8 geb -.0050254 .0700037 -.0784113 
e0 0 253i 1.542642 
imp:p 1 16r 0 
mode: p 
nps 1e7 
print 
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APPENDIX E 

LLNL PHANTOM MCNP INPUT FILE (CONDENSED) 
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DICOM Scan Converted by Scan2MCNP 
c 
c DICOM/Image Files from Directory: 
c C:\Documents and Settings\Jesson\My Documents\dicom\1cm 
c IM58 
c IM62 
c IM66 
c IM70 
c IM74 
c IM2 
c IM6 
c IM10 
c IM14 
c IM18 
c IM22 
c IM26 
c IM30 
c IM34 
c IM38 
c IM42 
c IM46 
c IM50 
c IM54 
c 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
c     Cells 
c 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
c Voxel Cells 
c 
   11     2 -1.040000    13  -14    70  -84   104 -105 
   12     1 -1.293e-3    13  -14    84  -94   104 -105 
   13     1 -1.293e-3    14  -15    51  -63   104 -105 
   14     2 -1.040000    14  -15    63  -68   104 -105 
   15     4 -1.110000    14  -15    68  -78   104 -105 
   16     2 -1.040000    14  -15    78  -85   104 -105 
   17     1 -1.293e-3    14  -15    85  -94   104 -105 
   18     1 -1.293e-3    15  -16    51  -62   104 -105 
   19     2 -1.040000    15  -16    62  -66   104 -105 
   20     4 -1.110000    15  -16    66  -78   104 -105 
� 
c Cells 1-10 are the lungs, made of combined voxels 
  1     12  -0.250000    19  -20    61  -62   106 -107  
                        :20  -21    60  -62   106 -107  
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                        :21  -22    60  -61   106 -107  
                        :22  -23    59  -61   106 -107  
                        :23  -24    58  -61   106 -107  
                        :24  -25    58  -61   106 -107  
                        :25  -26    59  -60   106 -107  
                        :26  -27    59  -61   106 -107  
                        :27  -28    59  -60   106 -107  
                        :28  -29    59  -60   106 -107  
                        :28  -29    60  -61   106 -107  
                        :29  -30    60  -61   106 -107  
                        :30  -31    60  -61   106 -107  
� 
c   Detector Information is the Same as in the Slab Phantom 
c Outside of Voxels and Detector 
c 
 9998  1 -1.293e-3   -999 979 980 988 (-10:41:-51:94:-104:123) 
 9999  0   999 
  
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
c     Surfaces 
c 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
c py Planes 
c 
   10 py -15.283208 
   11 py -14.306646 
   12 py -13.330084 
� 
   39 py 13.037090 
   40 py 14.013652 
   41 py 14.990214 
c 
c px Planes 
c 
   51 px -21.922579 
   52 px -20.946017 
   53 px -19.969455 
� 
   92 px 18.116463 
   93 px 19.093025 
   94 px 20.069587 
c 
c pz Planes 
c 
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  104 pz -21.675000 
  105 pz -19.675000 
  106 pz -17.675000 
� 
  121 pz 12.325000 
  122 pz 14.325000 
  123 pz 16.325000 
c Detector interaction 
984 px -13.26243 
985 px -2.26243 
986 pz -9.835 
987 pz .165 
c Detector 
C     Outer Casing 
988   rpp -13.26243 -2.26243 -36.830084 -13.330084 -9.835 0.165 
� 
c outside Universe 
  999 so 75 
  
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
c     Materials 
c 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c Material 1: Air 
m1 7000 -.7552 8000 -.2319 18000 -.0129 
� 
c Material 13: Water 
m13 1000 .5 8000 .5 
sdef par=2 x=d1 y=d2 z=d3 cel=d4 erg=d5 eff=1e-6 
si1 -15 15 
sp1 0 1 
si2 -12 12 
sp2 0 1 
si3 -18 12 
sp3 0 1 
si4 l 1 2 3 4 5 6 7 8 9 10 
sp4 v 
c si5 l 1.17 1.33 $Co-60 
c sp5 0.9986 0.9998 
c si5 l 0.6617 $Cs-137 
c sp5 0.851 
si5 l 0.0595 $Am-241  
sp5 0.359 
c si5 l .3645 .637 $I-131  
c sp5 0.812 0.0727 



 

  67

c si5 l 0.316508 0.468071 0.308457 0.295958 0.604415 0.612466 & 
c    0.588584 0.484578 0.374485 0.416471 0.489039 0.884542 & 
c    0.283267 $Ir-192 
c sp5 0.828112 0.478317 0.300025 0.286692 0.0823143 0.0530902 & 
c    0.0451487 0.0318395 0.00721065 0.00664146 0.00442905 & 
c    0.00292323 0.00262431 
f8:p 9988 
ft8 geb -.0050254 .0700037 -.0784113 
e0 0 253i 1.542642 
imp:p 1 2929r 0 
mode: p 
nps 5e7 
print 



 

  68

APPENDIX F 

MALE MIRD PHANTOM MCNP INPUT FILE (CONDENSED) 
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C Male Phantom at  21.0 Years 
C Weight = 73.14 kg (161.24lbs) Height = 179.00 cm (70.47 inches) 
c +++++++++++++++++++++++++++++++++++++++++ 
c 
c    File Prepared by Body Builder 
c    CopyRight 1996-2004, White Rock Science 
c 
c    This input file is for the use of 
c    BodyBuilder License holder only. 
c    Distribution is Prohibited. 
c 
c +++++++++++++++++++++++++++++++++++++++++ 
c 
c ++++++++++++++++++++++++++++++++++++++++++++++ 
c           CELLS 
c ++++++++++++++++++++++++++++++++++++++++++++++ 
c         LEG BONES 
c         ARM BONES 
c         PELVIS 
c         SPINE 
c         SKULL & FACE 
c         RIBS 
c         CLAVICLES 
c         SCAPULAE 
c         ADRENALS 
c         BRAIN 
c         GALL BLADDER 
c         ESOPHAGUS 
c         STOMACH 
c         SMALL INTESTINE 
c         ASCENDING COLON 
c         TRANSVERSE COLON 
c         DESCENDING COLON 
c         SIGMOID COLON 
c         HEART 
c         KIDNEYS 
c         LIVER 
c         LUNGS 
c         PANCREAS 
c         SPLEEN 
c         TESTICLES 
c         THYMUS 
c         THYROID 
c         URINARY BLADDER 
c         PENIS & SCROTUM 
c         SKIN 
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c           Trunk Skin 
c         Penis & Scrotum Skin 
c        Legs Skin 
c            HEAD 
c            NECK 
c         OUTER TRUNK---ARMS & SCAPULAE 
c         UPPER TRUNK---ABOVE RIBS 
c         UPPER RIB CAGE 
c         LOWER RIB CAGE 
c         HIGH CHEST ORGANS 
c         CHEST---LIVER LEVEL 
c         LOWER TRUNK 
c        LEGS 
c         SURROUNDING AIR 
c            air            OUTSIDE of NECK 
c 
c  Detector setup same as Slab Phantom 
700   0               600 
             imp:p =0 
  
c ++++++++++++++++++++++++++++++++++++++++++++++ 
c           SURFACES 
c ++++++++++++++++++++++++++++++++++++++++++++++ 
...  
c ++++++++++++++++++++++++++++++++++++++++++++++ 
c 
c         TRANSFORMATIONS 
c ++++++++++++++++++++++++++++++++++++++++++++++ 
... 
c ++++++++++++++++++++++++++++++++++++++++++++++ 
c      MATERIALS 
c      Compositions from ORNL Report TM-8381 
c ++++++++++++++++++++++++++++++++++++++++++++++ 
... 
C Source Definition 
sdef erg=d1 x=d2 y=d3 z=d4 par=2 cel=330  
c si1 l 1.17 1.33 $Co-60 
c sp1 0.9986 0.9998 
c si1 l 0.6617 $Cs-137 
c sp1 0.851 
si1 l 0.0595 $Am-241  
sp1 0.359 
C si1 l .3645 .637 $I-131  
C sp1 0.812 0.0727 
si2 -13.7 13.7 
sp2 0 1 
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si3 -7.6 7.6 
sp3 0 1 
si4 43.4 67.6 
sp4 0 1 
f8:p 9988 
ft8 geb -.0050254 .0700037 -.0784113 
e0 0 253i 1.542642 
mode p 
print 
nps 5e7 
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