
Model-Based User Interface Design
By Demonstration and By Interview

A Thesis
Presented to

The Academic Faculty

by

Martin Robert Frank

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in Computer Science

Georgia Institute of Technology
December 1995

Copyright (c) 1995 by Martin R. Frank

ii

Model-Based User Interface Design
By Demonstration and By Interview

Approved:

James Foley, Chairman

Ashok Goel

Scott Hudson

Christine Mitchell

Brad Myers

Piyawadee Sukaviriya

Date Approved_______________

iii

FOREWORD

Completing a dissertation typically requires an unprecedented level of

commitment, persistence and patience from its author, and this one was no

exception. First and foremost, I would like to thank my parents, my sister, and

Christy Gerlach for the support that made everything possible.

Jim Foley made me realize how much better the German term “doctoral

father” describes the nurturing role of an advisor.

I would also like to thank Brad Myers for his close involvement, which went

far beyond the call of duty for an external committee member.

Finally, I want to thank the following individuals for volunteering their time

for usability experiments and pilot studies: Gregory Abowd, Krishna Bharat, Lucy

Gibson, Mark Gray, Chris Mitchell, Jayakumar Muthukumarasamy, Jim Pitkow,

Spencer Rugaber, Erica Liebman Sadun, Matthias Schneider-Hufschmidt, Noi

Sukaviriya, Lein Ton, and Maurizio Vitale.

iv

TABLE OF CONTENTS

FOREWORD... iii

LIST OF TABLES..vi

LIST OF FIGURES... vii

SUMMARY..ix

CHAPTER

I. INTRODUCTION ... 1

I.1 Model-Based User Interface Design ... 2
I.2 User Interface Design by Demonstration .. 4
I.3 Model-Based User Interface Design by Demonstration 6

II. PREVIOUS WORK .. 9

II.1 Previous Work on User Interface Modelling 9
II.2 Previous Work on Model-Driven User Interface Tools 15
II.3 Previous Work on Demonstrational User Interface Tools 17

III. THE ELEMENTS, EVENTS & TRANSITIONS MODEL 28

III.1 Motivation .. 28
III.2 Introduction to the EET Model ... 30
III.3 Advanced Concepts of the EET Model ... 41
III.4 Using Two or More Levels of Abstraction .. 75
III.5 Discussion of the EET Model .. 86

IV. BUILDING MODELS BY DEMONSTRATION ... 97

IV.1 Demonstrating How Elements Change ... 100
IV.2 Demonstrating When Elements Change 123
IV.3 Demonstrating Both How and When Elements Change 132
IV.4 The Inferencing Mechanism .. 145
IV.5 Discussion of the Demonstrational Components 177

V. BUILDING MODELS BY INTERVIEW .. 184

V.1 The Role of an Interview Component .. 184
V.2 The Design of the Interview Tool ... 186

v

VI. USABILITY RESULTS .. 205

VI.1 Testing on Non-Programmers ... 205
VI.2 Testing on Programmers .. 213
VI.3 Discussion ... 216

VII.CONCLUSION .. 218

VII.1 Discussion .. 218
VII.2 Contributions .. 226
VII.3 Implementation Issues ... 226
VII.4 Extensions ... 227
VII.5 Future Work ... 228
VII.6 Conclusion ... 229

APPENDIX A - EET Language Definition .. 230

APPENDIX B - A Visual Language for Grizzly Bear .. 235

APPENDIX C - Application Code for Section III.3.9 ... 237

APPENDIX D - A “MacDraw” Imitation driven by an EET Model 241

APPENDIX E - Material and Data from the Non-Programmer Study 244

APPENDIX F - Material and Data from the Programmer Study 257

REFERENCES ... 260

VITA ... 266

vi

LIST OF TABLES

Table Page

2-1 Overview of Application Models ... 14

2-2 Overview of Demonstrational Systems ... 25

3-1 Standard Implicit Events ... 57

4-1 Example Values for Integer Inferencing ... 157

4-2 Computing the “Uniqueness” of Examples ... 159

5-1 Possible Question Categories .. 200

6-1 Summary Data from the Non-Programmer Study 211

7-1 Specifying the Human-Computer Dialog .. 219

E-1 Data Gathered from the Non-Programmer Study 256

F-1 Data Gathered from the Programmer Study 259

vii

LIST OF FIGURES

Figure Page

3-1 Showing and Hiding an Auxiliary Window ... 39

3-2 The “Nodes and Links” Application in Use .. 63

3-3 Initial Layout of the “Nodes and Links” Application................................ 65

3-4 The Simplest Use of an EET Model .. 77

3-5 A Single EET Model and Application Code ... 78

3-6 Two EET Models at Different Levels of Abstraction 79

3-7 A File Management Application... 80

4-1 Inference Bear ... 101

4-2 Capturing Events with Inference Bear ... 103

4-3 Feedback on Recorded Events ... 104

4-4 A Detailed Storyboard of Inference Bear... 108

4-5 Inference Bear’s Successive Inference Refinement............................ 109

4-6 Setting the Color of All Selected Elements.. 112

4-7 Static User Interface Layout for the Rubber-Banding Lines 114

4-8 Rubber-Banding Lines: Behavior of the Press Event 115

4-9 Rubber-Banding Lines: Behavior of the Motion Event......................... 116

4-10 Rubber-Banding Lines: Behavior of the Release Event 117

4-11 Rubber-Banding Lines: Playful Interaction with our Interface Design . 117

4-12 Mini-Finder: Initial User Interface Layout... 118

4-13 Mini-Finder: Demonstration for the Press Event.................................. 119

4-14 Mini-Finder: Demonstration for the Motion Events 120

4-15 Mini-Finder: Demonstration for the Release Event.............................. 121

4-16 Expression Finder.. 125

4-17 A Detailed Storyboard of Expression Finder 127

4-18 The Mini-Finder Revisited.. 129

4-19 Grizzly Bear ... 133

4-20 Cycling Through Colors ... 134

viii

4-21 A Detailed Storyboard of Grizzly Bear... 136

4-22 Mini-Finder... 137

4-23 Moving by Dragging: First Example... 138

4-24 Moving by Dragging: Second Example ... 138

4-25 Moving by Dragging: Third Example ... 139

4-26 The Initial Layout of the Mini-Editor ... 141

4-27 The Completed Mini-Editor in Action ... 141

4-28 Source and Target Variables... 148

4-29 Inference Types Used in the Prototype Implementation...................... 153

4-30 Centering Elements ... 157

4-31 Aligning Sets of Objects .. 170

5-1 Design Mode ... 189

5-2 Interview Mode .. 190

5-3 Run Mode .. 190

5-4 Graph Organization of Questions .. 191

5-5 Flat Organization of Questions .. 192

5-6 Internal Representation of a Question... 193

5-7 The Complete Framework of Interactive UIDE.................................... 195

5-8 Knowledge About Common User Interface Behavior 197

5-9 Structuring the Model .. 197

5-10 Expert Use of the Interview Tool ... 199

6-1 Grizzly Bear’s Refined User Interface ... 206

B-1 A Visual Notation for User Interface Behavior 235

D-1 A “MacDraw” Imitation ... 241

ix

SUMMARY

Graphical applications are easier to use than their character-based prede-

cessors, but they are also harder to construct. Today, most graphical applications

are built by hand-writing low-level code that makes calls to a subroutine library of

user interface primitives. There is little wrong with this approach in a commercial

setting. However, it presents significant problems if a non-programming audience

is to participate in designing, building and modifying user interfaces.

This thesis takes a new approach towards this problem based on a special-

purpose specification language and on novel demonstrational tools. In this

approach, the designers first use the demonstrational tools to specify user inter-

face behavior. As they do so, a language-based specification is generated which

they can inspect. They can then experiment with editing the specification directly,

using a test-drive mode to observe the effect of their changes.

The thesis contributes to the state of the art in three aspects. First, its spec-

ification language, the Elements, Events & Transitions model, is the first user-

level language for interface behavior explicitly designed to be used with demon-

strational tools. Second, its demonstrational tools, most notably Grizzly Bear,

cover an unusually wide spectrum of user interface behavior, and are unique in

keeping their reasoning independent of the characteristics of any particular user

interface toolkit; we also tested them in usability experiments. Finally, the thesis is

the first to explore in depth how to best combine the ease-of-use of the demon-

strational approach with the expressive power of the model-based approach.

1

CHAPTER I

INTRODUCTION

Graphical user interfaces have made computers accessible to nearly

everyone. At the same time, constructing graphical user interfaces has remained

a very hard task. The most difficult part of constructing such interfaces is in

describing their dynamic behavior. There has been much research aimed at

reducing this difficulty.

One approach has advocated the use of high-level declarative user inter-

face specifications (“models”) which relieve programmers from hand-coding all of

the user interface functionality in a standard programming language. While this

approach is powerful, it contributes little towards helping a general audience spec-

ify behavior because of the formal nature of its specification languages.

Another approach has employed machine learning techniques to infer

sequencing information from demonstrations of behavior. This approach has

shown great promise in letting non-programmers specify behavior. However, the

range of user interfaces that can be built by demonstration is inherently limited,

and having to demonstrate all of the behavior is a tedious and repetitive process.

Our focus is on combining these two approaches in a way that allows users

to get started quickly by demonstrating behavior while at the same time being

taught how to use the more powerful underlying language. In this introductory

2

chapter, we will first describe the two approaches in more detail (Sections I.1

and I.2). We will then introduce our approach (Section I.3).

I.1 Model-Based User Interface Design

The discipline of model-based user interface design advocates the explicit

denotation of the conceptual abstractions that underlie a user interface. This for-

mal description can then be used to drive the user interface at run time, and it can

also serve additional purposes. Humanoid [Szek92, Szek93] and UIDE [Fole89,

Suka93] are typical model-based systems.

I.1.1 Strengths

The primary strength of user interface models is in their descriptive power

and in their high level of abstraction. This is because they are geared towards the

specification of user interface behavior, and need not cover the same breadth as

general-purpose programming languages.

Another strength of user interface modelling languages is that they can

additionally drive a new generation of high-level tools. For example, they enable

the automatic checking for completeness, consistency, reachability and “undoabil-

ity.” 1 Other tools making use of such models are user interface generators, user

interface transformers and automatic help generators. (Section II.2 contains a

more detailed discussion of model-based tools.)

3

I.1.2 Weaknesses

There are also some inherent weaknesses of the model-based approach.

The most pressing problems are in the usability of model-based tools.

One problem from a usability perspective is the immediate exposure to

abstraction. That is, the high level of abstraction advocated by the model-based

approach also implies that the designers must understand these abstractions.

This requires abstract thinking, plus a willingness to spend a significant amount of

time learning the abstractions of a particular modelling language before any inter-

face can be built. This is in contrast to more visually-oriented lower-level tools

such as user interface builders which can usually be mastered in minutes.

A related problem is the need to use a formal computer language. That is,

in addition to the difficulty of working at a more abstract level, the designer must

also possess the ability to communicate the desired abstractions to the machine.

This necessitates the use of a formal language (be the language of a textual or of

a graphical nature).

1. A possible completeness property is that all objects that can be created can

also be deleted afterwards. A consistency property may be that common sub-dia-

logs are identical. Reachability analysis is concerned with making sure that every

part of the dialog can be reached from any other part. Finally, a proper dialog

model can also enable checking for the availability of “undo” for each command.

4

Finally, specifying the behavior of user interfaces at a high level of abstrac-

tion can sometimes make it difficult to understand the behavior at the user inter-

face level. For example, assume that the designer has observed that pressing a

certain button has the unintended side effect of deselecting all objects. If all of the

behavior is described imperatively at a low level, she can look for the procedure

invoked by the button press, and then examine each of the statements there - one

of them must directly or indirectly trigger this behavior. In contrast, if the behavior

is specified via a higher-level model, it may take intimate knowledge of the

run-time interpreter for this model to identify which part of the model causes this

behavior at the user interface level.

I.2 User Interface Design by Demonstration

Over the last ten years, a new approach towards sequencing specification

has emerged that lets designers describe user interface behavior through exam-

ples. That is, the designers give concrete examples of the desired behavior rather

than having to deal with an abstract sequencing specification directly.

Peridot [Myer88] and DEMO [Wolb91] are typical demonstrational systems for

user interface design.

I.2.1 Strengths

The primary strength of programming by demonstration, and its principal

motivation, is that giving examples of desired behavior takes less cognitive skill

5

than formally specifying the same behavior.2 Assuming that the designers are

already familiar with a user interface layout tool all they need to learn is how to

give examples of behavior. While this also takes skill, it compares favorably with

having to learn a formal language.

Another strength of programming by demonstration is that giving interac-

tive examples is less intimidating then textually specifying the equivalent behav-

iors. Visually-oriented designers in particular are more likely to be willing to give

examples than they are to invest time up-front in learning a formal language.

I.2.2 Weaknesses

However, programming by demonstration also has its drawbacks. For one,

there are inherent theoretical limits on its expressive power. To understand this

issue, imagine that you are defining a complex mathematical function by providing

a number of its points. An external observer can now draw a curve that goes

through all of these points, but she can only approximate the function that you had

in mind.

Or, consider that any non-trivial program cannot be exhaustively tested for

correctness. Is is consequently also impossible to construct such a program from

2. For example, KidSim [Cyph95] combines Programming By Demonstration with

a visual language to enable children as young as eight years old to interactively

specify the behavior of animated characters - a task they could typically not

accomplish with a conventional programming or scripting language.

6

a finite set of examples (because this example set would otherwise, of course,

present just such an exhaustive test for correctness).

The practical limits on the expressive power of the approach are even

more severe because the number of examples for defining a single behavior must

be very small (less than, say, ten). Hence, assuming that the system has no prior

knowledge of what will be demonstrated, it cannot infer complex behavior at all.

Giving the system prior knowledge of what will be demonstrated does not solve

this problem either because it is impossible to anticipate all possible demonstra-

tions in a complex domain.

Another problem with programming by demonstration is that one cannot

have complete confidence in what has been inferred without inspecting a static

representation of the inferred behavior. After a demonstration, one can go into a

test-drive mode in order to test the behavior with a few cases, but one can never

have complete confidence in an inference without examining it in a symbolic form.

Finally, demonstrating all of the behavior for a large design can be frustrat-

ingly tedious. This is because by demonstration alone the designer cannot easily

define a common behavior once and then parameterize it for future reuse.

I.3 Model-Based User Interface Design by Demonstration

This thesis explores combining the above approaches in a way that allows

designers to get started quickly by demonstrating behavior, while not being later

limited only to functionality that can readily be demonstrated. In the broadest

7

terms, the challenge is to find a new approach that combines the strengths of the

previous two approaches while avoiding their weaknesses. More specifically, it

must be possible for the designer to start demonstrating behavior without having

to know anything about the underlying modelling language beforehand. It must

also be possible to later transfer knowledge acquired while demonstrating

towards working with the modelling language directly.

Simply putting an existing demonstrational system on top of a separately

conceived modelling language does not make for such a system. This is because

the modelling language must lend itself to demonstration, and because it must not

contain a large number of constructs that cannot be demonstrated, as the

designer could otherwise not transfer knowledge acquired while demonstrating.

Additionally, demonstrations must translate naturally into constructs of the under-

lying language if the designer is to understand the relationship between a demon-

stration and its resulting specification.

This thesis presents a new, purposefully minimal modelling language

called the Elements, Events & Transitions model that supports demonstrational

tools well, and facilitates the learning of its constructs by demonstration.

This thesis also presents a novel demonstrational tool called Grizzly Bear

whose demonstrations translate naturally and one-to-one to the constructs of this

language, and which covers a unique range of user interface behavior.

While both components contribute to their respective fields in their own

right, it is their seamless collaboration that makes our design environment unique.

8

The structure of this thesis is as follows. Chapter II first reviews related

work. Chapter III then introduces the Elements, Events & Transitions model.

Chapter IV is concerned with demonstrational tools operating on top of this model.

Chapter V describes the Interview Tool, an additional tool within our design envi-

ronment which can sometimes generate initial models by asking a series of ques-

tions about a current interface layout. Chapter VI present the results of user tests.

Chapter VII contains our evaluation of this research, and concludes with a discus-

sion of possible extensions and future work.

9

CHAPTER II

PREVIOUS WORK

This chapter discusses related previous research, divided into three parts.

We will first discuss user interface specification languages (Section II.1), and then

review several tools that can only be made available if such a specification exists

(Section II.2). We will then describe previous demonstrational tools (Section II.3).

II.1 Previous Work on User Interface Modelling

The focus of this section is on formal specification languages for describing

the static content and the dynamic behavior of user interfaces. Our interest is in

specification languages that operate at a higher level of abstraction than program-

ming language code that calls subroutines of a user interface library.

MIKE [Olse86] is one of the oldest user interface management systems

supporting graphical user interfaces. Its specification consists of possible

end-user actions. The actions can be parameterized with predefined types like

String and Point or with strings describing application-specific objects such as

Resistor and Wire for a circuit design application. However, this simple model did

not support defining what an application-specific object is. For example, it is not

possible to state that a wire is an object which connects two other objects.

10

Higgens [Huds88] uses an application data model which was inspired by

semantic database models. The model contains application entities and relation-

ships. For example, musical notation can be modelled as consisting of the entities

Instrument, Piece, Measure and Note. These entities have relationships to each

other. For example, Measures and Notes are in a one-to-many “contains” relation-

ship. Higgens is most notable for using this application data model at run-time,

when it serves as the application interface to the user interface management sys-

tem. In this way, the application need only be concerned with updating application

data. It does not need to be involved in presenting data to the user.

UofA*’s application model [Sing89] consists of actions and parameters and

is similar in spirit to MIKE’s model. The user can define application-specific types

only in a very limited sense by specifying ranges. For example, an Angle type can

be defined as “Angle=[0:360];”. From a programming language viewpoint, the

designers can use predefined simple types like boolean and integer ranges, but

they cannot define classes or records.

ITS [Wiec89,Wiec90] provides a layered architecture for user interface

management. Its four layers consist of user interface primitives like buttons and

choice boxes, a rule-based user interface generator, a dialog control component,

and application routines. Its main focus is on the encoding of user interface style

rules, which make use of a detailed model of the data to be presented. For exam-

ple, an employee record can be declared as a field name of type String, an

address of type Address and a manager of type Employee. The interface genera-

11

tor can then create a dialog box for display of such a field. The user interface gen-

eration process can be controlled by modifying the style rules.

HUMANOID’s [Szek92,Szek93,Luo93] model consists of commands,

objects, global variables and data flow constraints. Commands have associated

inputs (parameters) and preconditions for their applicability. An input describes

one parameter of a command by defining the type, a predicate for semantic input

validation and other properties. Application objects group commands and simple

objects (variables) into a semantically meaningful entity. The data flow constraints

are the control element in the model, they specify the dependencies between

inputs, variables and objects.

UIDE [Fole89] is a set of model-based tools. The original model consisted

of actions, attributes, and an object hierarchy. Actions have parameters, pre- and

postconditions. The pre- and postconditions capture part of an application action’s

semantics. The precondition describes when the action is available (“delete_gate

is only available if there is a gate on the screen”) and the postcondition specifies a

modification of the state after the action executes (“after the add_gate command,

the number of gates has increased by one”). The captured semantics are limited;

the original UIDE model had no knowledge about where the new gate is located

on the screen, for example. Attributes belong to objects and are of a fixed type like

Integer or Real. Objects declare attributes and actions, they would be called

“classes” in today’s terminology.

12

The UIDE knowledge base has since been refined several times. A major

driving force for the new model was its use for automatic generation of con-

text-sensitive procedural animated help [Suka90]. This required much more

detailed knowledge about the elements of an user interface, like the placement of

objects on the screen. Another driving force was a new user interface

generator [Kim90] which had its own requirements like logical grouping of applica-

tion actions. One of the most important model additions was the “has-a” relation-

ship (aggregation) in addition to the existing “is-a” relationship (specialization).

For example, a gate of a circuit design application could be defined as consisting

of several input pins, the gate body and an output pin. Another important model

addition were interaction techniques. Interaction techniques are a specification of

how the user invokes an action and how parameters are supplied to that action. A

simple interaction technique example is pushing and releasing a mouse button

over an user interface element, a more complex technique is dragging by press-

ing a mouse button, moving the mouse and by then releasing the button. The

techniques capture user interface functionality at a much lower level than in the

previous model, mainly to support the animation component.

Table 2-1 gives an overview of the specification languages presented in

this section.

The User-Action Notation (UAN) [Hart90] is another well-known specifica-

tion language for user interface behavior. However, i t is intended for

human-human communication rather than machine interpretation.3 We will limit

13

our discussion of previous work to machine-readable specifications here. UAN is

nevertheless interesting because it could be made machine-readable by formaliz-

ing it further. However, pushing UAN too hard into this direction risks creating a

language which could be too formal for human-human communication while still

not being formal enough for machine interpretation.

Finally, it is worth noting that there are many related modelling languages

outside the user interface domain. For example, LOOM [MacG91] is a gen-

eral-purpose knowledge representation language that is widely used in the Artifi-

cial Intelligence community. It provides concepts and relations (a data model in

our terminology) as well as actions and productions (a control model in our termi-

nology). In many respects, knowledge representation languages such as LOOM

are more general and powerful than the user interface-specific modelling lan-

guages presented in this section. However, their generality often incurs a cost in

terms of storage overhead and run-time performance that can preclude their use

in interactive software.

3. Citing from [Hart90], page 184: “Because UAN is in the behavioral domain, it

should not be confused with, for example, specification languages for program

behavior. ... Therefore, UAN is not a replacement for constructional representa-

tion techniques; it serves in a different domain.”

14

Table 2-1: Overview of Application Models

Actions
and
Parame-
ters

User-
Defined
Parame-
ters

Action
Grouping

Parame-
ter Vali-
dation

Declara-
tive
Sequen-
cing

Applica-
tion
Objects

Design
Time
Data
Model

Run
Time
Data
Model

Mike
1986

Yes Only as
Textual
Strings

No No No No No No

Hig-
gens
1988

No No No No No Yes Yes Yes

UofA*
1989

Yes Ranges,
Enume-
rations

No No No No No No

ITS
1990

Yes Yes No No No Data
Objects,
No
Actions

Yes
(Pre-defi
ned
Types)

No

Hu-
man-
oid
1990-

Yes Yes
(Pro-
gram-
ming of
Inputs)

Yes Yes
(Input
Predi-
cates)

Data-
flow
Con-
straints

Yes Vari-
ables of
Object
Types

No

UIDE
1988-

Yes Yes
(Object
Parame-
ters)

No InterPa-
rameter
Con-
straints

Pre- and
Postcon-
ditions

Yes Vari-
ables of
Object
Types

No

15

II.2 Previous Work on Model-Driven User Interface Tools

The preceding section presented various user interface models. This sec-

tion describes tools that take advantage of such a model.

Cartoonist [Suka90] automatically generates animated and context-sensi-

tive help for the end user. The generation is based on a sequencing model that

consists of user interface actions. Each of these actions has a pre-condition that

must hold for the action to be applicable and a post-condition that asserts what

will be true after its execution. Cartoonist can answer questions of the form “how

do I enable this action” by searching for an action sequence which satisfies the

precondition of the disabled action. The system then executes this sequence in

slow motion by generating artificial user events, making use of knowledge about

the animation of user interface techniques such as menu invocation, button press

and text field fill-in. Cartoonist probably presents the visually most compelling

case for declarative user interface models.

DON [Kim90] is a user interface generator that also makes use of a com-

prehensive declarative model. Its model includes a class hierarchy of application

objects that are to be presented to the user. Each of these application object con-

tains a list of its attributes as well as a list of applicable actions. Dependencies

between actions are expressed using pre-and postconditions.4 The high-level,

4. The obvious similarity to Cartoonist’s model is not accidental as both tools have

common roots in the User Interface Design Environment (Section II.1).

16

declarative knowledge of application-level entities enables the system to suggest

an overall organization of the user interface in addition to simply suggesting the

layout of individual dialog boxes.

Srdjan Kovacevic explored ways of automatically transforming user inter-

face behavior throughout an application [Fole89,Kova92]. Consider that you have

designed a user interface in which one first selects an operation and then selects

the objects to which the operation is applied, and that you later realize that revers-

ing that order makes for a better design. Representing the interactions in an

appropriate high-level format allows Kovacevic’s system to automatically, pain-

lessly and consistently change this behavior throughout the interface - a task

which would otherwise require identifying and changing programming language

code in many places. These transformations are especially valuable in the early

design phases, where designers can quickly explore alternative interaction para-

digms via transformation of a design prototype.

USAGE [Byrn94] can translate a high-level declarative user interface

model into an NGOMSL model [Kier88] that is suitable for subsequent automated

interface evaluation. This automated evaluation capability comes “for free”

assuming that such a higher-level model has already been constructed for other

purposes, such as driving the user interface at run-time.

It is worth noting that the actual modelling language used by each of the

systems above differs, and that each language is naturally geared towards its

specific purpose. It is currently an open research question if a universal modelling

17

language exists that can support all of these tools, and that can efficiently drive

the user interface at run-time as well. The Mastermind project [Szek95] currently

is the most ambitious attempt of providing a comprehensive and detailed user

interface model.

II.3 Previous Work on Demonstrational User Interface Tools

A number of demonstrational user interface tools have been built during

the last ten years. We will first describe relevant systems individually in chronolog-

ical order, and then provide a summary of their key characteristics.

Peridot [Myer88] supports designing scrollbars, buttons, choice boxes and

similar objects by demonstration. It was the first user interface tool to provide for

the interactive specification of behavior in addition to layout.

The primitives of Peridot’s inference mechanism are rectangles, circles,

text lines and icons. Peridot uses active values to describe the state of an inter-

face. Active values are global variables which maintain a list of objects to notify

when their value changes. For example, a choice box is associated with an active

value that enumerates the choices. Both the application and the end user can

change this value and the other party will be informed of the change. Another

example in Peridot is the mouse pointing device, which is attached to an active

value consisting of a cartesian coordinate and three booleans for the mouse but-

tons.

18

 Peridot created the research field of “by-demonstration” tools. The major

drawback was its heuristic, rule-based reasoning which in essence codifies edu-

cated guesses of what the user is trying to do. This methodology works well if the

guesses are correct but it fails fatally if they are not because it does not present

an escape mechanism. Worse, the user is then always left to wonder if the system

could make the right guess when supplied with a slightly different demonstration,

or if it just cannot draw the desired inference at all. We encountered the same lim-

itations with our rule-based tool, the “interview component” (Chapter V).

Lapidary [Myer89] focused on creating application-specific objects. It also

used constraints but replaced Peridot’s active values with interactors [Myer90a]

as its way of handling user input. To specify a constraint by demonstration, the

user first selects the user interface event which triggers the constraint, such as

object selection with the mouse. The designer initiates two system snapshots,

before and after the change to the object (for example to make its text italic). The

system then creates a constraint which makes the text of highlighted objects italic.

Metamouse [Maul89] learns graphical procedures by example. The user

first invokes a special teaching mode. Metamouse then watches the user perform

graphical editing operations and uses generalization to identify the steps, loops,

and branches in this procedure. Metamouse used the proximity of objects to

reduce the amount of computation required for its inferencing. “Metamouse is

near-sighted but touch sensitive. The user understands that relations at a dis-

19

tance must be constructed, for example by using a line to demonstrate alignment”

[Maul89, page 128, end of first paragraph].5

Druid [Sing90] lets users attach simple functionality such as enabling, dis-

abling, hiding and showing buttons. It is a user interface management system with

demonstrational capabilities. It differs from Peridot and Lapidary in that the sys-

tem is watching the designer perform interactions over time rather than taking

snapshots of the state and reasoning about the difference in the states. Druid’s

approach is somewhat similar to macro recording in Emacs, FrameMaker or other

text processing systems. Druid lacks a static representation of the recorded

behavior, so that the only way to see what has been recorded is to replay it and

the only way to edit is to re-record. The “recording” approach works best when no

parameters are involved in the interaction. However, Druid does have some capa-

bility to deal with arguments. For example, the designer can demonstrate that the

arguments to a “create rectangle” function are two mouse clicks which specify

5. It is interesting to compare this search space reduction technique to the one

that we have used for our demonstrational tools (Chapter IV). Grizzly Bear could

accordingly be described as “motion sensitive” rather than “touch sensitive”.

There is no need for auxiliary objects as in Metamouse, but the user has to under-

stand that an object must be moved (or otherwise changed) for it to become rele-

vant to a demonstration. Both strategies aim at reducing the number of objects

that must be considered in the generalization process.

20

opposing corners of a rectangle. However, it is generally not possible to demon-

strate a parameterized interaction with a single demonstration. In conclusion, the

macro recording approach works best for parameterless interactions and quickly

becomes arkward for more complex interactions.

Eager [Cyph91] watches users perform operations and detects and auto-

mates repetition. Eager differs significantly from the other demonstrational sys-

tems discussed in this section. It does not synthesize a program but rather just

automates repetition. Eager does not have to be explicitly invoked, it is rather con-

stantly running in the background. When it detects repetition it displays its logo in

the menu choice that it anticipates will be selected next. The users thus get a sub-

tle, unobtrusive hint that they can use Eager to automate repetition. Eager pre-

sented a usability breakthrough for by-demonstration systems because it did not

require any special skills from its users.6

DEMO [Wolb91] uses a stimulus-response paradigm for demonstrating the

behavior of graphical objects. The designer specifies a triggering event, the stimu-

lus, and then demonstrates the intended behavior, the response. This paradigm

6. However, it should of course again be noted that Eager only addresses the

automation of user actions (the users could accomplish their tasks without Eager).

Most other systems presented in this section address the much harder task of

empowering them to define user interface behavior, a task they could otherwise

not accomplish at all.

21

supplies a natural mental model of how the demonstrational system works. DEMO

does not use predefined widgets such as buttons and sliders but drawing primi-

tives such as lines, circles and rectangles. The possible stimuli are atomic mouse

events such as mouse button presses and releases. For example, it is possible to

specify that a line at a fixed position should appear when the left mouse button is

pressed by specifying the mouse press as the stimulus and then drawing the line

in response, and finally specifying that the stimulus should execute the response.

It is also possible to specify that a parameterized line should be created depend-

ing on where the mouse was clicked and where it was released, this is done

exactly as before but by stating that the stimulus should initiate the response.

DEMO does some linear generalization similar to Peridot, so that it is possible to

link an angle of a gauge to a numeric text field.

DEMO II [Fish92] is a successor of the DEMO system which has been aug-

mented by a rule base. Some of the rules try to automatically recognize the stimu-

lus for a demonstrated behavior. Other rules try to infer non-linear relationships.

Inferring non-linear relationships is an important goal but it is inherently limited

because complex relationships would require large numbers of examples. DEMO

II uses auxiliary objects such as invisible lines and ellipses to specify the con-

straints between geometric objects. DEMO II is the first by-demonstration system

that tries to overcome the linear-relationship barrier but it succeeds only in a lim-

ited domain. It is also notable for incorporating both rule-based heuristics and

more mathematically-thorough inferencing. Heuristics are appropriate for captur-

22

ing commonly used behavior but there must be a fall-back mechanism. We have

also used a dual approach: The Interview Tool of Chapter V is our heuristic com-

ponent, while the demonstrational tools of Chapter IV use mathematically-thor-

ough reasoning. In a nutshell, heuristic components can be more forgiving while

the mathematics-based components can make more general inferences.

Chimera [Kurl93] infers constraints between graphical objects given multi-

ple snapshots7. For example, it can infer that buttons should be distributed evenly

when their window is resized. It can also infer constraints between objects in an

application’s main window, such as the components of a two-dimensional projec-

tion of a lamp with a flexible metal arm (a “Luxo” lamp). It is maybe the computa-

tionally-strongest interactive graphical constraint solver to date.

The user interface to the constraint solver shares some principles with our

approach. One similarity is that constraint enforcement can be turned on and off.

When the constraints are turned off, the scene can be directly manipulated in

order to provide a new snapshot which is similar to our build mode. When the con-

straints are turned on, the users can see if the scene behaves in the way they

intended which is similar to our run mode8. Another similarity is that the users do

not have to have a mental model of how the system will make their demonstrated

behavior work. In Chimera, the user providing snapshots of desired configurations

7. The constraint solver is only part of the functionality of the Chimera editor, but

we will not distinguish between the two here.

23

does not have to know about the concept of constraints. This is an advantage of

snapshot-based inference over graphical programming because graphical pro-

gramming can only free their user from some of the syntax of the domain but not

from the requirement to know about the concepts9.

Chimera cannot automatically infer parameters from given snapshots

because the number of parameter candidates in a complex scene is large. An

extension to Chimera lets users provide a set of integer values with each snap-

shot. The given values are treated in the same way as the distances, slopes and

angles of the snapshot so that the provided values are constrained in the same

way. For example, slider, dial and gauge widgets can be constructed in this way,

similar to Peridot. The primitives of Chimera’s inferencing mechanism are lines

and other elements of a simple drawing editor. Chimera does not reason about

objects that are dynamically instantiated and deleted at run-time.

Finally, Marquise [Myer93] uses domain knowledge to support building

graphical editors. It is a by-demonstration system for creating MacDraw-style

graphical editors. It contains built-in knowledge about editor-specific behaviors

8. This similarity is not surprising as all graphical snapshot inference mechanisms

must provide a mode in which the inferred representations are not executed

because the user could not arrange the initial snapshots otherwise.

9. Scripting languages require their users to know both the syntax and the seman-

tics before they can start a new design.

24

such as selection from a palette and grouping of objects. It is similar in capability

to DEMO II which can also handle creating lines and constraining lines to boxes. It

goes beyond DEMO II in its capability to demonstrate feedback such as rubber-

banding lines.

Marquise uses several mouse icons to statically represent the demon-

strated dynamic behavior. For example, consider that the user demonstrates how

to create a line by selecting the line mode from a palette, pressing the left mouse

button in the main window, dragging and releasing the mouse button. Marquise

can then show the mouse events on the screen using these icons. One of the

advantages is that the user can now draw a dotted line between the mouse down

and up events to indicate the kind of semantic feedback that is intended. More

important, this provides for an editable static representation of the demonstrated

behavior, a prerequisite for the practical use of by-demonstration systems. Mar-

quise actually records events rather than isolated snapshots, similar to Druid, so

that it can also be characterized as a generalized macro recording approach.

All of the systems discussed above use by-demonstration techniques but

they are not easily compared because they have different goals and use different

techniques. Nevertheless, we make an attempt to classify them in Table 2-2.

The first two columns describe user interface aspects. The first column

shows if the system is constantly watching the user during normal operation or if it

is explicitly invoked. The advantage of constant watching is that the users do not

have to learn anything new to take advantage of the system. Some systems query

25

a. “None” in this column should be interpreted as “none published”.
b. Metamouse additionally reduces the search space by only considering touch relations.
c. Note that only Druid’s demonstrational component is discussed here, not its rule-based design
assistant.
d. Chimera also uses a variety of other techniques to reduce the solution cost of a demonstration.
e. A feedback window is displayed; the designer can change aspects of the behavior but does not
have to.

Table 2-2: Overview of Demonstrational Systems

Interface

Is Eager
(Con-
stantly

Watches
User)

Interface

Uses A
Clarifica-
tion Dia-

log

Capa-
bility

Dynamic
 Object

Creation
& Dele-

tion

Capa-
bility

Subjec-
tive

Strength
in Geo-
metric
Rela-
tions

Internals

Search
Space
Reduc-

tion

Internals

Is Rule-
Based

Internals

Tempo-
rary

Beha-
vior Sto-

rage

Internals

Output

Peri-
dot
1987

Yes
(Query)

Yes No Low Nonea Yes Snap-
shots

Con-
straints
& Behav-
ior

Lapi-
dary
1989

No Yes No Low None No Snap-
shots

Con-
straints
& Inter-
actors

Meta-
mouse
1989

Yes
(Predic-
tion)

Yes No Medium Explicitb

(Auxil.
Objects)

No not appli-
cable

Graphi-
cal Pro-
cedure

Druidc

1990
No Yes No None None No Event

Record-
ing

Script

Eager
1991

Yes
(Predic-
tion)

No not appli-
cable

not appli-
cable

not appli-
cable

No Event
Record-
ing

Macro

DEMO
1991

No Yes Yes High Explicit
(Auxil.
Objects)

Yes
(DEMO
II)

Com-
pressed
Snap-
shots

Res-
ponse
Descrip-
tion

Chi-
mera
1991

No No No High Explicitd

(Auxil.
Objects)

No Snap-
shots

Two-
Way
Con-
straints

Mar-
quise
1993

No Optio-
nale

Yes Medium None Yes Event
Record-
ing

LISP
Code

26

the user when they make an inference (marked with “Query” in the table), others

indicate their inferences by subtly displaying their prediction of what the user is

doing next (“Prediction”). The second column describes if the system asks the

user for confirmation and clarification after each inference. Any inferencing sys-

tem will sometimes guess wrong - the clarification dialog gives the user an oppor-

tunity to correct and fine-tune inferred behavior. The disadvantage here is that

going through this clarification process after every inference can be distracting.

The next two columns make an attempt to measure the capability of the

systems. The third column indicates if the prototypes can handle the creation and

deletion of graphical objects at run-time. The fourth column indicates to what

degree the systems can infer geometric relationships between objects. This clas-

sification is inherently subjective because the design goals of these systems are

different (for example, Eager does not attempt to infer geometric relationships)

and because their capabilities are different. We labelled systems which can detect

simple relationships such as centering and touching “Low,” systems which can

detect more general relationships “Medium” and the most sophisticated systems

“High.” This, again, is a crude and necessarily subjective classification.

The remaining columns are concerned with the implementation of the infer-

encing systems. The fifth column describes if the system reduces the number of

objects that it checks for relationships. For example, some systems use auxiliary

objects such as guide wires to let the user specify the relevant objects and their

relationship. The sixth column describes if the inferencing is based on rules or on

27

an algorithm. The advantage of rule-based systems is that they can encode com-

monly used behavior. The disadvantage is that the rules can sometimes miss

even simple relationships while algorithm-based systems can handle all relation-

ships within a certain class. The seventh column describes how previous demon-

strations are captured. There are two main approaches towards capturing

demonstrations. Event-recording stores the events during a demonstration by the

user. Snapshot-taking records a series of states. The last column describes the

output of the inferencing process.

28

CHAPTER III

THE ELEMENTS, EVENTS & TRANSITIONS MODEL

This chapter first motivates and introduces a model for describing user

interface behavior. It then discusses advanced features of the model, and pre-

sents a computer-readable language for specifying models.

III.1 Motivation

The Elements, Events & Transition (EET) language is a special-purpose

language for the design of interactive graphical user interfaces.

III.1.1 General Motivation for Special-Purpose UI Specification Languages

But is a special-purpose language a good idea at all? Many professional

programmers resent having to learn “yet another language”. They have already

invested considerable time in learning a general-purpose programming language

- so why invest even more time in learning another language which has no more

overall expressive power, and likely less? And there will normally also be a run-

time cost because these special-purpose languages tend to be interpreted!

Mark Linton [Lint89, page 20] provides a good summary of these criticisms.

For example, he writes: “The special-purpose language used ... is likely to be

unfamiliar to programmers and user interface designers alike. Moreover, the lan-

29

guage is usually inferior to established general-purpose languages, the debug-

ging tools are primitive or nonexistent, and run-time overhead associated with

interpreting the specification often degrades performance compared to conven-

tional implementations.”

These objections are valid. There are indeed situations where hand-writing

user interface code is preferable to any other method of construction. This is

especially true for commercial products that are widely distributed. The effort

spent for hand-writing user interface code for such products is of virtually no con-

cern because of the economy of scale involved. For example, a large software

manufacturer can afford to employ many professional programmers which care-

fully hand-craft user interface code.

However, the vast majority of computer users are not professional pro-

grammers. Requiring extensive experience with a general-purpose programming

language would permanently exclude them from constructing even simple user

interfaces. It would also exclude them from modifying existing user interfaces to

suit their needs and taste (beyond choosing from a finite number of pre-defined

options). Therefore, there clearly is a need for user interface languages which are

more accessible.

III.1.2 Motivation for the EET Language

The primary design rationale of the EET language is to facilitate its produc-

tion with demonstrational tools. To the best of our knowledge, the EET language is

30

the first language for describing dynamic user interface behavior with this explicit

design goal.

Other important requirements are that the language is nevertheless also

readable by humans (so that they can inspect and modify the output of the

demonstrational tools), and that it can be interpreted efficiently.

III.2 Introduction to the EET Model

The Elements, Events & Transitions (EET) model serves two purposes.

First, it is used as the underlying model for demonstrational tools. Second, the

EET language10 doubles as a user-level scripting language when the interactive

tools are inadequate, or when it is easier or faster to specify the behavior directly.

In response to these requirements, the Elements, Events & Transitions

model introduces only the three abstractions that give the model its name. This

minimality facilitates its construction by demonstrational components and does

not unnecessarily burden novices in learning the language. In addition, strictly

separating static properties (Elements) from dynamic properties (Transitions) sup-

ports our design methodology of specifying static properties first (by direct manip-

ulation) and dynamic properties later (by demonstration).

10. The EET model presents the abstractions available for describing user inter-

face behavior. The EET language is a particular syntax for specifying such mod-

els.

31

III.2.1 Elements

All graphical user interfaces are at least conceptually composed of ele-

ments. For example, most interfaces use button elements, slider elements, win-

dow elements and so forth. Thus, virtually all modern toolkits, or subroutine

libraries, use programming language abstractions to describe those components.

These abstractions are often called “objects.” We do not use this term because it

is already over-used. Our abstraction for describing these user interface compo-

nents is called an element.

It is worth keeping in mind that a user of our interactive tools does not have

to be exposed to a textual specification for elements. This is achieved by editing

the element space by direct manipulation, via a conventional user interface

builder. Users can add, remove and modify elements in this way. Nevertheless,

we will introduce the textual syntax for specifying elements in this section as this

will help us make our discussion more concise. More advanced users may also

want to introduce abstract elements (elements that have no representation within

the user interface) which can only be edited textually.

An element is a collection of attributes. An attribute typically consists of a

type, a name, and a value. For example, the attribute below describes a numeric

attribute called “width” and gives it a value.

<integer> width 80;

Attribute values can be quoted. This is necessary only if the values contain

blank spaces such as in the example below.

32

<string> label "Press Me"

The type of an attribute is optional. For example, we could earlier have also

expressed the attribute as shown below.

width 80;

Omitting the type of an attribute implies that its values will be stored as

strings and that its type will be marked as “unknown”. Not specifying a type can be

convenient. However, it has the drawback that access and storage of that attribute

will not be as efficient as they could be. As we will see in Chapter IV, it also

implies that the demonstrational components will not be able to draw type-specific

inferences.

It is also legal to specify type names that do not exist internally, say “color”

or “font”, with the same drawbacks (the built-in types are “string”, “integer”, and

“boolean”). However, this is still preferable to not specifying types at all because

the EET interpreter can then warn about assigning values of attributes with differ-

ently named types.

Attributes of user interface elements nearly always have exactly one value.

However, attributes can also be multi-valued. In the user interface realm, this can

for example be used to maintain a list of currently selected objects.

<string> selected gate2 gate5 gate7;

33

The fact that attributes may have multiple values implies that attributes

may have no value at all. In the above example, the selected attribute may have

no value (there may not be any objects selected).

<string> selected ;

Note that by convention the type specification of multi-valued attributes

uses the singular of the type of its values (“string”, not “strings”).

Now that we have defined what attributes are, we can simply define ele-

ments as a collection of attributes. For example, a button can be described by a

name, a position, a size, and so on, as shown below.

Element {
<string> class Button;
<string> name b;
<integer> x 220
<integer> y 140;
<integer> height 25;
<integer> width 80;
<boolean> enabled true;
...

}

Attribute names must be unique within an element. For example, it would

be illegal to specify two attributes with the name “height”.

Elements will often be given a name, which is expressed by a string-valued

attribute called “name”, b in the above example They can then be referred to by

this name. Elements do not have to have names because they can also be

referred to by the values of their other attributes.

34

It is interesting to note that the “name” attribute is not special in any way

other than providing a name for the element containing it. That is, its value can be

computed like the value of any other attribute, and the value of a name attribute

can be used to compute others.

Attribute values are atomic - they cannot be composed of other values.

That is, a value can be of type string or color, but it cannot be of type element -

there is no nesting of elements. However, the same effect can be achieved by

referring to elements in attributes. The selected attribute is an example of this

technique. While the values of this attribute are simple names they can be de-ref-

erenced to access the content of the named elements.

III.2.2 Events

The second abstraction of the Elements, Events & Transitions model is the

event. Just as their real-world counterparts, EET events signal that something sig-

nificant has happened.

The EET model does not make assumptions about the type of events that

can occur. The model only provides structure to those events, and gives the user

a way of specifying what should happen in response to them.11

We will again introduce a textual notation for events while reminding the

reader that beginning users of our interactive tools only need to know about the

11. A small piece of software situated between the window system and the EET

interpreter establishes the actual types of events available.

35

concept of an event (“when I press the delete button, I want the currently selected

objects to go away”), not any syntax. As before, presenting the textual notation

here will make our discussion more concise.

An EET event consists of the name of the object on which the event

occurred, the name of the event, and a list of event parameters. The simple event

below expresses that a “delete” button was pressed.

deleteButton.pressed()

In the example of a button, we will normally not be interested in potential

parameters of the event, such as the exact position of where the click occurred on

the button. However, there are also many situations where we are interested in

parameters. For example, we will normally be interested in where the click

occurred on a canvas object.

canvas.pressed(
<integer> x 213,
<integer> y 79)

There is some similarity between an element attribute and an event param-

eter in that they both have a name and a - potentially unknown - type. In contrast

to attributes, event parameters always carry exactly one value. Just as for

attributes, the order of event parameters is of no significance because event

parameters are always referred to by name. That is, the event below is indistin-

guishable from the one above.

36

canvas.pressed(
<integer> y 79,
<integer> x 213)

Just as for attributes within an element, the same parameter name cannot

occur twice within an event.

III.2.3 Transitions

Transitions are the last abstraction of the Elements, Events & Transitions

Model. They describe how the elements change in response to events.

Simple transitions often translate one-to-one to an informal natural-lan-

guage description, such as “the Properties window should disappear if the user

presses the Cancel button.”

Transitions formalize this natural-language description to make it machine-

executable. As stated above, we will introduce the textual syntax both to make our

discussion more precise and to show which language constructs are available for

advanced users. There is no need to know this textual syntax to start building a

functional user interface.

Transitions consist of two parts. The transition header describes under

which circumstances the transition is invoked. The transition body describes how

EET elements change once it is invoked. The transition below gives a simple

example.

Transition propertiesCancelButton.pressed()
{

propertiesWindow.visible := "false";
}

37

In this example, the header describes that this transition is invoked if the

user causes a “pressed” event over an interface element called propertiesCancel-

Button. The body describes that the propertiesWindow becomes invisible in

response.

A transition body consists of a series of statements. The body of the above

transition contains the most common statement, the assignment statement. It sets

the value of an element attribute to the value provided on its right-hand side.

Assignment statements are not restricted to setting values to constants,

they can also contain value expressions on their right-hand sides such as the

ones below. (The assignments state that an element named e doubles in width

while its center remains at the same location.)

e.x := e.x - 1/2 * e.width;
e.width := 2 * e.width;

Assignment statements always specify an attribute reference on their left-

hand side. Their right-hand side, the value expression, can refer to constants,

attributes, and event parameters. The transition below refers to an event parame-

ter. (The transition specifies that mouse movement events on element e will cause

it to follow the mouse.)

Transition e.mouseMoved(integer x, integer y)
{

e.x := x;
e.y := y;

}

38

As discussed earlier, element attributes can be one-valued or multi-valued.

Assignment statements deal with one-valued attributes.

There are also several statements for changing multi-valued attributes

which maintain a list of values. Among them are statements for clearing a list, for

adding a value to a list, and for removing values from a list. Below is an example

for clearing the values of the selected attribute of the bb element.

bb.selected := ;

Below are two examples of adding values to the end of a list. The right-

hand side does not have to be constant, it can be an arbitrarily complex value

expression just as in regular assignment statements.

bb.selected += pin231;
e.someNumberSequence += 4 * 8 * 66;

The following statement will delete the first matching value from a list. The

right-hand side can again contain a value expression.

bb.selected -= "element to be deleted";

The above three statements manipulate list items by their value, and have

proven sufficient for our purposes. Additional statements that can manipulate list

items by their position may need to be added for more list-intensive models (e.g.

“add this new element after the third existing element” or “remove the first ele-

ment”).

39

III.2.4 Example: Showing and Hiding an Auxiliary Window

We will now give a minimal example of a user interface driven by an Ele-

ments, Events & Transitions model. Figure 3-1 shows the windows of this exam-

ple interface. The user interface elements are represented as EET elements. The

figure shows the relevant element names in italics, pointing to their respective ele-

ments with arrows. (Neither the italic labels nor the arrows are part of the user

interface.)

The functionality we want to describe in this example is that the Properties

window is made visible by pressing the Properties button. The window becomes

invisible again when the user presses the Cancel button or the OK button. The

Properties button is disabled when the Properties window is already visible. An

Elements, Events & Transitions model for this functionality is shown below.12

Transition PropertiesButton.pressed()
{

PropertiesWindow.mapped := 1;
PropertiesButton.textForeground := "white";

Figure 3-1: Showing and Hiding an Auxiliary Window

PropertiesButton

PropertiesWindow
CancelButton

OkButton

40

}
Transition CancelButton.pressed()
{

PropertiesWindow.mapped := 0;
PropertiesButton.textForeground := "black";

}
Transition OkButton.pressed()
{

PropertiesWindow.mapped := 0;
PropertiesButton.textForeground := "black";

}

All concrete EET models depend on the characteristics of the window sys-

tem and user interface toolkit that they are attached to.13 In this case, the toolkit

provides an integer-valued attribute called mapped that controls the visibility of

elements.14

We will later discuss ways of expressing the same model in a different, less

repetitive way. For example, we will see how we can tie the text color of the Prop-

erties button directly to the visibility status of the Properties window, so that we do

not have to explicitly set the text color of this button whenever we change the visi-

bility of the window (Section III.3.6). We will also see how we can avoid the dupli-

cation of EET statements between the OK button and the Cancel button

(Section III.3.7). In the chapter on our demonstrational tools, we will also show

12. Note that in our prototype implementation of the EET model all names are glo-

bal (such as “OKButton”). An improved version could use hierarchical names to

avoid name-space pollution (e.g. “/PropertiesWindow/OKButton”).

41

how this model can be interact ively generated from demonstrat ions

(Section IV.1.2).

The EET model presented above obviously represents only a small seg-

ment of the overall functionality. Later in this chapter, we will see how we can

express more complex functionality in EET models, and how we can attach appli-

cation code (Section III.3.8).

III.3 Advanced Concepts of the EET Model

The previous section has introduced the Elements, Events & Transitions

Model. This section describes its more advanced concepts. Advanced users will

be able to write more expressive and powerful models if they are familiar with

these concepts.

13. An earlier example used a string-valued attribute called “visible” for the same

purpose, coming from a hypothetical user interface toolkit (Section III.2.3). The

EET model does not make assumptions about the nature of the attributes, and

has no attribute names hard-wired into its language. It instead relies on a transla-

tor to fill in the elements from the toolkit at run-time, and to propagate changes to

the elements back to the actual toolkit. The toolkit we used for our prototype

implementation (SX/Tools [Kueh92]) uses an integer-valued attribute called

“mapped” to control visibility.

42

III.3.1 Statements that Operate on Sets of Elements

The transitions shown in the introductory section use statements that oper-

ate on one element at a time. It is also possible to use statements which specify

operations on a set of elements at a time.

Many modern user interfaces let users select multiple objects, and then let

them issue commands that affect all selected objects at once. The following state-

ment changes the width of all selected objects simultaneously. (It is a fragment of

an interaction which lets users textually specify precise properties of graphical

elements.)

(*.selected=="true").width := numericField.value;

We call the parenthesized expression a set expression. Set expressions

contain comparisons, such as the one above. Comparisons can then be com-

bined using the boolean and, or and not operators (their syntax follows the C pro-

gramming language conventions: “&&”, “||” and “!”).

The left-hand side of a comparison usually contains a wildcard reference to

an attribute name. The right-hand side of a comparison consists of an arbitrary

14. A value of zero means that it is hidden, all other values imply that it is visible.

This particular toolkit does not provide an enabled/disabled attribute for buttons so

that we use their text color to communicate disabling to the end user. (Enabled

buttons show black text, disabled buttons show white text.)

43

value expression (as defined in Section III.2.3). The following is a list of more

complex set expression examples.

(! (*.color=="red" || *.color=="blue"))
(*.x>150 && *.x<250 && *.parent=="canvas")
(*.width < e.width + w)

The first expression selects all elements which do not have a color attribute

whose value is red or blue. The second example selects all elements with an “x”

value between 150 and 250 whose “parent” attribute contains “canvas”. The last

example shows how to use a value expression in a comparison: e.width refers to

an attribute, w refers to an event parameter.

The left-hand side of a comparison can not only contain attribute refer-

ences but also event parameter references, list length operators and references

to attributes of concrete elements. We refer to such comparisons as concrete

comparisons as opposed to the wildcard comparisons above. But what then is the

semantics of the following set expression?

Transition e.pressed(enum b)
{

(b==1).color := "brown";
}

A concrete comparison which yields true means “all elements”, a concrete

comparison that evaluates to false accordingly means “no elements”. Hence, if

the b parameter in the above transition is indeed equal to one, the assignment

statement will change the “color” attribute of all elements having such an attribute.

If the b parameter is not one, nothing will happen.

44

This example is admittedly contrived, as set expressions containing no

wildcard comparisons at all will rarely be useful in practice. However, they are

useful for making standard set expressions conditional. For example, the state-

ment below will enable a certain button only if there are currently two selected

pins.

(*.name=="ConnectButton" &&
 bb.selectedPins==2).enabled := "true";

The wildcard comparison on the left limits the elements under consider-

ation to one, namely to the one called ConnectButton. The concrete comparison

then limits the elements to either none or all elements depending on the value of

the selectedPins attribute of the bb element. In combination, the only possible ele-

ment whose enabled attribute may be affected is the ConnectButton element,

depending on bb.selectedPins.

We conclude by noting that the attribute specification element.attribute -

which was used to introduce transitions in Section III.2.3 - is just a shorthand

notation for the set expression (*.name==”element”).attribute. These two nota-

tions are otherwise equivalent.

III.3.2 Transitions for Sets of Elements

All the transition invocations in the introduction to the EET model were tied

to events on a single object. For example, they have tied a transition to a “press”

event on the “delete” button. There are certain situations where it is desirable to

specify a transition that should occur for all objects of a certain group.

45

For example, assume you have built a custom “selection box” containing

three buttons. Pushing any of those buttons highlights this button and de-high-

lights the others. (Many widget sets already provide such a selection box, but it

can sometimes still be desirable to built your own, for example to be able to arbi-

trarily lay out the individual buttons.) One way to implement such a selection box

is to provide three transitions, one for each button.

Transition button1.pressed()
{

button1.reverseVideo := "true";
// statements omitted that de-highlight others

}

Transition button2.pressed()
{

button2.reverseVideo := "true";
// ...

}
Transition button3.pressed()
{

button3.reverseVideo := "true";
// ...

}

However, this is repetitive and tedious so that it is desirable to be able to

say “if any of these three buttons is pressed then...”.

In the above example, being able to specify transitions on a group of ele-

ments is merely convenient. There are also situations were there is no alternative

to being able to do so. For example, consider an interface which lets users create

and delete objects dynamically. In such a case, you have to be able to say “if any

46

of those objects are pressed...” because at run-time there can be an infinite num-

ber of objects whose names cannot be known beforehand.

Transitions on a group of elements are specified by replacing the name of

a concrete element with a set expression. Set expressions in transition headers

use the same syntax as the set expressions in statements introduced in the previ-

ous section.

Below is an example transition that is invoked whenever a “press” event

occurs on an element which has an “isSelectable” attribute that has the value

“true”.

Transition (*.isSelectable=="true").pressed()
{...}

In this example, we may want to highlight the selected object by drawing a

rectangle around it or by changing its color to red. But we cannot know the name

of an object that we have described only by the value of its attributes. How then

do we refer to the element on which an event has occurred inside such a transi-

tion?

The answer is that the EET model provides a special pseudo object refer-

ence, called self, that is synonymous to “the object that has just matched the set

expression of this transition”. We can thus fill in the body of the above transition.

Transition (*.isSelectable=="true").pressed()
{

self.color := "red";
}

47

In the case of multiple elements matching the expression, the body of the

transition is executed once for every matching element so that “self” does not nec-

essarily imply that only one element is affected.

As already mentioned in the preceding section, we can also make set

expressions dependent on other properties of the current state. For example, we

can make a transition for a button that connects pins dependent on there being

exactly two currently selected pins (assuming, of course, that the selectedPins

attribute of the blackboard element indeed keeps track of the number of selected

pins).

Transition ((*.name=="connectButton") &&
 (blackboard.selectedPins==2)).pressed()
{...}

In summary, set expressions are the concept in the Elements, Events &

Transitions model that allow users to specify both conditionality and simple itera-

tion without having to introduce explicit “if-then-else” and “for-all” statements.15

Finally, let us introduce an alternative notation for parameter constraints

that is functionally equivalent to set expressions but often more readable. The fol-

lowing set expression makes the execution of a transition dependent on the b

parameter being one.16 The transition triggers upon a pressed event on an ele-

ment called e.

Transition (*.name=="e" && b==1).pressed(enum b)
{...}

48

The advantage of this notation is that it is consistent with the notation used

for statements operating on sets of elements, and that comparisons of event

parameters and comparisons of attribute values are treated uniformly. The follow-

ing alternative notations are equivalent.

Transition (*.name=="e").pressed(enum b==1)
{...}

Transition e.pressed(enum b==1)
{...}

Grouping parameter restrictions with the parameter definitions in this way

is often more readable than putting the parameter restrictions into the set expres-

sions as above.

15. The EET model limits iteration to the form in which the body of a loop state-

ment is conceptually executed concurrently for all affected elements. That is, the

EET model does not support iteration in which the body of a loop depends on the

computational results of previous iterations. The EET model does also not support

recursive invocation of transitions. These advanced constructs are rarely neces-

sary to build graphical user interface front-end functionality, and would complicate

the EET interpreter. Instead, the EET model provides for the integration of custom

programming-language code at any point of EET execution (as described in detail

in Section III.3.8).

49

III.3.3 Transitions that Create and Delete Elements

The previous sections explain in detail how transition statements change

attribute values of elements. This section will introduce two statements which cre-

ate and delete elements.

In the Elements, Events & Transitions model, an element is never created

from scratch at run-time; it is rather copied from an existing element.17 That is, the

other element serves as a prototype, and every element can be used as a proto-

type for others. The newly created object is then no longer linked to its prototype.

That is, changing attributes of an element has no effect on the elements that were

created from it earlier.18

Copying an element implies that the new element will contain the exact

same attributes as its prototype, with the sole exception that its name attribute will

differ (which will be given an artificially generated name).19

16. The example is taken from a user interface front-end that supplies an enumer-

ated value for each mouse-down event that encodes which mouse button was

pressed. In this encoding scheme the left-most mouse button is button one, the

second-from-left mouse button is button two, and so on.

17. This avoids having to introduce the designer to the concept of a “class”. In

addition, this makes the run-time creation of an object conceptually not different

from dragging an object into the design from a palette.

50

The following create statement will instantiate a new element that is copied

from an existing element called “pin”.

element n := create pin;

In this statement, element and create are keywords of the EET language.

The element reference pin specifies the element to be copied. The name following

the element keyword, n, defines a pseudo element reference that can be used to

refer to the newly created object. This is necessary because we cannot know the

name of a newly created object at this point. The use of pseudo element refer-

ences for newly created elements is analogous to the use of the pseudo element

reference self introduced earlier. In both cases, the use of these references is only

valid within the current transition.20

It is possible to use a set expression instead of an absolute name in speci-

fying the prototype of a create statement. For example, imagine that the prototype

18. The rationale for this decision was to ensure that the execution of a transition

remains the only means of changing an element. Otherwise, a change to an ele-

ment may be caused indirectly by a change to its seemingly unrelated prototype.

This is not to say that run-time inheritance may not be useful in some cases, or

that it could not be incorporated into the EET model as a future extension.

19. This is not different from other prototype-instance schemes like e.g. the ones

used in SX/Tools [Kueh92], SUIT [Paus91], and Garnet [Myer90b].

51

from which a new element is copied can change at run time, and that it is marked

with an iAmTheCurrentPrototype attribute.

 element e := create (*.iAmTheCurrentPrototype=="true");

Note that a set expression in a create statement must yield exactly one ele-

ment. If it does not, the EET interpreter will not perform any action other than issu-

ing a warning.

The delete statement is complementary to the create statement. The fol-

lowing example deletes all selected pins (assuming, of course, that pins have an

isAPin attribute and that selection is modelled with a selected attribute).

delete ((*.role=="pin") && (*.selected=="true"));

The statement will delete all matching elements. It is legal for its expres-

sion not to match any element, the delete statement will then have no effect.

20. It is worth mentioning that this is the only part of the language that makes use

of a “local variable” concept, where it seems like the most natural solution to the

problem of referring to newly created elements (whose automatically generated

names cannot be known beforehand). We feel that the general introduction of

local variables would only add complexity to the language without adding power,

as it is always possible to achieve the same effect by using attributes of abstract

elements as local variables (Section III.3.5).

52

III.3.4 Multiple Indirection in Attribute References

The left-hand side of attribute-changing statements consists of attribute ref-

erences. Section III.2.3 introduced the simplest attribute references, of the form

shown below.

button7.width := ...

Section III.3.1 then introduced attribute references that refer to a set of ele-

ment attributes at a time. Below is an example.

(*.selected=="false").width := ...

We complete our discussion of attribute references by introducing attribute

references that use multiple indirection. For example, the following statement

changes an attribute of the layout parent of a button (assuming, of course, that the

button has a parent attribute that indeed provides the name of its layout parent).

CancelButton.parent.visible := "false";

It is possible to combine the use of a set expression and of multiple indirec-

tion.

(*.selected=="true").from.color := "red";

 All attribute references in an EET model are absolute. In the above exam-

ple, both the intermediate and the terminal attribute references (“from” and “color”)

are absolute attribute names. The concept of expressions on attributes in addition

to expressions on elements existed in an earlier language design.

53

Not a valid EET statement!
(*.selected=="true").("red") := "blue";

For example, the above statement used to express “set all attributes with a

value of ‘red’ to the value ‘blue’ for the currently selected elements”. However, we

found these attribute expressions to be of little practical value, and they were also

particularly hard to read. It is of course possible to again extend the language with

attribute expressions if a new application domain for the EET language should call

for this additional pattern matching capability.

III.3.5 Abstract Elements and Prototype Elements

User interface elements are “real” in the sense that the user can view them

and manipulate them. There are several reasons why you may additionally want

to introduce abstract elements into an Elements, Events & Transition model.

Abstract elements should not be confused with the concept of “abstract

superclasses” found in some object-oriented programming languages. An

abstract EET element differs from an ordinary EET element only in not having a

visual representation.

The most common use of an abstract element is as a placeholder for vari-

ous variables that have no immediate visual representation. Abstract elements

must be specified textually (as they per definition have no visual representation),

and appear at the beginning of an EET model, before the transition definitions. A

simple example is shown below.

54

Element {
<string> name bb;
<string> selectedPins ;

}

In this example, the element is used to keep a list of the names of the cur-

rently selected pins. The name bb is a shorthand for “blackboard”, a name which

we by convention often use for an element that holds global variables (abstract

elements can be arbitrarily named). Abstract elements can also be defined by the

following more compact “convenience notation”.

Object bb {
<string> selectedPins ;

}

There is no semantic difference between this definition and the one above

it, the EET interpreter will in both cases generate the same abstract element when

the specification is read in.

We have stated earlier that any element can serve as a prototype. If an

abstract element is defined for the sole purpose of serving as a prototype for other

abstract elements to be created, it can be distinguished using the prototype key-

word.

Prototype p {
...

}

There is no structural difference between standard elements and elements

intended as prototypes. Distinguishing prototypes from objects in this way is

55

rather a mere “declaration of intent” aimed at helping the human reader under-

stand the model.

These prototype elements serve as prototypes for abstract elements only.

Prototypes for user interface elements must always be other user interface ele-

ments, as their visual appearance would otherwise be undefined. Prototypes for

user interface elements are usually placed into a user interface design for the sole

purpose of serving as prototypes at run time, and are usually made invisible to the

end user.

III.3.6 Implicit Event Throwing

So far, the events we have introduced come directly from the user, such as

mouse movement events. In addition, the EET interpreter will automatically gen-

erate three types of events for you as it interprets a model, namely events that

notify you of the creation, deletion, or modification of an element. You can then

attach transitions to these “implicit” events just like you would attach transitions to

any other event.

For example, the EET interpreter generates an event when the length of a

list-valued attribute is changed. It will then put the current event on a stack of

events to be executed later, and first execute an artificial event like the following.

bb.changed(
<string> attr "selectedPins",
<integer> newLength 3)

56

This specific example tells us that the list-valued selectedPins attribute of

the bb element just changed, and that it now contains three values. One can

specify transitions on implicit events just as you would specify transitions on any

other event.

For the sake of this example, imagine that the interface which we are mod-

elling contains a Connect button. Its semantics are that it can be invoked only

when there are exactly two pins selected. Thus, we want to enable the Connect

button in this situation and keep it disabled otherwise. We can express this behav-

ior using implicit events as follows.

Transition bb.changed(
string attr == "selectedPins", int newLength != 2)

{
ConnectButton.enabled := "false";

}

Transition bb.changed(
string attr == "selectedPins", int newLength == 2)

{
ConnectButton.enabled := "true";

}

Implicit events do not increase the computational power of EET models.

For example, we could have also implemented the above behavior by inserting

enabling and disabling statements into all transitions that select and de-select

pins. However, the above implementation is preferable for many reasons.

First, it makes the situations which enable and disable the Connect button

declarative and explicit, rather than hiding them within other transitions. This more

57

declarative form is easier to understand for human readers. It is also more suit-

able for automated analysis components such as reachability checkers.

Second, if we later introduce new ways of selecting and de-selecting pins

we will not have to add statements to the new transitions that take care of the

enabling and disabling of the Connect button when pins are selected and de-

selected in this alternative way.

Four standard implicit events are built into the EET interpreter. Table 3-1

lists the built-in implicit events.

 All implicit events are generated and executed immediately after their trig-

gering conditions occur. For example, the notification “pin17 has been created” is

generated immediately after the corresponding create statement.

The sole exception is the “deleted” notification which is generated just

before the element is actually deleted. This is because it is often convenient to

Table 3-1: Standard Implicit Events

Situation Example of Generated Event

An element is created. pin17.created()

An element is deleted. pin17.deleted()

A single-valued

attribute is changed.

button3.changed(
 string attr == "enabled",
 boolean old == true,
 boolean new == false)

A multi-valued

attribute is changed.

blackboard.changed(
 string attr == "selectedPins",
 integer oldLength == 2,
 integer newLength == 3)

58

refer to the attributes of an element that is about to be deleted in the intercepting

transition - this would not be possible if it were already deleted at the time the noti-

fication is generated.

III.3.7 Explicit Event Throwing

The implicit events introduced in the previous section take care of most of

the situations where one wants to execute a transition in response to a specific

change to the elements. However, the Elements, Events & Transitions model also

offers the facility to explicitly synthesize events (that is, the facility to manufacture

artificial events from within an EET model). While this is rarely necessary within a

single EET model, we will later see that this facility can also be used to communi-

cate between several concurrently running EET models, and to communicate

between an EET model and application code.

An event is explicitly synthesized, or “thrown”, by an event throw state-

ment. Such a statement minimally contains the name of the event and the name

of the object on which the event should occur. It can also additionally specify

parameters.The transition below generates a pinDeleted event on the blackboard

element.

Transition (*.isAPin=="true").deleted()
{

throw blackboard.pinDeleted(
string pinName := self.name);

}

59

There is no need to explicitly declare the events that may occur in an EET

model up-front. We felt that while a separate explicit declaration may help prevent

simple errors (such as misspelling an event name), they were not worth the addi-

tional complexity they would add to the language.

For reasons of uniformity, all events are required to state the element on

which they occur. This is always meaningful for user interface events because

they naturally occur on some user interface element.21 Explicitly thrown events

may not always be directly related to a particular element. In such cases, it is cus-

tomary to specify an abstract element (see Section III.3.5) as the element that

receives the event. For example, more complex EET models typically contain an

abstract element that serves as a placeholder for various global variables, so that

it can be used as the “receiving element” for an event unrelated to any particular

element.

III.3.8 Integrating Application Code

In all of our previous discussion, we have dealt with a single Elements,

Events & Transitions model. Thus, all events coming in from the user interface

were sent to this model, and all implicitly and explicitly thrown events were pro-

cessed by it.22

21. This element is possibly the root window. Keyboard events are sent to the

user interface element that is currently under the mouse cursor.

60

It is also possible to have multiple EET models and multiple applications

running concurrently that communicate by sending each other events. In order to

participate in this event communication, a component registers its unique name

with the EET interpreter.23

It is then possible to send events to this component within an EET model.

This is done by prefixing the element of the throw statement with the name of the

receiving component. For example, assume that there is one EET model and one

application running concurrently, and that the registered name of that application

is “app”.24 We can then send events to the application in the following fashion.

throw app::pin8.deleted();

Omitting the component specifier (“app” in the preceding example) - as

was done in Section III.3.7 - indicates that the event will be processed by the

22. Implicit events are actually always exclusively processed by the local EET

model for performance reasons. (If desired, you can explicitly forward these

events to another model via event throw statements.)

23. The assumption here is that all models and applications run in a single

address space, so that there is only one EET interpreter. If the EET models are

distributed (running as separate processes not sharing memory) component

names must be broadcast to all EET interpreters that may send events to these

components.

61

model that threw the event. (The double-colon syntax is loosely related to its use

in the C++ programming language, where it is also used for scoping.)

The element name (“pin8” above), event name (“deleted” above) as well as

the types, names, and values of possible parameters are passed to the applica-

tion as character strings to avoid platform dependencies in e.g the encoding of

types and values (at the slight expense of efficiency).

There are many reasons for integrating custom application code with an

EET model. The first reason, of course, is that it must be possible to invoke appli-

cation functionality through the user interface. For example, if the user creates a

new “folder” in a graphical application for file management, a piece of application

code has to physically create a new file on disk by calling on operating system

services.

Another reason to integrate custom application code is to implement com-

plex, application-specific changes to the user interface. For example, assume that

the user has designed a new circuit in a circuit design application and now

presses a button which simulates execution of the circuit. In this case, it is often

preferable for the application to directly update user interface elements for perfor-

24. We should mention here that registering and un-registering EET components

can only be done via the Application Programmers Interface, and is not an activity

intended for user interface designers.

62

mance reasons (rather than sending an EET event for every update of a user

interface element that is then performed by the EET interpreter).

The final reason is to provide custom computation that is not built into the

EET interpreter. The EET interpreter provides only the most common operators,

such as concatenation of text strings, and addition and multiplication of num-

bers.25 More complex functions - such as a co-sine function, a logarithm function,

or an application-specific function - can be implemented in application code. The

EET model then sends an event requesting this computation to the application,

including any argument values that may be required. The application returns the

resulting values by either sending them as parameters of another event or by

placing them into designated attributes where they can be accessed from the EET

model.

Section III.3.9 will present an EET-based application in great detail, and

Appendix C will provide an example of actual C++ code that is integrated with an

EET model.

III.3.9 Example: A “Nodes and Links” Application

We conclude the section on the advanced concepts of the Elements,

Events & Transitions model with another example of an EET-driven user interface.

25. Providing a large number of rarely used functions would unnecessarily bloat

the size of the interpreter, and it is obviously impossible to anticipate application-

specific functions.

63

This example is significantly more complex than the introductory example in

Section III.2.4. For example, it involves objects that are instantiated and deleted at

run-time, and it communicates with application code. Its EET model intentionally

makes use of many of the advanced concepts discussed in Section III.3, among

them statements that operate on sets of elements (Section III.3.1), transitions on

a class of elements (Section III.3.2), transitions that create and delete elements

(Section III.3.3), multiple indirection in attribute references (Section III.3.4), and

abstract elements (Section III.3.5). It also uses implicit event throwing extensively

(Section III.3.6), and throws explicit events to communicate with application code

(Sections III.3.7 and III.3.8).

Figure 3-2 shows the user interface of our example, a simple graph editor

that we will call the “Nodes and Links” application.

Figure 3-2: The “Nodes and Links” Application in Use

64

The Nodes and Links application lets the user create and delete nodes as

well as links between those nodes. The links stay attached to the nodes when the

nodes are moved. The selection of any node can be toggled by clicking on it.

Clicking on the canvas de-selects all nodes. The command buttons are enabled

and disabled as needed to show their applicability. The New Node button is

always enabled. The Delete Node button is enabled if there is at least one cur-

rently selected node. The New Link button is enabled if exactly two nodes are

selected and there is not a link between them already. Finally, the Delete Link but-

ton is enabled if exactly two nodes are selected and there is a link between these

two nodes.

We will now describe the EET model that drives this interface in great

detail. A user26 will normally start a new design by laying out the initial interface,

as shown in Figure 3-3.

In this section, we will exclusively focus on the modelling constructs of the

EET model, and not present the evolution of this design. Thus, we will list the

complete EET model of the Nodes and Links application, interspersed with our

26. In our terminology, any user of our environment is a “user”. Thus, the “user” is

typically an interface designer or a programmer. We use the term “end-user” to

describe the intended audience of EET-driven applications (which normally nei-

ther knows nor cares if the application is EET-driven or implemented convention-

ally).

65

comments. The model consists of one abstract element and seventeen transi-

tions.

Object bb {
<int> xOfNextNewNode 10;
<int> yOfNextNewNode 10;
<string> currentlySelectedNodes ;

}

Section III.3.5 introduced the notion of elements that have no immediate

representation in the user interface. The above object is such an element. Its

name is a shorthand for a “blackboard” element which we use to store data that

does not belong to any user interface element in particular. The two integer

attributes xOfNextNewNode and yOfNextNewNode will be used to store the posi-

tion on the canvas where a new node will appear. The currentlySelectedNodes

attribute will hold the list of the names of the currently selected nodes.

#1
Transition (*.isAButton=="true").enable()

Figure 3-3: Initial Layout of the “Nodes and Links” Application

NewNodeButton

DeleteNodeButton

NewLinkButton

DeleteLinkButton

canvas

nodePrototype
linkProtoype

Note that the two
prototype objects in

the lower right corner
are normally invisible
to the end user. They
are visible here only
to demonstrate how

this application is
implemented.

66

{
self.status := "enabled";
self.textForeground := "black";
self.fillForeground := "green";

}

#2
Transition (*.isAButton=="true").disable()
{

self.status := "disabled";
self.textForeground := "white";
self.fillForeground := "red";

}

#3
Transition ((*.isAButton=="true") &&
 (*.status=="enabled")).released()
{

throw self.invoke();
}

Transitions #1-3 implement an enabling/disabling functionality for com-

mand buttons. Implementing user interface behavior on this level is only neces-

sary if the underlying toolkit does not already provide this functionality, or when a

custom look and feel for buttons is desired.

In this implementation, transitions #1 and #2 specify that enabled buttons

are green with black text while disabled buttons are red with white text. We have

attached a custom attribute called status to the buttons, whose value is either

enabled or disabled. This allows transition #3 and others to refer to “disabled” but-

tons rather than “red” buttons, making the rest of the design independent of the

chosen colors. We have also attached an attribute called isAButton to all buttons

67

which allows us to conveniently differentiate between button elements and others.

We will later use the same technique to mark node elements and link elements.

Transition #3 uses explicit event throwing (Section III.3.7) to generate an

invoke event on a button when it is clicked while being enabled.

#4
Transition ((*.isANode=="true") &&
 (*.status=="not selected")).pressed()
{

throw self.select();
}

#5
Transition ((*.isANode=="true") &&
 (*.status=="selected")).pressed()
{

throw self.deselect();
}

#6
Transition (*.isANode=="true").select()
{

self.status := "selected"; #a
self.fillForeground := "blue"; #b
bb.currentlySelectedNodes += self.name; #c
throw app::nodesAndLinks.checkLinkButtons(); #d

}

#7
Transition (*.isANode=="true").deselect()
{

self.status := "not selected";
self.fillForeground := "white";
bb.currentlySelectedNodes -= self.name;
throw app::nodesAndLinks.checkLinkButtons();

}

Transitions #4 through #7 describe how nodes are selected and de-

selected. Transitions #4 and #5 express that a select event is thrown if the user

68

clicks on an element which is not selected, and that a deselect event is thrown if it

is already selected - the selection status of nodes toggles at every click. Transi-

tions #6 and #7 then specify what happens upon these select and deselect

events. A custom attribute called status marks the node as “selected” or as “not

selected” (statement #a). The foreground color of a node changes from white to

blue when it is selected (statement #b). We also keep track of the selection status

of the nodes in the currentlySelectedNodes attribute that belongs to the abstract

“bb” blackboard element we discussed earlier (statement #c). Finally,

statement #d uses explicit event throwing to invoke application code that will be

discussed later in this section.

#8
Transition (*.isANode=="true").motion(int x, int y)
{

self.x := x;
self.y := y;
throw ((*.from==self.name) ||

(*.to==self.name)).adjust();
}

Transition #8 describes how users can move nodes, namely by dragging

them. This transition - as well as any other transition dealing directly with events

from the user interface - is highly dependent on the kind of events that are sent

from the user interface. In the particular toolkit we have used for our proof-of-con-

cept implementation, pressing a mouse button over an element and then moving

the mouse results in motion events belonging to this element. These events con-

tain the mouse position as parameters (as well as other information such as the

69

status of modifier keys). Thus, the two assignment statements of transition #8

implement dragging for nodes. The third statement then causes adjust events on

links attached to this node, so that the links always stay attached to their nodes,

even while a node is being dragged. The throw statement can be paraphrased in

English as “adjust all links that refer to myself in a from attribute or in a to

attribute”.

#9
Transition canvas.pressed()
{
 throw (*.status=="selected").deselect();
}

Transition #9 specifies that all currently selected elements are de-selected

if the user clicks on the canvas (the canvas object is the layout parent of all nodes

and links as illustrated in Figure 3-3).

#10
Transition (*.isANode=="true").deleted()
{
 bb.currentlySelectedNodes -= self.name;
 delete ((*.from==self.name) ||
 (*.to==self.name));
}

Transition #10 makes use of the implicit deleted event that is thrown just

before any element in am EET model is deleted (Section III.3.6). In this case, the

first statement of transition #10 removes the node’s name from the list of selected

elements. The second statement then deletes all links that are attached to the

node.

70

#11
Transition (*.isALink==1).adjust()
{
 self.x0 := (self.from.x + ((1 / 2) * self.from.width));
 self.y0 := (self.from.y + ((1 / 2) * self.from.height));
 self.x1 := (self.to.x + ((1 / 2) * self.to.width));
 self.y1 := (self.to.y + ((1 / 2) * self.to.height));
}

Transition #11 specifies what happens in response to adjust events on links

that are thrown by transition #8 and others. The four assignment statements com-

pute the position of the end-points of a link so that they are centered on the

nodes. The assignments make use of multiple indirection in attribute referencing

(Section III.3.4) to access the position and dimensions of the two nodes that they

are attached to.

The next four transitions specify the behavior of the buttons.

#12
Transition NewNodeButton.invoke()
{

element n := create nodePrototype; #a
n.x := bb.xOfNextNewNode; #b
n.y := bb.yOfNextNewNode; #c
bb.xOfNextNewNode := (bb.xOfNextNewNode + 20); #d
bb.yOfNextNewNode := (bb.yOfNextNewNode + 30); #e
n.mapped := 1; #f
throw n.select(); #g
throw app::nodesAndLinks.checkLinkButtons(); #h

}

The transition for the “New Node” button first creates a new node by copy-

ing from the prototype for nodes (statement #a, the node prototype is shown in

Figure 3-3). Like all create statements, this statement provides a symbolic identi-

fier, named n here, which can be used to refer to the new element in the remain-

71

ing statements of this transition; symbolic identifiers are necessary here because

we do not know the (automatically generated) name of a new element at this

point.

The next four statements then set the position of the new node, and specify

that the next new node will be created at an offset of this one (statements #b-#e).

Note that this implementation of creating new elements at an offset from each

other is simplistic here for brevity. The position of new nodes will be further and

further to the right and bottom of the canvas area - until they are finally located

outside the visible canvas area if many nodes are created. The problem can be

addressed by re-using old positions that are no longer used.

Statement #f then makes the new element visible - the underlying toolkit

uses a numeric mapped attribute to control visibility. Explicitly making the element

visible is necessary because the node prototype is normally invisible.

Finally, statement #g implements our design decision that new elements

are automatically selected, and statement #h informs application code that a new

element has been created. The following three transitions also throw a checkLink-

Buttons event to the application.

#13
Transition DeleteNodeButton.invoke()
{
 delete ((*.isANode=="true") &&
 (*.status=="selected"));
 throw app::nodesAndLinks.checkLinkButtons();
}

72

Transition #13 specifies that pressing the Delete Node button will delete all

currently selected nodes - deleting nodes will then automatically trigger further

action via the implicit delete events (transition #10).

#14
Transition NewLinkButton.invoke()
{

element n := create linkPrototype;
n.from := bb.currentlySelectedNodes[1].name;
n.to := bb.currentlySelectedNodes[2].name;
throw n.adjust();
n.mapped := 1;
throw app::nodesAndLinks.checkLinkButtons();

}

Pressing the New Link button is possible only when exactly two nodes are

selected, and when these nodes are not already connected by a link (the logic for

enabling and disabling the New Link and Delete Link buttons is implemented in

application code as described later). Transition #14 first creates a new link ele-

ment and sets its custom from and to attributes to the selected nodes. (The from

element is the one that the user selected first, but this is not really relevant in this

application as all links are bidirectional.) The transition then uses explicit event

throwing to set the end points of the link to the centers of its nodes, and makes the

link visible.

#15
Transition DeleteLinkButton.invoke()
{
 delete (((*.from==bb.currentlySelectedNodes[1].name) &&
 (*.to==bb.currentlySelectedNodes[2].name)) ||
 ((*.from==bb.currentlySelectedNodes[2].name)
&&

73

 (*.to==bb.currentlySelectedNodes[1].name)));
 throw app::nodesAndLinks.checkLinkButtons();
}

Similar to the New Link button, the Delete Link button can only be invoked

when exactly two nodes are selected that are connected by a link. Transition #15

deletes that link in response to a click on the Delete Link button. Its delete state-

ment can be translated as “delete the link whose to attribute matches the first

selected node and whose from attribute matches the second selected node, or

vice versa”.

#16
Transition bb.changed(

string attr == "currentlySelectedNodes",
int newLength > 0)

{
throw DeleteNodeButton.enable();

}

#17
Transition bb.changed(

string attr == "currentlySelectedNodes",
int newLength == 0)

{
throw DeleteNodeButton.disable();

}

Finally, transitions #16 and #17 describe under which conditions the Delete

Node button is enabled, namely when at least one node is selected. Their use of

the implicitly thrown “changed” event (Section III.3.6) makes them independent

from the transitions that actually change this attribute. This way, these two transi-

tions do not have to be touched when e.g. new methods for selecting nodes are

added.

74

The last missing piece of functionality is the description of when the New

Link and Delete Link buttons become enabled and when they become disabled.

This functionality is implemented in application code. Transitions #6-#7 and #12-

#15 throw checkLinkButtons events to an EET component called app. This speci-

fier denotes application code - a programming language procedure is called that

contains the event as well as pointers to the state of the EET model. The pro-

gramming language can then be used to do arbitrary computation, and to affect

the state of the EET model by either changing elements directly, or by sending

events back to the EET model.

In our case, the application responds to checkLinkButtons events by send-

ing enable or disable events for the New Link and Delete Link buttons as neces-

sary. It accesses the current state of the elements in order to decide whether or

not to change the enabling of the buttons, but it does not change the state of any

element.

In our case, the functionality of the application code is simple: send an

enable event for the New Link button if the button is currently disabled and exactly

two nodes are selected which are not connected yet, send an enable event for the

Delete Link button of this button is disabled and exactly two nodes are selected

which are connected (and do the reverse to disable them as necessary).

The conditions that a button is currently disabled and that there must be

exactly two nodes selected could easily be captured within an EET expression

(assuming that we maintain a list that keeps track of the currently selected ele-

75

ments, as in the example in Section III.3.6, or that we alternatively at least main-

tain a variable that keeps track of the number of selected elements). The part that

cannot be captured within a single EET expression is that the two selected nodes

are not connected by a link. This is because EET expressions only provide the

lowest-order logic operators (and, or, and not) but not the higher-order quantifiers

there exists and for all. A language extension is possible, and would make some

application code unnecessary. In this particular case, we could then write a condi-

tion of the form “the button is disabled, and there are two selected nodes n1 and

n2, and there does not exist a link l such that l.from==n1 and l.to==n2 or such that

l.from==n2 and l.from==n1”. We felt that there were too few cases where quantifi-

ers make application code unnecessary to warrant extending the expressions lan-

guage, and that writing expressions of that complexity would be as difficult as

writing equivalent application code.

Appendix C lists the actual code that implements this functionality.

III.4 Using Two or More Levels of Abstraction

Section III.2 introduced the building blocks of an Elements, Events & Tran-

sitions model, and Section III.3 discussed some advanced features for structuring

models. However, the preceding two sections have only dealt with models at a

single level of abstraction This section concerns using two or more EET models to

describe functionality at multiple levels of abstraction.

76

The Elements, Events & Transitions model supports the use of arbitrarily

many levels of abstraction. In practice, there is rarely a need to go beyond two

levels of abstraction even for large designs, and almost never a need to go

beyond three. Increasing the number of abstraction levels in an EET-based appli-

cation results in a more modular design while at the same time requiring a higher

intellectual effort from the designer or programmer. For the latter reason, it is often

preferable to start out with a single level of abstraction, and to introduce a second

level only later in the design.

III.4.1 Why Use Models at Multiple Levels of Abstraction?

One motivation is to make a design less dependent on the concrete events

coming from the user interface. This will help in porting designs to a new platform

where the events sent from the user interface will typically differ. Used this way, a

lower-level EET model does little more than translate low-level incoming events

such as “delete button pressed” into higher-level events such as “delete command

invoked”. The latter event is than processed by a separate higher-level model.27

A similar motivation is to use the same higher-level model to explore sev-

eral user interface alternatives on the same platform. For example, the higher-

27. In a previous system, “user interface tasks” served as a lower-level user inter-

face model while “application tasks” were used at a higher level [Suka93]. There

is a rough but not perfect correspondence to using two EET models at different

levels of abstraction.

77

level model of a file management application may have a command to delete a

group of files. A designer can then hook up several alternative user interface

designs to this command by sending a corresponding EET event to the higher-

level model.

Finally, separating aspects specific to a user interface platform from

aspects specific to a user interface paradigm will help automated components

analyze the model. For example, a consistency and completeness checker can

then operate on the higher level without having to deal with platform-specific

aspects of the model.

III.4.2 Organization Alternatives

This section provides block diagrams of the most typical organization alter-

natives for EET-based applications. The simplest possible organization is a single

EET model with no attached application code, as illustrated in Figure 3-4.

In this organization, the user causes events that are forwarded from the

platform-specific user interface front-end to the EET interpreter. The EET inter-

preter than processes the transitions triggered by this event, possibly causing

Figure 3-4: The Simplest Use of an EET Model

User Model

Perceived Events

User Events

Internal Events

78

several more internal events to be generated and processed. We will omit internal

events in the subsequent diagrams.

For completeness, we will mention here that changes to the user interface

elements caused by the EET interpreter will often be perceived as an “event” by

the designer and end-user, even though no EET events were sent. For example,

the EET interpreter may raise a mailbox flag by manipulating element attributes.

This action will be perceived as an event by the end-user (“I got mail!”) but there is

no EET event to the user interface front-end involved. Instead, the change in

appearance is achieved by manipulating the element space.

 The above organization can be used for user interface prototypes that do

not actually invoke application functionality. The simplest way to integrate applica-

tion code with an EET model is shown in Figure 3-5.

In this organization alternative, the interaction between the user and the

EET model is the same as above, but the EET model additionally invokes applica-

tion code by throwing explicit events as described in Sections III.3.7 and III.3.8.

Figure 3-5: A Single EET Model and Application Code

User Model Application Code

Events from the Application

Events to the Application

79

The application can in turn make changes to the element space by either sending

events back to the EET model or by directly changing elements.

Finally, Figure 3-6 shows the use of two EET models at different levels of

abstraction. In this organization, events from the user are first sent to the lower-

level EET model, which translates them into semantically more meaningful events

sent to the higher-level EET model. For example, a mouse-down event on an

object may be translated into a “selection” event. The higher-level will in turn send

events to the lower-level model such as “de-select all objects”. This scheme is

similar to one used in the second-generation UIDE [Suka93].

The higher-level EET model will then communicate with the application as

discussed above. This form of organization ensures that both the higher-level

EET model and its attached application code can be moved to a different platform

by replacing the lower-level, platform-specific model.

The lower-level model can also directly communicate with the application

code. This is undesirable because it tightly couples this application code to plat-

Figure 3-6: Two EET Models at Different Levels of Abstraction

User Lower-Level Model

Higher-Level Model

Application Code

80

form-specific events and elements, which is why the corresponding arrows are

dashed in Figure 3-6. However, it is often unavoidable to tie some application

code to low-level events in highly interactive applications (e.g. for semantic feed-

back during low-level interactions). In general, as little application code as possi-

ble should be tied directly to a low-level EET model, but as much as needed.

III.4.3 Example: A File Management Application

Figure 3-7 shows a file management application that we will use as an

example of an EET-based application using two levels of abstraction.

It provides for the creation of new documents by dragging and dropping a

palette document (labelled “New Doc” in Figure 3-7), for their deletion by dragging

to a “trash can”, and for their renaming by editing labels. The system assigns

automatically generated names to new documents. In this particular case, the

end-user has created three new documents, and has then renamed document

“Document 2” to “To-Do List”.

Figure 3-7: A File Management Application

Document

DocLabel

TrashCan

TrashLabel

Separator

Canvas

Outline

(An invisible object
located at the same

position as Document.)

81

We will first present the lower-level EET model that implements this behav-

ior (without describing it in as much detail as earlier in this chapter). We will then

explain how it communicates with a higher-level EET model.

Transition Document.pressed() LOW #1
{
 element n := create Outline;
 n.mapped := 1;
 n.current := "yes";
}

Transition Document.moved(LOW #2
 coord x, coord y)
{
 (*.current=="yes").x := x;
 (*.current=="yes").y := y;
}

Transition Document.released() LOW #3
{
 delete (*.current=="yes");
}

The first transition makes an outline of a new document appear when the

user presses on the “New Doc” icon in the palette. The second and third transi-

tions then make it follow the mouse until the mouse button is released, at which

point the outline document disappears. The attribute “current” is a user-defined

string attribute that makes it convenient to refer to the current outline object.

Transition Document.released(LOW #4
 string o == "Canvas",
 coord x < Separator.x,
 coord y)
{
 element n := create Document;
 n.x := x;

82

 n.y := y;
 element n2 := create DocLabel;
 n2.doc := n.name;
 n2.textMode := "editInsert";
 throw (*.name==n2.name).adjust(); #a
 throw app::fileManager.provideLabelFor(#b
 string label := n2.name);
 throw amodel::fileManager.newDocument(#c
 string id := n.name,
 string name := self.text);
}

If the outline document is released over the main area of the canvas (left of

the separating line, that is), a new labelled document appears there. The “doc”

attribute of the document label is another user-defined string attribute - it is used

to keep track of which document a label belongs to. The “textMode” attribute for

text fields is built into the toolkit used by our prototype implementation, and

enables editing its text when set to “editInsert” (rather than “editReadOnly”).

The first throw statement (#a) is used to invoke an auxiliary transition that

provides the computation for properly placing a document label under its icon, and

is used similar to a sub-routine call in a procedural programming language. The

second throw statement (#b) invokes an application routine for computing the

name of a new document (“Document 1”, “Document 2”, and so on). The third

throw statement (#c) notifies the higher-level EET model that a new document

was created.

Transition Canvas.setLabelFromApp(LOW #5
 string e, string t)
{
 (*.name==e).text := t;
}

83

The above transition (#5) is called exclusively from the application, and is

used to set the text of a document label (it is invoked from the “provideLabelFor”

application routine discussed above).

Transition (*.class=="TextField").adjust() LOW #6
{

self.x := (self.doc.x -
((1 / 2) * (self.width - self.doc.width)));

self.y := ((self.doc.y + self.doc.width) + 2);
}

This transition (#6) provides the computation for properly placing a label

under the document as mentioned earlier.

Transition (*.class=="TextField").keypressed(LOW #7
 string k == "Return")
{
 throw amodel::fileManager.renameDocument(
 string id := self.doc.name,
 string newName := self.text);
}

The toolkit used in our prototype implementation takes care of low-level

editing operations on text fields, such as inserting characters as they are typed,

moving the cursor back and forth with the arrow keys, deleting characters with the

Delete key, and so on.

However, each individual key press event is then nevertheless also pro-

cessed by the EET interpreter so that one can attach additional behavior to key-

board events. We use this mechanism in transition #7 to notify the higher-level

EET model when the editing operation is complete (which is when the “Return”

key is pressed).

84

Transition ((*.class=="DocIcon") && LOW #8
 (*.name!="Document")).moved(
 coord x, coord y)
{
 self.x := x;
 self.y := y;
 throw (*.doc==self.name).adjust();
}

Transition #8 makes all documents draggable with the mouse (with the

exception of the palette document itself). The “adjust” transition (transition #6) is

re-used here for making the label move with its document icon.

Transition (*.class=="DocIcon").released(LOW #9
 string o == "TrashCan")
{
 throw amodel::fileManager.deleteDocument(
 string id := self.name);
 delete (*.doc==self.name);
 delete self;
}

Finally, transition #9 deletes a document icon that is released over the

trash can (and its label), but not before notifying the higher-level EET model.

This ends our discussion of the lower-level EET model, which implements

all the details of the user interface. It notifies the higher-level model in three

places, namely when documents are created, deleted, or renamed (in transitions

#4, #7 and #9). The higher-level model is shown below.

Object fileManager {
}

Transition fileManager.newDocument(HIGH #1
 string id, string name)
{

85

 throw app::fileManager.newDocument(
 string i := id,
 string n := name);
}

Transition fileManager.renameDocument(HIGH #2
 string id, string newName)
{

 throw app::fileManager.renameDocument(
 string i := id,
 string n := newName);
}

Transition fileManager.deleteDocument(HIGH #3
 string id)
{

 throw app::fileManager.deleteDocument(
 string i := id);
}

EET events always occur on an element, while the three notification events

above are not related to any element in particular. We have therefore introduced

the abstract element “fileManager” for the sole purpose of serving as the element

on which the events occur (a technique discussed in Section III.3.7).

In this example, the higher-level EET model does little more than passing

events through to the application. It is nevertheless useful in providing a definition

of the user-level operations that the lower-level EET model has to provide, and in

separating high-level application routines from application routines closely tied to

a particular user interface style (as discussed in Section III.4.1). In this case, the

“provideLabelFor” routine tied to transition #4 of the lower-level model is specific

to the user interface style used, but the three functions called from the high-level

model are not.

86

III.5 Discussion of the EET Model

We conclude the chapter with a discussion of the EET model’s role as the

basis for demonstrational tools and of its role in user interface design in general.

III.5.1 Parallel Execution

The primary motivation for the EET language is its support for demonstra-

tional tools. Our demonstrational tools use “before” and “after” snapshots to

describe behavior (as we will explain in detail in Chapter IV). Conceptually, the

changes that transform a “before” snapshot to its corresponding “after” snapshot

occur at the same time.

For example, imagine that selecting a “Properties” menu item both (a) dims

this menu item and (b) brings up a new window. The end-user will perceive these

two changes as happening in parallel (be the actual computing platform a single-

processor or a multi-processor machine) because they are executed so quickly

that they cannot be told apart.

The EET interpreter executes blocks of assignment statements “conceptu-

ally in parallel”. That is, it first evaluates the right-hand sides of all assignments

before it actually changes any elements.28

28. The interpreter also pre-evaluates the left-hand side expressions of set-valued

assignment statements such as “(*.mapped==1).color := ...” because other

assignment statements may affect which elements match its expression.

87

Imagine that there are two elements a and b which switch color upon a cer-

tain event. With conceptual parallelism, we can express this behavior as follows.

a.color := b.color;
b.color := a.color;

We could otherwise not express this functionality in two lines (we would

need an auxiliary variable and another assignment). Even more importantly, this

language fragment more closely corresponds to the actual demonstration (which

has no notion of auxiliary variables, see Chapter IV). Finally, conceptual parallel-

ism in the underlying language allows our demonstrational reasoning engine to

treat each change from a “before” to an “after” snapshot independently of others

(which is computationally desirable).

We should stress here that only blocks of consecutive assignment state-

ments are executed in parallel. Consider the following EET language fragment.

element n := create obj1;
n.attribute1 := 1;
n.attribute2 := 2;
throw obj2.event1(string par1 := n.attribute1);
n.attribute3 := 3;

The create statement is executed first, then the two subsequent assign-

ment statements (in parallel), then the throw statement, and then the final assign-

ment statement.

The reasons for not providing conceptual parallelism for other statements

are as follows. It is obvious that create statements must be executed before sub-

sequent assignments referring to the newly created object. It is also often conve-

88

nient to be able to refer to the results of earlier computation within an event throw

statement, and the same is true for delete statements to a lesser extent.

There are good reasons both for and against parallelism in executing tran-

sitions. We believe that the current compromise of only executing assignment

statements in parallel provides for a good balance between supporting the dem-

onstrational tools (statements are parallel so that they can be considered inde-

pendently) and supporting the manual generation of the language (statements are

sequential so that each statement can refer to earlier computation within the same

transition).

III.5.2 Performance Issues

The purpose of the EET model is to facilitate the interactive design of user

interfaces. We therefore implemented an interpreter for the EET language so that

the designer can instantaneously switch from design mode to test-drive mode and

vice versa, without having to compile and link code.

Any language that is interpreted at run-time incurs some overhead com-

pared to a language that is pre-compiled into a micro-processor’s native code. In

addition, some features of the EET language, such as implicit event throwing, are

potentially expensive for large EET models.

There are three fundamental ways of improving the performance of EET-

based applications.

89

III.5.2.1 Improving Performance by Smarter Interpretation

The proof-of-concept prototype of the interpreter does not make use of

smart optimization techniques. For example, an improved version could construct

indices that map an event type to the transitions it can potentially trigger. (These

indices can be built when the EET model is read in; they do not change at run-

time.) The EET interpreter then does not have to evaluate all transition invocation

conditions for every event. It can rather just evaluate the transitions that may be

affected by consulting the index. Thus, maintaining such indices should dramati-

cally speed up performance for large EET models.

III.5.2.2 Improving Performance through Compilation

An obvious way of improving performance is by providing an EET compiler

in addition to the interpreter. The designer can then use the interpreter for interac-

tive design, and use the compiler to produce the finished version to be delivered

to customers.

III.5.2.3 Improving Performance by Model Restructuring

Performance can also be improved by restructuring models, and by moving

more of the event processing to application code. In contrast to improvements to

the EET interpreter, restructuring models puts a burden on the EET users. This is

desirable only in the later phases of the design.

A typical candidate for optimization is the processing of events that occur

with high frequency, such as mouse movement events. The responsiveness of

90

dragging can be improved by moving the processing of these events into custom

application code. These optimizations should only be performed at the latest

stages of a design, when actual application code has already been attached, and

when it is unlikely that the user interface will change significantly in the future.

III.5.3 EET Models and Object-Orientation

The Elements, Events & Transitions model strictly separates the descrip-

tion of static properties of a user interface (contained in elements) from the

description of its dynamic properties (contained in transitions). This differs from an

object-oriented model where objects contain the description of both their static

properties and their dynamic properties.

The advantage of strictly separating those is that the designer can specify

the static properties first (by direct manipulation) and the dynamic properties later

(by interactive demonstration). Another advantage for our purposes is that all

description of behavior is in one place, and that it is easy to specify transitions

such as “when any button is pressed” without having to introduce the user to the

concept of classes.

This separation does not imply that e.g. our demonstrational technology

could not be used in an object-oriented environment. It would also be straightfor-

ward to make EET models themselves more “object-oriented.” Transitions that

apply only to element x can naturally be grouped with element x itself, so that they

become object methods. Transitions that apply to a class of objects can similarly

91

be grouped with that class, so that these transitions become class methods. (The

remaining transitions - those with complex invocation conditions - remain global

methods detached from particular objects or classes.)

III.5.4 Modularizing Large EET Models

We chose to use a single EET model for all aspects of the user interface

because it is convenient to have all behavior in a single place. However, it is also

possible to break up the behavior description into several EET models. Doing so

should improve performance because the interpreter then has to match fewer

transitions against incoming events. This is especially desirable for large models.

Breaking up a large model into several smaller ones in this way does not

require any change to the language as it is described in this chapter. This can

rather be accomplished by simply registering additional participants for the event

communication.29 Three participants are pre-registered in our prototype imple-

mentation, namely the interface model (“imodel”), the application model

(“amodel”), and optional custom application code (“app”). Figure 3-6 shows the

organization diagram for this standard organization. The mechanism for sending

events between participants is described in Section III.3.7.

29. Registering and un-registering EET components is done from programming

language code through the Application Programmer Interface (API) to the EET

library, and is intended for programmers, not user interface designers.

92

There are several ways of using finer-grained EET models. The most radi-

cal solution is to register each element as an event client when it is created. In this

case, all of its attributes are set by sending events rather than by accessing its

state directly. The set of events defined on an element then serves as its external

interface. However, breaking up the model into so many parts may actually slow

down execution because even the simplest state changes require event commu-

nication.

The best solution may be to have one model per window. This way, the

individual models are large enough for internal state changes to not require event

communication, while not being so large that matching incoming events against

its transitions becomes expensive.

III.5.5 Comparison of the EET Model and the Relational Model

There is a rough analogy between the Elements, Events & Transitions

model for user interfaces and the relational model for databases [Codd70], and

there is a similar analogy between the EET behavior description language and the

SQL database query language [Astr75].

Both the relational database model and the EET user interface model

impose more structure on their data than general-purpose programming lan-

guages. The relational database model imposes a tabular structure, and also

imposes some restrictions on the content of the data (it has to comply with some

“normal form” [e.g. Ullm83, section 7.4]). The EET model also imposes structure

93

on user interface elements: it must be possible to describe them as a collection of

attributes.

For both models, the implications are that (a) there are situations where a

more general approach is preferable because the data cannot naturally be

expressed in the respective model but that (b) the model otherwise allows high-

level operations which take advantage of this special data structure.

In the case of the relational database model, there are situations when it is

preferable to use an object-oriented database because the data to be stored can-

not naturally be expressed in the relational model (e.g. engineering and scientific

data, sound, pictures). However, in the many cases where the data can be

mapped to tables, the relational model greatly simplifies the management of data.

In the case of the Elements, Events & Transitions model, there are also sit-

uations where it is preferable to use a more general model for structuring user

interfaces, such as custom code in a general-purpose programming language (if

the data to be presented does not map naturally to elements, such as large

amounts of text, the contents of a video image, and so on30). However, in the

many cases where user interface objects can be mapped to EET elements, we

30. However, the EET model and language can of course still be used to drive the

remaining aspects of the user interface, such as controls, windows, and can-

vasses containing icons.

94

can make use of the special structure to provide a simple interpreted language for

the manipulation of these elements, as well as interactive tools.

Finally, it is worthwhile to note that neither language is computationally

complete. For example, neither can compute a transitive closure (“starting from

this element, find all elements that it refers to, and all elements that they refer to,

and so on, until you have found all of them”). Both languages become computa-

tionally complete only by embedding their statements in a general-purpose pro-

gramming language. For both languages, some have argued that the use of a

special-purpose language is not justified because they are subsumed by general-

purpose programming languages. We feel that the special-purpose languages are

justified because they greatly simplify the management of the domains to which

they are applicable.31

III.5.6 Comparison of the EET and Event-Response Languages

Ralph Hill’s Sassafras user interface management system [Hill86] includes

a behavioral description language called the Event-Response Language (ERL).

This language models the system’s reaction to user actions as responses to

31. Sometimes, an alternative is to use a subset of an existing language. (How-

ever, SQL is not really a subset of any existing language to our knowledge; and

we are also not aware of a language that would provide the equivalent of our “set

expressions”, especially for the invocation of transitions.)

95

events, similar to our “transitions”, so that it is worth comparing and contrasting

these languages.

The Event-Response Language’s primary design goal was to capture the

human-computer dialog for multiple input streams (e.g. originating from two mice,

for example).32 The ERL addresses the dialog only, operations such as object

creations and other changes to the user interface have to be implemented in pro-

gramming language code. This was viable because Sassafras was intended for

advanced programmers.33

The Elements, Events & Transitions language’s primary design goal is its

use with interactive specification tools. Its focus group are computer-literate user

interface designers who do not necessarily have implementation experience. This

focus is reflected in the language by including simple interface-level operations

32. It is worth noting that most modern windowing systems [e.g. Sche86] solve

the multiple input stream problem by simply serializing the events into a single

input queue. This solution appears superior because it facilitates multiple input

devices for the user without exposing the system implementer to the difficulties

inherent in parallelism (deadlock, race conditions).

33. Citing from [Hill86], page 194: “Sassafras ... relies heavily on the tools pro-

vided by the Interlisp-D environment. Hence, many of the supporting tools need

further development and currently are only usable by experienced Interlisp-D

users.”

96

into the EET language, so that users can express simple user interface behavior

without having to resort to a general-purpose programming language.

Another interesting difference between the languages are their invocation

mechanisms for system actions (“rules” in the Event-Response Language, “transi-

tions” in the EET language). ERL rules fire either in response to atomic events or

spontaneously (spontaneous firings correspond to ε-rules in automata theory).

Their firing can depend on the state of a list of boolean variables. The EET lan-

guage provides for a more expressive invocation mechanism, namely for set

expressions (Section III.3.2).34

This concludes our discussion of the Elements, Events & Transitions

model.

34. The obvious trade-off is that the interpreter then has to evaluate these expres-

sions for each incoming event at run-time (see Section III.5.2).

97

CHAPTER IV

BUILDING MODELS BY DEMONSTRATION

The preceding chapter has discussed the Elements, Events & Transitions

model, and has presented its textual syntax in detail. There are many good rea-

sons for using a textual specification language to describe user interface behavior.

For example, text can be efficiently stored, is well suited to describe complex

behavior, consumes little screen space, and provides a readable, printable, edit-

able, and shareable representation of dynamic behavior.

However, a design environment that relies exclusively on textual behavior

description has a significant shortcoming. Namely, it requires considerable train-

ing to be able to translate desired user interface behavior into its textual descrip-

tion because there is no immediately obvious mapping between interactive

behavior and text. Potential new users can easily be intimidated by an all-textual

specification language, and may consequently reject the design environment as a

whole.

We address this problem by providing demonstrational tools that automati-

cally translate interactive behavior into the appropriate textual form. This enables

novice users to specify behavior interactively, without having to learn any textual

constructs beforehand. Even more importantly, users can learn the textual model-

98

ling language “on the fly” by inspecting the specifications generated from their

demonstrations.

This chapter is subdivided into five sections. Section IV.1, IV.2 and IV.3 will

present the user’s view of the demonstrational components, and will present

many examples of their use. Section IV.4 will then describe the algorithms that the

components use internally to interpret demonstrations. Section IV.5 concludes.

All programming-by-demonstration systems provide some particular

method for the user to input demonstrations. This method must be formal enough

for the system to be able to draw meaningful inferences. At the same time, it can-

not be overly formal, or the system will become unusable.

Consider giving examples in high-level natural language, such as “imple-

ment selection just as in MacDraw but do not deselect other objects when an

object is selected with a single click”. While this input method accommodates the

user well, we currently seem to be far from being able to build machines that can

interpret such input.

On the other hand, it is also easily possible to construct a demonstrational

system that requires demonstrations of such complexity and formality that it is

unusable for all practical purposes. That is, while it can draw powerful inferences

in principle, the system is of little use in practice because its potential users are

unable to provide it with correct demonstrations.35

We will now introduce the three demonstrational tools that we have built on

top of the Elements, Events & Transitions model. Inference Bear (Section IV.1)

99

uses before and after examples to describe how elements change in response to

events. The Expression Finder (Section IV.2) uses positive and negative exam-

ples to describe when elements change in response to events. Grizzly Bear

(Section IV.3) combines the functionality of Inference Bear and the Expression

Finder, and is the most powerful tool.

This chapter makes extensive use of snapshots from our prototype imple-

mentation in C++, which runs on Sun SPARC stations running the Motif window

manager on top of the X window system [Sche86]. The prototype implementation

additionally makes use of an existing user interface builder, SX/Tools [Kueh92].

We have also implemented our own text editor based on the Motif text editing wid-

get (so that we could seamlessly integrate a text editor with the rest of the sys-

tem).

The SX/Tools interface builder lets user interface designers create new

widgets by copying them from a palette, delete them via choosing “Cut” from their

background menu, and modify them via a properties editor. An important feature

is that it lets designers attach user-defined properties to widgets which can then

also be edited with the properties editor. While these properties have no effect on

the visual appearance of a widget we have found them useful for marking widgets

35. We have relied on usability testing to ensure that our tools are usable

(Chapter VI), and on comparisons to previously built systems to ensure that our

tools cover a unique and wide spectrum of situations (Section II.3).

100

for subsequent operations (e.g. through a boolean IAmSelectable property for

widgets that can be selected) or for pointing to related widgets (e.g. through

string-valued from and to properties for a line that connects two objects).

The user interface builder can also display the widget layout hierarchy as a

tree structure, which provides an alternative way of selecting widgets (by clicking

on their representation in the layout hierarchy rather than on the widgets them-

selves). This is crucial for demonstrating that an invisible widget becomes visible,

as there would otherwise be no way of selecting the widget in order to edit its visi-

bility property.

IV.1 Demonstrating How Elements Change

This section introduces Inference Bear, a demonstrational tool that can

infer how elements change in response to an event. Inference Bear is a

semi-acronym that refers to the tool’s before and after input methodology (“infer-

ence from before and after snapshots”). With this technique, designers describe

desired functionality in the following form: “if I am in this kind of situation (before

snapshot) and the following event occurs (trigger event) then the user interface

should look like this (after snapshot)”

One such pair of snapshots represents one example to Inference Bear.

One demonstration may consist of one or more such examples. The result of a

demonstration is the textual equivalent of the demonstrated behavior, in the form

of an EET transition (see Section III.2.3).

101

IV.1.1 Inference Bear’s User Interface

Figure 4-1 shows the control panel that appears when the user first invokes

Inference Bear. Giving one example to Inference Bear consists of working through

the four iconic buttons from left to right. (In our terminology, one demonstration

consists of one or more examples.)

The designer first sets up for the before snapshot by editing the current

design just as she would in design mode, using the interface builder. She then

clicks on the left-most button to tell the system that she is done editing for the

before snapshot.

The next step is to tell the system which event triggers the behavior to be

demonstrated. Inference Bear can deal with fine-grained events from the window-

ing system, such as press, motion, release, enter and leave events. This allows

the designer to use Inference Bear to describe highly-interactive techniques such

as rubberbanding and cursor-dependent object highlighting.

Figure 4-1: Inference Bear

102

However, it also poses an interesting problem in recording the triggering

event: there sometimes is no way of performing the triggering event without also

causing extraneous events. For example, if the desired trigger event is the press-

ing of a mouse button over a certain object then there may be no way to get to this

object without causing at least an enter event on the object’s layout parent and

several mouse motion events; and there will be more events after pressing the

mouse button, such as the corresponding release event and yet more mouse

motion events. How will Inference Bear know which event is the one that triggers

the behavior to be demonstrated?

There are several solutions to this problem. Peridot [Myer88] uses a “simu-

lated mouse” which is an icon depicting a mouse and the state of its buttons. The

user can then use the state and position of the simulated mouse to demonstrate

mouse-dependent behavior, freeing the real mouse for meta-level commands.

DEMO [Wolb91] always records a press event and then asks the user whether

she really meant a press event, or whether she meant one of three other event

types (release, enter and leave in our terminology). Marquise [Myer93] uses the

keyboard to start and stop the recording. We use an alternative technique which

uses time to distinguish the triggering event from the other events.

Figure 4-2 shows Inference Bear’s control panel just after the “Take Before

Snapshot” button has been clicked.

The “Take Before Snapshot” and “Take After Snapshot” buttons of Infer-

ence Bear’s control panel are temporarily replaced with controls for recording the

103

triggering event. When the user clicks on the “Start Recording Trigger” button,

Inference Bear records user events for approximately five seconds and then uses

the last event that was recorded before time ran out. The “Time Left” bar propor-

tionately shrinks during these five seconds and Inference Bear beeps similar to a

camera in “automatic timer mode” (five short beeps followed by one long beep).

The “Ignore Motion Events” checkbox is best left checked unless one is actually

recording a motion event.36 The same is true for the “Ignore Enter Events” check-

box, if for no other reason than that the large number of enter and leave events is

distracting.37

36. Otherwise, recording e.g. a press event would require quite a steady hand, or

one will cause additional motion events.

37. In our prototype implementation, we encountered one situation where the

“Ignore Enter/Leave Events” box had to be checked to correctly record an event,

namely for recording menu selection events - the particular toolkit we used imme-

diately sent a trailing enter event from the element under the mouse after

pull-down or pop-up menus disappear.

Figure 4-2: Capturing Events with Inference Bear

104

Figure 4-3 shows part of the control panel after the event was recorded (for

this particular event, b indicates that the left-most mouse button was pressed, x

and y indicate the location of the click38). This feedback helps acquaint the

designer with the types of events available.39

This feedback is sometimes indispensable, for example for demonstrating

that two text fields continuously display the numeric coordinates of the mouse cur-

sor as the user moves the mouse over an application canvas (because the

38. The actual events coming in from the user interface are particular to the user

interface toolkit used.

39. This feedback on events is at a very low level, which is desirable and undesir-

able at the same time. On one hand, the parameter type and name directly corre-

spond to the parameters in the generated transition. On the other hand, the brief

parameter names are hard to read. A refined version of Grizzly Bear used the

compromise approach of displaying the actual events while recording and then

showing a natural-language equivalent afterwards: “What should happen when

‘circle’ is ‘pressed’?” (see Section VI.1).

Figure 4-3: Feedback on Recorded Events

105

designer could otherwise not find out the motion event’s precise x and y values for

demonstrating this behavior).

The designer can then either re-record the event if she recorded an errone-

ous event, or go on by clicking the “Done Recording Trigger” button. Inference

Bear will issue a warning and prevent the designer from continuing when a mis-

take was made, such as not recording any event, or recording a different type of

event than in previous examples of the same demonstration.

The final step is to tell the system what should happen if the interface is in

the before state and the recorded event occurs. This is done by bringing the user

interface design to the state it should go to in this situation, the after state, and by

pressing the “Take After Snapshot” button to let the system know that one is done

with editing.

Inference Bear responds by running its inference engine on this example

and by showing the resulting EET transition in the text editor. The interface design

is reset to the state it was in before it was edited for the before snapshot.40 The

designer then tests if the inferred behavior is what she had in mind (by either

40. It is interesting to note that our prototype implementation simply uses a differ-

ent instantiation of the inference engine itself to implement the resetting. We take

a snapshot before the design is edited for the before state and a snapshot after

the editing for the after state, and then let this engine instantiation compute and

execute a transition which transforms the interface back to the former state.

106

being able to read the text of the generated transition, or by going to Run mode

and testing it interactively). If it is acceptable, she clicks “OK” in Inference Bear’s

control panel, which causes the inferred behavior to permanently become part of

the overall interface model. If it is not what she had in mind, she proceeds by giv-

ing more examples in the same manner. The inference engine is then called using

the old examples plus the new ones. She can also choose “Cancel” at any time to

leave demonstration mode, which also removes the generated transition from the

editor.

We will now provide several examples of Inference Bear’s use.

IV.1.2 Example: Popping Windows Revisited

We revisit the introductory modelling example of Section III.2.4 here, and

show how a designer can construct it by demonstration. The functionality to be

shown is that a Properties button will bring up a Properties window, and that the

“OK” and “Cancel” buttons of the Properties window dismiss the window. This

functionality can be defined in three demonstrations. We will discuss one of these

three demonstrations in complete detail.

Figure 4-4 presents a detailed storyboard of the demonstration that tells

Inference Bear that pressing the Properties button will disable this button41 and

41. The toolkit we used for this example does not provide an “enabled” attribute

for buttons so that we have substituted changing their text color instead (white text

on a gray background indicates a disabled button).

107

show the Properties window. (Please go through the storyboard of Figure 4-4

now. The generated EET transition is shown below.)

Transition PropertiesButton.pressed()
{

PropertiesWindow.mapped := 1;
self.textForeground := "white";

}

This introductory example presents a simple case in which a single exam-

ple is sufficient to draw the desired inference. The designer can describe more

complex behavior by giving additional examples.

IV.1.3 Example: The Moving Button

Assume the designer has created a user interface consisting of a window

containing a single button. The behavior to be inferred is that the button moves

one button length to the right every time it is pressed. (No claim is made that this

behavior represents good user interface design, of course. We use this example

here only because it is a suitable minimal case of a multi-example demonstra-

tion.42)

Figure 4-5 shows a condensed view of the three examples that are needed

to demonstrate this behavior. We have superimposed the before and after snap-

shots so that the screen shot shows the after snapshot while the dotted shadow

42. This particular example also shows that our design environment in no way

enforces “good human-computer interface practice” but rather leaves all stylistic

decisions to the interface designer.

108

Figure 4-4: A Detailed Storyboard of Inference Bear

2.

9.

7.

5.

3.

Interface Design Inference BearNarration

6.

4.

1.1. The designer first sets up for the
before snapshot by editing the inter-
face design. In this particular case,
she hides the Properties window
(we show an outline here for the
hidden window).

2. She lets Inference Bear know
that she is done by clicking the Take
Before Snapshot button.

3. She clicks the Start Recording
Button. This switches the interface
design from “edit mode” to “event
recording mode” and starts the
timer.

4. She holds the left mouse button
pressed over the Properties button
until Inference Bear’s event record-
ing timer runs out. A small iconic
cursor is shown which indicates the
type and position of the click (bor-
rowed from Marquise [Myer93]).

5. She clicks the Stop Recording
Button which switches the interface
design back into editing mode Infer-
ence Bear shows the recorded
event in its status line.

6. She edits the interface design for
the after snapshot by disabling the
Properties button and by showing
the Properties window.

7. She lets Inference Bear know
that she is done by clicking the Take
After Snapshot button.

8. Inference Bear shows the textual
equivalent of its inference, and
resets the interface design to the
before state. The designer can now
switch to run mode to verify the
inference.

9. She OK’s the inference in this
scenario.

8.
(The resulting inference is
shown in the text editor.)

109

indicates where the button was located in the before snapshot. The recorded

event is a click on the button in all three examples. Inference Bear responds with

the scripts shown in the “Interface Model” screen shots after each example.

After the first example, Inference Bear’s conjecture is that the button

moves to the absolute position shown in the after snapshot, which is the simplest

solution to this demonstration. Inference Bear always uses the simplest solution

because there generally is an infinite number of more complex solutions43, and

because there is no way of choosing one solution over the other without using

domain knowledge.44

43. In this example, this demonstration could e.g. also be interpreted as “the but-

ton is horizontally centered within the window” or “the button moves to this abso-

lute position only when the window background is white”.

Figure 4-5: Inference Bear’s Successive Inference Refinement

First Example. Second Example. Third Example.

110

The designer now gives the second example shown in the center column

of Figure 4-5. She has moved the button to a different position for the before

snapshot and has shown that the button again moves to the right (rather than to

the same absolute position as in the first example). Inference Bear responds by

refining the inference as shown. It has now inferred that the new button position is

relative to the old one.

This solution will suffice if the width of the button never changes, but we will

continue the demonstration here for the sake of completeness. So far, Inference

Bear has inferred that the button moves by a fixed amount of pixels rather then by

its own length. The general solution is found after the designer gives the third

example shown to the right of Figure 4-5.

The number of examples required for an inference depends both on the

computational complexity of the inference and on the quality of the examples.

Poor examples are examples that are identical or nearly identical to previous

examples. For example, had the designer demonstrated the first example of

Figure 4-5 twice then Inference Bear would still have solved the demonstration

using a constant. Ideal examples are examples that invalidate the current solution

while being consistent with the desired solution. In Figure 4-5, the second exam-

44. We will later discuss why we have chosen not to make use of domain knowl-

edge in our reasoning, and what the advantages and disadvantages are of not

doing so (Section IV.5.2).

111

ple invalidates the Bear’s hypothesis that the button moves to an absolute posi-

tion, and the third example invalidates its hypothesis that the button moves by a

constant offset.45 Section IV.4.2 explains Inference Bear’s reasoning in detail.

IV.1.4 Example: Setting the Color of All Selected Elements

The previous two examples have dealt with changes to concrete, known

objects. Inference Bear can also infer changes to a dynamic set of elements. A

common example of such behavior is changing the appearance of the currently

selected objects.

Figure 4-6 illustrates a demonstration of just such a case. The main win-

dow belongs to a small editor application that lets users create, select, and delete

circles and ellipses. (We have used this example for our usability studies of

Section VI.2, which is why the window is titled “Task 5”.) The purpose of the new

Color Palette window is to set the color of the currently selected objects to the cur-

rent color of the Color Field when the Apply button is clicked. We assume that the

45. The need for good examples is not unique to Inference Bear - all programming

by demonstration systems depend on the users’ ability to provide good examples.

For example, Henry Lieberman writes: “Teaching successfully depends, to a large

extent, on the art of choosing good examples to present to students. (...) Good

examples are ones that clearly illustrate the ideas that they are trying to convey, in

the sense that knowing the idea makes a solution to the example possible.” [in

Cyph93, page 62].

112

designer has previously demonstrated that clicking on the Color Field makes it

cycle through the colors red, blue, and green.46

Showing the functionality of the Apply button takes two examples, the first

of which is shown in the upper half of Figure 4-6.

The solution after the first example is shown below. As before, Inference

Bear is conservative in its inferences and chooses the simplest solution, namely

46. We will show how designers can demonstrate this behavior in Section IV.3.2.

Figure 4-6: Setting the Color of All Selected Elements

2.

1.

ColorField ApplyButton

before after

113

that these exact two elements change their color to red whenever the Apply but-

ton is pressed.47

Transition ApplyButton.pressed()
{

auto2.fillForeground := "red";
auto4.fillForeground := "red";

}

The desired solution is found after the second example, shown in the lower

half of Figure 4-6.

Transition ApplyButton.pressed()
{

(*.lineWidth==3).fillForeground :=
 ColorField.fillForeground;

}

As before, the user can verify the behavior by interactive testing or by anal-

ysis of the textual inference.

IV.1.5 Example: Using Rubber-Banding to Create Lines

In this example, we will show how designers can construct a user interface

in which lines are created using rubber-banding. That is, pressing the mouse but-

47. Inference Bear could solve this demonstration after this initial example if it had

a deeper understanding of what the designer is trying to do (if it had domain

knowledge). We will later discuss why building domain knowledge into Inference

Bear is nevertheless undesirable (Section IV.5.2).

114

ton sets one end-point of the line, and the other end-point then follows the mouse

until the button is released.

This behavior can be demonstrated in its entirety. It requires three demon-

strations - one each for the press, release and motion events associated with cre-

ating a line. The designer first builds the static user interface as shown in

Figure 4-7.

She also attaches a new boolean attribute to the Line object called current-

Line. This attribute will later make it easy to track which of the potentially many

lines at run-time is the one which we just created. The prototype line is normally

invisible to end users.

We are now ready to demonstrate behavior. Figure 4-8 shows the first

demonstration, using two examples in which the designer shows that pressing on

the canvas creates a new l ine, which f i rst appears as a dot. Like in

Marquise [Myer93], the designer can use the icon dropped by the press event to

Figure 4-7: Static User Interface Layout for the Rubber-Banding Lines

Canvas

Line
(This element will serve as a
prototype for the lines to be

created. The designer will nor-
mally hide it from end users by
setting its “mapped” attribute

to false.)

115

place the dot at the correct position. The before snapshots are again shown to the

left, the after snapshots to the right. Inference Bear’s response is shown below.

Transition Canvas.pressed(coord x, coord y)
{
 element n := create Line;
 n.mapped := 1;
 n.currentLine := 1;
 n.x0 := x;
 n.x1 := x;
 n.y0 := y;
 n.y1 := y;
}

We will now demonstrate how the line follows the mouse in Figure 4-9. The

corresponding output is again shown below.

Transition Canvas.motion(coord x, coord y)

Figure 4-8: Rubber-Banding Lines: Behavior of the Press Event

1.

2.

The new lines first
appear as dots.

The white boxes
showing boolean

values are not part
of the user interface
- they indicate the
value of the line’s

currentLine
attribute.

1

1

116

{
 (*.currentLine==1).x1 := x;
 (*.currentLine==1).y1 := y;
}

Finally, we will demonstrate that releasing the mouse button will set the

currentLine attribute of the newly created line to false. (Otherwise, all lines will fol-

low mouse motion events in the future.) Figure 4-10 shows the demonstration.

The listing below shows the resulting transition.

Transition Canvas.released()
{
 (*.currentLine==1).currentLine := 0;
}

With this third demonstration we have now completed the behavior for

lines, and switching to Run Mode lets us create lines by pressing and dragging.

Figure 4-9: Rubber-Banding Lines: Behavior of the Motion Event

1.

2.

The value of a
user-defined

attribute can be
edited using the

interface builder’s
property editor, just
like the value of a

predefined attribute.

The designer edits
the attribute here in

order to demon-
strate that only the
line whose current-
Line attribute is 1
(true) follows the

mouse.

1

1

0

0

117

Figure 4-11 shows a playful use of our skeletal graphical editor (it consists of eight

lines).

The introduction of abstract attributes for graphical objects lets the

designer create sophisticated interaction techniques. At the same time, dealing

with abstract attributes requires a higher cognitive effort from the designer.

Figure 4-10: Rubber-Banding Lines: Behavior of the Release Event

Figure 4-11: Rubber-Banding Lines: Playful Interaction with our Interface Design

0

1

1

00

0

00

The super-imposed
white boxes showing
boolean values are
again not part of the
user interface - they
indicate the value of

the currentLine
attribute in the snap-

shots.

What is being shown
here is that the cur-

rentLine attribute of all
lines is set to false

when a mouse button
is released over the

canvas.

1.

2.

118

In this particular example, an alternative to introducing an abstract attribute

is to mark the currently created line by temporarily changing its color. That is, we

set the color of the line to, say, green when it is created at the press event, and set

it again to the standard color for lines upon the release event. This way, we can

tell what the newest line is based on its green color, and we can make one of its

ends follow the motion events.48

IV.1.6 Example: Creating Objects by Dragging and Dropping

Finally, we will show how designers can demonstrate “drag-and-drop” inter-

action techniques to Inference Bear. Figure 4-12 shows an interface layout for a

simple “file manager” application. It is named Mini-Finder after the well-known

Apple Macintosh “Finder” application.

48. The difference between these two alternatives is visible to the end user. There

is no alternative to the use of an abstract attribute if there is no difference in

appearance at all between the currently-created line and other lines.

Figure 4-12: Mini-Finder: Initial User Interface Layout

Trashcan

Document

Folder

119

The designer makes all decisions about the details of the dragging and

dropping. For this example, let’s say that pressing the mouse down on the Folder

icon makes a new red folder appear under the mouse which then follows the

mouse until the mouse is released. Releasing the mouse button also gives the

newly created element the standard black appearance.

Showing this functionality consists of one demonstration each for the

press, motion and release events on the Folder icon.49 The first demonstration

shows Inference Bear that pressing down on the Folder icon makes a new red

folder appear there (Figure 4-13, the red color appears grayish in the screen

shots).

49. It is worth noting here that all events between a press and a release event are

received by the element which received the press event (the Folder icon here),

even if the motion and release events occur outside the element’s boundary. That

is, the element monopolizes the event stream until the corresponding release

event comes in. This technique is sometimes referred to as “screen grabbing”.

Figure 4-13: Mini-Finder: Demonstration for the Press Event

1. The new folder
appears in red
here, obscuring
the original
folder.

120

If we were to test the behavior now, we could create a new folder. However,

it would not follow the mouse but would rather always appear over the Folder pal-

ette icon, obscuring it.

So let us show that the newly created folder icon then follows the mouse.

This is equivalent here with demonstrating that red objects follow the mouse (as

the red color is what tells the newly created folder icon apart from the others). We

demonstrate this behavior by introducing two temporary folder icons in the first

before snapshot, and by then demonstrating that the one which is red follows the

mouse. Figure 4-14 shows the two before and after snapshots of that demonstra-

tion.

If we test the current behavior now, we can create the first folder by drag-

ging and dropping as desired, but it appears in red color on the canvas. If we cre-

Figure 4-14: Mini-Finder: Demonstration for the Motion Events

1.

2.

121

ate further new folders, we will drag all the previous folders as well as the new

ones!

Let us thus complete the example by demonstrating that the color of newly

created folders reverts to black upon the release event of the drag-and-drop inter-

action. Similar to the previous demonstration, this is equivalent to demonstrating

that all red objects change color upon such an event.50 We again create two tem-

porary objects to show this behavior (Figure 4-15).

50. We could also demonstrate that all red folders change color which will better

guard against side effects if we later add other red objects to the user interface

layout. We stick with the above solution above for its simplicity.

Figure 4-15: Mini-Finder: Demonstration for the Release Event

1.

2.

122

We have now fully specified the behavior for creating folders. The three

transitions below correspond to the three demonstrations above, respectively.

Transition Folder.pressed()
{
 element n := create Folder;
 n.fillForeground := "red";
}

Transition Folder.motion(coord x, coord y)
{
 (*.fillForeground=="red").x := x;
 (*.fillForeground=="red").y := y;
}

Transition Folder.released()
{
 (*.fillForeground=="red").fillForeground

 := "black";
}

We could now demonstrate the behavior for creating documents in the

same way, or we could textually copy the three transitions and adapt the copied

transitions for documents (which is much faster and less repetitive but requires

some understanding of the textual language). An even better solution is to gener-

alize the generated transitions instead of simply duplicating them, so that they

work for both folders and documents (which requires still more skills from the

designer). We will later introduce Grizzly Bear, a more advanced demonstrational

tool that can actually generate the generalized transitions (Section IV.3).

123

IV.2 Demonstrating When Elements Change

In the Elements, Events & Transitions model, the header of a transition

describes which elements this transition applies to, and the circumstances under

which it applies (e.g “this transition applies to objects on the main canvas when

they are clicked, but only if we are in deletion mode”). The body of a transition

then describes what happens (e.g “this transition deletes the element that

matched the header”).

Inference Bear specializes in generating sophisticated transition bodies.

However, it always ties transitions to a particular element, and it always makes

transitions unconditional. That is, Inference Bear can only generate transition

headers of the simplest possible form (e.g. “this transition applies to object-6

when it is clicked”).

This shortcoming severely limits the range of user interfaces that can be

specified. For example, Inference Bear cannot generate a transition that will make

any canvas object track the mouse. Other behavior that cannot be captured is

conditionality such as “if I click on the canvas and I am in circle mode then...”. In

summary, designers could specify how elements change but they could not spec-

ify when that change occurs (other than tying it unconditionally to an event).

We initially addressed this shortcoming by building a companion tool for

Inference Bear called the “Expression Finder”. Its name refers to the tool’s capa-

bility to find appropriate set expressions51 based on the user’s examples.

124

The Expression Finder uses the notion of positive and negative examples.

Let us motivate why these are necessary in addition to the before and after exam-

ples that we introduced earlier. Assume we want to make a click on a canvas pro-

duce a circle, but only if we are in “circle mode”. Using the before and after

technique we can describe that a circle appears where we click (these examples

are implicitly “positive” examples in this terminology). However, we cannot

express that this functionality is dependent on being in circle mode.

Using the positive and negative technique, we can express this conditional-

ity by first going to circle mode and declaring the click a positive example, and by

then leaving circle mode and declaring another click as a negative example.

Expression Finder can then infer that the transition triggered by the click is addi-

tionally dependent on being in circle mode.

Expression Finder always leaves the body of the generated transition

empty. Hence, transitions with complex invocation conditions are not entered via a

single demonstration, they are rather entered via one demonstration to Inference

Bear, one demonstration to the Expression Finder, and via copying the body of

Inference Bear’s transition into Expression Finder’s transition.52

Having to give two demonstrations for one transition is both desirable and

undesirable. On one hand, it keeps the size of individual demonstrations small.

51. Sections III.3.1 and III.3.2 introduce set expressions and their use in transition

headers.

125

On the other hand, it requires some familiarity with the textual language to cut and

paste the output of the demonstrations. We will later present a tool which can

indeed generate transitions with complex invocation conditions from a single dem-

onstration (Section IV.3), and we will present quantitative data on how its usability

compares with using the separate demonstrational tools (Chapter VI).

IV.2.1 Expression Finder’s User Interface

Expression Finder is similar in appearance to Inference Bear. Each exam-

ple to the Expression Finder consist of a snapshot of an interface state, a trigger-

ing event, and an example classification (Figure 4-16).

The Expression Finder uses the same event recording mechanism as

Inference Bear so that we will not discuss it again. There is no need for an after

52. Alternatively, the designer could highlight the transition generated by Infer-

ence Bear before demonstrating to Expression Finder. The system would then

automatically merge the two transitions.

Figure 4-16: Expression Finder

126

snapshot in an example as the Expression Finder is only concerned with when

something happens. It is not concerned with what this “something” is - the transi-

tion body must later be filled in by other means.

Expression Finder allows the designer to interactively test the current

behavior after each example, similar to Inference Bear. But how does the

designer tell if the new transition gets triggered if its body is empty? Our solution

was to make the system beep if an event in test-drive mode matched the expres-

sion of a transition with an empty body.53 We will now present several examples

of using the Expression Finder.

IV.2.2 Example: Making a Transition Dependent on the Context

We introduce the Expression Finder with a storyboard that shows how to

generate a transition that depends on the current user interface mode. (Please go

through the storyboard in Figure 4-17 now. Note that “MacDraw II 1.1” in the figure

is actually an EET-based application that mimics Apple’s MacDraw.)

The textual output of this demonstration is as follows.

Transition ((*.name=="canvas") &&
 (PaletteLine.foreground=="black")).pressed()
{
}

53. This solution is of course not ideal. We later addressed this problem better by

combining the reasoning for the header and body of a transition (Grizzly Bear).

127

Figure 4-17: A Detailed Storyboard of Expression Finder

7.

1.

4.

2.

3.

5.

6.

12.

13.

Interface Design Expression FinderNarration

1. The designer edits the user
interface design for the first
example. In this particular case,
we set up for a positive example
by highlighting the line icon in
the palette.

2. She tel ls the Expression
Finder that she is done editing
by clicking the “Take Snapshot”
icon.

3. She starts the event record-
ing.

4. She causes the triggering
event, a mouse-down on the
canvas.

5. She signals that she is satis-
fied with the recorded event.

6. She declares this first exam-
p le as a pos i t ive example,
meaning that something should
happen in response to the
mouse-down in this situation.

7. She edits the user interface
for the second example by
changing the color of the line
icon in the palette.

8.-11. She again records a
mouse-down event on the can-
vas. These steps are the same
as steps 2.-5. above, and are
not shown again.

12. She declares the second
example to be a negative exam-
ple - she does not want the
behavior to be triggered when
the line icon is not highlighted.

13. She accepts the inference in
this scenario.

. . .

128

The transition is invoked when a press event occurs on an element named

canvas if it also happens to be the case that the foreground color of the Palette-

Line element is black. The transition body is empty so far. In this particular exam-

ple, we can then use Inference Bear to generate a transition body which will make

a new line appear (as described earlier in Section IV.1.5).

IV.2.3 Example: Defining A Transition for a Class of Elements

The Expression Finder can also be used to specify behavior that is exhib-

ited by a class of elements. Consider the Mini-Finder application that we intro-

duced earlier (Figure 4-12). Part of the functionality we want to specify is that all

folders and documents can be dragged to the trash can. However, we of course

do not want users to be able to accidentally drag the palette document or folder to

the trash can! We can demonstrate for which elements this behavior applies by

giving positive and negative examples.

We call the Expression Finder, and create some documents and folders on

the canvas that will serve as positive examples (Figure 4-18). These new objects

receive automatically generated names as shown because we did not explicitly

name them.

For this particular example, let us first demonstrate for each of the four can-

vas objects that dragging them onto the trash can is a positive example. After giv-

ing these four positive examples, the Expression Finder’s solution is shown

below.

129

Transition ((*.name=="Folder-1") ||
 (*.name=="Document-1") ||
 (*.name=="Document-2") ||
 (*.name=="Folder-2")).released()
{
}

As is apparent from the output above, the Expression Finder does not

make an attempt to generalize until at least one negative example is given. This is

because without a negative example there is no domain-independent way of tell-

ing which objects the behavior does not apply to.

Let us thus now show that the palette Folder and palette Document and the

Trashcan itself can never be deleted by dragging them to the trashcan. This is

again done by recording a release event over the trashcan that started with a

press event over the respective objects. The Expression Finder then finds a mini-

mal expression that tells the positive examples from the negative example, as

shown below.

Transition ((*.imageName!="Trashcon.icon") &&
 (*.y>=32)).released()
{
}

Figure 4-18: The Mini-Finder Revisited

Folder-2

Document-2

Folder-1

Document-1

130

In this particular case, the Expression Finder has concluded that the rele-

vant objects are the objects on the lower part of the canvas that do not display the

trashcan icon.

This is not necessarily the “best” solution to this demonstration. There is

often a trade-off between the quality of Expression Finder’s solution and the num-

ber of examples that must be given. The above solution is good enough for con-

structing quick application prototypes (e.g. for early usability testing). The

Expression Finder can indeed find the optimal solution here, namely “objects that

are Folders or Documents but that are not the prototype Folder or the prototype

Document”. However, this may take a number of examples (about twelve here) for

this solution to be found because the optimal solution has to become the minimal

solution. As mentioned earlier, there is no way of telling “optimal” from “minimal”

without using domain knowledge.

The above transition correctly tells us which objects can be deleted. How-

ever, we have so far specified that behavior for these objects is triggered when

they are released over any object, even though we have always shown that the

objects get released over the trash can.

In the particular event system on which we built our prototype implementa-

tion, a release is received by the object that also received the corresponding

press event, and the name of the object over which the release event occurred is

sent as a parameter. As this parameter never changed between any examples the

131

Expression Finder assumes it is irrelevant. (We will discuss the importance of the

event structure in Section VII.1.2.)

Given the particular event structure of our prototype system, we can com-

plete the demonstration by giving two negative examples of release events onto

objects other than the trash can. The final inference is shown below.

Transition ((*.imageName!="Trashcan.icon") &&
 (*.y>=32) &&
 (o=="Trashcan")).released(string o)
{
}

The inferred transition is now additionally dependent on the release event

receiver (“o”) being the trash can.

As with all transitions inferred by the Expression Finder the body of the

transition is to be filled in later either by hand or by using Inference Bear. In this

example, the statement that implements deleting the dragged element is “delete

this”.

Section IV.4.3 explains the Expression Finder’s internal reasoning.

132

IV.3 Demonstrating Both How and When Elements Change

The previous two sections introduced Inference Bear and the Expression

Finder. There are some advantages to using two separate tools, such as keeping

the size of individual demonstrations small.

However, we observed in our usability testing that users are often confused

about which of the two tools to call. We have also observed that getting started

with the Expression Finder is difficult at first because it does not produce immedi-

ately observable new behavior. Finally, we wanted to push the limit of what can be

achieved by demonstration alone as much as possible. (More precisely, our inter-

est was in what can be achieved by demonstration alone if no knowledge is built

into the tool about what is being demonstrated, as discussed in Section IV.5.2).

Grizzly Bear addresses these issues by combining the reasoning power of

the previous two tools into a single control panel. Its name stems from simply

being the bigger brother of Inference Bear.

IV.3.1 Grizzly Bear’s User Interface

Grizzly Bear’s user interface is shown in Figure 4-19. A single example is

again given by working through the buttons from left to right. Each example is

classified as positive or negative using one of the two “Example Type” buttons.

Pressing one of these buttons implies that we are done recording, so that a sepa-

rate “Done Recording” button is no longer needed.

133

A positive example requires an after snapshot to show what happens in

response to the event, as visually indicated by the line connecting the “pos” button

to the “After Snapshot” button. Giving a negative example implies that no behavior

will be triggered by the event in the context of the before snapshot. Hence, there

is no need to explicitly show that nothing happens by giving an unchanged after

snapshot for each negative example.

 Grizzly Bear degenerates into Inference Bear if the user only gives posi-

tive examples. Grizzly Bear degenerates into the Expression Finder if the user

never makes changes for the after snapshot.

IV.3.2 Example: Cycling Through Colors

An example of simple behavior that could not be demonstrated to Inference

Bear is cyclically changing an attribute. For example, we mentioned a color field

that cycles through colors every time it is clicked in Section IV.1.4, but we did not

elaborate on how to demonstrate this behavior. Figure 4-20 re-introduces the

color field example.

Figure 4-19: Grizzly Bear

134

The behavior to be demonstrated is that, upon a press event, the color field

becomes red if it is currently yellow. It becomes blue if it is currently red, and it

becomes yellow again if it is currently blue. A detailed storyboard on how to dem-

onstrate this behavior to Grizzly Bear is shown in Figure 4-21. (Please go through

the storyboard now.) The output of this demonstration is shown below.

Transition ((*.name==”ColorField”) &&
(ColorField.fillForeground==”yellow”)).pressed()

{
self.fillForeground := “red”;

}

The storyboard shows that the color field becomes red if it is currently yel-

low. Analogous demonstrations can be given for the two other cases if all of the

behavior is to be demonstrated, or the designer can textually copy the generated

transition and change the color references.

We use the three-color scenario here because it makes for a good minimal

example involving conditionality in a transition. No claim is made that cycling

through colors is an adequate interaction technique for choosing colors on, say, a

24-bit deep screen. Designers can also use Grizzly Bear to let users choose from

a color palette, or to simply let them type the color’s name.54 Finally, if the color is

an integral part not only of the user interface but of the application itself then cus-

Figure 4-20: Cycling Through Colors

ColorField

135

tom application code will have to be tied to the user interface (e.g. in a desktop

publishing application).

IV.3.3 Example: Making Some Objects Draggable but not Others

Section IV.1.6 introduced the Mini-Finder application when we showed how

Inference Bear can be used to implement a “drag-and-drop” interaction technique.

We later used Expression Finder to describe which elements can and cannot be

deleted by dragging them to the trashcan (Section IV.2.3). Figure 4-22 again

shows the layout of this application.

Grizzly Bear could also have inferred the behavior shown to Inference Bear

and the Expression Finder, and it could have produced the transition body for the

trashcan-dragging, not just the transition header. We will complete our discussion

of the Mini-Finder application by explaining how Grizzly Bear can be used to make

objects on the canvas draggable. Part of the challenge is to make sure that only

the desired objects can be dragged but not others. In Section IV.2.3, the Expres-

sion Finder used an approximate solution that distinguished between the proto-

type objects and the canvas objects by using their relative vertical position.

A better solution is to attach a user-defined attribute to the objects in ques-

tion, which makes it easier for the demonstrational tool to distinguish between

54. Additionally, an extended version of Grizzly Bear could infer that the color is to

be taken from a list of colors (which “wraps around” when the end of the list is

reached).

136

Figure 4-21: A Detailed Storyboard of Grizzly Bear

1.

4.

6.

8.

. . .

Interface Design Grizzly BearNarration

1. + 2. The designer takes a before
snapshot of the color field being yellow

3. + 4. She records a press event on
that field.

5. She declares the example to be
positive, meaning that the behavior to
be shown wil l be tr iggered i f the
recorded event occurs in a situation
similar to the before snapshot.

6. + 7. She takes an after snapshot
that shows that the co lor f ie lds
becomes red.
Grizzly Bear now displays its initial
inference (which is that the color field
a lways becomes red when i t i s
clicked).

8. + 9. The designer takes a before
snapshot which shows the color field
being any color but yellow. We used
red here.

10. + 11. She again records a press
event on the color field. (These two
steps are not shown as they are identi-
cal to steps three and four.)

12. She declares the example to be
negative, meaning that the behavior
will not be triggered if the interface is
in the context of the before snapshot.
Grizzly Bear now displays its refined
inference which is that the color field
only becomes red is it has previously
been yellow.

13. The designer OK’s this inference
in this scenario.

2.

5.

7.

12.

13.

9.

3.

137

them, and which also produces a higher-quality solution. In this implementation of

mini-finder’s functionality we have attached an “IAmDraggable” attribute to the

Folder and the Document. The default value of this string-valued attribute is “no”.

We have then shown how new objects are created by dragging (as in

Section IV.1.6), but we have additionally shown that their “IAmDraggable”

attribute is set to “yes” when they are created. This gives Grizzly Bear a more

symbolic way of describing the objects that can be dragged.

We now describe in detail how the designer shows which objects can be

moved on the canvas. Figure 4-23 depicts the first example, where we show that

a move event originating on Document-1 results in the document moving there.

We superimposed the dotted line over the screen shots to illustrate from which

object the move event originated. The before snapshot is shown on the left, the

corresponding after snapshot on the right of the figures. We indicated if the

designer classified the example as positive or negative using their mathematical

symbols.

Figure 4-22: Mini-Finder

Folder

Document

Folder-1

Document-1

138

After this first example, Grizzly Bear’s inference is that any move event on

Document-1 will result in it moving to the absolute position shown in the after

snapshot. (This is because Grizzly Bear knows nothing about the concept of mov-

ing - it could otherwise draw much better inferences from single examples. There

are, however, also many advantages to not building in such concepts.)

The designer now gives the second example (Figure 4-24). It shows that a

move event on Folder-1 will result in that object following the move event. Grizzly

Bear’s inference now is that either Document-1 or Folder-1 can be moved that

way.

Figure 4-23: Moving by Dragging: First Example

Figure 4-24: Moving by Dragging: Second Example

+

+

139

Grizzly Bear does not attempt to generalize to objects other than the ones

actually used until at least one negative example is also given. (It will use its sta-

tus line to ask the designer for an example of an object not exhibiting the demon-

strated behavior if an example contains positive examples for more than one

object.)

Figure 4-25 shows the final example, which is negative. It expresses that

nothing happens when the Folder object is moved. As with all negative examples,

no after snapshot is required.

Grizzly Bear now draws the desired inference, which is that any folder that

has an “IAmDraggable” attribute that reads “yes” can be moved in that manner.

The actual text of the inference is shown below.

Transition (*.IAmDraggable=="yes").motion(
 coord x, coord y)
{
 self.x := x;
 self.y := y;
}

Figure 4-25: Moving by Dragging: Third Example

-

140

It is worth noting that it is rather by chance that we need three examples

here because there are several minimal ways of telling the objects in the positive

and negative examples apart. (“Minimal” here means using the smallest number

of comparisons in the expression.) The minimal solution that was used is “*.IAm-

Draggable==yes”. Another solution is “*.name!=Folder”, telling the objects apart

by their name. Grizzly Bear has no way of telling which of those two solutions is

“better”, as it has no semantic knowledge of what is being demonstrated. It chose

the former solution here simply because of its lower alphabetic order (see

Section IV.4.1.3). If Grizzly Bear would arbitrate between otherwise equivalent

solutions by, say, reverse alphabetic order, another negative example (on the

Document object) would be needed for this particular example.

IV.3.4 Example: A Complete Mini-Editor

Finally, let us show how a small editor can be built completely by demon-

stration. This application uses a different way of creating and deleting objects than

the Mini-Finder application, and it also shows how object selection can be imple-

mented, and how Grizzly Bear deals with menus. Another reason for presenting

this application here is that we have used it for usability testing (Chapter VI). The

initial layout is shown in Figure 4-26.

It can be used to create circles and ellipses, select them, and delete them.

In more detail, the ellipse and the circle in Figure 4-26 serve as palette items:

clicking on the ellipse will make the interface go into “ellipse mode”, clicking on the

141

circle will make it go into “circle mode” (we are currently in circle mode). Clicking

on the canvas will produce either a circle or an ellipse there depending on the cur-

rent mode (the new objects appear in white, just as the prototype object). These

objects can then be selected by clicking on them, which is indicated by a thicker

border. Finally, selecting “Delete” from the “Objects” menu will delete all currently

selected objects. Figure 4-27 shows a snapshot of the finished mini-editor in use.

In our usability testing, we subdivided the task of specifying this functional-

ity into four sub-tasks which we will describe here in detail.

Figure 4-26: The Initial Layout of the Mini-Editor

Figure 4-27: The Completed Mini-Editor in Action

ellipse

circle

canvas

142

Task 5a was to implement the toggling of the circle and the ellipse in the

palette. This can be done in two separate demonstrations, one each for the circle

and the ellipse.

Transition circle.pressed()
{
 self.fillForeground := "white";
 ellipse.fillForeground := "gray";
}

Transition ellipse.pressed()
{
 self.fillForeground := "white";
 circle.fillForeground := "gray";
}

It can also be done in a single demonstration, using two examples. In this

case, the output is as follows. This solution is indeed correct, as the two assign-

ments are “conceptually executed in parallel” (see Section III.5.1).

Transition (*.name=="circle" ||
 *.name=="ellipse").pressed()
{
 ellipse.fillForeground := circle.fillForeground;
 circle.fillForeground := ellipse.fillForeground;
}

We can now toggle between circle mode and ellipse mode. Task 5-b was to

implement the creation of objects in response to a click on the canvas, which also

requires one demonstrations each for circle mode and for ellipse mode. Each of

these demonstrations requires at least two positive examples for Grizzly Bear to

infer the location of the new object, and at least one negative example for it to

infer that the behavior is mode-dependent. The inferences are shown below.

143

Transition ((*.name=="canvas") &&
 (circle.fillForeground=="white")).pressed(
 coord x, coord y)
{
 element n := create circle;
 n.x := x;
 n.y := y;
}

Transition ((*.name=="canvas") &&
 (ellipse.fillForeground=="white")).pressed(
 coord x, coord y)
{
 element n := create ellipse;
 n.x := x;
 n.y := y;
}

We can now create ellipses and circles on the canvas. Task 5-c was to

make the new objects selectable. The selection status was to be indicated via an

object’s border line width. This behavior minimally requires two positive examples

and one negative example. In this case, Grizzly Bear can come up with a solution

that tells the objects in the palette from the canvas objects by their relative hori-

zontal position. A higher-quality solution like the one shown below requires

approximately ten examples.

Transition (((*.class=="Circle") ||
 (*.class=="Ellipse")) &&
 (!((*.name=="circle") ||
 (*.name=="ellipse")))).pressed()
{
 self.lineWidth := 3;
}

An alternative solution is to mark the selectable objects with an extra

attribute such as “IAmSelectable” (the same technique was used earlier in

144

Section IV.3.3). In this case, the solution can be demonstrated with one positive

and one negative example.

Finally, task 5-d was to make the “Delete” menu item delete all currently

selected objects. This behavior requires only two positive examples each of which

has shows the deletion of a different set of selected objects. The output appears

below.

Transition SXMenu_1.menuInvoked(
 enum menu == "Delete")
{
 delete (*.lineWidth==3);
}

We can now create and delete objects as originally intended (Figure 4-27).

We chose this example for our usability testing because it takes less than an hour

to construct while still containing challenging demonstrations (object creation and

deleting, functionality exhibited by sets of objects).

No claim is made that this editor is complete, of course. For example, users

cannot even deselect objects. While this behavior can easily be demonstrated

(same demonstrational complexity as selecting objects) there was no benefit in

having subjects perform repetitive demonstrations.

Other desirable behavior that can be entirely demonstrated to Grizzly Bear

includes making canvas object movable (see Section IV.3.3), providing a “Dese-

lect All” menu entry (a two-example demonstration), and providing a floating color

palette (see Section IV.1.4).

145

IV.4 The Inferencing Mechanism

This section explains the internal reasoning process of the demonstrational

tools. We will first describe the principles underlying our inferencing mechanism,

as this will provide context for the design decisions presented later.

It contains no domain knowledge.55 The design goal of our demonstra-

tional tools is that they be useful for a broad range of application domains. Conse-

quently, we cannot base their inferencing on knowledge about a particular

domain. A disadvantage of this domain-independent56 approach is that we cannot

make use of such knowledge to aid the inference process. On the other hand, the

tools can be used for many domains. It can potentially also be used at any level of

abstraction. For example, it can be used to demonstrate how a dragged object fol-

lows the mouse pointer, but it can also be used to demonstrate that the number of

employees increases by one if a new employee is hired.57

55. The reasoning mechanism proper contains no domain knowledge, but it con-

tains “hooks” (function calls) which one can use to influence the reasoning pro-

cess based on domain knowledge. Thus, it is fair to say that the overall reasoning

contains “little” domain knowledge.

56. No reasoning is completely independent of its domain, of course, but we lack

a better name.

57. Being able to demonstrate at an abstract level is dependent on having an edit-

able visualization of those abstractions, of course.

146

It finds the simplest possible solution. That is, the inference mechanism

produces the transition with the fewest statements and the least complex invoca-

tion expression. The mechanism cannot otherwise tell which of two solutions is

superior because of its lack of domain knowledge.

It can infer changes to any attribute. The engine can reason about any

at t r ibute of an EET element . I t can infer assignment of a constant

(a.color := “blue”) and assignment from another variable (a.color := b.color) even

if it does not know about the type of the attribute. It can make more advanced

type-specific inferences if it does (such as “a.x := a.x + 1/2 * a.width”).

The above statement should not be confused with “it can infer changes to any

attribute of an arbitrarily complex nature” - all (successful) domain-independent

demonstrational engines look for simple relationships58.

IV.4.1 Enabling Technology Used by All Tools

This section will describe concepts and algorithms that are used for the

reasoning of Inference Bear, Expression Finder and Grizzly Bear. We will first

introduce source and target variables. Simply stated, source variables are poten-

tial parameters of a solution while target variables are those that must be

solved.59

58. Some early machine learning efforts in the artificial intelligence field failed pre-

cisely because they tried to infer arbitrary programs from examples of input and

output.

147

IV.4.1.1 Source and Target Variables

Figure 4-28 shows a small but complete example of Inference Bear’s rea-

soning process that will introduce the key concepts of source and target variables.

The user has given two examples of a button moving one button length to its right

in response to clicking on it (the same example that was described from the user’s

view in Section IV.1.3). Again, no claim is made that this is particularly desirable

behavior, but it provides for a minimal yet complete example of the reasoning pro-

cess.

The inferencing is done in two stages. In the first phase, the “Compactor”

reduces the amount of objects and attributes that the inferencing process has to

be concerned with. This is done by eliminating all objects and attributes which

remain constant in the examples. The result of the Compactor is a list of “source”

variables and a list of “target” variables.

Source variables are potential parameters of a solution. Attributes become

source variables if they change between any two Before snapshots.

59. Note that while source variables are relevant for all demonstrational tools, tar-

get variables are only used by Inference Bear and Grizzly Bear. We present both

source and target variables here because their discussion naturally belongs

together.

148

Target variables are the variables that have to be solved. Attributes

become target variables if they change from any Before snapshot to a corre-

sponding After snapshot.

The source and target variables are the input to the “Inferencer” which tries

to derive each target variable from a combination of source variables and con-

stant values. If it succeeds, it produces a transition which contains an assignment

for each target variable.

Inferencing - the search for relationships between variables - is inherently

expensive. The Compactor eliminates irrelevant information so that the computa-

tionally much more expensive Inferencer is given the least possible information. In

that way, inferencing is efficient even for user interfaces which contain many

Figure 4-28: Source and Target Variables

Compactor

SolutionSource + Target
Variables, Event

Demonstration

Inferencer

Before: Object {
<String> Name b
<Integer> X 100
<Integer> Width 80

}

Event: b.pressed()

After: Object {
<String> Name b
<Integer> X 180
<Integer> Width 80

}

Event:
b.pressed()

Source Variables:
Integer b.X [100 250]
Integer b.Width [80 120]

Target Variables:
Integer b.X [180 370]

Before: Object {
<String> Name b
<Integer> X 250
<Integer> Width 120

}

Event: b.pressed()

After: Object {
<String> Name b
<Integer> X 370
<Integer> Width 120

}

Transition b.pressed()
{

b.X := b.X + b.Width;
}

The demonstrat ion
cons is ts o f one or
more examples (two
here).

The output of the
compactor contains
just the variables
that changed be-
tween the snap-
shots.

The output of the
inferencer is a deri-
vation of each tar-
get variable from
the source var i -
ables.

Example 1 Example 2

149

objects. In the above example, there could be many other interface elements

besides the button for which functionality is demonstrated but the input to the

inferencer would remain identical if the other elements are not touched during the

demonstration.

There are two ways to find out which variables changed between snap-

shots. Ideally, the interface builder allows us to be notified of each individual

change that the user makes when preparing the snapshots. In this case, we can

directly find out which variables changed between snapshots, which would make

the Compactor obsolete.60

Unfortunately, many interface builders do not allow external access to indi-

vidual modification events. However, all of them are able to export information

about the complete current state - the lowest common denominator is a file format

for storing and retrieving designs. The Compactor can then efficiently recover

what the user has changed between snapshots from these complete states.

60. Note that we prefer a snapshot-based approach over a trace-based approach

for our purposes independently of what the underlying interface builder provides.

This is mainly because a snapshot-based approach can better describe that

changes to the user interface occur instantaneously upon events. It also avoids

problems with users re-ordering and un-doing actions that are common to the

trace-based approach.

150

Source variables are those that changed between any two Before snap-

shots. Source variables take their values from the Before snapshots. The Com-

pactor identifies them by the following process.

It first constructs a vector of values for each attribute. This attribute

becomes a source variable if the vector’s minimum value is not approximately

equal to the vector’s maximum value. “Approximately equal” is defined for each

type of attribute (we will discuss “inference types” in Section IV.4.1.2). For exam-

ple, strings may be required to be exactly equal but screen coordinates are

allowed to differ by up to fifteen pixels.

In Figure 4-28, the value vector of attribute X is [100 250] in the Before

snapshots. It becomes a source variable because 100 is not approximately equal

to 250. The attribute Name does not become a source variable because the ele-

ments of its value vector, [b b], are approximately equal.

Identifying source variables is linear in the number of attributes in the

Before snapshots assuming that accessing attributes by name takes constant

time (hash-based access).

No attribute can become a source variable if the demonstration consists of

a single example because a single value is always approximately equal to itself.

This is intended - there is no point in designating source variables because the

Inferencer, described below, will always solve single-example demonstrations by

assigning constant values to the target variables.

151

Target variables are those that change from any Before snapshot to a cor-

responding After snapshot. These variables take their values from the After snap-

shots. The Compactor constructs target variables in two phases - it first identifies

target variables and then collects their values.

The Compactor identifies attributes as target variables by comparing the

value of each attribute in a Before snapshot to its value in the corresponding After

snapshot. The attribute is added to the target variable list if the two values are not

(exactly) equal.

In Figure 4-28, the attribute X becomes a target variable because its value

changes from a Before to a corresponding After snapshot. For example, it

changes from 100 to 180 in the first example. Attribute Width does not become a

target variable because it never changes its value in response to an event. It

remains 80 in the first example and 120 in the second example.

The Inferencer is the component which relates target variables to source

variables. It first groups the source and target variables by type. It then tests each

target variable against unordered sets of source variables of the same type. A sin-

gle such test checks if the target variable can be computed from a combination of

the source variables. These tests are specific for each inference type. The Infer-

encer itself does not contain knowledge about types, it simply calls the test that is

supplied by the inference type (Section IV.4.1.2).

152

The size of the sets increases over time. Testing ends if (1) a test suc-

ceeds, (2) the target variable has been tested against all unordered sets, or (3) a

type-specific limit on set sizes is reached.

In the demonstration of Figure 4-28, the Inferencer first tests the target

variable b.X against the empty source variable set. A test against an empty set

succeeds if the target variable can be solved by a constant (e.g. b.X := 100),

which is not the case here. The Inferencer then tests against the single-member

sets {b.X} and {b.Width}. These tests also fail. The test against the set {b.X,

b.Width} succeeds as shown in Figure 4-28.

The Inferencer’s running time is worst-case exponential in the number of

source variables of the same type. This does not present a problem because no

variable becomes a source variable unless it is explicitly changed by the user dur-

ing a demonstration. In our experience, demonstrations which would bring the

Inferencer to its knees (more than, say, fifteen source variables of the same type)

do not occur in practice because they would simply require too much effort to

demonstrate in the first place. Differently stated, problems of such complexity are

not suitable for a (domain-independent) demonstrational approach.

IV.4.1.2 Inference Types

The code which tests a target variable against a set of source variables is

provided by the inference type. An inference type is an abstraction that contains

all inferencing particular to an attribute type (such as “string” or “boolean”). That

153

way, the “Inferencer” discussed above does not have to depend on specific types,

and it is easier for a software engineer to later add additional types. Figure 4-29

shows the actual inference types we used in our prototype implementation.

An inference type provides three methods (C++ functions in our implemen-

tation). The first method tells if two values of that type are “approximately equal”.

The second method provides an “average value” given a list of values of that type.

The third method tests if a given target variable can be solved by a combination of

the source variables, and returns an assignment statement representing the solu-

tion if the test succeeds. Finally, each inference type contains a list of other types

that it can implicitly be converted to (see Section IV.4.1.2.3).

In Figure 4-29, both the Coordinate and the Integer Inference Type inherit

the “test” and “average value” method from an abstract superclass created for that

purpose. However, they provide different “approximately equal” methods. The

Integer inference type must be exactly equal, while Coordinates are allowed to dif-

fer by up to fifteen pixels to compensate for approximate placement during a dem-

onstration.

Figure 4-29: Inference Types Used in the Prototype Implementation

Generic Inference Type

IntegerCoordinateStringEnumerationBoolean

Generic Integer Inference Type

154

The generic integer inference type contains by far the most complex rea-

soning for testing a target variable against a list of source variables, so that we will

discuss it in more detail than the others.

IV.4.1.2.1 The Generic Integer Inference Type

The generic integer inference type can derive a target variable from a lin-

ear combination of source variables. That is, given target variable t and source

variables s1 to sn it can determine the relationship t = c1s1 + c2s2 + ... + cnsn + c0

given n+1 substantially different examples.61

There is a trade-off between the inferencing power and the responsiveness

of any demonstrational system. We chose to restrict ourselves to linear relation-

ships in the generic (domain-independent) reasoning because it covers a wide

variety of user interface behavior (e.g. all of the behavior of the “MacDraw” imita-

tion of Appendix D) while still allowing the system to respond immediately to dem-

onstrations. It is entirely possible to extend the reasoning to cover additional

relationships. However, doing so must be carefully balanced with the response

time of the system. Super-linear inferencing may best be addressed by introduc-

ing domain knowledge into the reasoning process (see Section IV.5.3).

The algorithm that tests integer target variables against source variables

works as follows. If the set of source variables is empty, the algorithm computes

61. “Substantially different” is synonymous with “linearly independent” for the inte-

ger inference type.

155

the arithmetic mean of the values of the target variable and tests if this constant is

a solution.

For example, if the target variable has the values [18 17 22] in a

three-example demonstration, the algorithm computes the arithmetic mean, 19,

and then tests if the vector [18 17 22] is approximately equal to [19 19 19]. If it is,

the algorithm has solved the target variable (t:=19).

If the set of source variables is not empty, the algorithm constructs a matrix

and a vector that can then be solved by Gaussian elimination. Assume there are n

source variables s1...sn. If there are less than n examples, the test fails. If there

are exactly n examples, the algorithm tries to derive the target variable from the

source variables without an additive constant (t = c1s1 + c2s2 + ... + cnsn). If there

are more than n examples it tries to solve the general case (t = c1s1 + c2s2 + ... +

cnsn + c0).

This is again best explained through examples. Consider the introductory

example of Figure 4-28, where the variables are as follows.

Source Variables :
Integer b.X [100 250]
Integer b.Width [80 120]

Target Variables :
Integer b.X [180 370]

The algorithm takes these examples and constructs the following matrix.

The columns of the matrix correspond to the values of the source variables (b.X

156

and b.Width here), respectively. The vector is made up from the values of the tar-

get variable that we are trying to solve (b.X here).

Standard Gaussian elimination can then be used to solve this set of equa-

tions.

That is, we have found a relation between the target variable and the

source variables, namely

The inference engine then checks if this is indeed a solution by re-substitu-

tion62. A simplifier brings the solution to its final form, b.X ← b.X + b.Width.

All examples in this paper use demonstrations which can be solved exactly

for the sake of simplicity. We discuss later how we use snapping to deal with

approximate solutions such as “b.x =1.03, b.width = 0.98”

In the previous example, there were no redundant examples (“bad exam-

ples”), and there were only n examples for n variables. The following example

shows how the algorithm constructs the matrix in a more general case.

62. Re-substitution would not be necessary if the exact solution is used, of course.

However, we also use re-substitution to test if a “snapped” version of the solution

will do as explained later.

100 80

250 120

b.x

b.width
× 180

370
=

b.x

b.width

1

1
=

b.X 1 b.X⋅ 1 b.Width⋅+←

157

In this example, assume that the user has given several demonstrations

that center interface object b between objects a and c by moving b (rather than

resizing b). Figure 4-30 shows the variables relevant to the demonstration.

The formula for b.x which centers b in this way is shown below.

Let us assume that the demonstration consists of seven examples as

shown in Table 4-1.

Figure 4-30: Centering Elements

Table 4-1: Example Values for Integer Inferencing

Example: 1. 2. 3. 4. 5. 6. 7.

source variable a.w 200 200 100 100 50 100 200

source variable a.x 200 200 200 0 0 100 200

source variable b.w 100 100 200 200 50 50 100

source variable c.x 800 600 800 800 150 300 800

target variable b.x 550 450 450 350 75 225 550

a b c

b.x

c.x

b.w
a.x

a.w

Source
Variables

Target
Variable

b.x a.x a.w
1
2
--- c.x a.x a.w+()–() 1

2
---b.w–+ +←

158

If we have more examples than needed, which ones should we select? Ide-

ally, we want to use the most “unique” examples. Seen from a demonstrational

standpoint, one intuitively feels that using nearly identical examples will not give

the inference engine more useful information. Seen from a “math” standpoint, one

does not want to have rows in the matrix that are nearly identical because that

increases the likelihood that one row is linearly dependent on the others (that the

augmented matrix is unsolvable).

We use the following method to select examples that will be used in the

matrix63. We define the distance between two examples as the count of source

variables that are not approximately equal between them. We define the unique-

ness of an example as the sum of its distances to the other examples. We then

select k examples of decreasing uniqueness for inclusion in the matrix (where k is

the number of source variables plus one). Table 4-2 lists the distances for each

example in Table 4-1.

For example, the distance between the first and second example in

Table 4-1 is one because c.x is the only source variable with a differing value. The

63. There is actually a superior selection method for the integer inference type.

This method consists of adding vectors to a new matrix one by one, making sure

that every new vector is linearly independent from the ones already there. We

present the above method because it can be used for all inference types, not just

for integers.

159

distance between the first and fifth example is four because all four source vari-

ables differ between them.

Thus, we select examples two through six to construct the matrix below. In

this demonstration, we have more examples than source variables which allows

us to add the row of ones which tests for a constant offset (e.g. p.x := q.x + 100).

Solving the matrix returns

Table 4-2: Computing the “Uniqueness” of Examples

Example: 1. 2. 3. 4. 5. 6. 7.

1. - 1 2 3 4 4 0

2. 1 - 3 4 4 4 1

3. 2 3 - 1 4 3 2

4. 3 4 1 - 3 3 3

5. 4 4 4 3 - 4 4

6. 4 4 3 3 4 - 4

7. 0 1 2 3 4 4 -

Uniqueness: 14 17 15 17 23 22 14

200 200 100 600 1

100 200 200 800 1

100 0 200 800 1

50 0 50 150 1

100 100 50 300 1

a.w

a.x

b.w

c.x

const

×

450

450

350

75

225

=

a.w

a.x

b.w

c.x

const

0.50

0.50

0.50–

0.50

0

=

160

which results in the following derivation after running it through the simpli-

fier. The formula indeed centers b such that it has equidistant edges to a and c.

The numerical examples above all use equations that can be solved

exactly. This will rarely be the case in actual demonstrations where raw solutions

often read “b.x := 1.03*b.x + 0.48*b.width + 3.1” when the user intended “b.x := b.x

+ 1/2*b.width”.

We deal with these cases by first trying if the non-constant factors can be

snapped to halves and the constant factor snapped to zero (which is the case in

the example above).64 We then try snapping the non-constant factors to halves

and rounding the constant factor. If both these snapped versions of the solution

fail we use the original solution.

64. Such a trial consists of resubstituting the snapped solution into the vector on

the left-hand side and checking if this results in a solution vector that is “approxi-

mately equal” to the desired solution vector (“approximately equal” is defined for

each inference type as explained in Section IV.4.1.2).

b.x
1
2
---a.w

1
2
---a.x

1
2
---b.w

1
2
---c.x+–+←

First Try

1.03

0.48

3.1

1

0.5

0

→

Second Try

1.03

0.48

3.1

1

0.5

3

→

Third Try

1.03

0.48

3.1

161

IV.4.1.2.2 Other Inference Types

As shown in Figure 4-29, we defined three more inference types beyond

the two integer-based inference types, namely Boolean, Enumeration and String.

Not much is to be said about the Boolean and Enumeration inference types as

they simply subclass from the Generic Inference Type without providing additional

reasoning capabilities.65 That is, the inferencing mechanism can still only infer

assignment from a constant value or assignment from another variable of the

same type. The String inference type additionally tests if a target variable can be

solved by concatenating two String source variables.

The decision to only provide very modest reasoning capabilities for types

other than integers reflected the requirements for our prototype implementation.

We see no inherent difficulty in expanding the reasoning capabilities of the exist-

ing inference types, or in adding new inference types.

IV.4.1.2.3 Type Conversion

As mentioned at the beginning of Section IV.4.1.2, inference types also

contain a list of other types that they can be converted to. For example, we found

it useful to define Strings as being implicitly convertible to Integers. For example,

65. The sole reason for their existence is that printing out source or target vari-

ables of these inference types at debugging time will then better reflect their origi-

nal types (the types of the attributes or event parameters from which they were

constructed).

162

the line width of all currently selected objects can then be set to an integer value

specified in a text field. (The line width of the objects are integer-valued target

variables while the content of a text field is a string-valued source variable.)

Declaring such a type conversion has the simple effect that an additional

artificial source variable is generated before the source variables are sorted by

type. In the context of the example above, if the value of the text field tf was “3” in

a first example and “7” in a second example, an artificial Integer source variable is

generated as shown below.

Source Variables:
String tf.text ["3" "7"]
Integer tf.text [3 7]

The reasoning process otherwise proceeds as usual (Section IV.4.1.1).

IV.4.1.3 Inferring Set Expressions

We have so far talked about the mechanism that infers assignment state-

ments, or more precisely the value expressions on the right-hand side of assign-

ment statements, such as “x + 1 / 2 * width” (see Section III.2.3). This section

explains the basic inferencing mechanism for set expressions, such as “(bb.mode

==”RectangleMode” && *.class=="Rectangle")” (see Section III.3.1). We will call

this inferencing mechanism the “set expression finder”.

This mechanism is best introduced through an example. Suppose the user

interface design consists of three elements called Doc1, Doc2 and Doc3, and fur-

ther suppose that the designer has given two examples as follows. In the first

163

example, clicking on “Doc1” deletes this element, and in the second example

clicking on “Doc2” deletes that element.

Part of solving this demonstration is to find a set expression that describes

which elements get deleted. Assume that the following set source variables are

passed to the set expression finder by the sub-component for reasoning about

deletions. (There is no need to understand what these variables “mean” for the

purpose of explaining the set expression finder.66)

<string> "*.name" {Doc1 Doc2} {Doc2 Doc3 Doc1 Doc3}
<string> "self.name" {Doc1 Doc2} {Doc1 Doc1 Doc2 Doc2}

A single set source variable consist of an inference type name (“<string>”),

the name an event parameter, concrete attribute, or wildcard attribute (“*.name”),

a list of its values for the positive examples (“Doc1 Doc2”), and of a list of its val-

ues for the negative examples (“Doc2 Doc3 Doc1 Doc3”).67 There are two set

source variables in this example input.

66. The set expression finder is used by the reasoning for assignment statements,

create statements, delete statements, and for the expression in the header of a

transition. Each of these reasoning components is in charge of preparing the set

source variables fed to the set expression finder. These components are dis-

cussed in Sections IV.4.2.1, IV.4.2.2, IV.4.2.3 and IV.4.3, respectively.

67. Note that the mechanism internally does not carry a list of actual values but

rather pointers to contexts that allow to compute these values.

164

When the set expression finder is given this list of set source variables, it

first generates a list of set expressions consisting of simple comparisons. In our

concrete example, the following comparisons are generated.

(*.name==”Doc1”) {1} {-1 -2 -3}
(*.name==”Doc2”) {2} {-1 -3 -4}
(*.name==”Doc3”) {} {-2 -4}
(*.name==self.name) {1 2} {-1 -2 -3 -4}
(self.name==”Doc1”) {1} {-3 -4}
(self.name==”Doc2”) {2} {-1 -2}

In this notation, the generated single-comparison expression is shown on

the left. The lists in curly parentheses indicate which of the six cases would be

satisfied by that expression. (In this example, there are two positive and four neg-

ative cases.)

The next step is to remove set expressions that are dominated by others. A

set expression is dominated if another expression solves a superset of its cases.

In this particular example, the fourth set expression dominates all others.

Inferencing stops when we found an expression which solves all cases. In

the above example, the fourth expression does, and we are done. The component

that reasons about delete statements will now produce a delete statement which

correctly deleted the intended element for the given examples.

Transition ...
{

delete (*.name==self.name);
}

165

In this particular example, this expression is actually equivalent to a refer-

ence to the element on which the event occurred, so that the generated output is

actually as follows, after being processing by an algebraic simplifier.

Transition ...
{

delete self;
}

We will now present an example of a more complicated problem for the set

expression finder. The user has demonstrated that dragging elements from the

canvas to the trashcan element deletes them, while dragging them to any other

element does not. Elements on the canvas are marked with a user-defined

“onCanvas” attribute. The user provided two positive and three negative exam-

ples. The corresponding input to the set expression finder is shown below. (Note

that this is a real-life example, where we have demonstrated the behavior to Griz-

zly Bear and traced the internal reasoning. There is no need to understand what

these variables “mean” for the purpose of explaining the set expression finder.66)

<string> *.onCanvas {yes yes} {yes no no}
<string> *.imageName {D.ic F.ic} {D.ic D.ic D.ic}
<string> *.name {auto2 auto1} {auto2 Doc Doc}
<coord> *.x {116 81 {116 96 96}
<coord> *.y {62 92} {62 77 77}
<coord> Doc.x {45 45} {45 96 96}
<coord> Doc.y {3 3} {3 77 77}
<string> over {Trash Trash} {Doc Trash Canvas}
<coord> x {217 220} {63 218 154}
<coord> y {123 126} {19 120 155}

166

As in the previous example, the set expression finder first generates a list

of single-comparison expressions.

(*.onCanvas==”yes”) {1 2} {-2 -3}
(*.onCanvas==”no”) {} {-1}
(*.imageName==”D.ic”) {1} {}
(*.imageName==”F.ic”) {2} {-1 -2 -3}
(*.name==”auto1”) {2} {-1 -2 -3}
(!(*.name==”Doc”)) {1 2} {-2 -3}
(*.x<88) {2} {-1 -2 -3}
(!(*.x<106)) {1} {-2 -3}
(*.y<69) {1} {-2 -3}
(!(*.y<84)) {2} {-1 -2 -3}
(Doc.x<70) {1 2} {-2 -3}
(!(Doc.x<70)) {} {-1}
(Doc.y<40) {1 2} {-2 -3}
(!(Doc.y<40)) {} {-1}
(over==”Trash”) {1 2} {-1 -3}
(over==”Doc”) {} {-2 -3}
(over==”Canvas”) {} {-1 -2}
(x<218) {1} {-2}
(!(x<185)) {1 2} {-1 -3}
(!(x<219)) {2} {-1 -2 -3}
(y<69) {} {-2 -3}
(y<140) {1 2} {-3}
(!(y<121)) {1 2} {-1 -2}

The generated expressions are dependent on the inference type (there is a

fourth method for inference types called “generateSeeds” which was not men-

tioned in Section IV.4.1.2). We generate “smaller-than” comparisons for the Coor-

dinate inference type, “equal-to” comparisons for Enumerations, Booleans and

Strings, and both kinds of comparisons for Integers.

The negated clauses of generated set expressions are also added if they

are not already dominated by existing expressions. After eliminating expressions

that are dominated by others, we are left with the following candidates.

167

(*.onCanvas==”yes”) {1 2} {-2 -3}
(*.imageName==”F.ic”) {2} {-1 -2 -3}
(over==”Trash”) {1 2} {-1 -3}
(!(y<121)) {1 2} {-1 -2}

Because none of these expressions presents a solution (that is, none

solves both positive and all three negative cases) we go through the following

expansion process. We add two-comparison terms by “oring” and “anding” exist-

ing expressions together if the resulting expression solves a set of cases not

already solved by an expression in the list. We also again add their negated ver-

sions if they pass the same test. This leaves us with the following candidates in

this particular example.

(*.onCanvas==”yes”) {1 2} {-2 -3}
(*.imageName==”F.ic”) {2} {-1 -2 -3}
(over==”Trash”) {1 2} {-1 -3}
(!(y<121)) {1 2} {-1 -2}
((*.onCanvas==”yes”)&&(over==”Trash”)) {1 2} {-1 -2 -3}
((*.onCanvas==”yes”)&&(!(y<121))) {1 2} {-1 -2 -3}
((over==”Trash”)&&(!(y<121))) {1 2} {-1 -2 -3}

The reduce-check-expand cycle now begins again. We are left with the

expression below after the reduction step, which presents a solution in this partic-

ular example. (This expression was part of a demonstration that expressed that

objects on the canvas can be deleted when they are released over the trashcan.)

((*.onCanvas==”yes”)&&(over==”Trash”)) {1 2} {-1 -2 -3}

The listing of candidate expressions is always ordered in terms of desirabil-

ity - we prefer simpler solutions to more complex solutions. Being “simpler” is

168

defined in the number of nodes in an expression tree. The seven expressions

above have a node size of 3, 3, 3, 4, 7, 8, and 8, respectively.

If expressions have the same “simplicity”, we pick the one which happens

to appear first in the expression list. The one-comparison “seed expressions” are

originally ordered alphabetically, so that there is a bias towards variables that rank

lower in the alphabet.

Finally, let us note that this algorithm is closely related to work in machine

learning, more specifically to work on “learning by similarity detection” (see e.g.

[Kodr88], chapter 8). Some of these algorithms exhibit a better running time for

certain special cases of the problem of finding set expressions. (Our algorithm is

exponential in the number of set source variables in the worst case. This has not

been a problem for us because our source variable technique ensures that there

are never large input sizes.) There are also some characteristics of our domain

(most notably wildcard slot identifiers) which have kept us from reusing an exist-

ing machine learning algorithm. An algorithm by Michalski (also in [Kodr88], chap-

ter 8) seems to be the one most closely related to ours. We may try to build on it in

the future if the performance of the set expression finder becomes an issue.

IV.4.2 Inference Bear’s Inferencing

Inference Bear’s internal reasoning consists of three major sub-compo-

nents, one each for the modification, creation, and deletion of elements. Inference

Bear first computes the source variables for the demonstration (to avoid wasteful

169

re-computation in the sub-components). It then calls each of the three compo-

nents, and concatenates the statements returned by the components to make up

the transition body (the statements concerning the creation of elements come

first, then the ones for modification, then the ones for deletion). Finally, it synthe-

sizes a transition header that makes the behavior dependent on the literal event

used in the examples.

Section IV.4.2.1 now presents the reasoning for the modification of ele-

ments in more detail. Section IV.4.2.2 is concerned with the creation of elements,

and Section IV.4.2.3 is concerned with the deletion of elements

IV.4.2.1 Changing Attributes of Existing Elements

The sub-component of Inference Bear concerned with demonstrations that

modify attribute values first tries to find a “conventional” solution for each target

variable separately as already discussed in Section IV.4.1.

If a collection of target variables cannot be solved “conventionally”, that is

by considering each variable separately, we use the following mechanism to

detect if there is a “set solution”, namely an assignment statement which contains

a set expression on its left-hand side rather than an absolute reference to an ele-

ment (see Section III.3.1).

We first group the target variables by attribute name, and then consider

each group separately. In each group, we use the set expression finder

(Section IV.4.1.3) for inferring the set expression that goes into the left-hand side

170

of an assignment, and re-use the single-attribute reasoning (Section IV.4.1.1) for

the value expression that goes into the right-hand side of the assignment.

That process is again best explained by an example. Assume we want to

show Inference Bear that clicking on the “Left-Aligner” will align the left sides of

the currently selected objects to the left side of this button. (Selected objects are

highlighted by diagonal stripes. The dotted white shadows in Figure 4-31 indicate

where the moved objects were located in the before snapshot.)

We first mark the examples in which the target variables did not change

from a before to an after snapshot with a “don’t care” symbol (a hyphen). The

(slightly idealized) input to the set reasoner for this example is as follows.

Boolean Source Variable rect1.selected [1 0]
Boolean Source Variable rect2.selected [1 0]
Boolean Source Variable rect3.selected [0 1]

Figure 4-31: Aligning Sets of Objects

First Example. Second Example.

171

Coord Source Variable la.x [10 90]
Coord Target Variable rect1.x [10 -]
Coord Target Variable rect2.x [10 -]
Coord Target Variable rect3.x [- 90]

The next step is to construct an artificial set source variable that is made up

from the source variables available for our target variable group.68 We then call

the set expression finder for that artificial set source variable. The presence of a

value in the target variable at that position presents a positive case and a “don’t

care” value presents a negative case. The input to the set expression finder is

shown below.

<boolean> *.selected {1 1 1} {0 0 0}

The set expression finder then derives the expression “(*.selected==1)”

from this input as explained in Section IV.4.1.3, and we are done as far as the left

side of the assignment is concerned.

We now generate an artificial target variable by taking the values from indi-

vidual variables for each example and by synthesizing an “average value” for

them if they are “approximately equal”.69 In our example, this results in the follow-

ing target variable.

68. Note that if e.g. only “rect1.selected” would be in the original source variable

set, we would automatically add “rect2.selected” and “rect3.selected” here as

additional source variables.

69. These two functions are defined for every inference type, see Section IV.4.1.2.

172

Coord Target Variable artificial.x [10 90]

We then use our standard mechanism to test this target variable against

the original source variables, and additionally against similarly manufactured “self”

source variables. If that succeeds, we are done, and can now synthesize the final

assignment statement, as shown below.

(*.selected==1).x := la.x;

The demonstrations presented in Sections IV.1.4, IV.1.5, and IV.1.6

involved this mechanism. The mechanism can also handle references to “self” in

the right-hand side of an assignment, in the manner briefly mentioned above. For

example, the designer can demonstrate that clicking on any circle will put all rect-

angles 50 pixels below the circle that was clicked:

Transition (*.class=="Circle").pressed()
{
 (*.class=="Rectangle").y := self.y + 50;
}

IV.4.2.2 Creating Elements

Inference Bear’s sub-component for reasoning about newly created

objects first makes a list of elements that have been created by comparing each

after snapshot to the corresponding before snapshot. It then guesses which ele-

ments of e.g. the first example correspond to the elements in the second example

by clustering the elements with the fewest differing attributes. (Imagine that you

created a rectangle and a circle in both examples. Because of our snap-

173

shot-based technique, the order in which they appear in the list of newly created

elements may differ between examples, this is why the clustering is needed)

For each new element, we choose an existing element of the same class

as the prototype for the new element, namely the one with the fewest differing

attributes. Any attribute of the new element that changed from that prototype is

treated as a target variable, and an assignment for it is generated using the stan-

dard mechanism (Section IV.4.2.1).

In the above algorithm, all prototypes are explicitly named elements. If this

algorithm fails (for example, if we want to describe that “clicking on a canvas pro-

duces a copy of the currently-white element”), we find the prototype with the few-

est differing attributes for each example separately, and then construct a set

expression for the create statement by treating the prototype elements as positive

cases, treating all other elements as negative cases, and calling the set expres-

sion finder (see Section IV.4.1.3).

This algorithm cannot currently handle the creation of a dynamic number of

elements. Indeed, this cannot even be expressed in the Elements, Events & Tran-

sitions language itself because a single create statement always creates exactly

one element (this situation has to be handled via the Application Programmer

Interface at the moment). We could not identify a (domain-independent) algorithm

that can handle this inference efficiently; however, such an extension is clearly

desirable to handle common user interface behavior (“copy all currently-selected

elements and place the new copies at an offset from the original ones”). This may

174

present a case in which it is desirable to add domain-specific code to augment our

inferencing.

IV.4.2.3 Deleting Elements

Inference Bear’s sub-component for the deletion of elements first con-

structs a list of pointers to all elements that have been deleted as well as another

list of pointers to all elements that have not been deleted (by comparing the

before and after snapshots). It then passes the problem on to the set expression

finder (Section IV.4.1.3) by constructing set source variables which treat the

deleted elements as positive cases and the other elements as negative cases.

The resulting set expression is then put into the delete statement (e.g. “delete

(*.selected==1)”).

For example, consider the scenario of the first example in Section IV.4.1.3,

in which a simplistic user interface contains three elements called Doc1, Doc2

and Doc3. The user has given two (positive) examples. In the first example, click-

ing on Doc1 deletes this element while in the second example clicking on Doc2

deletes that element. Part of solving this demonstration is to find an expression for

the elements which get deleted. This is done by computing set source variables

which treat the deleted elements as positive examples and all others as negative

examples.

In this example, Doc1 was deleted in the first example but not Doc2 or

Doc3, while Doc2 was deleted in the second example but not Doc1 or Doc3 (the

175

values stemming from the first example are shown in bold, the values stemming

from the second example in italics).

<string> "*.name" { Doc1 Doc2} { Doc2 Doc3 Doc1 Doc3}

The deletion sub-component then computes the source variables from the

before snapshots as usual (Section IV.4.1.1), and converts them to set source

variables. This is done by multiplying their value for each example by the overall

number of elements in the example. For example, the name of the object on

which the event occurred changed between the first and second example (Doc1

versus Doc2), so that it becomes a source variable. It is then converted to a set

source variable as follows.

<string> "self.name" { Doc1 Doc2} { Doc1 Doc1 Doc2 Doc2}

The set source variables are then passed to the set expression finder,

which computes “delete (*.name==self.name)” as a solution for this particular

example (which is equivalent to “delete self”, see Section IV.4.1.3).

Note that treating all other elements as negative cases is both conservative

and expensive - it makes sure that the inferred set expression does not acciden-

tally match an unrelated element at the expense of inferencing speed. We did not

experience a performance problem with this approach for our limited designs (less

than one hundred elements overall), but this is easily imaginable for user inter-

faces consisting of thousands of elements. In such a case, it is possible to use a

heuristic for preventing unrelated elements to accidentally match the expression

176

in a delete statement, such as making the deletion of an element dependent on

being on the same canvas as the elements in the original demonstration (by

attaching an “and it is on canvas x” clause to the inferred expression at demon-

stration time). This way, there is no need to treat all elements as negative cases

during a demonstration but rather only the ones on the same canvas as the

deleted elements.

IV.4.3 Expression Finder’s Inferencing

As long as there are no negative examples the Expression Finder simply

concatenates the names of the elements on which the events occurred, using log-

ical “or” (e.g. “(*.name==‘circle’ || *.name==‘ellipse’).pressed()”).

Otherwise, the Expression Finder is a one-to-one front-end to the set

expression finder described in Section IV.4.1.3. It constructs the set source vari-

ables using each positive example as “positive case”, and each negative example

as a “negative case” (in the terminology of the set expression finder). The output

from the set expression finder then becomes the header of the generated transi-

tion.

IV.4.4 Grizzly Bear’s Inferencing

There is no additionally reasoning that is particular to Grizzly Bear. It simply

first internally calls Inference Bear, feeding it only the positive examples, then

calls the Expression Finder, feeding it everything but the after snapshots, and

177

finally combines the transition body from Inference Bear’s output with the transi-

tion header of Expression Finder’s output.

IV.5 Discussion of the Demonstrational Components

We will discuss the limitations of our demonstrational tools in conclusion of

this chapter, and also compare the relative advantages and disadvantages of our

“domain-independent” approach. Finally, we will speculate on how to introduce

domain knowledge in a principled way.

IV.5.1 Limitations

In this section, we will characterize behavior that cannot be inferred by

Grizzly Bear but is nevertheless relevant for building user interfaces.

First and foremost, Grizzly Bear does not deal with text other than simple

labels, so that the behavior of textual windows has to be defined by other means.

Grizzly Bear also cannot integrate pre-built complex components (such as a text

editing widget or a file selection box) with the rest of a design.

There are also limitations to the complexity of transitions it can infer. For

example, it cannot recognize the creation of a dynamic number of elements (see

Section IV.4.2.2). It is also not well-suited for user interfaces in which many ele-

ments continuously stay attached to each other, primarily because its underlying

language currently lacks constraints [Myer90b,Huds93].

178

IV.5.2 Domain-Specific PBD Systems vs. Domain-Independent PBD Systems

There are two competing approaches towards building Programming By

Demonstration (PBD) systems, which we will call the “domain-specific” and the

“domain-independent” approach for lack of a better name. We have at times also

referred to domain-specific systems as “rule-based systems” or “expert systems”

while we called their domain-independent counterparts “algorithm-based” or

“more mathematically-thorough”.

The distinction between those two is not clear-cut. Systems that we call

domain-specific typically check a given demonstration against a finite list of situa-

tions they recognize, while domain-independent systems rely on machine learning

techniques for their inferencing.

While the following definition does not cover all systems that we would intu-

itively call domain-specific, we define such PBD systems as systems that refer to

particular attributes by name in their reasoning. That is, the attributes the system

can reason about are determined when the system is built. We will call all other

systems “domain-independent”.

For example, a domain-specific system may contain a rule that specifically

checks if a new object is centered relative to an existing one by checking their

attributes named, say, “x-pos”, “y-pos”, “width” and “height”. Similarly, another rule

can check if a new object is left-aligned by checking if the values of their attributes

named “x-pos” are similar. For example, Peridot [Myer88] and Druid [Sing90]

have taken this approach.

179

A possible domain-independent approach is to instead check if the

attributes of the new object can be computed from a linear combination of existing

variables. This was our approach. Other systems of a similar nature are

Demo [Wolb91] and GITS [Olse90].

We will discuss the advantages and disadvantages of the two approaches

using the two main characteristics of PBD systems: how much they can infer, and

how easy they are to use.

IV.5.2.1 Inferencing Power

From the above example, it may seem that domain-independent systems

would always be able to draw the same inferences that domain-specific systems

can draw, and more. This is not the case. Domain-independent systems are supe-

rior from an inferencing standpoint only to domain-specific systems whose rules

are simply special cases of variables that are linearly dependent on existing vari-

ables.

Domain-specific systems can check for relationships that are not linear. For

example, they can have a built-in rule that checks for a parabolic trajectory. The

reason that domain-independent systems cannot discover general super-linear

relationships is because this is computationally too expensive. Domain-specific

systems do not attempt to solve the general problem, but rather just solve

super-linear demonstrations of particular interest by codifying prior knowledge of

what types of relationships are going to be demonstrated.

180

An important inferencing advantage of domain-independent systems is

their ability to deal with user-defined variables. For example, our Grizzly Bear

(Section IV.3) can reason about attributes added interactively by the user just as it

would reason about any other attribute. Domain-specific systems cannot make

this inference as they - by our definition - base their reasoning on knowledge

about the roles of particular attributes that they identify by name (and the names

of user-defined attributes cannot be known in advance).

IV.5.2.2 Ease of Use

The theoretical inferencing power of a PBD system is of no relevance if its

potential users are not able to provide it with correct demonstrations. We believe

that neither approach is inherently “easier to use” than the other.

We believe that domain-independent systems are easier to use in the

sense that they are more predictable. In our particular system, demonstrating that

a variable takes its value from another variable takes the same type of demonstra-

tion, no matter if the variables are colors, positions, labels, fonts, or so on.

Because of the rule-based reasoning of domain-specific systems, it is easily pos-

sible that a seemingly similar demonstration results in a different type of inference

because a different rule fired (or none at all). The user is then left to wonder if a

slightly different demonstration would have brought the desired result, or if the

system simply has no rule built-in for this situation.70

181

On the other hand, domain-specific systems often require only a single

example because they, in some sense, already know what is going to be demon-

strated. Informally stated, they can thus jump in after the first example and ask “I

know this! You are trying to do x, right?”. Having to give only a single example is a

significant usability advantage as it is our experience that going from single-exam-

ple demonstrations to multiple-example demonstrations is difficult for new users.

Another advantage of domain-specific systems is that their rule-based

structure invites refinement based on user studies. Subjects can first be observed

to find out how they think a particular behavior should be demonstrated (which is

all that matters).71 The rules can then easily be changed to indeed translate these

demonstrations into the expected behavior.

IV.5.2.3 Conclusion

In conclusion of the “domain-independence” discussion, we believe that a

domain-specific approach is the right choice for PBD systems that are concerned

with small-scale tasks in which the behavior to be demonstrated is predictable

and can be covered by a small set of rules. We see their main advantage in the

ease with which they can be tuned to their users’ expectations.

70. Note that domain-independent systems can of course also fail to produce the

desired result - it is just that their behavior is more predictable.

71. Assuming, of course, that all users think along the same lines - which may or

may not be the case.

182

We advocate the domain-independent approach for open-ended tasks

such as designing functional graphical user interfaces because of its breadth of

coverage. We also believe that a domain-independent approach better facilitates

the demonstration of innovative behavior because it does not have to codify

assumptions about what is going to be demonstrated. Finally, we believe that

domain-independent PBD approaches present a more exciting research direction

because they potentially enable the transfer of inferencing technology from one

PBD system to another.

IV.5.3 Integrating Domain Knowledge

 The best strategy for future PBD systems may be to combine both

approaches by first checking if domain-specific rules fire and by then falling back

on a domain-independent reasoning engine such as ours. At least one existing

demonstrational system has used such a hybrid approach [Fish92].

Our inferencing engine also already provides a number of “hooks” (C++

function calls) which let one tune the inferencing based on domain knowledge.

For example, one such hook provides for sorting source variables by domain-spe-

cific criteria. We have used this hook in our prototype implementation to put the “x”

and “y” event parameters that correspond to the location of an event at the end of

that list. This is because it is nearly always possible to tell positive examples from

negative examples by the precise location of the event in the positive examples -

183

putting them at the end of the list ensures that the inferencing mechanism only

uses this solution as a last resort.

184

CHAPTER V

BUILDING MODELS BY INTERVIEW

The original plans for our user interface design environment called for less

sophisticated demonstrational tools in favor of an additional component called the

“interview tool”. We envisioned that this tool would help novice designers con-

struct and complete user interface designs by asking them a series of questions,

and by building up a textual model of the user interface based on their answers.

During the course of the research, the inherent limitations of this approach

became apparent, so that we no longer advocate a rule-based, heuristic interview

component as a general methodology for building user interfaces. The main prob-

lem was that our domain (two-dimensional graphical user interfaces) turned out to

be too large and open-ended to accommodate capturing generally-valid design

advice in an expert-system fashion.

V.1 The Role of an Interview Component

We now see the role of an interview component in user interface design as

more limited, similar to the role of Microsoft’s “wizard” components. These “wiz-

ards” are similar to our “interview tool” in intent and approach.72 For example, the

“layout wizard” in Microsoft Word asks the user a series of questions and then

constructs an initial design based on the answers. Just as in the interview tool, the

185

answers are given in the form of selections from multiple choices, not in the form

of unrestricted natural language.

An interview component can be genuinely useful in assisting with eas-

ily-anticipated tasks (for example, we can anticipate that office workers will often

want to set up a mail-merge between Microsoft Excel and Microsoft Word). It is

just that an interview approach can never present a general design methodology

for any non-trivial application domain.73

The remainder of this chapter contains the original design of the interview

component as presented in [Fran93]. However, the text has been updated to

reflect our current views.

The underlying modelling language is a precursor of the Elements, Events

& Transitions (EET) model that was inspired by UIDE [Fole89]. From a computa-

tional standpoint, the EET model is a superset of that earlier version: “actions”

were replaced by “transitions”, pre-conditions were subsumed by transition head-

ers, and post-conditions were subsumed by transition bodies.

72. The systems were developed independently. One difference is in the internal

structure of the tools’ knowledge: the “wizards” use arbitrary programming lan-

guage code while the “interview tool” uses rules (which facilitates the mainte-

nance of the knowledge base).

186

The paper refers to the user interface design environment as “Interactive

UIDE”, as its motivation was to augment previous research on UIDE with interac-

tive design tools.

V.2 The Design of the Interview Tool

We will first briefly introduce the underlying modelling language by present-

ing a small partial model of a chess application. Keywords are shown in bold face.

Boolean gameExists := false
Boolean unsavedChanges := false

Action New
Precondition “!unsavedChanges”
Postcondition “gameExists := true ”

Action Open
Precondition “!unsavedChanges”
Postcondition “gameExists := true ”

Action Discard
Postcondition “gameExists := false ;

 unsavedChanges := false ”

73. Imagine that you could change fonts exclusively through a “wizard” in

Microsoft Word. If you then had to change some text to a specific font such as

“10-point times roman” (say because this font is prescribed by a publisher) you

would have to try and get the “wizard” to choose this font using a trial-and-error

strategy. That is, you would have to try if some combination of answers to its

questions makes it choose that specific font for the main body of the text (which

may or may not be the case). Such forced usage of an interview component is

obviously undesirable.

187

Action Save
Precondition “gameExists and unsavedChanges”
Postcondition “unsavedChanges := false ”

Action Quit
Precondition “!unsavedChanges”

Class ChessPosition
Enumeration horizontal: ‘a’..’h’;
Enumeration vertical: 1..8;

Class ChessPiece
Variable ChessPosition pos;
Action move(ChessPosition p)

Postcondition “pos := p;
 unsavedChanges := true ”

Class King SubclassOf ChessPiece
Class Queen SubclassOf ChessPiece
Class Rook SubclassOf ChessPiece
Class Bishop SubclassOf ChessPiece
Class Knight SubclassOf ChessPiece
Class Pawn SubclassOf ChessPiece

The first two elements defined in this model are variables which maintain a

subset of the application state, namely if a chess game exists and if it contains

unsaved changes. The next elements describe user actions which are accessible

from the user interface. Actions are only available if their preconditions apply. In

our example, the “New” action is only available if there are no unsaved changes to

the current game. The postconditions are assertions which modify the state of the

application. For example, the “Discard” action resets the chess application to its

initial state. Classes group semantically related data and actions relevant to the

user interface. In this model, a ChessPiece is an entity which has a position on the

188

board (data) and which can be moved to a new position (action). Classes can be

organized hierarchically. In our example, the King is a particular kind of a Chess-

Piece.

The intent of our application modelling language is to capture the applica-

tion elements which are relevant to the user interface. It does not provide for mul-

tiple inheritance, virtual functions or different inheritance flavors. Our objective

was not to develop a more complete object-oriented structuring language but to

rather have a sensible compromise between expressiveness and novice under-

standability.

The declarative sequencing through pre- and postconditions facilitates rea-

soning by external tools. These tools can “understand” the sequencing to an

extent that would not be possible with a general-purpose programming language.

For example, a help generator can do backchaining to find a sequence of actions

which enables an unavailable action by recursively evaluating pre- and postcondi-

tions. This sequence can then be presented in textual or animated form.

V.2.1 Modes Of Interactive UIDE

At design time, the designer can concurrently edit the user interface, the

application model and the “glue” between them as shown in Figure 5-1. The glue

was a predecessor of a lower-level EET model (see Figure 3-6) - a special-pur-

pose language for specifying the linkage between user interface objects and inter-

action techniques on one side and application model abstractions on the other

189

side. The user interface is edited using an existing interface building tool,

SX/Tools [Kueh92], which supports designing custom objects in addition to provid-

ing predefined standard objects. The application model and the glue are edited in

text editors under control of Interactive UIDE so that switching from design mode

to run mode is instantaneous.

The designer can then ask the interview tool for advice, for suggestions

and for help in inferring an interface or a model. In this mode, the designer reacts

to questions and suggestions from the tool which changes the representations

based on the designer’s answers. This mode is shown in Figure 5-2.

The designer can instantly switch to run mode at any time. Figure 5-3

shows the system in run mode. At initialization time, Interactive UIDE’s run-time

component reads in the textual specifications of the model and the glue, and is

linked to application-specific code if such code exists. The user interacts with the

Figure 5-1: Design Mode

Designer

Interface

Model

Glue

visually
edit

textually
edit

textually
edit

190

application’s user interface which runs as a separate process under control of

SX/Tools. Events which are relevant to the application are passed from the inter-

face process to the run-time process which does computation and updates the

user interface by sending events back to the user interface process.

V.2.2 The Interview Component

The interview component can generate questions for building up or for

improving the model or the interface. This component needs knowledge about

Figure 5-2: Interview Mode

Figure 5-3: Run Mode

Designer

Interface

Model

Glue

2. Questions,
Suggestions

Interview
Tool3. Answers,

Choices

1. Read
State

4. Modify
State

ReadRead
End User

Interface

ModelGlue

Run-Time
Component

Interact Event
Passing

Application Code

Link

191

application modelling, user interface design and their relationships. We separate

this knowledge into question elements, or knowledge atoms, which encapsulate

the information for a single question or suggestion presented to the designer. This

knowledge structure is a combination of a rule base and a knowledge base which

facilitates system-initiated questions.

There are two basic alternatives for the overall organization of these ques-

tion elements. The first alternative is a graph-like structure, in which a question

element explicitly encodes its follow-up questions. This provides for semantically

meaningful sequences of related questions. However, the resulting graph struc-

ture is hard to understand and maintain. Figure 5-4 shows this knowledge base

structure.

The second alternative is a flat structure of questions with no provision for

sequencing of related questions as shown in Figure 5-5. The question elements

do not specify which question to ask next, so that the questions can be entered

and evaluated independently, greatly simplifying the maintenance of the knowl-

edge base.

Figure 5-4: Graph Organization of Questions

Question 3

Question 4

Question 5

Question 2

Question 1

192

However, there are situations where it is important to ask follow-up ques-

tions to a certain question. Imagine that there are two threads of questions about

independent topics. It would be confusing if the presented questions would alter-

nate between the topics. Therefore, we augment the flat structure with a simple

mechanism to provide for explicit sequencing of questions by allowing a question

to increase the priority of appropriate follow-up questions. This simple mechanism

was sufficient for our moderately-sized rule base, but more sophisticated tech-

niques from the Expert Systems field may be appropriate for larger rule bases.

Figure 5-6 shows one of the question elements. The applicability test deter-

mines if this question is relevant in the current context. The interview tool evalu-

ates the applicable atoms and presents the candidate with the highest priority to

the designer, using the parameterized question text. It also presents the

atom-specific answers in addition to the generic answers available for all question

elements such as “ignore question”, “ignore question permanently” and “help”.

The designer selects one of these answers and the system executes the associ-

ated effect. The interview tool then re-evaluates the atoms and asks the next

question if one applies.

Figure 5-5: Flat Organization of Questions

Question 1

Question 2

Questionn

select applicable question
of highest priority

193

V.2.3 Use of the Interview Tool

An interview component could provide support for both novice and expert

users. However, the way in which they use the component will likely differ. Novice

users will typically first build an interface by dragging elements from a palette and

customizing them, and then invoke the interview tool to help them build the appli-

cation behind the interface. Both of these activities require minimal training.

Expert users will normally prefer to directly edit the representations instead of

going through the interview process but may invoke the tool from time to time for

design advice and consistency checking.

One of the advantages of this framework is the smooth transition from the

novice to the expert level. Throughout the interview process, novice designers

Figure 5-6: Internal Representation of a Question

+

Applicability
TestT

T: <There is an actionA in the application
model file which is unconnected accord-

ing to the glue file.>

Q: “I found an actionA in the application
model file which is not connected to a

user interface element, so that it can never
be invoked.”

AN1: “If you want
to connect actionA
to an existing user
interface element,
choose an element
from the selection

box.”

AN2: “If you want
to create a new

interface element
for this action use

the interface
builder and press
OK afterwards.”

EF2: <Detect the
new interface ele-

ment. Create a con-
nection in the glue

file between actionA
and this new ele-

ment.>

EF1: <Insert the
fact that these ele-

ments are connected
into the current

glue file.>

“...” denotes
actual text pre-
sented to the user.

Parameterized
Question TextQ

AnswersAN and
EffectsEF

+

<...> denotes
an executable
equivalent of the
text.

194

can watch the component change the textual representations in response to their

answers. In this way, they can learn what information is needed and how answers

are transformed into application model knowledge. Designers so inclined may

then be able to edit the model directly after an initial training period.

V.2.3.1 Novice Use

We provide an extended novice example session in which a user interface

and an application model for a circuit design application are constructed. The

assumption is that the designer has no programming experience and no knowl-

edge about application modelling so far. The designer does not have to edit the

textual application model directly, nor does the designer have to understand the

nature and use of the model at this point.

The designer first constructs the interface using the user interface builder.

Figure 5-7 shows the main window of the combined interface and application

model builder in the upper left-hand corner, titled “Interactive UIDE”. The designer

has clicked on the “New Interface” button to start a new design and created some

elements by dragging from element toolboxes. Figure 5-7 shows one of the tool-

boxes on the left (no title) and the user interface design in the center, titled “Circuit

Design Application”.

The designer then invokes the intelligent component of the system by click-

ing on the “Albert” button.74 This brings up two text editors, one for the application

model and the other for the glue, both of which are empty so far besides the two

195

lines in the Glue editor which specify which interface and which model are con-

nected by this glue file. These are shown in the lower right-hand corner of

Figure 5-7, titled “Application Model” and “Model-Interface Glue”. Finally, the inter-

view tool computes the applicable question with the highest priority and presents

it to the designer, shown in the upper right-hand corner, titled “Albert”.74 In this

case, the system has detected that several objects use the same bitmap and que-

74. We originally called the interview component “Albert”. The screen shots still

reflect this name because we cannot reproduce them to reflect the name change

as the interview system is no longer operational.

Figure 5-7: The Complete Framework of Interactive UIDE

196

ries the designer if they are occurrences of the same concept. The highlighting of

the affected user interface elements provides designers with the context of the

question. Let us assume that the designer affirms and provides “NotGate” as the

name for the object. The following initial application model is constructed.

Class NotGate

The glue representation is also changed to reflect that these three bitmap

objects represent instances of the NotGate class. The next questions inquire

about the other iconic objects one at a time (“Would you describe this interface

object as an instance of a conceptual object?”). The model now looks like this.

Class NotGate
Class AndGate
Class OrGate
Class ZeroSource
Class OneSource

The system has limited knowledge about typical uses of iconic objects in

applications, such as static icons for decoration purposes, icons which represent

objects which can be accessed but not moved, and iconic objects which can be

created, moved and deleted at run time. The question shown in Figure 5-8

encodes knowledge of this type. Assume the designer responds by selecting the

circuit element objects and pressing the “thumbs up” button. The interview tool

associates a position instance variable and a move action with the affected

classes, so that the application model now consists of five classes with the follow-

ing identical structure.

197

Class X
Position pos;
Action move (Position newpos)

Postcondition “pos := newpos”

The identical structure of these classes triggers another rule intended to

help novice users structure their application model, which is shown in Figure 5-9.

Figure 5-8: Knowledge About Common User Interface Behavior

Figure 5-9: Structuring the Model

198

The designer confirms and gives “Element” as a name for that class. The

model creates this class and moves the detected common functionality to it.

Class Element
Position pos;
Action move (Position newpos)

Postcondition “pos := newpos”
Class NotGate SubclassOf Element
Class AndGate SubclassOf Element
Class OrGate SubclassOf Element
Class OneSource SubclassOf Element
Class ZeroSource SubclassOf Element

We will not further describe the interview process but it should have

become clear how the interview tool can help novice designers build an applica-

tion model from a user interface. So far, the interview tool cannot infer application

sequencing so that the pre- and postconditions for sequencing have to be entered

in textual form.75

V.2.3.2 Expert Use

The previous section illustrated how novices can use the interview tool.

Experts will usually invoke the tool in the role of a consultant only and will gener-

ally not rely on its initiative to build up the application model. The interview tool is

purposefully redundant in the sense that a user interface and its corresponding

model can be built using Interactive UIDE without invoking the interview compo-

nent (using only the design and run modes but not the interview mode). While the

75. They could potentially also be demonstrated. However, we did not provide for

a seamless integration of the interview tool with our demonstrational tools.

199

intelligent component is redundant in that sense, it may nevertheless be useful for

an expert. Few designers are experts in both graphical user interface design and

abstract application modelling. An interview tool may offer advice on both of these

topics and can be used for consistency checking similar to automated spell check-

ing. It may also be used as a “creativity agent”, a source of inspiration for user

interface design. Figure 5-10 is a mock-up of a possible example of user interface

design knowledge.

V.2.4 Question Categories

The Interactive UIDE framework potentially provides for the generation of

many questions and suggestions. We have grouped these questions into seven

categories. One category builds up the model based on an existing interface, and,

symmetrically, another category infers user interface elements from an application

model. There could also be questions which improve a representation contextu-

Figure 5-10: Expert Use of the Interview Tool

200

ally or independently and questions which check for consistency. Table 5-1 sum-

marizes these categories.

V.2.4.1 Application Model Building

These questions build up a model from the user interface and from the

interview process. Nearly all of the questions we have implemented fall into this

category. The model is built by asking questions about the nature of all visible

user interface elements one by one. Currently, there are no provisions for support

on a higher level. The system should detect that the designer has put in similar

information for the last two objects and ask a question at a meta-level like “select

other objects which have similar behavior and click on the OK button”. It could

then fill in model information for these objects at once, consequently reducing the

number of repetitive questions. The system could also pose another meta-level

Table 5-1: Possible Question Categories

Application
Model

Glue User
Interface

Application Model Building Modify Modify Read

User Interface Building Read Modify Modify

Isolated Model Improvement Modify --- ---

Isolated Interface Improvement --- --- Modify

Contextual Model Improvement Modify Read Read

Contextual Interface Improvement Read Read Modify

Consistency Checking Modify Modify Modify

201

question when the model inference process has just started, one which offers

designers a choice of application model prototypes and asks which one is closest

to the application they have in mind. It could then use this model and start asking

from there, also reducing the overall number of questions.

V.2.4.2 User Interface Building

These questions may derive a user interface from an application model.

This process is often referred to as interface “generation”. We avoid this term

because it implies that this is a fully automated process with little or no options for

the designer. The by-interview methodology facilitates a more interactive genera-

tion process, and could also generate new elements into an existing interface. For

example, it could suggest putting a new operation in the same menu where the

other operations on this object reside. In this way, user interfaces are not gener-

ated from scratch but can rather be updated incrementally as their underlying

models evolve.

V.2.4.3 Isolated Model Improvement

In the process of building a model from the interface, there is a point where

all the application information from the visual user interface has been exploited

but where it is still desirable to improve the model. These questions suggest

changes to the application model such as a restructuring of the class hierarchy.

The question of Figure 5-9 is of this type.

202

V.2.4.4 Isolated Interface Improvement

It is also possible to refine the existing interface independent of the applica-

tion model. For example, standard user interface design knowledge can be

encoded in our questions so that this knowledge can be accessed and applied by

people other than user interface designers. This is similar in spirit to ITS style

rules [Wiec89] but augmented with the interactive interface to the knowledge. In

this way, interface design knowledge is not only automatically applied, but the pro-

cess is also visible and understandable to the designers so that they learn about

interface design themselves while using the system. The question of Figure 5-10

is of this type.

V.2.4.5 Contextual Model Improvement

These questions suggest model changes based on interface properties.

For example, the interview tool could detect that buttons or menu entries of cer-

tain actions are grouped together visually and ask the designer if this represents a

semantic grouping that should be captured in the application model.

V.2.4.6 Contextual Interface Improvement

The interview tool could suggest improvements to an interface even if the

interface is already complete and consistent with the application model. For

example, assume that the actions on a certain type of object are all available in

the current interface, but that they reside in different locations. The system could

203

issue a warning about this design and suggest moving them to one location, such

as an object-specific popup menu.

V.2.4.7 Consistency Checking

Finally, there is one category of questions concerned with maintaining the

consistency of the interface and the application model such as “The application

model contains the action Align for class VisualElement which currently cannot be

invoked from the interface. Is this intentional?” or “A connection in the glue file

refers to a non-existent application action. Do you want me to delete the connec-

tion?”.

V.2.5 Discussion

We attempt to classify our tool in the context of the established approaches

for building user interfaces.

The interview tool encodes domain-specific knowledge in its questions, but

it is different from knowledge bases in that the initiative is with the tool rather than

with the user. The user invokes the tool but it is the tool that queries the user in

order to extract knowledge about design decisions, a system-driven knowledge

acquisition process.

The interview tool asks natural language questions, but the questions it

asks are canned. It has no capabilities in natural language generation or under-

standing. Instead, the designer provides answers through selecting interface

objects and filling out forms.

204

When used to infer an application model, our system starts from a user

interface example but it is not a by-example approach such as Peridot [Myer88] in

a strict sense because a user interface example alone is not sufficient for inferring

a semantic application model. However, our approach still shares a similar philos-

ophy. Examples are inherently easier to understand than abstract concepts, and

our system makes use of this fact.

Our system is not a with-example approach either. In Myers’ and Halbert’s

definition [Myer88], programming with example is a generalized macro recording

approach, following the philosophy of “do what I did” rather than the “do what I

mean” philosophy of by-example programming. The interview tool does not follow

this approach for inferring the structure of an application because this would

translate into demonstrating this static structure in a temporal dimension.

This concludes our discussion of the interview component. As mentioned

in the introduction to this chapter, we do not believe that an interview approach

can ever completely cover any interesting domain. However, we feel that interview

tools can be genuinely helpful during any design activity by making prior domain

knowledge executable. We further believe that the key to the success of such

components is to (a) always keep their use strictly optional by also providing for

alternative manual entry and to (b) never change a part of the representation

“behind the users’ back”, such as changing text that is located off-screen without

their explicit consent.

205

CHAPTER VI

USABILITY RESULTS

We performed a series of informal usability tests on our demonstrational

tools as they evolved, and we also conducted two more formal studies on which

we will report in this chapter.

Each of these two studies involved ten subjects. One group of subjects

was recruited from Georgia Tech sophomores and juniors taking a required intro-

ductory class in psychology (the “non-programmer study”). The other group con-

sisted of computer science faculty and graduate students (the “programmer

study”).

VI.1 Testing on Non-Programmers

This section describes an experiment we performed on subjects with little

or no programming experience.

VI.1.1 Further Refinements to Grizzly Bear’s User Interface

In this experiment, all subjects used Grizzly Bear. We made some improve-

ments to Grizzly Bear’s user interface before this study was conducted, based on

feedback from the earlier “programmer study” (Section VI.2). Figure 6-1 shows

Grizzly Bear’s control panel as used in this experiment. It contains the following

206

changes compared to the control panel discussed in Section IV.3.1 (there are no

differences in the inferencing).

First, we improved Grizzly Bear’s status messages to provide more guid-

ance to the user, and to provide feedback in a more human-readable form. For

example, the status message after recording an event now displays something

like “What should happen when ‘circle1’ is ‘pressed’?” rather than just providing a

raw print-out of the triggering event.

We were originally driven by implementation considerations when adopting

the term “negative example” for an example which shows when behavior is not

supposed to be triggered. We changed the name to “counter-example”, and also

made the “Example Type” decision the first step in giving an example rather than

an intermediate step because subjects in the programmer study were sometimes

confused about which type of example they were currently giving. We also high-

light the background of the “Example Type” buttons for the duration of an example

Figure 6-1: Grizzly Bear’s Refined User Interface

207

to provide additional context (the “Example” button highlights in light green, the

“Counter-Example” button highlights in orange).

A major improvement in Grizzly Bear’s usability were the “undo” buttons

shown in Figure 6-1. In the earlier version, mistakenly providing a wrong snapshot

in, say, the fourth example meant that one had to give the entire demonstration

again from scratch. The new “undo” buttons let designers undo one or more steps

of a demonstration at any time (one normally goes through the iconic buttons from

left to right - the “undo” buttons let one go back from right to left).

We also eliminated the check-boxes for ignoring certain types of events

(see Figure 4-2). In our experience, subjects rarely used them because they did

not understand the nature of the events at that fine-grained level. The “Ignore

Enter Events” check-box was not needed in the first place, and we could replace

the “Ignore Motion Events” by automatically ignoring motion events unless a sig-

nificant number occurred (thus providing an alternative mechanism for suppress-

ing accidental motion events).

Finally, we made testing the demonstrated behavior easier by putting a

“Test” button into Grizzly’s interface, displayed the ordinal number of the current

example, and provided a warning dialog if the designer has already demonstrated

behavior and then presses the “Cancel” button.

208

VI.1.2 How Subjects Were Recruited

The subjects for this study were recruited through a sign-up sheet in front

of the classroom for a required introductory psychology class at Georgia Tech.

The subjects were offered $20 for participating.

The ten subjects that actually participated in the experiment happened to

come from ten different academic disciplines, and they were all sophomores or

juniors. Two of the subjects had no prior programming experience at all, seven

had only had experience in the form of required introductory programming

classes, and one had more substantial programming experience from a former

co-op job (see Table E-1 for the detailed demographics).

VI.1.3 Experimental Procedure

The subjects first filled out a questionnaire (Appendix E.1). They then pro-

ceeded at their own pace for sixty minutes following written instructions

(Appendix E.2). The experimenter only broke in if the experimental prototype

failed. In such a case, the experimenter would halt the clock, bring the system

back to the state just before the failure occurred, and restart the clock.

The written handout consisted of eleven pages. The first page contained

general information about the experiment as well as instructions on how to bring

the system back to the initial state (which is done after each task). The second

page contained a high-level description of Grizzly Bear. Pages three through

seven contained detailed step-by-step instructions for three training tasks. Train-

209

ing task A consisted of making a red circle become blue when it is clicked (one

example), training task B was to make a circle jump to wherever one clicks (two

examples), and training task C was to make the circles in a window change their

color to blue when clicked while making sure that rectangles do not exhibit this

behavior (one example and one counter-example). There is no “thinking” involved

in following these step-by-step instructions so far. Indeed, all subjects were able

to complete the instructions to this point, which took about twenty-five minutes on

average. The remaining four pages of the handout each described a task that the

subject was to accomplish. Subjects were allowed to skip a task in favor of trying

another one; however, no subject actually chose to do so.

The first task was to make a rectangle change its color from yellow to blue

when clicked. This introductory task was designed to be easy; it involved no more

than replicating the demonstration in training task A in a slightly different context.

Indeed, all subjects could complete task 1, which took about two minutes on aver-

age.

The second task was to have red circles be deleted when clicked while

nothing happens to yellow circles. Task 2 is similar in spirit to training task C. How-

ever, the demonstration required three examples overall (two examples and one

counter-example), and thus required a higher intellectual effort than the first task.

Nine out of ten subjects could accomplish this task76, it took six minutes on aver-

age.

210

The third task was to create a new circle whenever one clicks in a window.

It was the first task to involve the creation of objects; it is otherwise similar to train-

ing task B. Seven out of ten subjects could complete the task, in an average time

of five and a half minutes.

The last task was intentionally designed to be much harder than the others.

It involved making all currently-red circles green when an on-screen button is

pushed. The task could not be accomplished without setting up a different before

snapshot for at least one example (at least two examples were needed overall).

However, the possibility of setting up differently for different examples was only

mentioned in passing in the introduction of Grizzly Bear, and none of the training

tasks involved doing so. Thus, the subjects had to discover a completely new type

of demonstration, rather than simply repeating or extending the demonstrations in

the training tasks. Three of the ten subjects could complete this task, it took them

about fifteen minutes on average.

76. Note that “not accomplishing the task” means that either (a) the subject did not

understand how to demonstrate it to Grizzly Bear or (b) the subject ran out of time

while trying to accomplish the task or (c) the subject ran out of time before getting

to this task.

211

Table 6-1 presents a summary of the data gathered. (Table E-1 in the

appendices contains the complete data.)

VI.1.4 Analysis

The most important result from this study is that subjects with little or no

prior programming experience can indeed “program” some user interface behav-

ior using Grizzly Bear within an hour, given only written instructions.

However, we also wanted to test our hypothesis that subjects with more

programming experience77 will do better with Grizzly Bear. We tested the follow-

ing more exact hypothesis.

77. We measured programming expertise by asking the subjects how many hours

per week they programmed during their most intense week of programming. We

will thus refer to “prior intensity of computer programming” in our hypotheses

rather than to the more general term “programming experience” which is harder to

quantify.

Table 6-1: Summary Data from the Non-Programmer Study

Min. Max. Mean Median Std. Dev.

Tasks Completed 1 4 2.90 3.00 0.99

Time Needed for Instructions 17:47 53:06 25:21 21:22 10:31

Task 1 1:26 4:43 2:12 1:59 0:58

Task 2 2:45 14:24 6:03 5:18 3:37

Task 3 3:11 7:09 5:36 6:38 1:55

Task 4 9:53 19:32 15:24 16:47 4:58

212

“There is a positive correlation between prior intensity of computer pro-

gramming and the number of tasks accomplished.78”

Working with a 5% significance level and assuming a normal distribution

for both variables, there is no statistically significant positive correlation between

prior programming intensity and the number of tasks subjects could accomplish

with Grizzly Bear.79 This surprised us, especially because the following hypothe-

sis holds.

“There is a positive correlation between prior intensity of computer use and

the number of tasks accomplished.80”

The correlation is statistically significant based on the same significance

level and assumptions.81

We are encouraged by these results, which seem to indicate that solid

computer literacy is the only requirement for defining simple behavior with Grizzly

Bear, and that prior programming experience makes no significant difference.

78. The two variables are contained in rows eight and ten of Table E-1.

79. The correlation is r=0.117, well below the critical value for significance

r>0.549. (The table of critical values we used is from [Koos85], page 275.)

80. The two variables are contained in rows five and ten of Table E-1.

81. The correlation is r=0.625 (greater than the critical value r>0.549).

213

VI.2 Testing on Programmers

This section describes an experiment we performed on subjects with sub-

stantial programming experience. While the primary purpose of our demonstra-

tional tools is in supporting an audience with little or no programming experience,

we wanted to make sure that our environment is also of value for programmers.

VI.2.1 How Subjects Were Recruited

All subjects were computer science faculty or graduate students. They vol-

unteered for a three-hour experiment (on a “friendship basis”, there was no com-

pensation). Some subjects had previously seen me give talks or demos

concerning Inference Bear while others had not (as listed in Table F-1 for each

subject).

VI.2.2 Experimental Procedure

There were four groups of subjects which all performed the same

sequence of tasks. The first group used Inference Bear, Expression Finder, and

textual editing. A second group used Grizzly Bear and textual editing. A third

group exclusively used Grizzly Bear (they were allowed to read its textual output if

they wanted to, but they were expressly forbidden to modify it). The final group

programmed the behavior textually in the Elements, Events & Transitions lan-

guage.

 All subjects were asked to accomplish the same eight tasks. The first four

were isolated tasks similar to the tasks in the “non-programmer” study. The

214

remaining four tasks were to define the behavior of the “mini-editor” described in

Section IV.3.4.

The experimental procedure was much less thorough than in the “non-pro-

grammer study”. We acquainted the subjects with the environment by informally

showing them examples of how to use the demonstrational tools, or how to use

the Elements, Events & Transitions language.82 We orally described what the

next task was after each task (there were no written instructions).

Finally, we would break in if we sensed that the subject felt stuck or got

overly frustrated. While we stopped the clock when we broke in, a task timing for a

subject that received a hint is of course not comparable to a task timing of a sub-

ject that did not. We have not aggregated the task timing results for that reason.

Table F-1 shows tasks for which a subject received help in bold, and shows the

nature of the hint in a footnote.

VI.2.3 Analysis

We have not performed any formal statistical analysis for this study

because of the small sample size (only two or three subjects per group) and

82. It is worth noting that we spent much more time discussing the language

before an experiment than discussing the demonstrational tools (an estimated

half an hour for the language versus an estimated ten minutes for the demonstra-

tional tools).

215

because of the flaws in the experimental procedure described earlier. However,

we want to relate some behavioral observations.

Part of the original motivation for this study was to find out if subjects had

an easier time using two separate demonstrational tools (Inference Bear and

Expression Finder) or a single albeit more complex demonstrational tool (Grizzly

Bear). From our observations, we feel that a single tool is preferable because sub-

jects were often confused about which tool to call (they would sometimes start

demonstrating before they realized they called the wrong tool), and because the

additional complexity of Grizzly Bear over Inference Bear is hidden until one clicks

the “Negative Example” button (the “Counter-Example” button in the refined ver-

sion of Grizzly Bear presented in Section VI.1.1).

Another result of this study is that subjects who are able to understand the

generated textual language (“programmers”) made it very clear that they disliked

being kept from editing it.

Another rationale for this study was to compare subjects that had to use

the textual language (group four of Section VI.2.2) to subjects that had to demon-

strate the behavior (group three), and to subjects that were free to do either

(group two). For the particular tasks of this study we must conclude that textual

programming is the fastest alternative for subjects that are able and willing to

learn the formal language beforehand.83 However, it is also interesting that the

subjects who were free to choose typically first demonstrated a rough version of

the desired behavior and then went from there textually, rather than trying to do

216

everything textually.84 Some subjects also communicated verbally after the exper-

iment that they like the idea of demonstrating a rough version of a behavior (so

that they would not have to start from a blank slate).85

VI.3 Discussion

Our “non-programmer study” seems to indicate that a non-programming

audience can indeed use Grizzly Bear to define user interface behavior in less

than sixty minutes, and that programming experience does not play a statistically

significant role in being able to use Grizzly Bear.

Our “programmer study” could not demonstrate an advantage in speed

over textual programming for a programming audience. However, we believe,

based on the anecdotal evidence, that there can be a role for demonstrational

83. This observation does of course not apply to the “non-programmer” study as

its subjects would likely not be able to learn and use a textual programming lan-

guage within sixty minutes.

84. More precisely, out of the twelve tasks concerning the “mini-finder” for the

three subjects using Grizzly Bear or textual programming, the subjects used pure

textual programming in two cases, pure demonstrational programming in three

cases, and a combination in seven cases.

85. One of the subjects remarked literally: “I’ve never used a demonstrational sys-

tem before. For the first time I am realizing how useful it can be.”

217

tools in professional programming when properly combined with a textual environ-

ment.

218

CHAPTER VII

CONCLUSION

The previous chapters explain the Elements, Events & Transitions model

and its interactive tools in great detail. This chapter concludes with a more general

discussion of what we have learned. It also lists our main contributions, and dis-

cusses possible extensions and future research directions.

VII.1 Discussion

This section will present some of the lessons that we have learned in the

course of this research. We will discuss these issues from a more general per-

spective, in contrast to the discussion sections that conclude the individual thesis

chapters.

VII.1.1 On the Optimal Complexity of Modelling Languages

For the purpose of this section, we will define a “modelling language” as a

special-purpose user interface language that directly or indirectly controls run-

time behavior. We have argued earlier that there is a need for such languages if

non-programmers are to participate in defining and modifying user interface

behavior (Section III.1.1).

219

If this is so, the question arises how many modelling languages should be

made available, and how many levels of abstraction these modelling languages

should provide.

The answer naturally depends on the purpose of the modelling. We will

characterize the possible combinations of these factors in this section. Table 7-1

lists all possible combinations.

VII.1.1.1 No Modelling Language, Single Level of Abstraction

Most user interface implementations use a general-purpose programming

language to describe the human-computer dialog at a single level of abstraction.

This seems appropriate if all of the user interface behavior is implemented

by programmers, and if the application is written for a single platform.

a. These are the possible uses of the EET model described in this thesis.

Table 7-1: Specifying the Human-Computer Dialog

No modelling
language

One modelling
language

Many modelling
languages

Single level
of abstraction

A simple conventional
implementation using a
general-purpose pro-
gramming language.

An environment using
a single special-pur-
pose language for user
interface behavior
(typically at a low level
of abstraction).a

(We are not aware of
any user interface
design tools taking this
approach, as it seems
to unnecessarily bur-
den its users.)

Multiple levels
of abstraction

A conventional imple-
mentation that inter-
nally uses multiple
levels of abstraction to
structure the applica-
tion code.

An environment where
the same language is
used to model behav-
ior at several abstrac-
tion levels.a

A full-fledged model-
based environment
which captures knowl-
edge on many aspects
of the design.

220

VII.1.1.2 No Modelling Language, Multiple Levels of Abstraction

Some implementations of graphical applications use a general-purpose

programming language to internally describe the human-computer dialog at multi-

ple levels of abstraction. For example, part of the higher-level dialog specification

may read “the user then supplies the file to be printed and the name of the

printer”. A lower-level dialog specification then prescribes that, say, the file is cho-

sen through a selection box while the printer is chosen by clicking on an iconic

representation. (Both these specifications are in the form of general-purpose pro-

gramming language code.)

Separating the dialog description into multiple levels of abstraction seems

appropriate for applications that run on multiple computing or windowing plat-

forms. While it still takes programmers to describe any aspect of the dialog, this

approach avoids having to re-implement all of the dialog for every new platform.

VII.1.1.3 One Modelling Language, Single Level of Abstraction

Many user interface building tools let their users describe behavior in an

interpreted scripting language. For example, Microsoft’s Visual Basic environment

includes a user interface building tool that is well integrated with such a language

(Basic), Apple Computer’s HyperCard environment uses the same approach

(HyperTalk), and so do many user interface builders (by e.g. providing an inter-

preter for a subset of the C programming language86). Our Elements, Events &

86. For example, the SX/Tools interface builder takes this approach [Kueh92].

221

Transitions language can also serve as such a scripting language when used at a

single level of abstraction (as was done throughout Chapter IV).

This approach seems most appropriate for rapidly prototyping user inter-

faces. It also imposes the least learning overhead of the alternatives discussed in

this section (assuming that the users do not already know any of the modelling or

programming languages beforehand, of course). For those reasons, we favor this

approach towards letting non-programmers describe user interface behavior.

VII.1.1.4 One Modelling Language, Multiple Levels of Abstraction

Assuming that the modelling language does not contain vocabulary that is

specific to a particular level, it can be used to describe the dialog at multiple levels

of abstractions. For example, separate Elements, Events & Transitions models

can describe the dialog at different abstraction levels (see Section III.4).

The motivation for this approach is a more modular design, similar to the

motivation for using a general-purpose programming language in the same man-

ner. In addition, using the same special-purpose language that is also used for

low-level user interface behavior is potentially more accessible to user interface

designers than a general-purpose programming language.

We speculate that our demonstrational tools can help designers construct

higher-level models in a roundabout, indirect fashion. They first expose the

designers to the language in their own domain, namely concrete user interface

behavior. Over time, designers so inclined can then learn to directly author behav-

222

ior textually at the user interface level, and possibly at a higher level of abstraction

afterwards.87

VII.1.1.5 Many Modelling Languages, Single Level of Abstraction

Using several special-purpose languages to describe behavior at the same

level of abstraction seems to unnecessarily complicate the design process, and is

mentioned here only for completeness. We are not aware of any user interface

tools using this approach.

VII.1.1.6 Many Modelling Languages, Multiple Levels of Abstraction

In this approach, the user interface design environment supplies a number

of modelling languages that are each geared towards describing dialog-related

information at a particular level of abstraction [Suka93, Szek95]. For example,

there can be a special-purpose language for describing the tasks that the user is

accomplishing, another language for describing the interaction techniques used, a

language for describing the characteristics of the computing platform, and so on.

This approach has the benefit of providing languages that are well-suited

for their purpose, and can capture more declarative knowledge than any other

87. We must caution that letting designers describe user interface behavior at

multiple levels of abstraction was not a major focus of this work, and that this “indi-

rect learning effect” is our educated speculation rather than an observed matter of

fact.

223

approach. It seems most appropriate for large user interface designs, and when

the knowledge captured by the modelling languages is used for other purposes in

addition to being used for run-time control (see Section II.2).

VII.1.2 The Influence of the Event Structure on PBD Systems

Most modern windowing systems treat user input as a stream of events.

The structure of these events has a significant impact on the inferencing power

and ease-of-use of a Programming By Demonstration (PBD) system.

For the purposes of this section, what we call the “event structure” is the

definition of the types of events that come in from the windowing system, including

their parameters (e.g. “the Properties window was entered while the shift key was

down”).88

It is obviously important that an event to which the user wants to tie behav-

ior is indeed provided by the system. However, it is also important that this event

can easily be told apart from others. For example, assume that the designer

wants a “trashcan” icon to become highlighted when entered with the mouse. Ide-

ally, the event will explicitly state that the event occurred on the “trashcan” object,

and that the event that occurred was an “entered” event. This way, the PBD sys-

tem can generate output that reads “if the ‘trashcan’ is ‘entered’ then...”.

88. This section will not discuss the potential benefits of placing high-level events

into the input stream (e.g. “file selection task complete”), which is the topic of a

separate dissertation [Kosb94].

224

Contrast this with an event that e.g. states “mouse was moved from

(123,37) to (129,43)”. In this case, telling the “trashcan entered” event from the

other mouse movement events involves complex computation (thus requiring an

impracticably large number of examples if this behavior is to be inferred by a

domain-independent PBD system).

The event parameters are also important. Suppose that a designer wants

to demonstrate that “shift-clicking” an object will select this object without dese-

lecting others. Ideally, the “click” event will carry status information about the shift

key. In that case, the user can directly state that “if an object is clicked while the

shift key is held down then...”.

Contrast this with a situation where events do not carry modifier key infor-

mation. In that case, the designers have to keep track of the shift key status them-

selves. This can for example be done by introducing a boolean variable flag, and

by demonstrating that pressing the shift key sets flag to true while releasing this

key sets flag to false. Only then can they state “if an object is clicked while flag is

true...”, making the overall demonstration of this behavior much more complex.

In conclusion, while the reasoning of a domain-independent PBD system

may be independent of a particular event structure, its actual usefulness is not.

VII.1.3 Textual Languages as the Basis of PBD Systems

Programming By Demonstration (PBD) systems intended for a non-pro-

gramming audience often include a graphical language for the representation of

225

demonstrated behavior, like e.g. Pygmalion and Mondrian (both in [Cyph93]) and

KidSim [Cyph95]. We have deliberately put all our effort into an inferencing mech-

anism at the expense of a visual language (primarily because another student at

our institution has in turn put all her effort into a visual language for PBD systems,

see Appendix B).

Nothing precludes the use of our demonstrational systems with a visual

language equivalent to our Elements, Events & Transitions language. But is there

a place for PBD systems that indeed present their output in a textual language?

We believe that this is the case, especially if the target audience are

“power users” - users that may not have any experience in a general-purpose pro-

gramming language but are familiar with e.g. the macro language of a spread-

sheet application. Their motivation for using a PBD system is typically not

empowerment, as they are also capable of crafting the equivalent textual specifi-

cation. Instead, they may want to use a PBD system from time to time if it is easier

or faster to demonstrate a piece of behavior rather than to write it from scratch.

We also believe that a textual programming language can sometimes be

suitable even for a non-programming audience if the language is specific to their

needs (as is also argued in [Nard93], especially in its third chapter). Apple Com-

puter’s HyperTalk language (part of the HyperCard prototyping environment) is a

good example of a successful textual behavior specification language for end-

users.

226

VII.2 Contributions

The thesis contributes to the state of the art in three dimensions. First, its

specification language, the Elements, Events & Transitions model, is the first

user-level language for interface behavior explicitly designed to be used with

demonstrational tools.89 Second, its demonstrational tools, most notably Grizzly

Bear, cover an unusually wide spectrum of user interface behavior, and are

unique in keeping their reasoning independent of the characteristics of any partic-

ular user interface toolkit. Finally, the thesis is the first to explore in depth how to

best combine the ease-of-use of the demonstrational approach with the expres-

sive power of the model-based approach.

VII.3 Implementation Issues

This section discusses some desirable improvements to our current proto-

type implementation from an engineering perspective.

89. It is primarily the simplicity and uniformity of the EET language that makes it

suitable for generation by demonstrational tools. There are only three statements

for manipulating elements, which can all be produced by Grizzly Bear (simplicity).

Using the same “set expressions” for invoking transitions and within statements

means that the reasoning mechanism for set expressions can be used for all (uni-

formity). Finally, the pseudo-parallelism discussed in Section III.5.1 supports our

snapshot-based PBD approach well.

227

The user interface builder that is the basis for our prototype implementa-

tion, SX/Tools [Kueh92], runs as a separate process from its client code, requiring

inter-process communication to access and change the state of its user interface

elements. This turned out to be a major performance bottleneck in the interpreta-

tion of Elements, Events & Transition (EET) models. In addition, SX/Tools does

not have the ability to send a notification whenever an aspect of the user interface

is edited by the designer, which required us to indeed take complete snapshots

during demonstrations when we could otherwise just have tracked changes (see

Section IV.4.1.1). Finally, SX/Tools is a commercial product that we cannot distrib-

ute freely to other researchers. For these reasons, we intend to move the EET

interpreter and Grizzly Bear to a new platform.

As discussed earlier, other worthwhile implementation improvements are

building a smarter EET interpreter (Section III.5.2.1) and providing an EET com-

piler (Section III.5.2.2).

VII.4 Extensions

This section will discuss some desirable extensions to an EET-based user

interface design environment that do not require substantial new research.

The most obvious extension to this research is to present the output of

demonstrations in an editable visual language (similar to the graphical rewrite

rules used in KidSim [Cyph95]). Appendix B presents a visual language that we

feel is especially well-suited for integration with Grizzly Bear.

228

Another desirable extension to the design environment is a single-stepping

tool for debugging purposes. It would enable the designer to inspect which transi-

tions fire while interacting with the design in test-drive mode. For example, this

tool could highlight the text of the statement that is currently executed.

Finally, the Elements, Events & Transitions model provides for multi-valued

attributes (Section III.2.1) but Grizzly Bear’s current inference types only supply

reasoning for single-valued attributes (Section IV.4.1.2). This has not been a

major limitation on the power of our demonstrational tools because marking ele-

ments with user-defined single-valued attributes can often substitute for keeping a

list of element names in a multi-valued attribute. Nevertheless, we would like to

extend Grizzly Bear’s reasoning to multi-valued attributes. This should be possi-

ble by simply augmenting the existing inference types with additional code that

tests multi-valued target variables for list operations such as insertion and dele-

tion.

VII.5 Future Work

As the dissertation title implies, combining model-based user interface

design and Programming By Demonstration (PBD) was a major focus of this

work. Throughout most of this thesis, we have used our Elements, Events & Tran-

sitions model to capture behavior at a low level of abstraction, namely the widget

manipulation level. This has enabled us to build demonstrational tools that natu-

rally map demonstrations one-to-one to constructs of our model. An issue that we

229

have not addressed is how to use programming by demonstration to input high-

level model constructs. For example, a higher-level model may specify that com-

mands throughout the interface are invoked first, before their arguments are sup-

plied (pre-fix), or that their parameters are supplied first (post-fix) [Kova92]. It is an

issue of future research if the definition of behavior at such an abstract level lends

itself to a PBD approach. To this end, the designer would have to either manipu-

late abstract objects, or to give demonstrations at the user interface level that the

PBD system then generalizes to a much more abstract level.

VII.6 Conclusion

Designing executable graphical user interfaces is only one instance of a

fundamental remaining problem in human-computer interaction, namely how to

make programming computers accessible to everybody, rather than just using

computers. Future work towards this end includes more research on domain-ori-

ented specification languages, on visual languages, on programming by demon-

stration, and on visual debugging tools. We speculate that more and more of what

is “programming” today will in the future be done by people that would not

describe themselves as “programmers”. We hope that this research makes at

least a modest contribution towards this vision.

230

APPENDIX A

EET Language Definition

This appendix precisely specifies the syntax of the Elements, Events &

Transitions (EET) language in Backus-Naur Form (BNF). It complements the

informal language description of Chapter III, and may also be useful for a future

reimplementation of the language.

The following three regular expressions define tokens of the language that

are used throughout the BNF definition later.

cardinal [0-9]+
name [a-zA-Z][a-zA-Z0-9_\-]*
quotedstring \”[^”]*\”

That is, a “cardinal” consists of one or more digits, a “name” is a letter fol-

lowed by any sequence of other letters, digits, underscores or hyphens, and a

“quotedstring” consists of any sequence of characters enclosed in quotes.

The rest of this appendix contains the language definition. Note that char-

acters enclosed in single quotes, such as ‘Transition’ or ‘<=’, represent the verba-

tim occurrence of the enclosed character sequence.

eetModel ::=
/*empty*/ |
eetConstruct eetModel

eetConstruct ::=
eetPrototype |
eetObject |

231

eetTransition

eetPrototype ::=
‘Prototype’ eetOptionalColon name eetProtoOrObjBody

eetObject ::=
‘Object’ eetOptionalColon name eetProtoOrObjBody

eetProtoOrObjBody ::=
‘{’ eetAttributes ‘}’ eetOptionalSemicolon

eetAttributes ::=
/*empty*/ |
eetAttribute eetAttributes

eetOptionalType ::=
/*empty*/ |
‘<’ name ‘>’

eetAttribute ::=
eetOptionalType name eetAttributeValues ‘;’

eetAttributeValues ::=
/*empty*/ |
eetAttributeValue eetAttributeValues

eetAttributeValue ::=
name |
cardinal |
quotedstring

eetOptionalColon ::=
/*empty*/ |
‘:’

eetOptionalSemicolon ::=
/*empty*/ |
‘;’

eetTransition ::=
‘Transition’ eetTransExpr

‘(’ eetTransitionPars ‘)’
‘{’ eetStatements ‘}’

eetTransitionPars ::=
/*empty*/ |
eetTransitionParsAux

eetTransitionParsAux ::=
eetTransitionPar |
eetTransitionPars ‘,’ eetTransitionPar

232

eetTransParType ::=
name

eetTransParOptionalConstraint ::=
/*empty*/ |
eetComparison eetExpr

eetTransitionPar ::=
eetTransParType name eetTransOptionalConstraint

eetDeleteStmt ::=
‘delete’ eetSetExpr

eetCreateStmt ::=
‘element’ name ‘:=’ ‘create’ eetSetExpr

eetAssignment ::=
eetAttributeExpr ‘:=’ eetRhs

eetListDeleteStmt ::=
eetAttributeExpr ‘-=’ eetRhs

eetListAddStmt ::=
eetAttributeExpr ‘+=’ eetRhs

eetListClearStmt ::=
eetAttributeExpr ‘:=’

eetOptThrowReceiver ::=
/*empty*/ | name ‘::’

eetThrowStmt ::=
‘throw’ eetOptThrowReceiver eetSetExpr ‘.’ name

‘(’ eetThrowPars ‘)’

eetStatementNoSemi ::=
eetDeleteStmt |
eetCreateStmt |
eetAssignment |
eetThrowStmt |
eetListAddStmt |
eetListDeleteStmt |
eetListClearStmt

eetStatement ::=
eetStatementNoSemi ‘;’

eetStatements ::=
/*empty*/ |
eetStatement eetStatements

233

eetAttributeExpr ::=
eetSetExpr eetDottedNames

eetTransExpr ::=
eetSetExpr ‘.’ name

eetRhs ::=
eetExpr

eetExpr ::=
‘(’ eetExpr ‘)’ |
eetExpr ‘+’ eetExpr |
eetExpr ‘-’ eetExpr |
eetExpr ‘*’ eetExpr |
eetExpr ‘/’ eetExpr |
‘-’ eetExpr |
eetIdentifier

eetSetExpr ::=
name |
‘*’ |
‘(’ eetSetExprSub ‘)’

eetSetExprSub ::=
‘(’ eetSetExprSub ‘)’ |
eetSetExprSub ‘&&’ eetSetExprSub |
eetSetExprSub ‘||’ eetSetExprSub |
‘!’ eetSetExprSub |
eetIdentifier eetComparison eetExpr

eetNumberId ::=
cardinal

eetStringId ::=
quotedstring

eetParamId ::=
name

eetSlotId ::=
eetSetExpr eetDottedNames

eetListLengthId ::=
‘|’ eetSlotId ‘|’

eetIdentifier ::=
eetStringId |
eetNumberId |
eetParamId |
eetSlotId |

234

eetListLengthId

eetThrowParType:
name

eetThrowPar ::=
eetThrowParType name ‘:=’ eetRhs

eetThrowPars ::=
/*empty*/ |
eetThrowParsAux

eetThrowParsAux ::=
eetThrowPar |
eetThrowPars ‘,’ eetThrowPar

eetComparison ::=
‘==’ |
‘!=’ |
‘<’ |
‘<=’ |
‘>’ |
‘>=’

eetDottedNames ::=
‘.’ eetSpec |
eetDottedNames ‘.’ eetSpec

eetStringSpec ::=
name

eetListSpec ::=
name ‘[’ cardinal ‘]’

eetSpec ::=
eetListSpec |
eetStringSpec

235

APPENDIX B

A Visual Language for Grizzly Bear

Erica Sadun is developing a new visual specification language for user

interface behavior [Sadu96]. Figure B-1 contains an example specification.

We will not explain this specific visual language in detail here (the screen

represents part of the dialog description for a graph editor), but note that the three

graphical expressions on the left describe behavior attached to a press, move,

Figure B-1: A Visual Notation for User Interface Behavior

236

and release event, just as an Elements, Events & Transitions model at the same

level of abstraction would. We may adapt this language as an underlying editable

graphical notation for Grizzly Bear in the future.

237

APPENDIX C

Application Code for Section III.3.9

The last paragraph of Section III.3.9 refers to application code that imple-

ments the enabling and disabling of two buttons. This appendix will list the actual

programming language code (C++), which presents a minimal example of code

integrated with an EET model, and the application programmer interface (“API”)

for doing so.

void App::event(
const Event& e,
const ScValueContext& c,
const ScBValueContexts& cs)

{
 if(e.getEvent()==”checkLinkButtons”)
 {
 NodesAndLinksAppPrivate::checkLinkButtons(e,c,cs);
 } else {
 cerr << “Warning: unknown event:\n “ << e << “\n”;
 }
}

The “App::event” method above is the entry point for all application code. It

delivers the event thrown towards the application (“e”), as well as contextual infor-

mation about the EET model which generated the event (“c”) and information

about all known EET models (“cs”). Application code can then either change EET

models directly through the “c” and “cs” pointers, or throw events back towards

the EET interpreter (the latter method is use below).

void NodesAndLinksAppPrivate::checkLinkButtons(
const Event&,
const ScValueContext&,
const ScBValueContexts& cs)

238

{
 const ScValueContext* ic = cs.findTag(“imodel”);
 if(!ic) {return;}
 const ScValueContext& c = *ic;

 const BElements& es = c.getElements();
 const BElements& aes = c.getAbstractElements();

 string fromNode;
 string toNode;
 if(thereAreExactlyTwoSelectedPins(aes,fromNode,toNode) &&
 thereIsALinkBetweenThePins(es,fromNode,toNode))
 {
 if(!theDeleteLinkButtonIsEnabled(es))
 {
 c.throwEvent(cs,new Event(“DeleteLinkButton”,”enable”));
 }
 } else {
 if(theDeleteLinkButtonIsEnabled(es))
 {
 c.throwEvent(cs,new Event(“DeleteLinkButton”,”disable”));
 }
 }

 if(thereAreExactlyTwoSelectedPins(aes,fromNode,toNode) &&
 !thereIsALinkBetweenThePins(es,fromNode,toNode))
 {
 if(!theNewLinkButtonIsEnabled(es))
 {
 c.throwEvent(cs,new Event(“NewLinkButton”,”enable”));
 }
 } else {
 if(theNewLinkButtonIsEnabled(es))
 {
 c.throwEvent(cs,new Event(“NewLinkButton”,”disable”));
 }
 }
}

The remaining procedures help implement the logic by accessing the state

of the elements. They can access EET modelling constructs such as element and

attribute by including the appropriate header files of the EET run-time library.

int thereAreExactlyTwoSelectedPins(
const BElements& aes,
string& fromNode,
string& toNode)

239

{
 const Element* e = aes.lu(“bb”);
 if(!e) {return 0;}

 const Attribute* a = e->getAllowMultiple(“currentlySelectedNodes”);
 if(!a) {return 0;}

 const Strings& vs = a->gv();
 if(vs.length()!=2) {return 0;}

 fromNode = *vs.first();
 toNode = *vs.second();
 return 1;
}

int thereIsALinkBetweenThePins(
const BElements& es,
const string& fromNode,
const string& toNode)

{
 ConstIterator<Element> i(es);
 const Element* e;
 while(e=i()) {
 const string& from = e->getv(“from”);
 if(from==””) {continue;}
 const string& to = e->getv(“to”);
 if(to==””) {continue;}

 if(!((from==fromNode && to==toNode) ||
 (from==toNode && to==fromNode))) {continue;}

 return 1;
 }
 return 0;
}

int theDeleteLinkButtonIsEnabled(
const BElements& es)

{
 const Element* e = es.findElementByName(“DeleteLinkButton”);
 if(!e) {return 0;}
 const string& v = e->getv(“status”);
 return v==”enabled”;
}

int theNewLinkButtonIsEnabled(
const BElements& es)

{

240

 const Element* e = es.findElementByName(“NewLinkButton”);
 if(!e) {return 0;}
 const string& v = e->getv(“status”);
 return v==”enabled”;
}

241

APPENDIX D

A “MacDraw” Imitation driven by an EET Model

We re-implemented MacDraw’s user interface on the basis of our Ele-

ments, Events & Transitions (EET) model to validate the expressiveness of the

language.90 Figure D-1 shows a snapshot of this interface.

We implemented the following subset of MacDraw’s features. The vertical

palette in the upper left-hand corner exactly imitates MacDraw’s equivalent. (A

single click on e.g. the line item highlights it in gray, meaning that you can create

90. We actually imitated the interface of MacDraw II 1.1.

Figure D-1: A “MacDraw” Imitation

242

exactly one new line. A double-click highlights it in black, meaning that you are in

“line creation mode” until you explicitly leave it by clicking on another palette item.)

The horizontal palette sets the fill color of the currently selected objects to none,

white, black or gray. (MacDraw offers more choices, but they work in the same

way.) Users can set the line width of the currently selected objects from the “Size”

menu. Elements are created in the same way as in MacDraw (however, we limited

ourselves to implementing rectangles and lines). By default, pressing a mouse

down button sets one corner of the rectangle that is created. The size of the rect-

angle then changes continuously in response to mouse movement events until

the mouse button is released (creating lines works similarly). Just as in MacDraw,

clicking on the icon shown in the lower left-hand corner of Figure D-1 changes this

behavior so that the first click defines the center of the object rather than a corner

(clicking it again reverts to the default behavior). Clicking on an object selects it

and deselects all others. The selection status is shown via handles. Multiple

objects can be selected by shift-clicking on them (which toggles an object’s selec-

tion status without affecting others). Finally, objects can be moved (a “ghost

frame” is shown while dragging just like in MacDraw), and the currently selected

objects can be deleted by pressing the “Delete” key on the keyboard.

The EET model that drives this behavior consists of one abstract element

and forty-five transitions (approximately five-hundred lines of EET code). We have

built the model through a combination of demonstration and textual editing, par-

tially because the demonstrational components were not complete at that point.

243

With one exception, all of this model can now be demonstrated to Grizzly Bear.91

However, doing so without also being able to read the generated textual output is

virtually impossible, so that we do not claim that constructing this complex EET-

based application can be easily mastered by a beginning designer (it took us two

days). It appears that combining Grizzly Bear’s inferencing strength with a visual

language is the most promising approach towards this goal.

91. The exception is that the meaning of a “double-click” cannot currently be dem-

onstrated because this would require a “simulated clock” mechanism for demon-

strations (the real time that passed between two examples of a “double-click”

demonstration is of no interest). Grizzly-Bear can of course already tie behavior to

double-clicks if double-click events are built into the underlying toolkit (as done in

Garnet [Myer90b], for example).

244

APPENDIX E

Material and Data from the Non-Programmer Study

E.1 Questionnaire

1. What is your major school? (circle one)

Psychology Other: ____________________

2. What is your year in school? (circle one)

Freshman Sophomore Junior Senior Grad Student

3. How old are you? (in years, e.g. 29)

4. Are you... (circle one)

female male

5. During your most intense week of computer use, how many hours per week did you use a com-
puter? (circle one)

0 <10 <20 <30 <40 <50 <60 >=60

6. How many days has it been since you last used a computer?

7. Which of the programming languages below are you most familiar with? (circle only one)

a. Pascal b. Modula c. C/C++ d. LISP e. Basic f. Eiffel
g. Java h. TCL i. Assembler j. Prolog k. Cobol l. Forth
m. Other: ____________________
n. I am not familiar with any programming language.

8. During your most intense week of programming in this language, how many hours per week did
you use this language? (use 0 if you chose “n.” above)

0 <10 <20 <30 <40 <50 <60 >=60

9. How many days has it been since you last programmed in this language? (put down “not appli-
cable” if you chose “n.” above)

245

E.2 Experiment Instructions

In this experiment, you will program small fragments of user interface behavior. The
experiment consists of two phases. First, you will follow step-by-step instructions for
three training tasks (Training Task A, B and C). You are than asked to accomplish four
tasks on your own (Task 1, 2, 3 and 4).

Your objective should be to accomplish as many of the four “real” tasks as you can. The
experiment ends after sixty minutes (or earlier if all four tasks are complete).

It is worth remembering that the experiment is designed so that it is quite difficult to com-
plete all four tasks in an hour, and that the reason that the experimenters won’t help you
with the tasks is because that would distort the experiments (not because they are mean-
spirited). Above all, it is worth remembering that we are evaluating thesystem - not you.

How to get to the Base State

What you now see on your screen should look like the picture below.

This is the state you should be in before you start with any new task. You can use the fol-
lowing check-list to get to it. (You don’t need to do any of this now, or even read it, this is
just for future reference.)

• Click on the “Base State” button. Everything disappears.

• Wait until a blue window appears, thenclick its “More-->” button .

• Wait until another blue window appears, thenclick its “More-->” button . You are
back in the Base State.

Grizzly Bear - The Big Picture

Let us provide an overview of the tool you are going to use before we walk you through
three examples.

246

Grizzly Bear is a tool that lets you “program” user interface behavior without having to
use a textual programming language. This “programming” is done by giving examples of
how you want the user interface to behave.

Giving one example consists of going through the iconic buttons from left to right. In
every example, you essentially say “if the interface is in this state (Before Snapshot)and
the following event occurs (Trigger Event)then the interface should go to this state (After
Snapshot)”.

After clicking any of the iconic buttons, you can always press the little “Undo” button
under the currently-enabled button for un-doing the last step (say if you recorded an erro-
neous event or snapshot).

After giving an example, you can test if the user interface indeed behaves as you expected
(by pressing the “Test” button and by then interacting with the user interface). If it doesn’t,
you can typically achieve what you want by providing more examples.

If you give more than one example, you may want to provide different Before snapshots to
be able to say “if the interface is in this state and I click here then ..., but if the interface is
in this state and I click here then...”.

Finally, counter-examples are useful in defining behavior that applies to a whole class of
objects. This is done by first giving examples of that behavior for some representative
objects of this class as usual, and by then givingcounter-examples for objects that donot
exhibit the behavior. Grizzly Bear than guesses how to tell the objects in the examples
from the objects in the counter-examples.

Training Task A

How to set up

Make sure you are in the Base State described on page 1. Click on the “Open Design” but-
ton. A file selection dialog box will pop up. Select the entry “TrainingA.sce” by clicking
on it (it will highlight in black). Then click on the “OK” button. A new window labelled
“Training Task A” will appear on your screen.

247

What your task is

Your task is to make pressing on the circle have the effect of changing its color to blue.

Step-by-step instructions (Training Tasks Only)

Make sure you have already opened the “Training Task A” window on your screen at
this point by following the instructions under “How to set up” above.

Click on the “GrizzlyBear” button. A window labelled “Refined Grizzly Bear” appears.

Press on the “Example” button. It tells Grizzly Bear that you are about to give an exam-
ple.

Press on the “Before Snapshot” button. We could change the user interface to set up for
an example before pressing this button, but we don’t need to here.

We will now demonstrate which event will trigger the behavior we are about to define
(namely pressing on the circle). The next paragraph contains instructions that are time-
critical, so we suggest you first read the next paragraph in its entirety to know what you
will be doing,then go do it.

* The time-critical sequence is:click on the recorder icon titled “Trigger Event” (the
interface starts beeping and the time-bar next to the recorder icon starts shrinking), then
press the left mouse button down on the red circleand hold it down without moving the
mouse until the beeping stops.

If the status line at the bottom of the “Refined Grizzly Bear” window now
reads “What should happen when ‘circle1’ is ‘pressed’ ?” then please go on to the next
paragraph.
Otherwise, if the status line reads “Hey! You did not cause an event!” you probably didn’t
act fast enough after clicking the “Trigger Event” icon - please go back to the paragraph
marked with an asterisk (*) and try again.
Or, if the status line reads “What should happen when ... is ... ?” but not “when ‘circle1’ is
‘pressed ’?” then you recorded a different event - click the small “Undo” button under the
“After Snapshot” label now, and then go back to the paragraph with the asterisk.

Click on the red circle to select it- several diagonal lines through it will tell you that it is
highlighted (try clicking it again if it doesn’t work the first time). Nowhold down the
right mouse button over the circle and select “Properties” from the menu that
appears. A window labelled “Properties of SXCircle” appears.Click on the “COLORS”
tile there (it then appears pushed in). Nowclick on the “fillForeground” tile (it should

(end of time-
critical seq.)

248

now also appear pushed in, and the textfield should now say “red”).Move the mouse cur-
sor right behind the color string (“red”), click there, repeatedly hit the “BackSpace”
key on the keyboard to delete the current color,type in “blue” , andhit the Return key.
The circle’s color should now have changed to blue. (You can drag the properties window
by its title bar to move it out of your way.)

Click on the icon titled “After Snapshot” to tell Grizzly Bear that you are done editing.
After this example, Grizzly Bear resets the interface to where it was before the example
(the circle appears red again), and displays its guess of which behavior you have in mind
in the “Interface Model” window in textual form. You can now test the behavior interac-
tively by clicking on the “Test” button in the “Refined Grizzly Bear” window. Please
do so now (and wait until the status line reads “You can now interact with the design. ...”).
Thenclick on the circle, and it should indeed turn blue as we have demonstrated.Click
on the “Back” button to go back to demonstration mode (that’s the same button that said
“Test” earlier).

Use the instructions on page 245 to reset to the Base State.

Training Task B

How to set up

Make sure you are in the Base State described on page 1. Click on the “Open Design” but-
ton. A file selection dialog box will pop up. Select the entry “TrainingB.sce” by clicking
on it (it will highlight in black). Then click on the “OK” button. A new window labelled
“Training Task B” will appear on your screen.

What your task is

Your task is to make the yellow circle move to wherever you press the left mouse button
on the dark gray background of the “Training Task B” window.

Step-by-step instructions (Training Tasks Only)

Make sure you have already opened the “Training Task B” window on your screen at
this point by following the instructions under “How to set up” above.

Click on the “GrizzlyBear” button to bring up the “Refined Grizzly Bear” window (drag
it by its title bar if it is in your way).Press the “Example” button. Press the “Before
Snapshot” button. As in the first training task, the sequence in the next paragraph is time-
critical.

* Press the “Trigger Event” button, thenpress the left mouse button over the upper-

249

right hand corner of the “Training Task B” window andhold the button down without
moving the mouse until the beeping stops.

If an icon appears there as shown in the picture below, please go on to the
next paragraph. Otherwise, if the status line reads “Hey! You didn’t record an event!”
please try again starting at the asterisk (*). If you accidentally recorded a different event,
press the “Undo” button under the “After Snapshot” label and then re-try from the asterisk
on.

Select the yellow circle with the left mouse button (it should appear “striped”, otherwise
try again). Thenmove the circle by dragging it with the middle mouse button (position
its center under the tip of the mouse cursor imprint as shown in the picture below).

Click the “After Snapshot” button . Grizzly Bear will then reset the interface to the last
Before snapshot (the circle appears at its original position), and show you the inferred pro-
gram in the “Interface Model” window. Check out this inference nowby clicking on
Grizzly Bear’s “Test” button (then wait for two seconds).Now click anywhere in the
“Training Task B” window (say near the center).

The problem is that Grizzly Bear thinks you meant that the circle always moves to the
exact position you used in the example (rather than that it moves to where you click). The
solution is to give it another example.

Click on the “Back” button to go back to demonstration mode,click on the “Example”
button, and thenclick on the “Before Snapshot” button. We will now record another
“press” event on the gray window, but we will use a different location this time. As usual,
recording an event is time-critical.

* Click on the Trigger Event button, then press the left mouse button on the gray
window near its lower left-hand corner, and hold the mouse button down without mov-
ing the mouse until the beeping stops.

The feedback on the press event should now look similar to the picture below, otherwise

(end of time-
critical seq.)

250

please record it again.

Now again move the center of the circle under the tip of the mouse cursor imprintby first
selecting the circle with the left mouse button andby then dragging it with the middle
mouse button. Press the “After Snapshot” button when you are done.

Grizzly Bear now displays its refined inference. Go to test modeby pressing Grizzly
Bear’s “Test” button . Click at different places on the gray window - the circle should
now indeed follow the clicks. (If it appears a little bit off-center, that’s ok.)

(Now reset to the Base State as usual, following the instructions on page 245.)

Training Task C

How to set up

Make sure you are in the Base State described on page 1. Click on the “Open Design” but-
ton. A file selection dialog box will pop up. Select the entry “TrainingC.sce” by clicking
on it (it will highlight in black). Then click on the “OK” button. A new window labelled
“Training Task C” will appear on your screen.

What your task is

The task is to make the circles change their color to blue when clicked.

Step-by-step instructions (Training Tasks Only)

Make sure you have already opened the “Training Task C” window on your screen at
this point by following the instructions under “How to set up” above.

Bring up Grizzly Bear by pressing its button. Press on the “Example” button. Press
on the “Before Snapshot” button (and wait for three seconds).Record a “press” event
on one of the five circles. Turn the circle you pressed blue (click on the circle with the
left mouse button [must appear striped, otherwise try again], select “Properties” from its
right-button menu, press “COLORS” there, press “fillForeground”, replace “beige” with
“blue”, and hit the Return key on the keyboard, then move the Properties window out of
your way).Press the “After Snapshot” icon.

Go to test mode (click on the test button).Click on some circles. Grizzly Bear so far

251

assumes that only theparticular circle you used in the example can be turned blue. In
order for it to generalize this behavior toall circles you have to also give it at least one
counter-example - an example of an object which doesnot exhibit this behavior.

To do so,go back to Demo Mode by pressing “Back”, press the “Counter-Example”
button, thenpress the “Before Snapshot” button, and thenrecord a “pressed” event
on one of the rectangles. Grizzly Bear then immediately shows its generalized inference
(no After Snapshot is required for counter-examples). It should now have inferred the
intended behavior - test itby clicking “Test” andgoing through the “When you know
you are done” procedure below.

When you know you are done

In test mode, press on the five circles one by one, then click on the five rectangles one by
one. You are done if all of the five circles turned blue when pressed while nothing hap-
pened when the rectangles were pressed.

(Finally, reset to the Base State following the instructions on page 245.)

Task 1

How to set up

Make sure you are in the Base State described on page 1. Click on the “Open Design” but-
ton. A file selection dialog box will pop up. Select the entry “_Task1.sce” by clicking on it
(it will highlight in black). Then click on the “OK” button. A new window labelled “Task
1” will appear on your screen.

What your task is

Make pressing on the yellow rectangle change its color to green.

What you have to know

The color property to change is called “fillForeground”. Make sure you are not changing a
different color property by checking if the color you are replacing says “yellow”.

When you know you are done

Go to test mode (click on the “Test” button in the “Refined Grizzly Bear” window). Then
click on the yellow rectangle. You are done if its color indeed changed to green (check the

252

box as a reminder that this task is complete).

If you just can’t get it to work

If you’re not sure how to demonstrate to Grizzly Bear you may want to go through a train-
ing task again (the one most similar to this task, preferably).
It may also help to sit back and think about how to demonstrate the behavior before you
actually start demonstrating it (the “Big Picture” section of page 245 may help).
Finally, if you just can’t get it to work at all, try another task and return to this one after-
wards.

Task 2

How to set up

Make sure you are in the Base State described on page 1. Click on the “Open Design” but-
ton. A file selection dialog box will pop up. Select the entry “_Task2.sce” by clicking on it
(it will highlight in black). Then click on the “OK” button. A new window labelled “Task
2” will appear on your screen.

What your task is

Your task is to program that clicking on any of the red circles will make them disappear -
while making sure that nothing happens to the yellow circles when clicked.

What you have to know

In order to remove a circle, first select it with the left mouse button (it should appear
“striped”, otherwise try again). Then hold down the right mouse button and select “Cut”
from the menu that pops up.

When you know you are done

Go to test mode (click on the “Test” button in the “Refined Grizzly Bear” window). Click
all the circles one by one. You are done if all of the red circles disappear when clicked
while nothing happened to the yellow circles (check the box as a reminder that this task is
complete).

253

If you just can’t get it to work

If you’re not sure how to demonstrate to Grizzly Bear you may want to go through a train-
ing task again (the one most similar to this task, preferably).
It may also help to sit back and think about how to demonstrate the behavior before you
actually start demonstrating it (the “Big Picture” section of page 245 may help).
Finally, if you just can’t get it to work at all, try another task and return to this one after-
wards.

Task 3

How to set up

Make sure you are in the Base State described on page 1. Click on the “Open Design” but-
ton. A file selection dialog box will pop up. Select the entry “_Task3.sce” by clicking on it
(it will highlight in black). Then click on the “OK” button. A new window labelled “Task
3” will appear on your screen.

What your task is

Your task is to make a press on the gray background of the “Task 3” window produce a
new purple circle there.

What you have to know

You can make a copy of the circle by first selecting it with the left mouse button (it should
appear striped), and by then choosing “Copy” from its right-mouse-button menu. Now
select the gray background with the left mouse button (it appears striped), and choose
“Paste” from its right-button menu. An outline of the new circle now follows the mouse
cursor, and you can drop it by pressing the left mouse button.

When you know you are done

Go to test mode (click on the “Test” button in the “Refined Grizzly Bear” window). Click
on the gray background window in four different locations. You are done if the four clicks
each produced a new circle where you clicked (check the box as a reminder that this task
is complete).

If you just can’t get it to work

254

If you’re not sure how to demonstrate to Grizzly Bear you may want to go through a train-
ing task again (the one most similar to this task, preferably).
It may also help to sit back and think about how to demonstrate the behavior before you
actually start demonstrating it (the “Big Picture” section of page 245 may help).
Finally, if you just can’t get it to work at all, try another task and return to this one after-
wards.

Task 4

How to set up (follow carefully - differs from the other tasks!)

Make sure you are in the Base State described on page 1. Click on the “Open Design” but-
ton. A file selection dialog box will pop up. Select the entry “_Task4.sce” by clicking on it
(it will highlight in black). Then click on the “OK” button. A new window labelled “Task
4” will appear on your screen.

Now press the left mouse button down on the “File” menu in the “Interface Model”
window, and release it over the “Open” menu item. Select “Task4.im” in that dialog
box, and click “OK”. Some text appears in the “Interface Model” window.

The set-up for this task differs from the others because the interface design already exhib-
its some behavior (that you have just pre-loaded). Check out the current behavior by
pressing the “Go to run mode” button now (and wait until it says “Back to design mode”).
Click several times on a few of the circles and observe how they cycle through colors.
Finally, press the big “Pressing here makes all red circles green.” button. It doesn’t do any-
thing yet - this is going to be your task.

Press the “Back to design mode” button to leave the test-drive mode (and wait until it says
“Go to run mode”).

What your task is

Make the “Pressing here makes all red circles green.” button do what it says: make all cir-
cles that happen to be red change their color to green.

What you have to know

The color property to change is again called “fillForeground”. Note that you can select
multiple circles at once by Control-clicking them (then you can change the colors of mul-
tiple circles at once).

The button sometimes “gets stuck” after you press on it - ignore that weirdness, it other-
wise behaves as it should.

255

When you know you are done

Go to test mode (click on the “Test” button in the “Refined Grizzly Bear” window). Press
on the circles so that two are yellow, two are red, and two are blue. Press the button. Now
make two different circles red. Press the button. You are done if in both cases pressing the
button made the two red buttons turn green while others were not affected (check the box
as a reminder that this task is complete).

256

E.3 Data Gathered

Table E-1 presents the raw data gathered from the non-programmer study.

The first nine rows correspond to the nine items in the questionnaire of

Section E.1. The remaining six rows state how many of the four tasks the subjects

could accomplish, and how long it took them to work through the instructions and

through the individual tasks. (Section VI.1 describes the experiment in more

detail.)

a. Legend: AE=Aerospace Engineering, Bio=Biology, CE=Civil Engineering, ChE=Chemical Engi-
neering, CmpE=Computer Engineering, CS=Computer Science, EE=Electrical Engineering,
ISyE=Industrial & Systems Engineering, Mgmt=Management, Und.=Undecided

Table E-1: Data Gathered from the Non-Programmer Study

Subject 1 2 3 4 5 6 7 8 9 10

1. Majora Mgmt ISyE EE Und. CmpE AE Bio ChE CE CS

2. Year In School 3 2 2 2 2 2 2 2 2 3

3. Age 21 19 18 19 19 19 20 19 19 21

4. Gender m m f f m m m f m m

5. Comp. Intensity 20 20 30 20 50 20 30 20 40 60

6. Comp. Last 1 0 0 4 1 3 0 1 0 0

7. Prog. Language Pascal Pascal C/C++ Basic C/C++ Fortran Basic none none Pascal

8. Prog. Intensity 10 20 10 10 50 10 20 0 0 20

9. Prog. Last 547.5 100 24.5 21 90 60 100 n/a n/a 240

Tasks Completed 3 3 4 1 3 2 3 2 4 4

Instructions 22:23 20:22 18:00 53:06 17:47 29:29 19:42 27:02 20:01 25:35

Task 1 2:23 1:26 1:35 1:31 1:41 2:10 2:16 2:25 4:43 1:48

Task 2 5:18 5:18 4:08 2:45 14:24 4:10 8:47 6:20 3:15

Task 3 4:07 7:55 7:09 3:34 6:40 6:38 3:11

Task 4 16:47 9:53 19:32

257

APPENDIX F

Material and Data from the Programmer Study

F.1 Pre-Experiment Questionnaire

1. Have you used Inference Bear before?

yes no

2. Have you read a paper describing Inference Bear?

yes no

3. Have you attended one of my presentations which covered Inference Bear?

yes no

4. Have you ever used the SX/Tools user interface builder?

yes no

5. What is your approximate age? (Circle one - or omit if you’d rather not disclose.)

 <24 25-29 30-34 35-39 40-44 45-49 >50

6. In the past, how many hours per week did you spend programming during your most intense
project? (Circle one.)

0 (never programmed) <10 hrs/week <20 hrs/week <30 hrs week <40 hrs/week beyond 40

7. How long has it been since you last wrote a piece of code? (Choose only one.)

1) approx. ___ days
2) approx. ___ weeks
3) approx. ___ months
4) approx. ___ years
5) (I’ve never written code.)

8. Which, if any, of the following user interface tools have you used before? (Circle all that apply.)

HyperCard Macromind Director Mac-based Interface Builder
SX/Tools Motif Interface Builder Garnet
Others (Please scribble the ones you can think of down.)

F.2 Post-Experiment Questionnaire

1. Did you have fun using this environment?

1 (hated it) 2 3 (neutral) 4 5 (loved it)

258

2. Do you think this environment would help you build graphical user interfaces faster than the
tools you are using right now?

yes no

3. Do you think this environment would help you build better graphical user interfaces than the
tools you are using right now?

yes no

F.3 Data Gathered

Table F-1 presents the data gathered from the programmer study. There

were four groups of subjects which all performed the same series of tasks. The

first group used Inference Bear, Expression Finder and textual editing to accom-

plish the tasks (“ib-ef-t”). The second group used Grizzly Bear and textual editing

(“gb-t”). The third group had to demonstrate the behavior to Grizzly Bear, it was

expressly forbidden to make textual changes (“gb”). A final group of subjects was

asked to textually program the behavior in the Elements, Events & Transitions lan-

guage (“t”).

The table contains the subjects’ answers to the pre- and post-experiment

questionnaires of Section F.1 and F.2, as well as the completion time for each

task. (Section VI.2 describes the experiment in more detail.)

259

a. The entry presents how many user interface building tools the subject had previously used (it
does not list all the tools in the interest of saving space).
b. This subject received hints for virtually all tasks based on our memory (unfortunately, we did not
originally record the nature of the hints and lost the video trace of this particular session).
c. Hint that the task requires two separate demonstrations.
d. Hint that the task is more easily accomplished through two separate transitions.
e. Hint that the task requires a negative example (a counter-example).
f. Hint to watch Grizzly Bear’s status messages. (The version of Grizzly Bear used for the testing did
not yet highlight important messages, see the improvements of Section VI.1.)
g. Hint on how to record a menu selection event.
h. The post-experiment questionnaire was not given to this group of subjects.

Table F-1: Data Gathered from the Programmer Study

ib-ef-t 1 ib-ef-t 2 ib-ef-t 3 gb-t 1 gb-t 2 gb-t 3 gb 1 gb 2 t 1 t 2

Pre 1 no no no yes no no yes no no no

Pre 2 no no yes yes no no yes no yes yes

Pre 3 yes yes yes yes no no yes no yes yes

Pre 4 no no yes yes no no yes no yes no

Pre 5 30-34 25-29 25-29 25-29 25-29 45-49 30-34 30-34 35-39 30-34

Pre 6 <10 >=40 >=40 <40 >=40 >=40 >=40 >=40 <30 >=40

Pre 7 60 2 14 5 2 7 5 0 90 0

Pre 8a 2 4 1 4 1 2 4 0 3 4

Task 1 4:01 2:30 3:06 5:55 9:50 b6:52 c9:55 5:19 2:40 11:21

Task 2 2:39 1:55 6:12 1:56 1:24 b3:40 4:47 5:07 1:22 1:56

Task 3 10:07 4:10 2:51 4:56 10:32 b11:20 3:40 2:58 12:14 11:16

Task 4 5:40 7:23 10:21 1:35 8:46 b6:24 3:50 5:35 5:16 7:34

Task 5a c14:00 3:13 21:36 5:47 8:50 b4:20 c6:11 4:28 3:50 4:35

Task 5b d15:55 9:35 7:11 5:50 14:51 b18:54 21:49 e19:52 9:22 9:55

Task 5c 9:56 10:01 4:35 6:51 15:29 b13:15 f17:12 12:54 5:12 5:31

Task 5d g13:20 10:55 5:17 1:50 4:55 b4:30 g7:16 5:16 4:31 4:02

Post 1 h- - - 5 4 4 3 1 4 5

Post 2 - - - yes yes no yes no yes no

Post 3 - - - no no no no yes no yes

260

REFERENCES

[Astr75] M. M. Astrahan and D. D. Chamberlin. Implementation of a structured
English query language. Communications of the ACM,
18(10):580–587, October 1975.

[Byrn94] Michael D. Byrne, Scott D. Wood, Piyawadee “Noi” Sukaviriya,
James D. Foley, and David E. Kieras. Automating interface evaluation.
In Proceedings of the ACM Conference on Human Factors in
Computing Systems, pages 232–237, (Boston, Massachusetts, April
24-28) 1994.

[Codd70] Edgar F. Codd. A relational model for large shared data banks.
Communications of the ACM, 13(6):377–387, June 1970.

[Cyph91] Allen Cypher. EAGER: Programming repetitive tasks by example. In
Proceedings of the ACM Conference on Human Factors in Computing
Systems, pages 33–39, (New Orleans, Louisiana, April 28-May 2)
1991.

[Cyph93] Allen Cypher, editor. Watch What I Do: Programming by
Demonstration. MIT Press, Cambridge, Massachusetts, 1993.

[Cyph95] Allen Cypher and David Canfield Smith. KidSim: End user
programming of simulations. In Proceedings of the ACM Conference
on Human Factors in Computing Systems, pages 27–34, (Denver,
Colorado, May 7-11) 1995.

[Fish92] Gene L. Fisher, Dale E. Busse, and David A. Wolber. Adding
rule-based reasoning to a demonstrational interface builder. In
Proceedings of the ACM Symposium on User Interface Software and
Technology, pages 89–97, (Monterey, California, November 15-18)
1992.

[Fole89] James D. Foley, Won Chul Kim, Srdjan Kovacevic, and Kevin Murray.
Defining user interfaces at a high level of abstraction. IEEE Software,
6(1):25–32, January 1989.

261

[Fran93] Martin R. Frank and James D. Foley. Model-based user interface
design by example and by interview. In Proceedings of the ACM
Symposium on User Interface Software and Technology, pages
129–137, (Atlanta, Georgia, November 3-5) 1993.

[Hart90] H. Rex Hartson, Antonio C. Siochi, and Deborah Hix. The UAN: A
user-oriented representation for direct manipulation interface designs.
ACM Transactions on Information Systems, 8(3):181–203, July 1990.

[Hill86] Ralph D. Hill. Supporting concurrency, communication and
synchronization in human-computer interaction - the Sassafras UIMS.
ACM Transactions on Graphics, 5(3):179–210, July 1986.

[Huds88] Scott E. Hudson and Roger King. Semantic feedback in the Higgens
UIMS. IEEE Transactions on Software Engineering, 14(8):1188–1206,
August 1988.

[Huds93] Scott E. Hudson. A system for efficient and flexible one-way constraint
evaluation in C++. Technical Report 93-15, Graphics, Visualization &
Usability Center, Georgia Institute of Technology, Atlanta, GA
30332-0280, 1993.

[Kier88] David E. Kieras. Towards a practical GOMS model methodology for
user interface design. In Martin Helander, editor, Handbook of
Human-Computer Interaction, pages 135–157. Elsevier
(North-Holland), Amsterdam, 1988.

[Kim90] Won Chul Kim and James D. Foley. DON: User interface presentation
design assistant. In Proceedings of the ACM Symposium on User
Interface Software and Technology, pages 10–20, (Snowbird, Utah,
October 3-5) 1990.

[Kodr88] Yves Kodratoff. Introduction to Machine Learning. Morgan Kaufmann,
San Mateo, California, 1988.

[Koos85] Donald J. Koosis. Statistics. John Wiley & Sons, New York, third
edition, 1985.

[Kosb94] David S. Kosbie and Brad A. Myers. Extending programming by
demonstration with hierarchical event histories. In Fourth International
East-West Conference on Human-Computer Interaction, pages
147–157, (St. Petersburg, Russia, August 2-5) 1994.

262

[Kova92] Srdjan Kovacevic. A Compositional Model of Human-Computer
Interaction. PhD thesis, Dept. of EE&CS, The George Washington
University, 1992.

[Kueh92] Thomas Kuehme and Matthias Schneider-Hufschmidt. SX/Tools - An
open design environment for adaptable multimedia user interfaces.
Computer Graphics Forum, 11(3):93–105, September 1992.

[Kurl93] David Kurlander and Steven Feiner. Inferring constraints from multiple
snapshots. ACM Transactions on Graphics, 12(4):277–304, October
1993.

[Lint89] Mark A. Linton, John M. Vlissides, and Paul R. Calder. Composing
user interfaces with interviews. IEEE Computer, 22(2):8–22, February
1989.

[Luo93] Ping Luo, Pedro Szekely, and Robert Neches. Management of
interface design in HUMANOID. In Proceedings of INTERCHI, ACM
Conference on Human Factors in Computing Systems, pages
107–114, (Amsterdam, The Netherlands, April 24-29) 1993.

[MacG91] Robert M. MacGregor. Using a description classifier to enhance
deductive inference. In Proceedings of the Seventh IEEE Conference
on AI Applications, pages 141–147, (Miami, Florida, February) 1991.

[Maul89] David L. Maulsby, Ian H. Witten, and Kenneth A. Kittlitz. Metamouse:
Specifying graphical procedures by example. In Proceedings of
Siggraph, pages 127–136, (Boston, Massachusetts, July 31-August 4)
1989.

[Myer88] Brad A. Myers. Creating User Interfaces by Demonstration. Academic
Press, Boston, 1988.

[Myer89] Brad A. Myers, Brad Vander Zanden, and Roger B. Dannenberg.
Creating graphical interactive application objects by demonstration. In
Proceedings of the ACM Symposium on User Interface Software and
Technology, pages 95–104, (Williamsburg, Virginia, November 13-15)
1989.

[Myer90a] Brad A. Myers. A new model for handling input. ACM Transactions on
Information Systems, 8(3):289–320, July 1990.

263

[Myer90b] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander
Zanden, David S. Kosbie, Ed Pervin, Andrew Mickish, and Philippe
Marchal. Garnet: Comprehensive support for graphical,
highly-interactive user interfaces. IEEE Computer, 23(11):71–85,
November 1990.

[Myer93] Brad A. Myers, Richard G. McDaniel, and David S. Kosbie. Marquise:
Creating complete user interfaces by demonstration. In Proceedings of
INTERCHI, ACM Conference on Human Factors in Computing
Systems, pages 293–300, (Amsterdam, The Netherlands, April 24-29)
1993.

[Nard93] Bonnie A. Nardi. A Small Matter of Programming: Perspectives on
End-User Computing. MIT Press, Cambridge, Massachusetts, 1993.

[Olse86] Dan R. Olsen, Jr. MIKE: The menu interaction kontrol environment.
ACM Transactions on Graphics, 5(4):318–344, October 1986.

[Olse90] Dan R. Olsen, Jr. and Kirk Allan. Creating interactive techniques by
symbolically solving geometric constraints. In Proceedings of the ACM
Symposium on User Interface Software and Technology, pages
102–107, (Snowbird, Utah, October 3-5) 1990.

[Paus91] Randy Pausch, Nathaniel R. Young II, and Robert DeLine. SUIT: The
Pascal of user interface toolkits. In Proceedings of the ACM
Symposium on User Interface Software and Technology, pages
117–125, (Hilton Head, South Carolina, November 11-13) 1991.

[Sadu96] Erica L. Sadun. DJASA - An Interactive Graphical Notation. PhD
thesis, College of Computing, Georgia Institute of Technology, 1996.
(in progress).

[Sche86] Robert W. Scheifler and Jim Gettys. The X window system. ACM
Transactions on Graphics, 5(2):79–109, April 1986.

[Sing89] Gurminder Singh and Mark Green. A high-level user interface
management system. In Proceedings of the ACM Conference on
Human Factors in Computing Systems, pages 133–138, (Austin,
Texas, April 30-May 4) 1989.

[Sing90] Gurminder Singh, Chun Hong Kok, and Teng Ye Ngan. Druid: A
system for demonstrational rapid user interface development. In
Proceedings of the ACM Symposium on User Interface Software and
Technology, pages 167–177, (Snowbird, Utah, October 3-5) 1990.

264

[Suka90] Piyawadee “Noi” Sukaviriya and James D. Foley. Coupling a user
interface framework with automatic generation of context-sensitive
animated help. In Proceedings of the ACM Symposium on User
Interface Software and Technology, pages 152–166, (Snowbird, Utah,
October 3-5) 1990.

[Suka93] Piyawadee “Noi” Sukaviriya, James D. Foley, and Todd Griffith. A
second generation user interface design environment: The model and
the runtime architecture. In Proceedings of INTERCHI, ACM
Conference on Human Factors in Computing Systems, pages
375–382, (Amsterdam, The Netherlands, April 24-29) 1993.

[Szek92] Pedro Szekely, Ping Luo, and Robert Neches. Facilitating the
exploration of interface design alternatives: The HUMANOID model of
interface design. In Proceedings of the ACM Conference on Human
Factors in Computing Systems, pages 507–515, (Monterey, California,
May 3-7) 1992.

[Szek93] Pedro Szekely, Ping Luo, and Robert Neches. Beyond interface
builders: Model-based interface tools. In Proceedings of INTERCHI,
ACM Conference on Human Factors in Computing Systems, pages
383–390, (Amsterdam, The Netherlands, April 24-29) 1993.

[Szek95] Pedro Szekely, Piyawadee “Noi” Sukaviriya, Pablo Castells,
Jayakumar Muthukumarasamy, and Ewald Sacher. Declarative
interface models for user interface construction tools. In IFIP Working
Conference on Engineering for Human-Computer Interaction, (Grand
Targhee Resort, Wyoming, August 14-18) 1995.

[Ullm83] Jeffrey D. Ullman. Principles of Database Systems. Computer Science
Press, Rockville, Maryland, second edition, 1983.

[Wiec89] Charles Wiecha, William Bennett, Stephen Boies, and John Gould.
Generating highly interactive user interfaces. In Proceedings of the
ACM Conference on Human Factors in Computing Systems, pages
277–282, (Austin, Texas, April 30-May 4) 1989.

[Wiec90] Charles Wiecha and Stephen Boies. Generating user interfaces:
Principles and use of ITS style rules. In Proceedings of the ACM
Symposium on User Interface Software and Technology, pages 21–30,
(Snowbird, Utah, October 3-5) 1990.

265

[Wolb91] David Wolber and Gene Fisher. A demonstrational technique for
developing interfaces with dynamically created objects. In Proceedings
of the ACM Symposium on User Interface Software and Technology,
pages 221–230, (Hilton Head, South Carolina, November 11-13) 1991.

266

VITA

Martin Frank was born in Mannheim, Germany, on August 4, 1966. He

received his Abitur from the Carl-Benz Gymnasium Ladenburg in 1985, his Vor-

Diplom in Informatik from the Universität Karlsruhe in 1988, and his Master’s

degree in Computer Science from the Georgia Institute of Technology in 1991.

