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Abstract

Large test suites are frequently used to evaluate the correctness of software systems and to locate
errors. Unfortunately, this process can generate a huge amount of data that is difficult to interpret
manually. We have created a system callecRANTULA that visually encodes test data to help

find program errors. The system uses a principled color mapping to represent how particular source
lines act in passed and failed tests. It also provides a flexible user interface for examining different
perspectives that show the effects on source regions of test suites ranging from individual tests, to
important subsets such as the set of failed tests, to the entire test suite.
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1 Introduction

Software errors significantly impact software productivity and quality. Attempts to reduce the num-
ber of delivered faults are estimated to consume 50% to 80% of the development and maintenance
effort [CW89]. Debugging is one of the most time-consuming tasks required to reduce the number
of delivered faults in a program. Thus, researchers have investigated techniques to assist with de-
bugging (e.g., [BE96, Tel]). However, these techniques often do not scale to large programs or they
require extensive manual intervention. This lack of effective techniques hinders the development
and maintenance process.

Studies show that locating the errbis the most difficult and time-consuming component of the
debugging process (e.g., [Ves85]). Pan and Spafford observed that developers consistently perform
four tasks when attempting to locate the errors in a program:

1. identify statements involved in failures;

2. select suspicious statements that might contain faults;
3. hypothesize about suspicious faults; and

4. restore program variables to a specific state [PDS97].

A source-code debugger can help with the first task: a developer runs the program, one line at a
time, with a test case that caused it to fail, and during this execution, the developer can inspect the
results produced by the execution of each statement in the program. Information about incorrect
results at a statement can help a developer locate the source of the problem. Stepping through large
programs one statement at a time, however, and inspecting the results of the execution can be very
time consuming. Thus, developers often try to localize the problem area by working backwards
from the location of the failure (e.g., computing a slice). By considering all statements that affect
the location in which an incorrect value occurred, a developer may be able to locate the cause of the
failure. A source-code debugger can also help a developer with the fourth task: a developer can set
breakpoints, reset the program state, and execute the program with the modified state. This process
may help a developer concentrate on smaller regions of code that may be the cause of the failure.

Although these techniques can help programmers locate faults, there are several aspects of the
process that can be improved. First, even with source-code debuggers, the manual process of iden-
tifying the location of the faults can be very time consuming. A technique that can automate, or
partially automate, the process can provide significant savings. Second, because these tools lead
developers to focus their attention locally instead of providing a global view of the software, in-
teracting faults are difficult to detect. An approach that provides the developer with a global view
of the software, while still giving access to the local view, can provide a developer with more use-
ful information. Third, the tools use results of only one execution of the program instead of using
information provided by many executions of the program; such information is typically an artifact
of the testing process. A tool that provides information about many executions of the program lets
the developer understand more complex relationships in the system. However, with large programs
and multiple faults, the huge amount of data produced by such an approach, if reported in a textual
form, may be difficult to interpret.

We are using information visualization [Spe01] and software visualization [SDBP98] tech-
nigues, together with data from program testing, to help software developers and maintainers lo-
calize faults in their code and subsequently remedy those bugs. Our techniques are more global in
nature than previous approaches, providing a high-level overview of the software system and how it
functions under testing, thus summarizing results and highlighting promising locations in the pro-

Yn our discussion, we use errors, bugs, and faults interchangeably.



gram for further exploration. This paper presents a system we have devel@pedyTiULA, that
applies our technigues to depict a program along with the results of testing the program.

2 Input Data

Developers and maintainers of large software systems usually create tests (or test cases) for use in
testing the systems. This testing provides evaluation of qualities such as correctness and perfor-
mance. Eaclestconsists of a set of inputs to the software and a set of expected outputs from the
execution of the software with those inputs. A set of tests is caltegdtasuite It is not unusual for
software engineers to develop large test suites consisting of unique tests that number in the hundreds
or even in the thousands.

Given a test suité’ for a software systerfi and a test in T, we gather two types of information
about the execution f with ¢: pass/fail results and code coverage. Testssedf the actual output
for an execution of5 with t is the same as the expected outputifootherwise ¢ fails. The code
coveragdor t consists of the source-code lines that are executed Whgmnun with¢.

The input to our visualization consists of three components: the source coflgtifier pass/fail
results for executing with eacht in T'; and the code coverage of the executthgith eacht in T'.
Together, the second and third components can be viewed as an ordered list of information about
the tests. Eachin this list (1) is marked as “passed” or “failed,” and (2) contains the code coverage
for the execution of5 with ¢. A sample input to our visualization system is shown below. On each
line, the first field is the test number, the second field is the pass/fail (P or F) information about that
test, and the trailing integers are the code coverage for that test.

P12312 13 14 15 ..
P12 23 24 25 26 27 ..
F 12345123 124 125 ..

wWN -

Our challenge is to use this data to help software engineers find faults or at least identify sus-
picious regions in code where faults may lie. For large software systems with large test suites, this
resulting data is huge, and is extremely tedious to examine in textual form. A visualization can
summarize the data, letting software engineers quickly browse the test result representation to find
likely problem regions of the code that may be contributing to failures.

3 TARANTULA

3.1 Design Considerations

In developing RRANTULA, we had several key objectives. One was to provide a high-level, global
overview of the source code upon which the results of the testing could be presented. We considered
a number of alternatives and decided to use the “line of pixels”-style code view introduced by the
SeeSoft system [ESSJ92, BE96, Eic98]. Each line of code in the program is represented by a
horizontal line of pixels. The length of the line of pixels corresponds to the length of the line of
code in characters, thus providing a far-away, birds-eye view of the code. Other objectives were
to let viewers examine both individual tests and entire test suites, to provide data about individual
source-code lines, and to support flexible, interactive perspectives on the system’s execution.

Our design’s primary focus is on illustrating the involvement of each program line in the execu-
tion of the different tests. We decided to use color to represent which and how many of the different



tests caused execution through each line. As we explored this idea further, the difficulty of selecting
a good visual mapping became evident.

Suppose that a test suite contains 100 failed tests and 100 passed tests. Particular lines in the
program might be executed by none of the tests, only by failed tests, only by passed tests, or by
some mixture of passed and failed tests. Our first approach was to represent each type of line by a
different color (hue). Two different colors could represent passed and failed tests, and a third color
that is a combination of those two could represent mixed execution.

More flexibility was necessary, however. Consider two lines in the program that are executed
only by failed tests. Suppose that one line is executed by two tests and the other is executed by
50 tests. In some sense, the second line has more negative “weight” and could be represented with
the same hue but with its code line darker, brighter, or more saturated than the first to indicate this
attribute to the viewer.

This straightforward idea was sufficient for the pass-only or fail-only tests, but was insufficient
to represent lines executed by both passed and failed tests. One approach was to vary the hue of
the line, mixing combinations of the two extreme colors, to indicate how many tests of each type
executed the line. For example, suppose that a program line was executed by 10 failed and by 20
passed tests. We could make its color closer to the color representing passed tests since it was
involved in twice as many of those tests.

Unfortunately, this relatively simple scheme is not sufficient. Suppose that the entire test suite
for the example above contains 15 failed and 200 passed tests. Even though the line was executed
by only half as many failed tests (10 to 20), a much higher relative percentage of the failed tests
encountered the line (10/15 = 67% to 20/200 = 10%), perhaps indicating more “confidence” in that
fact. Representing these ratios seemed to be more important than presenting the total quantities of
tests executing a line. Thus, the hue of a line should represent the relative ratios of failed and passed
tests encountered, and the color of this line would be more strongly the color indicating a failed test.

This notion helped, but further issues arose. Consider two different source lines. The first is
executed by 1 of 100 failed and 1 of 100 passed tests. The two ratios are the same, thus the line’s
hue is a perfect blend of the two. Suppose that a second line is executed by 95 of 100 failed and 95
of 100 passed tests. This line is the same hue, due to the equal ratios, but it seems desirable to render
it differently because of its greater execution by the entire test suite. We needed to use a different
attribute than hue to encode that fact.

TARANTULA's visual interface makes concrete the heuristics hinted at above. We first experi-
mented with a variety of background and line category colors by running a series of informal user
tests. These studies helped us to select a color scheme using a black background with green repre-
senting passed tests, red representing failed tests, and yellow representing an even balance of passed
and failed tests. In the most advanced display mode, we decided to use hue to encode the ratio of the
percentag€not quantity) of passed to failed tests through a line, and to use brightness to represent
the larger of the two percentages.

3.2 System Capabilities

Figure 1 shows ARANTULA’s interface acting on an example data set. The middle area is the
code-display area using the code-line representation pioneered in the SeeSoft system. The top area
contains a number of interface controls for modifying the perspective in the program code display
area. The bottom area shows a detailed textual view of a selected source-code region, statistics of the
selected region, and a color-space map. One of the goalsrfNTULA is interactivity and flexi-

bility, and different attributes of the data can be highlighted through different display modes and by
mousing over or selecting different source-code lines. We next describe the systems’s functionality
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Figure 1: TARANTULA'’s “Default” view of an example system. Source lines are shown in gray.

in detail.

The top area of the display contains a series of buttons, which are mutually exclusive controls
for the display mode. The first modBgefault simply shows the lines of code in gray in the code
display area and does not illustrate any testing data. This is the representation shown in Figure 1.
The darkness or lightness of the gray is controlled through the upper-right slider, which is discussed
later.

The second mod®iscrete presents a general summary of all testing information in a straight-
forward manner. Figure 2 shows the example data in this mode. We call it “Discrete” because three
discrete colors, red, yellow, and green, are used to color program statements to indicate how they
were executed by the test suite. More specifically, each line of the program is simply color-coded to
reflect the outcome of the tests that executed it. If no test executed a line or the line is a comment,
header, etc., the line is gray. If a line was executed only in passed tests, the line is green. If a line
was executed only in failed tests, it is red. Finally, if a line was executed in both passed and failed
tests, then it is yellow.

The third modeContinuousis the most informative and complex mapping, and its view of the
example data is shown in Figure 3. Unlike the Discrete mode, it renders all executed statements
on a spectrum from red to green and with varying brightnesses. In particular, the hue of a line is
determined by the percentage of the number of failed tests executing stateiméme total number
of failed tests in the test suit€ and the percentage of the number passed tests exegutintpe
number of passed tests i These percentages are used to gauge the point in the hue spectrum
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Figure 2: TARANTULA'’s “Discrete” view showing lines only executed in passed tests (green), only
in failed tests (red), and in both passed and failed tests (yellow).
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Figure 3: TRRANTULA's “Continuous” view using both hue and brightness changes to encode more
details of the test cases executions throughout the system.

from red to green with which to colat. The brightness is determined by the greater of the two
percentages, assuming brightness is measuredioto 100scale. Specifically, the color of the line
for a statement that is executed by at least one test is determined by the following equations.

_ Yopassed(s)
hue(s)= low hue (red+ Tpassed (5) T O4aled () ¥ hue range

bright(s)= max(% passed(s),% failed(s))

For example, for a test suite of 100 tests, a statemdémat is executed by 15 of 20 failed tests
and 40 of 80 passed tests, and a hue range of 0 (red) to 100 (green), the hue and brightness are 40
and 75, respectively.

The last three display modeBgssesFails, andMixed) simply focus on showing all the lines in
one of the three components of the Continuous mode. The same coloration and brightness mapping
as in the Continuous case is used, but only lines that meet one of the three criteria are colored. For
example, inFails mode, lines executed only in failed tests are red and all others are gray. This
representation for our example data is shown in Figure 4. This effectively lets the viewer spotlight
only those lines and focus more clearly on them. In each of these modes, the brightness for each
line is the percentage of tests that execute the respective statement of the tests for that mode. Lines
executed by all failed tests are bright red, for example, and lines executed only in a small percentage
of the failed tests are dark red.
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Figure 4: TARANTULA's “Fails” view showing lines executed only in failed tests and using the
hue/brightness mapping of the “Continuous” view.



The long, thin rectangular region located above and to the right of the code-view area visually
encodes the pass/fail attribute of each test in the suite. A small rectangle is drawn for each test
from left-to-right and is color-coded to its outcome—green for pass and red for fail. This lets the
viewer, at a glance, see the overall pass/fail trend within the test suite. Furthermore, the viewer can
use the mouse to select any rectangle in order to display only that particular test's code coverage
in the code view below. Also, the text-entry box in the upper left (labeled “Test:”) lets the viewer
enter the numbers of particular tests and see the code coverage of only those tests reflected in the
code-display area.

As mentioned earlier, the slider above the test suite display controls the brightness of the un-
executed statements shown in gray. This feature lets the viewer gain familiarity with the code by
making comments and other unexecuted code more visible (brighter gray), and then focus only on
the executed code by making the unexecuted code black.

The bottom area of the display contains a color-space map and detailed information about se-
lected source code. The rectangle in the lower right, when in Continuous mode, is a map of the
color space. Statements are represented as black dots at the position corresponding to their color in
the current color mapping. The viewer is then able to see the distribution throughout the color space
of all statements in the view. The user also can select particular statements by “rubber banding”
their dots in the map, thus forming a type of dynamic query that causes the code view to be redis-
played, coloring only appropriate lines. For example, the viewer may wish to select all statements
that are within 10% of pure red, or all statements that are executed by more than 90% of the test
suite. Finally, moving the cursor over a code line in the code-display area makes it the focus: the
source code near that line is shown in the bottom left of the interface, and the line number and test
coverage statistics for that line are shown in the lower center.

To find faults in a system, a software engineer loads the input data about a system (described
in Section 2) and can then examine the source code under a variety of perspectives. Presently, we
are using RRANTULA to examine large programs under test to gain a better understanding of how
program faults correlate to colored regions in the display. We need to determine whether faults
usually fall in bright red regions of the display that indicate lines executed only in failed tests and in
high percentages of those tests, or whether faults often lie in yellow regions executed both by passed
and failed tests. Furthermore, we need to determine whether faults sometimes lie “upstream” or
“downstream” of these colored regions. If so, we need to include other program visualization views
or supplement ARANTULA’s view with information to visually encode other program attributes
such as control flow and calling relations. Along those lines, Ball and Eick created a visualization
system that uses the SeeSoft representation to encode program slices [BE94, BE96]. We will explore
the addition of program analysis information such as slices, inRANTULA in the future.

4 Conclusion

This article presented an overview oARANTULA, its user interface, and its visual encoding
methodology for representing program test information. The research makes three main contri-
butions. First, it introduces the idea of using a visual encoding of the potentially massive amount of
program test result information to help software engineers locate faults in software systems. Sec-
ond, it identifies a visual mapping using color and brightness to reflect each source line’s influence
on the test executions. Finally, it creates an informative and flexible user interface for presenting a
variety of perspectives on the testing information.
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