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SUMMARY 

Inspired by the social network, the influence network has been proved to be a 

powerful tool to analyze the influence propagation within a group of entities. An 

introduction of the topic is given in Chapter 1. In Chapter 2 of the thesis, a brief survey on 

some major results on the single-layer influence network analysis is presented, and we 

propose a new multi-layer influence network framework. In Chapters 3 and 4, we give two 

applications of the single-layer influence network, on social networks and cellular base 

station interdependency networks. In Chapter 5, we propose a new multi-layer linear 

threshold influence network to analyze the interdependency of critical infrastructure 

sectors in metro Atlanta and Florida. Summary and conclusions are presented in Chapter 

6. 
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CHAPTER 1. INTRODUCTION 

The social network has been of interest to researchers for years. It is made of the 

social activity participants and the dyadic ties between select pairs these participants. An 

interesting related problem is that given a social network and we want to maximize the 

dissemination scope of some certain message, what is the best strategy? This problem, 

defined by Domingos and Richardson (2001) [22], Richardson and Domingos (2002) [51] 

and Kempe et al. (2003) [34], is known as the influence maximization problem. 

Our thesis starts by looking into this problem. First, to address this problem 

mathematically, it is necessary for us to define some basic tools to describe the social 

network. Thus, we introduce the concept of graphs, which is used for almost all network 

analysis, before we start further discussion. A graph is a collection of objects and their 

relationships. Usually we call the objects in a graph vertices(or nodes) and their 

relationship as edges (or arcs). Definition 1.1 defines the graphs and related concepts 

mathematically.  

Definition 1.1 (Graphs). Given a collection of objects 𝑉 , a graph is a pair 𝐺 =

(𝑉, 𝐸) that includes the vertices set 𝑉 and the arcs set 𝐸 ⊆ 𝑉 × 𝑉. If 𝐸 is unordered, then 

the graph is undirected; otherwise it is directed. 

When applying the graph concepts to the social network, it is natural to assume that 

every vertex represents a social participant and every arc is the relationship between 

participants. The relationship has multiple interpretations. In the simplest case, it can 

represent the observed connections between participants, like the friends on Facebook or 
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fans on Instagram. If we want to raise the relationship bar a little bit, we could let the arcs 

represent the capability of one participant to influence another, i.e. when the influencer 

takes some actions or reveals some opinions, it might cause others to do the same. In this 

dissertation, we would use the latter one as our standard to build arcs. 

Before we step into maximizing influence, it is necessary to define formal influence 

spreading models that clearly describe how influences disseminate step by step. With the 

graph defined above, there are two issues left to address. The first issue is that obviously 

different pair of participants in the network would have different influencing capabilities. 

Thus it is necessary to assign a weight or probability to each arc to measure this capability, 

and such a weight or probability needs to have an appropriate interpretation. The second 

issue is that how to define how influence spreads on the weighted graph. After addressing 

these two issues, we can measure influence and maximize it. In Chapter 2, we will review 

the related literature and try to summarize a framework to address these two issues. In 

Chapter 3, we will study a church network scenario where we apply the influence network 

models.  

Although the influence network model is designed for social network analysis, the 

concept of influence is not limited to only information and social influence. In Chapter 4, 

we apply the influence network models to analyze the interdependencies of cellular base 

stations, which are part of the critical infrastructure (CI) facilities. In this scenario, every 

node in the graph is a cellular base station and the influence is interpreted as the cascading 

effects generated from the failure of the originating stations. In Chapter 5, we further extend 

the framework to analyze multi-layer CI interdependencies. Given a set of CI facilities, we 

first classify them into sectors which represent energy, communication, transportation, etc. 
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Next, from the sectors we will define corresponding layers that include all the nodes 

affected by each sector. Then we will state how to construct influence network models on 

each layer and how they interact with each other. Finally, two examples for metro Atlanta, 

Georgia and the state of Florida are analyzed. 
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CHAPTER 2. FUNDAMENTALS OF INFLUENCE NETWORK 

The influence maximization problem, as described in the previous chapter, is 

important since it can support decision making in interfering social networks and other 

networks representing influence dissemination. In this chapter, we will review some major 

approaches to address and solve this problem. In the first section, we will give a formal 

definition of the problem and introduce two major influence network models. In the second 

section, we will review some major approaches to solve this problem based on the models 

in Section 1. Finally, in Section 3 we will review other notable methods for solution 

determination. 

We begin by defining some useful graph notation. For directed graph 𝐺 = (𝑉, 𝐸), we 

let 𝑁𝑖𝑛(𝑣) = {𝑢|(𝑢, 𝑣) ∈ 𝐸} and call it the in-nodes of 𝑣. The arcs ending in 𝑣 are called 

the in-arcs of 𝑣. The out-nodes and out-arcs are defined in the same manner. 

2.1 Influence Network Models 

We first explain an influence diffusion in Definition 1.1. Intuitively, given a directed 

graph 𝐺 = (𝑉, 𝐸), there is an initial set which is influenced before any other nodes. This 

set is called the seed set and usually denoted as 𝑆0 ⊆ 𝑉. In this thesis, we assume that all 

sets 𝑉 are finite. We assume that influence spreads from the seed set in discrete time steps; 

i.e. for step 𝑡 > 1, there exists a node set series {𝑆𝑡} and  𝑆𝑡 ⊆ 𝑉, ∀𝑡, where 𝑆𝑡 represents 

the influenced node set at time 𝑡. Influence diffusion models are graph models that explain 

how to determine {𝑆𝑡}, see definition 2.1. 
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Definition 2.1 (Influence diffusion models). Given a finite directed graph 𝐺 =

(𝑉, 𝐸), influence diffusion models explain the scheme to decide node set series {𝑆𝑡},  𝑆𝑡 ⊆

𝑉, ∀𝑡.  

If 𝑆0 ⊆ 𝑆1 ⊆. . . ⊆ 𝑆𝑡 ⊆. . . ⊆ 𝑉,  then the influence diffusion model is called 

progressive. We mainly focus on progressive influence diffusion models in this thesis, but 

some non-progressive models will be reviewed in Section 2.3. If node 𝑣 ∈ 𝑆𝑡,  we call 𝑣 

active at step 𝑡, otherwise we say it’s inactive. Notice that for progressive models, since the 

graph is finite and {𝑆𝑡} is non-decreasing, series {𝑆𝑡} must converge. We let 𝑆∞ ≡ lim
𝑡→∞

𝑆𝑡 

and call 𝑆∞ the final active set. 

The influence network models are special cases of the influence diffusion models in 

terms of specifying the process of deciding {𝑆𝑡}. However, for social networks there is no 

decisive opinion of how people choose to accept new ideas and opinions because everyone 

might have his own criterion. Here we focus on two major influence network models 

proposed by Kempe et al. (2003) [34], which represent probably the most natural 

assumptions of the influence network. In the first model, the independent cascade model, 

if 𝑢 ∈ 𝑆𝑡−1\𝑆𝑡−2, (𝑢, 𝑣) ∈ 𝐸, and 𝑣 is inactive, then with a fixed probability 𝑝(𝑢, 𝑣), 𝑣 is 

active in step 𝑡. When multiple active source nodes try to influence an inactive node, the 

influencing between sources are independent. The reason we let 𝑢 ∈ 𝑆𝑡−1\𝑆𝑡−2 rather than 

𝑢 ∈ 𝑆𝑡−1 is that every node can only activate its out-neighbors once, which happens in the 

next step after it becomes active. The influencing pattern assumption for this model is that 

when hearing some new information from others, some people would rely on the reasoning 



 

 6 

process to decide whether to accept it or not, different information sources would be 

independent since the reasoning is likely to vary. 

In the second model, the linear threshold model, every node would choose a random 

variable 𝜃𝑣 which is uniformly distributed on [0,1] as its activating threshold. The node 

would be influenced if the sum of the weights of the incoming arcs from active nodes 

exceeds the threshold. This assumption reflects the situation that some people would accept 

the information if a certain number of close people have accepted it. The formal definitions 

are stated below. 

Definition 2.2 (Independent Cascade (IC) model). Given a finite directed graph 

𝐺 = (𝑉, 𝐸), where 𝑉 denotes the vertices set and 𝐸 denotes the directed arcs(edges) set. 

Given the influence probability 𝑝(𝑢, 𝑣) ∈ [0,1] assigned to every arc, and the initial seed 

set 𝑆0 ∈ 𝑉  as the input, generates the active sets 𝑆𝑡 for some 𝑡 ≥ 1  by the following 

randomized operation rule: At each 𝑡 such that 𝑡 ≥ 1, for every inactive nodes 𝑣 ∈ 𝑉\𝑆𝑡−1, 

each node 𝑢 ∈ 𝑁𝑖𝑛(𝑣) ∩ (𝑆𝑡−1\𝑆𝑡−2) , 𝑢 would initate an activation attempt to v in the 

form of a Bernoulli trial with probability 𝑝(𝑢, 𝑣). If successful, 𝑣 would be added to 𝑆𝑡. 

Definition 2.3 (Linear Threshold (LT) model). Given a finite directed graph 𝐺 =

(𝑉, 𝐸), where 𝑉 denotes the vertices set and 𝐸  denotes the directed arcs set, given the 

weight 𝑤(𝑒) assigned to every arc, and the initial seed set 𝑆0 as the input, generates the 

active sets 𝑆𝑡 for some 𝑡 ≥ 1 by the following randomized operation rule: Initially, each 

node 𝑣 ∈ 𝑉, independently selects a threshold 𝜃𝑣~𝑈[0,1], where 𝑈(0,1) is the uniform 

distribution on interval (0,1). At every time step 𝑡 ≥ 1, first set 𝑆𝑡 to be 𝑆𝑡−1; then for any 

inactive node 𝑣 ∈ 𝑉\𝑆𝑡−1, if the total weight of the arcs from its active in-neighbors is at 
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least 𝜃𝑣 ,  i.e. ∑ 𝑤(𝑢, 𝑣)𝑢∈𝑁𝑖𝑛(𝑣)∩𝑆𝑡−1
≥ 𝜃𝑣 , then add 𝑣  to 𝑆𝑡 . It is required that ∀𝑣 ∈ 𝑉,

∑ 𝑤(𝑢, 𝑣) ≤ 1𝑢∈𝑁𝑖𝑛(𝑣) . 

For any progressive influence diffusion models, we can define an influence function 

𝐼(𝑆0): 𝑆0 → ℝ+ to summarize a positive number from the final active set 𝑆∞. Without 

special notation we will just use the expectation of the cardinality of the final active set as 

the influence function, i.e. 𝐼(𝑆0) = 𝑬(𝑐𝑎𝑟𝑑(𝑆∞)|𝑆0). If there are weights assigned for each 

node, then 𝐼(𝑆0) = 𝑬(∑ 𝑤(𝑣)𝑣∈𝑆∞
|𝑆0), where 𝑤: 𝑉 → ℝ+ is a weight function. 

In the work of Kempe et al. (2003) [34], he also summarized two generalized models 

from two influence network models above. The general cascade model is a generalization 

of the independent cascade model, it replaced the influence probability 𝑝(𝑢, 𝑣) by a 

function 𝑝𝑣(𝑢, 𝑆): 𝑁𝑖𝑛(𝑣) × 2𝑁𝑖𝑛(𝑣)  →  [0,1], which means the influence probability of 

each in-node depends on the activated in-node set. The generalization of the linear 

threshold model is the general threshold model, which replace the activation condition 

∑ 𝑤(𝑢, 𝑣)𝑢∈𝑁𝑖𝑛(𝑣)∩𝑆𝑡−1
≥ 𝜃𝑣 by a general function 𝑓𝑣: 2𝑁𝑖𝑛(𝑣) → [0,1]. The definitions are 

given below. 

Definition 2.4 (General Cascade (GC) model). Given a finite directed graph 𝐺 =

(𝑉, 𝐸), where 𝑉 denotes the vertices set and 𝐸 denotes the directed arcs set, and the initial 

seed set 𝑆0 ∈ 𝑉 as the input, Every node 𝑣 has an activation function 𝑝𝑣(𝑢, 𝑆): 𝑁𝑖𝑛(𝑣) ×

2𝑁𝑖𝑛(𝑣)\{𝑢}  →  [0,1], where generates the active sets 𝑆𝑡 for some 𝑡 ≥ 1 by the following 

randomized operation rule: At each 𝑡 such that 𝑡 ≥ 1, for every inactive nodes 𝑣 ∈ 𝑉\𝑆𝑡−1, 

let {𝑢1, 𝑢2, . . .  𝑢𝑛} = 𝑁𝑖𝑛(𝑣) ∩ (𝑆𝑡−1\𝑆𝑡−2)  , 𝑢1  would first try to activate 𝑣  with 
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probability 𝑝𝑣(𝑢1, 𝑆), where 𝑆 = 𝑁𝑖𝑛(𝑣) ∩ 𝑆𝑡−2. If {𝑢1, 𝑢2, . . .  𝑢𝑙} fails to activate 𝑣 for 

some 𝑙 < 𝑛 , then 𝑢𝑙+1  would try to activate 𝑣  with probability 𝑝𝑣(𝑢𝑙+1, 𝑆 ∪ {𝑢1, 𝑢2,

. . .  𝑢𝑙}) . The activation attempts are independent and if any nodes in {𝑢1, 𝑢2, . . .  𝑢𝑛} 

activates 𝑣  then the 𝑣  is activated. The function 𝑝𝑣(𝑢, 𝑆)  must be order-independent, 

which means for any 𝑁𝑖𝑛(𝑣), 𝑆𝑡−1, 𝑆𝑡−2 and 𝑣, the order of 𝑁
𝑖𝑛(𝑣) ∩ (𝑆𝑡−1\𝑆𝑡−2) should 

not change the final activation probability of 𝑣. 

Definition 2.5 (General Threshold (GT) model). For a directed graph 𝐺 = (𝑉, 𝐸), 

every node is assigned an activation function 𝑓𝑣: 2𝑁𝑖𝑛(𝑣) → [0,1] , 𝑓𝑣  is monotone and 

𝑓𝑣(∅) = 0 . Each node 𝑣  select a threshold 𝜃𝑣  uniformly from [0,1], the thresholds are 

independent for different nodes. For a given initial set 𝑆0, at every step 𝑡 ≥ 1, first set 𝑆𝑡 

to 𝑆𝑡−1, for every node 𝑣 ∈ 𝑉\𝑆𝑡−1, if 𝑓𝑣(𝑆𝑡−1 ∩ 𝑁𝑖𝑛(𝑣)) ≥ 𝜃𝑣, then add 𝑣 to 𝑆𝑡. 

Here we introduce another important concept, model equivalence, which is defined 

in definition 2.6 (Kempe et al. (2003) [34]). Two influence network models are equivalent 

if for any 𝑡 ≥ 1, if the active sets at every previous time step are the same, the distributions 

of the active set at time 𝑡 for two models are identical. This concept is important because 

in later sections we will see that it is easy to simulate the model or prove some properties 

of the model if we can find a simpler equivalent model for it.  

Definition 2.6. For two influence network model, they are equivalent if both the 

conditions A and B are met: 

A. For any 𝐴0, 𝐴1, . . . , 𝐴𝑡 ⊆ 𝑉 , 𝑃𝑟(𝑆1 = 𝐴1, . . . , 𝑆𝑡 = 𝐴𝑡|𝑆0 = 𝐴0)  are zero in both 

models or nonzero in both models. 
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B. For any 𝐴0, 𝐴1, . . . , 𝐴𝑡 ⊆ 𝑉 , 𝑃𝑟(𝑆𝑡 = 𝐴𝑡|𝑆0 = 𝐴0, 𝑆1 = 𝐴1, . . . , 𝑆𝑡−1 = 𝐴𝑡−1)  are 

the same in both models. 

At the end of this chapter, we point out that the GC and GT model are equivalent 

Kempe et al. (2003) [34]. In fact, for GC model with activation function 𝑝𝑣(𝑢, 𝑆) and 𝑆 =

{𝑢1, 𝑢2, . . .  𝑢𝑛}  , it is equivalent with GT model with activation function 𝑓𝑣(𝑆) = 1 −

∏ (1 − 𝑝(𝑢𝑖
𝑛
𝑖=1 , 𝐴𝑖−1)) , where 𝐴𝑖   {𝑢1, 𝑢2, . . .  𝑢𝑖}  and 𝐴0 = ∅ . Conversely, for GT 

model with activation function 𝑓𝑣(𝑆) , it is equivalent to a GC model with activation 

function 𝑝𝑣(𝑢, 𝑆) =
𝑓𝑣(𝑆∪{𝑢)−𝑓𝑣(𝑆)

1−𝑓𝑣(𝑆)
  if 𝑓𝑣(𝑆) < 1 , if 𝑓𝑣(𝑆) = 1 , then 𝑝𝑣(𝑢, 𝑆)  can be any 

number in [0,1] since 𝑆 is enough to activate 𝑣. 

2.2 Properties of Influence Network Models and Influence Maximization 

In this section we will discuss how to maximize the influence function for the models 

defined in the previous section. Firstly, we define the influence maximization problem: 

Definition 2.7 (Influence maximization). Given an influence network model 𝐺 , 

and a positive integer 𝑘, the influence maximization problem is max  𝐼(𝑆0), 𝑠. 𝑡.  |𝑆0| = 𝑘. 

Based on this definition, clearly there are influence maximization can be decomposed 

into two problems: how to calculate 𝐼(𝑆0) and how to maximize it. We first visit the first 

question, since the influence function is determined by the final active set 𝑆∞ given 𝑆0, it 

is sufficient to find methods to decide 𝑆∞ . However, it is NP-hard to calculate 

𝑬(𝟏{𝑣∈𝑆∞}|𝑆0) for any 𝑣 ∉ 𝑆0 for any influence network models introduced (Chen et al. 

(2010) [17], Wang et al. (2012) [58]) and thus calculating any influence function in the 

form of 𝑬(𝑤(𝑆∞)|𝑆0) is NP-hard. Researchers have come up with some heuristics to solve 
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this problem. For IC and LT model, Kempe et al. (2003) [34] proposed live-arc graphs on 

which we can use Monte-Carlo method to simulate the influence function. The definitions 

are given below. 

Definition 2.8 (Live-arc graph of IC model). given an IC influence network 

𝐺=(𝑉,𝐸) and arc influence probability 𝑝(𝑒). For every 𝑒∈𝐸, keep the arc with probability 

𝑝(𝑒), otherwise remove it. The resulting graph is called a live-arc graph of 𝐺. 

Definition 2.9 (Live-arc graph of LT model). given an LT influence network 𝐺 =

(𝑉, 𝐸):  For each 𝑣 ∈ 𝑉 , select one arc from all the arcs ending in 𝑣  with probability 

distribution 𝑤(𝑢, 𝑣) (no arc is chosen with probability 1 − ∑ 𝑤(𝑢, 𝑣)𝑢∈𝑁𝑖𝑛(𝑣)  if 

∑ 𝑤(𝑢, 𝑣)𝑢∈𝑁𝑖𝑛(𝑣) <1) . The resulting graph is called a live-arc graph of 𝐺. 

Kempe et al. (2003) [34] proved that the live-arc graphs are equivalent to their 

corresponding influence network models. (see definition 2.6 for model equivalence). To 

estimate the influence function value of a given initial active set 𝑆0, we use Monte-Carlo 

simulation, In each Monte-Carlo simulation round, an instance of live-arc graphs is 

generated and used to find the final active set. And using the set we can find the influence 

function value for this Monte Carlo iteration. After desired rounds of Monte Carlo 

simulation are done, the average influence function value is used as the final estimate. 

However, the Monte Carlo simulation is very time-consuming for large graphs. Thus 

non-simulation-based heuristics are necessary for large-scale problems. For IC model, 

Wang et al. (2012) [58] proposed an Maximum Influence Arborescence (MIA) algorithm 

in which they trimmed all the paths with influence probability lower than a threshold. 
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Specifically, they define the maximum influence path from 𝑢 to 𝑣 as the path with highest 

influence probability among all the simple paths from 𝑢 to 𝑣, denoted by 𝑀𝐼𝑃(𝑢, 𝑣). Then 

they define the maximum influence in- arborescence 𝑀𝐼𝐼𝐴(𝑣, 𝜆) =

∪𝑢∈𝑉,𝑝𝑟(𝑀𝐼𝑃(𝑢,𝑣)>𝜆) 𝑀𝐼𝑃(𝑢, 𝑣), which is the collection of the maximum influence paths 

which has influence probability higher than 𝜆. For any maximum influence path from 𝑢 to 

𝑣, it must contain the maximum influence path from any intermediate nodes on this path 

to 𝑣. Thus MIIA is actually a forest where all trees ends in 𝑣. In this way to estimate the 

influence probability from any given set 𝑆0 to 𝑣, we just need to start from 𝑆0 and do a 

recursive calculation of the influence probability on each downstream node of 𝑆0 on the 

MIIA of 𝑣 until the calculation ends in 𝑣. This method has no guarantee how far the results 

diverge from the real value, but it is very useful since it does not use Monte Carlo 

simulation. 

For LT model, Goyal et al. (2011) [30] proposed the SIMPATH algorithm. In fact, 

for a LT model on graph 𝐺 = (𝑉, 𝐸)  and arc weights 𝑤(𝑢, 𝑣) , Let 𝑟𝑆,𝑣
𝑉  denote the 

probability that given whole node set 𝑉 and initial set 𝑆, 𝑣 is influenced. They proved that 

if 𝑢,𝑣 are two nodes in 𝐺, 𝑆𝑃(𝑢, 𝑣) are the set of all simple path from u to v in G (i.e. no 

loop), then 𝑟{𝑢},𝑣
𝑉 = ∑ 𝑤 (𝑃)𝑃∈𝑆𝑃(𝑢,𝑣) , where 𝑤 (𝑃) is the product of the arc weights on 𝑃. 

Next, they prove that 𝐼(𝑆) = ∑ 𝐼𝑉−𝑆+{𝑢}(𝑢)𝑢∈𝑆 , where 𝐼(𝑆) is the cardinality influence 

function on the original graph and 𝐼𝑉−𝑆+{𝑢}(𝑢) is the same influence function but on graph 

with 𝑉 − 𝑆 + {𝑢} as the node set and the original arcs between those nodes as the arc set. 

Finally, clearly we have 𝐼𝑉−𝑆+{𝑢}(𝑢) = ∑ 𝑟{𝑢},𝑣
𝑉−𝑆+{𝑢}

𝑣∈𝑉−𝑆+{𝑢} . This means that to calculate 

𝐼(𝑆), we only need to find 𝐼𝑉−𝑆+{𝑢}(𝑢) for all 𝑢 ∈ 𝑆, and 𝐼𝑉−𝑆+{𝑢}(𝑢) can be calculated by 
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summing up 𝑟{𝑢},𝑣
𝑉−𝑆+{𝑢}

 using 𝑟{𝑢},𝑣
𝑉 = ∑ 𝑤 (𝑃).𝑃∈𝑆𝑃(𝑢,𝑣)  However, since it is NP-hard to find 

all the simple paths between any two nodes in a general graph, it is necessary to set a 

threshold as a lower bound so that any simple paths with 𝑤 (𝑃) smaller than the threshold 

are not considered. 

So far we reviewed the algorithms and heuristics to calculate the influence function. 

Before stepping into the influence maximization of the previous influence network models, 

we introduce some important concepts for general set function optimization, which are 

useful for understanding the influence maximization algorithms introduced later. The first 

concept is the submodularity of set functions. 

Definition 2.10 (Submodularity of set functions). Given a set function 𝑓: 𝑆 → ℝ, 

where 𝑆 ⊆ 𝑈 is a set and 𝑈 is the universal set, the function is submodular if ∀𝐴 ⊆ 𝐵 ⊆ 𝑈, 

and 𝑣 ∈ 𝑈\𝐵, the following inequality holds: 𝑓(𝐴 ∪ {𝑣}) − 𝑓(𝐴) ≥ 𝑓(𝐵 ∪ {𝑣}) − 𝑓(𝐵). 

Submodularity is a generalization of the convex function on ℝ𝑛, it means that adding 

an element to a small set would have more increments on the function value than adding 

the element to a larger set. Kempe et al. (2003) [34] proved that for both IC and LT 

influence network models, the influence function is nonnegative, non-decreasing and 

submodular. He also proposed a plain Greedy method for influence maximization. The 

method starts with 𝑡 = 0 𝑎𝑛𝑑 𝑆𝑡 = ∅.For 𝑡 ≥ 1,  it adds the node {𝑎𝑟𝑔𝑚𝑎𝑥𝑥 (𝑓({𝑥} ∪

𝑆𝑡−1) − 𝑓(𝑆𝑡−1))|𝑥 ∈ 𝑈 − 𝑆𝑡−1}  to 𝑆𝑡−1 and let 𝑆𝑡 = 𝑆𝑡−1  ∪ {𝑥} , and repeats until the 

desired cardinality is reached. Nemhauser et al. (1978) [44] proved that for any nonnegative 

monotone submodular set function 𝑓(),  a positive integer 𝑘  and the corresponding 

maximization problem max  𝑓(𝑆0), 𝑠. 𝑡.  |𝑆0| = 𝑘 . Let 𝑆  be the final set chosen by the 
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Greedy method and let 𝑆∗ be the optimal set. The following inequality must hold: The 

following inequality must hold: 𝑓(𝑆) ≥ (1 − 1/𝑒)𝑓(𝑆∗), where 𝑒 is the base on natural 

logarithm. This theorem provides a lower bound when applying the plain Greedy method 

to maximize any non-negative monotone submodular function. 

In the plain greedy method we must evaluate the increments of adding each unchosen 

nodes to the chosen set, but Leskovec et al. (2007) [39] and Goyal et al. (2011) [29] argued 

that most of the evaluations are not necessary and they improved the plain greedy algorithm 

to the Lazy Greedy algorithm. In fact, by the property of submodular function, if 𝑆′ ⊆ 𝑆, 

and 𝑥, 𝑤 ∈ 𝑉 − 𝑆, we must have 𝑓({𝑥} ∪ 𝑆) − 𝑓(𝑆) ≤ 𝑓({𝑥′} ∪ 𝑆) − 𝑓(𝑆′). Thus, if we 

know 𝑓(𝑥, 𝑆′) − 𝑓(𝑆′) ≤ 𝑓(𝑤, 𝑆) − 𝑓(𝑆) , then we don’t have to evaluate 𝑥  with 

previously chosen set 𝑆. In Greedy algorithm, 𝑆′ could be the set chosen at step 𝑘 and 𝑆 

could be the set chosen at step 𝑘 + 1. Therefore after evaluating 𝑓(𝑤, 𝑆), we will check if 

there is any 𝑥,  𝑠. 𝑡. 𝑓(𝑥, 𝑆′) ≤ 𝑓(𝑤, 𝑆), where 𝑆′ ⊆ 𝑆 is a intermediate set produced by 

Greedy method. Any such 𝑥  would be removed from candidate list to improve 

performance. The details of this Lazy Greedy algorithm is summarized in Algorithm 1. 
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Algorithm 1. The Lazy Greedy algorithm for the influence maximization 

 
Input: 𝑘: size of returned set; 𝑓 :influence function 

Output: selected subset with cardinality 𝑘 

initialize 𝑆 = ∅; priority queue 𝑄 = ∅; iteration= 1 

for 𝑖 = 1 to n do 

       𝑢. 𝑚𝑔=𝑓(𝑢) (use Monte-Carlo or other heuristics here) , 𝑢. 𝑖 = 1; 

       insert element 𝑢 into 𝑄 with 𝑢. 𝑚𝑔 as the key 

end for 

while iteration ≤  𝑘 do 

      extract top (max) element 𝑢 of 𝑄 

      if 𝑢. 𝑖= iteration then 

          𝑆 = 𝑆 ∪ {𝑢} ; 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1; 

     else 

          𝑢. 𝑚𝑔 = 𝑓(𝑢 ∪ 𝑆); 𝑢. 𝑖 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛; 

          re-insert 𝑢 into 𝑄 

     end if 

end while 

return 𝑆 

 

2.3 Extensions of the Influence Network Models and Other Approaches for the 

Influence Maximization  

So far we have reviewed major influence network models developed by previous 

researchers which will be used in all the following chapters. In the first part of this section, 

we introduce some extensions of the influence network models that we will use in the 

following chapters. In the second part, we review other models which try to solve similar 

problems. We will focus the advantages and defects of these models instead of the 

implementation details. 

2.3.1 Extensions of the Influence Network Models 

In the influence maximization problem, we have limited resources to put influences 

on the initial active set 𝑆0 and that is the reason why the size of 𝑆0 is given and we try to 
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decide which nodes to be selected for the active set. On some circumstances, we have a 

target on the final active set 𝑆∞ and the question is to decide the minimum cardinality and 

the elements of the initial active set 𝑆0. This problem is called the minimum target set 

selection problem (MINTSS) by Goyal et al. (2013) [28]. Definition 2.11 defines the 

MINTSS problem. 

Definition 2.11 (Minimum target set selection problem). Given an influence 

network model 𝐺 , and a positive number 𝑟, the minimum target set selection problem is 

min  𝑐𝑎𝑟𝑑(𝑆0), 𝑠. 𝑡.  𝐼(𝑆0) ≥ 𝑟, where 𝑐𝑎𝑟𝑑(𝑆0) is the cardinality function. 

The MINTSS problem on IC and LT models with weighted influence function 

𝐼(𝑆0) = 𝑬(∑ 𝑤(𝑣)𝑣∈𝑆∞
|𝑆0) can be solved using a greedy method which is similar with the 

one we used in the influence maximization problem (Goyal et al. (2013) [28]). In iteration 

𝑡 + 1 of the greedy method, the method adds 𝑎𝑟𝑔𝑚𝑎𝑥𝑣∈𝑉−𝑆𝑡

𝑚𝑖𝑛(𝐼(𝑆𝑡∪{𝑣},   𝑟)−𝐼(𝑆𝑡)

𝑤(𝑣)
  to the 

selected set 𝑆𝑡 at iteration 𝑡 and let the new set be 𝑆𝑡+1, repeat until the desired influences 

𝑟 is reached. 

Another important model which we will use in chapter 3 is the competitive influence 

network models. The competitive version of IC and LT models are called CIC models and 

CLT models respectively (Borodin et al. (2010) [9], Budak et al. (2011) [11] and Chen et 

al. (2011) [16]). In these models every node has three states: positive, negative and inactive. 

The positive and negative influences follow the IC and LT mechanism to spread and every 

inactive node would only be influenced once. The definitions of CIC and CLT models are 

given below. 
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Definition 2.12 (Competitive independent cascade (CIC) model). Given a finite 

directed graph 𝐺 = (𝑉, 𝐸) , the positive and negative influence probability 

𝑝+(𝑢, 𝑣),  𝑝−(𝑢, 𝑣) ∈ [0,1] for every arc, and the initial seed set 𝑆0
+,  𝑆0

− ∈ 𝑉 as the input, 

generates the active sets 𝑆𝑡
+ and 𝑆𝑡

− for some 𝑡 ≥ 1 by the following randomized operation 

rule: At each 𝑡  such that 𝑡 ≥ 1 , for every inactive nodes 𝑣 ∈ 𝑉\𝑆𝑡−1
+ , each node 𝑢 ∈

𝑁𝑖𝑛(𝑣) ∩ (𝑆𝑡−1
+ \𝑆𝑡−2

+ ) , 𝑢 would initate an activation attempt to v in the form of a Bernoulli 

trial with probability 𝑝+(𝑢, 𝑣). Also, for every inactive nodes 𝑣 ∈ 𝑉\𝑆𝑡−1
− , each node 𝑢 ∈

𝑁𝑖𝑛(𝑣) ∩ (𝑆𝑡−1
− \𝑆𝑡−2

− ) , 𝑢 would initate an activation attempt to v in the form of a Bernoulli 

trial with probability 𝑝−(𝑢, 𝑣). If only the positive attempt is successful, 𝑣 would be added 

to 𝑆𝑡
+, if only the negative attempt is successful, 𝑣 would be added to 𝑆𝑡

−. If both attempts 

are successful, a tie-breaking rule, which will be described later, will be used to decide 

which set 𝑣 is added to. 

Definition 2.13 (Competitive linear threshold (CLT) model). Given a finite 

directed graph 𝐺 = (𝑉, 𝐸) , the positive and negative weights 𝑤+(𝑢, 𝑣),  𝑤−(𝑢, 𝑣) ∈

[0,1] for every arc, and the initial seed set 𝑆0
+,  𝑆0

− ∈ 𝑉 as the input, generates the active 

sets 𝑆𝑡
+ and 𝑆𝑡

− for some 𝑡 ≥ 1 by the following randomized operation rule: Initially, each 

node 𝑣 ∈ 𝑉, independently selects two threshold 𝜃𝑣
+, 𝜃𝑣

− ~𝑈[0,1], where 𝑈(0,1) is the 

uniform distribution on interval (0,1). At every time step 𝑡 ≥ 1, first set 𝑆𝑡
+ to be 𝑆𝑡−1

+  and 

𝑆𝑡
− to be 𝑆𝑡−1

− ; then for any inactive node 𝑣 ∈ 𝑉\(𝑆𝑡−1
+ ∪ 𝑆𝑡−1

− ), if the total weight of the 

arcs from its positive in-neighbors is at least 𝜃𝑣
+ and the total weight of the arcs from its 

negative in-neighbors is less than 𝜃𝑣
− , i.e. ∑  𝑤+(𝑢, 𝑣)𝑢∈𝑁𝑖𝑛(𝑣)∩𝑆𝑡−1

+ ≥ 𝜃𝑣
+  and 

∑  𝑤−(𝑢, 𝑣)𝑢∈𝑁𝑖𝑛(𝑣)∩𝑆𝑡−1
− < 𝜃𝑣

−, then add 𝑣  to 𝑆𝑡
+ . If ∑  𝑤+(𝑢, 𝑣)𝑢∈𝑁𝑖𝑛(𝑣)∩𝑆𝑡−1

+ < 𝜃𝑣
+  and 
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∑  𝑤−(𝑢, 𝑣)𝑢∈𝑁𝑖𝑛(𝑣)∩𝑆𝑡−1
− ≥ 𝜃𝑣

−, then add 𝑣 to 𝑆𝑡
−. If both sum of weights are greater than 

the threshold then a tie-breaking rule is needed. It is required that ∀𝑣 ∈ 𝑉,

∑ 𝑤+(𝑢, 𝑣) ≤ 1𝑢∈𝑁𝑖𝑛(𝑣)  and ∑ 𝑤−(𝑢, 𝑣) ≤ 1𝑢∈𝑁𝑖𝑛(𝑣) . 

As we explained in the definition, it is necessary to assume a tie-breaking rule when 

a node is activated simultaneously by both positive and negative influences. A type of tie-

breaking rule is the fixed probability tie-breaking rules, which assign a fixed probability to 

the make the inactive nodes positive when both attempts succeed Borodin et al. (2010) [9]. 

When the probability is 1/0, the rule is called positive/negative dominance. Another natural 

tie-breaking rules is by the relative power of the positive and negative attempts (Chen et al. 

(2011) [16]), in CIC model, the positive activating probability is 

∑ 𝑝+(𝑢,𝑣)
𝑢∈𝑁𝑖𝑛(𝑣)∩(𝑆𝑡−1

+ \𝑆𝑡−2
+ )

∑ 𝑝+(𝑢,𝑣)
𝑢∈𝑁𝑖𝑛(𝑣)∩(𝑆𝑡−1

+ \𝑆𝑡−2
+ )

+∑ 𝑝−(𝑢,𝑣)
𝑢∈𝑁𝑖𝑛(𝑣)∩(𝑆𝑡−1

− \𝑆𝑡−2
− )

 while in CLT model positive 

activating probability is 
∑  𝑤+(𝑢,𝑣)

𝑢∈𝑁𝑖𝑛(𝑣)∩𝑆𝑡−1
+

∑  𝑤+(𝑢,𝑣)
𝑢∈𝑁𝑖𝑛(𝑣)∩𝑆𝑡−1

+ +∑  𝑤−(𝑢,𝑣)
𝑢∈𝑁𝑖𝑛(𝑣)∩𝑆𝑡−1

−
. This rule is called 

proportional tie-breaking rule. 

The similar live-arc graphs could be defined for both CIC and CLT models, in fact, 

in both models we can create two separate live-arc graphs using the definition 2.8 and 2.9 

for positive influences and negative influences. The only problem is that two live-arc 

graphs might share some nodes, in this case we just check each shared node in which time 

step it is activated and assign it to the group that activate it first. If it is activated by both 

influences simultaneously, the tie-breaking rule is used to decide the assignment. 

There are two influence functions defined for the CIC and CLT models, the positive 

and negative influence functions. As in the non-competitive case they are defined by the 
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weight function of the final active set: 𝐼+(𝑆0
+,  𝑆0

−) =  𝑬(∑ 𝑤(𝑣)𝑣∈𝑆∞
+ |𝑆0

+,  𝑆0
−)  and 

𝐼−(𝑆0
+,  𝑆0

−) = 𝑬(∑ 𝑤(𝑣)𝑣∈𝑆∞
− |𝑆0

+,  𝑆0
−). It is clear that 𝐼+(𝑆0

+,  𝑆0
−) is non-decreasing with 

respect to 𝑆0
+ given  𝑆0

− and 𝐼−(𝑆0
+,  𝑆0

−) is non-decreasing with respect to  𝑆0
− given 𝑆0

+. 

Budak et al. (2011) [11] gave the counter-example that such functions are generally not 

submodular. Despite this, they showed that for CIC model where 𝑝+(𝑢, 𝑣) =  𝑝−(𝑢, 𝑣) for 

all arcs, and the tie-breaking rule is positive-negative dominance or proportional, the 

influence functions are submodular with respect to its corresponding initial active set. That 

is to say, the Algorithm 1 is applicable with the lower bound in this case. We will see the 

applications of such model in chapter 3. 

2.3.2 Other Approaches for Influence Maximization 

The first model to introduce is the epidemic models. The epidemic models are used 

for study the epidemic disease in a certain area. Every individual in the system has at least 

two nodes, susceptible and infected, the simplest model that only involves these two states 

is called the SI model, if considering the recovery from the disease, the model is called the 

SIR model where a new recovered state is added (Kermack and McKendrick (1927) [35]). 

In these models, the number of individuals in these three states, denoted by 𝑠, 𝑖 and 𝑟, are 

interconnected by a system of ordinary differential equations related to the infection rate, 

recovery rate and time (Capasso and Serio (1978) [14], Ruan and Wang (2003) [55], Xiao 

and Ruan (2007) [59]). It is assumed in these models everyone in the system has 

interactions with all others, which means no specific connections between any pair of 

individuals. In this case, the model cannot identify different connection patterns of 

individuals. For example, if we know some individuals have more capabilities to influence 
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others and we know who he might influence, this feature cannot be reflected by the 

analytical epidemic model. Another type of epidemic model is the agent-based simulation 

models (Parker (2007) [48], Bobashev et al. (2007) [8]), in these models the position and 

behavior of the individuals, which are treated as particle, can be modified but large-scale 

agent-based simulation consumes plenty of computational resources and usually lack 

analytical backgrounds. 

Another tool to solve such problems is the Markov random fields (Domingos and 

Richardson (2001) [22], Richardson and Domingos (2002) [51]). In this model every node 

in an undirected graph is assigned a binary variable 𝑋𝑣 where 1 represent activated and 0 

otherwise. The model resembles the influence network models since it requires that all 𝑋𝑣 

are conditionally independent with non-neighbors given their neighbors, The core question 

is how to find the value of 𝑃𝑟(𝑋𝑣 = 1|𝑆0) to get the expectation of the number of nodes 

influenced. Note that this is not a time-dependent model so that 𝑆𝑡 and 𝑆∞ do not exist. The 

probabilities 𝑃𝑟(𝑋𝑣 = 1|𝑆0) are inferred recursively using the probabilities of neighbors 

of 𝑣. Since the model is built on an undirected graph, the connection between any pair of 

adjacent nodes is undirected, which restricts the model flexibility. To solve the model a 

system of linear or nonlinear equations needs to be analyzed, in some cases, the system is 

too complex to get a analytical solution. 

Finally, the influence maximization problem can be modelled as a Markov decision 

process (MDP) (Yadav et al. (2015) [60]). MDP is a decision process which includes a 

state space 𝑆, an action space 𝐴, the transition probabilities 𝑃𝑟(𝑠1|𝑠0, 𝑎0) representing the 

probability that the state transited from 𝑠0  to 𝑠1  by taking action 𝑎0  and the reward 
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𝑅(𝑠1|𝑠0, 𝑎0) which means the reward from achieving state 𝑠1 from 𝑠0 using action 𝑎0. For 

a influence maximization problem to select 𝑘 most influential nodes out of a graph with n 

nodes, they let every state represents a possible state of all nodes, which includes 2n states, 

the actions are choosing 𝑘 nodes from n, and the reward 𝑅(𝑠1|𝑠0, 𝑎0) = 𝐼(𝑠1) which is the 

weighted influence function. The transition probabilities are not explicitly given but using 

the simulation or other heuristics to estimate, like we introduced before. To find the best 𝑘 

nodes, they use a multi-armed bandit based approach to get the best action using the results 

of previous actions. The major challenges of this framework is that the state space and the 

action space are too big for large-scale problems. 
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CHAPTER 3. A COMPUTATIONAL FRAMEWORK FOR 

INFLUENCE NETWORKS: APPLICATION TO CLERGY 

INFLUENCE IN HIV/AIDS OUTREACH 

In this chapter, we introduce a sociology-based computational framework for 

independent cascade (IC) influence networks. The model construct is generic and is 

applicable to diverse social network analysis. We demonstrate its usage in calibrating the 

positive influence of church clergy in spreading HIV/AIDs information in a large 

metropolitan city. Five experiments are designed to contrast influence with respect to the 

interaction style between clergy and churchgoers. Competitive (CIC model) and non-

competitive (IC model) knowledge dissemination are also analyzed. The generalized 

framework requires minimal regional data to establish the influence network. It provides 

useful policy insights for decision makers to determine effective avenues for information 

dissemination through community influencers. 

3.1 Introduction 

Infectious diseases such as HIV/AIDS, tuberculous and malaria pose challenges to 

global health. Although these contagious diseases have risen to the top of the international 

agenda in recent years, there remain major hurdles in combating and eradicating them 

effectively. In the United States alone, more than 1.2 million people are living with HIV, 

with 1 out of 8 unware of it (CDC (2018) [15]). Furthermore, statistics show that African 

Americans continue to bear the greatest burden of HIV: they represent 12% of the total 

population but account for 45% of the HIV diagnoses (CDC (2018) [15]).  



 

 22 

The spread of many of these contagious diseases can be mitigated through changes 

in human behavior. It is well-known that strong social networks can encourage healthy 

behaviors.  

Realizing the importance of early intervention, the Centers for Disease Control and 

Prevention (CDC) and public health leaders design HIV outreach programs for early 

preventive measures and treatment, especially for the vulnerable population. 

Unfortunately, the HIV/AIDS stigma still asserts a significant barrier for people to 

voluntarily seek disease prevention and treatment information. Thus, public health 

practitioners seek various strategies to reach out to high-risk individuals to overcome this 

prejudice. 

Exploiting strong social networks can help disseminate knowledge and shape 

positive health behavior. In particular, religious community centers have long played 

significant roles in information dissemination. Hadaway and Marler (1998) [31] reported 

that about 20% of Americans go to church on a weekly basis. In a survey conducted in 

2007, Khosrovani et al. (2008) [36] concluded that for the highly vulnerable population, 

the involvement of churches in providing information and education is very crucial. 

Although the importance of churches in spreading disease prevention knowledge and 

reducing the stigma has long been recognized, few investigations have been carried out to 

calibrate the value of the aid from church leaders. With only limited resources for 

congregational HIV/AIDS education programs, it is beneficial to identify influential 

churches and clergymen and effective outreach efforts.  
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3.2 Related Works and Our Contribution 

3.2.1 Relate Works 

Religion plays an important role in American life. Most Americans believe in a deity, 

three-fourths pray at least weekly, and more than half attend religious services at least 

monthly (Barkan (2010) [6]). Numerous studies focus on the influences churches and 

religious workers have on regular church attendants. Khosrovani et al. (2008) [36] 

conducted a survey on African American churches in the metro Houston area in 2007 and 

concluded that although the attitude of churches has evolved over the last 25 years, the real 

disposition towards HIV remains passive and negative. On the other hand, 90% of church 

participants thought that churches should be involved in educating their congregation about 

HIV/AIDS prevention, helping ease the anxiety of HIV/AIDS carriers, and engaging high-

risk individuals in counselling and seeking appropriate medical tests to learn of their health 

status. Bluthenthal et al. (2012) [7] found that while HIV and public health workers sought 

assistance from clergy (in Los Angeles County), educational outreach about HIV 

awareness and reducing HIV stigma were not high priorities for most religious 

congregations. There are some positive findings as well. For example, Moore et al. (2012) 

[41] reported that church leaders (in North Carolina) employed various approaches to 

communicate with congregants about HIV issues. Religious leaders play an important role 

in society and can potentially have a broad impact on HIV education. With the aid of 

modern social media, clergy can communicate with many congregants simultaneously, and 

hence can potentially generate broad coverage and positive impact. 
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In chapter 2, we have already reviewed the theoretical results given the social 

network graph. However, when facing a real world problem, we must formulate a graph 

representing the social network from the data first before applying the influence network 

models. Within social science, early work of Newman (2001) [45] analysed scientific 

collaboration networks where every researcher corresponds to a node, and two nodes are 

connected if the researchers co-authored a paper together. Since the emergence of social 

networks and user data, there has been tremendous interest in the phenomenon of influence 

propagation (Romero et al. (2011) [54], Adar and Adamic (2005) [1], Domingos and 

Richardson (2001) [22]). Most of these studies require a social graph with edges labelled 

with probabilities of influence between users. Goyal et al. (2010) [27] investigated where 

and how probabilities of influence between users were established from real social network 

data. The authors built models of influence from a social graph and a log of actions by its 

users using the Flickr data set consisting of a social graph with 1.3 million nodes, 40 million 

edges, and an action log consisting of 35 million tuples associated with 300 thousand 

distinct actions. 

Besides these data-based approaches, notable results have been achieved in the field 

of sociology. Using a subset of the British population, Dunbar and Spoors (1995) [24] and 

Hill and Dunbar (2003) [32] first established the three social circle layers of individuals: 

the support clique, the sympathy group and the general acquaintance. He and his co-authors 

discussed the number of people in each group based on the number of kin and personality 

of the individual. Stiller and Dunbar (2007) [56] also investigated how memory capacity 

and theory of mind are involved in determining the size of social circles. 
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3.2.2 Our Influence Network Design and Contributions 

In this paper, we utilize sociology theory to design a general-purpose framework of 

a computational influence network. The model is flexible and can accommodate any type 

of data model analysis and model objectives. We present a scalable computational 

algorithm for determining a set of key influencers who can assert the maximum 

influence/effect within the network. 

To demonstrate its applicability, we apply our influence network model to the clergy 

HIV/AIDs education outreach in a large metropolitan city. The input includes a set of 

churches, the number of regular participants, and the regional HIV/AIDS infection rate, 

estimated by zip codes. Our model will rank the churches (hence their influence power) 

based on their capability of spreading HIV/AIDS information positively and successfully. 

The results show a tradeoff between choosing larger churches versus choosing the churches 

located at sites with higher HIV/AIDs infection rates. 

The model can be applied to other contagious diseases and public health outreach, or 

in the analysis of news and/or information spreading (rumors or facts). Our approach offers 

some novel features: (i) While most research related to social network construction focuses 

on collecting the data from online sources and building the network based on the data, our 

approach does not rely on specific data. This enables modeling of the social network impact 

among all groups, including those that are not as active online. (ii) Although the importance 

of church for spreading information in certain communities has been recognized, there is 

little research focusing on calibrating its importance mathematically. Our study facilitates 

policy-and decision making. 
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3.3 Methodology 

In this section, we first present the construction of a generic influence network model. 

The social network is a generalized framework that incorporates some fundamental 

sociology features. The influence model is then applied to calibrate the importance of 

church leaders in the HIV/AIDS outreach. In the model, we estimate the HIV/AIDS 

infection rate in each of the sub-regions covered by a church using zip code information. 

Finally, we simulate the effects of spreading educational outreach information within each 

church. We measure their influence based on the number of HIV/AIDS infected 

churchgoers who are influenced positively by the clergy-led HIV/AIDS educational 

outreach. 

3.3.1 The Influence Network Construction 

We choose independent cascade influence network model for our simulation here. 

The model consists of three elements: the node set 𝑉, the arc set 𝐸 and the weights on the 

arcs 𝑝(𝑒). Here, the network is considered as directed, even though friendship is usually a 

mutual relationship. We note that the abilities for a friend pair to influence each other are 

sometimes different. This is especially true when one side is in a leadership role while the 

other is in a follower role.  

Dunbar and Spoors (1995) [24] and Hill and Dunbar (2003) [32] investigated the 

general social circle. The authors suggested that for most individuals, the social circle 

includes three layers: 1) the support clique, which only includes one’s closest friends and 

certain kin. The individual would seek advice and help only within the support clique when 

facing difficulties; 2) the sympathy group, defined as all those whose sudden death would 
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be upsetting, this is the principal group of one’s social circle; and 3) the general 

acquaintance, these are the people that one would send a Christmas card. Table 1 shows 

the mean size, standard deviation for each of these three layers. 

Table 1 – Social network layers and their sizes. 

Layers Mean (𝜇) Std dev (𝜎) 

Support clique 4.72 2.95 

Sympathy group 11.6 5.64 

General acquaintance 124.8 34.69 

Using the definition of these social circle layers, it can be deduced that one can assert 

only trivial influence on general acquaintance. In our construction, we first combine the 

support clique and the sympathy group together and assume that the combined group size 

is represented by a positive truncated normal distribution with mean 𝜇  and standard 

deviation 𝜎. Specifically, let (𝜇1, 𝜎1) and ((𝜇2, 𝜎2) be the mean and standard deviation of 

the support clique and the sympathy group respectively, then 𝜇  and 𝜎  of the positive 

truncated distribution satisfy 𝜇 = 𝜇1 +  𝜇2 and 𝜎 = 𝜎1 + 𝜎2 . Alhough the sum of two 

independent normal distributions is still normal, for positive truncated distribution this 

property does not hold. However, if we let 𝑋1~𝑁(𝜇1, 𝜎1), and 𝑋2~𝑁(𝜇2, 𝜎2), using the 

data in Table 1, we have 𝑃𝑟(𝑋1 < 0) = 0.055 and 𝑃𝑟(𝑋2 < 0) = 0.020. Hence the error 

of using the property of normal distribution herein would be quite small and acceptable. 

The arcs in the support clique and those in the sympathy group will be identified 

when we generate the influence probabilities. Even though the arcs in our model are 

directed, friendship is usually mutual. Thus, we assign a value q to represent the percentage 
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of arcs for which the relationship is mutual. When assigning arcs to a certain node 𝑣, we 

first consider connecting the nodes that are the source of an arc directed to 𝑣. 

Research has also shown that in reality, people are more willing to build relationships 

with trustworthy partners and extroverted people tend to have a larger social circle 

(Amichai-Hamburger and Vinitzky (2010) [3], Bravo et al. (2012) [10]).  

Thus, instead of generating a random number from the positive truncated normal 

distribution, we first generate a 𝑈(0,1)  random variable 𝑆(𝑣)  to represent the 

trustworthiness and networking ability of an individual 𝑣; we then use 𝐹−1 (𝑆(𝑣)) to find 

the number of outgoing arcs from node 𝑣. Here, 𝐹 is the cumulative distribution function 

of positive truncated normal (𝜇,𝜎) distribution.  

An arc (𝑣1, 𝑣2) means that 𝑣1 is able to influence 𝑣2 with the probability 𝑝(𝑣1, 𝑣2). 

Given a set of nodes, Algorithm 2 generates the arcs and the resulting influence graph. 
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Algorithm 2. Influence graph construction 

 
Input: Number of nodes 𝑛, mean 𝜇 and variance 𝜎 for the size of the support clique and 

the sympathy group. 

Output: The arc set 𝐴 (or the adjacency matrix 𝐴) 

For each 𝑣 in 𝑉: 

       count= 0; 

       𝐶 = 𝑁𝑖𝑛(v)   

           while (count < 𝐹−1 (𝑆(𝑣))  { 

           if  (𝐶 = ∅) { 

                   Uniformly randomly choose an unconnected node 𝑤;                  

                   Generate 𝑢 ~ Bernoulli(𝑆(𝑤)), if 𝑢 = 1 then add (𝑣, 𝑤) to 𝐴  and count++; 

                   } 

               else { 

                   Choose a node 𝑤 ∈  𝐶. 

                   Generate 𝑢 ~ Bernoulli(𝑞), if 𝑢 = 1, then add (𝑣, 𝑤) to 𝐴 and count++;  

                   Remove 𝑤 from 𝐶; 

                  } 

            } 

} 

 

After generating the nodes, the influence probability on each arc is assigned. In our 

network, we only need to identify the arcs that represent the support cliques. To do this, a 

positive truncated normal distribution random number is used to fix the size of support 

cliques and then fit them into the existing arcs. We note that this algorithm generates a 

directed graph in which some of the weak relations in the social network are not included. 

3.3.2 The Church Network 

We apply our generalized social network to churches. First we divide the entire 

metropolitan area into divisions with each division centered on a megachurch. The 

geographical boundaries of the divisions can be represented spatially with known 

population information from actual census data. We divide the population in one parish 

into three groups: 
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• Group 1 (The clergy): This group represents the clergy in the church; they 

have a good reputation among church participants. 

• Group 2 (The regular church participants): This group represents regular 

church participants. They usually go to church on a weekly or monthly basis. 

• Group 3 (Non-church participants): This group represents the people who 

do not attend the center church on a regular basis, it includes people who 

never go to church and/or people attending other smaller churches. 

To construct the specialized church network, we first construct the network between 

individuals in Group 2 and 3. Then we connect the clergy in Group 1 to church participants 

in Group 2. To account for uncertainties in the degree of influences clergy have on 

participants, multiple connecting methods can be explored. For example, we could connect 

each clergy to each participant, or we could first generate the number of clergies from 

which a participant is acquainted with; then choose among these the most influential clergy 

to connect to the participant. The transition probability on the arcs connecting Group 1 and 

Group 2 equals the probability on the arcs representing the support clique for weekly 

church participants and the arcs representing the sympathy group for monthly churchgoers. 

An example of the church network is displayed in Figure 1. 
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Figure 1 – An example of the church network. 

3.3.3 The HIV/AIDS Infection Rate Estimate 

We design a zip code-based approach using the CDC HIV/AIDS infection rate data 

that are organized by zip codes to estimate the HIV/AIDS infection rate and assign the 

infections on the nodes of our network. The approach consists of three steps: 

Step 1: Take the megachurch as the center, and construct a circle of radius 𝑅. This 

circle represents the geographical scope that the impact of the church could reach. 

Step 2: For each zip code within this circle, calculate its distance to the church. Let 

𝑑𝑖 denote the 𝑖𝑡ℎ distance. In practice, we choose the zip code position on Google map to 

represent the zip code and use it to calculate its distance from the church. 
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Step 3: Let 𝐼𝑘 denote the zip code set of the kth circle, excluding the zip code for the 

church (k). The infection rate 𝑟𝑘 for this church region is calculated as follows. 

 𝑟𝑘 = 𝛼𝑓𝑘 + (1 − 𝛼) ∑ 𝑤𝑖𝑓𝑖

𝑖∈𝐼𝑘

 (1) 

Here 𝑓𝑘  denotes the CDC infection rate for the zip code that contains the church, 𝛼 ∈

[0,1] is the weight placed on this zip code; and 𝑤𝑖 is calculated as 

 
𝑤𝑖  =

𝑒−𝑑𝑖

∑ 𝑒−𝑑𝑖𝑖∈𝐼𝑘

 (2) 

−𝑑𝑖 is used as the relative weight of the 𝑖𝑡ℎ zip code to reflect that the influence of 

the church would diminish exponentially with respect to distance. 

3.4 Experimental Results 

The city of Atlanta is used to demonstrate the model usage, and HIV/AIDS 

information spread analysis. Atlanta, with a population of 456,002 [2014 census], is 

experiencing a huge HIV/AIDS outbreak. Based on CDC data some areas in downtown 

Atlanta have an HIV/AIDS infection rate as high as some undeveloped African countries 

(AIDSVu (2019) [2]). Further, Georgia is ranked the 8th highest in church attendance 

among the 50 states and District of Columbia (Newport (2015) [46]), with 39% of Georgia 

residents attending church on a weekly basis; making Atlanta a perfect site to analyze the 

effects of disseminating HIV/AIDS information via churches. 
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3.4.1 The Independent Cascade Model 

There are 12 megachurches in the Atlanta area, all have over 1,000 regular 

participants (Churches in metro Atlanta area  (2006) [18], Fast Facts about American 

Religion  (2006) [25]). There are also many smaller churches. In this paper we infer the 

spreading effects by analyzing the megachurches only. Figure 2 shows the locations of the 

churches. The only data available to us is the number of weekly participants, each centered 

on a megachurch. For each division of the church, we apply our model (from Section III) 

to establish the influence network and estimate the HIV/AIDS infection rates. This method 

is iteratively applied to all the divisions to estimate the spreading effects to the entire city 

of Atlanta. By simulating the activities centered on each megachurch, we could estimate 

the spreading scope in the population radiated by the megachurches and use this to get an 

inference on the effects on the whole city. In this way, the problem of solving a graph with 

400 thousand nodes involves solving independently each church partition. Inter-

dependency effects (across partitions) can also be modeled.  

 

Figure 2 – Megachurches in city of Atlanta. 
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Our experiments intend to i) prove (and confirm) that in the church clergy-participant 

network, the most influential nodes for maximizing the overall influence are the clergy 

nodes; and ii) evaluate the overall effects under various interactions. This will assist church 

clergy and decision makers in strategizing the rules of engagement with the participants to 

optimize their overall influence. 

We test three homogeneous models contrasting the different connection and 

interaction between clergy and participants. In model 1, each clergy member is connected 

to each participant. The subgraph connecting clergy and church participants is bipartite. In 

model 2, we randomly generate the number of clergies a participant knows and randomly 

assign them to an available clergy. The number of clergies a participant knows is a discrete 

uniform distribution from 1 to number of clergy. In model 3, each participant is only 

matched to one clergy member. This seems realistic since each churchgoer tends to have 

his/her trusted clergy. Each clergy member knows a binomial distributed number of 

participants. We also include two mixed / heterogeneous models (model 4 and 5), In model 

4, the clergy and the participants are connected with equal proportion as in model 1, 2 and 

3 respectively (i.e., 1/3 for each). In model 5, the mixing percentage of the three models 

are 25%, 25% and 50% respectively. In all models, only one kind of information is 

spreading on the network. In our test, the cardinality of our target set is equal to the number 

of clergies for each church. We run the test 1000 times for each church and take the average 

over the runs. The model parameters used across all models are shown in Table 2. 
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Table 2 – Model parameters. 

Parameter name Value Source 

# of monthly participants/# of weekly participants 24/39 Newport (2015) [46] 

The rate of clergy/total population 0.002 Fast Facts about 

American Religion  (2006) 

[25] 

Percentage of mutual friendships 0.9 assumption 

Transition probability for support clique 0.2 assumption 

Transition probability for sympathy group 0.05 assumption 

Radius of the church influence circle 5 km assumption 

α in Equation (1) 0.5 assumption 

The test results show that the most influential set exactly contains all clergy 

members. The results are expected since clergy affect / influence many more people than 

others. Thus, we focus on the influence propagation scope when all the clergies are 

influenced and served as the initial active set. 

Figure 3 shows the results for the 5 models. The two horizontal axes are the number 

of weekly participants and the HIV/AIDS density in the area where the church is located. 

The vertical axis shows the simulation results on the number of HIV/AIDS participants 

who are influenced / affected positively by clergy efforts in disseminating information. We 

observe that results from model 1 and model 2 are quite similar and the most effective, and 

the results from model 3 are the least effective. The mixed cases return results that are 

bounded above and below by model 1 and model 3, respectively.  
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Figure 3 – Affected HIV/AIDS population in each of the megachurches. 

Figure 4 shows the percentage of HIV/AIDS population influenced. The results show 

that regardless of the church population size, model 1 asserts the highest influence (55% 

versus 13% for model 3 respectively), due to the close relationship that participants have 

with each clergy. Model 2 (dark blue) shows that participants only need to know sufficient 

number of clergy (not all of them) to benefit from the outreach as well as in Model 1. Model 

3 shows that if each participant only knows one clergy, the outreach will not be very 

successful. Mixed models probably present a more realistic connection pattern of the 

congregation. It is encouraging that they offer 27% to 43% positive outreach gain. These 

findings demonstrate that effective communication and interaction style must be explored 

to optimize clergy outreach efforts.  
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Figure 4 – Percentage of positively affected HIV/AIDS population. 

Our findings also suggest that regardless of the church size, the percentage of the 

HIV/AIDS population that is positively influenced remains rather steady. In fact, the 

percentage of all people (regardless of HIV/AIDS infection status) influenced by the 

church also remains relatively constant. If n denotes the population size in a certain church 

area with h the percentage of HIV/AIDS infected population; and p the size of HIV/AIDS 

population who are influenced positively at the end, our findings suggest that 𝑝 =  𝜆 𝑛 ℎ 

for some positive scalar 𝜆 <  1. This leads to an interesting conclusion: we can estimate a 

rough ranking of the churches in any area by simply ranking the product of the number of 

participants and the HIV/AIDS infection rate in this area. Strategically, public health 

leaders can determine in this order the allocation of resources in reaching out to the 

churches.  

3.4.2 Competitive Model 

In reality, as with social media, where there are positive messages and misleading 

and/or negative messages, there may be opposite information countering the information 

that we want to spread. We would like to investigate the net effect of this competitive 
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information messaging. We use a competitive independent cascade (CIC) model defined 

in Definition 2.12 with proportional tie-breaking rule to model this competitive outreach 

environment. In a simplistic case, two types of information are labeled: one positive and 

one negative. The positive information is what we would like to spread and influence the 

community positively; while the negative information is countering our effort.  

There are usually stable groups holding the positive and negative opinions 

respectively. A node is said to be stable when it holds the positive or negative opinion 

before the information dissemination starts. In our simulation for the competitive model, 

we assume initially 1%, 5%, 10% and 15% population hold positive opinion while the 

similar number hold opposite opinion. Our aim is to compare the spreading effects with 

and without HIV/AIDs outreach by the clergy.  

Figure 5 contrasts the clergy effect against the rate of HIV/AIDS population that are 

positively influenced under the assumption of model 3 (that every participant only knows 

one clergy). When the endogenous percentages of people holding opposite opinions is 

relatively high (at 15%), the effect of the clergy outreach is minimal and dominated by the 

network effect of opposing stable groups. The clergy’s influence becomes more significant 

when most participants have neutral opinion. When only one percent of population hold 

opposite opinion, the positive influence of the clergy has a two-fold increase. This affirms 

that religious leaders play an important role in society and can potentially have a broad 

impact on HIV education. We observe that the rates do not fluctuate much, showing that 

when other variables are fixed, the size of the church congregation does not play a leading 

role in the scope of information propagation. This again supports the linear relationship 

that we observe in the non-competitive case. 
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Figure 5 – Competitive model: Percentage of positively affected HIV/AIDS 

population with (solid curves) or without (dotted curves) clergy outreach (when 

each participant is connected to one clergy only. 

Figure 6 analyzes the roles of the congregational workers as the size of the stable 

group varies. The horizontal-axis is the percentage of positive stable group in the 

population (same as the percentage of negative stable group) and the vertical-axis is the 

percentage of HIV/AIDS population who are affected by positive information. 

 

Figure 6 – Competitive model: Percentage of affected HIV/AIDS population for the 

largest church in Alanta. The x-axis corresponds to the endogenous percentage of 

people holding positive (and negative opinions). 

1%_clergy

5%_clergy

10%_clergy

15%_clergy

1%_no_clergy

5%_no_clergy

10%_no_clergy

15%_no_clergy

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 10000 20000 30000 40000 50000 60000 70000

Population size

0%

10%

20%

30%

40%

50%

60%

1% 5% 10% 15%
Percentage of the stable set in the total population

model1_clergy

model2_clergy

model3_clergy

model4_clergy

model5_clergy

no_clergy



 

 40 

Recall that in model 4, 1/3 of the participants are connected to all clergy, another 1/3 

of the participants are connected to a random number of clergy while the remaining 1/3 are 

connected to only one clergy. In model 5, the weights of the 3 become 0.25, 0.25 and 0.5. 

The results for the 5 models without involvement of clergy (orange curves) are 

virtually identical. When clergy are not involved, the connection style is not important.  

For the 5 models with clergy HIV outreach, model 1 and model 2 show a slight 

decreasing trend with respect to the stable group size. This means that in models 1 and 2 

clergy are somewhat more influential when the stable group size is small. The gap between 

having clergy versus no clergy are very significant, although diminish as the size of the 

stable set increases. This clearly confirms the important role of clergy, especially when the 

church community is close-knit and participants and clergy know each other well.  

Models 3, 4 and 5 show increasing trends, showing that clergy become important as 

the stable group becomes bigger. These models have looser interaction networks. This 

shows that when the participants have strong opinions, it starts to spill over with the 

clergy’s outreach.  

Contrasting the with (blue) and without clergy (orange) trend across all models, we 

can see from Figure 6 that the gap between the two curves diminishes when the size of the 

stable set expands, which corresponds to our intuition that the importance of churches in 

spreading information decreases when the original propagation sources are ample. 

However, the positive role of clergy in disseminating knowledge remains significant 

(despite strong opinion) when participants know and interact with multiple clergy. The 

effect is most limiting when each participant only knows one clergy.  
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3.5 Conclusions 

In this paper, we propose an approach to rank churches based on their capability to 

spread HIV/AIDS information when limited data is available. Since the resources that 

public health leaders have for church educational programs are limited, choosing the sites 

to affect the maximum (positive) influence is practical and essential. Although we focus 

on HIV/AIDS experiments in our validation, the computational framework is generic and 

is applicable to diverse social network analyses, including public health disease trending 

and/or in spreading social or other information. 

The method presented has three novelties. First, it builds a generalized influence 

network based on sociological human behavior theory. The model does not require specific 

group data and/or a local social network construct. Second it estimates the disease infection 

rate through spatial and census information. Third, it models the network effect among all 

people (clergy and participants) by coupling sociology theory of social circles. The 

computational algorithm simulates combination network effect and measures the net 

positive outcome. 

We implement and analyze the model for effective HIV/AIDS knowledge 

dissemination for 12 megachurches in the city of Atlanta. When no competing information 

is present, we discover that while different connection/interaction structures between 

clergy and regular church participants would affect the degree of knowledge spread, the 

percentage of HIV/AIDS infected people who would eventually learn the disease 

information with the help of the church stays constant, regardless of the church size. 



 

 42 

The same results apply to the competitive model (when both positive and negative 

information exist among the participants and the population). Thus, one can design a rough 

ranking by simply ranking the product of the church size and the local HIV/AIDS infection 

rate. This offers a practical policy for public health HIV intervention and education. 

When there is competing information, it becomes clear that clergy assert more 

significant (and positive) influence among church participants when the church community 

is close-knit and participants know multiple clergy. Even when each partcipant knows only 

one trusted clergy, clergy does play an important role in the information spread, and their 

significance is more evident when the strong opinion group is small. Churches can organize 

social activities to facilitate active participants’ interaction to a broad group of church 

members to optimize their effect. When participants interact with multiple churches, the 

overall impact of clergy in promoting HIV/AIDS knowledge becomes more significant. 

Compared to previous results for influence networks, our algorithm is scalable and can be 

used to analyze any population size. 
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CHAPTER 4. INTERDEPENDENCY ANALYSIS IN CELLULAR 

STATION NETWORK 

The communication sector is one of the 16 critical infrastructure sectors identified 

by The Department of Homeland Security (DHS). Cellular station networks are a vital part 

of the sector on which almost all private businesses, organizations and governments rely. 

In this chapter, we try to answer the question that if the resources held by policy makers 

are restricted, how can we find the most critical cellular stations whose collapse would 

affect most cellular stations in the network. To solve the problem, we present a two-stage 

framework to analyze the cascading effects in the cellular station network using the linear 

threshold influence network, where the stations are modeled as the nodes and the station 

loads variation are modeled as the influences. A case study based on the cellular station 

network in the United States is explored as experiments. 

4.1 Introduction 

Critical infrastructures (CI) are critical components for economy operations. The 

disruption of CI could have debilitating effects on private businesses and governments. The 

importance of the CI security and resilience has been identified by U.S. government 

(Presidential Policy Directive, White house, 2013[21]). Additionally, the CI are highly 

dependent on each other so that a malfunction of any component could lead to other 

component failures, which we call cascading effects. For example, in August 2016, a power 

outage struck the Delta Airlines data center in Atlanta, causing data loss, this failure spread 

to the air transportation sector since most of the Delta Airlines could not depart due to loss 
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of data. Such an interruption can quickly propagate to many other airports (Dastin (2016) 

[19]).  

The communication sector is a CI on which many other sectors, such as 

transportation, commercial and governmental facilities and finance, rely (National 

Infrastructure Protection Plan (NIPP) Communications Sector-Specific Plan for 2015  

(2015) [43]). Among all the components of the communication sector, the cellular base 

station network is one of the most important part. During a crisis, some towers in the 

network may stop functioning, the users’ devices will have to use other nearby towers, 

causing congestions. In such a situation, nearby users may also suffer service outages. 

Thus, cascading effects arise. 

In this chapter, we will present methods to summarize a LT influence network from 

cellular station network data as well as a two-stage approach to investigate the cascading 

effects. The first stage is only necessary when the problem scale is large. We perform a 

geographical clustering on all the nodes to form sub-networks. In the second stage, we 

construct a linear-threshold influence network to simulate the congestion propagation. 

4.2 Related Works 

The critical infrastructure interdependency was first investigated in 2001 (Rinaldi et 

al. (2001) [53]), the paper classified for CI interdependency: physical, cyber, geographical 

and logical. The classification gave a good reference for most of the paper afterwards. Their 

subsequent paper (Rinaldi (2004) [52]) summarizes the likely methods for the 

interdependency analysis.  
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There are three directions for modelling interdependency: simulation based, analytics 

based and data based (Ouyang (2014) [47]). Among simulation-based approaches, 

Dudenhoeffer et al. (2006) [23] designed an agent-based approach to simulate the and used 

genetic algorithm to decide the CI components to protect/restore. Johansson and Hassel 

(2010) [33] model the CI interdependency as a network and simulate the flows when 

removing edges to find strains added to the network. Zio and Sansavini (2011) [61] made 

a notable approach that model the interdependency as load transfers that failed nodes would 

transfer its node to adjacent nodes, however they do not have realistic experiments to test 

how well the model works. For analytics based approaches, Lee II et al. (2003) [38]and 

Lee II et al. (2007) [37] modeled the provision interdependency as a multi-commodity 

network flow problem and gave a mixed-integer programming (MIP) formulation to solve 

it. Svendsen and Wolthusen (2007) [57] designs another multi-commodity flow 

formulation but assigns a response function for each arc and each resource, where some of 

the resources can be buffered. A drawback of using network problem for this is that it can 

only model the provision interdependency while other types of interdependency, like 

geographical, do exist. Data-based models are some methods designed based on special 

data forms. For instance, Ramachandran et al. (2015) [49] summarizes the geospatial data 

to find the CI components that would affect most other CI components geographically. 

Reilly et al. (2015) [50] assumed that each CI sector is managed by a certain governmental 

or private department and explored the externality of the policy taken by some departments 

as interdependency. 

There are three directions for modelling interdependency: simulation based, analytics 

based and data based (Ouyang (2014) [47]). Among simulation-based approaches, 
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Dudenhoeffer et al. (2006) [23] designed an agent-based approach to simulate the and used 

genetic algorithm to decide the CI components to protect/restore. Johansson and Hassel 

(2010) [33] model the CI interdependency as a network and simulate the flows when 

removing edges to find strains added to the network. Zio and Sansavini (2011) [61] made 

a notable approach that model the interdependency as load transfers that failed nodes would 

transfer its node to adjacent nodes, however they do not have realistic experiments to test 

how well the model works. For analytics based approaches, Lee II et al. (2003) [38]and 

Lee II et al. (2007) [37] modeled the provision interdependency as a multi-commodity 

network flow problem and gave a mixed-integer programming (MIP) formulation to solve 

it. Svendsen and Wolthusen (2007) [57] designs another multi-commodity flow 

formulation but assigns a response function for each arc and each resource, where some of 

the resources can be buffered. A drawback of using network problem for this is that it can 

only model the provision interdependency while other types of interdependency, like 

geographical, do exist. Data-based models are some methods designed based on special 

data forms. For instance, Ramachandran et al. (2015) [49] summarizes the geospatial data 

to find the CI components that would affect most other CI components geographically. 

Reilly et al. (2015) [50] assumed that each CI sector is managed by a certain governmental 

or private department and explored the externality of the policy taken by some departments 

as interdependency. 
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4.3 Methods 

4.3.1 Model Selection 

The modern cellular network consists of many small calling areas where each area is 

served by a cellular base station. The base stations are transceivers connecting several other 

devices to one another and/or to a wider area. The base stations would exchange 

information when the communication is made. When physical or cyber attack paralyzes a 

tower, the users who are sending or receiving signal of it need to seek working towers 

nearby, and thus aggravate the burdens of them. 

Our model tries to answer such a question: Given a number 𝐾, which represents the 

number of stations to which our resources can be allocated, which 𝐾 stations in a given 

area, if attacked, could affect the largest number of stations in the network. By answering 

this question, we should be able to know that the failure of these stations would lead to the 

most serious loss and thus the protection would have the highest efficiency. 

In the IC influence network model each node attempt to activate the adjacent 

inactivated node independently, which means for any inactivated node, even one activated 

node in its in-node set could succeed in activating it. However, that contradicts the facts 

that the load transfer is accumulative in cellular base station network. The incoming signal 

must exceed a certain threshold (max power) for the base stations to stop taking new users. 

The LT influence network model fits much better since the threshold 𝜃𝑣 can be interpreted 

as 
Max load−current load

Total load incoming when nearby towers are down
 of node 𝑣. 
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4.3.2 Learning the Parameters of the LT Influence Network 

After choosing the influence network model, the next step would be defining the 

network elements. Naturally we let each node denote a base station in the cellular network. 

To find arc set 𝐸, we define a max reach distance 𝑅 for all base stations, it is the distance 

from the most distant user to the base station. For any base stations 𝑤 and 𝑣, if their distance 

is less than 2𝑅, we assume that there might exist user who originally uses 𝑤 but has to use 

𝑣 when 𝑤 is paralyzed. Thus an arc should go from 𝑤 to 𝑣, and vice versa. 

The final step is to learn the weights on arcs. Theoretically, for each node 𝑣, let 𝐿𝑣
𝑀 

be the maximal load, 𝐿𝑣
𝐶  be the current load and 𝐿(𝑢,𝑣) be the load going from 𝑢 to 𝑣 when 

node 𝑢 is down. We should have  

𝜃𝑣 =
𝐿𝑣

𝑀 − 𝐿𝑣
𝐶

∑ 𝐿(𝑢,𝑣)(𝑢,𝑣)∈𝐸
 

Notice that 𝜃𝑣, as we have defined, is U[0,1] random variable. This is because the 𝐿𝑣
𝐶  and 

𝐿(𝑢,𝑣)  are constantly changing. Meanwhile, We assume that ∑ 𝐿(𝑢,𝑣)(𝑢,𝑣)∈𝐸 ≥ 𝐿𝑣
𝑀 − 𝐿𝑣

𝐶 , 

which means that if all the adjacent nodes around 𝑣 are down, 𝑣 would also be down due 

to high loads. With these assumptions, we let weight be  

𝑤(𝑢, 𝑣) =
𝐿(𝑢,𝑣)

∑ 𝐿(𝑢,𝑣)𝑢∈𝑁𝑖𝑛(𝑣)

 

so that for any 𝑣, ∑ 𝑤(𝑢, 𝑣)𝑢∈𝑁𝑖𝑛(𝑣) = 1. 𝜃𝑣 < ∑ 𝑤(𝑢, 𝑣)𝑢∈𝑁𝑖𝑛(𝑣) = 1 corresponds to the 

assumption that 𝑣 is down if all the adjacent nodes around 𝑣 are down.  
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Thus, to calculate 𝑤(𝑢, 𝑣), we only need 𝐿(𝑢,𝑣), While we assume that we know the 

geographical positions of base stations, we first randomly generate the users’ locations 

uniformly on the whole target area. For each user, associate it to the nearest station, which 

should be the base station it uses. Except the nearest station, we also find the second nearest 

station for each user, which represents the station that the user would connect when the 

primary station is down. In this way, 𝐿(𝑢,𝑣) is the number of users who uses 𝑢  as the 

primary station and use 𝑣 as the secondary station. By definition of 𝑤(𝑢, 𝑣), we don’t care 

the absolute value of 𝐿(𝑢,𝑣) but only how much percentage it takes in ∑ 𝐿(𝑢,𝑣)𝑢∈𝑁𝑖𝑛(𝑣) . Thus 

the number of virtual users used does not matter as long as it is sufficiently large. 

4.3.3 Two-Stage Framework to Analyze the Influence Network 

After getting the LT influence network, the problem next is to find the nodes that can 

influence the greatest number of nodes in the network. For large networks, the Greedy-MC 

method would take very long time to solve. As for the Simpath method, although the 

heuristics is scalable, it has no theoretical lower bound and the would perform badly when 

the network size is big and complex. In view of this, we designed a two-stage framework 

to analyze this problem. 

Stage 1 is forming sub-networks by clustering. To compare two methods on different 

sizes of network, we need to break the complex large network into small networks. Since 

the influences cannot spread over long range, it is reasonable to cluster geographically, the 

clustering method we used is K-means++ method by Arthur and Vassilvitskii (2007) [5]. 

In stage 1 we only cluster nodes, the arcs between nodes which belong to different clusters 

would be removed. 
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In stage 2, we select the nodes to protect from each sub-network. Suppose that we 

get 𝑛 sub-networks in stage 1 and need to select 𝐾 nodes. For each sub-network got from 

stage 1, we select ⌊
𝐾

𝑛
⌋  or ⌈

𝐾

𝑛
⌉  nodes by Greedy-MC method and Simpath method 

respectively so that the total number of selected nodes equals to 𝐾. This method could 

ensure the final node set distribution is generally uniform on the target area. It is worth 

pointing out that the choice 𝑛 implies a tradeoff between less artificial restrictions on the 

original network and higher precision on each sub-network. Thus, the user should try 

various 𝑛 values to find the one that gives the best results. 

4.4 Experiments and Sensitivity Analysis 

4.4.1 Data and Experiments 

We test our model on the cellular station data set on Homeland Infrastructure 

Foundation-Level Databased provided by U.S. Department of Homeland Security (DHS 

(2018) [20]). The dataset includes the geographical locations of 23498 cellular towers in 

the United States. 

We set max reach distance 𝑅= 5km to formulate the LT influence network as we 

discussed in part 4.3.2. When applying the two-stage framework to analyze the LT 

influence network, we choose 𝐾=100, i.e. we want to pick 100 most influential nodes. The 

𝑛 value we try on both Simpath and MC-Greedy method are [10, 20, 25, 33, 40, 50, 60, 70, 

80, 90, 100]. Generally, we choose the grid size to be 10, for 𝑛 values 25 and 33, we try it 

because it allows exactly 4 and 3 nodes in each cluster and Greedy method performance 

descends when number of nodes increases due to dependency in network. For Simpath 
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method, we also try skipping stage 1, i.e. no clustering, to compare the results. We did not 

do this for MC-Greedy since the method is not scalable. In MC-Greedy method, every MC 

simulation is set at 1000 rounds. 

The results are presented in Figure 7 and Figure 8. In Figure 7 we plot the final 

affected nodes for two methods and various 𝑛 values. Each curve represents a method. 

From the figure we can see that for each method, when the 𝑛 values change, the number of 

final affected nodes are not monotone but with several turning points. For Simpath method 

the maximal value appears at 𝑛 = 33 while for MC-Greedy method it appears at 𝑛 = 60. 

For most of 𝑛 values less than 40, the Simpath is better than MC-Greedy while for 𝑛 values 

over 40, the MC-Greedy outperforms. This is possibly because when choosing more nodes, 

the MC simulation requires more rounds to be accurate and thus the MC-Greedy gives bad 

results. The results by Simpath method without clustering is the worst among all results 

which justifies the necessity of stage 1. Last but not least, the overall optimal 𝑛 is 60 when 

using MC-Greedy method. 

 

Figure 7 – Number of final affected nodes when choosing 100 stations. 
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Figure 8 shows the running time for two methods. As a scalable approach, Simpath 

is much faster for all 𝑛 values. 

 

Figure 8 – Running time for choosing 100 stations. 

4.4.2 Sensitivity Analysis 

After getting the results of both methods, a natural question is that whether two 

methods give similar results, i.e. most of the chosen stations overlapped. Table 3 shows the 

number of stations overlapped for various n values. The overlapped nodes are fluctuating 

around 20, which means only about 20% of the nodes overlapped. 
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Table 3 – Number of overlapped nodes across two methods. 

Number of clusters Overlapped nodes 

10 23 

20 15 

25 14 

33 13 

40 15 

50 24 

60 20 

70 16 

80 18 

90 23 

100 22 

However, it is also possible that two nodes chosen by two methods are close rather 

than exactly overlap. To check this, we plotted two set of figures. The first set includes 

Figure 9, Figure 10, and Figure 11, which compare the nodes chosen by two methods in 

100, 50 and 33 clusters, respectively. From the figures we see that for 100 clusters, the 

chosen nodes by two methods are not geographically close. For 50 and 33 clusters, even 

though the number of exactly overlapped nodes are not greater, the nodes chosen by two 

methods are close with each other. We assume the reason is that the sub-networks divided 

by 100 clusters are not favorable at all, like they represent some area with very low 

population density. Since it is forced to choose 1 node from each sub-network, some chosen 

nodes from such sub-network would not appear in 50 or 33 clusters. 
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Figure 9 – Nodes chosen by two methods with 50 clusters. 

 

Figure 10 – Nodes chosen by two methods with 100 clusters. 

 

Figure 11 – Nodes chosen by two methods with 33 clusters. 
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Another sensitivity analysis we have done is to check that for the same method and 

different number of clusters, whether the same set of nodes are chosen or not. The results 

are shown in the second set of figures, which includes Figure 12 and Figure 13. As we have 

analyzed above, for both methods, the nodes from 33 and 50 clusters are close to each other 

while the nodes from 100 clusters outstand. 

 

Figure 12 – Nodes chosen by 33, 50 and 100 clusters by MC-Greedy method. 

 

Figure 13 – Nodes chosen by 33, 50 and 100 clusters by Simpath method. 
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4.5 Conclusions 

In this chapter, we presented a method to formulate the cellular station network as an 

linear-threshold influence network and a two-stage framework to analyze the LT influence 

network. The method was tested on the cellular station network within the U.S. We 

analyzed the results to identify the optimal partition in the network and made the sensitivity 

analysis to compare different influence network analyzing method and partitions. The 

results would give a good reference for the policy makers on how to allocate the limited 

resources to protect the communication infrastructures more efficiently. The work for next 

step would include extending the network formulation and analysis framework to other 

critical infrastructures (CI) and developing a multi-layer influence network model to 

analyze the interdependencies across CI sectors. The related work is presented in chapter 

5. 
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CHAPTER 5. MULTI-LAYER INFLUENCE NETWORK 

MODELLING ON CRITICAL INFRASTRUCTURE 

INTERDEPENDENCIES 

In this chapter, we extend the linear threshold influence network model to the multi-

layer case and use this new tool in a two-stage framework to analyze the cascading effects 

in the CI interdependency network. This is an extension of chapter 4 where we only explore 

the single-layer LT influence network. We explore two experiments on the metro Atlanta 

area and the state of Florida as the applications of the model. 

5.1 Introduction 

In this paper, we extend the single-layer linear threshold influence model that we 

have introduced in chapter 2 and 4 to the multi-layer case in order to study the scope of 

cascading failure effects from each sector. As we have done in chapter 4, we model the CI 

interdependency network as a directed graph 𝐺 = (𝑉, 𝐸). The vertices (or nodes) in 𝑉 

represent the CI facilities, such as roads, electricity transmission substations, and cellular 

base stations. A directed edge (or arc) exists in 𝐸 ⊆ 𝑉 × 𝑉 if the failure of the originating 

node can cause a failure of the ending node, thereby capturing the possibility of cascading 

failures in the network. The nodes in 𝑉 are partitioned according to their CI sector—such 

as transportation, communication, or energy—according to the Presidential Policy 

Directive 21 (PPD-21)[21], , and we use these sectors to define corresponding layers in the 

network. We build a linear threshold model on each layer and assume the cascading effects 

are independent across each layer. We show that our new multi-layer model has the same 



 

 58 

properties of the single-layer model, e.g., submodularity and live-edge graph equivalence. 

In the experiments section, two scenarios, for metro Atlanta and the state of Florida, are 

explored. 

We omit the literature review for this chapter as the contents are closely related to 

chapter 4 and relative literature are already reviewed. 

5.2 Multi-Layer Interdependency Network 

In practical CI domains, nearly all systems rely on external resources to function. For 

example, the transportation network that includes railways, airlines, and roads requires 

electricity to operate. Similarly, the electricity network that includes generating stations, 

transmission lines, and substations requires transportations systems for maintenance 

workers to access and service the facilities. As the method we used in chapter 4, We use a 

weighted influence network 𝐺 = (𝑉, 𝐸) to model these interdependencies, where nodes 

represent CI facilities, and directed edges represent dependence on the child node on 

resources from the parent node. Therefore, the failure of one CI facility has the potential to 

cascade through the network to other facilities. Each edge is assigned a weight, which 

represents the fraction of required resources that come from the parent node. 

To define the structure of a multi-layer interdependency network (MIN), we need to 

introduce the concepts of sectors and layers. We partition the nodes of 𝑉 into sectors—

where 𝐶𝑖 denotes the i-th sector—based on the CI sector to which that facility belongs (e.g., 

transportation, communication, energy). For each sector, we define a corresponding layer 

that consists of both nodes and edges. The layer includes all edges originating from its 

sector, as well as all nodes associated with these edges. Each edge will belong to exactly 
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one layer, but nodes may belong to multiple layers due to cross-sector dependencies. As a 

concrete example, a cellular base station belongs to the communication sector but requires 

resources such as electricity and roads (for access), and thus it would also belong to the 

electricity and transportation layers as a sink node.  

Definition 5.1 (Multi-layer interdependency network (MIN)). Given a finite 

directed graph 𝐺 = (𝑉, 𝐸) and a partition {𝐶𝑖 of 𝑉, i.e. 𝐶𝑖 ∩ 𝐶𝑗 = ∅, ∀𝑖 ≠ 𝑗 , ⋃ 𝐶𝑖 = 𝑉𝑖 , the 

graph 𝐺 = {𝑉, 𝐸, {𝐶𝑖}} is a multi-layer interdependency network (MIN) with sectors {𝐶𝑖}. 

For each sector 𝐶𝑖 , let 𝐸𝑖 = {(𝑣, 𝑢)|𝑣 ∈ 𝐶𝑖} and 𝑉𝑖 = {𝑣|∃𝑢, 𝑠. 𝑡.  (𝑢, 𝑣) ∈ 𝐸𝑖 𝑜𝑟 (𝑣, 𝑢) ∈

𝐸𝑖}. The subgraph 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) is a layer of 𝐺 corresponding to sector 𝐶𝑖.  

Next we define a linear threshold influence model on a MIN. Each layer can be 

treated as a single-layer linear threshold influence network, and influence—in our setting, 

CI failures—can propagate across layers. For example, if a hospital (public facilities sector) 

does not receive enough electricity (energy sector) to operate, then the hospital may have 

to temporarily close. 

Definition 5.2 (Multi-layer linear threshold influence network (MLTIN)). Given 

a MIN 𝐺 = (𝑉, 𝐸, {𝐶𝑖}), for each node 𝑣 ∈ 𝑉and each layer 𝑖such that 𝑣 ∈ 𝑉𝑖, a threshold 

𝜃𝑣
𝑖  is selected uniformly in [0,1], and all 𝜃𝑣

𝑖  are independent of each other. Every edge 𝑒 is 

assigned a weight 𝑤(𝑒) satisfying ∑ 𝑤(𝑢, 𝑣) ≤ 1𝑢∈𝑁𝑖𝑛(𝑣)∩𝐶𝑖
 for all 𝑣 ∈ 𝑉 In every layer 

the influence spreads independently using the single-layer linear threshold model defined 

in Definition 2.3. If a node becomes active in one layer, it will become active in all layers. 

That is, a node 𝑣  will become active if ∑ 𝑤(𝑢, 𝑣)𝑢∈𝑁𝑖𝑛(𝑣)∩𝐶𝑖∩𝑆𝑡−1
≥ 𝜃𝑣

𝑖  for any layer 𝑖 . 

Every node is assigned a positive weight ℎ(𝑣), and the influence function 𝜎(𝑆) is the 
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expected total weight of nodes in the final active set. That is, 𝜎(𝑆0)=𝐸[∑ ℎ(𝑣)𝑣∈𝑆∞
]. The 

MLTIN is denoted by 𝐺 = (𝑉, 𝐸, {𝐶𝑖}, 𝑤, ℎ), or 𝐺 = (𝑉, 𝐸, {𝐶𝑖}) when 𝑤 and ℎ are clear 

from context. 

Figure 14 shows an example of a MLTIN for comparison to a single-layer linear 

threshold network. The top graph is a single-layer linear threshold network with edge 

weights. The bottom graph is a MLTIN, where sector 1 contains nodes {A, B, C} and sector 

2 contains nodes {D, E, F}. Layer 1 of this graph includes nodes {A, B, C, D, E} and all 

red edges, while the layer 2 includes nodes {B, C, D, E, F} and all blue edges. 

 

Figure 14 – Linear threshold network and MLTIN. 

Before we dig into the properties of the MLTIN we just defined, we review some 

results we introduced in Chapter 2. Kempe et al. (2003) [34] proved that for both the IC 

and LT models, the influence function is nonnegative, non-decreasing, and submodular. 

And the Greedy algorithm achieves a multiplicative (1 − 1/𝑒) -approximation to the 

optimal solution given these properties of the influence function Nemhauser et al. (1978) 
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[44]. Mossel and Roch (2007) [42] extended these results to the Weighted General 

Threshold Model (WGTM) with more general influence functions of the form 

𝜎(𝑆0)=𝐸[𝑔(𝑆∞)], for any nonnegative set function 𝑔(𝑆): 2𝑉 → [0, ∞). The WGTM is 

nothing but the General Threshold Model we introduced in Definition 2.5 with every node 

assigned a positive weight ℎ(𝑣). Note that for the linear threshold model, 𝑔(𝑆) = |𝑆|. 

Mossel and Roch (2007) [42] showed that if both 𝑓𝑣(⋅)  and 𝑔(⋅)  are monotone and 

submodular, then 𝜎(⋅) is monotone and submodular and can be approximately optimized 

by the Greedy algorithm. 

MLTINs are designed for the analysis of the network interdependencies that motivate 

our research. We next show that the MLTIN is an instance of a Weighted General 

Threshold Model where every node is assigned in Definition 2.5 (Lemma 5.1), and 

additionally that its influence function satisfies technical conditions ensuring that the 

Greedy method will achieve a (1 − 1/𝑒)-approximation for the influence maximization 

problem for an MLTIN (Theorem 5.1). 

Lemma 5.1. MLTIN is a weighted general threshold network with𝑓𝑣(𝑆) =  1 −

∏ (1 − ∑ 𝑤(𝑢, 𝑣)𝑢∈𝐶𝑖∩𝑆 )𝑖  and 𝑔(𝑆) = ∑ ℎ(𝑢)𝑢∈𝑆 , where 𝑤(𝑢, 𝑣) are the weights on edge 

(𝑢, 𝑣) and ℎ(𝑢) is the weight on node 𝑢. 

Proof. First, we check the conditions to activate an uninfluenced node in both 

MLTIN and WGTM. ∀ 𝐺 = {𝑉, 𝐸, {𝐶𝑖}} , an uninfluenced node 𝑣 ∈ 𝑉 and an influenced 

set 𝑆 ⊆ 𝑁𝑖𝑛(𝑣), the condition to influence 𝑣 for MLTIN is ∃𝑖, 𝑠. 𝑡. ∑ 𝑤(𝑢, 𝑣) ≥ 𝜃𝑣
𝑖

𝑢∈𝐶𝑖∩𝑆 , 

and the condition to influence 𝑣  for WGTM with activation function 𝑓𝑣(𝐴) = 1 −

∏ (1 − ∑ 𝑤(𝑢, 𝑣)𝑢∈𝐶𝑖∩𝐴
𝑛
𝑖=1 ) is 1 − ∏ (1 − ∑ 𝑤(𝑢, 𝑣)𝑢∈𝐶𝑖∩𝑆

𝑛
𝑖=1 ) ≥ 𝜃𝑣 , where 𝜃𝑣~𝑈[0,1]. 
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It suffices to show that given the same influenced set 𝑆 ⊆ 𝑁𝑖𝑛(𝑣), the probabilities to 

influence 𝑣 are the same for both models. It is straightforward to show that for both models, 

the influence probabilities are 1 − ∏ (1 − ∑ 𝑤(𝑢, 𝑣)𝑢∈𝐶𝑖∩𝑆
𝑛
𝑖=1 ). Thus, the two models are 

equivalent.  

Comparing 𝜎(𝑆0)  between MLTIN and the weighted general threshold model 

implies that 𝑔(𝑆) = ∑ ℎ(𝑢)𝑢∈𝑆 in MLTIN. ∎ 

Theorem 5.1 shows that both 𝑓𝑣(⋅)  and 𝑔(⋅)  are monotone and submodular are 

satisfied for MLTINs, and hence the Greedy algorithm provides a (1 − 1/𝑒) -

approximation for the influence maximization problem on MLTINs (Nemhauser et al. 

(1978) [44]).  

Theorem 5.1. For MLTIN, 𝜎(𝑆0) = 𝐸[∑ ℎ(𝑢)𝑢∈𝑆∞ ]  is nonnegative, monotone 

increasing, and submodular. 

Proof. It suffices to show both 𝑓𝑣(⋅) and 𝑔(⋅) in MLTIN are monotone increasing 

and submodular. From Lemma 1, we know 𝑓𝑣(𝑆) = 1 − ∏ (1 − ∑ 𝑤(𝑢, 𝑣)𝑢∈𝐶𝑖∩𝑆 )𝑖  and 

𝑔(𝑆) = ∑ ℎ(𝑢)𝑢∈𝑆 .  It is clear that 𝑔(⋅)  is monotone increasing and submodular since 

𝑔(𝑆) = ∑ ℎ(𝑢)𝑢∈𝑆  is a linear function (thus submodular) and for all 𝑢, ℎ(𝑢) is positive, so 

𝑔(𝑆) is increasing.  

For 𝑓𝑣(𝑆) , note that ∀𝐴 ⊆ 𝐵 ⊂ 𝑁𝑖𝑛(𝑣),  ∑ 𝑤(𝑢, 𝑣) ≤ ∑ 𝑤(𝑢, 𝑣)𝑢∈𝐶𝑖∩𝐵𝑢∈𝐶𝑖∩𝐴  and 

thus 𝑓𝑣(𝐴) ≤ 𝑓𝑣(𝐵). To prove submodularity, ∀ 𝐺 = {𝑉, 𝐸, {𝐶𝑖} and ∀𝑣 ∈ 𝑉, let 𝐴 ⊆ 𝐵 ⊂

𝑁𝑖𝑛(𝑣), and ∀𝑢 ∈ 𝑁𝑖𝑛(𝑣)\𝐵. Assume that there are a total of 𝑛 sectors in 𝐺. Let 𝐴𝑖 = 𝐴 ∩

𝐶𝑖 and 𝐵𝑖 = 𝐵 ∩ 𝐶𝑖 .  Assume that 𝑢 ∈ 𝐶𝑘. We have: 
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𝑓𝑣(𝐴) = 1 − ∏(1 − ∑ 𝑤(𝑠, 𝑣)

𝑠∈𝐴𝑖

𝑛

𝑖=1

) 

= 1 − ∏ (1 − ∑ 𝑤(𝑠, 𝑣)

𝑠∈𝐴𝑖

𝑛

𝑖=1,𝑖≠𝑘

) ∙ (1 − ∑ 𝑤(𝑠, 𝑣)

𝑠∈𝐴𝑘

) 

= 1 − 𝑀 (1 − ∑ 𝑤(𝑠, 𝑣)

𝑠∈𝐴𝑘

) 

Here we let 𝑀 = ∏ (1 − ∑ 𝑤(𝑠, 𝑣)𝑠∈𝐴𝑖

𝑛
𝑖=1,𝑖≠𝑘 ). Similarly, we have: 

𝑓𝑣(𝐴 ∪ 𝑢) = 1 − 𝑀 (1 − ∑ 𝑤(𝑠, 𝑣)

𝑠∈𝐴𝑘∪𝑢

) 

Thus: 

𝑓𝑣(𝐴 ∪ 𝑢) − 𝑓𝑣(𝐴) = 𝑀𝑤(𝑢, 𝑣) 

We define 𝑁 = ∏ (1 − ∑ 𝑤(𝑠, 𝑣)𝑠∈𝐵𝑖

𝑛
𝑖=1,𝑖≠𝑘 ). The same equation applies: 

𝑓𝑣(𝐵 ∪ 𝑢) − 𝑓𝑣(𝐵) = 𝑁𝑤(𝑢, 𝑣) 

Notice that we have 𝐴𝑖 ⊆ 𝐵𝑖 , so 𝑀 ≥ 𝑁 , which implies 𝑓𝑣(𝐴 ∪ 𝑢) − 𝑓𝑣(𝐴) ≥

𝑓𝑣(𝐵 ∪ 𝑢) − 𝑓𝑣(𝐵). Thus, 𝑓𝑣() is submodular, and hence σ() is monotone increasing and 

submodular. ∎ 

Theorem 5.1 thus implies that the Greedy method for influence maximization and its 

improved form such as CELF and CELF++ of Goyal et al. (2011) [29]. will achieve a (1 −

1/𝑒)-approximation to the optimal set. 
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We next define the live-arc graph for MLTIN, which we will use in our experiments 

in Section 5.3 to improve computational efficiency.  

Definition 5.3 (Multi-layer live-arc graph). Given a MILTIN 𝐺 = (𝑉, 𝐸, {𝐶𝑖}) with 

layers {𝐺𝑖 = (𝑉𝑖, 𝐸𝑖)}5. and arc weights 𝑤(𝑢, 𝑣), the multi-layer live-arc graph of 𝐺  is 

created as follows: Independently for each node 𝑣 and layer 𝐺𝑖, sample one 𝑢 ∈ 𝑁𝑖𝑛(𝑣) ∩

𝑉𝑖  with probability 𝑤(𝑢, 𝑣) (no node is chosen w.p. 1 − ∑ 𝑤(𝑢, 𝑣)𝑢∈𝑁𝑖𝑛(𝑣)∩𝑉𝑖
 if 

∑ 𝑤(𝑢, 𝑣)𝑢∈𝑁𝑖𝑛(𝑣)∩𝑉𝑖
<1). Only the edge (𝑢, 𝑣) is remains in the live-arc graph and all other 

arcs are removed. We denote the resulting multi-layer graph 𝐺𝐿 = (𝑉, 𝐸𝐿). Given the seed 

set 𝑆0 ⊆ 𝑉, for each 𝑡 ≥ 1, the nodes in 𝑆𝑡−1 will activate all inactive out-nodes in 𝐺𝐿. That 

is, the set of nodes that become active at time 𝑡 is: {𝑣|𝑣 ∉  𝑆𝑡−1, 𝑢 ∈ 𝑆𝑡−1, (𝑢, 𝑣) ∈  𝐸𝐿}. 

Since we already use 𝑆𝑡  for MLTIN, we let 𝑅𝐺𝐿

𝑡 (𝑆0) denote the active set for the 

multi-layer live-arc graph for 𝑡 ≥ 1. 

Theorem 5.2. A MLTIN 𝐺 = {𝑉, 𝐸, {𝐶𝑖}} is equivalent to its live-arc graph using 

Definition 2.6. That is, 

𝑃𝑟(𝑆𝑡 = 𝐴𝑡|𝑆0 = 𝐴0, … , 𝑆𝑡−1 = 𝐴𝑡−1)

= 𝑃𝑟 (𝑅𝐺𝐿

𝑡 (𝑆0) = 𝐴𝑡|
𝑅𝐺𝐿

1 (𝑆0) = 𝐴1, … , 𝑅𝐺𝐿

𝑡−1(𝑆0)

= 𝐴𝑡−1，𝑆0 = 𝐴0

)  

 ∀𝑡 > 0, 𝐴0, . . . , 𝐴𝑡−1, 𝐴𝑡 ⊆ 𝑉 

Proof. ∀𝑡, 𝐴0, … , 𝐴𝑡−1, 𝐴𝑡. we only consider the case where  𝐴0 ⊆ 𝐴1 ⊆. . . ⊆ 𝐴𝑡−1 ⊆

 𝐴𝑡 and if 𝐴𝑘 = 𝐴𝑘+1, all subsequent sets are the same. Otherwise both probabilities are 0. 

First, we consider the MLTIN, ∀𝑣 ∈ 𝐴𝑡\𝐴𝑡−1: 
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     𝑃𝑟(𝑣 activated at time 𝑡 |𝑆0 = 𝐴0, … , 𝑆𝑡−1 = 𝐴𝑡−1) 

= 𝑃𝑟(𝑣 activated by 𝐴𝑡−1|𝑣 not activated by 𝐴𝑡−2) 

=
𝑃𝑟(𝑣 activated by 𝐴𝑡−1, 𝑣 not activated by 𝐴𝑡−2)

𝑃𝑟(𝑣 not activated by 𝐴𝑡−2)
 

= 1 −
𝑃𝑟(𝑣 not activated by 𝐴𝑡−1)

𝑃𝑟(𝑣 not activated by 𝐴𝑡−2)
 

= 1 −
∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−1∩𝐶𝑖

𝑛
𝑖=1

∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−2∩𝐶𝑖

𝑛
𝑖=1

 

Meanwhile, ∀𝑣 ∈ 𝑉\𝐴𝑡: 

     𝑃𝑟(𝑣 not activated at 𝑡|𝑆0 = 𝐴0, … , 𝑆𝑡−1 = 𝐴𝑡−1) 

= 𝑃𝑟(𝑣 not activated by 𝐴𝑡−1|𝑣 not activated by 𝐴𝑡−2) 

=
𝑃𝑟(𝑣 not activated by 𝐴𝑡−1)

𝑃𝑟(𝑣 not activated by 𝐴𝑡−2)
 

=
∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−1∩𝐶𝑖

𝑛
𝑖=1

∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−2∩𝐶𝑖

𝑛
𝑖=1

 

Thus, in MLTIN: 

         𝑃𝑟(𝑆𝑡 = 𝐴𝑡|𝑆0 = 𝐴0, … , 𝑆𝑡−1 = 𝐴𝑡−1) 

= ∏ (1 −
∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−1∩𝐶𝑖

𝑛
𝑖=1

∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−2∩𝐶𝑖

𝑛
𝑖=1𝑣∈𝐴𝑡\𝐴𝑡−1

)  

 
∙ ∏

∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−1∩𝐶𝑖

𝑛
𝑖=1

∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−2∩𝐶𝑖

𝑛
𝑖=1𝑣∈𝑉\𝐴𝑡

      (3) 
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Next, we check the same probability in the multi-layer live-edge graph, ∀𝑣 ∈

𝐴𝑡\𝐴𝑡−1 : 

    𝑃𝑟(𝑣 is reached by 𝑆0 in 𝑡 steps,   but not in 𝑡 − 1 steps|  

    𝑆0 = 𝐴0, . . , 𝑅𝐺𝐿

𝑡−1(𝑆0) = 𝐴𝑡−1)  

= 𝑃𝑟(𝑣 is reached by 𝑆0 in 𝑡 steps, but not in 𝑡 − 1 𝑠𝑡𝑒𝑝𝑠 |  

   𝑣 is not reached by 𝑆0 𝑖𝑛 𝑡 −  1 steps) 

= 1 −
𝑃𝑟(∀𝑢 ∈ 𝐴𝑡−1, (𝑢, 𝑣) 𝑖𝑠 𝑛𝑜𝑡 𝑙𝑖𝑣𝑒)

𝑃𝑟(∀𝑢 ∈ 𝐴𝑡−2, (𝑢, 𝑣) 𝑖𝑠 𝑛𝑜𝑡 𝑙𝑖𝑣𝑒)
 

= 1 −
∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−1∩𝐶𝑖

𝑛
𝑖=1

∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−2∩𝐶𝑖

𝑛
𝑖=1

 

Meanwhile, ∀𝑣 ∈ 𝑉\𝐴𝑡: 

    𝑃𝑟(𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑏𝑦 𝑆0 in 𝑡 steps| 𝑆0  = 𝐴0, . . . , 𝑅𝐺𝐿

𝑡−1 = 𝐴𝑡−1) 

=
𝑃𝑟(∀𝑢 ∈ 𝐴𝑡−1, (𝑢, 𝑣) 𝑖𝑠 𝑛𝑜𝑡 𝑙𝑖𝑣𝑒)

𝑃𝑟(∀𝑢 ∈ 𝐴𝑡−2, (𝑢, 𝑣) 𝑖𝑠 𝑛𝑜𝑡 𝑙𝑖𝑣𝑒)
 

=
∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−1∩𝐶𝑖

𝑛
𝑖=1

∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−2∩𝐶𝑖

𝑛
𝑖=1

 

Thus, in the multi-layer live-edge graph: 

    𝑃𝑟(𝑅𝐺𝐿

𝑡 (𝑆0) = 𝐴𝑡|𝑆0 = 𝐴0, … , 𝑅𝐺𝐿

𝑡−1(𝑆0) = 𝐴𝑡−1) 

= ∏ (1 −
∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−1∩𝐶𝑖

𝑛
𝑖=1

∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−2∩𝐶𝑖

𝑛
𝑖=1𝑣∈𝐴𝑡\𝐴𝑡−1
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∙ ∏

∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−1∩𝐶𝑖

𝑛
𝑖=1

∏ (1 − ∑ 𝑤(𝑢, 𝑣))𝑢∈𝐴𝑡−2∩𝐶𝑖

𝑛
𝑖=1𝑣∈𝑉\𝐴𝑡

      (4) 

Note Equations (3) and (4) are the same expressions. Thus the required equality 

holds. ∎ 

Theorem 5.2 enables us to use the multi-layer live-arc graph defined in Definition 

5.3 to efficiently estimate the influence function 𝜎(𝑆0). In each round of Monte Carlo 

simulation for a given MLTIN 𝐺 = (𝑉, 𝐸, {𝐶𝑖}) and seed set 𝑆0, the live-arc graph should 

be independently generated, and the total weight of nodes connected to 𝑆0  provides a 

single-round estimate of 𝜎(𝑆0). Finally, these estimates should be averaged across all 

simulation rounds to get the final estimate of the influence 𝜎(𝑆0). 

5.3 Experiments 

We now apply our new framework on two real-world scenarios involving Metro 

Atlanta and Florida. In each scenario we choose some facilities from four CI sectors: 

Energy, Communication, Transportation, and Commercial/Public Facilities. We choose 

these sectors because their existence is physical and thus relatively easy to identify the 

interdependencies. For each scenario we built a MLTIN described in section IV to analyze 

the interdependencies. Our objective is to identify the most important nodes to protect. We 

begin by running the lazy greedy method by Goyal et al. (2011) [29] to expand the target 

set. To choose the local optimum at each step of the greedy method, we use the multi-layer 

live-edge graph proposed in section IV to do the Monte-Carlo simulation. 
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The data set we used for the experiments are accessible by public. The data only 

include the geographical locations of the facilities, where point-type facilities (substations, 

cellular base stations) are described as a geographical point and path-type facilities (roads, 

electricity transmission lines) are described by two coordinates. The end of path-type 

facilities may not exactly match the coordinates of point-type facilities, which means some 

slight modifications are made in pre-processing. See Table 3 and Table 4 for specific data 

sources. The commercial and public facilities data, including gas stations, are collected 

using Google Maps API. 

5.3.1 Network Construction 

It is necessary to explain how we build the MLTIN given the CI facilities before 

presenting the experimental results. The CI facilities included are summarized in Table 4. 

Table 4 – CI facilities included in our experimental scenarios. 

CI sector Facilities included 

Transportation Major road intersections, Major roads 

Communication Cellular base stations 

Energy Electricity substations, Electricity transmission lines, 

Gas stations 

Commercial/Public Facilities City halls, Hospitals, Colleges/Universities, 

Emergency Medical services, Fire stations, Schools 

Notice that in Table 4 there are some facilities serving as the arcs/paths in its original 

network, like roads and electricity transmission lines. However, in our model it is also 

turned into vertices since they are also CI facilities. 

We divide the CI sectors into three categories: the sectors with pre-built routes, the 

sectors without pre-built routes, and the sectors with only ending facilities. Meanwhile, in 
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each layer there are within-sector edges that connect nodes in the same sector, and cross-

sector edges that connects nodes in different sectors.  

Our first task is to identify the within-sector edges and their weights. The first 

category includes the cellular station network, where the nodes do not rely on pre-built 

lines/routes to interact with each other. In the cellular station network we define a max 

reach distance 𝑅. If the distance between two stations is less than 2𝑅, we let there be an 

edge connecting both stations. This implies that users would turn to the other station if one 

of the stations is down. In both scenarios we let 𝑅 = 20𝑘𝑚 as it is the average coverage 

radius for a general macrocell cellular base station (Mobile Base Stations  (2012) [40]). 

The weight on the edge from node 𝑢 to 𝑣 is set as 𝑤(𝑢, 𝑣) =
𝐿(𝑢,𝑣)

∑ 𝐿(𝑢,𝑣)𝑢∈𝑁𝑖𝑛(𝑣)

, where 𝐿(𝑢,𝑣) is 

the load transferred from node 𝑢 to 𝑣 when 𝑢 is down. This can be estimated using the area 

that 𝑢 is the closest node and 𝑣 is the second closest node. We made this assumption since 

the real load transfer from one station to another is not included in the data. 

The road network and electricity network are considered in the second category. The 

electricity transmission lines and roads are treated as nodes in the network. If the flow data 

are given, like the AADT (average annual daily traffic) for roads (FDOT (2019) [26]), we 

let the weight of edge from (𝑢, 𝑣) to 𝑢 be 
𝑓𝑙𝑜𝑤(𝑢,𝑣)

∑ 𝑓𝑙𝑜𝑤(𝑢,𝑣)𝑣:(𝑢,𝑣)∈𝐸
 ((𝑢, 𝑣) are edges in the original 

sector network, but vertices in MLTIN), considering that each edge should have flow-based 

influences on its vertices. Conversely, the weight from 𝑢 to (𝑢, 𝑣) is 0.5. If the flow data 

are not given, The weights on the edges are constant for each 𝑢 and sum to 1. 
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Finally, we need to determine the cross-sector arcs. The weights for these arcs are 

summarized in Table 5. For each component in the destination sector, there are ‘count’ 

number of edges going from the nearest components of the ‘origin’ sector, each edge is 

weighted by the number in the ‘weight’ column. For example, the first row in the Table 5 

represents that for each substation, there are two edges from the nearest transportation 

nodes to it, each carries a weight of 0.05, implying that there is 0.9 probability that this 

substation would not be influenced by transportation directly at all. We acknowledge that 

the choices of weights might make significant difference in the results. Thus, we perform 

a sensitivity analysis on these weights in Appendix A. Note that there are no arcs 

originating from facilities sector since they are all end users. Before we show our results, 

Table 6 shows the weight assumptions of nodes for both scenarios. Recall that every node 

is assigned a weight to represent its relative importance in the network. 

Table 5 – Weight assumptions for the cross-sector edges. 

origin dest weight count 

trans sub 0.05 2 

trans gas 0.2 2 

sub trans 0.2 1 

sub gas 0.8 1 

trans faci 0.2 2 

sub faci 0.8 1 

cell trans 0.1 1 

cell sub 0.1 1 

trans cell 0.05 2 

sub cell 0.2 1 

cell faci 0.1 1 
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Table 6 – Node weight assumptions for Florida scenario. 

Facilities Reason 

Cellular base stations Population/ number of stations*2, 2 represents 

the places people go per day. 

Road intersections sum of AADT of all adjacent roads/2*1.5, 1.5 is 

the people per vehicle and 2 represents each 

AADT is shared by 2 intersections. 

Roads AADT on road*1.5 

Electricity transmission lines Population/ 

number of lines*2, 2 is the places people go per 

day 

Electricity substations Total transmission line weights connected/2 

All facilities, including gas stations population*1%/number of certain type of 

facilities, assuming 1% people needs it on a 

certain day 

 

5.3.2 Metro Atlanta Scenario 

In this scenario, we consider the metro Atlanta region which is defined as the area 

inside Interstate 285. The number of facilities in each CI sector is listed in Table A.1 in 

Appendix A. The map of the facilities, with and without the base map, is displayed in 

Figure 15 and Figure 16. The map processing API is QGIS 2.18 and the base map is 

Openstreetmap. The total number of nodes is 1145, and the number of transportation nodes, 

electricity nodes, cellular base stations nodes and other nodes are 152, 210, 2 and 781 

respectively. We do not use any clustering method on the nodes since the network size is 

relatively small. 
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Figure 15 – Facility map in metro Atlanta without base map. 

 

Figure 16 – Facility map in metro Atlanta with base map. 

Our experiments choose 10 to 100 most influential nodes from the CI facility set with 

10 as the step size. By ‘influencial’, we mean that if these nodes are removed, the removal 

would have the greatest negative impact on network performance. We let the number of 

chosen nodes in the target set change to see if the percentages of chosen nodes in each 

sector are relatively constant. The results are shown in Figure 17, Figure 18 and Figure 19. 

In Figure 17 we plotted the results choosing 10 nodes on the map. We observed that the 

selected nodes are generally uniformly scattered on the map, this is reasonable because if 
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a node is already selected, selecting other nodes nearby would have diminished influence. 

In Figure 18 we show the percentage of nodes chosen in the transportation and electricity 

sectors. We do not show selected nodes in other two sectors because there too few chosen. 

When the number of selected nodes is over 30, the percentage of nodes chosen in each 

sector becomes relatively stable. And the percentage of nodes chosen in both sectors are 

both about 50%. In Figure 19 we show the percentage of total influenced nodes, we can 

see that even if the approach we used might not find an optimal solution, the influence 

curve is still concave, i.e. the sub-optimal solution preserves submodularity. 

 

Figure 17 – Percentage of nodes chosen in two sectors. 
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Figure 18 – 10 selected nodes in the metro Atlanta scenario. 

 

Figure 19 – Percentage of influenced nodes. 
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we have included fewer categories of facilities relative to the first scenario but more 

facilities per category.  

Since the Monte Carlo method is sensitive to the size of the problem and this scenario 

includes about 60K nodes. We use the K-means++ clustering (Arthur and Vassilvitskii 

(2007) [4]) to perform clustering before running the greedy method. This clustering method 

will cluster all nodes geographically and make sure each cluster contains a similar number 

of nodes. We do not consider it important if the sector distribution in each cluster matches 

the original data. In each cluster we choose the same number of nodes to form the final 

chosen set. We remark that in the Atlanta scenario, the chosen nodes scatter evenly on the 

map, and hence we anticipated that the clustering method would produce similar results. 

For this scenario, we now investigate when the number of the clusters vary, how the total 

weights of the influenced nodes change, and how many nodes in each sector will be 

selected. If there are no significant changes of percentage of nodes chosen in each sector, 

we can conclude that it is beneficial to have more clusters to reduce computational burden. 

In this experiment we select the 1000 most influential nodes in the network and set 

the Monte Carlo simulation round as 1000. Figure 20 shows the percentage of influenced 

nodes with respect to the number of clusters used.  
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Figure 20 – Percentage of influenced nodes with respect to the number of clusters 

used. 

In general, about 60% to 72% percent of the nodes (weighted) are influenced and the 
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is usually not constrained to a single road. We also notice a big plunge for the percentage 

of cellular base stations chosen. This is because when the number of clusters are large, 

many clusters have no cellular base stations (662 stations in total while maximum 1000 

clusters). Thus, in some clusters we only choose one cellular base station while we are 

supposed to choose more. And in some other clusters we can only choose nodes in other 

sector since there are no cellular base stations. 

 

Figure 21 – Percentage of nodes selected in each sector. 

 

Figure 22 – Nodes selected in each sector. 
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5.4 Conclusions and Future Works 

In this paper we have presented a new framework to analyze CI interdependency. 

This framework is a multi-layer extension of the classical linear threshold influence 

network. Our work has two novelties. First, it gives the definitions of the multi-layer 

interdependency network (MIN) and the multi-layer linear threshold influence network 

(MLTIN) based on the MIN. Second, we prove that the Greedy-based approach used for 

the linear threshold influence network can also be applied to the new framework in 

determining a lower bound.  

The new framework is then applied to two scenarios – the metro Atlanta scenario 

and the Florida scenario. We have the following observations from the scenarios. First, the 

selected facilities tend to scatter uniformly on the map. Secondly, though the electricity 

nodes are chosen the most in terms of quantity, the communication sector has the highest 

percentage of chosen nodes out of all nodes in the sector.  

Although we used the clustering methods to make the framework feasible for large-

scale networks, other heuristics that do not use Monte Carlo simulation can still be 

investigated in the future (e.g., extending the Simpath algorithm presented by Goyal et al. 

(2011) [30]for the linear threshold network to MLTIN). Multiple approaches could be 

applied to some scenarios to compare the results and run times. On the other hand, some 

researchers proposed some interesting arguments towards the single-layer influence 

network. For example, Buldyrev et al. (2010) [12] found that the number of nodes needed 

to paralyze the interdependent network is higher than the single-layer network. Buldyrev 

et al. (2011) [13] studied a problem of failure of two interdependent networks in the case 



 

 79 

of identical degrees of mutually dependent nodes (correspondently coupled networks 

(CCN)). They found that the percentage of nodes needed to paralyze CCN is smaller than 

randomly coupled network. Our another future work is to test if these findings are true in 

our MLTIN. 
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CHAPTER 6. SUMMARY 

In this thesis, we focused on the widely studied influence network models and their 

applications and extensions. We began by introducing stochastic diffusion models and two 

common influence network models, Independent Cascade (IC) and Linear Threshold (LT). 

From these most basic models, we reviewed two more general models, General Cascade 

(GC) and General Threshold (GT), and introduced the concept of model equivalence. After 

introducing GC and GT, we introduced the influence maximization problem based on 

influence network models. To solve this problem, some important properties of IC and LT 

models were reviewed, i.e, their equivalence to respective live-arc graphs and 

submodularity. From these properties we reviewed the Lazy Greedy algorithm that utilizes 

these properties to find a solution to the influence maximization problem with a lower 

bound guarantee. At the end of Chapter 2, we introduced some extensions of the influence 

network models, such as the minimum target set selection problem and the competitive 

models. 

In Chapter 3 and 4, we presented two applications of the single-layer IC and LT 

model. First, in Chapter 3, to mitigate the spread of HIV through human behavior, we build 

an IC model on a church-based social network to spread disease prevention knowledge and 

reduce the stigma of the disease. Our contribution is mainly on how to build the IC model 

with limited data to reflect the church features. In the experimental part, we found that 

while different connection/interaction structures between clergy and regular church 

participants would affect the degree of knowledge spread, the percentage of HIV/AIDS 

infected people who would eventually learn the disease information with the help of the 
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church stays constant, regardless of the church size and whether there is information 

competition in the model. In Chapter 4, we used the LT model to study the cascading effects 

in the cellular base station network and attempted to find the stations which failure would 

cause the most damage in the network. In the experiments, we applied the framework to 

the U.S. national cellular base station network, since this network has over 20K stations. 

We used the K-means clustering method to first cluster the stations before finding the most 

critical ones to protect. We applied both the Monte Carlo method and the Simpath method 

(Goyal et al. (2011) [30]) and compared the results. In the sensitivity analysis, we compared 

the results across different number of clusters to check if the chosen stations are the same. 

It turns out that though only about 20% of the stations overlapped, most stations that do 

not overlap are close to each other when the number of clusters are small. 

As an extension of Chapter 4, we designed a brand new multi-layer linear threshold 

network (MLTIN) in Chapter 5 to analyze the interdependency among multiple critical 

infrastructure sectors. We proved that such a network is a special case of the weighted 

general threshold network (WGTN) and preserves the submodularity and equivalence to 

the corresponding live-arc graphs. In the experimental part, we applied the new framework 

to two scenarios, metro Atlanta and Florida. In the metro Atlanta scenario, the network is 

unclustered and we observed that when the number of nodes chosen is high (over 30) in 

our model, the number of nodes chosen in each sector kept relatively constant. We also 

observed that the final influences from the chosen initial active set are submodular, even if 

the methods may not find the optimal solution. For the Florida scenario, since the network 

is very large, we used the K-means clustering method before we started selecting the nodes. 

As we found in Chapter 4, the best number of clusters is at the middle of the curve, using 
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30-50 clusters gave better results than using none or 100 clusters. This is because the 

Greedy method may not perform well for large networks and too many clusters may put 

too many restrictions on the nodes selection, which adversely affects the quality of nodes 

chosen in each cluster. 

In summary, we applied the influence network models to solve the problem of 

finding the most influential entities in a network in social networks and critical 

infrastructure interdependencies. We hope that our results could provide useful references 

to the policy makers in order to better utilize resources to prevent disease outbreaks and 

cascading effects. 
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APPENDIX A. CRITICAL INFRASTRUCTURES IN SECTION 5.3 

In this appendix, we listed the critical infrastructure studied in metro Atlanta scenario 

and Florida scenario in Section 5.3. 

Table A.1 – Critical infrastructures in metro Atlanta scenario. 

CI sectors Facilities Numbers 

Transportation Major roads 59 

Major road intersections 93 

Energy Electricity transmission lines 114 

Electricity substations 96 

Gas stations 377 

Communication Cellular base stations 2 

Commercial and public facilities City halls, Hospitals, 

Colleges, 

EMS, 

Fire stations, 

Schools 

406 

 

Table A.2 – Critical infrastructure in Florida scenario. 

CI sectors Facilities Numbers 

Transportation Major roads 19625 

Major road intersections 16183 

Energy Electricity transmission lines 22050 

Electricity substations 3253 

Commercial and public facilities Hospitals 152 

Communications Cellular base stations 662 
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APPENDIX B. SENSITIVITY ANALYSIS FOR METRO 

ATLANTA SCENARIO 

In this appendix we show the sensitivity analysis for the metro Atlanta scenario. 

Specifically, we let the weights of edges from transportation sector to other sectors increase 

up to 0.15 with 0.05 step size. And we do the same thing for the electricity sector. We do 

not do sensitivity analysis for the other two sectors. For the communication sector, there 

are too few cellular base stations in the area (only 2), and they are usually chosen in the 

first 10 nodes. So we do not expect any difference if we change the weights of edges from 

them. For commercial and public facilities, there are no edges from them at all. 

The first thing we are concerned about is whether changes in the weights of the edges 

would result in significant changes in the percentage of nodes chosen in each sector. Figure 

B.1 and Figure B.2 show the percentage change when the total selected nodes increase. In 

these figures, Trans/o and Elec/o represent the percentage of nodes chosen in both sectors 

with original weight assumption, while Trans/trans+0.1 represents the percentage of nodes 

chosen in transportation sector when we increase all the weights of the edges from 

transportation sector to other sectors by 0.1. From the figures we can see that increasing 

the weights by 0.1 would results in the same level increments in the percentage, even 

though there are some outliers when total number of nodes selected is too few. Thus, we 

do need to pay attention to the choices of weights of edges in practice. Figure B.3 and 

Figure B.4 displayed the percentage of nodes chosen in each sector if the number of 

selected nodes is fixed at 50. In Figure B.3 the bars at 0.05 represent the percentage of 

nodes in both sectors when we increase the weights of edges from transportation nodes to 
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other sectors by 0.05. And the same rule applies to Figure B.4 where we change the weights 

of edges from electricity sector. As we see in Figure B.1 and Figure B.2, in general 

increasing weights of a certain sector would increase the percentage of that sector, but the 

effects are not monotone in our experiments. 

 

Figure B.1 – Percentage of nodes chosen in two sectors with respect to the weights of 

electricity edges. 

 

Figure B.2 – Percentage of nodes chosen in two sectors with respect to the weights of 

transportation edges. 
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Figure B.3 – Percentage of nodes chosen in two sectors with respect to the weights of 

electricity edges for 50 nodes selected in total. 

 

Figure B.4 – Percentage of nodes chosen in two sectors with respect to the weights of 

transportation edges for 50 nodes selected in total. 
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when the number of selected nodes increases. On the other hand, all curves are concave in 

both figures, implying the submodularity property of the model. 

 

Figure B.5 – Percentage of final influenced nodes with respect to the weights of 

transportation edges. 

 

Figure B.6 – Percentage of final influenced nodes with respect to the weights of 

electricity edges. 
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