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SUMMARY 

Batteries with aqueous electrolytes generally feature better intrinsic safety, higher 

ionic conductivity and lower cost compared with flammable organic electrolytes. Metallic 

zinc as a rechargeable anode material for aqueous batteries has gained tremendous attention 

with merits of intrinsic safety, low cost, and high theoretical volumetric capacity (5854 

mAh cm-3). Among zinc-based batteries, Zn-air batteries are promising with highest 

theoretical volumetric energy density (~3x of traditional LIBs). Rechargeable zinc anode 

has achieved big progress in neutral electrolytes, yet developed slowly in alkaline 

electrolytes, which are kinetically favorable for air cathodes. Passivation, dissolution, 

hydrogen evolution reaction (HER), and dendrite formation are four reasons for 

irreversibility of zinc anodes in alkaline electrolytes. 

This research comprises three parts: material, mechanism, and device. From the 

aspect of material, 4 types of zinc anodes were designed and synthesized to overcome 

above issues and improve their reversibility. These anodes include graphene oxide-

modified (Zn@GO), lasagna-inspired (ZnO@GO), sealed (ZnO@TiNxOy), and hydrogen-

evolution-suppressing (ZnO@TiO2) anodes, which improve the deep cycling performance 

when cycled at lean electrolyte. From the aspect of mechanism, the underlying mechanism 

of the spatial control of zinc deposition on zinc alloy anodes has been elucidated for the 

first time. The spatially controlled Zn deposition was visualized for the first time by 

operando optical microscopy. From the aspect of device, it was discovered that the testing 

device material has a clear effect on the hydrogen evolution. Specifically, stainless-steel 
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coin cell cases, as widely used devices in research laboratories, accelerate the HER. Plastic 

devices were successfully constructed to minimize the HER.  
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CHAPTER 1. INTRODUCTION 

Environmental concerns of fossil fuels drive people to develop clean energy 

economy 1. Rechargeable batteries are regarded as a green energy storage system and have 

great potential to alleviate the energy and environmental problems. Their benefits of 

convenience, low cost, and reliability are the ‘enablers’ for their use in mobile electronic 

devices, electric vehicles and grid energy storage 2–4. A key aspect of any future battery 

technology development is safety. Although lithium ion batteries (LIBs) are ubiquitous, 

there are still challenges related to their energy density, cycle life, cost and safety 5–8. In 

regard to safety, compared with organic electrolyte, aqueous rechargeable batteries may 

provide a safer alternative for reliable, low-cost and large-scale energy storage systems. As 

seen from the penetration test in Figure 1.1a-b, the battery with organic electrolyte catches 

fire, yet the battery with aqueous electrolyte is relatively safe 9. Moreover, aqueous 

batteries have high ion conductivity and cost effectiveness 10–17. Generally, the cell voltage 

and energy density of aqueous batteries are lower than those of organic-based batteries 

(e.g. Li-ion) because of the relatively smaller electrochemical stability window of water. 

Among all the metals that are stable in water, zinc is the most active and has the lowest 

possible operating potential 9. This means using Zn anode can increase overall cell voltage 

of aqueous batteries. Moreover, zinc is globally available, inexpensive (3.19 USD kg-1 18), 

and has high capacity (820 Ah kg-1 and 5854 Ah L-1). Zinc-based aqueous batteries also 

possess the stability to be operated in ambient air. Accordingly, Zn aqueous rechargeable 

batteries are promising to become a safer energy storage system 19–28. In Figure 1.1c, I 

compare the theoretical specific and volumetric capacities of Li and Zn rechargeable 
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batteries. Among zinc-based aqueous batteries, Zn-air batteries have high theoretical 

gravimetric and volumetric energy densities (1,093 Wh kg-1 and 6,134 Wh L-1, 

respectively) 29–33.  

 

Figure 1.1 - Battery penetration test to investigate the safety property of organic 

electrolyte (a) and aqueous electrolyte (b). (c) Theoretical specific and volumetric 

energy density of Li and Zn batteries. LiC6 and CoO2 are used to calculate energy 

densities of LIB. 

1.1 General Understanding of Zinc-Air (Zn-Air) Batteries 

The Zn-air batteries31,34 consist of zinc anodes, air cathodes and alkaline electrolytes, 

as shown in Figure 1.2. Primary Zn-air batteries have already been the battery of choice 

for hearing aids, which require extremely high energy density and safety. Below are the 

reactions of Zn-air batteries in aqueous alkaline electrolyte. 

The zinc electrode reaction: 

 𝑍𝑛 + 2𝑂𝐻− ⇔ 𝑍𝑛𝑂 + 𝐻2𝑂 + 2𝑒−    𝐸 = −1.26𝑉 𝑣𝑠 𝑆𝐻𝐸 

The air electrode reaction: 
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 𝑂2 + 2𝐻2𝑂 + 4𝑒− ⇔ 4𝑂𝐻−      𝐸 = 0.40𝑉 𝑣𝑠 𝑆𝐻𝐸 

The overall reaction: 

 2𝑍𝑛 + 𝑂2 ⇔ 2𝑍𝑛𝑂      𝐸 = 1.66𝑉 𝑣𝑠 𝑆𝐻𝐸 

 

Figure 1.2 - Schematic of zinc air batteries. 

Although primary Zn-air batteries have been available in the market for long-

duration, low-rate applications, deeply rechargeable ones have not been commercially 

successful. Also, the practical energy densities of Zn-air batteries are usually between 350-

500 Wh/kg35. Further rational design and engineering of both cathode and anode are 

required to achieve high energy-density Zn-air batteries. In this thesis, I focus on Zn 

anodes.  

1.2 Historical Challenges of Rechargeable Zn Anodes 

Neutral and alkaline electrolytes are two major classes of aqueous electrolytes for 

zinc anodes. Research on rechargeable zinc anodes in neutral electrolytes36,37 has achieved 

great progress in the past decade; examples include the discoveries of “water‐in‐salt” 

electrolytes38 and molten hydrate electrolytes39. Nonetheless, cycling zinc anodes deeply 

in alkaline electrolytes remains challenging due to the dramatic change of the chemical and 



 4 

physical forms of zinc species and the severe hydrogen evolution side reaction during 

cycling40. Despite the challenges, it is vital to enable highly rechargeable zinc anodes in 

alkaline electrolytes to propel the development of rechargeable Zn-air batteries, as air 

cathodes kinetically favor alkaline electrolytes over neutral ones41,42. Even though non-

alkaline electrolytes were previously investigated for Zn–air batteries43, their ORR and 

OER kinetics at the air cathode are slow. Thus, it is still necessary to study alkaline 

electrolytes. In alkaline electrolytes, there are two consecutive zinc conversion reactions.  

𝑍𝑛𝑂 + 𝐻2𝑂 + 2𝑂𝐻− ↔ 𝑍𝑛(𝑂𝐻)4
2−

                         

𝑍𝑛(𝑂𝐻)4
2− + 2𝑒− ↔ 𝑍𝑛 + 4𝑂𝐻−                           

This solid-solute-solid mechanism inherently causes passivation, shape change, and 

dendrite formation issues on zinc anodes. These issues are due to the following processes: 

(i) the insulating discharge product ZnO passivates the surface of zinc anodes, preventing 

the latter from further discharging or recharging back to metallic zinc, (ii) the intermediate 

zincate (Zn(OH)4
2-) is soluble in alkaline electrolytes, which leads to active material loss, 

random ZnO precipitation on the electrode, and morphology change of the electrode over 

cycling, and (iii) Zn dendrites arise when the deposition reaches beyond the boundary of 

the diffusion-limited region. In addition, the hydrogen evolution reaction (HER, 2𝐻2𝑂 +

2𝑒− → 𝐻2 + 2𝑂𝐻−) is a side reaction on the zinc anode. In an alkaline electrolyte with pH 

14, the Zn/ZnO standard reduction potential (−1.26 V vs standard hydrogen electrode 

(SHE)) is lower than that of the HER (−0.83 V vs SHE). Thus, HER is thermodynamically 

favored during charging, which causes low Coulombic efficiency, electrolyte drying, 

bubble accumulation, and eventually cell failure. 
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1.2.1 Passivation 

Passivation is one of the challenges to develop electrochemically rechargeable Zn 

anode. During the discharge process, active Zn is transformed to relatively insulating ZnO 

(Figure 1.3), leading to an increase in the internal resistance of the Zn electrode 44–46. The 

key factor causing passivation in rechargeable Zn anodes is attributable to the surface 

concentration of the reaction product 47,48. This phenomenon inhibits further discharge 

processes due to the formation of an insulating ZnO film on Zn surface. Besides, 

precipitation of ZnO on the surface of porous Zn electrodes might reduce the pore volume 

of these electrodes, leading to the blockage of migration of the hydroxide ions and/or 

discharge products 49. This causes the loss of energy efficiency for the charge-discharge 

cycles (i.e., voltage losses during discharging and voltage increases during charging). This 

significantly restricts the development of rechargeable Zn-based batteries with high energy 

density. It is noteworthy that zinc utilization (depth of discharge, DOD) is a common metric 

used to evaluate the electrochemical rechargeability of Zn anodes 50. Although the zinc 

utilization for conventional powder-based electrodes was reported to range from 60–80% 

51, it is important to develop Zn anodes that can be operated deeply discharged over 

repeated cycles. Therefore, it is important to reduce the passivation effect of Zn anodes by 

adopting the strategies of material design. 

 

Figure 1.3 - Schematic diagram of the passivation issue of zinc anodes. 
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1.2.2 Shape Change 

Zn electrode shape change (dissolution issue, Figure 1.4), the redistribution of Zn 

material over the electrode after repeated charge-discharge cycles, has been identified as 

one of the main life-limiting factors for alkaline Zn-based batteries 52. It occurs when the 

dissolved Zn(OH)4
2− and/or Zn2+ ions are redeposited onto different locations of Zn 

electrode during the charge process, resulting in densification of the electrode at specific 

regions over many charge/discharge cycles. This causes the loss of usable capacity after 

repeated cycles. The mechanism is attributed to uneven current distribution within the 

reaction zones, and convective flows when electro-osmotic forces across the battery 53–56. 

 

Figure 1.4 - Schematic diagram of shape change of zinc anodes. 

 Although the deposited Zn structures can be tuned by using specific additives and 

applied current density 57, Zn shape change is also affected by the concentration of alkaline 

electrolyte. In typical Zn alkaline batteries, 6–7 M KOH is used due to the maximum 

electrolyte conductivity 58. However, the solubility of the discharge product (i.e. ZnO) also 

increases with increasing electrolyte concentration 59,60. Therefore, a large amount of Zn 

dissolves and re-deposits under non-uniform conditions, resulting in a severe shape change 

of Zn electrode and a poor cycle life 59. 
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1.2.3 Dendrite Growth 

The formation of Zn dendrites is one of the major challenges in secondary alkaline 

Zn-based batteries 61–63. A concentration gradient of zincate ions leads to concentration-

controlled Zn electrodeposition, where Zn dendrites arise (Figure 1.5) when the deposition 

reaches beyond the boundary of the diffusion-limited region 64. Accordingly, dendritic 

morphologies are formed with repeated cycles, when Zn(OH)4
2− and/or Zn2+ ions are 

deposited faster growth along energetically favorable crystallographic directions 65. Zn 

dendrites are sharp, needle-like metallic protrusions reaching hundreds of micrometers in 

length 66 that can puncture the separator and make contact with the cathode, resulting in 

internal short circuit and catastrophic failure of Zn-based batteries 67. 

 

Figure 1.5 - Schematic diagram of dendrite growth on zinc anodes. 

The formation of zinc dendrites is mainly controlled by the concentrations of 

zincate ions and hydroxide ions, the mass transfer process of the electrolyte and current 

density distributions during charge and discharge 68. It was reported that dendritic growth 

arises when the current density was larger than a certain critical value 69. For instance, 

cycling Zn electrodes at a current density greater than 10 mA/cm2 easily induces dendrite 

formation in alkaline electrolyte 70. Nonetheless, it is worth mention that dendrites can also 
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form at lower deposition overpotentials under a long period of time for initiation 69. 

Therefore, strategies that can effectively control the dendrite formation must be developed. 

1.2.4 Hydrogen Evolution 

Hydrogen evolution (Figure 1.6) is thermodynamically favored and inevitably takes 

place during the operation of Zn-based alkaline batteries. Thus, Zn electrodes cannot be 

charged with 100% coulombic efficiency, since the H2 evolution consumes some of the 

electrons provided to the Zn electrode during charging. Moreover, it generates H2 gas on 

the surface of Zn particles in aqueous media by consuming electrolyte during cycling, 

resulting in battery swell. The rate of H2 evolution was found to be associated with applied 

current density and electrolyte concentration 71. The undesired side reactions can lead to 

capacity fade and shortened life span of Zn anode 72,73. Thus, strategies to inhibit H2 

evolution are in great demand to improve the rechargeability of Zn anodes.  

 

Figure 1.6 - Schematic diagram of hydrogen evolution on zinc anodes. 

1.3 Research Motivation 

To briefly summarize, the main challenges of rechargeable Zn electrodes are 

passivation, shape change, dendrite growth, and hydrogen evolution. Attempts have been 

made in the past to overcome one or two of passivation, dissolution, and HER issues. For 

example, sub-micron-sized structures74,75, composites with highly conductive materials76–
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78, and 3D high surface area electrodes79,80 have been shown to be effective in addressing 

the ZnO passivation issue. Surface protective coatings9,81,82 have been demonstrated to 

slow down the loss of zinc active material. Specific additives8365 have been utilized to 

control the morphologies and suppress dendrite formation on Zn electrodes. Surface 

treatments84,85 and additives86 have been used to suppress the HER. However, there are 

very few successful examples that address multiple issues simultaneously. In addition, 

there is a lack of mechanism studies on Zn anodes. Moreover, most previous research has 

focused on material design, while less attention has been paid to the device level.  

1.4 Thesis Overview 

This thesis describes systematic approaches to understand and improve zinc anodes 

for high-energy rechargeable alkaline batteries from three aspects, which are material, 

mechanism, and device. From the aspect of material (Chapter 2), 4 types of zinc anodes 

have been designed and synthesized to overcome multiple issues simultaneously and 

improve their reversibility. These anodes include graphene oxide-modified (Zn@GO), 

lasagna-inspired (ZnO@GO), sealed (ZnO@TiNxOy), and hydrogen-evolution-

suppressing (ZnO@TiO2) anodes, which improve the deep cycling performance when 

cycled at lean electrolyte. From the aspect of mechanism (Chapter 3), the underlying 

mechanism of the spatial control of zinc deposition on zinc alloy anodes has been 

elucidated for the first time. The thermodynamic and atomic mechanisms of heterogeneous 

seeded growth were studied both experimentally and computationally (CALPHAD and 

DFT). Spatially controlled and nondendritic Zn deposition was achieved by inducing Zn 

alloying and soluble metals on Zn anodes to nucleate and accommodate Zn. The spatially 

controlled Zn deposition was visualized for the first time by operando optical microscopy. 
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As a result, the Ag-loaded Zn anode exhibited comprehensively superior cycling 

performance compared with previously reported deeply cycled Zn anodes in alkaline 

electrolytes. From the aspect of device (Chapter 4), it was demonstrated that the testing 

device material has a clear effect on the HER in alkaline zinc-based batteries. In addition, 

the capacity loss on the zinc anode is mainly caused by the HER as identified quantitatively 

HER through an electrochemical cell–gas chromatography analysis method. Specifically, 

stainless-steel coin cells, as widely used devices in research laboratories, accelerate the 

HER due to the synergistic effects of galvanic corrosion and a high HER activity. Plastic 

cells were successfully constructed and HER was minimized, resulting in a higher 

Coulombic efficiency and longer cycling life than the stainless-steel coin cell.  
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CHAPTER 2. MATERIAL DESIGN OF RECHARGEABLE ZINC 

ANODES 

Four types of zinc anodes have been designed and synthesized to overcome 

passivation, shape change, dendrite growth, and hydrogen evolution issues and improve 

their reversibility. These anodes include graphene oxide-modified (Zn@GO), lasagna-

inspired (ZnO@GO), sealed (ZnO@TiNxOy), and HER suppressing sealed nanosized 

(HSSN, ZnO@TiO2) anodes.  

2.1 Graphene Oxide-Modified Zn Metal Anode 

2.1.1 Introduction 

The passivation and dissolution of Zn anodes lead to low utilization of Zn anodes 

and make it non-rechargeable (Figure 2.1a). Herein, the passivation and dissolution 

problems of Zn anodes were solved through applying GO onto Zn mesh surface (Figure 

2.1b). GO is a layered material, which consists of hydrophilic oxygenated graphene sheets 

bearing oxygen functional groups on their basal planes and edges 87. GO has been 

demonstrated to have ionic sieving capability. Ions that are smaller in size than the GO 

nanochannel can permeate in the GO layers, while larger ions will be blocked 88. In 

addition, GO could be partially reduced when soaked in alkaline solution89 and facilitate 

the electron transport across ZnO. Therefore, this structure has the following advantages: 

(i) During cycling, Zn(OH)4
2- will be blocked by the GO compared to H2O and OH−. Thus, 

the active material loss of anodes can be minimized. (ii) zincate can form hydrogen bonds 

with oxygen-containing groups on the GO surface and thus has a good affinity with GO, 
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which results in a relatively uniform distribution of zincate among GO layers during the 

reaction. Once the zincate reaches its solubility, it will decompose to ZnO, which will be 

encapsulated by GO. The GO encapsulation of ZnO can create the desirable environment 

for free transportation of electrons and therefore makes ZnO electrochemically active. 

 

Figure 2.1 - Schematic of morphological changes of zinc electrodes during 

electrochemical cycling. (a) ZnO passivation layer leads to low utilization of the Zn 

mesh anode. (b) GO on Zn surface makes it possible for electrons to move freely 

across the insulating ZnO and slows down the dissolution of Zn species. 

Zn mesh was chosen to be used as the anode instead of Zn foil because Zn mesh 

has relatively higher specific surface area with three-dimensional structure. The 

electrochemical performance of anodes is tested using coin-type cells because they use 

minimum amount of electrolyte and resemble the practical operating condition. They are 

assembled in commercial CR2032 coin-type battery cases using NiOOH as the cathode. 

2.1.2 Experimental Section 

Materials. The following materials and chemicals are used in this work: water 

binder (MTI Corporation), graphite (Sigma-Aldrich), sulfuric acid (H2SO4, Fisher 

Scientific), Zn mesh (Dexmet Corporation), glass fiber (GE Healthcare, WhatmanTM 
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10370003), commercial Ni-Zn AA batteries (PowerGenix), potassium permanganate 

(KMnO4, Sigma-Aldrich), potassium hydroxide (KOH, Sigma-Aldrich), potassium 

fluoride (KF, Sigma-Aldrich), potassium carbonate (K2CO3, Sigma-Aldrich). 

Synthesis of GO powders. Modified Hummer method is utilized to produce 

aqueous GO solution 90. A pretreatment was carried out to prevent the formation of 

inadequate oxidized graphite-core/GO-shell particles 91. The pretreated powder was placed 

in a beaker containing 120 ml concentrated H2SO4 solution. Under stirring in ice bath, 15 

g KMnO4 was added into the beaker. When the KMnO4 powder dissolved completely, the 

ice bath was removed, and the beaker was heated to 35°C. After maintaining the mixture 

temperature at 35°C for 45 min, 200 ml deionized water was added to the beaker drop by 

drop. The mixture was then heated to 98°C and maintained at 98°C for 15 min. 

Subsequently, another 700 ml deionized water was added to the mixture in order to 

decompose unreacted KMnO4 and insoluble MnO2. The color of the mixture changed to 

bright-yellow. Subsequently, the GO was centrifuged (7000 rpm, 15 min) and redispersed 

in water for 5 times to remove ions. The resulting suspension was then subject to a 2 h 

sonication, followed by a 15-min centrifugation at 4000 rpm. The transparent supernatant 

was obtained as the GO aqueous solution (~1 g/L). This GO solution was then concentrated 

using hydrogel beads until a 2.0 g/L concentration was reached. Finally, GO powers were 

obtained through freeze-drying. 

Fabrication of GO-coated Zn anodes. GO/water binder slurry was prepared by 

mixing 2.1 mg GO powder, 2.4 mg water binder, and 160 μL water in a glass vial under 

sonication for 60 min. The slurry was then stirred for 1 day at room temperature to ensure 

thorough mixing. Zn mesh was cut into round disks with 1 cm diameter using a precision 
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disc cutter and then weighed. After that, the GO slurry was applied onto the surface of the 

Zn mesh disks and dried for 20 min. To obtain a uniform GO-modified Zn surface, the GO 

slurry was applied one more time, especially the parts that have not yet been covered with 

GO. Finally, the GO-modified Zn mesh was dried at room temperature in air. 

Preparation of Ni cathodes. To evaluate the electrochemical performance of GO-

modified Zn anode, Ni cathodes harvested from commercial Ni-Zn AA batteries were used 

as the rechargeable cathode. Before cell assembly, Ni cathodes were electrochemically 

oxidized to 0.6 V vs HgO/Hg reference electrode in a beaker cell with 2 M KOH as the 

electrolyte, to completely turn Ni(OH)2 to NiOOH. 

Assembly of coin-type rechargeable Zn-Ni batteries. The coin-type batteries 

were assembled using CR2032 cases (MTI Corporation), the Zn mesh anodes or Zn@GO 

anodes (round disk, 1 cm diameter) and NiOOH cathodes with excess capacity. Glass fiber 

was used as the separator. 50 μL electrolyte was added onto each separator. The aqueous 

electrolyte consists of 4 M KOH, 2 M KF and 2 M K2CO3. An MSK-110M hydraulic 

sealing machine was used to seal the battery.  

Materials characterization and electrochemical testing. X-ray photoelectron 

spectroscopy (XPS), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and 

Transmission Electron Microscopy (TEM) at Institute for Electronics and Nanotechnology 

(IEN) were used to characterize the GO and anodes. The cycle life and capacity of batteries 

were measured by using a LAND battery tester. All the cells were galvanostatically cycled 

between 1.5 V and 1.9 V at a constant current of 1 mA with 1 h limit. Electrochemical 

impedance spectroscope (EIS) measurements were performed on a Bio-Logic instrument. 
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The frequency range was between 100 KHz and 10 mHz. The amplitude of AC signal was 

10 mV.  

2.1.3 Results and Discussion 

As shown in Figure 2.2a, high quality GO with nano thick GO layers was 

successfully synthesized. Then GO slurry was applied on Zn mesh (Figure 2.2b). The 

comparison between Figure 2.2c and Figure 2.2f shows that GO has been coated onto the 

Zn mesh uniformly. By comparing Figure 2.2d and Figure 2.2g, it was found that the GO 

coating is ~ 4 μm thick with a 0.19 mg/cm2 GO coating, which is 1.92 wt% of a Zn mesh. 

Under optical microscope, Zn mesh looks shiny (Figure 2.2e), and after GO coating, it 

turns uniformly dark in color and rough in texture (Figure 2.2h). The complete coverage of 

Zn by GO is supported by XPS results (Figure 2.2i and Figure 2.2j), where the Zn signal 

is barely detectable from Zn@GO. XRD patterns (Figure 2.2k) of unmodified Zn and 

Zn@GO anodes show same ZnO peaks, which indicate the amorphous nature of GO. 
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Figure 2.2 - Fabrication and characterization of anodes. (a) TEM image of GO. (b) 

Schematic of the fabrication process. (c) Top-view SEM image of Zn mesh. (d) Cross-

section SEM image of Zn mesh. (e) Optical microscopy image of Zn mesh. (f) Top-

view SEM image of GO modified Zn mesh. (g) Cross-section SEM image of GO 

modified Zn mesh. (h) Optical microscopy image of GO modified Zn mesh. (i) XPS 

survey of Zn mesh and GO modified Zn mesh. The C peak of Zn mesh is from the 

carbon tape under the Zn metal, which was used to fix the Zn mesh. (j) High-

resolution Zn 2p spectra of Zn mesh and GO modified Zn mesh. (k) XRD results of 

Zn mesh and GO modified Zn mesh. 
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To verify the function of GO coating, Zn anodes were assembled with NiOOH 

cathodes in coin-type cells, discharged and charged for 10 times, and opened for 

characterization. As shown in Figure 2.3a and b, the structure of the unmodified Zn mesh 

anode collapsed after cycling. In contrast, the shape of the Zn@GO anode remained after 

cycling (Figure 2.3c and d), which means that the GO coating has effectively stabilized the 

Zn anode. This is also an evidence that GO blocks zincates and encapsulates insulating 

discharged product ZnO (Figure 2.3e), so electrons can be delivered across insulating ZnO. 

These morphological observations confirmed the hypothesis that thin and uniform GO 

coating could address the problems of Zn metal anode.  

 

Figure 2.3 - Characterization of anodes before and after 10 galvanostatic cycles. (a) 

SEM image of unmodified Zn anode before cycling. (b) SEM image of unmodified Zn 

anode after cycling. (c) SEM image of Zn@GO anode before cycling. (d) SEM image 
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of Zn@GO anode after cycling. (e) SEM images and EDS mapping of the Zn@GO 

anode after cycling. 

Conventionally, beaker cells are used to examine the electrochemical performance 

of Zn-based batteries. Yet the large amount of electrolyte (ZnO saturated KOH solution) 

required by beaker cells significantly decrease the overall specific energy. Also, zincates 

in the electrolyte can participate in the reaction and conceal the true performance of Zn 

electrodes. Hence, coin-type cells were chosen here to evaluate the performance of GO-

modified Zn anode in a way that resembles practical applications, as shown in Figure 2.4a. 

The areal density of the Zn mesh is 10.05 mg/cm2. If discharged in a primary cell, its 

theoretical capacity is 8.24 mAh/cm2. In the rechargeability testing, its discharge capacity 

was limited to 1.27 mAh/cm2 by limiting its discharge time to 1 h. As shown in Figure 2.4b, 

the battery assembled using Zn@GO anode with 0.19 mg/cm2 GO coating displayed its 

superiority over the one assembled using bare Zn mesh anode. At the 20th galvanostatic 

cycle, the reversible discharge areal capacity of the Zn@GO anode is ~118% of that of the 

bare Zn anode. The accumulated discharge capacity of GO-modified Zn anode (61.5 

mAh/cm2) is 128% of that of bare Zn anode (47.9 mAh/cm2, Figure 2.4c) for the first 200 

galvanostatic cycles. The voltage in the charging step of the Zn@GO anode is slightly 

lower than that of bare Zn anode at the 20th galvanostatic cycle, which means that the 

Zn@GO anode has lower overpotential (Figure 2.4d). The performance of Zn@GO anodes 

were also tested with lower and higher amount of GO coating, respectively. The effect of 

low amount of GO coating is not evident because GO is not enough to cover the Zn surface. 

High amount of GO coating makes the performance worse because thick GO hinders the 

contact of electrode and electrolyte, which hinders the electrochemical reaction. 
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Electrochemical impedance spectroscopy (EIS) was employed to investigate the 

influence of GO modification on the impedance. The Nyquist plots of the GO-coated and 

bare Zn anodes before and after 10 galvanostatic cycles (1 mA for 1 min per cycle) are 

shown in Figure 2.4e. The initial charge-transfer resistance of GO-coated Zn anode is lower 

than that of the uncoated Zn anode. After cycling, the impedance of both anodes decreases, 

yet that of GO modified Zn anode is still smaller. For Zn@GO anode, the impedance 

decreased after cycling because GO was partially reduced in alkaline electrolyte. For Zn 

anode, the zincates disperse surrounding the surface of Zn after cycling, which decreased 

the charge-transfer resistance. These observations indicate that GO improves the 

electrochemical performance of the original Zn anode, which can be attributed to a uniform 

distribution of ZnO among GO layers during the electrochemical reactions. This extends 

the cycle life of Zn-based batteries by both creating a desirable environment for electrons 

to transport freely and slowing down the inevitable dissolution process of active anode 

materials.  
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Figure 2.4 - Electrochemical performance of anodes. (a) Optical picture of the coin 

cell assembly. (b) Discharge areal capacity for the first 22 galvanostatic cycles of bare 

and GO-modified Zn anodes. (c) Accumulated discharge areal capacity of bare and 

GO-modified Zn anodes for the first 200 galvanostatic cycles. Accumulated discharge 

areal capacity is calculated by adding the discharge areal capacity of all cycles 

together. (d) Voltage profiles of the 20th galvanostatic cycle of bare and GO-modified 

Zn anodes. (e) Nyquist plots of the bare and GO-modified Zn anodes before and after 

cycling. 

2.1.4 Conclusion 

A GO-modified Zn anode was reported to solve the passivation and dissolution 

problems of Zn anodes, and extend the cycle life of Zn-based batteries. The Zn surface is 
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modified by applying GO slurry onto Zn mesh uniformly. The GO layers on Zn surface 

allow electrons to move freely across the insulating ZnO and reduce the dissolution rate of 

Zn intermediate species. As a result, a small amount of GO (1.92 wt%) on the Zn anode 

surface can significantly reduce the electrochemical impedance, and improve its life-time 

accumulated capacity by 28%. This GO modification approach is expected to be applicable 

to other battery electrodes as well. 

2.2 Lasagna-Inspired Nanoscale Zn Anode 

2.2.1 Introduction 

Bulk zinc foil or mesh have been used as typical anode materials of aqueous Zn 

batteries. Upon discharging, insulating ZnO product forms on the zinc foil electrode 

surface and passivates unreacted Zn underneath, limiting the Zn utilization and 

rechargeability (Figure 2.6a). After cycling, Zn metal anodes (25 µm in thickness) had a 

ZnO passivation layer with typical thickness of ~ 2 µm (Figure 2.5). Thus, it was 

hypothesized that the critical size of passivation is ~ 2 µm. When the feature size of Zn/ZnO 

is sufficiently small (e.g. sub-micron), other conditions kept the same, the reversibility of 

Zn/ZnO conversion could potentially be enhanced. Micro-structured Zn metal with large 

surface area has improved rechargeability in coin-type cells,79,92 yet the depth-of-discharge 

(DOD) still has to be limited under 40% to prevent passivation and maintain activity.  
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Figure 2.5 - SEM image of ZnO passivation layer on Zn mesh (Dexmet), formed by 

discharging Zn mesh under 1 mA with 10 µL electrolyte. Separator used here was 

Celgard 3501. 

Decreasing the feature size of zinc-based anode to below the critical size of 

passivation is possible by starting with nanostructured ZnO, which can be synthesized by 

a wide gamut of approaches.93 It is also feasible to combine nanosized ZnO with conductive 

additives in a composite, to facilitate electron transport to insulating ZnO and enable its 

conversion to Zn during charging. However, nanostructured ZnO could exacerbate the 

dissolution problem due to the enlarged electrode-electrolyte interface.94 As shown in 

Figure 2.6b, ZnO dissolution will change the structure of the electrode, and the spreading 

of Zn(OH)4
2- will lead to the loss of the active material and a quick decay in capacity over 

cycling. To mitigate problems caused by ZnO dissolution, electrodes were tested in beaker 

cells with excess amount of electrolyte saturated with Zn(OH)4
2-for most past reports.95–98 

Yet, the large electrolyte/electrode ratio makes the overall energy density extremely low 

and deviates from practical operating condition. Also, Zn species from the electrolyte could 

also behave as active material during testing, making it impossible to evaluate the true 

performance of Zn electrodes. 
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Figure 2.6 - Schematic of changes that occur in zinc-based electrodes during 

electrochemical cycling in alkaline aqueous electrolyte. (a) Bulk zinc metal anode 

tends to stop discharging (“passivated”) after discharge product ZnO reaches a 

thickness of ~ 2 µm, resulting in limited utilization. (b) ZnO nanoparticles have 

diameter (~100 nm) smaller than the critical passivation size, yet enlarged surface 

area, and the absence of confinement leads to the escape of ZnO and morphology 

change of the electrode. (c) ZnO lasagna microstructure comprising ZnO 

nanoparticles and carbon black encapsulated by graphene oxide sheets (left), and a 

real lasagna (right). (d) Schematic of a single capsule inside the ZnO lasagna 

electrode. The graphene oxide (GO) sheets confines Zn(OH)4
2- inside the capsule, 

while allows smaller OH- and H2O to permeate. Stable GO framework and confined 

ZnO maintain the electrode morphology after cycling. 

Here, a lasagna-inspired Zn anode was reported, in which ZnO nanoparticles are 

encapsulated by graphene oxide (GO) to form a free-standing film, to simultaneously solve 

the passivation and dissolution problems of aqueous Zn anode (Figure 2.6c, d). ZnO 

lasagna structure has three features: 1) the size of ZnO nanoparticles is smaller than the 
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critical size of passivation; 2) the fabrication of ZnO lasagna anode starts with 

commercially available ZnO nanoparticles (~100 nm), and is compatible with the roll-to-

roll process, which is ideal for large-scale manufacturing; 3) GO allows permeation of OH- 

and water,99,100 and prevents loss of Zn active material through blocking bigger Zn(OH)4
2-

.101 And GO can be partially reduced when soaked into alkaline electrolyte,77,89 which can 

facilitate electron transfer inside anodes. The transmission electron microscopy (TEM) 

image (Figure 2.7a) and Raman spectra (Figure 2.7c) shows the high-quality GO sheets 

with characteristic peaks of D and G bands at 1363 and 1589 cm−1, respectively. Zn active 

material is confined inside the GO framework, which is stable during electrochemical 

cycling. The blocking of Zn(OH)4
2- is attributed to 1) geometric confinement and 2) 

electrostatic repulsion. First, H2O and OH- have solvodynamic radii of 0.138 and 0.110 

nm,102 which allows unrestrained permeation through the nanochannels between adjacent 

GO nanosheets.99 But Zn(OH)4
2- has an average hydrated radii of 0.330 nm,103 which is too 

big for it to transport through the nanochannels.101,104 Second, GO carries negative charges 

because of the oxygen functional groups (e.g. carboxyl). Zn(OH)4
2- ions inside the GO 

capsule have an electrostatic barrier to cross before they could escape out.  

2.2.2 Experimental Section 

Materials and chemicals. Zn metal (0.25mm thick, 99.98%, Alfa Aesar), zinc 

oxide nanoparticles (ZnO, ~100 nm, Sigma-Aldrich), water binder (BTA-520L, MTI), 

alginic acid sodium salt (Alfa Aesar), carbon black (Super-P, Timcal), graphite powder 

(MTI), hydrogen peroxide (H2O2, 30% wt. % in H2O, Sigma-Aldrich), sulfuric acid 

(H2SO4, 95.0-98.0%, Sigma-Aldrich), potassium permanganate (KMnO4, 97%, Sigma-

Aldrich), Soil water crystal beads (hydrogel beads, Eboot Online), potassium hydroxide 
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(KOH, 99.97%, Sigma-Aldrich), potassium fluoride (KF, 99.9%, Sigma-Aldrich), 

potassium carbonate (K2CO3, 99.0%, Sigma-Aldrich), copper foil (37 µm, single side 

polished, Shenzhen Jingliang Copper Co., Ltd.), tin foil (25 µm, Alfa). 

Synthesis of graphene oxide. GO was synthesized from graphite using a modified 

Hummers’ method.90 A pretreatment step was used to avoid the formation of inadequate 

oxidized graphite-core/GO-shell particles.91 The pretreated graphite powders were added 

into 120 mL concentrated H2SO4 solution under stirring in an ice bath. 15 g KMnO4 was 

then slowly added under stirring, keeping the temperature below 10°C. After adding 

KMnO4, the beaker was heated to 35°C and maintained for 45 min, followed by drop-by-

drop addition of 200 mL deionized water (DI-water). Next, the beaker was heated to 98°C 

and maintained for 15 min, followed by addition of another 700 mL DI-water. Finally, 20 

mL 30% H2O2 was gradually added to the mixture to decompose unreacted KMnO4 and 

insoluble MnO2, the resulting dispersion turned to bright yellow. To work out the GO, the 

dispersion was subjected to centrifugation (7000 rpm, 15 min). The resultant sediment was 

washed with DI-water for 5 times until the pH of the supernatant reached neutral. The 

resulting GO was dispersed into DI-water and sonicated for 2 hours, followed by 

centrifugation (4000 rpm, 15 min). The clear supernatant is the aimed aqueous GO 

dispersion (~1 g/L). To further get GO powders, the above GO dispersion was concentrated 

to 2 g/L using hydrogel beads, followed by freeze-drying.105  

Preparation of Zn anodes. ZnO lasagna (ZnO/GO/carbon black) anode on metal 

current collectors was synthesized as followed process. ZnO lasagna slurry was prepared 

first. Typically, 15.0 mL DI-water was added into a glass vial (20 mL) containing 72.0 mg 

water binder and 18.0 mg alginic acid sodium salt, followed by vigorous stirring to form 
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Solution A. Then 2.50 mg GO powder was dispersed into 0.500 mL Solution A under 

vigorous stirring to form Slurry B. Substantially, 20.0 mg ZnO nanoparticles and 2.50 mg 

carbon black were added into the well-mixed Slurry B, followed by one hour of 

ultrasonication and six hours of stirring at room temperature. The obtained ZnO lasagna 

slurry, containing ZnO nanoparticles, graphene oxide, carbon black and binder with a 

weight ratio of 8:1:1:1.2, was ready for casting electrodes. 75 µL ZnO lasagna slurry was 

dropped on the rough surface of a round Cu disk (37 µm in thickness, 1 cm in diameter) 

and dried at room temperature. The same process was done on Sn disks (25 µm in 

thickness, 1.0 cm in diameter) as well. The average thickness of the film after calendering 

was 5.11 µm. ZnO particle anode on metal current collectors was synthesized through the 

same process, containing ZnO nanoparticles, carbon black and binder with a weight ratio 

of 8:2:1.2. And the synthesis of free-standing ZnO anode can be found in the Supporting 

information. 

Battery assembly. Two kinds of ZnO anodes with metal current collectors were 

assembled in 2032 coin-type cells with Ni(OH)2 cathodes from discharged commercial 

cylindrical Ni-Zn rechargeable batteries (PowerGenix) as counter/reference electrodes, 

Whatman glass fiber filter as separators, and 100 µL ZnO-free alkaline electrolyte. The 

electrolyte was 4.0 M KOH, 2.0 M KF, and 2.0 M K2CO3 aqueous solution. ZnO metal 

and four kinds of free-standing ZnO anodes were assembled in 2032 coin-type cells with 

Sn foil (25 µm in thickness, 1.0cm in diameter) as the current collector. The counter 

electrode, separator and electrolyte were the same as former assembly process. 

Electrochemical test. All electrochemical testing was performed using LAND 

CT2001A 8 channels battery testers. Coin cells containing Sn current collector supported 
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ZnO anodes were galvanostatically cycled between 1.45 and 2.00 V (charged at 1C rate, 

discharged at 5C rate). The specific capacity of anode was calculated based on the weight 

of ZnO inside the anode. The charging/discharging rate was calculated with respect to the 

theoretical capacity of ZnO (658 Ah/kg). Coin cells containing Zn metal anode were 

galvanostatically cycled between 1.40 and 1.90 V. Coin cells containing Cu current 

collector supported ZnO anodes were galvanostatically cycled between 1.40 and 2.00 V 

(charged at 1C rate, discharged at 1C rate). Coin cells containing free-standing ZnO anodes 

were galvanostatically cycled between 1.40 and 1.95 V.  

Material characterization. To characterize the Zn anodes after cycling, coin-type 

cells were first cycled 40 times, and opened immediately. Then the Zn anodes were gently 

cleaned with DI-water to remove the electrolyte and glass fiber. The SEM images were 

obtained using HITACHI SU8230 with a 10 KV accelerating voltage. The samples for 

cross-sectional imaging were placed between two pieces of silicon wafer, and attached to 

a vertical stage with carbon tape. The XRD patterns were collected using Panalytical 

Empyrean, with Cu K(α), which is 1.5425 Å in wavelength. The Raman spectrum was 

collected using Thermo Nicolet Almega XR Dispersive Raman Spectrometer, with 785 nm 

laser. 

2.2.3 Results and Discussion 

A facile and scalable process to fabricate lasagna-like ZnO anode was developed, 

either on metal current collectors or as free-standing foil. For metal-supported ZnO 

lasagna, ZnO nanoparticles were mixed with graphene oxide, carbon black and binder 

(8:1:1:1.2 by weight) in water to form a slurry, which is then casted on tin or copper foil. 
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Both sides of metal foil can be coated to form an electrode similar to the one used in 

cylindrical cells. For free-standing ZnO lasagna, the weight percentage of binder was 

increased to enhance mechanical strength. This process is compatible with roll-to-roll 

manufacturing and can be easily scaled up. Figure 2.7b shows a large free-standing ZnO 

lasagna foil (10 cm × 5 cm).  

The successful fabrication of ZnO lasagna anode was supported by various 

characterization. Raman spectrum (Figure 2.7c) confirms the D and G peaks of the GO 

inside the ZnO lasagna. X-ray diffraction (XRD) pattern of ZnO lasagna contains peaks of 

ZnO (wurtzite) (Figure 2.8). Low-magnification cross-section scanning electron 

microscope (SEM) image of the free-standing ZnO lasagna (Figure 2.7d) shows that the 

components were well mixed. In high-magnification image (Figure 2.7d, inset), ZnO 

nanoparticles and carbon black are visible in the graphene oxide framework. ZnO 

nanoparticles aggregate to form clusters, mix well with carbon black, and together 

encapsulated by graphene oxide. The GO encapsulation design is critical for slowing down 

dissolution of ZnO in alkaline electrolyte and extending cycle life. In further evaluation of 

the merit of ZnO lasagna electrodes, they are compared with open-structured ZnO particle 

electrodes made of ZnO nanoparticles, carbon black and binder (Figure 2.9). The structure 

consists of simply connected particles, without any encapsulation (Figure 2.8, inset). 
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Figure 2.7 - Characterization of the synthesized ZnO lasagna electrodes. (a) Low 

magnification TEM image of the overlapped graphene oxide sheets. (b) Optical image 

of a large (10 cm × 5 cm) freestanding ZnO lasagna electrode. (c) Raman spectrum of 

the ZnO particle, GO and ZnO lasagna. Dashed curves are the fit peaks of ZnO 

lasagna. (d) Low and high magnification (inset) cross-section SEM images of the ZnO 

lasagna electrode. The dash lines and arrows indicate the top and bottom surfaces of 

the electrode. 

 

Figure 2.8 - XRD patterns of ZnO lasagna and ZnO particle anodes. The peaks 

marked by cyan dots belong to ZnO with hexagonal close packing (hcp) structure. 
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Figure 2.9 - Low and high magnification (inset) cross-sectional SEM images of the 

ZnO particle electrode. The dash lines and arrows indicate the outline of the 

electrodes. 

To examine the ability of graphene oxide framework in encapsulating 

ZnO/Zn(OH)4
2– inside the electrode, a ZnO lasagna anode and a ZnO particle anode (both 

have the size of 3.0 mm × 3.0 mm) were soaked separately in 0.30 mL of electrolyte, and 

measured Zn concentration in both solutions over time using inductively coupled plasma 

atomic emission spectroscopy (ICP-AES). Compared with 4 M KOH, 2 M KF, 2 M K2CO3 

electrolyte, ZnO solubility is higher in 4 M KOH solution.106 For better differentiating the 

two ZnO anodes, 4 M KOH was used in the dissolution test. After 14 days of soaking, the 

severe ZnO loss of ZnO particle anode disintegrated the electrode, the detached electrode 

fragments turned the solution dark and turbid (Figure 2.10a, right). In contrast, ZnO lasagna 

anode remains almost the same after 14 days (Figure 2.10a, left). In addition, over the 14 

days, 10 µL clear solution was drew from each tube every other day to analyze the 

dissolved Zn concentration and added 10 µL of 4 mol/L KOH aqueous solution back to 

maintain same volume. In addition, the Zn concentration measured by ICP-AES shows the 

huge difference between two anodes, from which the percentage of dissolved Zn (Figure 

2.10b) was calculated. Based on the calculation, 6.8% of ZnO inside the ZnO lasagna 
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electrode was dissolved in the first week (six days), and 15.5% after two weeks. Yet for 

ZnO particle electrode, about half of ZnO inside was dissolved after the first week, and 

68.5% after two weeks (4 times more than ZnO lasagna). Because a large electrolyte : 

active materials ratio (~25 times larger than in coin cell) was applied, which speeds up the 

dissolution, the amount of dissolved ZnO is high for both anodes. These results suggest 

that, due to the encapsulation of graphene oxide, ZnO in lasagna-structured anode is much 

more resistant to dissolution than ZnO in the open structure anode. The nanoscale lasagna 

structure is effective in keeping active material, ZnO/Zn(OH)4
2–, inside the electrode. 

 

Figure 2.10 - Suppression of ZnO dissolution with nanoscale lasagna structure. (a) 

Pictures of ZnO lasagna (left) and ZnO particle (right) electrodes that have been 

soaked in 4 mol/L KOH aqueous solution for 14 days. (b) Percentages of ZnO that 

has been dissolved in solution over time, measured using inductively coupled plasma 

atomic emission spectroscopy (ICP-AES). After 14 days, 68.3% of ZnO in open 

structured electrode was dissolved, while only 15.5% ZnO in lasagna structured 

electrode was dissolved. 

The electrochemical performance of ZnO lasagna anodes was evaluated in sealed 

coin-type batteries with Ni(OH)2 cathodes containing excessive capacity (Figure 2.11). 

Open-structured ZnO particle anodes were tested in the same way for comparison, and the 

charge capacity was limited to the theoretical capacity of ZnO (658 Ah/kg). Both upper 

and lower voltage limits were set. Figure 2.11a shows the cycle performance and 
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Coulombic efficiency (CE) of tin-supported anodes. The capacity increase of both anodes 

around 45 cycles can be attributed to the slow activation of the commercial Ni(OH)2 

cathodes in the beginning of electrochemical cycling.107–109 The capacity decrease might 

be caused by the electrolyte dry and bubble accumulation because of hydrogen evolution. 

The open-structured ZnO particle anode quickly decayed after 75 cycles and completely 

degraded after 95 cycles (Figure 2.11a), because the loss of unprotected active material, 

which is indicated by the ICP-AES results shown above. In contrast, ZnO lasagna anodes 

(Figure 2.11b) showed excellent electrochemical performance. At 100% DOD, its 

discharge capacity reached 586 Ah/kg after the cathode activation and remained above 565 

Ah/kg for 150 cycles (Figure 2.11a). The high performance of ZnO lasagna anode is 

attributed to the confinement of Zn(OH)4
2- inside the electrodes by GO sheets’ geometric 

encapsulation and electrostatic repulsion. Notably, the practical volumetric capacity of 

ZnO lasagna anode reached 2308 Ah/L. When taking current collector (25 µm tin foil) into 

account, volumetric capacity is 441 Ah/L, which is similar to the state-of-the-art 3D-Zn 

sponge anode (423 Ah/L).79,92 And to notify that this number 2308 Ah/L is much higher 

than graphite anode in Li-ion batteries,110 even higher than Li metal, rendering safe and 

high-energy Zn-based batteries a promising alternative to Li-ion batteries for large-scale 

energy storage. 

The ZnO lasagna anode was recovered from coin cells after 40 cycles and examined 

under SEM. As shown in Figure 2.11c, the thickness and morphology of the cycled ZnO 

lasagna anode were almost identical as the pristine one. High magnification SEM images 

(Figure 2.11d, e) showed that the nanoscale lasagna structure (ZnO encapsulated by GO 

framework) was maintained after electrochemical cycling. In contrast, the morphology of 
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ZnO particle anode completely changed after 40 cycles (Figure 2.11f, g). The former dense 

structure became porous one due to the rearrangement of the unprotected ZnO and carbon 

black, resulting from the dissolution and deposition of ZnO during cycling. The 

morphology change of ZnO particle anodes, along with the continual active material loss, 

led to low cyclability. 

 

Figure 2.11 - Electrochemical performance of Zn lasagna anodes. The cells were 

galvanostatically cycled between 1.45 and 2.00 V, at 1C rate for charging and 5C for 

discharging. The mass loading of ZnO was ~ 1 mg/cm2. (a) Cycling performance and 

Coulombic efficiency, and (b) voltage profiles of 90th cycle of tin-supported ZnO 

lasagna and ZnO particle anodes. (c) Cross-section SEM images of the ZnO lasagna 

before (left) and after 40 cycles (right). (d, e) High-magnification cross-section SEM 

images of the ZnO lasagna anode before (d) and after (e) 40 cycles. (f, g) High-

magnification cross-section SEM images of the ZnO particle anode before (f) and 

after (g) 40 cycles. 



 34 

With encapsulation structure, ZnO lasagna anodes slow down the loss of active 

materials, maintain electrode morphology, and out-performs open-structured ZnO anodes. 

While longer cycle life for Zn anode have been reported in beaker cells or neutral 

electrolytes, the performance of ZnO lasagna is among the best obtained in coin cell and 

ZnO-free alkaline electrolyte.  

2.2.4 Conclusion 

In summary, a lasagna-inspired nanostructure was designed to solve simultaneously 

the passivation and dissolution problems of aqueous Zn anode and developed a facile and 

scalable approach to synthesize it. With geometric confinement and electrostatic repulsion 

of graphene oxide sheets towards Zn(OH)4
2-, the active material is confined inside the 

electrodes during electrochemical cycling. ZnO lasagna anode achieved a high cycling-

available volumetric capacity of 2308 Ah/L, even higher than lithium metal, as well as long 

cycle life (> 150 cycles) and a high specific capacity in coin-type cells and ZnO-free 

alkaline electrolyte. This work demonstrated the effectiveness of nanoscale structure 

design in addressing intrinsic passivation and dissolution problems of Zn anodes in alkaline 

electrolyte, the design principles can possibly be extended to enable other soluble active 

materials (e.g. sulfur) for future high-energy and safe batteries. 

2.3 Sealed ZnO Nanorod Anode 

2.3.1 Introduction 

As mentioned above, Zn metal foil is the most commonly used Zn anode in aqueous 

batteries. However, the passivation problem (nonconductive property of ZnO) of Zn foil 
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limits the utilization (<1%) of Zn foil anode and makes it non-rechargeable (Figure 2.12a). 

Under 10 mA discharge, only 1.7 mAh capacity of Zn foil can be gotten with 0.25 mm 

thickness and 1 cm diameter in coin cell (Figure 2.13). The thickness of the passivation 

layer (or the critical passivation size) is ~ 2 µm. Microporous Zn sponges79,111,112 have been 

made to enhance the rechargeability, yet its feature size is ~ 10 µm (> 2 µm), so only 40% 

DOD of them can be achieved. Sub-micron-sized Zn anodes96–98,113 including ZnO 

nanoplates114 and ZnO nanoparticles74 are also investigated. However, the anode 

dissolution problem, resulting from large electrode-electrolyte surface area94 of these sub-

micron-sized Zn anodes, is not well controlled or clearly stated. The lasagna-inspired Zn 

anode78 can address the passivation problem initially. However, the feature size of ZnO 

would be larger than the critical passivation size (~2 μm) after cycling due to its structure 

degradation.  
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Figure 2.12 - Schematic of morphological changes of zinc electrode during 

electrochemical cycling. a, Zn foil shows very low utilization (<1%) because of ZnO 

passivation layer. The critical passivation size is ~ 2 µm, as shown above. b, The 

feature size of ZnO nanorod is smaller than the critical passivation size, however, the 

large electrode-electrolyte surface area accelerates anode dissolution and promotes 

electrode shape change. Moreover, due to the relatively insulating property of ZnO, 

electrons can only be distributed on carbon paper, which leads to fast complexation 

and electroreduction reactions on the root of nanorods in charging. As a result, the 

nanorods will detach from carbon paper. c, The shape of ZnO@TiNxOy nanorod 

anode retains during cycling with the sealed nanorod structure. 
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Figure 2.13 - One cycle discharge and charge test for Zn foil under 10 mA, showing 

that Zn foil can only deliver 1.7 mAh capacity (1% utilization) and charge capacity is 

only 1/5 of discharge capacity. 

Herein, Zn anode’s dilemma of passivation and dissolution was solved with a sealed 

structure (ZnO@TiNxOy nanorod anode), with feature size smaller than the critical 

passivation size, and a thin and conformal coating to prevent dissolution of anode (Figure 

2.12c). The hydrothermal method115 was used to grow ZnO nanorods on carbon fiber paper 

(Figure 2.12b). Then, the atomic layer deposition (ALD) technique was used to form a 

strong and conductive stable TiNxOy coating on the ZnO nanorods. This structure has a 

few advantages: (i) the feature size of ZnO nanorod is smaller than critical passivation size; 

(ii) the carbon paper framework and TiNxOy coating, which encapsulates ZnO nanorod, 

function as an electrical pathway so that all ZnO nanorods are electrochemically active; 

(iii) the TiNxOy coating enables fast hydroxide/water diffusion as well as blocks large 

zincates from escaping during electrochemical cycling, thus prevents anode structure 

fracture.  

2.3.2 Experimental Section 

Synthesis of ZnO nanorods. Briefly, carbon paper (Fuel Cell Store) was first heat-

treated at 500 °C for 1 h in air to increase its wettability. Then, ZnO nanorods were grown 
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on carbon paper by a wet chemical process. carbon paper was soaked in an aqueous solution 

containing 0.1 M KMnO4 (Sigma Aldrich) for 1 h to form a seed layer. The seeded carbon 

paper was then dipped into a glass bottle with a precursor solution containing 50 mL zinc 

nitrate hexahydrate (30 mM, Alfa Aesar), 50 mL hexamethylenetetramine (30 mM, Sigma 

Aldrich), and ammonia (28.0-30.0% NH3 basis, Sigma Aldrich)115. The sealed bottle was 

placed into an oven at 90 °C. After that, the white-colored carbon paper ZnO nanorods was 

obtained by water washing and drying at 80 °C for 3 h. Different mass loadings of ZnO 

nanorods on carbon paper ranging from 0.5 mg/cm2 to 5.5 mg/cm2 were synthesized by 

adjusting the carbon paper area per bottle, NH3 concentration, hydrothermal time and 

hydrothermal times, as summarized in Table 2.1. 

Table 2.1 - Experiment conditions for different mass loadings of ZnO nanorods. 

Mass loading 

Carbon paper area 

per bottle 

NH3 quantity 

Hydrothermal 

time 

Hydrothermal 

times 

0.5 mg/cm2 2×(2.1*6) cm2 2 mL 13 h 1 

0.9 mg/cm2 1×(2.1*6) cm2 4 mL 22 h 1 

5.5 mg/cm2 1×(2.1*6) cm2 4 mL 20 h 2 

Synthesis of ZnO@TiNxOy core/shell nanorods. The synthesis of ZnO@TiNxOy 

core/shell nanorods was conducted in Cambridge FIJI Plasma ALD system. First of all, the 

TiN was deposited onto the ZnO nanorods. The precursors of TiN were 

Tetrakis(dimethylamido)Titanium(IV) (TDMAT, Sigma Aldrich) and N2. During TiN 

ALD process, the recipe was run 100 or 200 cycles at 250 °C. The TiN ALD recipe is 

shown in Figure 2.14. Then, when ZnO@TiN nanorods were exposed to air, the TiN was 
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partially oxidized to TiNxOy (evidenced by XPS spectra in Figure 2.15k). Thus, for 

accuracy purpose, the anode is named as ZnO@TiNxOy in this manuscript. 

 

Figure 2.14 - Schematic of TiN ALD recipe. 

Electrochemistry. To investigate the Zn anode, full batteries using Ni(OH)2 as the 

rechargeable cathode were made. The Ni(OH)2 cathodes were harvested from commercial 

Ni-Zn AA batteries from PowerGenix.  

Coin cell: Coin-type batteries were assembled using CR2032 cases (MTI 

Corporation), zinc anodes (round disk, 1 cm diameter) and Ni(OH)2 cathodes with excess 

capacity. Coin cell has small volume of electrolyte, which is required for practical 

application. The aqueous electrolyte consists of 4 M KOH (Sigma Aldrich, 99.99%), 2 M 

KF (Alfa Aesar, 99.99%) and 2 M K2CO3 (Alfa Aesar, 99.997%).116 Glass fiber (GE 

Healthcare, WhatmanTM 10370003) was used as the separator. For start-stop operation, 

ZnO@TiNxOy nanorod anode and Zn foil were pre-activated. ZnO@TiNxOy nanorod 

anode was pre-cycled three times at 0.5C between 1.4 and 2 V. Zn foil (0.02% DOD) was 

firstly discharged for 2h and re-charged for 2h at the constant current of 1.35 mA. Then it 

was discharged twice and charged once at the same time interval of 1 h at 1.35 mA. Zn foil 
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(1% DOD) was pre-cycled twice at the constant current of 1 mA. When Zn foil was used 

as the anode, the cathode harvested from commercial Ni-Zn AA batteries was 

electrochemically oxidized to 0.6 V vs HgO/Hg reference electrode in a beaker cell with 2 

M KOH as electrolyte.  

Pouch cell: Pouch-type batteries were assembled using Ampac’s SealPAK, zinc 

anodes (round disk, 1 cm diameter) and Ni(OH)2 cathodes with excess capacity. The 

aqueous electrolyte consists of 4 M KOH (Sigma Aldrich, 99.99%), 2 M KF (Alfa Aesar, 

99.99%) and 2 M K2CO3 (Alfa Aesar, 99.997%).116 Celgard 3501 (close to anode) and 

Freudenberg 700/28K (close to cathode)79 were used as the separators. 

Beaker cell: Beaker-type batteries were assembled using beakers, zinc anodes 

(round disk, 1 cm diameter) and Ni(OH)2 cathodes with excess capacity. 10 mL ZnO 

saturated 4M KOH (Sigma Aldrich) was used as the electrolyte. 

Electrochemical impedance spectroscope (EIS) measurements were performed on 

a Bio-Logic instrument. The frequency range was between 100 KHz and 10 mHz. The 

amplitude of AC signal was 10 mV. Coin-type batteries, assembled using zinc anodes and 

Ni(OH)2 cathodes were used to measure EIS. 100 μL 4 M KOH, 2 M KF and 2 M K2CO3 

electrolyte was added to glass fiber separator. 

The charge capacity was limited to the theoretical capacity of ZnO (658 mAh/g). 

The theoretical specific capacity (charge capacity) was calculated by Equation 1. 

 
𝐶𝑇(𝑚𝐴ℎ 𝑔−1) =

1

𝑀𝑊
∗

𝑛𝐹

3.6
 (1) 
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where MW is the molar weight of active material, n is the number of electrons transferred 

in the relevant reaction, and F is the Faraday’s constant.  

The specific discharge capacity of the electrode was calculated by Equation 2. 

 𝐶 = 𝐼𝑡/𝑚 (2) 

where I is the discharge current, t is the discharge time per cycle, and m is active materials’ 

mass. A rate of mC corresponds to a full charge/discharge in 1/m hours. 

2.3.3 Results and Discussion 

ZnO nanorods are synthesized on carbon paper with mass loading ranging from 0.5 

to 5.5 mg/cm2 (Figure 2.15a-c) by adjusting the area of carbon paper placed in 

hydrothermal reactor, NH3 concentration, hydrothermal time, etc.. In ALD process, the 

recipe was run 100 or 200 cycles. The TiNxOy mass loadings of 100 cycles and 200 cycles 

are about 0.057 mg/cm2 and 0.19 mg/cm2, which are only 0.6 wt% and 1.9 wt% of 

ZnO@TiNxOy nanorod anode, respectively (for 3 mg/cm2 ZnO nanorods). The nanorod 

morphology does not change after TiNxOy coating (Figure 2.15d). High-resolution 

transmission electron microscopy (HRTEM) images show uniform TiNxOy coating with a 

thickness of 6.1 nm for ZnO@TiNxOy nanorod with 100 cycles ALD (Figure 2.15e, f). 

ZnO nanorod is hexagonal and TiNxOy coating is amorphous, which are evident from TEM 

(Figure 2.15g, h) and X-ray diffraction (XRD) results (Figure 2.15f). In addition to TEM, 

X-ray photoelectron spectroscopy (XPS) results also indicate complete coverage of TiNxOy 

on ZnO (Figure 2.15i, j), which is crucial for encapsulating zincate during cycling. Besides, 

nitrogen peak in the XPS survey spectra (Figure 2.15i) and three Ti 2p peaks in the high-
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resolution XPS spectra (Figure 2.15k), which belong to TiO2,
117 indicate that ALD TiN is 

partially oxidized to TiNxOy.  

 

Figure 2.15 - Fabrication and characterization of anodes. a, Schematic of the 

fabrication process for ZnO@TiNxOy core/shell nanorod anode. b, Low magnification 

SEM image of ZnO nanorod anode. c, High magnification SEM images of three ZnO 

nanorod anodes with different mass loadings. d, SEM image of ZnO@TiNxOy 

nanorod anode. e, TEM image of a ZnO@TiNxOy nanorod. f, HRTEM image of 

ZnO@100TiNxOy nanorod, showing thickness (6.1 nm) of TiNxOy coating. g, HRTEM 

image of ZnO@TiNxOy nanorod, showing lattice of ZnO, [002], d= 0.26 nm. h, 

Electron diffraction pattern of ZnO@TiNxOy nanorod, showing diffraction pattern 

of ZnO. A [002]; B [200]; C [202]. i, XPS survey of ZnO nanorod and ZnO@TiNxOy 

nanorod anodes. j, High-resolution XPS spectra of Zn 2p peaks. k, High-resolution 

XPS spectra of Ti 2p peaks. The samples shown in Fig. d-k are all deposited by ALD 

for 100 cycles. 



 43 

The TiNxOy coating, although only a few nanometers thick, firmly supports the 

ZnO nanorod, blocks zincates, and enables OH-/H2O to pass through. As shown in Figure 

2.16a, a ZnO@TiNxOy anode and an uncoated ZnO anode (1 cm diameter disk) were 

soaked into two tubes with 2 mL 4M KOH solution, respectively. Then the dissolved Zn 

concentration in both solutions was measured using inductively coupled plasma atomic 

emission spectroscopy (ICP-AES). The dissolved Zn of the ZnO@TiNxOy anode is much 

lower than that of the uncoated ZnO anode, which means that TiNxOy coating effectively 

blocks zincates. Furthermore, coin cells with these two anodes and Ni(OH)2 cathodes were 

assembled to investigate the influence of the TiNxOy coating during electrochemical 

cycling. After 2h charge (1h constant current at 1C rate and 1h constant voltage at 1.93 V), 

uncoated ZnO nanorod anode shows severely morphological degradation, almost all ZnO 

nanorods detach from carbon paper because of dissolution (Figure 2.16b). On the other 

hand, there is no obvious shape change for ZnO@TiNxOy nanorod anode with 100 cycles 

ALD (Figure 2.16c). ZnO@TiNxOy nanorod anode with 200 cycles ALD maintained its 

morphology after charging as well (Figure 2.17). Additional SEM image, elemental 

mapping (Figure 2.16d), TEM image (Figure 2.16e), and Zn peaks in XRD results (Figure 

2.16f) all support that TiNxOy coating confined zinc active material inside, while still 

allowing it to participate in electrochemical reaction. The mass loading of ZnO nanorods 

shown in Figure 2.16b-e is 0.5 mg/cm2. For longer nanorods with higher mass loading 

(~1.7 mg/cm2), there is also no apparent shape change of ZnO@TiNxOy nanorod anode 

after the first charge and discharge (Figure 2.18), while ZnO nanorod anode shows severe 

structure degradation after the first charge (Figure 2.19). Electrochemical impedance 

spectroscopy (EIS) was also employed to investigate the electrochemical influence of 
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conductive TiNxOy coating. As shown in the Nyquist plot (Figure 2.16g) and equivalent 

circuit (Randles-Ershler impedance)118, the charge-transfer resistance (Rct) of 

ZnO@TiNxOy nanorod anode (0.8 Ω) is much lower than that of the uncoated ZnO anode 

(1.8 Ω). This can be attributed to the good conductivity of TiNxOy
119 and the high zincate 

concentration inside the TiNxOy coating. 

 

Figure 2.16 - Investigation on the influence of TiNxOy coating on the electrochemical 

performance of zinc anodes. a, ICP results and image (inset) showing dissolved Zn 

concentration after soaking the ZnO@TiNxOy and uncoated ZnO anodes in 4M KOH 

solution. b,c, SEM images of uncoated ZnO nanorod anode (b) and ZnO@TiNxOy 

nanorod anode (c) before and after 2h charge with 25 μL electrolyte. d, SEM image 
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and elemental mapping of ZnO@TiNxOy nanorod anode after 2h charge. e, TEM 

image of ZnO@TiNxOy nanorod anode after 2h charge. Fig. c-e are from the same 

anode sample with 100 cycles ALD. f, XRD results of ZnO nanorod and ZnO@TiNxOy 

nanorod anode before and after charge. The weak ZnO peaks of ZnO@TiNxOy 

nanorod anode with 200 cycles ALD after charge is from residual unreacted ZnO. Tin 

foils were used as anode current collectors.120 g, EIS result and equivalent circuit of 

uncoated ZnO anode and ZnO@TiNxOy nanorod anode. Zw: Warburg impedance; 

Rct: charge-transfer resistance; CPE: double layer capacity; Re: total ohmic 

resistance. 

 

Figure 2.17 - SEM images of 0.5 mg/cm2 ZnO@TiNxOy nanorod anode with 200 cycles 

ALD after 1h constant current charge at 1C rate with 25 μL electrolyte. Tin was used 

as anode current collector. 

 

 

 

Figure 2.18 - SEM images of pristine ZnO@TiNxOy nanorod anode with 200 cycles 

ALD (a), after 3h constant current charge at 0.33C with 25 μL electrolyte (b), and 
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after further constant current discharge at 0.33C (0.7 h) to 1.5 V with 25 μL 

electrolyte (c). All SEM images are from same sample with a mass density of 1.7 

mg/cm2. This result indicates that there is almost no shape change during the charge 

and discharge step. 

 

 

Figure 2.19 - SEM images of pristine uncoated ZnO nanorod anode (a), and after 3h 

constant current charge at 0.33C with 25 μL electrolyte (b). All SEM images are from 

same sample with a mass density of 1.7 mg/cm2. Some nanorods were detached from 

the beginning as shown in Fig. a, due to external mechanical force during transfer. 

After charge, most ZnO nanorods grown on the top layer of carbon fibers detached. 

Because of the small amount of electrolyte, the ZnO nanorods grown on the inner 

carbon fibers were not in contact with electrolyte in the first charge, and remained. 

Zinc anodes were tested in coin-type cells with lean zinc-free electrolyte here to 

evaluate their real performance, which is different from most of previous investigations95–

97,114,121–126 using beaker cells with a large amount of ZnO saturated electrolyte. When 

testing the performance of zinc anodes in ZnO saturated electrolyte, all the zincates in the 

electrolyte could also participate in electrochemical reactions and contribute capacity in 

addition to the Zn in the anode. However, most previous works reported their specific 

capacity without counting Zn in the electrolyte, which gives pseudo performance. In an 

extreme case, even if there is no active material in the anode, only a pure current collector 

can cycle in ZnO saturated electrolyte. Here two pure carbon fiber paper substrates (1 cm 
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diameter disk) in a beaker cell with 10 mL ZnO saturated 4M KOH electrolyte and a coin 

cell with 100 uL ZnO saturated 4M KOH electrolyte (Figure 2.20a), respectively, were 

tested . They were both cycled at 1 mA with a limiting charge capacity of 1 mAh and cut-

off voltage of 1.4/2V. The theoretical specific capacity of ZnO is 658 mAh/g. As shown in 

Figure 2.20b, if zinc in the electrolyte is not counted, the pure current collector without any 

active material in the beaker cell can show excellent cycling performance with a pseudo 

specific discharge capacity of 600 mAh/g (Assume there is 1.5 mg ZnO on the anode, 

which has 1 mAh theoretical capacity). However, when zinc in the electrolyte (see Table 

2.2 for equivalent ZnO mass) is counted, the real specific discharge capacity in the beaker 

cell is only 4 mAh/g, while that in the coin cell is ~150 mAh/g. These results show that 

testing zinc anodes in beaker cells with a large amount of ZnO saturated electrolyte will 

dramatically decrease the overall specific energy. Moreover, it’s hard to evaluate the true 

performance of anodes with a lot of capacity contributed from electrolyte. Coin-type cells 

use minimum amount of electrolyte and have a higher volumetric capacity compared with 

beaker cells, which is closer to practical operating condition. Thus, even though the coin 

cell with lean electrolyte is an extreme harsh testing environment (~25 cycles), it was still 

chosen to test materials. To evaluate the true performance of anodes, ZnO-free electrolytes 

were used because capacity contributed by electrolytes could cause an unrealistically high 

capacity of anodes.  
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Figure 2.20 - Electrochemical performance of zinc anodes. a, Schematic diagram of 

beaker cell and coin cell. b, Cycling performance of pure current collector in the 

beaker cell and coin cell. Real: count all the zinc in the electrolyte. Pseudo: calculation 

without counting zinc in the electrolyte. One dot every four data points. c, Discharge 

capacity for the first 32 galvanostatic cycles of uncoated ZnO nanorod and 

ZnO@TiNxOy nanorod anodes with ~2.1 mg/cm2 at 0.5C rate in coin cell with ZnO-

free electrolyte. 50 μL electrolyte was dropped onto separator and 10 μL electrolyte 

was dropped onto cathode. Inset: optical image of a coin cell. d, Comparison of 

specific discharge capacity between this anode and previously reported anodes. Zinc 

in the electrode and electrolyte are both counted. e, Cycling performance of the 

ZnO@TiNxOy nanorod anode (2 mg/cm2) with 200 cycles ALD at 0.5C charge and 2C 

discharge rates in beaker cell with 10 mL ZnO saturated 4M KOH electrolyte. The 

cut-off voltages are 1.4/2V. One dot every five data points. f, Cyclic voltammogram 

for ZnO@TiNxOy anode in coin cell at 0.1 mV s-1 scan rate. The CV was done using 

two electrodes with ZnO@TiNxOy anode and Ni(OH)2 cathode in ZnO free 

electrolyte. g, Current density profile as cycled under start-stop conditions in coin 



 49 

cells. h, Long-term discharge capacity retention of Zn foil and ZnO@TiNxOy nanorod 

anode as cycled under start-stop conditions with 100 μL electrolyte. Zn foil with 

0.02% DOD and ZnO@TiNxOy nanorod anode with 1% DOD were cycled at the same 

current density, which is shown in Fig. g. Tin foils were used as anode current 

collectors. Cells were cycled between 0 and 2 V. 

Table 2.2 - Calculation of equivalent ZnO quantity and capacity 

System Large amount of electrolyte Lean electrolyte 

Test equipment Beaker cell Coin cell 

Volume of electrolyte 10 mL 100 uL 

Electrolyte 
ZnO saturated  

4M KOH 

ZnO saturated  

4M KOH 

Zincate concentration 0.256 mol/L 0.256 mol/L 

Amount of zinc 0.00256 mol 0.0000256 mol 

Mass of equivalent ZnO 208 mg 2.08 mg 

Capacity contributed by electrolyte 137 mAh 1.37 mAh 

Effect of zinc deposition from 

electrolyte on anode shape change 
Big Small 

As shown in Figure 2.20c, the ZnO@TiNxOy nanorod anode affords remarkable 

battery performance in lean electrolyte configuration even with a high mass loading of 

active materials (~2.1 mg/cm2). The coin cells are galvanostatically deep-cycled to 100% 

state of charge (SOC) with 1.5 and 1.9 V as cut-off voltages. The charge capacity was 

limited to the theoretical capacity of ZnO (658 mAh/g). The reversible discharge capacity 

of ZnO@TiNxOy nanorod anode at tenth galvanostatic cycle is 279 mAh g-1, which is twice 

as large as that of uncoated ZnO nanorod anode (148 mAh g-1) at a rate of C/2. The 

discharge capacity of ZnO@TiNxOy nanorod anode decays to below 150 mAh g-1 after 30 

cycles, versus only 9 cycles for uncoated ZnO nanorod anode. For the ZnO@TiNxOy 

anode, the TiNxOy coating did not change the overpotential of ZnO anode with almost the 

same charge profile as the uncoated ZnO (Figure 2.21). Cycled at a lower rate (C/4) with 
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50% SOC, the capacity difference between coated and uncoated ZnO nanorod anodes in 

initial cycles is small, yet ZnO@TiNxOy nanorod anode shows better capacity retention 

than uncoated ZnO nanorod anode (Figure 2.22). The discharge capacities of uncoated and 

sealed ZnO nanorod anodes decay to 50% after 31 and 53 cycles, respectively. To probe 

the behavior of ZnO over cycling, the electrodes after three galvanostatic cycles at 0.33C 

were imaged . As can be seen in Figure 2.23, ZnO@TiNxOy nanorod anode keeps its 

original morphology after cycling, whereas almost no nanorods can be found on the carbon 

paper for the uncoated ZnO nanorod anode.  

 

Figure 2.21 - Charge voltage profiles of the ZnO and ZnO@TiNxOy anodes. 

 

Figure 2.22 - Discharge capacity retention of uncoated ZnO nanorod and 

ZnO@TiNxOy nanorod anodes with ~1.5 mg/cm2 at 0.25C rate in coin cells. 25 μL 

electrolyte was dropped onto separator. The cut-off voltages are 1.5/1.9V. The 
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maximum discharge capacity (corresponding to 100%) of uncoated ZnO nanorod and 

ZnO@TiNxOy nanorod anodes are 235.2 mAh g-1 and 153.5 mAh g-1, respectively. 

 

Figure 2.23 - SEM images of 1.8 mg/cm2 uncoated ZnO nanorod anode (a) and 

ZnO@TiNxOy nanorod anode (b) after three galvanostatic cycles at 0.33C rate with 

25 μL electrolyte. The cut-off voltages are 1.5/1.9V. 

The superior performance of ZnO@TiNxOy nanorod anode can be attributed to the 

small feature size of ZnO and conformal TiNxOy coating. Below the critical passivation 

thickness, anode passivation problem is eliminated. And the TiNxOy coating serves as an 

electrical pathway, confines large zincate molecules yet allows OH- and water to pass. As 

a mechanical backbone, TiNxOy coating protects ZnO nanorods from detaching from 

carbon paper substrate and thus provides a short zincate mass transfer path for the reaction. 

Without TiNxOy coating, ZnO nanorod will detach from substrate upon charging. This on 

one hand leads to a much slower mass transport for electrically disconnected ZnO to 

dissolve in electrolyte to form zincate and then diffuse to current collector. On the other 

hand, detached ZnO or dissolved zincate may migrate far from anode and never participate 

in further cycling. Both mechanisms will cause capacity decay over cycling. The utilization 

of Zn could be potentially modeled by quantitative comparison of electroreduction rate and 

mass transfer rate of Zn(OH)4
2−.  
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The ZnO@TiNxOy nanorod anode was also tested in pouch cell with ZnO-free 

electrolyte (Figure 2.24). It achieves a specific discharge capacity of 408 mAh/g (based on 

ZnO if not otherwise stated), which is 508 mAh/g(Zn). As shown in Figure 2.20d, the 

ZnO@TiNxOy nanorod anode demonstrates a much higher specific capacity than that of 

many previously reported zinc anodes.74,79,127,95,96,98,114,121–124 The ZnO@TiNxOy nanorod 

anodes in beaker cell (Figure 2.20e) and pouch cell with ZnO saturated electrolyte were 

also tested, which achieves a discharge capacity of ~550 mAh/g for >640 cycles (64 days) 

and 50 cycles, respectively. Figure 2.20f shows the cyclic voltammogram (CV) of the 

ZnO@TiNxOy nanorod anode in coin cell with ZnO free electrolyte. CV of the 

ZnO@TiNxOy nanorod anode in pouch and beaker cells is shown in Figure 2.25. In 

addition, the ZnO@TiNxOy nanorod anode also has excellent performance under start-stop 

operations, demonstrating potential to replace lead acid batteries in micro-hybrid 

vehicles128. Engine restart, rest and pulse discharge are involved in the start-stop 

operation.79 The procedure of test is showed in Figure 2.20g. The capacity of ZnO@TiNxOy 

nanorod anode was kept at 1% depth of discharge (DOD) per duty cycle. The 

ZnO@TiNxOy nanorod anode maintained 100% discharge capacity for more than 7,500 

cycles (Figure 2.20h) at 1% DOD. Voltage profile of the ZnO@TiNxOy nanorod anode was 

shown in Figure 2.26. Under the same current density (Figure 2.20g), Zn foil died after 

3,400 cycles, which is less than half of cycle number of ZnO@TiNxOy nanorod anode, 

even though the DOD of Zn foil is only 0.02% (1/50 of that of ZnO@TiNxOy nanorod 

anode). This Zn foil cell died with a sudden voltage drop to <0 V because Zn is completely 

passivated by ZnO. And the cell was severely swelled, possibly due to accumulation of 

hydrogen evolved on the anode (Figure 2.26). Severe hydrogen evolution occurs after the 
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passivation of Zn anode. The cell with ZnO@TiNxOy nanorod anode only slightly swelled, 

which indicated less side reaction and higher utilization of zinc. Less swelling further 

indicates the ZnO@TiNxOy nanorod anode does not passivate and retains its activity over 

thousands of cycles. Besides, Zn foil start stop performance with 1% DOD at the same time 

interval was also tested as shown in Figure 2.20g, which showed dramatically discharge 

capacity decay (Figure 2.20h). This result indicates the high stability of ZnO@TiNxOy 

nanorod anode.  

 

Figure 2.24 - Cycling performance of ~1.1 mg/cm2 ZnO@TiNxOy nanorod anodes in 

pouch cells with ZnO saturated and ZnO-free electrolytes, respectively. They were 

cycled at 1C for charge and 5C for discharge with 1.4/2V cut-off voltages. 

 

Figure 2.25 - Cyclic voltammogram for ZnO@TiNxOy anodes in pouch cell (a) and 

beaker cell (b) at 0.1 mV s-1 scan rate. The CV for the anode in pouch cell was done 

using two electrodes with ZnO@TiNxOy anode and Ni(OH)2 cathode in ZnO 
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saturated electrolyte. The CV for the anode in beaker cell was done using three 

electrodes with ZnO@TiNxOy anode, Hg/HgO reference electrode and graphite 

counter electrode in ZnO saturated 4M KOH electrolyte. 

 

Figure 2.26 - Start-stop operations. a, Voltage profiles of ZnO@TiNxOy nanorod 

anode of the 2000th and 4000th cycles under start-stop conditions. b,c, Photo of cells, 

with ZnO@TiNxOy nanorod anode (b) and Zn foil (c) as anode respectively, after 

long-term start-stop conditions at the same current density. 

2.3.4 Conclusion 

In summary, the ZnO@TiNxOy nanorod anode achieves very high specific 

discharge capacity and superior reversibility when testing in a coin cell with lean ZnO-free 

electrolyte. In commercial PowerGenix AA batteries, which consists Zn metal anode and 

NiOOH cathode, the discharge capacity decayed to 50% of its initial capacity after only 9 

cycles (0.5C, 20 °C, charged to 105% theoretical capacity).120 NiOOH cathodes are very 

reversible129, and the Zn anode is the main cause of the poor reversibility. The 

ZnO@TiNxOy core/shell nanorod anode structure reported here successfully solves the 

problems of ZnO passivation and zincate dissolution simultaneously, and significantly 

improved the cycle life of Zn anode. Because of electrolyte consumption and bubble 

accumulation resulted from hydrogen evolution side reaction, anodes degraded ultimately 
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when cycled in coin cells with lean electrolyte. It is believed this work can be further 

improved by coating hydrogen evolution suppressive materials. In addition, the 

mechanistic understanding and design principles could provide guidance to future design 

of zinc and other metal anodes (e.g. Li, Na, Mg, Ca). This work prepares the path towards 

rechargeable Zn-air aqueous batteries, and other rechargeable, high-energy and safe 

batteries. 

2.4 Hydrogen-Evolution-Suppressing Zn Anode 

2.4.1 Introduction 

A battery-gas chromatography (GC) quantitative analysis method (Figure 2.27) has 

been created to identify the influence of HER on the capacity loss of zinc anodes. This is 

achieved by measuring the evolved H2 using GC after charging/discharging the zinc anode 

in alkaline electrolyte (ZnO-saturated 4M KOH) for one cycle (Figure 2.28). It is worth 

noting that the amount of NiOOH was in excess, which could guarantee the full depletion 

of Zn in the discharge step. In other words, the capacity loss (charge capacity-discharge 

capacity) on Zn anodes is attributed to side reactions on Zn anodes. As shown in Figure 

2.29, the capacity loss on the Zn anode is almost fully caused by HER (99.47% = 

87.34%/87.81%). The other 0.46% of capacity loss might be caused by the oxidation of 

Zn120 through reacting with O2. In consideration of Zn anodes, HER suppressing Zn anodes 

should possess high Coulombic efficiency (discharge capacity/charge capacity). 



 56 

 

 

Figure 2.27 - Battery-GC quantitative analysis method. (a-c) Schematic diagram (a), 

experiment setup (b), and reactor design (c) of the battery-GC quantitative analysis 

method to quantitatively identify the influence of HER on Coulombic efficiency of 

zinc anodes. PRR: pressure reducing regulator; MFC: mass flow controller; GC: gas 

chromatography. 

 

Figure 2.28 - Electrode reactions happened during charging for Zn-Ni battery system. 
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Figure 2.29 - Distribution of the charged capacity on the zinc anode in a Zn-Ni 

battery. The capacity loss on the Zn anode is almost fully caused by HER. Thus, HER 

suppressing zinc anodes should possess high Coulombic efficiency. 

Attempts have been made in the past to overcome one or two of passivation, 

dissolution, and HER issues. For example, sub-micron-sized structures74,75, composites 

with highly conductive materials76–78, and 3D high surface area electrodes79,80 have been 

shown to be effective in addressing the ZnO passivation issue. Surface protective 

coatings9,81,82 have been demonstrated to slow down the loss of zinc active material. 

Surface treatments84,85 and additives86 have been used to suppress the HER. However, there 

are very few successful examples that address these issues simultaneously.  

In this work, sub-micron-sized anodes were sealed by coating them with a HER 

suppressing ion-sieving layer to tackle simultaneously passivation, dissolution, and HER 

issues (Figure 2.30). This design features the following advantages: (i) sub-micron-sized 

ZnO avoids passivation and allows complete utilization of the active materials; (ii) ion-

sieving coating layer confines zincate inside and mitigates shape changes of the electrode; 

and (iii) the coating layer is made of HER suppressing material, which represses side 

reactions. The results demonstrate that HER suppressing sealed nanorod (HSSN) zinc 
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anodes exhibit long cycle life, high Coulombic efficiency, and high specific discharge 

capacity. 

 

Figure 2.30 - Schematic illustration of zinc anode design principle: sealed sub-micron-

sized anodes with a HER suppressing ion-sieving coating to overcome passivation, 

dissolution, and hydrogen evolution issues simultaneously in alkaline electrolytes. 

2.4.2 Experimental Section 

Synthesis of the uncoated ZnO nanorod anode. ZnO nanorods were grown on 

carbon papers (8.4 mg/cm2) by a hydrothermal method. Carbon paper (Fuel Cell Store) was 

first heated in air at 500 °C for 1 h to increase its wettability. Then, the carbon paper was 

soaked in 0.1 M KMnO4 (Sigma Aldrich) aqueous solution for 1 h to form a seed layer. 

The ZnO precursor solution is prepared by mixing 50 mL zinc nitrate hexahydrate (30 mM, 

Alfa Aesar), 50 mL hexamethylenetetramine (30 mM, Sigma Aldrich), and ammonia (28.0-

30.0% NH3 basis, Sigma Aldrich). The seeded carbon paper was placed in the above 

solution115, followed by heating in an oven at 90 °C for a certain time. After DI-H2O 

washing and drying at 80 °C for 3 h, the white-colored product on carbon paper was 

obtained.  
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Synthesis of the HER suppressing sealed nanosized (HSSN) zinc anode. The 

HSSN zinc anode with the ZnO core/TiO2 shell structure was synthesized using a solution 

method. The carbon paper with grown ZnO nanorods was immersed into a solution of 

0.075 M (NH4)2TiF6 and 0.2 M H3BO3 for 10 min at room temperature130. A layer of ~30 

nm thick TiO2 was deposited. 

Synthesis of the ZnO@TiNxOy anode. To get the ZnO@TiNxOy anode, TiN was 

deposited onto the uncoated ZnO nanorod anode through atomic layer deposition (ALD). 

ALD was conducted in Cambridge FIJI Plasma ALD system. The precursors of TiN were 

TDMAT and N2. During TiN ALD process, the recipe was run 200 cycles (1 Å per cycle) 

at 250 °C. Then, when ZnO@TiN nanorods were exposed to air, the TiN was partially 

oxidized to TiNxOy.  

Sheet resistance measurement of TiNxOy and TiO2 coatings using a four-point 

probe system. To measure the sheet resistance of TiNxOy and TiO2 coatings, TiNxOy and 

TiO2 are deposited onto glass slides, respectively. The glass slides were cleaned by 

sonication in acetone/ethanol, followed by ultraviolet-ozone (UVO) treatment. TiNxOy was 

obtained through an ALD of TiN on the glass slides followed by an oxidation step in air. 

The precursors of TiN were TDMAT and N2. During ALD process, the recipe was run 400 

cycles (1 Å per cycle) at 250 °C. A layer of ~1 μm thick TiO2 was deposited on the glass 

slides by immersing the glass slides in a solution of 0.1 M (NH4)2TiF6 +0.2 M H3BO3 

for 11h at 25 °C.130 The sheet resistance was measured using a four-point probe 

measurement system (2000 multimeter, Keithley).  
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Material Characterization and Measurements. The morphological and 

compositional analyses were carried out using scanning electron microscopy (SEM, 

Hitachi SU 8230), transmission electron microscopy (TEM, Hitachi HT7700, FEI Tecnai 

F30, and JEOL 100 CX-II), and scanning transmission electron microscopy (STEM, 

Hitachi HD-2700). The X-ray diffraction patterns (XRD, Panalytical XPert PRO Alpha-1) 

were carried out with Cu K-Alpha radiation. The X-ray photoelectron spectroscopy (XPS) 

was measured with Thermo Scientific K-Alpha system. The specific Brunauer–Emmett–

Teller surface areas and pore size distribution were determined by physisorption 

(BELSORP-max, MicrotracBEL Corp.). The dissolved Zn concentration of samples in 4M 

KOH electrolyte was measured with an inductively coupled plasma (ICP) measurement. 

Cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance 

spectroscopy were conducted using a VSP system (BioLogic). Battery cycling tests were 

carried out using LANHE operating in galvanostatic mode.  

In the battery-gas chromatography quantitative analysis measurement, the airtight 

battery system was connected to a gas chromatography (MG#5, SRI Instruments). The 

system was purged with Ar before the measurement. The stainless-steel rod was used as 

the anode. ZnO-saturated 4M KOH (Sigma Aldrich) was used as the electrolyte. A 4 cm2 

cathode from a commercial Ni-Zn AA battery (PowerGenix), which is a mixture of NiOOH 

(~8 mAh/cm2)/Ni(OH)2 (~32 mAh/cm2), was harvested to pair with the anode. The battery 

was charged at 20 mA for 15 min and then fully discharged (20 mA) to 0.8 V for 1 cycle. 

Then H2 measurements were conducted using the thermal conductivity detector. Ar was 

the carrier gas for gas chromatography. The capacity loss (= Charge capacity - Discharge 
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capacity = Capacity (HER) + Capacity (Other)) on the Zn anode is almost fully caused by 

HER (99.47%). 

Electrochemistry. The zinc anodes were cut to round disks with diameter of 1 cm. 

Cathodes from commercial Ni-Zn AA batteries (PowerGenix), which is a mixture of 

NiOOH (~8 mAh/cm2)/Ni(OH)2 (~32 mAh/cm2), were harvested to pair with the anodes.   

Coin cell: CR2032 cases (MTI Corporation) were used to make coin cells. The 

aqueous electrolyte consists of 4 M KOH (Sigma Aldrich, 99.99%), 2 M KF (Alfa Aesar, 

99.99%) and 2 M K2CO3 (Alfa Aesar, 99.997%)116. 25 μL electrolyte was used. Glass fiber 

(GE Healthcare, WhatmanTM 10370003) was used as the separator.  

Pouch cell: Pouch-type batteries were assembled using Ampac’s SealPAK. The 

mass loading of active material (ZnO) on the anode is 1.5 mg/cm2. The aqueous electrolyte 

consists of 4 M KOH (Sigma Aldrich, 99.99%), 2 M KF (Alfa Aesar, 99.99%) and 2 M 

K2CO3 (Alfa Aesar, 99.997%) with saturated ZnO. 100 μL electrolyte was used. Glass fiber 

(GE Healthcare, WhatmanTM 10370003) was used as the separator. Ti wires were used as 

electrode terminals. Cells are galvanostatically cycled at a charge rate of 1C and a discharge 

rate of 5C between 1.4 and 1.9 V. For anodes cycled at 100% DOD, the anodes were 

activated by being pre-cycled in pouch cells for 6 cycles. The charge capacity limit cut-off 

is 658 mAh/g (theoretical specific capacity of ZnO). For anodes cycled at 40% DOD, the 

anodes were activated by being pre-cycled with 100% active material utilization for 1 cycle 

and then being fully charged.  

Beaker cell: In beaker-type batteries, the mass loading of active material (ZnO) on 

the anode is 1.6 mg/cm2. 10 mL ZnO-saturated 4M KOH (Sigma Aldrich) was used as the 
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electrolyte. Cells are galvanostatically cycled at 100% DOD at a charge rate of 1C and a 

discharge rate of 5C between 1.4 and 1.9 V. The anodes were activated by being pre-cycled 

in beaker cells for 50 cycles. The charge capacity limit cut-off is 658 mAh/g. Ag wire was 

used as anode terminal. Stainless steel wire was used as cathode terminal. 

Electrolyte-to-discharge-capacity (E/DC) ratio (Equation 3): 

 𝐸/𝐷𝐶 𝑟𝑎𝑡𝑖𝑜 = 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦⁄  (3) 

The theoretical gravimetric capacity of Zn metal (Equation 4): 

 
𝐶𝑔(𝑚𝐴ℎ 𝑔−1) =

1

𝑀𝑊𝑍𝑛
∗

𝑛𝐹

3.6
=

1

65.38
∗

2 ∗ 96485

3.6
= 820 (4) 

The theoretical volumetric capacity of Zn metal (Equation 5): 

 𝐶𝑣(𝑚𝐴ℎ 𝑐𝑚−3) = 𝐶𝑔 ∗ 𝜌𝑍𝑛 = 5854 (5) 

where 𝜌𝑍𝑛 is the density of Zn metal. 𝜌𝑍𝑛 = 7.14 𝑔 𝑐𝑚−3. 

The theoretical gravimetric energy density of Zn-air batteries (calculated based on 

the discharged state, ZnO) (Equation 6): 

 
𝐸𝑔(𝑊ℎ 𝑘𝑔−1) =

1

𝑀𝑊𝑍𝑛𝑂
∗

𝑛𝐹

3.6
∗ 𝑉 =

1

81.38
∗

2 ∗ 96485

3.6
∗ 1.66 = 1093 (6) 

where 𝑉 is the battery volatge. 𝑉 = 1.66 𝑉.  
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The theoretical volumetric energy density of Zn-air batteries (Equation 7): 

 𝐸𝑣(𝑊ℎ 𝐿−1) = 𝐸𝑔 ∗ 𝜌𝑍𝑛𝑂 = 6134 (7) 

where 𝜌𝑍𝑛𝑂 is the density of ZnO. 𝜌𝑍𝑛𝑂 = 5.61 𝑔 𝑐𝑚−3. 

Simulation of hydrogen suppressing property. Simulation based on force field 

model was conducted to investigate the hydrogen suppressing property of TiO2 and 

TiNxOy. The Monte Carlo and Least Squares techniques are used to minimize the energy. 

Ti5O10 cluster was used to represent amorphous TiO2. For TiNxOy, the overall atomic ratio 

of O to N (O/N) was experimentally determined to be 6.66 as evidenced by XPS. From 

many possible structures of amorphous TiNxOy, four representative models (denoted as 

TiNxOy-n, n=1, 2, 3, 4) with O/N atomic ratios of 9 and 4 were chosen and built to simulate 

the actual shell material. Ti5O9N cluster (O/N=9) for TiNxOy-1 and TiNxOy-2, and Ti5O8N2 

cluster (O/N=4) for TiNxOy-3 and TiNxOy-4 are built. ΔGH
* represents the free energy for 

H adsorption. In a three-state diagram, consisting of an initial H+ state, an intermediate H* 

state, and 1/2H2 as the final product, the material with higher |ΔGH
*| value possesses lower 

catalytic activity131,132 and thus better hydrogen suppressing capability. ΔGH
* was obtained 

by ∆𝐺𝐻∗ = ∆𝐸𝐻 + ∆𝐸𝑍𝑃𝐸 − 𝑇∆𝑆𝐻, where ∆𝐸𝐻 is the binding energy of H species, ∆𝐸𝑍𝑃𝐸 

and ∆𝑆𝐻  are the zero point energy change and entropy change of adsorption H, 

respectively. The contribution of entropies and ZPE for ∆𝐺𝐻∗ were obtained according to 

literatures131,132, where finally ∆𝐺𝐻∗ = ∆𝐸𝐻 + 0.24 eV . ∆𝐸𝐻  was obtained by ∆𝐸𝐻 =

𝐸𝑀−𝐻 − 𝐸𝑀 − 1/2 × 𝐸𝐻2
. 𝐸𝐻2

 was calculated to be -3.040 eV.  

2.4.3 Results and Discussion 
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The critical thickness of ZnO passivation layer has previously been quantified to 

be ~ 2 µm when a zinc metal anode is completely passivated81. Thus, sub-micron-sized 

zinc anodes are believed to be able to overcome the passivation problem. However, 

decreasing the feature size to be nanoscale will intensify the dissolution and HER 

problems, due to increased electrode-electrolyte contact area94. Therefore, it was proposed 

to seal sub-micron-sized anodes by uniformly coating a HER suppressing ion-sieving layer, 

which can suppress HER and selectively block larger zincate ions inside the coating while 

enabling OH-/H2O transport. Some Zn anodes have been reported to have the above-

proposed structure, such as Al2O3 coated Zn powders84, Li2O–2B2O3 coated Zn powders85 

and TiO2-Coated ZnO113. However, there is lack of evidence showing that the coating is 

uniform, with either no or unclear TEM images. As a result, these structures may still suffer 

dissolution and HER issues, which might be the reason for their short cycle life (<20 

cycles)84,85 and low specific discharge capacity113. I have also reported a ZnO@TiNxOy 

anode9, which could address the dissolution issue while the HER issue still exists. In this 

study, TiO2 was chosen as the coating material here to demonstrate the concept, as it is 

stable with alkaline electrolytes and has been reported to have low HER activity133. A 

binder-free self-supporting ZnO nanorod anode was chosen as the model system for this 

study because its structure and morphology can be easily studied. This design principle is 

applicable to Zn anodes with other structures and coating materials. 

The HSSN anode was successfully fabricated as shown in Figure 2.31. ZnO 

nanorods were first grown on the carbon paper hydrothermally115. The TiO2 layer was 

coated on the ZnO nanorods via a mild solution method at room temperature130. The ZnO 

nanorods were immersed in an aqueous solution consisting of 0.075 M (NH4)2TiF6 and 0.2 
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M H3BO3. After the TiO2 coating, the ZnO nanorod structure was well maintained (Figure 

2.32). Scanning transmission electron microscopy (STEM) image and elemental mappings 

(Figure 2.33a) of the HSSN anode confirms that the TiO2 coating is uniform. Spatial 

distributions of Zn and Ti were also obtained by taking energy-dispersive X-ray (EDX) 

spectroscopies in the core and shell regions (Figure 2.33b). The core region shows a much 

higher Zn intensity than that of the shell region, which further affirms the ZnO core/TiO2 

shell structure. During synthesis, (NH4)2TiF6 hydrolyzed to TiO2 on the surface of ZnO 

while surface ZnO slightly dissolved in the solution with acids produced by (NH4)2TiF6 

hydrolysis130. Thus, it is believed some Zn species went into the TiO2 coating during the 

synthesis, which may explain for the Zn signal on the TiO2 shell. As evidenced by Figure 

2.33c, the ZnO in the core has a hexagonal close packed crystal structure and the TiO2 

coating is amorphous. The TiO2 layer has a thickness of ~31.7 nm (Figure 2.33d). The mass 

loading of TiO2 is ~0.35 mg/cm2, which is only ~10.4 wt% of the HSSN anode (with 3 

mg/cm2 ZnO nanorods). After etching the ZnO away, the hollow nanoarrays stayed in place 

(Figure 2.34), displaying that the TiO2 coating, although only 30 nm thick, is mechanically 

strong and firmly supports the ZnO nanorods.  
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Figure 2.31 - Fabrication of the HSSN anode. a,b,c, Schematic diagrams and SEM 

images of carbon paper (a), ZnO nanorod anode (b), and HSSN anode (c). 
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Figure 2.32 - TiO2 coating process. (a) Schematic diagram of TiO2 coating process. 

(b)(c) SEM images of ZnO nanorods before (b) and after TiO2 coating (c). (d) SEM 

image and elemental mappings of the HSSN anode. 
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Figure 2.33 - Characterization of a single ZnO@TiO2 nanorod collected from the 

HSSN anode. a, STEM image and elemental mappings of a ZnO@TiO2 nanorod. b, 

Spatial distributions of Zn and Ti elements and EDX spectroscopies in the core and 

shell regions. c, Transmission electron microscopy (TEM) diffraction image of a 

ZnO@TiO2 nanorod, showing diffraction pattern of hexagonal ZnO. A [002]; B [110]; 

C [112]. d, TEM image of a ZnO@TiO2 nanorod, showing the thickness (~30 nm) of 

TiO2 coating. 

 

Figure 2.34 - SEM images of HSSN anode after etching ZnO away. 

To evaluate the capability of the TiO2 shell to suppress zincate dissolution, both the 

HSSN and the uncoated ZnO anodes were soaked in ZnO-free 4M KOH solution for 15 

minutes. The ratio of ZnO active material mass and solution volume was 0.02 mg/μL. The 

dissolved Zn concentration was then measured in both solutions using inductively coupled 

plasma atomic emission spectroscopy (ICP-AES). As shown in Figure 2.35a, the dissolved 

Zn of the HSSN anode (1.9%) is much lower than that of the uncoated ZnO anode (16.9%). 

90% ZnO dissolution is suppressed in the HSSN anode, which displays that the TiO2 shell 
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effectively blocks zincate ions. Both anodes were imaged after soaking in 4M KOH 

solution (Figure 2.36), which also supports that TiO2 coating can effectively confine 

zincates inside the shell.  

 

Figure 2.35 - Characterization of zinc anodes before and after charging. a, ICP results 

showing dissolved Zn concentration after soaking the HSSN and uncoated ZnO 

anodes in 4M KOH solution. 90% ZnO dissolution is suppressed in the HSSN anode, 

which means that the TiO2 coating effectively blocks zincate ions. b, XRD patterns of 

uncoated ZnO and HSSN anodes before and after charging. The weak ZnO peaks of 

HSSN anode after charging is from residual unreacted ZnO. c,d, SEM images before 

and after charging uncoated ZnO anode (c) and HSSN anode (d). e, STEM image of 

a ZnO@TiO2 nanorod after charging. f, STEM image and elemental mappings of a 

ZnO@TiO2 nanorod after charging. The same anode sample was used to get Figure 

d-f.  



 70 

 

Figure 2.36 - SEM images and elemental mappings of the uncoated ZnO (a) and HSSN 

(b) anodes after soaking in 4M KOH solution. The reservation of Zn in the HSSN 

anode supports that TiO2 coating can effectively block zincate ions. 

The zinc-based anodes were also characterized before and after a single charge in 

coin cells. As shown in Figure 2.35b, XRD patterns confirmed the existence of the charging 

product, metallic Zn. After being charged at 0.25 mA/cm2 for 1.5 h, the uncoated ZnO 

nanorod anode showed severe structural degradation. The nanorods detach from carbon 

paper (Figure 2.35c). In contrast, the HSSN anode has no obvious shape change (Figure 

2.35d). Additionally, the HSSN anode kept nearly unchanged after five cycles (Figure 

2.37). STEM images and elemental mappings of the HSSN anode after charging are 

presented in Figure 2.35e-f, Figure 2.38. These results indicate that the TiO2 shell confines 

zinc active materials inside during cycling, which can be attributed to the ion-sieving effect 

of the TiO2 shell. As shown in the N2 absorption spectrum (Figure 2.39), TiO2 layer has 

nanosized pores, which block larger zincate ion inside the shell and enable OH-/H2O 

transport through the shell. More explanation for the ion-sieving effect of the shell can be 

found in my previous study81. The porosity of TiO2 can potentially be further engineered 

to optimize its ion-sieving performance.  
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Figure 2.37 - SEM images of uncoated ZnO nanorod anode (a) and HSSN anode (b) 

after five galvanostatic cycles with 25 μL electrolyte. They were cycled at 0.25 mA/cm2 

for 2h charge and 0.25 mA/cm2 discharge to 1.5V. The mass loadings of ZnO nanorods 

on both anodes are ~3.3 mg/cm2. 

 

Figure 2.38 - SEM image and elemental mappings of the HSSN anode after charge. 
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Figure 2.39 - BET pore width distribution (a) and surface areas (b) of uncoated ZnO 

and HSSN anodes. After TiO2 coating, nanopores are measured, which indicates that 

TiO2 coating is nanoporous. 

As discussed above, an ion-sieving coating layer is necessary for nanostructured 

Zn anodes to suppress active material dissolution. In consideration of HER, such an ion-

sieving coating layer should be HER suppressing. To evaluate the HER suppressing 

capability of the TiO2 shell and its effect on the Coulombic efficiency, HER activities of 

TiO2 and TiNxOy were investigated . TiNxOy (Figure 2.40) was chosen to be the control 

material because its uniform coating and ion-sieving property have been achieved9. To best 

represent designed anodes, ZnO was etched away from HSSN and ZnO@TiNxOy anodes 

to get TiO2 and TiNxOy hollow nanorod coatings on carbon paper substrates, respectively 

(Figure 2.41). Three-electrode cells were then assembled in 4M KOH electrolyte with TiO2 

or TiNxOy electrode as the working electrode, Hg/HgO electrode as the reference electrode, 

and Pt foil as the counter electrode (Figure 2.42). As shown in IR-corrected polarization 

curves (Figure 2.43a), the HER on the TiNxOy electrode was more severe (higher current 

density at a fixed HER potential) than on TiO2. These experimental results reveal that the 

TiO2 is more hydrogen suppressive than TiNxOy. In addition, the HER activities of the 

TiO2 electrode were also compared with the carbon paper substrate, which experimentally 
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indicates that the existence of TiO2 coating can suppress HER (Figure 2.44). To understand 

the hydrogen suppressing property of TiO2, the sheet resistance of TiO2 and TiNxOy were 

measured using a four-point probe system (Figure 2.45). TiO2 has lower electrical 

conductivity, which may be part of the reason for its lower HER activity and better HER 

suppressing capability. Simulations based on the force field model were also conducted to 

confirm the hydrogen suppressing property of TiO2. Cluster rather than slab model was 

chosen because of its applicability in representing amorphous materials (Figure 2.43b)134. 

In a three-state diagram (Figure 2.43c), ΔGH
* represents the free energy for H adsorption. 

The material with higher |ΔGH
*| value possesses lower catalytic activity131,135 and better 

hydrogen suppressing capability. The free energy for TiO2 is 0.495 eV, which is higher 

than that of TiNxOy clusters (Figure 2.46 and Table 2.3). This result illustrates that TiO2 is 

the most hydrogen suppressive.  

 

Figure 2.40 - XPS survey spectra of the ZnO@TiNxOy anode. The atomic ratio of O 

to N is ~6.66 in the TiNxOy coating. 
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Figure 2.41 - SEM images of TiNxOy (a) and TiO2 (b) hollow nanorod coatings on CP 

substrates, which are prepared by etching away ZnO from the HSSN and 

ZnO@TiNxOy anodes. 

 

Figure 2.42 - Schematic diagram of the three-electrode cell in 4M KOH electrolyte 

with TiO2 or TiNxOy electrode as the working electrode, Hg/HgO electrode as the 

reference electrode, and Pt foil as the counter electrode. 
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Figure 2.43 - Hydrogen suppressing property of TiO2. a, IR-corrected polarization 

curves of TiNxOy and TiO2 electrodes. At any fixed potential, the hydrogen evolution 

on TiNxOy electrode is severer than TiO2 electrode. Scan rate: 2 mV/s. b,c, Basic 

models (b) and adsorption free energy diagram (c) of TiO2, TiNxOy-1 and TiNxOy-2 

clusters. d, Voltage profiles of Zn-Ni batteries with HSSN and ZnO@TiNxOy as 

anodes. The Coulombic efficiency of the HSSN anode is higher with better HER 

suppressing capability.   

 

Figure 2.44 - IR-corrected polarization curves of CP substrate, TiNxOy and TiO2 

electrodes. HER can be suppressed with the existence of TiO2. CP: carbon paper. 

Scan rate: 2 mV/s. 
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Figure 2.45 - TiNxOy and TiO2 coatings. (a) XPS survey spectra of the TiO2 coating. 

(b) XPS survey spectra of the TiNxOy coating. (c) Sheet resistance and resistivity of 

TiNxOy and TiO2 coatings measured using a four-point probe system. 
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Figure 2.46 - Basic models (a) and adsorption free energy diagram (b) of TiO2, 

TiNxOy-3 and TiNxOy-4 clusters. 

Table 2.3 - Summary of simulated energy of clusters (M) and H adsorbed clusters (M-

H), binding energy, and free energy.* 

M TiO2 TiNxOy-1 TiNxOy-2 TiNxOy-3 TiNxOy-4 

𝐸𝑀
 

 

-12.282 eV 

 

-14.865 eV 

 

-14.378 eV 

 

-18.086 eV 

 

-18.058 eV 

𝐸𝑀−𝐻 

 

-13.547 eV 

 

-16.382 eV 

 

-16.125 eV 

 

-19.498 eV 

 

-19.792 eV 

∆𝐸𝐻  0.255 eV 0.003 eV -0.227 eV 0.108 eV -0.214 eV 

ΔGH
* 0.495 eV 0.243 eV 0.013 eV 0.348 eV 0.026 eV 

*Atoms in clusters: pink, H; blue, N; red, O; green, Ti. 
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As shown in Figure 2.47 and Figure 2.48, HSSN and ZnO@TiNxOy anodes have 

very similar ion-sieving capability. With hydrogen suppressing capability, the HSSN anode 

shows higher Coulombic efficiency compared to the ZnO@TiNxOy counterpart. To 

specifically focus on Zn anodes, for all the cells shown below, cathodes with excess 

capacity were harvested to pair with Zn anodes. The calculation of the specific capacity of 

zinc anodes is based on the mass of ZnO (theoretical capacity: 658 mAh/g) if not otherwise 

specified. Cells were galvanostatically cycled at a charge rate of 1C and a discharge rate of 

5C136. Anodes were cycled in pouch cells (Figure 2.49) instead of coin cells to avoid the 

HER on stainless steel coin cell cases137. They were cycled at 100% depth of discharge 

(DOD). Thus, the extent of side reactions on them can be directly indicated by the cell 

Coulombic efficiency. Higher “clean” Coulombic efficiency means fewer side reactions. 

The charge/discharge profiles of HSSN and ZnO@TiNxOy anodes cycled in lean 

electrolyte (100 μL) are plotted in Figure 2.43d. Their cycling performance and rate-

capability tests can be found in Figure 2.50 and Figure 2.51. The average Coulombic 

efficiency (93.50%) of the HSSN anode in the first 12 galvanostatic cycles is much higher 

than that of the ZnO@TiNxOy anode (84.96%). Even though TiO2 has lower electrical 

conductivity than TiNxOy, the HSSN anode showed slightly better rate capability than the 

ZnO@TiNxOy anode, which may be because there are more pores on the HSSN anode and 

thus the faster OH-/H2O transport can be achieved through the TiO2 shell (Figure 2.52). 

The HSSN anode achieves higher Coulombic efficiency of 93.09% than the ZnO@TiNxOy 

anode (88.07%). In similar alkaline electrolytes with 100% DOD, most previous reports 

show Coulombic efficiency lower than 90% (Table 2.4). 
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Figure 2.47 - ICP results showing dissolved Zn concentration after soaking the 

uncoated ZnO, HSSN and ZnO@TiNxOy anodes in 4M KOH solution. 90% ZnO 

dissolution is suppressed in the HSSN and ZnO@TiNxOy anodes. HSSN and 

ZnO@TiNxOy anodes have very similar ion-sieving capability. 

 

Figure 2.48 - SEM images and elemental mappings of the ZnO@TiNxOy anode after 

soaking in 4M KOH solution. The reservation of Zn in the ZnO@TiNxOy anode 

supports that TiNxOy coating can effectively block zincate ions. 
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Figure 2.49 - The cell components (a) and assembled pouch cell (b). Separator has 1.5 

cm diameter. The anode has 1 cm diameter. 

 

Figure 2.50 - Cycling performance of the ZnO@TiNxOy and HSSN anodes in lean 

electrolyte at 100% DOD. 

 

Figure 2.51 - Cycling performance of the HSSN and ZnO@TiNxOy anodes at various 

C rates. State of charge: 20%.  
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Figure 2.52 - BET pore width distribution (a) and surface areas (b) of HSSN and 

ZnO@TiNxOy anodes. 

Table 2.4 - Comparison of Coulombic efficiency of the HSSN anode with previously 

reported zinc-based anodes (100% depth of discharge) in alkaline electrolytes.  

Anode material Coulombic efficiency (%) 

Ca(OH)2-coated ZnO138 29.10 

Sn6O4(OH)4-coated ZnO139 37.50 

ZnO nanoplate114 69.15 

Ag-modified ZnO140 71.43 

ZnAlSb-LDH95 78.10 

ZnO/SnO2
141 84.62 

ZnO@RGO98 85.00 

ZnO microspheres75 86.63 

ZnO@Ag@Polypyrrole142 89.00 

LDOs124 89.42 

Ag/ZnO143 89.67 

IZO121 91.04 

SnO2@ZnO144 91.19 

Ag-LDH125 93.19 

This work 93.50 

As shown in Figure 2.53a and Figure 2.54, when cycled at 40% DOD in lean 

electrolyte, the HSSN anode (with 1.05 mg/cm2 ZnO) demonstrated long-term stable 
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cycling for more than 170 cycles. It was confirmed that there was no capacity contribution 

from the TiO2 shell during the electrochemical reactions (Figure 2.55). When cycled at 

100% DOD in lean electrolyte, the HSSN anode (with 1.5 mg/cm2 ZnO) achieved an 

average Coulombic efficiency of 93.5% and average discharge capacity of 616 mAh/g in 

the first 12 galvanostatic cycles. The capacity fading occurs after 33 cycles. The battery 

failure can be attributed to (1) the structural collapse of the HSSN anode (Figure 2.56) due 

to the shape and volume changes of Zn/ZnO inside the shell, and (2) the limited mass 

transfer of Zn species caused by electrolyte decomposition and hydrogen accumulation. 

The HSSN anode was also evaluated in a beaker cell with a large amount of ZnO-saturated 

electrolyte. As shown in Figure 2.53b, the HSSN anode (with 1.6 mg/cm2 ZnO) was cycled 

more than 350 times with Coulombic efficiency of 94.3% and a discharge capacity of 621 

mAh/g. Voltage profiles for the batteries shown in Figure 2.53a and b can be found in 

Figure 2.57. From the above cycling results, it can be concluded that the cycle life of Zn 

anodes in lean electrolyte is much shorter than in a large amount of ZnO-saturated 

electrolyte. This can be explained by the electrochemistry of alkaline Zn anodes. In a large 

amount of ZnO-saturated electrolyte, the effect of minor electrolyte decomposition can be 

minimized with excess water. Moreover, there is excess zincate in the electrolyte, which is 

the active material for Zn anodes. With a large capacity contribution from the zincate 

supplied from the electrolyte, the long cycle life of Zn anodes can be achieved yet it is 

inauthentic. In lean electrolyte (100 μL), batteries fail quicker as a result of complicated 

synergistic effects caused by electrolyte decomposition and limited mass transfer of Zn 

species. However, it is still necessary to cycle anodes in lean electrolyte to evaluate their 

true performance which can represent practical situations despite their short cycle life.  
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Figure 2.53 - Electrochemical performance of HSSN anodes. a, Cycling performance 

of the HSSN anode in lean electrolyte at 40% DOD. b, Cycling performance of the 

HSSN anode in a beaker cell with a large amount of electrolyte at 100% DOD. c, 

Comparison of the HSSN anode and previously reported anodes (with 100% DOD) 

in aspects of E/DC ratio and Coulombic efficiency.  

 

Figure 2.54 - Charge-discharge profiles of the HSSN anode in lean electrolyte at 40% 

DOD. 
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Figure 2.55 - CV curves of CP-TiO2 and HSSN electrodes. There is no capacity 

contribution from TiO2 during the electrochemical reaction. Scan rate: 10 mV/s. 

 

Figure 2.56 - Optic microscope images of the HSSN anode before and after battery 

failure. 

 

Figure 2.57 - Voltage profiles (from cycle 50th to 70th) of the HSSN anode cycled in 

lean electrolyte at 40% DOD (a) and a beaker cell with a large amount of electrolyte 

at 100% DOD (b).   
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Electrolyte-to-discharge-capacity (E/DC) ratio is also critical for device-level 

energy density and is crucial for practical applications. It has been paid attention in lithium-

based non-aqueous batteries145–147. Recently, researchers in the zinc-based battery field 

have begun emphasizing the low E/DC ratio.148,149 The tested Coulombic efficiency of 

alkaline Zn anodes is highly correlated to the E/DC ratio. Thus, it is necessary to provide 

E/DC ratios to get a fair comparison on the Coulombic efficiency of different Zn anode 

materials. However, only a few previous works (summarized in Table 2.5) reported this 

ratio or provided necessary information for its calculation. Here, they were summarized 

and compared to HSSN anode in terms of Coulombic efficiency and E/DC ratio in Figure 

2.53c. Notably, to get a comparison on “clean” Coulombic efficiency of different Zn 

anodes, only deeply cycled Zn anodes with 100% DOD are listed above. Partially utilized 

(DOD<100%) metallic zinc anodes are not included in the comparison because their 

Coulombic efficiency cannot indicate the extent of side reactions occurring on Zn anodes. 

In comparison, HSSN anode achieves a superior Coulombic efficiency (93.5%) at a low 

E/DC ratio (0.14 mL/mAh), which suggests the advance of the designed functionally 

coated Zn anodes. With the featured HER suppressing core/shell Zn anode: (1) Zn species 

are confined inside the shell so there is minimized active material loss; (2) minimized HER 

and less electrolyte decomposition can be achieved with the HER suppressing property. 

These enable HSSN anode to achieve high Coulombic efficiency in lean electrolyte. The 

overall areal and specific discharge capacities of the HSSN anode were ~0.9 mAh/cm2 and 

~91 mAh/g, respectively, after considering the mass of the current collector. Due to its 

specially featured core/shell nanorod structure, its overall capacity is unable to meet the 

requirement for practical Zn anodes (11.7 mAh/cm2)149. However, the design principal 
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presented here may help guide further research to achieve practically high energy-density 

Zn anodes. 

Table 2.5 - Comparison of HSSN anode with previously reported zinc-based anodes 

in aspects of electrolyte-to-discharge-capacity (E/DC) ratio and Coulombic efficiency 

in alkaline electrolyte. The depth of discharge of Anode No. 1 - Anode No. 22 are 

100%. The depth of discharge of Anode No. 0 is 40%.  

Anode No. Anode material 

E/DC ratio 

(mL/mAh) 

Coulombic 

efficiency (%) 

0 Zn sponge79 0.0062 ~100 

1 Backside-plating zinc150 34.09  92.0  

2 ZnO@C81 0.29  58.8  

3 ZnO@TiNxOy
9 0.47  81.6  

4 Zn-pome82 0.27  55.5  

5 ZnO lasagna151 0.32  47.9  

6 ZnO nanoparticle152 0.06  67.1  

7 ZnO particle152 0.05  72.7  

8 ZnO nanorod152 0.05  79.3  

9 Calcium zincate153 0.10  77.5  

10 Zn@Bi2O3-CaO-ZnO glass154 8.00  83.3  

11 IHCP-ZnO/C155 0.10  60.8  

12 Commercial ZnO156 0.58  85.5  

13 TRIEN-ZnO156 0.59  84.5  

14 EN-ZnO156 0.58  86.5  

15 DIEN-ZnO156 0.53  93.7  

16 CrxZnO157 0.41  82.0  

17 NixZn(1-x)O
158 0.34  98.0  

18 Microcrystalline ZnO159 0.38  87.0  

19 Fe0.01ZnO160 0.72  92.0  

20 ZnO-LiOH161 0.36  93.0  

21 MgxZn1−xO
162 0.58  85.5  

22 This work 0.14 93.5 
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2.4.4 Conclusion 

In summary, a zinc anode design has been reported , namely sealing sub-micron-

sized ZnO with a HER suppressing and ion-sieving layer, to overcome simultaneously 

passivation, dissolution, and hydrogen evolution issues in alkaline electrolytes. A ZnO 

nanorod anode and TiO2 shell were chosen to demonstrate this concept. The fabricated 

HSSN anode achieves superior reversible deep cycling performance at lean electrolyte. 

While the Coulombic efficiency of the HSSN anode is higher than that of most of the 

previously reported zinc anodes, it needs to be further improved to approach the efficiency 

of LIBs (99.9%). Optimization of the shell material, from aspects of pore size, porosity, 

and surface charge, may lead to further improvement of anode performance and stability. 

Other materials with controlled ion-sieving and HER suppressing properties also have the 

potential to be applied as the shell material. This design principle can potentially be applied 

to other morphologies (e.g. particles) of starting materials for large scale production. The 

mechanistic understanding and design principle reported in this study may also guide future 

design of other rechargeable high-energy aqueous batteries.  

2.5 Conclusion 

Passivation, shape change, dendrite growth, and hydrogen evolution are four main 

challenges for Zn anodes in alkaline electrolyte. In this chapter, four types of zinc anodes 

have been designed and synthesized to overcome multiple issues simultaneously (Table 

2.6) and improve their reversibility. These anodes include graphene oxide-modified 

(Zn@GO), lasagna-inspired (ZnO@GO), sealed (ZnO@TiNxOy), and hydrogen-

evolution-suppressing (HSSN) anodes, which show improved deep cycling performance 
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when cycled at lean electrolyte compared with control samples. The mechanistic 

understanding and design principle reported here may also guide future design of other 

rechargeable high-energy aqueous batteries. Dendrite growth issue will be discussed in 

Chapter 3.  

Table 2.6 - Summary of four types of zinc anodes in this chapter.  

Challenges Zn@GO Lasagna ZnO@TiNxOy HSSN 

Passivation - Partially solved Solved Solved 

Shape change Solved Solved Solved Solved 

Hydrogen evolution  - - - Solved 
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CHAPTER 3. ELUCIDATING THE MECHANISM FOR 

SPATIALLY CONTROLLED DEPOSITION 

In aqueous electrolytes, zinc anodes suffer from severe dendritic metal deposition. 

The regulation of Zn by inducing Zn-alloying metals has been reported. However, the 

underlying mechanisms have remained elusive. Here, the alloying mechanisms for the 

regulation of Zn were reported for the first time. Spatially controlled and nondendritic Zn 

deposition was achieved by introducing a Zn-alloying and soluble metal (Ag) on Zn anodes 

to nucleate and accommodate Zn. The Ag-modified Zn anode exhibited superior overall 

cycling performance compared with previously reported deeply cycled Zn anodes in 

alkaline electrolytes. Furthermore, the spatially controlled Zn deposition was visualized in 

operando for the first time using an optical microscope. The alloy-seeding design principle 

can potentially be applied to improve the rechargeability of other metal anodes. 

3.1 Introduction 

In aqueous electrolytes, zinc anodes suffer from severe nonuniform and dendritic 

metal deposition163, which results in the capacity decay over cycling. Spatially controlled 

metal deposition using alloy anodes has been demonstrated to be effective in solving 

dendrite problems of lithium metal anodes164,165. For Zn anodes, the addition of 

Ag123,125,140,143,166,167, Au168, or Cu169 has been reported to improve the cycle life. However, 

the mechanisms associated with alloy properties for the regulation of Zn by inducing these 

Zn-alloying metals have not been investigated yet. Moreover, even though scanning 

electron microscopy (SEM) images have shown uniform Zn deposition, selective Zn 
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deposition has not been clearly visualized on those anodes. Therefore, the origin of the 

spatial control of Zn deposition on alloy anodes remains elusive.  

Here, the alloying mechanisms for the regulation of Zn were reported for the first 

time. It is discovered experimentally and computationally that in an alkaline electrolyte: 

(1) the Zn metal nucleation barrier substantially differs among different substrates, with 

some Zn-soluble materials showing zero potential barrier; (2) the formation of alloys 

between Zn and Zn-alloying materials is spontaneous during the electrochemical reduction 

of Zn(II), as a result of a negative Gibbs free energy of formation of zinc alloys. These 

discoveries suggest it feasible to nucleate and accommodate Zn metal. As a proof of 

concept, a spatially controlled and uniform Zn deposition through heterogeneous seeded 

growth has been achieved using Ag seeds. The spatially controlled Zn deposition has also 

been visualized in operando for the first time using an optical microscope. When the molar 

ratio between deposited Zn and Ag was controlled at 1, 2, and 3, the resultant Ag-

nanoparticle-loaded carbon paper (C-Ag) achieved superior cycle lives of 75, 187, 2,501, 

and 752 cycles, respectively, compared with 273, 33, and 38 cycles for C electrodes, 

respectively. In addition, the Ag-modified Zn anode exhibits superior overall cycling 

performance compared with previously reported deeply cycled Zn anodes in alkaline 

electrolytes. 

3.2 Experimental Section 

Preparation of metal thin films. A Cu foil (35 μm) was rinsed with 1% nitric acid 

to remove surface coatings and oxides before it was used as a substrate in experiments. 

First, a 10 nm-thick Ti layer was deposited onto Cu foils as the adhesion layer. Thin films 
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of Ag, Au, Cu, Ti, Fe, Pt and Ni with a thickness of 100 nm were then directly deposited 

onto the Cu foils by e-beam deposition. 

Preparation of Ag patterned substrates. Carbon paper, stainless steel and Ni foils 

were used as substrates for the Ag-patterned coatings. Stainless steel meshes (Dexmet) 

were used as masks for the substrates. A Ag/Ti film (100 nm/10 nm) was then evaporated 

onto the substrates by e-beam deposition. Finally, the mask was removed to obtain Ag-

patterned substrates. For the high-magnification Ag-patterned C substrate, a ~50 nm-thick 

C layer was first evaporated onto a Cu foil. Stainless steel meshes (TWP) were used as a 

substrate mask. A Ag/Ti film (100 nm/10 nm) was then evaporated onto the substrate by 

e-beam deposition. Finally, the mask was removed to obtain Ag-patterned substrates. 

Preparation of the C-Ag electrode. To prepare the Ag slurry, Ag nanoparticles 

(Aldrich) and polyvinylidene difluoride binder (PVDF, Aldrich) were mixed with a mass 

ratio of 8:1 in N-methylpyrrolidone (NMP, Aldrich). The slurry was then stirred overnight 

to be uniform. After the slurry was cast onto a carbon paper substrate, the electrode was 

dried on a hotplate (90°C) overnight. 

Preparation of the C electrode loaded with carbon black. To make a carbon 

black slurry, carbon black (MTI) and PVDF were mixed with a mass ratio of 8:1 in NMP. 

The slurry was then stirred overnight to be uniform. After the slurry was cast onto a carbon 

paper substrate, the electrode was dried on a hotplate (90°C) overnight. 

Material characterization and measurements. The morphological and 

compositional analyses were carried out using scanning electron microscopy (SEM, 

Hitachi SU 8230), transmission electron microscopy (TEM, Hitachi HT7700, FEI Tecnai 
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F30, and JEOL 100 CX-II), and scanning transmission electron microscopy (STEM, 

Hitachi HD-2700). The X-ray diffraction patterns (XRD, Panalytical XPert PRO Alpha-1) 

were collected with Cu Kα radiation. X-ray photoelectron spectroscopy (XPS) was 

performed with a Thermo Scientific K-Alpha system. All ex situ studies with SEM, TEM 

and XRD were conducted after the tested electrodes were disassembled and thoroughly 

washed with deionized water. Electrochemical Zn plating/stripping and cyclic voltammetry 

were conducted using a VSP system (BioLogic). Battery cycling tests were carried out 

using a LANHE system operating in galvanostatic mode.  

Measurement of Zn nucleation barrier. Three-electrode electrochemical cells 

were constructed that consisted of the substrate of interest as the working electrode, 

Hg/HgO as the reference electrode and Zn foil (Alfa Aesar) as the counter electrode. Zn 

metal was galvanostatically deposited onto the working electrode at 3 mA cm−2 in 5 mL of 

a ZnO-saturated 4 M KOH (Sigma Aldrich) aqueous electrolyte.  

Operando optical microscope characterization. Two-electrode electrochemical 

cells were constructed that consisted of the substrate of interest as the working electrode 

and Zn foil as the counter electrode. A ZnO-saturated 4 M KOH aqueous solution was used 

as the electrolyte. The cells were probed using a Leica DMC2700 microscope with 

reflected dark-field illumination. Most of the images and videos were captured through an 

air-immersion objective (Leica N PLAN L 5X 0.50 BD). All the in-operando experiments 

were performed at room temperature and ambient pressure. 

Electrochemistry. The zinc anodes were cut into round disks with diameters of 1 

or 1.6 cm. The counter electrodes (cathodes) were Ni(OH)2 harvested from commercial Ni-
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Zn AA batteries (PowerGenix). To specifically focus on the Zn anodes, Ni(OH)2 cathodes 

with excess capacity (~40 mAh cm−2) was paired with the prepared anode. The diameter 

of the separator disks was 1.6 cm. 

Pouch-type batteries were assembled using Ampac’s SealPAK. The aqueous 

electrolyte consisted of 4 M KOH (Sigma Aldrich), 2 M KF (Alfa Aesar) and 2 M K2CO3 

(Alfa Aesar) and was saturated with ZnO. Ti wires were used as electrode terminals.  

For the ex situ XRD studies of C-Ag electrodes (1 cm diameter disk) in different 

charge/discharge states, Celgard 3501 and glass fiber/Freudenberg 700/28K separators 

were used with 300 µL of electrolyte. The mass loading of the Ag nanoparticles was 

approximately 0.45 mg cm-2. Cells were galvanostatically precycled for 9 cycles. The C-

Ag electrodes were charged at 1.491 mA mgAg
-1 until a 2 V cut-off voltage was reached or 

when their charge capacities reached the desired values. These anodes were then 

discharged at 1.491 mA mgAg
-1 to a cut-off voltage of 1.2 V or to the desired voltages for 

XRD studies. 

For the battery cycling tests with the C and C-Ag anodes, Celgard 3501 and 

Freudenberg 700/28K separators were used with 300 µL of electrolyte. During charging, 

zincates in the electrolyte were electrochemically reduced at the anode. Electrochemically 

reducing all of the zincate in the electrolyte corresponded to a capacity of ~2.7 mAh. The 

anodes were round disks with a diameter of 1 cm. The mass loading of Ag nanoparticles 

and carbon black (CB) powders was approximately 0.2 mg cm-2. The calculation of specific 

capacity was based on the mass of Ag/CB if not otherwise specified because the quantity 

of deposited Zn varied over cycles. Cells were galvanostatically activated for 20 cycles. 
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The electrodes were charged at 14.91 mA mgAg/CB
-1 until a 2 V cut-off voltage was reached 

or their charge capacities reached 497, 994, and 1,491 mAh gAg/CB
-1 (“Zn:Ag=1”, 

“Zn:Ag=2” and “Zn:Ag=3” were used to represent charge conditions on both electrodes). 

Correspondingly, the areal capacities were ~0.1 mAh cm-2, ~0.2 mAh cm-2, and ~0.3 mAh 

cm-2, in which ~2.5%, ~5%, ~7.5% of the electrolyte capacity was utilized. These anodes 

were fully discharged at 14.91 mA mgAg/CB
-1 to a cut-off voltage of 1.2 V. The 

charge/discharge current density was ~2.4 mA cm-2. To minimize the effect of hydrogen 

evolution on cyclic stability, ~7.5% of zincates from the electrolyte were consumed at most 

because the depletion of zincates would make water decomposition more severe. 

For the battery cycling tests with the C-Zn and C-Ag-Zn anodes, glass fiber 

separators were used with 100 µL of electrolyte. The anodes were round disks with a 

diameter of 1.6 cm. The mass loading of the Ag nanoparticles was approximately 1.2 mg 

cm-2. Cells were fully discharged and then recycled. During charging, a constant current 

charge (CCC, 0.625 mA cm-2)-constant voltage charge (CVC, 1.85 V) protocol was 

employed until the areal charge capacity exceeded 0.625 mAh cm-2 or the CVC current 

decreased to less than 0.05 mA cm-2. The procedure was switched from CCC to CVC when 

the cell voltage reached 1.85 V. Charging was followed by a discharge at 0.625 mA cm-2 

until the cell voltage reached 1.2 V. 

In beaker-type batteries, 5 mL of ZnO-saturated 4 M KOH was used as the 

electrolyte. A cyclic voltammogram experiment was carried out in the beaker cell using a 

three-electrode setup that consisted of the substrate of interest as the working electrode, 

Hg/HgO as the reference electrode, and Zn foil as the counter electrode. To make the C-
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Zn and C-Ag-Zn anodes, ~1 mAh cm-2 Zn was deposited onto the C and C-Ag electrodes 

after 12 activation cycles. Zn foil was used as the counter electrode. 

Calculations. The theoretical specific capacity of the Ag electrode was calculated 

by Equation 8. 

 
𝐶𝑇(𝑚𝐴ℎ 𝑔𝐴𝑔

−1) = 𝜒 ∗
1

𝑀𝑊𝐴𝑔
∗

𝑛𝐹

3.6
 (8) 

where 𝜒 is the number of Zn atoms that can alloy with a Ag atom. 𝑀𝑊𝐴𝑔 is the molar 

weight of Ag element, n is the number of electrons transferred in the relevant reaction, and 

F is the Faraday’s constant. For the Zn-Ag alloy, 𝑛 = 2, 𝜒 ranges from 1 to 3. 

Discharge-capacity-to-electrolyte (DC/E) ratio (Equation 9): 

 𝐷𝐶/𝐸 𝑟𝑎𝑡𝑖𝑜 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 𝑣𝑜𝑙𝑢𝑚𝑒⁄  (9) 

Statistical analysis of discharge capacities over cycling. To best present cyclic 

stabilities of anodes over cycling, relative standard deviations of their discharge capacities 

over cycling were calculated. According to statistical theory, the mean value (𝐷𝐶̅̅ ̅̅ ), standard 

deviation (SD) and relative standard deviation (RSD) were calculated by the following 

formulas (Equation 10-12). 

 
𝐷𝐶̅̅ ̅̅ =

𝐷𝐶1 + 𝐷𝐶2 + ⋯ + 𝐷𝐶𝑛

𝑛
 (10) 
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𝑆𝐷 = √
∑ (𝐷𝐶𝑖 − 𝐷𝐶̅̅ ̅̅ )2𝑛

𝑖=1

𝑛 − 1
 

(11) 

 

𝑅𝑆𝐷 =
𝑆𝐷

𝐷𝐶̅̅ ̅̅
× 100% =

√∑ (𝐷𝐶𝑖 − 𝐷𝐶̅̅ ̅̅ )2𝑛
𝑖=1

𝑛 − 1
𝐷𝐶̅̅ ̅̅

× 100% 
(12) 

where n is the cycle number. DCi is the discharge capacity at cycle ith, and 𝐷𝐶̅̅ ̅̅  is the 

average discharge capacity. 

Density functional theory (DFT) calculations. DFT calculations were performed 

using VASP170,171 within the generalized gradient approximation treatment of exchange 

and correlation effects of Perdew, Burke, and Ernzerhof.172 Projector-augmented wave 

pseudopotentials were used  for all calculations173 with all forces converged to be less than 

0.01 eV/Å with a planewave basis set cutoff energy of 500 eV. K-point sampling of the 

first Brillouin zone in the bulk materials was converged with a 10 × 10 × 10 mesh using 

the sampling scheme of Monkhorst and Pack174 for simple cubic Zn0.5Ag0.5 and a 10 × 10 

× 6 mesh for Zn. Sampling for slab surface models was scaled for relative size of the unit 

cell based on the convergence found for the bulk materials. For Zn, the 001 and 100 

surfaces were studied; these models were both converged at 7 layers of slab thickness. For 

Zn0.5Ag0.5, the 110 and 001 surfaces were studied; these models were converged at 9 and 

7.5 layers of slab thickness, respectively.  

Dissolution energies of Zn atoms were calculated relative to converged slab 

supercell models with reference to an isolated Zn atom in a box with 25 Å side length. 

Supercell models were constructed such that Zn vacancies in the Zn-deficient supercell 
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models were at least 8 Å apart from one another. Dissolution energy was computed as 

follows (Equation 13):   

 𝐸𝑑𝑖𝑠𝑠 = (𝐸𝑠𝑙𝑎𝑏−𝑍𝑛 + 𝐸𝑍𝑛) − 𝐸𝑠𝑙𝑎𝑏 (13) 

Where 𝐸𝑑𝑖𝑠𝑠 is the energetic cost to remove a Zn atom, 𝐸𝑠𝑙𝑎𝑏 is the energy of the pristine 

slab model, 𝐸𝑍𝑛 is the energy of the isolated Zn atom, and 𝐸𝑠𝑙𝑎𝑏−𝑍𝑛 is the energy of the 

Zn-deficient slab model. With this convention, and endothermic removal event 

corresponds to a positive energy. 

Thermodynamic assessment of Ag-Zn. The Gibbs free energy of formations at 

room temperature of Zn and multiple ZnxAg1-x alloy phases were calculated using the 

CALPHAD technique175.    

3.3 Results and Discussion 

3.3.1 Choice of seed materials 

7 common metallic substrates (Ag, Au, Cu, Ti, Fe, Pt and Ni) were screened that 

can potentially alloy with Zn. These substrates were prepared by evaporating the 

corresponding metal to a thickness of 100 nm onto Cu foils. The corresponding binary 

phase diagrams176 are shown in Figure 3.1a and Figure 3.2. The solubility zone is labeled 

as (Zn). Carbon-fiber paper, which does not alloy with or dissolve in zinc 176, was also 

added in the above series as a control sample. A three-electrode electrochemical cell was 

constructed that consisted of the substrate of interest as the working electrode, Hg/HgO as 

the reference electrode and Zn foil as the counter electrode. Zn metal was galvanostatically 
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deposited onto the working electrode at 3 mA cm−2 in an alkaline electrolyte (ZnO-

saturated136 4 M KOH aqueous solution).  

 

Figure 3.1 - Ag as the seed for electrochemical Zn plating. a, Phase diagram of Zn 

with Ag. The region where Ag dissolved in Zn is labeled as (Zn) with a blue color. b, 

Voltage profiles of galvanostatic Zn deposition on various substrates at 3 mA cm−2. 

EWE refers to the potential of the working electrode. Ag showed the lowest potential 

barrier (~4 mV), and carbon showed the highest potential barrier (~30 mV) for Zn 

deposition. The insets show the schematic mechanisms of Zn nucleation on Ag and C, 

which explain the extra energy involved in Zn nucleation on C. Due to the solid 

solution buffer layer of Ag dissolved in Zn, the nucleation energy was reduced. c, 

Calculated Gibbs free energy of formation at room temperature of Zn, ζ- and ε-

ZnxAg1-x alloy phases and the corresponding electrochemical potential shift of 

Zn2+/ZnxAg1-x compared with that of Zn2+/Zn. 
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Figure 3.2 - Phase diagrams of selected materials with Zn, including Au (a), Cu (b), 

Fe (c), Ni (d), Pt (e) and Ti (f). 

Figure 3.1b shows the voltage profiles of Zn metal deposition onto various 

substrates (Ag, Au, Cu, Ti, carbon). The Zn metal nucleation barrier is defined as the 

difference between the initial voltage dip and the later part of the voltage plateau, which is 
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related to the miscibility of these materials with Zn164. Some materials have definite 

solubilities in Zn according to the phase diagrams, including Ag (∼0.5 at.% at 100°C), Au 

(∼2 at.% at 0°C), and Cu (∼0.1 at.% at 100°C). The solubility of Ti in Zn is negligible. 

Although the solubility of Ag and Cu in Zn at room temperature are not directly available 

from the phase diagrams, it is reasonable to extrapolate that there will still be some 

solubility at room temperature. A high potential barrier (~30 mV) is observed on carbon, 

which is due to the heterogeneous nucleation barrier (Figure 3.1b, bottom inset). Ti with 

slight solubility in Zn shows a relatively low potential barrier of 12 mV. Metals including 

Ag, Cu, and Au exhibit low potential barriers (4 mV for Ag, 7 mV for Cu, and 8 mV for 

Au) for Zn deposition, which can be attributed to their higher solubilities in Zn. Take Ag 

as an example, the dissolution of surface Ag into Zn forms a solid-solution surface layer 

(Figure 3.1b, top inset), which has an identical crystal structure to that of pure Zn metal 

(hcp) and thus can serve as a buffer layer and eliminate nucleation barriers for subsequent 

Zn deposition. Pt, Ni and Fe have drastically different voltage profiles from above metals, 

due to their high activities towards hydrogen evolution reaction in alkaline electrolytes177. 

Even though Pt, Ni and Fe can form alloy phases with Zn or are soluble in Zn according to 

the phase diagrams, no Zn is plated on them as evidenced by their lack of Zn stripping 

capacity (Figure 3.3). 
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Figure 3.3 - Voltage profiles of galvanostatic Zn plating and stripping on Pt (a), Fe 

(b), and Ni (c) substrates at 3 mA cm−2. EWE refers to the potential of the working 

electrode. Fe, Ni, and Pt exhibited high hydrogen evolution reaction (HER) activity 

with negligible Zn plated. 

It is hypothesized that Zn-soluble materials with low nucleation barriers can 

regulate the deposition of Zn metal. Among the materials being tested, Ag exhibits the 

lowest potential barrier of Zn nucleation. Thus, it was chosen to demonstrate the concept. 

In addition, Ag can react with Zn to form crystalline ζ-, γ-, and ε-ZnxAg1-x alloy phases, as 

indicated by the Ag-Zn phase diagram. A computerized calculation of phase diagrams 

(CALPHAD) technique175 was used to obtain the Gibbs free energy of formations (Figure 

3.1c) at room temperature of Zn, ζ- and ε-ZnxAg1-x alloy phases observed in the 

experiments. The corresponding electrochemical potential shift of Zn2+/ZnxAg1-x compared 

with that of Zn2+/Zn was also computed. All of the ZnxAg1-x alloy phases possess a negative 

Gibbs free energy of formation, which means that the formation of ZnxAg1-x is spontaneous 

during Zn plating. As a result, Ag can potentially be used as a seed to (1) nucleate Zn with 

a low potential barrier, and (2) accommodate Zn by forming alloy phases. 

3.3.2 Spatially controlled and uniform Zn deposition 

To evaluate the possibility of Ag as a seed to spatially control the Zn 

electrodeposition (Figure 3.4a), Ag islands were patterned as the seeding material on the C 
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substrate (Figure 3.5), onto which Zn was galvanostatically deposited at 2.4 mA cm−2. As 

shown in the operando optical microscopy images (Figure 3.4b), most of the Zn was 

preferentially deposited onto the Ag patterns. A set of operando images with high 

magnification is shown in Figure 3.6. EDS mapping (Figure 3.4c) of the electrode after the 

Zn deposition process further confirmed the spatially controlled Zn deposition.  

 

Figure 3.4 - Spatial control of Zn deposition using Ag nuclei. a, Schematic of the 

spatially controlled Zn plating on the Ag islands patterned on carbon paper. b, 

Operando optical microscopy of the Zn plating (2.4 mA cm−2) on the Ag islands 

patterned on carbon paper. c, SEM images and elemental mapping images of the 

carbon paper coated with patterned Ag islands before and after Zn plating. A 

spatially controlled deposition of Zn was achieved due to the preferential Zn 

deposition on Ag.  
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Figure 3.5 - Optical microscopy images of stainless steel meshes purchased from 

Dexmet (a) and TWP (b). These meshes were used as masks during Ag evaporation, 

to pattern Ag on various substrates. 

  

Figure 3.6 - Operando optical microscopy analysis of Zn plating (1 mA cm−2) on the 

Ag patterned C substrate. The square area is coated with Ag. Most of Zn was 

preferentially deposited onto Ag patterns. The transitions (Ag-ZnxAg1-x-Zn) can be 

observed. 

Nonuniform and dendritic metal deposition is a well-known problem for Zn anodes 

(Figure 3.7a). By spatially controlling and accommodating Zn deposition, a uniform Zn 

plating is expected to be achieved (Figure 3.7b). To demonstrate this, Ag nanoparticles 

were firstly loaded onto the inert carbon-fiber paper substrate (C-Ag, Figure 3.8, Figure 
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3.9). Ag nanoparticles and polyvinylidene difluoride (PVDF) binder were mixed in N-

methylpyrrolidone, and the resultant slurry was drop cast onto carbon paper substrates. The 

diameter of the Ag nanoparticles, which exhibited a face-centered cubic (FCC) structure, 

was less than 50 nm (Figure 3.10, Figure 3.11). The carbon paper and C-Ag electrodes 

were then galvanostatically cycled  in ZnO-saturated 4 M KOH electrolyte and monitored 

the electrodes in operando using an optical microscope. As shown in Figure 3.7c, mossy 

and dendritic Zn deposits could be observed on the bare carbon paper during charging at 

the 2nd cycle. In addition, dead Zn that remained from the 1st cycle was observed on the 

carbon paper at the beginning of the 2nd charge, and grew in charging, which meant that 

the dead Zn reconnected to the carbon paper and served as the core for further Zn 

deposition. The break and reconnection of dead Zn could lead to the instability of Zn 

anodes (fluctuation of capacity) during battery cycling. In contrast, the Zn deposited onto 

the C-Ag electrode was uniform, and no dead Zn was observed in the fully discharged state 

(Figure 3.7d).  
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Figure 3.7 - Morphology control of Zn deposition using Ag nuclei. a, Schematic of 

nonuniform and dendritic Zn deposition on the carbon paper substrate, which has no 

solubility in Zn. b, Schematic of uniform Zn deposition on the carbon paper slurry-

coated with Ag nanoparticles. Ag nanoparticles serve as the nucleation sites for the 

ZnxAg1-x alloy formation and Zn deposition. c,d, Operando optical microscopy 

analysis of Zn plating (18 mA cm−2) on the carbon (c) and C-Ag (d) electrodes. Zn 

plating on the carbon electrode is mossy, while it is uniform on the C-Ag electrode. 
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Figure 3.8 - XPS survey spectra of the C-Ag electrode. 

  

Figure 3.9 - Voltage profile of galvanostatic Zn deposition on C-Ag at 3 mA cm−2. No 

potential barrier was observed at the onset of Zn deposition, which indicates that the 

loading of Ag nanoparticles eliminates the nucleation barrier. 

  

Figure 3.10 - SEM image of Ag nanoparticles. 
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Figure 3.11 - TEM images of Ag nanoparticles. 

3.3.3 Mechanism of Zn plating/stripping in the presence of alloying seeds 

The C-Ag electrode was assembled into a full Ni-Zn battery using Ni(OH)2 as the 

cathode and ZnO-saturated 4 M KOH as the electrolyte. The charge capacities were 

controlled to be 497, 994 and 1,491 mAh gAg
-1, so that the molar ratios of deposited Zn to 

Ag (Zn:Ag) are 1, 2 and 3 assuming no side reaction. In the rest of this article, “Zn:Ag=1”, 

“Zn:Ag=2” and “Zn:Ag=3” were used to represent charging conditions. The actual Zn:Ag 

are approximately 0.7, 1.7 and 2.8, respectively, when Coulombic inefficiency is 

considered. To characterize crystalline ZnxAg1-x alloys under different charging conditions, 

ex situ X-ray diffraction (XRD) was performed for the C-Ag electrode and observed that 

ZnxAg1-x alloy phases (ε-, ζ-) were formed successfully (see Figure 3.12, Table 3.1 for 

detailed description of alloy phases and compositions). When Zn:Ag increased from 1 to 

3, the Ag peak intensity decreased while the Zn and hexagonal ε-ZnxAg1-x peak intensities 

increased, because Ag turns into alloys with Zn. The cubic ζ- ZnxAg1-x alloy phase 

diminished when the Zn:Ag ratio was increased from 1 to 2, which was due to the further 

zincation of ζ- ZnxAg1-x to ε-ZnxAg1-x. In addition, the positive shift of the characteristic 

peak positions of the ε-ZnxAg1-x phase also indicated the formation of Zn-richer alloys at 
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high Zn:Ag ratios. For ζ-ZnxAg1-x (0.342<x<0.513), Zn0.5Ag0.5 was detected. For ε-ZnxAg1-

x (0.679<x<0.873), Zn0.695Ag0.305, Zn0.74Ag0.26, Zn0.75Ag0.25, Zn0.78Ag0.22, and Zn0.84Ag0.16 

were detected. Additional ζ- and ε-alloy phases with different x values may also exist, but 

they cannot be identified by XRD due to their absence in the Powder Diffraction File 

database. The XRD results shown above confirm the formation of alloy phases and reveal 

alloy compositions on the C-Ag electrode under different Zn deposition conditions. The 

formation of ZnxAg1-x alloys was also confirmed by energy-dispersive X-ray spectroscopy 

(EDS) mappings (Figure 3.13, Figure 3.14). 

 

  

Figure 3.12 - Characterization of products from electrochemical deposition of Zn on 

Ag. a, Corresponding charge capacities at different molar ratios of plated Zn to Ag 

ranging from 1 to 3 on the C-Ag electrode. b,c, Zoom (b) of XRD patterns (c) of the 

C-Ag electrode at different molar ratios of plated Zn to Ag ranging from 1 to 3. 
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Characteristic peaks of the Zn0.695Ag0.305, Zn0.74Ag0.26, Zn0.75Ag0.25, Zn0.78Ag0.22, and 

Zn0.84Ag0.16 hexagonal alloy phases are labeled. 

Table 3.1 - Calculated Gibbs free energy of formations at room temperature of Zn 

and multiple ZnxAg1-x alloy phases and corresponding electrochemical potential shifts 

of Zn2+/ZnxAg1-x compared with that of Zn2+/Zn, including ζ-Zn0.5Ag0.5, ε-

Zn0.695Ag0.305, ε-Zn0.74Ag0.26, ε-Zn0.75Ag0.25, ε-Zn0.78Ag0.22 and ε-Zn0.84Ag0.16.  

ZnxAg1-x 

Gibbs free energy of 

formation (kJ/molZn) 

Electrochemical 

potential shift (V) 

ζ-Zn0.5Ag0.5 -39.34  +0.20  

ε-Zn0.695Ag0.305 -27.72  +0.14  

ε-Zn0.74Ag0.26 -25.24  +0.13  

ε-Zn0.75Ag0.25 -24.73  +0.13  

ε-Zn0.78Ag0.22 -23.19  +0.12  

ε-Zn0.84Ag0.16 -20.12  +0.10  

Zn 0 0 

  

Figure 3.13 - SEM image (a) and elemental mappings (b, c) of the C-Ag electrode after 

Zn deposition. 

  

Figure 3.14 - STEM images and elemental mapping images of Ag nanoparticles before 

and after Zn deposition. The Zn2.2Ag alloy was identified after Zn plating. 
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Upon galvanostatic cycling, the voltage profile (Figure 3.15a) showed one charge 

plateau and two apparent discharge plateaus (1.8-1.6 V and 1.6-1.4 V). To probe the phase 

transitions of the C-Ag electrode during cycling at Zn:Ag=3, ex situ XRD analysis (Figure 

3.15b) of the C-Ag anode was conducted at 5 different charge/discharge states, as noted in 

Figure 3.15a. In charged states (1) and (2), the Zn and ZnxAg1-x alloy phases coexist. 

During charging from (1) to (2), the peak intensities of Zn increased while the ZnxAg1-x 

alloy peaks remained almost unchanged. This result indicates that alloy phases formed 

prior to the formation of the Zn phase, which is reasonable because alloy phases possess a 

negative Gibbs free energy of formation. It is counterintuitive that only one charge plateau 

exists while both Zn and ZnxAg1-x form. It is speculated that the alloy formation rate may 

be kinetically slower than the Zn deposition rate, which results in only one charge plateau 

attributed to the Zn2+/Zn redox. Afterward, the Zn and Ag atoms may diffuse slowly to 

spontaneously form the ZnxAg1-x alloy. When discharged to state (3), the end of the first 

discharge plateau, the Zn peak intensity in the corresponding XRD pattern dramatically 

decreased, while the ZnxAg1-x alloy peak intensities remained almost unchanged. This 

result implies that the first discharge plateau (1.8-1.6 V) is mainly attributable to Zn 

stripping from Zn metal. Upon further discharging, the ZnxAg1-x alloy peaks decreased at 

state (4) and their intensities clearly decreased when the battery reached the fully 

discharged state (5). It is concluded that the second discharge plateau (1.6-1.4 V) was 

associated mainly with Zn stripping from the ZnxAg1-x alloys, which is consistent with 

CALPHAD results that the Zn2+/ZnxAg1-x redox had a higher potential than Zn2+/Zn. In 

addition, alloy phases became Zn-leaner during discharging, as evidenced by the negative 

shift in the characteristic peak positions of the ε-ZnxAg1-x phase, which also matched 
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CALPHAD results indicating that Zn-lean alloy phases possessed larger electrochemical 

potential. It was observed that the Ag nanoparticles could not recover to their original 

crystal structure after cycling, as evidenced by the unrecovered Ag peaks and the existence 

of Zn-lean ZnxAg1-x alloy phases in the fully discharged state (5). The remaining Ag peaks 

in both the charged and discharged states belong to unreacted Ag nanoparticles, which 

might be encapsulated by PVDF and thus inactive. 

  

Figure 3.15 - Shift of the stripping potential due to the presence of alloy. a, Voltage 

profiles of a full cell containing a C-Ag anode, Ni(OH)2 cathode, and ZnO-saturated 

4 M KOH electrolyte. b, XRD results of the C-Ag electrode at different 
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charge/discharge states, as labeled in (a). The first (1.8-1.6 V) and the second (1.6-1.4 

V) discharge plateaus correspond to Zn stripping from the pure Zn metal and the 

ZnxAg1-x alloys, respectively (see the red-dashed frame for the reader's convenience). 

c, DFT simulation results showing the energetic cost of removing a Zn atom from the 

pure Zn metal and Zn0.5Ag0.5 alloy. Constructed models: Zn with 001 and 100 

surfaces; Zn0.5Ag0.5 with 110 and 001 surfaces. 

To further understand the Zn stripping process at the atomic level, models of pure 

Zn metal and Zn0.5Ag0.5 alloy crystals were simulated in silico and investigated the relative 

energetic cost of Zn removal from various termination environments using density 

functional theory (DFT)170–174. The Zn0.5Ag0.5 alloy phase was chosen for the DFT study 

because it was the phase detected during experiments; furthermore, its crystal structure is 

relatively simple. Nanoparticles under cyclic dissolution and reformation in a battery 

environment display a range of morphologies and surface environments. Therefore, two 

surfaces for each material (Zn metal and Zn0.5Ag0.5 alloy) were selected to represent a low-

coordination-number environment (100 and 001 surfaces for Zn and Zn0.5Ag0.5, 

respectively) and a high-coordination-number environment (001 and 110 surfaces for Zn 

and Zn0.5Ag0.5, respectively) (Figure 3.16). Multiple possibilities for Zn removal for each 

slab model were considered to probe the various thermodynamic states in cases of 

chemically unique Zn atoms. A full report of all of data is available in Table 3.2. For the 

001 surface termination of Zn0.5Ag0.5, both the Zn-terminated and Ag-terminated surfaces 

were studied, although the Ag-terminated surface was found to be much more energetically 

stable and thus was the one being considered in the data. The minimum energy to remove 

Zn from each material/termination environment was reported in Figure 3.15c. The 

minimum energy to remove Zn was 1.10 eV for Zn with a 100 surface termination and 1.40 

eV for Zn0.5Ag0.5 with a 001 surface termination, which indicates the Zn atom is less 

reactive in the Zn0.5Ag0.5 alloy than in the pure Zn metal. These DFT results provide some 
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insight into the more energetic Zn stripping process from ZnxAg1-x alloys and thus higher 

electrochemical potential of the Zn2+/ZnxAg1-x redox than the Zn2+/Zn redox. 

  

Figure 3.16 - Images of various computational slab models of Zn metal and Zn0.5Ag0.5 

alloys. a. Zn metal 100 surface (low coordination) b. Zn metal 001 surface (high 

coordination) c. Zn0.5Ag0.5 alloy with Zn surface termination 001 surface (low 

coordination) d. Zn0.5Ag0.5 alloy with Ag termination 001 surface (low coordination) 

e. Zn0.5Ag0.5 alloy 110 surface (high coordination). 

Table 3.2 - DFT simulation results showing the energetic cost to remove a Zn atom 

from pure Zn metal and Zn0.5Ag0.5 alloy. Models of Zn with 001 and 100 surfaces and 

Zn0.5Ag0.5 with 110 and 001 surfaces were constructed. 

Material and terminated surface Remove Zn from Energetic cost (eV) 

Zn 001 Surface  1.545  

Zn 100 Surface 1.104  

Zn0.5Ag0.5 110 Surface 1.578  

Zn0.5Ag0.5 110 First sublayer 1.511  

Zn0.5Ag0.5 110 Second sublayer 1.528  

Zn0.5Ag0.5 110 Center 1.622  

Zn0.5Ag0.5 001 Zn terminated Surface 0.646*  

Zn0.5Ag0.5 001 Ag terminated Sublayer 1.667  

Zn0.5Ag0.5 001 Ag terminated Core 1.403  

* For the 001 surface termination of Zn0.5Ag0.5, both the Zn-terminated and Ag-terminated 

surfaces were studied, although the Ag-terminated surface was found to be much more 
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energetically stable and thus is the one being considered in the data. In addition, even 

though Zn-terminated surface exists, it will further change to Ag-terminated once surface 

Zn is removed, which still cost more energy to further remove Zn.  

To confirm that the two discharge plateaus of the full battery were caused by the 

C-Ag anode instead of the Ni(OH)2 cathode, the voltage profile of a full Ni-Zn battery 

using the carbon paper as the anode is presented in Figure 3.17. Only one discharge plateau 

was observed when Ag was not added to the anode. Cyclic voltammetry (CV) of the C-Ag 

electrode was also carried out using a three-electrode electrochemical cell that consisted of 

the substrate of interest as the working electrode, Hg/HgO as the reference electrode, Zn 

foil as the counter electrode and a ZnO-saturated 4 M KOH aqueous solution as the 

electrolyte. The result was in good agreement with the analysis that the two discharge 

plateaus were due to the different electrochemical potentials of the Zn2+/Zn and 

Zn2+/ZnxAg1-x redox reactions on the C-Ag electrode (Figure 3.18). 

  

Figure 3.17 - Charge and discharge curves of a Zn-Ni full cell with C anode, Ni(OH)2 

cathode, and ZnO-saturated 4M KOH electrolyte. 
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Figure 3.18 - Cyclic voltammogram of the C-Ag electrode at 10 mV s-1 scan rate in 

ZnO saturated 4M KOH electrolyte. 

3.3.4 Stable cycling of Ag-seeded Zn anodes 

In previous sections, the spatially controlled and uniform Zn deposition on the Ag 

seeds was demonstrated and investigated. To further evaluate the cyclic stability of Ag-

seeded Zn anodes (C-Ag), pouch-type Ni-Zn batteries were assembled and tested. Batteries 

with bare C anodes were also assembled and tested under the same conditions. During 

charging, zincates dissolved in the electrolyte were electrochemically reduced at the anode. 

Less than 7.5% of zincates from the electrolyte were consumed in each cycle, to minimize 

the hydrogen evolution side reaction. 

As shown in the cycling results (Figure 3.19a, Figure 3.20, Figure 3.21, Figure 

3.22), instead of steady capacity decay, batteries undergo irregular capacity decay with 

intensified fluctuations of capacity over cycling, which is indicative of battery degradation. 

To better analyze the cyclic stabilities of the C-Ag and C electrodes, a box-and-whisker 

plot was constructed to show the statistic distributions of their discharge capacities over 

cycling (Figure 3.19b), where a summary of five numbers is displayed, including the 
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“minimum”, first quartile, median, third quartile, and “maximum” discharge capacities. At 

all Zn:Ag ratios (1, 2, and 3), the C-Ag electrodes demonstrated higher cyclic stability with 

less fluctuation of capacity than the C electrodes. In addition, the C-Ag electrodes also 

achieved a higher average discharge capacity and Coulombic efficiency than the C 

electrodes: 491.7 mAh g-1 and 99.0% for C-Ag vs. 487.3 mAh g-1 and 98.1% for C at 

Zn:Ag=1; 983.7 mAh g-1 and 99.1% for C-Ag vs. 893.1 mAh g-1 and 97.3% for C at 

Zn:Ag=2; 1,458.9 mAh g-1 and 98.0% for C-Ag vs. 1,175.4 mAh g-1 and 96.7% for C at 

Zn:Ag=3. The above statistical analysis was done within limited cycle ranges for C-Ag and 

C electrodes: 14,980 cycles for Zn:Ag=1, 1,480 cycles for Zn:Ag=2, and 630 cycles for 

Zn:Ag=3. Due to the irregular capacity decay, the cycle life was defined as the cycle 

number when the relative standard deviation of discharge capacities exceeds 1%. As shown 

in Figure 3.19c, the C-Ag electrodes exhibited superior cycle lives of 75,187, 2,501, and 

752 cycles when cycled at Zn:Ag ratios ranging from 1 to 3, respectively, while the C 

electrodes exhibited 273, 33, and 38 cycles, respectively. The dendritic Zn plating and 

break/reconnection of partial dead Zn could have led to the capacity fluctuation of C 

electrodes, which was visualized under the optical microscope. In addition, the resultant 

unstable electrode–electrolyte interface and severe electrolyte decomposition (reacting 

with dead Zn and evolving H2) might explain for the capacity decay of C electrodes. With 

a simple Ag nanoparticle loading process, a spatially controlled and uniform Zn deposition 

through heterogeneous seeded growth is achieved, leading to the superior long-term cyclic 

stability of the C-Ag electrodes. 
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Figure 3.19 - Electrochemical performance of anodes. a, Cycling performance of the 

C-Ag and C electrodes at Zn:Ag=1. b, Box-and-whisker plot showing distributions of 

discharge capacities of the C-Ag and C electrodes at Zn:Ag molar ratios ranging from 

1 to 3. For Zn:Ag=1, discharge capacities from the 1st cycle to the 14,980th cycle were 

used in the box-and-whisker plot. Similarly, the 1st cycle to the 1,480th cycle for 

Zn:Ag=2 and the 1st cycle to the 630th cycle for Zn:Ag=3 were used. A summary of 

five numbers is displayed, including the “minimum” (Q1-1.5*IQR), first quartile 

(Q1), median, third quartile (Q3), and “maximum” (Q3+1.5*IQR). Interquartile 

range (IQR): 1st to the 3rd quartile. Outliers (values that are located outside the 

whiskers of the box plot) are marked as red circles. c, Cycle life comparison of the C-

Ag and C electrodes with relative standard deviations of the discharge capacities over 

cycling being less than 1%. This result shows that the electrochemical cycling of the 

C-Ag electrode is more stable than that of the C electrode. d, Cycling performance of 

the C-Ag-Zn and C-Zn anodes. e, Box-and-whisker plot showing a comparison 
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between the C-Ag-Zn anode and previously published works in terms of cycle life, 

Coulombic efficiency, and DC/E ratio.  

 

Figure 3.20 - Cycling performance of the C-Ag and C electrodes at Zn:Ag=2. 

 

Figure 3.21 - Cycling performance of the C-Ag and C electrodes at Zn:Ag=3. 
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Figure 3.22 - Average discharge capacities over cycling with standard deviation bars 

of C-Ag and C electrodes at Zn:Ag ranging from 1 to 3. 

The discharge capacity/electrolyte (DC/E) ratio is an important indicator for 

device-level energy density148,149,178. The DC/E ratio of the cells shown in Figure 3.19a-c 

was lower than 0.8 mAh mL-1 because they utilized a small percentage of the zincates 

available from the electrolyte. To demonstrate the effect of Ag seeds on Zn anodes at a 

higher DC/E ratio, ~1 mAh cm-2 Zn was pre-deposited onto the C and C-Ag electrodes and 

assembled Ni-Zn full cells. As shown in Figure 3.19d, the C-Ag-Zn anode achieved 

superior cycling performance, with a Coulombic efficiency of 95% for 78 cycles; the C-

Zn anode performed with a Coulombic efficiency of 92.6% for 25 cycles, which implied 

that the Ag addition also improved the Zn anode even at a high DC/E ratio (12 mAh mL-

1). The simple loading of Ag nanoparticles onto the Zn anode, without any complex 

structural or molecular design, improved its cycling performance to be comprehensively 

superior to that of previously reported, deeply cycled Zn anodes with 100% depth-of-

discharge in alkaline electrolytes (Figure 3.19e). Three parameters (cycle life, Coulombic 

efficiency, and DC/E ratio) were considered in the comparison (Table 3.3). Notably, it was 
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less meaningful to compare only one or two parameters; thus, only publications that 

reported all three values or provided necessary information to calculate them were included 

in the comparison. Partially discharged metallic zinc anodes were not included for 

comparison either, because their discharge capacity (and therefore Coulombic efficiency) 

is artificially controlled and cannot reflect the intrinsic property of the anodes.  

Table 3.3 - Comparison of the C-Ag-Zn anode with previously reported zinc-based 

anodes in aspects of cycle life (with >80% retained capacity), Coulombic efficiency, 

and discharge capacity/electrolyte (DC/E) ratio in alkaline electrolytes. It is less 

meaningful to compare only one or two terms, thus, only works that reported these 

values or provided necessary information for their calculations are included in the 

comparison. Also, partially discharged metallic zinc anodes are not included because 

their Coulombic efficiency can be controlled by the cycling protocol and cannot 

reflect the extent of side reactions happened on Zn anodes.  

Anode 

label 

Anode material 

Cycle 

life 

Coulombic 

efficiency (%) 

DC/E ratio 

(mAh/mL) 

 Backside-plating zinc179 800 92.00  0.03  

 ZnO@C81 14 58.81  3.50  

 ZnO@TiNxOy
9 64 81.57  2.14  

 Zn-pome82 45 55.47  3.65  

 ZnO lasagna151 10 47.87  3.15  

 ZnO nanorod180 175 79.31  21.54  

 Calcium zincate153 70 77.50  10.33  

 Zn@Bi2O3-CaO-ZnO glass154 20 83.33  0.13  

  IHCP-modified ZnO/C155 5 60.79  9.80  

 Commercial ZnO156 56 85.50  1.71  

 DIEN-ZnO156 92 93.70  1.87  

 CrxZnO157 50 82.00  2.46  

 NixZn(1-x)O
158 95 98.00  2.94  

 Microcrystalline ZnO159 95 87.00  2.61  
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 Fe0.01ZnO160 37 92.00  1.38  

 ZnO-LiOH161 30 93.00  2.79  

 MgxZn1−xO
162 90 85.50  1.71  

 This work 82 95.26 11.95 

When considering the mass of the carbon paper substrate, the overall areal and 

specific discharge capacities of the C-Ag-Zn anode were ~0.6 mAh cm-2 and ~52 mAh g-

1, respectively, which are not ready for practical application149. However, the mechanistic 

understanding and design principles of spatial control of Zn deposition reported here may 

be adopted in state-of-the-art Zn anodes, particularly those with high areal loading, to 

approach a practically relevant Zn anode for rechargeable aqueous batteries.  

Besides carbon paper substrate, spatially controlled Zn deposition was also 

achieved on Ag-patterned stainless steel and Ni substrates (Figure 3.23, Figure 3.24). Yet 

the self-discharge of Zn and the hydrogen evolution on these patterned substrates were 

severe due to the high hydrogen evolution activities of stainless steel and Ni in alkaline 

electrolytes. Regarding the choice of seeding materials that can alloy with Zn, Cu lowers 

the potential barrier for Zn deposition as well, and has lower cost than Ag. Thus, Cu is a 

promising choice of Zn-alloying seed for large-scale applications. 

 

Figure 3.23 - SEM images and elemental mappings of stainless steel foil with 

patterned Ag islands before and after Zn plating (2.4 mA cm−2). Patterned deposition 

of Zn is achieved due to the preferential Zn deposition on Ag. 



 122 

 

Figure 3.24 - SEM images and elemental mappings of Ni foil with patterned Ag islands 

before and after Zn plating (2.4 mA cm−2). Patterned deposition of Zn is achieved due 

to the preferential Zn deposition on Ag. 

Even though this study was conducted using alkaline electrolytes, the mechanistic 

understandings might also be applicable to Zn anode operating in neutral electrolytes. Zn 

metal deposition onto various substrates has been investigated in neutral electrolytes, 

including Ag, Cu, Fe, Ni, Au, Pt, Ti and C. Specifically, 100 nm of the corresponding metal 

film was evaporated onto a Cu foil. Then, three-electrode electrochemical cells were 

constructed that consisted of the substrate of interest as the working electrode, Zn foil as 

the reference electrode and Zn foil as the counter electrode. Zn metal was galvanostatically 

plated and stripped in a 2 M ZnSO4 electrolyte. As shown in the voltage profiles (Figure 

3.25), Cu, Ag, and Fe might be good candidates to modify Zn anodes for use in neutral 

electrolytes in terms of both Zn nucleation barrier and Coulombic efficiency.  
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Figure 3.25 - Voltage profiles of galvanostatic Zn plating and stripping in 2 M ZnSO4 

electrolyte on various substrates at 3 mA cm−2. The insets show the potential barrier 

of Zn nucleation. Three-electrode electrochemical cells were constructed: substrate 

of interest as the working electrode, Zn foil as the reference electrode and Zn foil as 

the counter electrode. Zn metal was galvanostatically deposited on the working 

electrode at 0.77 mA cm−2 and stripped at 1.54 mA cm−2.  

3.4 Conclusion 

In this work, the alloying mechanisms for the regulation of Zn electrodeposition 

were reported for the first time and achieved spatial control of Zn deposition by introducing 

metals that can alloy with and dissolve in Zn. As a proof of concept, Ag loaded on an inert 
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carbon paper substrate achieved a spatially controlled and uniform Zn deposition through 

heterogeneous seeded growth. Ag has two functions: (1) Ag, with a definite solubility in 

Zn, could help eliminate the heterogeneous Zn nucleation barrier and (2) the formation of 

ZnxAg1-x alloy phases occurs preferentially during Zn plating because of their negative 

Gibbs free energy of formation. As a result, the Ag nanoparticle-loaded carbon paper (C-

Ag) achieved superior long-term cyclic stability compared with the C electrode. In 

addition, the spatially controlled Zn deposition was visualized in operando for the first time 

using an optical microscope. These findings can potentially guide the future design of high-

performance Zn anodes in alkaline electrolytes. Similar mechanisms are expected for Zn 

anodes operating in neutral electrolytes as well as other metal anodes (e.g. Al, Mg, Na, K).  
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CHAPTER 4. DEVICE CONSTRUCTION FOR ZINC ANODES 

Zinc anodes suffer from severe hydrogen evolution issues in alkaline electrolytes, 

which are kinetically favorable for air cathodes. Through an electrochemical cell–gas 

chromatography setup, it was quantitatively identified that the capacity loss on the zinc 

anode is mainly caused by hydrogen evolution. Most previous research has focused on 

material design to suppress hydrogen evolution, while less attention has been paid to the 

device level. In this chapter, I demonstrate that the testing device material has an apparent 

effect on the hydrogen evolution reaction in an alkaline electrolyte. Stainless-steel coin 

cells, as common devices used in research laboratories, accelerate hydrogen evolution due 

to the synergistic effects of galvanic corrosion and a high hydrogen evolution activity, 

which cause a low Coulombic efficiency and short cycling life for alkaline Zn-based 

batteries. Plastic cells were successfully constructed to minimize hydrogen evolution, 

which demonstrate a higher Coulombic efficiency and longer cycling life than the stainless-

steel coin cells. Specifically, the plastic cell with a zinc foil anode and NiOOH/Ni(OH)2 

cathode achieved stable long-term cycling for 816 cycles compared with ~100 cycles for 

the stainless-steel cell. The findings provide experimental insight into the choice of proper 

testing devices for Zn-based batteries. 

4.1 Introduction 

Zinc anodes suffer from passivation, shape change, and dendrite growth in alkaline 

electrolytes, which have recently been addressed to some extent9,77,81,82,151,181. However, 

the hydrogen evolution issue remains the main cause of the low Coulombic efficiency (CE) 

of zinc-based alkaline batteries. Hydrogen evolution follows two reactions: self-discharge 
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of zinc (electrons directly from the external circuit) and water electroreduction. Zinc is 

active in alkaline electrolytes and can thus react with them, which is known as self-

discharge and decreases the shelf life of zinc batteries. Water electroreduction is a 

thermodynamically favored side reaction on the zinc anode during charging. The hydrogen 

gas evolved from these two reactions will dry the electrolyte and cause cell failure and even 

battery explosion. 

Self-discharge: 𝑍𝑛 + 2𝑂𝐻− + 2𝐻2𝑂 → 𝑍𝑛(𝑂𝐻)4
2− + 𝐻2 ↑                 

Water electroreduction: 2𝐻2𝑂 + 2𝑒− → 𝐻2 + 2𝑂𝐻−                         

The hydrogen evolution reaction (HER) is a general problem for all aqueous battery 

anodes, which are of significant research interest. Over the years, in order to suppress the 

HER on zinc anodes, much research has been performed, resulting in approaches including 

anode surface treatments84,85,182 and additives86,183,184. Most of these previous studies 

focused on material design to improve zinc anodes. However, less attention has been paid 

to the device level, which is demonstrated in this study to have an apparent effect on the 

HER in alkaline electrolytes. Coin cells made of stainless steel (SS) are widely used in 

research laboratories for zinc-based alkaline batteries120,185–192 with the benefits of being 

small, fast and easy to assemble, and requiring small amounts of active materials. However, 

it was discovered that (1) the coin cell case made of SS accelerates the HER due to the 

synergistic effects of galvanic corrosion and a high HER activity, which cause a low CE 

and short cycling life for zinc-based batteries; and (2) a plastic cell case, in contrast, 

minimizes the HER and improves the electrochemical performance of zinc anodes.  

4.2 Experimental Section 
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Material characterization and measurements. The morphological analyses were 

carried out using scanning electron microscopy (SEM, Hitachi SU 8230). Operando 

analyses and cyclic voltammetry were conducted using a VSP system (BioLogic). Battery 

cycling tests were carried out using LANHE operated in galvanostatic mode.  

In the electrochemical cell–gas chromatography (GC) setup, an airtight battery 

system was connected to a GC with a thermal conductivity detector (TCD) (MG#5, SRI 

Instruments), and the system was purged with Ar before measurements. A stainless-steel 

(SS) rod was used as the anode and ZnO-saturated 4 M KOH (Sigma Aldrich) as the 

electrolyte. A 4 cm2 cathode from a commercial Ni–Zn AA battery (PowerGenix), which 

is a mixture of NiOOH (~8 mAh/cm2) and Ni(OH)2 (~32 mAh/cm2), was harvested to pair 

with the anode. The battery was charged at 20 mA for 15 min and then fully discharged 

(20 mA) to 0.8 V for 1 cycle. Then, H2 and O2 measurements were conducted using the 

GC-TCD with Ar as the carrier gas. The capacity loss on the zinc anode is almost fully 

caused by the HER. 

Operando optical microscope characterization. Two-electrode electrochemical 

cells were constructed with the substrate of interest as the working electrode and zinc foil 

as the counter electrode. A ZnO-saturated 4 M KOH (Sigma Aldrich) aqueous solution was 

used as the electrolyte. The cells were observed using a Leica DMC2700 microscope with 

reflected dark-field illumination. Most of the images and videos were captured through an 

air-immersion objective (Leica N PLAN L 5×0.50 BD). All the operando experiments were 

performed at room temperature and ambient pressure. 
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Electrochemistry. The carbon paper (CP) and zinc foil anodes were cut to round 

disks with a diameter of 1 cm. The glass fiber (GE Healthcare, Whatman 10370003) 

separators were round disks with a diameter of 1.6 cm. The counter electrodes (cathodes) 

were NiOOH/Ni(OH)2 harvested from commercial Ni–Zn AA batteries (PowerGenix). In 

order to specifically focus on the zinc anodes, they were paired with a NiOOH/Ni(OH)2 

cathode with excess capacity. The electrolyte was 100 μL of ZnO-saturated 4 M KOH 

(Sigma Aldrich). CR2032 cases (Kelude) made of 304 SS were used to assemble the SS 

coin cells. Plastic cell cases made of polytetrafluoroethylene were used to assemble the 

plastic cells. Ti wires were used as electrode terminals for the plastic cells. 

The plastic cells and SS coin cells with CP anodes were galvanostatically charged 

to the cut-off voltage of 2 V or a charge capacity of 0.106 or 0.212 mAh/cm2, followed by 

full discharge to 1.2 V. The plastic cells and SS coin cells with zinc foil anodes were 

galvanostatically discharged/charged to the cut-off voltage of 1.2 V/2 V or a 

discharge/charge capacity of 0.32 mAh/cm2. 

4.3 Results and Discussion 

4.3.1 SS coin cell case induces severe HER and low CE 

To focus on zinc anodes, NiOOH/Ni(OH)2 cathodes with excess capacity of both 

NiOOH and Ni(OH)2 was used to make full Ni–Zn batteries in this study. Therefore, the 

Coulombic inefficiency of the batteries can be directly correlated to side reactions on the 

zinc anode. NiOOH/Ni(OH)2, a mixture of NiOOH (~8 mAh/cm2) and Ni(OH)2 (~32 

mAh/cm2), was harvested from the cathode of a commercial Ni–Zn AA battery 

(PowerGenix). To illustrate the HER problem when using SS coin cell cases, a SS coin cell 
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was assembled with a zinc foil round disk (1-cm diameter) as the anode, NiOOH/Ni(OH)2 

(~0.7 cm2) as the cathode, and 100 μL of 4 M KOH as the electrolyte. The cell was 

galvanostatically cycled at 1.27 mA/cm2 to the cut-off voltage of 1.2 V/2 V or a 

charge/discharge capacity of 0.32 mAh/cm2. The calculation of areal parameters was based 

on the area of the anode if not otherwise specified. As shown in Error! Reference source 

not found.a and Figure 4.2, the SS coin cell gradually expanded over cycling, which 

indicates that gas accumulated in the sealed battery. After cycling for only 77 h, the cell 

components (electrodes, spacer, and spring) lost contact due to the cell expansion, which 

resulted in battery failure. With excess cathode materials in both the charged and 

discharged states (NiOOH and Ni(OH)2), the side reactions (e.g., oxygen evolution) on the 

cathode should be minimized. Thus, it was hypothesized that H2 is the main gas component 

that causes cell expansion. To prove this hypothesis, an air-tight electrochemical cell was 

custom-made with an SS rod anode and excess NiOOH/Ni(OH)2 cathode (4 cm2), which 

was connected to a gas chromatograph (GC, Error! Reference source not found.b). The 

whole cell was purged with Ar before operation. Then, the cell was charged at 20 mA for 

15 min and discharged at 20 mA to a cut-off voltage of 0.8 V in a ZnO-saturated 4 M KOH 

electrolyte, followed by gas-phase measurement through the GC with a thermal 

conductivity detector (TCD). It is worth mentioning that there was no initial active material 

on the anode. During charging, in addition to side reactions, zincates in the electrolyte are 

electrochemically reduced to zinc on the anode. During discharging, zinc is oxidized back 

to zincates. As shown in Error! Reference source not found.c, H2 was produced after 

cycling, while a small amount of O2 was detected, which, to some extent, proves that severe 
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HER is the main reason for the SS cell expansion shown in Error! Reference source not 

found.a. 

 

Figure 4.1 - SS coin cell expansion caused by the HER. a, Thickness measurement of 

a Ni–Zn coin cell over cycling with zinc foil as the anode. The coin cell case is SS. b, 

Schematic diagram of the battery–GC quantitative analysis method. c, GC-TCD 

analysis of the gas phase of the Ni–Zn battery before and after cycling in a ZnO-

saturated 4 M KOH electrolyte. An SS rod was used as the anode. 

 

Figure 4.2 - Thickness measurement of a Ni–Zn SS coin cell over cycling with zinc foil 

as the anode. 

The influence of the HER on the capacity loss of zinc anodes was also 

quantitatively identified with the above electrochemical cell–GC setup. Figure 4.3 shows 

voltage profiles of the Ni–Zn battery, from which the capacity loss of the zinc anode was 

calculated by subtracting the discharge capacity from the charge capacity. The amount of 



 131 

H2 produced from the anode was determined by GC-TCD. The results show that 99.5% 

(87.34%/87.81%) of the capacity loss of the zinc anode was caused by the HER (Figure 

4.4a). The other 0.5% of capacity loss was mainly attributed to the oxidation of Zn metal 

through reacting with trace O2 generated from the cathode (oxygen reduction reaction 

(ORR)). Thus, it is concluded that the HER is the main side reaction occurring on the zinc 

anode. In other words, a high-CE zinc anode can be achieved by minimizing the HER.  

 

Figure 4.3 - Voltage profiles of the Ni–Zn battery connected to a GC. 

 

Figure 4.4 - Quantification of the HER on zinc anodes. a, Distribution of charge 

capacity on the anode in the Ni–Zn battery; 99.5% of the capacity loss on the zinc 

anode was caused by the HER. b, Cyclic voltammograms of the CP electrode and 

anode-side SS coin cell case at a 20-mV s-1 scan rate in a ZnO-saturated 4 M KOH 

electrolyte. 
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To study the effect of the SS coin cell case on the HER, cyclic voltammetry (CV) 

was carried out in a three-electrode electrochemical cell with a carbon paper round disk (1 

cm diameter) or the anode-side SS coin cell case as the working electrode, Hg/HgO as the 

reference electrode, a graphite rod as the counter electrode, and ZnO-saturated 4 M KOH 

as the electrolyte (Figure 4.5). Carbon paper (CP) was used in this study as the current 

collector for the zinc anodes. As shown in Figure 4.4b, CP exhibits a clear zinc reduction 

peak at −1.9 V, while the SS case does not. Additionally, the absolute current of the SS 

case was much higher than that of the CP when the potential was more negative than −1.9 

V. These results indicate that the HER on the SS case is more severe than on the CP. 

Notably, here, current instead of current density was used in order to directly illustrate the 

HER-related effect of the whole SS case on the anode instead of comparing the SS case 

and CP. Therefore, the HER on zinc anodes is accelerated by the use of an SS coin cell as 

the device to test alkaline zinc-based batteries. As a result, SS coin cells will show low CEs 

and short cycle lives.  

 

Figure 4.5 - Photos of beaker cell setup for cyclic voltammetry of the CP electrode (a) 

and the anode-side SS coin cell case (b). Ti wires were used as electrode terminals. 

4.3.2 Plastic cell minimizes the HER 
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To minimize the HER induced by the testing device, plastic cell cases made of 

polytetrafluoroethylene (PTFE, Figure 4.6a and Error! Reference source not found.) were 

constructed. Ti wires were used as electrode terminals. Plastic cells and SS coin cells for 

comparison were then assembled containing CP anodes, excess NiOOH/Ni(OH)2 cathodes, 

and a ZnO-saturated 4 M KOH electrolyte. The cells were cycled under charge–rest–

discharge conditions (Figure 4.6b). Specifically, they were galvanostatically charged to the 

2 V cut-off voltage or a charge capacity of 0.32 mAh/cm2, followed by a rest period (0 or 

30 min) and full discharge to 1.2 V. As shown in Figure 4.6c–d, plastic cells achieved 

higher CEs and discharge capacities than the SS coin cells in both rest periods, which 

demonstrates that the HER can be minimized using a plastic cell device. In addition, after 

30 min of rest, the CE of the SS coin cells decayed from 70.1% to 50.3%. In contrast, there 

was only a slight decrease in the CE of the plastic cells from 92.7% to 91.9%. The 

dramatically decreased CE (~20%) after only 30 min of rest for the SS coin cells indicates 

that the self-discharge of zinc was accelerated by the SS case, which was believed to be 

due to galvanic corrosion. During charging, zinc is plated onto both the CP and anode-side 

SS case. Thus, zinc metal contacts the SS in the electrolyte and corrodes. In other words, 

the self-discharge of zinc is accelerated. To visualize the self-discharge of zinc on the SS 

case, operando optical microscopy analysis on a zinc-plated SS case (Figure 4.6e) was 

conducted. During the rest period, zinc corroded and thus hydrogen formed gradually on 

the SS case surface (Figure 4.6f).  
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Figure 4.6 - Plastic cell increases the Coulombic efficiency. a, Device construction 

diagram of the plastic cell. b, Current density profiles as cycled under charge–rest–

discharge conditions. c,d, Voltage profiles of Ni–Zn batteries tested in both plastic 

cells and SS coin cells with a rest time of 0 (c) and 30 min (d). CP electrodes were used 

as anodes. e,f, Operando optical microscopy images of the zinc-plated SS coin cell case 

before (e) and after (f) resting in ZnO-saturated 4 M KOH electrolyte for ~27 min. 

Scale bars: 200 μm. 

 

Figure 4.7 - Device diagram of plastic cell case. The holes were designed for the Ti 

wire electrode terminals. 

In addition, operando visualization of the zinc-plating process on the SS case was 

also performed. Numerous bubbles formed along with zinc deposition. This result is in 

good agreement with the CV analysis showing that the HER is severe on SS, which may 

be due to the presence of nickel193 in the 304 SS used in this study (Error! Reference source 
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not found.). Coin cells made of 316 SS also showed a low CE of ~70% (Figure 4.9). Thus, 

when using SS coin cell devices for alkaline zinc-based batteries, the HER will be 

accelerated by the synergistic effects of galvanic corrosion and the high HER activity of 

SS. In contrast, the use of non-conductive plastic cells with Ti wires as electrode terminals 

could minimize the HER. 

 

Figure 4.8 - SEM images and elemental mappings of the CR2032 coin cell case made 

of 304 SS. 

 

Figure 4.9 - Cycling performance of CP anodes in coin cells made with 304 and 316 

SS. The cells were galvanostatically charged to the cut-off voltage of 2 V or a charge 
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capacity of 0.32 mAh/cm2, followed by full discharge to 1.2 V in a ZnO-saturated 4 M 

KOH electrolyte. The 316 SS coin cell cases were purchased from Hohsen.  

4.3.3 Superior cycling performance of plastic cells 

The cycling performance of plastic cells and SS coin cells with CP anodes was also 

tested. Similar to previous experiments, the cells were galvanostatically charged to the cut-

off voltage of 2 V or a charge capacity of 0.106 (Figure 4.10a) or 0.212 mAh/cm2 (Figure 

4.10b), followed by full discharge to 1.2 V. The plastic cells demonstrated a better 

electrochemical performance than the SS coin cells. When the charge capacity was limited 

to 0.106 mAh/cm2, the plastic cells achieved a higher average CE of 95.1% compared with 

74.0% for the SS coin cells. With a charge capacity limit of 0.212 mAh/cm2, the plastic 

cells also exhibited a higher average CE (94.8%) than the SS coin cells (49.8%). Because 

the CP anodes were cycled at 100% DOD and paired with excess cathode material, the 

extent of the side reactions occurring on the CP anode can be directly correlated to the cell 

Coulombic inefficiency. In addition, as discussed above, the HER is the main side reaction 

on the zinc anode. Thus, it can be concluded that the high CE of the plastic cells is 

attributable to the minimized HER on the plastic cell case. Instead of CP anodes with no 

loaded active materials, both plastic cells and SS coin cells with zinc foil anodes (Figure 

4.10c) were also galvanostatically cycled. They were discharged/charged to the cut-

off voltage of 1.2 V/2 V or a discharge/charge capacity of 0.32 mAh/cm2. With the 

minimized HER, the plastic cells achieved stable long-term cycling for 816 cycles 

compared with ~100 cycles for the SS coin cell. Voltage profiles of the plastic cells 

with CP and zinc foil anodes are shown in Figure 4.11 and Figure 4.12 - Voltage 

profile of a Ni–Zn battery with a zinc foil anode in a plastic cell. The cell was 

galvanostatically discharged/charged to the cut-off voltage of 1.2 V/2 V or a 

discharge/charge capacity of 0.32 mAh/cm2 in a ZnO-saturated 4 M KOH electrolyte. 

Cycle range: 50th–60th.  

. Instead of PTFE, plastic cell cases using a cheaper material, Delrin, were also 

constructed. Similarly, the Delrin plastic cells also demonstrated a better electrochemical 
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performance than the SS coin cells (Figure 4.13). Thus, even though the battery 

components were the same, the plastic cells achieved a better electrochemical performance 

than the SS coin cells. These results reveal that the choice of testing device is important for 

analyzing zinc-based alkaline batteries.  

 

Figure 4.10 - Electrochemical performance of plastic cells and SS coin cells. a,b, 

Cycling performance of CP anodes in ZnO-saturated 4 M KOH electrolyte when 

galvanostatically charged to the 2 V cut-off voltage or charge capacities of 0.106 (a) 

and 0.212 mAh/cm2 (b), followed by full discharge to 1.2 V. c, Cycling performance 

of zinc foil anodes in a 4 M KOH electrolyte when galvanostatically 

discharged/charged to the 1.2 V/2 V cut-off voltage or a discharge/charge capacity of 

0.32 mAh/cm2. Anode current density in all cells: 1.27 mA/cm2. DC: discharge 

capacity. CE: Coulombic efficiency.  
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Figure 4.11 - Voltage profile of a Ni–Zn battery with a CP anode in a plastic cell. The 

cell was galvanostatically charged to the cut-off voltage of 2 V or a charge capacity of 

0.212 mAh/cm2, followed by full discharge to 1.2 V in a ZnO-saturated 4 M KOH 

electrolyte. Cycle range: 50th–60th.  

 

Figure 4.12 - Voltage profile of a Ni–Zn battery with a zinc foil anode in a plastic cell. 

The cell was galvanostatically discharged/charged to the cut-off voltage of 1.2 V/2 V 

or a discharge/charge capacity of 0.32 mAh/cm2 in a ZnO-saturated 4 M KOH 

electrolyte. Cycle range: 50th–60th.  
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Figure 4.13 - Cycling performance of CP anodes in a Delrin plastic cell and SS coin 

cell. The cells were galvanostatically charged to the cut-off voltage of 2 V or a charge 

capacity of 0.32 mAh/cm2, followed by full discharge to 1.2 V in a ZnO-saturated 4 M 

KOH electrolyte.  

4.4 Conclusion 

In this work, through an electrochemical cell–GC setup, it was quantitatively 

identified that the capacity loss on zinc anodes is mainly caused by the HER. It was also 

demonstrated that the testing device has a notable influence on the HER in alkaline zinc-

based batteries. SS coin cells, as widely used devices in research laboratories, accelerate 

the HER due to the synergistic effects of galvanic corrosion and a high HER activity, which 

cause a low CE and short cycling life. Plastic cells were successfully constructed to 

minimize the HER. As a result, the plastic cells demonstrated a higher CE and longer 

cycling life than the SS coin cells. These findings provide insights into choosing proper 

testing devices for zinc-based batteries. 
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 

Batteries with aqueous electrolytes generally feature better intrinsic safety, higher 

ionic conductivity and lower cost compared with flammable organic electrolytes. Metallic 

zinc as a rechargeable anode material for aqueous batteries has gained tremendous attention 

with merits of intrinsic safety, low cost, and high theoretical volumetric capacity (5854 

mAh cm-3). Among zinc-based batteries, Zn-air batteries are promising with highest 

theoretical volumetric energy density (~3x of traditional LIBs). Rechargeable zinc anode 

has achieved big progress in neutral electrolytes, yet developed slowly in alkaline 

electrolytes, which are kinetically favorable for air cathodes. Passivation, dissolution, 

hydrogen evolution reaction (HER), and dendrite formation are four reasons for 

irreversibility of zinc anodes in alkaline electrolytes. 

5.1 Conclusions 

This thesis describes systematic approaches to understand and improve zinc anodes 

for high-energy rechargeable alkaline batteries from three aspects, which are material, 

mechanism, and device.  

From the aspect of material (Chapter 2), 4 types of zinc anodes have been designed 

and synthesized to overcome multiple issues simultaneously and improve their 

reversibility. These anodes include graphene oxide-modified (Zn@GO), lasagna-inspired 

(ZnO@GO), sealed (ZnO@TiNxOy), and hydrogen-evolution-suppressing (ZnO@TiO2) 

anodes, which improve the deep cycling performance when cycled at lean electrolyte.  
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(1) Zn@GO structure has the following advantages: (i) During cycling, Zn(OH)4
2- 

will be blocked by the GO compared to H2O and OH−. Thus, the active material loss of 

anodes can be minimized. (ii) zincate can form hydrogen bonds with oxygen-containing 

groups on the GO surface and thus has a good affinity with GO, which results in a relatively 

uniform distribution of zincate among GO layers during the reaction. Once the zincate 

reaches its solubility, it will decompose to ZnO, which will be encapsulated by GO. The 

GO encapsulation of ZnO can create the desirable environment for free transportation of 

electrons and therefore makes ZnO electrochemically active.  

(2) ZnO lasagna structure has three features: (i) the size of ZnO nanoparticles is 

smaller than the critical size of passivation; (ii) the fabrication of ZnO lasagna anode starts 

with commercially available ZnO nanoparticles (~100 nm), and is compatible with the roll-

to-roll process, which is ideal for large-scale manufacturing; (iii) GO allows permeation of 

OH- and H2O, and prevents loss of Zn active material through blocking bigger Zn(OH)4
2-.  

(3) ZnO@TiNxOy structure has a few advantages: (i) the feature size of ZnO 

nanorod is smaller than critical passivation size; (ii) the carbon paper framework and 

TiNxOy coating, which encapsulates ZnO nanorod, function as an electrical pathway so that 

all ZnO nanorods are electrochemically active; (iii) the TiNxOy coating enables fast 

hydroxide/water diffusion as well as blocks large zincates from escaping during 

electrochemical cycling, thus prevents anode structure fracture.  

(4) ZnO@TiO2 features the following advantages: (i) sub-micron-sized ZnO avoids 

passivation and allows complete utilization of the active materials; (ii) ion-sieving coating 

layer confines zincate inside and mitigates shape changes of the electrode; and (iii) the 
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coating layer is made of HER suppressing material, which represses side reactions. The 

results demonstrate that HER suppressing sealed nanorod (HSSN) zinc anodes exhibit long 

cycle life, high Coulombic efficiency, and high specific discharge capacity. 

From the aspect of mechanism (Chapter 3), the underlying mechanism of the 

spatial control of zinc deposition on zinc alloy anodes has been elucidated for the first time. 

The thermodynamic and atomic mechanisms of heterogeneous seeded growth were studied 

both experimentally and computationally (CALPHAD and DFT). Spatially controlled and 

nondendritic Zn deposition was achieved by inducing Zn alloying and soluble metals on 

Zn anodes to nucleate and accommodate Zn. The spatially controlled Zn deposition was 

visualized for the first time by operando optical microscopy. As a result, the Ag-loaded Zn 

anode exhibited comprehensively superior cycling performance compared with previously 

reported deeply cycled Zn anodes in alkaline electrolytes.  

From the aspect of device (Chapter 4), it was demonstrated that the testing device 

material has a clear effect on the HER in alkaline zinc-based batteries. In addition, the 

capacity loss on the zinc anode is mainly caused by the HER as identified quantitatively 

HER through an electrochemical cell–gas chromatography analysis method. Specifically, 

stainless-steel coin cells, as widely used devices in research laboratories, accelerate the 

HER due to the synergistic effects of galvanic corrosion and a high HER activity. Plastic 

cells were successfully constructed and HER was minimized, resulting in a higher 

Coulombic efficiency and longer cycling life than the stainless-steel coin cell.  

 

 



 143 

5.2 Future Directions 

Previously reported Zn–air cell data shows that secondary Zn–air systems may 

achieve high specific energies ranging between 200–450 Wh kgsys
–1, which is competitive 

with projections for up-and-coming Li-based battery systems. In order for rechargeable 

Zn–air batteries to achieve such projected specific-energy values and demonstrate device-

appropriate cycle lives, both rechargeable Zn anodes and air cathodes need to be improved.  

Depth of discharge, areal discharge capacity, and solid-volume fraction of the 

porous Zn electrode are the most sensitive parameters to increase specific energy. With 

lower depth of discharge, higher theoretical areal capacity is required, which means lower 

specific energy density. It is vital to improve the depth of discharge while maintain the 

reversibility of Zn anodes. Porosity or solid-volume fraction should also be designed in 

order to achieve sufficient electrode-electrolyte contact while maintain high volumetric 

energy density. Future rechargeable Zn anode design can be focused on achieving high-

energy Zn anodes, with high practical areal discharge capacity of >50 mAh/cm2 for over 

100 cycles. Design principles shown in this thesis can be applied, such as ion-sieving and 

hydrogen evolution coatings and alloy seeded Zn anode design.  

For air cathodes, future research can be focused on investigating novel, inexpensive 

bifunctional electrocatalysts that exhibit bifunctionality, versatility, and scalability. 

Bifunctional catalysts are needed to boost both the oxygen reduction reaction and oxygen 

evolution reaction kinetics to practically usable levels in zinc–air batteries because the 

kinetics for the electrochemical oxygen reactions are generally rather slow. These catalysts 

should be able to function in a wide range of temperatures, voltages, and in both aqueous 
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and nonaqueous electrolytes. Moreover, they should be easy to be incorporated into the air-

electrode structure and enable commercialization and widespread adoption.  
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