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SUMMARY

Aircraft subsystems, such as the Environmental Control System, the Flight

Control System, and the Anti-Icing System, are key components in modern aircraft,

the impact and significance of which have been constantly increasing. Furthermore,

the architecture selection of these subsystems has overall system-level effects. Despite

the significant effects of architecture selections, existing methods for determining the

architecture, especially early in design, are similar to the use of traditional point

solutions and do not capture much of the design space. However, energy optimized

aircraft and more electric aircraft are two approaches that attempt to improve the

platform-level impacts of subsystems by utilizing non-traditional architectures. These

initiatives have several expected benefits over the use of the traditional subsystem

architecture and are being explored to replace the traditionally powered systems.

Therefore, several system-level studies have examined more electric aircraft concepts

which, although they have provided useful insight, have left several gaps that require

further investigation.

Currently, aircraft subsystems are rarely examined during the conceptual design

phase, despite the fact that this phase has a significant influence on aircraft cost

and performance. For this reason, there is a critical need to examine subsystem ar-

chitecture trades and investigate the design space during the conceptual design of

an aircraft. Traditionally, after the aircraft conceptual design phase, subsystems are

developed in a process that begins with the point selection of the architecture, then

continues with its development and analysis, and concludes in the detailed develop-

ment of the subsystems. The choice of the point design of the architecture to be

developed can be made using simplified models to explore the design space. This
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method known as conceptual architecting is explored in this dissertation. To this

end, the impact and classification of uncertainty on conceptual architecting is de-

termined utilizing Bayesian distributions and a developed modeling and simulation

environment. In addition, due to the presence of epistemic uncertainty, a process

using uncertainty distributions and Bayesian Networks is developed to determine the

effect of this uncertainty on the robustness of the designs.

This dissertation also focuses on bringing actuation subsystem architecture trades

into conceptual design because of the significant cost impact of this design phase and

the interdependence of vehicle sizing with the subsystems impact on the aircraft. A

methodology to examine the design space of aircraft subsystem architectures during

the conceptual design of aircraft, while incorporating this coupling, is presented herein

and applied specifically to actuation architectures. As part of this methodology,

the architectures are compared, utilizing a modeling and simulation environment.

Specifically, the proposed methodology uses conceptual physics-based models of the

subsystems that were integrated with an aircraft sizing and synthesis algorithm and

an engine core sizing algorithm. Using this methodology, uncertainty is captured on

the subsystems properties to enable the selection of robust designs.

The application of the proposed methodology is examined using the experiments

herein. The interdependence of vehicle sizing with the subsystems impact on the

aircraft was studied within the experiments for different passenger classes of aircraft.

The extent of these interdependencies is examined experimentally and found to be

significant. As a result, this coupling must be captured to enable better informed

decision making. In addition, the capturing of uncertainty and robust design selection

was demonstrated experimentally for subsystem architectures. The determination of

the driving sources of uncertainty was demonstrated utilizing Bayesian Networks.

Finally, overall, the proposed methodology was seen to provide additional benefits

over the use of a point driven design by capturing the coupling between aircraft sizing

xix



and subsystem architecture platform-level impacts while exploring the architecture

design space.
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CHAPTER I

MOTIVATION AND PROBLEM DEFINITION

1.1 Introduction

Aircraft internal subsystems play a significant role in today’s aircraft. These subsys-

tems enable the aircraft to perform many essential functions including moving the

primary flight controls, carrying passengers in comfort, operating the instruments,

and communicating. These subsystems over decades of development have evolved

into one standard architecture [120], which is currently being challenged by novel

concepts such as energy optimized aircraft and the More Electric Aircraft (MEA)

[46], [59], [120].

For such novel architectures to be fully considered, their impact on the aircraft

design should be closely examined. Specifically, the impact of the subsystem architec-

ture trades on the aircraft sizing should be explored. Such an analysis should allow

the quantification of the impact of uncertainty on the robustness of the different de-

signs. The creation of a methodology to enable this analysis leads to the Research

Objective of this dissertation.

Research Objective: To create and examine a methodology for capturing sub-

system architecture trades and their coupling with aircraft sizing.

The question of how to achieve this objective creates the Motivating Research

Question for this work.

Motivating Research Question: How can the objective of creating and exam-

ining a methodology for capturing subsystem architecture trades and their coupling

with aircraft sizing be achieved?
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1.2 Aircraft Subsystems

1.2.1 Role, Definition, and Impact

According to Raymer [115], aircraft subsystems include hydraulic power systems,

electrical systems, avionics, and auxiliary power systems. A close equivalent to the

term subsystems is Aircraft Equipment Systems (AES). The American Institute of

Aeronautics and Astronautics (AIAA) Energy Optimized Aircraft and Equipment

Systems (EOASYS) Program Committee [17] defines aircraft subsystems (or AES) as

hidden systems of the aircraft that are essential to performance, safety, controllability

and comfort. Examples of aircraft subsystems pointed out by the EOASYS Commit-

tee are Environmental Control, Thermal Systems, Flight Control, anti-ice systems,

Braking, power generation and distribution, and the fuel system [17].

For the purposes of this dissertation, the EOASYS AES definition will be used

to define aircraft internal subsystems. As noted in the definition [17], these subsys-

tems are key to the aircraft’s functionality. They provide the movement of the flight

controls, the fuel, cabin comfort, and even ice protection [17]. Not only do these

subsystems provide key functionality, but they also contribute to the aircraft empty

weight and impact its size. According to Stinton [127], the combination of the hy-

draulic, electrical, and pneumatic systems is approximately 6 to 12 percent of the

total design gross weight, which impacts the overall aircraft size and performance.

As discussed in the chapter regarding the methodology, this dissertation focuses

on the case study of possible significant changes in the actuation systems to capture

these trades and demonstrate the methodology and its usefulness. Specifically, trades

between the traditional hydraulic actuation, electric actuation, and hybrid systems

are performed. The selection of such a case study limits the scope of the required

modeling and the size of the examined design space. Also, as discussed later, this case

study enables true evaluation of the MEA technology of an Electro-Hydrostatic Actu-

ator(EHA) and the potential replacement of a traditional power system (hydraulics)
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with a more electrical concept. The rest of the architecture was held constant as

the current traditional architecture to enable comparison of the results with existing

aircraft in the examined passenger classes.

1.3 Aircraft Subsystems Architectures

1.3.1 Definition

In order to explore aircraft subsystem architectures, it is first necessary to define what

is meant by these architectures. To start, this discussion, briefly reviews of what is

meant in the literature by the term architecture. Moir and Seabridge [92] examined

and broke down into a structure the systems architectures for military aircraft fulfill-

ing different roles. Dahmann, Fujimoto, and Weatherly [34] when discussing archi-

tecture in the context of simulations within the United States Department of Defense

(DoD), used the following definition for architecture: “major functional elements,

interfaces, and design rules, pertaining as feasible to all simulation applications, and

providing a common framework within which specific system architectures can be

defined.”

For the purposes of this work, an architecture is defined as the components that

make up a system, their arrangement, and their interconnections. A system is defined

as a set of components and connections that fulfill a given purpose. In this work, an

aircraft subsystems architecture is defined by a selection of the distribution network

(interconnections between components and how they are routed), the power source

for each subsystem component, and the components themselves. The power source

for each component includes the type of power used and the location of the source of

that power. This selection implies the determination of which technologies may be

used for that component. For example, for each component that is electrically driven,

this selection would include the specification of the electrical bus (and therefore the

generator) powering each component and the distribution network used for routing
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the wiring. An example of a subsystem architecture, specifically of the hydraulically

driven flight control actuation system of the Airbus A-320 is shown in Figure 1. The

actuators are identified by which system (yellow, green, and blue) and therefore which

pumps power the actuators. In this example, the pumps primarily derive their power

either from shaft power extraction from the engines or from electrical sources. Among

other impacts, the type of power selected can indicate the selection of a technology

that requires that type of power for a particular component. As a result of this impact,

combined with the fact that components are a part of subsystem architectures, the

subsystem architecture selection is directly related to the technology selection for the

internal subsystem components.

A distribution network is the set of pathways created or used for routing con-

nections between components. These connections can be electrical wires, pneumatic

pipes, or hydraulic lines. The selection of the route network is highly constrained

by the locations of components, such as the fuel tank and the passenger cabin. An

example of a route network can be seen below in Figure 2 where the set of red lines

running through the aircraft (in this case, a notional Boeing 737-800 aircraft) is the

currently selected route network which runs around such features as a passenger cabin.

Connections between components are primarily run through these conduits.

1.3.2 Traditional Subsystem Architectures

Aircraft typically utilize a traditional point-driven design for their subsystem architec-

ture selection [120] and [46]. In this architecture, most of the aircraft power generated

by the aircraft engines from burning fuel is used for propulsion with the remainder

of the power created by the engines converted to non-propulsive power of different

types. Traditionally, this power is converted into four forms of power utilized to

drive the various aircraft subsystems. These forms of power include pneumatic, hy-

draulic, mechanical, and electrical power. Pneumatic power is traditionally used for
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the Environmental Control System (ECS) and Wing Anti-Icing (WAI). This form of

power is typically extracted from the engines’ high pressure compressors in the form

of bleed air. Mechanical power is drawn from the engines to provide input power

to hydraulic pumps, electrical generators, and other components. Electrical power

is used for several systems, including the avionics, galleys, entertainment, and lights

[120]. This power distribution configuration represents the traditional subsystems

architecture that has evolved to become the current traditional standard architecture

for transport aircraft [120] and [46]. The fact that subsystem architectures are typi-

cally chosen utilizing a point-design based off of this traditional architecture leads to

Observation 1.

Observation 1: Subsystem architectures are typically a traditionally selected

point-driven design.

1.3.3 Impact

The impact of subsystem architecture selections can be significant. If the selected

architecture is changed, then the weight, energy use, and power flows of the subsys-

tems will change [120], [51], [46], and [27]. The power flows change because either

the distribution network itself changes to another configuration or some components

draw power from different sources (and possibly different types of power). If this

occurs, the connections between the components must be updated accordingly. This

change in the links between components and their routing can significantly change

the power flow, the line losses, and the weight of the connections. These changes

may be extensive and can be complex to evaluate. However, as shown later in this

dissertation, these changes can be captured using modeling and simulation. These

differences, in addition to the possible changes to the weight and efficiency of the

components themselves and to their power sources such as pumps or generators, lead

to the differences in weight, power draw and power flows between different subsystem
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architectures [120], [51], [27], and [46]. The resulting change in levels of shaft power

extraction and bleed air flow drawn from the engines will affect fuel burn and possibly

engine core sizing [120], [51], [27], and [46]. The changes in fuel burn and possibly the

engine core size along with the different subsystem weight lead to a different aircraft

Take Off Gross Weight (TOGW), and therefore a different size aircraft [51] and [27].

Changes in the subsystems architecture leading to a different aircraft sizing lead to

Observation 2.

Observation 2: Variations in the subsystems architecture can lead to significant

platform-level impacts.

1.4 Energy Optimized Aircraft and More Electric Aircraft

Energy optimized aircraft and more electric aircraft are two types of subsystem archi-

tectures under study in the current aerospace industry that challenge the traditional

architecture status quo. This section discusses these architectures, why and how they

are being examined, and the fact that further analysis is needed.

1.4.1 Energy Optimized Aircraft

The economics of the airline industry are creating a great demand for reducing the

cost of operating aircraft [46]. This is partially motivated by a large increase in fuel

prices in recent years [65] and [133]. These problems create a demand for fuel-efficient

aircraft. An increase in fuel efficiency could reduce the operations cost of the aircraft

and the amount of emissions from the aircraft (because less fuel is burned) as well

as allow the aircraft to be resized to be smaller or allow an increase in payload (or

range).

This desire for fuel efficiency leads to the concept of energy optimized aircraft.

There are different ways to achieve such an energy optimized aircraft [46]. These op-

tions include optimizing aircraft equipment systems and engines, optimizing the air-

craft, and optimizing the solutions to the aircraft required functions [46]. The Power
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Optimized Aircraft project focused on the first two of these options and attempted to

minimize non-propulsive power usage [46]. However, there are many different groups

studying energy optimized aircraft, and each group seems to have a slightly differ-

ent definition of energy optimized aircraft and goal or focus for their research. For

example, the United States Air Force (USAF) created the Integrated Vehicle En-

ergy Technology Demonstration (INVENT) program with goals of increasing aircraft

range, endurance, and cooling capacity [14] and [139]. More Electric Aircraft (MEA)

is one approach to enable the creation of the highest efficiency within the aircraft

level energy balance [59].

1.4.2 More Electric Aircraft

More Electric Aircraft (MEA) or the related All Electric Aircraft (AEA) are air-

craft containing more electrical components allowing a reduction or elimination in

the use of traditional types of power. This enables the realization of several bene-

fits. One such benefit is a possible reduction in weight of the related systems due

to consequences such as the reduction or elimination of heavy hydraulic lines and

components. Another potential benefit is a reduction in power demand from these

systems. It is currently believed that electrically driven systems have more future

efficiency improvement potential than their traditional counterparts. AEA and MEA

are not new concepts. In fact, their origins trace back to World War II. However,

AEA was unfeasible until recently. The implementation of this concept is now fea-

sible due to the progression of technology in which several discoveries have enabled

MEA. [120] MEA and AEA serve as challengers to the current traditional subsystems

architecture and have several potential benefits.

1.4.2.1 Expected Benefits

There are several expected benefits of MEA and AEA. One of these is the reduction

or elimination of bleed air removed from the compressor of the engine [120]. Another
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possible benefit is the removal of centralized hydraulic system components and distri-

bution lines [120]. By reducing the weight of the subsystems, companies can increase

the possible payload (or range) of the aircraft, or resize the aircraft, improving its

size, cost, and needed amount of fuel.

The needed amount of fuel might also be reduced by a reduction in the energy

demand of the internal systems. The Power Optimized Aircraft (POA) project found

that electrical components are generally more efficient than their counterparts [46].

This increase in efficiency could result in a lower magnitude of power used by these

systems leading to a reduction in the total amount of fuel burned. This reduction

in fuel burn has several potential impacts. First, the emissions will be reduced since

less fuel would be burned. Second, the cost to the airlines of operating the aircraft

will be reduced due to less fuel being used per flight. This is particularly important

in the current competitive market. Among other economic developments in recent

years, fuel prices have risen significantly, increasing the need for fuel efficiency [65]

and [133]. This can be illustrated from Figure 3 which shows the increase in fuel

prices.

As a result of their location on the technology S-curve, electrical technologies have

more potential room for growth in performance and weight. A technology S-curve

has been shown, based off historical studies of technologies to represent a common

progression of the application of a given technology if the technology is successful [75].

The S-curve illustrates that, as more and more development and time are invested in

a particular technology, eventually the technology becomes more mature and closer

to being able to perform at its maximum capacity [75]. When this occurs, more and

more development is needed for a given amount of performance gain. Because the

traditional architecture of the subsystems for transport aircraft has been developed

over decades, traditional technologies likely are higher on the curve and therefore

have less room for growth in their performance [120]. Switching to other technologies,

8



such as the use of electrical components in non-traditional roles, allows the use of a

different S-curve, which may have more room for improvement in future development.

This growth potential could help with the current challenges of using more electrical

technologies on aircraft, such as that the weight of the electrical systems have a

tendency to be higher [46] than that of the traditional systems they are replacing.

This use of MEA components could actually act to increase the aircraft size or total

fuel burn, making MEA potentially not as beneficial as it may seem.

More Electric Aircraft have already started to come into existence. For example,

the B-787 has electrical brakes, WAI, ECS, and engine starting systems [46]. Figure 4

shows an increasing trend in the electrical power generation capacity of aircraft. This

trend exists but is at least partially due to, the emergence of MEA as additional

systems and components have been added to the aircraft over time, including enter-

tainment systems that require electrical power. For example, on the Airbus A-380,

powering the In Flight Entertainment (IFE) currently takes 50-60kVA [93]. The ad-

ditional power that modern systems require increases the importance of making the

internal subsystems as efficient as possible.

1.4.2.2 More Electric Aircraft Components

MEA components are electrical components from systems that are traditionally pow-

ered by non-electrical sources. In an MEA, these components are being examined to

be replaced by electrically powered systems. These systems include traditional pneu-

matically powered systems such as the WAI, ECS, and the engine starting systems

[120], all of which along with electrical brakes are being demonstrated in an electrically

powered architecture and can be examined from their implementation on the B-787

[46]. In the B-787 ECS, there are two electrically powered air conditioning packs [93].

The total B-787 ECS pressurization electrical power draw is approximately 500 kVA

[93]. On the B-787, the WAI is done by electrically powered heating mats within the
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wings, consuming approximately 100kVA [93]. Also being examined in the industry

is a more electrical engine, such as the more electric Trent 500 developed for the POA

[93]. Another more electrical engine architecture can be seen in the B-787, which has

a no engine bleed architecture [102]. The more electrical engine contains electrical

fuel and oil pumps, actuators for various purposes, and other electrical components

[93].

MEA systems and components also include systems and components that are

being examined to replace hydraulically powered systems and components. This in-

cludes the use of electrical brakes instead of hydraulic brakes [93]. The B-787 has

electrically powered brakes demonstrating this technology and allowing a chance to

examine it in operation [93] and [46]. Also, the use of electrically driven pumps

to replace some of the engine driven hydraulic pumps is a MEA concept being im-

plemented in the B-787 [93]. Some other MEA/AEA components that are being

examined to replace some of the hydraulic powered systems are Electro-Hydrostatic

Actuators (EHAs) and Electro-Mechanical Actuators (EMAs) [93]. These actuators

will be used to move the control surfaces on the aircraft. The EMA uses an electri-

cal motor to drive a mechanical component such as a ballscrew to move the surface.

An EHA has an electrically powered pump that provides pressurized hydraulic fluid

that stays within the EHA and pushes on a piston to move a mechanical component

that moves the control surface [68]. Examples of an EMA and an EHA are shown in

Figure 5. The use of EMAs and EHAs could help reduce or eliminate the need for

the central hydraulic systems. EHAs have been used on the Airbus A-380 and the

F-35 [93]. Although all of the MEA components and systems have some apparent

advantages, a complete platform level examination has to be done to determine if

they are better than the traditional architecture and, if so, which mixture of MEA

and traditional components and systems is best for a given aircraft design.
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1.4.2.3 More Electric Aircraft System Level Studies

Since MEA and AEA were proposed in 1945 [27], there have been several system-level

studies to examine these concepts. This section gives an overview of selected studies.

In 1985 the National Aeronautics and Space Administration (NASA) published a

study entitled the Integrated Digital/Electric Aircraft (IDEA) Concepts Study [51]

and [27]. This study examined a new 250-300 seat transport aircraft envisioned to

replace a Lockheed L1011 [27] and [51]. The IDEA systems included the use of

EMAs for the flight controls, electrically powered brakes, an electroimpulse WAI, and

a self-contained ECS that used ram air and a vapor cycle [51]. The study compared

IDEA with a baseline aircraft configuration. These configurations can be seen in

Figure 6, which illustrates the size difference between the traditional baseline and the

more electrical IDEA. The study found an overall weight savings of 7034 lb through

the use of these technologies, removal of the related traditional components, and a

reduction in the needed fuel [51]. This impact, combined with the fact that the size of

the aircraft determines the required performance from the subsystems, helps lead to

Observation 3. For example, the hinge moments which vary with aircraft size, in turn

define part of the required performance from the flight control system. Observation 3

is also drawn from these facts: that the weight of different subsystems is historically a

function of TOGW, that different power extraction and bleed requirements can impact

engine core sizing and therefore aircraft size, and that electrically driven subsystems

have different weight and power requirements and therefore affect aircraft sizing [120],

[51], [27], [60], [121], and [46].

Observation 3: Subsystem architecture platform-level impacts are coupled with

the sizing of the aircraft.

It should be clarified that what is meant by the platform-level impacts in this con-

text is the subsystem weight, power extraction, and amount of bleed air used to power

the subsystems. These metrics are used because these parameters impact aircraft and
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engine core sizing directly. The subsystem weight impacts the aircraft TOGW [121]

(and this is also shown in the experimental results), and the power extraction and

bleed may impact fuel burn and engine core sizing. The selection of these metrics

for characterizing subsystem impacts is discussed further in the Subsystem Modeling

Metrics section later in this dissertation.

The IDEA study contributed several useful analyses examining electrical subsys-

tem architecture impacts but did not consider several important questions such as

these: Could a mixture of some of these technologies and a conventional architecture

enable even better gains? If so, which mixtures of these technologies have which

advantages?

In the 2000’s, the European Union (EU) Power Optimized Aircraft (POA) project

had the goal of reducing cost by optimizing the aircraft equipment systems (AES)

and engines as well as the aircraft as a whole [46]. The project had a goal of reducing

fuel burn and non-propulsive power use while increasing reliability [120]. The POA

looked at several types of systems with the goal of reducing fuel burn and power use

[46]. These systems included engine electrical systems, aircraft electrical systems,

actuation systems, and pneumatic systems [46]. The POA study found that the

electrical systems used instead of traditional systems have a tendency to be heavier

but more efficient [46]. The POA study used a virtual iron bird to model the different

aircraft system architectures [25]. Modelica models of the different systems were used

together in the virtual iron bird [25]. The virtual iron bird used inverse dynamics

for modeling the aircraft systems [25]. The virtual iron bird applied distributions

on the current draw of the components and ran a Monte Carlo Simulation (MCS)

to account for uncertainty [25]. The fact that these subsystems can be modeled, as

demonstrated by programs such as POA [25] and [46], to determine the system-level

impact of different architectures leads to Observation 4.
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Observation 4: Physics-based modeling and simulation can quantify the system-

level impact of different subsystem architectures.

A continuation EU project from the POA is the project More Open Electrical

Technologies (MOET) [90], which examines the creation of various MEA electrical

technologies and integrates them into aircraft and creates a design environment for

power by wire [90]. MOET performs a comparison between baseline aircraft of differ-

ent sizes and a version of the aircraft with the application of selected MEA technolo-

gies [90]. MOET also utilizes Modelica for modeling systems, including a Modelica

environment that MOET created for the design of the electrical systems [26].

Observation 5 is derived from the characteristics of the coupling between aircraft

sizing and subsystem architecture impacts on the aircraft. Specifically, the historic

increase of subsystem weight with TOGW [121] along with the coupling seen in Obser-

vation 3 creating an increase in aircraft size when subsystems are heavier and demand

more power. This would lead to a higher fuel burn and possibly a larger engine core,

along with a possible increase in demands on the subsystems when the aircraft is

larger. The positive relationship between aircraft sizing and subsystem architecture

impacts leads to Observation 5. An example of the possible increase in demands on

the subsystem with an increase in TOGW is larger loads on the flight controls. These

loads increase with TOGW as the wing area will increase with TOGW and as the

wing area increases, the hinge moment increases, as can be seen utilizing the volume

coefficient [115] and [60].

Observation 5: The covariances and correlations between architecture impacts

and aircraft size are likely to be positive.

Again, it should be clarified that what is meant by the platform-level impacts

in this context is the subsystem weight, power extraction, and amount of bleed air

used to power the subsystems. These metrics are utilized because they may impact

aircraft and engine core sizing directly. The Subsystem Modeling Metrics section later
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in the dissertation further discusses the selection of these metrics for characterizing

subsystem impacts.

There are several other MEA programs. These include programs such as Totally

Integrated More Electric Systems (TIMES), NASA’s Electric Flight Systems Work-

shop, and a 1988-1989 Cranfield College of Aeronautics study [27] and [120]. Also, the

B-787’s use of MEA technologies demonstrates that MEA technologies are becoming

more and more feasible [93] and [46].

Previous system-level MEA studies primarily considered a static portfolio of tech-

nologies compared to selected baseline aircraft. This was similar to using a different

point design of the subsystems without exploring different subsystem architectures.

For the most part, these studies did not examine the effect of the given technology on

multiple aircraft sizes. Energy optimized aircraft are considered the future of civil avi-

ation. To achieve this energy optimization, trades in the subsystem architectures need

to be examined earlier in the design process that capture the coupling with aircraft

sizing. A methodology for capturing the coupling of subsystem architecture impacts

on the aircraft with aircraft sizing is demonstrated later within this dissertation, for

actuation architectures.
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Figure 1: Airbus A-320 Hydraulic System Architecture [4]
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Figure 2: Example Distribution Network

Figure 3: Jet Fuel Prices Adapted from [133]
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Figure 4: Aircraft Electrical Power Generation [91]
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Figure 5: EMA and EHA [68]
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Figure 6: Integrated Digital/Electric Aircraft Comparison to Baseline adapted from
[51]
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CHAPTER II

SUBSYSTEM DESIGN METHODS AND PROCESSES

2.1 Traditional Consideration of Subsystems within Con-
ceptual Design

Traditionally, subsystem designs are not examined during the conceptual design phase

of an aircraft. Therefore, aircraft subsystems do not typically impact the initial design

and layout of aircraft directly [115]. It is usually, later in the design cycle that the

needs of the subsystems are accounted for by the designer [115]. The subsystems

and their hardware vary widely among classes of aircraft making some rules of thumb

for including subsystems in conceptual design more difficult to create and implement

[115]. While many of the systems’ components are small and are not considered

during the initial stages of creating layouts of the aircraft, some components are

currently considered important when creating the layouts [60]. To illustrate this,

Raymer [115] states that the hydraulic system impacts the conceptual design of most

aircraft only in the provision of space for the engine driven pumps. Also, the Auxiliary

Power Unit’s (APU) location must be considered in the design layout of the aircraft.

Specifically, the APU is often placed within the tail in transport aircraft [115] and

[60]. Additionally, the positions of the avionics bay and antennas are important

considerations in the aircraft layout. The avionics bay is often placed in front of or

below the cockpit [115] and [60]. The location of the fuel tanks is another internal

subsystems-related component that must be considered in a layout [60].

The aircraft subsystems also impact the TOGW weight calculation primarily

through a portion of the empty weight. This contribution can be calculated based

on historical (or otherwise created) fractions of the weight [60]. For example, Howe

20



[60] aggregates the weight of the subsystems, landing gear, and equipment into one

value that is calculated using a tabulated fraction of the TOGW. Similarly, Jenkin-

son, Simpkin, and Rhodes [67] give fractions created from historical data for different

types of transport aircraft to use for the faction of the mass of the fixed equipment (in-

cluding subsystems such as the flight control system) to the takeoff mass. Jenkinson,

Simpkin, and Rhodes [67] use these fractions because items within the fixed equip-

ment group vary greatly among different aircraft. Stinton [127] gives weight fractions

to use for all the subsystems combined (between 0.06 to 0.12) and for some differ-

ent subsystems by themselves including the electrical systems(0.03), deicing systems

(0.006), and the hydraulic and pneumatic systems (0.03). Stinton [127] points out

that these ratios vary among aircraft and the numbers mentioned were averages that

were suggested by the author to be used to represent the weight fractions. Stinton

[127] also contains ratios to use for fuel systems. During conceptual design, as part

of the aircraft geometry (and related to the control systems) the size of the control

surfaces can also be estimated from empirical data (using volume coefficients) [60]

and [115].

As discussed above, the weight of different subsystems is historically a function

of TOGW. This variation of the historical weight impact of subsystems with aircraft

size (and therefore passenger class) leads to Observation 5. This historical function

can be a function of TOGW [121]. As a result, the impacts of the subsystems vary

with TOGW. The fact that subsystem weights are historically a function of TOGW

as discussed above can also be seen in Roskam [121], and this leads to Observation 7.

Observation 6: The magnitude of the impact of the coupling between the

platform-level impacts of the subsystem architecture on the platform and aircraft

sizing may vary with aircraft passenger class.

Observation 7: Aircraft subsystem weights are historically a function of the

TOGW.
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It should be noted that Observation 7 is based on historical trends which are

based on previous aircraft which utilized traditional subsystem architectures. The

exact trend may not be the same for non-traditional architectures. However, the

performance requirements on the subsystems (such as hinge moments) are a function

of aircraft size, so Observation 7 is probably still correct for these non-traditional

architectures.

2.2 Traditional Development of Subsystems

Development of aircraft subsystems is typically during the later phases of design.

This can be see in Moir [93], who discusses the consideration of subsystems within

different aircraft design phases. Specifically, Moir [93] separated the aircraft prod-

uct life cycle into concept, definition, design, build, test, operate, and refurbish or

retire phases. In Moir’s [93] description of the aircraft design process, subsystems

are primarily dealt with in the definition and design phases. In the definition phase,

the architectures of the subsystems are determined, the interface documentation and

installation characteristics are defined, the system performance is determined and

designers use an intermediate level of modeling and experimental models [93]. The

architectures of the subsystems are often determined based on the traditional archi-

tecture. During the design phase, subsystems are designed in detail and suppliers

are selected [93]. This detailed design defines more detailed models of the systems.

Moir [93] noted that the iteration between suppliers and aircraft manufactures can

extend into later phases of this process. It also should be observed that two levels of

models of the subsystems are used depending on the level of development However,

conceptual models of different architectures, are not typically used during the design

process. Conceptual models can be defined as simplified models treating systems and

components with simplified relationships. The use of such models could enable trades

between architectures. Conceptual modeling would utilize a simplified representation
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of systems using physical relationships and available data to determine the impact

of different architectures on the platform. If the needed data to generate the models

is not available, then it still is possible to utilize relationships or data from similar

aircraft or components, and then update the models when the data becomes avail-

able. This proposed simplified modeling enables the study of conceptual architecting

as presented in the section on conceptual architecting.

Subsystem architecting can be viewed as a process as well. First, the architecture

is determined mostly using block diagrams and interface documentation [93] and [140].

The architecture is typically based off of the traditional subsystem architecture which

is illustrated in an SAE document [4] listing details of the hydraulic systems of many

commercial aircraft. Then, suppliers are selected and the subsystems are designed in

detail [93]. These detail designs deal with details such as the size of the hydraulic

lines. When subsystems are designed, there are many regulations and guidelines that

must be followed [93]. Moir [93] gives an overview of some of the standards that must

be followed during this process. One of the considerations during subsystem design

is safety and reliability [93]. Moir [93] also gives an overview of different safety and

reliability assessment processes and methods. These include Functional Hazard Anal-

ysis, Preliminary System Safety Analysis, System Safety Analysis, Common Cause

Analysis, and Fault Tree Analysis [93]. As discussed previously, subsystems include

systems such as the environmental control system and the hydraulic system (used for

purposes such as flight control). These subsystems would be developed as described

above. There are descriptions of these systems, the typical types of components they

may contain, and the principles they operate on available in literature, such as Moir

[93], Keller [73], Neese [101], and Thompson and Campbell [131]. There are also de-

scriptions available concerning the detailed design of these subsystems such as found

in Moir [93], Keller [73], and Thompson and Campbell [131]. This design can include

details such as the determination of the size of the lines within the hydraulic system,
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the pressure within the lines, the design of the hydraulic components such as actuators

and valves, heat loads and dissipation, and many other details of these systems [93],

[131], and [73]. This level of detail required for the subsystem design may be part of

the reason for the traditional limited consideration of subsystems within conceptual

design.

In newer aircraft, suppliers can have much more control of subsystem design but

are still given requirements and limitations. This leads to platform integration issues;

it is still considered as a point selection of the architecture and is not part of con-

ceptual design [36]. For example, when designing the B-787, Boeing selected some

technologies and suppliers before the design of the subsystems [36]. Also, advances in

computer modeling allow the use of detailed dynamic modeling with testing data in

the place of some of the interface documents [140]. This concept is being examined as

part of the INVENT program [140]. However, the selection of the architecture itself

is still similar to a point solution often based off of the traditionally used architecture.

2.3 Requirement Analysis for Subsystems

As mentioned above, in the development of subsystems, there are many regulations

and guidelines that must be followed [93]. Moir [93] gives an overview of some of

the standards that must be followed during this process. The subsystems must be

designed to meet the applicable requirements, which may have come from several

different stakeholders from different levels as described by the International Council

on Systems Engineering (INCOSE) [66] as shown in Figure 7.

It should be noted that not all subsystem requirements are available or determined

by the conceptual phase of design. Available requirements will include all aircraft cer-

tification regulations such as FAA AC 25.1309-1A [5] and JAA AMJ 25.1309 [2]. The

subsystems are also impacted by other regulations and system specific requirements:

for example, “the ventilation system must be designed to provide each occupant with
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Figure 7: Subsystem Requirement Sources [66]

an airflow containing at least 0.55 pounds of fresh air per minute.” -FAR 25.831

[10]. The available requirements impact system sizing and create constraints on the

architecture design space. Platform-driven requirements are derived from higher level

platform requirements. These are derived from the design mission and required func-

tions using a requirements flow-down after a functional breakdown. Many of these

derived subsystem requirements may not yet be determined by conceptual design.

These platform-driven requirements may include required functions performed by the

systems, selection of the architecture, and needed performance from the subsystems

[93]. In order to study subsystem architectures at such an early phase of design,

it will be necessary to use the available platform-level requirements and mission to

determine the applicable subsystem level requirements.

Current systems engineering processes, such as the one shown in Figure 8 (from

DAU [37]) and the NASA systems engineering process described in the NASA Sys-

tems Engineering Handbook [97], are utilized to determine the subsystem level re-

quirements from the identified requirements from the stakeholders. These processes

determine platform-level requirements from the required mission and other defined

requirements and standards. These platform-level requirements are then used in a
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functional decomposition and analysis to determine lower level requirements. These

lower level requirements could then be used for the subsystem design [37] and [97].

Moir [93] discusses requirements capturing for subsystems design and presents two

approaches: top-down and bottom-up.

2.4 Conceptual Architecting of Subsystems

As discussed previously, subsystem architecture selection is not typically considered

during conceptual design. Therefore, the impacts of the architecture selection on the

TOGW and fuel burn are neglected [115] and [60]. If these impacts are considered

earlier it can improve the accuracy of the conceptual design. Part of the reason this

dissertation proposes that the architecture trades be determined during conceptual

design is that this design phase (and requirement definition) requires fewer funds but

determines and commits a large percentage of the final life cycle cost of the aircraft

(nearly 70 percent) [105]. The subsystem architecture is often selected as a point

design based on the traditional architecture a practice which negates the potential

benefits in weight and efficiency from exploring the architecture design space. Cur-

rently subsystems’ impacts coupling with aircraft sizing is neglected. As a result of

these issues, traditional methods of architecture selection cannot adequately capture

the impact of subsystem architecture trades.

The current point-driven architecture selection philosophy contains several gaps,

one of which is the lack of early study and identification of the architecture by explo-

ration of the architecture design space, examined in this dissertation as conceptual

architecting. Conceptual architecting alone is not a new concept. de Tenorio [36]

and Armstrong [21] and [20] partially examined this important topic in their disser-

tations. Conceptual architecting is a similar concept to conceptual aircraft design,

which uses simplified trends and analyses to determine the overall characteristics of

the aircraft. Conceptual architecting uses models of the different possible subsystems
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Figure 8: Defense Systems Engineering Process [37]
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to determine the impacts of a given architecture on the platform earlier in the design

process [21]. These impacts are then compared and the desired architecture is devel-

oped in the later design processes that are currently used. Without such a step, there

is not a way to rapidly explore the subsystem architecture design space to identify

the desired architecture. Conceptual architecting is not currently being utilized in

industry. Richards et. al [119] discuss the need for conceptual architecting within

survivability system design for aerospace systems. They point out that trades involv-

ing survivability could be performed to improve the overall design instead of treating

survivability as only a constraint [119]. Examining trades of conceptual architec-

tures and their impact on aircraft sizing is the primary focus of the later proposed

methodology. This concept enables the use of desired architectures including energy

optimized in the aircraft design and allows the inclusion of this information earlier in

the design process because only simplified models are used, which can be created and

utilized even during conceptual design. This approach would represent a significant

step forward in the design space exploration of aircraft subsystem architectures.

2.4.1 Challenging Aspects of Architecture Design Space Exploration

The subsystem architecture design space is the set of all possible architecture designs.

Exploring this space would make it possible to find the best subsystem architecture

for a given problem. This exploration is done in the proposed methodology discussed

later in this proposal. There are many aspects of subsystem architecture design

space exploration that makes this exploration very difficult. First, this exploration

is a combinatorial problem because there is a huge constrained design space of all

possible subsystem architectures.

The size of such a design space can expand very quickly. For example, a design

space for a new transport aircraft in the 150-passenger class (and selected subsystems)

is shown in the screen shot from an Interactive Reconfigurable Matrix of Alternatives
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(IRMA) shown in Figure 9. An IRMA uses a Matrix of Alternatives to examine

such a design space and calculates the approximate computational time to examine

all of the design alternatives. Such computational times become unwieldy for large

matrices [43]. In an IRMA, the complex system being examined is decomposed into

its important functions and features each placed in a row in the matrix and each

alternative solution to that function placed in the columns for the corresponding

row. Such a matrix allows a better understanding of the potential solutions to the

problem. If the rows are independent, the number of possible designs is the number of

entries of each row multiplied together [43] as shown in equation (1). Figure 9 shows

an IRMA from a Long Range Strike mission (discussed in [43]) adapted for aircraft

subsystems as can be seen in the systems section which is illustrated in Figure 10.

This example helps illustrate the combinatorial nature of examining even a portion

of the architecture design space.

N =
∏

Di (1)

Because of the combinatorial nature of this problem, previous methods tradition-

ally examined only a point solution for the architecture. To address this weakness,

the proposed methodology herein must appropriately define and examine the archi-

tecture design space. Also, subsystems have dynamic impacts on the platform, a

condition which violates any static impact assumptions. These dynamic impacts of

subsystems include time varying power and heat loads. Another important aspect of

this problem is that the impact of the subsystem architecture can be coupled with

the sizing of the aircraft. That is, the dynamic impact of architectures can vary as

the aircraft size varies. As discussed later in this dissertation, uncertainty is a very

challenging aspect of this problem.
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Figure 9: Example of IRMA for Aircraft Subsystems adapted from [43]
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Figure 10: Excerpt of IRMA for Aircraft Systems adapted from [43]

2.4.2 Gaps in Existing Methods for Conceptual Architecting

There are existing methodologies that can assist with Conceptual Architecting. How-

ever, there are several gaps in these existing methodologies. This section examines

selected particularly relevant existing concepts and their gaps.

2.4.2.1 Numerical Subsystem Optimization

One existing method for assisting with an implementation of Conceptual Architect-

ing is the numerical optimization of subsystems as examined by de Tenorio for his

dissertation [36], a concept which provides part of the foundation for this concept

of examining different subsystem architectures. This part of de Tenorio’s work fo-

cuses on optimizing the sizing of aircraft subsystems using models of subsystems with

different architectures selected for study [36]. These models were optimized using

a multi-level Coordinated Optimization technique [36]. The concept of subsystem

sizing in an optimum fashion is a useful contribution. Some additional concepts

explored by de Tenorio include the use of SysML modeling of architectures, to ex-

amine alternative subsystem architectures discussed in the section on the generation

of feasible alternatives [36]. However, there were some limitations in the presented

methodology. de Tenorio’s work assumed fixed aircraft size and captured the impact

of subsystems changing size as a change in the aircraft range [36]. However, this did

not fully capture the coupling of subsystem impacts and aircraft sizing. As a result,

de Tenorio’s [36] work did not fully examine subsystem architecture trades, including
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their coupling with aircraft sizing, which is a gap that this dissertation fills. In ad-

dition, the models used did not not capture the full dynamics of the impacts of the

subsystems [36]. de Tenorio’s work had no consideration of uncertainty, neglecting

the impact of uncertainty which could change the solutions selected by the designer

[36]. Despite these gaps, this work provided a very useful foundation for the work

within this dissertation and presented many useful new concepts.

2.4.2.2 Subsystem Reliability and Architecture Generation

Armstrong’s dissertation work made several additional useful contributions relating

to subsystem sizing requirements, his work examined subsystem reliability and load

shedding [21]. Armstrong explored the important subject of reliability with the con-

sideration of a degree of failure for components rather than merely labeling as failed

or not failed [21]. Armstrong examined optimal load shedding as well [21], and his

work provided important contributions to load shedding, reliability theory, and failure

considerations. These concepts could be used in helping to evaluate the reliability

impacts of subsystem architectures within extensions of this work. The examined

sizing requirements include architecture specific off-nominal sizing requirements [21].

The concept of considering a component as being partially failed and the implica-

tions are very important contributions to reliability theory. Finally, Armstrong in his

Master’s thesis created a method and a tool called ADEN for generating subsystem

architectures to examine the use of functional analysis [20]. Such a concept is very

useful for the generation of feasible alternatives of subsystem architectures. This con-

cept from Armstrong’s work is examined further in the section on generating feasible

alternatives of architectures to consider [20]. Although Armstrong’s many contribu-

tions were useful his research did not examine subsystem architecture trades during

aircraft conceptual design while capturing the coupling of these trades with aircraft

sizing [20] and [21]. The filling of such a gap is the focus of this dissertation.
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2.4.2.3 TIES and TIES based methods

Another methodology that can assist in studying subsystem architectures is the Tech-

nology Identification, Evaluation, and Selection (TIES) methodology, which was cre-

ated for the design of complex systems due a the paradigm shift in design methods

and was presented in Kirby’s PhD dissertation [75]. This methodology enables the

infusion and assessment of technologies within a complex system design [75]. TIES

studies technologies (which form part of the subsystem architecture) and in a more

general fashion, can be used to examine subsystem architectures. TIES provides sev-

eral useful concepts for the development of the proposed methodology but does have

several gaps which the proposed methodology fills. These gaps are discussed later in

this section.

An overview of the steps of TIES can be seen in Figure 11 [75]. The techniques

used in TIES are selected for their robustness and generality. Further detail of this

process can be found in Kirby’s dissertation [75].

Figure 11: TIES Process Overview Adapted From [75]

Kirby [75] noted that TIES, as presented, assumes that the k-factor (scaling factor)

values are independent of the selection of different points in the design space and

from one another. As this implies, TIES assumes that the k-factor distributions are

independent of the aircraft sizing and from one another. Therefore, TIES does not

effectively capture technologies whose effect is changed depending on the results of

aircraft sizing and analysis. Subsystem technologies and architectures, such as the

use of electrical actuators, have a difference in impact depending on variables such as
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the aerodynamic loads and mission profile, which relate to the aircraft sizing.

TIES compares the minimum set of technologies to achieve requirements. How-

ever, in the case of subsystem architecture selection, the different potential subsystem

technologies may all achieve the stated requirements. TIES captures uncertainties in

technology impact through the application of distributions on technology impact fac-

tors. The distribution parameters are treated as constants for a given technology,

and any dependence on architecture is neglected. TIES does not capture effects of

varying subsystem architecture as the k-factor distributions are treated as the same

for different architectures containing the same technologies. However, TIES presents

several useful concepts exploited in the proposed methodology, such as the use of

distributions placed on parameters in the modeling and simulation environment to

capture uncertainty.

There are also new methods derived from TIES. One such method is a new ap-

proach for technology selection, called the Bi-level method, which enables the designer

to gain additional insights and provides additional speed to technology selection [134].

The Bi-level method enables the designer to find moderate and quick design solutions

that are helpful when the number of possible technology combinations is very high.

This method uses gradient based optimization algorithms partially due to their speed.

True to the Bi-level method’s name, this method uses a bi-level (two level) optimiza-

tion process. In the first of these two levels, the vector of technology impact factors

(also known as k-factors) is optimized to make the responses as close as possible to

the desired values while keeping the design within the constraints. Once this opti-

mum k-factor vector is determined, a second level of optimization is performed to

find the combination of technologies that create the k-factor vector closest to the

desired k-factor vector [134]. As this and other TIES derived methods have similar

assumptions to TIES, they have many of the same limitations as discussed above.

These include the inability to capture dependence between the k-factors themselves
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and between the k-factors and aircraft sizing. Additionally, TIES derived methods

do not capture the impacts of varying the architecture on the k-factor distributions.

Finally, these methods try to fulfill the requirements and are not as applicable if all

the alternatives meet the given requirements as can happen when comparing aircraft

internal subsystem architectures.
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CHAPTER III

CAPTURING THE IMPACT OF UNCERTAINTY

3.1 Impact and Classification of Uncertainty

Uncertainty impacts all attempts to examine the natural and physical environment

surrounding society [118]. Uncertainty is very important to identify and analyze when

examining complex systems [55]. If uncertainty is not properly treated, poor man-

agerial decisions can result [117]. In fact, the consideration of uncertainty can result

in different decisions [117]. Uncertainty is important in many different fields includ-

ing subsystem architecture trades. This is illustrated by the weight gain the Boeing

787 program experienced when integrating a new subsystem architecture [6]. The

following quote from the Boeing 787 Chief Engineer (Michael K. Sinnett) describes

this phenomenon.

“When we decided on electric pressurization, it lowered the aircraft weight

by 1000-2000 lb [...] but the numbers got muddied as the 787 got inte-

grated. It is hard to say where the weight has gone.” [6]

Uncertainty also appears in the use of computer codes (which can be utilized in

the analysis of subsystem conceptual architecting) [42]. In fact, Elishakoff, Kulisch,

Elishakoff, Di Paola, Chernousko, Bernardini, Baratta, and Zuccaro [42] wrote a book

that is specifically about uncertainty analysis for computer codes. Within engineering,

there has been a recognition of the fact that uncertainty is important and needs to

be considered [42].

As discussed later in this section, uncertainty due to a lack of knowledge exists

within conceptual subsystem architecture trades and can have a great impact on the

aircraft. Uncertainties, especially uncertainty due to a lack of knowledge, also have
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a huge impact on many of the current risk management problems [114]. Further-

more, these uncertainties play an even larger role when there is less knowledge or

evidence available [114]. Engineering risk analyses often use probabilistic methods

to attempt to capture uncertainties [114]. Risk assessments have shifted from using

point estimates to creating distributions to reflect variability and uncertainty [132].

Probabilistic Risk Analysis (PRA) techniques have risen in use to try to account quan-

titatively for uncertainty in risk assessments [132]. PRAs are being used for analyses

involving spacecraft, waste storage, chemical plants, and nuclear power plants [113],

and similar methods may be applied to conceptual architecting as discussed later in

this dissertation.

It is necessary to identify the classification of the types of uncertainties that exist

within conceptual architecting trades in order to determine how they can be examined

within the trades. There have been different attempts to create methodologies for

classifying uncertainty [118]. Many people have divided uncertainty into categories

called epistemic and aleatory uncertainties [114] and [56]. According to Pate-Cornell

[114], aleatory uncertainty is randomness in samples, and epistemic uncertainty is

uncertainty due to a lack of knowledge concerning fundamental phenomena. Hlavacek,

Chleboun, and Babuska [56] cite similar definitions: aleatory as inherent variation in

a system, and epistemic as lack of knowledge during the modeling of a system. After

pointing out that other frameworks for categorizing uncertainty exist, Parry [113]

discusses similar definitions for aleatory and epistemic uncertainties , and states that

the distinction between those two types of uncertainty was important. It should be

noted that the epistemic uncertainty as discussed in Parry [113] is associated with a

model, which seems specific to Probabilistic Risk Analysis (PRA) as discussed in [113].

Helton and Burmaster [55] make similar statements defining aleatory and epistemic

uncertainties and stating the importance of such an distinction. One author calls

this uncertainty due to a lack of knowledge uncertainty while calling variation within

37



a population variability [132]. This is a similar categorization equating epistemic

uncertainty with the word uncertainty and calling aleatory uncertainty variability.

Hofer [57] states that all uncertainty is epistemic because if perfect knowledge was

obtained, there would be no aleatory uncertainty. In a Statistics book, Navidi [100]

referred to uncertainty as the standard deviation of the measuring process of a random

variable. This concept is similar to aleatory uncertainty and does not include the

uncertainty due to a lack of knowledge.

It should be noted that other frameworks for classifying uncertainty exist but are

not as applicable to conceptual architecting. One such framework for classifying un-

certainty comes from researchers within the subject area of ecology in which Regan,

Colyvan, and Burgman [118] divide uncertainty into two types: epistemic and linguis-

tic uncertainty. In this framework, epistemic uncertainty is uncertainty due to a lack

of knowledge about a system’s state while linguistic uncertainty is uncertainty due to

issues such as ambiguous vocabulary [118]. This framework further divided epistemic

uncertainty into six categories: subjective judgment, model uncertainty, natural vari-

ation, inherent randomness, systematic error, and measurement error [118]. For the

remainder of this paper, the framework of dividing uncertainty into epistemic and

aleatory (or leaving them combined as the overall uncertainty) will generally be used

as these are the primary types of uncertainty observed within conceptual architecture

trades.

Uncertainty in subsystem architecture trades exists on the platform-level impact

of the subsystems due to a lack of knowledge (epistemic) and slight random variations

between individual aircraft and components (aleatory). This lack of knowledge is due

to the fact that the selected technologies and architectures may not have been used

on this aircraft (or at all) previously. This is similar to the uncertainty distributions

on k-factors due to uncertainty of the application of a new technology in TIES [75].

As a result, the exact weights and efficiencies of the different components and their
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distribution systems are not deterministic numbers; rather, they have a distribution

that describes the different possible values of these parameters and their probabilities.

These distributions are not necessarily known, as it is a lack of knowledge that causes

them not to be a set of deterministic values.

There is also uncertainty in the impact on the system performance of integrating

the subsystems together, as was demonstrated by the B-787 weight gain during in-

tegration [6]. This uncertainty further impacts the exact weight and efficiency and

other characteristics of the integrated components. There is also uncertainty in the

weight and efficiency due to variations between different manufactured copies of the

same components or aircraft. It is important to account for these uncertainties to

find a robust design of the aircraft and its subsystems.

Observation 8: Subsystem architecture impacts have epistemic and aleatory

uncertainty in various characteristics of the integrated components such as weight

and efficiency.

3.2 Quantifying and Accounting for Uncertainty

As discussed in the last subsection, uncertainty plays an important role in many di-

verse areas of study including conceptual architecture trades. Possibly as a result

of its widespread applicability and importance, many different ways of examining

uncertainty exist. This section highlights and examines selected methods for quanti-

fying and accounting for uncertainty to determine appropriate methods for use within

conceptual architecture trades. The selection of the appropriate method is discussed

further in the section discussing the proposed methodology.

Both aleatory and epistemic uncertainties appear in aircraft subsystem architec-

ture trades. The difference between aleatory and epistemic uncertainties is partially

based on the definition of probability [114]. The determination of a probability tries

to create a quantitative view of the uncertainty associated with a given event [71].
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Probability has two significantly different interpretations: the Bayesian and frequen-

tist views of probability [114]. The frequentists define probability as the limiting

frequency of independent observations of a phenomenon [114]. The Bayesians view

probability as a degree of belief [114]. This degree of belief can be based on expert

opinions and supporting data [114]. Although the frequentist probabilities are ob-

jectively using sample data, they have limitations in their applicability for capturing

uncertainties [114]. Specifically, frequentist probabilities can handle only aleatory

uncertainties and only when there are sufficient samples [114]. The variability of

distributions of random variables can be captured in the variance and standard de-

viation of the sample [138]. This variability is also known as the random (aleatory)

uncertainty [100].

A statistical treatment of aleatory uncertainty, such as using a sample variance

[138], requires repeated measurements [100] which may not always be possible de-

pending on the specific problem being studied (such as in the use or application of

subsystem architectures which have never been utilized). However, Bayesian proba-

bility and statistics can use all available information to assess probabilities and can

handle aleatory and epistemic uncertainties [114]. In Bayesian probability and statis-

tics, these uncertainties can be combined into single probability values or distributions

[114]. Despite the fact that categorizing uncertainty can be important, it may not

always be best to separate the uncertainty into different categories within an analysis

including in the analysis of subsystem architectures [57]. This is at least partially

due to the fact that the separation of the uncertainties into different computations is

costly [57]. Hofer [57] describes the situations for which he believes it is appropriate

and not appropriate to separate the sources of uncertainty. The use of Bayesian dis-

tributions combine different forms of uncertainty into one distribution per variable,

which captures epistemic and aleatory uncertainty [114]. As there is considerable

epistemic uncertainty in subsystem architecture trades due to a lack of knowledge
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concerning requirements and the weight and efficiency of the integrated components,

Bayesian distributions can be applied on parameters impacted by uncertainty within

these trades. This concept leads to Observation 9.

Observation 9: Probability distributions can be created and applied on parame-

ters within the modeling and simulation environment to capture uncertainty in those

parameters.

Once the uncertainty is captured by Bayesian (and/or frequentist) probability

distributions of random variables, the impact of the uncertainty on the variables must

be examined. To determine the impact of the uncertainty on the (potentially higher

or system-level) output variables of interest from the analysis, additional analyses

must be performed. Sensitivity analysis is one method for examining the impact of

uncertainty [132]. Traditionally, sensitivity analysis varies one input to an analysis at

a time and examines the change in the outputs as the input variable is run through its

entire possible range [132]. Two-way sensitivity analysis is another common way to

examine the impact of uncertainty, and is a similar type of analysis [132]. In two-way

sensitivity analysis, two different inputs are varied simultaneously and the resulting

outputs from the models are plotted [132].

As the number of variables from which to examine the impact of uncertainty in-

creases, the uncertainty impact analysis usually becomes a probabilistic uncertainty

analysis, often using Monte Carlo simulations [132]. For example, in PRA the most

widely used technique for the propagation of uncertainty is the use of Monte Carlo

[113]. The below quote points out in [55] from [98] that the National Research Coun-

cil [98] views the analysis of uncertainty as an important task that should be done

whenever possible. The National Research Council [98] and [55] also pointed out the

possible use of sensitivity analysis or Monte Carlo analysis to quantify the uncertain-

ties and also suggested that the risk estimates should be in distributions instead of

point estimates.
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“Where possible, sensitivity analysis, Monte Carlo parameter uncer-

tainty analysis, or another approach to quantifying uncertainty should

be used. Reducible uncertainties (related to ignorance and sample size)

and irreducible (stochastic) uncertainties should be clearly distinguished.

Quantitative risk estimates, if presented, should be expressed in terms of

distributions rather than as point estimates (especially worst-case scenar-

ios).” [98] and [55]

Monte Carlo simulations provide a means to examine the impact of the distri-

butions of subsystem level uncertainty on the platform level. Monte Carlo methods

are numerical methods that use sequences of random numbers to run a simulation

[38]. Often in Monte Carlo methods, the physical system under study is modeled and

simulated directly [38]. Monte Carlo methods require that the modeled system be

described by probability density functions (PDFs), which must be determined before

the simulation can proceed [38]. The Monte Carlo simulation randomly samples the

PDFs and runs many simulations [38]. The results are then analyzed to determine

the mean and variance of the desired results [38]. Monte Carlo algorithms contain

most or all of the following components: PDFs, random number generators, sampling

rules, scoring, error estimation, variance reduction techniques, and parallelization and

vectorization [38]. Several different Monte Carlo methods exist. Some of these meth-

ods include importance sampling, rejection sampling, the Metropolis method, and

Gibbs sampling [81]. In [81], D.J.C. Mackay gives a good discussion of each of these

methods while Hlavacek, Chleboun, and Babuska’s [56] book contains among other

topics a summary of the application of Monte Carlo simulations.

Monte Carlo methods are also widely and routinely used [38] and [56]. For exam-

ple, Joy [72] gives an introduction to applying Monte Carlo simulations to studying

the interaction of an electron beam with a solid. In fact, Joy [72] concluded that

Monte Carlo simulations were well suited, powerful tools for the modern microscopist.
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Binder and Heermann [28] discuss the application of Monte Carlo methods to physics

and include a chapter that acts as a guide to practical work with Monte Carlo meth-

ods and also contains some theoretical foundations of Monte Carlo methods. Monte

Carlo simulations have also been used in Civil Engineering for tasks such as estimat-

ing the failure probability of a given structure [24]. In such an analysis, the need for

possible variance reduction techniques is demonstrated by the fact that the estimated

probability of failure approaches the true value as the number of simulation runs ap-

proaches infinity, which could become a computational issue [24]. In this example,

the variance reduction techniques are used to increase the accuracy while not increas-

ing the required number of runs [24]. Monte Carlo simulations can also be used for

Probabilistic Risk Analysis (PRA) [74]. In the case of the pioneering Probabilistic

Risk Analysis study, Monte Carlo simulations were used even to determine the overall

impact of uncertainty on the estimated risks [74]. This was done by using lognormal

distributions for events and probability of failures within the analyses [74].

Monte Carlo simulations are one of the most commonly used methods within

design and will likely work well for subsystem conceptual architecting. However,

there are several other approaches to characterizing and quantifying uncertainty [129]

and [42]. Probabilistic methods are sometimes difficult to apply to engineering [42].

Partially as a result of the fact, other techniques for dealing with uncertainty exist

[42]. However, as discussed later in this dissertation, the application of these methods

to subsystem architectures has possible disadvantages compared to the use of Monte

Carlo simulations. For the reader’s reference, some of these other methods include

Classical Sets, Fuzzy and Rough Sets, Possibility Theory, Evidence Theory, Interval

Probabilities and Analysis, and Info-Gap [129].

The approaches previous subsystem related trade studies used to capture their un-

certainty were examined and are described below. This includes the POA program,
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which applied distributions on the current (or flow/power) draw of the different com-

ponents within the VIB modeling environment [25]. The Virtual Iron Bird (VIB)

was an integrated modeling environment of aircraft system models used to exam-

ine the power demands of systems and their architectures [25]. In the POA program,

once the distributions were applied to the component current/power demands, Monte

Carlo simulations were run pulling values out of these distributions to capture the

uncertainty’s impact on the parameters of interest [25]. The Monte Carlo simulations

were viewed as an enabler to allow the creation of the distributions on the metrics

of interest [25]. Additionally, since the runs of the Monte Carlo simulations were

independent of each other, the runs could be run on parallel computing clusters [25].

In the paper by Gurnani and Lewis [50], a process for including uncertainty in

a decentralized subsystems design is discussed. In this process, each subsystem is

designed in a decentralized environment, and design variable values for the subsystem

were passed from one subsystem designer to the next [50]. The authors propose the

creation of a set of values for each design variable by pulling values out of distribution

placed around the design variable’s selected value and passing this set to the next

subsystem designer [50]. They further propose using this concept in a second stage

where a nonlocal objective function is formed for optimizing the subsystems [50].

In the paper by Du and Chen [40], the authors present a Modified Concurrent

Subsystem Method for Uncertainty Analysis (MCSSUA) for use in Multidisciplinary

Design Optimization (MDO). MCSSUA is a more efficient and improved variant of

the Concurrent Subsystem Uncertainty Analysis method (CSSUA) [40]. Du and Chen

[40] discuss both of those methods and a third method called the System Uncertainty

Analysis (SUA) method. The SUA method approximates the output variables and

their variances by taking Taylor expansions of the output variables and linking vari-

ables and then uses a sensitivity analysis (using first order derivatives) [40]. CUSSA

assists with the ability to use parallel computations when computing the variance
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of outputs of a system [40]. CSSUA uses a system-level optimizer to force the tar-

geted and calculated values of linking variables between subsystems to converge [40].

CUSSA assumes the linking variables are independent of one another and the inputs

(a source of inaccuracy of this method) and the method calculates the mean and vari-

ance of the output variables by using the information obtained by the optimization

[40]. MCSSUA is simply a modified version of CUSSA and has the following primary

steps: determine the means of the linking variables, find the system output mean, and

estimate the system output variance (using the same concept as SUA to estimate the

variance) [40]. Du and Chen [40] note that all three methods are only approximation

methods for the uncertainty, the approximations cannot generally capture the output

distributions, and they are sometimes susceptible to errors due to approximations

such as the use of Taylor expansions.

Since there is a considerable amount of uncertainty in this problem of comparing

the impact of various subsystems and their architectures, it is desirable to find an

architecture that is robust to the uncertainty. By robust it is meant that its platform-

level impacts are not widely distributed due to uncertainty. According to Gurnani

and Lewis [50], robust designs are “designs that are insensitive to changes in input

parameters and errors in system analyses” [50].

3.3 Robust Design

Once the resulting distributions of the metrics of interest are determined, it is neces-

sary to try to determine which architectures result in designs that are robust to these

sources of uncertainty. This raises the topic of robust design. For such a discussion

to be complete, it is first necessary to discuss what is meant by robustness. In this

work, robust is used to mean that the desired result is insensitive to changes in the

noise or uncertainty variables and that the result is consistently close to the desired

value [88] and [138]. According to Fowlkes and Creveling [48], “A product or process
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is said to be robust when it is insensitive to the effects of sources of variability, even

though the sources themselves have not been eliminated.” Also, according to Park

[111], “Robust design is an engineering methodology for optimizing the product and

process conditions which are minimally sensitive to the various causes of variation,

and which produce high-quality products with low development and manufacturing

costs.” The purpose of robust parameter design is the determination of values of

the design (control or controllable) variables that create responses that are insensi-

tive to changes in the values of the noise (factors) variables [138] and [88]. Genichi

Taguchi is one of the founders of the modern concept of design for robustness [88]

and [138]. Taguchi’s approach includes the use of orthogonal arrays of experimental

designs for the control and noise variables [88]. Taguchi uses Signal to Noise Ratio

(SNR) as a metric to summarize the mean and variance of the response. This sum-

mary statistic then allowed the designer to compare designs’ robustness by this one

variable. Taguchi used different mathematical definitions for SNR depending on the

goals of the designer [88]. These SNR definitions are listed in equations (2), (3), (4),

and (5) below. These can be quantified for parameters such as TOGW for subsystem

architecture trades.

When the designer wishes to minimize the response [88], [111], [48], and [138]:

SNR = −10log
∑

(((Ri)
2)/(T )) (2)

When the designer wishes to maximize the response [88], [111], [48], and [138]:

SNR = −10log
∑

((1/((Rii)
2))/(T )) (3)

When the designer is trying to meet a target in the response, Taguchi had two

definitions of SNR [88], [111], [48], and [138].

When the variance can be changed independently of the mean [88] and [48]:

SNR = −10log(σ2) (4)
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When the variance cannot be changed independently of the mean [88], [111], [48],

and [138]:

SNR = −10log((µ2)/σ2) (5)

There are several other approaches to capture the robustness of a design. One

such approach to examine robustness of a design is to examine the mean and vari-

ance separately instead of combined into SNR [138]. One shortcoming of all of the

approaches discussed so far is that they are not as applicable when there is more than

one response as there might be when doing comparisons of subsystem architectures.

However, there are some approaches for examining multiple responses that could hap-

pen in subsystem architecture trades. The driving metric examined in the case study

was TOGW, allowing SNR to be sufficient. In Abraham [13], two such approaches are

discussed. In the first of these approaches, SNRs are calculated for each response and

then combined into a desirability function [13]. The other approach discussed in [13]

extended the first approach by adding weights on the desirability of the responses

in the desirability function [13]. One disadvantage of the approaches discussed in

[13] is the fact that this distills all the comparisons among the designs to one metric

whose values would change as these weights are varied. In Hui [63], a generalized

multivariate distance from a multivariate target is used to examine robustness. This

uses Hotelling’s Tsquared shown in equation (6).

As shown in [63]:

Ti2 = (xi − xt)(S−1)(xi − xt) (6)

Another applicable robust design method is Robust Design Simulation (RDS)

which is discussed in [87] and [85]. RDS applies probabilistics to design and exam-

ines the objective as a distribution caused by the effects of distributions on noise

or uncertainty variables [87] and [85]. This enables the capturing of the impact of
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uncertainty on parameters[87]. RDS examines the identification of a robust design

[87] and [85] and is an alternative to Taguchi’s approach for examining robustness of

subsystem architectures by applying distributions to the noise variables which result

in distributions of the design’s responses.

3.4 Analysis of the Impact of Uncertainty

As discussed earlier in this chapter, uncertainties on subsystem architecture trades

can have significant impacts. This was illustrated by an unexpected subsystem weight

gain when integrating the subsystems on the B-787 [6]. The below quote from the

Boeing 787 Chief Engineer (Michael K. Sinnett) discusses this phenomenon. (This

quote is repeated from an above section to emphasize its significance.)

“When we decided on electric pressurization, it lowered the aircraft weight

by 1000-2000 lb [...] but the numbers got muddied as the 787 got inte-

grated. It is hard to say where the weight has gone.” [6]

To minimize such unexpected weight gains, the uncertainty needs to be accounted

for and explored. The sources of uncertainty with the highest amount of platform-

level impact should be identified for further study to help minimize such occurrences.

This concept leads to Observation 10 which is listed below.

Observation 10: Uncertainties on subsystem traits with the highest platform-

level impacts should be identified.

There are several different means and metrics that can be examined in determining

which sources of uncertainty have the largest impact. Selected methods are examined

and discussed below. Correlation values between the variables can be used to examine

which of the variables have impacts on the TOGW. There are limitations to this

approach as correlations measure how linear the relationship is and not necessarily the

strength of this connection [138]. A related parameter, covariance, also examines only

if there is a linear relationship [138]. It should be noted that other types of correlation
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coefficients exist that could also serve to help in such an analysis, for example the

Browing Distance Covariance [128]. These metrics could further assist in such an

analysis but cannot be utilized for predictive analysis. Analysis of Variance (ANOVA)

also provides an alternative method for identifying which parameters contribute to

the variability of the response [88]. ANOVA is a widely utilized statistical concept

and is discussed in [88], [100], and [138]. This and the previously discussed methods

can be used to help identify which variables may have the largest impact on the

response. Depending on the type of metric used, this identification may be imprecise,

for example correlations look at how linear the response is, information which will

not necessarily be the same as is desired [138]. Several existing tests and methods,

including those previously discussed, can help identify which variables may be driving

the response. However, the use of Bayesian Networks and strength between the links

as discussed below can not only be used to identify this information potentially just

as accurately but can also be used for further analysis as desired during the design

process as is discussed below. The utilization of the Bayesian Networks for further

predictive analysis [52], in addition to identifying which noise variables are driving

the response is the reason that this method is selected for further examination.

A Bayesian Network “is a graphical model that efficiently encodes the joint proba-

bility distribution (physical or Bayesian) for a large set of variables” [52]. An example

of a Bayesian Network (in this case created for detecting credit card fraud) can be

seen in Figure 12. There are several important advantages to the use of Bayesian Net-

works. These include the ability to effectively deal with missing data, study causal

relationships, predict future events using the causal relationships, and be an efficient

mean for avoiding overfit of data (which is an important advantage as overfitting the

data could reduce the accuracy of some of the above described approaches) [52]. The

ability of Bayesian Networks to study causal relationships can be very useful to better

understand these relationships. Once these relationships are captured using Bayesian
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Networks, the network can be used to make predictions. The ability of Bayesian

Networks to make such predictions can be used when no experiments are run [52]. If

a Bayesian Network of the subsystem design impact could be made, this predictive

analysis might be used to further study the impacts of determined values of noise

parameters throughout the development of the subsystems, and create a predictive

analysis of the impact on the desired response (TOGW). Such an analysis could be

useful to the designers and developers of the subsystem to see potential platform-

level impacts of different component properties that they are designing. This analysis

would be performed during the design of the subsystem components to track and es-

timate the TOGW impact of the design. Such an analysis could be quite useful, but

would be performed by the designers of the subsystems during aircraft development,

as a result, the predictive application of a Bayesian Network is not the focus of this

work. However, the capabilities of such an analysis are more of an important motiva-

tion as to the reason that the creation of such a model could be significantly superior

to other forms of statistical analysis for examining which of the noise variables are

driving the response because the model enables this predictive analysis.

The use of Bayesian Networks to examine link strength between noise variables

and responses could be quite useful as it would enable the above described additional

predictive analysis during development of the subsystems. Ebert-Uphoff [41] explores

how to measure link strengths within Discrete Bayesian Networks, so in order to use

this concept, the subsystem data must be discretized. Ebert-Uphoff [41] defines two

measures of link strength, blind average link strength (a local strength based on the

child node disregarding the frequency of occurrence for parents) and true average

link strength (taking into account the entire network) [41]. For reference, the utilized

formula for true link strength is written in equation (7) below [41]. The strength of

the links (and how this strength is defined) between variables in discrete Bayesian

Networks, representing the variables and their impact as is described in [41], can

50



Figure 12: Example Bayesian Network [52]

also potentially capture the impact of different sources of uncertainty. It should

be pointed out that such an analysis is not a common use of Bayesian Networks,

as it is not utilizing the predictive analysis capabilities of Bayesian Networks. The

determination of the impact of the noise variables could be done by calculating the

link strengths between nodes in a network such as the one in Figure 13. Such a

network could be used for examining the link strengths and potentially for some of the

previously discussed predictive analysis. If there is available data and computational

resources, the network structure shown in Figure 14 could also be examined, which is

another unique advantage over traditional statistical analysis as more insight could

be gained on intermediate variables. Due to a possible equivalence in accuracy of

using Bayesian Networks for studying the relationship between the noise variables

and the response and the additional analysis enabled by Bayesian Networks during

the development of subsystems, the use of Bayesian Networks to examine the strength
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of the link between noise variables and the response is selected and further explored

and utilized in the section on the proposed methodology to examine the subsystem

architecture design space. This equivalence is examined in the experiments by cross-

referencing the results with an ANOVA analysis and correlation values. In order to

examine this design space, it is necessary to determine feasible alternatives within

the design space to be examined as discussed in the next chapter.

As discussed in [41]:

LStrue(XY ) =
∑

P(x,z)×
∑

P(y|x,z)× log2(P(y|x,z)/P(y|z)) (7)

Figure 13: Examined Bayesian Network Structure
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Figure 14: Examined Bayesian Network Structure
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CHAPTER IV

METHODOLOGY FOR AIRCRAFT SUBSYSTEM

ARCHITECTURE SELECTION

When starting the formulation of the proposed methodology, the generic decision-

making process shown in Figure 15 (which was adapted from [125]) was applied to

the concept of robust subsystem conceptual architecting. This dissertation applies

these steps of a generic decision-making process to the topic of Robust Aircraft Sub-

system Conceptual Architecting. The application of the first few steps of this generic

process to the problem of aircraft subsystem architecture trades has been addressed

in previous studies such as Armstrong’s Masters Thesis [20], which addresses among

other topics, the generation of alternatives. However, the previous studies did not

capture the coupling of these trades with aircraft and engine core sizing. The primary

gap in the current state of the art was in the last two steps of this decision making

process (evaluating alternatives and making a selection). To address this gap, the

proposed methodology was created to address the gap in these two steps and enable

robust conceptual subsystem architecting. This methodology is called Methodology

for AIrcraft subsystem Architecture selection or MAIA. MAIA enables conceptual

architecting of subsystems during aircraft conceptual design, more efficient aircraft,

the capturing of platform-level impacts of various subsystem architectures, and cap-

turing the impact of uncertainty. (The methodology is named after Maia, the Greek

and Roman goddess [8], [49], and [35].)

The Overarching Research Question comes from the overall desire to create a

methodology that improves the current State of the Art (SOA).
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Figure 15: Generic Decision Making Process adapted from [125]

Overarching Research Question: How does the proposed Methodology com-

pare to the current SOA?

In an attempt to answer this question, Observations 1, 2, and 3 (previously stated)

are now reviewed.

Observation 1: Subsystem architectures are typically a traditionally selected

point-driven design.

This would limit the design space that is examined, potentially neglecting superior

designs.

Observation 2: Variations in the subsystems architecture can lead to significant

platform-level impacts.

These impacts may be significant and may be improved by exploring the archi-

tecture design space.

Observation 3: Subsystem architecture platform-level impacts are coupled with

the sizing of the aircraft.
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This coupling is not captured in the current SOA. Capturing this may enable truly

energy optimized aircraft

These observations lead to the Overarching Hypothesis, which hypothesizes that

capturing this coupling and exploring the design space enables a significant improve-

ment in architecture selection.

Overarching Hypothesis: Capturing of the coupling between aircraft sizing and

subsystem architecture impacts and exploring the architecture design space enables

a significantly better architecture selection than a point-driven design.

An overview of MAIA can be seen in Figure 16. This methodology is derived and

discussed in the remainder of this section.

Figure 16: MAIA

MAIA should be implemented during the conceptual design phase of the aircraft.

This selection is made is partially because of the large impact of this design phase on

aircraft cost and the ease of changing the design during the conceptual design phase

as shown in Figure 17 [44]. The use of MAIA enables more accurate aircraft sizing
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due to replacement of the historical data used for subsystem weight (as discussed in

the chapter on Subsystem Design Methods and Processes) by the use of more accurate

data, even capturing the impact of subsystems on aircraft engine core sizing. Specif-

ically, MAIA would be implemented late in the conceptual phase, after the selection

of an aircraft configuration, determination of T/W and W/S, and an initial aircraft

sizing which assumes the use of the traditional architecture to determine a baseline

size. This timing is because the aircraft sizing and modeling within MAIA utilizes

this information. The aircraft sizing could be updated and made more accurate with

utilizing MAIA. This increase in accuracy is useful due to the ease of changing the

design earlier in the design process and the large impact of the early design phases

on the total cost as seen in Figure 17 [44]. Such analysis would take additional effort

and time earlier in the design process, but as demonstrated in the experiments, the

impact of this analysis on the magnitude of TOGW and the robustness of the deter-

mined TOGW value to uncertainty is significant. This is done in the conceptual phase

partially due to the increased cost of design changes later in the design processes as

seen in Figure 18 [107]. The shift of design knowledge (and therefore effort such as

MAIA) and freedom earlier in the design process is part of a desired paradigm shift

in design discussed in [84]. Such a paradigm shift allows for more design definition

and freedom at lower cost commitment within the earlier design phases. MAIA could

help enable such a design process.

MAIA also enables selection of the desired architecture that would lead to the

smallest and most robust aircraft size. This enables an analytical selection of a sub-

system architecture earlier in the design process. Because MAIA captures the impact

of architecture trades on aircraft sizing, it enables selection of architectures that min-

imize aircraft size. As demonstrated in the experiments, MAIA also enables selection

of an architecture that allows for a design that is robust to sources of uncertainty,

which, as will be discussed later in this dissertation, can help minimize weight growth
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during development.

Figure 17: Life Cycle Cost by Design Phase [44]

4.1 Generate Feasible Alternatives

The first step in MAIA is to generate feasible alternatives (Step A). The subsection

below examines the current state of the art in different methods that could be utilized

for this step for subsystem architecting. Later in this section, a method is selected

and applied to MAIA.

4.1.1 Current State Of the Art

There are many existing methods for determining the feasible alternatives. This

section examines and discusses some of these methods that are are applicable for

subsystem architecting.

The aerospace industry has traditionally treated the selection of subsystem archi-

tectures as a traditional point design [120] and [46]. To remind the reader, in this
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Figure 18: Cost of Design Changes [107]

architecture most of the aircraft power generated by the aircraft engines from burning

fuel is used for propulsion, with the remainder of the power created by the engines

converted to non-propulsive power of different types. Traditionally, this power is con-

verted into four forms of power (pneumatic, hydraulic, mechanical, and electrical) to

then be used by aircraft subsystems [120]. The traditional distribution of the use

of these types of power represents the subsystems architecture that has evolved to

become the current traditional standard architecture for transport aircraft [120] and

[46].

Subsystem architectures are typically chosen utilizing a point design based on this

traditional architecture. The selection of such a point design generates one alternative,

the traditional architecture. The use of such a traditional architecture is a possible

way for generating feasible alternatives to utilize. However, this selection does not

explore much of the architecture design space, neglecting possibly superior designs.

The use of an All Electric Aircraft (AEA), as was discussed in Chapter 1, is also

the selection of a point design that sets one possible feasible alternative to utilize

but also explores little of the architecture design space (if selecting this architecture
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without exploring others), again neglecting possibly superior designs.

Conceptual architecting, as discussed in Chapter 2, attempts to examine the ar-

chitecture designs earlier in the design process. Authors such as de Tenorio [36] and

Armstrong [21] and [20] have previously examined this important topic. (Contribu-

tions of de Tenorio [36] and Armstrong [21] to architecture generation for conceptual

architecting are discussed later in this section.) Conceptual architecting uses models

of the different possible subsystems to determine the impacts of a given architecture

on the platform earlier in the design process [21]. These impacts are then compared

and the desired architecture is used in the later design processes that are currently

used. Without such a step, there is not a way to rapidly explore the subsystem ar-

chitecture design space to identify the desired architecture. Conceptual architecting

is not currently being utilized in industry. Examining trades of conceptual architec-

tures and their impact on aircraft sizing is the primary focus of the later proposed

methodology. This concept enables the use of desired architectures, such as energy

optimized, in the aircraft design and allows the inclusion of this information earlier in

the design process. As only simplified models are used, they can be created and uti-

lized even during conceptual design. This would represent a significant step forward

in the design space exploration of aircraft subsystem architectures.

There are several possible methods to create the alternatives that are examined

in conceptual architecting. One method is the use of an IRMA, which were created

to help designers make objective choices to reduce the design space. IRMA is based

on the science of morphology. Morphological Analysis was created by F. Zwicky [142]

and [43]. IRMAs create a functional to physical system decomposition which results

in a Matrix of Alternatives. The complex system is decomposed into its important

functions and features. Each of these is placed in a row in the matrix and each

alternative solution to that function placed in the columns for the corresponding row.

Such a matrix allows a better understanding of the potential solutions to the problem
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[43].

Once the functional to physical decomposition is completed (resulting in a Matrix

of Alternatives [43]), there are multiple ways to generate alternatives utilizing this

design space. One method is to examine every possible architecture. Such a design

space can become large very quickly. For example, a design space for a new transport

aircraft in the 150-passenger class (and its subsystems) is shown in the screen shot

from an IRMA shown in Figure 9. An IRMA uses a Matrix of Alternatives to examine

such a design space and approximately calculates the computational time to examine

all of the design alternatives. Such computational times become unwieldy for large

matrices [43]. Another method is to narrow down the design space utilizing the

IRMA by making selections that reduce the number of choices. Such a concept could

be implemented by subject matter experts. This reduces the computational time

required to examine the remaining architectures but limits the examined architecture

design space. The IRMA uses a Multi-Attribute Decision Making (MADM) technique

called Technique for Ordered Preference by Similarity to Ideal Solution (TOPSIS) to

help narrow down the options [43], which can help reduce the size of the design

space. TOPSIS is rooted in the concept that the chosen design should be closest in

distance to the positive-ideal solution and furthest from the negative-ideal solution.

For reference, the mathematical computations for creating a TOPSIS analysis are

discussed in [64]. The selection of a point design from the matrix or alternatives (such

as the traditional architecture) is also another way to select a feasible alternative, as

was discussed previously in this section.

Finally, once the design space is determined utilizing the IRMA, feasible alterna-

tives must be generated from the remaining design space. One such way to achieve

this is the use of a Design of Experiments (DOE). A DOE is a structured way for

selecting cases to run for an experiment, and the different types of DOEs are widely

utilized, and are discussed in [88], [138] and [100].
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Armstrong in his Master’s thesis [20] described a method for generating and ex-

amining subsystem architectures. Armstrong’s work used a functional approach for

the definition of architectures [20], examining the functional architecture definition

and tools that can be utilized to fully define architectures [20]. This work thoroughly

examined the generation of architectures early in the design process [20]. As previ-

ously discussed, the examination of architectures earlier in the design process shifts

more cost and effort to the early design phases. However, this is done partially due

to the previously discussed impact of these phases on cost and the ease of changes

earlier in the design process [107], [44], and [84].

The functional definition of architectures methodology discussed in Armstrong’s

Masters thesis utilized the concept of functional induction [20]. The concept of func-

tional induction [86] assists with a functional decomposition during systems definition

and during a functional decomposition of the mission. Functional induction was cre-

ated for subsystem architecture definition from requirements [86] and could assist in

the creation of the IRMA. Functional induction is discussed in [86] but, as shown

below in Figure 19, is essentially the determination of required functions that are

created (or induced) by the selection of a physical solution for any required func-

tion. Armstrong uses functional induction within a chain of functional solutions and

a functional to physical mapping [20]. Specifically, Armstrong used functional induc-

tion in a new concept similar in purpose and function to a modified IRMA which

he calls a Adaptive Reconfigurable Matrix of Alternatives (ARM) [20]. Armstrong

created a process and an environment for subsystem architecture definition utilizing

this ARM [20]. This environment is called ADEN by Armstrong and is shown in

Figure 22 (although his tool focused on steps 3-5 in Figure 20) [20]. The ADEN en-

vironment was created by Armstrong to facilitate the process for the function-based

architecture definition shown in Figure 20 and is discussed further in his Master’s

thesis [20]. Tools for these steps of architecture design are listed in Figure 21 and are
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discussed in Armstrong’s thesis [20]. These tools including Armstrong’s tool shown

in Figure 22, and the process shown in Figure 20 provides an environment for the

selection of subsystem architectures [20]. For further information on these tools, the

reader is referred to Armstrong’s thesis [20].

Figure 19: Functional Induction Example [86]

Figure 20: Process for Function based Architecture Definition adapted from [20]

As discussed previously, de Tenorio [36] in his PhD dissertation also examines

exploration of architectures during conceptual design. Although de Tenorio [36] does

not capture the coupling of these trades with aircraft and engine core sizing (addressed

by this dissertation), he provides many important contributions to this topic including
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Figure 21: Tools for Function based Architecture Definition adapted from [20]

Figure 22: ADEN Environment [20]
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the generation of architectures to study. de Tenorio [36] examines a model-based

architecting methodology. de Tenorio [36] utilizes SysML models of architectures

that are generated, and then meta models of these SysML models are created. Then,

analysis is preformed for a given architecture to size and optimize the subsystems

within the architecture. The types of models utilized by de Tenorio [36] enable rapid

modeling setup of different architectures that could be utilized for an architecture

design space exploration. The architecture design process examined in de Tenorio’s

work [36] is shown in Figure 23. In de Tenorio’s work [36], the generation of the

architectures to be studied is performed by an architecture generation team.

As discussed above, there are several existing concepts to assist with generat-

ing feasible alternatives within MAIA. These include the work described above from

de Tenorio [36] and Armstrong [21] and [20], who explored the generation of these

architectures. One such well suited concept specific to generating aircraft subsys-

tem architectures is discussed in Armstrong Master’s thesis, in which he describes a

method for generating and examining subsystem architectures [20]. For examining

a part of the subsystem architecture design space in this work, the selection of test

architectures was made as discussed in the section below on the test case selection.

4.1.2 Test Case Selection

4.1.2.1 Selected Test Aircraft Configuration

In the case of civil jet transport aircraft, the layout of the aircraft has primarily been

an evolutionary process, starting with the Comet and the Boeing 707 [67]. Modern

transport aircraft are little different in configuration from these predecessors but

have improvements in areas such as engine efficiencies, range, and passenger capacity

[67]. As part of a search for better configurations, designers have examined different

unconventional concepts [67]. Although these concepts present possible advantages,

the commercial risks in developing these concepts is currently viewed as unacceptable

[67]. As a result, the conventional configuration may continue to be used for the
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Figure 23: Architecture Design Process [36]
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time being [67]. This configuration typically has a centrally positioned cylindrical

fuselage, a low trapezoidal moderately swept cantilever monoplane wing, podded

engines, retractable tricycle landing gear, and rear mounted separate vertical and

horizontal tail/control surfaces [67] and [60]. An example of such a layout is the

Boeing 777 [67]. Newberry and Eckels [104] discuss other transport design topics,

among which are the selection and design of the interior, which include selecting the

layout of the cabin (diameter and seating) along with the number and location of

lavatories and galleys [104]. For reference, Anderson [18] discusses the case studies of

the Boeing 727 and Boeing 707 design including their layouts.

Alternatives for the determination of the aircraft configuration include the use

of a matrix of alternatives, design space exploration/trade studies, engineering judg-

ment, and historically based configuration selection (as the selected test case is a civil

transport). For the selection of a test case, the selected method is the use of a ma-

trix of alternatives to determine the possible platform design space and a historical

configuration-based selection. This was selected because the selected case study of

transport aircraft utilize historically similar configurations and to reduce the scope of

required analysis and trades.

The selected aircraft configuration to use as a test case for this dissertation is a

potential replacement to the 150 passenger (B-737) class of aircraft. For reference,

Table 1 lists some of the basic characteristics of the Boeing 737-800. This aircraft

configuration is selected for at least two reasons. First, Boeing and several other

aerospace companies are planning to create new aircraft in this area [109] and [108].

Second, the 150-passenger class of aircraft makes up a significant portion of the airline

fleet [15]. This is illustrated in Table 2, which shows a breakdown of several aggregated

United States passenger and cargo mainline aircraft fleets at the end of 2010 [15]. The

fact that several industry entities plan to create new aircraft in this category and the

influence of this class of aircraft due to its share of the total fleet size make this class
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of aircraft an interesting and appropriate test case.

Table 1: Boeing 737-800 Basic Characteristics [29]

Metric Performance
Passenger Capacity in 2 Class Configuration 162 Passengers
Passenger Capacity in 1 Class Configuration 189 Passengers

Cargo Space 1555ft3

Engine Type CFM56-7
Maximum Thrust 27300 lb

Fuel Capacity 6875 gallons
MTOW 174200 lb
Range 3115 nm

Cruise Speed 0.785 Mach

Table 2: Selected US Cargo and Passenger Airlines Fleet Breakdown as of the End
of 2010 [15]

Aircraft Number
A300 124
A310 56
A318 9
A319 279
A320 382
A321 53
A330 51
B717 101
B727 76
B737 1248
B747 92
B757 611
B767 318
B777 150
Other 705
Total 4255

4.1.2.2 Selected Test Aircraft Subsystem Architectures

The selection of the configuration and its required mission and performance determine

the functional part of the functional to physical mapping for the creation of a matrix of

alternatives. Possible physical solutions are then filled into this matrix. Such a matrix
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is shown in Figure 9. To limit the scope of the required modeling, architecture trades

are limited to trades in the flight control actuation systems. This selection was made

to limit the scope of the modeling and to capture trades involving a traditional power

system (hydraulic) and a MEA concept of electrical actuation. To make the results

comparable to the current 150-passenger class of aircraft, the rest of the architecture is

fixed as the traditional aircraft architecture. The architecture is fixed to the current

traditional architecture with one important exception: the flight control actuation

system. Specifically, this exception is varying each individual actuator to be an EHA

from a hydraulic actuator and back, and adjusting the wiring and piping (distribution

elements) and generator and pump sizing (power sources) to account for this change.

This decision is made to enable true evaluation of the MEA technology of an EHA.

The design space of all possible combinations of hydraulic and EHA actuators (and

their consequences such as changes in the distribution system) are examined. This

method of selecting architectures is also utilized in order to limit the scope of the

analysis of the demonstration of MAIA. This limitation in scope is performed partially

due to the fact that there are several well developed methods for the generation of

alternatives. These include the utilized approach, and the work of de Tenorio [36]

and Armstrong [21] and [20], and others as previously discussed. An example of an

examined architecture can be seen in Figure 24. (The figure was created utilizing the

aircraft diagram from [31].) This figure shows the modeled actuation loads and, for a

given architecture, whether or not the control surface (or Landing Gear) is powered

by EHAs or hydraulic actuators.

4.2 Subsystem Definition

The second step of MAIA (Step B) is to define the subsystems and to determine their

system-level impacts. The desire to capture these impacts came from Observation 2.
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Figure 24: Example Architecture adapted from [31]
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Observation 2: Variations in the subsystems architecture can lead to significant

platform-level impacts.

The system-level impact can be captured by either physical experiments with the

subsystems or models of their impacts. Physical experiments involving their compo-

nents and their integration and impact on an aircraft were impractical to this effort

due to the cost and unavailability of the needed parts and aircraft. The impact

can also be determined using computational physics-based modeling of the aircraft

subsystems. Such a concept has been implemented previously; for example, the Eu-

ropean Union (EU) Power Optimized Aircraft (POA) project utilized modeling of

aircraft subsystems to examine their impacts [25].

Physics-based modeling and simulation of the desired aircraft subsystems was

performed for this step as described in the section on the modeling environment. This

environment enables evaluation of the impact of the different examined subsystem

architectures. To review, step B of MAIA is utilizing models of the aircraft subsystems

to examine the system-level impact. The ability to perform this analysis was also

presented previously in Observation 4.

Observation 4: Physics-based modeling and simulation can quantify the system-

level impact of different subsystem architectures.

4.2.1 Subsystem Modeling Metrics

As discussed in the section on energy optimized aircraft, the energy efficiency of

the aircraft subsystems can be important to capture, and many possible metrics can

be used to examine this energy efficiency. These include, but are not limited to,

the following: exergy (available useful work) loss [95], energy usage [95], subsystem

weight [95], fuel burn impact [95], and environmental impacts (such as NOx emis-

sions). However, the aircraft subsystems all derive their energy from power drawn
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off of the engines in the form of shaft power extraction and bleed air. They are typi-

cally architected utilizing this power in a traditional point-based design as previously

discussed[120] and [46]. As a result, the impact of changes to a subsystem architec-

ture can be determined by the change in power drawn off of the engines in terms of

the shaft power extraction and bleed air. This impact can be considered along with

the weight of the subsystems which impact the aircraft sizing through their contri-

butions to the empty weight of the aircraft. These metrics must be determined to

enable analysis of the impacts of the subsystems on aircraft sizing. For this study,

the metrics of shaft power extraction, bleed air, and subsystem weight were utilized

as they contain the primary system-level impacts of subsystem architecture trades.

4.3 Subsystem to System Integration

MAIA step C is to examine the subsystem to system integration. This step is designed

to capture the coupling between aircraft sizing and the platform-level impacts of

subsystem architectures. The creation of such a step is motivated by Observations 2

and 3. These observations also lead to Research Question 1. This Research Question

examines the magnitude of the impact of the coupling of subsystem architectures to

platform-level impacts.

Observation 2: Variations in the subsystems architecture can lead to significant

platform-level impacts.

Observation 3: Subsystem architecture platform-level impacts are coupled with

the sizing of the aircraft.

Research Question 1: What is the magnitude of the coupling between the

subsystem architectures platform-level impacts and aircraft size?

To determine this, it is first necessary to capture this coupling utilizing a modeling

and simulation environment. This environment can utilize the subsystem models

created for step B. The creation of those models was based on Observation 4.
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Observation 4: Physics-based modeling and simulation can quantify the system-

level impact of different subsystem architectures.

The created modeling environment must be capable of determining the system-

level and platform-level impacts of the subsystems. The system-level impacts can be

found from physics-based models of subsystems as was discussed in step B.

The subsystem impact can then be utilized to examine the platform-level impact.

There are different alternatives for this determination. One alternative is the use of

physical experiments which were excluded due to cost. Another is the use of aircraft

and engine sizing algorithms. The engine sizing algorithm may be needed due to

the impact of the subsystems on power extraction and, therefore, possibly on engine

core size, as discussed in the modeling section. A third alternative is the use of

simplified sizing relationships. Aircraft sizing refers to the process that calculates

the weight of the aircraft that is necessary to carry its required payload through

a desired mission profile [115]. The weight is very important as it sizes the entire

aircraft [106]. There are different levels of fidelity and complexity in sizing procedures

[115]. The simplest calculation uses the weight of similar previously manufactured

aircraft [115]. There are also sizing techniques that use various computer codes and/or

include results from experiments such as wind tunnel tests [115]. Major airframe

companies use detailed sizing computer software which calculates the thrust required

and the fuel flow for each of the segments that comprise the design mission profile

[115]. The software attempts to meet mission requirements by changing TOGW

in an iterative fashion [115]. For example, Huff [61] discusses computerized design

synthesis programs including a program owned by Vought called Aircraft Synthesis

and Analysis Program (ASAP). ASAP uses statistical data to size the aircraft and

uses different modules to further analyze the potential design [61]. Almost all design

synthesis codes are comprised of modules from different disciplines [61]. Another

example of such a code can be seen in Newberry, and DeFilippo [103] which discusses
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the sizing and synthesis code ACSYNT developed by National Aeronautics and Space

Administration (NASA) Ames. ACSYNT combines three different types of code:

aircraft sizing, aircraft performance, and optimization [103]. This software allows

the designer to optimize the size of the designed aircraft for a design mission and

performance requirements [103]. Such codes are important in the competitive aircraft

market [61] and can capture the sizing impacts of changes in subsystem architectures

through the use of architecture impacts, as determined by physics-based modeling

and simulation.

As a result of a desire for accuracy, aircraft sizing algorithms are utilized in this

work over simplified sizing relationships. The system-level impacts of the subsystems

are computed by models made for step B and then passed to aircraft (and engine)

sizing algorithms. The subsystem models are integrated with a sizing and synthesis

environment to determine the platform-level impacts in a deterministic fashion as

discussed in the modeling section. Integration of the sizing and subsystem models

enables quantification of the coupling between the aircraft sizing and the subsystem

architecture’s impacts. The extent of the coupling can be explored by running test

cases (architectures) through this environment and quantifying the covariance and

correlations between architecture impact and TOGW. Recalling Observation 5, these

values are likely to be positive.

Observation 5: The covariances and correlations between architecture impacts

and aircraft size are likely to be positive.

The change in TOGW due to this coupling is probably significant due to the func-

tional relationships between TOGW and subsystem impact previously described. For

MEA, this assertion is also due to the continued existence of the MEA research and

their preliminary findings of weight and power differences as well as the previously

discussed interactions of TOGW and subsystem impacts. This leads to Hypothe-

sis 1, which is listed below. The testing of Hypothesis 1 enables evaluation of the
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importance of capturing the coupling of aircraft sizing and subsystem architecture

impacts.

Hypothesis 1: If the impact of the coupling between aircraft sizing and archi-

tecture impacts is quantified, then this coupling will be found to be significant.

Observation 2: Variations in the subsystems architecture can lead to significant

platform-level impacts.

Observation 3: Subsystem architecture platform-level impacts are coupled with

the sizing of the aircraft.

In Observation 6 below, the significance of capturing this coupling may vary with

passenger class. This fact leads to Research Question 2.

Observation 6: The magnitude of the impact of the coupling between the

platform-level impacts of the subsystem architecture on the platform and aircraft

sizing may vary with aircraft passenger class.

Research Question 2: What is the impact of varying aircraft passenger class on

the magnitude of the coupling between the platform-level impacts of the subsystem

architecture and aircraft sizing?

To examine this question, a review of Observations 7 and 5 is useful.

Observation 7: Aircraft subsystem weights are historically a function of the

TOGW.

The coupling is still likely to be significant as the functional relationships between

the parameters still exists.

Observation 5: The covariances and correlations between architecture impacts

and aircraft size are likely to be positive.

The correlations and covariances are also likely to be positive. Further, the cor-

relation is likely significant as discussed in Hypothesis 1. The change in TOGW due

to this coupling is likely significant for different passenger classes due to the still

existing functional relationships between TOGW and subsystem impact. The MEA
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research and their preliminary findings again further reinforces this assertion. This

leads to Hypothesis 2, which examines whether capturing this coupling is significant

for different passenger classes of aircraft.

Hypothesis 2: If the aircraft class examined is varied, then the impact of the

coupling between aircraft sizing and architecture platform-level impacts is still signif-

icant.

If this hypothesis is correct (which is shown to be the case), then this coupling

must be captured for aircraft subsystem architecture selection for different passenger

classes.

4.3.1 Aircraft Sizing Metrics

The metric selection to capture aircraft size is important for a demonstration of MAIA

and is discussed in this subsection. As explained in Chapter 1, the impact of the

selection of a subsystem architecture is coupled with aircraft sizing. There are many

possible metrics that can be utilized to examine aircraft configuration, performance,

and sizing. Metrics that can illustrate aircraft sizing characteristics include Thrust-

to-Weight Ratio (TWR), wing loading (W/S), wing area (SW), wing span(b), aspect

ratio(AR), and TOGW. Anderson [18] states that within conceptual design some

important performance variables include maximum lift coefficient, lift to drag ratio,

W/S, and TWR. These variables greatly impact the aircraft performance as discussed

in [18]. Aircraft sizing commonly focuses on determining the design takeoff gross

weight (TOGW or W0), the weight of the aircraft as it starts its design mission

[115]. The design takeoff gross weight can be broken into various components as

shown in equation (8) below [115] and [18] (and [67], [141], [106], [123], and [127] had

similar formulations). It should be noted that other variations of this formula exist,

in which the weight is separated into more detailed categories such as the weights of

the propulsion systems, the fuselage, wings, and other components, or other means of
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separating the TOGW [67] and [60]. The TOGW can be determined by estimating its

components or by estimating TOGW from parameters such as payload and statistical

trends (a simpler and possibly early estimate in the conceptual design process) [141].

According to [115] and [18]:

TOGW = Wcrew +Wpayload +Wfuel +Wempty (8)

Another important aspect of the sized aircraft is its cost [115]. In a similar concept

to several sizing methods in conceptual design, aircraft cost estimation is primarily

statistical and is based on the costs of previous aircraft [115]. Although return on

investment (ROI) is a very important parameter for determining the financial feasibil-

ity to the manufacturing company, there are some difficulties in using this parameter,

difficulties which have led the industry to also perform life cycle cost analyses (the ad-

dition of all the cost elements of the aircraft during its life) [67]. Raymer [115], Howe

[60], and Jenkinson, Simpkin, and Rhodes [67] have discussions concerning aircraft

life cycle costs and estimation methods. Cost estimation during conceptual design is

mostly statistical using parameters such as the aircraft weight [115]. Raymer [115]

cites various different trends in aircraft cost as a function of weight. Raymer [115]

also states that aircraft cost approximately 200 to 400 USD per pound. There are

other cost estimating relationships and models which use inputs that include weight,

production rate, and maximum velocity [115]. As can be seen, TOGW is a very im-

portant parameter, being both the driver of the cost [115], and the focus of aircraft

sizing [115].

For the case studies utilized to examine subsystem architecting in this dissertation,

the aircraft design mission and aircraft configuration are already fixed. This is because

the baseline aircraft is based on existing civil aircraft, with the baseline being a

generic current 150-passenger class aircraft, where the design mission and aircraft are

already determined based on the existing aircraft in the examined passenger classes.
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Specifically, the case studies are created utilizing baseline generic civil aircraft based

on current traditional aircraft designs. The TWR, W/S, and AR are already fixed in

the case study aircraft. As a result, the TOGW (and SW, which are related through

W/S) shows the primary difference in aircraft sizing due to the examined trades in

subsystem architectures in the case studies examined.

4.4 Design Knowledge Uncertainty Propagation

Step D of MAIA is Design Knowledge Uncertainty Propagation. This step attempts

to capture the uncertainty mentioned in Observation 8. This implementation of this

step raises Research Question 3a.

Observation 8: Subsystem architecture impacts have epistemic and aleatory

uncertainty in various characteristics of the integrated components such as weight

and efficiency.

Research Question 3a: How can the uncertainty inherent in the impacts of

subsystem architectures be examined in subsystem architecture trades to inspect the

robustness of the resulting designs?

Uncertainty plays an important role in many diverse areas of study including con-

ceptual architecture trades. Possibly as a partial result of its widespread applicability

and importance, many different ways of examining uncertainty exist.

Aleatory and epistemic uncertainties both appear in subsystem architecture trades.

As previously discussed, a statistical treatment of aleatory uncertainty, such as using

a sample variance [138], requires repeated measurements [100], which may not always

be possible depending on the specific problem being studied. However, Bayesian

probability and statistics can use all available information to asses probabilities and

can handle aleatory and epistemic uncertainties [114]. In Bayesian probability and

statistics, these uncertainties can be combined into single probability values or dis-

tributions [114].
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As there is considerable epistemic uncertainty in subsystem architecture trades

due to a lack of knowledge concerning requirements and the weight and efficiency

of the integrated components, Bayesian distributions can be applied on parameters

impacted by uncertainty within these trades. As a result, the creation and placement

of probability distributions within the modeling environment is the first part of the

selected application of this step. These subjective distributions are to be based on

available information and expert opinion.

Once the uncertainty is captured by Bayesian (and/or frequentist) probability dis-

tributions of random variables, the impact of the uncertainty on the variables must

be examined. To determine the impact of the uncertainty on the output variables of

interest from the analysis, additional analyses must be performed. Different methods

can be used for these analyses as discussed in the chapter on uncertainty. These

include sensitivity analysis, which is one method for examining the impact of uncer-

tainty [132], two-way sensitivity analysis, which is another common way to examine

the impact of uncertainty, and Monte Carlo simulations. As the number of variables

from which to examine the impact of uncertainty increases, the uncertainty impact

analysis usually becomes a probabilistic uncertainty analysis, often using Monte Carlo

simulations [132]. As discussed in the chapter on uncertainty, Monte Carlo simulations

provide a means to examine the impact of the distributions of subsystem level uncer-

tainty on the platform level. Monte Carlo methods are also widely and routinely used

[38] and [56]. Although Monte Carlo simulations are one of the most commonly used

methods within design (and will likely work well for subsystem conceptual architect-

ing), there are several other approaches to characterizing and quantifying uncertainty

[129] and [42]. For the reader’s reference, some of these other methods were discussed

in the chapter on uncertainty.

An examination of the methods discussed in order to find a suitable method for

dealing with uncertainty in subsystem architecture impact analyses and trades reveals
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that several methods are not applicable because of the defining characteristics of this

problem and the uncertainty within. For example, the fact that epistemic uncertainty

plays a potentially dominating role (and the fact the physical experiments may be

expensive or impossible) rules out techniques such as characterizing data statistically

from a set of experiments which is applicable for characterizing aleatory uncertainty.

The fact that the change in the power required by the components and the change

in their integrated weight and power required due to uncertainty can take on any

of many different continuous values also makes intervals and sets not as applicable.

Also, depending on the type of models of the subsystems used, derivatives or partial

derivatives are not necessarily readily available. However, in some cases these could

be estimated. The lack of available derivatives or other characteristics that may occur

due to available models further limits the applicable techniques.

The approaches that previous subsystem related trade studies used to capture

their uncertainty were examined previously in this work. This includes the POA

program which applied distributions on the current (or flow/power) draw of the dif-

ferent components within the VIB modeling environment [25]. The Virtual Iron Bird

(VIB) was an integrated modeling environment of aircraft system models to exam-

ine the power demands of systems and their architectures [25]. In the POA program,

once the distributions were applied to the component current/power demands, Monte

Carlo simulations were run, pulling values out of these distributions to capture the

impact of uncertainty on the parameters of interest [25]. The Monte Carlo simu-

lations were viewed as an enabler to allow the creation of the distributions on the

metrics of interest [25]. Additionally, since the runs of the Monte Carlo simulations

were independent of each other, the runs could be run on parallel computing clusters

[25]. In the POA, distributions were placed on the power demand of components,

and Monte Carlo simulation was used to aggregate the impact [25]. The use of Monte

Carlo simulations enables parallelization of runs of the simulation environment which
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enables the potential for more runs to be made, possibly allowing more subsystem

architectures to be compared [25]. The use of these techniques and advantages shows

that a similar method can be applied to the examination of the impact of uncertainty

in this problem of comparing subsystem architectures. Despite the fact that many

techniques cannot work for such a problem, the distributions of the component’s

parameters such as weight, efficiency, and required performance can be estimated

(creating Bayesian distributions) as discussed in Observation 9. The placement of

the distributions on physical parameters of individual components allow the experts

to be able to evaluate a parameter on the device related to their expertise and not on

some aggregated system variable on which they may have less experience. The result-

ing Bayesian distributions can be placed on the related variables within the modeling

environment. Once the distributions are applied to these variables, an appropriate

method must be used to aggregate their impact. Monte Carlo simulation is such a

method. Monte Carlo simulation can thus be run on the modeling environment to

try to capture the impact of the uncertainty.

Observation 9: Probability distributions can be created and applied on parame-

ters within the modeling and simulation environment to capture uncertainty in those

parameters.

The use of uncertainty distributions is selected along with MCS for the application

of the MAIA step to subsystem architectures as discussed above. The noise param-

eters that these distributions can be placed upon include the values of the weight

and efficiency of components within the aircraft subsystems. Such distributions are

created as discussed in the section on Experiment 3a. These distributions are uti-

lized to capture uncertainty on the noise parameters in the modeling environment.

Once these distributions are placed in the modeling environment, MCS is then used

to determine the resulting impacts of the distributions on the response (TOGW) as
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discussed in the chapter on uncertainty. This analysis results in distributions of plat-

form and system variables that could then be examined for their robustness utilizing

metrics such as SNR [88], which is discussed in the last step of MAIA. This leads to

Hypothesis 3a.

Hypothesis 3a: If distributions characterizing noise variables within aircraft

subsystem architecture trades are utilized in the subsystem modeling and simulation

environment, then a robust selection of the subsystem architecture design can be

performed.

The integrated models must be capable of handling probabilistics to enable exam-

ination of the impact of uncertainty. In order to capture the impact of uncertainty,

the models must shift from a deterministic analysis to the use of a stochastic design

methodology that can account for uncertainty [84]. Mavris, DeLaurentis, Bandte,

and Hale [84] present an approach which utilizes metamodels to enable this shift and

reduce the computational time required to analyze the cases. These metamodels are

often regression models of computer programs [84]. The approach specifically uses

physics-based metamodels that are linked into an aircraft sizing and synthesis pro-

gram [84]. The metamodels enable the use of more accurate higher order methods

typically used later in design during earlier design phases [84]. This approach allows

the inclusion of uncertainty and uses physics-based analysis and metamodels to re-

place historically based data, which the authors state is likely obsolete for current

and future aircraft [84]. Due to the required number of cases and their associated

computational time, metamodels are utilized in the application of this step as listed

in the test plan for Hypothesis 3a.

There are different methods for creating these metamodels including the use of

Artificial Neural Networks (ANNs) (which are utilized in Test 3a), fuzzy sets, and the

Response Surface Methodology (RSM) [84]. According to Meyers and Montgomery
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[88], “Response surface methodology (RSM) is a collection of statistical and mathe-

matical techniques useful for developing, improving, and optimizing processes.” The

parameters or metrics that the user wishes to track are known as responses, which

are treated as a function of the input variables (also called the independent variables)

to the problem [88]. Successful application of RSM is dependent on the creation of

a useful approximation for the response [88]. Typically, a first or second order poly-

nomial is used for this approximating function [88]. The second order polynomial

model is the most commonly used in RSM [88]. The use of polynomial approximat-

ing functions is based on the use of Taylor series expansion [88]. Surrogate models

can be used in exploring architecture design spaces as an enabler for reducing the

computational run time required to examine a given architecture.

Another concept that is useful within RSM is the use of experimental designs

including the use of fractional factorial designs (which are utilized in Test 3a to

generate the data needed to create the ANNs) [88]. If the higher order interaction

terms within the approximating polynomial can be neglected, then a fraction of the

number of experimental runs (as compared to run a full factorial design where all

setting levels are tested) can be used to create the Response Surface Equation (RSE)

[88]. This allows a potential reduction in the number of experiments (or runs of code)

to create RSEs, which can make their creation more feasible. For reference, Meyers

and Montgomery discuss experimental designs, including the creation of experimental

designs, for the creation of second order RSEs, which includes the use of Central

Composite Designs (CCDs) [88].

4.5 Architecture Selection

Step E of MAIA is the selection of the desired architecture. This selection should be

based on the deterministic values of metrics such as TOGW for different architectures

and their SNR to examine their robustness. In the experiments, the deterministic
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results are used (as discussed in experiment 3a) to select the top three architectures.

The robustness of these architectures is then examined in MAIA step D. The most

robust out of these top candidates then becomes the selected design. The robustness

was captured utilizing SNR as discussed in the section on robustness in the chapter

on uncertainty. The specific definition of SNR utilized is shown in equation (9). The

use of equation (9) was motivated by the concept of having to meet the target of the

deterministic TOGW for that architecture due to the fact that deviation from the

target would likely cause redesign, a delay in the schedule, and additional cost.

As discussed in [88], [111], [48], and [138]:

SNR = −10log((µ2)/σ2) (9)

Several other approaches to capturing the robustness of a design were not utilized.

Some of these approaches for examining multiple responses are discussed in the section

concerning robustness. This could happen in subsystem architecture trades, but the

driving metric examined in the case study was TOGW, allowing SNR to be sufficient.

In Abraham [13], two such approaches are discussed. In the first of these approaches,

SNRs are calculated for each response and then combined into a desirability function

[13]. The other approach discussed in [13] extended the first approach by adding

weights on the desirability of the responses in the desirability function [13]. One

disadvantage to the approaches discussed in [13] is the fact that these approaches

distill comparing the designs to one metric whose values would change as these weights

are varied. In Hui [63], a generalized multivariate distance from a multivariate target

is used to examine robustness, using Hotelling’s Tsquared as shown in equation (10).

As shown in [63]:

Ti2 = (xi − xt)(S−1)(xi − xt) (10)

Another applicable robust design method is Robust Design Simulation (RDS)

which is discussed in [87] and [85] and was motivated by the need for future aircraft
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such as an economically viable supersonic transport. RDS applies probabilistics to de-

sign and examines the objective as a distribution caused by the effects of distributions

on noise or uncertainty variables [87] and [85]. This method enables the capturing of

the impact of uncertainty on parameters[87]. RDS examines the identification of a

robust design [87] and [85] and is an alternative to Taguchi’s approach for examining

robustness of subsystem architectures by applying distributions to the noise variables

which results in distributions of the design’s responses.

Identified control variables in subsystem architecture selection include: the (hy-

draulic/electrical/other) system each component is connected to, the type of com-

ponent used, the route network configuration, the number of each component, and

the aircraft configuration. In the proposed methodology described later, the aircraft

configuration is decided by the designer before trading the subsystems, so it can be

considered to be fixed. The number of each component would be minimized to make

the systems as small and as light as possible while remaining within the constraints

of failure scenarios and therefore would be mostly fixed as well. The route network is

also mostly fixed by the locations of the fuel tank and other compartments. There-

fore, the primary control variables examined in the proposed methodology are the

type of components used and which systems they are connected to. For the specific

case study, these were limited to hydraulic actuators and EHAs on the aircraft con-

trol surfaces and landing gear. Identified noise variables include: the efficiency of

each component, the efficiency of the integrated systems, the weight of each com-

ponent, and the weight of the integrated systems. For the case study, the specific

noise variables identified included: the electrical motor efficiency within the EHA,

the electrical system’s generator efficiency, uncertainty on the weight of the wiring,

the weight of the EHAs, and the weight of the hydraulic actuators. The distribution

of each of these variables would impact the distribution of platform-level variables

such as TOGW and system-level variables such as power draw. After the proposed
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methodology has been used to find the resulting distributions, the robustness of the

subsystem architecture designs to uncertainty was compared using SNRs. The archi-

tecture that was in the top three deterministic cases (having the lowest TOGW) and

was the most robust out of these candidates was selected is discussed in the chapter

on the Experimental Results.

4.6 Sensitivity of Design to Uncertainty Determination

The final step of MAIA is the examination of the sensitivity of the design to the

sources of uncertainty. This step examines the different sources of uncertainty to

attempt to determine which of these sources has the largest impact on the selected

design (specifically, on the TOGW distribution) from MAIA step E. The creation of

this step is motivated by Observation 10.

Observation 10: Uncertainties on subsystem traits with the highest platform-

level impacts should be identified.

This leads to Research Question 3b.

Research Question 3b: How can the primary sources of uncertainty in the

platform-level impacts of the selected subsystem architecture be identified?

4.6.1 Capturing the Impact of Uncertainty

There are several different ways for capturing the impact of uncertainty. As discussed

in the chapter on uncertainty, one such method for capturing the impact of the un-

certainty on subsystem architectures is the use of Bayesian Networks. The selection

of the use of Bayesian Networks over other methods is discussed in the chapter on

uncertainty. Bayesian Networks (BN) are useful tools which can create predictive

models utilizing available data[53] and [96]. Such a network can be fit to data coming

from running cases within a modeling environment as is done in MAIA step D. An

example of such a network structure could have the variables that have uncertainty

on their values as nodes that are connected to a node representing the output(s) of
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interest (such as TOGW). This network could then be used to quantify the strength

of the links between variables (if the data are discretized) [41]. This concept of deter-

mining the strength of the links and how this strength is defined between variables

in discrete Bayesian Networks is described in [41]. The links that were characterized

as the strongest would then identify which uncertainty distributions were having the

strongest impact on the output(s). A different network could be set up and then

varying the arrangement of the network could also be performed to find the most

accurate representation of the system [53] and [96]. The above described possible

use of Bayesian Networks to examine the sensitivity of a design to uncertainty on

subsystem architecture values leads to Observation 11.

Observation 11: Bayesian Networks can capture the sensitivity of a design to

uncertainty.

There are other approaches that can be used to examine the impact of uncertainty

on the design. However, such approaches are not the focus of the related proposed

methodology step due to their disadvantages and the advantages of BN. For example,

correlation values between the variables can also be used to examine which of the

variables have impacts on the TOGW. There are limitations to this approach as

correlations measure how linear the relationship is and not necessarily the strength

of this connection [138]. A related parameter, covariance, also examines only if there

is a linear relationship [138]. Examination of these parameters may be useful to

cross-reference to see if utilizing the BN is selecting the correct link as the strongest.

Recalling Observation 11, Bayesian Networks (BN) are useful tools that can enable

the capturing of this uncertainty. In the application of BN to MAIA, such a network

could be fit to data coming from running cases within a modeling environment. This

network could be used to quantify the strength of the links between variables as

discussed in the chapter on uncertainty [41]. Varying the arrangement of the network

could also then be performed to find the most accurate representation of the system
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[53] and [96]. It should be noted that correlation values and covariance values between

the variables can also be used to examine which of the variables have impacts on the

TOGW. As mentioned above, there are limitations to this approach because these

parameters measure how linear the relationship is, and not necessarily the strength

of this connection [138]. However, as noted above, examination of these parameters

may be useful to cross-reference to see if utilizing the BN is selecting the correct link

as the strongest. The proposed use of a Bayesian Network leads to Hypothesis 3b.

Hypothesis 3b: If a Bayesian Network is created to represent the impact of the

uncertainty in the subsystem architectures characteristics on aircraft sizing, then the

variables with the largest impacts can be identified.
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CHAPTER V

HYPOTHESIS TESTING

This chapter examines the corresponding test plan for each hypothesis and the de-

velopment of the modeling and simulation environment. The subsequent chapter

explores the application of these plans and results from running these experiments.

5.1 Overarching Hypothesis Experimental Plan

To review, the Overarching Hypothesis states the following: Capturing of the

coupling between aircraft sizing and subsystem architecture impacts and exploring

the architecture design space enables a significantly better architecture selection than

a point-driven design.

To test this hypothesis requires the corresponding Overarching Experiment. The

overall intended purpose of this test is to demonstrate that the application of the

proposed methodology is better than a point-driven philosophy. To test this requires

an examination of an architecture design space using the first few steps of MAIA while

capturing the coupling between aircraft sizing and subsystem architecture impacts.

This test has several required steps. The first step is to create the required modeling

environment to perform the steps in MAIA to enable capturing this coupling. This

requires the creation of physics-based modeling of aircraft internal subsystems for

the selected example configuration of an aircraft. These models must be able to

capture the impact of varying the selected subsystem architectures. This modeling

environment must include a sizing calculation for the systems and their components.

Then, these models must be integrated with a sizing and synthesis algorithm in

order to capture the coupling between aircraft sizing and architecture impacts. The

modeling environment is further described and explored in the section later in this
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chapter on the modeling environment. For each design examined, the platform and

system-level impacts should be demonstrated in the converged values of the outputs,

such as the power extraction and TOGW.

Once this environment is created, the next step is to explore the architecture

design space for the test case, using the proposed methodology. This design space

exploration is performed utilizing the modeling environment and enables comparison

of the best design found to a single point design. This exploration is done through

a full factorial DOE varying each group of control surfaces (flaps, elevators, rudder,

aileron, landing gear, for example) from being hydraulically powered to being powered

by EHAs as described in the test case section. This DOE examines every possible

architecture in the design space, assuming that all actuators on any given type of

control surface will be powered by the same technology. This DOE examines every

possible combination of each group of control surfaces (spoilers, flaps, rudder, elevator,

for example) being powered by EHAs or hydraulic actuators. This DOE includes all

hydraulic, all EHA, and hybrid architectures. Examples of examined architectures

can be seen in Figures 25 (all hydraulic actuation), 26 (all EHAs), and 27 (an example

hybrid architecture). It should be noted that these figures utilize an aircraft diagram

from [31].

The DOE is run to determine how large a difference in TOGW there is between

a selected point design (the worst case) and the best design. The magnitude of this

range in pounds will demonstrate if the difference between a point design and the

design space exploration including coupling is significantly better. This value needs

to be examined in the context that only the flight control actuation system is being

changed in the example architecture study. Given that Roskam [121] states that the

range to expect for the total weight of the actuation system is approximately 0.6 to

1.2 percent of TOGW, the difference in converged TOGW by varying this system can

be compared to this range in order to determine significance.
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Figure 25: Hydraulic Actuation Architecture adapted from [31]
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Figure 26: All EHA Architecture adapted from [31]
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Figure 27: Example Hybrid Architecture adapted from [31]
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5.2 Hypothesis 1 Experimental Plan

To review, Hypothesis 1 states the following: If the impact of the coupling between

aircraft sizing and architecture impacts is quantified, then this coupling will be found

to be significant.

The primary purpose of Experiment 1 is to examine the significance of the impact

of the coupling between aircraft sizing and architecture impacts. The quantification

of this coupling requires an integrated modeling environment of aircraft sizing and

aircraft subsystems. As a result, for Experiment 1, the models made for the Overar-

ching Experiment can be leveraged to examine the extent of this coupling. The same

modeling and simulation environment that the Overarching Experiment requires must

be created. Then, the architecture design space must be explored utilizing the envi-

ronment to generate the needed data to examine the coupling. The same architecture

design space defined in the section on the test case is utilized. Then the same DOE

run for the Overarching Experiment must be run as this DOE examines every possi-

ble architecture in the design space (assuming that all actuators on any given type of

control surface will be powered by the same technology). Again, this DOE examines

every possible combination of each group of control surfaces being powered by EHAs

or hydraulic actuators. Figures 25 (all hydraulic actuation), 26 (all EHAs), and 27

(an example hybrid architecture) show examples of examined architectures. Again,

it should be noted that these figures utilize an aircraft diagram from [31].

The metrics of maximum and average power extraction, subsystem weight, and

TOGW can all be stored when running the DOE and then analyzed. Next, the

results must be analyzed to examine the coupling. Covariances and correlations

between the variables (especially the subsystem impacts such as subsystem weight

and power extraction as well as TOGW) must be examined. These metrics can assist

in examining the coupling by determining whether a linear relationship exists [138]

and how strong this relationship may be. The closer to 1 or -1 the correlation is

94



from 0, the stronger the indication of a stronger linear relationship. Examination

of a multivariate plot for trends and magnitudes can also assist in this examination,

as a trend in the result indicates the existence of coupling between variables. The

magnitude of the encountered range of TOGW demonstrates the magnitude of the

impact of this coupling on TOGW, as otherwise TOGW would be determined utilizing

only the historically based sizing aircraft weight. Given that Roskam [121] states that

the range to expect for the total weight of the actuation system is approximately 0.6

to 1.2 percent of TOGW, the difference in converged TOGW by varying this system

can be compared to this range to determine significance. Finally, the trends seen in

plots of the results, the magnitude of the correlations, covariances, and the range in

TOGW must be examined to determine the significance of the results.

5.3 Hypothesis 2 Experimental Plan

To review, Hypothesis 2 states the following: If the aircraft class examined is varied,

then the impact of the coupling between aircraft sizing and architecture platform-level

impacts is still significant.

To test this hypothesis requires Experiment 2. The primary objective of Exper-

iment 2 is to determine if the impact of the coupling between aircraft sizing and

architecture platform-level impacts is still significant when different passenger classes

of aircraft are examined. As a result, this test needs a similar modeling environ-

ment to Tests 0 and 1. The modeling environment must contain an aircraft sizing

algorithm and models of the aircraft subsystems. As a result, this test can leverage

the same modeling environment created for Tests 0 and 1. However, this modeling

environment must then be updated, to be able to model other passenger classes of

aircraft to examine the impact of this coupling on other aircraft sizes. Specifically,

210-passenger and 300-passenger aircraft are used for this test. These sizes are se-

lected due to model and data availability. Once the modeling environment is created
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and updated, it must be used to explore generate the data needed to explore the

coupling.

Then, the same DOE run for Tests 0 and 1 must be run for each passenger class

size as this DOE examines every possible architecture in the design space (assuming

that all actuators on any given type of control surface are powered by the same

technology) for the selected aircraft size. The same DOE is also used to enable direct

comparison with the data generated in Experiment 1. This DOE again examines

every possible combination of being powered by EHAs or hydraulic actuators for each

group of control surfaces. This DOE again includes all hydraulic, all EHA, and hybrid

architectures. For comparison to the experiment 1 results, these architectures contain

the same control surfaces updated for the larger aircraft. For reference, examples of

examined architectures can be seen in Figures 25 (all hydraulic actuation), 26 (all

EHAs), and 27 (an example hybrid architecture). Again, it should be noted that

these figures utilize an aircraft diagram from [31]. Such a DOE was constructed and

run for both of the added aircraft passenger classes.

In a process similar to Experiment 1, the metrics of maximum and average power

extraction, subsystem weight, and TOGW can all be stored when running the DOE

and then analyzed for each passenger class size. After the DOE is run, analysis must

be performed to examine the coupling. Covariances and correlations between the

variables must be examined to determine if a linear relationship exists [138] and how

strong this relationship may be. The larger the absolute value of the correlation,

the higher the indication of a stronger relationship. An examination of a multivariate

plot for trends that indicate the existence of coupling between variables would then be

performed. The magnitude of the range of TOGW demonstrates the magnitude of the

impact of this coupling on TOGW for each passenger class size. Given that Roskam

[121] states that the range to expect for the total weight of the actuation system is

approximately 0.6 to 1.2 percent of TOGW, the difference in converged TOGW by
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varying this system can be compared to this range to determine significance for each

passenger class. Finally, in a similar fashion to Experiment 1, the trends seen in

plots of the results, the magnitude of the correlations, covariances, and the range in

TOGW must be examined to determine significance of the results.

5.4 Hypothesis 3a Experimental Plan

To review, Hypothesis 3a states the following: If distributions characterizing noise

variables within aircraft subsystem architecture trades are utilized in the subsystem

modeling and simulation environment, then a robust selection of the subsystem ar-

chitecture design can be performed.

To test Hypothesis 3a requires the corresponding Experiment 3a. The primary

objective of Experiment 3a is to apply distributions in the modeling and simulation

environment characterizing the noise variables and then quantify the robustness of

the subsystem architecture designs. The utilized noise variables and their distribu-

tions will be further discussed in the section on the implementation and results for

experiment 3a. To start this test requires the development of the needed modeling

and simulation environment. This modeling and simulation environment must be

able to capture subsystem architecture impacts and their coupling with aircraft siz-

ing. Similar to Experiment 1, this test can leverage the physics-based modeling of

aircraft internal subsystem architectures integrated with an aircraft sizing algorithm

made for the Overarching Experiment. This test examines the probabilistic distri-

butions using a method consistent with the proposed methodology, utilizing Monte

Carlo Simulation (MCS) to sample the distributions. Due to computational time

feasibility, the number of architectures to be examined in this test is limited to the

top candidates from running the DOE on the modeling and simulation environment

as described in Tests 0 and 1. The top candidate architectures selected will have
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the lowest deterministic values of TOGW due to the impact of this metric as dis-

cussed in the chapter on MAIA. The different examined architectures is the design

variable for the robust design study. This study attempts to find an architecture

that results in the best SNR of the response, in this case TOGW. Then, to capture

the uncertainty, probability distributions are applied on the noise parameters within

the subsystem modeling environment. These parameters are parameters such as effi-

ciencies of the motors and generators and weight per capacity (such as lb/kN output

force for EHAs) for different components. The specific examined parameters are dis-

cussed in the Experiment 3a section. These probability distributions should be based

on available data and expert opinion and placed on parameters such as component

efficiencies and weights. Ranges on the parameters are determined by the creation of

these distributions. These ranges should then be leveraged to create DOEs to explore

the subsystem modeling environment and aircraft sizing algorithms for the purpose

of generating metamodels of these environments to make the computational time fea-

sible for a larger number of cases. If possible, ANNs or other metamodels should

be created. ANNs could be utilized because of their previous use with the utilized

aircraft and engine sizing algorithm [69] and [70] and the likely non-linearity of some

of the data. These metamodels should make the run time of MCS cases feasible.

After creating metamodels, the distributions need to be applied on the noise vari-

ables. Then, MCS should be run on the integrated modeling environment, pulling

variables out of the probability distributions but holding the architecture constant.

Then the additional cases of other architectures should be run. The resulting data

from running these cases then needs to be analyzed. The data can be utilized to

create multivariate plots and correlation values to provide insight into relationships

between the parameters. The resulting robustness of the different designs can be

compared through the robustness of TOGW utilizing SNR as discussed in the section

on proposed methodology. Finally, the robustness of these designs is used to select
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the top architecture by comparing the SNR values. The determination of the SNR

values of TOGW for the different designs demonstrates that the robustness of the

designs can be quantified.

5.5 Hypothesis 3b Experimental Plan

To review, Hypothesis 3b states the following: If a Bayesian Network is created to

represent the impact of the uncertainty in the subsystem architecture’s characteristics

on aircraft sizing, then the variables with the largest impacts can be identified.

To test Hypothesis 3b requires the corresponding Experiment 3b. The primary

objective of Experiment 3b is to identify the variables with the largest impacts on

aircraft sizing, utilizing a Bayesian Network to demonstrate that this can be done and

to enable the use of Bayesian Networks for this analysis for aircraft subsystems due

to the advantages of Bayesian Networks discussed in the chapter on uncertainty. This

test studies the top architecture identified using SNR in Experiment 3a to attempt to

identify which of the variables with uncertainty distributions is driving the response.

Such an identification enables a designer to determine which variables to investigate

further, in order to reduce the variability in the response. As Experiment 3b is using

a Bayesian Network to study the top architecture from Experiment 3a, this test can

leverage the modeling environment and data created from running the environment

for the top architecture created for Experiment 3a. Then, a Bayesian Network must

be created and fit to the resulting data from the MCS run in Experiment 3a of the

modeling environment for the top architecture. This network should have nodes for

each of the input variables connected to a node for the response (TOGW), to enable

direct comparison of their link strengths as discussed in [41] and the chapter on un-

certainty. An example of such a Bayesian Network structure is shown in Figure 28.

To examine which variables have the largest impact, the strength of the resulting

connections must be determined as discussed in [41]. The variables with the largest
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impacts should be identified by having the strongest connections. Potentially, what

network structure may fit the data best could also be explored to gain additional

insight. Specifically, the connections between nodes can be explored to determine

what structure fits the data best to identify if the best network structure gives any

additional insight into which variables are driving the response. Finally, the results

should be cross-referenced with the covariance/correlations between the variables,

ANOVA results, and the trends seen in the multivariate plot of the MCS results to

enable a validation of the results by comparison to the statistical parameters charac-

terizing these relationships. As discussed in the chapter on uncertainty, such a use of

Bayesian Networks is unusual, but if it can be validated, then this enables the use of

Bayesian Networks for such an analysis. This is greatly desired due to the additional

analysis enabled by the use of Bayesian Networks, such as predictive analysis during

subsystem development.

Figure 28: Experiment 3b Bayesian Network Structure
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5.6 Modeling Environment

This section discusses the modeling environment created to test the hypotheses. First,

the overall concept of the environment is described. Then, the primary elements of

that environment are discussed. The creation of such an environment enables the

experiments and use of MAIA.

5.6.1 Modeling Environment Concept

The concept of the modeling environment is illustrated in Figure 29. This environ-

ment was created to study the impact of different subsystem architectures and the

coupling of subsystem impacts with aircraft sizing. The environment takes in a vector

representing the subsystem architecture to be examined by the environment, the duty

cycles for the aircraft control surfaces (as this study was limited in scope to varying

the actuation systems), and the design mission profile for the current aircraft under

examination. The outputs from this environment are the converged impacts of the

architecture.

The environment consists of three main elements interacting together. These ele-

ments were selected based on the fact that, to perform the experiments, the modeling

environment must capture the coupling of the subsystems impact and the aircraft (and

engine core) sizing. Therefore, elements were chosen that enabled determination of

the impact of the subsystems on aircraft sizing and, conversely, the impact of sizing on

the subsystems. The first element contains physics-based models of the subsystems

to determine their impacts on the engine and aircraft sizing (shaft power extraction).

The second element is a function to determine the weight of the modeled subsystems

(which also impacts the aircraft sizing). The third element contains an aircraft sizing

environment integrated with an engine core sizing environment to capture the aircraft

and engine size and the impacts of the subsystems on this. These elements pass the

necessary data back and forth until they come to a converged solution. The overall
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Figure 29: Modeling Environment Concept
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concept of the data flow between the created and integrated modeling environment

pieces is shown in Figure 30. This modeling environment utilized a subsystem mod-

eling environment integrated with an aircraft and engine sizing algorithm to enable

capturing the coupling between subsystem trades and aircraft sizing.

Figure 30: Modeling Environment Data Flow

5.6.2 Integrated Modeling Environment

An overview of the implementation of this modeling environment concept can be

seen in Figure 31. The physics-based subsystem model was created in Simulink uti-

lizing applicable physical relationships and available data. The Simulink model of the

subsystems computes power extraction necessary to power the modeled subsystems.

These values along with the weight of the architecture are passed to an integrated

environment called the Environmental Design Space (EDS) (EDS is discussed in [77]

and [76]). EDS calculates an aircraft and an engine core size and was utilized specifi-

cally because it captures the engine core sizing impacts and integrates this information
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Figure 31: Overview of Modeling Environment

with aircraft sizing [77]. The aircraft characteristics are then passed back to Mat-

lab/Simulink to size the actuators for the aircraft size calculated. This environment

then runs until it converges.

These models and tools were integrated together in ModelCenter, which is a graph-

ical integration and optimization tool [12]. ModelCenter calls the EDS environment

and Matlab/Simulink. The wrapper that calls Matlab/Simulink takes in the TOGW,

aircraft geometry, and the architecture selection. Matlab/Simulink then runs the

Simulink model and additional Matlab code which determine the subsystem impacts

(power extraction) and the subsystem weight. The power extraction and the sub-

system weight are then passed into the EDS environment, which sizes the aircraft

and engine core. EDS then passes TOGW to a converger, which passes an updated

TOGW value to the Matlab Wrapper. EDS also passes aircraft geometric information
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(fuselage length and wing span) to Matlab/Simulink.

5.6.3 Aircraft and Engine Sizing

The capturing of the aircraft and engine core sizing impacts of the subsystems are

very important to the experiments. Therefore, Environmental Design Space provides

a useful and calibrated tool to perform aircraft and engine core sizing [77] and [76].

Specifically, EDS has calibrated cases for existing transport aircraft [76]. The appro-

priate passenger class EDS model is used as a baseline for the sizing of that aircraft

and engine. For the baseline aircraft size, the 150-passenger baseline model is utilized

in EDS. This environment was adapted to capture the engine core and aircraft sizing

impacts of the subsystem architectures. This core sizing impact is the reason that

it was necessary to use EDS rather than merely an aircraft sizing code. Inputs to

EDS include subsystem weight and power extraction maps. The outputs of TOGW,

fuselage length, and wing span (or SW and AR) are then utilized by the integrated

environment to iterate with the Simulink code and arrive at a converged solution.

The integrated environment writes values of hydraulic system weight to capture the

hydraulic weight and additional electrical weight due to adding EHAs and also two

different power extraction variables (a baseline value and a variable turning on the

power extraction map) to the Design of Experiments (DOE) input table in EDS. A

power extraction map is then written to the MDP input file by the integrated envi-

ronment, giving a power extraction vs altitude table to EDS. EDS then interpolates

in this table based on the current altitude to determine the added power extraction

above the constant baseline value (to capture the loads that were not modeled). The

relationship used for power extraction by EDS is shown in equation (11).

P = (PM × 1) + PB (11)
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The code in Matlab that runs the Simulink model post-processes the results of

power extraction to find average values for different altitudes. The average is used

instead of the maximum to minimize the impact of numerical spikes in the data

caused by using larger simulation time steps. The baseline used for power extraction

is determined as shown in equation (12) utilizing the original power extraction value

used in EDS and the maximum power extraction value in the map (for the 150-

passenger class aircraft) when all hydraulic actuation is utilized in order to account

for loads and systems not modeled. It should be noted that the same value is utilized

for the other passenger classes as they had the same previous baseline power extraction

value in EDS.

The data from running the Matlab/Simulink model with the selection of all hy-

draulic was utilized to recalibrate the EDS model to ensure that the environment

provides correct results. This calibration was performed for all three aircraft sizes

using an existing EDS calibration code and capabilities to calibrate, utilizing the all-

hydraulic actuation case. This calibration made the all-hydraulic case sized correctly

to match the existing modeled aircraft within EDS.

PB = PEDS −Max(PM) (12)

5.6.4 Subsystem Modeling

The subsystem models were created to take in an architecture, aircraft geometry, and

mission profile and determine the power extraction requirements of the subsystems to

then be sent to the aircraft and engine sizing models. An overview of the algorithm

used within this model is shown in Figure 32. This modeling concept was imple-

mented in Simulink. The computations start with a hinge moment calculation for

each control surface utilizing the mission profile and duty cycle (of deflection angle)

for that surface. The hinge moments are then sent to models of actuators (a hydraulic
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actuator and a EHA for each control surface). The hydraulic actuator calculates the

hydraulic fluid flow rate needed for the actuator, and the EHA calculates the electri-

cal power needed. The architecture is then enforced utilizing gains. Specifically, the

power/flow for the non-utilized actuator is set to zero by multiplying by zero. The hy-

draulic flow rate and electrical power needed for the actuators are then propagated up

through components such as electrical busses, electrical generators, hydraulic pumps,

and the gear boxes, using conservation principles. While this power demand is being

propagated upwards, additional electrical loads are added in to account for galley and

IFE loads. The resulting value from propagating these power demands is the required

shaft power extraction to power the modeled components.

Similar to the virtual iron bird from the POA study, this modeling environ-

ment uses inverse dynamics for modeling the aircraft systems [25]. Inverse dynamics

switches the typical inputs and outputs to where the required movements of the con-

trol surfaces become inputs [25]. A screen shot of a sample inverse dynamics model is

shown in Figure 33. The use of inverse dynamics in [25] enables the user to determine

the power demand of aircraft subsystems. The model starts with a mission pro-

file and desired control movement and calculates the energy demand for this control

movement.

Figure 32: Subsystem Model Formulation

A screenshot of this modeling environment can be seen in Figure 34. The box on

the left side labeled actuators contains the models and calculations for the mission
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Figure 33: Example Inverse Dynamics Model [25]

profile, duty cycles, hinge moments, and actuators. The hydraulic flow demand from

the actuators is then sent to the hydraulic pumps from the appropriate systems. These

pumps are connected to the gearbox and to the electrical systems, as some pumps are

electrically powered while others are powered from the shaft power extraction directly.

The electrical power demand for all the EHAs is then sent to the electrical systems

in which the efficiencies of the busses and generators are applied and the galley and

IFE loads are included. The power demand from the engine driven hydraulic pumps

is added to the demand from the electrical systems and passed through gearboxes to

determine the shaft power extraction for the modeled systems.

5.6.4.1 Hinge Moment Determination

The box on the left side of Figure 34 labeled actuators contains the models and

calculations for the mission profile, duty cycles, hinge moments, and actuators. The

computations start with a lookup table containing the Mach Number and altitude as

a function of time. The mission profile that is utilized is the design mission profile

from Pace SysArc for the passenger class aircraft under consideration. Pace SysArc

(Systems Architecture) is an aircraft preliminary design tool that allows the study of
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Figure 34: Subsystem Model
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the internal systems [110]. This design mission for the 150-passenger class aircraft is

illustrated in Figure 35. The duty cycle was created utilizing knowledge about the

use of the different surfaces. The flaps and spoilers were made to deflect and stay

deflected at maximum deflection towards the end of the flight, the landing gear was

retracted once early in the flight, and the rest of the surfaces had duty cycles created

based on data in the literature. Specifically, the duty cycles of the other surfaces

were based on two sources. To determine accurate average power use, the use of an

80/20 duty cycle was found to be accurate in [78]. This duty cycle was 20 out of

every 100 increments of time, the surface would be operating at the max and not

operating the other 80 time increments [78]. This 80/20 approximation is captured

using a pulse generator which is multiplied a sine wave function that used as its

amplitude an assumed range of motion for the control surfaces which was based on

the operating range of deflection angles for the surfaces on the Boeing 777 [9]. This

sine wave also had a frequency corresponding to one deflection/second which was

approximated from [124]. An illustration of such a duty cycle is shown in Figure 36.

The Mach Number, altitude, and deflection angle are then sent to an embedded

Matlab function that determines the current and maximum hinge moments. For the

spoilers, the embedded Matlab function is written utilizing two different formulas

for the hinge moment depending on whether the surface is deflected or not from

[124] as seen in equation (13) and equation (14) from [124]. For the other control

surfaces, the hinge moments are calculated utilizing codes that use Roskam’s [122]

formulation and data for trailing edge surface hinge moments. This code was adapted

from code originally made for aircraft control surface modeling as discussed in [32]

and [54]. For these calculations, the geometry of the control surfaces was estimated

based on available data from Boeing [11] and Pace [110]. It should be noted that the

contribution of angle of attack to the hinge moment was neglected when applying this

formulation. To account for changing aircraft size, as this is integrated with a sizing
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algorithm, the moment and maximum moment are scaled by the ratio of the aircraft

size to a baseline size. The current size of the baseline aircraft is defined utilizing

TOGW as the scaling parameter, which is related to wing area through W/S, which

is held constant.

Figure 35: 150-Passenger Class Design Mission

When the spoiler is extended [124]:

M = CD × Ssp × ((sin(δ))2)× (ρ÷ 2)× ((V )2)× (c÷ 2) (13)

When the spoiler is retracted [124]:

M = ((c× Ssp ×WN × n× 1.5)÷ (cwsp × b× pi))× (1− (2× ysp ÷ b)2
(
0.5)) (14)

The hinge moment, maximum hinge moment, and surface deflection angle then

are utilized in models of a hydraulic actuator and an EHA for the control surface. The

hydraulic actuator calculates the hydraulic fluid flow rate needed for the actuator, and

the EHA calculates the electrical power needed. After the actuator models are run,
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Figure 36: Example Duty Cycle

the architecture is then enforced, utilizing gains. Specifically, the power/flow for the

non-utilized actuators are set to zero by multiplying by zero. Both the hydraulic and

EHA models were created utilizing a parameter called a gearing ratio from [32]. As

can be seen in equation (15) and equation (16), the gearing ratio (G) accounts for the

mechanism between the actuator and the control surface and its geometry (formulas

adapted from [32]). To enable accurate analysis, the value of the location of the hinge

line on the control surfaces (except the spoilers, which use a different formulation)

was then calibrated to bring the max force required from each actuator to be similar

to A-320 control surface max force from [78], as seen in Table 3. For all the surfaces

except the spoilers, the determined value of G was determined by the approximation

of the surface angular velocity in [124] and the max piston velocity from the A-320

data [78], as seen in Table 3. It should be noted that one common value was used

for G for these surfaces as they had similar angular and piston velocities. The value

of G was then calibrated for the spoilers to the max actuator output force data from

the A-320 [78].

G = δ̇ ÷ (Vp) (15)
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Table 3: A-320 Actuator Characteristics [78]

Characteristic Aileron Spoiler Elevator Rudder
ActuatorStroke(mm) 44 84 60 110
NoLoadRate(mm/s) 90 100 60 110

Max.ExtendForce(kN) 48.0 44.9 27.7 44.3
Max.RetractForce(kN) 48.0 36.6 27.7 44.3

Freq = G×M (16)

5.6.4.2 Hydraulic Actuator Model

The hydraulic actuator model starts by determining the required piston area using

the definition of gearing ratio and the fact that pressure is force per area as seen in

equation (17) and equation (18). The maximum pressure is determined by assuming

a 3000 psi hydraulic system.

G×M = Freq = Pr × A (17)

A = (G× (MMax))÷ (PrMax) (18)

The piston velocity is then calculated by utilizing the definition of G and the duty

cycle as shown in equation (19). This value is then limited by a maximum placed

on this variable to make the value physical when the duty cycle has a discontinu-

ity. This discontinuity arises from starting or stopping surface movement abruptly,

which causes a large derivative in deflection angle at that point. This is a result of

having the surface not continually deflecting and not having a smooth curve starting

the deflection. To capture a smooth curve would require a small time step in the

simulation, to have several points inside this start of deflection, which then signifi-

cantly increases the simulation runtime to a value which is unfeasible for exploring
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the architecture design space. To deal with this difficulty, non-smooth duty cycles

are used. Then the values of the velocity and acceleration are limited at the discon-

tinuities, and the power extraction values utilized are averages for different altitudes.

This has the impact of averaging out these instantaneous transients. The values are

limited by assuming a maximum velocity of approximately one range of deflection

per second for the control surface based on [124]. The acceleration values are limited

to achieving the maximum velocity in 0.5 second for all surfaces except the spoilers,

which assumed 1 second instead. The mass and acceleration of the piston is seen to

have a negligible impact. An assumed value of 2 kg is used for the piston mass.

Vp = δ̇ ÷G (19)

The hydraulic flow rate is then determined by equations (20), (21), and (22) where

the leakage is calculated utilizing [79] (this source contains the formulation utilized,

where the leakage due to the pressure difference is considered with the coefficient

of 2 ∗ 10−13m3/(Pa ∗ s) also from the source, and the leakage to the exterior is

neglected),[31] (this source contains data on the B-737 hydraulic system including

the system pressure), and [116] (this source contains a figure of pressure drops in the

hydraulic system that was used to estimate deltaP in the hydraulic cylinder). This

total flow rate is then sent to the appropriate hydraulic pumps in the Simulink model.

It should be noted that the landing gear utilizes a different formulation from the rest

of the actuators, and for the hydraulic landing gear actuation, this uses 10 GPM per

actuator [1] (plus leakage) while the gear is being retracted and leakage alone when

the gear is not being moved.

Qsurf = A× Vp (20)
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Qtotal = Qsurf +Qleakage (21)

Qleakage = k × Prloss (22)

5.6.4.3 EHA Model

Figure 37: EHA Model

The overall flow of the EHA model is shown in Figure 37. The EHA utilizes the

same force balance to find piston area, piston velocity, and flowrate calculations as

the hydraulic actuator with one exception. Specifically, the pressure utilized for the

leakage which is calculated as shown below. The same max velocity and acceleration

limits are utilized to limit any numerical issues while having a runtime that enables

architecture trades. The cylinder pressure is calculated as shown in equation (23).

The mass and acceleration of the piston is seen to have a negligible impact. An as-

sumed value of 2 kg is used for the piston mass. This cylinder pressure is then utilized

to determine the pump output power (pressure*flowrate) as shown in equation (24).

The input power to the pump is then calculated utilizing the output power and an
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efficiency curve based on [137], as shown in equation (25). Specifically, this source

[137], contains plots of overall efficiency for different pumps against flow rate, gener-

ally being at 0 at 0 GPM and maximum of around 0.9 at maximum flow rate. This

trend is approximated in the model by a linear relationship between the percent of

maximum flow and the efficiency. This relationship utilized 0.05 at 0 flow and 0.9

at maximum flow as the end points of this curve based off of the source [137]. This

power is then scaled by an efficiency value to account for the motor efficiency [3]. The

efficiency value used for the electrical motors is a constant of 0.9. The electrical mo-

tor efficiency is approximated based on tables in [3] containing efficiency for different

motor speeds, sizes, and load levels. In this data, most of the efficiency values are

approximately 0.9 [3]. This electrical power demand is then sent to the appropriate

electrical system. It should be noted that the landing gear utilizes a different formu-

lation from the rest of the actuators, for the landing gear EHA this formulation uses

a flow rate of 10 GPM per actuator [1] (plus leakage) while the gear is being retracted

and just leakage when the gear is not being moved and the pressure in the actuator

is always 3000 psi (and the pump is assumed to be operating at its max efficiency for

the landing gear).

Prcyl = (G×M + (mp)× α)÷ A (23)

Pout = Prcyl ×Qtotal (24)

Pin = Pout ÷ η (25)
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5.6.4.4 Hydraulic Pump Model

The hydraulic flow rates are propagated up to the pumps that power the hydraulic

system that the individual surfaces are attached to. These flows are combined utilizing

the conservation of mass to give the flow rate that the pumps from that system must

provide. The flow is then divided between the two (or one in the case of the standby

system) pumps on the system by the ratio of their capacities. The pump output power

is calculated from the system pressure and flow as listed in equation (26). This output

power is then converted into pump input power by utilizing the pump efficiency curve

based on [137] that is utilized for the EHA pumps, as shown in equation (27). The

pump efficiency is a function of flow rate as can be seen in Figure 52 [137]. The power

demand from the engine-driven pump is sent to the gearbox. The power demand for

the electrical powered pump is then scaled by an efficiency for the electrical motor

based on [3]. Figure 38 shows a motor efficiency curve from [3]. The selected efficiency

value came from this curve, the typical operating range, and the tabulated efficiency

values from the same source [3]. This electrical demand is then sent to the appropriate

electrical system.

Pout = Pr ×Q (26)

Pin = Pout ÷ η (27)

5.6.4.5 Power Demand Propagation

The overall power extraction in the case of EHAs is determined as shown in Figure 39

and for the case of hydraulic actuation as shown in Figure 40. The power required for

the EHAs connected to each electrical system is combined with the electrical demand

from the electrical pumps connected to that electrical system. This is then combined

with an IFE load of 100 W/pax, scaled by the number of pax, which is based off data
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Figure 38: Electric Motor Efficiency [3]

Figure 39: EHA Data Flow
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Figure 40: Hydraulic Actuation Data Flow

in [93]. Specifically, Moir [93] states that on the modern Airbus A-380, IFE loads are

approximately 100 Watts per passenger seat. This power demand is also combined

with a galley load [58] as a function of simulation time, which is also scaled by the

number of passengers. This galley load schedule, seen in Figure 41, came from [58],

and was created for a more electrical aircraft study. The resulting electrical power

demand from the system is then scaled by efficiencies of the busses [36] and [21] and

generators [21]. The bus efficiency is based on Armstrong’s [21] and de Tenorio’s [36]

dissertations. Armstrong utilized a constant bus efficiency of 0.98 [21]. de Tenorio’s

[36] work utilized constant bus efficiencies of between 0.97 and 0.99, depending on

the type of bus. Based on these sources, a constant bus efficiency of 0.98 is utilized

in the model. Armstrong also had data in his dissertation for generator efficiency

[21]. Specifically, Armstrong [21] had a generator efficiency relationship of efficiency

as a function of the percent of max load and speed that the generator is operating

at. (The load can be seen to have a dominating effect in his data [21]). As seen in

Figure 42, the generator efficiency varies between 0.95 and 0.8 [21]. As the efficiency
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depends on the transients of electrical loads that are not modeled and captured in

this analysis, the conservative value of the lowest efficiency of 0.8 from Armstrong’s

work is utilized in the modeling as the generator efficiency [21].

The generator power demands from each engine are then combined with the

engine-driven hydraulic pump power demands. This gives the power drawn off of

the gearbox for each engine for the systems modeled. These values are then scaled

up by an efficiency to account for the efficiency of the gearboxes [19] to get the shaft

power extraction from each engine. The gearbox efficiency is treated as a constant

of 0.98 based on data in [19] in which the plotted data showed the efficiency to be

close to 0.98. This data can be seen in Figure 43 (the gearbox efficiency as a function

of oil and oil temperature) and Figure 44. The values of total power extraction are

calculated for each engine and so are then averaged for the given time step. The re-

sulting value of power extraction is the output for a given time step from the Simulink

model. An example of this output can be seen in Figure 45 for the case of all hydraulic

actuation for a 150-passenger class aircraft.

Figure 41: More Electric Aircraft Loads [58]
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Figure 42: Generator Efficiency [21]
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Figure 43: Gearbox Efficiency Data [19]

Figure 44: Gearbox Power Efficiency [19]
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Figure 45: Example Power Extraction Output

123



5.6.4.6 Subsystem Weight Analysis

The weights of the modeled subsystems are calculated by combining the weights

of the examined components and distribution systems required by the architecture

under study. For the distribution weight, functions were created to size the different

required wires and pipes. These algorithms take in the length of the line and the

required capacity (power or hydraulic flow rate) and determine the weight of each

individual wire and pipe.

5.6.4.7 Electrical Distribution Weight

The electrical wire sizing is based off [7] which had a table of the current capacity

of different wire gauges as shown in Table 4. The needed current is calculated from

the required power and the system voltage. This leads to a current value that is used

to look up in this table the necessary wire size. This wire size combined with the

length and the density of the wire gives the weight of the wires. The wire density

was derived from [33] assuming TKT wire, the determined value was updated to

account for insulation utilizing insulation density data from [39]. The wire lengths

are approximated by measuring an 3-view CAD drawing from Boeing for the baseline

class craft under study and then the wire lengths are scaled with fuselage length

and/or wing span depending on the location [11]). The wire sizing algorithm is

applied to wires for each EHA in the architecture currently being examined. These

wires are run from electrical busses in the avionics bay to the EHAs at the control

surfaces. The weight of these is combined with the increase in wire weight between

the electrical buses and the generators to give the increase in wire weight due to

utilizing EHAs. This increased wire weight is calculated by sizing the wire with a

baseline generator size and with the added power demand for the EHAs and taking

the delta in weight. The baseline generator size is 125 kVA for the baseline aircraft,

and for the other aircraft sizes this value is updated based on data in [91].
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Table 4: Wire Capacity Data [7]

Wire size(AWG) Maximum Current (amps) Resistance (ohms/ft)
24 4 0.03
22 5 0.016
20 7 0.01
18 9 0.006
16 11 0.005
14 14 0.003
12 19 0.002
10 26 0.0012
8 57 0.0007
6 76 0.0004

5.6.4.8 Hydraulic Distribution Weight

The hydraulic pipe sizing algorithm is based on [116] which includes formulas for the

inner diameter of the pipe as a function of the acceptable pressure loss across the

pipe (which was approximated from another figure in that paper, seen in Figure 46,

and the aircraft geometry of the 737-800 [11]), the length of the lines (which were

approximated by measuring a 3-view CAD drawing from Boeing for the baseline class

craft under study and then the pipe lengths are scaled with fuselage length and/or

wing span [11]), the amount of laminar flow (it is assumed to be turbulent flow in the

pipe for this work), and the properties of the fluid which are from the assumed fluid

in [126]. The formula utilized to determine the diameter can be seen in equation (28)

and came from [116]. The required inner diameter is rounded up to the next biggest

size of pipe used in the 737-800 as is documented in [4] as seen in Figure 47. The

density of the materials listed in [4] combined with the pipe size and length gives its

weight [22], [23]. The dry and wet weights of the pipes are calculated based off of the

architecture and max flow for the hydraulic actuators. The hydraulic piping weight

is the total pipe wet weight plus a factor which is from [116] to account for other

things such as fittings. Specifically, there is a factor of 10 percent of the wet weight

of the pipes for support clamps and 20 percent of the dry weight of the pipes for end
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fittings and tube nuts [116].

Figure 46: Hydraulic System Pressure Cycle [116]

∆Pr = 0.0135× l × f × SG× (QGPM)2 ÷ ((D)5) (28)

Figure 47: Boeing 737 Hydraulic Line Data [4]

5.6.5 Subsystem Component Weights

The component weights are calculated primarily from their required capacity and

using a value for capacity/wt derived from literature. The actuator capacities are

determined by running the model and processing saved data from the model. The

capacity per weight for the hydraulic actuators are based on the ratio of 7 lb/kN
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for two hydraulic actuators in [93] (which had values of 6.65 and 7.2). The capacity

per weight for the EHAs are based on the ratio of 3 kN/lb for the actuator in [99].

This value is also in the range of other EHAs examined: 3.9 [112] and 2.2 [47]. The

pump capacities are created by subtracting deltas in flow rate based on the selected

architecture from the pump capacities listed in [4]. Specifically, the pump capacity

is determined by the baseline size (from [4]) for the current aircraft and reducing

the size by the sizing flow rates of actuators that are switched to EHAs in a given

architecture, while ensuring that the pump capacity is above the required amount for

the remaining actuators. For engine driven pumps, the pump weight per capacity is

based on [4], which contains the pump capacities for the Boeing 737 in GPM, and

[137], which contains weight and capacity in GPM data for different engine driven

pumps used to find an approximate constant value of 0.37 lb/GPM for pumps around

the capacity of the B-737. The electrically powered pump weight per capacity is

based on [136], which had the electrically powered pump for the Boeing 737 and is

used to determine a value of 6.3 lb/GPM. The reservoir capacity is determined by [4].

The reservoir weight per capacity is based on the assumed fluid density in [126]. The

delta in generator capacity is determined by the amount of power required from the

EHA’s. The generator weight per capacity is based on [16], which contains, as shown

in Figure 48, the weight per capacity as a function of capacity, which combined with

the chosen baseline capacity from [91] gives an approximate value of 0.55 lb/kVA, a

value which is used for all aircraft. Again, the baseline aircraft generator capacity is

approximated at 125 kVA for the baseline aircraft, and, for the other aircraft sizes,

this value is updated based on data in [91].

The weight of any hydraulic components and distribution is combined with addi-

tional weight added from adding EHAs to the electrical system, and this value is sent

to the hydraulic weight input parameter in the aircraft sizing environment.
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Figure 48: Generator Weight Data adapted from [16]
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CHAPTER VI

ANALYSIS RESULTS AND HYPOTHESIS VALIDATION

6.1 Experiment 1

To review, Hypothesis 1 states the following: If the impact of the coupling between

aircraft sizing and architecture impacts is quantified, then this coupling will be found

to be significant.

For Experiment 1, the modeling environment discussed in the previous chapter was

leveraged to examine the extent of this coupling. This environment for Experiment

1 was created based on a 150-passenger class aircraft as was discussed in the section

on the model. This passenger class was selected as the test aircraft configuration as

described in the test aircraft configuration selection section. The Matlab/Simulink

modeling environment was run to determine the all-hydraulic actuation subsystem

weight and power extraction values. The 150-passenger class EDS model was recal-

ibrated utilizing these values. This was done utilizing the existing calibration codes

and capabilities within EDS. Then, the newly calibrated and integrated environment

of EDS and Matlab/Simulink, which is discussed in the section on the modeling, was

utilized to examine the extent of the coupling between aircraft sizing and architecture

impacts. This exploration was done utilizing a full factorial DOE varying each group

of control surfaces (including flaps, elevators, rudder, aileron, and landing gear) from

being hydraulically powered to being powered by EHAs as described in the test case

section. The converged values of metrics of interest, such as TOGW, for each archi-

tecture were then saved for analysis. Finally, the results were analyzed to examine

the coupling.

The converged values of subsystem weight are plotted against TOGW in Figure 49.
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There appears to be a definite trend in this data, an almost linear relationship be-

tween TOGW and subsystem weight. This appears to indicate that there may be

significant coupling between these two variables. The lowest TOGW values for the

converged cases led to the determination of the top three candidates for the subsystem

architecture for the selected configuration. These top three candidates were further

explored in Experiment 3a. These candidates were the use of all EHAs, the use of

all hydraulic actuation, and a hybrid system, in which the elevators were powered by

EHAs and the rest of the control surfaces were powered by hydraulic actuators. The

difference between the top and bottom architectures in TOGW was 2627 pounds, or

approximately 1.51 percent of the TOGW. Given that Roskam [121] states that the

range to expect for the total weight of the actuation system is approximately 0.6 to

1.2 percent of TOGW, the difference in converged TOGW by varying this system is

significant. It should be noted that the all-EHA case was slightly outside the approx-

imate linear trend, which is to be expected as it is a different technology. Also, the

highlighted cases that had hydraulic actuators on the ailerons, spoilers, and rudder

were slightly below the overall trend; this is likely due partially to the fact that the

hydraulic actuators were lighter than the EHAs for the modeled surfaces.

The converged values of maximum power extraction from inside the power extrac-

tion map are plotted against TOGW in Figure 50. There appears to be a trend in

this data, a slightly negative relationship between TOGW and maximum power ex-

traction. This outcome may not be what engineering judgment at first glance would

indicate. However, this trend does exist and is determined by the particular archi-

tectures examined. Within these architectures, the lower power extraction values are

at higher subsystem weights as can be seen in Figure 51. As was already suggested

in Figure 49, it will be shown that significant coupling exists between TOGW and

subsystem weight which, for the ranges of data explored with these architectures,

appears to dominate the power extraction impact on TOGW, leading to this slightly
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negative trend. This trend can be further seen in some of the results in Experiment

3a for selected architectures and in the correlation and covariance values for this ex-

periment, which are shown later in this section. It should be noted that there was

one point that did not appear to fit the overall trend; this point was the use of all

EHAs, as it was based entirely on the use of a different technology. The impact of the

weight of the subsystem dominating the impact of the power use implies that the less

efficient lighter architectures lead to the minimum TOGW, which is an interesting

finding.

The fact that, within the examined architectures, the more efficient architectures

are heavier is logical as these architectures are hybrid architectures. The hybrid

architectures still have the weight of hydraulic pumps, pipes, and the added electrical

weights associated with the use of EHAs, making these architectures heavier. The

hybrid architectures are also more energy efficient because of the difference in the

hydraulic pump sizing and, therefore, the efficiency. The hydraulic architectures are

often operating at the lower values of pump efficiency as they are not all operating at

maximum flow rate. This situation occurs because the pump efficiency is a function of

flow rate as can be seen in Figure 52 [137]. When the pump is made smaller because

some actuators are electrically powered, it increases the corresponding efficiency at

which lower flow rates operate. Also, the EHA has a low maximum overall efficiency

as modeled due to losses within the generator, busses, and EHA motor. As a result,

the hybrid architectures are more efficient but heavier.

The converged values of average power extraction from inside the power extrac-

tion map are plotted against TOGW in Figure 53. As with the maximum power

extraction, there appears to be a modest trend in this data, with a slightly negative

relationship between TOGW and average power extraction. This may be counter-

intuitive; however, this trend is again due to the particular architectures examined.
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Figure 49: 150-Passenger Class Subsystem Weight

Figure 50: 150-Passenger Class Maximum Power Extraction
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Figure 51: 150-Passenger Class Maximum Power Extraction vs Subsystem Weight

Figure 52: Pump Efficiency [137]
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Within these architectures, the lower power extraction values are at higher subsys-

tem weights as can be seen in Figure 54. As was already suggested in Figure 49, it

will be shown that significant coupling exists between TOGW and subsystem weight

which, for the ranges of data explored with these architectures, appears to dominate

the power extraction impact on TOGW, leading to this slightly negative trend. This

trend can be further seen in the results of Experiment 3a for the selected architectures

and in the correlation and covariance values for this experiment. One point did not

again fit the overall trend, the all-EHAs case as it was based entirely on a different

technology.

Figure 53: 150-Passenger Class Average Power Extraction

Figure 55 shows a contour plot of the examined design space in Experiment 1

and illustrates further the point that the heavier aircraft can be seen to have better

power extraction. This point is better illustrated by the removal of the all EHA case

(as it is outside the examined trends because it is a different technology) from the

diagram as shown in Figure 56. It should be further noted that Figures 55 and 56

illustrate the design space examined and possibly some of the internal trades and
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Figure 54: 150-Passenger Class Average Power Extraction vs Subsystem Weight

possible constraints within this design space.

Another way to visualize trends in the Experiment 1 data is to utilize a multi-

variate scatter plot such as the plot shown in Figure 57. This plot shows many of

the same trends previously discussed in this section, such as TOGW increasing with

subsystem weight and power extraction decreasing with subsystem weight. The de-

signs within this plot were then filtered to include only the lower TOGW (175,000

lb or less) designs. The filtered designs are plotted in Figure 58, showing that the

lowest TOGW designs have the lowest subsystem weight values, which can be seen

to dominate the impact of the power extraction.

To further examine and characterize the relationships between aircraft size and

subsystem parameters, Response Surface Equations (RSEs) were fit to the data. As

discussed in the chapter on MAIA, Mavris, DeLaurentis, Bandte, and Hale [84] pre-

sented an approach that utilizes metamodels (regression models of computer programs

[84]). Also, as discussed in the Chapter on MAIA, RSM is a method that can be uti-

lized in the creation of such metamodels [88]. The parameters or metrics that the
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Figure 55: Subsystem Design Space

Figure 56: Hydraulic and Hybrid Design Space
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user wishes to track are known as responses (in this case TOGW and SW), which are

treated as a function of the input variables (in this case subsystem weight and power

extraction) to the problem [88]. A second order polynomial model was utilized as the

form of the RSE because it is the most commonly used form in RSM [88]. Figure 59

shows an interactive sensitivity analysis environment illustrating the RSEs that were

fit. Such a plot displays the partial derivatives of the different variables and therefore

their local relationships. Similar trends to those already observed can be seen, such

as the strong almost linear relationship between TOGW and subsystem weight. Such

an interactive analysis environment enables the visualization of these partial derivi-

tatives as the values are changed as seen in Figure 60 in which the value of TOGW

was lowered, showing the partial derivatives at this different value of TOGW, which

contians similar relationships. The quality of the fit data for the RSEs is shown in

Appendix D.

Covariances and correlations between the variables, especially the subsystem im-

pacts and TOGW, must be examined. These metrics can assist in examining the

coupling by examining whether a linear relationship exists [138]. The covariances

and correlations from the 150-passenger class data are shown in Tables 5 and 6. As

can be seen, the subsystem weight and TOGW appear to be highly positively corre-

lated. It should be noted that a smaller negative correlation is shown between TOGW

and the power extraction; this is likely due to the negative coupling of the subsys-

tem weight and power demand for the modeled architectures as shown in Tables 5

and 6. This relationship is due to a trade, and Pareto frontier in the architectures

explored where more energy efficient architectures seem to be heavier due to being

hybrid architectures which have the added weight from utilizing both technologies.

Finally, the data in this experiment leads to the conclusion that the coupling

between aircraft sizing and subsystem impact exists and is significant, thus validating

Hypothesis 1. This is supported by all of the resulting trends, correlation values, and
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Figure 57: 150-Passenger Class Multivariate Plot
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Figure 58: Lower TOGW 150 Pax Designs
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Figure 59: 150-Passenger Class Interactive Sensitivity Analysis Environment

Figure 60: 150-Passenger Class Interactive Sensitivity Analysis
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Table 5: 150-Passenger Class Correlations

Subsystem Wt SW TOGW hpx max hpx avg
Subsystem Wt 1 0.96452 0.96712 -0.73426 -0.73815

SW 0.96452 1 0.99974 -0.60780 -0.61929
TOGW 0.96712 0.99974 1 -0.61088 -0.62224
hpx max -0.73426 -0.60780 -0.61088 1 0.98910
hpx avg -0.73815 -0.61929 -0.62225 0.98910 1

Table 6: 150-Passenger Class Covariance Matrix

Subsystem Wt SW TOGW hpx max hpx avg
Subsystem Wt 97298.6 1282.9 160178 -2193.1 -2203.9

SW 1282.9 18.2 2263.5 -24.8 -25.3
TOGW 160178 2263.5 281925.4 -3105.9 -3162.4
hpx max -2193.1 -24.8 -3105.9 91.7 90.7
hpx avg -2203.9 -25.3 -3162.4 90.7 91.6

range encountered in TOGW. As discussed above, the magnitude of the correlations

and covariances show a strong coupling between subsystem impacts and aircraft size,

especially subsystem weight and TOGW. The range in TOGW seen for the different

architectures establishes the significance of this coupling.

The significance of capturing this coupling is demonstrated in this experiment and

in the validation of Hypothesis 1. The capturing of this coupling within MAIA, as

demonstrated within Experiments 1 and 2, enables subsystem architecture trades dur-

ing conceptual design. Specifically, the architectures that would lead to the smallest

aircraft size can be identified.

6.1.1 Constraint Analysis

This subsection analyzes the constraints on subsystem architecture design and their

impact on the non-dimensional aircraft sizing utilizing the results from Experiment 1.

Specifically, the impact of power extraction constraints on engine and aircraft sizing is

examined. Such an analysis is motivated by capturing the impact of subsystem trades

on engine core sizing and aircraft non-dimensional sizing. If the subsystems demand
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more power than is available, the engine must be resized which, as shown in this

section, would also change the non-dimensional sizing of the aircraft. Specifically,

this would increase the T/W ratio while not impacting W/S, shifting the selected

non-dimensional design point up on a constraint diagram as shown in Figure 64. The

determination of the impact on this design point could be utilized to update the

conceptual design of the aircraft, making it more accurate and reducing unexpected

weight gains during aircraft development. The overall steps in the determination of

the subsystem power constraints and their impact on aircraft non-dimensional sizing

is shown in Figure 61.

Figure 61: Subsystem Constraint Analysis Process

The first step in examining the power extraction constraints is to determine the

available power assumed when sizing the engine. This determines the power available

line in a subsystem power constraint plot as shown in Figure 62. Then, the power

needed by the subsystems must be determined, utilizing available data and models.
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This enables determination of the power required curve, which can then be placed on

the power constraint plot as shown in Figure 62. The Subsystem Power Constraint

Diagram in Figure 62 is an example that utilizes the data from experiment 1. This

figure shows the different power extraction loads compared to the available value for

different aircraft sizes. As discussed in the section on the modeling environment,

some modeled loads, such as IFE and galley loads are determined by the number

of passengers, and therefore do not vary with TOGW (or actuation architecture).

These loads are displayed along with the actuation loads which vary with TOGW

in the modeled systems power required line. It should be noted that the variability

in this data comes from the fact that this curve was made utilizing Experiment 1

results, which include different architectures that impact the power extraction. There

is a constant line that contains the value utilized to account for unmodeled loads

as discussed in the section in the modeling environment. These combined values

determine the total required power extraction which is plotted in Figure 62. The

distance between this and the available power shows the available margin. If the

required power exceeds the available, then the engine core may need to be resized

to enable the use of the subsystems. Therefore, Figure 62 shows if and when engine

core resizing due to power extraction may be required. The margin between the

required and actual shown in Figure 62 is also a function of the selected architecture

(as some architectures demand more power than others), the TOGW (as this impacts

the required power), and subsystem noise parameters (discussed in Experiment 3a).

If the power extraction is larger than the assumed value during engine sizing,

the engine core may need to be resized to account for a reduction in thrust due

to a higher power extraction, as the required thrust would still be the same. To

examine how much additional thrust must be provided, engine analysis such as that

done in the Masters thesis by Faidi [45] could be performed. Faidi utilized NPSS

modeling to determine the impact of power extraction and bleed loads as shown in

143



Figure 63 [45]. Alternatively, similar analysis could be performed as done in the

modeling environment, where the engine and aircraft were resized due to subsystem

power demands and weight. Such an analysis could be performed to determine the

thrust loss due to the additional power extraction as shown in Figure 63 [45]. This

would enable the determination of the increase of the amount of additional thrust

that the engines would have to be resized in order to accommodate the needed power

extraction. This increase in engine size would occur for the same W/S that was

previously determined by the non-dimensional sizing of the aircraft as discussed in

Mattingly [83] and shown in Figure 64.

The non-dimensional aircraft sizing could then be updated to account for this

engine core size increase. Specifically, as shown in Figure 64, the T/W ratio would

be increased at the selected W/S. This increase is a result of the change in power

extraction increases the needed T/W ratio slightly (as the thrust would increase by the

determined amount while TOGW would be approximately the same). The amount

of increase in T/W could be determined by utilizing the updated thrust rating of the

engine and the TOGW. Such an analysis enables updating the non-dimensional size

of the aircraft, enabling more accurate aircraft sizing during conceptual design. This

could increase the accuracy of conceptual design and reduce unexpected weight gains.

6.2 Experiment 2

To review, Hypothesis 2 states the following: If the aircraft class examined is varied,

then the impact of the coupling between aircraft sizing and architecture platform-level

impacts is still significant.

For Experiment 2, the modeling environment discussed in the previous chapter

was leveraged to examine the extent of this coupling. In addition, the environment

for Experiment 1 was updated to capture 210-passenger and 300-passenger aircraft
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Figure 62: Subsystem Power Constraint Diagram

Figure 63: Thrust Impact of Power Extraction [45]
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Figure 64: Example Aircraft Constraint Diagram Adapted From [82] and [80]

in order to examine the impact of this coupling on other aircraft sizes. The Mat-

lab/Simulink modeling environment was run to determine the all hydraulic actuation

subsystem weight and power extraction values for both new aircraft sizes. The 210-

and 300-passenger classes EDS models were recalibrated utilizing these values. This

was done utilizing the existing calibration codes and capabilities within EDS. Then,

the newly calibrated and integrated environment of EDS and Matlab/Simulink was

utilized to examine the extent of the coupling between aircraft sizing and architecture

impacts for both of these passenger classes. This exploration was done utilizing the

same full factorial DOE varying each group of control surfaces (such as flaps, eleva-

tors, rudder, aileron, and landing gear) from being hydraulically powered to being

powered by EHAs utilized in Experiment 1. This DOE was run twice in Experiment

2, once for each passenger class. The converged values of metrics of interest, such

as TOGW, for each architecture and passenger class were then saved for analysis.

Finally, the results were analyzed to examine the coupling for these other passenger

class sizes.

For the 210-passenger class aircraft, Figure 65 plots the converged values of sub-

system weight against TOGW. There still appears to be an almost positive linear
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relationship between TOGW and subsystem weight. This still implies that signifi-

cant coupling exists between TOGW and subsystem weight. The difference between

the top and bottom architecture was approximately 1.4 percent of the TOGW, or

5773.1 pounds. Given that Roskam [121] states that the range to expect for the total

weight of the actuation system is approximately 0.6 to 1.2 percent of TOGW, the

difference in converged TOGW by varying this system is still significant for a 210-

passenger class aircraft. The all EHA architecture appears to be slightly outside the

overall trend as this uses a different technology.

For the 210-passenger class aircraft in Figure 67, the converged values of maximum

power extraction are plotted against TOGW. There still appears to be a slightly

negative relationship between TOGW and power extraction. This trend again exists

and is due to the particular architectures examined. Within these architectures, the

lower power extraction values occur at higher subsystem weights, as can be seen in

Figure 66. Again, the all EHA architecture seems to be outside the overall trend

in the data. Similar to the results in Experiment 1, the impact of the weight of the

subsystem dominating the impact of the power extraction creates a situation in which

lighter architectures lead to the minimum TOGW. The more efficient architectures

are hybrids, as discussed in the Experiment 1 results. It makes sense that hybrid

architectures are heavier as they have added weight from still having the hydraulic

systems and the added electrical weight from having EHAs. As discussed in the

Experiment 1 results, hybrid architectures are also more efficient, partially due to a

smaller hydraulic pump size, shifting the operating point of these systems to a higher

efficiency value as seen in Figure 52.

For the 210-passenger class aircraft, in Figure 68, the converged values of average

power extraction (inside of the power extraction map) are plotted against TOGW.

Similar to the maximum power extraction, there still appears to be somewhat of a

negative trend in this data. Lower power extraction values are at higher subsystem
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Figure 65: 210-Passenger Class Subsystem Weight

Figure 66: 210-Passenger Class Maximum Power Extraction vs Subsystem Weight
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Figure 67: 210-Passenger Class Maximum Power Extraction

weights for the examined architectures as can be seen in Figure 69. The use of all

EHAs seems to be again outside the trends of the data slightly.

Figure 68: 210-Passenger Class Average Power Extraction

Similar to the data in Experiment 1, a multivariate scatter plot is another way

to visualize these trends. Such a plot is shown in Figure 70. This plot shows trends

such as TOGW increasing with subsystem weight and power extraction decreasing

with subsystem weight. The designs shown were then filtered to the lower TOGW

designs (at or lower than 415000 lb). The filtered designs are shown in Figure 71.
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Figure 69: 210-Passenger Class Average Power Extraction vs Subsystem Weight

In Figure 71, it can be seen that the lower TOGW designs have lower subsystem

weights.

Response Surface Equations (RSEs) were fit to the data, in order to further exam-

ine and characterize the relationships between aircraft size and subsystem parameters.

As discussed in Experiment 1 Results and the Chapter on MAIA, RSM is a method

that can be utilized in the creation of such metamodels [88]. The examined responses

were again TOGW and SW, which were treated as a function of the input variables

which were again in this case subsystem weight and power extraction [88]. Similar to

Experiment 1, a second order polynomial model was utilized as the form of the RSE

because it is the most commonly used form in RSM [88]. An interactive sensitivity

analysis environment illustrating the RSEs is shown in Figure 72. To review, such a

plot displays the partial derivatives of the different variables. Similar trends to those

already observed can be seen, such as the strong almost linear relationship between

TOGW and subsystem weight. As shown in the summary of fit data in Appendix

D, the RSEs and trends shown in the interactive sensitivity analysis environment are

valid. However, because the subsystem weight has a dominating impact on TOGW

over the power extraction, its relationship is lilkely better within the RSEs, which
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the reason that the curves for power extraction appear more linear than for the

150-passenger class aircraft. However, the primary observed trend of TOGW with

subsystem weight can be seen and is consistent with the results.

Figure 70: 210-Passenger Class Multivariate Plot

Covariances and correlations between the variables must again be examined. Ta-

bles 7 and 8 shows the covariances and correlations from the 210-passenger class data.

As can be seen, the subsystem weight and TOGW again appear to be highly posi-

tively correlated. A smaller negative correlation is shown again between TOGW and

the power extraction, again likely due to the negative coupling of subsystem weight
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Figure 71: Lower TOGW 210 Pax Designs
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Figure 72: 210-Passenger Class Interactive Sensitivity Analysis Environment

and power demand for the modeled architectures.

Table 7: 210-Passenger Class Correlations

Subsystem Wt SW TOGW hpx max hpx avg
Subsystem Wt 1.0000 0.9093 0.9152 -0.6959 -0.7495

SW 0.9093 1.0000 0.9995 -0.4881 -0.5291
TOGW 0.9152 0.9995 1.0000 -0.4957 -0.5369
hpx max -0.6959 -0.4881 -0.4957 1.0000 0.9775
hpx avg -0.7495 -0.5291 -0.5369 0.9775 1.0000

Table 8: 210-Passenger Class Covariance Matrix

Subsystem Wt SW TOGW hpx max hpx avg
Subsystem Wt 388728.7 6121.6 805551.8 -14607.1 -11886.3

SW 6121.6 116.6 15235.1 -177.5 -145.3
TOGW 805551.8 15235.1 1992897.4 -23560.7 -19277.9
hpx max -14607.1 -177.5 -23560.7 1133.5 837.1
hpx avg -11886.3 -145.3 -19277.9 837.1 647.0

The data for the 210 passenger aircraft from this experiment leads to the con-

clusion that: the coupling between aircraft sizing and subsystem impact exists and
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still is significant for this passenger class of aircraft. This helps in the validation

of Hypothesis 2. As discussed above, the magnitude of the correlations and covari-

ances (especially the subsystem weight and TOGW), along with the trends in their

data demonstrate a strong coupling between subsystem impacts (especially weight)

and TOGW. The significance of this coupling for the 210-passenger class aircraft is

established by the range in TOGW seen for the different architectures.

Figure 73 contains the converged values of subsystem weight plotted against

TOGW, for the 300-passenger class aircraft. There is again an almost linear rela-

tionship between TOGW and subsystem weight. However, the all EHA architecture

appears to be outside the trend because of the use of a new technology along with

the use of EHAs on the ailerons, flaps, and landing gear likely due to the impact

of the loads on these surfaces and the fact that EHAs are heavier actuators. The

difference between the top and bottom architecture in TOGW is 8688.1 pounds, or

approximately 1.32 percent of the TOGW. The difference in converged TOGW by

varying this system is still significant for a 300-passenger class aircraft due to the fact

that, as Roskam [121] states, the range to expect for the total weight of the actuation

system is approximately 0.6 to 1.2 percent of TOGW.

The converged values of maximum power extraction are plotted against TOGW

in Figure 74, for the 300-passenger class aircraft. There still appears to be a modest

trend in this data (although this pattern is not as noticeable), and this seems to be a

slightly negative relationship between TOGW and maximum power extraction. This

may not be what engineering judgment would indicate at first glance. However, this

trend still exists and is again due to the particular architectures examined. Within

these architectures, the lower power extraction values are still at higher subsystem

weights as can be seen in Figure 75. This trend can be further be seen to be implied

in some of the results in Experiments 1 and in the correlation and covariance values

for this experiment. It should again be noted that there is one point that does not
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appear to fit the overall trend; this point is the use of all EHAs as it is based entirely

on the use of a different technology.

Figure 73: 300-Passenger Class Subsystem Weight

The converged values of the average power extraction within the power extraction

map are plotted against TOGW in Figure 76 for the 300-passenger class aircraft.

There appears to be a slight trend in this data (which again is more difficult to

discern), specifically a slightly negative relationship between TOGW and average

power extraction. Within the particular architectures examined, the lower average

power extraction values are at higher subsystem weights as can be seen in Figure 77.

There is again one point that did not appear to fit the overall trend; this point is

the use of all EHAs as it is based entirely on the use of a different technology. It

should be noted that in the larger aircraft sizes there appears to be a larger scatter

in the plotted data. This is likely due to the slightly reduced coupling as a percent

of TOGW and correlation values for larger aircraft. However, even these slightly

reduced values are still seen to be significant in this experiment.

Similar to Experiment 1 and the 210-passenger aircraft, another way to visualize

trends in the data is to utilize a multivariate scatter plot. Such a plot is shown in
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Figure 74: 300-Passenger Class Maximum Power Extraction

Figure 75: 300-Passenger Class Maximum Power Extraction vs Subsystem Weight
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Figure 76: 300-Passenger Class Average Power Extraction

Figure 77: 300-Passenger Class Average Power Extraction vs Subsystem Weight
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Figure 78 for the 300-passenger aircraft. This plot shows the same trends previously

discussed in this section for this aircraft, such as TOGW increasing with subsystem

weight and power extraction decreasing with subsystem weight. The designs within

the multivariate plot are filtered to only the designs with the lower TOGW (at or

below 657000 lb). The filtered designs are plotted in Figure 79. It can be observed

from Figure 79 that only the designs with lower subsystem weights have the lowest

TOGW values and that this is somewhat dominating the impact of power demand

on aircraft size.

Response Surface Equations (RSEs) are again fit to the data to further examine

and characterize the relationships between aircraft size and subsystem parameters.

TOGW and SW are again the examined responses which are treated as a function

of the input variables. Similar to the other aircraft sizes, second order polynomial

models are again utilized as the form of the RSEs. The RSEs are illustrated in

the interactive sensitivity analysis environment shown in Figure 80, displaying the

partial derivatives of the different variables. The linear relationship between TOGW

and subsystem weight can be seen. As seen in Appendix D, the RSEs and trends

shown in the interactive sensitivity analysis environments are valid.

The covariances and correlations from the 300-passenger class data is shown in

Tables 9 and 10. Subsystem weight and TOGW appear to be highly positively corre-

lated. A smaller negative correlation is shown again between TOGW and the power

extraction; this is again likely due to the negative coupling of subsystem weight and

power demand for the modeled architectures.

The data for the 300-passenger aircraft from this experiment leads to the con-

clusion that the coupling between aircraft sizing and subsystem impact exists and is

still significant for this passenger class of aircraft (helping to validate Hypothesis 2).

The magnitude of the correlations and covariances show a strong coupling between

subsystem impacts (especially weight) and TOGW. The range in TOGW seen for the
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Figure 78: 300-Passenger Class Multivariate Plot
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Figure 79: Lower TOGW 300 Pax Designs
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Figure 80: 300-Passenger Class Interactive Sensitivity Analysis Environment

Table 9: 300-Passenger Class Correlations

Subsystem Wt SW TOGW hpx max hpx avg
Subsystem Wt 1.00000 0.90669 0.90660 -0.73004 -0.77406

SW 0.90669 1.00000 0.99999 -0.43247 -0.48111
TOGW 0.90660 0.99999 1.00000 -0.43243 -0.48099
hpx max -0.73004 -0.43247 -0.43243 1.00000 0.98580
hpx avg -0.77406 -0.48111 -0.48099 0.98580 1.00000

Table 10: 300-Passenger Class Covariance Matrix

Subsystem Wt SW TOGW hpx max hpx avg
Subsystem Wt 587743.6 9739.5 1219344.2 -29924.7 -24537.9

SW 9739.5 196.3 24581.0 -324.0 -278.7
TOGW 1219344.2 24581.0 3077750.8 -40562.0 -34891.5
hpx max -29924.7 -324.0 -40562.0 2858.8 2179.4
hpx avg -24537.9 -278.7 -34891.5 2179.4 1709.8

different architectures as discussed establishes the significance of this coupling for the

300-passenger class aircraft.
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As previously discussed in this section, the data for the 210 and 300 passenger air-

craft from this experiment leads to the conclusion that the coupling between aircraft

sizing and subsystem impact exists and is still significant for these additional passen-

ger classes of aircraft (validating Hypothesis 2). Experiments 1 and 2 demonstrate

the significance of this coupling and the capturing of this coupling.

It should be noted that the all EHA architecture is found to be deterministically

the best architecture for all three aircraft sizes. However, this architecture is unlikely

to be the most robust of the top architectures for any of the aircraft sizes as hydraulics

have been much more widely utilized than have EHAs. In fact, the all-EHA case is

seen to be the least robust of the top architectures for the baseline aircraft size in the

next experiment.

6.3 Experiment 3a

To review, Hypothesis 3a states the following: If distributions characterizing noise

variables within aircraft subsystem architecture trades are utilized in the subsystem

modeling and simulation environment, then a robust selection of the subsystem ar-

chitecture design can be performed.

Experiment 3a utilized the physics-based modeling of aircraft internal subsystem

architectures for the selected test configuration of an aircraft integrated with a sizing

and synthesis algorithm made for Experiment 1. In experiment 3a, this modeling and

simulation environment is used to quantify the robustness of the resulting designs

when the top three subsystem architectures are utilized. As this experiments charac-

terizes robustness, a discussion of the design and noise variables is necessary before

discussing the results of the analysis.

This experiment is examines the determination of which subsystem architecture

leads to the most robust design, in this case, where the most robust design has the

best SNR of TOGW (the response). The selection of the architecture is the design
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variable in the robust design study that attempts to find an architecture that leads to

the most robust system design to sources of uncertainty. Due to the computational

expense of the probabilistic analysis, this examination was limited to the top three

candidate architectures. The architectures selected within this test were identified as

the top candidates from running the DOE on the modeling and simulation environ-

ment as described in Experiment 1. These top candidate architectures have the lowest

deterministic values of TOGW due to the impact of this metric. These candidates

were the use of all EHAs (shown in Figure 26), the use of all hydraulic actuation

(shown in Figure 25), and a hybrid system in which the elevators were powered by

EHAs and the rest of the flight control system was powered by hydraulic actuators as

seen in Figure 81. (It should be noted that these figures utilize an aircraft diagram

from [31].)
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Figure 81: Top Hybrid Architecture adapted from [31]

To capture the uncertainty, probability distributions were applied on noise pa-

rameters within the subsystem modeling environment, such as the exact values of
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efficiencies and weights. Specifically, Bayesian (subjective) distributions were utilized

because such distributions can capture more than one type of uncertainty (including

epistemic and aleatory) [114]. Distributions were created based on available informa-

tion in literature, expert opinion, and engineering judgment. These distributions were

determined for specific selected parameters and applied to these parameters in the

modeling and simulation environment to enable determination of the impact of these

distributions on the response of TOGW. The parameters were selected by engineering

judgment after examining the available parameters in the modeling and simulation

environment, their uncertainty, and system impacts. The selected variables can be

seen in Table 11. EHA actuator weight was selected because of epistemic uncertainty

in this parameter, partially due to technological uncertainty as EHAs are not widely

utilized. The hydraulic actuator weight was selected due to epistemic uncertainty on

the exact value of this parameter because of the fact this analysis is being performed

during an early design phase. The motor and generator efficiencies were also selected

as these parameters were treated as constants in the modeling environment with the

exact true values of these efficiencies having epistemic uncertainty on this value due

to the fact that these values are unknown in an early design phase and the impact on

this efficiency (within its range) of varying the size of the motor and generator is not

captured. Uncertainty in the wire weight was examined due to epistemic uncertainty

coming from the determination of the exact impact of utilizing EHAs on this value

and neglected certain contributions to this value such as fittings. The engine driven

pump weight was also treated as a noise parameter due to epistemic uncertainty in

this value for hybrid architectures, where there is uncertainty on the impact of the

pump re-sizing due to switching some surfaces to being powered by EHAs on this

parameter.

The selected Bayesian distributions can be seen in Table 12. The distributions
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were created based on the cited sources and engineering judgment with the excep-

tion of the actuator weight ranges. The actuator weight distributions were determined

based on the noted sources, data supplied by experts from the Parker Hannifin Corpo-

ration Aerospace Group, and engineering judgment. Specifically, the expert-supplied

actuator weight ranges were increased to account for technological uncertainty (espe-

cially on the EHAs as the use of EHAs is much less developed than hydraulic actua-

tors). It should be noted that these distributions were placed only on the architecture

applicable to them. For example, the hydraulic actuator weight distribution was not

placed on the all-EHA architecture. Specifically, the following noise parameters were

utilized in the all EHA-architecture: wire weight, generator efficiency, EHA weight,

and motor efficiency. The following noise parameters were used for the all-hydraulic

architecture: generator efficiency, hydraulic actuator weight, and motor efficiency. Fi-

nally, the following noise parameters were captured for the hybrid architecture: wire

weight, generator efficiency, hydraulic actuator weight, EHA weight, engine driven

pump weight, and motor efficiency.

These Bayesian distributions capture technological uncertainty, epistemic uncer-

tainty due to the design phase and available data, and uncertainty in the true exact

value of some parameters treated as constants in the modeling environment. The

engine-driven pump weight was treated as a weight per capacity of lb/gpm and was

examined due to uncertainty in knowledge of the value of this parameter as the pump

was varying in size. A Bayesian distribution for this value was created based on the

range in this value encountered in engine-driven pumps in [137] and engineering judg-

ment to capture this uncertainty. The weight of the EHA and hydraulic actuators

were modeled as a mass per capacity in terms of kg/KN. The values of the EHA and

hydraulic weight were examined as noise variables due to uncertainty in knowledge of

the exact value of the weight, as discussed above. The possible range for these param-

eters used to define the Bayesian distribution was based on data supplied by experts
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from the Parker Hannifin Corporation Aerospace Group. For the EHA, the range of

this distribution was widened to account for technological uncertainty utilizing engi-

neering judgment, as this was a less developed and less frequently utilized technology.

As discussed above, the generator efficiency is treated as a constant within the mod-

eling environment, and there is epistemic uncertainty on this parameter. The range

for the selected Bayesian distribution to capture the epistemic uncertainty on this

parameter was based on the range encountered within a generator efficiency curve in

Armstrong’s dissertation [21] and engineering judgment. The electric motor efficiency

was also treated as a constant within the model and had epistemic uncertainty, as

discussed above. As a result of a lack of knowledge of the exact value of the motor

efficiency, this was also treated as a noise parameter with its range based on operating

ranges of electric motors within [3] and on engineering judgment. As discussed above,

due to uncertainty in its exact value and neglected contributions such as fittings, the

wire weight was also treated as a noise parameter. The range for this parameter was

based on engineering judgment and the factor found in [116] to account for neglected

components such as fittings for hydraulic lines.

Table 11: Selected Variables

Variable Reason
wire weight factor neglected contributions, uncertainty in knowledge

electric motor efficiency treated as constant in model
generator efficiency treated as constant in model

hydraulic actuator weight uncertainty in knowledge
EHA weight uncertainty in knowledge

engine driven pump weight uncertainty in knowledge

Ranges on the selected parameters were determined by the creation of these distri-

butions. These ranges were then leveraged to create a DOE to explore the subsystem

modeling environment. This DOE had a full factorial of all the end points of the de-

fined ranges applicable to each architecture. The ranges came from the distributions
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Table 12: Selected Distributions

Variable Distribution and Source for Values
wire weight factor uniform, 1 to 1.2 [116]

electric motor efficiency uniform, 0.8 to 0.98 [3]
generator efficiency uniform, 0.8 to 0.95 [21]

hydraulic actuator weight uniform, 0.0976 Kg/kN to 0.45 [93]
EHA weight uniform, 0.16 to 1.34 Kg/KN [99] and [112] and [47]

engine driven pump weight uniform, 0.34 to 0.73 lb/gpm [137]

except TOGW and SW ranges, which were defined by taking the range seen in Ex-

periment 1 and increasing it as needed to ensure a valid range, and a latin hypercube

to capture the interior points. Such a DOE was run for each candidate architecture.

The resulting data was used for two purposes: first, to define ranges to make a similar

DOE for EDS, and second to attempt to fit surrogate models to the data to enable

the number of runs required. Due to the successful previous use of ANNs on EDS

[69] and [70] and the likely non-linearity of the data, ANNs were utilized to attempt

to create surrogate models. ANNs were fit to the subsystem weight (used in EDS),

the power extraction map (used in EDS), the average power extraction map value

(not used in EDS), the maximum power extraction value (not used in EDS), and the

minimum power extraction value (not used in EDS). The summary of fit data for

these ANNs can be seen in Appendices A,B, and C. It can be seen that these fits are

are reasonable. These metamodels made the run time of MCS cases feasible as it was

determined that the runtime to utilize the integrated environment without surrogates

was infeasible.

Utilizing the ranges of the data obtained from running the DOEs on Matlab/Simulink,

ranges were determined for the inputs to EDS. These ranges were utilized to create

a DOE that was run on EDS. Then, the resulting data was utilized to create ANNs

of EDS. The summary of fit data is shown in Figures 82 and 83. In the summary of

fit data, it is desirable to have a R-squared as close to 1 as possible, a close to linear

actual by predicted plot, a random scatter of the residual, and small values for MFE
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and MRE. The plots below utilize the residual as the definition of error and are fits

of the natural logarithm of the responses as this transformation was seen to improve

the quality of the fit. As can be seen, the quality of this fits appears sufficient for

use, enabling MCS runs of the modeling environment.

Figure 82: EDS ANN fit Data for TOGW

After applying the distributions and creating metamodels, Monte Carlo Simulation

(MCS) was run on the metamodels of the integrated modeling environment, pulling

variables out of the probability distributions but holding the architecture constant for

10000 cases per architecture. Then, the additional cases of other architectures were

run. Multivariate plots of the resulting data and the correlation values are shown in

Figures 84 and 85, respectively, for the all-EHA architecture. The designs within the

multivariate plot were then filtered to include only designs that had a TOGW less

than 175,000 lb. The filtered data is shown in Figure 86. It can be seen from this
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Figure 83: EDS ANN fit Data for Wing Area
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figure that to achieve the lower TOGW values, the lower EHA and subsystem weights

must be achieved. Multivariate plots of the resulting data and the correlation values

can be seen in Figures 87 and 88, respectively, for all hydraulic actuation. The designs

within this multivariate plot were again filtered to only include designs with a TOGW

less than 175,000 lb. The filtered designs can be seen in Figure 89 where it can be

observed that for the lower TOGW designs to be achievable for this architecture, the

lower values of actuator weight must be achieved. Multivariate plots of the resulting

data and the correlation values can be seen in Figures 90 and 91, respectively, for

the case in which the elevator is powered by EHAs. Again, the designs within the

multivariate plot were filtered to contain only designs with TOGW values lower than

175,000 lb. These filtered designs are shown in Figure 92, in which it can be observed

that there are fewer designs left after the filtering because this architecture has a

higher deterministic TOGW. It can be also observed that the lower TOGW designs

again have the lower values for their weight-related parameters. By examining all

of the architectures, it can be seen that the parameters related to subsystem weight

(especially the actuator weights) are highly correlated with the TOGW, and those

parameters may have the largest impact on the distribution of TOGW. This concept

is explored further in Experiment 3b. It can also be seen in the results that the

generator efficiency is negatively correlated with power extraction. This trend is

logical as a more efficient system would demand less power. The data points from

all 30000 cases were next used to determine the robustness of the architectures using

SNR as described in the next subsection.

To further examine and characterize the relationships between the response(s) and

the noise variables, Response Surface Equations (RSEs) were fit to the data for the

different architectures. A second order polynomial model was again utilized as this is

the form of the RSE as it is the most commonly used form in RSM [88]. Figures 93, 94,

and 95 show interactive sensitivity analysis environments illustrating the RSEs that
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Figure 84: EHA Multivariate Plot
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Figure 85: EHA Correlations

were fit for the hybrid, hydraulic, and EHA architectures respectively. As a reminder,

such a plot displays the partial derivatives of the different variables. Similar trends

to those already observed can be seen in these figures such as the strong, almost

linear, relationship between TOGW and subsystem weight. It can be seen in these

plots that the weight-related parameters, especially of the dominant actuator within

the examined architecture, have a strong impact on aircraft size (TOGW). Generator

efficiency can also be seen to have a strong impact on power extraction. As seen

in Appendix D, which contains information illustrating the quality of these fits for

the different responses, the quality of these fits is acceptable for analysis. The figures

shown in Appendix D demonstrate that the RSEs and trends shown in the interactive

sensitivity analysis environments are valid.

Then, the robustness of the different designs were compared, using the robustness

of different parameters such as TOGW, utilizing a metric such as SNR. Finally, the

robustness of these designs were then used to select the top architecture as discussed in

the next subsection. The determination of the SNR for parameters, such as TOGW,
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Figure 86: Lower TOGW EHA Designs
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Figure 87: Hydraulic Multivariate Plot
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Figure 88: Hydraulic Correlations

demonstrates that the robustness of the designs can be quantified.

6.4 Architecture Selection

The top three architectures were examined in Experiment 3a. They were selected

as top candidates based on their having the best deterministic TOGW. TOGW was

utilized due to the importance of this metric. In Experiment 3a, the uncertainty of

top architectures was examined to determine the robustness of their resulting designs.

The metric SNR was utilized to quantify their robustness on TOGW due to the

impact of this metric. As was discussed in the MAIA description of this step, the

SNR definition shown in equation (29) was utilized because of the desire to minimize

redesign work due to deviation from the deterministic TOGW target.

According to [88], [111], [48], and [138]:

SNR = −10log((µ2)/σ2) (29)

The resulting SNRs can be seen in Table 13. The design with the best SNR was

the use of a hybrid architecture with almost all hydraulic actuation and EHAs utilized

176



Figure 89: Lower TOGW Hydraulic Designs
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Figure 90: Hybrid Multivariate Plot

178



Figure 91: Hybrid Correlations

on the elevator. This result is probably due to the fact that it utilizes mostly hydraulic

actuation, a currently existing and utilized technology instead of a new technology,

and the fact that it was one of the top three candidates that had the lowest TOGW.

As a result, for this case study it is recommended to utilize the hybrid architecture

that contains EHAs on the elevator only for the most robust actuation system design.

It should be noted that the all-EHA architecture is seen to be the least robust. This

is to be expected as it is a less utilized and less developed technology than hydraulic

actuation, with more uncertainty in its weight and performance.

Table 13: Design Robustness

Design SNR
Hydraulic -4.240

EHA -3.759
Hybrid -4.255

Experiment 3a demonstrated examination of the robustness of the different archi-

tectures and robust architecture selection utilizing MAIA. This shows that inherent
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Figure 92: Low TOGW Hybrid Designs
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Figure 93: Hybrid Architecture Interactive Sensitivity Analysis Environment

uncertainty can be captured in subsystem architecture trades using probability dis-

tributions on the noise variables and Monte Carlo simulation. The examination of

design robustness within MAIA enables the selection of robust subsystem designs

that may reduce unexpected weight gains.

6.5 Experiment 3b

To review, Hypothesis 3b states the following: If a Bayesian Network is created to

represent the impact of the uncertainty in the subsystem architectures characteristics

on aircraft sizing, then the variables with the largest impacts can be identified.

Experiment 3b leveraged the data created from running the modeling environ-

ment for the top architecture(s) created for Experiment 3a. A Bayesian Network was

created that had nodes for each source of uncertainty and TOGW and one connec-

tion from each source to TOGW in the BNT toolbox for Matlab [96]. The Bayesian
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Figure 94: Hydraulic Architecture Interactive Sensitivity Analysis Environment
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Figure 95: EHA Architecture Interactive Sensitivity Analysis Environment
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Network was fit to a discretized form of the data from Experiment 3a for the top

architecture. The utilized Bayesian Network structure can be seen in Figure 96. The

strength of the connections were determined as discussed in [41]. The strengths of

the links can be seen in Table 14. There are two strengths calculated and shown as

discussed in [41]. The variables with the largest impacts are those that should have

the strongest connections. It can be seen that there is a meaningful link strength in

all the connections, a result which is to be expected, and that the strongest links are

the weight related links which is consistent with the covariance/correlations between

the variables and trends in the Monte Carlo data as shown in Experiment 3a. This is

also compared to the use of an ANOVA as shown in Figure 98. Figure 98 shows that

the weight-related parameters, especially the weight of hydraulic actuators have a sig-

nificant impact on TOGW. This cross-referencing enables a validation of the results,

which, in turn, validate the hypothesis. The identification of the larger correlation

values match fairly closely the variables determined by examining the strength of the

links, validating the result. The fact that the result is equivalent to other current

methods makes the use of Bayesian Networks for such an analysis feasible and desir-

able due to additional predictive analysis during development of the subsystems. The

network structure that may best fit the data was explored to gain additional insight

using a Markov Chain Monte Carlo algorithm contained within the BNT toolbox [96].

The resulting structure has only one link that connects the variable with the largest

impact (hydraulic actuator weight) and TOGW. This Bayesian Network structure is

shown in Figure 97. The variable with the largest impact is hydraulic actuator weight,

and if this architecture is to be developed, this variable should be investigated further

to minimize the variance of TOGW. The results that determine, which parameters

are the driving parameters are also consistent with the ANOVA results. Experiment

3b demonstrated that, utilizing Bayesian Networks, the designer can identify which of

the noise variables had the strongest connection with the response. The demonstrated
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feasibility of the use of Bayesian Networks for examining the connections between the

noise and response variables enables their creation and use for such a purpose. This

enables a possible reduction of the impact of the uncertainty for a selected design.

As discussed in the chapter on uncertainty, these Bayesian Networks can then be

utilized within the design process for useful additional analysis, including predictive

analysis, which is enabled by the creation and use of these Bayesian Networks which

is demonstrated to be feasible by this experiment.

Figure 96: Hybrid Bayesian Network Structure
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Figure 97: Optimized Hybrid Bayesian Network Structure
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Figure 98: Hybrid ANOVA
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Table 14: Bayesian Network Link Strengths

Noise Variable Strength True Average Strength Blind Average
Wire Wt 59.3 68.6

Generator Eff 60.5 69.2
Hydraulic Wt 62.8 70.0

EHA Wt 62.9 68.6
Pump Wt 60.9 68.9
Motor Eff 59.9 68.3

6.6 The Overarching Experiment

To review, the Overarching Hypothesis states the following: Capturing of the

coupling between aircraft sizing and subsystem architecture impacts and exploring

the architecture design space enables a significantly better architecture selection than

a point-driven design.

The first step of the Overarching Experiment was to create the required modeling

environment to perform the steps in MAIA. This required the creation of physics-

based models of aircraft internal subsystems for the selected example configuration of

an aircraft. These models were made able to capture the impact of varying the selected

subsystem architectures. This modeling environment includes a sizing calculation

for the systems and their components. Then these models were integrated with a

sizing and synthesis algorithm. For each design examined, the platform and system-

level impacts were demonstrated in the converged values of the outputs such as the

power extraction and TOGW. Once this environment was created, the next step

was to explore the architecture design space for the test case utilizing the proposed

methodology. This exploration was done utilizing a full factorial DOE, varying each

group of control surfaces (flaps, elevators, rudder, aileron, landing gear, for example)

from being hydraulically powered to being powered by EHAs as described in the

test case section. This DOE was also utilized in Experiment 1. After the DOE

was run, the significance of the use of MAIA over a point design was then explored.
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It was seen in Experiments 1 and 2 that the coupling between aircraft sizing and

subsystem architecture impacts was significant and necessary to capture. Examining

the range in TOGW between the top and bottom architecture as in Experiment

1 shows that this coupling is important to capture and that the worst point design

encountered in merely varying the actuation systems has a TOGW that is 2627 pounds

heavier than the best architecture, or approximately 1.51 percent of the TOGW.

Given that Roskam [121] states that the range to expect for the total weight of the

actuation system is approximately 0.6 to 1.2 percent of TOGW, the difference in

converged TOGW by varying this system is significant, and therefore the selection

of a point design without exploration of the design space can be significantly inferior

to one that is selected by exploring the design space while capturing the coupling

between aircraft sizing and subsystem architecture impacts. This demonstrates the

Overarching Hypothesis.

The existence of the coupling between aircraft sizing and subsystem architecture

impacts and the significance of this coupling was demonstrated in Experiments 0,

1, and 2. Capturing of this coupling and exploration of the subsystem architec-

ture design space utilizing MAIA was demonstrated in the experiments including the

Overarching Experiment. Such design space exploration, which utilizes MAIA while

capturing this coupling, was shown to represent a significant improvement over the

use of a point design selected without exploring the design space or capturing this

coupling between aircraft sizing and subsystem architecture impacts.
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CHAPTER VII

CONCLUSIONS

7.1 Summary of Results

Experiment 1 examined the existence and the significance of the coupling between

aircraft sizing and subsystem architecture platform-level impacts as discussed in Re-

search Question 1 and Hypothesis 1, which are repeated below.

Research Question 1: What is the magnitude of the coupling between the

subsystem architectures platform-level impacts and aircraft size?

Hypothesis 1: If the impact of the coupling between aircraft sizing and archi-

tecture impacts is quantified, then this coupling will be found to be significant.

To determine the significance of the coupling, it was first necessary to create the

integrated modeling and simulation environment that could capture this coupling.

This environment utilized the subsystem models integrated with aircraft sizing and

synthesis algorithms as discussed in the section discussing the modeling environment.

Experiment 1 demonstrated that the coupling between aircraft sizing and ar-

chitecture impacts exists and is significant for the baseline aircraft size, validating

Hypothesis 1. This could be seen in the examined trends within the results, the

magnitude of the impact on TOGW, and correlation values characterizing the cou-

pling, especially between subsystem weight and TOGW. In fact, it can be seen that

within the examined ranges, subsystem weight has a dominating impact over power

extraction on TOGW. This implies that the use of lighter but less efficient subsystems

would lead to a smaller aircraft size.

Experiment 2 examined the coupling between aircraft sizing and subsystem platform-

level impacts for other aircraft passenger class sizes as discussed in Research Question
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2 and Hypothesis 2.

Research Question 2: What is the impact of varying aircraft passenger class on

the magnitude of the coupling between the platform-level impacts of the subsystem

architecture and aircraft sizing?

Hypothesis 2: If the aircraft class examined is varied, then the impact of the

coupling between aircraft sizing and architecture platform-level impacts is still signif-

icant.

Experiment 2 showed that the coupling is still significant for other aircraft pas-

senger classes, validating Hypothesis 2. This can be seen in the observed trends,

correlation values characterizing this coupling, and the impact on TOGW. It can be

observed that the coupling and impact of the coupling is still significant for other

passenger classes, and the subsystem weight again seems to have more impact on

TOGW than power extraction within the examined variable ranges.

Experiment 3a examined Research Question 3a and Hypothesis 3a. Specifically,

Experiment 3a examined the identification of a subsystem architecture that would

lead to a robust design the sources of uncertainty.

Research Question 3a: How can the uncertainty inherent in the impacts of

subsystem architectures be examined in subsystem architecture trades to inspect the

robustness of the resulting designs?

Hypothesis 3a: If distributions characterizing noise variables within aircraft

subsystem architecture trades are utilized in the subsystem modeling and simulation

environment, then a robust selection of the subsystem architecture design can be

performed.

Experiment 3a demonstrated the capturing of noise variables, utilizing Bayesian

distributions, placed on the variables within the modeling and simulation environ-

ment. Monte Carlo simulation was then utilized to propagate the impact of the noise

variables to the distribution of TOGW for each architecture examined. This enabled
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the computation of SNR of TOGW, for each of the examined architectures, which

was then utilized to select the desired robust architecture, validating Hypothesis 3a.

Experiment 3b examined the determination of the noise variables with the largest

impact on the response (TOGW) utilizing Bayesian Networks as discussed in Re-

search Question 3b and Hypothesis 3b. Bayesian Networks were examined due to the

additional analysis enabled during development of the subsystems by the creation of

such networks.

Research Question 3b: How can the primary sources of uncertainty in the

platform-level impacts of the selected subsystem architecture be identified?

Hypothesis 3b: If a Bayesian Network is created to represent the impact of the

uncertainty in the subsystem architecture’s characteristics on aircraft sizing, then the

variables with the largest impacts can be identified.

A Bayesian Network was fit to the probabilistic data created in Experiment 3a for

the top candidate architecture in order to identify which sources of uncertainty were

driving the TOGW, for the selected architecture. Such an identification would enable

further analysis that could reduce unexpected weight gains during development. The

link strength between nodes representing the noise variables and the response were

determined and cross-referenced with other analyses. The network structure that

best fit the data was explored for further insight. By examining this analysis and

the link strength values, it was identified that weight related parameters especially

the actuator weight had the largest impact on TOGW. The identification of which

noise variables were driving the variability of the response validated Hypothesis 3b

and enabled the use of Bayesian Networks for such an analysis.

The Overarching Research Question and the Overarching Experiment are derived

from the desire to create a methodology that improves the current State of the Art

(SOA).
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Overarching Research Question: How does the proposed Methodology com-

pare to the current SOA?

Overarching Hypothesis: Capturing of the coupling between aircraft sizing and

subsystem architecture impacts and exploring the architecture design space enables

a significantly better architecture selection than a point-driven design.

The Overarching Experiment examined the use of MAIA on the baseline aircraft

size to explore the architecture design space and to capture the coupling between

subsystem impacts and aircraft sizing. The coupling and design space exploration

were found to provide a significant improvement in TOGW over the selection of a

point design, validating Hypothesis 0.

As a reminder to the reader, the Research Objective was to create a methodol-

ogy for subsystem architecture trades as described below. The related Motivating

Research Question asked how such an objective could be achieved, as listed below.

Research Objective: To create and examine a methodology for capturing sub-

system architecture trades and their coupling with aircraft sizing.

Motivating Research Question: How can the objective of creating and exam-

ining a methodology for capturing subsystem architecture trades and their coupling

with aircraft sizing be achieved?

As was demonstrated by the analysis of the first two experiments, MAIA cap-

tured subsystem architecture trades and their coupling with aircraft sizing. The

importance of capturing this coupling is also demonstrated in Experiments 1 and 2.

Experiment 3a demonstrates that MAIA not only captures coupling between aircraft

sizing and subsystem architecture platform-level impacts but also enables a robust

selection of the design. MAIA represents a significant step forward in aircraft subsys-

tem conceptual architecting. Because MAIA enables subsystem architecture trades

while capturing the coupling, creation and examination of MAIA meets the Research

Objective.
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7.2 Impacts of Findings

MAIA represents a significant improvement over current industry practices of sub-

system architecture selection, as industry currently utilizes a traditional point design

of the architecture without exploring other possible architectures, as examined in the

Overarching Experiment. MAIA captures coupling of the impact of this architec-

ture and aircraft sizing and explores the subsystem architecture design space. The

capturing of this coupling enables subsystem architecture trades during conceptual

design. The first experiment demonstrated that the coupling between aircraft siz-

ing and subsystem architecture impacts exists and is significant to capture for the

baseline aircraft. This was seen in the examined trends, correlation values, and the

magnitude of the impact on TOGW. This coupling was seen to be still significant for

other passenger classes of aircraft in the second experiment. The continued impor-

tance of capturing this coupling for other aircraft sizes was seen in the correlations

characterizing this coupling and the magnitude of the impact on TOGW. This leads

to the conclusion that for all aircraft sizes examined, this coupling is significant and

must be captured to enable aircraft subsystem conceptual architecting. In further

examining this coupling, for the ranges considered, the subsystem weight seemed to

have a dominating impact over the power extraction on the TOGW. This can be

seen in the correlation values and trends of subsystem weight, power extraction, and

TOGW examined in Experiments 1 and 2. It was also seen by the plots of subsystem

weight against power extraction that within the examined architectures, the more

energy efficient architectures were heavier overall in all of the examined aircraft sizes.

For the examined architectures overall, use of the lighter architectures that were less

efficient may lead to a lower TOGW. The strong and significant coupling of aircraft

sizing and subsystem architecture impacts was demonstrated along with a method

utilizing modeling and simulation to capture this coupling, enabling subsystem con-

ceptual architecting trades.
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Examination of the robustness of the different architectures and robust architec-

ture selection was demonstrated in Experiment 3a. The probabilistic analysis in the

third experiment demonstrated that the inherent uncertainty can be captured in sub-

system architecture trades by the creation and use of the Bayesian distributions. This

capturing enables a robust selection of the desired architecture as was demonstrated

by selection of an architecture utilizing SNR of TOGW in Experiment 3a. It should

be noted that the heavier architectures out of the top three considered (due to having

the lowest deterministic TOGW) had the best SNR for TOGW. This was due to

the use of hydraulic actuation primarily and not EHAs which have more uncertain

characteristics because they are a newer and a less frequently used technology. The

determination of SNR for the top architectures enabled the selection of a robust sub-

system architecture design. This enables the selection of robust subsystem designs

that may reduce unexpected weight gains.

The use of Bayesian Networks in Experiment 3b enabled the identification of which

of the noise variables had the strongest connection with the response as was seen by

the use of such an analysis within the experiment. This enables the designer to

identify which noise variables are driving the response, as was demonstrated by such

a determination within Experiment 3b. This, in turn, enables the identification and

investigation of noise parameters in order to reduce the variability of the response.

As discussed, in the Chapter on uncertainty, the use of Bayesian Networks enables

additional analysis over the use of traditional techniques, including predictive analysis

during subsystem development. All of these experiments were demonstrations of parts

of MAIA, going from generating and evaluating architectures to a robust architecture

selection.

MAIA represents a significant improvement over current industry practices of sub-

system architecture selection as seen in the Overarching Experiment. MAIA enables

the capturing of the coupling of the impact of this architecture and aircraft sizing,
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which was seen to have a significant impact in Experiments 1 and 2. This coupling

was shown to be important to capture for different aircraft passenger classes. As a

result, this coupling must be captured to enable true energy optimized aircraft sub-

system architectures. MAIA represents a significant step towards the development of

robust aircraft subsystem conceptual architecting. The ability to examine the robust-

ness of the different architectures and robust architecture selection was demonstrated

in Experiment 3a. In addition, the ability to determine which sources of uncertainty

are having the largest impact was demonstrated in Experiment 3b. This enables the

identification of specific sources of uncertainty that should be further explored for the

development of a design.

7.3 Future Work

The explored architecture design space represents only a portion of the total architec-

ture design space. In the future, models can be developed and added to those created

for this work to enable exploration of the entire architecture design space. This would

enable a truly energy optimized aircraft and enable even greater improvements than

those seen due to the additional impact of examining different subsystems. Also, the

route network used for routing the wires and hydraulic lines along with some of the

other possible changes to the subsystem architecture were held fixed during the proof

of concept study. Further study should be done into route network and component

placement optimization as part of subsystem architecture analysis.

Exploration of a larger design space would require a narrowing down of that design

space to a feasible number of alternatives to evaluate. There are several ways such

a design space reduction can be achieved. Further research into the best means of

achieving this design space reduction for aircraft subsystems should be considered.

Some alternatives to help with narrowing the design space include the use of MADM

different techniques, expert opinion, and constraints to filter out any architecture that
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does not meet the given set of requirements.

The impacts of requirements on the subsystem architecture design space and al-

ternatives need to be examined further. Such requirements may only be partially

known at even the platform level during a conceptual stage. All of the available re-

quirements need to be identified and brought down to the system level, perhaps using

concepts from Armstrong’s Master’s thesis [20]. The process of identification of these

requirements and their impacts earlier in design needs to be studied further to enable

better identification of the feasible design space.

The reliability of these subsystem architectures is a possible metric not consid-

ered in this work. Accurate means of determining this reliability and its relative

importance to the aircraft sizing impacts should be examined in the future.

Other types of correlation values, such as Browning Distance Covariance [128],

should be further evaluated to determine when they may be useful for considering

the relative contributions of different noise variables to the SNR of TOGW. Perhaps

these types of correlation values could be utilized along with the Bayesian Network

analysis examined in this dissertation to provide additional insight to the designer.

Finally, the subsystem modeling environment utilized duty cycles for the control

surfaces with sharp corners, as smooth curves could only be captured with a small

time step which would have made the computational time infeasible. To account for

this, limits were placed on the piston velocity and acceleration and average power

extraction values for different altitudes were utilized. In the future, it is desirable to

make the subsystem models more accurate by using smooth duty cycles captured by

a smaller time step. To accomplish this, ways must be found to significantly reduce

the computational time required by a smaller time step.
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7.4 Concluding Thoughts

This dissertation demonstrated the need for a new methodology for conceptual aircraft

subsystem architecture trades. Different approaches for previous examinations of

this problem and related issues were discussed and found to traditionally rely on

the use of a point design for the subsystem architecture that is selected without

exploring other architectures. In this dissertation, a new approach in the form of

MAIA was recommended and explored. MAIA enables subsystem architecture trades

during conceptual design. MAIA utilizes conceptual physics-based modeling of the

subsystem architecture impacts on the system and platform levels and integrates these

impacts with a sizing and synthesis code. This enables capturing of the coupling

between aircraft sizing and subsystem architecture impacts. The significance of these

impacts was studied and demonstrated to be important to capture for different aircraft

sizes. This coupling is not currently studied or captured in development and selection

of aircraft subsystems. The capturing of this coupling enables essential subsystem

architecture trades that have a significant impact on aircraft TOGW.

MAIA also captures uncertainty on parameters within the subsystem architecture

trades. This enables determination of the robustness of the designs to these sources of

uncertainty. The quantification of this robustness enables robust aircraft subsystem

architecture selection. Such a selection enables selection of architectures that are

less prone to weight changes further down the design process. A robust selection of

architectures should help reduce occurrences of weight growth while developing and

integrating subsystems as was seen in the Boeing 787 [6]. This could enable faster

and cheaper development of aircraft due to a reduction in redesign work due to the

weight growth of subsystems.

The importance of capturing the coupling between subsystem architecture im-

pacts and aircraft sizing was explored and found to be significant. The importance of

subsystem architecture trades especially early in design was also established. MAIA
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demonstrated a methodology for exploring the subsystem architecture design space,

identifying the architectures that would lead to the smallest aircraft size, and selec-

tion and analysis of the most robust of the lighter architectures. Such an analysis

and selection enables more accurate and desirable aircraft subsystem architecture

selections.

199



APPENDIX A

SUMMARY OF FIT DATA FOR EHA ANN

Summaries of fit data for the ANNs of the Matlab/Simulink environment for the all

EHA architecture are shown in Figures 99, 100, 101, 102, 103, 104, 105, 106, 107,

and 108. In the summary of fit data, it is desirable to have an R-squared as close

to 1 as possible, a close to linear actual by predicted plot, a random scatter of the

residual, relatively small residual values, and small values for MFE and MRE. The

below plots utilize the residual as the definition of error. It can be seen that these fits

are very good fits. The actual by predicted plots are almost linear, the magnitudes

of the mean and standard deviations were small, the magnitude of the residuals was

very small, and the R-squared values were close to 1. Any patterns in the residual

that exist were determined to be insignificant because the magnitude of the residual

was very small. As a result, these ANNs were utilized as surrogate models for the

Matlab/Simulink EHA model to enable probabilistic analysis. It should be noted

that these ANNs were used with ANNs of EDS for the probabilistic analysis. The

ANNs of EDS were also seen to be reasonable fits as shown in the discussion of the

implementation of Experiment 3a.
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Figure 99: ANN fit Data for Subsystem Weight

Figure 99 shows the summary of fit data for the subsystem weight. Specifically,

this subsystem weight value is one of the outputs of the Matlab/Simulink environment

and in this case is the weight of the EHAs and the increased wiring and generator

weight due to switching to EHAs. This can be seen to be a very good fit, with

R-squared values of 1.
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Figure 100: ANN fit Data for Maximum Power Extraction

The power extraction map is an important output of the Matlab/Simulink envi-

ronment. This map captures the required power extraction to power the modeled

systems. Figure 100 shows the quality of fit data for an ANN of the maximum value

of this power extraction. This again is a good fit, with R-squared values of 1.
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Figure 101: ANN fit Data for Minimum Power Extraction

Figure 101 shows the quality of fit information for an ANN fit of the minimum

power extraction from the calculated power extraction map. This ANN can be seen

to again be a very good fit, with an R-squared of 1.
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Figure 102: ANN fit Data for Average Power Extraction

The summary of the ANN fit of the average power extraction within the power

extraction map can be found in Figure 102. This ANN is not used directly to create

a value for EDS as EDS utilizes only the power extraction map itself, not its average.

This parameter just provides additional information to the designer. The quality of

the fit can be seen to be almost perfect for this parameter.
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Figure 103: ANN fit Data for Power Extraction Map First Value

The power extraction map utilized a constant baseline value to account for systems

not captured by the modeling and a table of power extraction against altitude (in

order from lowest altitude to highest). The quality of the ANN fit for the first of

these power extraction map values is shown in Figure 103. This fit again can be seen

to be almost perfect.
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Figure 104: ANN fit Data for Power Extraction Map Second Value

The summary of fit data for the second entry of power extraction within the power

extraction map of power extraction against altitude is shown in Figure 104. This fit is

overall good, despite the slight pattern in the residual due to the very small magnitude

of the residual.
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Figure 105: ANN fit Data for Power Extraction Map Third Value

Figure 105 shows the summary of fit data for the third value of power extraction

within the calculated map. Overall, this fit appears acceptable for use, with R-squared

values of 1 and small errors and residual values.
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Figure 106: ANN fit Data for Power Extraction Map Fourth Value

Figure 106 shows the summary of fit data for the fourth entry in the power ex-

traction map. A slight pattern can be seen in the residual values. However, due to

the very small magnitude of the residuals, this fit is determined to be acceptable.
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Figure 107: ANN fit Data for Power Extraction Map Fifth Value

The summary of fit data for the fifth entry of power extraction in the power

extraction map is shown in Figure 107. Despite a slight skewness in the Model Fit

Error (MFE), this is seen to have a good fit overall, partially due to the very small

magnitude of the MFE.
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Figure 108: ANN fit Data for Power Extraction Map Sixth Value

Figure 108 shows the quality of fit data for the last power extraction value within

the power extraction map. Overall, the quality of this fit is acceptable. There is a

slight pattern in the residual that can be neglected due to the very small magnitude

of the residual.
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APPENDIX B

SUMMARY OF FIT DATA FOR HYDRAULIC ANN

Summaries of fit data for the ANNs of the Matlab/Simulink environment for the all

hydraulic architecture are shown in Figures 109, 110, 111, 112, 113, 114, 115, 116, 117,

and 118. To remind the reader, in the summary of fit data, it is desirable to have an

R-squared as close to 1 as possible, a close to linear actual by predicted plot, a random

scatter of the residual, relatively small residual values, and small values for MFE and

MRE. Again, the below plots utilize the residual as the definition of error. It can be

seen that these fits are not perfect but are very good fits. The actual by predicted

plots are almost linear, the magnitudes of the mean and standard deviations were

small, the magnitude of the residuals was very small, and the R-squared values were

close to 1. Any patterns in the residual that exist were determined to be insignificant

given that the magnitude of the residual was very small. Again, as a result, these

ANNs were utilized as surrogate models for the Matlab/Simulink hydraulic model

along with ANNs of EDS to enable probabilistic analysis. The ANNs of EDS were

also seen to be reasonable fits as discussed in the implementation of Experiment 3a.
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Figure 109: ANN fit Data for Subsystem Weight

Figure 109 shows the summary of fit data for the subsystem weight for the case of

all hydraulic actuation. In this case, this value is the weight of the modeled hydraulic

system. It can be seen that the quality of the fit is acceptable for use, with R-squared

values of approximately 1.
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Figure 110: ANN fit Data for Maximum Power Extraction

The maximum power extraction value from within the power extraction map of

power extraction against altitude to power the modeled subsystems was also fit with

an ANN. The quality of fit for this parameter can be seen in Figure 110. It is clear

that this is a good fit of the data, with small residual values and R-squared values of

1.
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Figure 111: ANN fit Data for Minimum Power Extraction

The summary of fit data for the minimum power extraction from this map can be

seen in Figure 111. This again is a good fit with R-squared values of 1 and a very

small magnitude of the residuals.
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Figure 112: ANN fit Data for Average Power Extraction

Figure 112 shows the summary of fit data for the average value from this power

extraction map. The R-squared values for this fit are 1, and the fit appears to be a

good fit with small magnitudes of residuals and errors.
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Figure 113: ANN fit Data for Power Extraction Map First Value

The power extraction map contains values of power extraction required to power

the modeled subsystems. This power extraction map takes the form of a matrix

containing power extraction values for different altitudes. The summary of fit data

for the first value in the map can be seen in Figure 113. Overall, the fit appears to be

acceptable, despite a slight pattern in the residual, due to the very small magnitude

of the residuals.
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Figure 114: ANN fit Data for Power Extraction Map Second Value

The quality of fit data for the second value of power extraction within the power

extraction map is shown in Figure 114. Overall the fit seems acceptable despite slight

skewness and patterns in the residuals and errors due to the very small magnitude of

these values.
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Figure 115: ANN fit Data for Power Extraction Map Third Value

Figure 115 shows the summary of fit data for the third entry of power extraction

within the power extraction map. This fit appears to be very good except for a slight

residual pattern which, given the very small magnitude of the residual, is acceptable

to neglect.
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Figure 116: ANN fit Data for Power Extraction Map Fourth Value

Figure 116 contains the quality of fit data for the fourth value within the power

extraction map. Overall, the fit appears acceptable, with R-squared values of 1 and

a small magnitude of the error and residuals.
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Figure 117: ANN fit Data for Power Extraction Map Fifth Value

The quality of fit data for the fifth power extraction value within the power ex-

traction map is shown in Figure 117. This fit seems quite acceptable with small errors

and residuals and R-squared values of 1.
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Figure 118: ANN fit Data for Power Extraction Map Sixth Value

Figure 118 contains the summary of the fit quality data for the ANN of the last

value of power extraction contained within the power extraction map. The R-squared

values of this fit are 1. Due to this fact, along with small magnitudes of errors and

residuals, this fit is seen to be acceptable.
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APPENDIX C

SUMMARY OF FIT DATA FOR HYBRID ANN

Summaries of fit data for the ANNs of the Matlab/Simulink environment for the

hybrid architecture are shown in Figures 119, 120, 121, 122, 123, 124, 125, 126, 127,

and 128. Again, to remind the reader, in the summary of fit data, it is desirable to

have an R-squared as close to 1 as possible, a close to linear actual by predicted plot,

a random scatter of the residual, relatively small residual values, and small values

for MFE and MRE. The below plots again utilize the residual as the definition of

error. It can be seen that these fits are not perfect but are very good fits. The

actual by predicted plots are almost linear, the magnitudes of the mean and standard

deviations were small, the magnitude of the residuals was very small, and the R-

squared values were close to 1. Any patterns in the residual that exist were determined

to be insignificant given that the magnitude of the residual was very small. Finally,

these ANNs were again utilized as surrogate models for the Matlab/Simulink hybrid

model to enable probabilistic analysis. These ANNs were used with ANNs of EDS to

enable the probabilistic analysis. The quality of fit of the ANNs of EDS was also seen

to be acceptable as shown in the discussion of the implementation of experiment 3a.
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Figure 119: ANN fit Data for Subsystem Weight

Figure 119 shows the summary of fit data for the subsystem weight for the hybrid

architecture. This subsystem weight includes the weight of the hydraulic system and

any additional weight from utilizing EHAs. The quality of the fit can be seen to be

very good with R-squared values of 1.
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Figure 120: ANN fit Data for Maximum Power Extraction

The quality of fit data for the ANN for the maximum value of power extrac-

tion from the power extraction map is shown in Figure 120. This is the maximum

value from the power extraction vs altitude map determined by Matlab/Simulink as

the necessary power for the modeled subsystems. The quality of the fit appears ac-

ceptable, despite a slight pattern in the residual, due to the small magnitude of the

residual values.
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Figure 121: ANN fit Data for Minimum Power Extraction

Figure 121 shows the quality of fit information for the ANN fit to the minimum

power extraction value from the power extraction map. It can be seen that the quality

of the fit is very good, with R-squared values of 1.
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Figure 122: ANN fit Data for Average Power Extraction

Figure 122 shows the quality of fit data for the ANN of the average power extrac-

tion from the power extraction map. It can be seen that, despite a slight pattern in

the residual, this fit is good. This is due to the very small magnitudes of the error

and residual and the R-squared values of 1.
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Figure 123: ANN fit Data for Power Extraction Map First Value

The summary of fit data for the first power extraction value contained within the

power extraction map can be seen in Figure 123. This fit appears to be a very good

fit as well because of the R-squared values of 1, the small magnitude of the residuals

and errors, and the linear actual by predicted plot.
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Figure 124: ANN fit Data for Power Extraction Map Second Value

Figure 124 shows the quality of fit information for the second value of power

extraction from the power extraction map. The R-squared values are 1, the actual by

predicted plot is linear, and the magnitude of the errors and residuals are very small,

making the fit acceptable despite the slight pattern in the residual.
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Figure 125: ANN fit Data for Power Extraction Map Third Value

Figure 125 contains the summary of the quality of fit data for the ANN for the

third value of power extraction contained within the power extraction map. This fit

is also seen to be acceptable. The actual by predicted plot is linear as desired, and

the R-squared values are 1. The magnitude of the errors and residual are very small,

enabling the use of this fit despite a slight pattern in the residual.
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Figure 126: ANN fit Data for Power Extraction Map Fourth Value

The summary of fit data for the ANN of the fourth value of power extraction within

the power extraction map output from Matlab/Simulink is shown in Figure 126. The

R-squared values are 1, the actual by predicted plot is linear, and the magnitudes of

the residual and error values are very small enabling use of this fit, despite a slight

pattern in the residual.
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Figure 127: ANN fit Data for Power Extraction Map Fifth Value

Figure 127 contains the summary of fit data for the ANN fit for the fifth value

within the power extraction map. The quality of this fit can be seen to be very

good with a linear actual by predicted plot, R-squared values of 1, and very small

magnitudes of error and residual values.
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Figure 128: ANN fit Data for Power Extraction Map Sixth Value

Figure 128 contains the quality of fit data for the last value of power extraction

within the power extraction map. This fit is seen to be acceptable despite a pattern

in the residual due to the very small magnitude of the residual values. Also, the

R-squared values are all 1, and the actual by predicted plot can be seen to be linear.
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APPENDIX D

SUMMARY OF FIT DATA FOR RESPONSE SURFACE

EQUATIONS

Summaries of fit data for the Response Surface Equations (RSEs) of the results shown

in the interactive sensitivity analysis environments for the results of the different

experiments are shown in the figures below. Similar to the summary of fit information

for the ANNs in the previous appendices, in the summary of fit data, it is desirable

to have R-squared values as close to 1 as possible, a linear actual by predicted plot, a

random scatter of the residual, and a small magnitude residual values. It can be seen

that these fits are not perfect but are useable fits. The actual by predicted plots are

linear, the magnitude of the residuals are very small, and the R-squared values are

close to 1. Any patterns in the residuals that exist are determined to be insignificant

given that the magnitude of the residuals are very small. Finally, as these fits are

acceptable, these RSEs are used to gain further insight into the experimental results.
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Figure 129: 150-Passenger Class TOGW Quality of Fit

Figure 129 and Figure 130 show the summary of fit information for the RSEs for

TOGW and SW for the 150-passenger class aircraft. In the quality of fit, it is desired

to have a linear actual by predicted plot, a small magnitude residual that is randomly

scattered, and R-squared values close to 1. It can be seen that the fits of TOGW

and SW in Figure 129 and Figure 130 are good fits. (The only negative is patterns

in the residual, which is acceptable as the magnitude of the residual is small.) These

figures show that the RSEs and trends shown in the interactive sensitivity analysis

environments are valid.
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Figure 130: 150-Passenger Class SW Quality of Fit
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Figure 131: 210-Passenger Class TOGW Quality of Fit

For the 210-passenger class Aircraft, Figure 131 show the information illustrating

the quality of the fit of TOGW. As the TOGW is related to SW through W/S which

is held as constant in this analysis (as the aircraft is already non-dimensionally sized),

the fit for SW is similar to TOGW. For reference, the quality of fit information for SW

is seen in Figure 132. Again, in the quality of fit, it is desired to have a linear actual by

predicted plot, a small magnitude residual that is randomly scattered, and R-squared

values close to 1. It can be seen that the fits of TOGW and SW in Figure 131 and

Figure 132 are usable, but not perfect fits.
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Figure 132: 210-Passenger Class SW Quality of Fit
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Figure 133: 300-Passenger Class TOGW Quality of Fit

For the 300-passenger class aircraft, Figure 133 shows information illustrating the

quality of the RSE of TOGW. The quality of fit information for SW is also seen

in Figure 134. Again, in the quality of fit, it is desired to have a linear actual by

predicted plot, a small magnitude residual that is randomly scattered, and R-squared

values close to 1. It can be seen that the fits of TOGW and SW in Figure 133 and

Figure 134 are reasonable fits overall.
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Figure 134: 300-Passenger Class SW Quality of Fit

The remaining quality of fit information within this appendix examines the qual-

ity of the fit of the RSEs generated within Experiment 3a, validating the use of the

interactive sensitivity analysis environments created for the top architectures exam-

ined in this experiment. It can be seen that the fit of TOGW in Figure 135 is a

reasonable fit. (The only negative is patterns in the residual, which is acceptable

as the magnitude of the residual is small.) This would enable the use of this RSE.

Figure 136 contains the RSE for TOGW which is, as was previously discussed, the
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driving response within this study.

Figure 135: Hybrid Architecture TOGW RSE Fit Quality

Figure 136: Hybrid Architecture TOGW RSE

Figure 137 shows that the RSE of SW is an acceptable fit. (The only negative
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is patterns in the residual, which is acceptable as the magnitude of the residual is

small.) It should be noted that this fit is similar to the TOGW fit, which is logical

as the two are directly related through W/S.

Figure 137: Hybrid Architecture SW RSE Fit Quality

Figure 138 contains the summary of fit data for subsystem weight for the hybrid

architecture and shows that the RSE is a reasonable fit. (Again, the only negative

is patterns in the residual, which is acceptable as the magnitude of the residual is

small.)
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Figure 138: Hybrid Architecture Subsystem Weight RSE Fit Quality

Figures 139 and 140 contains the summary of fit data for average and maximum

power extraction for the hybrid architecture and shows that the RSEs are a reasonable

fit despite patterns in the residual, which is acceptable as the magnitude of the residual

is small.
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Figure 139: Hybrid Architecture Average Power Extraction RSE Fit Quality
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Figure 140: Hybrid Architecture Maximum Power Extraction RSE Fit Quality

The quality of these fits for responses TOGW, SW, subsystem weight, average

power extraction, and maximum power extraction for the hydraulic architecture is

examined in Figures 141, 142, 143, 144, and 145 respectively. Again, these figures

show that the RSEs and trends shown in the interactive sensitivity analysis environ-

ments are valid.

The fit of TOGW in Figure 141 is an acceptable fit. (The only negative is patterns

in the residual, which is acceptable as the magnitude of the residual is small.) This

would enable the use of this RSE.
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Figure 141: Hydraulic Architecture TOGW RSE Fit Quality

The RSE of SW is shown in Figure 142 and is a reasonable fit despite patterns in

the residual, which is acceptable as the magnitude of the residual is small. It should

again be noted that this fit is similar to the TOGW fit, as the parameters are related

through W/S.
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Figure 142: Hydraulic Architecture SW RSE Fit Quality

For the hydraulic architecture, Figure 143 contains the summary of fit data for

subsystem weight and shows that the RSE is a good fit. (Again, the only negative

is patterns in the residual, which is acceptable as the magnitude of the residual is

small.)
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Figure 143: Hydraulic Architecture Subsystem Weight RSE Fit Quality

Summary of fit data for average power extraction for the hydraulic architecture

is shown in Figure 144 which shows the RSE is an acceptable fit. (Again, the only

negative is a pattern in the residual, which is acceptable as the magnitude of the

residual is small.)
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Figure 144: Hydraulic Architecture Average Power Extraction RSE Fit Quality

The summary of fit data for maximum power extraction for the hydraulic archi-

tecture is shown in Figure 145, which shows that this RSE is a decent fit despite a

pattern in the residual, which is acceptable as the magnitude of the residual is small.
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Figure 145: Hydraulic Architecture Maximum Power Extraction RSE Fit Quality

Again, for the EHA architecture, Figures 146, 130, 130, 130, and 130 examined

the quality of these fits for responses TOGW, SW, subsystem weight, average power

extraction, and maximum power extraction, respectively. Again, for this architecture,

the RSEs and trends shown in the interactive sensitivity analysis environments are

shown to be valid by the quality of fit data.

Figure 146 shows that the RSE of TOGW is a reasonable fit. (Again, the only

negative is patterns in the residual, which is acceptable as the magnitude of the

residual is small.)
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Figure 146: EHA Architecture TOGW RSE Fit Quality

Figure 147 shows that the RSE of SW is also a usable fit. (The only negative

is patterns in the residual, which is acceptable as the magnitude of the residual is

small.) Again, it should again be noted that this fit is similar to the TOGW fit, as

the parameters are related through W/S.
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Figure 147: EHA Architecture SW RSE Fit Quality

Figure 148 contains the summary of fit data for subsystem weight and illustrates

that the RSE is a good fit, for the EHA architecture despite patterns in the residual,

which is acceptable as the magnitude of the residual is small.
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Figure 148: EHA Architecture Subsystem Weight RSE Fit Quality

Figures 149 shows that the RSEs for average power extraction for the EHA ar-

chitecture is an acceptable fit. (Again, the only negative is patterns in the residual,

which is acceptable as the magnitude of the residual is small.)
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Figure 149: EHA Architecture Average Power Extraction RSE Fit Quality

Figure 150 shows that the RSE for maximum power extraction for the EHA archi-

tecture is also an acceptable fit despite patterns in the residual, which are acceptable

as the magnitude of the residual is small.
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Figure 150: EHA Architecture Maximum Power Extraction RSE Fit Quality

As can be seen, the quality of fit for these RSEs is acceptable, enabling analysis

utilizing the RSEs. The only negative of the fits are patterns in the residual which

are deemed acceptable given that the overall magnitude of the residuals are small.

As a result, conclusions drawn from these RSEs should be valid.
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