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SUMMARY

In the past three decades, the importance of nanotubes has significantly increased since

the synthesis of carbon nanotubes. Among them, transition metal nanotubes, such as tran-

sition metal dichalcogenide (TMD) nanotubes, have gained attention due to their unique

properties, including high tensile strength and mechanically tunable electronic proper-

ties, which make them ideal candidates for various applications such as reinforcement in

nanocomposites, mechanical sensors, nanoelectromechanical (NEMS) devices, and biosen-

sors. However, despite their potential, TMD nanotubes have not been thoroughly investi-

gated for their elastic properties and electromechanical response, particularly concerning

torsional deformations, using first-principles calculations. This is primarily due to the lim-

itations imposed by standard periodic conditions, which require a large number of atoms.

TMD nanotubes are generally multi-walled with large diameters because of the rel-

atively high energies required to bend their 2D material analogs. To address this issue,

we introduce asymmetry in TMD nanotubes and form Janus TMD nanotubes, which are

expected to exhibit unique and fascinating properties typically associated with quantum

confinement effects. Moreover, Janus TMD nanotubes can form small single-walled nan-

otubes, thereby providing additional opportunities for their potential applications. Another

promising class of transition metal nanotubes is transition metal dihalides (TMH), which

have not yet been synthesized. However, due to the fascinating usage of their 2D analogs

in piezoelectric-ferromagnetic, and ferrovalley materials, it is anticipated that TMH nan-

otubes will exhibit advantageous features similar to those of their 2D counterparts.

In this thesis, we employ symmetry-adapted DFT simulations to calculate the elastic

properties of TMD and Janus TMD nanotubes, including Young’s modulus, Poisson’s ra-

tio, and torsional modulus. Additionally, we investigate the electromechanical response

of TMD nanotubes to torsional deformations and explore the behavior of Janus TMD and

TMH nanotubes under axial and torsional deformations. Furthermore, we investigate the

xiv



effect of spin-orbit coupling on mechanically deformed TMD and Janus TMD nanotubes

and observe Zeeman and Rashba spin-splitting, which are highly relevant for spintronics

applications. Overall, our research provides valuable insights into the mechanical and elec-

tronic properties of these nanotubes, which could lead to their potential applications in a

wide range of fields, such as electronics, spintronics, and sensors.

Our calculations reveal that the Young’s and torsional moduli of TMD nanotubes follow

the trend MS2 > MSe2 > MTe2, while for Janus TMD nanotubes, the trend is MSSe >

MSTe > MSeTe. Furthermore, TMD nanotubes are isotropic, while Janus TMD nanotubes

are anisotropic, with the ordering being MSTe > MSeTe > MSSe. We also observe that

strain engineering has little to no effect on metallic nanotubes, while it generally reduces

the bandgap of semiconducting nanotubes, leading to semiconductor-to-metal transitions.

This reduction in bandgap is typically observed to be linear with axial strain and quadratic

with shear strain. Moreover, it results in a decrease in the effective mass of holes and

an increase in the effective mass of electrons, leading to transitions from n-type to p-type

semiconductors.

The TMD and Janus TMD nanotubes exhibit inversion symmetry, which leads to the

absence of Rashba spin-splitting without any mechanical deformations. However, the intro-

duction of twist in these nanotubes breaks the symmetry and induces Rashba spin-splitting,

with relatively high values of the Rashba coefficient. We also investigate the Zeeman spin-

splitting in these nanotubes under axial and shear strain. Our results reveal that the splitting

values at the VBM (Valence Band Maximum) and CBM (Conduction Band Minimum) lev-

els decrease monotonically, and in most cases of VBM with axial strain, it reaches 0. This

is a crucial finding as the maximum splitting value at VBM is significant, reaching 0.46 eV

in the WSe2 nanotube before becoming zero with axial strain.
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CHAPTER 1

INTRODUCTION

1.1 Background

The synthesis of carbon nanotubes around three decades ago [1] has revolutionalized the

fields of nanoscience and nanotechnology. Even in the specific instance of nanotubes —

quasi-one-dimensional hollow cylindrical structures with diameters in the nanometer range

— nearly two dozen nanotubes have now been synthesized [2, 3, 4], with the potential for

thousands more given the large number of stable two-dimensional materials that have been

predicted from first principles calculations [5, 6, 7]. Nanotubes have been the subject of

intensive research, inspired by the novel and enhanced mechanical, electronic, optical, and

thermal properties relative to their bulk counterparts [2, 3, 4]. In particular, a number of

strategies have been developed to tune/engineer these properties, including chirality/radius

[8, 9, 10, 11, 12, 13, 14, 15, 16, 17], defects [18, 19, 20], electric field [21, 22, 20], and

mechanical deformations [23, 24, 25, 26, 9, 27, 28, 29, 30], highlighting the technological

importance of nanotubes.

The transition metal dichalcogenide TMD group of nanotubes — materials denoted by

MX2, where M and X are used to represent a transition metal and chalcogen, respectively

— is the most diverse set, with the highest number of distinct nanotubes synthesized thus

far [2, 3, 4]. This manifests itself into varying electronic properties encompassing semi-

conducting [31, 32], metallic [33, 34], and superconducting [35, 36]. TMD nanotubes have

a number of interesting properties including high tensile strength [37, 38, 39, 40], mechan-

ically tunable electronic properties [41, 42, 43, 44, 45, 46, 47, 48, 49], and low cytotoxicity

[50]. Also, a number of mechanisms have been found to tune/tailor the properties of TMD

nanotubes, including chirality/radius [51, 52, 53, 54, 55, 56, 57, 58, 32, 47, 31], defects
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[59, 60], temperature [35, 36], electric field [61, 62], and mechanical deformation [41, 42,

43, 44, 45, 46, 47, 48, 49]. These properties make TMD nanotubes suited to a number

of applications, including reinforcement of composites [63, 64, 65, 66, 67, 68], nanoelec-

tromechanical (NEMS) devices [69, 48, 70], medicine [71], photodetectors [72, 73, 74],

mechanical sensors[75, 76, 42], biosensors[77], and superconductive materials [35, 36],

where knowledge of their mechanical properties and electromechanical response is impor-

tant from the perspective of both design and performance.

However, TMD nanotubes are generally multi-walled with large diameters — ratio-

nalized by the need for relatively high energies to bend their 2D material analogs [78] —

limiting the appearance of unique and fascinating properties that are typically associated

with quantum confinement effects. Furthermore, only a small percentage of all the poten-

tial TMD nanotubes have been synthesized thus far, in significant part to the nanotubes

generally being energetically less favorable relative to their 2D counterparts. Janus TMD

nanotubes [79] — materials denoted by MXY, where X and Y are used to represent two

different chalcogens — do not suffer from the aforementioned limitations. In particular,

the asymmetry in the system makes the rolled nanotube configuration energetically more

favorable than the corresponding flat sheet [80, 81] — MoSSe and WSSe monolayers have

recently been synthesized [82, 83, 84, 85] — significantly increasing the likelihood of

single-walled small-diameter nanotubes with exotic properties/behavior. Therefore, at the

very least, it is to be expected that Janus TMD nanotubes have similarly many applications

as their non-Janus counterparts, including photodetectors [86, 42, 87, 88, 89, 90], nano-

electromechanical (NEMS) devices [69, 48, 70], biosensors [77], mechanical sensors [75,

76, 42], and superconductive materials [35, 36].

The Janus transition metal dihalide (TMH) nanotube group [91], which consists of ma-

terials of the form MXY, where X and Y are now different halogens, are likely to possess

fascinating and exciting properties similar to those displayed in flat TMH monolayers [92]

and their Janus variants, e.g., FeCl2 is piezoelectric ferromagnetic with the Curie tempera-
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ture around room temperature [93], and FeClBr and FeClF are ferrovalley materials based

on their magnetic anisotropy [94, 95]. Simultaneously, the nanotubes inherit the aforemen-

tioned advantageous features of being a Janus structure.

1.2 Motivation

In view of the above, there have been a number of efforts to characterize the elastic prop-

erties of TMD nanotubes, both experimentally [96, 39, 97, 98] and theoretically [41, 44,

99, 100, 47, 101, 102, 103, 43, 76, 104]. However, these studies are limited to only a

few TMDs, and that too only for the case of axial tension/compression. For Janus TMD

nanotubes, apart from Ref. [105] where Young’s modulus of the MoSSe nanotube has been

computed using DFT, the mechanical properties of Janus TMD nanotubes remain unex-

plored heretofore. In particular, determining the torsional moduli for these systems —

relevant for applications such as resonators in NEMS devices [69, 48, 70] — has been

limited to very few experimental [106, 70, 48] and theoretical [107, 108] research works,

and that too only for a couple of materials. Indeed, the study of torsional deformations at

practically relevant twists and nanotube diameters is intractable to ab initio methods like

Kohn-Sham density functional theory (DFT) [109, 110] — expected to provide higher fi-

delity than tight binding and force field calculations for nanoscale systems — given the

large number of atoms that are required when employing the standard periodic boundary

conditions [111]. Therefore, accurate estimates for a fundamental mechanical property like

torsional modulus is not available for TMD and Janus TMD nanotubes, which provides the

motivation for the current work to compute the elastic properties of TMD and Janus TMD

nanotubes.

Strain engineering represents an elegant and efficient way to control the electronic prop-

erties of TMD nanotubes, as shown experimentally [48] as well as theoretically from ab

initio Kohn-Sham density functional theory (DFT) calculations [41, 42, 43, 44, 45, 46].

However, other than the experimental work referenced above, where the effect of both ten-
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sile and torsional deformations have been studied for the WS2 nanotube, research efforts

have focused solely on tensile/compressive deformations, and that too for only a small

fraction of the materials in the TMD nanotube group. Indeed, the study of torsional de-

formations at practically relevant twists and nanotube diameters requires large number of

atoms when employing the standard periodic boundary conditions [111], which makes it

intractable to first principles methods like Kohn-Sham DFT, given its cubic scaling with

system size and large associated prefactor. Therefore, it provides the motivation for the

current work to compute the electromechanical response of TMD nanotubes to torsional

deformations.

There have been a number of ab initio studies to characterize the properties of Janus

TMD nanotubes [112, 113, 114, 115, 87, 116, 91] and their electronic response to mechan-

ical deformations [42, 105, 86, 117]. However, these investigations have been restricted

to relatively few nanotubes, particularly in the case of electromechanical response, where

only MoSSe has been studied to date. Even then, only the electronic response to axial de-

formations has been studied, with torsional deformations not considered. Also, apart from

Ref. [42], the equilibrium diameter for the nanotube has not been considered in determining

the electromechanical response. For TMH and Janus TMH nanotubes, we have not been

able to find any kind of study in the literature. Overall, this gives us motivation to study the

electronic response of Janus TMD and TMH nanotubes to axial and torsional deformations

as it has not been comprehensively studied heretofore.

Spintronics has the potential for various interesting applications due to the effects of

Rashba spin-splitting and Zeeman spin-splitting in various monolayers. Including spin-

orbit coupling (SOC) in our calculations allows us to uncover these phenomena. However,

in most studies related to the elastic property of materials, we do not consider SOC as it

does not significantly affect the values. Similarly, in electromechanical response studies,

we are usually more interested in comparing and analyzing trends between materials rather

than obtaining the best values. Nonetheless, to examine the impact of SOC on electronic
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band structures, we investigate them under mechanical deformation.

Zeeman spin-splitting and Rashba spin-splitting are both important phenomena in the

context of spintronics. Zeeman spin-splitting occurs at the VBM (Valence Band Maxi-

mum) and CBM (Conduction Band Minimum) levels, where the eigenvalues split due to

SOC, leading to changes in the bandgap and its structure. On the other hand, Rashba spin-

splitting is observed in materials that lack inversion symmetry, and it typically occurs at

the Gamma point. In the case of TMD and Janus TMD nanotubes, the inversion symme-

try is present in their undeformed state, but it is broken when we apply twist, leading to

the observance of Rashba effect. The role of twist in inducing Rashba spin-splitting is yet

another application of this deformation mechanism in TMD nanotubes.

1.3 Organization

The remainder of this thesis is organized as follows. In chapter 2, we discuss the chosen

TMD, Janus TMD and TMH nanotubes and describe the symmetry-adapted DFT simula-

tions for calculation of their elastic properties, electromechanical and spintronic response

to torsional/axial strains. Next, we present and discuss the results obtained in chapter 3.

Finally, we provide concluding remarks and future work in chapter 4 and chapter 5 respec-

tively.
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CHAPTER 2

SYSTEMS AND METHODS

2.1 Transition metal dichalcogenide (TMD) nanotubes

2.1.1 Elastic properties

We consider the following single-walled TMD nanotubes with 2H-t symmetry [118, 119]:

M={V, Nb, Ta, Cr, Mo, W, Fe, Cu} and X={S, Se, Te}; and the following ones with

1T-o symmetry [118, 119]: M={Ti, Zr, Hf, Mn, Ni, Pd, Pt} and X={S, Se, Te}. These

materials have been selected among all the possible transition metal-chalcogen combina-

tions as they have either been synthesized as single/multi-walled nanotubes [120, 121, 122,

123, 118, 124, 125, 126, 127] or the corresponding two-dimensional atomic monolayers

have been predicted to be stable from ab initio calculations [5, 128, 129]. The radii for

these nanotubes have been chosen so as to be commensurate with those that have been

experimentally synthesized, and in cases where such data is not available, we choose radii

commensurate with synthesized nanotubes that are expected to have similar structure.

We utilize the Cyclix-DFT code [111] — adaptation of the state-of-the-art real-space

DFT code SPARC [130, 131, 132] to cylindrical and helical coordinate systems, with the

ability to exploit cyclic and helical symmetry in one-dimensional nanostructures [111, 8,

133] — to calculate the torsional moduli of the aforementioned TMD nanotubes in the

low twist limit. SPARC-X [130] is the latest iteration of the real-space density functional

theory (DFT) code SPARC, which overcomes the quadratic scaling with respect to the num-

ber of atoms through a local real-space formulation of electrostatics [134, 135]. SPARC-X

also employs the alternating Anderson-Richardson (AAR) method [136, 137] as a linear

solver and uses a real-space preconditioner [138] to accelerate the convergence of the self-

consistent field (SCF) iteration. Additionally, the restarted variant [139] of the Periodic
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Pulay mixing scheme [140] is utilized to further enhance the convergence of the SCF iter-

ation. These optimizations make SPARC-X a highly efficient and powerful tool for sim-

ulating complex systems with large numbers of atoms. Recent developments in machine-

learned interatomic potentials [141, 142] and orbital-free density functional theory [143,

144, 145, 146] has the potential to accelerate the simulations while retaining the accuracy

of first principle methods. However, these methods have not been applied to nanotubes or

two-dimensional monolayers to study their bending properties.

Specifically, we consider three-atom unit cell/fundamental domains that have one metal

atom and two chalcogen atoms, as illustrated in Figure 2.1. Indeed, such calculations are

impractical without the symmetry adaption, e.g., a (57,57) MoS2 nanotube (diameter ∼ 10

nm) with an external twist of 2×10-4 rad/Bohr has 234, 783 atoms in the simulation domain

when employing periodic boundary conditions, well beyond the reach of even state-of-the-

art DFT codes on large-scale parallel machines [147, 148, 130]. It is worth noting that

the Cyclix-DFT code has already been successfully employed for the study of physical

applications [149, 150, 111, 78, 151, 49, 81, 152, 153, 154], which provides evidence of its

accuracy.

Z

Y

Y

X

ZX

Figure 2.1: Illustration showing the cyclic and helical symmetry present in a twisted (6,6)
TMD nanotube with 2H-t symmetry. In particular, all atoms in the nanotube can be con-
sidered to be cyclic and/or helical images of the metal and chalcogen atoms that have been
colored red and blue, respectively. This symmetry is exploited while performing electronic
structure simulations using the Cyclix-DFT code [111].

7



We employ optimized norm-conserving Vanderbilt (ONCV) [155] pseudopotentials

from the SG15 [156] collection and the semilocal Perdew–Burke–Ernzerhof (PBE) [157]

exchange-correlation functional. Apart from the tests by the developers [156], we have

verified the transferability of the chosen pseudopotentials by comparisons with all-electron

DFT code Elk [158] for select bulk systems. In addition, we have found that the equilibrium

geometries of the nanotubes and their two-dimensional counterparts are in very good agree-

ment with previous DFT results [5, 6, 44, 102, 43, 159, 160, 161, 129]. There is also very

good agreement with experimental measurements [122, 35, 118, 120], confirming the suit-

ability of the chosen exchange-correlation functional. Since we are interested in torsional

moduli for the low-twist regime — corresponds to small (linear) perturbations of elec-

tron density from the undeformed nanotube — the use of more sophisticated functionals

and/or inclusion of relativistic effects through spin orbit coupling (SOC) are not expected

to change the results noticeably, especially considering that significant error cancellations

occur while taking differences in energy. This is evidenced by the small differences in the

ground state electron density between PBE and more sophisticated hybrid functionals for

the TMD monolayer systems, even in the presence of SOC [78].

We calculate the torsional modulus in the low-twist regime by first performing ground

state DFT simulations for various twisted configurations of the nanotube, and then fitting

the data to the following quadratic relation:

E(d, θ) = E(d, 0) + 1

2
K(d)θ2 , (2.1)

where K is the torsional modulus, d is the diameter of the nanotube, and θ and E are the

twist and ground state energy densities, respectively, i.e., defined per unit length of the

nanotube. Indeed, small enough twists are chosen so that linear response is observed, i.e.,

the torsional modulus is independent of the twist. The other elastic properties : Young’s

modulus, shear modulus and Poisson’s ratio will be described in the Result section. It
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is important to note that the resulting shear strains — quantity that better describes the

behavior/response of nanotubes, by allowing systematic comparison between tubes with

different diameters — are commensurate with those found in torsion experiments [48, 70,

106]. All numerical parameters in Cyclix-DFT, including grid spacing, number of points

for Brillouin zone integration, vacuum in the radial direction, and structural relaxation

tolerances (both cell and atom) are chosen such that the computed torsional moduli are

numerically accurate to within 1% of their reported value. In terms of the energy, this

translates to the value at the structural and electronic ground state being converged to within

10−5 Ha/atom, a relatively stringent criterion that is necessary to capture the extremely

small energy differences that occur at low values of twist.

2.1.2 Electromechanical response

We consider the same TMD nanotubes as in the case of elastic property calculations from

previous subsection. Other parameters are also similar to the previous subsection. Indeed,

PBE is known to under-predict the bandgap of TMD monolayers — expected to have simi-

lar band structure as the nanotubes, given that they have considerably large diameters where

curvature effects are minor — relative to hybrid functionals like HSE [5]. However, there

is good agreement in the overall band structure and nature of bandgap [5]. In particular,

we are interested in general trends, which are expected to be insensitive to the choice of

exchange-correlation functional, particularly given the small twists considered here. Even

quantitatively, hybrid functionals are not necessarily more accurate than PBE in predicting

the band structure, e.g., bulk TMDs [162]. In view of this and the tremendously larger cost

associated with hybrids, PBE has been the functional of choice for TMD nanotubes [45,

58, 62, 44, 41, 54, 61, 60, 43, 46, 47]. Note that the incorporation of spin-orbit coupling

(SOC) causes relatively minor modifications to the band structure [5], which is why it has

been neglected here.

We perform the symmetry-adapted Kohn-Sham DFT calculations described above to
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determine the variation in bandgap and effective mass of charge carriers (i.e., electrons and

holes) with shear strain for the forty-five select armchair and zigzag TMD nanotubes. The

shear strain is defined to be the product of the nanotube radius and the applied twist per

unit length. The values for shear strain are chosen to be commensurate with those found in

experiments [48, 70, 106]. Additional details regarding the calculation of the bandgap and

effective mass within the symmetry-adapted formulation can be found in previous work

[111]. The numerical parameters in Cyclix-DFT, including real-space grid spacing, Bril-

louin zone integration grid spacing, vacuum in the radial direction, and structural relaxation

tolerances (both cell and atom) are chosen such that the bandgap and effective mass are cal-

culated to within an accuracy of 0.01 eV and 0.01 a.u., respectively. This translates to the

requirement of the ground state energy being converged to within 10−4 Ha/atom, respec-

tively.

2.1.3 Spintronic properties: Rashba and Zeeman effect

We consider all the synthesized TMD nanotubes: {MoS2, MoSe2, MoTe2, WS2, WSe2,

WTe2, Nb2, NbSe2, Tas2 } with 2H-t symmetry [118, 119] and { TiS2, TiSe2, HfS2, Zr2

} with 1T-o symmetry [118, 119].Other parameters are also similar to the previous sub-

section, except for the inclusion of spin-orbit coupling. Some preliminary tests for imple-

menting spin-orbit coupling were performed in M-SPARC code [163, 164] which is the

MATLAB version of SPARC code. We only consider the armchair variant as a few checks

on representative cases show that the splitting values are independent of the chirality of

nanotubes, also mentioned in this work [165].

We perform the symmetry-adapted Kohn-Sham DFT calculations described above to

determine the Zeeman spin-splitting with axial and shear strain & Rashba spin-splitting

coefficient with shear strain for the thirteen synthesized armchair TMD nanotubes. The

numerical parameters in Cyclix-DFT, including real-space grid spacing, Brillouin zone in-

tegration grid spacing, vacuum in the radial direction, and structural relaxation tolerances
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(both cell and atom) are chosen such that the Zeeman spin-splitting energy is calculated to

within an accuracy of 0.01 eV. This translates to the requirement of the ground state energy

being converged to within 10−4 Ha/atom, respectively.

2.2 Janus TMD nanotubes

2.2.1 Elastic properties

We consider the following single-walled Janus TMD nanotubes with 2H-t symmetry [118,

119]: M={V, Nb, Ta, Cr, Mo, W} and X,Y={S, Se, Te}; and the following ones with

1T-o symmetry [118, 119]: M={Ti, Zr, Hf} and X,Y={S, Se, Te}, in both armchair and

zigzag configurations, with the heavier chalcogen on the outside in all cases. The chosen

twenty-seven materials represent the set of all Janus TMD nanotubes that have previously

been predicted to be thermodynamically stable [91]. The diameters for these nanotubes are

selected so as to minimize the ground state Kohn-Sham energy [91], since experimentally

synthesized nanotubes are likely to adopt energy minimizing configurations.

We perform simulations using the massively parallel real-space DFT code SPARC [130,

131, 132]. In particular, we employ the recently developed Cyclix-DFT feature [111],

which provides a cyclic+helical symmetry-adapted formulation [111, 8, 133] and imple-

mentation [111] of the Kohn-Sham problem, enabling the simulation of Janus TMD nan-

otubes subject to axial and/or torsional deformations with only three atoms in the funda-

mental domain, i.e., one of each chemical element Figure 2.2. This provides a tremendous

reduction in the cost, making many of the calculations performed here tractable, e.g., a

(50,50) TiSTe nanotube with diameter ∼ 10 nm subject to a twist of 5 × 10-4 rad/Bohr

has 238, 950 atoms in the periodic unit cell, a system size that is clearly beyond the reach

of traditional DFT formulations/implementations due to the cubic scaling diagonalization

bottleneck.

In all the simulations, we employ pseduopotentials from the SPMS collection [167],

which is a set of transferable and soft optimized norm-conserving Vanderbilt (ONCV)
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Figure 2.2: Illustration portraying the cyclic+helical symmetry inherent to Janus TMD nan-
otubes subject to axial/torsional deformations, using a (10,10) 1T-o symmetry nanotube as
the representative example (structural model generated using VESTA [166]). In particular,
the nanotube can be described by the symmetry operators and the positions of three atoms,
e.g., metal and chalcogens colored red and violet/pink, respectively. This structural and
resultant electronic symmetry is exploited while performing ab initio calculations using the
Cyclix-DFT code [111, 130].

pseudopotentials [155] with nonlinear core correction (NLCC). The accuracy of the pseu-

dopotentials in the current context is confirmed by the very good agreement of the com-

puted equilibrium geometry with previous DFT results for Janus TMD nanotubes [117,

113, 86, 105, 91] as well as monolayers [5, 91, 168, 114]. We employ the semilocal

Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional [157], which is consid-

ered to accurately describe properties/behavior for TMD systems [5, 6, 44, 102, 43, 159,

160, 161, 129, 117, 113, 86, 105, 91, 168, 114], as validated by experimental measurements

[122, 35, 118, 120, 169, 170, 171, 172, 173, 82, 83]. Indeed, the use of more advanced

density functionals such as hybrids and/or inclusion of spin orbit coupling (SOC) are not

expected to change the elastic properties noticeably, considering that the linear small-strain

regime is accompanied by relatively small perturbations of electron density with respect to

the undeformed nanotube, resulting in significant error cancellations while taking energy

differences. This is expected to be particularly true in the current context, given that the

difference in ground state electron density between PBE and hybrid functionals has been

found to be relatively small for TMD monolayers, even in the presence of SOC [78].

We calculate the torsional modulus K, Young’s modulus E, and Poisson’s ratio ν by
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fitting the data to the relations:

E(θ, ε∗(θ), 0) ≡ min
ε

E(θ, ε, 0) = E(0, 0, 0) + 1

2
Kθ2 , (2.2)

E(0, ε, ε̃∗(ε)) ≡ min
ε̃

E(0, ε, ε̃) = E(0, 0, 0) + 1

2
Eε2 , (2.3)

ε̃∗ = −νε , (2.4)

where E(θ, ε, ε̃) is the energy density — value at the electronic ground state corresponding

to the force-relaxed atomic configuration — for twist density θ, axial strain ε, and circum-

ferential/hoop strain ε̃, with both energy and twist densities defined to be per unit length of

the nanotube. The superscript ∗ is used to denote the value of the quantity that minimizes

the energy density. The numerical parameters in the Cyclix-DFT simulations, including

real-space grid spacing, reciprocal space grid spacing for Brillouin zone integration, radial

vacuum, and cell/atom structural relaxation tolerances are selected to ensure that the tor-

sional and Young’s moduli are accurate to within 1% of their reported value. This translates

to the ground state energy being accurate to within 10−5 Ha/atom, which is necessary to

capture the exceedingly small energy differences that occur for the mechanical deforma-

tions considered in this work, which have been chosen to be small enough so as to have

strains that are commensurate with those found in experiments [48, 70, 106, 38, 39].

2.2.2 Electromechanical response

We consider the following single-walled armchair and zigzag Janus TMD nanotubes at

their equilibrium diameters [81]: (i) M={Ti, Zr, Hf}, X ={S, Se, Te}, and Y={S, Se, Te},

with 1T-o symmetry; and (ii) M={V, Nb, Ta, Cr, Mo, W}, X={S, Se, Te}, and Y={S, Se,

Te}, with 2H-t symmetry, the lighter chalcogen placed on the inner side of the nanotube

in each case. These materials are chosen in the present work since they correspond to the

full set of Janus TMD nanotubes predicted to be thermodynamically stable from Kohn-

Sham DFT calculations [91]. To verify that these nanotubes are also mechanically stable,
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given the exceedingly expensive nature of first principles stability calculations for such

systems, we compute the phonon spectra for their monolayer counterparts using density

functional perturbation theory (DFPT) feature in the planewave DFT code ABINIT [174].

The stability results so obtained are expected to be transferable to the nanotubes, given

the relatively minor effects of curvature in large diameter nanotubes, and the stress-free

configuration associated with the nanotube, i.e., the monolayer has bending stresses due

to the asymmetry resulting from different chalcogens on either side, whereby the lowest

phonon frequency for the equilibrium diameter nanotube is expected to be higher than the

monolayer. From this study, the following nanotubes have been identified to be stable:

M={Ti, Zr, Hf, Cr, Mo, W}, X ={S, Se, Te}, and Y={S, Se, Te}, the set of which will be

the focus for the remainder of this work.

Other parameters are similar to the previous subsection, except the maximum values

of axial and shear strains, which have been chosen such that the monolayer counterparts

are still stable. These stability results are expected to be transferable to the nanotubes, as

justified above. Note that in this work we do not focus on axial strains that are compressive,

since nanotubes are prone to buckling-type instabilities at even small strain values, given

the extremely large length to diameter ratios associated with nanotubes. Though PBE gen-

erally underpredicts the bandgap and is considered less reliable than hybrid functionals

for computation of the band structure, the situation appears to be reversed for Janus TMD

monolayers, a trend that is expected to hold for their nanotube counterparts as well. In

particular, the bandgap for MoSSe monolayer computed here using PBE is in much better

agreement with experiment than the Heyd–Scuseria–Ernzerhof (HSE) [175] hybrid func-

tional. Specifically, the PBE and HSE values for MoSSe are 1.63 eV (Ref. [168]: 1.56 eV)

and 1.95/2.23 eV [5, 116] respectively, with the experimental value being 1.48 eV [83].

Note that for Janus TMD monolayers, only minor modifications to the band structure have

been observed upon the inclusion of spin-orbit coupling [5], hence we neglect it, expecting

a similarly negligible effect for the nanotubes.
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We use the above first principles framework to compute the change in bandgap and

effective mass of charge carriers, i.e., electrons and holes, with axial and torsional de-

formations, for the aforementioned eighteen Janus TMD nanotubes, considering both the

armchair and zigzag variants. Additional details regarding the computation of the bandgap

and effective mass of charge carriers within the symmetry-adapted framework can be found

in Ref. [111]. All the numerical parameters for Cyclix-DFT, including the grid spacing for

real-space discretization and Brillouin zone integration, radial vacuum, and structural re-

laxation tolerances are chosen such that the ground state Kohn-Sham energy is converged

to within 10−4 Ha/atom, which results in the bandgap and charge carriers’ effective mass

being accurate to within 0.01 eV and 0.01 a.u., respectively.

2.2.3 Spintronic properties: Rashba and Zeeman effect

We consider all the Janus combinations of Mo and W nanotubes: {MoS2, MoSe2, MoTe2,

WS2, WSe2, WTe2} with 2H-t symmetry. Janus variants of Mo and W’s TMDs have been

considered due to the synthesis of their monolayers and nanotubes[83, 84, 85, 176]. Other

parameters are also similar to the previous subsection, except for the inclusion of spin-orbit

coupling. We only consider the armchair variant as a few checks on representative cases

show that the splitting values are independent of the chirality of nanotubes, also mentioned

in this work [165].

We perform the symmetry-adapted Kohn-Sham DFT calculations described above to

determine the Zeeman spin-splitting with axial and shear strain & Rashba spin-splitting

coefficient with shear strain for the thirteen synthesized armchair TMD nanotubes. The

numerical parameters in Cyclix-DFT, including real-space grid spacing, Brillouin zone in-

tegration grid spacing, vacuum in the radial direction, and structural relaxation tolerances

(both cell and atom) are chosen such that the Zeeman spin-splitting energy is calculated to

within an accuracy of 0.01 eV. This translates to the requirement of the ground state energy

being converged to within 10−4 Ha/atom, respectively.
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2.3 Janus Transition metal dihalide (TMH) nanotubes

2.3.1 Electromechanical properties

We consider zigzag and armchair variants of the following Janus TMH nanotubes: (i)

M={Ti, Zr, Hf} and X,Y={Cl, Br, I}, with 2H-t symmetry [118, 119]; and (ii) M={Fe}

and X,Y={Cl, Br, I}, with 1T-o symmetry [118, 119], all having the lighter halogen on the

inner side. These represent the set of all Janus TMH nanotubes that have been predicted to

be thermodynamically stable from first principles investigations [91].
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Figure 2.3: Illustration generated using VESTA [166] that depicts the inherent cyclic and
helical symmetry of an axially and torsionally deformed (10,10) 1T-o Janus TMH nanotube.
The entire nanotube can be generated using 3 atoms, e.g., metal and halogens colored
red and blue/yellow, respectively, that lie within the cyclic+helical symmetry-adapted unit
cell. This symmetry is exploited while performing Kohn-Sham DFT calculations using the
electronic structure code SPARC’s Cyclix-DFT feature.

We perform all nanotube simulations using the Cyclix-DFT [111] feature — well tested

in various physical applications [149, 150, 111, 78, 151, 49, 81, 152, 153] — in the state-

of-the-art real-space DFT code SPARC [130, 131, 132]. In this formalism, as illustrated

in figure Figure 2.1, the cyclic and/or helical symmetry of the system is exploited to re-

duce all computations to a unit cell that contains only a small fraction of the atoms in the

traditional periodic unit cell [111, 8, 133], e.g., the periodic unit cell for a (45,45) HfClBr

nanotube with diameter ∼ 9 nm and an external twist of 6 × 10-4 rad/Bohr has 169, 155

atoms, whereas the cyclic+helical symmetry-adapted unit cell has only 3 atoms (one of

each chemical element), a number that remains unchanged by axial and/or torsional defor-
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mations. This symmetry-adaption provides tremendous computational savings, given that

Kohn-Sham DFT computations scale cubically with system size.

Table 2.1: Equilibrium diameters in nm for the twelve armchair and zigzag Janus TMH
nanotubes. The uncertainty in values accounts for the energy differences being smaller
than the numerical accuracy in the calculations, i.e., 10−6 Ha/atom.

M
MClI MBrI MClBr

Armchair Zigzag Armchair Zigzag Armchair Zigzag
Ti 3.2± 0.2 3.2± 0.2 6.2± 0.4 6.0± 0.2 7.4± 0.4 7.8± 0.4
Zr 4.0± 0.2 3.8± 0.2 7.0± 0.4 6.6± 0.4 8.6± 0.8 8.8± 0.8
Hf 3.8± 0.2 3.8± 0.2 6.8± 0.4 6.8± 0.4 8.6± 0.6 8.6± 0.4
Fe 3.0± 0.2 2.8± 0.2 5.8± 0.2 6.0± 0.2 5.0± 0.4 4.8± 0.4

In all simulations, we employ the Perdew–Burke–Ernzerhof (PBE) [157] exchange-

correlation functional, and scalar relativistic optimized norm-conserving Vanderbilt (ONCV)

[155] pseudopotentials with nonlinear core correction from the SPMS collection [167]. The

equilibrium configurations for the flat monolayer counterparts so obtained are in very good

agreement with PBE results in literature [5], verifying the accuracy of the chosen pseu-

dopotentials. Though PBE is known to generally underpredict the bandgap [5], it does

provide good qualitative trends, making it a common choice for DFT calculations and

Janus transition metal nanotubes in particular [112, 86, 113, 117, 115, 87, 105], motivat-

ing its selection here. Even quantitatively, sophisticated exchange-correlation functionals

like hybrid are not necessarily more accurate for Janus materials [152]. Relativistic effects

are neglected in all calculations, since only minor band structure modifications have been

observed when spin-orbit coupling is incorporated for TMH and Janus TMD monolayers

[5].

We set the diameter of each nanotube to be that which minimizes the ground state en-

ergy, the results for which are summarized in Table 2.1. All numerical parameters in

Cyclix-DFT, including real-space grid spacing, k-point sampling for Brillouin zone, vac-

uum in the radial direction, and structural relaxation tolerances (both cell and atom) are

chosen such that the lattice parameters and atomic positions are numerically converged to
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within 0.01 bohr, which translates to the energy being accurate to within 10−6 Ha/atom. We

find that the equilibrium diameters so computed are in good agreement with Ref. [91], the

maximum difference of 0.6 nm occurring for the ZrClBr nanotube. The diameters follow

the trend: MClI < MBrI < MClBr, which can be explained by the electronegativity differ-

ence in halogens, i.e., larger difference results in smaller equilibrium diameters, similar to

Janus TMD nanotubes [152]. Interestingly, the stable symmetry (2H-t/1T-o) found in the

present TMH nanotubes is opposite to that in TMD and Janus TMD nanotubes [49, 152].

We have also verified the mechanical stability of the flat TMH monolayers by computing

their phonon spectra using the density functional perturbation theory (DFPT) feature in the

ABINIT code [174]. These results suggest that the selected nanotubes are also mechan-

ically stable, since the flat monolayer represents the stressed configuration (i.e, bending

stresses) relative to the equilibrium diameter nanotube.

We calculate the variation in bandgap and effective mass of charge carriers (i.e., elec-

trons and holes) with axial and shear strains using the procedure detailed in Ref. [111]. The

axial strain is defined as the ratio of change in nanotube length to its original length, while

the shear strain is defined as the product of the nanotube radius and the applied external

twist per unit length. The strain values considered here are commensurate with those found

in axial [38, 39] and torsion [48, 70, 106] experiments, with the maximum value decided

by the mechanical stability of the flat configuration, as determined by DFPT calculations

performed using ABINIT. We observe that the mechanically unstable strained monolayer

suffers fracture in the XY plane by looking at the vibrations of the unstable mode. All

numerical parameters in Cyclix-DFT, including those listed above, are chosen such that the

bandgap and charge carriers’ effective mass are numerically converged to within 0.01 eV

and 0.01 a.u., respectively.
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CHAPTER 3

RESULTS AND DISCUSSION

3.1 Transition metal dichalcogenide (TMD) nanotubes

3.1.1 Elastic properties

As described in the previous section, we utilize symmetry-adapted DFT simulations to

calculate torsional moduli of the forty-five select armchair and zigzag TMD nanotubes.

Observing a power law dependence of the torsional modulus with nanotube diameter d, we

fit the data to the following relation:

K(d) = kdα +K(0) , (3.1)

where k and α will be henceforth referred to as the torsional modulus coefficient and ex-

ponent, respectively. The values so obtained for the different materials are presented in

Table 3.1. Observing that the exponents are generally close to α = 3, in order to en-

able comparison between the different materials that can have nanotubes with significantly

different diameters, we also fit the data to the relation:

K(d) = k̂d3 +K(0) , (3.2)

where k̂ is referred to as the average torsional modulus coefficient. The results so obtained

are presented through violin plots in Figure 3.1.
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Table 3.1: Torsional modulus coefficient (k) and exponent (α) for the forty-five select
armchair and zigzag TMD nanotubes.

M

MS2 MSe2 MTe2

Diameter Torsional modulus Torsional modulus Torsional modulus

range coefficient k (eV nm1− α) coefficient k (eV nm1− α) coefficient k (eV nm1− α)

(nm) and exponent α and exponent α and exponent α

Armchair Zigzag Armchair Zigzag Armchair Zigzag

W 2 - 10 267 (3.02) 256 (3.04) 226 (3.03) 230 (3.01) 179 (3.04) 158 (3.09)

Mo 2 - 10 232 (3.03) 213 (3.07) 197 (3.03) 175 (3.09) 150 (3.03) 143 (3.04)

Cr 6 - 10 194 (3.08) 222 (2.98) 171 (3.00) 178 (2.99) 135 (2.95) 191 (2.76)

V 6 - 10 161 (3.07) 170 (3.00) 149 (3.00) 133 (3.00) 98 (2.98) 92 (2.97)

Ta 14 - 40 158 (3.07) 205 (2.95) 176 (2.97) 160 (2.97) 165 (2.85) 155 (2.86)

Nb 2 - 14 133 (3.08) 181 (2.92) 140 (3.00) 162 (2.91) 90 (3.01) 66 (3.17)

Pt 6 - 10 154 (3.01) 156 (3.00) 127 (3.01) 129 (3.00) 133 (2.92) 259 (2.53)

Hf 6 - 30 162 (3.00) 165 (2.98) 136 (3.00) 135 (2.99) 93 (3.00) 85 (3.02)

Zr 6 - 30 149 (3.00) 160 (2.96) 125 (3.00) 127 (2.98) 98 (2.93) 84 (2.98)

Ti 2 - 10 140 (3.03) 153 (2.98) 106 (3.08) 127 (2.94) 75 (3.03) 83 (2.93)

Ni 6 - 10 147 (2.99) 147 (3.00) 127 (2.93) 120 (2.98) 136 (2.63) 156 (2.53)

Pd 6 - 10 114 (3.02) 119 (2.99) 94 (3.02) 100 (2.98) 107 (2.85) 223 (2.40)

Mn 6 - 10 108 (3.08) 122 (3.00) 39 (3.23) 29 (3.38) 27 (3.40) 52 (2.99)

Fe 6 - 10 60 (3.26) 49 (3.29) 102 (2.90) 157 (2.71) 76 (2.87) 109 (2.66)

Cu 6 - 10 30 (3.19) 32 (3.13) 27 (3.14) 49 (2.76) 35 (3.20) 102 (2.35)

We observe that the torsional modulus coefficients span around an order of magnitude

between the different materials, with WS2 and CuSe2 having the largest and smallest values,

respectively. Notably, even the largest value obtained here is nearly three times smaller than

the carbon nanotube (733 eV/nm2) [111], which can be attributed to the extremely strong

covalent carbon-carbon bonds. In comparison with experiments, where only the torsional

20



 A
ve

ra
ge

  t
or

si
on

al
 m

od
ul

us
  

co
ef

fic
ie

nt
 (e

V/
nm

2 )

MS2 MSe2 MTe2

armchair
zigzag
armchair
zigzag

M W Mo Cr V Ta Nb Pt Hf Zr Ti Ni Pd Mn Fe Cu

300

250

200

150

100

50

0

Figure 3.1: Average torsional modulus coefficient (k̂) for the forty-five select armchair and
zigzag TMD nanotubes.

modulus of WS2 has been measured to date (384eV/nm2) [48], there is good agreement

with the average torsional modulus coefficient reported here (275 eV/nm2). In particular,

the computed value is well within the error bound communicated for the experimental

result. In comparison with theoretical predictions, where only the values for MoS2 are

available from force field (armchair: 249 eV/nm2 and zigzag: 243 eV/nm2) [108] and tight

binding (armchair: 265 eV/nm2 and zigzag: 265 eV/nm2) [107] simulations, there is good

agreement with the average torsional modulus coefficients reported here (armchair: 244

eV/nm2 and zigzag: 239 eV/nm2). Overall, we observe that the torsional moduli values

generally follow the trend MS2 > MSe2 > MTe2. This can be explained by the metal-

chalcogen bond length having the reverse trend, with shorter bonds generally expected to

be stronger due to the increase in orbital overlap.

We also observe from the results in Table 3.1 that the torsional modulus exponents are

in the neighborhood of α = 3, in agreement with the isotropic elastic continuum model

[177]. In such an idealization, the shear modulus G can be calculated from the torsional

modulus coefficient using the following relation derived from the continuum analysis of a
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homogeneous isotropic circular tube subject to torsional deformations: 1

G =
4̂k

π
. (3.3)

The results so obtained are presented in Figure 3.2. Note that since there are some notice-

able deviations from α = 3 ( Table 3.1) — suggests that the shear modulus changes with

diameter — the results in Figure 3.2 correspond to the case when k̂ is determined from the

single data point corresponding to the largest diameter nanotube studied for each material.

To verify their isotropic nature, we also determine the shear moduli of the nanotubes as

predicted by the isotropic relation in terms of the Young’s modulus (E) and Poisson’s ratio

(ν): G = E/2(1 + ν), both of which are also calculated using Cyclix-DFT, the results of

which are summarized in Figure 3.2 and Table 3.2. It is clear that there is very good agree-

ment between the computed and predicted shear moduli, suggesting that TMD nanotubes

can be considered to be elastically isotropic.

We observe from the results in Figure 3.2 that the Young’s moduli follow a similar trend

as the torsional modulus coefficients and therefore the shear moduli, which can be again

explained by the strength of the metal-chalcogen bond, consistent with results obtained

for molybdenum and tungsten TMD monolayers [180, 181, 182]. In regards to the Pois-

son’s ratio, we find that the MnS2, MnSe2, MnTe2, CrTe2, WTe2, MoTe2, TaTe2, and NiTe2

nantotubes have a value near zero. In addition, the CuS2, CuSe2, CuTe2, VS2 and FeS2

nanotubes have ν greater than the isotropic theoretical limit of 0.5, which can be justified

by the anistropic nature of these materials — evidenced by the relatively poor agreement

between the predicted and computed shear moduli ( Figure 3.2) — where this bound is not

applicable [183]. In regards to failure of these materials, it is possible to use Frantsevich’s

rule [184] — materials with ν > 0.33 and ν < 0.33 are expected to be ductile and brit-

1Since there is only a single parameter (i.e., shear modulus) in the continuum model, it can be deter-
mined from the average torsional modulus coefficient using Equation 4. In the case of discrete finite-element
models of nanotubes[178, 179], which can provide significant computational efficiency relative to ab initio
methods for studying mechanical behavior, a number of other DFT simulations would need to be performed
to determine the force constants inherent to such models.
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tle, respectively — to predict that M={Cu, Nb, Fe, Ta and V} nanotubes are ductile and

M={W, Mo, Cr, Pt, Hf, Zr, Ti, Ni, Pd, Mn} are brittle. In particular, there is a clear divide

between the Poisson’s ratio of these two sets, as seen in Figure 3.2. Note that the computed

Young’s moduli and Poisson’s ratio values are in good agreement with those available in

literature [41, 107, 44, 99, 47, 103], further confirming the fidelity of the simulations per-

formed here.

The above results indicate that the torsional moduli of TMD nanotubes are dependent

on the nature and strength of the metal-chalcogen bond, which can be expected to depend

on the bond length, difference in electronegativity between the atoms, and sum of their ion-

ization potential and electron affinity. The first feature mentioned above is used to mainly

capture the strength of the bond, and the other two features are used to mainly capture

the nature of the bonding [185, 186, 187, 188]. Using these three features, we perform a

linear regression on the set of average torsional modulus coefficients, the results of which

are presented in Figure 3.3. The fit is reasonably good, suggesting that the features chosen

here play a significant role in determining the torsional moduli of TMD nanotubes. Note

that inclusion of the bond angle as a feature did not improve the quality of the fit, and

therefore has been neglected here. Also note that though the quality of the fit can be further

increased by using higher order polynomial regression, it can possibly lead to overfitting,

and is hence not adopted here.
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Table 3.2: Young’s modulus (Y), shear modulus (G) and Poisson’s ratio (ν) for the forty-
five select armchair and zigzag Transition Metal Dichalcogenides (TMD) nanotubes from
first principles DFT calculations

MX2
Young’s modulus (N/m) Shear modulus (N/m) Poisson’s ratio
Armchair Zigzag Armchair Zigzag Armchair Zigzag

WS2 118.4 125.2 56.4 55.6 0.16 0.16
WSe2 97.5 101.9 48.2 47.7 0.21 0.21
WTe2 69.1 65.3 38.8 37.5 0.17 0.05
MoS2 106.9 120.1 49.7 48.7 0.24 0.18
MoSe2 92.0 99.9 42.1 41.3 0.23 0.16
MoTe2 60.2 68.0 32.1 31.1 0.22 0.04
CrS2 99.5 108.1 44.0 44.0 0.19 0.17
CrSe2 78.4 86.6 34.9 35.8 0.22 0.19
CrTe2 54.8 62.8 25.9 27.9 0.06 0.05
VS2 87.9 93.5 36.1 34.8 0.52 0.43
VSe2 65.2 73.8 30.4 27.2 0.44 0.44
VTe2 50.1 70.7 19.5 18.1 0.37 0.47
TaS2 91.8 94.4 39.5 35.9 0.42 0.27
TaSe2 76.3 79.1 32.6 29.8 0.39 0.29
TaTe2 57.3 55.2 21.4 21.0 0.16 0.05
NbS2 81.8 86.2 31.9 31.4 0.41 0.29
NbSe2 70.0 70.7 28.6 27.5 0.38 0.26
NbTe2 49.1 53.1 18.9 18.9 0.35 0.30
PtS2 78.5 79.3 31.8 31.7 0.22 0.19
PtSe2 66.0 66.4 26.2 26.3 0.23 0.23
PtTe2 50.3 50.1 24.4 27.4 0.19 0.22
HfS2 61.4 76.5 33.1 31.9 0.12 0.15
HfSe2 54.7 65.7 27.5 26.8 0.19 0.15
HfTe2 45.4 43.8 19.1 18.6 0.14 0.18
ZrS2 59.4 72.6 30.3 29.3 0.15 0.28
ZrSe2 53.4 56.4 25.2 24.5 0.19 0.14
ZrTe2 33.8 30.7 16.8 16.1 0.12 0.16
TiS2 58.5 75.2 30.1 31.6 0.11 0.23
TiSe2 54.9 58.8 24.7 23.5 0.21 0.22
TiTe2 41.4 37.3 15.5 15.8 0.20 0.17
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Table 3.2 - continued.

MX2
Young’s modulus (N/m) Shear modulus (N/m) Poisson’s ratio
Armchair Zigzag Armchair Zigzag Armchair Zigzag

NiS2 71.0 72.0 29.6 29.9 0.15 0.19
NiSe2 55.8 55.9 23.8 23.8 0.17 0.16
NiTe2 29.4 32.8 16.9 17.0 0.26 0.07
PdS2 58.3 58.2 23.8 24.0 0.22 0.22
PdSe2 49.0 48.2 19.6 19.8 0.24 0.23
PdTe2 36.8 36.9 17.7 19.7 0.21 0.15
MnS2 55.1 55.0 24.5 24.9 0.14 0.07
MnSe2 37.3 37.4 11.0 9.7 0.04 0.04
MnTe2 43.1 43.2 9.1 10.5 0.05 0.05
FeS2 52.9 60.7 17.3 14.5 0.38 0.57
FeSe2 43.1 45.7 18.1 21.8 0.23 0.30
FeTe2 37.9 41.2 13.2 14.4 0.27 0.48
CuS2 21.2 23.2 7.9 7.8 0.43 0.54
CuSe2 18.8 29.5 6.6 7.2 0.62 0.48
CuTe2 17.1 19.9 9.3 8.6 0.24 0.54
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regression with the features being the metal-chalcogen bond length, difference in elec-
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potential and chalcogen’s electron affinity. The values of R2 shown in the legend denotes
the coefficient of determination for the linear regression.
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3.1.2 Electromechanical response

Table 3.3: Variation of bandgap with shear strain (γ ) for the forty-five select TMD nan-
otubes. (D: direct bandgap, I: indirect bandgap).

MX2

Bandgap (eV)

Armchair Zigzag

γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15 γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15

MoS2 1.60 (I) 1.58 (I) 1.56 (I) 1.54 (I) 1.53 (I) 1.45 (I) 1.6 (I) 1.57 (I) 1.50 (I) 1.46 (I) 1.41 (I) 1.29 (I)

MoSe2 1.44 (D) 1.41 (D) 1.35 (I) 1.32 (I) 1.29 (I) 1.15 (I) 1.44 (D) 1.39 (I) 1.33 (I) 1.29 (I) 1.24 (I) 1.15 (I)

MoTe2 1.11 (D) 0.97 (I) 0.80 (I) 0.72 (I) 0.65 (I) 0.52 (I) 1.10 (D) 1.03 (I) 0.87 (I) 0.81 (I) 0.73 (I) 0.61 (I)

WS2 1.82 (I) 1.78 (I) 1.76 (I) 1.69 (I) 1.65 (I) 1.57 (I) 1.83 (D) 1.78 (I) 1.73 (I) 1.69 (I) 1.65 (I) 1.56 (I)

WSe2 1.53 (D) 1.51 (D) 1.49 (D) 1.41 (I) 1.37 (I) 1.29 (I) 1.54 (D) 1.51 (I) 1.46 (I) 1.42 (I) 1.39 (I) 1.29 (I)

WTe2 1.14 (D) 1.11 (D) 0.92 (I) 0.81 (I) 0.71 (I) 0.53 (I) 1.12 (D) 1.11 (I) 1.01 (I) 0.93 (I) 0.82 (I) 0.65 (I)

NbS2 0 0 0 0 0 0 0 0 0 0 0 0

NbSe2 0 0 0 0 0 0 0 0 0 0 0 0

NbTe2 0 0 0 0 0 0 0 0 0 0 0 0

TaS2 0 0 0 0 0 0 0 0 0 0 0 0

TaSe2 0 0 0 0 0 0 0 0 0 0 0 0

TaTe2 0 0 0 0 0 0 0 0 0 0 0 0

VS2 0 0 0 0 0 0 0 0 0 0 0 0

VSe2 0 0 0 0 0 0 0 0 0 0 0 0

VTe2 0 0 0 0 0 0 0 0 0 0 0 0

CrS2 0.97 (D) 0.96 (D) 0.91 (I) 0.88 (I) 0.84 (I) 0.78 (I) 0.97 (D) 0.93 (I) 0.89 (I) 0.84 (I) 0.80 (I) 0.72 (I)

CrSe2 0.78 (D) 0.75 (I) 0.72 (I) 0.68 (I) 0.65 (I) 0.56 (I) 0.78 (D) 0.75 (I) 0.72 (I) 0.68 (I) 0.64 (I) 0.57 (I)

CrTe2 0.54 (D) 0.53 (D) 0.50 (D) 0.47 (D) 0.40 (I) 0.32 (I) 0.53 (D) 0.51 (I) 0.47 (I) 0.43 (I) 0.40 (I) 0.34 (I)

PdS2 1.18 (I) 1.02 (I) 0.90 (I) 0.81 (I) 0.73 (I) 0.59 (I) 1.18 (I) 1.01 (I) 0.90 (I) 0.82 (I) 0.74 (I) 0.62 (I)

PdSe2 0.69 (I) 0.51 (I) 0.38 (I) 0.30 (I) 0.20 (I) 0.06 (I) 0.69 (I) 0.51 (I) 0.38 (I) 0.30 (I) 0.21 (I) 0.08 (I)

PdTe2 0.22 (I) 0 0 0 0 0 0.22 (I) 0 0 0 0 0

PtS2 1.72 (I) 1.63 (I) 1.54 (I) 1.47 (I) 1.37 (I) 1.25 (I) 1.71 (I) 1.61 (I) 1.52 (I) 1.45 (I) 1.37 (I) 1.25 (I)

PtSe2 1.33 (I) 1.15 (I) 1 0.91 (I) 0.80 (I) 0.65 (I) 1.32 (I) 1.15 (I) 1.01 (I) 0.92 (I) 0.82 (I) 0.69 (I)

PtTe2 0.73 (I) 0.49 (I) 0.32 (I) 0.20 (I) 0.09 (I) 0 0.73 (I) 0.49 (I) 0.32 (I) 0.22 (I) 0.12 (I) 0

ZrS2 1.21 (I) 1.00 (I) 0.91 (I) 0.84 (I) 0.78 (I) 0.60 (I) 1.21 (I) 1.02 (I) 0.95 (I) 0.90 (I) 0.86 (I) 0.77 (I)

ZrSe2 0.47 (I) 0.25 (I) 0.15 (I) 0.07 (I) 0.01 (I) 0 0.47 (I) 0.28 (I) 0.22 (I) 0.16 (I) 0.13 (I) 0

ZrTe2 0 0 0 0 0 0 0 0 0 0 0 0
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Table 3.3 - continued.

MX2

Bandgap (eV)
Armchair Zigzag

γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15 γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15

HfS2 1.29 (I) 1.11 (I) 1.01 (I) 0.95 (I) 0.88 (I) 0.71 (I) 1.30 (I) 1.13 (I) 1.05 (I) 1.01 (I) 0.98 (I) 0.89 (I)
HfSe2 0.59 (I) 0.38 (I) 0.29 (I) 0.21 (I) 0.15 (I) 0 0.58 (I) 0.40 (I) 0.34 (I) 0.30 (I) 0.27 (I) 0.17 (I)
HfTe2 0 0 0 0 0 0 0 0 0 0 0 0
FeS2 0 0 0 0 0 0 0 0 0 0 0 0
FeSe2 0 0 0 0 0 0 0 0 0 0 0 0
FeTe2 0 0 0 0 0 0 0 0 0 0 0 0
MnS2 0 0 0 0 0 0 0 0 0 0 0 0
MnSe2 0 0 0 0 0 0 0 0 0 0 0 0
MnTe2 0 0 0 0 0 0 0 0 0 0 0 0
CuS2 0 0 0 0 0 0 0 0 0 0 0 0
CuSe2 0 0 0 0 0 0 0 0 0 0 0 0
CuTe2 0 0 0 0 0 0 0 0 0 0 0 0
NiS2 0.54 (I) 0.35 (I) 0.22 (I) 0.13 (I) 0.04 (I) 0 0.54 (I) 0.31 (I) 0.17 (I) 0.06 (I) 0 0
NiSe2 0.14 (I) 0 0 0 0 0 0.14 (I) 0 0 0 0 0
NiTe2 0 0 0 0 0 0 0 0 0 0 0 0
TiS2 0.06 (I) 0 0 0 0 0 0.08 (I) 0 0 0 0 0
TiSe2 0 0 0 0 0 0 0 0 0 0 0 0
TiTe2 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.4: Variation of the effective mass of holes with shear strain (γ ) for the nineteen
semiconducting TMD nanotubes.

MX2

Effective mass of holes (a.u.)

Armchair Zigzag

γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15 γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15

MoS2 5.10 4.45 3.86 3.50 0.55 0.52 4.32 4.38 4.27 4.20 4.03 3.74

MoSe2 0.65 0.63 0.63 0.62 0.61 0.60 0.64 0.66 0.67 0.61 0.62 0.65

MoTe2 0.72 0.68 0.63 0.63 0.66 0.76 0.73 0.41 0.34 0.33 0.32 0.34

WS2 4.10 0.42 0.41 0.41 0.40 0.39 0.44 0.40 0.40 0.40 0.40 0.39

WSe2 0.45 0.44 0.43 0.42 0.42 0.42 0.45 0.44 0.44 0.44 0.40 0.40

WTe2 0.44 0.43 0.44 0.42 0.43 0.44 0.46 0.44 0.26 0.25 0.23 0.22

CrS2 0.94 0.91 0.93 0.93 0.91 0.91 0.94 0.96 0.94 0.96 0.96 1.01

CrSe2 1.02 1.00 1.03 1.00 1.01 1.60 1.02 1.05 1.02 1.04 1.08 1.08

CrTe2 1.04 1.01 1.05 1.02 1.07 1.01 1.03 1.04 1.03 1.07 1.08 1.18

PdS2 2.45 1.77 1.41 1.28 1.20 1.10 3.17 1.58 1.24 1.09 0.97 0.83

PdSe2 1.64 0.70 0.67 0.66 0.65 0.63 1.48 0.65 0.57 0.53 0.49 0.45

PtS2 0.97 1.30 1.58 1.18 1.95 2.23 6.79 4.81 4.34 4.92 2.23 1.35

PtSe2 1.65 1.14 1.61 1.35 1.17 0.99 3.66 1.49 1.19 1.03 0.87 0.71

PtTe2 0.89 0.47 0.46 0.46 0.46 0.45 1.23 0.43 0.37 0.35 0.33 0.32

ZrS2 0.44 0.29 0.30 0.32 0.33 0.35 0.44 0.22 0.20 0.19 0.18 0.14

ZrSe2 0.30 0.19 0.20 0.21 0.22 0.23 0.29 0.13 0.11 0.10 0.09 0.06

HfS2 0.26 0.27 0.28 0.30 0.31 0.34 0.46 0.22 0.20 0.19 0.18 0.16

HfSe2 0.35 0.19 0.21 0.22 0.22 0.21 0.33 0.14 0.13 0.12 0.11 0.09

NiS2 5.02 0.60 0.59 0.58 0.59 0.59 2.17 0.57 0.53 0.50 0.49 0.48

29



Table 3.5: Variation of the effective mass of electrons with shear strain (γ ) for the nineteen
semiconducting TMD nanotubes.

MX2

Effective mass of electrons (a.u.)

Armchair Zigzag

γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15 γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15

MoS2 0.47 0.47 0.50 0.50 0.50 0.55 0.48 0.46 0.46 0.48 0.49 0.50

MoSe2 0.56 0.56 0.58 0.59 0.58 0.59 0.55 0.56 0.53 0.54 0.55 0.62

MoTe2 0.63 0.63 0.66 0.65 0.64 0.70 0.62 0.61 0.67 0.60 0.60 0.61

WS2 0.32 0.33 0.33 0.34 0.34 0.34 0.32 0.33 0.32 0.32 0.32 0.33

WSe2 0.35 0.35 0.36 0.37 0.37 0.37 0.35 0.35 0.36 0.34 0.35 0.35

WTe2 0.35 0.35 0.46 0.37 0.36 0.35 0.35 0.34 0.34 0.28 0.33 0.33

CrS2 0.93 0.93 0.99 1.02 1.08 1.17 0.92 0.97 0.96 0.99 0.99 0.98

CrSe2 1.01 1.04 1.06 1.10 1.14 1.33 1.00 1.06 1.05 1.03 1.10 1.06

CrTe2 1.00 0.99 1.05 1.02 1.07 1.00 0.98 1.02 1.05 1.02 1.07 0.98

PdS2 0.30 0.30 0.30 0.31 0.31 0.30 0.45 0.46 0.45 0.45 0.45 0.43

PdSe2 0.22 0.22 0.22 0.22 0.21 0.21 0.21 0.28 0.27 0.26 0.26 0.24

PtS2 0.33 0.32 0.30 0.30 0.31 0.30 0.51 0.52 0.53 0.53 0.54 0.53

PtSe2 0.26 0.26 0.26 0.25 0.25 0.25 0.38 0.39 0.37 0.36 0.36 0.36

PtTe2 0.20 0.31 0.32 0.30 0.30 0.29 0.17 0.47 0.47 0.50 0.47 0.47

ZrS2 0.28 0.73 0.70 0.67 0.64 0.56 2.05 0.32 0.30 0.29 0.28 0.24

ZrSe2 0.19 0.50 0.45 0.40 0.37 0.36 0.26 0.21 0.20 0.18 0.17 0.15

HfS2 0.23 0.65 0.62 0.59 0.57 0.50 0.30 0.28 0.26 0.26 0.25 0.24

HfSe2 0.17 0.48 0.44 0.40 0.37 0.37 0.23 0.19 0.18 0.18 0.17 0.15

NiS2 0.28 0.26 0.26 0.25 0.25 0.24 0.26 0.34 0.32 0.31 0.31 0.30

In Figure 3.4, we present the variation of the bandgap with shear strain for the selected

TMD nanotubes. We observe that the untwisted MoS2, MoSe2, MoTe2, WS2, WSe2, WTe2,

CrS2, CrSe2, CrTe2, PdS2, PdSe2, PdTe2, PtS2, PtSe2, PtTe2, ZrS2, ZrSe2, HfS2, HfSe2,

NiS2, NiSe2, and TiS2 nanotubes are semiconducting, while the remaining are metallic.

In addition, nanotubes that are metallic continue to be so even after the application of

twist, whereas semiconducting nanotubes undergo a decrease in bandgap value with twist

— bandgaps that are originally direct become indirect — resulting in a semiconductor to

metal transition. In particular, armchair HfSe2, ZrSe2, PtTe2, NiS2, TiS2, NiSe2, and PdTe2;

and zigzag ZrSe2, PtTe2, NiS2, TiS2, NiSe2, and PdTe2 nanotubes undergo a semiconduc-

tor to metal transition for the twists considered. The transition for TiS2, NiSe2, and PdTe2
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nanotubes occurs at substantially lower strains than the others, since the bandgaps in the

untwisted state are smaller. Such transitions are also expected for the remaining semicon-

ducting nanotubes, however the amount of twist required to achieve this can be significantly

higher, at which point stability considerations become particularly important. Tunability of

the bandgap and controlled semiconductor-metal transitions like those observed here have

applications in devices such as mechanical sensors[75, 76, 42].
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Figure 3.5: Variation of the difference in effective mass between holes and electrons (holes
minus electrons) with twist for the nineteen semiconducting armchair and zigzag TMD
nanotubes.

In Figure 3.5, we present the variation of the difference in effective mass between holes

and electrons with twist for the nineteen semiconducting armchair and zigzag TMD nan-

otubes that were identified above. The effective mass of the holes and electrons relative

to each other can be used to identify whether the nanotubes are n-type or p-type semicon-

ductors. Specifically, the effective mass of the holes being greater than electrons suggests

that the electrons have higher mobility, resulting in n-type semiconductors, with the re-

verse being true for p-type semiconductors. It is clear from the figure that other than the

zigzag ZrS2 nanotube, all other nanotubes are n-type semiconductors in their untwisted

state. Upon the application of twist, the effective mass of the holes continuously decreases

while that of the electrons continuously increases, leading to a crossover in their values.

In particular, armchair MoS2, MoTe2, WTe2, ZrS2, ZrSe2, HfS2, HfSe2, CrS2, and CrSe2;
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and zigzag MoTe2, WTe2, ZrSe2, HfS2, HfSe2, CrS2, CrSe2, and PtTe2 nanotubes undergo a

transition from n-type to p-type semiconducting behavior for the twists considered. Indeed,

larger twists are likely to result in transitions for the other nanotubes as well, however, as

mentioned above, stability considerations become particularly important in such scenar-

ios. Controlled n-type to p-type semiconductor transitions like those observed here have

applications in semiconductor switches[189, 190, 191, 192, 193, 194].

The results presented in this work are in good agreement with those available in liter-

ature. Specifically, in the untwisted state, the metallic nature predicted for TaS2, NbSe2,

and NbS2 nanotubes is in agreement with tight binding calculations [34, 195, 196, 33]; the

bandgap values for MoS2, MoSe2, WS2, WSe2, and CrS2 nanotubes are in good agreement

with other DFT studies [44, 41]; and the effective masses of electrons for MoS2, WS2, and

CrS2 nanotubes are in good agreement with other DFT results [44, 43, 41]. In addition,

the bandgap variation upon twisting for WS2 and MoS2 nanotubes is in good qualitative

agreement with previous experiments and tight binding calculations, respectively [48]. A

quantitative comparison cannot be made due to availability of only electrical response in

the experiments, and the diameters in both experiments and tight binding simulations be-

ing different to those chosen here. Indeed, we have found that the bandgap variation with

shear strain is qualitatively similar for different diameters. In view of this, we note that the

ratio of change in bandgap between 15% and 10% shear strains for WS2 nanotube is 2.1

based on experiments [48], which is in good agreement with the ratio of 1.9 obtained here

for both armchair and zigzag variants. Furthermore, the ratio of bandgap between 15% and

0% strains for the armchair MoS2 nanotube is 0.9 based on tight binding results [48], which

is in excellent agreement with the value of 0.9 obtained here. It is interesting to note that

metallic TMD nanotubes continue to be so even after the application of torsional deforma-

tions, which is fundamentally different from the response of carbon nanotubes [111].

To gain further insights into the results presented above, choosing representative TMD

nanotubes that demonstrate semiconductor to metal and n-type to p-type transitions, we
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plot the contours of electron density difference between the twisted and untwisted nanotube

configurations in Figure 3.6. In addition, we compute the charge transfer due to torsional

deformations using Bader analysis [197, 198]. We observe that there is negligible change in

the Bader charge, suggesting the lack of charge transfer between the metal and chalcogen

atoms, indicating that the nature of bonding between them remains unchanged. It can

therefore be inferred that electronic variations due to torsional deformations, as visible

through the change in electron density contours, is likely due to the rehybridization of

orbitals in the metal and chalcogen atoms.

3.1.3 Spintronic properties: Rashba and Zeeman effect

We now present the spin-splitting results for TMD nanotubes with axial and shear strain.

After introducing spin-orbital coupling (SOC), we find that there is no effect of it on the

metallic nanotubes: NbS2, NbSe2, TaS2 and TiSe2. Also, we didn’t observe any SOC effect

in some other TMD nanotubes like TiS2, HfS2 and ZrS2. Although, from Figure 3.7,

we show the Zeeman spin-splitting in the remaining synthesized TMD nanotubes. We

consider the splittings at both VBM (Valence Band Maximum) and CBM (Conduction

Band Minimum) with axial and shear strain. We observe that the application of mechanical

deformation usually results in a decrease in the splitting at VBM and CBM. The effect of

SOC almost dissipates with axial strain at VBM, with splitting reaching 0. The values of

VBM and CBM splitting at no mechanical deformation are almost similar to its 2d analogs

[199], owing to the large enough diameter considered for the nanotubes. The trend of

decrease in splitting is similar to the study on Janus TMD bilayers subjected to biaxial

strains [200]

In Figure 3.8, the Rashba effect is not observed without any shear strain. It is consistent

with our theory of the Rashba effect being present in only non-inversion-symmetry mate-

rials. As soon as we introduce shear strain (twist) in the nanotube, we break the inversion

symmetry and we can see the Rashba coefficient continuously increasing with the strain.
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The coefficient values at the highest strain are significant and can be used for spintronics

applications. Note that we compute this change along momentum direction at the gamma

point, similar to other Rashba effect studies [199, 200].
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3.2 Janus TMD nanotubes

3.2.1 Elastic properties

As described in the previous section, we have performed symmetry-adapted Kohn-Sham

DFT simulations to calculate the elastic properties of the twenty-seven select Janus TMD

nanotubes, in both armchair and zigzag configurations, at their equilibrium diameters. The

results so obtained have been summarized in Table 3.6 and Figure 3.9, which we discuss

in detail below. Note that the results for the torsional moduli are reported in terms of the

diameter-independent quantity referred to as the torsional modulus coefficient k̂ = K/d3

[151], where d is the nanotube diameter. Also note that both the torsional and Young’s

moduli are reported in units of N/m rather than N/m2, since the latter requires an assumption

on the thickness of the nanotube, whose value is not clearly defined [201].

The equilibrium radii generally follow the trend: MSTe < MSeTe < MSSe, which

can be correlated to the difference in electronegativity between the chalcogens, i.e., larger

electronegativity differences result in smaller equilibrium diameters, an observation that is

in agreement with previous DFT results for M={Nb, Ta, Mo, W} and X,Y={S, Se, Te}

[114]. The computed equilibrium diameters for these systems are also in excellent agree-

ment with Ref [114], the maximum difference being 0.4 nm, which occurs for NbSSe. In

terms of comparison with Ref. [91], which also employs DFT to predict the equilibrium

diameters for all the materials studied here, while there is good agreement for nanotubes

with smaller diameters, the difference increases with nanotube diameter, reaching a maxi-

mum of 22.8 nm for TiSeTe. This is a consequence of Ref. [91] using extrapolation from

the data for small diameters — the current work employs interpolation, with data points on

either side of the equilibrium diameter— whereby larger errors are accumulated when the

equilibrium diameter is farther away from the region where Kohn-Sham calculations have

actually been performed.

We observe from the results that the torsional modulus coefficients and the Young’s
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Table 3.6: Young’s modulus (E), Poisson’s ratio (ν), and torsional modulus coefficient (k̂)
for the twenty-seven select Janus TMD nanotubes from first principles DFT calculations.

M
MSSe

Armchair Zigzag
D (nm) E (N/m) ν k̂ (N/m) D (nm) E (N/m) ν k̂ (N/m)

W 8.8± 0.5 106 0.25 39 9.0 ± 0.5 114 0.19 38
Mo 8.4 ± 0.2 96 0.28 33 8.3 ± 0.1 104 0.22 33
Cr 7.2 ± 0.3 87 0.35 30 7.5 ± 0.4 97 0.25 29
Ta 11.1 ± 1.5 80 0.41 25 11.2 ± 1.5 90 0.29 25
V 14.6 ± 2 72 0.32 23 14.2 ± 2.3 79 0.24 27
Nb 13.1 ± 1.4 68 0.35 23 14.1 ± 1.4 76 0.26 23
Hf 9.5 ± 0.5 62 0.20 22 10.4 ± 0.5 65 0.15 22
Zr 15.5 ± 3 57 0.19 20 14.9 ± 2.4 59 0.14 20
Ti 43.9 ± 5.9 60 0.21 19 44.9 ± 4.9 62 0.20 20

M
MSTe

Armchair Zigzag
D (nm) E (N/m) ν k̂ (N/m) D (nm) E (N/m) ν k̂ (N/m)

W 3.8 ± 0.1 80 0.42 32 3.8 ± 0.1 99 0.31 35
Mo 3.8 ± 0.1 74 0.48 28 3.8 ± 0.1 93 0.40 30
Cr 3.1 ± 0.1 60 0.54 22 3.1 ± 0.1 83 0.36 25
Ta 4.0 ± 0.1 65 0.53 24 4.1 ± 0.06 80 0.42 28
V 4.4 48 0.43 21 4.4 ± 0.06 65 0.47 21
Nb 4.4 ± 0.1 47 0.55 23 4.4 ± 0.1 69 0.39 20
Hf 4.4 ± 0.4 43 0.30 19 4.4 ± 0.4 51 0.24 18
Zr 6.1 ± 0.2 39 0.29 16 6.1 ± 0.2 45 0.20 15
Ti 10.0 ± 0.4 46 0.34 16 9.7 ± 0.6 48 0.34 14

M
MSeTe

Armchair Zigzag
D (nm) E (N/m) ν k̂ (N/m) D (nm) E (N/m) ν k̂ (N/m)

W 6.7 ± 0.1 77 0.26 31 7.1 ± 0.1 85 0.18 31
Mo 6.6 ± 0.3 69 0.32 27 6.5 ± 0.3 81 0.19 27
Cr 5.6 ± 0.2 62 0.44 22 5.6 ± 0.1 73 0.34 22
Ta 7.6 ± 0.3 58 0.40 20 7.6 ± 0.2 66 0.31 20
V 8.4 ± 0.6 52 0.38 17 8.2 ± 0.5 59 0.27 25
Nb 8.7 ± 0.8 53 0.38 18 8.9 ± 0.8 59 0.28 16
Hf 8.2 ± 0.5 40 0.15 17 8.1 ± 0.6 44 0.10 16
Zr 16.6 ± 3 38 0.20 14 15.8 ± 2.2 42 0.12 14
Ti 39.3 ± 10.9 41 0.16 13 28.7 ± 4.9 40 0.15 13

moduli for the Janus TMD nanotubes lie between the corresponding values for the parent

TMD nanotubes [151]. In addition, we find that they follow the trend: MSSe > MSTe >

MSeTe, which is the reverse of that for the metal-chalcogen bond lengths. Indeed, shorter

bonds are expected to be stronger, due to the increase in overlap of the orbitals. In terms

of individual values, WSSe and TiSeTe have the largest and smallest torsional modulus

38



coefficients, respectively, while WSSe and ZrSeTe have the largest and smallest Young’s

moduli, respectively. Notably, even the largest values obtained here are nearly a factor

of 3 smaller than those for the carbon nanotube (k̂ = 117 N/m [111] and E = 345 N/m

[202]), a likely consequence of the very strong covalent carbon-carbon bonds. In regards to

the Poisson’s ratio, we find that the armchair CrSTe, TaSTe, NbSTe nanotubes have values

greater than the isotropic theoretical limit of 0.5 [183], which suggests their anistropic

nature, a result that we further confirm below. Note that we are not aware of any theoretical

or experimental results in literature against which we can compare the values reported in

this work. Indeed, the predictions made for MoSSe in Ref. [105] cannot be compared,

given the significantly smaller diameter chosen there compared to the equilibrium value

used here.

We also observe from the results that anisotropy with respect to armchair and zigzag

configurations follows the ordering: MSTe > MSeTe > MSSe, which can likely be at-

tributed to the level of dissimilarity between the chalcogens. To confirm this, we com-

pute the effective shear modulus using the relation G = 4k̂/π, which corresponds to the

nanotube being modeled as a homogeneous isotropic circular tube subject to an external

twist, and compare it against that predicted by the isotropic relation featuring the Young’s

modulus and Poisson’s ratio: G = E/2(1 + ν). The results so obtained are summarized

in Figure 3.9, from which it is clear that the disagreement between the computed and pre-

dicted shear moduli follows the same trend as that stated above for the difference in values

between armchair and zigzag configurations, indicative of the relative degree of anisotropy

between the different groups. In addition, the armchair nanotubes are significantly more

anisotropic compared to their zigzag counterparts.

The above results indicate that the nature/strength of the metal-chalcogen bonds as

well as the level of dissimilarity between the chalcogen atoms plays a significant role in

determining the torsional and Young’s moduli of Janus TMD nanotubes. In view of this,

we develop a regression model with the following features: metal-chalcogen bond lengths,
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Figure 3.10: Computed elastic properties and their linear regression, with the features be-
ing the metal-chalcogen bond lengths, difference in electronegativity between the chalco-
gen atoms, and sum of the metal’s ionization potential and chalcogens’ electron affinity.
The R2 values listed in the legend represent the coefficient of determination for the linear
regression.

difference in electronegativity between the chalcogens, and sum of the ionization potential

and electron affinity for the metal and chalcogens, respectively. In particular, we perform

a linear regression on the sets of torsional modulus coefficients and Young’s moduli, the

results of which are presented in Figure 3.10. The fit is reasonably good, which confirms

that the chosen features play a significant role in determining the elastic properties for Janus

TMD nanotubes. Note that higher order polynomial regression can be used to improve the

quality of the fit, however this can possibly lead to overfitting, and hence not adopted here.

3.2.2 Electromechanical response

We now present and discuss the electronic response of the aforementioned Janus TMD nan-

otubes to axial/torsional deformations, from first principles, using the symmetry-adapted

Kohn-Sham DFT framework described in the previous section. Wherever available, we

compare the results obtained here with those in literature.

First, we summarize the variation of bandgap with axial and shear strains in Figure 3.11.

We observe that the undeformed CrSSe, CrSeTe, CrSTe, MoSSe, MoSeTe, MoSTe, WSSe,
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WSeTe, WSTe, ZrSSe, and HfSSe nanotubes are semiconducting, while the rest are metal-

lic. In particular, bandgaps for MoSSe and MoSTe are in agreement with previous DFT

studies [112, 86, 113, 114]. Upon deformation, the metallic nanotubes continue to remain

metallic (behavior that distinguishes them from carbon nanotubes [203, 111]), whereas

semiconducting nanotubes undergo a monotonic decrease in bandgap, the exceptions be-

ing HfSSe: bandgap increases with axial strain, and ZrSSe: bandgap first increases and

then decreases with axial strain. Such tunability of bandgaps has a number of applica-

tions in nanotechnology, e.g., mechanical sensors [75, 76, 42]. Notably, both armchair

and zigzag CrSTe nanotubes go through a semiconductor to metal transition within the

range of axial strains considered. Indeed, for large enough axial/torsional deformations,

such semiconductor to metal transitions are likely to occur for all the semiconducting nan-

otubes, though stability considerations become particularly important and therefore need

to be considered/addressed. Note that on the application of compressive axial strains, the

metallic nanotubes continue to remain metallic, three semiconducting nanotubes (MoSSe,

WSSe, CrSSe) undergo an increase in bandgap, while the remaining eight undergo a de-

crease in bandgap, with the rate of bandgap variation being larger for compressive strains

compared to tensile strains.
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Figure 3.11: Variation of bandgap with axial and torsional deformations for the eighteen
select armchair and zigzag Janus TMD nanotubes.
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Table 3.7: Variation of bandgap with axial strain (ε) for the twenty-seven select Janus TMD
nanotubes. (D: direct bandgap, I: indirect bandgap).

MXY

Bandgap (eV)

Armchair Zigzag

ε = 0 ε = 0.05 ε = 0.08 ε = 0.10 ε = 0.12 ε = 0.14 ε = 0 ε = 0.05 ε = 0.08 ε = 0.10 ε = 0.12 ε = 0.14

TiSSe 0 0 0 0 0 0 0 0 0 0 0 0

TiSTe 0 0 0 0 0 0 0 0 0 0 0 0

TiSeTe 0 0 0 0 0 0 0 0 0 0 0 0

HfSSe 0.89 (D) 1.11 (D) 1.16 (D) 1.19 (D) 1.21 (D) 1.21 (D) 0.90 (I) 1.06 (I) 1.13 (I) 1.17 (I) 1.15 (I) 1.06 (I)

HfSTe 0 0 0 0 0 0 0 0 0 0 0 0

HfSeTe 0 0 0 0 0 0 0 0 0 0 0 0

ZrSSe 0.73 (I) 0.91 (I) 0.98 (I) 0.92 (I) 0.86 (I) 0.81 (I) 0.74 (I) 0.87 (I) 0.92 (I) 0.86 (I) 0.98 (I) 1.13 (I)

ZrSTe 0 0 0 0 0 0 0 0 0 0 0 0

ZrSeTe 0 0 0 0 0 0 0 0 0 0 0 0

CrSSe 0.86 (I) 0.68 (I) 0.54 (I) 0.44 (I) 0.36 (I) 0.29 (I) 0.86 (I) 0.56 (I) 0.39 (I) 0.29 (I) 0.20 (I) 0.12 (I)

CrSTe 0.57 (I) 0.32 (I) 0.19 (I) 0.08 (I) 0 0 0.56 (I) 0.27 (I) 0.12 (I) 0.05 (I) 0 0

CrSeTe 0.65 (D) 0.59 (D) 0.46 (I) 0.38 (I) 0.32 (I) 0.28 (I) 0.65 (I) 0.46 (I) 0.32 (I) 0.23 (I) 0.15 (I) 0.09 (I)

MoSSe 1.56 (I) 1.10 (I) 0.84 (I) 0.68 (I) 0.52 (I) 0.36 (I) 1.56 (I) 1.10 (I) 0.82 (I) 0.67 (I) 0.53 (I) 0.41 (I)

MoSTe 1.25 (I) 1.00 (I) 0.84 (I) 0.68 (I) 0.55 (I) 0.44 (I) 1.24 (I) 0.78 (I) 0.55 (I) 0.42 (I) 0.29 (I) 0.17 (I)

MoSeTe 1.27 (I) 1.12 (I) 1.00 (I) 0.84 (I) 0.70 (I) 0.57 (I) 1.26 (I) 1.04 (I) 0.80 (I) 0.65 (I) 0.52 (I) 0.40 (I)

WSSe 1.68 (D) 1.36 (I) 1.14 (I) 0.99 (I) 0.79 (I) 0.62 (I) 1.68 (I) 1.21 (I) 0.92 (I) 0.75 (I) 0.61 (I) 0.49 (I)

WSTe 1.42 (I) 0.92 (I) 0.65 (I) 0.51 (I) 0.39 (I) 0.23 (I) 1.41 (I) 0.89 (I) 0.65 (I) 0.47 (I) 0.35 (I) 0.23 (I)

WSeTe 1.32 (I) 1.12 (I) 1.02 (I) 0.89 (I) 0.71 (I) 0.56 (I) 1.32 (I) 1.05 (I) 0.85 (I) 0.69 (I) 0.55 (I) 0.43 (I)

VSSe 0 0 0 0 0 0 0 0 0 0 0 0

VSTe 0 0 0 0 0 0 0 0 0 0 0 0

VSeTe 0 0 0 0 0 0 0 0 0 0 0 0

NbSSe 0 0 0 0 0 0 0 0 0 0 0 0

NbSTe 0 0 0 0 0 0 0 0 0 0 0 0

NbSeTe 0 0 0 0 0 0 0 0 0 0 0 0

TaSSe 0 0 0 0 0 0 0 0 0 0 0 0

TaSTe 0 0 0 0 0 0 0 0 0 0 0 0

TaSeTe 0 0 0 0 0 0 0 0 0 0 0 0
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Table 3.8: Variation of the effective mass of electrons with axial strain (ε) for the eleven
semiconducting Janus TMD nanotubes.

MXY

Effective mass of electrons (a.u.)

Armchair Zigzag

ε = 0 ε = 0.05 ε = 0.08 ε = 0.10 ε = 0.12 ε = 0.14 ε = 0 ε = 0.05 ε = 0.08 ε = 0.10 ε = 0.12 ε = 0.14

CrSSe 0.55 0.56 0.58 0.59 0.62 0.64 0.60 0.62 0.66 0.67 0.68 0.69

CrSTe 0.30 0.32 0.33 0.35 0.36 0.39 0.55 0.50 0.54 0.56 0.57 0.58

CrSeTe 0.80 0.80 0.82 0.84 0.84 0.81 0.51 0.58 0.65 0.71 0.73 0.75

MoSSe 0.38 0.39 0.44 0.46 0.50 0.51 0.27 0.28 0.29 0.33 0.37 0.39

MoSTe 0.50 0.54 0.55 0.56 0.62 0.65 0.23 0.24 0.29 0.31 0.35 0.34

MoSeTe 0.30 0.35 0.36 0.42 0.43 0.44 0.28 0.28 0.27 0.26 0.27 0.27

WSSe 0.18 0.18 0.19 0.20 0.21 0.21 0.14 0.16 0.17 0.17 0.18 0.16

WSTe 0.61 0.60 0.61 0.62 0.63 0.65 0.42 0.44 0.44 0.43 0.40 0.42

WSeTe 0.24 0.25 0.23 0.23 0.22 0.23 0.22 0.23 0.23 0.24 0.23 0.24

ZrSSe 0.31 0.33 0.33 0.34 0.36 0.38 0.30 0.31 0.35 0.36 0.34 0.33

HfSSe 0.50 0.58 0.59 0.61 0.60 0.61 0.33 0.36 0.36 0.41 0.40 0.40

Table 3.9: Variation of the effective mass of holes with axial strain (ε) for the eleven semi-
conducting Janus TMD nanotubes.

MXY

Effective mass of holes (a.u.)

Armchair Zigzag

ε = 0 ε = 0.05 ε = 0.08 ε = 0.10 ε = 0.12 ε = 0.14 ε = 0 ε = 0.05 ε = 0.08 ε = 0.10 ε = 0.12 ε = 0.14

CrSSe 0.89 0.85 0.79 0.76 0.70 0.61 0.87 0.82 0.80 0.74 0.71 0.65

CrSTe 2.86 2.40 2.23 1.54 1.21 0.63 1.90 1.25 1.04 0.85 0.84 0.83

CrSeTe 1.72 1.64 1.23 1.17 1.01 0.75 0.94 0.81 0.73 0.71 0.70 0.72

MoSSe 0.58 0.52 0.52 0.50 0.44 0.45 0.57 0.50 0.49 0.49 0.47 0.36

MoSTe 2.31 1.63 1.34 1.11 0.71 0.62 1.03 0.63 0.51 0.37 0.33 0.32

MoSeTe 0.62 0.58 0.56 0.55 0.50 0.41 0.68 0.47 0.42 0.33 0.32 0.31

WSSe 0.38 0.36 0.36 0.37 0.37 0.36 0.40 0.41 0.38 0.38 0.37 0.35

WSTe 3.48 2.14 1.68 1.47 1.07 0.62 1.09 0.89 0.71 0.41 0.33 0.32

WSeTe 0.44 0.40 0.41 0.42 0.39 0.41 0.42 0.31 0.32 0.33 0.32 0.33

ZrSSe 0.51 0.44 0.42 0.34 0.36 0.34 0.21 0.20 0.21 0.20 0.21 0.22

HfSSe 0.62 0.58 0.57 0.56 0.55 0.58 0.73 0.33 0.30 0.32 0.30 0.31
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Table 3.10: Variation of bandgap with shear strain (γ) for the twenty-seven select Janus
TMD nanotubes. (D: direct bandgap, I: indirect bandgap).

MXY

Bandgap (eV)

Armchair Zigzag

γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15 γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15

TiSSe 0 0 0 0 0 0 0 0 0 0 0 0

TiSTe 0 0 0 0 0 0 0 0 0 0 0 0

TiSeTe 0 0 0 0 0 0 0 0 0 0 0 0

HfSSe 0.89 (D) 0.75 (D) 0.64 (D) 0.56 (D) 0.48 (D) 0.36 (D) 0.90 (I) 0.73 (I) 0.64 (I) 0.58 (I) 0.54 (I) 0.48 (I)

HfSTe 0 0 0 0 0 0 0 0 0 0 0 0

HfSeTe 0 0 0 0 0 0 0 0 0 0 0 0

ZrSSe 0.73 (I) 0.56 (I) 0.45 (I) 0.37 (I) 0.30 (I) 0.22 (I) 0.74 (I) 0.55 (I) 0.47 (I) 0.41 (I) 0.37 (I) 0.37 (I)

ZrSTe 0 0 0 0 0 0 0 0 0 0 0 0

ZrSeTe 0 0 0 0 0 0 0 0 0 0 0 0

CrSSe 0.86 (I) 0.85 (I) 0.82 (I) 0.78 (I) 0.74 (I) 0.68 (I) 0.86 (I) 0.84 (I) 0.81 (I) 0.77 (I) 0.73 (I) 0.66 (I)

CrSTe 0.57 (I) 0.56 (I) 0.55 (I) 0.52 (I) 0.50 (I) 0.47 (I) 0.56 (I) 0.53 (I) 0.51 (I) 0.48 (I) 0.44 (I) 0.36 (I)

CrSeTe 0.65 (D) 0.64 (D) 0.61 (I) 0.57 (I) 0.53 (I) 0.41 (I) 0.65 (I) 0.64 (I) 0.60 (I) 0.56 (I) 0.53 (I) 0.47 (I)

MoSSe 1.56 (I) 1.55 (I) 1.52 (I) 1.47 (I) 1.43 (I) 1.33 (I) 1.56 (I) 1.55 (I) 1.49 (I) 1.43 (I) 1.36 (I) 1.24 (I)

MoSTe 1.25 (I) 1.24 (I) 1.22 (I) 1.19 (I) 1.13 (I) 0.93 (I) 1.24 (I) 1.22 (I) 1.13 (I) 1.03 (I) 0.95 (I) 0.86 (I)

MoSeTe 1.27 (I) 1.25 (I) 1.21 (I) 1.09 (I) 0.97 (I) 0.79 (I) 1.26 (I) 1.25 (I) 1.16 (I) 1.07 (I) 0.99 (I) 0.90 (I)

WSSe 1.68 (D) 1.67 (I) 1.64 (I) 1.58 (I) 1.51 (I) 1.40 (I) 1.68 (I) 1.67 (I) 1.61 (I) 1.53 (I) 1.43 (I) 1.28 (I)

WSTe 1.42 (I) 1.41 (I) 1.36 (I) 1.31 (I) 1.26 (I) 1.10 (I) 1.41 (I) 1.38 (I) 1.32 (I) 1.22 (I) 1.11 (I) 0.98 (I)

WSeTe 1.32 (I) 1.31 (I) 1.26 (I) 1.21 (I) 1.13 (I) 0.90 (I) 1.32 (I) 1.31 (I) 1.24 (I) 1.16 (I) 1.07 (I) 0.94 (I)

VSSe 0 0 0 0 0 0 0 0 0 0 0 0

VSTe 0 0 0 0 0 0 0 0 0 0 0 0

VSeTe 0 0 0 0 0 0 0 0 0 0 0 0

NbSSe 0 0 0 0 0 0 0 0 0 0 0 0

NbSTe 0 0 0 0 0 0 0 0 0 0 0 0

NbSeTe 0 0 0 0 0 0 0 0 0 0 0 0

TaSSe 0 0 0 0 0 0 0 0 0 0 0 0

TaSTe 0 0 0 0 0 0 0 0 0 0 0 0

TaSeTe 0 0 0 0 0 0 0 0 0 0 0 0
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Table 3.11: Variation of the effective mass of electrons with shear strain (γ) for the eleven
semiconducting Janus TMD nanotubes.

MXY

Effective mass of electrons (a.u.)

Armchair Zigzag

γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15 γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15

CrSSe 0.55 0.57 0.60 0.68 0.70 0.71 0.60 0.60 0.61 0.63 0.63 0.64

CrSTe 0.30 0.35 0.36 0.37 0.38 0.40 0.55 0.54 0.56 0.58 0.60 0.61

CrSeTe 0.80 0.82 0.84 0.85 0.89 0.91 0.51 0.53 0.55 0.55 0.54 0.55

MoSSe 0.38 0.37 0.42 0.45 0.49 0.55 0.27 0.25 0.26 0.28 0.31 0.32

MoSTe 0.50 0.52 0.52 0.55 0.58 0.63 0.23 0.28 0.33 0.37 0.38 0.41

MoSeTe 0.30 0.32 0.38 0.36 0.37 0.38 0.28 0.27 0.30 0.30 0.31 0.31

WSSe 0.18 0.17 0.20 0.21 0.22 0.23 0.14 0.19 0.19 0.22 0.26 0.24

WSTe 0.61 0.62 0.65 0.66 0.70 0.75 0.42 0.43 0.45 0.46 0.48 0.58

WSeTe 0.24 0.21 0.22 0.23 0.24 0.25 0.22 0.21 0.23 0.23 0.22 0.25

ZrSSe 0.31 0.32 0.31 0.33 0.34 0.35 0.30 0.30 0.31 0.32 0.33 0.32

HfSSe 0.50 0.52 0.55 0.58 0.61 0.62 0.33 0.35 0.38 0.39 0.42 0.44

Table 3.12: Variation of the effective mass of holes with shear strain (γ) for the eleven
semiconducting Janus TMD nanotubes.

MXY

Effective mass of holes (a.u.)

Armchair Zigzag

γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15 γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15

CrSSe 0.89 0.87 0.81 0.78 0.75 0.63 0.87 0.84 0.82 0.75 0.71 0.67

CrSTe 2.86 2.50 2.29 2.22 2.15 0.87 1.90 1.45 1.44 1.40 1.38 1.37

CrSeTe 1.72 1.70 1.63 1.57 1.21 0.89 0.94 0.90 0.85 0.81 0.78 0.75

MoSSe 0.58 0.57 0.56 0.55 0.50 0.50 0.57 0.55 0.56 0.52 0.51 0.50

MoSTe 2.31 1.95 1.72 1.62 0.61 0.57 1.03 1.00 0.58 0.47 0.35 0.36

MoSeTe 0.62 0.60 0.58 0.55 0.56 0.54 0.68 0.67 0.57 0.35 0.37 0.34

WSSe 0.38 0.37 0.37 0.36 0.35 0.32 0.40 0.39 0.39 0.37 0.36 0.34

WSTe 3.48 1.72 1.48 1.37 1.27 0.68 1.09 1.05 1.01 0.33 0.30 0.38

WSeTe 0.44 0.41 0.41 0.40 0.36 0.47 0.42 0.41 0.34 0.33 0.32 0.35

ZrSSe 0.51 0.49 0.41 0.32 0.33 0.38 0.21 0.19 0.21 0.22 0.23 0.28

HfSSe 0.62 0.60 0.63 0.62 0.60 0.59 0.73 0.41 0.34 0.33 0.32 0.34

Observing a linear and quadratic variation of the semiconducting Janus TMD nan-

otubes’ bandgap with axial and shear strains, respectively, we present results of the cor-

responding fits in Figure 3.12. It is clear that the fits are excellent, with the exception being
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ZrSSe, where there is a non-monotonic variation of the bandgap, as discussed above. The

linear dependence of the bandgap on axial strain, which has also been observed for the

following TMD nanotubes: MoS2, MoSe2, WS2, WSe2, and CrS2 [41, 43, 45, 44], is con-

sistent with previous results for MoSSe [117, 105]. In particular, the slope computed here

is −8.7, which is in good agreement with the slope −7.1 predicted by Ref. [105]. Note

that the exact values cannot be compared, since Refs. [117, 105] choose different diam-

eters than the equilibrium values uesd here. To develop a simple model for the bandgap

variation, we also perform linear regression with the features being metal-chalcogen bond

lengths, chalcogens’ electronegativity difference, axial strain, shear strain, and square of

the shear strain, the results of which are presented in Figure 3.12. It is clear that, again

with the exception of HfSSe and ZrSSe, there is very good agreement between the com-

puted values and those predicted by the regression model, suggesting the importance of

the metal-chalcogen bond lengths and the chalcogens’ electronegativity difference in de-

termining the bandgap at any given deformation.
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Figure 3.12: (a) The coefficient of determination of the linear regression (R2) for the linear
and quadratic fits of the bandgap vs. axial and shear strain, respectively. (b) The computed
bandgap vs. that predicted using the linear regression model. The two outliers: HfSSe and
ZrSSe, are not included in the regression. The systems under consideration are the eleven
semiconducting armchair Janus TMD nanotubes, with results for the zigzag variants being
nearly identical to those presented here.

Next, considering the eleven Janus TMD nanotubes (both armchair and zigzag con-
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figurations) that have determined to be semiconducting, we summarize the variation of

the difference between effective mass of holes and electrons with deformations in Fig-

ure 3.13. Note that this difference in the effective masses can be used to classify whether

the material is a n-type or p-type semiconductor, i.e., if the effective mass of hole is greater

than of the electron, then holes have lower mobility, resulting in n-type semiconductor

behavior, and vice versa [204]. Here, all the nanotubes are n-type semiconductors in the

undeformed configuration, the exception again being ZrSSe. The application of deforma-

tion is accompanied by the continuous decrease and increase in the effective mass of holes

and electrons, respectively, culminating in an n-type to p-type semiconductor transition

for armchair CrSSe, CrSeTe, MoSSe, MoSeTe, MoSTe, WSTe, ZrSSe, and HfSSe, and

zigzag CrSSe, CrSeTe, MoSSe, MoSTe, WSTe, and HfSSe nanotubes with axial deforma-

tion; and armchair CrSSe, CrSeTe, MoSSe, MoSTe, WSTe, ZrSSe, and HfSSe, and zigzag

MoSTe, WSTe, and HfSSe nanotubes with torsional deformation, for the range of strains

considered. Indeed, similar to the case of bandgaps, larger strains are expected to introduce

transitions for the remaining nanotubes as well, however stability considerations are likely

to become important. Such transitions have applications as semiconductor switches [189,

190, 191, 192, 193, 194]. Note that on the application of compressive axial strains, the ef-

fective mass of both electrons and holes increases in MoSTe, WSeTe, CrSeTe, CrSTe, and

HfSSe, while it decreases in MoSeTe, WSTe, and ZrSSe; and the effective mass of holes

and electrons increases and decreases, respectively, for MoSSe, WSSe, and CrSSe.

To gain further physical understanding into the results presented above, considering

the semiconducting Janus TMD nanotubes that undergo n-type to p-type transitions, we

choose eight representative ones, i.e., four each for transitions resulting from axial and

torsional deformations, and plot their electron density difference contours between the

strained (smallest value at which transition has occurred) and unstrained nanotube con-

figurations in Figure 3.14. In addition, we utilize Bader analysis [197, 198] to determine

the amount of metal-chalcogen charge transfer that has occurred between the undeformed
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Figure 3.13: Variation of the effective mass of holes minus that of the electrons with axial
and torsional deformations for the eleven semiconducting Janus TMD nanotubes.

and deformed nanotube configurations, results of which are also presented in Figure 3.14.

We find that there is a minimal change in the Bader charge of atoms upon deformation,

suggesting that the nature of the bonding between the atoms remains unaltered. However,

there is a significant change in the electron density contours, leading to the conclusion that

the observed behavior is a consequence of the rehybridization of orbitals.

3.2.3 Spintronic properties: Rashba and Zeeman effect

We now present the spin-splitting results for Janus TMD nanotubes with axial and shear

strain. From Figure 3.15, we show the Zeeman spin-splitting in the Mo and W Janus TMD

nanotubes. We consider the splittings at both VBM (Valence Band Maximum) and CBM

(Conduction Band Minimum) with axial and shear strain. We observe that the application

of mechanical deformation usually results in a decrease in the splitting at VBM (Valence

Band Maximum) and CBM (Conduction Band Minimum). The effect of SOC almost dis-

sipates with axial strain at VBM, with splitting reaching 0. The values of VBM and CBM

splitting at no mechanical deformation are almost similar to its 2d analogs [199], owing to

the large enough diameter considered for the nanotubes. The trend of decrease in splitting

is similar to the study on Janus TMD bilayers subjected to biaxial strains [200]. The values

for Janus TMDs are also in between their parent TMDs discussed in the last section.
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Figure 3.15: Zeeman spin splitting at (a) VBM (Valence Band Maximum) with axial and
shear strain and (b) at CBM (Conduction Band Minimum) with axial and shear strain

In Figure 3.16, the Rashba effect is not observed without any shear strain. It is consis-

tent with our theory of the Rashba effect being present in only non-inversion-symmetry ma-

terials. As soon as we introduce shear strain (twist) in the nanotube, we break the inversion

symmetry and we can see the Rashba coefficient continuously increasing with the strain.

The coefficient values at the highest strain are similar to their Janus monolayer analogs

which are significant and can be used for spintronics applications. Note that we compute

this change along momentum direction at the gamma point, similar to other Rashba effect

studies [199, 200].

3.3 Janus Transition metal dihalide (TMH) nanotubes

3.3.1 Electromechanical properties

We now present and discuss the Janus TMH nanotubes’ electronic response to axial and tor-

sional deformations, the simulations having been performed using the symmetry-adapted

ab initio framework based on Kohn-Sham DFT that has been described in the previous

section. The results are compared with those available in literature.
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Table 3.13: Variation of bandgap with axial strain (ε) for the twelve Janus TMH nanotubes.
(D: direct bandgap, I: indirect bandgap). Red colored data points are used for strains at
which the nanotube is expected to be unstable, based on phonon calculations for the mono-
layer counterparts.

MXY

Bandgap (eV)

Armchair Zigzag

ε = 0 ε = 0.05 ε = 0.08 ε = 0.10 ε = 0.12 ε = 0.14 ε = 0 ε = 0.05 ε = 0.08 ε = 0.10 ε = 0.12 ε = 0.14

TiClI 0.80 (I) 0.77 (I) 0.66 (I) 0.59 (D) 0.50 (D) 0.41 (D) 0.77 (I) 0.71 (I) 0.66 (I) 0.62 (I) 0.58 (I) 0.55 (I)

TiBrI 0.75 (I) 0.72 (D) 0.67 (I) 0.61 (I) 0.53 (I) 0.45 (I) 0.74 (I) 0.70 (I) 0.63 (I) 0.59 (I) 0.54 (I) 0.49 (I)

TiClBr 0.86 (I) 0.79 (I) 0.68 (I) 0.59 (D) 0.49 (D) 0.41 (D) 0.86 (I) 0.79 (I) 0.70 (I) 0.65 (I) 0.62 (I) 0.60 (I)

ZrClI 0.92 (I) 0.88 (I) 0.78 (I) 0.69 (I) 0.61 (I) 0.52 (D) 0.90 (I) 0.89 (I) 0.80 (I) 0.74 (I) 0.69 (I) 0.65 (I)

ZrBrI 0.83 (I) 0.83 (I) 0.77 (I) 0.70 (I) 0.64 (I) 0.57 (I) 0.83 (I) 0.84 (I) 0.77 (I) 0.70 (I) 0.65 (I) 0.62 (I)

ZrClBr 0.94 (I) 0.85 (I) 0.72 (I) 0.63 (I) 0.56 (I) 0.50 (D) 0.94 (I) 0.86 (I) 0.74 (I) 0.68 (I) 0.64 (I) 0.62 (I)

HfClI 0.94 (I) 0.93 (I) 0.87 (I) 0.81 (I) 0.73 (I) 0.64 (D) 0.90 (I) 0.91 (I) 0.86 (I) 0.78 (I) 0.71 (I) 0.63 (I)

HfBrI 0.84 (I) 0.82 (I) 0.77 (I) 0.71 (I) 0.65 (I) 0.57 (I) 0.84 (I) 0.85 (I) 0.77 (I) 0.66 (I) 0.55 (I) 0.44 (I)

HfClBr 0.93 (I) 0.90 (I) 0.79 (I) 0.70 (I) 0.61 (I) 0.53 (I) 0.93 (I) 0.91 (I) 0.79 (I) 0.69 (I) 0.63 (I) 0.55 (I)

FeClI 0.55 (I) 0.55 (I) 0.51 (I) 0.44 (I) 0.38 (I) 0.31 (I) 0.55 (I) 0.51 (I) 0.43 (I) 0.41 (I) 0.38 (I) 0.36 (I)

FeBrI 0.62 (I) 0.56 (I) 0.50 (I) 0.45 (I) 0.38 (I) 0.31 (I) 0.62 (I) 0.52 (I) 0.44 (I) 0.38 (I) 0.34 (I) 0.30 (I)

FeClBr 0.67 (I) 0.57 (I) 0.49 (I) 0.42 (I) 0.35 (I) 0.29 (I) 0.66 (I) 0.52 (I) 0.44 (I) 0.39 (I) 0.33 (I) 0.27 (I)
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Figure 3.17: (a), (b): variation of bandgap with axial strains; and (c), (d): variation of
bandgap with shear strains for the twelve armchair and zigzag Janus TMH nanotubes. (e):
computed bandgap for the undeformed nanotubes vs. that predicted by the linear regression
model. (f): coefficient of determination of the linear regression (R2) for the linear and
quadratic fits of the bandgap vs. axial and shear strains, respectively.

Table 3.14: Variation of the effective mass of electrons with axial strain (ε) for the twelve
semiconducting Janus TMH nanotubes. Red colored data points are used for strains at
which the nanotube is expected to be unstable, based on phonon calculations for the mono-
layer counterparts.

MXY

Effective mass of electrons (a.u.)
Armchair Zigzag

ε = 0 ε = 0.05 ε = 0.08 ε = 0.10 ε = 0.12 ε = 0.14 ε = 0 ε = 0.05 ε = 0.08 ε = 0.10 ε = 0.12 ε = 0.14

TiClI 1.66 1.71 1.86 1.87 1.92 1.86 1.62 1.70 1.87 1.88 1.93 1.86
TiBrI 1.76 1.22 1.37 1.52 1.55 1.59 1.74 1.21 1.31 1.50 1.52 1.57

TiClBr 1.23 1.31 1.45 1.51 1.55 1.61 1.23 1.32 1.47 1.53 1.58 1.62
ZrClI 0.82 2.27 2.55 3.26 3.55 3.55 0.84 2.29 2.54 3.21 3.35 3.45
ZrBrI 0.95 2.11 3.11 3.41 3.56 3.78 0.95 2.02 2.91 3.12 3.44 3.68

ZrClBr 0.53 0.66 0.77 0.86 0.97 0.85 0.50 0.61 0.71 0.89 0.98 0.93
HfClI 0.62 1.31 1.89 4.55 4.54 4.54 0.62 1.35 1.96 4.23 4.27 4.35
HfBrI 1.01 1.40 1.56 1.63 2.11 2.20 1.01 1.60 1.66 1.78 2.16 2.43

HfClBr 0.70 1.76 2.41 2.54 2.74 2.85 0.70 1.42 2.21 2.66 2.73 2.87
FeClI 2.11 2.32 2.35 2.41 2.45 2.45 2.05 2.17 2.18 2.19 2.25 2.33
FeBrI 0.70 0.72 0.75 1.62 1.72 1.88 0.70 0.79 0.86 1.51 1.87 1.97

FeClBr 0.74 0.75 1.65 1.66 1.77 1.87 0.74 0.78 1.67 1.68 1.86 1.99
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Table 3.15: Variation of the effective mass of holes with axial strain (ε) for the twelve semi-
conducting Janus TMH nanotubes. Red colored data points are used for strains at which
the nanotube is expected to be unstable, based on phonon calculations for the monolayer
counterparts.

MXY

Effective mass of holes (a.u.)

Armchair Zigzag

ε = 0 ε = 0.05 ε = 0.08 ε = 0.10 ε = 0.12 ε = 0.14 ε = 0 ε = 0.05 ε = 0.08 ε = 0.10 ε = 0.12 ε = 0.14

TiClI 0.58 0.58 0.57 0.55 0.54 0.55 0.59 0.55 0.54 0.53 0.52 0.54

TiBrI 0.53 0.53 0.54 0.53 0.51 0.49 0.52 0.53 0.52 0.53 0.51 0.51

TiClBr 0.56 0.55 0.57 0.54 0.53 0.52 0.56 0.56 0.55 0.54 0.54 0.55

ZrClI 0.41 0.40 0.35 0.34 0.33 0.32 0.40 0.40 0.39 0.38 0.39 0.36

ZrBrI 0.83 0.82 0.83 0.81 0.81 0.80 0.84 0.85 0.84 0.84 0.85 0.83

ZrClBr 0.38 0.34 0.33 0.31 0.30 0.30 0.35 0.31 0.32 0.30 0.31 0.31

HfClI 0.33 0.32 0.31 0.31 0.27 0.28 0.34 0.35 0.34 0.33 0.31 0.30

HfBrI 0.31 0.32 0.30 0.28 0.25 0.26 0.36 0.32 0.29 0.28 0.28 0.27

HfClBr 0.33 0.33 0.30 0.34 0.35 0.33 0.30 0.32 0.27 0.28 0.28 0.27

FeClI 1.57 1.55 1.49 1.46 1.45 1.47 1.55 1.57 1.51 1.49 1.45 1.33

FeBrI 0.50 0.52 0.54 0.52 0.52 0.52 0.54 0.53 0.53 0.51 0.47 0.47

FeClBr 0.54 0.54 0.55 0.54 0.53 0.53 0.54 0.48 0.49 0.47 0.48 0.49

Table 3.16: Variation of bandgap with shear strain (γ) for the twelve select Janus TMH
nanotubes. (D: direct bandgap, I: indirect bandgap). Red colored data points are used for
strains at which the nanotube is expected to be unstable, based on phonon calculations for
the monolayer counterparts.

MXY

Bandgap (eV)

Armchair Zigzag

γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15 γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15

TiClI 0.80 (I) 0.77 (I) 0.75 (I) 0.72 (I) 0.68 (I) 0.61 (I) 0.77 (I) 0.74 (I) 0.73 (I) 0.68 (I) 0.65 (I) 0.56 (I)

TiBrI 0.75 (I) 0.72 (I) 0.70 (I) 0.66 (I) 0.62 (I) 0.55 (I) 0.74 (I) 0.73 (I) 0.69 (I) 0.65 (I) 0.61 (I) 0.54 (I)

TiClBr 0.86 (I) 0.80 (I) 0.73 (I) 0.67 (I) 0.61 (I) 0.53 (I) 0.86 (I) 0.80 (I) 0.73 (I) 0.67 (I) 0.61 (I) 0.51 (I)

ZrClI 0.92 (I) 0.87 (I) 0.79 (I) 0.73 (I) 0.65 (I) 0.53 (I) 0.90 (I) 0.83 (I) 0.75 (I) 0.69 (I) 0.61 (I) 0.48 (I)

ZrBrI 0.83 (I) 0.78 (I) 0.71 (I) 0.66 (I) 0.59 (I) 0.48 (I) 0.83 (I) 0.77 (I) 0.70 (I) 0.65 (I) 0.60 (I) 0.48 (I)

ZrClBr 0.94 (I) 0.89 (I) 0.82 (I) 0.77 (I) 0.69 (I) 0.58 (I) 0.94 (I) 0.82 (I) 0.72 (I) 0.64 (I) 0.54 (I) 0.40 (I)

HfClI 0.94 (I) 0.89 (I) 0.82 (I) 0.77 (I) 0.69 (I) 0.58 (I) 0.90 (I) 0.84 (I) 0.76 (I) 0.70 (I) 0.65 (I) 0.53 (I)

HfBrI 0.84 (I) 0.78 (I) 0.73 (I) 0.67 (I) 0.61 (I) 0.50 (I) 0.84 (I) 0.78 (I) 0.72 (I) 0.66 (I) 0.61 (I) 0.50 (I)

HfClBr 0.93 (I) 0.84 (I) 0.75 (I) 0.68 (I) 0.60 (I) 0.47 (I) 0.93 (I) 0.84 (I) 0.75 (I) 0.68 (I) 0.60 (I) 0.45 (I)

FeClI 0.55 (I) 0.54 (I) 0.51 (I) 0.48 (I) 0.44 (I) 0.38 (I) 0.55 (I) 0.53 (I) 0.49 (I) 0.47 (I) 0.43 (I) 0.38 (I)

FeBrI 0.62 (I) 0.57 (I) 0.52 (I) 0.48 (I) 0.44 (I) 0.36 (I) 0.62 (I) 0.57 (I) 0.52 (I) 0.49 (I) 0.45 (I) 0.39 (I)

FeClBr 0.67 (I) 0.60 (I) 0.55 (I) 0.51 (I) 0.46 (I) 0.36 (I) 0.66 (I) 0.61 (I) 0.57 (I) 0.53 (I) 0.47 (I) 0.39 (I)
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Table 3.17: Variation of the effective mass of electrons with shear strain (γ) for the twelve
semiconducting Janus TMH nanotubes. Red colored data points are used for strains at
which the nanotube is expected to be unstable, based on phonon calculations for the mono-
layer counterparts.

MXY

Effective mass of electrons (a.u.)

Armchair Zigzag

γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15 γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15

TiClI 1.66 1.73 1.88 1.86 1.90 1.96 1.62 1.71 1.97 1.96 1.99 1.98

TiBrI 1.76 1.52 1.86 1.87 1.88 1.96 1.74 1.59 1.67 1.78 1.79 1.87

TiClBr 1.23 1.37 1.43 1.57 1.59 1.71 1.23 1.34 1.42 1.58 1.65 1.63

ZrClI 0.82 2.08 2.45 3.58 3.85 3.95 0.84 2.09 2.26 3.12 3.55 3.54

ZrBrI 0.95 1.82 3.24 3.21 3.44 3.46 0.95 2.47 2.45 3.04 3.17 3.28

ZrClBr 0.53 0.61 0.70 0.89 0.98 0.92 0.50 0.62 0.69 0.81 0.88 0.94

HfClI 0.62 1.22 1.56 3.15 4.01 4.61 0.62 1.06 1.91 4.74 4.75 4.75

HfBrI 1.01 1.39 1.65 1.62 1.64 1.65 1.01 1.40 1.46 1.49 1.56 1.53

HfClBr 0.70 1.26 2.01 2.14 2.14 2.16 0.70 1.23 2.02 2.44 2.53 2.77

FeClI 2.11 2.05 2.06 2.11 2.15 2.29 2.05 2.14 2.19 2.21 2.22 2.03

FeBrI 0.70 0.71 0.74 1.22 1.52 1.66 0.70 0.83 0.85 1.53 1.97 1.99

FeClBr 0.74 0.76 1.25 1.26 1.37 1.44 0.74 0.82 0.99 1.18 1.16 1.49

Table 3.18: Variation of the effective mass of holes with shear strain (γ) for the twelve
semiconducting Janus TMH nanotubes. Red colored data points are used for strains at
which the nanotube is expected to be unstable, based on phonon calculations for the mono-
layer counterparts.

MXY

Effective mass of holes (a.u.)

Armchair Zigzag

γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15 γ = 0 γ = 0.05 γ = 0.08 γ = 0.10 γ = 0.12 γ = 0.15

TiClI 0.58 0.57 0.56 0.55 0.55 0.55 0.59 0.59 0.57 0.56 0.51 0.52

TiBrI 0.53 0.55 0.52 0.51 0.50 0.50 0.52 0.54 0.51 0.50 0.50 0.48

TiClBr 0.56 0.54 0.55 0.53 0.51 0.51 0.56 0.57 0.56 0.53 0.52 0.51

ZrClI 0.41 0.38 0.39 0.38 0.37 0.36 0.40 0.38 0.37 0.36 0.37 0.37

ZrBrI 0.83 0.81 0.82 0.80 0.81 0.81 0.84 0.84 0.83 0.82 0.82 0.81

ZrClBr 0.38 0.36 0.34 0.33 0.33 0.32 0.35 0.33 0.30 0.31 0.30 0.28

HfClI 0.33 0.31 0.29 0.30 0.29 0.29 0.34 0.36 0.33 0.32 0.30 0.30

HfBrI 0.31 0.31 0.31 0.29 0.28 0.28 0.36 0.34 0.27 0.28 0.27 0.25

HfClBr 0.33 0.32 0.32 0.33 0.34 0.34 0.30 0.31 0.28 0.29 0.29 0.29

FeClI 1.57 1.57 1.59 1.56 1.54 1.55 1.55 1.51 1.50 1.51 1.49 1.42

FeBrI 0.50 0.51 0.52 0.51 0.51 0.51 0.54 0.52 0.51 0.50 0.48 0.48

FeClBr 0.54 0.53 0.54 0.55 0.54 0.52 0.54 0.49 0.51 0.52 0.49 0.50

55



In Figure 3.17(a)–(d), we present the variation in bandgap with applied axial and shear

strains for the Janus TMH nanotubes. We observe that in the undeformed (i.e., equilibrium)

configuration, all the nanotubes are semiconducting, with bandgaps ranging from 0.55 (Fe-

ClI) to 0.94 eV (ZrClBr and HfClI). For predicting the bandgap variation between the

different materials, we develop a regression model using the bond lengths and electronega-

tivity difference between the halogens as features. We find that this simple model is able to

capture the bandgaps of the undeformed nanotubes reasonably accurately ( Figure 3.17(e)).

Upon the application of axial/torsional deformations, the value of the bandgap reduces

monotonically. In particular, the bandgap decreases linearly and quadratically with axial

and shear strains, respectively, the average coefficient of determination of linear regression

for the linear and quadratic fits being 0.92 and 0.99, respectively ( Figure 3.17(f)). Simi-

lar trends have recently been predicted for the response of transition metal dichalcogenide

(TMD) nanotubes [49] and their Janus counterparts [152]. In the case of TMD nanotubes,

the linear decrease of bandgap with axial strains has also been predicted in Refs. [41, 43,

44, 45]. Considering three armchair representative cases (HfBrI, TiClBr and ZrBrI) at the

same radius, we also find that the bandgap of unstrained and shear strained MXY TMH

Janus nanotubes lie between (some cases on the extremities ± 0.02 eV) their MX2 and

MY2 counterparts — similar to TMDs [49, 152]. Similar to MXY nanotubes, the bandgap

for MX2 and MY2 follows quadratic decrease with shear strain. Axially strained MX2 and

MY2 nanotubes for HfBrI and ZrBrI cases experience an increase in bandgap at smaller

strains and then monotonically decreases at higher strains, different to MXY nanotubes

(observed also in HfSSe and ZrSSe nanotubes [152]). Although, for the case of TiClBr, the

bandgap undergoes a linear decrease for TiCl2 and TiBr2— similar to MXY nanotubes —

with the bandgap of TiClBr in between them. The results indicate that semiconductor to

metal transitions are likely to occur when larger strains are considered, however the stabil-

ity of the nanotubes under such conditions warrants a more careful analysis. The ability to

strain engineer the bandgap in Janus TMH nanotubes has potential applications in devices,
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e.g., mechanical sensors [75, 76, 42].

0 20 40 60 80
PDOS contribution of dyz(%)

0

0.1

0.2

0.3

0.4

0.5

0.6

C
ha

ng
e 

in
 b

an
dg

ap
 (e

V)

 = 5% (R2 = 0.51)
 = 8% (R2 = 0.72)
 = 10% (R2 = 0.86)
 = 12% (R2 = 0.90)
 = 14% (R2 = 0.85)

0 20 40 60
PDOS contribution of dyz(%)

0

0.1

0.2

0.3

0.4

0.5

0.6

C
ha

ng
e 

in
 b

an
dg

ap
 (e

V)

 = 5% (R2 = 0.50)
 = 8% (R2 = 0.80)
 = 10% (R2 = 0.75)
 = 12% (R2 = 0.80)
 = 15% (R2 = 0.76)

(a) (b)

Figure 3.18: The change in bandgap for the twelve armchair Janus TMH nanotubes vs. the
percentage contribution of the transition metal’s dyz orbital to the PDOS at the bottom of
the conduction band.

To correlate the bandgap variation with changes in the electronic structure, we compute

the atomic orbital projected density of states (PDOS) for the Janus TMH nanotubes at all

the configurations studied in this work, i.e., equilibrium and axially/torsionally deformed.

For armchair nanotubes, we find that the transition metal’s in-plane d orbital, i.e., dyz or-

bital, is dominant near the edges of the bandgap — exception being when the transition

metal is iron, for which the dxz orbital is dominant — making it the focus of study here. In

addition, the changes that occur with deformation are more significant at the upper edge of

the bandgap, i.e., bottom of the conduction band, therefore the analysis here is restricted to

that region. In Figure 3.18, for each of the five axial and shear strains considered, we plot

the change in bandgap vs. the contribution of the transition metal’s dyz orbital to the PDOS

at the bottom of the conduction band. We observe that for a given strain, the change in

bandgap is well correlated with the transition metal’s dyz’s contribution to the PDOS, with

the average coefficient of determination of the linear regression for axial and shear strains

being 0.77 and 0.72, respectively. The importance of dyz in determining the response is to

be expected, given its in-plane nature, which means that it is the most likely to undergo sig-

nificant changes upon the application of axial and torsional deformations. We also observe
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that the total contribution of different orbitals remains same with the application of strains

and the only change is within those orbitals (e.g. px, py, pz). This leads to the fact that the

hybridization of orbitals in the Janus TMH nanotubes are not changing with the application

of strains.
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Figure 3.19: Variation of the difference in charge carriers’ effective mass (holes minus
electrons) with axial and shear strains for the twelve armchair and zigzag Janus TMH nan-
otubes.

In Figure 3.19, we present the variation in the difference between the effective mass

of holes and electrons (holes minus electrons) with axial and shear strains for the Janus

TMH nanotubes. Based on whether this quantity is positive or negative, the material can

be classified as a n-type or p-type semiconductor, respectively. In particular, if the effective

mass of electron is greater than of the hole, then the mobility of electrons is lower, trans-

lating to a lower conduction of electrons, making it a p-type semiconductor, and vice versa

[204]. We observe from the figure that all the Janus TMH nanotubes are p-type semicon-

ductors in their undeformed state, differing from TMD and Janus TMD nanotubes, which

are generally n-type semiconductors [49, 152]. On the application of axial and torsional

deformations, there is a continuous increase and decrease in the effective mass of elec-

trons and holes, respectively, similar to that observed for TMD and Janus TMD nanotubes

[49, 152]. This hole mobility enhancement [205, 206] makes the Janus TMH nanotubes

more dominant p-type semiconductors, which has applications in devices such as MOSFET

transistors [207, 208]. Considering the above three armchair representative cases (HfBrI,
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TiClBr and ZrBrI) at the same radius, we also find that the effective mass of charge car-

riers of unstrained and shear strained MXY TMH Janus nanotubes lie between their MX2

and MY2 counterparts — similar to TMDs [49, 152]. However it is only true for axially

strained MX2 and MY2 nanotubes of TiClBr case with HfBrI and ZrBrI cases as exceptions

similar to the bandgap.
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CHAPTER 4

CONCLUSION

4.1 Transition metal dichalcogenide (TMD) nanotubes

4.1.1 Elastic properties

We have calculated the torsional moduli of forty-five select single-walled TMD nanotubes

using ab initio DFT simulations. Specifically, we have computed torsional moduli for the

armchair and zigzag variants of the chosen TMD nanotubes at practically relevant twists

and nanotube diameters, while considering materials that have been synthesized or are

likely to be synthesized. We have found that the variation of the torsional moduli values

between the different nanotubes follows the trend: MS2 > MSe2 > MTe2. In addition,

we have found that the moduli display a power law dependence on the diameter, with the

scaling generally close to cubic, as predicted by the isotropic elastic continuum model. In

particular, the shear moduli so determined have been found to be in good agreement with

that predicted by the isotropic relation in terms of the Young’s modulus and Poisson’s ratio,

both of which have also been calculated in this work from DFT simulations. Finally, we

have developed a linear regression model for the torsional moduli of TMD nanotubes that

is based on the nature and characteristics of the metal-chalcogen bond, and have shown that

it is capable of making reasonably accurate predictions.

4.1.2 Electromechanical response

We have studied the electronic response of single-walled TMD nanotubes to torsional de-

formations. In particular, using symmetry-adapted first principles DFT simulations, we

have determined the variation in bandgap and effective mass of charge carriers with twist

for forty-five select armchair and zigzag TMD nanotubes. We have found that whereas the

60



nature of originally metallic nanotubes remains unaltered, there is a continuous decrease

in bandgap — changes to indirect for systems that are originally direct — with increasing

twist for semiconducting TMD nanotubes, culminating in semiconductor to metal transi-

tions. In addition, we have found that the effective mass of holes and electrons continu-

ously decrease and increase with twist, respectively, culminating in transitions from n-type

to p-type semiconducting behavior. We have found that these changes can be attributed to

rehybridization of orbitals in the metal and chalcogen atoms, rather than charge transfer

between them. Overall, we conclude that torsional deformations represent a powerful tool

to tailor the electronic properties of semiconducting TMD nanotubes, with applications to

devices such as sensors and semiconductor switches.

4.1.3 Spintronic properties: Rashba and Zeeman effect

We investigated the response of single-walled TMD nanotubes to axial and torsional de-

formations while accounting for spin-orbit coupling. Through symmetry-adapted first-

principles DFT simulations, we determined the splitting of eigenvalues at VBM and CBM

for Zeeman effect and Rashba effect with twist for twelve synthesized armchair TMD nan-

otubes. Our results show that the introduction of spin-orbital coupling (SOC) has no effect

on metallic nanotubes, such as NbS2, NbSe2, TaS2, TiSe2, and other TMD nanotubes such

as TiS2, HfS2, and ZrS2. However, Mo and W TMD nanotubes exhibit significant SOC

effects, with mechanical deformation typically resulting in a decrease in the Zeeman split-

ting at VBM and CBM. The effect of SOC diminishes with axial strain at VBM, with the

splitting reaching 0. Furthermore, we introduced twist in these TMD nanotubes, breaking

the inversion symmetry, and observed that the Rashba coefficient continuously increases

with strain. At the highest strain, the coefficient values become significant and could have

applications in spintronics. Our findings contribute to a better understanding of the role

of spin-orbit coupling in TMD nanotubes and have potential implications for the design of

novel electronic and spintronic devices.

61



4.2 Janus TMD nanotubes

4.2.1 Elastic properties

We have calculated the elastic properties of select single-walled Janus TMD nanotubes

from first principles DFT. In particular, considering the twenty-seven Janus TMD nan-

otubes that have previously been predicted to be thermodynamically stable, we have per-

formed symmetry-adapted Kohn-Sham DFT simulations to compute the torsional moduli,

Young’s moduli, and Poisson’s ratios for the armchair and zigzag variants of these materi-

als at their equilibrium diameters. We have found the following trend in the moduli: MSSe

> MSTe > MSeTe, while their anisotropy with respect to armchair and zigzag configura-

tions has the ordering: MSTe > MSeTe > MSSe. We have confirmed this anisotropy and

ordering between the different groups by computing the shear modulus from the torsional

modulus using an isotropic elastic continuum model, and comparing it with the value pre-

dicted from the isotropic relation written in terms of the Young’s modulus and Poisson’s

ratio. We have also developed a reasonably accurate linear regression model for the tor-

sional and Young’s moduli of Janus TMD nanotubes based on the metal-chalcogen bonds’

nature/characteristics and the difference in electronegativity between the chalcogens.

4.2.2 Electromechanical response

We have investigated the electronic response of Janus TMD nanotubes to mechanical de-

formations using ab-intio simulations. In particular, considering the full set of eighteen

such nanotubes that are identified to be stable, we have performed Kohn-Sham calcula-

tions to determine the change in bandgap and charge carriers’ effective mass upon axial

and torsional deformations, for both the armchair and zigzag variants. We have found that

the metallic nanotubes continue to remain metallic even upon deformation, whereas semi-

conducting nanotubes’ bandgap generally decreases with axial and shear strains, in linear

and quadratic fashion, respectively, leading to semiconductor–metal transitions. In addi-
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tion, we have observed a continual decrease and increase in mass of holes and electrons,

respectively, with strains, leading to transitions from n-type to p-type semiconducting be-

havior. We have used electronic and charge transfer analysis to show that the response is

determined by the rehybridization of orbitals, instead of charge transfer between the atoms.

Overall, mechanical deformations represent powerful tools for tailoring the electronic re-

sponse of semiconducting Janus TMD nanotubes, which has a number of applications,

including devices such as semiconductor switches and mechanical sensors.

4.2.3 Spintronic properties: Rashba and Zeeman effect

We investigated the response of single-walled Janus TMD nanotubes to axial and torsional

deformations while accounting for spin-orbit coupling. Using symmetry-adapted first-

principles DFT simulations, we determined the Zeeman and Rashba splittings at VBM

and CBM for six armchair Janus TMD nanotubes. Our results indicate that spin-orbit cou-

pling has significant effects, with mechanical deformation typically resulting in a decrease

in the Zeeman splitting at VBM and CBM. The effect of SOC diminishes with axial strain

at VBM, with the splitting reaching 0. Furthermore, by introducing twist in these Janus

TMD nanotubes, we broke the inversion symmetry and observed a continuous increase

in the Rashba coefficient with strain. At the highest strain, the coefficient values became

significant and could have applications in spintronics. Notably, the coefficient values for

Janus TMDs were found to be intermediate to their parent TMDs, as discussed in the pre-

vious section. These values were also similar to their Janus monolayer analogs, which

have significant potential for spintronics applications. Our findings contribute to a bet-

ter understanding of the role of spin-orbit coupling in TMD nanotubes and have potential

implications for the design of novel electronic and spintronic devices.
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4.3 Janus Transition metal dihalide (TMH) nanotubes

4.3.1 Electromechanical properties

We have performed ab initio Kohn-Sham DFT calculations to study the electronic response

of Janus TMH nanotubes to mechanical deformations. Specifically, considering twelve

armchair and zigzag Janus TMH nanotubes at their equilibrium diameters — predicted to

be stable based on the phonon analysis of flat monolayer counterparts — we have deter-

mined the variation in bandgap and effective mass of charge carriers with the application of

tensile and torsional deformations. We have found that the nanotubes undergo a linear and

quadratic decrease in bandgap with tensile and shear strain, respectively. Simultaneously,

there is a continual increase and decrease in the effective mass of electrons and holes,

respectively. We have found that for a given strain, the change in bandgap for armchair

nanotubes can be correlated with the transition metal’s in-plane d orbital’s contribution to

the projected density of states at the bottom of the conduction band. Overall, the current

work shows that mechanical deformations represent a powerful tool to control the elec-

tronic properties of Janus TMH nanotubes, with applications in devices such as sensors

and MOSFET transistors.
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CHAPTER 5

FUTURE WORK

The present study provides promising avenues for further research. One such direction

is the exploration of the electromechanical response of multi-walled transition metal nan-

otubes. These nanotubes are important for practical applications due to their ease of syn-

thesis and could offer a deeper understanding of the behavior of transition metal nanotubes

under mechanical deformation. In particular, studying the influence of spin-orbit coupling

on the electromechanical response of these nanotubes would be of great interest. Addition-

ally, extending such studies to large twists could reveal unexpected nonlinear behavior and

provide valuable insights into the mechanical response of these systems.

Another exciting avenue for future research is to investigate the flexoelectric coeffi-

cients of transition metal and Janus transition metal nanotubes under mechanical deforma-

tion. Flexoelectricity is an electromechanical property that introduces dipole moment in

a system on the application of a strain gradient. In addition, the thermal and optical re-

sponse of these nanotubes to mechanical deformation presents itself as another fascinating

subject for future investigation. To further enhance our understanding of Janus transition

metal nanotubes, it would be beneficial to determine their mechanical stability from phonon

analyses. While we have calculated the phonon spectra for their monolayers and identified

stable monolayers and maximum stable strains, using symmetry-adapted density functional

perturbation theory [209] to compute the phonon band structure of Janus transition metal

nanotubes could verify their mechanical stability in both undeformed and deformed con-

figurations. Using this, we can also study electron-phonon interactions and their optical

properties. This would provide crucial insights into the mechanical behavior of these ma-

terials and their potential for future applications.

We also plan to implement linear SQ (Spectral Quadrature) [210, 211, 212] and coarse-
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graining methods [213] in the Cyclix code to study large systems with defects [214]. CISS

(Chiral-induced spin-selectivity) effect [215] can also be studied in these materials with the

implementation of non-collinear spin. We can also perform symmetry-adapted ab-initio

molecular dynamics [216] simulations with Cyclix-DFT to study the non-equilibrium con-

figurations and dynamic properties such as thermal conductivity. Overall, the results of this

study open up several new directions for future research on the transition metal and Janus

transition metal nanotubes, which have the potential to lead to significant advancements in

the field of nanotechnology.
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APPENDIX A

NANOTUBE GEOMETRY

Table A1. Equilibrium geometry for the forty-five TMD nanotubes. The atom positions
are R̂ = ra1 + ra2 + za3, where a1 = cos 2πθ

η
ê1,a2 = sin 2πθ

η
ê2, and a3 = Hê3, with

ê1, ê2, and ê3 being the unit vectors along the x1, x2, and x3 directions, respectively. For
the armchair and zigzag nanotubes, η = 2πR√

3a
and η = 2πR

a
, respectively. The radius of the

nanotube is R. α = π
ηH

MX2

Armchair Zigzag

Unit cell
R (nm)

Atom positions Unit cell
R (nm)

Atom positions

H (Bohr) (r −R (Bohr), θ , z) H (Bohr) (r −R (Bohr), θ, z)

WS2 3.01 2.5

W: (0.00, 0.00, 0.00)

5.21 2.5

W: (0.00, 0.00, 0.00)

S: (−2.98, 0.33, 0.00) S: (−2.98, 0.00, 0.67)

(2.98, 0.33, 0.00) (2.98, 0.00, 0.68)

WSe2 3.14 2.5

W: (0.00, 0.00, 0.00)

5.43 2.5

W: (0.00, 0.00, 0.00)

Se: (−3.17, 0.33, 0.00) Se: (−3.17, 0.00, 0.67)

(3.17, 0.33, 0.00) (3.17, 0.00, 0.68)

WTe2 3.34 2.5

W: (0.00, 0.00, 0.00)

5.78 2.5

W: (0.00, 0.00, 0.00)

Te: (−3.46, 0.34, 0.00) Te: (−3.46, 0.00, 0.67)

(3.46, 0.33, 0.00) (3.46, 0.00, 0.67)

MoS2 3.01 2.5

Mo: (0.00, 0.00, 0.00)

5.21 2.5

Mo: (0.00, 0.00, 0.00)

S: (−2.96, 0.33, 0.00) S: (−2.96, 0.00, 0.67)

(2.96, 0.33, 0.00) (2.96, 0.00, 0.67)

MoSe2 3.14 2.5

Mo: (0.00, 0.00, 0.00)

5.43 2.5

Mo: (0.00, 0.00, 0.00)

Se: (−3.15, 0.34, 0.00) Se: (−3.15, 0.00, 0.67)

(3.15, 0.33, 0.00) (3.15, 0.00, 0.67)

MoTe2 3.34 2.5

Mo: (0.00, 0.00, 0.00)

5.79 2.5

Mo: (0.00, 0.00, 0.00)

Te: (−3.45, 0.34, 0.00) Te: (−3.45, 0.00, 0.67)

(3.45, 0.33, 0.00) (3.45, 0.00, 0.67)

CrS2 2.88 4.0

Cr: (0.00, 0.00, 0.00)

4.99 4.0

Cr: (0.00, 0.00, 0.00)

S: (−2.79, 0.33, 0.00) S: (−2.79, 0.00, 0.67)

(2.79, 0.33, 0.00) (2.79, 0.00, 0.67)

CrSe2 3.04 4.0

Cr: (0.00, 0.00, 0.00)

5.26 4.0

Cr: (0.00, 0.00, 0.00)

Se: (−2.97, 0.33, 0.00) Se: (−2.97, 0.00, 0.67)

(2.97, 0.33, 0.00) (2.97, 0.00, 0.67)
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Table A1. - continued.

MX2

Armchair Zigzag

Unit cell
R (nm)

Atom positions Unit cell
R (nm)

Atom positions

H (Bohr) (r −R (Bohr), θ , z) H (Bohr) (r −R (Bohr), θ, z)

CrTe2 3.29 4.0

Cr: (0.00, 0.00, 0.00)

5.71 3.5

Cr: (0.00, 0.00, 0.00)

Te: (−3.22, 0.34, 0.00) Te: (−3.22, 0.00, 0.67)

(3.22, 0.33, 0.00) (3.22, 0.00, 0.67)

VS2 2.99 4.0

V: (0.00, 0.00, 0.00)

5.18 3.5

V: (0.00, 0.00, 0.00)

S: (−2.82, 0.33, 0.00) S: (−2.82, 0.00, 0.67)

(2.82, 0.33, 0.00) (2.82, 0.00, 0.67)

VSe2 3.14 3.5

V: (0.00, 0.00, 0.00)

5.44 4.0

V: (0.00, 0.00, 0.00)

Se: (−3.03, 0.34, 0.00) Se: (−3.03, 0.00, 0.67)

(3.03, 0.33, 0.00) (3.03, 0.00, 0.67)

VTe2 3.40 3.5

V: (0.00, 0.00, 0.00)

5.89 3.5

V: (0.00, 0.00, 0.00)

Te: (−3.31, 0.34, 0.00) Te: (−3.31, 0.00, 0.67)

(3.31, 0.33, 0.00) (3.31, 0.00, 0.67)

TaS2 3.16 20.0

Ta: (0.00, 0.00, 0.00)

5.46 20.0

Ta: (0.00, 0.00, 0.00)

S: (−2.96, 0.33, 0.00) S: (−2.96, 0.00, 0.67)

(2.96, 0.33, 0.00) (2.96, 0.00, 0.67)

TaSe2 3.28 20.0

Ta: (0.00, 0.00, 0.00)

5.68 20.0

Ta: (0.00, 0.00, 0.00)

Se: (−3.17, 0.33, 0.00) Se: (−3.17, 0.00, 0.67)

(3.17, 0.33, 0.00) (3.17, 0.00, 0.67)

TaTe2 3.46 20.0

Ta: (0.00, 0.00, 0.00)

5.99 20.0

Ta: (0.00, 0.00, 0.00)

Te: (−3.50, 0.33, 0.00) Te: (−3.50, 0.00, 0.67)

(3.50, 0.33, 0.00) (3.50, 0.00, 0.67)

NbS2 3.17 7.5

Nb: (0.00, 0.00, 0.00)

5.48 7.5

Nb: (0.00, 0.00, 0.00)

S: (−2.96, 0.33, 0.00) S: (−2.96, 0.00, 0.67)

(2.96, 0.33, 0.00) (2.96, 0.00, 0.68)

NbSe2 3.29 7.5

Nb: (0.00, 0.00, 0.00)

5.69 7.5

Nb: (0.00, 0.00, 0.00)

Se: (−3.17, 0.33, 0.00) Se: (−3.17, 0.00, 0.67)

(3.17, 0.33, 0.00) (3.17, 0.00, 0.68)

NbTe2 3.49 7.5

Nb: (0.00, 0.00, 0.00)

6.05 7.5

Nb: (0.00, 0.00, 0.00)

Te: (−3.50, 0.33, 0.00) Te: (−3.50, 0.00, 0.67)

(3.50, 0.33, 0.00) (3.50, 0.00, 0.68)

PtS2 3.38 3.0

Pt: (0.00, 0.00, 0.00)

5.85 3.0

Pt: (0.00, 0.00, 0.00)

S: (−2.33, 0.33, 0.00) S: (−2.33, 0.50, 0.33)

(2.33, 0.67, 0.00) (2.33, 0.00, 0.67)
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Table A1. - continued.

MX2

Armchair Zigzag

Unit cell
R (nm)

Atom positions Unit cell
R (nm)

Atom positions

H (Bohr) (r −R (Bohr), θ , z) H (Bohr) (r −R (Bohr), θ, z)

PtSe2 3.54 2.5

Pt: (0.00, 0.00, 0.00)

6.13 2.5

Pt: (0.00, 0.00, 0.00)

Se: (−2.47, 0.33, 0.00) Se: (−2.47, 0.50, 0.33)

(2.47, 0.67, 0.00) (2.47, 0.00, 0.67)

PtTe2 3.80 2.5

Pt: (0.00, 0.00, 0.00)

6.57 2.5

Pt: (0.00, 0.00, 0.00)

Te: (−2.62, 0.33, 0.00) Te: (−2.62, 0.50, 0.33)

(2.62, 0.67, 0.00) (2.62, 0.00, 0.67)

HfS2 3.45 9.5

Hf: (0.00, 0.00, 0.00)

5.98 10.0

Hf: (0.00, 0.00, 0.00)

S: (−2.74, 0.33, 0.00) S: (−2.74, 0.50, 0.33)

(2.74, 0.67, 0.00) (2.74, 0.00, 0.67)

HfSe2 3.56 10.0

Hf: (0.00, 0.00, 0.00)

6.17 9.5

Hf: (0.00, 0.00, 0.00)

Se: (−2.98, 0.33, 0.00) Se: (−2.98, 0.50, 0.33)

(2.98, 0.67, 0.00) (2.98, 0.00, 0.67)

HfTe2 3.76 9.5

Hf: (0.00, 0.00, 0.00)

6.51 10.0

Hf: (0.00, 0.00, 0.00)

Te: (−3.34, 0.33, 0.00) Te: (−3.34, 0.50, 0.33)

(3.34, 0.67, 0.00) (3.34, 0.00, 0.67)

ZrS2 3.48 10.0

Zr: (0.00, 0.00, 0.00)

6.02 10.0

Zr: (0.00, 0.00, 0.00)

S: (−2.73, 0.33, 0.00) S: (−2.73, 0.50, 0.33)

(2.73, 0.67, 0.00) (2.73, 0.00, 0.67)

ZrSe2 3.59 10.0

Zr: (0.00, 0.00, 0.00)

6.21 9.5

Zr: (0.00, 0.00, 0.00)

Se: (−2.99, 0.33, 0.00) Se: (−2.99, 0.50, 0.33)

(2.99, 0.67, 0.00) (2.99, 0.00, 0.67)

ZrTe2 3.75 9.5

Zr: (0.00, 0.00, 0.00)

6.50 10.0

Zr: (0.00, 0.00, 0.00)

Te: (−3.40, 0.33, 0.00) Te: (−3.40, 0.50, 0.33)

(3.40, 0.67, 0.00) (3.40, 0.00, 0.67)

TiS2 3.22 5.5

Ti: (0.00, 0.00, 0.00)

5.59 6.0

Ti: (0.00, 0.00, 0.00)

S: (−2.69, 0.33, 0.00) S: (−2.69, 0.50, 0.33)

(2.69, 0.67, 0.00) (2.69, 0.00, 0.67)

TiSe2 3.34 6.0

Ti: (0.00, 0.00, 0.00)

5.78 5.5

Ti: (0.00, 0.00, 0.00)

Se: (−2.93, 0.33, 0.00) Se: (−2.93, 0.50, 0.33)

(2.93, 0.67, 0.00) (2.93, 0.00, 0.67)

TiTe2 3.54 5.0

Ti: (0.00, 0.00, 0.00)

6.13 5.5

Ti: (0.00, 0.00, 0.00)

Te: (−3.30, 0.33, 0.00) Te: (−3.30, 0.50, 0.33)

(3.30, 0.67, 0.00) (3.30, 0.00, 0.67)
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Table A1. - continued.

MX2

Armchair Zigzag

Unit cell
R (nm)

Atom positions Unit cell
R (nm)

Atom positions

H (Bohr) (r −R (Bohr), θ , z) H (Bohr) (r −R (Bohr), θ, z)

NiS2 3.17 3.5

Ni: (0.00, 0.00, 0.00)

5.49 4.0

Ni: (0.00, 0.00, 0.00)

S: (−2.22, 0.33, 0.00) S: (−2.22, 0.50, 0.33)

(2.22, 0.67, 0.00) (2.22, 0.00, 0.67)

NiSe2 3.34 3.5

Ni: (0.00, 0.00, 0.00)

5.79 3.5

Ni: (0.00, 0.00, 0.00)

Se: (−2.35, 0.33, 0.00) Se: (−2.35, 0.50, 0.33)

(2.35, 0.67, 0.00) (2.35, 0.00, 0.67)

NiTe2 3.58 4.0

Ni: (0.00, 0.00, 0.00)

6.19 4.0

Ni: (0.00, 0.00, 0.00)

Te: (−2.56, 0.34, 0.00) Te: (−2.56, 0.50, 0.33)

(2.56, 0.67, 0.00) (2.56, 0.00, 0.67)

PdS2 3.36 4.0

Pd: (0.00, 0.00, 0.00)

5.81 4.0

Pd: (0.00, 0.00, 0.00)

S: (−2.35, 0.33, 0.00) S: (−2.35, 0.50, 0.33)

(2.35, 0.67, 0.00) (2.35, 0.00, 0.67)

PdSe2 3.53 3.5

Pd: (0.00, 0.00, 0.00)

6.11 3.5

Pd: (0.00, 0.00, 0.00)

Se: (−2.48, 0.33, 0.00) Se: (−2.48, 0.50, 0.33)

(2.48, 0.67, 0.00) (2.48, 0.00, 0.67)

PdTe2 3.79 4.0

Pd: (0.00, 0.00, 0.00)

6.57 4.0

Pd: (0.00, 0.00, 0.00)

Te: (−2.60, 0.33, 0.00) Te: (−2.60, 0.50, 0.33)

(2.60, 0.67, 0.00) (2.60, 0.00, 0.67)

MnS2 2.83 4.0

Mn: (0.00, 0.00, 0.00)

4.91 4.0

Mn: (0.00, 0.00, 0.00)

S: (−2.50, 0.33, 0.00) S: (−2.50, 0.50, 0.33)

(2.50, 0.67, 0.00) (2.50, 0.00, 0.67)

MnSe2 3.06 4.0

Mn: (0.00, 0.00, 0.00)

5.29 4.0

Mn: (0.00, 0.00, 0.00)

Se: (−2.71, 0.33, 0.00) Se: (−2.71, 0.50, 0.33)

(2.71, 0.67, 0.00) (2.71, 0.00, 0.67)

MnTe2 3.32 3.5

Mn: (0.00, 0.00, 0.00)

5.74 4.0

Mn: (0.00, 0.00, 0.00)

Te: (−2.96, 0.33, 0.00) Te: (−2.96, 0.50, 0.33)

(2.96, 0.67, 0.00) (2.96, 0.00, 0.67)

FeS2 2.98 4.0

Fe: (0.00, 0.00, 0.00)

5.16 3.5

Fe: (0.00, 0.00, 0.00)

S: (−2.59, 0.33, 0.00) S: (−2.59, 0.00, 0.67)

(2.59, 0.33, 0.00) (2.59, 0.00, 0.67)

FeSe2 3.13 4.0

Fe: (0.00, 0.00, 0.00)

5.41 4.0

Fe: (0.00, 0.00, 0.00)

Se: (−2.85, 0.33, 0.00) Se: (−2.85, 0.00, 0.67)

(2.85, 0.33, 0.00) (2.85, 0.00, 0.67)
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Table A1. - continued.

MX2

Armchair Zigzag

Unit cell
R (nm)

Atom positions Unit cell
R (nm)

Atom positions

H (Bohr) (r −R (Bohr), θ , z) H (Bohr) (r −R (Bohr), θ, z)

FeTe2 3.38 3.5

Fe: (0.00, 0.00, 0.00)

5.85 3.5

Fe: (0.00, 0.00, 0.00)

Te: (−3.03, 0.34, 0.00) Te: (−3.03, 0.00, 0.67)

(3.03, 0.33, 0.00) (3.03, 0.00, 0.68)

CuS2 3.52 3.5

Cu: (0.00, 0.00, 0.00)

6.10 3.5

Cu: (0.00, 0.00, 0.00)

S: (−2.03, 0.33, 0.00) S: (−2.03, 0.00, 0.67)

(2.03, 0.33, 0.00) (2.03, 0.00, 0.67)

CuSe2 3.63 4.0

Cu: (0.00, 0.00, 0.00)

6.29 4.0

Cu: (0.00, 0.00, 0.00)

Se: (−2.30, 0.33, 0.00) Se: (−2.30, 0.00, 0.67)

(2.30, 0.33, 0.00) (2.30, 0.00, 0.67)

CuTe2 3.70 4.0

Cu: (0.00, 0.00, 0.00)

6.41 4.0

Cu: (0.00, 0.00, 0.00)

Te: (−2.74, 0.33, 0.00) Te: (−2.74, 0.00, 0.67)

(2.74, 0.33, 0.00) (2.74, 0.00, 0.67)
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Table A2. Equilibrium geometry for the twenty-seven Janus TMD nanotubes. The atom
positions are R̂ = ra1+ra2+za3, where a1 = cos 2πθ

η
ê1,a2 = sin 2πθ

η
ê2, and a3 = Hê3,

with ê1, ê2, and ê3 being the unit vectors along the x1, x2, and x3 directions, respectively.
For the armchair and zigzag nanotubes, η = 2πR√

3a
and η = 2πR

a
respectively. The radius of

the nanotube is R . The twist parameter in Cyclix-DFT is α = π
ηH

Material

Armchair Zigzag

Unit cell R Atom positions Unit cell R Atom positions

H (Bohr) (nm) (r −R (Bohr), θ, z) H (Bohr) (nm) (r −R (Bohr), θ, z)

VSSe 3.06 7.3

V: (0.00, 0.00, 0.00)

5.31 7.1

V: (0.00, 0.00, 0.00)

S: (−2.69, 0.33, 0.00) S: (−2.69, 0.00, 0.67)

Se: (3.14, 0.33, 0.00) Se: (3.14, 0.00, 0.67)

VSTe 3.19 2.2

V: (0.00, 0.00, 0.00)

5.53 2.2

V: (0.00, 0.00, 0.00)

S: (−2.48, 0.33, 0.00) S: (−2.48, 0.00, 0.67)

Te: (3.57, 0.33, 0.00) Te: (3.57, 0.00, 0.67)

VSeTe 3.26 4.2

V: (0.00, 0.00, 0.00)

5.65 4.1

V: (0.00, 0.00, 0.00)

Se: (−2.75, 0.33, 0.00) Se: (−2.75, 0.00, 0.67)

Te: (3.46, 0.33, 0.00) Te: (3.46, 0.00, 0.67)

NbSSe 3.22 6.5

Nb: (0.00, 0.00, 0.00)

5.58 7.1

Nb: (0.00, 0.00, 0.00)

S: (−2.83, 0.33, 0.00) S: (−2.83, 0.00, 0.67)

Se: (3.27, 0.33, 0.00) Se: (3.27, 0.00, 0.67)

NbSTe 3.33 2.2

Nb: (0.00, 0.00, 0.00)

5.77 2.2

Nb: (0.00, 0.00, 0.00)

S: (−2.64, 0.33, 0.00) S: (−2.64, 0.00, 0.67)

Te: (3.70, 0.33, 0.00) Te: (3.70, 0.00, 0.67)

NbSeTe 3.39 4.3

Nb: (0.00, 0.00, 0.00)

5.87 4.4

Nb: (0.00, 0.00, 0.00)

Se: (−2.99, 0.33, 0.00) Se: (−2.99, 0.00, 0.67)

Te: (3.62, 0.33, 0.00) Te: (3.62, 0.00, 0.67)

TaSSe 3.22 5.5

Ta: (0.00, 0.00, 0.00)

5.58 5.6

Ta: (0.00, 0.00, 0.00)

S: (−2.85, 0.33, 0.00) S: (−2.85, 0.00, 0.67)

Se: (3.26, 0.33, 0.00) Se: (3.26, 0.00, 0.67)

TaSTe 3.33 2.0

Ta: (0.00, 0.00, 0.00)

5.76 2.0

Ta: (0.00, 0.00, 0.00)

S: (−2.68, 0.33, 0.00) S: (−2.68, 0.00, 0.67)

Te: (3.68, 0.33, 0.00) Te: (3.68, 0.00, 0.67)

TaSeTe 3.39 3.8

Ta: (0.00, 0.00, 0.00)

5.87 3.8

Ta: (0.00, 0.00, 0.00)

Se: (−3.00, 0.33, 0.00) Se: (−3.00, 0.00, 0.67)

Te: (3.60, 0.33, 0.00) Te: (3.60, 0.00, 0.67)

CrSSe 2.96 3.6

Cr: (0.00, 0.00, 0.00)

5.12 3.7

Cr: (0.00, 0.00, 0.00)

S: (−2.71, 0.33, 0.00) S: (−2.71, 0.00, 0.67)

Se: (3.05, 0.33, 0.00) Se: (3.05, 0.00, 0.67)
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Table A2. - continued.

Material

Armchair Zigzag

Unit cell R Atom positions Unit cell R Atom positions

H (Bohr) (nm) (r −R (Bohr), θ, z) H (Bohr) (nm) (r −R (Bohr), θ, z)

CrSTe 3.07 1.6

Cr: (0.00, 0.00, 0.00)

5.32 1.6

Cr: (0.00, 0.00, 0.00)

S: (−2.58, 0.33, 0.00) S: (−2.58, 0.00, 0.67)

Te: (3.42, 0.33, 0.00) Te: (3.42, 0.00, 0.67)

CrSeTe 3.16 2.8

Cr: (0.00, 0.00, 0.00)

5.48 2.8

Cr: (0.00, 0.00, 0.00)

Se: (−2.85, 0.33, 0.00) Se: (−2.85, 0.00, 0.67)

Te: (3.34, 0.33, 0.00) Te: (3.34, 0.00, 0.67)

MoSSe 3.07 4.2

Mo: (0.00, 0.00, 0.00)

5.32 4.2

Mo: (0.00, 0.00, 0.00)

S: (−2.89, 0.33, 0.00) S: (−2.89, 0.00, 0.67)

Se: (3.22, 0.33, 0.00) Se: (3.22, 0.00, 0.67)

MoSTe 3.18 1.9

Mo: (0.00, 0.00, 0.00)

5.50 1.9

Mo: (0.00, 0.00, 0.00)

S: (−2.79, 0.33, 0.00) S: (−2.79, 0.00, 0.67)

Te: (3.59, 0.33, 0.00) Te: (3.59, 0.00, 0.67)

MoSeTe 3.24 3.3

Mo: (0.00, 0.00, 0.00)

5.62 3.2

Mo: (0.00, 0.00, 0.00)

Se: (−3.05, 0.33, 0.00) Se: (−3.05, 0.00, 0.67)

Te: (3.52, 0.33, 0.00) Te: (3.52, 0.00, 0.67)

WSSe 3.07 4.4

W: (0.00, 0.00, 0.00)

5.32 4.5

W: (0.00, 0.00, 0.00)

S: (−2.91, 0.33, 0.00) S: (−2.91, 0.00, 0.67)

Se: (3.24, 0.33, 0.00) Se: (3.24, 0.00, 0.67)

WSTe 3.18 1.9

W: (0.00, 0.00, 0.00)

5.5 1.9

W: (0.00, 0.00, 0.00)

S: (−2.80, 0.33, 0.00) S: (−2.80, 0.00, 0.67)

Te: (3.60, 0.33, 0.00) Te: (3.60, 0.00, 0.67)

WSeTe 3.24 3.3

W: (0.00, 0.00, 0.00)

5.62 3.6

W: (0.00, 0.00, 0.00)

Se: (−3.07, 0.33, 0.00) Se: (−3.07, 0.00, 0.67)

Te: (3.53, 0.33, 0.00) Te: (3.53, 0.00, 0.67)

TiSSe 3.29 21.9

Ti: (0.00, 0.00, 0.00)

5.69 22.4

Ti: (0.00, 0.00, 0.00)

S: (−2.53, 0.33, 0.00) S: (−2.53, 0.50, 0.33)

Se: (3.07, 0.67, 0.00) Se: (3.07, 0.00, 0.67)

TiSTe 3.39 5.0

Ti: (0.00, 0.00, 0.00)

5.88 4.8

Ti: (0.00, 0.00, 0.00)

S: (−2.31, 0.33, 0.00) S: (−2.31, 0.50, 0.33)

Te: (3.59, 0.67, 0.00) Te: (3.59, 0.00, 0.67)

TiSeTe 3.44 19.6

Ti: (0.00, 0.00, 0.00)

5.97 14.3

Ti: (0.00, 0.00, 0.00)

Se: (−2.69, 0.33, 0.00) Se: (−2.69, 0.50, 0.33)

Te: (3.51, 0.67, 0.00) Te: (3.51, 0.00, 0.67)

ZrSSe 3.53 7.7

Zr: (0.00, 0.00, 0.00)

6.12 7.5

Zr: (0.00, 0.00, 0.00)

S: (−2.62, 0.33, 0.00) S: (−2.62, 0.50, 0.33)

Se: (3.10, 0.67, 0.00) Se: (3.10, 0.00, 0.67)
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Table A2. - continued.

Material

Armchair Zigzag

Unit cell R Atom positions Unit cell R Atom positions

H (Bohr) (nm) (r −R (Bohr), θ, z) H (Bohr) (nm) (r −R (Bohr), θ, z)

ZrSTe 3.61 3.1

Zr: (0.00, 0.00, 0.00)

6.26 3.1

Zr: (0.00, 0.00, 0.00)

S: (−2.43, 0.33, 0.00) S: (−2.43, 0.50, 0.33)

Te: (3.64, 0.67, 0.00) Te: (3.64, 0.00, 0.67)

ZrSeTe 3.67 8.3

Zr: (0.00, 0.00, 0.00)

6.36 7.9

Zr: (0.00, 0.00, 0.00)

Se: (−2.80, 0.33, 0.00) Se: (−2.80, 0.50, 0.33)

Te: (3.56, 0.67, 0.00) Te: (3.56, 0.00, 0.67)

HfSSe 3.51 4.8

Hf: (0.00, 0.00, 0.00)

6.07 5.2

Hf: (0.00, 0.00, 0.00)

S: (−2.63, 0.33, 0.00) S: (−2.63, 0.50, 0.33)

Se: (3.08, 0.67, 0.00) Se: (3.08, 0.00, 0.67)

HfSTe 3.60 2.2

Hf: (0.00, 0.00, 0.00)

6.23 2.2

Hf: (0.00, 0.00, 0.00)

S: (−2.45, 0.33, 0.00) S: (−2.45, 0.50, 0.33)

Te: (3.59, 0.67, 0.00) Te: (3.59, 0.00, 0.67)

HfSeTe 3.66 4.1

Hf: (0.00, 0.00, 0.00)

6.34 4.0

Hf: (0.00, 0.00, 0.00)

Se: (−2.80, 0.33, 0.00) Se: (−2.80, 0.50, 0.33)

Te: (3.51, 0.67, 0.00) Te: (3.51, 0.00, 0.67)
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Table A3. Equilibrium geometry for the twelve Janus TMH nanotubes. The atom positions
are R̂ = ra1+ ra2+ za3, where a1 = cos 2πθ

η
ê1,a2 = sin 2πθ

η
ê2, and a3 = Hê3, with ê1,

ê2, and ê3 being the unit vectors along the x1, x2, and x3 directions, respectively. For the
armchair and zigzag nanotubes, η = 2πR√

3a
and 2πR

a
, respectively. The radius of the nanotube

is R. The twist parameter in Cyclix-DFT is α = π
ηH

.

Material

Armchair Zigzag

Unit cell R Atom positions Unit cell R Atom positions

H (Bohr) (nm) (r −R (Bohr), θ, z) H (Bohr) (nm) (r −R (Bohr), θ, z)

TiClI 3.35 1.6± 0.1

Ti: (0.00, 0.00, 0.00)

5.77 1.6± 0.1

Ti: (0.00, 0.00, 0.00)

Cl: (−2.83, 0.33, 0.00) Cl: (−2.83, 0.00, 0.67)

I: (3.54, 0.33, 0.00) I: (3.54, 0.00, 0.67)

TiBrI 3.43 3.1± 0.2

Ti: (0.00, 0.00, 0.00)

5.94 3.0± 0.1

Ti: (0.00, 0.00, 0.00)

Br: (−3.11, 0.33, 0.00) Br: (−3.11, 0.00, 0.67)

I: (3.49, 0.33, 0.00) I: (3.49, 0.00, 0.67)

TiClBr 3.19 3.7± 0.2

Ti: (0.00, 0.00, 0.00)

5.53 3.9± 0.2

Ti: (0.00, 0.00, 0.00)

Cl: (−2.93, 0.33, 0.00) Cl: (−2.93, 0.00, 0.67)

Br: (3.25, 0.33, 0.00) Br: (3.25, 0.00, 0.67)

ZrClI 3.43 2.0± 0.1

Zr: (0.00, 0.00, 0.00)

5.92 1.9± 0.1

Zr: (0.00, 0.00, 0.00)

Cl: (−3.08, 0.33, 0.00) Cl: (−3.08, 0.00, 0.67)

I: (3.79, 0.33, 0.00) I: (3.79, 0.00, 0.67)

ZrBrI 3.50 3.5± 0.2

Zr: (0.00, 0.00, 0.00)

6.06 3.3± 0.2

Zr: (0.00, 0.00, 0.00)

Br: (−3.36, 0.33, 0.00) Br: (−3.36, 0.00, 0.67)

I: (3.74, 0.33, 0.00) I: (3.74, 0.00, 0.67)

ZrClBr 3.29 4.3± 0.4

Zr: (0.00, 0.00, 0.00)

5.71 4.4± 0.4

Zr: (0.00, 0.00, 0.00)

Cl: (−3.18, 0.33, 0.00) Cl: (−3.18, 0.00, 0.67)

Br: (3.50, 0.33, 0.00) Br: (3.50, 0.00, 0.67)

HfClI 3.38 1.9± 0.1

Hf: (0.00, 0.00, 0.00)

5.82 1.9± 0.1

Hf: (0.00, 0.00, 0.00)

Cl: (−3.12, 0.33, 0.00) Cl: (−3.12, 0.00, 0.67)

I: (3.81, 0.33, 0.00) I: (3.81, 0.00, 0.67)

HfBrI 3.44 3.4± 0.2

Hf: (0.00, 0.00, 0.00)

5.96 3.4± 0.2

Hf: (0.00, 0.00, 0.00)

Br: (−3.40, 0.33, 0.00) Br: (−3.40, 0.00, 0.67)

I: (3.76, 0.33, 0.00) I: (3.76, 0.00, 0.67)

HfClBr 3.24 4.3± 0.3

Hf: (0.00, 0.00, 0.00)

5.61 4.3± 0.2

Hf: (0.00, 0.00, 0.00)

Cl: (−3.22, 0.33, 0.00) Cl: (−3.22, 0.00, 0.67)

Br: (3.53, 0.33, 0.00) Br: (3.53, 0.00, 0.67)

FeClI 3.46 1.5± 0.1

Fe: (0.00, 0.00, 0.00)

5.99 1.4± 0.1

Fe: (0.00, 0.00, 0.00)

Cl: (−2.30, 0.33, 0.00) Cl: (−2.30, 0.50, 0.33)

I: (2.59, 0.67, 0.00) I: (2.59, 0.00, 0.67)

FeBrI 3.54 2.9± 0.1

Fe: (0.00, 0.00, 0.00)

6.13 3.0± 0.1

Fe: (0.00, 0.00, 0.00)

Br: (−2.49, 0.33, 0.00) Br: (−2.49, 0.50, 0.33)

I: (2.60, 0.67, 0.00) I: (2.60, 0.00, 0.67)

FeClBr 3.31 2.5± 0.2

Fe: (0.00, 0.00, 0.00)

5.73 2.4± 0.2

Fe: (0.00, 0.00, 0.00)

Cl: (−2.28, 0.33, 0.00) Cl: (−2.28, 0.50, 0.33)

Br: (2.46, 0.67, 0.00) Br: (2.46, 0.00, 0.67)
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APPENDIX B

MONOLAYER STABILITY

(1) CrSSe (2) CrSTe

(3) CrSeTe (4) MoSSe

(5) MoSTe (6) MoSeTe
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(7) WSSe (8) WSTe

(9) WSeTe (10) TiSSe

(11) TiSTe (12) TiSeTe
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(13) ZrSSe (14) ZrSTe

(15) ZrSeTe (16) HfSSe

(17) HfSTe (18) HfSeTe
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(19) NbSSe (20) NbSTe

(21) NbSeTe (22) TaSSe

(23) TaSTe (24) TaSeTe

80



(25) VSSe (26) VSTe

(27) VSeTe

Figure B1: Phonon band structure plots for the twenty-seven select Janus TMD monolayers
at their equilibrium configuration.
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(1) CrSSe (ε = 0.14) (2) CrSTe (ε = 0.14)

(3) CrSeTe (ε = 0.14) (4) MoSSe (ε = 0.14)

(5) MoSTe (ε = 0.14) (6) MoSeTe (ε = 0.14)
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(7) WSSe (ε = 0.14) (8) WSTe (ε = 0.14)

(9) WSeTe (ε = 0.14) (10) TiSSe (ε = 0.05)

(11) TiSTe (ε = 0.14) (12) TiSeTe (ε = 0.14)
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(13) ZrSSe (ε = 0.10) (14) ZrSTe (ε = 0.14)

(15) ZrSeTe (ε = 0.14) (16) HfSSe (ε = 0.10)

(17) HfSTe (ε = 0.14) (18) HfSeTe (ε = 0.14)

Figure B2: Phonon band structure plots for the eighteen select Janus TMD monolayers at
the maximum tensile strain for which they are stable.
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(1) CrSSe (γ = 0.15) (2) CrSTe (γ = 0.15)

(3) CrSeTe (γ = 0.15) (4) MoSSe (γ = 0.15)

(5) MoSTe (γ = 0.15) (6) MoSeTe (γ = 0.15)
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(7) WSSe (γ = 0.15) (8) WSTe (γ = 0.15)

(9) WSeTe (γ = 0.15) (10) TiSSe (γ = 0.05)

(11) TiSTe (γ = 0.15) (12) TiSeTe (γ = 0.15)

86



(13) ZrSSe (γ = 0.10) (14) ZrSTe (γ = 0.15)

(15) ZrSeTe (γ = 0.15) (16) HfSSe (γ = 0.12)

(17) HfSTe (γ = 0.15) (18) HfSeTe (γ = 0.15)

Figure B3: Phonon band structure plots for the eighteen select Janus TMD monolayers at
the maximum shear strain for which they are stable.
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