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SUMMARY 

Magnetohydrodynamic flow in the entrance region of a Square Chan

nel is considered. This flow Situation is shown to be of a type found in 

Tokamak fusion reactor blankets with circulating lithium coolant. The 

presence of secondary flow in the developing region forces three dimen-

sional modeling of the problem. The three momentum, three induction, 

pressure and energy equations that describe the system are cast in para-

bolic form and integrated numerically by the use of a marching procedure 

in the stream-wise direction. Mesh size limitations restrict the Solu

tions to low Hartmann numbers. 

The results show that the MHD pressure drop is strongly dependent 

on the electrical conductivity of the duct walls perpendicular to the 

imposed transverse magnetic field and relatively insensitive to the con

ductivity of the parallel walls. Velocity and ternperature profiles are 

flattened and heat transfer coefficients increased with the largest 

increase occurring when the duct corners are electrically insulated. 

Hydrodynamic entry lengths are shown to decrease signif icantly with Hart

mann number increase, and minutely with wall electrical conductivity 

increase. 

The main conclusions are that, by judicious use of current breaks, 

insulated corners and walls, the MHD pumping losses should be reduceable 

to a tolerable level, and at the same time the benefits of blanket simp-

lification and heat transfer enhancement can be enjoyed. 
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GHAPTER I 

INTRODUCTION 

Objective 

Controlled thermonuclear fusion offers an essentially limitless 

energy source. Much complexity, unfortunately, is involved in harness-

ing this tremendous potential. Fusion reactions are well understood 

and have been amply deraonstrated by many types of destructive nuclear 

weapons. While fusion energy has been profusely used by the military, 

unlike fission it still awaits commercial use. Design of a power pro-

ducing fusion reactor is made very difficult by the need to provide 

Containment for a super-hot plasma. 

Of the various means for providing Containment for the fusion 

plasma, the magnetic confinement concept is currently in the most 

advanced stages of study. A number of designs utilizing magnetic confine

ment have been proposed, and out of these the Tokamak type machine appears 

to be the most promising. In this design the plasma is confined in a 

toroidal geometry by a strong magnetic field. The only possible means of 

plasma leakage is by slow diffusion across the toroidal magnetic field 

lines. Since the ignition temperature for deuterium-tritium fusion is 

lower, the first generation of such reactors will probably operate on 

this fuei mixture. 

Deuterium is easily extracted from sea water, of which there is 

no shortage, while tritium, not being naturally occurring isotope, has 

to be produced. The only really feasible'means of tritium production 

is to breed it in a lithium bearing blanket in which Li6(n,T) and Li7 

(n,n'T) reactions will take place- The majority of the fusion reaction 
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energy appears in the 14 MeV neutrons, and thus the blanket has to 

serve the purposes of neutron moderation and heat removal as well. 

This blanket is placed between the plasma and the main magnetic wind-

ings and heat removed by a circulating coolant can be used for gener-

ating electricity by means of a conventional heat engine. Figure 1 

shows a typical conceptual design of such a system. 

This problem of heat removal from the controlled thermonuclear 

reactor is likely to be one of the key factors affecting the plant 

economics. Many important parameters such as capital costs, power plant 

efficiency, fuel breeding, induced activity, material and structural 

criteria and the reactor lifetime are affected by the choice of the 

coolant and the geometry of the blanket. Since the reactor size and 

capital costs are directly related, maximizing the first wall power 

loading is desirable. Even though it is clear that other factors such 

as radiation damage, and plasma stability may strongly affect this al-

lowable wall loading, the ability to cool the wall appears to be one of 

the major factors involved in establishing its limit. 

The most obvious and simple Solution to the problem is to use 

lithium not only as the breeding material, but also as the heat trans-

fer medium. Liquid lithium being metallic, has a high boiling point and 

excellent heat transfer characteristics. Conceptually, the blanket 

could be a very simple structure with the lithium in it serving all 

the functions of neutron moderation, tritium breeding and heat removal. 

However, the blanket, being inside the toroidal field coils, is subject 

to the intense toroidal magnetic field, generated by the coils for the 

purpose of plasma confinement, and also the relatively weaker, but still 
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Figure 1. Conceptual Design of Argonne Tokamak Experiraental Power Reactor 
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strong, poloidal field generated by the plasma current. Any circulating 

fluid in the blanket would then have to be pumped along and across mag-

netic field lines. If the fluid is electrically conducting, as lithium 

is, these magnetic fields affect the flow by the principles o£ magneto-

hydrodynamics and alter the velocity profiles in the Channels. The 

ultimate effect being to increase the pressure drop and alter the heat 

removal properties of the flow. 

Fears that this pressure drop may be excessive, have prompted 

recent reevaluations of lithium circulating blankets. The magneto-

hydrodynamic pressure drop is a maximum when the applied field is 

transverse to the flow direction and zero when the field and flow are 

exactly parallel. Therefore, to reduce the MHD head loss it is obvious 

that the flow direction should be kept aligned with the toroidal field 

as much as possible. This constraint results in designs such as that 

shown in Figure 2. The balnket is segmented into a number of modules 

and each has an independent coolant circuit. The main flow is only 

perpendicular to the toroidal field when the coolant enters within the 

region of the coils. Then the flow direction immediately becomes 

toroidal and there is no longer a retarding body force due to the 

toroidal field. However, the weaker poloidal field is now normal to 

the flow and it exerts a retarding force. 

This particular Situation leads to two interesting magneto-

hydrodynamic (MHD) flow problems, neither of which had been solved. 

First of all there is the problem of flow around a right angled bend 

in the presence of one or two imposed field components. Solutions to 

this problem have not been attempted. However, if it is assumed that 



i 

Figure 2. Ducted Coolant Blanket Module 
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in crossing the intense toroidal field, before the corner is turned, 

the flow becomes essentially slug, which is consistent with the very 

high toroidal Hartmann number, the second problem presents itself. 

When this slug flow becomes parallel to the toroidal field, there is 

a tendency for it to relax towards the fully developed profile that 

corresponds to the now transverse poloidal magnetic field. However, 

the toroidal field retards this development, and the result is a flow 

that probably never reaches a fully developed State before it has to 

exit from the blanket. This problem, which is the object of interest 

in this research, can be thought of as a MHD entry problem. 

Flow in a duct develops by virtue of deceleration of the slug 

profile near the walls under the action of viscosity. This causes net 

transfer of fluid towards the center of the duct, and transverse secon-

dary flow is generated to accomplish this task. As the transverse 

magnetic field has differing effects on secondary velocities parallel 

and perpendicular to it, this entry problem is always three dimensional, 

even in a circular tube. To be more in keeping with conceptual blanket 

designs, the duct considered was a Square one. Since the problem in-

volves simultaneously developing velocities, temperatures and induced 

magnetic fields, and is non-linear, the method of Solution raust be 

numerical. 

Background 

The literature was examined for methods relavent to the Solution 

of the three-dimensional MHD entry problem in a Square duct. 

Pujrely Hydrodynamic Duct Flow 
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The momentum equation for fully developed laminar flow in a 

rectangular duct is linear, and an exact analytical Fourier series 

2 3 4 
Solution is available. Corresponding exact and approximate 

temperature Solutions are also available for both the cases of con

stant wall temperature around the periphery, and constant imposed peri-

pheral heat flux. While the hydrodynamic entry problem in a circular 

tube can be treated as two-dimensional, the corresponding problem for 

a rectangular duct cannot. Because it is three-dimensional and non

linear in nature, it was not until 1972, that a satisfactory Solution 

to this entry problem for a rectangular duct was obtained. 

Generally, the entrance flow in straight ducts of constant 

cross-section experiences no streamwise Separation, although cross 

flow recirculation may prevail. For these cases the Navier-Stokes 

equations can be parabolized with respect to the streamwise direction, 

and integrated numerically by a marching technique in the streamwise 

direction. Patankar and Spalding first introduced this assumption 

and successfully employed it to solve the entry problem in Square 

ducts with all stationary walls as well as with one laterally moving 

wall. Their results showed excellent agreement with the painstaking 

f\ 7 

experimental analyses of Goldstein et al., and Beavers et al. Soon 
8 9 

afterwards, Caretto et al. and Curr et al. developed alternate 

numerical Solution techniques for the parabolized equations in terms 

of primitive variables, or in terms of vorticity and velocity. All of 

these formulations yielded accurate Solutions for the stationary 

boundary and one moving wall cases. 
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10 
Briley modified the original technique of Patankar and 

Spalding by including some of the off diagonal elements in the 

coefficient matrices for the velocity and pressure corrections. 

However, this improvement did not seem to have appreciable effects. 

Ghia et al. applied Briley's method to polar ducts, again with good 

results. The original method of Patankar and Spalding has been 

extended to include the magnetic induction equations and used to 

solve the postulated problem in the research. 

Magnetohydrodynamic Duct Flow 

12 
The classical work in the area, of course, was that of Hartmann 

who first solved for the effect of a transverse magnetic field on an 

electrically conducting fluid flowing between parallel plates. He 

obtained the well known Hartmann profile after having assumed steady, 

uniformly conducting, incompressible laminar flow with no variations in 

13 
the flow direction. Shercliff solved the sarae problem for rectangular 

ducts with non conducting walls. The case for rectangular ducts with 

14 
perfectly conducting walls was solved by Chang and Lundgren, and 

Gold obtained the Solution for circular pipes with non conducting 

walls. Shercliff postulated a boundary condition applicable to thin 

finitely conducting walls. Using this result and rather involved mathe-

17 18 
matics, Ihara et al. and Chu solved the arbitrary conductivity 

19 20 
problem for circular and rectangular ducts respectively. Hunt, ' 

after making the high Hartmann number approximation, used boundary layer 

analyses to solve for the mixed wall rectangular duct cases. This 

involved various combinations of non conducting, perfectly conducting, 

and finitely conducting walls. 
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The principal result stemming from all the above work is that 

for a transverse field and laminar flow, the effect of the field is to 

induce currents resulting from the Vxß induced emf. These currents 

flow in one direction in the core of the flow and return either through 

the walls (normal to the field) if the walls are conducting or along the 

slower moving boundary layers on these walls. The currents, in turn, 

give rise to a JxB Lorentz force, which acts parallel to the fluid 

motion, retarding the core and accelerating the boundary layers if the 

walls are non conducting or merely retarding the flow if the walls 

provide return paths for the currents. The result is a thinning of the 

boundary layers on walls normal to the field, a flattening of the veloc-

ity profile in the core, and, for conducting walls, a large net force 

opposing fluid motion. In the case of insulating walls, the currents 

lie entirely within the fluid and there is no net Lorentz force, but 

the velocity profile is flattened and viscous resistance is increased 

owing to steeper gradients near the walls. The boundary layers on walls 

parallel to the field are not affected to the same degree. 

The major conclusion is that if the ducts cannot be made insula

ting the magnetic pressure drop is proportional to the Square of the 

Hartmann number. Since the electrical conductivity of most refractory 

metals is somewhat similar to liquid metals, these pressure drops could 

be minimized by insulating the inner and/or outer surfaces of coolant 

Channels by perhaps a ceramic coating covered, in turn with a material 

compatible with lithium. 

All of the MHD papers referenced above have been analytical and 

their Solutions are generally in awkward series form. Hoffman and 
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21 
Carlson have approximated these results by the following expression 

for the fully developed pressure gradient in circular and rectangular 

ducts, 

-D2 dP I Ha2 tanh Ha _ JD^ dP_ 
yU dx I Ha - tanh Ha " yU dx 
o \ o 

Ha2C 

* 1 + C 

B=o 

where all the Symbols are as defined in the nomenclature and K is a 

dimensionless parameter that equals 1.0 for rectangular and 1.3 for 

circular ducts. This expression simplifies further for the limiting 

cases of C equal zero and C equal infinity, and it has seen wide use 

in the calculation of pressure drops in fusion blanket Systems. 

Strangely enough there has not been much application of 

numerical analysis to the Solution of MHD problems. For fully devel-

22 
oped rectangular duct flow, Chu has reconfirmed his earlier Fourier 

series Solution by use of a finite difference net and a relaxation 

23 procedure. Wu has shown the applicability of the finite element 

method to one dimensional, unsteady, rectangular duct flow of low mag

netic Reynolds number. The low magnetic Reynolds number assumption 

allowed him to neglect the induced field calculation. 

Shercliff, using various approximations, tried to manipulate 

the MHD entry problem in two dimensions for a circular pipe.. However, 

he was unable to arrive at the developing velocity profiles explicitly. 

24 25 
Shohet et al. numerically solved the MHD entry problem for a 

parallel plate Channel and a cylinderical-annulus. Besides their analyses 

being twc dimensional, they also assumed a low magnetic Reynolds number 
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and thus avoided the induced field calculation. Thus, besides its 

possible application to the Tokamak blanket Situation, the three-

dimensional MHD entry problem, including induced field computation, 

stood out as one that had not even been attempted. It was the primary 

purpose of this research to solve this outstanding problem. 

For an aligned field there is no interaction with the velocity 

and the pressure drop is purely hydrodynamic and thus much less than a 

hydromagnetic pressure drop. It is this fact that forces blanket 

designers to orient the main flow in the toroidal direction so that it 

only crosses the relatively weak poloidal field. Another effect of 

the aligned magnetic field is to delay the füll flow development. This 

development requires lateral motion in the duct and such fluid motion 

is impeded by the field. 

Magnetohydrodynamic Effects on Duct Heat Transfer 

In the absence of a magnetic field the heat transfer to Single 

27 28 
phase liquid metals is relatively well established. ' To the extent 

that it steepens the velocity profile at the wall, a transverse magnetic 

field may be expected to increase the heat transfer in laminar flow. 

The problem in its various forms has been the subject of a number of 

analytical treatments involving flat ducts, circular pipes, constant 

wall heat flux, constant wall temperatures, insulating and conducting 

29 
walls. The most recent papers appear to be those of Gardner on the 

30 31 
circular pipe problem and of Michiyoshi and Matsumoto and Back on 

the flat duct problem. Most of the work is reviewed and referenced in 

32 
a paper by Regirer. For Hartmann numbers below about 5, the effect 

of the magnetic field is not very significant. Above Kartmann numbers 
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of 100, the Nusselt numbers approach asymptotic values. 

Research Overview 

The three-dimensional MHD entry problem required the simulta-

neous Solution of three momentum, three induction, one pressure cor-

rection and one energy equation. By exploiting certain similarities 

between this family of equations, it was possible to cast them into a 

parabolic form ameanable to the application of streamwise marching 

Integration. Since the finite difference mesh used was uniformly 

spaced throughout the transverse plane, the Solutions were limited to 

low Hartmann number. This is a direct consequence of the steepening 

of gradients near the walls, and the resulting need of finer grid in 

these regions to obtain proper resolution as the Hartmann number is 

increased. 

Due to the low Hartmann number of the Solutions, no claim is 

made as to having explicitly solved the Tokamak blanket problem. How-

ever, besides setting up a sound computational framework for many 

possible future problems, these Solutions provide much insight into the 

effects ofwall conductivity on developing and fully developed MHD duct 

flows. Various means of combating high MHD pumping requirements, such 

as insulating corners, inserting wall current breaks, having some walls 

conducting and some non conducting, have also been studied in this work. 

The effect of the magnetic field strength on heat transfer has also been 

observed, and some conclusions and recommendations directly applicable 

to Tokamak blankets, have been made in the last chapter. 

Mathematical formulation and derivation of the basic equations 

is presentsd in Chapter II, while the numerical methods used to obtain 
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their Solution are detailed in Chapter III. Extensive testing of the 

Computer program and its calibration against known Solutions and experi-

mental results was carried out, and some of these results are shown in 

Chapter IV. Chapter V presents the current results obtained for the 

three-dimensional MHD entry problem, and Chapter VI concludes this work 

and contains some suggestions and recommendations. 
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CHAPTER II 

MATHEMATICAL FORMULATION 

Geometrical Arrangement 

The problem of interest is to be solved in a Square duct. The 

orientation of the axes with respect to the duct is shown in Figure 3. 

The main flow is along the x direction which is also the toroidal direc-

tion. The poloidal direction is then labeled y. Velocity components 

along the x, y and z axes are u, v and w, respectively. Induced magne-

tic field components are Hx, Hy and Hz, respectively. The length of the 

duct, R, is assumed to be much greater than the width of a side, D. 

This duct could be part of the first wall, in which case one side would 

be exposed to the plasma. This would result in a heat flux being impos-

ed on that wall, and an internal heat generation term that would vary 

across the duct crossection. 

Basic Equations 

The equations that define the problem are the continuity equation, 

the Navier-Stokes equations, the energy equation, and Maxwell's equations. 

Steady, newtonian, laminar, incompressible and constant property flow is 

assumed. For strong magnetic fields, laminar flow has been shown to per-

sist even at Reynolds numbers much higher than those found in fusion 

33 blanket Channels, due to the turbulance damping effects of such fields. 

Coolant temperature rises of about 200°C are expected in fusion blankets, 

and this temperature difference results in lithium properties such ?.s 

the density, specific heat, thermal conductivity changing by a few 
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Figure 3. Geometrical Arrangement of the Duct 
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percent. The viscosity is the most temperature sensitive, and over 

28 
this ränge (300°C - 500°C) shows a Variation of about 10%. Thus, the 

laminar flow assumption is good, and the constant property assumption 

reasonable. The MKS System of units is used wherever units are required 

in the following formulations. 

Based on these assumptions the continuity equation becomes, 

V'V = 0 (1) 

The Navier-Stokes equations are, 

pV-VV = -VP + yV2V + J X B (2) 

where the J X B term is simply the Lorentz body force. 

Maxwell's equations and the appropriate constitutive equations 

for the steady State are, 

V X E = 0 (3) 

V X B = ueJ (4) 

V-B = 0 (5) 

J = ö(E + V X B) (6) 

ß" = B" +U H (7) 
o e 

Hall current has been neglected in equation (6) which is Ohm's 

law. Assuming an isotropic medium allowed the writing of equation (7). 

Now that the basic equations have been stated, the magnetic induc-

tion equations need to be derived. Taking the curl of Ohm's law (eq. 6) 

and using equation (3) gives, 
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V X J = a(V X E) + aV X (V X B) 

= aÖB-VV) - a(V-VB) . (8) 

The curl of equation (4) yields, 

V X J = — V X (V X B) . (9) 
^e 

Use of equations (5), (7) and (9), and the fact that the imposed 

magnetic field B is uniform, results in, 

V X J = V(V-H) - V2H = -V2H . (10) 

Combining equations (8) and (10) leads to, 

G(B"-VV) - a(V-v¥) + V2H = 0 . (11) 

Use of equation (7) and the uniform field assumption gives, 

(V-V)¥ - (H-V) V = -^- V2H + — (B" •?) V" (12) 
au u o 
e e 

which is the general form for the magnetic induction equation. 

It is illuminating to consider the similarities between the induc

tion equation (12) and the momentum equation (2). The first set of terms 

on the left hand side of the induction equation is similar in form and 

character to the convection terms in the momentum equation. These terms 

correspond to a convection of the induced magnetic field. The first set 

of terms on the right hand side of the induction equation corresponds to 

the viscous terms in the momentum equation. Finally, the second set of 

terms on the right hand side of equation (12) , being source terms whose 

magnitudes are dependent on the imposed magnetic field, directly 
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correspond to body force terms in the momentum equation. It shall be 

seen later that it is because of these similarities that the same gen-

eralized numerical procedure can be used to solve the momentum, induction 

and energy equations. 

The only equation remaining is the energy equation, 

pC (V-VT) = k(V2T) + J2/a + QMT (13) 
P n 

where J2/a is the contribution due to Ohmic heating, Q"1 the nuclear 
n 

heating term, and the Viscous dissipation function has been neglected. 

Again, the diffusion and convection terms correspond to the similar terms 

in the momentum and induction equations. 

It is obvious that equations (2), (12) and (13) are elliptic in 

their füll forms. The cause of this, of course, is the diffusive terms 

V ¥, where V can be velocity, temperature or induced magnetic field. 

Parabolizing these equations in the axial coordinate involves negletion 

of the axial diffusive terms. The elipticity in the other two coordi

nate directions is retained. It must be mentioned that this approxima-
i ; 

tion is possible only when:"' (a) there exists a predominant direction 

of flow (i.e. there is no reverse flow in that direction), (b) the dif

fusion of momentum, heat and induced field is negligible in that direc

tion, and (c) the downstream pressure field has little or no influence 

on the upstream flow conditions. 

When these conditions are satisfied, the coordinate in the main 

flow direction becomes a one-way coordinate, i.e. the upstream conditions 

can detemiine the downstream flow properties, but not vice-versa. As 
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shall be more fully explained in the next chapter, it is this convenient 

behavior that enables the employment of marching Integration from an up-

stream Station to a downstream one. Since the flow is strongly convec-

tive, the above stipulations are almost identically satisfied for the 

momentum equations. Only at very low Reynolds numbers is axial viscous 

diffusion of any significance. The importance of axial conduction in 

the energy equation is measured by the magnitude of the Peclet number. 

It has been shown that eliminating axial conduction for Peclet numbers 

of about 10 causes errors in the heat transfer coefficients of a few per-

cent, while the errors associated with Peclet numbers of around 100 or 

27 
more are essentially negligible. Most practical applications corres-

pond to Peclet numbers of about 100 or higher. Except for very near the 

entrance, the induced field variations are expected to be small in the 

axial direction, and especially since there is essentially no axial 

current flow, setting all axial second derivatives to zero in the induc-

tion equations seems a reasonable assumption. Here the magnetic Reynolds 

number determines the relative strength of the diffusive and convective 

terms. 

Boundary Conditions 

Figure 4 shows a crossection of the duct of interest. Region 1 

is the interior which is occupied by the fluid. Region 2 is the wall 

itself, with finite thickness t, where t is much less than the side D. 

Region 3 is vacuum extending up to infinity where a constant, uniform 

magnetic field Bpy acts in the y-direction. 
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The momentum and energy equations have to be satisfied only in 

region 1, whereas Maxwell's equations (3) to (7) have to be satisfied in 

all space. Zero velocities at the duct walls are specified as boundary 

conditions on the momentum equations. Boundary conditions for the walls 

being at a constant temperature or subject to a constant heat flux are 

imposed on the energy equation. These are of a Standard form and will 

be stated in more detail later. The description of the System is com-

pleted by imposing continuity of tangential components of electric poten-

tial E, and of normal and tangential components of magnetic field B, at 

interfaces, plus boundary conditions on B and E at infinity. It should 

be mentioned that continuity of tangential components of B implies no 

surface currents. This is appropriate, since in non-magnetic materials, 

surface currents occur only in the presence of unsteady magnetic fields. 

Hx, the axial induced field component, will be much larger than 

Hz or Hy since it is generated by the primary motion, while they are 

generated by the secondary flow. In region 3, 0- is equal to zero, thus 

the current is zero and equation (4) forces the curl of H to be zero. 

Since Hy and Hz are virtually negligible, this means that Hx is essen-

tially a constant here. However, since Hx must go to zero at infinity, 

Hx must be zero in region 3. 

In the wall all velocities are identically zero, and so Ohm's law 

states the continuity of tangential electric field at the interface C as, 

Etl " Et2 " S 

or, 



22 

^ 1 = ^ 1 . (14) 
öl °2 

Also, zero velocities in the wall result in the induction equa

tion (12) becoming, 

V2H2 = 0 (15) 

in region 2. Expanding equation (14) results in the following expres-

sions for the currents, 

J --ür-f* <"> 
x 9y 9z 

T dHx — dnZ . . . . 

y " T T 8x U / ; 

8Hy_.9Hx 
z 9x 9y * K } 

Since the induction equation of most importance is that for the 

Hx component, explicit boundary conditions for this equation are derived 

first. From equations (17) and (18), if Hy and Hz are much smaller than 

Hx, it is possible to write, 

*y • m- <»> 

J = - - ^ . (20) 
z 5y J 

Under the assumption of no axial currents, it is possible to 

write, 
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t 9n 

and from equation (14), 

X ÜÜl. . A. ÜÜ2. (22) 
a. 8n a„ 3n 
1 2 

where t is the tangential direction and n the normal. Equation (22) 

holds at the interface 1. 

So far it is possible to State the boundary conditions on Hx as 

follows: Hx = 0 on C the boundary between regions 2 and 3; Hx = Hx , 
2 z 1 2 

3Hx, 3Hx „ . , . , _ „,, . 
er 1_ = a 2_ on C the boundary between regions 1 and 2. This xs a 

3n 3n 

rather difficult problem since it involves two domains and two sets of 

boundary conditions. The two domains being, of course, the duct interior 

where equation (12) applies, and the duct wall where equation (15) holds. 

For certain special cases this problem can be simplified. If the duct 

wall is a perfect insulator (a equal zero) then" Hx = 0 so that it is 

only necessary to solve equation (12) with Hx = 0 on C . If the duct 

wall is a perfect conductor (a =°°) the boundary conditions on equation 

(12) become 9Hx L = 0 on C . There is another limiting case first 
l/dn 1 

1 f> 

derived by Shercliff for which the problem reduces to solving equa

tion (12) in region 1 with boundary conditions given on C . Using the 

fact that the thickness of the duct wall is much less than the duct 

width allows the x component of equation (15) to be approximated by, 

92Hx 

-irr- = ° • W 
9n^ 



24 

For a thin wall, the Solution to equation (23) is locally linear 

and can be represented as, 

Hx = cc(n-t) (on C , n=0) 
2 1 

(24) 

and thus, 

givmg 

3Hx 

3n 
= a 

1 (Hx 
a = - - 2 

dEx, 

9n 
1 (Hx 1 (Hx 

and with equation (22), results finally in, 

9Hx. + Z±_ (Hx 
C o t ! 

1 2 

= 0 (25) 

This is Shercliff's thin wall boundary condition and can be used 

for walls of finite conductivity. The limiting cases for a equal zero 
2 

and a equal infinity are included in this Statement. 
2 

For the other field components, Hy and Hz, boundary conditions 

are difficult to specify explicitly. Except for very near the entrance, 

these fields, which are generated by the secondary flow,- are expected to 

be very small. Thus, a reasonable approximation seems to be to allow 
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these fields to vary linearly within the wall as in equation (25) for 

tangential walls, and let the fields go to zero at all normal walls. 

Conponents of the Lorentz Force 

The Lorentz force conponents can easily be shown to take on 

the following forms. 

x-Conponent 

y-Carrponent 

z-Carponent 

-Bpy f^Mz _
 3Hx 

3x 3y 
(26) 

B t x f ^ - 1 ^ 
3x 

9Hx 
3y 

/J 
(27) 

Bpym - m - Btx l^ - ®A 9Hz 
3x 

(28) 

I] 



26 

The expanded forms of t h e momentum, i n d u c t i o n and e n e r g y e q u a t i o n s 

t h e n become t h e f o l l o w i n g . 

Momentum, 

3 (u«u ) _,_ 3 (u*v) 3 (u»v) 1 
3x 3y 3z 

3P 
3x~ + y 

3 z u 3 z u 
dy1' Ite? 

I 3Hy 3Hxl 

" Bpy [ IT " IT] 
(29) 

f3(vu) 3(vv) 3(vw) 1 = 3P 
3x 3y 3z ] 3y 

1*2 3 z v 3^v 
3y^~ 3z2 

+ Btx 
3Hy __ 3Hx 
3x 3y (30) 

|

3(wu) 3(wv) 3(ww) 
—^ 1—y —i '— -i ^ c 

3x 3y 3z 
. 32w^ _ iZ + J9 2 -

3z 3y^ 3zz 

+ Bey 3Hz 
3y 

3Ü3 
3z 

- Btx 3Hx _ 3Hz 
3z 3x 

(31) 

With t h e n o - s l i p b o u n d a r y c o n d i t i o n on a l l r i g i d w a l l s 

I n d u c t i o n , 

3(v*Hx) 3 ( w H x ) 
3y 3z 

1 32Hx 32Hx ^ 1 / 3u , n 3u 
T T + ^ ? + — Btx — + Bpy -r— 

au 3y z 3 z z u I 3x 3y 

+ 3(u-Hy) , 9 ( u ' H z ) 
3y 3z (32) 
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a(u-Hy) ,3(wHy) 
3x 3z a\i 

32Hy 32Hy 
9y2 3z2 

Btx |2 + Bpy |X 
3x Hy 3y, 

3(vHx) 3(vHz) ( . 
3x 3z ^JJ; 

3(u-Hz) + 3(vHz) = _L_ 
3x 3y a\i 

32Hz 32Hz 
3y2 3z2 

Btx 1- Bpy —— 
3x VJ 3y 

3(w-Hx) 3(wHy) , ,. 
3x 3y K^J 

with the boundary conditions described by equation (25) and its limiting 

cases. 

Energy, 

3(u-T) 3(vT) 3(wT) 
P p 3x 3y 3z " 3y2 3z2 

t 

J ° 
1 

l 

3Hz _ J3HJ 
3y 3z 

3Hx 3Hz 
3z 3x 

+ 
^3Hy 3Hx 
3x 3y 

+ Q"1 
n 

(35) 

with either a fixed temperature boundary condition, T = T .-, er a 

specified heat flux boundary condition such as, 

1, d T n " 

"k dn" ~ qw 
(36) 

where q " can be zero for thermal insulation 
w 
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Dimensionless Equations and Boundary Conditions 

To non-dimensionlize the above equations, the following dimen

sionless quantities are defined, 

u" = u/U , v' = v/U , w' = w/U 
o o o 

x' = x/D , y' = y/D , z" = z/D , P' = P/pU 2 , 

y Hx y Hy y Hz 
Hx' = -^— , Hy' = -f— , Hz' = -f— 

Bpy J Bpy Bpy 

Here U is the velocity of initial slug flow at the duct entrance, 

D is the width of the duct, and Bpy is the imposed magnetic field in the 

y-direction. For the temperature equation, it is appropriate to have 

the non-dimensionalization compatible with the specified boundary condi-

tion. The constant wall temperature case requires, 

T - T. »» n2 

~ , [Q"']'= ^ T - T. ' LVn J k(T -T.) 
w 1 w 1 

while for the constant wall heat flux case it is preferable to define, 

e-^D7E ' [ V' r = V D / <C • 

Here, T. is the uniform inlet temperature and qn the uniform wall 

heat flux. T , the wall temperature, is no longer constant for the 
w 

specified wall flux case, and thus can no longer be used in the non-

dimensionalization. 
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The following Standard non-dimensional parameters are also intro-

duced: 

Reynolds number 

Hartmann number 

= Re = U Dp/p 
o 

= Ha = BD(o7p); 

Magnetic Reynolds number = Rem = U D ay 

Nusselt number 

Prandtl number 

Conductance Ratio 
(Conductance of duct wall/conductance of fluid) 

= Nu = hD/k 

= Pr = y C /k 
P 

= C = owt/aD 

U 
Eckert number = Ec = 

U z k 
o 

C (t -T.) C q"D 
p w 1 p w 

After performing the non-dimensionalization, the following equa-

tion set is obtained. 

Continuity: 

3u %v_ crw_ _ „ 
3x 3y 3z 

(37) 

Momentum:-

9(u*u) 3(u»v) 3(u»w) __ _1_ 
3x 3y 3z Re 

32u + 32u 

läy2" "5z7 
_ Hap2 [ 3Hy _ 3Hx 
Re Rem 1 3x 3y j 

iE 
3x 

(38} 

3(vu) 3 ( w ) 3(vw) = _1_ ( 3
2v 92v 

3x 3y 3z Re lüp" iz 7 J 
+ 
Y Hap: 3Hy 
Re Rem , 3x 

3Hx 
3y 

1P 
37 

(39) 

?(wu) , 3(wv) 9(vw) 
3x 3y 3z 

J_ f jl̂ y 3^w 
Re 3y2" 3z* + 

Hap' 
Re Rem 

3Hz 3Hy 
3y 3z 

- VHap2" f 3Hx dRz_\ _ 3E_ 
ReRen 3z " 3x 3z (40) 



30 

Here u = v = w = 0 are the boundary conditions at the duct walls, 

Y = Btx/Bpy, and Hap is the Hartmann number based on the transverse 

(poloidal) field Bpy. 

Induction: 

3(vHx) 3(wHx) = _L_ [ 32Hx 32Hx y _3_u _3u 3(Hyu) 3(Hz»u) 
3y 3z " Rem 3y2 3z2 3x 3y 3y 3z 

(41) 

3(u-Hy) + 3(w»Hy) = _JL_ / 3
2Hy 32Hy 1 y _3v v̂_ + 3(Hx-v) + 3(Hz»v) 

3x 3z Rem 3y2 3z 2 j 3x 3y 3x 3z 
(42) 

3(u*Hz) 3(vHz) = 1 
3x 3y Rem 

32Hz 32Hz ' 
L 3y

2 3z2 
, y3w , 3w , 3(Hx-w) , 3(Hyw) 
+ 1- ~— H -̂i — H — 

3x 3y 3x 3y (43) 

The boundary conditions being the dimensionless form of equation 

(25) and its limiting cases, 

3H 
t 

3n 

H 

wall 
</, 

wall 
= 0 (44) 

and, 

Energy: 

wall = 0 

3(u«6) 3(v9) 3(w8) 1 fl^ö. . l^i Hap2 Ec 
3x 3y 3z RePr 3y2 3z2 Re RemJ 

3Hz 
3y 

1MZ 
3z 

+ 
3Hx 3Hz| 
3z 3x 

+ 
3Hy __ 3Hx 
3x 3y 

12 
+ Qn

r'/ReP] (45) 
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The constant wall temperature boundary condition being, simply 

9 = 1«0 on the wall, and the constant wall heat flux boundary condition 

being the non-dimensional form of equation (36), 

^- = -1-0 . (46) 
dn 

Equation (46) is obtained by performing a simple heat balance at 

the wall, 

i" = h T -T, lw I w b 

and using Fourier's law, 

M , dT 
q" = -k -r— 
w dn wall 

Recalling 6 = (T-T±)/ (q^ D/k) gives, 

Ö k dn %J 

or, 

-j— = -1 , which is equation (46) 

It should be mentioned that in the above equations and boundary 

conditions, the dimensionless variables should have primes on them, i.e 

x should be x"*, and so on. However, in the interest of brevity, the 

primes have been left out. 
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All that needs to be added to equations (37) through (46) to com-

plete the mathematical formulation of the problem is a Statement on the 

entry conditions. Since the equation set is parabolic in the axial 

direction, no exit conditions are required and in fact cannot be toler-

ated. At the duct entrance, uniform slug flow is specified and all other 

quantities, temperature, pressure and induced magnetic field components 

are constant or zero. 
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CHAPTER III 

NUMERICAL FORMULATION 

The Finite Difference Equations 

Inspection of equations (38), (39), (40), (41), (42), (43), and 

(45) reveals that they can all be written in the following general form, 

3(u»y) 9(v-y) 3(w-y) r 92^ ,rs2? _ .... 
" ^ T - + " ä y — + ~3T~~ = 3 ^ + J^2 + S (47) 

where ¥ is any of the dependent variables, Y is the appropriate trans-

port property such as viscosity or thermal conductivity, and S is a 

source term. For dimensionless equations, F simply becomes the suitable 

combination of non-dimensional parameters, e.g. /RePr for the energy 

euqation and /Rem for the induction equations. The source terms for 

the momentum and energy equations are body forces and heat generation 

functions respectively, while for the induction equations they include 

imposed field components and some convective type terms. If eq. (47) 

represents a momentum equation, an extra pressure gradient term is need-

ed. Since the pressure is treated as an unknown, the gradient is written 

separately and not included in the source. 

Equation (47) needs to be transformed into a finite difference 

equation. In so doing, the approach of Patankar et al is followed. A 

three-dimensional staggered grid is imposed on the flow field, This is 

34 basically the MAC grid structure of Harlow and Welch, and has the v 

and w velocity components stored midway between the main .points where 

all other variables (u velocity, pressure, induced field components and 
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temperature) are stored. The staggered grid has the advantage of con-

venience in the Computing of convective terms for variables placed at 

the cell center and pressure gradients for the v and w momentum equa

tions. Figure 5 displays the grid structure. 

The usual way to obtain a finite difference equation from a par

tial difference equation is to Substitute for the individual terms in 

the equation, expressions obtained from Taylor series expansions of 

these terms. However, in this work the control volume approach has been 

used to formulate the finite difference equations since it always ensures 

35 

total conservation of properties in all points in the domain. An in

tegral equation can be constructed over the control volume shown in 

Fig. 6, and by the use of the assumptions regarding the nature of the 

Variation of Y between the grid points, the finite difference equation 

can be obtained. In other words, the finite difference equation is ob

tained by expressing each terra in the parent partial differential equa

tion as an integrated average over a small control volume. 

Figure 6 portrays the control volume of interest for equations 

centered at the main nodes. The yz face of this same control volume is 

displayed by Fig. 7. The N, S, E and W points are the next adjacent 

nodes where the variable under computation is stored. The n, s, e and w 

points are on the boundary of the control volume itself, The dimensions 

of the control volume are Ax, Ay and Az, while <Sy , öy , öz and <5z are 
yn7 ;s e w 

distances in the respective directions to the next point at which the 

variable under computation is stored. For a uniform grid, 6y , <5y , 5z 

and 5z will all be equal to Ay and Az. Since the v andw velocity com-w n J J 

ponents are stored at different locations, the positioning of their 
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•*" 0 

0 Central Nodal Point (u,p,T,Hx,Hy,Hz) 

T v Velocity Point 

—»* w Velocity Point 

—"" Boundary 

Figure 5. Staggered Grid Structure in yz Plane 
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Control Volume 

Downstream 
Station 

üpstream 
Station 

Figure 6. Isometric View of General Control Volume 
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C.V. 

Figure 7. yz Face of Control Volume for Equations Centered at 

the Main Nodes (u,p,T,Hx,Hy,Hz) 
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respective control volumes will be different. The yz faces of these 

control volumes are shown in Figs. 8 and 9. It should be noted that in 

programing the equations, the same index value (J,K) is used for vari

ables stored at a particular central node, and for the v and w velocities 

stored at the halfway points immediately south or west of that node. 

In order to proceed with the Integration of the equations over 

the control volume, the nature of the Variation of the dependent variable 

¥ between the grid points must now be specified, as previously noted. 

In the x direction, V varies in a stepwise manner, i.e. the downstream 

(x=x ) values of Y are supposed to prevail over the interval from x to 

x , except at x where U represents the upstream Station. This assump-

tion, called upwind differencing, is needed to make the finite difference 

scheme a fully implicit one and ensure numerical stability. For the cal-

culation of the x direction convection and of source terms that may de-

pend on V, the Variation of V in the yz plane is also taken to be step

wise. Thus, in the yz plane the value of V is assumed to remain uniform 

and equal to V over the dotted rectangle shown in Fig. 7 surrounding 

the point P, and to change sharply to ¥ , VFC, V or V outside the rec-
N b E W 

tangle. For the cross-stream convection from the xy and xz faces of the 

control volume, the value of ¥ convected is taken to be the arithmetic 

mean of the y values on either side of that face. Thus, a convenient 

combination of the central-difference and upwind-difference formulae for 

the first order derivatives hs.s been used. For diffusion across the xy 

and xz faces of the control volume, it is assumed that ¥ varies linearly 

between grid points. 

Consider the general eq. (47) term by term. The convective terms 

wi l l be integrated f i r s t in accord with the assumptions that have just 
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C.V, 

Figure 8. yz Face of Control Volume for v Eguation 
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Figure 9. yz Face of Control Volums for w Equation 



41 

been made. Integrating them over the control volume, and dividing by 

Ax, one obtains, 

£ ( / £ (u"*)dV +f ~k (v-y)dv +/ Tz (w'¥)dV 

Cv Cv Cv 

wh ich i s , 

[<U*>P,D- <u*>p,o]^r + Gr <W - r (wLA z 
U 

+ [ f (VV - x < V V ü Ä y 

In order to keep the scheme implicit, the downstream value u „ 
p,D 

in (u'i')p _ must be expressed in terms of u „ the upstream value. This 

is achieved by applying the continuity equation about the control volume 

In the present formulation this equation can be expressed as, 

[uD,p]- X P ^ f + [>-Vs] Az + [we-ww] A* " ° • <48> 

The above Integration of the convective terms then yields, 

["uu, TT -̂ -/̂ - - Az [v -v 1 - Ay Tw -w 1 > - ["u Y „ „1 LT,U Ax L n s Ju J L e wJyj p [_ p9uj 

+ BT}D{'H«PUT}DI'S«P}D> 

AyAz 
Ax 

+ &)nMp)B-(x)„( 'w«P» 
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This expression can be written as, 

F Y - F ¥ 
D P,D U P ,U+ Ln (V^P)D-

LS (W) D
+ Le (V^P)D 

-L ^7+^ w W P 
D 

which is the integrated convective terms divided by Ax, where, 

AyAz 
U (up,u} 

TY
 A z / \ Tz A y , \ 

K = FTT - 2 L
y + 2 Ly - 2 LZ + 2 LZ 

D U n s e w 

For the diffusive terms, it is assumed that ¥ varies linearly 

between grid points. Integrating them as before, the terms become, 

f(v 0-0) av 
Cv 

and after dividing by Ax one obtains, 

rf
N-*s V ' s i A r rV*P W 

Az + r L <Sy„ 6 y 
n 

•1 Az + r [~-
s D 

5z 6z 
Ay 

w J
D 

y z 
If the quantities T and T are defined as, 

T y = ^ and TZ=^-y- , 
öy öz 

then the diffusive terms divided by Ax become, 
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n V T N P y
D sUP VD e^E VD V P VD 

For the source term components that depend on y, the Variation of 

¥ in the yz plane is also taken to be stepwise. As before, one obtains, 

/ 
Cv 
SydV 

and after division by Ax, this yields, 

SyAyAz . 

This source term is separated into two parts equal to S +S ¥ . 

The first part (S ) is computed from upstream conditions, while the sec-

ond part depends on Y and is thus part of the current implicit calcula-

tion. 

The source terms in the momentum and.induction equations are com-

plicated and will now be discussed. In the dimensionless axial momentum 

eq. (38), the source terms are, 

Hap' 
ReRem 

8Hy _ _3Hx 
8x 8y 

As before, these terms are integrated over the control volume and 

the result divided by Ax, giving 

S = HaP-
U Re Rem 

[ H x - H x j A 2 - [ H y - H y l ' 
P,D •7P,UJ Ax 

(49) 

The second term of che above result, which arises from the Inte

gration of (9Hy/8x), is a potential troublemaker. Since the momentum 
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equations are solved first in the order of computaCion, the current 

downstream value of Hy is not known yet. The only recourse is to eval-

uate the entire derivative at the upstream Station, with the help of the 

two Station upstream values. Since Hy, being a transverse component, is 

small near the entrance, and Ax, the axial step, is also small (espe-

cially near the entrance) this is not a bad approximation. 

For the v and w momentum equations, the source terms are, 

y Hapz 

Re Rem 
ÜY-
3x 

3Hx 
3y 

and, 

Hap2 pHz _ 3Hy~| y Hap2 pHx _ _8_Hz_ 
L 9y 3z J ReRem L 3z 3x _ Re Rem 

respectively. 

Again the same problem associated with the (3Hy/3x) and (3Hz/3x) 

derivatives arises. The remedy is as before, namely evaluation at the 

upstream Station. Integration over the control volume followed by 

division by Ax yields, 

a n d , 

g = x H a ^ 2 
\21 

U Re Rem ^ D - 1 ^ 
^ + ( H x - H x ) A Z 

Ax n s 
(50) 

s = YHap 2 

U Re Rem 

Y Hap z 

Re Rem 

(Hz - H Z )Az - (Hy -Hy )Ay 
n s7 e w 

'HX -Hx yAy - (Hz_ -Hz ) ^ z 
^ e w7 y P,D P,U u ^ x (51) 
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for the v and w equations respectively. It should be noted that since 

none of the source terms are dependent on u, v or w, then for the momen-

tum equations, S is zero. 

The source term for the axial induction eq. (41) is, 

3u_ + _a_u_ 9(u«Hy) + 3(u»Hz) 
Y 8x dy 3y Bz 

This term is integrated over the control volume using, again, the 

assumptions that were made about the nature of the property Variation. 

After performing the Integration and dividing the result by Ax, one ob-

tains 

V ^ P ) D - V U ] ^ + ( V V Ä Z 

+ KHy-u)n-(Hy-u)J Az+UHz-u) -(Hz-u) ̂ Ay . 

Sirce S i s calculated from upstream values , use must be made 

of the co i t i nu i ty e q u a t i o n t o obta in an expression for up i n terms of • 

(3v/3y) and (3w/3z) which are evaluated upstream. This process is the 

same as was used in the derivation of the general difference equation. 

Proceeding, one obtains 

V Y f̂ VV- Ay (VWw>) + (V Us ) A z 

f(Hyu)n-(Hyu)Uz + UHz -u^-CHz-u^Ay . (52) + 

The source terms for the transverse field components Hy and Hz 

are obtainable from eqs.(42) and (43) as 
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äv_ + 3v 3(Hx-v) + 3(Hz-v) 
Y 3x 3y 3x 8z 

and, 

3w . 3w , 3(Hx«w) , 3(Hyw) 
Y •+• •+- -j-

3x 3y 3x 3y 

respectively. 

Integration gives, 

V (T<VP,D-vP,0» + <HxP,DvP,D-fflCP,DVP,üO^ 
z_ 

Ax 

+ (v - v )Az + (Hz v - Hz v )Ay 
n s e e w w 

a n d , 

S = (vjw -w l+JHx W - H X W } ) - ^ 
U \ M P,D P,U' ' P,D P,D P,U P,U' / A> 

z_ 
Ax 

+ (w - w )Az + (Hy w - Hy w )Az 
n s n n s s 

for these two equations. 

By use of the continuity of magnetic flux, it is possible to ex-

press Hxp _ in the above two equations in terms of transverse derivatives 

evaluated at the upstream Station. Continuity of magnetic flux implies: 

(Hxw r ) ^ = HX T , TT - ^ - Az{Hy -Hy ) - JHz -Hz )Ay 
P,D Ax P,U Ax * ^n ' s ' ' e w' J 

and inserting this into the above two expressions for S -yields, 
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5TT= | H X _ TT ̂ ~ - - Az(Hy -Hy )-(Hz -Hz )Aylv_ 
U | P,U Ax n s e w J P,D 

AzAy , / \AyAz , , .. 
- Hx v — + Y(v —v )—- + (v -v )Az 

P,U P,U Ax yK P,D P,U; Ax k n s} 

+ (Hz v -Hz v )Ay (53) 
e e w w 

for the Hy equation, and for the Hz equation, 

SU ={ H xP )U^f-
A z ( HV H ys )- ( H Ze- H zw ) Ay) WP,D 

, TT AyAz . , N AyAz . , >.. 
+ ^ P . Ü " ? ^ ta + ^ ^ p ^ - " ? , ^ a 5 T + ( V w

8
) 4 z 

+ (Hy w - Hy w )Az . (54) 
v n n s s 

In the above two expressions, the (9v/8x) and (3w/9x) derivatives 

call for downstream v_ and w values. As was done for the momentum 
r , U r , D 

equations, these. derivatives could be evaluated entirely at the upstream 

Station. However, since the velocities are computed before the induced 

fields, these new downstream values are used. 

In summary, the general finite difference equation can be written 

as, 

V p , D - V p , U + L n V V D - L s < V V / L e < W ^ L > w + ¥ p [ D 

" Tn I V * p ! D - T s l V S { D
 + Tel V l 4 " T w l V « f D 

+ S U + V P , D ' • ( 5 5 ) 



Rearrangement of the terms yields, 

V D = V N , D + V s y V E . D * V W , D + B P ( 5 6 ) 

where, 

vv/v 
vAs/v 
vv/v 
vv/v 
-v/v 

and, 

BP 

A := T y - Ly , A ; = TY + L 
W n n S s 

~,z T z . .. mz , T z 
' = T - L , AT= T + L 

E e e W w w 

B M L + S + ( p r e s s u r e term for momentum e q s . ) 

^^ww^ 
The complete set of momentum, induced field and energy equations, 

cast in the above form, along with all the respective coefficients are 

given in Appendix A. 
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Nothing has been said about the treatment of pressure up to this 

point. This is deliberate since the pressure computation, as always, 

requires special attention. The axial and transverse pressure gradients 

are uncoupled by introducing a deliberate inconsistency into the pressure 

treatment. The axial gradient is written as (3p/3x), while the trans

verse gradients are (3p/3y) and (3p/3z). The quantity p can be thought 

of as a space averaged pressure which is constant over the duct cross-

section. The value of (3p/3x) must be known in order to calculate 

(3p/3y) and (3p/3z) . This practice is implicit in two dimensional boun-

dary layer theories also, but it escapes notice there because it is not 

necessary to solve the momentum equation for the cross-stream direction. 

Here, there are two cross-stream directions, and the momentum equations 

must be solved for both of them in order to find out how the fluid dis-

tributes itself between these two directions. 

This practice is a necessary consequence of the intention to ex-

ploit the boundary-layer nature of the flow; it is the final step in 

preventing downstream influences from propagating upstream. If this Step 

is omitted, the result is not increased in accuracy as one might naively 

expect; it is rather a Solution which mc.y be wholly unrealistic physi-

cally. The inconsistancy in the treatment of pressure, it may be said, 

is one part of the price that is paid for making the equations parabolic. 

The gain is the freedom to employ marching Integration, and to use two-

dimensional storage, even though the flow is three-dimensional and the 

füll equations are elliptic. 

The actual pressure computation itself is performed by the guess 

and correct method of Amsden and Harlow. A pressure field is first 
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guessed at, and is then used to calculate a first approximation to the 

velocity field. This velocity will, of course, not satisfy the contin

uity equation. The guessed pressure is then corrected in such a way 

as to make the velocity field conform to the continuity equation. The 

conservation of total mass flow in the duct is used to correct the axial 

(space averaged) pressure gradient, while the local continuity equation 

applied to each control volume is used to correct the transverse pres

sure field. 

Assume for the moment that (8p/8x) is known and that the down-

stream value of u has been obtained from the axial momentum equation. 

Then a preliminary set of v's and w's can be obtained from the equations: 

V ^ V ^ V VE+Vw+ Bp+ I ) V (Pp- V (57) 

w * * 
V A N V A S V A E V A W W W + B P + D ( W ( 5 8 ) 

where the superscript * given to v and w denotes approximate values, 

* * -k 

based on an estimated pressure field p . These v 's, and w 's will not 

satisfy the continuity equation for each control volume, but will produce 

a net mass source emerging from each control volume. The pressure needs 

to be corrected so as to eliminate this mass source. The mass source is 

defined by, 

V CV(v*-v;)+C
W(wE-w;)+C

U(up;D-Up>ü) (59) 

V W U 

where C , C and C represent appropriate coefficients from the contin

uity eq. (48). The pressure is now written as 
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p = p + p' (60) 

* 
where p is the uncorrected portion, and p the correction. From eqs. 

(57), (58) and the original forms of the v and w momentum equations, it 

becomes possible to write, 

vv^p-pp+Yv^+Vv's '+VvV 
+ VvV (61) 

WP"VDW(PP-PW)+AN(VWN)+AS(VWS)+AE(VVE) 

+ Www> • (62) 

It should be noted that the mass source has been annihlated in 

writing the above two equations. The guessed pressure field to be used 

is simply the one at the immediatly upstream Station. Since this will 

be very near to the true pressure, the starred velocities will be very 

close to the unstarred ones. This allows the last four terms in eqs. 

(61) and (62) to be safely dropped and the velocity corrections become, 

vp=v*+D
V(Pp-Pg) (63) 

wp=wp+D
W(Pp-p^) . (64) 

Substituting eqs. (63) and (64) for the corresponding velocities 

into the continuity equation yields, 



v v ww. v v v v , ww 
P^(2CVDV+2C DW)-G D p^-C D p^-C D p̂  

- ^ \ 

= C V ( v ; - v ; ) + C W ( „ ; - w ; ) + C U ( u p j D - u p ( ü ) . (65) 

The right hand side of the above equation is the mass source of eq. (59) 

To cast this equation into the general form, the coefficients are 

defined as, 

v v 

cV 

\ 

( v * * w * * u 1 

C (vN-vp)+C (wE-wp)+C <Up;D-uP)U)j /A; 

where, 

' = 2 C V D V + 2 C W D W 
Ap= 

The pressure correction equation then becomes, 

P P = V N + V S + V E + V W + B P • ( 6 6 ) 

It should be recalled that by taking the divergence of the momen-

tum equations, it is possible to obtain a Poisson equation for the pres

sure. This equation is elliptic in all three Space coordinates, and 

will not permit employment of a marching Integration technique in the 

axial direct.ion. To be able to march in this direction, the (32p/3x*-) 
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term must be treated as known and the equation regarded as elliptic in 

only the y and z directions. This is why (3"p/8x) must be obtained be

fore p' is obtained from the Solution of eq. (66). Incidently, eq. (66) 

is like a two-dimensional Poisson equation with a source term that 

relates it to the three dimensionality of the Situation. Solution of 

eq. (66) throughout the domain results in a pressure correction distri-

bution which is used in eqs. (63) and (64) to obtain the corrected 

transverse velocities. 

Up until now it has been assumed that the longitudinal pressure 

gradient (cfp/dx) was known. This quantity is' obtained before the compu-

tation of the transverse velocities by application of the conservation 

of integral mass flow through the duct. Again, the quantity is split 

into a guessed value and a correction, 

_ __* _ 
3P _ 8P 3P' ., . 
^ " ~ ~ ^ + ^ ' ( 6 7 ) ' 

At this point it may again be mentioned that a good approximation 

to the axial pressure gradient already exists in the form of the imme-

diately upstream value. Approximations to the axial velocities can be 

obtained from the equation: 

U P = V N + A S U S + V E + A W ^ + B P + I ) U ( 3 P / 3 X ) * • ( 6 8 ) 

The mass flow rate due to this approximate velocity can be calcu-

lated as, 

m Z * 
pu AyAz , 
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while the true mass flow rate should be the one present at the duct in-

let, 

m = ypU AyAz . (69) 

As before, the axial velocity correction equation can be obtained 

as, 

V up+I)U^P/9x^ • (70) 

To obtain the transverse pressure correction equation, the velo

city corrections were substituted into the local continuity equation. 

Here the axial velocity correction eq. (70) is substituted into the 

total continuity eq. (69) to give: 

*-z(v»u(gj)>^ . 
which can be written as, 

TT\" m 

(£)-
m -S u pAyAz 

V DupAyAz 
(71) 

By this means, the axial pressure correction can be obtained. It 

should be pointed out that there is only one value of (3p~/9x)'" per axial 

Station as (9"p/9x) is treated as a constant across the cross section, 

while for the transverse directions there is a different pressure correc-

tion value for each point. Thus, the u values obtained by using a 

guessed pressure gradient (9p"/9x) can be corrected by the use of eqs. 

(70) and (71). This must be done before the transverse velccities are 
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computed. Once all three velocity components have been obtained, the 

induced field equations and energy equation can be solved without undue 

difficulty. 

Solution of the Finite Difference Equations 

All the relevent equations have been shown to be expressable in 

the form of the general eq. (56). This equation represents a pentadiag-

onal System. Two sweeps of a tridiagonal matrix algorithm (TDMA) are 

used to solve the System. The first sweep is in the y direction, follow-

ed by the second in the z direction. 

Equation (56) is, 

WN + VS + A EWW + B F 

o r , 

W J + I + V J - I ^ • (72) 

where, 

V ( V E + V W + V , 

XJ" *» • ß r A
s 

and j is an index that increases in the y direction, i.e. ¥ is f 
N j+1 

and 

Y_ is Y. when Y_ is V.. 
S j-1 P j 

Equation (72) represents the y direction sweep. It should be ob-

served that the values of XV used in the c. term are the upstream values. 
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More will be said about this later. For eq. (72), ¥.. and ¥._ are known 
n 1 N 

boundary values while Y~ through Y>T .. have to be calculated. Consider 
2 N-l 

the expansions of eq. (72) for the first few values of j: 

3 X3 4 P3 2 3 

W5 + ß 4 ( x 3 l F 4 + V 2 + £ 3 ) + £4 

or, 

*" x - V 3 

In general, these expressions can be expressed as, 

V.= X ^ - K L * ßj > J = 2,3, N-l (73) 

where, 

X, 3. 3: -+ e. 
x'= J 3'= -J- J-l 1 
J ^ V i - i j

 ^ V J - I 

and, 

X2 = X2 > 3"2 = S2^l
+ £2 ' 

If the known boundary value, ¥ , is started with, eq. (73) can be 

used to obtain all ¥'s between j = 2, and j = N-l. The boundary value 

¥- is used in the calculation of *F„, as a part of 3M- This essentially 

coinpletes the y direction sweep. 
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The z direction sweep is represented as, 

T P I = V E I + V " + VN + VS + B P ( 7 4 ) 

where the I's refer to values obtained in the y-sweep, while the II's 

refer to those obtained in the z-sweep. Equation (74) can be rewritten 

as, 

V •kV°k'w+!k (75 ) 

w h e r e , 

W N + A S V S + B P 

and, 

*k = AE ' \ = A W • 

The index k is the z direction equivalent of j, and it should be 

noted that £, is composed of the results from the preceeding y-sweep. 

Equation (75) can be written as, 

V*kVi+ß'k ' k = 2 ' 3 N_1 ( 7 6 ) 

w h e r e , 

cj>k - , k k - 1 k 

a n d , 

•k i-\*u • ßk= i -v t i 

*z~h > ßya?. v h 
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The mechanics of the z-sweep are essentially the same as those of 

the y-sweep. It was found necessary to repeat this double sweep proce

dure about N times when NXN was the size of the mesh. 

While it is true that the above procedure does not give the exact 

Solution to the finite difference equations, its use is advocated by a 

number of reasons. Firstly, it is inherently simple. Secondly, it can 

be easily seen that when A^ and A are much smaller or much larger in 

magnitude than A and A the above procedure does give a nearly correct 

Solution. Thirdly, when the forward step Ax is small, the equation is 

dominated by B which contains the upstream value ¥ , and the use of 

slightly approximate values of V , ¥ , ¥ , ¥ introduces only a very 
N S E W 

small error in ¥ . 

Numerical procedures for solving the partial differential equa

tions in fluid dynamics tend to be iterative for three main reasons. 

Firstly, the equations are non-linear. Secondly, the pressure renders 

the continuity and momentum equations strongly linked, and thirdly, a 

direct Solution of the implicit finite difference equations, even when 

they are linear, is time consuming. The procedure that has been used 

has been made essentially non-iterative by: (i) the calculation of the 

coefficients in the finite difference equations from values at the up

stream Station, thus forcing the equations to be linear; (ii) the use 

of approximate forms of the momentum eqs. (63), (64) and (70); and (iii) 

the Solution of the finite difference equations by two sweeps of the 

TDMA. It is true that these three tricks introduce some errors into the 

Solution compared to a Solution produced by a fully iterative procedure. 
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But, first, these errors are of the same kind as the truncation errors 

in any finite difference procedure; and second, it is possible at the 

end of each forward Step to calculate the error in satisfying each con-

servation equation, and then to make a corresponding correction at the 

next step downstream. Thus, by leaving errors which can be detected, 

and if necessary, corrected, the benefits of a non-iterative procedure 

are enjoyed without serious penalty. A further bonus of this method is 

the fact that the Solution is available at a large nuraber of axial sta-

tions. For an iterative procedure, the number of axial stations would 

have been much less as it would have been possible to take larger for

ward steps, and in fact this would have been made necessary due to the 

increased Computer time needed to perform the iterations at each step. 

Boundary Conditions 

The continuous forms of the boundary conditions were given in the 

previous chapter. Translating them into numerical forms is a fairly 

simple procedure. 

Velocity 

The no-slip boundary condition is enforced at all the walls. The 

u velocity points lie on the actual boundary and are simply set'to zero. 

Referring to Fig. 5 it can be seen that transverse velocity points also 

lie on the walls that are normal to the respective velocity component. 

However, for parallel walls, adjacent transverse velocity points straddle 

the boundary, and so the no-slip condition has to be enforced in between 

the two points. This is achieved by simply imaging the velocities, i.e. 

making the point external to the wall the negative of the one internal 
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to the wall. The average of the two will then add up to zero on the 

wall itself. Thus, the velocity boundary conditions for the axial velo-

city u, and the transverse velocities v and w become, 

u ,,= 0 (77) 
wall 

v , = 0 (normal walls) (78) 
wall 

v = -v. (parallel walls) (79) 
ext int 

w ,i=0 (normal walls) (80) 
wall 

w = -w. (parallel walls) . (81) 
ext int 

Induction 

The dimensionless form of the boundary condition, eq. (44), is 

applied at all walls for the axial field and atrparallel walls for the 

transverse fields. A.t normal walls the transverse field components are 

always set to zero. For the axial Hx field, the condition is, 

- ) / 
Hxwall= l^wai -

where An is equal to Ay or Az depending on which is the normal direction 

For the transverse Hy field, the condition is, 

%all= Kall-lj/f1 + & ^ C ) (83) 

for parallel walls, and 

Hy = 0 (84) 
ywall 
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for normal walls. For the transverse Hz field, the condition is, 

H z w a l l = K a l l - l / { 1 + A y / c } (85) 

for parallel walls, and 

Hzwall= ° (86) 

for normal walls. 

Temperature 

Temperature boundary conditions for the energy equation are spe-

cified by eq. (46) for the constant wall heat flux case. For the con

stant wall temperature case, the non-dimensional wall temperature is 

simply set to 1 or 0, depending on whether heat is being added or remov-

ed by the walls. In summary, these conditions are, 

0w 1X= 0 (heat removal by walls) (87) 

0 ,.,= 1 (heat addition by walls) (88) 

for the constant wall temperature case, and 

0 H,= 9 in , + An (89) 
wall wall-1 

for the constant wall heat flux case, where An is equal to either Ay or 

Az depending on which is the normal direction. 



62 

Pressure Correction Equation 

Since all velocities are zero at the walls, the velocity correc

tion eqs. (63) and (64) indicate that the normal gradient of the pres

sure correction must be zero at the wall. Thus, 

p' „ = P/ n , (90) 
wall *wall-l 

is the boundary condition. 

The above boundary conditions, eqs. (77) to (90), are of a simple 

form, however, these bcundary treatments can always be improved by such 

37 
techniques as the incorporation of slip values at the wall or by the 

use of higher order property variations (e.g. quadratic instead of 

linear). This sort of experimentation is deemed beyond the scope of 

this work. 

Order of Computation 

At each axial step the following procedure is followed: 

(1) The coefficient matrix for the u momentum equation is 

obtained using upstream properties. 

(2) The u momentum equation is solved using a guessed (up

stream) axial pressure gradient. 

(3) The axial pressure gradient is corrected by fcrcing con-

servation of integral mass flow in the duct. 

(4) By using the axial pressure gradient correction, the 

axial velocities are corrected. 

(5) The coefficient matrix for the v momentum equation is 

obtained using upstream properties. 
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(6) Solution to the v momentura equation is obtained 

using a guessed (upstream) transverse pressure field. 

(7) The coefficient matrix for the w momentura equation is 

obtained using upstream properties. 

(8) Solution to the w momentum equation is obtained using 

a guessed (upstream) transverse pressure field, 

(9) The coefficient matrix for the transverse pressure 

correction equation is obtained using current (down-

stream) velocity values. 

(10) The transverse pressure correction equation is solved. 

(11) The coefficient matrix for the axial Hx induction is 

obtained based on upstream properties. 

(12) The axial Hx induction equation is solved. 

(13) The coefficient matrix for the transverse Hy induction 

equation is obtained based on upstream properties. 

(14) The transverse Hy induction equation is solved. 

(15) The coefficient matrix for the transverse Hz induction 

equation is obtained based on upstream properties. 

(16) The transverse Hz induction equation is solved. 

(17) The coefficient matrix for the energy equation is ob

tained based on upstream properties. 

(18) The energy equation is solved for the temperatures. 

(19) The above steps are repeated for cach axial position. 

The above 19 Steps specify the basic computational procedure. 

Boundary conditions must be applied in appropriate places. 
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CHAPTER IV 

PROGRAM CALIBRATION 

Whenever a Computer program is to be used to simulate a physical 

phenomenum, it is of utmost importance that a set of preliminary runs, 

modeling problems for which results are available, be made. That is the 

purpose of this chapter on program calibration. 

The Purely Hydrodynamic Velocity Entry Problem 

The purely hydrodynamic, i.e. no MHD effects, velocity entry pro-

blem was run for a Reynolds number of 100, and the total duct length 

covered was equal to 10 duct widths. Asymptotically increasing accuracy 

was observed as the transverse mesh size was decreased. For a mesh of 

20x20 in the transverse plane, the axial velocity and pressure coeffi-

cient developments were deemed close enough to the experimental results 

of references 6 and 7, so as to make further mesh refinement unnecessary. 

These comparisons are shown in Figs. 10 and 11. It should be noted that 

the pressure coefficient of Fig. 11 is simply (~p. - p'l/CpU2) , i.e. the 

total non-dimensional axial pressure difference between any axial loca-

tion and the inlet. In the axial direction a little experimentation led 

to the choice of 216 axial steps to represent the 10 duct widths. The 

axial step Ax was 0*01 for the first twenty steps, and 0*05, the same 

as the transverse mesh spacing,for the remaining 196 steps. A small 

axial step right near the entrance was chosen because of the rather 

rapid changes in all the quantities over small axial distances in 

this region. 
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Axial Variation of the results can be raade universal by defining 

an axial parameter L = (x/D)/Re. The axial pressure gradient shown in 

Fig. 12 begins with a little peak and then decreases to a fully develop

ed value of Re(dp/dx) equal to 28*81. This compares favorably with the 
oo 

analytical value of 28*12 quoted by Miller. For theoretical slug flow, 

i.e. uniform velocity throughout the duct interior and zero velocity 

on the walls, the driving axial pressure gradient must be infinite be-

cause of the infinite shear force in the infinitely thin boundary layer. 

However, since the nurnerical approximations involve a mesh of finite 

size, the thickness of this infinitely thin boundary layer immediately 

becomes finite, i.e., the mesh size adjacent to the wall. Thus, the 

maximum axial pressure gradient in the computation is dependent on the 

transverse mesh size. After the first few steps, however, the mesh 

spacing is sufficient to provide adequate resolution of the problem, and 

the axial pressure gradient behaves as it shiould. The little peak at 

the beginning represents the region of insufficient resolution. It may 

be mentioned at this point that these inlet conditions are Singular. 

However, parabolic equations have the useful characteristic of recover-

ing from the effects of a singularity once the Integration has pro-

ceeded a few stops beyond the Singular region. 

Figure 13(a) qualitatively shows the development process, If an 

entry length is defined as the distance at which the center-point axial 

velocity achieves 95% of its fully developed value, then this length in 

terms of L is about 0*04. Velocity contours and the corresponding velo

city surface for the fully developed condi'tion are shown by Figs. 13(b) 

and 13(c), respectively. Quantitative Information about the axial 
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velocity development across the center plane can be obtained from Fig. 

14(a). Some more measurements of Goldstein and Kreid for L = 0*1, 

which for Re = 100 means 10 duct widths, are compared with the develop-

ed profile in Fig. 14(a). Again, the agreement is excellent. 

It is also noticable from Fig. 14(a) that the area under the 

velocity profile curve seems to increase as the value of L associated 

with that particular profile increases. This reflects the transference 

of mass from the sides of the duct towards the center as the profile 

develops. This transference is accomplished by the secondary flow that 

exists in the developing region. Vectors representing this inward flow 

are plotted in Fig. 14 (b). The transverse v and w profiles that corres-

pond to these vectors are displayed in Figs. 15(a) and (b). As the axial 

velocity develops, these transverse components asymptotically approach 

zero. This process can be portrayed as a surface along an axial plane, 

as shown in Fig. 15(c). It should be noted that the axial scale in this 

figure is not linear, but piece-wise linear. 

It is possible to conclude that the program is successful in pre-

dicting three-dimensional hydrodynamic entry flow. 

The Purely Hydrodynamic Thermal Entry Problem 

The energy equation, in the present formulation, is dependent on 

the momentum equations, but not vice-versa, and so it is possible to ob-

tain different temperature Solutions corresponding to the previous velo

city Solution. These different Solutions occur when various temperature 

boundary conditions and internal heat sources are specified. Of the 

many possible combinations of temperature boundary conditions and heat 
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sources, three will be considered in this section. These three cases 

are the constant wall temperature boundary condition, the constant wall 

heat flux boundary condition, and the latter case with uniform internal 

heat generation. Since there is a definite scarcity in the literature 

of complete investigations of the simultaneously developing velocity and 

temperature fields in the entry region of Square ducts, rather extensive 

temperature results are presented in this section. 

Constant Wall Temperature Case 

Figures 16 through 21 show the results for this case. The fluid 

enters the duct with a uniform dimensionless temperature of 1. (Recall 

that for this case 0 = (T-T )/(T.-T ). The duct walls are kept at a 
w/ l w 

constant temperature of zero. This corresponds to heat removal from the 

fluid until the wall and interior temperatures all become zero. 

Figure 16 shows the bulk temperature and Nusselt number develop-

ments for Peclet numbers of 10, 100, 1000 and 10,000. Since the Reynolds 

number is kept fixed at 100, these Peclet numbers correspond to Prandtl-

numbers of 0*1, 1*0, 10*0 and 100*0. The bulk temperature is seen to 

approach zero most quickly for the lower Prandtl numbers. A few points 

taken from the computations of Ghia et al " are also plotted in Fig. 16 

for comparison. Good agreement is observed. The Nusselt number plotted 

in Fig. 16 is simply the mean of all the local Nusselt numbers, which 

directly relate to the local temperature gradients, around the duct 

periphery at a particular axial position. The fully developed Nusselt 

number predicted by the present computation, for the constant wall tem

perature boundary condition, is 2»96. This compares very well with the 
39 

2*98 computed analytically by Kays. If the approach of the Nusselt 
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number to the fully developed value is used as the criterion for judging 

the thermal development, then it is seen that as expected the lower the 

Prandtl number the swifter the development. It must be kept in mind 

that these results are for simultaneously developing temperature and 

velocity, and not for the Graetz type problem which refers to thermal 

development alone. 

Temperature contours and surfaces at L = 0*1 are shown in Figs. 

17 and 18 for different Peclet (Prandtl) numbers. For a Peclet number 

of 100 the temperature surface is well advanced towards a uniform value 

of zero, while at the other extreme, the surface with a Peclet number of 

10,000 is still near the uniform entry condition of one. Similar con-

clusions can be reached from Fig. 19 which qualitatively displays the 

center-line temperature development for different Peclet numbers. 

Development of the Nusselt number is best portrayed as a surface along 

the wall. From Figs. 20 and 21 it can be seen that the initial local 

Nusselt numbers are very high compared to the fully developed values. 

As was the case with the axial pressure gradient, the initial local 

Nusselt number magnitudes are fixed by the mesh size at the entrance. 

For the constant wall temperature boundary condition, the heat transfer 

is always zero at the duct corners, and maximum at the wall centers. 

This too can be observed from Figs. 20 and 21 by referring to the varia-

tions in the transverse y direction. Again it is obvious that the lower 

the Prandtl number, the quicker the development. 

Constant VJall Heat Flux Case 

The non-dimensional temperature, 9, is now defined as (T-Ti)/ 

D/k) , where q is the constant wall heat flux. The Situation dealt 
«w 
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with corresponds to heating of the fluid by the walls, and results for 

this case are presented in Figs. 22 through 34. 

A linear increase in the bulk temperature for this case is seen 

in Fig. 22. This is expected since the heat input per unit axial length 

is fixed once the constant wall heat flux is specified. However, the 

heat transfered away from the wall is dependent on the Prandtl number, 

and so the slope of the bulk temperature rise is strongly dependent on 

this parameter. The higher the Prandtl number, the slower the bulk 

temperature rise. 

Figure 23(a) shows the mean Nusselt number development. The fully 

developed value of 3*55 shows a deviation of about 2% from the value of 

39 3*63 quoted for this case by Kays. Since there is always more error 

associated in the numerical modeling of Neumann boundary conditions than 

with Drichelet conditions, this discrepancy is understandable. A quan-

tity of importance for the wall heat flux case is the wall temperature, 

since the usual purpose of the fluid flow is to cool the wall. Center

line wall temperature development is plotted in Fig. 23(b). These curves 

do not start from zero, as the wall heat flux, which is present even at 

the entrance, numerically forces the walls to have a little higher tem

perature than the interior fluid which is at zero. 

Temperature contours at L = 0*1 for different Peclet numbers are 

shown in Fig. 24. As before, those for Pe = 100 are much more developed 

than those for Pe = 10,000. If these contours are compared with the 

ones for the constant wall temperature case, it is seen that the current 

contours are rounder. This is a direct consequence of the wall tempera

ture no longer being uniform around the periphery. Qualitative pictures 



70 

of the center-line and wall temperature developments are presented in 

Figs. 25 through 28. It should be noted in these figures that the root 

of the arrow associated with each profile specifies the axial position 

at which the profile occurs. It is observed that the wall temperature 

is maximum at the corners. This is an obvious result of the fact that 

though the wall heat flux is constant around the periphery, the heat 

transfer to the fluid is minimum at the corners. Quantitative Informa

tion about the center-line and wall temperature development for various 

Prandtl numbers is presented in Figs. 29 through 32. Nusselt number 

surfaces are plotted in Figs. 33 and 34. The local Nusselt number is 

maximum at the wall center and minimum (not zero) at the corner. 

Constant Wall Heat Flux with Internal Heat Generation Case 

Figures 35 through 39 represent this case. The internal heat 

generation is uniform throughout the duct. Recall that the internal 

ii 

heat source Q is made dimensionless by defining it as QD/q . An impor-

tant quantity for this case is the wall temperature, 6 , minus the bulk 
w* 

temperature, 9 . The Nusselt number for the constant wall heat flux 

case is eqüal to 1/(9-8,). Thus, even though the Nusselt number plot

ted in Fig. 35(a) loses its usual meaning, it still has relevance as the 

inverse of the above quantity. Figure 35(a) shows that this difference 

achieves a constant value which agrees with the parallel plate Channel 

predictions of Ref. 40. 

Observation of the temperature contours and surfaces of Figs. 36 

and 37 suggests that the high temperature region at the corners extends 

a fair bit inwards. This stems directly from the fact that even though 
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the heat generation is constant throughout the duct, the heat transfer 

is poorest at the corners because the velocities there are low. 

Figure 38 shows the axial and transverse variations of the Nusselt 

number V(8 - 8 , ) . Obviously (6 -8,) is largest at the corners and 
W D W D 

smallest at the wall centers. Wall corner and wall center temperature 

developments for different values of Q and a constant value of the 

Peclet number are shown in Fig. 39. 

It is possible to conclude from the results of the previous three 

cases that the program is accurately predicting Solutions to the com-

bined velocity and thermal entry problem. 

Moving Wall Cases 

Up until this point, all convective movements in the trans

verse directions have been small when compared to similar axial 

quantities. It is desirable to test the program under conditions where 

the lateral and axial fluxes are comparable. One such way of obtaining 

strong transverse flow is by allowing duct walls to move laterally. 

Physically, duct flow with one laterally moving wall is found in such 

devices as screw extruders, bearing lubricators, etc. In regions of 

fully developed flow, the cross-stream velocity and pressure fields are 

identical to those in steady two dimensional flow in a Square cavity 

41 
with a moving wall. The later problem has been analysed by Burggraf. 

Results for four moving wall cases are presented in Figs. 40 

through 53, The first two cases, (a) and (b) in each figure, involved 

one moving wall with wall Reynold's numbers of 100 and 200, respectively. 

The Reynolds number of the main flow remained at 100. Thus, a wall 
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Reynolds number of 100 is brought about by a wall moving at the same 

velocity as the inlet flow. As can be seen from Figs. 40(a) and (b), 

this wall motion created a vortex which is centered towards a corner. 

The secondary velocity profiles that produce this swirling motion are 

shown in Figs. 41(a) and (b), and 42(a) and (b). The effect of this 

swirl on the fully developed axial velocity contours is shown in Figs. 

43(a) and (b). Notice that the Vortex center and the maximum axial 

velocity point do not occur at the same position. The maximum axial 

velocity values of 2»03 and 1*98 for the wall Reynolds numbers of 100 

and 200 respectively, are 5% larger than the similar values computed in 

Ref. 5. This discrepancy is not large enough to be significant, expe-

cially since qualitative agreement is excellent. Development of these 

skewed axial velocity distributions are displayed by Figs. 45(a) and 

(b), and 46(a) and (b). 

Cases (c) and (d) are for two moving walls. These walls are 

situated opposite each other, and in case (c) move in the same 

direction, while in case (d) they move in opposing directions. These 

cases are more of academic than practical interest. Moving two walls in 

the same lateral direction produced two vortices, each of a nature simi

lar to the ones in the previous case. Axial velocity profiles become 

double humped with the maximum value for each hump being 1*80. Moving 

two walls in opposite directions generated a strong central vortex. This 

was the only case where the vortex center and the maximum axial velocity 

point coincided. Results for the above two cases are shown in Figs. 40-

47(c) and (d). 
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The temperature problem for the above moving wall cases had three 

walls thermally insulated and one wall at a fixed temperature of zero. 

The wall that had been moved in cases (a) and (b) was the one chosen 

to carry the fixed temperature. The effect of the fluid swirl on the 

temperature distribution is of interest here, and this is shown by the 

contours of Figs. 48(a) and (b), and Figs. 49(c) and (d). Results for 

the above temperature problem with all stationary walls are presented in 

Fig. 50 as a basis for comparison. Center-plane temperature develop-

ments for the moving wall cases are shown in Figs. 51 through 53. Stream-

wise vortex effects on the temperature are easily observable by compa

rison of Fig. 50(i), representing the stationary case with Figs. 52(a), 

52(b), 53(c) and 53(d). The (a), (b), (c), and (d) are for the corre-

sponding moving wall cases. 

Based on all the results examined in this chapter, it is possible 

to conclude that the program functions will and should provide accurate 

predictions of the MHD phenomena which are discussed in the next chapter. 
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Figure 20. Nusselt Number Development Surfaces along a Wall for Constant Wall Temperature 
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Figure 21. Nusselt Nunnber Development Surfaces along a Wall for Constant Wall Temperature 

Case and with (c) Pe = 500, (d) Pe = 1000 
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9).00 
RXIflL D I S T . (X /OJ /RE 

0.02 0-04 0.06 0..0B 

Pe=1000 
O.OZ 0.04 O.OB 0.08 

RXIRL D I S T . ( X / D J / R E 

o.Sb 

Figure 22. Bulk Temperatures for Constant Wall Heat Flux 

00 
Ül 



"b.oo 

Xoo 

RXIRL D I S T . tX /OJ /RE 
D.02 0.04 0.06 0..08 

0.02 0.04 

RXIRL DIST. 
0-06 0.09 

(X/D)/RE 

(a) 

o.?o 

o'.ft 

9).oo 
RXIRL OIST. IX/DJ/RE 

0.02 0.04 0-06 0-06 0.? 

Tl.OO 0.02 0.04 0.06 0-08 
RXIRL D I S T . ( X / D J / R E 

o.ft 

(b) 

Figure 23. (a) Nusselt Number for Constant Wall Heat Flux 

(b) Center-line Wall Tenperature for Constant Wall Heat Flux 

00 
CD 



87 

0.25 0-50 

(a) z/D 

0 0 .03 
A. 0 .05 
+ 0 • 09 
X 0 12 

e> 0 15 
+ 0 18 
X 0 21 
2 0 .24 
Y D 27 
X 0 30 

§3.00 

x ^ z z l * $ 

**J?^$ fx 
xr z j « * xx* + 

x>2x^ «> # +
 +

 A 

*-• *. o 
Z X f O X + * O 

| z * * 

• m 

0.25 
- * - * • • 

Z/D 

0.50 
D.75 

—*-
l.J 

o o o 0 

>x + 
rx+ex-t- A 
x*©x + * 
x+«>x + * 
X + O X + 4 

£*•*•«> x + A 

jz***x + * O 

gyzx-kox+ *. o 

0 
0 
o 
o 
0 

Z ' T I 
; z T 

0 O O 

x S - ^ ^ * + +
 A * 

X Y Ä ^ ^ X X x J + 
* J e ' s «• *o« « 

Ä X r Y Z Z *£ X * 

- * -

«. 2 + * ^ * s r ä ^ r 

* ^ ^ o Ä ^ k 
O * + X ^ R Z ' 1 

o A + x * * ? • 
O A + K * * 
O * + X W K 
O A + X » + !I 
0 A + X O * X 
o A + x > « ; 

o A + x o ^ z l 

o° -*+^^"i 
* + + # o t ^ v5 

;k?t^!« 
*7 ? -v- w 

» a 

h o \ 

>-

^ . 0 0 D-25 C 5 0 

(b) Z/D 

- g - ^ -y * 
D.7S l i f fo 

ä.oo 

o"? 

0.25 

« T f l ^ 

**£* »Ŝ  x 
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Figure 33. Nusselt Number Development Surfaces along a Wall for Constant Wall Heat Flux 

Case with (a) Pe = 10, (b) Pe = 100 
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Figure 34. Nusselt Number Development Surfaces along a Wall for Constant Wall Heat Flux 

Case with (c) Pe = 500, (d) Pe = 1000 
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Figure 37. Tenperature Contours and Surface at L=0.1 and Q=100 for 

(a) Pe=500 , (b) Pe=1000 
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Figure 41. w Velocitv Profiles at L=0.1 



105 

cO.OO 0.25 

(c) 

Z/D 
0-50 

O"? 

^ ' . 0 0 0.25 

0.75 

0-50 
Z/D 

0.75 

(d) 

Z/D 
0.-25 0.50 

ffo ^ ' . 0 0 0.25 

cO.OO 

0.50 
Z/D 

Figure 42. v Velocity Profiles at L=0.1 
o 
n 

in 
n 
33 



106 

1.00 0 . 2 5 
Z / D 

0 . 5 0 D.75 

"vo ' 

>-

% 

f'+bsZ* ^ 
=*+X<£**xX 
D^+XO'fX Z 

1=5 4 
* Y Y 

T T ? £ 2 2 2 o 
U ! S«| *++Aao 
X X _ f 
H 

ce-f-xotxf ? 
O + X O ^ - X Z Y 

06H-X«>+XZ Y 

O + X g + X Z Y 

O + X S + X | Y 

O f X « t ü Z Y 

O T - X O * X Z ^Y 

O + X O t X 1 

© A + X O + X g 

0 * + X «> * X 
4. O * v 

D * + X « * ^ X 
C * + * *> ^ * • « • 

© * + X „ * C 

+ J. 
* • A 

.00 0-25 

o o o o o o o o o o o o ® 
0 - 5 0 

Z / D 

i .OO 

Q l ß 

^ö-
>-

0-25 
Z/D 

0 . 5 0 0 . 7 5 

0 D =: 5 
i S 

©£+#«># X §zZ 
0 + X C - + X Z Y Y 

OS+XO+X Z Y*' 

OM-XO+X Z Y 

OM-XO + X Z X 

i C » X » + X Z Y 

O M - X « * X Z Y,, 

O H X » t X Z 

O M - X O f X J 

O M - X O - t - 5 ^ 

o * + g ° * \ 
e*>+x $ • x^ 
OA+ X O >. 
o* % * °» e * 
°* +

+ * x x 

u o o o o 

Y Y 

+ 

£ s 
i ! 
Y Y 

J f 
I I ^ ^ 1 X X x - * 

s s ? r 
X 

Z 2 Z ^ x • «>>«q 

X ^-OX^Q 

Z j X +^X+eoj 

_ Z Z X / « X - t ^ O 
v *- X v 

Y £ ^X * «. >T+40 

/ 

/ 

Z Z 

X* 
X X ^ 

X X X X X 
+ + -V + + 
a a i Ä 

f C X +AO 
f ^ x t i o 

» X +• *• O 

<» X + & O 

* X + «• Q 
• X + * O 

<> x + A o 

> 5>f + A O 

xx + A ° 
•f*- * 

A A * 

o o o o o e o o o c ) ^ o 

1.00 0 . 2 5 D.50 

Z/D 
0 . 7 5 

Figure 43. Axial Velocity Contours and Surface at L=0.1 



107 

ä 
Z/D 

.00 0 - 2 5 0 . 5 0 0 . 7 5 1 .§0 ä 
o o g 2 2 2 2 2 2 S 2 £ 2 2 2 g c 5 

o * ! * x * * H * * 2 &§ * 3 ^ v4c 
O i + X ^ ^ ^ ' f ^ v X X X x - . * «> X + <s<3 

^ J 0 A + ^ * ^ . ' 3 P A ^ 2 2 2 z z " ^ • « X + 4C 
^ - j © * + X «> •* X Z 2 Y W Y Z X + * X -t-£0 

r-^ J 0 A + ^ * ^ . ' 3 P A ^ 2 2 2 z z " ^ • « X + 4C 
^ - j © * + X «> •* X Z 2 Y W Y Z X + * X -t-£0 " o 

j C A + X C t X Z Y " Y Z H t « X + 4 0 

j C * - t - X 4 > + X Z Y Y Z ^ I « X + i O 

C ü + X » t 7 2 Y* Y g J ? + O X - r i S . O 

P J ( 5 4 + X « t X Z Y Y Z X t < < X + i-0 
V ^ H S ^ T X O + X Z Y 4 .1 .»8 Y Z X + O X + ^ O 

> - l O A + X O ' t X Z Y Y 2 X ^ © X + A O 

o 
UJQ 

" r ^ V 

P J ( 5 4 + X « t X Z Y Y Z X t < < X + i-0 
V ^ H S ^ T X O + X Z Y 4 .1 .»8 Y Z X + O X + ^ O 

> - l O A + X O ' t X Z Y Y 2 X ^ © X + A O >-
1 o»+ x • -̂ R § Y ^ z x t « x + i o 
| O f c r X O ? X Z Y Y 2 X + O X + A Q 

j £ | 0 . * + X e > + X Z Y yY Z X ' t ^ X + A O Ul 
CM . 

o 
9 

C' i + X O * X l * VC Y ^ X + « X + i O 

O » - X «• • y. 2 2 z 2 Z ^ X* t # ^ t » B 
9 * ' t > ' < ' « t t J » x J j * * « * x x + 1 | : i 

o S g d Ü e l l h e o o o o 6 

" ° /7 

c \ 

* J . 0 0 0 . 2 5 0 - 5 0 0 . 7 5 1 
Z/D 

.ffo 

cO-DD 0.25 

° A + X *- « 

j ©£+***•£*£ j 
? C&rX-S>f X _ Z 

"-jc*+x»+ x 2 
IS^rX'S+X 2 
&>*K*X 2 
OtXOtXZ 

a i n OMXM-X2 
_;-cf*<ot'XZ 

CWM5!Z 
OV-XO+XZ 
OMXO+XZ 
©HXO*X 2 X 
OafXC^-^ Z 
OM-XO+ X ^ 2 

© i + K * ^ ? * * 
0 » + X $C-© 

0 o © g 

^ . 0 0 0-25 

Figure 44. Axial Velocity Contours and Surface a t L=0.1 



yyo 

Figure 45. Axial Velocity Development at Center-plane 
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CHAPTER V 

RESULTS AND DISCUSSION 

Ducts with perfectly electrically insulating (C = 0) walls and 

perfectly electrically conducting walls (C = infinity) are the basic 

cases, and these are examined first. Then two fini.te conductivity cases 

(C = 10) and (C = 1) shall be considered. These are followed by two 

mixed problems, i.e. walls parallel to the imposed field being electri

cally non-conducting while walls perpendicular to the imposed field are 

infinitely electrically conducting and vice versa. Then the effects of 

insulated corners and current breaks on a perfectly conducting duct are 

studied. Finally the case of three walls being non-conducting electri

cally and one wall being infinitely or finitely electrically conducting, 

with and without electrically insulated corners is considered. 

In Tokamak blankets the Peclet number is of the order of 102 and 

33 
the magnetic Reynolds number is of the order of unity. Thus it was 

decided to fix the Reynolds number at 100, the magnetic Reynolds number 

at 1, and the Prandtl number at 1. The constant wall heat flux boundary 

condition (except for the last few cases) was enforced on all four walls. 

At this point a comment is made about the abundance of figures in 

this work. It has been said that when presented with numbers the mind 

can, at best, think linearly. However, when presented with a picture it 

can grasp the whole Situation and think much more creatively. In the Com

puter modeling of three-dimensional flows, enormous amounts of numbers 

are generated, and the only way for the trends represented by these num

bers, to be deduced, is to plot them. The advanced graphics capabilltie^ 
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of modern Computer Systems allows the facilitous plotting of the contours, 

vectors and surfaces that best represent three-dimensional variations. 

These capabilities have been put to good use in this work. 

Case with C = 0 on all Walls 

Results for this problem, with a Hartmann number of 10, are pre-

sented in Figs. 54 through 66. It should be noted that all the plotted 

results in this chapter are for Hartmann numbers of 10 (except for the 

parametric studies). Current density vectors, calculated from J = VXH, 

for the transverse plane are shown in Fig. 54. Axial induced magnetic 

field contours for the same plane are shown in Fig. 55. It may be noted 

that the orientation of the axes in Fig. 54 is rotated 90°. This was 

done so as to make the figures fit within the page format. When the two 

transverse induced field components are very small i.e., near and in the 

developed region, the transverse currents are, 

3Hx , T 9Hx ' 
J — — — and J - - o. j 
y 3 z z 3y 

and so Hx, the induced axial field component, can be considered as a 

stream function for J, which means that the currents flow along lines of 

constant Hx. Thus, near and in the developed region, the contours of 

Fig. 55 should trace the current vector loops observable in Fig. 54-. 

Figure 54(a) shows the currents right near the entrance, where the 

Hy and Hz components are significant, as they are generated by secondary 

flow which is appreciable here. A sort of source and sink activity is 

discerned in the center and this implies out of plane current vectors. 

Figure 56(a) shows the exisrance of a current loop in the axial xz plane 



at the center. This loop, which is a result of the flow development, is 

the cause for the activity of Fig. 54(a). The contours of Fig. 55(a) 

cannot show this activity as they can only represent the current loops 

when Hy and Hz are small. Rather quick development of the current den

sity vectors is seen and the developed distributions exactly follow the 

Hx contour loops for the corresponding axial position. 

The forms of these current loops is easily explainable. Currents 

always seek the path of least resistance and since the walls are non-

conducting, the current loops are forced to lie entirely in the fluid re-

gion. The return path of least resistance for the currents generated by 

the core motion is through the areas of lowest fluid velocity, i.e. the 

boundary regions. 

In the fully developed region, current flow in the duct center is 

so oriented that the J X B Lorentz force is acting in a direction that 

opposes fluid motion. In regions near walls that are perpendicular to 

the iniposed field, the direction of current flow is opposite and so the 

Lorentz force now acts in the flow direction. This serves to accelerate 

the fluid in these boundary regions, flattening out the velocity profile. 

Even though the net electromagnetic force on the fluid is zero, the flat-

tened profile experiences increased viscous forces due to steeper velo

city gradients at the walls. Current flow immediately adjacent to per

pendicular walls is much stronger than that adjacent to parallel walls. 

Thus, a flatter axial velocity profile across the perpendicular, or z, 

direction is to be expected. 

Current flow in two axial planes is displayed in Fig. 56. The 

plane in Fig. 56(a) lies along Y/D = 0*5, i.e. the centerline. Except 
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for the initial loop, the current flow in this plane is essentially uni-

directional and appears to decrease to zero at the walls. The currents 

themselves are not disappearing, but simply leaving the plane of repre-

sentation. This is the result of current direction changes in the trans

versa plane. Figure 56(b) represents a plane near a parallel wall and 

shows initial loop associated activity in the developing region, follow-

ed by an axially invariant distribution that seems to show currents 

emerging from the walls and going to zero at the center of the plane. 

Again, this distribution is the product of current direction changes in 

the transverse plane. 

Figures 57, 58 and 59 display the three induced field components, 

Hx, Hy and Hz that produced the above current flows. One füll cycle of 

sinosoidal type Variation across the y direction and one half cycle 

across the z direction is observed for the axial field. Also, the mag-

nitude of the distribution increases until the flow is developed, and the 

fully developed values are plotted as a surface in Fig. 57(c). The sur-

face is a little hard to interpret as the negative portion of the sinu-

soid can not be seen due to hidden line removal by the plotting program. 

The maximum value of this field is observed to be about 0*08 and is thus 

8% of the imposed transverse field relative to which it is non-dimension-

alized. The y component of the induced field plotted across the two 

center lines is shown in Fig. 58, and except for a small positive over-

shoot near the entrance, is entirely negative. As a surface it is like 

a negative parabaloid as shown in Fig. 58(c). Again, due to hidden line 

removal, the entire interior of the surface cannot be seen. This field 

component has maximum values near the entrance and asymptoticaliy 
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approaches zero as the flow develops. At its maximum it has a value of 

about 2% of the imposed field. The z component of the induced field, 

which is plotted along the Z/D =0*25 and Y/D =0-25 lines in Fig. 59, 

has a ragged sinosoidal type distribution in the y direction and a 

smoother, though smaller in amplitude, distribution across the z direc

tion. Again, Hz approaches zero as the developed condition is reached 

and the maximum value is only about 0*3% of the imposed field, 

Reasons for these Hy and Hz distributions do not immediately pre-

sent themselves. However, clues to their origin can be deduced from the 

profile shapes of the secondary velocity components that induce them. 

The main source terms in the Hy and Hz induction equations are Bpy(8v/8y) 

and BpyOw/9y) respectively. If one can recall the shapes of the v and 

w profiles in the y direction and visualize their derivatives, these de

rivatives would roughly follow the Hy and Hz distributions. The v and w 

velocity profiles are similar in their respective directions, but it is 

the fact that both the above derivatives are with respect to y (the im

posed field direction) that causes the differences between Hy and Hz. 

As previously mentioned, axial velocity in the transverse plane 

is no longer expected to be Symmetrie. Figure 60 displays this fact well. 

From the contours of Fig. 60(b) it is observable that the profiles are 

clearly flattened, more across the y direction than the z, and the maxi

mum velocity value at the center is reduced to 1*76. This asymmetric 

axial velocity distribution can only be produced by unequal transverse 

velocity components as it is this secondary flow which transfers fluid 

from wall regions inwards for flow development. Since the u profile is 

fiatter along the y coordinate, it is closer to the slug entry profile, 
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and thus less fluid has to be moved in the y direction during develop-

ment. For this reason it is expected that the v component should now be 

smaller in magnitude than the w. This fact is displayed clearly in Fig. 

61. 

Magnetic fields can have no direct effects on temperature distri-

butions (except, perhaps, through Ohmic heating), but can have secondary 

effects through the coupling between the momentum and energy equations. 

Temperature fields in duct flow tend to follow the existing velocity 

fields, and so the temperature contours in Fig. 62(b) are slightly elon-

gated in the same direction as the axial velocity contours. Local Nusselt 

numbers, wall and centerline temperatures, are also presented in Figs. 

62 and 63, and show distributions similar to the non-magnetic case. 

The non-conducting wall problem is completed by an investigation 

of the Variation of certain important quantities with Hartmann number 

change. These quantities are plotted in Figs. 64 through 66. As the 

Hartmann number increases from 0 to IC, the following fully developed 

effects are observed: 

(1) Center-point axial velocity decreases from 2*10 to 1*76. 

(2) Velocity entry length decreases from an L value of 0*040 

to 0-022. 

(3) Axial pressure gradient increases from-0'29 to—0*41. 

(4) Axial total pressure coefficient increases from 3*61 to 4*60. 

(5) Mean Nusselt number increases from 3*55 to 3'99. 

(6) Wall center and corner temperatures decrease from Ov57 and 

0*90 to 0*54 and 0*87 respectively. 
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The last two temperature effects occur due to the temperature distribu-

tion becoming flatter and represent heat transfer enhancement. 

Case with C = infinity on all Walls 

Figures 67 through 78 present the case of infinitely electrically 

conducting walls. An infinite wall conductivity parameter implies that 

the wall is infinitely more electrically conductive than the fluid. Thus, 

the path of least resistance for current return becomes the duct walls 

themselves rather than the fluid boundary regions as was in the C = 0 

case. Figure 67 displays the transverse plane current vectors, and it is 

directly observable that the current loops are conpleted through the walls. 

A similar observance is possible from the contours of Fig. 68. The sharp-

ness of some of the bends in the contours is a result of the linear in-

terpolation used by the contour plotting routine, and also the fact that 

it used straight line segments to construct the contours. The entry 

region source and sink type activity that was discerned in the previous 

case is absent here and the currents at the duct center flow directly 

from one wall to the other. Equivilent current density vectors in axial 

planes are shown in Fig. 69. In the previous case there was a region of 

zero current, where the two sets of current loops met, extending down 

the duct center. This is absent here and current flow is essentially 

from one parallel wall to the other. For the perpendicular walls, cur

rents leaving one side of the wall return to the other side of the same 

wall. 

Since C = infinity, axial field gradients in the normal direction 

at the walls are zero. Figure 70 shows the axial field plotted across 
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center and quarter line. The maximum value of this field occurs at the 

perpendicular walls and has a magnitude equal to about 40% of the im-

posed field. For transverse fields, it should be recalled that the boun-

dary conditions force the field to become zero at normal walls, and to 

suffer a linear Variation within the other two walls, i.e., the thin wall 

boundary condition is used. Thus, Hy goes to zero at Y/D = 0 and 1 and 

its normal gradient goes to zero at Z/D = 0 and 1. The correspondingly 

opposite Situation holds for Hz. These two field distributions are 

plotted in Figs. 71 and 72. In Fig. 72(a), the forcing of the normal 

gradient of Hz at Y/D = 0 and Y/D = 1 to be zero seems unnatural. This 

casts suspicion on the appropriateness of using the thin wall boundary 

condition here. Again, since Hz is a secondary quantity, the resulting 

error is not expected to be significant. 

Fully developed axial center-point velocity is 1»72 which is a 

little less than the 1*76 for the previous case. The profile, as observ-̂  

ed from Fig. 73, is still more flattened in the prarallel direction, but 

the difference between the two directions is less. The axial velocity 

contours appear a little less elongated because the currents are now 

returning through the walls, and thus they do not accelerate the fluid 

in the wall regions. Core velocity, however, is still retarded and as 

mass flow must be conserved this causes the flattening of the profile, 

In this case, since the currents return through the walls, there is a 

downstream electromagnetic force on them with a corresponding net upstream 

force on the fluid. The pressure gradient has to counteract this as well 

as the viscous shear forces at the wall. This pressure gradient is thr-n 

much larger than that for the C = 0 case where there is no net electro-
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magnetic force on the fluid. 

Temperature results for this case are presented in Figs. 74 and 

75, and are not very different from the C = 0 results. The mean Nusselt 

number of 4*09 is a little higher than the 3*99 for the C = 0 case. 

This corresponds to the slightly flatter profile in both transverse di-

rections. Figures 76, 77 and 78 show the Hartmann number study, with 

trends similar to the last case being displayed. Varying the Hartmann 

number from 0 to 10 causes the center-point velocity to go from 2*10 to 

1*72, the mean Nusselt number from 3*55 to 4*09, the axial pressure gra

dient from-0-29 to-l»22, the pressure coefficient from 3-61 to 12-52, the 

wall center temperature from 0*57 to 0-54, and the wall corner tempera

ture from 0-90 to 0»86. All the above values occur at L = 0-1. 

Case with C = 10 on all Walls 

Magnitudes of the results for this case are not very different 

from the C = infinity results. All differences stem from the fact that 

wherever the thin wall boundary condition is applied, the normal gradient 

of the field is no longer zero, but now has a finite value. of H/C. Thus, 

the current vectors leave and enter the walls at different angles whose 

values are dependent on the local field magnitudes. 

Figures 79, 80 and 81 display the current vectors and the corres-

ponding axial field contours. Hartmann number Variation effects are 

shown in Figs. 82, 83 and 84. 

Case with C = 1 on all Walls 

Results for this case are presented in Figs. 85 through 93. Even 

for this conductivity ratio, the vectors of Fig. 85 appear closer to the 
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C = 0 case. However, the approach towards the C = 0 case as C is reduc-

ed is visible by comparison of this case with the C = infinity and C = 10 

results. In fact, close inspection of Fig. 87(b) reveals the beginnings 

of the entrance region axial current loop associated with the C = 0 case. 

Figures 88, 89 and 90 present the parametric study for this case, 

while Figs. 91, 92 and 93 portray the induced field distributions which 

appear to be in-between those for the two limiting cases. 

Comparison of the Finite and Limiting Conductivity Cases 

Four quantities are compared in Figs. 94 through 96. The rela

tive pressure gradient of Fig. 94 is simply the fully developed axial 

pressure gradient (at L = 0*1) for a particular case, normalized to the 

non-hydromagnetic pressure gradient. As the Hartmann number and the con

ductivity parameter increase, so does the pressure gradient. Also, it 

can be seen that even a little wall conductivity causes large increases 

in the pressure gradient (note how close the C = infinity and G = 10 

curves are) . For the limiting cases (C = infinity and C = 0) the result-s 

14 
of Chang and Lundgren, and for one finite conductivity case (C = 1) 

18 
the results of Chu have been used for comparison. Both of these works 

were analytical and involved only the fully developed problem, i.e. one 

field and velocity component only. Agreement for the C = 0 curve is per-

fect, for the C = 1 good, and for the C = infinity curve not so good at 

higher Hartmann number. The C = infinity case involves forcing a gra

dient to be zero on the boundary, which is similar to forcing a wall 

heat flux to attain a prescribed value, and it should be recalled the 

mean Nusselt number for the wall heat flux case was in error by a fer.; 
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percent. The rather unsophisticated treatment of the variables near the 

walls is the cause of these errors. Thus, for a Hartmann number of 10 

and infinitely conducting walls, the fully developed axial pressure gra-

dient is 4*21 times the non-hydromagnetic one, and for perfectly insula-

ting walls this ratio is only 1*41. 

Figure 95 compares the fully developed, relative total pressure 

coefficients at L = 0*1, and trends similar to those in the previous 

figure are observed. For a Hartmann number of 10 and infinitely conduct

ing walls, the pressure coefficient at L = 0*1 is 3*46 times the non-

hydromagnetic one, and for perfectly insulating walls this ratio is 1-27. 

The magnitudes of these variations are less than those for the pressure 

gradients because the entry lengths decrease with Hartmann number increase, 

and the higher entry region pressure gradients exist for shorter axial 

distances. Thus, the entry length reduction and pressure gradient in

crease work against each other and produce a small Variation in the total 

axial pressure drop as the Hartmann number is increased. 

Entrance length Variation with Hartmann number and conductivity 

is seen in Fig. 96(a). lt. is observed that the relative velocity entry 

length i.e., magnetohydrodynamic over the hydrodynamic, decreases with 

increasing Hartmann number, as was expected from the plane Channel analy-

sis of Shohet et al. Increasing the conductivity parameter from zero 

to infinity also cause a slight decrease in this length owing to the fact 

that the C = infinity profiles are slightly flatter, and thus nearer in 

form to the initial slug profile. For a Hartmann number of 10 and C = 0, 

the relative velocity entry length is 0*224, while for C = infinity it 

is 0-212. 
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The mean Nusselt number of Fig. 96(b) is seen to increase with 

Hartmann number and conductivity increase. The conductivity variations 

quickly reach an asymptotic condition and there is essentially-no dif-

ference between the C = infinity and C = 10 curves. Increase with Hart

mann number is quite significant and is again the result of flatter tem

perature profiles and steeper wall temperature gradients. For a Hartmann 

number of 10 and C = infinity, the Nusselt number is seen to be 4*09, 

while for C = 0 it is 3*99. The similar value for the non-hydromagnetic 

case is 3*55. Thus, though a price for higher Hartmann numbers is paid 

by way of larger pressure drops, the benefit of heat transfer enhancement 

is reaped. 

Some Mixed Wall Conductivity Cases 

In the previous problems, wall conductivity was constant throughout 

the duct and for finite values of C the pressure drops were significantly 

higher than for the corresponding non-magnetic cases. This effect is 

even more exaggerated in the fusion blanket Situation since at very high 

Hartmann numbers hydromagnetic pressure drops are expected to be a few 

orders of magnitude higher. As a direct result of this, an unacceptable 

Proportion of the reactor output is required for pumping power. If the 

duct walls are fabricated from an electrical non-conductor, this problem 

would be greatly reduced. However, since a non-conductor of electricity 

is usually a poor conductor of heat, the heat transfer capabilities of 

such a blanket could be impaired. 

Possible Solutions to this problem involve having .some of the walls 

be electrical insulators, and some be electrical conductors. Since the 
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heat flow in the blanket will essentially be in the radial direction 

away from the plasma, the walls perpendicular to this direction could be 

made of metal, while the remaining two walls could be made of an electri-

cal insulator, e.g. a ceramic. Thus, the two possible combinations of 

infinite conductivity on two walls and zero on the other two are studied 

19 
here as Cases A and B. Hunt has suggested that the conductivity of 

the duct corners may play an important role in determining the pressure 

drop. This problem is investigated in Case C, while Case D deals with 

the same problem but with the addition of two non-conducting current 

breaks to each wall. 

Cases A and B 

Case A involves C = 0 on walls parallel to the imposed field and 

C = infinity on' walls perpendicular to the imposed field, while Case B 

is the reverse. Figures 97 and 98 show that the currents leave conduct-

ing walls, and form a semicircular loop eventually returning to the same 

walls from which they originated. As expected these currents can only 

flow parallel to the non-conducting walls and not enter them. Represen

tation of the current vectors in the axial plane is provided by Fig. 99. 

The loop that is observable in the central xz plane is caused, as before, 

by currents in this entry region being unable to return through the pa

rallel non-conducting walls. Corresponding vectors and contours for Case 

B are shown in Figs.100 to 102. The magnitudes of the currents are defi-

nitely smaller for this case. Currents near the center flow directly 

from one conducting wall to the other, but have to return via the boun-

dary region fluid along the non-conducting walls. Complete current loops 
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lying entirely in the fluid also exist near each non-conducting wall. 

Figure 100(a) shows core current flow in a reverse direction from the 

fully developed flow. This is essentially the equivilent of the loop 

observable in Case A, only now the ends of the loop lie in the conduct-

ing walls. Figure 102(b) shows this clearly. Induced field distribu-

tions for Cases A and B are shown in Figs. 103 to 109. The differences 

between them for the two cases are direct consequences of the boundary 

conditions. The peak values for the axial field of Case A are about 

four times higher than those for Case B. This was the cause of the 

stronger currents observed for Case A. In fact, the field values for 

Case A appear to be similar to those for the case with C equal to infin-

ity on all the walls, while those for Case B appear to be near the case 

with C equal to zero on all the walls. This leads one to suspect that 

it is the conductivity of the walls perpendicular to the imposed field 

that is important. 

Axial velocity contours and surfaces are presented in Fig. 110, 

and the contours are elongated in the direction of the non-conducting 

walls for both cases. To explain these contours it must be recalled 

that the Lorentz force is JXB. The largest component of B is the im

posed one, which is along the y direction. Thus, any current flow along 

this parallel direction creates little or no JXB force, while current 

flow along tl: e positive z direction produces a strong retarding force. 

From the current diagrams for Case A it was seen that currents leave the 

conducting walls in the y direction, turn, follow the positive z direc

tion, turn again, and complete the semicircular.loop by returning along 

the y direction to the cendueting wall of origin. Thus the Lcrentz force 
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is essentially retarding and acts on the core region where the currents 

are along the positive z direction. The regions where the velocity con-

tours are elongated are those regions where the currents are either still 

ccmpletely in the y direction, or turning, thus createing comparitively 

small Lorentz force action which results in higher axial velocities and 

hence the elongated contour. Since there is no current flow along the 

negative z direction, and thus no accelerating Lorentz force component, 

the pressure gradient for this case is expected to be comparable to the 

case with all walls having C equal infinity. The magnitude of this gra

dient is discussed in the upcoraing case comparison. 

For Case B the current density pictures show strong return cur

rents flowing in the negative z direction within the fluid adjacent to 

the non-conducting perpendicular walls. These currents produce an ac

celerating Lorentz component, while the core regions still produce a 

retarding component. Higher axial velocities near the non-conducting 

walls are the result and this explains the contour elongation of Case B. 

The pressure gradient for this case should be much lower than for Case A 

due to the Lorentz accelerating component, and the fact that some of the 

current loops lie entirely within the fluid region. 

Axial velocity profile development across the y direction for both 

these cases is shown in Fig. 111. 1t is readily observable that the pro-

files for Case B are flatter across this coordinate. Axial velocity 

distributions like those for Case A would have required larger mass trans-

fer from the duct edge to the center in the y direction, and so the v 

velocity component should be larger than the corresponding w component in 

the deveioping region. The profiles of Flgs. 112(a) and (b) clearly 
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demonstrate this fact, and the vectors of Fig. 112(c) also show a flow 

biased towards the y direction. Case B would show a. similar but revers-

ed effect. 

In the temperature Solutions for these two cases, the constant 

heat flux boundary condition was imposed on all four walls. This assumes 

the use of a material that is a good thermal conductor while being an 

electrical insulator as well. Such materials, though rare, do exist. 

Berillyium oxide, which is an electrical insulator and has a thermal 

conductivity higher than most metals, is one such example. Fully develop-

ed temperature contours for these two cases are shown in Fig. 113, and 

again suffer the same elongations as the corresponding velocity contours. 

Cases C and D 

From all the previous results, it is evident that the less current 

there is flowing within the walls, the lower is the pressure drop. Insu-

lating the corners of a perfectly conducting duct (Case C) is a Step in 

this direction. Also, sections of the same duct wall can be insulated 

from each other by inserting current breaks into the wall. These breaks 

can be thought of as axial lines of insulation at various positions along 

the periphery of the duct (Case D). Current breaks, while having sub-

stantial effect on the pressure drop, are not expected to have much 

effect on the heat transfer as the principal directions of heat flux are 

normal to these lines of insulation. Numerically, the insulated corners 

were achieved by specifying the electrical insulation condition at two 

points on either side of each corner. Two current breaks on each wall 

were inserted again by specification of the same condition at the 6th 

mesh point from each corner. 
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Current density vectors and axial field contours for both these 

cases are shown in Figs. 114 through 117. These vectors and contour 

loops show distinct avoidance of the insulated corners, having to jump 

these regions by re-entering the fluid. This same effect is observed 

with the current breaks especially on the perpendicular walls. The cur

rent loops must re-enter the fluid to bypass the breaks. It is also 

seen that the breaks on the parallel walls are less effective in their 

present positions, and that their Performance would be improved if they 

were a little closer to the corners. The axial plane vectors of Fig. 118 

appear confusing at first, but on comparing them with the transverse 

plane vectors of Fig. 116, it is seen that their distribution is a re-

sult of abrupt direction changes the currents must undergo to jump the 

insulated breaks and corners. Induced field surfaces are portrayed by 

Fig. 119, and the corners and breaks are easily seen as the regions where 

all the fields are forced to zero. 

Effects on the axial velocity, represented- by Fig. 120, are inter-

esting. The corner velocities have been increased and the contours are 

quite a bit squarer. For Case D, the breaks cause these contours to bow 

out a little bit in. the region corresponding to the breaks on the perpen

dicular walls, which are the most effective. Axial velocity profiles 

are flatter along the z direction, and they are shown along both z and y 

centerlines in Fig. 121 for Case C. The centerline profiles for Case D 

are similar. Contours and wall temperature profiles for Case C are shown 

in Figs. 122 and 123. 

Case ccmparisons of A, B, C and D are plotted in Figs, 124 through 

126. In these figures, Hap = 0 refers tc the non-hydromagnetic case 



which is included for comparison. Cases A and C have essentially the 

same pressure drop, and this is about 60% of the pressure drop for a 

fully C = infinity duct. This leads to the interesting conclusion that 

insulating the corners alone is equivalent in pressure drop reduction to 

insulating both parallel walls entirely. Addition of the current breaks 

in Case D reduces the fully developed pressure drop a further 20% or so. 

Case B, however, experiences the lowest pressure drop of all the four 

cases, and is only slightly higher than the totally C = 0 case. Recall-

ing that Case B represented C = infinity on parallel walls and C = 0 on 

perpendicular walls, one can conclude that the pressure drop in particular 

is strongly dependent on the conductivity of the walls that are perpen

dicular to the imposed field direction. 

Maximum center-point axial velocity occurs for Case B, followed 

by D, A and C in ths.t order. Case D is larger than C due to the accel-

erating effects of the current breaks, and B is larger than A due to the 

accelerating effects in the boundary regions. Maximum fully developed 

mean Nusselt number occurs for Case C (4*29) followed by D (4*17), A 

(4-13) and B (4*02), and it should be recalled that the corresponding 

non-hydromagnetic value was 3*55. Thus, Case C shows about a 25% in-

crease over this value and is the highest because of the squaring of the 

velocity contours by the electricaliy insulating corners. Wall center 

and cerner temperature comparisons are shown in Fig. 126. 

Cases E, F and G 

These last three cases relate directly to Tokamak blankets. As it 

has been previously mentioned, the duct under consideration could have one 

of its sides as part of the first wall and is thus exposed to a heat flux 

corresponding to radiation and aeutroa heating along that wall. If it 
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is assumed that the three ducts adjacent to this duct have similar tem-

perature distributions, then adiabatic temperature boundary conditions 

can be used on the other three walls. The poloidal field is in the y 

direction, and so one of the walls parallel to this direction must be 

the one exposed to the plasma, i.e. the constant wall heat flux. These 

thermal boundary conditions lead directly to the induction boundary con

ditions of C = 0 on the three adiabatic walls, and C = infinity (Case E) 

or mcre appropriately C = 0*1 (Case F) on the hcat flux wall. The value 

C = 0*1 corresponds more directly to the fusion blanket case as it is 

obtained by assuming o /er = 2, which is about the proper conduetivity 
w i 

ratio for steel and lithium, and t/D = 0*05, which is a reasonable wall 

thickness to duct width ratio. Finally Case G investigates the effect 

of extending the electrical insulation to include the corner regions of 

the condueting wall in Case F. 

Figure 127 represents current density vectors for Case E. Cur-

rents leava the condueting wall, travel through the fluid core and re

turn via the boundary regions adjacent to the perpendicular non-conducting 

walls. Near the duct entrance, the core current flows in the opposite 

direction to the fully developed current. This flow is sirnply the top 

of the axial current loop seen in Fig. 128(b). Velocity contours snown 

in Fig. 129 are again eiongated towards the non-conducting walls (velo-

city profiles along the z direction are slightly skewed) being smaller 

on the side towards the one condueting wall. This is not due so much to 

the currents flowing near the non-conducting parallel wall, as JXB = 0 

fer the parallel direction, but to the currents etnerging from the con

dueting wall for wnich the Lor:ent3 iorce is retarding, 
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Induced field distributions for Case E are displayed in Figs. 130 

and 131 and are reflective of the imposed boundary conditions. In a 

Tokamak blanket, the neutrons provide an internal heat generation whose 

magnitude is dependent on the distance from the first wall. If a duct 

width of 10cm is assumed, a neutron heat deposition curve from the 

42 
Wisconsin Tokamak Design Report leads to the use of a heat generation 

that linearly decreases from 1 at the first wall (i.e. the conducting 

wall) to 0*7 at the opposite wall. Figures 132 aud 133 represent center-

line temperatures and contours with and without this heat generation 

function. Temperatures across the conducting wall are shown in Fig. 134 

and this distribution is almost flat. This is desireabie for uniform 

cooling of the first wall. The bulk temperature and wall temperature 

developments are shown in Fig. 135. 

For Case F the conducting wall has C = 0*1 to correspond to a 

steel wall and lithium fluid. Figures 136 and 137 show that this finite 

conductivity causes some of the loops to pass through the conducting 

wall. However, most lie entirely within the fluid, and the fully devel-

oped axial pressure gradient and velocity are essentially the same as 

for the case with C = 0 on all four walls. This is as expected since it 

has already been concluded that the pressure drop is strongly dependent 

on the conductivity of the perpendicular walls and relatively insensitive 

to the conductivity of the parallel walls. Thus, having one metallic 

wall for heat transfer and three non-condueting walls, i.e. ceramic, 

involves nc higher pressure drop than for all non-condueting walls, 

Case G is simply the above case with the electrical insulation ex-

tended to include. the corners of the C = 0*1 wall. Figures 138 and 139 
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show how the currents ägain avoid the corner regions. However, there is 

very little Variation between mean parameters for this and the previous 

case. 

Stability and Computer Time Requireinents 

Before this chapter is closed some comments on the numerical 

stability and Computer time requirements of the previous problems need 

to be made. The numerical scheine, being implicit in the transverse plane 

is inherently stable. The accuracy of the representation, hox̂ ever, is 

strongly dependent on the size of the forward axial step as the upwind 

differencing that has been used is essentially first order. As pre-

viously mentioned, 216 axial steps were used to represent an axial 

length equivalent to 10 duct widths. The axial step-size was 0*01 for 

the first 20 and 0«05 for the remaining 196 steps. The transverse mesh 

spacing was also 0.05. It is desireable to have Ay and Az the same size 

as Ax, since the scheine is first order in the axial direction and so 

the truncation errors are proportional :o Ax. This holds no matter how 

small Ay and Az are made. 

Initial runs of the program were made on a 10 x 10 mesh with 80 

axial steps, and though the results were less accurate, there were no 

stability problems for these cases either. The main requirement for sta

bility is that the number of sweeps of the Tri-diagonal Matrix Algorithm 

should be increased as the number of points in the transverse plane is 

increased. For the 10 x 10 mesh, 10 sweeps were required, while for the 

20 x 20 mesh, 15 were necessary. If the number of sweeps is not suffi-

cient, the calculation diverges explosively. 



These problems were run on a Control Data Corporation Cyber 74 

multi-processor System located at the Georgia Institute of Technology. 

For a 20 x 20 mesh, and 216 axial steps, the run times were about 8 

minutes for the velocity, 10 minutes for the temperature and velocity, 

and 15 minutes for the temperature, induction and velocity problem. 
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A 
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Figure 55. Axial Induced Field Contours for O O and at 

(a) L=0.001 , (b) L=0.005 , 

(c) L=0.010 , (d) L=0.100 
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Figure 97. Current Density Vectors at 

(a) D=0.001 , (b) L=0.005 , 

(c) L=0.010 , (d) L=0.100 

Case A 0 0 on Parallel Walls and G=inf. on Perpendicular Walls 
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Figure 114. Current Density Vectors at 

(a) L=0.001 , (b) L=0.005 , 

(c) L=0.010 , (d) 3L=0.100 

Case C 0=infinity on Walls and O O on Corners 
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Figure 116. Current Density Vectors a t 

(a) L=0.001 , (b) 3>0.005 , 

(c) L=0.010 , (d) L=0.100 
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CHAPTER VI 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

It is possible to conclude that the three-dimensional MHD entry 

problem has been solved for low Hartmann number. The accuracy of this 

Solution can be improved by a number of means. First of all, better 

treatment of the induction boundary conditions, both mathematically 

and numerically could be imposed. The ideal treatment, however, would 

involve a seperate Solution of the induction equation in the duct wall 

itself, and then the matching of this Solution to that in the fluid 

region in such a way as to satisfy the boundary conditions at the inter-

face. Numerical treatment of the boundary regions can also be improved 

by such means as specification of slip values at the wall. These slip 

values are calculated by assuming an appropriate property Variation 

37 
near the wall, e.g. quadratic or exponential. 

No claim is made as to having explicitly solved the Tokamak 

blanket problem, because this involves much higher Hartmann and Reynolds 

numbers, and a different formulation and numerical approach would be 

required. For high Hartmann numbers the flow consists of a core with 

uniform velocity, and thin boundary layers on the walls. Adequate 

treatment of these layers, without the use of excessive numbers of 

mesh points, would require a rather severely varying mesh size. It may 

be possible to use new hybrid schemes involving finite element nodes 

in the boundary layer regions for which the errors associated with a 

severely varying mesh are not so large, coupled with a uniform finite 

difference grid in the core region. 



From these low Hartmann number Solutions a number of inferences 

are possible. First of all, the ideal configuration for heat transfer 

Channels in the Tokamak blanket appears to be one with metallic walls 

in the direction parallel to the poloidal field, and non-conducting 

i.e., ceramic, walls in the perpendicular direction. This form of 

Channel will only cause small pressure drop increases over the hydro-

dynamic case, since it is the conductivity of the perpendicular walls 

that significantly increases the pressure drop. From a heat transfer 

point of view this Channel is also good, since the main thermal 

gradient in the blanket will be in the radial direction, i.e. the 

direction that is perpendicualr to the poloidal field, and thus perpen

dicular to the metallic walls. As a result, the main heat flow will 

not be affected by the two ceramic walls. If two ceramic walls are 

not acceptable, appreciable reduction of the pressure drop is also 

possible by electrically insulating the corners of a metallic duct, 

and including current breaks, particularly in the walls perpendicular 

to the imposed field. If the electrical insulator used for the corners 

is a good thermal conductor e.g., beryllium oxide, significant heat 

transfer enhancement is associated with this corner insulation. 

Owing to the high Reynolds numbers in the Tokamak blanket, the 

entry region will be rather long. This long entry length will be 

made even longer by the presence of the toroidal magnetic field along 

the axis of flow. Thus, the flow is not expected to be fully developed 

in the length of Channel that is in the blanket, and this emphasizes 

the importance of the entry calculation. Inclusion of the axial field 
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is the next Step to be taken in the development of this method to 

eventually solve the real blanket case. 

Many problems of interest remain to be solved in this area. 

Flow around a U shaped length of pipe or a right angled bend in the 

presence of one or two field components is one example. In fact, 

the Solution to the latter could be used as the inlet conditions for 

the entry problem, to obtain more realistic modeling. The transport 

of bubbles and voids within liquid raetal MHD flow is another. All 

of the above problems are three dimensional and they could possible 

be solved with variations of this procedure. 

In final conclusion, the recent rejection of lithium cooled 

blankets by some Tokamak designers in favor of lithium bearing but 

helium cooled ones, seems unjustified. It appears that the simpli-

fications caused by a lithium cooled blanket are substantial, while 

the penalties invoked by the same, are small. 



APPENDIX A 

The conplete set of coefficients for all eight eguations is pre-

sented here. 

u Momentum Equation 

The equation is, 

^ , 0 - V N , D + Vs,D+ » A ^ « ^ / DU(»P/^^+ B" »•« 

where , 

W^ ' VW ' VW 

V W ' B U = B ' / ^ - DU=DU'/Ap' 

and, 

AA= T 7 - L y , A '= T^+ L 
N n n ' S s 

Al= T Z - LZ
 f A.'^ TZ+ L & e. e w w 1 

B '= P Ü U P , Ü + s u 

V V V V V V SP 

where , 

F
T f (^y) (Az) n , DU = -Ay.^z 

AX " T>,U 

L - 4.- , l 7= AZ 
1 1 O V ^ TT S -ö- V TT 

2 n ,U 2 s *U 
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T z „ ^ y „ T z _ Ay 
e 2 e,U w 2 w,U 

Ty= _ i J*£L 1̂ = — -!^-
n Re 5 y n ' s Re d Ys 

T
z= _i W T

2
= _Jk tey) 

e Re 3 z ' w Re £)z 
e ü w 

2 
s

T r S ^ T " (Hx - Hx )rT/3z-(Hyü - Hy^ T T ) ^ ~ ^ U Re Rein n s U ^P^D J P f U ü x 

Sp= 0. 

v Mcraeiitum Eguat ion 

The eguation is, 

VP,D= V N , D + V S , D + V E , D + V W , D + °V(Pp- PS 'D+ ßV- (A-2) 

The ccefficients are the same as for the u eguation except 

vteärJ^P^-^p^^ + (Hxn" llVvaz) 

and, 

DV = -4 Z. 

w Momantum Eguation 

The eguation is, 

WP,D" V N , D + SSWS,D+ V E , D + V B , D + B " + D"(PP-PW'D- Ä - 3 ) 
-,W, _W 

The coefficients are as for the u eguation except, 



228 

2 { ) 
Sr== -p^£— ) (Hz - Hz )Az~ (Hy - Hy )^y ( TT U Re Rem ) n s w e ^ V ^ f U 

- l - a 4 i (Hxe" % ' ^ (HZP,D- HzP,U> ^ | 

and, 

Dw '= - d y . 

Energy Equa t ion 

The equa t ion i s , 

V" VW ^W VW VW BÖ (A-4) 

The coefficients are as for the u equation except, 

<&= 1 J*z) nY^ _ A _ JAz^ 
n Re Pr 3y ' s R e P r ^ 

T
z= 3- Ĵ y)_ , T z = 1 löy)_ 
e Re Pr 3 z w Re Pr 3z 

e w 

S == Q/Pve Pr. 

Pressure Correction Equation 

The equation is, 
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Pp,D= Ai^,D+ VJS,D+ \^,B+ V*,D + ̂  (A-5) 

where, 

* CVDV 

T» A£ 

V V 

A - C D 

S A£ 

CWDW 

a — _ fr 
» CW DW 

A£= 2CV DV+ 2CW W 

and, 

BP= (CV(VJ5- v*) + C
W(w*- w | ) + C

u(Up f D-^, f D))/^. 

where, 

Cu=Ay.Az , Cv=£x./3z , Cw= Ax.Ay . 

Hx Induction Equation 

The equation is, 

,̂0= W V^D* W V W ***• (A-6) 

The coefficients are as for the u equation except, 

B'= su r F = 0 
u 

^p~ n LY+ T7-n s 
L y + T*+ L*+ T^_ L * 

s e e w w 

n Rem 
Uz) T ^ - i _ ^ ) 

"s Rern ~̂ y 
s 

T2» e RöTt 
(<3y) 
3z ? 

e 

rpz_ 1 (&y) 
"w Rem t)z w 
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and, 

S U = V ( - ( V v s ) A 2 - iv7e-VA^U+ ( V u s ) Ä Z + ( H y nV ^ " s * 2 

+ » zeV V w 1 ' ^ • 

Hy Induction Equation 

The equation is, 

^PfD
= V V ASH Ŝ,D+ W , D + W ^ ^ 

The coef ficients are the same as for the u equation except, 

AP= FU+ *k+ ̂ + ̂ + ÄW" ̂  a s 

and, 

~ ( H V HV# ) VP,D" ̂ ,UVP,Uli5r( 

+ ((v ~ v )ÄZ+ (Hz v - Hz v )£y)TI . n s e e w w -* U 

The T's are the same as for the Hx equation. 

Hz Induction Equation 

The equation is, 

Hz 
fIZP,D=AN2^,D+ ÄSH2S,D+ A A , D + V W B • ( A - 8 ) 

The coefficients are the same as for the u equation except, 
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*P= V ^ + Ah+ Ak+ «W- a e + ^w 

and, 

- (Hz e - H ^ y ) W p f D - H X p ^ ^ j +(wn- ws)Az 

+ (Hy w - Hy w )T7^z . J n n -'s s U 

The T 's a re the saiae as for the Hx equation. 
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