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NOMENCLATURE

Vector Quantities

Magnetic Flux Density

Magnetic Field

Electric Field

Current Density

Fluid Velocity

(These quantities may have camponents e.g. Hx, Hy, Hz and

<l 4l #= = oW

u, v, w in the %, y, or z directions respectively.)
Scalar Quantities

Imposed Magnetic Field in y(Poloidal) Direction
Imposed Magnetic Field in x(toroidal) Direction
Duct Width

Heat Transfer Coefficient
Thermal Conductivity of Fluid

¢ g

Pressure in Fluid

Wall Heat Flux

Volumetric Heat Source

Axial Length of Duct

Viscosity of Fluid

Magnetic Permiability of Fluid
Electrical Conductivity of Fluid
Electrical Conductivity of Wall
Density of fluid

Ratio of Imposed Fields (Toroidal/Foloidal)
Duct Wall Thickness

Temperature of Fluid

narr"(\bf\n\m}‘\woéo:*uwru

Dimensionless Quantities

C Conductance Ratio



Hap Poloidal Hartmann Number

Hat Toroidal Hartmann Nunber

Ec Eckert Number

L Dimensionless Axial Distance
Nu Nusselt Nurber

Pe Peclet Number

Pr Prandtl Number

Re Reynolds Number

Rem Magnetic Reynolds Number
Coefficients and Dunmy Variables Associated with the Numerical Analysis

Ai, BJ, Ck, DJ, Fl’ LII;, S T:ln, are coefficients where:

lf
i=N,S,EW,P
j = any dependent variable
k =u,v,w
1l = U,D (upstream or downstream)
n=Xx,y,z
m = n,s,e,w
lf)i,l any Dependent Variable
r any Transport Property

>, P ,E ,P, f ,QL, are dumy variables associated with the TDMA.
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SUMMARY

Magnetohydrodynamic flow in the entrance region of a square chan-
nel is considered. This flow situation is shown to be of a type found in
Tokamak fusion reactor blankets with circulating lithium coclant. The
presence of secondary flow in the developing region forces three dimen-

" sional modeling of the problem. The three momentum, three induction,
pressure and energy equations that describe the system are cast in para-
bolic form and integrated numerically by the use of a marching procedure
in the stream-wise direction. Mesh size limitations restrict the solu-
tions to low Hartmann numbers.

The results show that the MHD pressure drop is strongly dependent
on the electrical conductivity of the duct walls perpendicular to the
imposed transverse magnetic field and relatively insensitive to the con-
ductivity of the parallel walls. Velocity and temperature profiles are
flattened and heat transfer coefficients increased with the largest
increase occurring when the duct corners are electrically insulated. _
Hydrodynamic entry lengths are shown to decrease significantly with Hart-
mann number increase, and minutely with wall electrical conductivity
increase.

The main conclusions are that, by judicious use of current breaks,
insulated corners and walls, the MHD pumping losses should be reduceable
to a tolerable level, and at the same time the benefits of blanket simp-
lification and heat transfer enhancement can be enjoyed.



CHAPTER I

INTRODUCTION

Objective

Controlled thermonuclear fusion offers an essentially limitless
energy source. Much complexity, unfortunately, is involved in harness-
ing this tremendous potential. Fusion reactions are well understood
and have been amply demonstrated by many types of destructive nuclear
weapons. While fusion energy has been profusely used by the military,
unlike fission it still awaits commercial use. Design of a power pro-
ducing fusion reactor is made very difficult by the need to provide
containment for a super-hot plasma.

0f the various means for providing containment for the fusion
plasma, the magnetic confinement concept is currently in the most
advanced stages of study. A number of designs utilizing magnetic confine-
ment have been proposed, and out of these the Tokamak type machine appears
to be the most promising. 1In this design the plasma is confined in a
toroidal geometry by a strong magnetic field. The only possible means of
plasma leakage is by slow diffusion across the toroidal magnetic field
lines. Since the ignition temperature for deuterium-tritium fusion i3
lower, the first generation of such reactors will probably operate on
this fuel mixture.

Deuterium is easily extracted from sea water, of which there is
no shortage, while tritium, not being naturally occurring isotope, has
to be produced. The only really feasible'means of tritium production
is to breed it in a lithium bearing blanket in which Li®(a,T) and Li”

(n,n”T) reactions will take place. The majority of the fusion reaction



energy appears in the 14 MeV neutrons, and thus the blanket has to
serve the purposes of neutron moderation and heat removal as well.
This blanket is placed between the plasma and the main magnetic wind-
ings and heat removed by a circulating coolant can be used for gener-
ating electricity by means of a conventional heat engine. Figure 1
shows a typical conceptual design of such a system.

This problem of heat removal from the controlled thermonuclear
reactor is likely to be one of the key factors affecting the plant
economics. Many important parameters such as capital costs, power plant
efficiency, fuel breeding, induced activity, material and structural
criteria and the reactor lifetime are affected by the choice of the
coolant and the geometry of the blanket. Since the reactor size and
capital costs are directly related, maximizing the first wall power
loading is desirable. Even though it is clear that other factors such
as radiation damage, and plasma stability may strongly affect this al-
lowable wall loading, the ability to cool the wall appears to be one of
the major factors involved in establishing its limit.

The most obvious and simple solution to the problem is to use
lithium nof only as the breeding material, but also as the heat trans-
fer medium. Liquid lithium being metallic, has a high boiling point and
excellent heat transfer characteristics. Conceptually, the blanket
could be a very simple structure with the lithium in it serving all
the functions of neutron moderation, tritium breeding and heat removal.
However, the blanket, being inside the.toroidal field coils, is subject
to the intense toroidal magnetic field, generated by the coils for the

purpose of plasma confinement, and also the relatively weaker, but still
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strong, poloidal field generated by the plasma current. Any circulating
fluid in the blanket would then have to be pumped along and across mag-
netic field lines. If the fluid is electrically conducting, as lithium
is, these magnetic fields affect the flow by the principles of magneto-
hydrodynamics and alter the velocity profiles in the channels. The
ultimate effect being to increase the pressure drop and alter the heat
removal properties of the flow.

Fears that this pressure drop may be excessive, have prompted
recent reevaluations of lithium circulating blankets. The magneto-
hydrodynamic pressure drop is a maximum when the applied field is
transverse to the flow direction and zero when the field and flow are
exactly parallel. Therefore, to reduce the MHD head loss it is obvious
that the flow direction should be kept aligned with the toroidal field
as much as possible. This constraint results in designs such as that
shown in Figure 2. The balnket is segmented into a number of modules
and each has an independent coolant circuit. The main flow is only
perpendicular to the toroidal field when the coolant enters within the‘
region of the coils. Then the flow direction immediately becomes
toroidal and there is no longer a retarding body force due to the
toroidal field. However, the weaker poloidal field is now normal to
the flow and it exerts a retarding force.

This particular situation leads to two interesting magneto-
hydrodynamic (MHD) flow problems, neither of which had been solved.
First of all there is the prcblem of flow around a right angled bend
in the presence of one or two imposed field components. Scolutions to

this problem have not been attempted. However, if it is assumed that



Figure 2. Ducted Coolant Blanket Module



in crossing the intense toroidal field, before the corner is turned,
the flow becomes essentially slug, which is consistent with the very
high toroidal Hartmann number, the second problem presents itself.
When this slug flow becomes parallel to the toroidal field, there is
a tendency for it to relax towards the fully developed profile that
corresponds to the now transverse poloidal magnetic field. However,
the toroidal field retards this development, and the result is a flow
that probably never reaches a fully developed state before it has to
exit from the blanket. This problem, which is the object of interest
in this research, can be thought of as a MHD entry problem.

Flow in a duct develops by virtue of deceleration of the slug
profile near the walls under the action of viscosity. This causes net
transfer of fluid towards the center of the duct, and transverse secon-
dary flow is generated to accomplish this task. As the transverse
magnetic field has differing effects on secondary velocities parallel
and perpendicular to it, this entry problem is always three dimensional,
even in a circular tube. To be more in keeping with conceptual blanket
designs, the duct considered was a square one. Since the problem in-
volves simultaneously developing velocities, temperatures and induced
magnetic fields, and is non-linear, the method of solution must be

numerical.

Background

The literature was examined for methods relavent to the solution

of the three-dimensional MHD enftry problem in a square duct.

Purely Hydrodynamic Duct Flow




The momentum equation for fully developed laminar flow in a
rectangular duct is linear, and an exact analytical Fourier series
solution is available.2 Corresponding exact3 and approximate
temperature solutions are also available for both the cases of con-
stant wall temperature around the periphery, and constant imposed peri-
pheral heat flux. While the hydrodynamic entry problem in a circular
tube can be treated as two-dimensional, the corresponding problem for
a rectangular duct cannot. Because it is three-dimensional and non-
linear in nature, it was not until 1972, that a satisfactory solution
to this entry problem for a rectangular duct was obtained.

Generally, the entrance flow in straight ducts of constant
cross—section experiences no streamwise separation, although cross
flow recirculation may prevail. For these cases the Navier-Stokes
equations can be parabolized with respect to the streamwise direction,
and integrated numerically by a marching technique in the streamwise
direction. Patankar and Spalding5 first introduced this assumption
and successfully employed it to solve the entry problem in square
ducts with all stationary walls as well as with one laterally moving
wall. Their results showed excellent agreement with the painstaking
experimental analyses of Goldstein et al.,6 and Beavers et al.? Soon
afterwards, Caretto et al.8 and Curr et al.9 developed alternate
numerical solution techniques for the parabolized equations in terms
of primitive variables, or in terms of vorticity and velocity. All of
these formulations yielded accurate solutions for the stationary

boundary and one moving wall cases.



Brileylo modified the original technique of Patankar and
Spalding by including some of the off diagonal elements in the
coefficient matrices for the velocity and pressure corrections.
However, this improvement did not seem to have appreciable effects.
Ghia et al.ll applied Briley's method to polar ducts, again with good
results. The original method of Patankar and Spalding has been
extended to include the magnetic induction equations and used to

solve the postulated problem in the research.

Magnetohydrodynamic Duct Flow

The classical work in the area, of course, was that of Hartmann
who first solved for the effect of a transverse magnetic field on an
electrically conducting fluid flowing between parallel plates. He
obtained the well known Hartmann profile after having assumed steady,
uniformly conducting, incompressible laminar flow with no variations in
the flow direction. Shercliffl3 solved the same problem for rectangular
ducts with non conducting walls. The case for rectangular ducts with
perfectly conducting walls was solved by Chang and Lundgren,l4 and
Goldl5 obtained the solution for circular pipes with non conducting
walls. Shercliffl6 postulated a boundary condition applicable te thin
finitely conducting walls. Using this result and rather involved mathe-

matics, Thara et 31.17 and Chu18 solved the arbitrary conductivity

19,20
problem for circular and rectangular ducts respectively. Hunt, °’
after making the high Hartmann number approximation, used boundary layer
analyses to solve for the mixed wall rectangular duct cases. This

involved various combinations of non conducting, perfectly conducting,

and finitely conducting walls.



The principal result stemming from all the above work is that
for a transverse field and laminar flow, the effect of the field is to
induce currents resulting from the VxB induced emf. These currents
flow in one direction in the core of the flow and return either through
the walls (normal to the field) if the walls are conducting or along the
slower moving boundary layers on these walls. The currents, in turn,
give rise to a JxB Lorentz force, which acts parallel to the fluid
motion, retarding the core and accelerating the boundary layers if the
walls are non conducting or merely retarding the flow if the walls
provide return paths for the currents. The result is a thinning of the
boundary layers on walls normal to the field, a flattening of the veloc-
ity profile in the core, and, for conducting walls, a large net force
opposing fluid motion. In the case of insulating walls, the currents
lie entirely within the fluid and there is no net Lorentz force, but
the velocity profile is flattened and viscous resistance is increased
owing to steeper gradients near the walls. The boundary layers on walls
parallel to the field are not affected to the same degree.

The major conclusion is that if the ducts cannot be made insula-
ting the magnetic pressure drop is proportional to the square of the
Hartmann number. Since the electrical conductivity of most refractory
metals is somewhat similar to liquid metals, these pressure drops could
be minimized by insulating the inner and/or outer surfaces of coolant
channels by perhaps a ceramic coating covered, in turn with a material
compatible with lithium.

All of the MHD papers referenced above have been analytical and

their solutions are generally in awkward series form. Hoffman and
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2
Carlson ! have approximated these results by the following expression

for the fully developed pressure gradient in circular and rectangular

ducts,

-p2 dp _ . f Ha® tanh Ha _ , D® dP Ha?c
uUO dx Ha - tanh Ha uUO dx B=o 14+C

where all the symbols are as defined in the nomenclature and K is a
dimensionless parameter that equals 1.0 for rectangular and 1.3 for
circular ducts. This expression simplifies further for the limiting
cases of C equal zero and C equal infinity, and it has seen wide use
in the calculation of pressure drops in fusion blanket systems.

Strangely enough there has not been much application of
numerical analysis to the solution of MHD problems. For fully devel-
oped rectangular duct flow, Chu22 has reconfirmed his earlier Fourier
series solution by use of a finite difference net and a relaxation
procedure. Wu23 has shown the applicability of the finite element
method to one dimensional, unsteady, rectangular duct flow of low mag-
netic Reynblds number. The low magnetic Reynolds number assumption
allowed him te neglect the induced field calculation.

Shercliff,16 using various approximations, tried to manipulate
the MHD entry problem in two dimensions for a circular pipe. However,
he was unable to arrive at the developing velocity profiles explicitly.
Shohet et a1.24'25 numerically solved the MHD entry problem for a

parallel plate channel and a eylinderical annulus. Besides their analyses

being twc dimensional, they also assumed a low magnetic Reynolds number
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and thus avoided the induced field calculation. Thus, besides its
possible application to the Tokamak blanket situation, the three-
dimensional MHD entry problem, including induced field computation,
stood out as one that had not even been attempted. It was the primary
purpose of this research to solve this outstanding problem.

For an aligned field there is no interaction with the velocity
and the pressure drop is purely hydrodynamic and thus much less than a
hydromagnetic pressure drop. It is this fact that forces blanket
designers to orient the main flow in the torecidal direction so that it
only crosses the relatively weak poloidal field. Another effect of
the aligned magnetic field is to delay the full flow development. This
development requires lateral motion in the duct and such fluid motion

is impeded by the field.26

Magnetohydrodynamic Effects on Duct Heat Transfer

In the absence of a magnetic field the heat transfer to single

27528 To the extent

phase liquid metals is relatively well established.
that it steepens the velocity profile at the wall, a transverse magnetic
field may be expected to increase the heat transfer in laminar flow.

The problem in its various forms has been the subject of a number of
analytical treatments involving flat ducts, circular pipes, constant
wall heat flux, constant wall temperatures, insulating and conducting
walls. The most recent papers appear to be those of Gardnerzg on the
circular pipe problem and of Michiyoshi and Matsumot030 and Back3l on
the flat duct problem. Most of the worx is reviewed and referenced in

32
a paper by Regirer. For Hartmann numbers below about 5, the =ffect

of the magnetic field is not very significant. Above Hartmann numbers
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of 100, the Nusselt numbers approach asymptotic values.

Research Overview

The three-dimensional MHD entry problem required the simulta-
neous solution of three momentum, three induction, one pressure cor-
rection and one energy equation. By exploiting certain similarities
between this family of equations, it was possible to cast them into a
parabolic form ameanable to the application of streamwise marching
integration. Since the finite difference mesh used was uniformly
spaced throughout the transverse plane, the solutions were limited to
low Hartmann number. This is a direct consequence of the steepening
of gradients near the walls, and the resulting need of finer grid in
these regions to obtain proper resolution as the Hartmann number is
increased.

Due to the low Hartmann number of the solutions, no claim is
made as to having explicitly solved the Tokamak blanket problem. How-
ever, besides setting up a sound computational framework for many
possible future problems, these solutions provide much insight into the
effects of wall conductivity on developing and fully developed MHD duct
flows. Various means of combating high MHD pumping requirements, such
as insulating corners, inserting wall current breaks, having some walls
conducting and some non conducting, have also been studied in this work.
The effect of the magnetic field strength on heat transfer has also been
observed, and some conclusions and recommendations directl§ applicable
to Tokamak blankets, have been made in the last chapter.

Mathematical formulation and derivation of the basic equations

is presented in Chapter II, while the numerical methods used to obtain



13

their solution are detailed in Chapter III. Extensive testing of the
computer program and its calibration against known solutions and experi-
mental results was carried out, and some of these results are shown in
Chapter IV. Chapter V presents the current results obtained for the
three-dimensional MHD entry problem, and Chapter VI concludes this work

and contains some suggestions and recommendations.
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CHAPTER II

MATHEMATICAL FORMULATION

Geometrical Arrangement

The problem of interest is to be solved in a square duct. The
orientation of the axes with respect to the duct is shown in Figure 3.
The main flow is along the x direction which is also the toroidal direc-
tion. The poloidal direction is then labeled y. Velocity components
along the x, y and z axes are u, v and w; respectively. Induced magne-
tic field components are Hx, Hy and Hz, respectively. The length of the
duct, R, is assumed to be much greater than the width of a side, D.

This duct could be part of the first wall, in which case one side would
be exposed to the plasma. This would result in a heat flux being impos-
ed on that wall, and an internal heat generation term that would vary

across the duct crossection.

Basic Equations

The equations that define the problem are the continuity equation,
the Navier-Stokes equations, the energy equation, and Maxwell's equations.
Steady, newtonian, laminar, incompressible and constant property flow is
assumed. For strong magnetic fields, laminar flow has been shown to per-
sist even at Reynolds numbers much higher than those found in fusion
blanket channels,33 due to the turbulance damping effects of such fields.
Coolant temperature rises of about 200°C are expected in fusion blankets,
and this temperature difference results in lithium properties such =zs

the density, specific heat, thermal conductivity changing by a few
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percentl The viscosity i1s the most temperature sensitive, and over

this range (300°C - 500°C) shows a variation of about 10%.28 Thus, the
laminar flow assumption is good, and the constant property assumption
reasonable. The MKS system of units is used wherever units are required

in the following formulations.

Based on these assumptions the continuity equation becomes,

VeV =0 (1)

The Navier-Stokes equations are,

pVeVV = -VP + uv?V + J X B (2)
where the J X B term is simply the Lorentz body force.
Maxwell's equations and the appropriate constitutive equations

for the steady state are,

VXE=0 (3).
VEB=yuJ (4)
7B =0 (5)
J=0(E+VXB) (6)
B = Eo'i'ueﬁ_ (7)

Hall current has been neglected in equation (6) which is Ohm's
law. Assuming an isotropic medium allowed the writing of equation (7).

Now that the basic equations ﬁave been stated, the magnetic induc-
tion equations need to be derived. Taking the curl of Ohm's law (eq. 6)

and using equation (3) gives,



17

o(VXE)+o0oVX (VXB)

<
b
ol
[

o(B-VV) - o(V-YB) . (8)

The curl of equation (4) yields,

VXJ=—VX((VXB . (9)

1
He
Use of equations (5), (7) and (9), and the fact that the imposed

magnetic field Bo is uniform, results in,

VXJ=7V(eH - V%H = -v2H . (10)

Combining equations (8) and (10) leads to,

g(B+YV) - o(V-VB) + V?H = 0 . (11)

Use of equation (7) and the uniferm field assumption gives,

ﬂ_._ H — __l__ v - l 2— L i) Q_ K72
VDH - HDV oy v2H + s (B_0) ¥ (12)

which is the general form for the magnetic induction equation.

It is illuminating to consider the similarities between the induc-
tion equation (12) and the momentum equation (2). The first set of terms
on the left hand side of the induction equation is similar in form and
character to the convection terms in the momentum equation. These terms
correspond to a convection of the induced magnetic field. The first set
of terms on the right hand side of the induction equation corresponds to
the viscous terms in the momentum equation. Finally, the second set of
terms on the right hand side of equation (12), being source terms whose

magnitudes are dependent on the imposed magnetic field, directly
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correspond to body force terms in the momentum equation. It shall be
seen later that it is because of these similarities that the same gen-
eralized numerical procedure can be used to solve the momentum, induction
and energy equations.

The only equation remaining is the energy equation,

bcp(?-ﬁ) = k(V2T) + J%/0 + Q" (13)

where J%2/0 is the contribution due to Ohmic heating, Q;' the nuclear
heating term, and the Viscous dissipation function has been neglected.
Again, the diffusion and convection terms correspond to the similar terms
in the momentum and induction equations.

It is obvious that equations (2), (12) and (13) are elliptic in
their full forms. The cause of this, of course, is the diffusive terms
VZ?, where ¥ can be velocity, temperature or induced magnetic field.
Parabolizing these equations in the axial coordinate involves negletion
of the axial diffusive terms. The elipticity in the other two coordi-
nate directions is retained. It must be mentioned that this approxima-
tion is possible only when:5 (a) there exists a predominant direction
of flow (i.e. there is no reverse flow in that direction), (b) the dif-
fusion of momentum, heat and induced field is negligible in that direc-
tion, and (c¢) the downstream pressure field has little or mo influence
on the upstream flow conditions.

When these conditions are satisfied, the coordinate in the main

flow direction becomes a one-way coordinate, i.e. the upstream conditions

can determine the downstream flow properties, but not vice-versa. As
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shall bé more fully explained in the next chapter, it is this convenient
behavior that enables the employment of marching integration from an up-
stream station to a downstream one. Since the flow is strongly convec-
tive, the above stipulations are almost identically satisfied for the
momentum equations. Only at very low Reynoclds numbers is axial viscous
diffusion of any significance. The importance of axial conduction in

the energy equation is measured by the magnitude of the Peclet number,

It has been shown that eliminating axial conduction for Peclet numbers

of about 10 causes errors in the heat transfer coefficients of a few per-
cent, while the errors associated with Peclet numbers of around 100 or
more are essentially negligible.Z? Most practical applications corres-
pond to Peclet numbers of about 100 or higher. Except for very near the
entrance, the induced field variations are expected to be small in the
axial direction, and especially since there is essentially no axial
current flow, setting all axial second derivatives to zero in the inducj
tion equations seems a reasonable assumption. Here the magnetic Reynolds
number determines the relative strength of the diffusive and convective

terms.

Boundary Conditions

Figure 4 shows a crossection of the duct of interest. Region 1
is the interior which is occupied by the fluid. Region 2 is the wall
itself, with finite thickness t, where t is much less than the side D.
Region 3 is vacuum extending up to infinity where a constant, uniform

magnetic field Bpy acts in the y-direction.
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The momentum and energy equations have to be satisfied only in
region 1, whereas Maxwell's equations (3) to (7) have to be satisfied in
all space. Zero velocities at the duct walls are specified as boundary
conditions on the momentum equations. Boundary conditions for the walls
being at a constant temperature or subject to a constant heat flux are
imposed on the energy equation. These are of a standard form and will
be stated in more detail later. The description of the system is com-
pleted by imposing continuity of tangential components of electric poten-
tial E; and of normal and tangential components of magnetic field E} at
interfaces, plus boundary conditions on B and E at infinity. It should
be mentioned that continuity of tangential components of E_implies no
surface currents. This is appropriate, since in non-magnetic materials,
surface currents occur only in the presence of unsteady magnetic fields.

Hx, the axial induced field component, will be much larger than
Hz or Hy since it is generated by the primary motion, while they are
generated by the secondary flow. In region 3, Oq is equal to zero, thus
the current is zero and equation (4) forces the curl of H to be zero.
Since Hy and Hz are virtually negligible, this means that Hx is essen-
tially a constant here. However, since Hx must go to zero at infinity,
Hx must be zero in region 3.

In the wall all velocities are identically zero, and so Ohm's law

states the continuity of tangential electric field at the interface Clas,

E = E at C

or,
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Jtl - Jtz : (14)

Also, zero velocities in the wall result in the induction equa-

tion (12) becoming,

VZH, = 0 (15)

in region 2. Expanding equation (14) results in the following expres-

sions for the currents,

_ oHz dHy

JX = "~ oz (16)
_ 3Hx - 3Hz

Jy T B3z X (17)
- OHy _ 3HX

Jz 9x v ) (18)

Since the induction equation of most importance is that for the
Hx component, explicit boundary conditions for this equation are derived
first. From equations (17) and (18), if Hy and Hz are much smaller than

Hx, it is possible to write,

Jy = 5 (19)
_  oHx
Jz 5y (20)

Under the assumption of no axial currents, it is possible to

write,
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5, = 3= (21)
and from equation (14),
i T (22)
9, an 9, on

where t is the tangential direction and n the normal. Equation (22)
holds at the interface 1,
So far it is possible to state the boundary conditions on Hx as

follows: Hx = 0 on C2 the boundary between regions 2 and 3; Hx = Hx ,
2 1 2

g 3Hx1 = g BHXZ on C1 the boundary between regions 1 and 2. This is a

1
an an

rather difficult problem since it involves two domains and two sets of
boundary conditions. The two domains being, of course, the duct interior
where equation (12) applies, and the duct wall where equation (15) holds.
For certain special cases this problem can be simplified. If the duct
wall is a perfect insulator (02 equal zero) then'Hx2= 0 so that it is
only necessary to solve equation (12) with Hx1= 0 on C,- If the duct
wall is a perfect conductor (02=¢0 the boundary conditions on equation

(12) become 3Hx /én = 0 on C . There is another limiting case first
1 1

derived by Shercliff16 for which the problem reduces to solving equa-

tion (12) in region 1 with boundary conditions given on Cl. Using the

fact that the thickness of the duct wall is much less than the duct

width allows the x component of equétion (15) to be approximated by,
32Hx

2

W"= g . (23)
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For a thin wall, the solution to equation (23) is locally linear

and can be represented as,

szs a(n-t) (on Cl, n=0) (24)
and thus,
9Hx
2 = q
on C
1
giving,
o = 1 (Hx
t 2|¢
1
9Hx _ 1 (ux } 1 (Hx
an [C t 2l¢c t lic
1 1 1

1| + % @x| =0 . (25)

This is Shercliff's thin wall boundary condition and can be used
for walls of finite conductivity. The limiting cases for 02 equal_zero
and 02 equal infinity are included in this statement.

For the other field components, Hy and Hz, boundary conditions
are difficult to specify explicitly. Except for very near the entrance,
these fields, which are generated by the secondary flow, are expected to

be very small. Thus, & reasonable approximation seems to be to allow
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these fields to vary linearly within the wall as in equation (25) for
tangential walls, and let the fields go to zero at all normal walls.

Camponents of the Iorentz Force

The Lorentz force components can easily be shown to take on
the following forms.

x-Camponent

{0 o, (26)
y-Caomponent

Btx %gg - %%; (27)
z-Carponent

Bpy SHz _ BHyl _ Btx 9HX _ odHz (28)

ay dz 3z Ix
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The expanded forms of the momentum, induction and energy equations

then become the following.

Momentumn,
(B(lg;{u) 4 B(L;-yv) 5 B(Lla':)] = - %.ii + u g-;‘z'l—+ %ZE;]
- By %z - %ﬁ) (29)
o[ 252 - 52 )
+ Bt %%g-— %%%J (30)
p(a(;:u) s a(t;};v) & 8(;?;@) < .g.g + q %‘1+ g;
+ Bpy ) ~ (31)

oHz 9Hy | - Btx | aHx 3Hz
oz ax

9y a9z

With the no-slip boundary condition on all rigid walls.

Induction,

32Hx 3%Hx

3 (ve+Hx) 3 (w+Hx) 1
+ = +
dy? 3z2

oy 3z crue

X T pr‘é;

|
+-l~{th an Bu)
He

3(u-Hy) . 3(u-Hz)

i 3y oz (32)
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9(u-Hy) . -3(weHy) _ 1 [3%Hy _ 3%Hy| , 1 v 3y
ox i 3z - o, dy2 T 322 ¥ Mo BE% ax APN ay
3 (v Hx) 3(v-Hz)
+ o + %5 (33)
3(u-Hz) , 3(v-Hz) _ 1 [328z , 92Hz| 6 1 ( B aw
+ = £ e 4 Bpy &=
X 3y ou, | 8y2 922 My kth ax = P 3y

d(w-Hx) , 3(w-Hy)
7 Ty (3%

with the boundary conditions described by equation (25) and its limiting

cases.

Energy,

1| [emz _ 3my)?
o] oy Jz

A(u-T) | 3(v'T) , 3(wT) | _ 32T . 32T
P Pl o9x + oy g 9z =k dy2 + 9z2

2 2
+(8Hx _ 3Hz] +faHy _ BHKJ ” Q;'

8z - 9x ox 3y
(35)

with either a fixed temperature boundary condition, T = Twall’ cr a
- specified heat flux boundary condition such as,

dT " (36)

where q " can be zero for thermal insulation.
W ;
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Dimensionless Equations and Boundary Conditions

To non-dimensionlize the above equations, the following dimen-

sionless quantities are defined,

]
I
]

u u/U0 , Vv v/U , W w/UO 4

x"=x/D , y"=y/D , z=2z/D , P’= P/pU02 ;
Hx” = b Hy” = il fiz” = al
Bpy ’ Bpy °’

Bpy

Here Uo is the velocity of initial slug flow at the duct entrance,
D is the width of the duct, and Bpy is the imposed magnetic field in the
y-direction. For the temperature equation, it is appropriate to have
the non-dimensionalization compatible with the specified boundary condi-

tion. The constant wall temperature case requires,

- m 2
L -1, Q™D

o = - . IQ m]’= 0 - -
Tw Ti n k(Tw Ti)

while for the constant wall heat flux case it is preferable to define,

T - Ti
8=—n-]57£ 5 [Qn]=Qn quw

q;

Here, Ti is the uniform inlet temperature and q; the uniform wall
heat flux. Tw’ the wall temperature, is no longer constant for the
specified wall flux case, and thus can no longer be used in the non-

dimensionalization.
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The following standard non-dimensional parameters are also intro-

duced:

I

Reynolds number = Re UoD p/u

'

Hartmann number = Ha = BD(o/p)

Magnetic Reynolds number Rem = UOD cue

Nusselt number = Nu = hD/k
Prandtl number = Pr =y Cp/k
Conductance Ratio = € = g tiel
(Conductance of duct wall/conductance of fluid)
UOZ U2k
Eckert number = Ec = 2

cp(tw_Ti) Cp dy D

After performing the non-dimensionalization, the following equa-
tion set is obtained.

Continuity:

du , oV . oW

3 T hy Tz~ ¥ (37)

Momentum:

3uew) | 3(usv) | 3(u-w) _ _1,__[321.1 L 2%

_ _Hap (3Hy_8}ix L 3

Ix oy az Re | 3y* 3z%| Re Rem | ox oy o0x
(38)
3(vew) | 3(vey) L 3(vew) _ 1 32‘5 N az,\z, . YHap? |9Hy _ 8Hx| _ 3p
o0x ay 0z Re | dy 3z ReRem | 39x 3y oy
(39)
. . a 2 2
3(weu) , 3(wev) | 3Cwew) _ 1 [3%w 92w Hap? | 3Hz _ 3Hy
ax Ay 9z Re | ay2 = 3z2 ReRem | 3y 0z
- j"Hapz dHx _ 9Hz | _ 3p
ReRem| 9z Ix 3z (40)
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w = 0 are the boundary conditions at the duct walls,

y = Btx/Bpy, and Hap is the Hartmann number based on the transverse

(poloidal) field Bpy.

Induction:

3 (v+Hx) + 3 (weHx) - 1 32Hg 321y
3y oz Rem | 3y2 3z2
3(u+Hy) , da(w+Hy) _ 1 |[3%Hy , 52%Hy
+ = 4+
X 3z Rem | dy 3z2
d(u=Hz) ” o(v-Hz) _ 1 32Hz 32Hz
9% 3y Rem | 8y2 3z2

+

Y du

9%

+

Y 3v

ax

Y ow
ox

du , 3du + 3 (Hy-u) + 3(Hz»u)
oy oy 32 (41

+ Ov  3(Hx-v) , 3(Hz-v)
oy 3x 3z (429

dw , 8w . 3(Hx-w) . 3(Hy-w)
oy ax 3y (43)

The boundary conditions being the dimensionless form of equation

(25) and its limiting cases,

BHt N Ht/
an |[wall
and,
H
T lwa11 = 0
Energy:
9(u+e) . 3(v-8) , 3(w-8) _ 1 320
Ix 3y 9z Re Pr | ay?
2
+ oHx  3Hz & dHy _
dz ax Ix

328
9z2

oHx |2

ay—

K

0 (44)
2 2
Hap® Ec [[dHz _ BHy\
Re Rem* (| 3y 33}

+ Q"/Re Pr (45)
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The constant wall temperature boundary condition being, simply
8 = 1-0 on the wall, and the constant wall heat flux boundary condition

being the non-dimensional form of equation (36),

—— = -1-0 . (46)

Equation (46) is obtained by performing a simple heat balance at

the wall,

no_ _
¢ = h (Tw Tb)

and using Fourier's law,

or,

ds ; ;
= -1 , which is equation (46).
It should be mentioned that in the above equations and boundary
conditions, ths dimensionless variables should have primes on them, i.e.

x should be x”, and so on. However, in the interest of brevity, the

primes have been left out.
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All that needs to be added to equations (37) through (46) to com-
plete the mathematical formulation of the problem is a statement on the
entry conditions. Since the equation set is parabolic in the axial
direction, no exit conditions are required and in fact cannot be toler-
ated. At the duct entrance,uniform slug flow is specified and all other
quantities, temperature, pressure and induced magnetic field components

are constant or zero.
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CHAPTER III

NUMERICAL FORMULATION

The Finite Difference Equations

Inspection of equations (38), (39), (40), (41), (42), (43), and

(45) reveals that they can all be written in the following general form,

3(u-¥) , a(vey) , 3(w-¥) _T 3% T 3%y
ax T oy T ez = w2t szt Sy (47)

where ¥ is any of the dependent variables, I' is the appropriate trans-
port property such as viscosity or thermal conductivity, and S is a
source term. For dimensionless equations, I simply becomes the suitable
combination of non-dimensional parameters, e.g. l/Re Pr for the energy
euqgation and i/Rem for the induction equétions. The source terms for
the momentum and energy equations are body forces and heat generation
functions respectively, while for the induction equations they iﬁclude
imposed field components and some convective type terms. I1f eq. (47)
represents a momentum equation, an extra pressure gradient term is need-
ed. ©Since the pressure is treated as an unknown, the gradient is written
separately and not included in the source.

Equation (47) needs to be transformed into a finite difference
equation. In so doing, the approach of Patankar et al5 is followed. A
three-dimensional staggered grid is imposed on the flow field. This is
basically the MAC grid structure of ﬁarlow and Welch,aé and has the v
and w velocity components stored midway between the main points where

all other variables (u velocity, pressure, induced field components and
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temperafure) are stored. The staggered grid has the advantage of con-
venience in the computing of convective terms for variables ﬁlaced at
the cell center and pressure gradients for the v and w momentum equa-
tions. Figure 5 displays the grid structure.

The usﬁal way to obtain a finite difference equation from a par-
tial difference equation is to substitute for the individual terms in
the equation, expressions obtained from Taylor series expansions of
these terms. However, in this work the control volume approach has been
used to formulate the finite difference equations since it always ensures
total conservation of properties in all points in the domain.35 An in-
tegral equation can be constructed over the control volume shown in
Fig. 6, and by the use of the assumptions regarding the nature of the
variation of Y between the grid points, the finite difference equation
can be obtained. 1In other words, the finite difference equation is ob-
tained by expressing each term in the parent partial differential equa-
tion as an integrated average over a small control volume.

Figure 6 portrays the control volume of interest for equations
centered aﬁ the main nodes. The yz face of this same control volume is
displayed by Fig. 7. The N, 5, E and W points are the next adjacent
nodes where the variable under computation is stored. The n, s, e and w
points are on the boundary of the control volume itself, The dimensions
of the control volume are Ax, Ay and az,lwhile Gyn, 6ys, 6ze and sz are
distances in the respective directiogs to the next point at which the
variable under computation is stored. For a uniform grid, éyn, Gys, 626

and.ﬁzw will all be equal to Ay and Az. Since the v and'w velocity com-

ponents are stored at different locations, the positioning of their
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respective control volumes will be different. The yz faces of these
control volumes are shown in Figs. 8 and 9., It should be noted that in
programing the equations, the same index value (J,K) is used for vari-
ables stored at a particular central node, and for the v and w velocities
stored at the halfway points immediately south or west of that node.

In order to proceed with the integration of the equations over
the control volume, the nature of the variation of the dependent variable
¥ between the grid points must now be specified, as previously noted.
In the x direction, ¥ varies in a stepwise manner, i.e. the downstream
(x=xD) values of Y are supposed to prevail over the interval from X to

X sxcept at XU where U represents the upstream station. This assump-

D’
tion, called upwind differencing, is needed to make the finite difference
scheme a fully implicit one and ensure numerical stability. For the cal-
culation of the x direction convection and of source terms that may de-
pend on ¥, the variation of ¥ in the yz plaﬂe is also taken to be step-
wise. Thus, in the yz plane the value of ¥ is assumed to remain uniform

and equal to ¥_ over the dotted rectangle shown in Fig. 7 surrounding

P

the point P, and to change sharply to ?N’ WS, WE or ?w outside the rec-
tangle. For the cross-stream convection from the xy and xz faces of the
control volume, the value of ¥ convected is taken to be the arithmetic
mean of the Y values on either side of that face. Thus, a convenient
combination of the central-difference and upwind-difference formulae for
the first order derivatives hazs been used. For diffusion across the xy
and xz faces of the control volume, it is assumed that ¥ varies linearly

between grid points.

Consider the gereral eq. (47) term by term. The comective terms

will be integrated first in accord with the assumptions that have just
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been made. Integrating them over the control volume, and dividing by

Ax, one obtains,

1 g 3 R 3
&x!f e (u-¥)dv + 3y (ve¥)dv +f = (w #)dv]
Cv Cv Cv

which is,

AyAz [z_ Vs ]
[(”LP)P,D“ (uw)P,U] B T () = 52 (¥ g

W

= .
1= W
+ [-—2-— (LPEHJP) L ('{'JW‘F‘PP)]U Ay

In order to keep the scheme implicit, the downstream value uP D
3

in (u must be expressed in terms of u the upstream value. This

p,p P,U

is achieved by applying the continuity equation about the control volume.

In the present formulation this equation can be expressed as,

[DP]—u & —v]Az+[w—w]&y= 2 (48)

The above integration of the convective terms then yields,
Aybz _ - - 2 - Aylz
[UP U o Ax bz [vn VEJU By [we w]U]\PP [u Yp ,U] Ax

+ [{%}U {\PNH‘P}D-{E} {wSWP}D]M

), (rarey) -, (ve) oo
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This expression can be written as,

_ y .Y
B o = B b 1 (WN+?P) Ly (YS+WP)

Z
AT (w +y )
D D e E PD

z
—Lw I ‘Pw+‘~}‘P,D

which is the integrated convective terms divided by Ax, where,

- AyAz
Fy % (uP,U)
y - Az z _ Ay
L > (V)U : I 3 (w)U
F. = F.-217+217-21%+ 212
D U n s e W

For the diffusive terms, it is assumed that ¥ varies linearly

between grid points. Integrating them as before, the terms become,
3%y 32y
f(r 357 +Ie—) dv
Cv
and after dividing by Ax one obtains,

?N—?S ?P-?S TE—?P WP—WW
'y 5 -3 Az + T 3 -3 Ly
T Ys D Ze 2

If the quantities 17 and T° are defined as,

Ty= Tz and Tzz-zgh .

Sy z

then the diffusive terms divided by Ax becone,
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vy K _ v 8 zZ _ _ z i
Tn(‘FN WP)D TS(‘PP liJS)D+ TE(LPE wP)D TW(PP {JW)D

For the source term components that depend on ¥, the variation of

¥ in the yz plane is also taken to be stepwise. As before, one obtains,
Ss,av
¥
Cv
and after division by Ax, this yields,

S?Ay&z

This source term is separated into two parts equal to SU+SD‘PD .

The first part (SU) is computed from upstream conditions, while the sec-

ond part depends on Y¥_ and is thus part of the current implicit calcula-

D
tion,
The source terms in the momentum and induction equations are com-

plicated and will now be discussed. In the dimensionless axial momentum

eq. (38), the source terms are,

_ Hap? dHy _ 9Hx
Re Rem | 9x oy

As before, these terms are integrated over the control volume and

the result divided by Ax, giving

= HEEE = i . AyAz
54" Rerem [[Hxn He Jaz < [By, o-8yy ] 22 ] (49)

The second term of the above result, which arises from the inte-

gration of (9Hy/9x), is a potential troublemakér. Since the momentum



44

equations are solved first in the order of computation, the current
downstream value of Hy is not known yet. The only recourse is to eval-
uate the entire derivative at the upstream station, with the help of the
two station upstream values. Since Hy, being a transverse component, is
small near the entrance, and Ax, the axial step, is also small (espe-
cially near the entrance) this is not a bad approximation.

For the v and w momentum equations, the source terms are,

Y HaE2 [BHX BHXJ

Re Rem | 9x 3y
and,
_Hap® [8_Hz _ aHz] _ yHap? [BHX _ aﬂz]
Re Rem | 9y 3z ReRem | 3z 3x '
respectively.

Again the same problem associated with the (3Hy/3x) and (8Hz/3x)
derivatives arises. The remedy is as before, namely evaluation at the
upstream station. Integration over the control volume followed by

division by Ax yields,

2
- YHap® - Aybz | e -
0" Terem| Wp 5 Wp ), Tax T (e Ex)Ae (20)

and,

2 .
- Yy Hap _ _ -
SU Re Rem (Hzn st)Az (Hye Hyw)&y

y S (51)

_ YHap?| o o N, _
( X, wa} y (HZP,D HZP,U y bx ,

Re Rem



45

for the v and w equations respectively. It should be noted that since

none of the source terms are dependent on u, v or w, then for the momen-

tum equations, SD is zero.

The source term for the axial induction eq. (41) is,

du , du , 3(u+Hy) , 9(u+Hz)
B g g%
Y 3% Jy (i 9y * az

This term is integrated over the control volume using, again, the
assumptions that were made about the nature of the property variation.
After performing the integration and dividing the result by Ax, one ob-

tains

AyhAz
S = [ - ] Y -
g Y ) Ay T ) 82

+ ((Hy-u)n—(Hy'u)s) Az +((Hz -u)e ~(Hz -u)w)ﬁy

Simce S, is calculated from upstream values, use must be made

of the cominuity equationto obtain an expression for Up o in terms of -
>

(3v/3y) and (9w/dz) which are evaluated upstream. This process is the

game as was used in the derivation of the general difference equation.

Proceeding, one obtains

SU= Y (—-ﬁz (Vn—VS)“‘ Ay (we—ww)) + (un-us)é?.

+((Hy-u)n- (Hy-u)g Az + ((Hz-u)e— (Hz-u)w)Ay 5 (52)

The source terms for the transverse field components Hy and Hz

are obtainable from eqs.(42) and (43) as
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§3‘+ v i 3 (Hx+v) . 3(Hzv)

ax oy ax 9z
and,
dw Aw 9 (Hx*w) 3 (Hy-w)
AL LA
Y 3x dy T 3y <
respectively.
Integration gives,
_ _ r Aylz
Sy (Y{VP,D vp yl i vy HXP,UVP,U’) 0x
+-(vnfvs)&z + (Hzeve—szvh)Ay
and,

& . e Aylz
5y (Y[WP,D wp ot iR pup HXP,UWP,U}) Ax

+ (w—w )JAz + (Hy w —-Hy w )A=z
( 2 s) z ( I s)

for these two equations.
By use of the continuity of magnetic flux, it is possible to ex-

press Hx in the above two equations in terms of transverse derivatives

P,D

evaluated at the upstream station. Continuity of magnetic flux implies:

Aydz _ Aybdz _ —Hy }-lHz -
(Bx, )= = Hxp o o - bz {Hy -Hy_}-{Hz ~Hz_}ay

and inserting this into the above two expressions for SU-yields,
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- bLybz _ - ~(Hz -
S Hx ;ﬁz(Hyr1 Hys) (Hze sz) ﬁy}v

U P,U Ax P,D
AzAy AyAz
5« — +
B u¥e v a2 T Y s Ve e T U Velhe
+ (Hzeve— Hszw)ay (53)

for the Hy equation, and for the Hz equation,

- bAydz _ 2 = i
S, ={Hx :’.\.Z(Hyn Hys) (Hze sz)&y W

U |7¥P, U ax P,D

+ H L L IR

Aylz -
XP,UWP,U = ) +(w w)f_\z

Yp,0 "p,U’ Tax
+(Hynwn— Hysws)ﬁz ] (54)

In the above two expressions, the (3v/8x) and (8w/9x) derivatives
call for downstream VP’D and wP,D values. As was done for the momentum
equations, these derivatives could be evaluéted entirely at the upstream
station. However, since the velocities are computed before the induced
fields, these new downstream values are used.

In summary, the general finite difference equation can be written

as,

Y 5B 1T (wNwP}D LY {v ) +LZ{LPE o L fy + P}D
=17 jﬁvNe{Jan LR wsl +T204 - wP} -T {w—wﬁ
+S. +S ¥, o . . (55)

U P P,D



Rearrangement of the terms yields,

Yo 0= MY 0T 2 Ys ot e Ve ot 2 Y pt B
where,
AN Aﬁ/AP'
= 5 AS/AP‘
Ap= A"E‘/AP)
A s
Bp= B}:;/AP’
and,
Y1 Y oY oY
AT -1 , AZ=T) +17

zZ z Z Z
= - = +
AE Te Le . AW Tw Lw

48

(56)

B£,=F il +SU+ (pressure term for momentum eqs.)

U °P,U

Ap™ Ay AstAgt AR~ B

The complete set of momentum, induced field and energy equations,

cast in the above form, along with all the respective coefficients are

given in Appendix A.



49

Nothing has been said about the treatment of pressure up to this
point. This is deliberate since the pressure computation, as always,
requires special attention. The axial and transverse pressure gradients
are uncoupled by introducing a deliberate inconsistency into the pressure
treatment. The axial gradient is written as (3p/dx), while the trans-
verse gradients are (3p/3y) and (9p/dz). The quantity p can be thought
of as a space averaged pressure which is constant over the duct cross-
section. The value of (aﬁfax) must be known in order to calculate
(9p/9dy) and (3p/dz). This practice is implicit in two dimensional boun-
dary layer theories also, but it escapes notice there because it is not
necessary to solve the momentum equation for the cross-stream direction.
Here, there are two cross-stream directicns, and the momentum equations
must be solved for both of them in order to find out how the fluid dis-
tributes itself between these two directions.

This practice is a necessary consequence of the intention to ex-
ploit the boundary-layer nature of the flow; it is the final step in
preventing downstream influences from propagating upstream. If this step
is omitted, tte result is nct increased in accuracy as one might naively
expect; it is rather a solution which mey be wholly unrealistic physi-
cally. The inconsistancy in the treatment of pressure, it may be said,
is one part of the price that is paid for making the equations parabolic.
The gain is the freedom to employ marching integration, and to use two-
dimensional storage, even though the flow is three-dimensional and the
full equations are elliptic.

The actual pressure computation itself is performed by the guess

and correct method of Amaden and Harlow.36 A pressure field is first
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guessed at, and is then used to calculate a first approximation to the
velocity field. This velocity will, of course, not satisfy the contin-
ulty equation. The guessed pressure is then corrected in such a way
as to make the velocity field conform to the continuity equation. The
conservation of total mass flow in the duct is used to correct the axial
(space averaged) pressure gradient, while the local continuity equation
applied to each control volume is used to correct the transverse pres-
sure field.

Assume for the moment that (ég/ax) is known and that the down-
stream value of u has been obtained from the axial momentum equation.

Then a preliminary set of v's and w's can be obtained from the equations:

*A Vit A Vet A Ve 4+ B+ D (po- Do 57
VoA Iyt Ag Vgt Ag Vgt Ay Vit Bpt D (pp- Pg) (571
% * * * Wk
wP-AN wN+ AS WS-I- AE wE+ AW ww+ BP+ (pP—pw) (58)

where the superscript * given to v and w denotes approximate values,

. . % * * -
based on an estimated pressure field p . These v's, and w's will not
satisfy the continuity equation for each control volume, but will produce
a net mass source emerging from each control volume. The pressure needs
to be corrected so as to eliminate this mass scurce. The mass source is
defined by,
) (59)

v, * % W, * * u
m,= (5 (vn—vP)+-b (WE WP)+-C (UP,D UP,U

v W u , . i
where C', C and € represent appropriate coefficients from the contin-

uity eq. (48). The pressure is now written as
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(60)

*
where p 1is the uncorrected portion, and p” the correction. From egs.
(57), (58) and the original forms of the v and w momentum equations, it

becomes possible to write,

svo Y (o o)A K Tara ¢ *y+ A ( &
VP— VP pP ps N VN VN g Vs VS E VE VE

*
+AW(th vw) (61)

* w * % %
- -+ e - g =
wp WP D (pP pw}+AN(wN WN)+AS(WS wS}+AE(wE wE)

*
+Aw(ww-— Ww) . (62)

It should be noted that the mass source has been annihlated in
writing the above two equations. The guesseﬁ pressure field to be used
is simply the one at the immediatly upstream station. Since this will
be very near to the true pressure, the starred velocities will be very
close to the unstarred ones. This allows the last four terms in egs.

(61) and (62) to be safely dropped and the velocity corrections become,

v 4+ D" (p ep” 6
Vp=Vp D pp-ps) (63)
* W oL .
wp= W+ D (pP-pw) ; (64)

Substituting eqs. (63) and (64) for the corresponding velocities

into the continuity equation yields,



52

P Vv W_W vV . V.V . W.W .,
pP(ZC D'+2C D )-CD Py CD ps CD pE

W.W .
-CD Py

_ v * * w * * 11 _
=C (Vﬁ-VP)*'C (WE—-WP)+-C (UP,D uP,U) . (65)

The right hand side of the above equation is the mass source of eqg. (59).
To cast this equation into the general form, the coefficients are

defined as,

8 =i = e - vy o .
P_‘ (vN VP) (wE WP) C (uP,D uP,U) /AP
where,
az=2¢"D"+2¢"D"
The pressure correction equation then becomes,
pPzANPN+ASpS+AEPE+Awpw+BP . (66)

It should be recalled that by taking the divergence of the momen-
tum equations, it is possible to obtain a Poisson equation for the pres-
sure. This equation is elliptic in all three space coordinates, and
will not permit employment of a marching integ?ation technique in the

axial direction. To be able to march in this direction, the (32p/3x“)
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term mugt be treated as known and the equation regarded as elliptic in
only the y and z directions. This is why (38p/38x) must be obtained be-
fore p” is obtained from the solution of eq. (66). Incidently, eq. (66)
is like a two-dimensional Poisson equation with a source term that
relates it to the three dimensionality of the situation. Solution of
eq. (66) throughout the domain results in a pressure correction distri-
bution which is used in egs. (63) and (64) to obtain the corrected
transverse velocities.

Up until now it has been assumed that the longitudinal pressure
gradient (3p/2x) was known. This quantity is obtained before the compu-
tation of the transverse velocities by application of the conservation
of integral mass flow through the duct. Again, the quantity is split
into a guessed value and a correction,

*

3P _ 3P , 3P~
3x 93X +-3x ) (6??‘

At this point it may again be mentioned that a good approximation
to the axial pressure gradient already exists in the form of the imme-
diately upstream value. Approximations to the axial velocities can be

obtained from the equation:

Bt b B TR o (68
quANuN SUS+AEUE Awuw4-BP (3p/8%) . (68)

The mass flow rate due to this approximate velocity can be calcu-

lated as,

K % -
m =Zpu Aybz ,
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while the true mass flow rate should be the one present at the duct in-

let,

h=) pU_Bydz . (69)

As before, the axial velocity correction equation can be obtained

as,

e Y37/ 9x)
u.= uP4-D (3p/ax) ; (70)

To obtain the transverse pressure correction equation, the velo-
city corrections were substituted into the local continuity equation.
Here the axial velocity correction eq. (70) is substituted into the

total continuity eq. (69) to give:

N * =
i =3 (up+ pY @—z) Aybz

which can be written as,

i,
95 ,_ m —ZuP phyhz . (71)

(8_x) ) S pUpsyaz

By this means, the axial pressure correction can be obtained. It
should be pointed out that there is only one value of (3p/9x)” per axial
station as (9p/dx) is treated as a constant across the cross section,
while for the transverse directions there is a different pressure correc-
tion value for each point. Thus, the u* values obtained by using a

* .
guessed pressure gradient (8p/39x) can be corrected by the use of egs.

(70) and (71). This must be done before the transverse velccities are
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computed. Once all three velocity components have been obtained, the
induced field equations and energy equation can be solved without undue

difficulty.

Solution of the Finite Difference Equations

All the relevent equstions have been shown to be expressable in
the form of the general eq. (56). This equation represents a pentadiag-
onal system. Two sweeps of a tridiagonal matrix algorithm (TDMA) are
used to solve the system. The first sweep is in the y direction, follow-
ed by the second in the z direction.

Equation (56) is,

= -
‘PP AN‘E’N+AS ‘i‘S AE \FE-!- Aw‘{'w+ BP

or,
Y.y W, SRR HE . 72
3% Py YT e
where,
= +B.)
Ej (AE‘PE+AW‘PW BP,U >
S T 8™ s
and j is an index that increases in the y direction, i.e. ?N is ?j+l and

TS is wj-l when WP is Wj.

Equation (72) represents the y direction sweep. It should be ob-

served that the values of V¥ usad in the Ej term are the upstream values,
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More will be said about this later. For eq. (72), Wl and WN are known

through ¥ have to be calculated. Consider

boundary values while V¥ N-1

2

the expansions of eq. (72) for the first few values of j:

Tl as 1

Y= Xy Y5+ 8, (Xg¥, +Ba¥yvE ) v e,

or,
5+ + +
‘{J=X4 B (B "P 5) 54
4 1 - 84 3
In general, these expressions can be expressed as,
i~ W Vg ¥ B a j = 2,3,.0... N-1 (73
RS I T J )
where,
=—XJ— - B. B l+e
j - - 3 -
1 ngj—l 3 1-B. X4
and,
X2=X2 ’ 82=82q"l+€2

If the known boundary value, Y _, is started with, eq. (73) can be

N!

used to obtain all ¥'s between j = 2, and j = N-1. The boundary value

¥, is useq in the calculation of ¥ as a part of Bi. This essentially

1 2’

completes the y direction sweep.
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The z direction sweep is represented as,

IT II II I I
= + Lov
‘PP AE‘i‘E +Aw‘l‘w AN‘}_N AS“PS-I*BP (74)

where the I's refer to values obtained in the y-sweep, while the II's

refer to those obtained in the z-sweep. Equation (74) can be rewritten

as,
= +
™ P et T N T (73)
where,
= ?I+A WI+B
S Ay ¥ntAg Yt Bp
and,
9= Ag ’ 4= Ay

The index k is the z direction equivalent of j, and it should be
noted that Ek is composed of the results from the preceeding y-sweep.

Equation (75) can be written as,

?k= ¢k Wk_14'9 K s k=2,3.....N-1 (76)
where,
-+
pom — 0K qoe te1e
k 1- k¢k—l K lvgk“k*l
and,

9= %, ’ R= a0+, .
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The mechanics of the z-sweep are essentially the same as those of
the y-sweep. It was found necessary to repeat this double sweep proce-
dure about N times when NXN was the size of the mesh.

While it is true that the above procedure does not give the exact
solution to the finite difference equations, its use is advocated by a
number of reasons. Firstly, it is inherently simple. Secondly, it can
be easily seen that when AN and AS are much smaller or much larger in
magnitude than AE and Aw the above procedure does give a nearly correct
solution. Thirdly, when the forward step Ax is small, the equation is

dominated by BP which contains the upstream value V¥ and the use of

P,U°

¥ . introduces only a very

slightly approximate values of Y i ?E’ W

N* °s?
small error in ?P.

Numerical procedures for solving the partial differential equa-
tions in fluid dynamics tend to be iterative for three main reasons.
Firstly, the equations are non-linear. Secondly, the pressure renders
the continuity and momentum equations strongly linked, and thirdly, a
direct solution of the implicit finite difference equations, even when
they are linear, is time consuming. The procedure that has been used
has been made essentially non-iterative by: (i) the calculation of the
coefficients in the finite difference equations from values at the up-
stream station, thus forcing the equations to be linear; (ii) the use
of approximate forms of the momentum eqs. (63), (64) and (70); and (iii)
the sclution of the finite difference equations by two sweeps of the

TDMA. It is true that these three tricks introduce some errors into the

solution compared to a solution produced by a fully iterative procedure.
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But, fi?st, these errors are of the same kind as the truncation errors
in any finite difference procedure; and second, it is possible at the
end of each forward step to calculate the error in satisfying each con-
servation equation, and then to make a corresponding correction at the
next step downstream. Thus, by leaving errors which can be detected,
and if necessary, corrected, the benefits of a non-iterative procedure
are enjoyed without serious penalty. A further bonus of this method is
the fact that the solution is available at a large number of axial sta-
tions. For an iterative procedure, the number of axial statioms would
have been much less as it would have been possible to take larger for-
ward steps, and in fact this would have been made necessary due to the

increased computer time needed to perform the iterations at each step.

Boundary Conditions

The continuous forms of the boundary conditions were given in the
previous chapter. Translating them into numerical forms is a fairly

simple procedure.
Velocity

The no-slip boundary condition is enforced at all the walls. The
u velocity points lie on the actual boundary and are simply set to zero.
Referring to Fig. 5 it can be seen that transverse velocity points also
lie on the walls that are normal to the respective velocity componént.
However, for parallel walls, adjacent transverse velocity points straddle
the boundary, and so the no-slip condition has to be enforced in between
the two points. This is achieved by simply imaging the velocities, i.e.

making the point external to the wall the negative of the one internal
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to the wall. The average of the two will then add up to zero on the
wall itself. Thus, the velocity boundary conditions for the axial velo-

city u, and the transverse velocities v and w become,

Uga11” © amn
Voa11l" 0 (normal walls) (78)
Vo g, (parallel walls) (79)
woo11" 0 (normal walls) | (80)
W e (parallel walls) . (81)

Induction

The dimensionless form of the boundary condition, eq. (44), is
applied at all walls for the axial field and at,parallel walls for the
transverse fields. At normal walls the transverse field components are

always set to zero. For the axial Hx field, theﬂcondition is,

B a11™ (waall-l)//é“*ﬂ“/c) (82)

where An is equal to Ay or Az depending on which is the normal direction.

For the transverse Hy field, the condition is,

Hywall= :Hywall—]}/blkﬂ?ki (83)

for parallel walls, and

Hy 0 (84)

wall
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for normal walls. For the transverse Hz field, the condition is,

szallz{]{zwall—l%/{l+ Ay C} (85)

for parallel walls, and

szall= 0 (86)
for normal walls.

Temperature

Temperature boundary conditions for the energy equation are spe-
cified by eq. (46) for the constant wall heat flux case. For the con-
stant wall temperature case, the non-dimensional wall temperature is
simply set to 1 or 0, depending on whether heat is being added or remov-
ed by the walls. In summary, these conditions are,

0 0 (heat removal by walls) (87)

wall

) 1 (heat addition by walls) (88)

wall

for the constant wall temperature case, and

Yarr” Gy AL (89)

for the constant wall heat flux case, where An is equal to either Ay or

Az depending on which is the normal direction.
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Pressure Correction Equation

Since all velocities are zero at the walls, the velocity correc-
tion egs. (63) and (64) indicate that the normal gradient of the pres-

sure correction must be zero at the wall. Thus,

L Y
Pua1l Peail-1 (90)

is the boundary condition.

The above boundary conditions, egs. (77) to (90), are of a simple
form, however, these bcundary treatments can always be improved by such
techniques as the incorporation of slip values at the wallB? or by the
use of higher order ﬁroperty variations (e.g. quadratic instead of
linear). This sort of experimentation is deemed beyond the scope of

this work.

Order of Computation

At each axial step the following procedure is followed:

(1) The coefficient matrix for the u momentum equation is
obtained using upstream properties.

(2). The u momentum equation is solved using a guessed (up-
stream) axial pressure gradient.

(3) The axial pressure gradient is corrected by fcrcing con-
servation of integral mass flow in the duct.

(4) By using the axial pressure gradient correction, the
axial velocities are correcfed.

(5) The coefficient matrix for the v momentum equation is

obtained using upstream properties.



(6)

(7)

(8)

(9

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Solution to the v momentum equation is obtained

using a guessedl(upstream) transverse pressure field.
The coefficient matrix for the w momentum equation is
obtained using upstream properties.

Solution to the w momentum equation is obtained using
a guessed (upstream) transverse pressure field.

The coefficient matrix for the transverse pressure
correction equation is obtained using current (down-
stream) velocity values.

The transverse pressure correction equation is solved.
The coefficient matrix for the axial Hx induction is
obtained based on upstream properties.,

The axial Hx induction equaticn is solved.

The coefficient matrix for the transverse Hy induction
equation is obtained based on upstream properties.

The transverse Hy induction equation is solved,

The coefficient matrix for the transverse Hz induction
equation is obtained based on upstream properties.

The transverse Hz induction equeation is solved.

The coefficient matrix for the energy equation is ob-
tained based on upstream properties.

The energy equation is solved for the temperatures.

The above steps are repeated for cach axial position.

The above 19 steps specify the basic computational procedure.

Boundary conditions must be applied in appropriate placeé.

63
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CHAPTER IV

PROGRAM CALIBRATION

Whenever a computer program is to be used to simulate a physical
phenomenum, it is of utmost importance that a set of preliminary runs,
modeling problems for which results are available, be made. That is the

purpose of this chapter on program calibration.

The Purely Hydrodynamic Velocity Entry Problem

The purely hydrodynamic, i.e. no MHD effects, velocity entry pro-
blem was run for a Reynolds number of 100, and the total duct length
covered was equal to 10 duct widths. Asymptotically increasing accuracy
was observed as the transverse mesh size was decreased. For a mesh of
20x 20 in the transverse plane, the axial velocity and pressure coeffi-
cient developments were deemed close enough.to the experimental results
of references 6 and 7, so as to make further mesh refinement unnecessary.
These comparisons are shown in Figs. 10 and 11. It should be noted that
the pressure coefficient of Fig. 11 is simply (ﬁin—fT}/IpUi), i.e. the
total non-dimensional axial pressure difference between any axial loca-
tion and the inlet. 1In the axial direction a little experimentation led
to the choice of 216 axial steps to represent the 10 duct widths. The
axial step Ax was 0°0l for the first twenty steps, and 0+*05, the same
as the transverse mesh spacing, for the remaining 196 steps. A small

axial step right near the entrance was chosen because of the rather

rapid changes in all the quantities over small axial distances in

this region.
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Axial variation of the results can be made universal by defining
an axial parameter L = (x/Db/Re. The axial pressure gradient shown in
Fig. 12 begins with a little peak and then decreases to a fully develop-
ed value of Re(®p/dx) equal to 28-81. This compares favorably with the
analytical value of 28+12 quoted by Miller.38 For theoretical slug flow,
i.e. uniform velocity throughout the duct interior and zero velocity
on the walls, the driving axial pressure gradient must be infinite be-
cause of the infinite shear force in the infinitely thin boundary layer.
However, since the numerical approximations involve a mesh of finite
size, the thickness of this infinitely thin boundary layer immediately
becomes finite, i.e., the mesh size adjacent to the wall. Thus, the
maximum axial pressure gradient in the computation is dependent on the
transverse mesh size. After the first few steps, however, the mesh
spacing is sufficient to provide adequate resolution of the problem, and
the axial pressure gradient behaves as it should. The little peak at
the beginning represents the region of insufficient resolution. It may
be menticned at this point that these inlet conditions are singular.
However, parabolic equations have the useful characteristic of recover-
ing from the effects of a singularity once the integration has pro-
ceeded a few stops beyond the singular region.

Figure 13(a) qualicatively shows the development process. If an
entry length is defined as the distance at which the center-point axial
velocity achieves 95% of its fully developed value, then this length in
terms of L is about 0:04. Velocity confours and the corresponding velo-
city surface for the fully developed condition are shown by Figs. 13(b)

and 13(c), respectively. Quantitative information about the axial
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velocity development across the center plane can be obtained from Fig.
l4(a). Some more measurements of Goldstein and Kreid for L = 0-1,
which for Re = 100 means 10 duct widths, are compared with the develop-
ed profile in Fig. 14(a). Again, the agreement is excellent.

It is also noticable from Fig. 14(a) that the area under the
velocity profile curve seems to increase as the value of L associated
with that particular profile increases. This reflects the transference
of mass from the sides of the duct towards the center as the profile
develops. This transference is accomplished by the secondary flow that
exists in the developing region. Vectors representing this inward flow
are plotted in Fig. 14(b). The transverse v and w profiles that corres-
pond to these vectors are displayed in Figs. 15(a) and (b). As the axial
velecity develops, these transverse components asymptotically approach
zero. This process can be portrayed as a surface along an axial plane,
as shown in Fig. 15(c). It should be noted that the axial scale in this
figure is mot linear, but piece~wise linear.

It is possible to conclude that the program is successful in pre;

dicting three-dimensional hydrodynamic entry flow.

The Purely Hydrodynamic Thermal Entry Problem

The energy equation, in the present formulation, is dependent on
the momentum equations, but not vice-versa, and so it is possible to ob-
tain different temperature solutions corresponding to the previous velo-
city solution. These different solutions cccur when various temperature
boundary conditions and internal heat sources are specified. O0Of the

many possible combinations of temperature boundary conditions and heat
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sources, three will be considered in this section. These three cases
are the constant wall temperature boundary condition, the constant wall
heat flux boundary condition, and the latter case with uniform internal
heat generation. Sinée there is a definite scarcity in the literature
of complete investigations of the simultaneously developing velocity and
temperature fields in the entry region of square ducts, rather extensive

temperature results are presented in this section.

Constant Wall Temperature Case

Figures 16 through 21 show the results for this case. Tﬁe fluid
enters the duct with a uniform dimensionless temperature of 1. (Recall
that for this case § = (T—Tw}/(Ti—Tw). The duct walls are kept at a
constant temperature of zero. This corresponds to heat removal from the
fluid until the wall and interior temperatures all become zero.

Figure 16 shows the bulk temperature and Nusselt number develop-
ments for Peclet numbers of 10, 100, 1000 and 10,000. Since the Reynolds
number is kept fixed at 100, these Peclet numbers correspond to Prandtl:
numbers of 0+1, 1.0, 10+0 and 100-0. The bulk temperature is seen to
approach zero most quickly for the lower Prandtl numbers. A few points
taken from the computations of Ghia et alll are also plotted in Fig. 16
for comparison. Good agreement is observed. The Nusselt number pletted
in Fig. 16 is simply the mean of all the local Nusselt numbers, which
directly relate to the local temperature gradients, around the duct
periphery at a particular axial position. The fully developed Nusselt
number predicted by the present computation, for the constant wall tem-

perature boundary condition, is 2+96. This compares very well with the

2.98 computed analytically by Kays.39 I1f the approach of the Nusselt
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number to the fully developed value is used as the criterion for judging
the thermal development, then it is seen that as expected the lower the
Prandtl number the swifter the development. It must be kept in mind
that these results are for simultaneously develcping temperature and
velocity, and not for the Graetz type problem which refers to thermal
development alone.

Temperature contours and surfaces at L = 0.1 are shown in Figs.
17 and 18 for different Peclet (Prandtl) numbers. For a Peclet number
of 100 the temperature surface is well advanced towards a uniform value
of zero, while at the other extreme, the surface with a Peclet number of
10,000 is still near the uniform entry coﬁdition of one. Similar con~
clusions can be reached from Fig. 19 which qualitatively displays the
center-line temperature development for different Peclet numbers.
Development of the Nusselt number is best portrayed as a surface along
the wall. From Figs. 20 and 21 it can be seen that the initial local
Nusselt numbers are very high compared to the fully developed values.
As was the case with the axial p;essure gradient, the initial local
Nusselt number magnjitudes are fixed by the mesh size at the entrance.
For the constant wall temperature boundary condition, the heat transfer
is always zero at the duct corners, and maximum at the wall centers.
This too can be observed from Figs. 20 and 21 by referring to the varia-
tions in the transverse y direction. Agéin it is obvious that the lower

the Prandtl number, the quicker the development.

Constant Wall Heat Flux Case

The non-dimensional temperature, 9, is now defined as (T-Ti)/

n

"
(qu/k), where q, is the constant wall heat flux. The situation dealt
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with co?responds to heating of the fluid by the walls, and results for
this case are presented in figs. 22 through 34.

A linear increase in the bulk temperature for this case is seen
in Fig. 22. This is expected since the heat input per unit axial length
is fixed once the constant wall heat flux is specified. However, the
heat transfered away from the wall is dependent on the Prandtl number,
and so the slope of the bulk temperature rise is strongly dependent on
this parameter. The higher the Prandtl number, the slower the bulk
temperature rise.

Figure 23(a) shows the mean Nusselt number development. The fully
developed value of 3+55 shows a deviation of abcut 2% from the value of
3:63 quoted for this case by Kays.39 Since there is always more error
associated in the numerical modeling of Neumann boundary conditions than
with Drichelet conditions, this discrepancy is understandable. A quan-
tity of importance for the wall heat flux case is the wall temperature,
since the usual purpose of the fluid flow is to cool the wall. Center-
line wall temperature development is plotted in Fig. 23(b). These curves
do not start from zero, as the wall heat flux, which is present even at
the entrance, numerically forces the walls to have a little higher tem-
perature than the interior fluid which is at zero.

Temperature contours at L = 0«1 for different Peclet numbers are
shown in Fig. 24. As before, those for Pe = 100 are much more developed
than those for Pe = 10,000. If these contours are compared with the
ones for the constant wall temperature case, it is seen that the current
contours are rounder. This is a direct consequence of the wall tempera-

ture no longer being uniform around the periphery. Qualitative pictures
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of the center-line and wall temperature developments are presented in
Figs. 25 through 28. It should be noted in these figures that the root
of the arrow associated with each profile specifies the axial position
at which the profile occurs. It is observed that the wall temperature
is maximum at the corners. This is an obvious result of the fact that
though the wall heat flux is constant around the periphery, the heat
transfer to the fluid is minimum at the corners. Quantitative informa-
tion about the center-line and wall temperature development for various
Prandtl numbers is presented in Figs. 29 through 32. Nusselt number
surfaces are plotted in Figs. 33 and 34. The local Nusselt number is

maximum at the wall center and minimum (not zero) at the corner.

Constant Wall Heat Flux with Internal Heat Generation Case

Figures 35 through 39 represent this case. The internal heat
generation is uniform throughout the duct. Recall that the internal
heat source Q is made dimensionless by defining it as QD/q;. An impor-
tant quantity for this case is the wall temperature, GW, minus the bulk
temperature, Bb. The Nusselt number for the constant wall heat flux
case is equal to l/(6w~9b). Thus, even though the Nusselt number plot-
ted in Fig. 35(a) loses its usual meaning, it still has relevance as the
inverse of the above quantity. Figure 35(a) shows that this difference
achieves a constant value which agrees with the parallel plate channel
predictions of Ref. 40.

Observation of the temperature contours and surfaces of Figs. 36

and 37 suggests that the high temperature region at the corners extends

a fair bit inwards. This stems directly from the fact that even though
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the heat generation is constant throughout the duct, the heat transfer
is poorest at the corners because the velocities there are low.
Figure 38 shows the axial and transverse variations of the Nusselt

number 1/(6w-6 ). Obviously (Sh;Bb) is largest at the corners and

b
smallest at the wall centers. Wall corner and wall center temperature
developments for different values of Q and a constant value of the
Peclet number are shown in Fig. 39.

It is possible to conclude from the results of the previous three

cases that the program is accurately predicting solutions to the com-

bined velocity and thermal entry problem.

Moving Wall Cases

Up until this point, all convective movements in the trans-
verse directions have been small when compared to similar axial
quantities. It is desirable to test the program under conditions where
the lateral and axial fluxes are comparable. One such way of obtaining
strong transverse flow is by allowing duct walls to move laterally.
Physically, duct flow with one laterally moving wall is found in such
devices as ‘screw extruders, bearing lubricators, etc. In regions of
fully developed flow, the cross-stream velocity and pressure fields are
identical to those in steady two dimensional flow in a square cavity
with a moving wall. The later problem has been analysed by Burggraf.

Results fer four moving wall cases are presented in Figs. 40
through 53. The first two cases, (a) and (b) in each figure, involved
one moving wall with wall Reynold's numbers of 100 and 200, respectively.

The Reynolds number of the main flow remained at 100. Thus, a wall
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Reynolds number of 100 is brought about by a wall moving at the same
velocity as the inlet flow. As can be seen from Figs. 40(a) and (b),
this wall motion created a vortex which is centered towards a corner.
The secondary velocity profiles that produce this swirling motion are
shown in Figs. 41(a) and (b), and 42(a) and (b). The effect of this
swirl on the fully developed axial velocity contours is shown in Figs.
43(a) and (b). Notice that the Vortex center and the maximum axial
velocity point do not occur at the same position. The maximum axial
velocity values of 2+03 and 1+98 for the wall Reynolds numbers of 100
and 200 respectively, are 5% larger than the similar values computed in
Ref. 5. This discrepancy is not large enough to be significant, expe-
cially since qualitative agreement is excellent. Develcpment of these
skewed axial velocity distributions are displayed by Figs. 45(a) and
(b), and 46(a) and (b).

Cases (c) and (d) are for two moving walls. These walls are

situated opposite each other, and in case (c) move in the same

direction, while in case (d) they move in opposing directions. These
cases are more of academic than practical interest. Moving two walls in
the same lateral direction produced two vortices, each of a nature simi-
lar to the ones in the previous case. Axial velocity profiles become
double humped with the maximum value for each hump being 1-80. Moving
two walls in oppocite directions generated a strong central vortex. This
was the only case where the vortex center and the maximum axial velocity
point coincided. Results for the above two cases are shown in Figs. 40-

47%¢c) and (d).
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The temperature problem for the above moving wall cases had three
walls thermally insulated and one wall at a fixed temperature of zero.
The wall that had been moved in cases (a) and (b) was the one chosen
to carry the fixed teﬁperature. The effect of the fluid swirl on the
temperature distribution is of interest here, and this is shown by the
contours of Figs. 48(a) and (b), and Figs. 49(c) and (d). Results for
the above temperature problem with all stationary walls are presented in
Fig. 50 as a basis for comparison. Center-plane temperature develop-
ments for the moving wall cases are shown in Figs. 51 through 53. Stream-—
wise vortex effects on the temperature are easily observable by compa-
rison of Fig. 50(i), representing the stationary case with Figs. 52(a),
52(b), 53(c) and 53(d). The (a), (b), (¢), and (d) are for the corre-
sponding moving wall cases.

Based on all the results examined in this chapter, it is possible
to conclude that the progfam functions will and should provide accurate

predictions of the MHD phenomena which are discussed in the next chapter.
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Figure 20.
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Figure 21.

Nusselt Number Development Surfaces along a Wall for Constant Wall Temperature
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Figure 33.

Nusselt Number Development Surfaces along a Wall for Constant Wall Heat Flux
Case with (a) Pe = 10, (b) Pe = 100
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Figure 34. Nusselt Nurber Development Surfaces along a Wall for Constant Wall Heat Flux
Case with (c) Pe = 500, (d) Pe = 1000
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CHAPTER V
RESULTS AND DISCUSSION

Ducts with perfectly electrically insulating (C = 0) walls and
perfectly electrically conducting walls (C = infinity) are the basic
cases, and these are examined first. Then two finite conductivity cases
(C = 10) and (C = 1) shall be considered. These are followed by two
mixed problems, i.e. walls parallel to the imposed field being electri-
cally non-conducting while walls perpendicular to the imposed field are
infinitely electrically conducting and vice versa. Then the effects of
insulated corners and current breaks on a perfectly conducting duct are
studied. Finally the case of three walls being non-conducting electri-
cally and one -wall being infinitely or finitely electrically conducting,
with and without electrically insulated corners ié considered.

In Tokamak blankets the Peclet number is of the order of 102 and
the magnetic Reynolds number is of the order of unity.33 Thus it was
decided to fix the Reynolds number at 100, the magnetic Reynolds number
at 1, and the Prandtl number at 1. The constant wall heat flux boundary
condition (except for the last few cases) was enforced on all four walls.

At this point a comment is made about the abundance of figures in
this work. It has been said that when presented with numbers the mind
can, at best, think lirearly. However, when presented with a picture it
can grasp the whole situation and think much more creatively. In the com-
puter modeling of three-dimensional flows, enormous amounts of numbers
are generated, and the only way for the trends representéd by these num-

bers, to be deduced, is to plot them. The advanced graphics capabilicies
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of modern computer systems allows the facilitous plotting of the contours,
vectors and surfaces that best represent three-dimensional variations.

These capabilities have been put to good use in this work.

Case with C = 0 on all Walls

Results for this problem, with a Hartmann number of 10, are pre-
sented in Figs. 54 through 66. It should be noted that all the plotted
results in this chapter are for Hartmann numbers of 10 (except for the
parametric studies). Current density vectors, calculated from J = Eﬁ(ﬁ}
for the transverse plane are shown in Fig. 54, Axial induced magnetic
field contours for the same plane are shown in Fig. 55. It may be noted
that the orientation of the axes in Fig. 54 is rotated 90°. This was
done so as to make the figures fit within the page format. When the two
transverse in&uced field components are very small i.e.,, near and in the

developed region, the transverse currents are,

dHx OHx -
vy 3z z oy

and so Hx, the induced axial field component, can be considered as a
stream function for J, which means that the currents flow along lines of
constant Hx. Thus, near and in the developed region, the contours of
Fig. 55 should trace the current vector loops observable in Fig. 54.
Figure 54(a) shows the currents right near the entrance, where the

Hy and Hz components are significant, as they are generated by secondary
flow which is appreciable here. A sort of source and sink actiﬁity is
discerned in the center and this implies out of plane current Vectors.

Figure 56(a) shows the existance of a current loop in the axial xz plane
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at the center. This loop, which is a result of the flow development, is
the cause for the activity of Fig. 54(a). The contours of Fig. 55(a)
cannot show this activity as they can only represent the current loops
when Hy and Hz are small. Rather quick development of the.current den-
sity vectors is seen and the developed distributions exactly follow the
Hx contour loops for the corresponding axial position.

The forms of these current loops is easily explainable. Currents
always seek the path of least resistance and since the walls are non-
conducting, the current loops are forced to lie entirely in the fluid re-
gion. The return path of least resistance for the currents generated by
the core motion is through the areas of lowest fluid velocity, i.e. the
boundary regions.

In the fully developed region, current flow in the duct center is
so oriented that the J X B Lorentz force is acting in a direction that
opposes fluid motion. In regions near walls that are perpendicular to
the imposed field, the direction of current flow is opposite and so the
Lorentz force now acts in the flow direction. This serves to accelerate
the fluid in these boundary regions, flattening out the velocity profile.
Even though the net electromagnetic force on the fluid is zero, the flat-
tened profile experiences increased viscous forces due to steeper velopo—
city gradients at the walls. Current flow immediately adjacent to per-
pendicular walls is much stronger than that adjacent to parallel walls.
Thus, a flatter axial velocity profile across the perpendicular, or z,
direction 1s to be expected.

Current flow in two axial planes is displayed in Fig. 56. The

plane in Fig. 56(a) lies azlong Y/D = 0:5, i.e. the centerline. Except
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for the initial loop, the current flow in this plane is essentially uni-
directional and appears to decrease to zero at the walls, The currents
themselves are not disappearing, but simply leaving the plane of repre-
sentation. This is the result of current direction changes in the trans-
verse plane. Figure 56(b) represents a plane near a parallel wall and
shows initial loop associated activity in the developing region, follow-
ed by an axially invariant distribution that seems to show currents
emerging from the walls and going to zero at the center of the plane.
Again, this distribution is the product of current direction changes in
the transverse plane.

Figures 57, 58 and 59 display the three induced field components,
Hx, Hy and Hz that produced the above current flows. One full cycle of
sinosoidal type variation across the y direction and one half cycle
across the z direction is observed for the axial field. Also, the mag-
nitude of the distribution increases until tﬁe flow is developed, and the
fully developed values are plotted as a surface in Fig. 57(c). The sur-
face is a little hard to interpret as the negative portion of the sinu-
soid can uvot be seen due to hidden line removal by the plotting program.
The maximum value of this field is observed to be about 0¢08 and is thus
8% of the imposed transverse field relative to which it is non-dimension-
alized. The y component of the induced field plotted across the two
center lines is shown in Fig. 58, and except for a small positive over-
shoot near the entrance, is entirely negative. As a surface it is like
a negative parabaloid as shown in Fig. 58(c). Again, due to hidden line
removal, the entire interior of the surfacé cannot be seen. This field

component has maximum vaiues near the entrance and asymptotically
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approaches zero as the flow develops. At its maximum it has a value of
about 2% of the imposed field. The z component of the induced field,
which is plotted along the Z/D = 025 and Y/D = 0+25 lines in Fig. 59,
has a ragged sinosoidai type distributibn in the y direction and a
smoother, though smaller in amplitude, distribution across the z direc-
tion. Again, Hz approaches zero as the developed condition is reached
and the maximum value is only about 0-:3% of the imposed field,

Reasons for these Hy and Hz distributions do not immediately pre-
sent themselves. However, clues to their origin can be deduced from the
profile shapes of the secondary velocity components that induce them.
The main source terms in tte Hy and Hz induction equations are Bpy(3dv/3y)
and Bpv(3w/3y) respectively. If one can recall the shapes of the v and
w profiles in the y direction and visualize their derivatives, these de-
rivatives would roughly follow the Hy and Hz distributions. The v and w
velocity profiles are similar in their respective directions, but it is
the fact that both the above derivatives are with respect to y (the im-
posed field direction) that causes the differences between Hy and Hz,

As previously mentioned, axial velocity in the transverse plane
is no longer expected to be symmetric. Figure 60 displays this fact well.
From the contours of Fig. 60(b) it is observable that the profiles are
clearly flattened, more across the y direction than the z, and the maxi-
mum velocity value at the center is reduced to 1-76. This asymmetric
axial velocity distribution can only be produced by unequal transverse
veleccity components as it is this secondary flow which transfers fluid
from wall regions inwards for flow development. Since the u profile is

flatter along the y coordinate, it is closer to the slug entry profile,
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and thus less fluid has to be moved in the y direction during develop-
ment. For this reason it is expected that the v component should now be
smaller in magnitude than the w. This fact is displayed clearly in Fig.
61.

Magnetic fields can have no direct effects on temperature distri-
butions (except, perhaps, through Ohmic heating), but can have secondary
effects through the coupling between the momentum and energy equations.
Temperature fields in duct flow tend to follow the existing velocity
fields, and so tte temperature contours in Fig. 62(b) are slightly elon-
gated in the same direction as the axial velocity contours. Local Nusselt
numbers, wall and centerline temperatures, are also presented in Figs.
62 and 63, and show distributions similar to the non-magnetic case.

The non-conducting wall problem is completed by an investigation
of the variation of certain important quantities with Hartmann number
change. These quantities are plotted in Figs. 64 through 66. As the
Hartmann number increases from O to 10, the following fully developed
effects are observed:

(1) Center-point axial velocity decreases from 2+10 to 1-76.

(2) Velocity entry length decreases from an L value of 0-040

to 0-022.

(3) Axial pressure gradient increases from=0-29 to-0+41,

(4) Axial totsl pressure coefficient increases from 3-61 to 4-60.

(5) Mean Nusselt number increases from 3+55 to 3-99.

(6) Wall center and corner temreratures decrease from 0+57 and

0:90 to 0«54 and 0+87 respectively.
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The last two temperature effects occur due to the temperature distribu-

tion becoming flatter and represent heat transfer enhancement.

Case with C = infinity on all Walls

Figures 67 through 78 present the case of infinitely electrically
conducting walls. An infinite wall conductivity parameter implies that
the wall is infinitely more electrically conductive than the fluid. Thus,
the path of least resistance for current return becomes the duct walls
themselves rather than the fluid boundary regions as was in the C = 0
case. Figure 67 displays the transverse plane current vectors, and it is
directly observable that the current loops are completed through the walls.
A similar observance is possible from the contours of Fig. 68. The sharp-
ness of some of the bends in the contours is a result of the linear in-
terpolation used by the contour plotting routine, and also the fact that
it used straight line segments to construct the contours. The entry
region source and sink type activity that was discerned in the previous
case is absent here and the currents at the duct center flow directly
from one wall to the other. Equivilent current density vectors in axial
planes are shown in Fig. 69. In the previous case there was a region of
zero current, where the two sets of current loops met, extending down
the duct center. This is absent here and current flow is essentially
from one parallel wall to the other. For the perpendicular walls, cur-
rents leaving one side of the wall return to the other side of the same
wall.

Since C = infinity, axial field gradients in the normal direction

at the walls are zero. Figure 70 shows the axial field plotted across
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center and quarter line. The maximum value of this field occurs at the
perpendicular walls and has a magnitude equal to about 407 of the im-
posed field. For transverse fields, it should be recalled that the boun-
dary conditions force the field to become zero at normal walls, and to
suffer a linear variation within the other two walls, i.e., the thin wall
boundary condition is used. Thus, Hy goes to zero at Y/D = Q0 and 1 and
its normal gradient goes to zero at Z/D = 0 and 1. The correspondingly
opposite situation holds for Hz. These two field distributions are
plotted in Figs. 71 and 72. 1In Fig. 72(a), the forcing of the normal
gradient of Hz at Y/D = 0 and Y/D = 1 to be zero seems unnatural. This
casts suspicion on the appropriateness of using the thin wall boundary
condition here. Again, since Hz is a secondary quantity, the resulting
error is not expected to be significant.

Fully developed axial center—-point velocity is 1+72 which is a
little less than the 1+76 for the previous case. The profile, as observ-
ed from Fig. 73, is still more flattened in the parallel direction, but
the difference between the two directions is less. The axial velocity
contours appear a little less elongated because the currents are now
returning through the walls, and thus they dc¢ not accelerate the fluid
in the wall regions. Core velocity, however, is still retarded and as
mass flow must be conserved this causes the flattening of the profile.

In this case, since the currents return through the walls, there is a
downstream electromagnetic force on them with a corresponding net upstream
force on tte fluid. The pressure gradient has to counteract this as well
as the viscous shear forces at the wall. This pressure gradient is then

much larger than that for the C = 0 case where there is no net electro-
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magnetic force on the fluid.

Temperature results for this case are presented in Figs. 74 and
75, and are not very different from the C = 0 results. The mean Nusselt
number of 4-09 is a little higher than the 3:99 for the C = 0 case.
This corresponds to the slightly flatter profile in both transverse di-
rections. Figures 76, 77 and 78 show the Hartmann number study, with
trends similar to the last case being displayed. Varying the Hartmann
number from 0 to 10 causes the center-point velocity to go from 2+10 to
1+72, the mean Nusselt number from 3.55 to 4-09, the axial pressure gra-
dient from=0.29 to=1.22, the pressure coefficient from 3-61 to 12-52, the
wall center temperature from 0:57 to 0-54, and the wall corner tempera-

ture from 0.90 to 0-86. All the above values occur at L = (-1.

Case with C = 10 on all Walls

Magnitudes of the results for this case are not very different
from the C = infinity results, All differences stem from the fact that
wherever the thin wall boundary condition is applied, the normal gradient
of the field is no longer zero, but now has a finite value of H/C. Thus,
the current vectors leave and enter the walls at different angles whose
values are dependent on the local field magnitudes.

Figures 79, 80 and 81 display the current vectors and the corres-
ponding axial field contours. Hartmann number variation effects are

shown in Figs. 82, 83 and 84.

Case with C = 1 on all Walls

Results for this case are presented in Figs. 85 through 93. Even

for this conductivity ratio, the vectors of Fig. 85 appear cleser to the
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C = 0 case. However, the approach towards the C = 0 case as C is reduc-
ed is visible by comparison of this case with the C = infinity and C = 10
results. In fact, close inspection of Fig. 87(b) reveals the beginnings
of the entrance region axial current loop associated with the C = 0 case.
Figures 88, 89 and 90 present the parametric study for this case,

while Figs. 91, 92 and 93 portray the induced field distributions which

appear to be in-between those for the twe limiting cases.

Comparison of the Finite and Limiting Conductivity Cases

Four quantities are compared in Figes. 94 through 96. The rela-
tive pressure gradient of Fig. 94 is simply the fully developed axial
pressure gradient (at L = 0-1) for a particular case, normalized to the
non-hydromagnetic pressure gradient. As the Hartmann number and the con-
ductivity parameter increase, so does the pressure gradient. Also, it
can be seen that even a little wall corductivity causes large increases
in the pressure gradient (note how close the C = infinity and C = 10
curves are). For the limiting cases (C = infinity and C = 0) the results
of Chang and Lundgren,l4 and for one finite conductivity case (C = 1)
the results of Chul8 have been used for comparison. Both of these works
were analytical and inveolved only the fully developed problem, i.e. one
field and velocity component only. Agreement for the C = 0 curve is per-
fect, for the C = 1 good, and for the C = infinity curve not so good at
higher Hartmann number. The C = infinity case involves forcing a gra-
dient to be zero on the boundary, which is similar to forcing a wall
heat flux to attain a prescribed value, and it shcould be recalled the

mean Nusselt number for the wall heat flux case was in error by a few
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percent. The rather unsophisticated treatment of the wvariables near the
walls is the cause of these errors. Thus, for a Hartmann number of 10
and infinitely conducting walls, the fully developed axial pressure gra-
dient is 4+21 times the non-hydromagnetic one, and for perfectly insula-
ting walls this ratio is only 1+41.

Figure 95 compares the fully developed, relative total pressure
coefficients at L = 0+1, and trends similar to those in the previous
figure are observed. For a Hartmann number of 10 and infinitely conduct-
ing walls, the pressure coefficient at L = 0+1 is 3+46 times the non-
hydromagnetic one, and for perfectly insulating walls this ratio is 1+27.
The magnitudes of these variations are less than those for the pressure
gradients because the entry lengths decrease with Hartmann number increase,
and the higher entry region pressure gradients exist for shorter axial
distances. Thus, the entry length reduction and pressure gradient in-
crease work against each other and produce a small variation in the total
axial pressure drop as the Hartmann number is increased.

Entrance length variation with Hartmann number and conductivity
is seen in Fig. 96(a). It is observed that the relative velocity entry
length i.e., magnetohydrodynamic over the hydrodynamic, decreases with
increasing Hartmann number, as was expected fromthe plane channel analy-
sis of Shohet et al. Increasing the conductivity parameter from zero
to infinity also cause a slight decrease in this length owing to the fact
that the C = infinity profiles are slightly flatter, and thus nearer in
form to the initial slug prefile. For a Hartmann number of 10 and C = 0,
the relative velocity entry length is 0-224, while for Cc = infinity it

is 0-212.
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The mean Nusselt number of Fig. 96(b) is seen to increase with
Hartmann number and conducti?ity increase. The conductivity variations
quickly reach an asymptotic condition and there is essentially-no dif-
ference between the C = infinity and C = 10 curves. Increase with Hart-
mann number is quite significant and is again the result of flatter tem-
perature profiles and steeper wall temperature gradients. For a Hartmann
number of 10 and C = infinity, the Nusselt number is seen to be 4-09,
while for C = 0 it is 3+99. The similar value for the non-hydromagnetic
case is 3+55. Thus, though a price for higher Hartmann numbers is paid
by way of larger pressure drops, the benefit of heat transfer enhancement

is reaped,

Some Mixed Wall Conductivity Cases

In the-previous problems, wall conductivity was constant throughout
the duct and for finite values of C the pressure drops were significantly
higher than for the corresponding non-magnetic cases. This effect is
even more exaggerated in the fusion blanket situa;ion since at very high
Hartmann numbers hydromagnetic pressure drops are expected to be a few
orders of magnitude higher. As a direct result of this, an unacceptable
proportion of the reactor output is requirea for pumping power. If the
duct walls are fabricated from an electrical non-conductor, this problem
would be greatly reduced. However, since a non-conductor of electricity
is usually a poor conductor of heat, the heat transfer capabilities of
such a blanket could be impaired. |

Possible solutions to this problem involve having scme of the walls

be electrical imsulators, and some be electrical conductors. Since the
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heat flow in the blanket will essentially be in the radial direction

away from the plasma, the walls perpendicular to this direction could be
made of metal, while the remaining two walls could be made of an electri-
cal insulator, e.g. a ceramic. Thus, the two possible combinations of
infinite conductivity on two walls and zero on the other two are studied
here as Cases A and B. Huntl9 has suggested that the conductivity of

the duct corners may play an important role in determining the pressure
drop. This problem is investigated in Case C, while Case D deals with
the same problem but with the addition of two non-conducting current

breaks to each wall.

Cases A and B

Case A involves C = 0 on walls parallel to the imposed field and
C = infinity on walls perpendicular to the imposed field, while Case B
is the reverse. Figures 97 and 98 show that the currents leave conduct-
ing walls, and form a semicircular loop eventually returning to the same
walls from which they originated. As expected these currents can only
flow parallel to the non-conducting walls and not enter them. Represen-
tation of the current vectors in the axial plane is provided by Fig. 99.
The loop that is observable in the central xz plane is caused, as before,
by currents in this entry region being unable to return through the pa-
rallel nen-conducting walls. Corresponding vectors and contours for Case
B are shown in Figs. 100 to 102. The magnitudes of the currents are defi-
nitely smaller for this case. Currents near the center flow directly
from one conducting wall to the other, but have to return via the boun-

dary region fluid along the non-conducting walls. Complete current loops
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lying entirely in the fluid also exist near each non-conducting wall.
Figure 100(a) shows core current flow in a reverse direction from the
fully developed flow. This is essentially the equivilent of the loop
observable in Case A, only now the ends of the loop lie in the condﬁct—
ing walls., Figure 102(b) shows this clearly. Induced field distribu-
tions for Cases A and B are shown in Figs. 103 to 109. The differences
between them for the two cases are direct consequences of the boundary
conditions. The peak values for the axial field of Case A are about
four times higher than those for Case B. This was the cause of the
stronger currents observed for Case A. In fact, the field values for
Case A appear to be similar to those for the case with C equal to infin-
ity on all the walls, while those for Case B appear to be near the case
with C equal to zero on all the walls. This leads one to suspect that
it is the conductivity of the walls perpendicular to the imposed field
that is important.

Axial velocity contours and surfaces are presented in Fig. 110,
and the contours are elongated in the direction of the non-conducting
walls for both cases. To explain these contours it must be recalled
that the Lorentz force is JXB, The largest component of B is the im-
posed one, which is along the y direction. Thus, any current flow along
this parallel direction creates little or no jd{ﬁ_force, while current
flow along tle positive z direction produces a strong retarding force.
From the current diagrams for Case A it was seen that currents leave the
conducting walls in the y direction, turn, follow the positive z direc-
tion, turn again, and complete the semicircular loop by returning along

the y direction to the ccnducting wall of origin. Thus the Lcrentz force
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is essentially retarding and acts on the core region where the currents
are along the positive z direction. The regions where the velocity con-
tours are elongated are those regions where the currents are either still
ccmpletely in the y direction, or turning, thus createing comparitively
small Lorentz force action which results in higher axial velocities and
hence the elongated contour. Since there is no current flow along the
negative z direction, and thus no accelerating Lorentz force component,
the pressure gradient for this case is expected to be comparable to the
case with all walls having C equal infinity. The magnitude of this gra-
dient is discussed in the upcoming case comparison.

For Case B the current density pictures show strong return cur-—
rents flowing in the negative z direction within the fluid adjacent to
the non-conducting perpendicular walls. These currents produce an ac-
celerating Lorentz component, while the core regions still produce a
retarding component. Higher axial velocities near the non-conducting
walls are the result and this explains the contour elongation of Case B.
The pressure gradient for this case should be much lower than for Case A
due to the Lorentz accelerating component, and the fact that some of the
current loops lie entirely within the fluid region.

Axial velocity profile development across the y direction for both
these cases is shown in Fig. 111. It is readily observable that the pro-
files for Case B are flatter across this coordinate. Axial velocity
distributions like those for Case A would have required larger mass trans-
fer from the duct edge to the center in the y direction, and so the v
velocity component should be larger than the corresponding w component in

the deveioping region. The profiles of Figs. 112(a) and (b} clearly
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demonstr;te this fact, and the vectors of Fig. 112(¢) also show a flow
biased towards the y direction. Case B would show a similar but revers-
ed effect.

In the temperature solutions for these two cases, the constant
heat flux boundary condition was imposed on all four walls., This assumes
the use of a material that is a good thermal conductor while being an
electrical insulator as well. Such materials, though rare, do exist.
Berillyium oxide, which is an electrical insulator and has a thermal
conductivity higher than most metals, is one such example. Fully develop-
ed temperature contours for these two cases are shown in Fig. 113, and

again suffer the same elongations as the corresponding velocity contours.

Cases C and D

From ail the previous results, it is evident that the less current
there is flowing within the walls, the lower is the pressure drop. Insu-
lating the corners of a perfectly conducting duct (Case C) is a step in
this direction. Also, sections of the same duct Qall can be insulated
from each other by inserting current breaks into the wall. These breaks
can be thought of as axial lines of insulation at various positions along
the periphery of the duct (Case D). Current breaks, while having sub-
stantial effect on the pressure drop, are not expected to have much
effect on the heat transfer as the principal directions of heat flu% are
normal to these lines of insulation. Numerically, the insulated corners
were achieved by specifying the elecfrical insulation condition at two
points on either side of each corner. Two current breaks on each wall
wer:2 inserted again by épecification of the same condition at the 6th

mesh point from each corner.
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Current density vectors and axial field contours for both these
cases are shown in Figs. llﬁ.thr0ugh 117. These vectors and contour
loops show distinct avoidance of the insulated corners, having to jump
these regions by re-entering the fluid. This same effect is observed
with the current breaks especially on the perpendicular walls. The cur-
rent loops must re-—enter the fluid to bypass the breaks. It is also
seen that the breaks on the parallel walls are less effective in their
present positions, and that their performance would be improved if they
were a little closer to the corners. The axial plane vectors of Fig. 118
appear confusing at first, but on comparing them with the transverse
plane vectors of Fig. 116, it is seen that their distribution is a re-
sult of abrupt direction changes the currents must undergo to jump the
insulated breaks and corners. Induced field surfaces are portrayed by
Fig. 119, and the corners and breaks are easily seen as the regions where
all the fields are forced to zero.

Effects on the axial velocity, represented by Fig. 120, are inter-
esting. The corner velocities have been increased and the contours are
quite a bit squarer. For Case D, the breaks cause these contours to bow
out a little bit in the region corresponding to the breaks on the perpen-
dicular walls, which are the most effective. Axial velocity profiles
are flatter along the z direction, and they are shown along both z and y
centerlines in Fig. 121 for Case C. The centerline profiles for Case D
are similar. Contours and wall temparature profiles for Case C are shown
in Figs. 122 and 123.

Case comparisons of A, B, C and D are plotted in figs. 124 through

126. 1In these figures, Hap = U refers te the non-hydcomagnetic case
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which is included for comparison. Cases A and C have essentially the
same pressure drop, and this is about 60% of the pressure drop for a
fully C = infinity duct. This leads to the interesting conclusion that
insulating the corners alome is equivalent in pressure drop reduction to
insulating both parallel walls entirely. Addition of the current breaks
in Case D reduces the fully developed pressure drop a further 20% or so.
Case B, however, experiences the lowest pressure drop of all the four
cases, and is only slightly higker than the totally C = 0 case. Recall-
ing that Case B represented C = infinity on parallel walls and C = 0 on
perpendicular walls, one can conclude that the pressure drop in particular
is strongly dependent on the conductivity of the walls that are perpen-
dicular to the imposed field direction.

Maximum center-point axial velocity occurs for Case B, followed
by D, A and C in thet order. Case D is larger than C due to the accel-
erating effects of the current breaks, and B.is larger than A due to the
accelerating effects in the boundary regions. Maximum fully developed
mean Nusselt number occurs for Case C (4+29) followed by D (4-17), A
(4+13) and B (4-02), and it should be recalled that the corresponding
non-hydromagnetic value was 3+55. Thus, Case C shows about a 257% in-
crease over this value and is the highest because of the squaring of the
velocity contours by the electrically insulating corners. Wall center

and ccrner temperature comparisons are shown in Fig. 126.

Cases E, F and G

These last three cases relate directly to Tokamak blankets. As it
has been previously menticned, the duct under consideration could have one
of its sides as part of the first wall and is thus exposed to a heat flux

corresponding to radiation and neutroa heating along that wall. If it
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is assumed that the three ducts adjacent to this duct have similar tem-
perature distributions, then adiabatic temperature boundary conditions
can be used on the other three walls. The polcidal field is in the y
direction, and so one of the walls parallel to this direction must be
the one exposed to the plasma, i.e. the constarnt wall heat flux. These
thermal boundary conditions lead directly to the induction boundary con-
ditions of C = 0 on the three adiabatic walls, and C = infinity (Case E)
or mere appropriately C = 0+1 (Case F) on the heac flux wall. The value
C = 0+1 corresponds more directly to the fusion blanket case as it is
obtained by assuming owfcf = 2, which is about the proper conductivity
ratio for steel and lithium, and t/D = 0.05, which is a reasonable wall
thickness to duct width ratio. Finally Case G investigates the effect
of extending the electrical insulation to include the cornmer regions of
the conducting wall in Case F.

Figure 127 represents current density vectors for Case E. Cur-
rents leava the conducting wall, travel through the fluid core and re-
turn via the boundary regions adjacent to the perpendicular non-conducting
walls. Near the duct entrance, the core current flows in the opposite
direction te the fully developed current. This flow is simply the top
of the axial current loop seen in Fig. 128(b). Velocity contours shown
in Fig. 129 are again clongated towards the non-conducting walls (velo-
city profiles along the z direction are slightly skewed) being smaller
on the side towards the oue cenducting wall. Tnis is not due so much to
the currents Iflowing unear the non-conducting parallel wail, as JXB = 0
fer the paraliel direction, but to thg currents emerging.from the con-

ducting wali for which the Lorentz force 1is refarding.

(s
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Induced field distributions for Case E are displayed in Figs. 130
and 131 and are reflective of the imposed boundary conditions. 1In a
Tokamak blanket, the neutrons provide an internal heat generation whose
magnitude is dependent on the distance from the first wall. If a duct
width of 10cm is assumed, a neutron heat deposition curve from the
Wisconsin Tokamak Design Report42 leads to the use of a heat generation
that linearly decreases from 1 at the first wall (i.e. the conducting
wall) to 0-7 at the opposite wall. Figures 132 aud 133 represent center-
line temperatures and contours with and without this heat generation
function. Temperatures acress the conducting wall are shown in Fig. 134
and this distribution is almost flat. This is desireable for uniform
cooling of the first wall. The bulk temperature and wall temperature
developments are shown in Fig. 135.

For Case I the conducting wall has C = 0+1 to correspond to a
steel wall and lithium fluid. Figures 136 and 137 show that this finite
conductivity causes some of the loops to pass through the conducting
wall. However, most lie entirely within the fluid, and the fully devel-
oped axial pressure gradient and velocity are essentially the same as
for the case with C = 0 on all four walls. This i3 as expected since it
has already been concluded that the pressure drop is strongly dependent
on the conductivity of the parpendicular walls and relatively insensitive
to the conductivity of the parallel walls. Thus, having one metallic
wall for heat transfer and three non-conducting walls, i.e. ceramic,
involves nc higher pressure drop than for all non-conducting walls.

Case G is simply the above case witﬁ the electrical insulation ex-

tended to include the corners of the C = 0«1 wall, Figures 138 and 139
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show how the currents again aveid the corner regions. However, there is
very little variation between mean parameters for this and the previous

case.

Stability and Computer Time Requirements

Before this chapter is closed some comments on the numerical
stability and computer time requirements of the previous problems need
tc be made. The numerical scheme, being implicit in the transverse plane
is inherently stable. The accuracy of the representation, however, is
strongly dependent on the size of the forward axial step as the upwind
differencing that has been used is essentially first order. As pre-
viously mentioned, 216 axial steps were used to represent an axial
length equivalent to 10 duct widths. The axial step-size was 0-01 for
the first 20 and 005 for the remaining 196 steps. The transverse mesh
spacing was also 0.05. It is desireable to have Ay and Az the same size
as Ax, since the scheme is first order in the axial direction and so
the truncation errors are proportional to Ax. This holds no matter how
small Ay and Az are made.

Initial runs of the program were made cn a 10 x 10 mesh with 80
axial steps, and though the results were less accurate, there were no
stability problems for these cases either. The main requirement for sta-
bility is that the number of sweeps of the Tri-diagonal Matrix Algorithm
should be increased as the number of points in the transverse plane is
increased. For the 10 x 10 mesh, 10 sweeps were required, while for the
20 x 20 mesh, 15 were necessary. If the number of sweeps is not suffi-

cient, the caleculation diverges explosively.
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These problems were run on a Control Data Corporation Cyber 74
multi-processor system located at the Georgia Institute of Technology.
For a 20 x 20 mesh, and 216 axial steps, the run times were about 8
minutes for the velocify, 10 minutes for the temperature and velocity,

and 15 minutes for the temperature, induction and velocity problem.
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(a) Axial Pressure Gradient Development

Figure 65.

(b) Pressure Coefficient Development
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Figure 67.

Current Density Vectors at

{a) L=0.001 ,

(b) I=0.005 ,

(d) I=0.100

(c) 1~0.010 ,
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Figure 69. Current Density Vectors in Axial Plane

(a) xy near Wall (z/D=0.05) ,

(c) %z near Wall (2/D=0.05)

C=infinity

(b) xz at Center
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Figure 77. (a) Axial Pressure Gradient Development

(b) Pressure Coefficient Development
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Figure 81.
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Current Density Vectors in Axial Plane

(a)xz near wall (¥Y/D=0.05)
(b)xz at Center
(c)xy near wall (Z/d=0.05)
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(a) Center-point Axial Velocity Development
(b) Mean Nusselt Number Development

Figure 82.
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(b)
2

Current Density Vectors at

(a) 1=0.001 ,

Figure 97.

(b) I~0.005 ,

(d) 1=0.100

(c) 1=0.010 ,

C=0 on Parallel Walls and C=inf. on Perpendicular Walls
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Figure 101. BAxial Field Contours at
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. Axial Field Surfaces at I~=0.1 for

(a) Case B, (b) Case A
Hz Field Surfaces at I=0.001 for
(c) Case B, (d) Case A
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Figure 119.

Axial Field Surfaces at I=0.1 for (a) Case C ,
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CHAPTER VI
CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

It is possiblé to conclude that the three-dimensional MHD entry
problem has been solved for low Hartmann number. The accuracy of this
solution can be improved by a number of means. First of all, better
treatment of the induction boundary conditions, both mathematically
and numerically could be imposed. The ideal treatment, however, would
involve a seperate solution of the induction equation in the duct wall
itself, and then the matching of this solution to that in the fluid
region in such a way as to satisfy the boundary conditions at the inter-
face. Numerical treatment of the boundary regions can also be improved
by such means as specification of slip values at the wall. These slip
values are calculated by assuming an appropriate property variation
near the wall, e.g. quadratic or exponential.

No claim is made as to having explicitly solved the Tokamak
blanket problem, because this involves much higher Hartmann and Reynolds
numbers, and a different formulation and numerical approach would be
required. For high Hartmann numbers the flow consists of a core with
uniform velocity, and thin boundary layers on the walls. Adequate
treatment of these layers, without the use of excessive numbers of
mesh points, would require a rather severely varying mesh size. It may
be possible to use new hybrid schemes involving finite element nodes
in the boundary layer regions for which the errors associated with a
severely varying mesh are not sc¢ large, coupled with a uniform finite

difference grid in the core region.
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From these low Hartmann number solutions a number of inferences
are possible. TFirst of all, the ideal configuration for heat transfer
channels in the Tokamak blanket appears to be one with metallic walls
in the direction parallel to the poloidal field, and non-conducting
i.e., ceramic, walls in the perpendicular.direction. This form of
channel will only cause small pressure drop increases over the hydro-
dynamic case, since it is the conductivity of the perpendicular walls
that significantly increases the pressure drop. From a heat transfer
point of view this channel is also good, since the main thermal
gradient in the blanket will be in the radial direction, i.e. the
direction that is perpendicualr to the poloidal field, and thus perpen-
dicular to the metallic walls. As a result, the main heat flow will
not be affected by the two ceramic walls. If two ceramic walls are
not acceptable, appreciable reduction of the pressure drop is also
possible by electrically insulating the corners of a metallic duct,
and including current breaks, particularly in the walls perpendicular
to the imposed field. If the electrical insulator used for the corners
is a good thermal conductor e.g., beryllium oxide, significant heat
transfer enhancement is associated with this corner insulation.

Owing to the high Reynolds numbers in the Tokamak blanket, the
entry region will be rather long. This long.en%ry iength will be
made even longer by the presence of the toroidal magnetic field along
the axis of flow. Thus, the flow is not expected to be fully developed
in the length of channel that is in the blanket, and this emphasizes

the importance of the entry calculation. Inclusioa of the axial field
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is the‘next step to be taken in the development of this method to
eventually solve the real Blanket case.

Many problems of interest remain to be solved in this area.
Flow around a U shaped length of pipe or a right angled bend in the
presence of one or two field components is one example. In fact,
the solution to the latter could be used as the inlet conditions for
the entry problem, to obtain more realistic modeling. The transport
of bubbles and voids within liquid metal MHD flow is another. All
of the above problems are three dimensional and they could possible
be solved with variations of this procedure.’

In final conclusion, the recent rejection of lithium cooled
blankets by some Tokamak designers in favor of lithium bearing but
helium cooled ones, seems unjustified, It appears that the simpli-
fications caused by a lithium cooled blanket are substantial, while

the penalties invoked by the same, are small.
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APPENDIX A

The camplete set of coefficients for all eight equations is pre-
sented here.

u Momentum Equation
The equation is,

%,0” Aot A%, 0t A oAy, ot D eBA BT )

where,
AT AR o ATAYR L B BYA
ARy o BREay DDy

and,
e " oy - Y
Al\li_ II‘yn I ASl'_ T}S{{- LS
oz .z o W
AEI_ Te— Le v BF Tw+ Lo
B'= Fyup ot Sy
Ag= Ag Agh Aph Ak By Sy
where,
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Ib 2 wé,U d Lw 7 Y
_ 1 {(az) 1 (82
s it JERL, : S
n QYn s Re dy,
L r =
e Re aae w Re aaw
& = Hagz { g )AV . A7
SP= Ol
v Momentum Ecuation
The equatiocn is,
Ye,0- AV, p" A%, o PeVE, 0" PWw,p" ] -BECE (2.2)

The ccefficients are the same as for the u equation except
_.‘L_E___ . .
S¢™ Ra Fem (HYP,D HYP,U) _ﬁxiaz + (Hx :ixs)Uaz}
and,
-v-l
D" = -4z,

w Momentumn Equation

The equation is,

" W W
= + i ]
Yo o~ Ay, ot Ags,pt AeE, 0t Aot T D (PpRy)pe (3.3)

The coefficients are as for the u equation except,
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Hap® )
SU= R?_Eﬁ (qZ - Hz )AZ" (HY HY )Aft
Yiap® (- Hx ) ay- (Bz, - Hz, ) 2Y4%
Re Rem UAy HZ'P, 2"P U Pap:e
ard,
DY = -ay.

Energy Equation

The equation is,

- _ )
O 57 Al BP0 Pele it Aot B att]

The coefficients are as for the u equation except,

il (az) T 2)

= (az) __1_
'Iﬁ‘_ Re Pr 9y, g s Re Pr gy

z. 1 (&y) -1 (ay)
Te Re Pr aze Tvzv RePrazw

S"Q/RePr

Pressure Correction Fquation

The equation is,
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Pp,p- AFN, 0" AsPs, ot AePr, 0t Aot B° (8.5)
where,

A~ cénv . A E‘_]_A_P._‘i

._ M ¥ e

BE v A TED

al=2¢” p'+ 2" DY
and,

BP= (V- v+ g v+ Clup g ) /A
where,

= AY.AZ ’ c'=ax.oz 7 = ax.ay .

Hx Induction Equation

The equation is,

9 (A.6)

_ e
By iy pt Nt By, S B R, ph &

The coefficients are as for the u equation except,

f— s
B ] SU r FU"' O

e Y T T N
By :[i‘*' Lat Tg bt It T Y

r]_‘Y'_': ._.l_.,. (_‘1%_) 'T‘y'.'-.' _.'1'__ {g.?:.}
n Rem 3 Yai 4 S Rem ays
_ 1@y 2 1 lay)

e Rem 9z “w Rem 97z
ae Iy
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— -ty = - J =T ‘.‘ 1 - s z -
SU \{( (Jn VS)Az f_we f,rw,Ay) U+ (L.n us,rn + (Hynun HySuS)Az
+ (Hzeue- szquUay y

Hy Induction Fquation

The equation is,

e o~ Ay, pt AW, pt A Ve, p" A, p" BY. Wit
' ’ : ' ' ’

The ccefficients are the same as for the u equation except,

Al= F+ AL+ AL+ B+ Al- 217+ 21Y

and,
IR byaz, ‘ Ayd? B
Sy~ {(\JDIP U, pioEe ?U{XP -4z (fy - Hy ),
- = SYHZ
Hz - Hz ) AY)Vp = BXp Vp 1A%

+ ((th vg)az+ (Hzeve~ szywhay)u i
The T's are the same as for the Hx equation.

Hz Induction Ecuation

The equation is,

Hz
Hz, S Atz pf Agizg ot Bz, oF Adlz, oF BT . (A.8)

The cocfiicienis are the same as for the u equation except,
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A= Tg : A T

> - 2
Bp Fyt Ayt Agh Agt Ay At Ay

Il

and,
B Y( u,p )&afzz ' ;( ,Uﬁgiz SRR W
ayaz }

~Hz - Hz Jay)wp = Higp (W, 7 §+(wn" w laz
+(Hynwn— Hy w.), 4z .

The T's are the same as for the Hx equation.
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