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Abstract

 

An ideal triangle mesh compression technology would
simultaneously support the following three objectives: (1)
progressive refinements of the received mesh during
decompression, (2) nearly optimal compression ratios for
both geometry and connectivity, and (3) in-line, real-time
decompression algorithms for hardware or software imple-
mentations. Because these three objectives impose contra-
dictory constraints, previously reported efforts focus
primarily on one – sometimes two – of these objectives. The
SQUEEZE technique introduced here addresses all three
constraints simultaneously, and attempts to provide the
best possible compromise. For a mesh of T triangles,
SQUEEZE compresses the connectivity to 3.7T bits, which
is competitive with the best progressive compression tech-
niques reported so far. The geometry prediction error
encoding technique introduced here leads to 20%
improved geometry compression over previous schemes.
Our initial implementation on a 300 Mhz CPU achieves a
decompression rate of up to 46’000 triangles per second.
SQUEEZE downloads a model through a number of suc-
cessive refinement stages, providing the benefit of progres-
sivity.

 

1. Introduction

 

An increasing number of industrial, business and enter-
tainment applications require that users download large
numbers of remotely located 3D models over internet con-
nections. It is essential to develop techniques that reduce
the waiting time in these applications. When 3D models are
required, as opposite to 2D images, a combination of lossy
and lossless compression techniques may be invoked.

Most of the popular 3D compression techniques are
focused on triangle meshes, because most other representa-

tions of 3D shapes may easily be tessellated (i.e. converted
to approximating triangle meshes), and because triangles
are well supported by most software and hardware graphics
subsystems.

Lossless compression techniques strive to significantly
reduce the number of bits required for encoding any given
3D model. Compression schemes developed specifically
for the most common representations of 3D models per-
form significantly better than general-purpose compression
techniques. The focus of current research in lossless 3D
compression is aimed at striking the optimal balance
between file size and decompression speed for the wide
spread of operating conditions defined by the bandwidth,
the local memory, and compute power available for
decompression. These conditions vary from decompression
hardware, with high bandwidth to main memory, very lim-
ited local storage, but extremely fast execution; to mobile
devices with limited bandwidth and compute power. The
techniques used for lossless compression include connec-
tivity coding schemes for planar and non-planar triangle
graphs, prediction of vertex locations from previously
decoded vertices, and entropy encoding and transmission
of the corrective vectors, which capture the difference
between the predicted and the actual locations of the verti-
ces. Many of these techniques have been developed and
optimized for the compression of single-precision meshes.
Different – and often less effective – solutions are required
for progressive meshes, discussed below.

Lossy compression approaches capitalize on two obser-
vations. First, most models are represented with more
accuracy than demanded by the application. For example,
many CAD models represent vertices with double preci-
sion floating point numbers when in fact the relative round-
off errors resulting from the geometric calculations that
were executed to compute the models are greater than one
in a million. More surprisingly, many electronic mock-up
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or design review applications use tessellated approxima-
tions of curved shapes that carry a much larger relative tes-
sellation error than one in a million. Finally, many graphic
applications (entertainment, walkthrough) produce images
of these models through a series of hardware supported cal-
culations which produce an even larger error in the position
of vertices on the screen and in the associated depth. Sec-
ond, when complicated scenes or assemblies are viewed
under perspective, many of the features or details are either
out of the viewing frustum, or hidden, or sufficiently far
from the virtual viewpoint to project on very small areas of
the screen. It is therefore unnecessary to download a full-
resolution, precise representation of these models, until
they become visible and sufficiently close to the viewpoint
for the approximation errors to be noticeable.

The overall strategy for compression is thus to first sim-
plify the models so that they are not over-specified. This is
usually done by selecting the appropriate resolution for the
approximation (through an adaptive tessellation or simpli-
fication process), and by truncating the least significant bits
of the vertex coordinates (through a coordinate normaliza-
tion and quantization process). We refer to the result of this
initial accuracy adaptation phase as the full accuracy, or
full resolution model 

 

M

 

n

 

 for that particular application.
Then, instead of encoding 

 

M

 

n

 

 as a single-resolution model,
one converts it into an equivalent progressive representa-
tion [12], which stores a very crude approximation 

 

M

 

0

 

, and
a series of upgrades 

 

U

 

i

 

, for 

 

i

 

=1 to 

 

n

 

. Applying upgrade 

 

U

 

1

 

to 

 

M

 

0

 

 produces a slightly more accurate model 

 

M

 

1

 

. Apply-
ing 

 

U

 

2

 

 to 

 

M

 

1

 

 produces an even more accurate model 

 

M

 

2

 

,
and so on, until the application of 

 

U

 

n

 

 produces 

 

M

 

n

 

. The
series of upgrades and the crude model may be produced
by a variety of mesh simplification schemes [11, 25, 12,
23, 6, 17, 7].

Initially, the user will download 

 

M

 

0

 

, and may never
need a finer approximation of 

 

M

 

n

 

. But if the model moves
closer to the view, a finer approximation may be required.
As soon as the display error that results from using 

 

M

 

i

 

exceeds the tolerance imposed by the application, the
upgrade 

 

U

 

i

 

+1

 

 is downloaded and used to increase the accu-
racy of the local representation of the model, as first sug-
gested in [12].

For faster transmission, 

 

M

 

0

 

 is usually compressed using
compression techniques developed for single-precision
models. However, the storage of 

 

M

 

0

 

 is typically very small
compared to an encoding of 

 

M

 

n

 

. The challenge is thus to
compress the upgrades so as to significantly reduce the
transmission delays and the decompression costs.

To best reduce the approximation error after any given
waiting time, one must strike the optimal balance between
the compactness of the compressed representations of 

 

M

 

0

 

and of the 

 

U

 

i

 

 and the time it takes to decode and apply the
upgrades. This is not an easy compromise, since more

compact representations usually require more complex
decompression algorithms. Furthermore, the balance must
take into account transmission and computing speed fac-
tors, which vary with the hardware used and connectivity
bandwidth.

A second trade-off must be made between the 

 

n

 

 number
of upgrades and the effectiveness of their compression. In
general, having fewer upgrades leads to economy of scale,
and thus better compression ratios per triangle. Individual
upgrades, which each insert a single vertex (such as the
approach in [12]), require several bits per triangle to iden-
tify which vertex must be split. Grouping vertex splits into
larger batches, as first proposed in [21] and [14], helps to
reduce the vertex identification cost. Unfortunately, limit-
ing the number of upgrades implies that the client will have
to wait longer at each level of resolution.

The SQUEEZE technology introduced in this paper pro-
vides a novel compromise between compression ratios,
number of upgrades, and performance of decompression
and upgrade application.

For a typical mesh of 

 

t 

 

triangles, SQUEEZE compresses
the connectivity information down to 3.7

 

·t

 

 bits. Although
this storage cost is more than twice the storage cost for the
best non-progressive compression schemes, it compares
advantageously with all previously proposed progressive
compression techniques, especially given that SQUEEZE
produces about 10 different levels of detail (LODs) for a
typical mesh, ensuring a continuous improvement of the
quality of the received mesh. After each refinement, the
user may manipulate the current resolution model as
SQUEEZE decompresses the next upgrade, or temporarily
stop the transmission until a higher LOD is needed. Fur-
thermore, as an upgrade is being decoded and applied, the
mesh resulting from the early refinement steps of the
upgrade are immediately available for rendering, before the
upgrade is completed.

Our new geometry prediction techniques leads to an
additional 20% improvement in geometry compression
over previous progressive methods and yet allows a very
fast geometry decompression. Our initial implementation
of SQUEEZE can decode up to 270’000 vertex split
records per second, and progressively apply the updates at
up to 70’000 processed vertex splits per second. Overall,
decoding and mesh updates combined, SQUEEZE
achieves a mesh decompression speed of about 25’000 ver-
tices (or 50’000 triangles) per second on a 300 Mhz CPU.

 

2. Related work

 

Many efficient compression methods for triangulated
single-resolution models have been proposed in the last
few years [4, 29, 30, 24]. In practice, these approaches can
compress the connectivity information (i.e., the triangle/
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vertex incidence table) down to less than 2 bits per triangle.
Furthermore, after a preprocessing normalization step
which quantizes the vertex coordinates to a specified reso-
lution (typically 8 to 16 bit integers), these methods use
geometric prediction and entropy coding to compress the
geometry.

Performance issues for in-line hardware decompression
of single-resolution models, as opposite to optimal com-
pression ratios, were addressed in [4]. An excellent com-
promise between the performance of software
decompression and the file size was presented in [9]. Even
more impressive compression ratios for almost regular tri-
angle meshes were reported in [30]. The mesh compression
technique of [29] has subsequently been optimized for fast
decompression and included in the MPEG-4 standard [8].

The progressive transmission of multiresolution mesh
models was introduced in [12] as a technique for graphics
acceleration, not focusing on compression. Mesh refine-
ments are based on vertex splits, which each require an
encoding of more than 7 bits per triangle for the connectiv-
ity information if a progressive ordering according to an
error measure is used [13]. Variations of encoding the
incremental mesh updates have been proposed in [5].

The idea of grouping the vertex-splits into batches was
introduced by the authors in [21] aiming at the reduction of
the average storage cost of a vertex split refinement (i.e.
[21] achieves an average of 3.6 bits per triangle). Batches
of vertex splits or vertex insertions have also been advo-
cated in [14] and in [3] (roughly 3 bits per triangle). A dif-
ferent approach to the encoding of upgrades that refine the
mesh by the introduction of a significant fraction of new
triangles was proposed in [28]. They encode a forest of
edges which, when cut, create holes in the mesh. The inter-
nal triangulation of each hole is encoded using a variation
of the mesh compression method presented in [TR98]. The
connectivity for the entire mesh may be compressed to an
average of between 4 and 5 bits per triangle. The method
proposed in [1] encodes contours of edges, defined in terms
of edge-based distance on the triangular graph computed
from a seed vertex. This approach requires between 4.5 and
8.7 bits per triangle for the connectivity information.

The compression of the vertex location is generally
based on vertex predictors and entropy coding. The best
geometry compression ratios for progressive meshes are
reported by the authors in [21] and in [3]. A comparison to
both methods is presented in Section 6.

 

3. Preliminaries

 

A triangular mesh can also be viewed as a graph 

 

G

 

 (

 

V

 

,

 

E

 

, 

 

F

 

) with vertices 

 

V

 

, edges 

 

E

 

 and (triangular) faces 

 

F

 

 with
an embedding in three-dimensional space. The graph 

 

G

 

itself without the vertex coordinates represents the 

 

connec-

tivity

 

 of the mesh. The 

 

geometry

 

 of the mesh consists of the
3D coordinates of the vertices which specify the actual
embedding of the graph in space.

The idea of progressively refining a triangular mesh
means to increase the number of mesh elements, i.e. trian-
gles, with every step starting from an initial crude mesh.
For triangular meshes the smallest incremental update con-
sists of adding one vertex. For typical meshes this also
means increasing the number of triangles by two and the
number of edges by three.

From the discussion above we can see that an incremen-
tal update has two main components: the connectivity
changes and the geometry information. The connectivity
update consists of increasing the number of elements, and
changing the incidence relation between vertices. The first
part specifies the topological location, the area of the mesh
that will be affected by the update, and the second part
determines the local incidence changes at that location. The
geometry information includes the 3D coordinates of the
new vertex, and possibly also coordinates of previously
existing vertices that changed their positions.

Applying a sequence of incremental mesh updates to an
initial crude mesh 

 

M

 

0

 

, generates a progressive series of
increasingly complex meshes 

 

M

 

0

 

, 

 

M

 

1

 

, …,

 

 

 

M

 

n

 

, where 

 

M

 

n

 

refers to the full resolution triangular mesh including all
available vertices. As mentioned in the introduction we are
interested in progressivity in the sense of increasing the
quality of the object that is represented by the triangular
mesh with every update. Therefore, the initial mesh 

 

M

 

0

 

embodies only a crude approximation, the incremental
updates 

 

U

 

i

 

 =

 

 

 

M

 

i

 

-1

 

 

 

→

 

 

 

M

 

i

 

 increase the mesh complexity and
reduce the approximation error with every step, and 

 

M

 

n

 

 is
the highest quality mesh representation of the object. A
sequence of progressive mesh refinements can be obtained
from mesh simplification methods which create different

 

levels of detail

 

 (LODs) from a high resolution input mesh
by iteratively simplifying the current mesh. Good over-
views of mesh simplification methods can be found in [10]
and [18].

In SQUEEZE, the simplification and reconstruction of
the triangular mesh is based on the 

 

edge collapse 

 

(ecol) and

 

vertex split

 

 (vsplit) operations introduced in [11], see also
Figure 1. A coarse mesh 

 

M

 

0

 

 and a sequence of vsplits
define a progressive mesh of increasing approximation
quality as presented in [12].
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FIGURE 1.

 

Edge collapse (ecol) and vertex
split (vsplit) operations for triangle mesh
simplification and reconstruction.˙

 

Note that we use the 

 

half-edge collapse

 

 simplification
that assigns the split-vertex to one of the vertices of the col-
lapsed edge, i.e. 

 

v

 

split

 

 = 

 

v

 

1

 

. Thus based on the displacement
vector 

 

v

 

disp

 

 = 

 

v

 

2

 

 - 

 

v

 

1

 

 the original vertices can be recovered
as 

 

v

 

1

 

 = 

 

v

 

split

 

 and 

 

v

 

2

 

 = 

 

v

 

split

 

 + 

 

v

 

disp

 

. Most other placement
variants, such as the midpoint placement of the split-vertex

 

v

 

split

 

 = 0.5·(

 

v

 

1

 

 + 

 

v

 

2

 

), do not guarantee that the coordinates
of 

 

v

 

split

 

 stay on the quantized coordinate grid, making
geometry encoding more complex. Furthermore, the half-
edge collapse has shown to yield better approximation
quality than midpoint placement due to better preserving
the volume of the given object, see also [18] for a discus-
sion of different edge collapse simplification and vertex
placement methods.

 

4. Progressive mesh encoding

 

Instead of encoding every vertex split operation individ-
ually, SQUEEZE groups simplification and refinement
operations into batches to increase connectivity encoding
efficiency. This concept was introduced in [21] and suc-
cessfully extended to progressive tetrahedral meshes in
[22]. SQUEEZE creates a series of meshes 

 

M

 

0

 

, 

 

M

 

1

 

, …,

 

 

 

M

 

n

 

where each update 

 

U

 

i

 

 =

 

 

 

M

 

i

 

-1

 

 

 

→

 

 

 

M

 

i

 

 between consecutive
LODs 

 

M

 

i

 

-1

 

 and 

 

M

 

i

 

 consists of multiple vertex split opera-
tions. In the course of this paper 

 

U

 

i

 

 will denote a batch of

vertex split refinement operations, and Ui
-1 a set of edge

collapse simplification operations, see also Figure 2 for
graphical examples.

The format of the compressed mesh consists of the ini-
tial coarse base mesh M0, encoded using a single-resolu-
tion mesh compression method such as [24], followed by a
series of compressed updates Ui. Following we describe
the encoding of a batch Ui

-1 of edge collapse operations.
Decompression starts with decoding the coarse base mesh
M0, and then applying the inverse of the encoding steps
described below to every compressed update Ui.

The encoding of a mesh update Ui, recovering Mi from
the previous mesh Mi-1, requires specifying all split-verti-
ces and their cut-edges in Mi, and the coordinates of the
newly inserted vertices. The following steps are performed
to encode an update batch Ui:

1. Construct and traverse a vertex spanning tree of Mi-1
and mark all split-vertices – the results of applying the
edge collapses Ui

-1 to mesh Mi.

For every marked split-vertex vsplit, we encode its cut-

edges as follows:
2. We compute the indices of the two cut-edges in the

sorted list of the incident edges on vsplit, clockwise,
starting with the edge from vsplit to its parent in the
vertex spanning tree.

3. Given the degree d of the split-vertex in mesh Mi, the
two edge indices are identified as one possible choice
out of  for selecting the cut-edges, we encode this
choice using exactly  bits.

Since SQUEEZE uses the half-edge collapse operator the 
split direction has to be specified:

4. Using one bit we distinguish between vsplit = v1 or
vsplit = v2 (see also Figure 1).

Furthermore, the geometry has to be encoded:
5. The displacement vector vdisp = vnew - vsplit is entropy

encoded as described in Section 6.

edge collapse

vertex split

split-vertex

cut-edges

vsplit

v1

v2

FIGURE 2. Batches of vertex split refinement operations of three different mesh updates (not consecutive in this
example). The two triangles inserted by a vertex split are highlighted in each image.

d
2 

 
d
2 

 
2log
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5. Simplification and compression

Coupled with the encoding method mentioned previ-
ously is the simplification process that generates the differ-
ent LODs Mn, Mn-1, …, M0 of decreasing accuracy. Each
simplification step Ui

-1 = Mi → Mi-1 has to select as many
edge collapses as possible to reduce the number of wasted
0-bits during the split-vertex marking of Step 1 above.
However, the edge collapses in Mi have to be chosen in
such a way that the vertex splits can uniquely be identified
in Mi-1. The following three topological requirements for
grouping edge collapses in a batch Ui

-1 are sufficient:

1. At most two vertices may be collapsed into one.
2. For each edge e = (v1, v2) that will be collapsed and

any other vertex w that is incident to both v1 and v2,
the triple (v1, v2, w) must define a valid triangle in the
mesh Mi.

3. For each edge e1 = (v1, v2) that will be collapsed and
any edge e2 = (w1,w2) forming a quadrilateral (v1, v2,
w1,w2) with e1 in Mi, e1 and e2 cannot be collapsed in
the same batch.

To achieve a good approximation at each stage, the sim-
plification process must also use an error metric to evaluate
and order edge collapses in addition to satisfying the topo-
logical constraints mentioned above. The current imple-
mentation uses a variant of the quadric error metric
introduced in [6] to order edge collapses according to their
introduced approximation error, however, another edge
collapse ordering [11, 12, 17] could be used as well. In
every simplification batch Ui

-1, a maximal subset of the
least expensive edges in Mi that do not violate the topolog-
ical constraints defined above are greedily selected and
collapsed.

6. Fast geometry decompression

Geometry compression, encoding the 3D coordinates of
vertex split operations, is a problem of variable length cod-
ing of scalar values. If these values change smoothly over
time or space, but their frequency distribution is uniformly
noisy, then prediction error coding can efficiently be
applied. The half-edge collapse used in the simplification
process shrinks an edge e = (v1, v2) to one vertex, i.e. vsplit
= v1, and the deleted vertex vdel = v2 must be encoded for
recovery. The deleted vertices of one simplification batch
Ui

-1 = Mi → Mi-1 are all geometrically close to the surface
of the simplified mesh Mi-1, thus their values change
smoothly over the surface Mi-1, but the frequency distribu-
tion of individual coordinate values is noisy. The coordi-
nates of local displacement vectors vdisp = vdel - vsplit have a
much more skewed distribution. The displacement vector
represents a simple vertex prediction error that uses the old
vertex vsplit as the estimate for the new vertex vdel. In [21]

and [3] more sophisticated prediction schemes have been
proposed based on the local neighbors of the split-vertex
and the deleted vertex.

To speed up decompression time compared to [21], we
simplified the prediction method to computing the average
of direct neighbors of vdel in the presented approach, simi-
lar to [3]. Based on the connectivity decoding the correct
mesh connectivity of Mi can be reconstructed without actu-
ally knowing the geometric coordinates of the new vertex
vdel, see also Figure 3. Therefore, the decoder can use the
same immediate neighbors a1, …, ak of vdel that have been
used for compressing the geometry. The estimated position
of the deleted vertex is calculated as:

(EQ 1)

The geometry information that is encoded with each
vertex split is therefore the difference verr = vdel - vest
between actual and estimated vertex positions. During
decompression the correct vertex position vdel can be
recomputed again by using Equation 1 and adding the
decoded verr. Decompression speed is mainly determined
by the vertex position prediction function, which is greatly
simplified by Equation 1 compared to the approach pre-
sented in [21], and by decoding verr for which an efficient
solution is presented below.

FIGURE 3. Estimating displacement vectors.
The new vertex vdel is estimated as the
average of its immediate neighbors a1, …, ak,
which are known from connectivity decoding.

The frequency distribution of prediction errors verr is
very skewed towards small absolute values, and centered
around 0 for most shapes. Also the frequencies tend to
decrease exponentially for larger absolute values which
makes it suitable for entropy coding [2, 16]. The efficiency
problem with such variable length coding methods is that a
straight-forward implementation of the decoder has to
examine every single bit to proceed in the decision or cod-
ing tree, until reaching a state in which a decoded symbol
can be returned. To speed up decoding performance we
implemented the high-performance Huffman decoder pro-
posed in [20] that allows to read and process multiple-bit
words, i.e. bytes, instead of single bits from the com-

vest
1
k
--- ai

i 1=

k

∑⋅=

vertex split

split direction

vsplit

a1

a2

a3

ak-1
ak

vdel

Mi-1 Mi

…
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pressed data stream. The approach is similar to the method
presented in [27], every node in the binary Huffman code
tree has a jump table associated with it. This jump table
captures the necessary information to decode any 8-bit
sequence starting at the current node: it yields the next
node resulting from a tree traversal according to the 8-bit
sequence, restarting at the root whenever reaching a leave,
and it also provides a list of decoded symbols that have
been encountered passing any leave of the tree while pro-
cessing the 8 bits. Therefore, the decoder can read the com-
pressed data stream in bytes, update its current node
accordingly and output the decoded symbols for every
node transition. An example Huffman code tree and the
corresponding jump table for 2-bit words are illustrated in
Figure 4.

The Huffman code for a set of symbols – quantized pre-
diction error values in our case – is based on their fre-
quency distribution. The decoder has to use exactly the
same code as the encoder, thus either the Huffman code
itself or the symbol frequencies have to be transmitted
before decompression is possible. Note that this has to be
done for every refinement batch since the prediction error
distribution changes with every LOD. To avoid this over-
head of sending decoding information and constructing a
code tree on-the-fly for every refinement batch, we model
the actual prediction error distribution by a probability dis-
tribution, and precompute Huffman codes for a fixed set of
different distributions.

One can observe that prediction errors for good estima-
tors have a probability distribution that decreases exponen-
tially with the absolute value of the prediction error. The
Laplace distribution of Equation 2 is widely used for statis-
tical coding of differential signals in image compression
[19, 26]. We use this Laplace distribution to model the pre-
diction error histogram of our geometric vertex position
estimator of Equation 1. For symmetric error distributions,
the mean µ is 0, and the variance υ uniquely defines the
shape of the Laplace distribution. The variance is adjusted
for every batch by the average of the squared prediction

errors, . Thus the only infor-

mation that has to be sent at the beginning of every batch is
the current variance for the Laplace distribution.

(EQ 2)

Given the frequency distribution defined by the variance
υ and the Laplace function Lυ(x), a Huffman code can be
constructed for every batch based on its variance. How-
ever, this process can be very time consuming. We avoid
this problem by precomputing a set of Huffman codes for a
set of 37 pre-specified variances that guarantee an unno-
ticeable loss in coding efficiency as shown in [15, 26]. At
the beginning of every batch, the Huffman code for a fixed
variance closest to the given variance is chosen and used to
decode the compressed geometry data of the entire batch.

7. Experimental results

We conducted a variety of experiments comparing our
fast progressive mesh compression method to other
approaches with respect to compression efficiency and
decompression speed. Compression efficiency was chal-
lenged with one of the best known single-resolution mesh
compression techniques [30], and compared to various
recently developed multiresolution mesh compression
methods [21, 3, 1]. The progressive mesh compression
method introduced in [28] cannot provide sufficient geom-
etry compression compared to the newer approaches and is
not included in the experiments. Also the progressive mesh
compression method presented in [13] only reported tests
on highly quantized meshes, and does not provide
advanced connectivity compression. The progressive
approach presented in [5] needs even more bits than the
initial progressive meshes representation of [12], and thus
does not improve compression ratio. Decompression per-
formance of progressive methods was only reported in
[13]. We also compare speed to single-resolution compres-
sion methods [5, 9].

FIGURE 4. a) Huffman code tree with some indicated node transitions using a word size of 2 bits for the codes
A=00, B=01 and C=1. b) The complete node transitions table for all nodes indicating the end-node for any given
combination of start-node and data word. Note that all leaves have the same jump table as the root node and can
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Tables 1 and 2 evaluate the compression efficiency of
our approach compared to other methods mentioned in the
literature. SQUEEZE is competitive with the single-resolu-
tion compression approach of [30] in terms of geometry
compression. The added functionality of progressive multi-
resolution mesh reconstruction comes at a higher cost for
connectivity encoding due to the complexity of the multi-
resolution model. Our approach outperforms other multi-
resolution compression methods [3, 1] mainly in geometry
encoding. Note that the presented method and the method
in [3] use a very similar geometry prediction method but
quite different entropy coding techniques. Note that in [3]
the simplification process is not driven by an error metric.
The method presented in [21] compresses slightly better on

average than the presented approach, however, at much
higher processing cost for geometry prediction.

Decompression speed performance is reported in
Table 3 for various test models, measured on a 300MHz
R12000 SGI O2. While decoding speed is limited by
geometry prediction and Huffman decoder, updating the
triangle mesh depends on the size of the model due to the
growing mesh data structures. In [13] timings are reported
for decoding vertex split records, but only for a gzip com-
pression version and not for the advanced arithmetic cod-
ing version which is expected to be slower by order of
magnitudes. Nevertheless, our decoding performance of up
to 270’000 decoded vertex split records per second com-
pares favorably with the 80’000 reported in [13],1 consid-

Touma et al. [30] Cohen-Or et al. [3] SQUEEZE

quantization models vertices
bits / ∆ for

connectivity
bits /vertex for
coordinates

bits / ∆ for
connectivity

bits /vertex for
coordinates

bits / ∆ for
connectivity

bits /vertex for
coordinates

8 bit
triceratops 2832 1.1 8.3

N / A
3.7 9.6

blob 8036 0.9 7.9 3.7 9.2

12 bit
triceratops 2832 1.1 22 2.9 26 3.7 21

blob 8036 0.9 21 3 26 3.8 21

TABLE 1. Compression efficiency compared to other existing techniques based on published results. The
method presented in [30] provides highest compression ratios for single-resolution meshes, whereas the
approach of [3] shows smallest connectivity encoding for progressive meshes.

Bajaj et al. [1] Pajarola et al. [21] SQUEEZE

quantization models vertices
bits / ∆ for

connectivity
bits /vertex for
coordinates

bits / ∆ for
connectivity

bits /vertex for
coordinates

bits / ∆ for
connectivity

bits /vertex for
coordinates

10 bit
fandisk 6475

N / A
3.4 15 3.7 15

fohe 4005 3.7 15 3.8 19
triceratops 2832 3.5 20 3.8 15

12 bit
bunny 34834 5.0 28 3.6 16 3.8 17
phone 83044 4.5 31 3.6 14 3.8 13

TABLE 2. Compression efficiency compared to published results and to an initial version of the proposed
method. [21] has a more sophisticated but more complex vertex prediction function than SQUEEZE.

Models Quantization Model size Vertex splits per second
base mesh vertex splits decoding mesh update combined

triceratops
12 bit 53 2779 277900 55579 46315
10 bit 53 2779 92633 69975 39862

fandisk 10 bit 89 6386 159650 45614 35477

blob
12 bit 137 7899 112842 41573 30380
8 bit 126 7910 197750 43944 35954

bunny 12 bit 824 34010 117275 21662 18284
phone 12 bit 1403 81641 114987 14173 12617

TABLE 3. Decompression speed performance. Model size denotes the number of
vertices in the base mesh, and the number of inserted ones due to vertex splits.
Performance is measured in processed vertex splits per second for decoding only, for
applying updates on the triangle mesh, and for combined decompression and mesh update
speed.
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ering the much better compression ratio that is achieved. In
[5] decompression speed has been reported for a single-res-
olution mesh coding method only, achieving roughly
16’000 vertices per second.1 Much higher connectivity
decoding speed was reported in [9] with up to 400’000 ver-
tices per second.2 Both of these approaches do not include
geometry coding which dominates decompression speed.
Considering that the presented approach and the reported
timings in Table 3 include the complete geometry informa-
tion and provide a much higher complexity in functionality
– progressive reconstruction of a multiresolution model –
our approach is superior to [5] and is a convincing alterna-
tive to [9] when progressivity and speed are equally impor-
tant.

Figure 5 shows the different test models, and results
from SQUEEZE. Indicated are the number of bits needed
in SQUEEZE to represent the mesh Mi and the time needed
for transmission using a 56Kb/s connection. Note that the
bits and time of Mi include all previous LODs Mj for j = 0
to i. In roughly one-tenth of the time and size of the full
resolution model M10 SQUEEZE provides already 6 pro-
gressive LODs M0 to M5.

With an average speed of 25’000 decoded and applied
vertex splits per second, thus reconstructing the mesh at a
rate of 50’000 triangles per second, and a typical encoding
of about 11 bits per triangle, SQUEEZE can decompress
and reconstruct a progressive mesh in real-time on the test
machine (300MHz CPU) for connections with a sustained
transmission rate of 550Kb/s.

8. Conclusion

The progressive multiresolution mesh compression
method SQUEEZE introduced in this paper provides an
effective compromise between optimal compression ratio,
flexibility in mesh reconstruction, and decompression
speed. SQUEEZE matches or improves the best progres-
sive mesh compression methods in terms of compression
efficiency, and additionally provides high-speed decom-
pression. Even for single-resolution mesh compression
methods there have not been reported faster methods than
SQUEEZE that incorporate both connectivity as well as
geometry information.

The improvements achieved by SQUEEZE are based on
a unique combination of new and improved techniques for
progressive mesh encoding, geometry prediction, entropy
coding, and variable-length prefix decoding. Good com-
pression efficiency is realized by grouping mesh refine-
ments and locally encoding updates based on a vertex
traversal order, by encoding the coordinates of new verti-
ces based on a local prediction error encoding, and by
removing code tables from the data file. High decompres-
sion speed is gained by using a computationally simple
geometry predictor, a fast prefix-code decoding algorithm
and data structure, and by precomputing Huffman codes
which can be used for multiple downloads.
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FIGURE 5. Original test models shown in the first column, followed by the base mesh M0, an intermediate
representation M5 and the full resolution model M10 of SQUEEZE. Bits and transmission time of Mi include all
prior LODs, and time is estimated for a 56Kb/s communication.

M0, 3026 bits,  0.05 seconds M5, 14819 bits, 0.26 seconds M10, 144306 bits,  2.57 seconds

M0, 32960 bits,  0.58 seconds

M0, 1802 bits,  0.03 seconds

M0, 4216 bits,  0.07 seconds

M0, 56120 bits,  1.00 seconds

M5, 101944 bits, 1.82 seconds

M5, 7474 bits, 0.13 seconds

M5, 13000 bits, 0.23 seconds

M5, 198472 bits, 3.54 seconds

M10, 864088 bits,  15.4 seconds

M10, 63330 bits,  1.13 seconds

M10, 109488 bits,  1.95 seconds

M10, 1753256 bits,  31.3 seconds

fandisk

bunny

triceratops

fohe

phone



Proceedings CGI 2000 10

References

[1] Chandrajit L. Bajaj, Valerio Pascucci and Guozhong
Zhuang. Progressive compression and transmission of arbi-
trary triangular meshes. In Proceedings Visualization 99,
307–316. IEEE, Computer Society Press, Los Alamitos,
California, 1999.

[2] John G. Cleary, Radford M. Neal, and Ian H. Witten. Arith-
metic coding for data compression. Communications of the
ACM, 30(6):520–540, June 1987.

[3] Daniel Cohen-Or, David Levin and Offir Remez. Progres-
sive compression of arbitrary triangular meshes. In Proceed-
ings Visualization 99, 67–72. IEEE, Computer Society
Press, Los Alamitos, California, 1999.

[4] Michael Deering. Geometry compression. In Proceedings
SIGGRAPH 95, pages 13–20. ACM SIGGRAPH, 1995.

[5] Leila De Floriani, Paola Magillo, and Enrico Puppo. Com-
pressing TINs. In Proceedings of the 6th ACM Symposium
on Advances in Geographic Information Systems, pages
145–150, 1998.

[6] Michael Garland and Paul S. Heckbert. Surface simplifica-
tion using quadric error metrics. In Proceedings SIGGRAPH
97, pages 209–216. ACM SIGGRAPH, 1997.

[7] André Guéziec. Locally toleranced surface simplification.
IEEE Transactions on Visualization and Computer Graph-
ics, 5(2):168–189, April-June, 1999.

[8] André Guéziec, Frank Bossen, Gabriel Taubin and Claudio
Silva. Efficient compression of non-manifold polygonal
meshes. Technical Report RC 21453/96815, IBM T.J. Wat-
son Research Center, 1999. (also in SIGGRAPH 99 Course
Notes)

[9] Stefan Gumhold and Wolfgang Strasser. Real time compres-
sion of triangle mesh connectivity. In Proceedings SIG-
GRAPH 98, pages 133–140. ACM SIGGRAPH, 1998.

[10] Paul S. Heckbert and Michael Garland. Survey of polygonal
surface simplification algorithms. In SIGGRAPH 97 Course
Notes 25. ACM SIGGRAPH, 1997.

[11] Hugues Hoppe, Tony DeRose, Tom Duchamp, John
McDonald, and Werner Stuetzle. Mesh optimization. In Pro-
ceedings SIGGRAPH 93, pages 19–26. ACM SIGGRAPH,
1993.

[12] Hugues Hoppe. Progressive meshes. In Proceedings SIG-
GRAPH 96, pages 99–108. ACM SIGGRAPH, 1996.

[13] Hugues Hoppe. Efficient implementation of progressive
meshes. Technical Report MSR-TR-98-02, Microsoft
Research, 1998. (also in SIGGRAPH 98 Course Notes 21)

[14] Hugues Hoppe. Efficient implementation of progressive
meshes. In SIGGRAPH 99 Course Notes. ACM SIG-
GRAPH, 1999.

[15] Paul G. Howard. The Design and Analysis of Efficient Loss-
less Data Compression Systems. Ph.D. thesis, Department of
Computer Science at Brown University, 1993.

[16] D. A. Huffman. A method for the construction of minimum
redundancy codes. In Proc. Inst. Electr. Radio Eng., pages
1098–1101, 1952.

[17] Peter Lindstrom and Greg Turk. Fast and memory efficient
polygonal simplification. In Proceedings Visualization 98,

pages 279–286. IEEE, Computer Society Press, Los Alami-
tos, California, 1998.

[18] Peter Lindstrom and Greg Turk. Evaluation of memoryless
simplification. IEEE Transactions on Visualization and
Computer Graphics, 5(2):98–115, April-June, 1999.

[19] Arun N. Netravali and Barry G. Haskell. Digital Pictures:
Representation, Compression and Standards. Plenum Press,
New York and London, second edition, 1995.

[20] Renato Pajarola. Fast Huffman code processing. Technical
Report UCI-ICS-99-43, Information and Computer Science,
University of California Irvine, 1999.

[21] Renato Pajarola and Jarek Rossignac. Compressed progres-
sive meshes. Technical Report GIT-GVU-99-05, GVU Cen-
ter, Georgia Institute of Technology, 1999.

[22] Renato Pajarola, Jarek Rossignac and Andrzej Szymczak.
Implant Sprays: Compression of progressive tetrahedral
mesh connectivity. In Proceedings Visualization 99,
pages 299–305. IEEE, Computer Society Press, Los Alami-
tos, California, 1999.

[23] R. Ronfard and J. Rossignac. Full-range approximation of
triangulated polyhedra. IEEE Computer Graphics Forum,
15(3):C67–C76, August 1996.

[24] Jarek Rossignac. Edgebreaker: Compressing the incidence
graph of triangle meshes. IEEE Transactions on Visualiza-
tion and Computer Graphics, 5(1):47–61, January-March,
1999.

[25] Jarek Rossignac and Paul Borrel. Multi-resolution 3d
approximations for rendering complex scenes. In Bianca
Falcidieno and Tosiyasu L. Kunii, editors, Modeling in
Computer Graphics, pages 455–465. Springer-Verlag, Ber-
lin, 1993.

[26] David Salomon. Data compression: the complete reference.
Springer-Verlag, New York, 1998.

[27] Andrzej Sieminski. Fast decoding of the huffman codes.
Information Processing Letters, 26(5):237–241, January
1988.

[28] Gabriel Taubin, André Guéziec, William Horn and Francis
Lazarus. Progressive forest split compression. In Proceed-
ings SIGGRAPH 98, pages 123–132. ACM SIGGRAPH,
1998.

[29] Gabriel Taubin and Jarek Rossignac. Geometric compres-
sion through topological surgery. ACM Transactions on
Graphics, 17(2):84–115, 1998.

[30] Costa Touma and Craig Gotsman. Triangle Mesh Compres-
sion. In Proceedings Graphics Interface 98, pages 26–34,
1998.




