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Abstract

The pulp-water distribution of polyvinyl acetate and styrene butadiene rubber was

determined through a Britt jar separation technique. The affinity of potyvinyl acetate to fiber

increased with increasing kappa number, suggesting a hydrophobic-hydrophobic interaction.

Fiber-stickle association increased at pH _ 4; this was attributed to protonation of the !ignin

carboxylic acid groups which would increase lignin hydrophobicity. Microparticle retention

aids directed the stickle from the water to the mat phase by associating either the stickle, or

the s_ckie-bound fines to the mat. Temperature had a significant effect on the breakup of

two hot melts that were applied to linerboard. The most important finding was that fibers

inhibit stickle reagglomeration. Polyvinyl acetate agglomerated completely when added to

water in a methanol carrier. However, when added to a pulp slurry, a large fraction of the

polymer was found as an apparently free suspension and transferred to the filtrate. It is

proposed that stickle particles are trapped in fiber flocs or are otherwise associated with fiber,

and are unable to interact with other stickle particles. The tendency of the polymer to

reaggiomerate in the absence of fiber could be a mechanism for stickle reaggiomeration in

white water.

Introduction

The presence of stickies in recycled fiber can cause runnability problems, lead to hole

and spot formation, and to decreased felt lifetime. The industry has principally focused on

practical aspectsof stickie prevention and removal, e.g., through more frequent pulper

cleaning, and optimizing screensand cleaner efficiency. Detackifiers (1), talc (2), synthetic

fibers (3), retention aids (4), and a variety of chemicals (5,6) have had some success in

minimizing the effects of stickies, but a universal set of solutions has not emerged. Our

approach is mechanistic in nature; it seeks to understand the chemistry of the interactions

among fiber, water, and stickie, and to then apply the principles developed towards stickies

control, tn this paper we describe laboratory procedures to study the distribution of model

stickies between fiber and water, and identify some of the governing factors.



Technique for measuring fiber:water distribution

Consider the relationships in Table 1. A pulp water slurry containing a mass of w_ of

fiber is agitated in a Britt jar, and stickle (w2) is slowly added with a syringe in a small volume

of methanol. The mixture is agitated at 200 rpm for 15 minutes, after which the water is

drained through a 200-mesh screen and collected. Agitation at 400 rpm leads to substantially

similar results. The solids retained on the 200-mesh screen and a measured aliquot of the

filtrate are dried and weighed to give bone dry weights of w3 (mat) and w4 (water). A

companion experiment with an identical massof fiber (w_) is performed without the added

stickle. The dried materials in the mat and water for this control experiment weigh ws and w_

respectively. If the stickle does not change the quantity of fines transferred to the filtrate, then

Mr, the mass ratio, can be defined as in Table 1 as the fiber:water distribution coefficient of

the stickle. However, this distribution coefficient may represent a steady state condition

rather than true thermodynamic equilibrium.

The solids in the water phase for the blank, w6, are fiber fines, and for Mr tO represent

the distribution coefficient, the same massof fiber fines must transfer to the water layer from

both the sample and the blank. For this case,

Mr= [stickie]mat/[stickie]water (1)

where [stickie]matand [stickie]waterare stickle concentrations in the mat and in water

respectively. As will be discussed later, there are instances where this assumption breaks

down and Mr no longer represents the distribution coefficient. For these cases,

Mr - {[stickie]mat+Afibermat}/ {[stickie]water+Afiberwater} (2)

where Afiber is the stickie-induced difference in fiber mass. Equation (1) reflects the true

mat:water stickie distribution, whereas equation (2) is an approximate measure of the changes

in distribution under different conditions. Either equation allows us to at least qualitatively



relate trends in Mr to changesin stickiebehavior. If the stickiehelpsretainfines that would

otherwise transfer to the filtrate, then w4<w6, and Mris negative. Thus, a iow Mr indicates a

weak stickie-fiber interaction, a high Mr suggests a strong attraction, and a negative M_

represents a situation where the stickie helps retain fines in the mat.

In order to compare results among different experiments it is necessary to use a

constant quantity of fiber. We accomplished this for never-dried fiber by preparing wet

handsheets in a Formette Dynamique, and cutting 0.625" cross-directional strips for each

experiment. In order to determine uniformity, 10 strips were cut in alternating segments from

a sheet containing 20 strips. The weight of these averaged to 0.585 g, (,=0.004 g) which

translates to a standard deviation of 0.7%.

M_values for polyvinyl acetate (PVAc,MW:90,000, Polysciences) in a water and a

kappa 23 pulp system are presented in lable 2. lhe difference in weight in the "solids out"

columns, i.e., 0.019 g. for the fiber and 0.0697 g. for the water, leads to a Mr value of 48,

after normalizing for the mass of fiber (1.6898 g) and the volume of water present (300 mt_).

The difference in weight between the stickie added and recovered (0.012 g.) is probably due

to a small difference in weight between the fiber used in the sample and blank. If this

uncertainty is assigned to the stickie in water, then Mr -42; if it is associated with the mat,

then M_=77. lhis uncertainty range is typical of Mrvalues determined by this approach. Ail

M_ measurements reported in 'this paper were made at least in duplicate.

The advantage of the technique is that changes in the fiber:water distribution are easily

measured, lhe principal disadvantage is that the mass of the stickie is inferred by difference

rather than through direct determination. Since the stickie is added as small particles, our Mr

values relate to the whitewater loop where the sfickies are likely to be in present as small

particles, having successfully navigated the screening and cleaning system.

Dependenceof Mr on kappanumber

Figure I illustrates the dependence of Mr on kappa number for PVAc (added as a

methanol solution) and styrene butadiene rubber, SBR(added as a latex emulsion). The M_-

kappa relationship is clearly linear for PVAc,suggesting that the pulp is progressively more



attractive t° the hydrophobic polymerasitsown hydrophobicity increases. This follows the

pattern established for lower molecular weight non-polymeric species where distribution

coefficients are linear with kappa number (7-9). The situation for SBR is more difficult to

interpret since the substrate was introduced as a latex, and surfactant was, therefore, already

present in the system. Since surfactants stabilize aqueous phase suspensions, lower M_ values

are to be expected. Evidently, in our case, the surfactant masks the effect of the lignin. The

practical implication of these findings is that (in the absence of surfact_nts) stickles wilt

associate more strongly to brown pulp than to bleached.

These results potentially explain the behavior of pitch in a virgin mill processing a

mixture of sutfite pulp and TMP (10). Pitch problems are observed in the absence of TMP,

but disappear when TMP is mixed in with the sulfite pulp. Since pitch is expected to parallel

the behavior of PVAc in its attraction to lignin, TMP should decrease pitch problems as

observed.

Effect of retention systemson Mr

Since retention systems reduce the fines fraction, their effect on M_ should reflect the

amount of stickles associated with the fines. The following retention system was used' anionic

colloidal silica (0.06 g); cationic starch (0.06 g); alum (0.03 g.); fiber (3 g); resin (0.15 g);

water (600 mL). The system is similar to microparticulate retention systems, e.g. as described

by Doiron (4). Three types of PVAc were used, and for each, parallel experiments were done

with and without the cationic starch. The resultsshown in Table 3 illustrate the dramatic

effect of the retention aid on Mr. The variability of the retention aid measurements is high

because very little material remained in the filtrate, leading to a high uncertainty in weight.

There are two possible ways for the stickles to be removed from the aqueous phase. First,

they can be directly attached to the pulp by the retention aid. Second, if the stickle is already

substantially associated with the fines, then the retention aid will collect the fines together

with the bound stickles.



Dependenceof J_/Ir on freeness

The massratio (M r) variesinverselywith freenessfor bleachedKraft pulp asshown in

Table 4. Three possible explanations were considered- (i) most of the stickie is tied up with

the fines which are retained to a greater extent in the mat, (ii) the decreased mat porosity

filters out both stickie and fines which are not necessarily associated; and (iii) the stickie

associates strongly with the fibrils in the refined fibers.

The "fines in filtrate" column in Table4 measuresthe fines in the filtrate withoutthe

stickie, i.e. it represents w6 in Table 1. The "apparent stickie weight in filtrate" represents w4-

w6 in Table 1. The fourth column is the apparent stickie.fines mass ratio in the filtrate. The

"apparent stickie weight" would correspond to the true stickie weight if the mass of fines

transferred to the filtrate was iden_cal for the two experiments with and without the stickie.

The relatively constancy of this column suggests that most of the PVAc could be associated

with fines. However, phase contrast microscopy of fresh filtrate showed the presence of both

free and fines-associated PVAc, negating this possibility. Stickie-fines association did increase

with time, but this isnot germaneto the Mr-freenessrelationshipwhich dependson the

stickie distribution at the time of filtration. While we are unable to distinguish between

mechanisms (ii) and (iii) above, we have noted through phase contrast microscopy that stickies

have a particular affinity to fibrils (11 ). On this basis, the refined pulp should have a greater

affinity for the stickie which could account for the inverse Mr-freeness relationship. Results

from related experiments with SBR latex emulsion (with alum added) are also included in

Table 4. Weights of stickies and fines are omitted since the alum will partition differently into

the filtrate in the presence of the SBR. These data also show the inverse Mr-freeness

relationship seen for PVAc.

Dependenceof Mr onpH

Mr increases for the unbleached pulp at Iow pH as shown in Table 5. The probable

reason is that the ionization of lignin acid groups is suppressed (12,13), making the mat more

hydrophobic, and, therefore, more receptive to PVAc. This argument is consistent with a

much smaller effect observed for the bleached pulp.



Dependenceof Mr on temperature

Two types of experiments were conducted. First, PVAc in methanol was added to the

slurry, and Brittjar measurements were made as before. Second, each of two hot melts was

softened in an oven and then: poured on linerboard, lhis material was too rigid to be broken

up in a Brittjar, and it was repulped in either a Britishdisintegrator (50,000 revolutions) or a

Waring blender (5 minutes). Companion control experiments were conducted without added

stickie, and the stickie transferred to the filtrate was obtained by comparing the dried mass in

the filtrate from the two measurements. The results are reported in lable 6.

PVAcdistributions show no significant temperature dependence, especially for the

bleached pulp; the stickie predominantly proportions into the aqueous phase. Since a

temperature increase should weaken stickie.fiber interactions, an)/additional temperature-

induced transfer to the aqueous phase is probably undetectable with our technique. For the

two hot melts at 80°[, the percent weight of added stickie in the filtrate is negative, indicating

that more fiber is retained in the experiment with the hot melt than in the control without it,

because the hot melt entraps the fiber. In this case, increasing temperature would weaken

the stickie-fines association and release the fines into the filtrate. In addition, components of

the hot melt would soften and disperse into the aqueous phase.

Our PVAc was unable to trap fiber because it was introduced as small particles. Had it

been pre-applied to the fiber as was the hot melt, we would have expected to see much

higher fiber retention. In other words, we attribute differences in the amount of stickie

transferred to the filtrate to differences in the mode of application between the two stickles

and not to any physicochemical differences between them.

Dependenceof Mr on consistency

When PVAc is added to water in the absence of fiber it quickly aggregates, and no

PVAc transfers to the filtrate. As shown in Figure 2, addition of bleached fiber to the system

increases the amount of PVAc entering the filtrate. The data are reported as water:mat

distribution ratios instead of Mr in order to accommodate the zero solids point which would

be infinity in an M r plot. Thus,we havethe curioussituationwhere the fiber inhibits



agglomeration, and we have free stickie in the filtrate despite its propensity to instantly

agglomerate in the absence of fiber. The phenomenon can be rationalized on the basis of

kinetic vs. thermodynamic control, a well-known mechanism in organic chemistry.

Consider a drop of PVAc in methanol contacting water. The methanol dissolves and

the PVAc falls out of solution in particulate form. If a PVAc particle contacts a fiber it is

entrained in the fiber floc or is otherwise trapped by the fiber. Since the surface area of fiber

in the system is much larger than that of stickie, stickie-stickie collisions are infrequent, lhus,

the weaker PVAc-fiber attachment is formed in preference to the thermodynamically more

stable PVAc-PVAc association because a PVAc particle collides with fiber much more often

than it does with another PVAcparticle, lhus, the fiber protects the captured PVAcfrom an

encounter with another PV^c pa_cle, thereby preventing agglomeration. Now consider the

stickie-fiber floc network. Ifthe network is disturbed through agitation, the free stickie particle

enters the aqueous phase. However, since the probability of a stickie-stickie collision is very

much lower than that of a stickie-fiber encounter, it is recaptured by fiber.

Ultimately, the stickies will agglomerate into a separate phase as it does in the absence

of fiber since this is a thermodynamically more stable situation. However, the preferred

kinetics of the PVAc-fioc collisions prevent this from occurring in the time frame of our

measurements. The Figure 2 relationship steadily increases beyond a consistency of about

0.5, probably because stickie-stickiecollisions are eliminated and virtually all the stickie

particles are captured by fiber. While the addition of stickies via a methanol carrier has no

practical relevance, the finding that fibers can interrupt stickie agglomeration will apply to

situations where stickies are present as small particles. For example, stickie reagglomeration

should be highest in Iow consistency regions such as a whitewater system.

Dependenceof Mr on the methodof stickieapplication

In the above experiments, the stickie was applied to the pulp slurry in a methanol

carrier. In order to determine the strength of the stickie-fiber attraction, a number of

experiments were run where pulp was saturated with 19% by weight of PVAc in methanol,



dried, mixed with untreated pulp, and run through our Britt jar procedure. The results are as

follows:

Percent treated PVAc in PVAc in Solids in water/solids

pulp solids (_ water (_ on Britt jar screen
0 0 0.00 0.02
50 0.20 0.038 0.03
80 0.40 0.010 0.02

100 0.64 0.035 0.02

Note that the amount of PVAc in water does not change appreciably as the blends change,

suggesting that the PVAc in the pulp does not readily transfer to water under our experimental

conditions. This is further confirmed by the solids ratio column. Although the amount of fiber

and PVAc increases in both water and fiber phases as the amount of PVAc increases, the ratio

does not. This indicates that the distribution of PVAc between water and fiber is constant

because the PVAc remains attached to the fiber. This result is not surprising since the PVAc in

this experiment is soaked into the matrix of the fiber, and is much more difficultto dislodge

than the PVAc added through methanol which associates with the fiber surface.

Conclusions

We have demonstrated a simple Britt jar approach to the study of stickie-fiber

interactions. Our principal findings are that polyvinyl acetate has a greater affini_ to brown

pulp than to white, and that this affini_ increasesat Iow pH and in the presence of retention

aids. Temperature has a significant effect on the disintegration of hot melts during repulping.

Most important, fiber interrupts the agglomeration of small stickie particles. This last

observation could be the basis of stickie reagglomeration in Iow consistency regions such as

the whitewater loop.
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Table 1' Fiber:water distribution of stickies

solids in solids out

fiber stickle fiber water

sample W1 W2 , , , W3 W4

blank w_ 0 w5 w6

difference in fiber mass: (w3-ws); difference in water
mass-(w4-w6)

Mr=mw(W3-Ws)/mf(w4-w6); mw: massof water; mr: mass
of fiber

Table 2' M r values of polyvin¥1 acetate

solids in (g.) solids out (g.)
fiber PVAc total fiber water total

sample 1.7416 0.1 1.8416 1.7088 0.1062 1.815
blank 1.7416 0 1.7416 1.6898 0.0365 1.726

PVAcweight 0.1 0.1 0.019 0.0697 0.088
M_=48

Table 3: Effect of retention systems on M_

resin- 2873 flexible cross-linking PVAc latex for PSA (Tg--36)
without starch: M_-62, with starch- M_= 1,630 (355-3400)

resin: 1105 rigid PVAc latex for paper coating (Tg--29)
without starch: M_=66, with starch. M_=690 (235-1060)

resin: 9003-20-7 PVAc homopolymer, (Tg-29)
without starch- Mr=33, with starch- M_=380 (210-480)
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Table 4: Dependence of Mr on freeness
freeness finesin apparent apparent Mr

filtrate (g) stickie weight stickie/fines
in filtrate (g) ratio

PVAc (3 g. PVAc, fiber, 600 mL water)
641 0.0854 0.2093 i 2.45 27

575 0.0403 0.1447 3.59 151
441 0.0409 0.1142 i 2.79 131

335 0.0264 0.0901 3.45 486

200 0.0202 0.0612 3.03 779

SBR (0.3 g. SBR, 3g. fiber (kappa 37 unbleached softwood Kraft),
600 mL water, 1.66% alum)

732 1060

588 1730
134 ! 4310

i

Table 5- Dependence of M r on pH
pH Mr

kappa=0 kappa=81
4 156 410

7 131 96
9 113 149

Table 6: Percent of added stickie transferred to filtrate _
if

80°F 120°F 140°F

PVAc (kap,pa=0) 93 81 86
j PVAc 64 72 90
Hot melt A 2 (British) -26 -8 19

Hot meltA (Waring) -52 7
HotmeltB3(British) -17 7 14

HotmeltB(Waring) -18 33 28

_A negative value indicates that fines are held by the stickie in
the mat. A kappa 81 pulp was used unless indicated oLherwise.
2Fuller HM3108 (softening temperature: 168°F).

3Fuller HM2042 (softenin_ temperature: 197°F)
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Figure 1. Variation of M r with kappa for PV^c and SBR.
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Figure 2- Dependence of the water:mat distribution of PVAc on consistency.
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