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SUMMARY

This dissertation focuses on strategic behavior and database privacy. First, we look

at strategic behavior as a tool for distributed computation. We blend the perspectives

of game theory and mechanism design in proposals for distributed solutions to the

classical set cover optimization problem. We endow agents with natural individual

incentives, and we show that centrally broadcasting non-binding advice effectively

guides the system to a near-optimal state while keeping the original incentive structure

intact.

We next turn to the database privacy setting, in which an analyst wishes to learn

something from a database, but the individuals contributing the data want to protect

their personal information. The notion of differential privacy allows us to do both

by obscuring true answers to statistical queries with a small amount of noise. The

ability to conduct a task differentially privately depends on whether the amount of

noise required for privacy still permits statistical accuracy.

We show that it is possible to give a satisfying tradeoff between privacy and

accuracy for a computational problem called independent component analysis (ICA),

which seeks to decompose an observed signal into its underlying independent source

variables. We do this by releasing a perturbation of a compact representation of the

observed data. This approach allows us to preserve individual privacy while releasing

information that can be used to reconstruct the underlying relationship between the

observed variables.

In almost all of the differential privacy literature, the privacy requirement must be

specified before looking at the data, and the noise added for privacy limits the statistical
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utility of the sanitized data. The third part of this dissertation ties together privacy

and strategic behavior to answer the question of how to determine an appropriate level

of privacy when data contributors prefer more privacy but an analyst prefers more

accuracy. The proposed solution to this problem views privacy as a public good and

uses market design techniques to collect these preferences and then privately select

and enforce a socially efficient level of privacy.
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CHAPTER I

INTRODUCTION

This dissertation focuses on a variety of settings involving multiple parties playing

different roles with different objectives. Several disciplines have developed in order to

study such settings. We begin with a brief overview of the most relevant of these and

then introduce the three problems studied.

1.1 Settings

Game theory is the formal study of how people behave when interacting with others

who often have different incentives. A game is characterized by a list of parties, a

set of possible actions for each party, and a description of each party’s utility from

the game as a function of all parties’ actions. In the classical prisoners’ dilemma,

two criminals are arrested and interrogated in separate rooms. Each individual faces

the choice of confessing or staying silent. Their eventual prison sentences depend on

who stays silent: both go to prison for 1 year if they both stay silent, and both go

to prison for 5 years if they both confess. If only one talks, he serves no time and

the other goes to prison for 10 years. Coordinating and staying silent would benefit

them collectively. However, confessing is the best response for each party individually

regardless of whatever the other chooses. Therefore the unique Nash equilibrium [74]

of the game is for both parties to confess.

In the subfield of mechanism design, a game designer chooses a game structure

with some target outcome in mind, without necessarily knowing players’ incentives.

A mechanism is said to be incentive compatible if each party maximizes his utility

by truthfully revealing his private information. For example, in a Vickrey (or second

price) auction [97], multiple parties submit secret bids about how much they are
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willing to pay for a single item, and the person who bids the most is awarded the item

for a price equal to the value of the second highest bid. The highest bidder’s utility for

the auction (his true value for the item minus the amount he pays) does not change if

he bids more than his true value, and it can only decrease if he bids less, because this

may cause him to lose the item. A truthful bidder not allocated the item could only

win the item by outbidding someone with a higher value, and this would result in him

paying more for the item than it is worth to him. Revealing one’s true value for the

good is therefore a dominant strategy (i.e., it maximizes utility, regardless of others’

types and behaviors), so Vickrey auctions are incentive compatible.

We also consider settings in which the goal of the system is not to influence the

behavior of parties who have private information, but it is to keep that information

private while achieving some other goal. Cryptography is the study of methods for

secure communication in the presence of adversaries. The subfield of secure multi-party

computation provides protocols allowing multiple parties to compute a function of their

data without learning anything beyond the output of the function [103, 35, 12]. The

theoretical computer science community has experienced a surge of interest in database

privacy following the introduction of the notion of differential privacy [27, 25], a central

focus of this dissertation. Informally, an analysis is differentially private if changing

any single record in the input database has essentially no impact on the output of

the analysis. This ensures that the outcome of the analysis cannot compromise the

privacy of whoever contributed that record in the database. In contrast to other

methods of database privacy, the differential privacy framework provides rigorous

privacy guarantees even if an adversary has access to other information that may be

arbitrarily related to the database in question.
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Contributions

This thesis investigates a variety of questions concerning strategic behavior, privacy,

and their intersection. In the remainder of this introductory chapter, we introduce

models of dynamic behavior for distributed set cover games [8], differentially private

independent component analysis [61], and markets for differential privacy [59]. These

are the respective topics of Chapter 2, Chapter 3, and Chapter 4.

An additional component of my doctoral work is presented in [10], in which we

propose secure threshold protocols for cryptoschemes based on hard lattice problems.

Since its connections to privacy and game theory are minimal, that work is not covered

in this dissertation.

1.2 Behavioral Dynamics for Distributed Set Cover

Game theory can be seen as the study of equilibrium outcomes of (fixed) games, and

mechanism design is the study of how to structure games to encourage outcomes

with specific analytical properties. In [8], we blend the perspectives of game theory

and mechanism design, considering the classical set cover optimization problem in

a distributed setting. We endow agents with natural individual incentives, and we

centrally broadcast non-binding advice intended to guide the system to a near-optimal

state while keeping the original incentive structure intact.

As a concrete example of a distributed cover game in practice, suppose a state’s

legislature wants to establish a number of subsidized health clinics. Residents in

a county that houses such a clinic will enjoy its benefits, but they will also incur

additional local taxes to pay for the clinic. Residents in a county without a clinic do

not incur additional taxes, but they only receive the benefits of a clinic if there is one

in a neighboring county. The state legislature would like to optimize the net benefit

for the state by encouraging a particular set of counties to open clinics. However,

since clinics are locally subsidized, counties individually decide whether to open a
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clinic, so the legislature cannot centrally dictate a particular distribution of clinics.

The agents (counties) in this example have inherent costs associated with being on

(paying for a local clinic) or off (relying on an adjacent county to pay for a clinic),

and these incentives are correlated with the social objective, but it is unclear whether

unstructured distributed behavior will lead to a good social outcome.

Another application is engineering networks in which non-willful distributed agents

are programmed to make decisions based on their surroundings. The extensive

literature on cooperative control has shown that in this setting many optimization

problems can be conveniently solved in a distributed fashion by endowing agents with

artificial individual objective functions and cost-minimizing behavior [90]. Several such

papers consider game-theoretic formulations of covering problems that are inspired

by practical sensor network problems [89, 66, 87, 16]. The agents are autonomous

sensors, and each geographic region corresponds to a set of sensors that could cover

that region. A sensor that is on is charged some fixed cost, whereas a sensor that is off

is charged a cost proportional to the number or importance of its adjacent regions that

are uncovered by any other sensor. A globally optimal solution may not be known

ahead of time, and it may not be possible to dictate it once sensors are placed if a

central authority cannot communicate perfectly with all sensors, so we must rely on

well-designed distributed behavior.

Equilibrium Quality of Cover Games

Our game generalizes the following simple vertex cover game characterized by a graph

on n vertices: a vertex that is on experiences cost 1, and a vertex that is off experiences

cost w for each adjacent edge whose other endpoint is off, i.e., each adjacent uncovered

edge. A (pure) Nash equilibrium of this game is a state in which each vertex’s choice

to be on or off is its best response to the choice of all other vertices, i.e., the action

that minimizes that vertex’s cost. For w > 1, it is easy to verify that every edge will
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be covered in any equilibrium. But how do agents reach such an equilibrium? In a

game modeling agents that are only locally aware, it is natural to first consider the

simple process of best response dynamics. In each round of best response dynamics,

a single agent ensures he is playing a best response to the other agents by possibly

updating his strategy. In a finite potential game such as ours, where any single move

that reduces a player’s individual cost also reduces some global function, best response

dynamics converge to a pure Nash equilibrium [71, 77].

However, consider a star graph, in which n−1 vertices are each adjacent to exactly

one edge, which connects to 1 central vertex. The equilibrium with only the center

vertex on optimizes social cost, and the other equilibrium with the n− 1 non-central

vertices on is Θ(n) more costly. This ratio between the costliest equilibrium and the

least costly state is called the price of anarchy of the game [58, 77]. Best response

dynamics are not sufficient for driving agents to a low-cost state in games with high

price of anarchy, because such dynamics are only guaranteed to converge to an arbitrary

equilibrium. In fact, [16] (whose distributed model is captured by our general set

cover game) and many other control theory papers guarantee convergence only to

locally optimal stable states, and so these results do not translate to strong global

performance guarantees.

Models of Dynamic Behavior

Mechanism design for distributed systems is fundamentally concerned with aligning

individual incentives with social welfare to avoid socially inefficient outcomes that can

arise from agents acting autonomously. Because agents are only influenced by their

neighborhood, we relax the strict mechanism design goal of incentive compatibility

and instead model dynamic behavior using game theoretically appealing heuristics

such as best response dynamics and ideas from learning theory such as incorporating

5



advice from an expert. We study the public service advertising (PSA) and learn-

then-decide (LTD) models of Balcan, Blum, and Mansour [6, 7]. The models share

the common feature that a central authority knows some state with low social cost,

and the authority broadcasts this joint strategy to encourage agents to adopt their

prescribed strategies.

Specifically, the PSA model of [6] assumes that each agent independently has some

probability of receiving the advertised strategy. Those that receive their prescribed

strategies temporarily adopt them; those that do not receive their prescribed strategies

behave in a myopic best-response manner. This model is well-suited for an engineer-

ing systems setting, where we do not expect all components to receive the central

authority’s signal. The learning models of [7] assume that each agent uses any of a

broad class of learning algorithms to continually choose between acting according to

its local best-response move and its broadcasted signal. In the LTD model, agents

eventually commit to one of these options. LTD is motivated by a social setting where

agents that are only locally aware are interested in exploring the advertising strategy

in the hope that it will benefit them personally to follow a central expert’s advice.

Cover Game Results

We show that both the PSA and LTD models keep systems out of pathologically

high cost cover game equilibria. Furthermore, we give the first theoretical results

for the PSA or LTD model that employ particular structural aspects of the advice

vector. The following informal theorem statements summarize our results. These

results are presented formally (and more generally) in Theorems 2.3.1 and 2.4.1 and

in Corollary 2.3.9.

Let G be any cover game with n elements, constant costs and weights, constant-size

sets, and a constant number of sets containing any given pair of elements. We note

that LP-rounding yields a joint strategy whose social cost is within a constant factor of
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OPT , the cost of the min-cost configuration of G, and recall that the price of anarchy

is as high as Θ(n).

Theorem (PSA and LTD with arbitrary advertised strategies). For any PSA

or LTD advertised joint strategy sad for game G, PSA and LTD each converge in

poly(n) steps to a joint strategy with expected cost O(cost(sad)2).

Theorem (PSA with specially-designed advertised strategies). There exists

a poly(n) algorithm for constructing a PSA advertised strategy sad of a particular

form for game G such that except with probability 1/n, PSA converges in poly(n) steps

to a joint strategy with cost O(log n) ·OPT .

The PSA and LTD models share three features that jointly help us give these positive

results for covering games: 1) advertising seeds the system with a preference for globally

efficient behavior, 2) best-response dynamics harnesses the fact that individual and

social welfare is aligned and permits potential arguments, and 3) the randomness

that dictates which agents receive signals and update orders allows for expected or

high probability cost arguments when straightforward structural arguments are not

possible.

1.3 Private Independent Component Analysis

Database privacy has attracted a surge of interest from the theoretical computer science

community following the introduction of the notion of differential privacy [27, 25].

Differential privacy characterizes a privacy property for a mechanismM that operates

on n data records of type D:

Definition. For ε ≥ 0, a mechanism M : Dn → Range(M) is ε-differentially private

if for all neighboring databases X, Y ∈ Dn and for all subsets S ⊆ Range(M),

Pr[M(X) ∈ S] ≤ exp(ε) · Pr[M(Y ) ∈ S].
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We will see later that a restricted neighborhood often helps us achieve privacy, but

the original and most general notion of neighboring databases are those that differ

(arbitrarily) on only one record. This ensures that the outcome of the analysis cannot

compromise the privacy of whomever contributed that entry to the database. In

contrast to other methods of database privacy, the differential privacy framework pro-

vides rigorous privacy guarantees even if an adversary has access to other information

that may be arbitrarily related to the database in question. There is a large body

of literature on differentially private mechanisms that return accurate answers for

many classes of statistical queries relevant to our work, including counting queries and

histograms [25], arbitrary query classes with low VC dimension [14], and principal

component analysis [106, 19].

Principal component analysis (PCA) transforms multi-dimensional data into a new

coordinate system, in which coordinates are ordered by how much of the variance of

the data they respectively account for. This process is accomplished by normalizing

the columns of the data so they are mean-zero, computing the covariance of the

normalized data, and then orthonormalizing the eigenvectors of the covariance matrix.

Recent work shows that differentially private PCA is only possible for incoherent

databases, whose weight is distributed roughly evenly across their rows [40].

Our work in [61] focuses on an extension of PCA called independent component

analysis, which belongs to the field of parametric statistics. Methods in parametric

statistics assume data comes from some distribution, and the statistical goal is to

estimate parameters of that distribution. Despite the importance of parametric

statistics both in theory and practice, the majority of research in differential privacy

has focused on computing simple summary statistics or other nonparametric methods,

and relatively little is known about fitting models while preserving differential privacy.

Two notable exceptions are [92], which tackles private parametric inference by releasing

maximum likelihood estimators, and [26], which proposes the Propose-Test-Release
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framework for differentially private robust estimators. We will show how we use this

framework for estimators whose robustness relies on subtle database properties.

Independent Component Analysis

Independent component analysis (ICA) is an important non-linear computational

method in statistics that generalizes PCA. The classical example application of ICA

is known as the cocktail party problem, in which several microphones capture audio

from a mixture of simultaneous conversations, and the goal is to recover the speech

signal for each distinct conversation. This task is known more generally as channel

separation, deconvolution, or blind-source separation.

The basic ICA model assumes p independent real random source variables s =

(s1, . . . , sp) ∈ Rp, each with some (non-Gaussian and possibly unknown) distribution

over R. We do not observe these variables directly, rather we observe them through p

signal variables x = (x1, . . . , xp), which are linear combinations of the source variables

s under a fixed nonsingular mixing matrix A ∈ Rp×p:

x = sA.

The goal of ICA is to recover (up to trivial equivalencies) the mixing matrix A from

the distribution of x or some noisy approximation thereof, which then also reveals the

source variables s. Jutten and Herault [48] were the first to formalize this problem,

though they point out that variants had appeared earlier in various fields (the earliest

such mention is in [9], according to the survey [49]).

ICA has found many applications in a number of fields with privacy concerns;

see [44] for an overview of the more traditional applications. In particular, [54] uses

ICA to find independent factors that affect the cash-flow of different stores in the

same retail chain using cash-flow data from each store, and this is extended to a

predictive econometric perspective in [67]. Many studies have found ICA to be a useful

tool for extracting information from EEG, MEG, and fMRI data and for medical
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diagnosis more generally [100, 98, 99, 47, 69, 13, 84, 53, 102]. ICA has also been used

to effectively reduce layer size in deep neural networks [11, 63, 62, 75].

The above ICA applications have a natural privacy aspect, in that the observations x

and underlying source variables s may reflect confidential information about individuals

or organizations, whereas the mixing matrix represents an underlying (and non-

confidential) structure that the analysis is attempting to discover. For example, the

source signals and observations could respectively represent mutations in a genome and

incidents of diseases, and the mixing matrix would capture how the former influences

the latter. It is tempting to assume that publicly revealing only the computed mixing

matrix should preserve the privacy of the observations. However, this argument is

only heuristic and relies on assumptions that may not hold in reality, e.g., that the

observations are independent and distributed exactly according to an ICA model, and

that the chosen ICA algorithm correctly recovers A to high precision and without too

much dependence on individual observations. Otherwise, individual data could leak

into the computed A in unexpected and hard-to-characterize ways.

Solution Approach

All known ICA algorithms work in two main phases: a whitening step first calculates

the mean and covariance of the data and applies a corresponding affine transformation

to normalize the data, and an optimizing phase then recovers the columns of the

orthonormal mixing matrix. Our approach starts with the observation that for many

popular ICA algorithms (especially those with provable guarantees), the optimization

phase does not require the data itself, but only its fourth moment tensor, i.e., the

values E[xixjxkxl] for all i, j, k, l ∈ {1, . . . , p}. By independence of the source variables,

the fourth moment has local optima exactly at the columns of A−1, and a variety of

methods (including gradient descent and fixed-point methods) may be used to find

these optima. After recovering the orthonormal A−1, an ICA algorithm finally reverses
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the original affine transformation (using the mean and covariance computed during

whitening) to obtain the original mixing matrix and source variables.

We therefore observe that for differentially private ICA, it suffices to release a

sanitized (private) version of the appropriately normalized first, second, and fourth

moment tensors, and then an analyst may run any of the above optimization algorithms

on these private moment tensors. With this approach, determining how much noise to

add for privacy reduces to analyzing the sensitivity of these tensors under a single

row change. As noted in [40], the sensitivity of the covariance is tightly related to the

incoherence of the data. One of our main technical contributions is that essentially

the same is true of the fourth moment tensor, with an additional dependence on the

conditioning of the covariance of the data, i.e., the ratio of its maximum and minimum

singular values.

Because of the dependence of the fourth moment tensor’s sensitivity on incoherence

and conditioning, privacy is given with respect to a definition of neighboring databases

that bounds the amount a single row change can affect the incoherence and conditioning

of the database. Although not as general as a neighborhood definition permitting

an arbitrary row change, our neighborhood definition is much more permissive than

definitions that require the row change to be of constant Frobenius norm, in particular

as required in [40]. This neighborhood definition allows us to employ the Propose-

Test-Release paradigm of [26]: it (privately) checks whether the input database is

adequately conditioned, and if so, it releases noisy moment tensors. Otherwise, it

aborts with no output.

Demonstrating ICA Utility

In arguing the utility of our mechanism for ICA, we face two main conceptual

challenges. First, for arbitrary input data, which may not be well described by any

ICA model, there is no canonical notion of the most accurate mixing matrix, nor one
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single objective function measuring how well a candidate mixing matrix fits the data.

Second, existing ICA algorithms usually lack formal guarantees of output accuracy

(i.e., how close their output comes to optimizing the objective), except sometimes

in highly idealized settings where the data exactly conform to an ICA model. It is

therefore unclear how to meaningfully quantify the accuracy of differentially private

ICA, especially with arbitrary data.

One of our main contributions is a way of quantifying ICA accuracy in an algorithm-

agnostic way, and even in the absence of output guarantees in the non-private setting.

Instead of analyzing the output of a particular ICA algorithm on its sanitized input,

we consider the objective function that the algorithm attempts to optimize. We

show that if the original data conform closely to some ICA reference model, then

the optima of the sanitized fourth moment tensor are close to the columns of the

model’s unmixing matrix. Our differentially private mechanism and notion of utility

can be directly applied to many of the recent ICA algorithms with provable guarantees

[32, 76, 5, 2, 3, 36]. With this approach, utility loss depends on the spectral norm

perturbation of our fourth moment tensors while privacy requires sufficient Frobenius

norm perturbation. We show that our noise tensor’s spectral norm grows with
√
p

while its Frobenius norm grows with p2, allowing us to provide surprisingly good

privacy-utility tradeoffs.

1.4 Markets for Database Privacy

There is an inherent tradeoff between guaranteeing privacy and preserving the statisti-

cal utility of a database, and this tradeoff is central to the problem studied in [59].

Classically, differentially private mechanisms take the privacy parameter ε as an input

and provide a corresponding privacy guarantee by adding random noise at various

stages in the sanitization process. More noise enhances privacy but decreases accuracy.

Different applications intuitively require different levels of privacy; medical records,
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for example, may require a higher standard of privacy than Netflix preferences.

Despite this, the literature is largely agnostic to the choice of this privacy parameter.

It is almost always assumed to be exogenously given, but it is unclear who sets ε and

how. In many cases, the government enforces certain privacy standards, but legislators

are often ill-informed of the theoretical or practical consequences of privacy policy.

A trusted database curator might set ε (before collecting data) according to expert

discretion about the relative needs for privacy versus meaningful data analysis, but

he may not have good information about the privacy preferences of the individuals

contributing their private data or the value of accuracy for an analyst. Indeed, we

would expect data contributors and analysts to inflate their stated respective needs

for privacy and accuracy if there is no downside to doing so. The work in [59] is

motivated by two questions:

1. How can we extend rigorous privacy analysis to a setting in which a mechanism

operates at some level of privacy that the mechanism chooses endogenously as a

function of its inputs?

2. How can a privacy-preserving mechanism use the privacy and utility preferences

of the parties involved (the data contributors and analyst) to set a value of ε

that achieves a desirable privacy/utility tradeoff?

An arbitrary value of ε may be suboptimal in that an analyst may be willing to

pay data contributors to accept a weaker privacy guarantee in order to improve the

accuracy of a statistical analysis, or data contributors may be willing to pay more for

stronger privacy. To avoid this type of economic inefficiency, this work considers tools

and solution concepts from economics to develop a privacy mechanism that finds an

equilibrium level of privacy by making monetary transfers simulating a market.

This approach raises a third question: When designing a mechanism that sets its

own level of ε according to market forces driven by privacy and accuracy preferences,
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should data contributors be paid for use of their data subject to some privacy guarantee,

or should they pay an analyst for a guarantee of privacy? Many of the related works

consider settings in which companies or researchers want access to a body of data. An

individual truly owns data about him1, so those who want access should compensate

him for his resulting loss of privacy. For example, [65] develop an opt-in survey

protocol where an analyst must pay participants in order to run a differentially private

study, motivated by the need to entice volunteers for medical studies.

However, if we accept the general idea of commoditizing privacy by letting others

buy access to private data about us, then a rigorous privacy guarantee should be seen

as a valuable feature of a product or service that already collects our data with consent.

For example, Netflix may have standard (but imperfect! [73]) privacy agreements with

its users, but it could offer a premium service with a strong and rigorous guarantee

of differential privacy for data collected from its users. Netflix could then privately

release user data in attempt to improve their service, and users could be comfortable

knowing that their entire viewing histories are not likely to become public knowledge.

Prior Works

Several recent works have studied mechanisms that consider the incentives of data

contributors who value privacy [101, 79, 78, 20, 65, 30, 80]. In all of these mechanisms,

ε must be chosen exogenously, before looking at the data contributors’ private data

or privacy valuations. In contrast, Ghosh and Roth [34] propose a model, called the

insensitive value model, and present two mechanisms in this model that 1) solicit

privacy and accuracy preferences from data contributors and an analyst, 2) determine

an appropriate value of ε by organizing data contributors by privacy preferences and

(roughly) conducting a second price auction, 3) charge the analyst a payment in

exchange for a noisy statistic on the data, and 4) distribute this payment among

1Many works refer to these individuals as data owners; our choice of the term data contributor is
deliberately ownership-agnostic.
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data contributors to compensate for their ε loss of privacy. In an alternate model of

[33], an analyst proposes a differentially private computation designed so the privacy

parameter ε decreases with the number of data contributors who voluntarily opt in.

A weakness of the insensitive value model of [34] and the opt-in model of [33] is

that while differential privacy is guaranteed at any level output by the mechanism,

privacy is with respect to the private data only. This means that if individuals’ data

are correlated with their privacy preferences or participation decisions, the mechanism

may indirectly leak information about private data. To address this concern, [34]

propose a stronger sensitive value model that requires differential privacy with respect

to privacy valuations as well as private data. However, they also give a negative result

that seems to indicate that the sensitive value model admits no mechanisms that

satisfy all desired properties.

Contributions

Chapter 4 presents three contributions to the existing literature on mechanisms that

seek to internally determine a meaningful value of ε:

1) Stronger negative results. We extend the negative result of Ghosh and

Roth [34] in the sensitive value model and extend it by relaxing assumptions. In par-

ticular, their result holds when we relax the cost function assumptions atnd accuracy

requirements. Significantly, only economically trivial mechanisms are possible even in

the setting that data contributors have positive value for a privacy guarantee and must

pay the analyst for such a guarantee. However, we will see that these results are due

to a worst-case, non-endogenous differential privacy requirement, not the requirement

that privacy preferences be kept private, and this motivates us to take a closer look at

the privacy requirements for mechanisms that choose privacy as a function of inputs.
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2) Formalization of endogenous privacy. The standard definition of differential

privacy gives a guarantee for the mechanism on any pair of databases parametrized by

a single, data-independent value of ε. One could show that a mechanism that chooses

ε internally as a function of the input data is ε◦-differentially private for some fixed ε◦,

but the definition provides no way to connect the mechanism’s chosen, input-dependent

level of ε to a privacy guarantee. This incompatibility between the existing definition

(see Section 1.3) and the new setting is rectified with a new definition of endogenous

differential privacy :

Definition. A mechanism M : Dn → Range(M) is endogenously differentially

private if for all neighboring databases X, Y ∈ Dn, for all ε in the privacy support of

M on X, and for all S ⊆ Range(M),

Pr[M(X) ∈ S] ≤ exp(ε) · Pr[M(Y ) ∈ S].

3) A general-purpose privacy market. Using the endogenous privacy relaxation,

Section 4.4 prevents the first privacy markets that 1) elicit truthful privacy preferences

from the data contributors, 2) use these preferences to set ε endogenously, and 3)

give privacy guarantees for the privacy preferences as well as the data itself. These

mechanisms model privacy as a public good and employ tools from classical markets for

public goods [97, 22, 37, 38], adding carefully calibrated random noise for endogenous

differential privacy.

These markets for privacy as a public good raise an important open question:

Can we develop meaningful markets in which analysts must buy differentially private

data access, compensating data contributors for their privacy loss, as assumed in the

models of [34]? The new negative results suggest that the new endogenous privacy

definition may permit markets in which money flows from analyst to data contributors.

However, it is a non-trivial challenge in this case to model realistic preferences that

can be truthfully elicited.
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Other Work

After discussing these new results in behavioral dynamics with mechanism design [8],

differential privacy [61], and mechanism design as a tool for solving a privacy problem

[59], we conclude in Chapter 5 with a discussion of other game theory problems

for which privacy may be a useful feature. We present some preliminary results for

computing approximate equilibria of large anonymous games in a way that hides

individual players’ behavior in the context of related work. We also propose new

questions about when direct revelation mechanisms can have meaningful approximate

versions that preserve the privacy of players’ types.
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CHAPTER II

A GAME OF DISTRIBUTED SET COVERING

2.1 Overview

In [8], we model set cover problems as games, and we use models from learning theory

to describe local decision making by agents in these games. We are interested in

demonstrating convergence not to arbitrary local equilibria but to states whose cost

is competitive with the global optimum. We accomplish this by incorporating a

globally-informed central authority into natural models of dynamic behavior.

This chapter is organized as follows. In Section 2.2, we cover the necessary

game theory and behavioral dynamics definitions, we give the formal model of the

set cover games we study, and we introduce other notation used throughout. Set

cover is of particular interest in control theory for its natural applications to sensor

networks. The centralized optimization problem is NP-hard. The problem admits

good approximations, but these approximations do not necessarily represent equilibria

of an underlying distributed game, in which elements are modeled as independent,

cost-minimizing agents.

In Section 2.3, we introduce the public service advertising (PSA) model of [6]. The

PSA model begins with agents playing arbitrary strategies, and a central authority

broadcasts a strategy for each agent. Some of these agents receive and follow this

strategy temporarily while others converge to a steady state by a series of myopic,

local optimization steps known as best-response dynamics. Eventually, even those

agents who initially followed their advertised strategies switch to best-responding

and the system converges to a new equilibrium. Theorem 2.3.1 gives our results for

advertising effectiveness in PSA, roughly stating that for any advertised strategy, the
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expected cost of the final state at the end of PSA is the square of the cost of the

advertised strategy. Our proof associates the costs of the outcome of PSA with the

cost of the advertised strategy by leveraging the simplicity of best-response dynamics

to charge each component of the final cost to some component of the advertised

cost. The subtlest part of the analysis uses the fact that agents receive the signal

with independent probability, and this probabilistic reasoning forces an expected cost

bound. The bottleneck reflected in our final bound, however, is due to a crude use of

a structural assumption that some parameter ∆ bounds the number of sets containing

a given pair of elements, and in particular, we use ∆ to bound the number of sets

containing at least two elements that are on in the advertised strategy.

We then show how to construct an advice vector specifically designed for the

PSA model. These advice vectors are not only low-cost but efficient in that each on

element uniquely covers many sets. Because it is very likely that some of the sets

will have each element receptive to their advertised strategies in the first advertising

phase of PSA, the efficiency property of our advertised strategy will cause all sets to

be covered by the end of the phase. Indeed, Theorem 2.3.8 states that for such an

advertised strategy, the cost at the end of PSA is of the same order as the cost of

the advertised strategy with high probability. This substantially improves our results

for general advice vectors, and it constitutes the first result for the PSA model that

uses the structure of a carefully chosen advice vector to prove high probability and

near-optimal outcomes.

In Section 2.4 we introduce the related learn-then-decide (LTD) model of [7]. In

contrast to PSA, agents explore in the first phase, independently choosing during each

update round to either best-respond or follow their advertised strategy. Agents exploit

one of these options in the second phase, arbitrarily committing to consistently play

either their advertised strategy or their best response. Theorem 2.4.1 relates the cost

of the outcome of LTD to that of an arbitrary advertised strategy. In addition to the
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techniques used for the analogous Theorem 2.3.1 in the PSA model, we have to use

additional techniques relying on the agents’ random update order to prove that agents

switching to their advertised strategy in the exploit phase does not increase cost too

much.

Our work is in the context of several other works have considered games related

to our set cover game [89, 66, 87, 16, 15, 28, 17, 18, 4, 43, 42], which give results

that are strictly weaker or incomparable to our results. Other approaches to avoiding

high-cost equilibria [91, 52, 51, 55, 56, 31, 57, 82, 45, 72, 64] either result in weak

global performance guarantees or central authorities that are much stronger than those

of the PSA and LTD models. We note that the models of [24, 29] do not accommodate

our game.

2.2 Preliminaries

2.2.1 Game Theory Definitions

We represent a general game as a triple G = 〈N, (Si), (costi)〉, where N is a set of

n agents, Si is the (finite) action space of agent i ∈ N , and costi denotes the cost

function of agent i. The joint action space of the agents is S = S1 × · · · × Sn. For

a joint action s ∈ S, we denote by s−i the actions of all agents j 6= i. Agents’ cost

functions map joint actions to non-negative real numbers, i.e. costi : S → R+ for all

i ∈ N . In this chapter, we define a social cost function, cost : S → R, simply as the

sum of individual agents’ costs. The optimal social cost is denoted

OPT := min
s∈S

cost(s).

The best-response set of agent i to any joint action s−i of all other agents is the

set of actions that minimize i’s cost, i.e.

BRi(s−i) := {arg minsi∈Sicosti(si, s−i)}.
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Best-response dynamics is a process in which at each time step, an arbitrary1 agent

not already playing a best-response move updates his action to one in his current

best-response set. A joint action s ∈ S is a pure Nash equilibrium if si ∈ BRi(s−i) for

every i ∈ N . Let N (G) denote the pure Nash equilibria of game G.

A game G is called an exact potential game [71] if there exists a potential function

Φ : S → R such that for all i ∈ N , s−i ∈ S−i, and si, s
′
i ∈ Si,

costi(s
′
i, s−i)− costi(si, s−i) = Φ(s′i, s−i)− Φ(si, s−i).

For general potential games, only the signs of both sides of these equations must

be equal. While not all games have a pure Nash equilibrium, all finite potential

games do, and best-response dynamics in such games always converges to a pure Nash

equilibrium [71, 77]. However, the convergence time can be exponentially large in

terms of the number of agents in general.

Two well known concepts for quantifying the inefficiency of equilibria relative to

non-equilibria are price of anarchy and price of stability, defined respectively as

PoA := max
s∈N (G)

cost(s)

OPT
PoS := min

s∈N (G)

cost(s)

OPT
.

2.2.2 Set Cover Games

A cover game G = 〈[n], (Si), (costi)〉 is specified by a collection of sets F ⊆ 2[n], costs

ci for i ∈ [n], and weights wσ for σ ∈ F . Each agent has action space Si = {on, off}.

A joint strategy s ∈ S induces a bipartition of agents that are on and off, respectively.

Dropping the s when clear from context, we let

L(s) := {i ∈ [n] : si = on}, R(s) := {i ∈ [n] : si = off}, and

FR(s) := {σ ∈ F : σ ⊆ R(s)}.

1We will focus on best-response dynamics with uniformly random update order.
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We call sets in FR uncovered. Figure 1 in Section 2.3 graphically illustrates this and

other notation introduced later. An agent pays either his cost of being on or the

weights of all uncovered sets he participates in:

costi(s) :=


ci if si = on∑

σ∈FR : i∈σ

wσ if si = off .
(2.2.1)

For σ ⊆ [n],F ′ ⊆ F , we define for shorthand c(σ) :=
∑

i∈σ ci and w(F ′) :=
∑

σ∈F ′ wσ.

Then the social cost has the following simple form:

cost(s) :=
∑
i∈[n]

costi(s) = c(L) +
∑
σ∈FR

|σ| · wσ. (2.2.2)

Our results are given in terms of some additional game parameters. Denote

cmax := max
i∈[n]

ci, cmin := min
i∈[n]

ci, wmax := max
σ∈F

wσ, wmin := min
σ∈F

wσ.

For expository simplicity, we consider costs and weights which are bounded above and

below by constants, i.e., cmax, cmin, wmax, wmin = Θ(1), although we can push these

quantities through the analysis to give results for general costs and weights, as shown

in Claim 2.3.6. We also define

Fmax := max
σ∈F
|σ|.

Note that when Fmax = 2, the game can be specified by a simple graph with vertex

costs and edge weights, where an on vertex covers its incident edges. Our results when

Fmax = 2 are stronger than in the general case (see Theorems 2.3.1 and 2.4.1). For

Fmax > 2, a given pair of elements may appear in multiple sets. Our results depend

on the maximum number of sets containing any given pair of elements, so we define:

∆ := max
i,j∈[n],i 6=j

|{σ ∈ F : i, j ∈ σ}| .

It is sometimes useful to consider sets covered by a unique element. For joint

strategy s and ` ∈ L(s), let

F∗` := {σ ∈ F : ` ∈ σ, σ\{`} ⊆ R}.
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A joint strategy in which every on element uniquely covers many sets has a high core

minimum:

δ∗ := min
`∈L
|F∗` |.

Section 2.3.1 shows how to construct joint strategies with high core minimum, and we

show that advertising such joint strategies in PSA yields especially strong guarantees.

In this work, we primarily focus on the case when Fmax = O(1). We note that this

holds in many practical applications of interest. In current wireless sensor technology,

for example, the maximum sensing range is around a hundred meters [105], while the

size of sensors has a lower bound. Hence, the number of sensors that can cover a given

geographical area is bounded above. Furthermore, a good sensor network should have

low overlap in sensing areas, and even Fmax = 2 can be achieved by carefully designing

locations of sensors [104].

Packing Interpretation Observe that ci expresses how costly it is for agent i to

cover the sets that contain him. For example, if cmax < wmin, it will always be cheaper

for an agent to be on than to participate in any uncovered sets, so every set will be

covered in equilibrium. The socially optimal equilibria are necessarily the minimum

cost set covers. When Fmax = 2, ci = c for all i, and c < wmin, the equilibria and

socially optimal equilibria are the minimal and minimum vertex covers, respectively.

We note that if we simply redefine the costs so that i pays ci if he is off and pays

the sum of the weights of the fully-covered sets he participates in if he is on, this game

is a packing analog of the original cover game. All of our results for PSA and LTD

apply to such packing games by simply replacing on with off and vice versa in all of

our results and proofs. Note that the equilibria when cmax < wmin are configurations

in which no set is fully covered. When additionally Fmax = 2 and ci = c for all i, the

set of on agents in any equilibrium is a maximal independent set, and the lowest-cost

equilibria are the maximum independent sets.
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2.2.3 Cost Bounds in Cover Games

We bound the cost increase due to best-response dynamics in a cover game as follows:

Fact 2.2.1. For arbitrary joint strategy s that evolves to s′ via best-response dynamics,

we have:

cost(s′) ≤ Fmax · cost(s).

Proof. Observe that the cover game is an exact potential game with potential function

Φ(s) := c(L) + w(FR). (2.2.3)

Combining this potential function with the social cost formula, we have Φ(s) ≤

cost(s) ≤ Fmax · Φ(s) for any joint strategy s. Potential never increases in best-

response dynamics, so Φ(s′) ≤ Φ(s). Then we have cost(s′) ≤ Fmax · Φ(s′) ≤

Fmax · Φ(s) ≤ Fmax · cost(s).

Although best-response dynamics converge to a pure Nash equilibrium in finite

potential games, the star graph example from the introduction reveals that our class of

cover games has a price of anarchy of Ω(n), motivating the need for efficient dynamics

with better guarantees than convergence to arbitrary equilibria.

As a step in that direction, we observe that a centralized, poly-time LP-rounding

algorithm can find a low-cost configuration sad for the cover game. Specifically, let

x∗ := arg min
x
{

n∑
i=1

ci · xi s.t.
∑
i∈σ

xi ≥ 1 ∀σ ∈ F , xi ∈ [0, 1]},

and then for all i ∈ [n], set sadi to on if x∗i ≥ 1/Fmax and off otherwise.

Fact 2.2.2. The configuration sad obtained from LP-rounding has

cost(sad) ≤ Fmaxdcmax/wmine ·OPT.
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Proof. Let s∗ be some joint strategy that achieves optimal social cost, and let s′ be

the joint strategy obtained by turning on an arbitrary element in each set σ that is

uncovered in s∗. Then:

cost(sad) ≤ Fmax ·
∑
i

ci · x∗i ≤ Fmax · cost(s′)

≤ Fmaxdcmax/wmine · cost(s∗) = Fmaxdcmax/wmine ·OPT.

Of course, when considering games with constant Fmax, cmax, wmin, this LP-rounding

procedure provides us with advertising strategies with cost O(OPT ).

2.3 Set Cover in the Public Service Advertising Model

The first model we study in this work is the public service advertising (PSA) model

in [6] in which a central authority broadcasts a strategy for each agent, which some

agents receive and temporarily follow. Agent behavior is described in two phases:

1: Play begins in an arbitrary state, and a central authority advertises joint

action sad ∈ S. Each agent receives the proposed strategy independently with

probability α ∈ (0, 1). Agents that receive this signal are called receptive. They

play their advertising strategies throughout Phase 1, and non-receptive agents

undergo best-response dynamics to settle on a joint strategy that is a Nash

equilibrium given the fixed behavior of receptive agents. We call this joint

strategy s′.

2: All agents participate in best-response dynamics until convergence to some Nash

equilibrium s′′.

Since our cover game is a finate potential game and all such games eventually converge

to a Nash equilibrium under best-response dynamics, both phases are guaranteed to

terminate. Furthermore, since potential decreases under best-response dynamics and is

bounded above and below by functions of n, costs, and weights (recall Equation (2.2.3)),
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polynomial-time convergence of PSA is guaranteed for any game with poly(n) costs

and weights.

Notation. In this and the following section, we let L = L(sad) and R = R(sad). We

let Lon denote the set of elements that are on both in sad and in s′ (at the end of

Phase 1), and Loff denotes the elements that are off in s′ but not in sad. Analogously,

Roff denotes the elements that are off both in sad and s′, and Ron denotes the elements

that are on in s′ but not in sad. We let Fbad denote the sets covered in sad but

uncovered in s′. Note that every set in Fbad contains an element in L.

Figure 1 provides a notational example when the PSA inputs are a 4-vertex star

graph with ci = wσ = 1 for all i, σ and the graph’s unique optimal advice vector sad.

Note that FR is empty and L contains the single center vertex for the optimal sad,

which has cost 1. The figure depicts some s′ with cost 4 at the end of Phase 1. The

vertices in Loff and Ron are Phase 1 best-responders, and they are in equilibrium in

s′ given the fixed behavior of the Roff agent following sad. This partial equilibrium

leaves one edge uncovered; the dashed line represents this set in Fbad.

L R

Loff

Roff

Ron

Fbad

Figure 1: Example of notation

Overview of PSA results. Theorem 2.3.1 formalizes the general result of this

section, relating the expected cost of the PSA outcome in vertex cover (Fmax = 2)

and set cover games to that of an arbitrary advertised strategy. We assume Θ(1)

costs and weights for expository simplicity, although we present the general costs and

weights case without proof in Claim 2.3.6. At a high level, the proof of Theorem 2.3.1

26



associates the costs of the outcome of PSA with the cost of the advertised strategy

by charging each component of the final cost to some component of the advertised

cost, harnessing the simplicity of best-response dynamics. The subtlest part of the

analysis uses the fact that agents receive the signal with independent probability, and

this probabilistic reasoning forces an expected cost bound. However, the bottleneck

reflected in our final bound for Fmax = O(1) is due to a crude use of our structural

assumption that at most ∆ sets contain a given pair of elements. Using advertised

strategies obtained from LP-rounding, Corollary 2.3.2 puts these results in terms of

the lowest cost configuration of any particular set cover game. In Section 2.3.1, we

strengthen these results using advertised strategies specifically constructed for the

PSA model.

Theorem 2.3.1. For a cover game with constant costs and weights, and for any

advertising strategy sad, the expected cost at the end of PSA is

E[cost(s′′)] =



O(1) · cost(sad) if Fmax = 2

O(∆) · cost(sad)2 if Fmax = O(1)

O

(
∆F 2

max

α2Fmax

)
· cost(sad)2 otherwise.

If sad is obtained from the LP-rounding O(Fmax)-approximation algorithm described

in Section 2.2.3, the following corollary is immediate from the proof of Theorem 2.3.1:

Corollary 2.3.2. For a cover game with constant costs and weights, there exists a

poly-time algorithm to find an advertising strategy sad such that the expected cost at

the end of PSA is

E[cost(s′′)] =


O(1) ·OPT if Fmax = 2

O(∆) ·OPT 2 if Fmax = O(1)

O(∆F 3
max/α

2Fmax) ·OPT 2 otherwise.
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Before proving Theorem 2.3.1, we make some observations guiding the structure of

the proof. We first note that since Phase 2 is simple best-response dynamics, Fact 2.2.1

assures that the cost of s′′, the final equilibrium, is at most a factor Fmax greater than

the cost of s′, the state at the end of Phase 1. Therefore we focus on bounding the

expected cost of s′ relative to that of the advertised strategy sad. The only social cost

at the end of Phase 1 beyond that of the advertised strategy is due to the weight of

sets that are uncovered in s′ but covered in sad and the cost of elements that are on in

s′ but not in sad. These terms are bounded in Lemmas 2.3.3 and 2.3.4, respectively.

Proof of Theorem 2.3.1. Using the new notation, we can bound the expected cost at

the end of Phase 1 as:

E[cost(s′)] ≤ cost(sad) + E[c(Ron)] + Fmax · E[w(Fbad)].

The two lemmas following this proof give the following bounds:

w(Fbad) ≤ c(L) (Lemma 2.3.3)

E[|Ron|] ≤


|FR|+O(1) · |L| if Fmax = 2

|FR|+O(∆) · |L|+ ∆|L|2 if Fmax = O(1)

|FR|+O
(

∆Fmax

α2Fmax

)
· |L|+ ∆|L|2 otherwise.

(Lemma 2.3.4)

Since cost(sad) ≥ c(L) + w(FR) = Θ(|L|) + Θ(|FR|), we have |L|, |FR| = O(1) ·

cost(sad). We use Fact 2.2.1 to readily relate cost(s′) to cost(s′′), as required by the

theorem.

We now prove the lemmas required in the proof of Theorem 2.3.1 above. Lemma 2.3.3

simply charges the weight of each set in Fbad (sets uncovered in s′ but covered in sad)

to an agent that is on in sad.

Lemma 2.3.3. For a cover game with constant costs and weights, and any PSA

advertising strategy sad,

w(Fbad) ≤ c(L).
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Proof. Note that each set in Fbad must contain a best-responding element in Loff, so

w(Fbad) ≤
∑

`∈Loff

∑
σ∈Fbad:`∈σ wσ ≤

∑
`∈Loff

c` ≤ c(L).

In Lemma 2.3.4 below, we bound the expected number of agents that are on in

s′ but not in sad. We do this by recognizing that each agent in Ron is playing a best

response in s′ and so is participating in at least one of the following sets in which it is

the only on element in s′: a set uncovered in sad, a set with exactly one on agent in

sad who is off in s′, or a set with multiple on agents in sad who are all off in s′. Our

bottleneck for Fmax > 2 is in (crudely) bounding the number of sets with multiple

agents on in sad using our hypergraph parameter ∆. We employ more sophisticated

analysis to bound the expected number of sets with exactly one on agent in sad who is

off in s′. This bound uses the fact that each agent is receptive in Phase 1 of PSA

with independent constant probability along with algorithmic arguments that allow

us to decouple related events (and a technical proposition, Proposition 2.3.5).

Lemma 2.3.4. For a cover game with constant costs and weights, and for any PSA

advertising strategy sad,

E[|Ron|] ≤


|FR|+O(1) · |L| if Fmax = 2

|FR|+O(∆) · |L|+ ∆|L|2 if Fmax = O(1)

|FR|+O
(

∆Fmax

α2Fmax

)
· |L|+ ∆|L|2 otherwise.

Proof. Each r ∈ Ron plays a best-response move in s′, so it must participate in a set

in which it is the only on element (otherwise off would be a best response). Therefore,

we can associate each r ∈ Ron with a distinct set σ containing r with σ ∩ L ⊆ Loff.

Define the following partition of {σ ∈ F : |σ ∩R| > 0, σ ∩ L ⊆ Loff}.

F (=0) := {σ ∈ F : |σ ∩R| > 0, |σ ∩ L| = 0}

F (=1) := {σ ∈ F : |σ ∩R| > 0, |σ ∩ L| = 1, σ ∩ L ⊆ Loff}

F (>1) := {σ ∈ F : |σ ∩R| > 0, |σ ∩ L| > 1, σ ∩ L ⊆ Loff}
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Observe that by definition,

|F (=0)| = |FR|. (2.3.2)

To begin bounding |F (=1)|, recall that F∗` := {σ : σ ∩ L = `}. Then:

E[|F (=1)|] ≤
∑
`∈L

|F∗` | · Pr[` ∈ Loff]. (2.3.3)

Observe that ` ∈ L will never be off in s′ if it participates more than cmax/wmin sets

where it is the unique L element and all other elements are off in s′. We use this fact

to bound the probability that ` ∈ Loff by bounding the probability that many of the

sets in F∗` contain only other elements that are following their advertised strategy

of off. However, there may be overlap in the R nodes of the sets in F∗` , so these

probabilities are dependent. To circumvent this, we take some subset F̂∗` ⊆ F∗` such

that no pair of sets in F̂∗` have common elements in R. Then, it follows that

Pr[` ∈ Loff | ` ∈ L] ≤ Pr[|{ρ ∈ F∗` : ρ\{`} ⊆ Roff}| ≤ cmax/wmin]

≤ Pr[|{ρ ∈ F∗` : all ρ\{`} are receptive}| ≤ cmax/wmin]

≤ Pr[|{ρ ∈ F̂∗` : all ρ\{`} are receptive}| ≤ cmax/wmin]

≤ Pr

|F̂∗` |∑
i=1

Xi ≤ cmax/wmin

 , (2.3.4)

where Xi ∈ {0, 1} denotes the random variable indicating the event that for the i-th set

ρ ∈ F̂∗` , all elements in ρ\{`} are receptive. We can replace theXi in this last expression

with Yi ∈ {0, 1} denoting a random variable with Pr[Yi = 1] = αFmax , because each

Xi has Pr[Xi = 1] ≥ αFmax . Note that by definition of Fmax and ∆, we can choose

F̂∗` with |F∗` | ≤ ∆(Fmax − 1)|F̂∗` |. Then combining Inequalities (2.3.3) and (2.3.4),

assuming |F̂∗` | ≥ bcmax/wminc, and using Proposition 2.3.5, stated and proved at the
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conclusion of this proof, we have:

E
[
|F (=1)

]
≤
∑
`∈L

|F∗` | · Pr

|F̂∗` |∑
i=1

Yi ≤ cmax/wmin


≤
∑
`∈L

|F∗` |

⌊
cmax
wmin

⌋∑
i=0

(
|F̂∗` |
i

)
(1− αFmax)|F̂

∗
` |−i(αFmax)i

≤ (Fmax − 1)∆
∑
`∈L

⌊
cmax
wmin

⌋∑
i=0

|F̂∗` |
(
|F̂∗` |
i

)
(1− αFmax)|F̂

∗
` |−i(αFmax)i

= O

(
∆Fmax

α2Fmax

)
· |L|. (2.3.5)

For ` ∈ L with |F̂∗` | < bcmax/wminc, then |F∗` | ≤ O(∆Fmax), which is dominated by

the corresponding term in the previous expression. Then our final F (=1) bound is:

E[|F (=1)|] = O

(
∆Fmax

α2Fmax

)
· |L| (2.3.6)

Since each σ ∈ F (>1) contains at least three elements, there are no such sets when

Fmax = 2. For the general case, we use the definition of ∆ and the fact that there are(|L|
2

)
≤ L2 pairs of agents in L:

|F (>1)| ≤


0 if Fmax = 2

∆ · |L|2 otherwise.

(2.3.7)

Finally, since |Ron| ≤ |F (=0)|+|F (>1)|+|F (=1)| by construction, Inequalities (2.3.2),

(2.3.6), and (2.3.7) together give the desired conclusion of Lemma 2.3.4, noting that

∆ = 1 when Fmax = 2.

Proposition 2.3.5. For any a ∈ (0, 1) and 0 < c ≤ d,

bcc∑
i=0

d

(
d

i

)
(1− a)d−iai = O

(
dce

a2(1− a)2

)
.
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Proof. This is immediate in the case that c < 1 because d(1 − a)d = O(1/a) for all

d ≥ 0 as long as a ∈ (0, 1). Hence, assume c ≥ 1. Let ā = max(a, 1− a) and define

ξ ∈ (0, 1) to be the largest real number satisfying

(e/ξ)ξ <
√

1/ā,

where it is not hard to check that ξ = Ω((1− ā)2). For the case with d ≤ c/ξ, c ≤ d

gives

bcc∑
i=0

d

(
d

i

)
(1− a)d−iai ≤ d

d∑
i=0

(
d

i

)
(1− a)d−iai = d ≤ c/ξ = O(c/(1− ā)2).

Now consider when d > c/ξ. Observe that

d

bcc∑
i=0

(
d

i

)
(1− a)d−iai ≤ d · ād

bcc∑
i=0

(
d

i

)
≤ d · ād

bcc∑
i=0

di

i!

Observe that d · ād/2 = O(1/(1− ā)), di/i! is increasing with respect to i for i < c < d,

x! = Ω((x/e)x), c < ξ · d, and (e/ξ)ξ <
√

1/ā. Then we can complete our proof of

Proposition 2.3.5 as follows:

d · ād
bcc∑
i=0

di

i!
= O(1/(1− ā)) · ād/2

bcc∑
i=0

di

i!

= O(c/(1− ā)) · ād/2 · d
bcc

bcc!

= O(c/(1− ā)) · ād/2
(d · e
bcc

)bcc
= O(c/(1− ā)) · ād/2

(d · e
ξ · d

)ξ·d
= O(c/(1− ā)) · ād/2 · ā−d/2

= O(c/(1− ā)),

Theorem 2.3.1 with arbitrary costs and weights. Requiring constant costs

and weights allows for simplifications such as c(L) = O(|L|) in the previous proofs.

Following these proof exactly (using bounds such as c(L) ≤ cmax · |L|), we can obtain
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the following results for arbitrary costs and weights, although the calculation is routine

and omitted for brevity:

Claim 2.3.6. For a cover game with arbitrary costs and weights, and for any adver-

tising strategy sad, the expected cost at the end of PSA is

E[cost(s′′)] =



O

(⌈
cmax

wmin

⌉
cmax

cmin

)
cost(sad) if Fmax = 2

O

(
∆

⌈
cmax

wmin

⌉
cmax

c2
min

)
cost(sad)2 if Fmax = O(1)

O

(
∆F 2

max

α2Fmax

⌈
cmax

wmin

⌉
cmax

c2
min

)
cost(sad)2 otherwise.

2.3.1 Better Results for Careful Advertising

For improved performance guarantees, we look for strategies that are efficient in a

particular sense. Recall that the core minimum δ∗ of a given strategy profile s is the

minimum number of sets uniquely covered by any particular on element in s. We say

that an advertising strategy sad satisfies Condition (?) if for all x ≥ δ∗

∆(Fmax−1)
,(⌊

cmax

wmin

⌋
+ 1

)
xbcmax/wminc

(
1− αFmax

)x−bcmax/wminc ≤ 1

n2
. (?)

Intuitively, this condition ensures that each element that is on in sad is in many sets

in which it is the unique element that is on in sad. When this is the case, it is very

likely that in Phase 1, some of these sets will have each element (except perhaps the

single element on in sad) receptive to advertising. This unique on element will turn

on in Phase 1, and every set will be covered. We achieve the precise condition by

reverse engineering our analysis starting with this goal.

Fact 2.3.7. For a cover game with constant costs, weights, and Fmax, there exists a

polynomial-time algorithm that computes a strategy sad satisfying Condition (?) with

cost(sad) = O(∆ log n) ·OPT .

Proof. Consider the following algorithm, which is clearly poly-time:

33



1. Let s∗ be the strategy with social cost O(1) · OPT obtained by LP-rounding

(Fact 2.2.2).

2. Greedily turn off every agent that is the unique on element in fewer than

B∆ log n sets in s∗, for some sufficiently large constant B depending on cmax/wmin,

α, and Fmax. Call the result sad.

Then for x ≥ δ∗(sad)/(∆(Fmax − 1)) ≥ B log n/(Fmax − 1) = Θ(log n), we have

(bcmax/wminc+ 1)xbcmax/wminc(1− αFmax)x−bcmax/wminc = O(xbcmax/wminc(1− αFmax)x)

= O(1/nd)

for arbitrarily large constant d (depending on sufficiently large constant B), so sad

satisfies Condition (?). Furthermore, cost(sad) = O(∆ log n) ·OPT because at most

OPT/cmin agents are on in s∗, and then turning any one off results in at most

FmaxB∆ log n sets becoming uncovered.

Theorem 2.3.8 formalizes a high probability and stronger version of Theorem 2.3.1 for

the general set cover game in PSA when sad satisfies Condition (?). Note that this

result requires no assumptions on the costs, weights, or Fmax of the hypergraph.

Theorem 2.3.8. For any cover game, and for any advertising strategy sad satisfying

Condition (?), with probability at least 1− 1/n the cost at the end of PSA is

cost(s′′) = O(Fmax) · cost(sad).

Using the greedily constructed advertising strategy described in the proof of Fact 2.3.7,

we have the following immediate corollary in the case that costs, weights, and Fmax

are constant:

Corollary 2.3.9. For a cover game with constant costs, weights, and Fmax, there

exists a poly-time algorithm to find an advertising strategy sad such that with probability

at least 1− 1/n the cost at the end of PSA is

cost(s′′) = O(∆ log n) ·OPT.
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Proof of Theorem 2.3.8. Using the notation from Theorem 2.3.1, we bound the cost

at the end of Phase 1 as:

E[cost(s′)] ≤ cost(sad) + c(Ron) + Fmax · w(Fbad).

Lemma 2.3.10 below proves that for sad satisfying Condition (?), all agents in L turn

on in Phase 1 (and so w(Fbad) = 0) with probability at least 1− 1/n, and under this

event, the cost of agents in Ron is bounded by w(FR) ≤ cost(sad). This proves that

cost(s′) = O(cost(sad)) with all but at most 1/n probability, and then Theorem 2.3.8

follows from Fact 2.2.1.

Lemma 2.3.10. For any cover game, and for advertising strategy sad satisfying

Condition (?), then Fbad = ∅ and c(Ron) ≤ w(FR) with probability at least 1− 1/n.

Proof. As in the proof of Lemma 2.3.4 (and using the same notation), for any ` ∈ L

there is some subset F̂∗` ⊆ F∗` such that no pair of sets in F̂∗` have common elements

in R and |F̂∗` | ≥
|F∗` |

∆(Fmax−1)
≥ δ∗

∆(Fmax−1)
. Applying the bound on Pr[` ∈ Loff | ` ∈ L]

derived in the proof Lemma 2.3.4 as a starting point,

Pr[` ∈ Loff | ` ∈ L] ≤

⌊
cmax
wmin

⌋∑
i=0

(
|F̂∗` |
i

)
(1− αFmax)|F̂

∗
` |−i(αFmax)i

≤

⌊
cmax
wmin

⌋∑
i=0

|F̂∗` |i(1− αFmax)|F̂
∗
` |−i

≤
(⌊

cmax

wmin

⌋
+ 1

)
|F̂∗` |

⌊
cmax
wmin

⌋
(1− αFmax)

|F̂∗` |−
⌊
cmax
wmin

⌋
,

and by the assumption that sad satisfies Condition (?), the above expression is at

most 1/n2. By union bound, Pr[Loff = ∅] ≥ 1− 1/n and hence Fbad = ∅ at the end of

Phase 1 with at least this probability.

Assume this event, and observe that for each best-responding r ∈ Ron, cr is no

greater than the total weight of all sets containing r as the unique on agent. Since we

assume all nodes in L are on, these sets are a subset of FR. Further, since there is no
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overlap in these sets between different agents in Ron, we can sum over all r ∈ Ron to

derive c(Ron) ≤ w(FR). This completes the proof of Lemma 2.3.10.

2.4 Set Cover in the Learn-Then-Decide Model

Next we study the set cover game in the learn-then-decide (LTD) model of [7].

In contrast to PSA, agents in LTD are neither strictly receptive nor strictly best-

responders in the initial exploration phase, but they choose one of these options for

the final exploitation phase. The PSA model is appropriate for an engineering setting

such as sensor networks, where devices may be programmed to respond in Phase 1 to

a signal that only reaches some devices due to technical constraints. On the other

hand, the LTD model is better for a social setting in which agents may be skeptical

of the central authority, and so they experiment in Phase 1, sometimes following the

advertised strategy and other times applying a best-response strategy.

1: Play begins in an arbitrary state, and a central authority advertises joint action

sad ∈ S. Agent i is associated with fixed probability pi ≥ β ∈ (0, 1), where β is

constant. Agents are chosen to update uniformly at random for each of T ∗ time

steps. When i updates, he plays sadi with probability pi or a best-response move

with probability 1− pi. The state at time T ∗ is denoted s′.

2: At time T ∗, all agents in random order individually commit arbitrarily to sadi or

the best-response strategy. Finally, agents take turns in random order playing

their chosen strategy until best-responders reach a Nash equilibrium s′′ given

the fixed behavior of sad followers.

Overview of results. Theorem 2.4.1 relates the cost of the outcome of LTD to

that of any advertised strategy. At a high level, Phase 1 of LTD is similar enough to

PSA that we can borrow previous techniques to bound the cost of s′ in Lemma 2.4.3.

To do this, we have to make a high probability assumption on the order of updates
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in Phase 1. Specifically, we let E = E(T ′, T ∗) for 1 < T ′ < T ∗ denote the event that

every element in L updates at least once before time T ′ after every element in R

has updated at least once, and then each element in R again updates at some time

t ∈ [T ′, T ∗]. Note that we can choose T ′, T ∗ ∈ poly(n) such that Pr[E ] ≥ 1− 1/nFmax

if Fmax = O(1). Because Phase 2 in LTD is not simple best-response dynamics, the

potential argument that cost stays low in Phase 2 of PSA does not apply. Instead, we

develop new techniques in Lemma 2.4.4, and this causes us to lose an extra ∆ factor

relative to Theorem 2.3.1 for PSA. Corollary 2.4.2 puts these results in terms of the

global optimum.

We do not make routine efforts to obtain LTD analogs of the results for arbitrary

Fmax, costs, and weights given for PSA (Theorem 2.3.1, Corollary 2.3.2, Claim 2.3.6)

since these results appear to be far from tight.

Theorem 2.4.1. For a cover game with constant costs and weights, there exists a

T ∗ ∈ poly(n) such that for any advertising strategy sad, the expected cost at the end of

LTD is

E[cost(s′′)] =


O(1) · cost(sad) if Fmax = 2

O(∆2) · cost(sad)2 if Fmax = O(1).

(2.4.1)

If sad is obtained from the LP-rounding approximation algorithm described in

Section 2.2.3, the following corollary is immediate from Theorem 2.4.1:

Corollary 2.4.2. For a cover game with constant costs and weights, there exists a

T ∗ ∈ poly(n) and a poly-time algorithm to find an advertising strategy sad such that

the expected cost at the end of LTD is

E[cost(s′′)] =


O(1) ·OPT if Fmax = 2

O(∆2) ·OPT 2 if Fmax = O(1).

In proving Theorem 2.4.1, we find that although LTD differs from PSA in both

phases, we can analyze Phase 1 of LTD in a manner similar to Phase 1 of PSA by
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defining an event that occurs with high probability in Phase 1 of LTD and then

modifying the techniques of Theorem 2.3.1 to bound the cost of the state at the end of

Phase 1 relative to that of the advertised strategy (Lemma 2.4.3). However, showing

that the cost stays low in Phase 2 (Lemma 2.4.4) imposes new challenges that we

circumvent using the fact that update order is random, and this causes us to lose an

additional ∆ factor.

Proof of Theorem 2.4.1. Note cost(s) ≤ cmax · n + wmax · Fmax · |F| = O(nFmax) for

any s ∈ S. Then:

E[cost(s′′)] = Pr[E ] · E[cost(s′′) | E ] + Pr[Ec] · E[cost(s′′) | Ec]

≤ E[cost(s′′) | E ] +
1

nFmax
·O
(
nFmax

)
= E[cost(s′′) | E ] +O(1), (2.4.3)

so it suffices to bound E[cost(s′′) | E ]. Lemma 2.4.3 bounds the expected social cost

at the end of Phase 1 under the event E , and a bound on the increase in social cost in

Phase 2 is given in Lemma 2.4.4. Together, these lemmas imply Theorem 2.4.1.

Lemma 2.4.3. For a cover game with constant costs and weights, for any LTD

advertising strategy sad, and for event E as defined above,

E[cost(s′) | E ] =


O(1) · cost(sad) if Fmax = 2

O(∆) · cost(sad)2 if Fmax = O(1).

Proof. Recall that as in the proof of Theorem 2.3.1, cost(s′) = cost(sad) +O(|Ron|) +

O(w(Fbad)). Since cost(sad) ≥ c(L) + w(FR) = Θ(|L|) + Θ(|FR|), we have

|L|, |FR| = O(1) · cost(sad), so it suffices to bound w(Fbad) and |Ron| in terms of |L|

and |FR|.

Lemma 2.3.3 bounds w(Fbad) ≤ c(L) in the PSA model by obvserving that elements

in Loff ∩ Fbad are best-responding at the end of Phase 1. This clean argument does
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not apply in LTD, since Phase 1 terminates at a pre-determined time T ∗, and so

agents that played best-response most recently are not necessarily still in best-response.

Instead, we charge the weight of each set in Fbad that is entirely contained in L to

its element that played best-response most recently. We then bound the weight of

the other Fbad sets, which each contain some off element in R, using the analysis of

Lemma 2.3.4.

Let Fbad⊆L := {σ : σ ⊆ Loff}. Attribute the weight of σ ∈ Fbad⊆L to its element

` that updated most recently before the end of Phase 1. Because ` ∈ Loff played

best-response most recently, the weight of all sets in Fbad⊆L attributed to ` is at most

c`. Summing over all ` ∈ Loff ⊆ L gives w(Fbad⊆L) ≤ c(L) = O(1) · |L|.

Now let Fbad 6⊆L := Fbad\Fbad⊆L, whose sets each have elements in both L and R,

all off in s′. Recall the definitions of F (=1) and F (>1) in the proof of Lemma 2.3.4

and observe that Fbad6⊆L ⊆ F (=1) ∪ F (>1). Assuming E , we can modify the analysis

of |F (=1)| in Lemma 2.3.4 to get an analogous result. To do this, apply the analysis

in Inequalities (2.3.4), replacing “ρ\{`} ⊆ Roff” with “ρ\{`} are all off when ` last

updates in Phase 1,” and replacing “all ρ\{`} are receptive” with “each r ∈ ρ\{`}

plays sadr when it last updates before the last update of ` in Phase 1.” Note that r plays

sad at any given update in Phase 1 with probability pr ≥ β in LTD, so replacing PSA

probability α with β, Equation (2.3.6) holds for E[|F (=1)|] in LTD. This dominates

w(Fbad⊆L) = O(1) · |L|, so adding Inequality (2.3.7) for |F (>1)| gives:

E[w(Fbad) | E ] =


O(1) · |L| if Fmax = 2

O(∆) · |L|+ ∆|L|2 if Fmax = O(1).

(2.4.4)

This modification to the proof of Lemma 2.3.4 also bounds |Ron| in the LTD model

assuming E :

E [|Ron| | E ] =


|FR|+O(1) · |L| if Fmax = 2

|FR|+O(∆) · |L|+ ∆|L|2 if Fmax = O(1).

(2.4.5)
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Together, Equations (2.4.4) and (2.4.5) give Lemma 2.4.3.

From Fact 2.2.1 and Fmax = O(1), we have cost(s′′) ≤ O(Φ(s′′) − Φ(s′)) +

O(cost(s′)). The bound on expected potential change given in Lemma 2.4.4 below

therefore implies our desired bound on the cost at the end of LTD in Theorem 2.4.1.

Our potential change bound employs new probabilistic reasoning using agents’ random

update order to bound the total impact of updates that increase potential. We do

this by bounding the number of sets uncovered by some of these updates, and the last

step in this reasoning decouples dependent events by creating an R-disjoint subset of

sets as in the bound on |F (=1)| in the proof of Lemma 2.3.4. This is responsible for

the extra ∆ term compared to the bounds for the PSA model.

Lemma 2.4.4. For a cover game with constant costs and weights, for any LTD

advertising strategy sad, and for event E as defined above,

E[Φ(s′′)− Φ(s′) | E ] =


O(1) · cost(sad) if Fmax = 2

O(∆2) · cost(sad)2 if Fmax = O(1).

Proof. Since best-response moves do not increase the potential function Φ, we only

consider updates of agents following the advertising strategy sad in Phase 2. Since

each such agent changes strategies at most once in Phase 2, it suffices to consider a

single off -on move for each agent in L (i.e., the agent changes her strategy from off

to on) and a single on-off move for each agent in Ron. For each ` ∈ L, an off -on

move increases potential by at most c`, so

off -on moves increase potential by ≤ c(L) = O(|L|). (2.4.6)

Let Ron−off := {r ∈ Ron : r turns off in Phase 2, following sad}. The potential in-

crease due to the first Phase 2 update of r ∈ Ron−off at time t is the weight of sets

that become uncovered by this update. For r ∈ Ron−off, let F∗r be the collection of
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sets containing r such that all of their other elements are off at time t. The potential

increases by at most w(F∗r ) at time t, so noting that F∗r1 ∩F
∗
r2

= ∅ if r1 6= r2, we have:

on-off moves increase potential by ≤ w(
∑

r∈Ron−off
|F∗r |) = O

(∣∣∪r∈Ron−off
F∗r
∣∣) .
(2.4.7)

To bound | ∪r∈Ron−off
F∗r |, we partition ∪r∈Ron−off

F∗r = F (Loff) ∪ F (L∗on) ∪ F (Lon) for:

F (Loff) := {σ ∈ ∪r∈Ron−off
F∗r : σ ∩ L ⊆ Loff}

F (L∗on) := {σ ∈ ∪r∈Ron−off
F∗r : σ ∩ L = {`} ⊆ Lon}

F (Lon) := {σ ∈ ∪r∈Ron−off
F∗r : |σ ∩ L| > 1, σ ∩ Lon 6= ∅}.

Recall the definitions of F (>1),F (=1) from Lemma 2.3.4. Note that F (Loff)\FR ⊆

F (>1) ∪ F (=1) since every such set has an element in R and at least one element in

L, all of which are off in s′. We modify the analysis of in Lemma 2.3.4 in the same

manner used to justify Equation (2.4.4) in Lemma 2.4.3 to obtain:

E[|F (Loff)| | E ] ≤


|FR|+O(1) · |L| if Fmax = 2

|FR|+O(∆) · |L|+ ∆|L|2 if Fmax = O(1).

(2.4.8)

We now show that random updates in Phase 2 limits the expected number of sets

σ ∈ F (L∗on), each containing an element rσ ∈ Ron−off and a unique element `σ ∈ L,

which is on at the end of Phase 1. Our key observation is that if the (first and only)

on-off move of rσ uncovers σ in Phase 2, then `σ must have turned off earlier in

Phase 2. Note that `σ can turn off only if doing so uncovers at most cmax/wmin sets

in which `σ participates. Hence, all but at most cmax/wmin sets of the following type

must have an element in Roff that updates (and, in particular, turns on) before `σ

updates, and therefore also before rσ updates:

F (Roff)

`σ
= {ρ ∈ F∗`σ : ρ\{`σ} ⊆ Roff}.
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We use these observations to bound the probability that σ containing some rσ ∈ Ron−off

and a unique `σ ∈ L with `σ ∈ Lon is uncovered by rσ, where randomness is taken

over the location of rσ in an arbitrary fixed update order of the other agents in R.

There are at least |F (Roff)

`σ
|/∆ elements that are the first updating R agent in some

set ρ ∈ F (Roff)

`σ
, and rσ can update before at most cmax/wmin of them in order for `σ to

have a chance to turn off. Therefore, we can bound the probability that σ is uncovered

by rσ as:

Pr[σ ∈ F∗rσ | rσ ∈ σ ∩Ron−off, σ ∩ L = {`σ} ⊆ Lon, E ] ≤ cmax/wmin + 1

|F (Roff)

`σ
|/∆ + 1

,

By union bound over all r ∈ σ ∩ Ron−off that could uncover σ with an on-off move,

and for `σ ∈ L,

Pr[σ ∈ ∪r∈(σ∩Ron−off)F∗r | σ ∩ L = {`σ} ⊆ Lon, E ] ≤ (Fmax − 1) · cmax/wmin + 1

|F (Roff)

`σ
|/∆ + 1

= O

(
∆

|F (Roff)

`σ
|+ 1

)
.

Now recall that F∗` denotes the sets uniquely covered by ` in sad, and there is a subset

F̂∗` ⊆ F∗` of size at least
|F∗` |

∆(Fmax−1)
with disjoint elements in R. Note that for any

σ ∈ F , we have a lower bound βFmax on the probability that all σ ∩ R followed sad

and turned off in their last update in Phase 1. Thus we can argue that given E ,

the random variable |F (Roff)

` | has (first-order) dominance over the binomial random
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variable X ∼ B
(

|F∗` |
∆(Fmax−1)

, βFmax

)
. Using this, we have

E[|F (L∗on)| | E ] ≤
∑
`∈L

∑
σ∈F∗`

Pr[σ ∈ ∪r∈(σ∩Ron−off)F∗r | E ]

≤
∑
`∈L

∑
σ∈F∗`

O

(
E

[
∆

|F (Roff)

`σ
|+ 1

])

≤
∑
`∈L

∑
σ∈F∗`

O(∆) · E
[

1

X + 1

]

≤
∑
`∈L

∑
σ∈F∗`

O(∆) · ∆(Fmax − 1)

|F∗` |

= O(∆2) · |L|, (2.4.9)

where the third inequality uses β = Θ(1) and the fact that E[1/(1 + Y )] ≤ 1
np

for

binomial random variable Y ∼ B(n, p). Recall that ∆ = 1 in the special case that

Fmax = 2.

Finally, note that it is trivial to bound |F (Lon)| in a manner similar to the bound

for |F (>1)| in Lemma 2.3.4, using the fact that any pair of L can participate in ≤ ∆

sets:

|F (Lon)| ≤


0 if Fmax = 2

∆|L|2 if Fmax = O(1).

(2.4.10)

Inequalities (2.4.6), (2.4.7), (2.4.8), (2.4.9), and (2.4.10) together give the desired

conclusion.

We note that our (cost(sad))2 term is due to the crude bound of ∆|L|2 on the number

of sets with multiple L agents (as in Lemmas 2.4.3 and 2.3.4 bounding cost at the

end of Phase 1 of LTD and PSA). The additional ∆2 factor in LTD compared to PSA

is due to our new decoupling technique used in Inequality (2.4.9), which bounds the

number of sets with a unique L element that is on at the beginning of Phase 2 and

becomes uncovered by an R element following its advertising strategy.
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Tightness of Our Results and Open Questions

In the case of the vertex cover setting, in which all sets are of size two, our results

are essentially tight. Furthermore, such a setting arises in practical wireless sensing

networks [104]. In the more general set cover setting, we still get strong results

assuming constant size sets, although our results may not be tight. An additional

benefit of our constant set size assumption, i.e., Fmax = O(1), is that it allows us to

give a poly-time procedure for both computing a good advice strategy and then letting

the dynamics converge to an equilibrium that is within the O(log n) factor of optimal.

We remark that were it not for the constant set size assumption, this result would

be optimal, since [85] show that finding an o(log n)-approximation of the general set

cover problem is NP-hard.

Since there exists a poly-time algorithm for O(log n)-approximation of the general

set cover problem [21], it is conceivable that different analysis permitting arbitrary set

sizes and possibly using a different characterization of a good advice strategy could

give this optimal result. This is indeed an interesting open question: for arbitrary

Fmax, do the dynamics models with the set cover games studied in this work converge

to an equilibrium that is within the O(log n) factor of optimal? If the answer is yes,

our dynamics may provide an alternative O(log n)-approximation algorithm for the

set cover problem.

Related work subsequent to the conference version of this work has analyzed similar

settings with variants on the dynamics and games studied here (see, e.g., [83, 46]).

Our techniques may continue to be of broader interest for analyzing other classic

optimization problems in a distributed fashion.
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CHAPTER III

DIFFERENTIALLY PRIVATE INDEPENDENT

COMPONENT ANALYSIS

3.1 Overview

In [61], we provide a method for conducting independent component analysis (ICA)

while maintaining differential privacy with respect to an underlying database. We prove

privacy for a liberal definition of neighboring databases. Our method is compatible

with a broad class of ICA algorithms, and we show that the noise we add for privacy

does not degrade the accuracy of these algorithms much.

The basic ICA model assumes p independent real random source variables s =

(s1, . . . , sp) ∈ Rp, each with some (non-Gaussian and possibly unknown) distribution

over R. We observe do not observe these variables directly, rather we observe them

through p signal variables x = (x1, . . . , xp), which are linear combinations of the source

variables s under a fixed nonsingular mixing matrix A ∈ Rp×p such that x = sA.

The goal of ICA is to recover (up to trivial equivalencies) the mixing matrix A from

the distribution of x, which then also reveals the source variables s. In practice, we

receive random samples from the approximate distribution of x, and we estimate

A from these samples. Our work is motivated by the observation that many ICA

applications have a natural privacy aspect, in that the observations x and underlying

source variables s may reflect confidential information about individuals, whereas

the mixing matrix represents an underlying (and non-confidential) structure that the

analysis is attempting to discover. For example, the source signals and observations

could respectively represent mutations in a genome and incidents of diseases, and the

mixing matrix would capture how the former influences the latter.
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After covering ICA, differential privacy, and other relevant preliminaries in Sec-

tion 3.2, we present our mechanism and prove its privacy in Section 3.3. In Section 3.4,

we give an algorithm-agnostic characterization and proof of our mechanism’s utility

for ICA, and we specialize these results for a provable ICA algorithm in Section 3.5.

The rest of this section provides an overview of our main approach and techniques.

Approach

Our approach begins with the observation that all known ICA algorithms work in

two main phases. The first phase calculates the mean and covariance of the data,

and it applies a corresponding affine transformation to obtain whitened data, which

is zero-centered and isotropic. In other words, this phase reduces to the case where

each source variable si has expectation 0 and variance 1, and the mixing matrix A is

orthonormal, i.e., A−1 = AT . The second phase recovers the columns of A−1 via some

method of multivariate optimization on the one-dimensional marginals 〈x, u〉 = xuT

over unit vectors u ∈ Rp. The basic idea is that if u is a column of A−1 (or its

negation), then 〈x, u〉 = sAuT is exactly one of the source variables (or its negation);

otherwise, 〈x, u〉 is some normalized mixture of two or more source variables.

For many popular ICA algorithms (especially those with provable guarantees),

the optimization phase requires only an oracle the fourth moments of the marginals

〈x, u〉 and not the data itself. Such an oracle can be implemented using the fourth

moment tensor of the data, i.e., the values E[xixjxkxl] for all i, j, k, l ∈ {1, . . . , p}. By

independence of the source variables, the fourth moment of 〈x, u〉 has local optima

exactly at the columns of A−1, and a variety of methods may be used to find these

optima, including gradient descent or fixed-point methods. Once the orthonormal A−1

is recovered, the algorithms finally reverse the original affine transformation using the

mean and covariance to obtain the original mixing matrix and source variables.

For privacy and utility, it therefore suffices to 1) release a sanitized (private) version
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of the appropriately normalized first, second, and fourth moment tensors, 2) use the

noisy fourth moment in the optimization phase of any ICA algorithm to recover the

(approximate) columns of A−1, and 3) reverse the original affine transformation using

the noisy first and second moments.

Privacy

With this approach, determining how much noise to add for privacy reduces to

analyzing the sensitivity of these tensors under a single row change. As noted in [40],

the sensitivity of the covariance is tightly related to the incoherence of the data. One

of our main technical contributions (Lemma 3.3.7) is that essentially the same is true

of the fourth moment tensor, with an additional dependence on conditioning (see

Section 3.2.3).

In proving the sensitivity of the fourth moment tensors of adequately conditioned

databases, we observe that a change in one row of the database affects the isotropic

fourth moment tensor via the row change itself and changes to the first and second

moments (Inequality (3.3.4)). In particular, the hardest change to control is the

composition of the square root of the new covariance matrix with the original fourth

moment tensor. Roughly speaking, our main technical lemma (Lemma 3.3.8) shows

that under a slight rotation of basis vectors, the Frobenius norm of the fourth moment

tensor does not change substantially. Note that bounding the change in spectral norm

from this rotation is trivial, but privacy requires a bound on Frobenius norm. A

Frobenius norm bound directly obtained from a spectral norm bound would yield

poly(p) loss. Instead, our approach is a coordinate-dependent calculation (though our

result is of course coordinate-free), ultimately giving an optimal bound as a function

of p (up to constant factors). The proof uses essentially elementary techniques, but

requires a careful counting argument and a matrix perturbation bound from [68].

Because of the dependence of the fourth moment tensor’s sensitivity on incoherence
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and conditioning, privacy is given with respect to a definition of neighboring databases

that bounds the amount a single row change can affect the incoherence and conditioning

of the database (Definition 3.3.1). Although not as general as a neighborhood definition

permitting arbitrary row change, our neighborhood definition is much more permissive

than definitions that require the row change to be of constant Frobenius norm, in

particular as required in [40].

This neighborhood definition allows us to employ the Propose-Test-Release paradigm

of [26]: it (privately) checks whether the input database is adequately conditioned,

and if so, it releases noisy first, second, and fourth moment tensors. Otherwise, it

aborts with no output.

Utility

In arguing the utility of our mechanism for ICA, we face two main conceptual

challenges. First, for arbitrary input data, which may not be well described by any

ICA model, there is no canonical notion of the most accurate mixing matrix, nor one

single objective function measuring how well a candidate mixing matrix fits the data.

Second, existing ICA algorithms usually lack formal guarantees of output accuracy

(i.e., how close their output comes to optimizing the objective), except sometimes

in highly idealized settings where the data exactly conform to an ICA model. It is

therefore unclear how to meaningfully quantify the accuracy of differentially private

ICA, especially when the data are arbitrary.

One of our main contributions is a way of quantifying accuracy in an algorithm-

agnostic way, and even in the absence of output guarantees in the non-private setting.

Instead of analyzing the output of a particular ICA algorithm on its sanitized input, we

consider the objective function that the algorithm attempts to optimize. We show that

if the original data conform closely to some ICA reference model (Definition 3.4.1),

then the optima of the sanitized fourth moment tensor are close to the columns of the
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model’s unmixing matrix.

To show accuracy of this type for reasonable amounts of noise, we exploit an

arbitrage between the Frobenius and spectral norms. Utility loss depends on the

spectral norm perturbation of our fourth moment tensors. Using tensor generalizations

of some spectral norm bounds in random matrix theory, we show that we can add

quite a large amount of noise (proportional to the Frobenius norm difference) to each

entry of the isotropic fourth moment tensor without much effect on the spectral norm.

In particular, the spectral norm of the noise tensor grows with
√
p, rather than p2 for

the Frobenius norm. Thus, we are able to provide surprisingly good privacy-utility

tradeoffs.

Our framework and notion of utility can be directly applied to many of the recent

ICA algorithms with provable guarantees [32, 76, 5, 3]. In Section 3.5, we specifically

analyze the accuracy of our mechanism when used in conjunction with the recent

SVD-based ICA algorithm of [2], where utility guarantees are not as obvious. We note

that the only provably good algorithm for ICA which our methods do not extend to is

the Fourier transform method of [36].

3.2 Preliminaries

In this chapter, all vectors are row vectors. For x ∈ Rp, we let x⊗k denote the

p× · · · × p symmetric kth order tensor whose (i1, . . . , ik)th entry is xi1xi2 · · ·xik , for

all i1, . . . , ik ∈ [p]. In particular, x⊗2 = x ⊗ x is the usual outer product, which

gives a p × p matrix. For a kth order real tensor M , define the Frobenius norm

‖M‖`2 := (
∑

i1,...,ik
M2

i1,...,ik
)1/2, where the sum ranges over all indices of M . We

let Lap(b) and N (σ2) respectively refer to the (mean zero) Laplace and Gaussian

distributions with probability density functions:

fLap(x) :=
1

2b
exp(−|x|/b) fN (x) :=

1

σ
√

2π
exp(−x2/(2σ2))
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3.2.1 Independent Component Analysis

ICA assumes data are generated as follows: the observed data x = (x1, . . . , xp) ∈ Rp

are generated by p fixed linear combinations of p unobserved independent random

variables s = (s1, . . . , sp) ∈ Rp. These linear combinations are specified by a matrix

A ∈ Rp×p such that x = sA. An ICA model is therefore fully characterized by a

mixing matrix A and a distribution for each of the source variables si. We call the

corresponding observed random variable x an ICA-generative random variable. The

statistical goal of ICA is to recover A and s from samples of x. Initially, x may

have higher dimension than s, but preprocessing can reduce this to the case where

A is square and non-singular. In general, the ICA problem is well-specified only if

the source variables si are independent and at most one of them is Gaussian. If we

normalize s so that E [si] = 0 and E [s2
i ] = 1 for each i ∈ [p], then A is uniquely defined

up a permutation of columns and their signs. Deducing A−1 allows us to decouple the

observed random variables as xA−1 = s.

Standard ICA algorithms begin with a whitening step: the observed signals are

placed in isotropic position by subtracting their means and applying a linear trans-

formation given by an inverse square root of their centered covariance matrix. For a

normalized ICA-generative random variable x = sA, the optima of the fourth moments

of x are columns of A−1 (up to sign), and there are 2p such local optima. Several ICA

algorithms use gradient descent to determine the columns of A−1, sequentially. An

important recent work [2] projects the p× p× p× p fourth moment tensor in such a

way that the eigenvectors of a single p× p matrix give the columns of A−1 all at once.

In practice, an ICA algorithm’s input is an isotropic fourth moment tensor of a

database X ∈ Rn×p whose rows are n samples of the observed variable x. We use the
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following notation for a random row vector x or database X:

µx := E [x] µX :=
1

n

∑
i∈[n]

xi

Σx := E
[
(x− µx)⊗2

]
ΣX :=

1

n

∑
i∈[n]

(xi − µX)⊗2

Mx := E
[(

(x− µx)Σ−1/2
x

)⊗4
]

MX :=
1

n

∑
i∈[n]

(
(xi − µX)Σ

−1/2
X

)⊗4

We refer to Σx,ΣX as the (centered) second moment tensors or covariance matrices,

and Mx,MX as the (isotropic) fourth moment tensors, of the random variable x and

database X, respectively.

3.2.1.1 Fourth Order Tensors

Any fourth order (not necessarily symmetric) tensor M defines a 4-linear form:

M(u, v, w, x) :=
∑
i,j,k,l

Mijkl uivjwkxl.

This form defines a spectral (or operator) norm:

‖M‖op := max
u,v,w,x∈Sp−1

M(u, v, w, x)

where Sp−1 is the Euclidean unit sphere in p coordinates. We will let f denote the

following quartic form associated with a fourth order tensor M :

f(u) := M(u, u, u, u) =
∑
i,j,k,l

Mijkl uiujukul.

The quartic form also induces a spectral norm:

‖M‖op := max
u∈Sp−1

f(u).

When M is symmetric (i.e., the entries for every permutation of any four indices are

the same), the spectral norms defined by the multilinear and quartic forms of M are

the same. It is also easy to see that any fourth moment tensor of a random variable

or of a database is symmetric.
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We write Dfu = ∇f(u) ∈ Rp for the gradient of f at u ∈ Rp. When M is

symmetric, we can express this gradient easily:

(Dfu)l = 4
∑
ijk

Mijkl uiujuk.

We define the linear form Dfu(·) = 〈Dfu, ·〉 = 4M(u, u, u, ·); note therefore that

Dfu(u) = 4f(u).

The Hessian matrix of second derivatives of f at u is defined as D2fu = ∇2f(u) ∈

Rp×p. We write λ1(D2fu) to refer to the largest eigenvalue of D2fu, taken orthogonal

to u.

3.2.2 Differential Privacy

Let X ∈ Rn×p denote an n-row database. The definition of differential privacy [27, 25]

is with respect to some definition of neighboring databases (most generally, those that

differ arbitrarily in one row):

Definition 3.2.1. For ε, δ ≥ 0, a mechanism M : Rn×p → Range(M) is (ε, δ)-

differentially private if for all neighboring databases X, Y ∈ Rn×p and for all subsets

S ⊆ Range(M),

Pr[M(X) ∈ S] ≤ exp(ε) · Pr[M(Y ) ∈ S] + δ.

Typically, the first (and in our case, essentially the only) step in proving differential

privacy for a mechanism is to determine the sensitivity of a query or class of queries

on neighboring databases. We use two simple and powerful mechanisms that ensure

differential privacy by adding noise proportional to sensitivity:

Proposition 3.2.2 (Laplace mechanism). For any query q : Rn×p → R with sen-

sitivity ∆q ∈ R such that |q(Y )− q(X)| ≤ ∆q for all neighbors X, Y ∈ Rn×p, the

Laplace mechanism is (ε, 0)-differentially private:

M(X) := q(X) + Lap(∆q/ε).
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When queries are multidimensional and (ε, δ)-differential privacy is sufficient, we add

Gaussian noise:

Proposition 3.2.3 (Gaussian mechanism). For any (T -dimensional) query q : Rn×p →

RT with sensitivity ∆q ∈ R such that ‖q(Y )− q(X)‖`2 ≤ ∆q for all neighbors X, Y ∈

Rn×p, the Gaussian mechanism with σ = ∆q

√
log(1.25/δ)/ε is (ε, δ)-differentially

private:

M(X) := q(X) +N (σ2IT ).

The following well-known lemma establishes that private mechanisms remain private

under composition:

Proposition 3.2.4 (Composition). Let εi, δi ≥ 0 for i ∈ [k]. If each Mi is (εi, δi)-

differentially private, then the algorithm M(A) := (M1(A), . . . ,Mk(A)) releasing the

concatenated results of each algorithm is (
∑

i∈[k] εi,
∑

i∈[k] δi)-differentially private.

3.2.3 Incoherence and Conditioning

To bound the sensitivity of moment tensors, we consider the incoherence νX and

condition parameter κX of a database X ∈ Rn×p, defined as follows:

νX :=
maxi∈[n]‖xi − µX‖2

`2

‖X − 1µX‖2
`2

κX := Tr(ΣX)/λp(ΣX)

Note that νX ∈ [1/n, 1], where a smaller value indicates greater incoherence: when

νX = 1/n, each row contributes an equal proportion of the total (Frobenius norm)

weight of the database. Also note that every database satisfies maxi∈[n]‖xi − µX‖2
`2

=

n · νX · Tr(ΣX) since ‖X − 1µX‖2
`2

= n · Tr(ΣX).

Similarly, κX ≥ p since Tr(ΣX) =
∑

j∈[p] λj(ΣX). A small value of κX (close to p)

indicates roughly equal eigenvalues. Note that κX is at most p times greater than

λ1(ΣX)/λp(ΣX), the usual condition number. We consider a well-conditioned database

to be one for which νXκX is sufficiently small. We discuss acceptable parameter ranges

after presenting our main privacy result in Theorem 3.3.4.
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3.3 A Private Mechanism for ICA

Our mechanism (Algorithm 1) computes and releases noisy versions of the sample mean,

centered covariance, and isotropic fourth moment tensor of any adequately conditioned

input database. Step 3 checks whether the database is adequately conditioned and

aborts if not. This can be seen as an instance of the Propose-Test-Release paradigm

of [26]. For adequately conditioned databases, the mechanism adds symmetric noise

to the (symmetric) moment tensors, which will be important for our utility analysis,

but it does not affect our application of the Gaussian mechanism for privacy.

Algorithm 1 Private ICA

Input: Database X ∈ Rn×p, parameters ρν , ε0, ε, δ > 0.
(Constants C0, C

∗ are from Definition 3.3.1 and the proof of Lemma 3.3.8.)
1: Compute the incoherence and condition parameters νX and κX .
2: Draw γ0 from Lap(1/(C0 · ρν · lnn)).
3: If νXκX + γ0 ≥ 1/(2C∗ρν), then abort with no output.
4: Compute the mean µX , centered covariance ΣX , and isotropic fourth moment MX ,

and then compute σ1, σ2, and σ4 satisfying the bounds in Theorem 3.3.4.
5: Let Γ1 ∈ Rp be a random vector with independent entries drawn from N (σ2

1).
6: Let Γ2 ∈ Rp×p be a random symmetric matrix with independent entries (up to

symmetry) drawn from N (σ2
2).

7: Let Γ4 ∈ Rp×p×p×p be a random symmetric tensor with independent entries (up to
symmetry) drawn from N (σ2

4).
8: return (µX + Γ1,ΣX + Γ2,MX + Γ4).

The privacy of our mechanism is with respect to the following definition of neigh-

boring databases. Two databases are neighbors under our definition if they differ in

only one row and if this row difference does not affect the incoherence or condition

parameters by too much:

Definition 3.3.1 (Neighborhood). For parameters ρν ≥ 1, ε0 ≥ 0, two databases

X, Y ∈ Rn×p are neighbors if they differ in only one row and if:

1. νY /νX ∈ [1/ρν , ρν ], and

2. |νY κY − νXκX | ≤ ε0/(C0 · ρν · lnn) for an absolute constant C0 determined by

Theorem 3.3.4.
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Our definition is more restrictive than the standard neighborhood definition from the

differential privacy literature (e.g., [25]), under which any two databases differing in

only one row are neighbors. We discuss the practical significance of this restriction

after formalizing the main privacy guarantee of our mechanism in Theorem 3.3.4.

First, we note that privacy of the abort step follows from the realization that the

abort decision alone is an instance of the Laplace mechanism:

Fact 3.3.2 (from Proposition 3.2.2). The abort decision in Step 3 of Algorithm 1

is ε0-differentially private.

The Laplace noise for privacy also ensures that this step is likely to reject inadequately

conditioned databases:

Fact 3.3.3. Algorithm 1 aborts on any database X ∈ Rn×p with νXκX > 1/(C∗ρν)

with all but n−C0/(2C∗) probability (for C0, C
∗ from the mechanism).

These facts essentially reduce the proof of privacy to bounding the sensitivity (under

our neighborhood definition) of moment tensors for databases that are adequately

conditioned. The three lemmas that follow provide these bounds. With them, the

following privacy guarantee for all databases is almost immediate:

Theorem 3.3.4 (Privacy). For any desired c ≥ 0, there exist universal constants

C1, C2, C4 such that for all sufficiently large n, Algorithm 1 is (ε0 + 3ε, 3δ + n−c)-

differentially private under Definition 3.3.1 for

σ1 ≥ C1 ·
√
ρν · νX · Tr(ΣX)/n ·

√
log(1.25/δ)/ε (3.3.1)

σ2 ≥ C2 · ρν · νX · Tr(ΣX) ·
√

log(1.25/δ)/ε (3.3.2)

σ4 ≥ C4 ·
(
ρννXκX · ‖MX‖`2 + p2

√
ρννXκX/n · ‖MX‖op

+ (ρννXκX)2 · n
)
·
√

log(1.25/δ)/ε. (3.3.3)
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Proof. Lemmas 3.3.5, 3.3.6, 3.3.7 bound the sensitivities of µX ,ΣX ,MX for databases

X that satisy νXκX ≤ 1/(C∗ρν). Restricting to such databases, the Gaussian mecha-

nism and composition lemma show that it is (3ε, 3δ)-differentially private to release

the noisy moment tensors with σ1, σ2, σ4 as above. Fact 3.3.3 guarantees that any

other database survives the abort step with probability at most n−C0/(2C∗). Assuming

that row changes in these databases have arbitrary effect on the moment tensors, this

contributes additive error n−c (for appropriate choice of neighborhood constant C0)

to the privacy guarantee. With Fact 3.3.2 and the composition lemma, we have our

final privacy guarantee for all databases.

Parameters for privacy and utility. The strength of our mechanism’s privacy

guarantee is quantified not only by (ε0 + 3ε, 3δ + n−c) from the theorem above, but

also by the extent to which our neighborhood definition permits large changes in a

single row. We do not allow arbitrary row changes. For example, X and Y differing

on only one row may not be neighbors under Definition 3.3.1 if the differing row in

Y contributes a much greater proportion of the total magnitude of Y than the same

row in X, or if the differing row in Y has large magnitude in the direction of an

eigenvalue of ΣX , because such changes could mean that even if X is well conditioned,

Y may not be. Although certain single row changes are prohibited, our definition is

significantly more permissive than the definition in the related work of [40], which

requires ‖y1 − x1‖`2 ≤ 1 for neighboring databases. For comparison, our definition

with ρν a small polynomial in p permits ‖y1 − x1‖`2 = poly(p) when the database

entries are constant size, κX is a (small) polynomial in p, and n is a large enough

polynomial in p. Note that in this setting, the naive private mechanism that directly

perturbs the input database X would require poly(p) noise, which would destroy any

utility.

In order for the utility bounds in Section 3.4 to be meaningful, we would like to
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have privacy for some σ1, σ2, σ4 = o(1). Note that the third term in the σ4 bound

requires νX = o(1/(p · ρν ·
√
n)). If we additionally assume that X has O(1) entries

and that Tr(ΣX) is poly(p), then all other terms are o(1) assuming n is a sufficiently

large polynomial in p. We must have ρν = o(
√
n/p) for this bound on νX , so choosing

ρν a small polynomial in p as in the previous paragraph creates a permissive and

feasible neighborhood definition. Finally, note that the mechanism is very unlikely to

abort on databases with νXκX = o(1/(ρν
√
n)), so the abort step does not restrict the

set of databases for which we can provide meaningful ICA utility, beyond what we

already require in our utility analysis.

Since we are releasing the covariance matrix, from which the singular values of X

can be computed, our mechanism is subject to the lower bound of [41]. Their notion

of coherence is slightly different from ours, and our neighborhood definition is more

permissive. Roughly speaking, we are within small poly(p) factors of the lower bound,

even while additionally sanitizing the fourth moment tensor.

For the remainder of this section, we give the bounds needed by our privacy theorem,

Theorem 3.3.4, on the moment tensor sensitivities assuming the high probability bound

νXκX ≤ 1/(C∗ρν) given by Fact 3.3.3.

Lemma 3.3.5 (Sensitivity of means). For any neighbors X, Y ∈ Rn×p with νXκX ≤

1/(C∗ρν),

‖µY − µX‖`2 = O
(√

ρν · νX · Tr(ΣX)/n
)
.

Proof. Note that µY − µX = 1
n
(y1− x1). To bound this, we use the triangle inequality

and individually bound the centered norms of x1 and y1 using coherence and the

neighborhood definition.

‖µY − µX‖`2 ≤
1

n
‖(y1 − µY )− (x1 − µX) + (µY − µX)‖`2

≤ 1

n− 1

(
‖y1 − µY ‖`2 + ‖x1 − µX‖`2

)
≤ 1

n− 1

(√
νY · n · Tr(ΣY ) +

√
νX · n · Tr(ΣX)

)
.
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Our bound must be only with respect to X so that it can be used to set the noise

parameter in our mechanism. To bound Tr(ΣY ) = ‖Y − 1nµY ‖2
`2
/n in terms of

database X, we use the above bound for ‖µY − µX‖`2 , the incoherence condition, and

two applications of the Cauchy-Schwartz inequality:

Tr(ΣY ) =
1

n
‖y1 − µY ‖2

`2
+

1

n

n∑
i=2

‖(xi − µX) + (µX − µY )‖2
`2

≤ νY · Tr(ΣY ) + 2 · Tr(ΣX) +
2(n− 1)

n
· ‖µY − µX‖2

`2

≤ νY · Tr(ΣY ) + 2 · Tr(ΣX) +
2ρννX
(n− 1)

·
(√

Tr(ΣY ) +
√

Tr(ΣX)
)2

≤ (1 + 4/(n− 1)) · ρν · νX · Tr(ΣY ) + (2 + 4ρννX/(n− 1)) · Tr(ΣX)

≤ 2 + 4ρννX/(n− 1)

1− ρννX − 4ρννX/(n− 1)
· Tr(ΣX).

Noting that κX ≥ p by definition, the conditioning assumption that νXκX ≤ 1/(C∗ρν)

is enough to bound the above coefficient of Tr(ΣX) by some absolute constant. Our

bound on the difference in means follows:

‖µY − µX‖`2 ≤
√
n

n− 1

(√
ρν · νX · C · Tr(ΣX) +

√
νX · Tr(ΣX)

)
≤ C1 ·

√
ρν · νX · Tr(ΣX)

n
.

Lemma 3.3.6 (Sensitivity of covariance). For any neighbors X, Y ∈ Rn×p with

νXκX ≤ 1/(C∗ρν),

‖ΣY − ΣX‖`2 = O (ρν · νX · Tr(ΣX)) .

Proof. The difference ΣY − ΣX comprises an update in the first row and a mean

update. We bound the Frobenius norm difference of these two updates separately.

ΣY − ΣX =
1

n

n∑
i=1

(
(yi − µY )⊗2 − (xi − µX)⊗2

)
=

1

n

(
(y1 − µY )⊗2 − (x1 − µY )⊗2

)
+

1

n

n∑
i=1

(
(xi − µY )⊗2 − (xi − µX)⊗2

)
.
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Now let δµ := µY − µX , and note that

(xi−µY )⊗2 = (xi−µX − δµ)⊗2 = (xi−µX)⊗2− (xi−µX)⊗ δµ− δµ⊗ (xi−µX) + δ⊗2
µ .

Then we can simplify the summation term of the covariance difference equation:

1

n

n∑
i=1

(
(xi − µY )⊗2 − (xi − µX)⊗2

)
=

1

n

n∑
i=1

(
− (xi − µX)⊗ δµ − δµ ⊗ (xi − µX) + δ⊗2

µ

)
= δ⊗2

µ .

We similarly expand (x1−µY )⊗2 in the row change term of the covariance difference

equation to a sum of tensors of x1 − µX and δµ. Then we complete the bound on

covariance sensitivity using incoherence, the bound on mean sensitivity, and the earlier

argument that Tr(ΣY ) ≤ C · Tr(ΣX) for an absolute constant C.

‖ΣY − ΣX‖`2

≤ 1

n
‖(y1 − µY )⊗2 − (x1 − µX)⊗2 + (x1 − µX)⊗ δµ + δµ ⊗ (x1 − µX)− δ⊗2

µ ‖`2 + ‖δ⊗2
µ ‖`2

≤ 1

n
· CρννXnTr(ΣX) +

1

n
· 2
√
νXnTr(ΣX) · C1

√
ρννX Tr(ΣX)

n

+ (
1

n
+ 1) · C2

1 ·
ρXνX Tr(ΣX)

n

≤ C2 · ρν · νX · Tr(ΣX).

Lemma 3.3.7 (Sensitivity of fourth moment). For any neighbors X, Y ∈ Rn×p

with νXκX ≤ 1/(C∗ρν),

‖MY −MX‖`2 ≤ O
(
ρννXκX · ‖MX‖`2 + p2

√
ρννXκX/n · ‖MX‖op + (ρννXκX)2 · n

)
.

Proof. Denote the fourth moment tensor of a database X shifted by some means

vector (not necessarily its own) µ and scaled by some covariance matrix Σ as follows:

M(X,µ,Σ) :=
1

n

∑
i∈[n]

(
(xi − µ)Σ−1/2

)⊗4
.
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Assume without loss of generality that a neighboring database Y differs on the

first row. We decompose the Frobenius norm of the change between MX and MY into

the sum of changes accumulated in three steps:

‖MY −MX‖`2 ≤ ‖M(X,µY ,ΣX) −MX‖`2

+ ‖M(Y,µY ,ΣX) −M(X,µY ,ΣX)‖`2

+ ‖MY −M(Y,µY ,ΣX)‖`2 . (3.3.4)

The first term is the change due to updating MX to be centered with respect to

the column means of database Y . The second term is the change due to updating

the single differing row from x1 to y1. At this stage, both databases are centered

by µY and scaled with ΣX . The last term is the change due to rescaling the whole

µY -centered database with ΣY instead of ΣX .

Letting δµ = µY − µX , we bound the second term of Expression (3.3.4) using

incoherence and the earlier lemma for mean sensitivity:

‖M(Y,µY ,ΣX) −M(X,µY ,ΣX)‖`2 =
1

n
‖((y1 − µY )Σ

−1/2
X )⊗4 − ((x1 − µY )Σ

−1/2
X )⊗4‖`2

≤ 1

n
(‖y1 − µY ‖4

`2
+ ‖x1 − µX − δµ‖4

`2
)‖Σ−1

X ‖
2
op

=
1

n
·O((ρν · νX · n · Tr(ΣX))2)/λp(ΣX)2

= O((ρννXκX)2 · n).

Now it is enough to bound the first and third terms of Expression (3.3.4). We first

bound the third term in Lemma 3.3.8, which uses a result from [68] to show that the

rescaling matrix Σ
1/2
Y Σ

−1/2
X is close to the identity and then uses Proposition 3.3.9,

which proves that a near identity perturbation results in only a small Frobenius norm

change in fourth moment tensor. Then after bounding the first term in Lemma 3.3.10,

the fourth moment sensitivity follows almost immediately using triangle inequality

and the observation that 1/(1− C∗ρννXκX/2) = O(1) when νXκX ≤ 1/(C∗ρν).
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Lemma 3.3.8 (Rescaling). For any neighbors X, Y ∈ Rn×p with νXκX < 1/(C∗ρν),

‖MY −M(Y,µY ,ΣX)‖`2 ≤
C∗ρννXκX

2
· ‖MY ‖`2 .

Proof. Let T := Σ
1/2
Y Σ

−1/2
X . With some calculation, we can see that for u ∈ Rp:

M(Y,µY ,ΣX)(u, u, u, u) = MY (Tu, Tu, Tu, Tu).

For any symmetric fourth order tensor M we have ‖M‖2
`2

=
∑

ijklM(ei, ej, ek, el)
2.

In particular,

‖MY −M(Y,µY ,ΣX)‖2
`2

=
∑
ijkl

(MY (ei, ej, ek, el)−MY (Tei, T ej, T ek, T el))
2. (3.3.5)

Lemma 3.3.6 already tells us that neighboring databases have close centered

covariance matrices, so we expect T := Σ
1/2
Y Σ

−1/2
X = I + E with ‖E‖`2 small. We give

an explicit bound for ‖E‖`2 using the following result, derived from Mathias [68]:

Theorem (from [68]). Let H be a p× p Hermitian matrix that is positive definite.

Then for η > 0 and Hermitian G such that ‖H−1/2GH−1/2‖`2 = η, we have:

‖(H +G)1/2H−1/2 − I‖`2 ≤ η +O(η2).

For neighborsX, Y ∈ Rn×p, letH = ΣX andG = ΣY−ΣX = 1
n

((y1 − µY )⊗2 − (x1 − µX)⊗2),

and then bound η as follows:

η =
1

n
‖((y1 − µY )Σ

−1/2
X )⊗2 − ((x1 − µX)Σ

−1/2
X )⊗2‖`2

≤ 1

n

(
‖(y1 − µY )Σ

−1/2
X ‖2

`2
+ ‖(x1 − µX)Σ

−1/2
X ‖2

`2

)
≤ 1

n
(‖y1 − µY ‖2

`2
+ ‖x1 − µX‖2

`2
)/λp(ΣX)

≤ (C · ρν + 1) · νXκX .

Now write T = I + E with ‖E‖`2 ≤ (C · ρν + 1) · νXκX + O((C · ρν + 1)2 · ν2
Xκ

2
X).

Given the universal constant CP from the following proposition, we can choose a
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universal constant C∗ sufficiently large relative to the other constants so that the

assumption νXκX ≤ 1/(C∗ρν) implies ‖E‖`2 ≤
C∗

2
√
CP
· ρννXκX ≤ 1

2
√
CP

< 1. Then we

can apply Proposition 3.3.9 below using MY for M and Σ
1/2
Y Σ

−1/2
X for T to bound

Equation (3.3.5) using the above bound ‖E‖`2 ≤
C∗

2
√
CP
ρννXκX , completing the proof

of Lemma 3.3.8.

Proposition 3.3.9 (for Lemma 3.3.8). There exists some universal constant CP ≥

1 such that for any symmetric fourth order tensor M ∈ Rp×p×p×p and any T = I+E ∈

Rp×p with ‖E‖`2 ≤ 1,

∑
ijkl

(M(Tei, T ej, T ek, T el)−M(ei, ej, ek, el))
2 ≤ CP · ‖E‖2

`2
‖M‖2

`2
.

Proof. First observe that for fixed i, j, k, l,

M(Tei, T ej, T ek, T el)−M(ei, ej, ek, el) = (
∑
i′j′k′l′

Ti′iTj′jTk′kTl′lMi′,j′,k′,l′)−Mijkl.

(3.3.6)

By assumption, the diagonal terms of T are the only large ones. In particular, we can

liberally use the coarse bound Eij ≤ ‖E‖`2 ≤ 1 to control and simplify many of the

coefficients of entries of M in Equation (3.3.6). Throughout, C,C ′, C ′′ are absolute

constants that may differ across expressions.

Let Ii denote the set of 4-tuples (i′jkl) with i′ 6= i, and similarly for Ij, Ik, Il;

let Iij denote the set of (i′j′kl) with i′ 6= i, j′ 6= j, and so on; let Iijk denote the

(i′, j′, k′, l) with i′ 6= i, j′ 6= j, k′ 6= k, and so on; let Iijkl denote the (i′, j′, k′, l′) with

i′ 6= i, j′ 6= j, k′ 6= k, l′. Let I denote the constant size disjoint union of all such I.

Now apply the Cauchy-Schwartz inequality to Equation (3.3.6) to separately consider

the contribution of each I ∈ I :
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∑
ijkl

(M(Tei, T ej, T ek, T el)−M(ei, ej, ek, el))
2

≤ C ·
∑
ijkl

(TiiTjjTkkTll − 1)2M2
ijkl + C ·

∑
ijkl

∑
I∈I

(
∑

(i′j′k′l′)∈I

Ti′iTj′jTk′kTl′lMi′j′k′l′)
2.

It is easy to bound the first term using T = I + E:

C ·
∑
ijkl

(TiiTjjTkkTll − 1)2M2
ijkl = C ·

∑
ijkl

((1 + Eii)(1 + Ejj)(1 + Ekk)(1 + Ell)− 1)2M2
ijkl

≤ C ′ ·
∑
ijkl

(|Eii|+ |Ejj|+ |Ekk|+ |Ell|)2M2
ijkl

≤ C ′′ · ‖E‖2
`2
‖M‖2

`2
.

Now consider the second term for fixed ijkl. Let E·i denote the ith column of

E and let M·jkl denote the vector whose ith entry is Mijkl. The contribution of the

(i′jkl) ∈ Ii is as follows.

C · (
∑

(i′jkl)∈Ii

Ti′iTjjTkkTllMi′jkl)
2 = C · (

∑
i′ 6=i

Ei′i(1 + Ejj)(1 + Ekk)(1 + Ell)Mi′jkl)
2

≤ C ′ · (
∑
i′∈[p]

Ei′iMi′jkl)
2

= C ′ · 〈|E·i|,M·jkl〉2

≤ C ′′ · ‖E·i‖2
`2
‖M·jkl‖2

`2
.

Summing over all ijkl, we have

C ·
∑
ijkl

(
∑

(i′jkl)∈Ii

Ti′iTjjTkkTllMi′jkl)
2 ≤ C ′′ · ‖E‖2

`2
‖M‖2

`2
.

We can similarly do this for j′ 6= i, k′ 6= k, l′ 6= l. Analogously, sets with two, three, and

four indices differing from ijkl respectively contribute C ′·‖E‖4
`2
‖M‖2

`2
, C ′·‖E‖6

`2
‖M‖2

`2
,

and C ′ · ‖E‖8
`2
‖M‖2

`2
. With ‖E‖`2 ≤ 1, these higher order terms are dominated by the

lower order terms, and we get our final bound.
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We finally bound the first term of Expression (3.3.4), the portion of the difference

in neighboring isotropic fourth moment tensors due to the databases being centered

with respect to different means.

Lemma 3.3.10 (Recentering). For any neighbors X, Y ∈ Rn×p with νXκX <

1/(C∗ρν),

‖M(X,µY ,ΣX) −MX‖`2 = O(p2 ·
√
ρννXκX/n · ‖MX‖op).

Proof. Let δµ = µY −µX as before, and define x̂i := (xi−µX)Σ
−1/2
X and δ̂µ := δµΣ

−1/2
X .

Then:

M(X,µY ,ΣX) −MX =
1

n

∑
i∈[n]

[
((xi − µX − δµ)Σ

−1/2
X )⊗4 − ((xi − µX)Σ

−1/2
X )⊗4

]
=

1

n

∑
i∈[n]

[
(x̂i − δ̂µ)⊗4 − x̂⊗4

i

]
.

Each term in the summand can be written as the sum of 4-way outer products of δ̂µ

and x̂i that each have δ̂µ as at least one of the outer product terms. We can therefore

decompose this expression into the sum of four symmetric tensors, each of which is a

sum of these outer product terms. Let M1 denote the tensor given by the sum of the

four types of outer products that have one copy of δ̂µ and three of x̂i. Denote the sums

of the outer product terms with 2, 3, and 4 copies of δ̂µ by M2,M3,M4, respectively.

Then

M(X,µY ,ΣX) −MX = M1 +M2 +M3 +M4.

Let x̂ denote the random variable that takes value x̂i with probability 1/n for each

i ∈ [n]. Since x̂ is an isotropic variable, its covariance is I, so for u ∈ Sp−1, 1 ≤

E [|x̂u>|2] ≤ E [|x̂u>|4]
1/2

= ‖MX‖1/2
op by Hölder’s inequality. Similarly, for u ∈ Sp−1

and s = 1, 2, 3 we have:

E [|x̂u>|s] ≤ E [|x̂u>|4]
s/4 ≤ ‖MX‖s/4op ≤ ‖MX‖op.
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Now ‖M1‖op ≤ 4‖δ̂µ‖op‖MX‖op, because for any u ∈ Sp−1,

|M(u, u, u, u)| ≤ 1

n

n∑
i=1

4|δ̂µu>||x̂iu>|3

≤ 4‖δ̂µ‖op · E [|x̂u>|3]

≤ 4‖δ̂µ‖op‖MX‖op.

We similarly bound the operator norms of the other tensors:

‖M2‖op ≤ 6‖δ̂µ‖2
op E [|x̂u>|2] ≤ 6‖δ̂µ‖2

op‖MX‖op,

‖M3‖op ≤ 4‖δ̂µ‖3
op E [|x̂u>|] ≤ 4‖δ̂µ‖3

op‖MX‖op,

‖M4‖op ≤ ‖δ̂µ‖
4
op ≤ ‖δ̂µ‖

4
op‖MX‖op.

By sensitivity of means, we have

‖δ̂µ‖op ≤ ‖δµ‖`2‖Σ
−1
X ‖

1/2
op = O(

√
ρννXκX/n).

For νXκX ≤ 1/(C∗ρν), the higher order terms can be absorbed into a larger constant

in the first term:

‖M(X,µY ,ΣX) −MX‖op ≤ ‖M1‖op + ‖M2‖op + ‖M3‖op + ‖M4‖op

= O(‖δ̂µ‖op‖MX‖op)

= O(
√
ρννXκX/n · ‖MX‖op).

Finally, we use the very crude bound that no entry of a symmetric tensor can be

greater than the spectral norm to get our bound on Frobenius norm.

With the previous bounds on change in fourth moment tensor due to row change,

mean change, and rescaling, we bound the change in fourth moment tensor as follows:

‖MY −MX‖`2 ≤ ‖M(X,µY ,ΣX) −MX‖`2 + ‖M(Y,µY ,ΣX) −M(X,µY ,ΣX)‖`2 + ‖MY −M(Y,µY ,ΣX)‖`2

≤ C ′ · p2
√
ρννXκX/n · ‖MX‖op + C ′′ · (ρννXκX)2 · n+ C ′′′ · ρννXκX · ‖MY ‖`2

65



Note that ‖MY ‖`2 ≤ ‖MX‖`2 + ‖MY − MX‖`2 . To replace MY with MX in

the asymptotic bound of Lemma 3.3.7, we substitute this triangle inequality and

then manipulate the above inequality in the natural way, observing that C/(1 −

C ′′′ρννXκX) = O(1) given the conditioning assumption that νXκX ≤ 1/C∗ρν for

sufficiently large constant C∗. Lemma 3.3.7 follows.

3.4 Reference Models and Utility

We note that the vast literature on ICA has little to say about the interpretation

of the output of ICA algorithms when input datasets are not well-described by an

ICA model. For example, the isotropic fourth moments of such datasets may have

many more than 2p local optima, so the recovered mixing matrix need not be unique

up to rotation, and it is unclear that the output of an ICA algorithm run on such

data provides any meaningful information about the database. We therefore prove

the utility of our mechanism with respect to some generative ICA reference model. If

there exists such a model which describes our original database well, then the model

also describes the database’s noisy fourth moment tensor well.

Definition 3.4.1 ((α, β)-reference model). We say that a p-dimensional real ran-

dom row vector v is an (α, β)-reference model with orthonormal mixing matrix

A ∈ Rp×p for database X ∈ Rn×p if:

1. (v − µv)Σ−1/2
v = sA for independent, isotropic, non-Gaussian, p-dimension real

random vector s,

2. ‖ΣX − Σv‖op ≤ α, and

3. ‖MX −Mv‖op ≤ β.

For fixed (α, β), there may be an entire family of reference models v; we will guarantee

utility with respect to the mixing matrix underlying any particular choice of (α, β)-

reference model. Note that if a database is sampled from an ICA-generative model
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v, then the strong law of large numbers guarantees almost sure convergence of the

sample second and fourth moments to the model moments. The error norms in this

definition are spectral norms, which is a weaker condition than the Frobenius norm

and coheres with much of the existing literature on the accuracy of sampled moments

[86, 93, 95, 1, 39].

The eventual output of ICA run on samples of a random vector generated from

an ICA model is a set of vectors that give the columns of the underlying unmixing

matrix A−1, the columns of which are the local optima of the isotropic fourth moment

of the samples. To accomplish this, many ICA algorithms approximate a contrast

function [23], such as the fourth moment tensor, using the samples given, and then

they iteratively find a set of local optima to this contrast function using some orthogo-

nalization scheme to ensure that the local optima are approximately orthogonal. The

orthogonalization component of this process presents formidable technical challenges.

Practitioners often simply assume that the orthogonalization scheme is effective and

does not incur too much error.

In order to give guarantees that are agnostic to a particular choice of fourth

moment tensor-based ICA algorithms, we do not consider the role of orthogonalization,

but instead we give guarantees for each approximate local optima of our noisy fourth

moment tensor relative to a close row of the unmixing matrix associated with some

reference model. Definition 3.4.2 formally states our notion of an approximate local

optimum of a noisy tensor, recalling the notation from Section 3.2.1.

Definition 3.4.2 ((ε1, ε2)-approximate local optimum). For the quartic form f

associated with M ∈ Rp×p×p×p, we say u ∈ Sp−1 is an (ε1, ε2)-approximate local

optimum of M if

〈Dfu, u〉 ≥ ‖Dfu‖`2 − ε1 and λ1(D2fu) ≤ 9f(u)/p+ ε2.
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This definition is motivated by the optimization problem of maximizing f(u, u, u, u)

over unit u. Writing out the Lagrangian L = f(u, u, u, u)−λ(
∑

i u
2
i−1) and computing

the first order conditions implies that 〈Dfu, u〉 = ‖Dfu‖`2 (i.e., the derivative at a

point u is parallel to u at all stationary points). For u to be an approximate local

optimum, we require the first order condition to be satisfied approximately, and the

second order condition will guarantee that u is a not a saddle point, but rather a local

maximum or minimum. Note that even in the exact case, the first order condition

〈Dfu, u〉 = ‖Dfu‖`2 insufficiently characterizes approximate local optima. In the

generative model xi = si where si is a uniform over [0, 1], for example, u = (e1+e2)/
√

2

satisfies the first order conditions but is not a local optimum. Lemma 3.4.4 from [94]

shows that in the exact case, the second order condition is enough to characterize

approximate local optima.

Our utility theorem states that every approximate local optimum of the mecha-

nism’s output is close to some column of the unmixing matrix of the reference ICA

model, both in the isotropic setting and in the original setting, and furthermore

that every column of the unmixing matrix is an approximate local optimum of the

mechanism’s output. In other words, given a reference model v with mixing matrix A

that is close to database X, a vector is an approximate optimum of our mechanism’s

private fourth moment tensor for X if and only if it is an approximate column of A−1.

Theorem 3.4.3 (Utility). Let (µX + Γ1,ΣX + Γ2,MX + Γ4) be the output of the

private ICA mechanism on database X with noise parameters σ1, σ2, σ4, and let

random vector v be an (α, β)-reference model for X with mixing matrix A ∈ Rp×p. If

β ≤ c′/p and σ4 ≤ c′′/(p
√
p+ log 1/δ) for appropriate universal constants c′, c′′ > 0

and δ ∈ (0, 1), then with probability at least 1− δ:

• For every (ε, 0)-approximate local optimum u ∈ Sp−1 of MX + Γ4, there exists a

column a> of A−1 such that for some choice of ε′ = O(ε+ β + σ4

√
p+ log 1/δ):

|〈u, a〉| ≥ 1− ε′, and
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‖u(ΣX + Γ2)1/2 − aΣ
1/2
v ‖`2 ≤ λ1(Σ

1/2
v )(α +O(σ2

√
p) + ε′ + 2

√
ε′).

• Every column of A−1 is an (ε1, ε2)-approximate local optimum of MX + Γ4 for

some choice of

ε1 = O(β + σ4

√
p+ log 1/δ) and ε2 = O(β + σ4

√
p+ log 1/δ).

Proof. Throughout the proof, let f and g be the quartic forms associated with MX+Γ4

and Mv, respectively. Our proof uses two new lemmas that follow. Lemma 3.4.5 shows

that a symmetric fourth order tensor with Gaussian entries is likely to have small

spectral norm. Lemma 3.4.6 shows that symmetric fourth order tensors that are close

in spectral norm have close local optima. The proof that every column of A−1 is an

approximate local optimum of MX + Γ4 is straightforward with these results. To show

the converse, we relate the approximate local optima to the mixing matrix of the

underlying reference model using a result from [94]. Finally, a result from [68] (also

used in the proof of Lemma 3.3.8) allows us to convert these results to the coordinates

of the original, non-isotropic data.

By Lemma 3.4.5 and triangle inequality, we have that with probability all but δ,

‖Mv − (MX + Γ4)‖op ≤ β + cσ4

√
p+ log 1/δ.

Then if we let u be an (ε, 0)-approximate local optimum of MX + Γ4, Lemma 3.4.6

shows that u is an approximate local optimum of Mv with:

〈Dgu, u〉 ≥ ‖Dgu‖`2 − ε− 8(β + cσ4

√
p+ log 1/δ),

λ1(D2gu) ≤
9g(u)

p
+ (12 + 9/p)(β + cσ4

√
p+ log 1/δ).

The following result from [94], immediately extended from 2- to p-component

subspaces, relates approximate local optima of ICA-generative fourth moments to

columns of the unmixing matrix:

Lemma 3.4.4 (from [94]). Let g be the quartic form associated with the isotropic

fourth moment of a random variable generated from an ICA model. Let u be a unit

69



vector such that 〈Dgu, u〉 ≥ (1− ε′)‖Dgu‖`2 and λ1(D2gu) ≤ 12g(u)
p

. Then g has a local

optimum a (which is a column of the model’s unmixing matrix) with |〈u, a〉| ≥ 1−16ε′.

In the isotropic setting, the fourth moment in any direction is at least 1, so ‖Dgu‖`2 ≥

4g(u) ≥ 4. Therefore, we may simply turn our additive error into the required

multiplicative error in the first order condition at the gain of a small constant. The

second order hypothesis is satisfied with our assumptions bounding β and σ4. Thus,

we have that for any (ε, 0)-approximate local optimum u ∈ Sp−1 of MX + Γ4, there

exists a column a> of the unmixing matrix A−1 for the (α, β)-reference model v for X

and an absolute constant c such that:

|〈u, a〉| ≥ 1− c(ε+ β + σ4

√
p+ log 1/δ).

Therefore, each approximate local optimum of MX + Γ4 is close in angle to some

column of A−1.

The result from [68] cited in the proof of Lemma 3.3.8 directly implies the following,

which allows us to put our utility guarantee in terms of the raw (non-isotropic) data:

Theorem (from [68]). Let H and ∆H be n× n Hermitian matrices such that H is

positive definite:

‖(H + ∆H)1/2 −H1/2‖op ≤ ‖H‖
1/2
op ‖∆H‖op

Since |〈u, a〉| ≥ 1− ε′ for ε′ = c(ε+ β + σ4

√
p+ log 1/δ), we have u− a = ε′ + r with

‖r‖`2 ≤
√

2ε′ − ε′2. Then we can get our final bound with the triangle inequality:

‖u(ΣX + Γ2)1/2 − aΣ1/2
v ‖`2 ≤ ‖u(ΣX + Γ2)1/2 − uΣ1/2

v ‖`2 + ‖uΣ1/2
v − aΣ1/2

v ‖`2

≤ λ1(Σ1/2
v )

(
α + c′′′′σ2

√
p+ ε′ + 2

√
ε′
)
.

In Lemma 3.4.5, we show that adding Gaussian noise to the isotropic sample fourth

moment tensor is unlikely to introduce too much error in the spectral norm using

a tensor version of a standard ε-net argument for bounding spectral norm (see for

example [96]):
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Lemma 3.4.5 (Random tensor). Let Γ be a random symmetric fourth order tensor

whose (distinct) entries are drawn from N (0, σ2). Then ‖Γ‖op ≤ cσ
√
p+ log 1/δ with

probability at least 1− δ for δ ∈ (0, 1) and sufficiently large absolute constant c > 0.

Proof. Observe that a symmetric random tensor with distinct entries drawn from

N (0, σ2) can be written as Γ = Γ1 + · · · + Γ4!, where the entries in each Γi are

independent of each other but Γi and Γj are not independent of each other. If for

Γi with some zero entries and all other entries independent from N (0, σ2), we have

‖Γi‖op ≤ t with all but probability δ/4!, then by union bound, ‖Γ‖op ≤ t with all but

δ probability. It therefore suffices to analyze a fully independent tensor.

Let Nε ⊂ Sp−1 denote an ε-net over the unit sphere (ie each point on the sphere is

no more than distance ε from some point in Nε). Lemma 5.2 of [96] gives a constructive

upper bound of ε-net of size (1 + 2/ε)p over the unit sphere. For u ∈ Sp−1, there exists

u′ ∈ Nε such that ‖u− u′‖`2 ≤ ε. Then

|Γ(u, v, w, x)− Γ(u′, v, w, x)| ≤ ε‖Γ‖op.

This holds for all four arguments, so by the triangle inequality there exist u′, v′, w′, x′ ∈

Nε satisfying

|Γ(u, v, w, x)− Γ(u′, v′, w′, x′)| ≤ 4ε‖Γ‖op.

Then it follows that

max
y∈Nε

Γ(y, y, y, y) ≤ ‖Γ‖op ≤
1

1− 4ε
max
y∈Nε

Γ(y, y, y, y).

Thus it suffices to bound the value of Γ on a ε-net where ε = 1/8, which will give a

bound on the entire sphere up to constant factor. For fixed u, v, w, x ∈ Nε, we can see

that Γ(u, v, w, x) is a Gaussian random variable with mean 0 and standard deviation

at most σ by writing it as a sum of independent sub-Gaussian random variables:

Γ(u, v, w, x) =
∑
i,j,k,l

Γijkluivjwkxl.
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Applying a standard Gaussian tail bound, for t ≥ 1 we have

Pr

[
|
∑
i,j,k,l

Γijkluivjwkxl| ≥ t

]
≤ σ

t
√

2π
· exp

(
− t2

2σ2

)
.

Picking t = cσ
√
p+ log 1/δ for sufficiently large absolute constant c > 0 and union

bounding over the 1/8-net in four coordinates we have

Pr
[
‖Γ‖op ≥ cσ

√
p+ log 1/δ

]
≤ (1 + 16)4p · 1

c
√

2π ·
√
p+ log 1/δ

· exp
(
−c2/2 · (

√
p+ log 1/δ)2

)
≤ δ.

Lemma 3.4.5 above shows that MX + Γ4 and MX are close in spectral norm. Since

MX and Mv are close in spectral norm for a good reference model v, our remaining

strategy is to transfer the approximate local optima conditions of Definiton 3.4.2

between tensors close in spectral norm with some loss of accuracy, which we do in

Lemma 3.4.6 below. Our calculations are very similar to [94], though in the proof we

fill in and clarify some omissions.

Lemma 3.4.6. Let M,N be symmetric tensors in Rp×p×p×p with ‖M −N‖op ≤ β;

let f and g be the associated quartic forms. If u ∈ Sp−1 is an (ε, 0)-approximate local

optimum of M , then u is an (ε+ 8β, (12 + 9/p)β)-approximate local optimum of N .

Proof. To establish the desired first order condition 〈Dgu, u〉 ≥ ‖Dgu‖`2 − ε− 8β, we

first use the spectral closeness of M and N to bound the difference in projections of u

onto Dfu and Dgu:

|〈Dfu, u〉 − 〈Dgu, u〉| = 4|(M −N)(u, u, u, u)| ≤ 4‖M −N‖op ≤ 4β.

Since by assumption we have 〈Dfu, u〉 ≥ ‖Dfu‖`2 − ε, next consider ‖Dfu‖`2 in terms
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of ‖Dgu‖`2 :

|‖Dfu‖`2 − ‖Dgu‖`2| ≤ ‖Dfu −Dgu‖`2

≤ 4‖(M −N)(u, u, u, ·)‖`2

≤ 4〈(M −N)(u, u, u, ·), (M −N)(u, u, u, ·)/‖(M −N)(u, u, u, ·)‖`2〉

≤ 4 max
v∈Sp−1

|(M −N)(u, u, u, v)|

≤ 4β.

The second to last inequality is clear when we observe that the second argument in

the inner product is unit, and the last inequality follows from the hypothesis on the

operator norm of M −N . Now we may combine these inequalities to get:

〈Dgu, u〉 ≥ 〈Dfu, u〉 − 4β ≥ ‖Dfu‖`2 − ε− 4β ≥ ‖Dgu‖`2 − ε− 8β.

To bound λ1(D
2gu), first note that λ1 restricted orthogonal to u defines a spectral

norm over matrices:

‖D2fu −D2gu‖op = 12 max
v∈Sp−1∩u⊥

|M(u, u, v, v)−N(u, u, v, v)|

≤ 12β.

By the triangle inequality, |‖D2fu‖op − ‖D2gu‖op| = |λ1(D2fu)− λ1(D2gu)| ≤ 12β,

and by assumption, λ1(D2fu) ≤ 9f(u)/p and |f(u)− g(u)| ≤ β. Together we have:

λ1(D2gu)− 12β ≤ λ1(D2fu) ≤
9f(u)

p
≤ 9(g(u) + β)

p
.

3.5 Utility for a Provable ICA Algorithm

Here we specialize our utility guarantees to an algorithm of [2], which constructs the

isotropic fourth moment tensor and fixes two of its parameters as Gaussian random

vectors to give a matrix. Observe that the matrix Quadruples(η, η′) defined in Section

4.2 of [2] is the excess kurtosis tensor projected to a matrix (Mv − E [z⊗4])(η, η′, ·, ·)
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for standard p-dimensional Gaussian z. The spectrum of this matrix corresponds

to the independent components. Given the following lemma, their (poly-time) ICA

algorithm can be equivalently reproduced as Algorithm 2:

Lemma 3.5.1 (Lemma 4.2 of [2]). Let v ∈ Rp be an isotropic random vector with

v = sA for s ∈ Rp fully independent with E [s2
i ] = 1 and A ∈ Rp×p unitary. Let z ∈ Rp

be a standard Gaussian, and fix η, η′ ∈ Rp. Then,

(Mv−E [z⊗4])(η, η′, ·, ·) = A·diag(A>η)·diag(A>η′)·diag(E [s4
1]−3, . . . ,E [s4

2]−3)·A>.

Algorithm 2 Algorithm 2 from [2]

Input: Database X ∈ Rn×p

1: Compute the isotropic fourth moment tensor MX .
2: Generate two random vectors θ, θ′ uniformly at random from the unit sphere.
3: Compute the eigenvectors {v1, . . . , vp} of (MX − E [z⊗4])(θ, θ′, ·, ·).
4: return {v1, . . . , vp}.

Utility of our mechanism used in conjunction with the ICA algorithm of [2] is as

follows:

Theorem 3.5.2 (ICA Utility for [2] with Private Tensors). Fix X ∈ Rn×p with

an (α, β)-reference model for X. Let φ ≥ 0 be such that for each si of the reference

model, we have |E [s4
i ]− 3| ≥ φ. If we run Algorithm 2 using MX+Γ4 from Algorithm 1

in place of X in Step 1 and it outputs eigenvectors {v1, . . . , vp}, then with probability

greater than 3/4 there exists a permutation τ : [p]→ [p] of eigenvectors such that for

each column a>i of A−1, i ∈ [p]:

‖vτ(i) − ai‖`2 ≤ c
p1/2

φ/p5 − ‖(MX + Γ4)−Mv‖op
‖(MX + Γ4)−Mv‖op.
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Proof. Again let z denote the p-dimensional standard Gaussian, and fix two arbitrary

unit vectors η, η′ ∈ Sp−1. Then we have:

‖(MX + Γ4 − E [z⊗4])(η, η′, ·, ·)− (Mv − E [z⊗4])(η, η′, ·, ·)‖op

= ‖(MX + Γ4 −Mv)(η, η
′, ·, ·)‖op ≤ ‖MX + Γ4 −Mv‖op

We now consider the spectrum of (Mv − E [z⊗4])(θ, θ′, ·, ·) for θ, θ′ ∈ Sp−1. From

Lemma 3.5.1, we have:

K := (Mv − E [z⊗4])(θ, θ′, ·, ·)

= A · diag(A>θ) · diag(A>θ′) · diag(E [s4
1]− 3, . . . ,E [s4

2]− 3) · A>

Then by the rotational invariance of standard gaussian distributions, we see that the

eigenvalues of K are given by λi := θiθ
′
i(E [s4

i ] − 3) for i = 1, . . . , p. We apply the

following lemma from [2] to these λi:

Lemma 3.5.3 (Lemma C5 of [2]). Fix {c1, . . . , cn} ⊂ Rn. Then for standard in-

dependent Gaussians {z1, . . . , zn} and δ ∈ (0, 1), we have mini|zici| ≥ δ√
ek2.5

mini|ci|

with probability at least 1− δ.

We apply this lemma twice to the eigenvalues λi of K and get that with probability

greater than 1− 2δ:

|λi| ≥
δ2φ

4p5
and |λi − λi+1| ≥

δ2φ

4p5

for each i = 1, . . . , p. Then the theorem follows immediately from the following lemma:

Lemma 3.5.4 (Lemma C4 of [2]). Let A ∈ Rp×p be a Hermitian matrix with eigen-

values λi and eigenvectors vi such that |λi| ≥ ∆ and |λi − λi+1| ≥ ∆ for i = 1, . . . , p.

Let v̂i for i = 1, . . . , p denote the SVD of A recovered by the process used in Step 3

of Algorithm 2, and let E ∈ Rp×p be a Hermitian matrix with ‖E‖op ≤ ∆. Then for

i = 1, . . . , p, we have:

‖vi − v̂i‖`2 ≤
2
√
p‖E‖op

∆− ‖E‖op
.
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CHAPTER IV

ECONOMIC MARKETS FOR DIFFERENTIAL PRIVACY

4.1 Overview

Recall the original definition of differential privacy for a mechanism that analyzes n

data records of type D:

Definition (Exogenous privacy). For ε ≥ 0, a mechanism M : Dn → Range(M)

is ε-differentially private if for any neighboring X, Y ∈ Dn (i.e., databases differing

on one record) and for any S ⊆ Range(M),

Pr[M(X) ∈ S] ≤ exp(ε) · Pr[M(Y ) ∈ S].

Differentially private mechanisms protect individuals’ data while also permitting

meaningful statistical analysis. There is by now a rich body of research that establishes

how to conduct a wide variety of statistical analysis goals while maintaining differential

privacy. The privacy parameter ε implies a tradeoff between the strength of the privacy

guarantee and the utility (accuracy) of the statistical analysis allowed by the ε privacy

guarantee. However, the literature is largely agnostic to the choice of ε.

This chapter presents the work of [59], which continues a new line of differential

privacy research seeking to develop endogenous private mechanisms that internalize

this privacy/utility tradeoff. Of particular focus are mechanisms that set ε according

to the preferences of the data contributors and analyst. The data contributors are

the individuals who each contribute one record to the database, and these parties are

concerned with the privacy of their data. In contrast, the analyst wants access to

statistically useful data. The mechanism itself is responsible for collecting the data

and ensuring privacy. In the real world, the analyst may be the party responsible
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for collecting the data, and a promise to access data through the privacy mechanism

can be seen as part of the analyst’s privacy contract with the data contributors.

Alternatively, a third-party database curator may collect data and run the mechanism.

The models and mechanisms presented in this chapter consider only the interests of

the data contributors and analyst, and not who operates the mechanism.

This overview first outlines new considerations in modeling and analyzing mech-

anisms that set their own level of privacy. It ends with a description of a specific

realization of a general-purpose mechanism that simulates a market to endogenously

find and privately implement an optimal privacy/utility tradeoff based on data con-

tributor and analyst preferences.

Modeling Endogenous Privacy Mechanisms

The closely related mechanisms of Ghosh and Roth [34] do four things: 1) solicit

privacy/accuracy preferences from the data contributors and analyst, 2) determine

an appropriate value of ε, 3) charge the analyst some payment in exchange for a

noisy statistic on the data, and 4) distribute this payment among data contributors

to compensate for the ε privacy loss. Mechanisms in this chapter fit a straightforward

generalization of this framework. As noted in [34] and others, if privacy preferences and

private data are correlated, then privacy must be guaranteed for both. Unfortunately,

Ghosh and Roth show that if there is no a priori bound on the costs data contributors

experience for privacy loss, then any mechanism that protects the privacy of data

contributors’ privacy preferences cannot adequately compensate data contributors for

their privacy loss while satisfying other natural market properties.

In Section 4.2, we strengthen this negative result. Even if data contributors have

positive value for a privacy guarantee and must pay the analyst for such a guarantee,

and even with further relaxations of the desired market properties, mechanisms are

unable to effectively simulate a market for privacy (Theorem 4.2.3). We find that
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the core of this negative result is not the requirement that privacy be guaranteed

with respect to privacy preferences as implied in [34], but rather that the differential

privacy guarantee itself is inconsistent with this setting in which a market chooses the

level of privacy endogenously.

This work’s first main contribution is a new definition of privacy for this setting.

The usual definition treats ε as a data-independent parameter, but our mechanisms

choose ε as a function of data. In [34], a mechanism must ensure that its outputs

on any two neighboring databases must be ε close for the smallest ε the mechanism

may output on any input database, even if the databases in question only yield much

higher values of ε. The standard differential privacy definition is parametrized by a

single fixed ε, and this precludes any meaningful privacy implication of an ε that the

mechanism chooses as a function of its input data. The new notion of endogenous

differential privacy rectifies this:

Definition (Endogenous privacy, informal). A mechanismM : Dn → Range(M)

is endogenously differentially private if for any neighboring X, Y ∈ Dn, for any ε in

the privacy support of M(X), and for any S ⊆ Range(M),

Pr[M(X) ∈ S] ≤ exp(ε) · Pr[M(Y ) ∈ S].

When we relax the worst-case privacy requirement of [34] to this endogenous privacy

requirement, the proofs of the negative results do not survive, and so we turn to

realizing positive results that apply the new privacy definition.1

Markets for Privacy

The second main contribution of this work is a positive result in our framework in

the form of a class of mechanisms whose privacy guarantees provide positive value

to the data contributors. These mechanisms follow four steps: 1) receive the private

1Definitions 4.2.1 and 4.3.1 respectively formalize the privacy requirement of [34] and the new
endogenous privacy requirement for the privacy markets formalized by Model 3.
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data and solicit privacy/accuracy preferences, 2) choose a market-appropriate privacy

level, 3) transfer payments, and 4) run a standard differentially private mechanism at

the previously determined level of privacy. These mechanisms provide privacy for the

private data as well as data contributors’ preferences for privacy, circumventing the

negative results of [34] using the new endogenous privacy definition.

When data contributors value a mechanism’s privacy guarantee, privacy should be

seen as a public good because the same guarantee is enjoyed by all data contributors

although they may be charged different amounts for it. The new challenge is to

discourage data contributors from understating their individual desires for privacy,

letting others pay for the privacy enjoyed by all. The cumulative works of [97, 22,

37, 38] provide an elegant solution to this “free-rider problem” as it exists more

generally in neoclassical economies, achieving the market goal of a Pareto efficient

(see Definition 4.4.4) level of production while incentivizing consumers to report their

true preferences.

The class of mechanisms presented in Section 4.4 adapts this solution to the free-

rider problem to our privacy market framework. A market-simulating mechanism M

in our class computes an efficient level of privacy, and it charges each data contributor

a payment that aligns individual utility with social utility. The market mechanism

then runs some standard differentially private mechanism Mq to approximate the

desired query (or class of queries) on the database using the market-determined ε.

These mechanisms are endogenously differentially private, and they satisfy several

desired market properties that are simultaneously impossible under the old privacy

requirement.

4.2 Negative Results for Privacy Markets

We first specify our model for a mechanism that chooses a privacy guarantee as a

function of its inputs, which include privacy and accuracy preferences for the data
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contributors and analyst. Such a mechanism computes a statistic at the prescribed

level of privacy, and it enforces monetary transfers between data contributors and

analyst.

We refer to the set of (ε, δ) output by mechanism M in Model 3 as its privacy

support. We denote the joint random variables representing the distribution of

(public and private) outputs by M running on inputs d ∈ Dn,v ∈ Vn, c ∈ C as

(y, ε, δ,p, P̂ , R̂)←M(d,v, c), and similarly for the marginal distributions. When the

outputs are not specified,M(d,v, c) denotes the distribution of public outputs (R̂, P̂ ).

Model 3 Privacy Market

1: Upon initialization, there exist general types D,R,Y , preference function families
V , C ⊆ {Y → R}, and a mechanismM : Dn×Vn×C → Y×R+×R+×Rn×R×R.
Each data contributor i ∈ [n] has some data di ∈ D and true preference v∗i ∈ V
for the privacy properties of M, and an analyst has a preference c ∈ C.

2: M receives the verifiable data, and data contributors and the analyst report their
preferences to M.

3: M privately outputs endogenous privacy parameter y ∈ Y and corresponding
privacy guarantees ε, δ ∈ R+.

4: M makes monetary transfers p ∈ Rn and P̂ ∈ R from and to the data contributors
and analyst, respectively.

5: M publishes statistic R̂ ∈ R.
6: Each data contributor i ∈ [n] realizes utility v∗i (y)− pi.

Model 3 represents a straightforward syntactic generalization of the models of [34],

in which each data record is a bit di ∈ D = {0, 1}, the published statistic is a noisy

average of these bits R̂ ∈ R = R, and Y = R+ with y directly specifying a differential

privacy requirement ε = y, δ = 0 for the mechanism. The generalized model is

compatible with their positive results in the insensitive value model, which requires

mechanisms to be private only with respect to private data. We restrict our focus to

mechanisms that guarantee privacy also with respect to privacy preferences, noting

the settings described in other works [65, 30, 80], in which privacy preferences are

likely to reveal information about private data. To address this concern, [34] also

proposes a sensitive value model, which requires mechanisms to be private with respect
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to privacy preferences as well as private data:

Definition 4.2.1 (Privacy, [34]). A mechanism M in Model 3 is differentially pri-

vate if for any ε in the privacy support of M, for any (d,v) ∼ (d′,v′) differing on

one row and c ∈ C, and for any E ⊆ R×R,

Pr[M(d,v, c) ∈ E] ≤ exp(ε) · Pr[M(d′,v′, c) ∈ E].

However, they give a strong negative result about the existence of meaningful mecha-

nisms in this model. Stronger negative results generalizing their model as in Model 3

are given in Theorems 4.2.2 and 4.2.3. The proofs of these results use essentially the

same techniques as [34] and are given at the end of the chapter in Section 4.5.3, where

we also reproduce the original statement and proof of the negative result of [34].

Theorem 4.2.2 (Negative results for costly privacy loss). Consider any mech-

anismM in Model 3 with imperfect privacy, and assume data contributors’ preferences

are arbitrarily negative.

1. [34] If M adequately compensates data contributors and is budget-balanced, then

for any finite B > 0, we have thatM running on any fixed inputs always charges

the analyst −P̂ > B.

2. If M adequately compensates data contributors and is likely budget-balanced,

then for any finite B > 0, we have that M running on any fixed inputs charges

the analyst −P̂ ≤ B with probability at most exp(n · εinf)/2.

If we assume that data contributors have positive value for a mechanism’s privacy

guarantee, departing from [34] and others, we can circumvent the [34] result easily:

simply fix some ε > 0 exogenously, make no monetary transfers, and compute R̂ using

any standard ε-differentially private mechanism. Such a mechanism provides data

contributors with nonnegative utility and loses no money. However, the following
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theorem shows that these trivial moneyless mechanisms are essentially the only

mechanisms that satisfy the desired properties:

Theorem 4.2.3 (Negative results for valuable privacy). Consider any private

mechanism M in Model 3, and assume data contributors’ preferences are positive and

arbitrarily small.

1. If M fairly charges data contributors and is budget-balanced, then for any fixed

R > 0, we have that M running on any fixed inputs always pays the analyst

P̂ < R.

2. If M fairly charges data contributors and is likely budget-balanced, then for

any fixed R > 0, we have that M running on any fixed inputs pays the analyst

P̂ ≥ R with probability at most exp(n · εinf)/2.

To motivate the following section, we note that the working privacy definition states

that the output of mechanisms on neighboring databases must be ε-close for any ε

output by the mechanism on any inputs, and in particular, for the smallest such

εinf := inf{ε←M(d,v, c) : d ∈ Dn,v ∈ Vn, c ∈ C}. As privacy preferences become

arbitrarily negative or arbitrarily small, reasonable mechanisms should output very

small ε. In particular, if εinf = o(1/n), then the theorems roughly imply that if an

analyst has any fixed (arbitrarily large) budget or (arbitrarily small) target revenue,

then on any inputs, M will exceed the budget or fail to supply the target revenue,

respectively, with probability almost 1/2. The proofs of Section 4.5.3 reveal that the

worst-case privacy guarantee of Definition 4.2.1 is responsible for these unsatisfying

results. Noticing the disconnect between the input-dependent ε chosen by a privacy

market and the global, input-independent εinf enforcing a privacy guarantee, we modify

the standard exogenous differential privacy definition.
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4.3 Endogenous Privacy

Although data contributors realize utility as a function of the privacy level determined

endogenously by the market, Definition 4.2.1 guarantees εinf privacy for any pair of

neighboring databases. Because we want the privacy level selected by a mechanism to

be a function of its inputs, we must endogenize the privacy guarantee itself in order

to justify the utility realized by this guarantee.

The usual definition of differential privacy captures the idea that an individual cares

about the difference between two output distributions: that of the mechanism run on

the true database, and that of the mechanism run on the same database with his row

changed. Requiring privacy for all ε in the support of the mechanism on any inputs

goes far beyond the true concerns of a data contributor, whose reality is associated

with some particular database. We propose a new definition that endogenizes the

privacy guarantee by requiring that the output distribution of the mechanism on any

set of reference inputs is close to the output distribution of the mechanism on any

neighboring set of inputs, and only the ε supported by mechanism running on the

reference inputs stipulate the closeness of these distributions.

Definition 4.3.1 (Endogenous differential privacy). A mechanismM in Model 3

is endogenously differentially private if for any (d,v) ∼ (d′,v′) differing on one row

and c ∈ C, for any (ε, δ) in the privacy support of M(d,v, c), and for any E ⊆ R×R,

Pr[M(d,v, c) ∈ E] ≤ exp(ε) · Pr[M(d′,v′, c) ∈ E] + δ, and

Pr[M(d′,v′, c) ∈ E] ≤ exp(ε) · Pr[M(d,v, c) ∈ E] + δ.

Utility for endogenous privacy. We privately output an endogenous privacy

parameter y ∈ Y in addition to the explicit guarantees ε, δ ∈ R+ to separate the tasks

of proving privacy and of modeling data contributors’ utility for (the privacy properties

of) a mechanism. Data contributors’ utility may not be characterized solely by a
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mechanism’s provable (ε, δ) guarantee. For simple mechanisms that establish privacy

with optimally-calibrated Laplace noise, the ε-privacy guarantee is tight. However,

[78, 20, 80] argue that in general ε alone can only provide an upper bound on true

privacy cost of a mechanism. Such a guarantee may not provide a tight bound on the

information leaked by the mechanism, for example, when output distributions of a

mechanism on neighboring databases are only ε apart for an extremely unlikely set

of events and closer otherwise, or when the analyzed upper bound on ε may itself be

loose. By allowing y to be of a general form, our mechanisms can potentially release

more specific information about their privacy policies that may allow tighter analysis

of privacy loss. Furthermore, data contributors’ utilities for a mechanism outputting a

general privacy parameter need not be limited to the mechanism’s privacy properties.

For example, y may include the public outputs of the mechanism, allowing the new

framework to model outcome-dependent utility [78, 79, 20, 80], which depends on

public outputs as well as differential privacy guarantees.

4.4 A Class of Endogenous Privacy Markets

Theorem 4.2.3 shows that a mechanism that fairly charges data contributors for privacy

and is likely budget balanced cannot guarantee worst-case exogenous differential privacy

if the analyst hopes to extract revenue from the data contributors with reasonably high

probability on some inputs. In this section, we present a class of mechanisms that are

endogenously private and satisfy all of these properties. We begin by formalizing these

desired economic properties. We then discuss a particular challenge in the positive

value setting and a market-based solution approach, we provide a simple warm-up

mechanism in Section 4.4.3, and we present our class of general-purpose mechanisms

in Section 4.4.4.
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4.4.1 Market Properties

The principal mechanism design goal of both [34] and the current work is to elicit

data contributors’ true privacy preferences v∗i . In order to reasonably assume that

data contributors report these preferences truthfully, we would like our mechanisms to

be incentive compatible, meaning that each individual maximizes his expected utility

by reporting his true privacy type:

Definition 4.4.1 (Incentive compatibility). A mechanism M in Model 3 is in-

centive compatible if for any i ∈ [n], privacy preference v∗i ∈ V, and any inputs

d ∈ Dn,v−i ∈ Vn−1, c ∈ C,

v∗i ∈ arg max
vi

E[v∗i (y)− pi],

where (y, pi)←M(d,v−i‖vi, c) and the expectation is over the randomness of M.

As in [34], our mechanisms should incentivize truthful reporting of privacy prefer-

ences, but we assume that true private data is already held somewhere and is verifiable,

e.g., by a trusted database curator. In these settings, even if an individual expects a

privacy market not to benefit him, it may not be possible for him to retract his data.

Nonetheless, if a mechanism provides non-negative utility to every data contributor,

it is individually rational for everyone to opt in:

Definition 4.4.2 (Individual rationality). A mechanism M in Model 3 is indi-

vidually rational if for any i ∈ [n] and inputs d ∈ Dn,v ∈ Vn, c ∈ C,

E[vi(y)− pi] ≥ 0,

where (y, pi)←M(d,v, c) and the expectation is over the randomness of M.

Since the verifiable data setting means that opting out may be impossible, we permit

our mechanisms to violate individual rationality in the case of artificially extreme

inputs.
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We say a mechanism has a balanced budget when P̂ =
∑
pi. For our negative

results, we relax this and require only that a mechanism takes in at least as much

money as it pays out with probability at least 1/2:

Definition 4.4.3 (Likely balanced budget). A mechanismM in Model 3 is likely

budget-balanced if for any inputs d ∈ Dn,v ∈ Vn, c ∈ C,

Pr[
∑
pi ≥ P̂ ] ≥ 1/2,

where (p, P̂ )←M(d,v, c) and the expectation is over the randomness of M.

Our positive results are likely budget-balanced and satisfy the additional requirement

that they avoid a deficit in expectation for any fixed inputs. An expected balanced

budget, E[
∑
pi − P̂ ] ≥ 0, can be thought of as a cyclically balanced budget, in that

the surpluses will offset the deficits over time. The left tail of
∑
pi− P̂ should also be

tightly bounded so the mechanism is unlikely to ever run a large deficit.

The mechanisms discussed in [34] that protect the privacy of data contributors’

private bits but not of their privacy valuations seek to either minimize analyst payment

subject to some minimum accuracy requirement or maximize accuracy subject to some

maximum budget. Such mechanisms do not take into account an analyst’s desired

tradeoff between money and accuracy. Mechanisms in the generalized framework

solicit some c ∈ C ⊆ {Y → R} from the analyst that describes this tradeoff. A privacy

level y ∈ Y typically corresponds to the noisiness of the statistic R̂, so c(y) represents

the opportunity cost to the analyst of R̂ generated by the mechanism running on y

compared to the noiseless statistic. Given the preferences of data contributors and

the analyst, our mechanisms seek to find a Pareto efficient (or Pareto optimal) level

of privacy, meaning some y ∈ Y for which no data contributor can be made strictly

better off without making another strictly worse off, subject to collecting enough total

funds for the analyst. Preference families V and C should be chosen so that for any

v ∈ Vn, c ∈ C, there exists some Pareto efficient y ∈ Y .
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Definition 4.4.4 (Pareto efficiency). Privacy level y ∈ Y is Pareto efficient for

v ∈ Vn, c ∈ C if there exist payments p ∈ Rn such that
∑
pi ≥ c(y), and for any y′,p′

such that
∑
p′i ≥ c(y′) and vi(y

′)− p′i > vi(y)− pi for some i ∈ [n], there exists some

j ∈ [n] with vj(y
′)− p′j < vj(y)− pj.

In [34], a mechanism releasing statistic ŝ ≈
∑
bi is called α-accurate if Pr[|ŝ−

∑
bi| >

αn] ≤ 1/3. When we generalize the negative result of [34], we replace their accuracy

requirement with a requirement of nontrivial privacy support (see Section 4.5.3), so

this work does not require a formal definition of accuracy. The statistic R̂ ∈ R output

by a mechanism in our framework is typically an approximation of some generally-

typed query q : Dn → R, so the accuracy of R̂ should be query-specific. Utility

guarantees for standard differentially privacy mechanisms may inform the accuracy

goals of mechanisms in our framework.

4.4.2 Public Goods and Free-Riders

In [34], data contributors with high privacy valuations v∗i must be paid more to

compensate them for costlier privacy losses. To discourage data contributors from

overstating their costs to extract greater payments, the [34] mechanisms simulate

a second price auction for a given privacy guarantee, and this approach guarantees

incentive compatibility. The mechanism determines some vmax and ε, and all data

contributors with reported vi < vmax receive a payment −vmax(ε) that exceeds their

cost from ε privacy loss. Others get nothing and their data is not used in the summary

statistic. However, since the privacy preferences are used to determine this cutoff,

this solution approach does not protect privacy of these preferences, and we consider

protecting privacy of preference inputs to be a primary concern.

We model a setting in which data contributors receive positive utility for the

privacy of a mechanism (compared to a baseline of no privacy guarantee at all), so

we can charge privacy-sensitive data contributors more to offset the cost associated
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with strengthening the privacy guarantee to accommodate them. Interestingly, this

significantly changes the incentive structure. Our preference functions when privacy

has positive value model privacy as a public good, because the same privacy guarantee

is enjoyed by all data contributors, even though they may be charged different amounts

for it. The new challenge is that data contributors may try to avoid higher charges

by understating their sensitivity, letting others pay for the privacy enjoyed by all.

This “free-rider problem” is solved in a much more general public goods setting in the

cumulative works of [97, 22, 37, 38].

In the setting studied by [22, 37, 38], consumers communicate to some central

body, called the government, their valuation vi(·) of a certain public good. The

government chooses the level of public good that optimizes social utility, and it levies

taxes designed to align individual consumers’ utilities with social utility in order to

avoid free-riding. Specifically, the government pays a producer c(y) to produce y ≥ 0

units of the good for the level y maximizing consumer surplus,
∑
vi(y)− c(y). Each

consumer i receives utility vi(y) for the public good and is charged the amount he

diminishes others’ surplus: pi = c(y)−
∑

j 6=i vj(y) + maxy−i(
∑

j 6=i vj(y−i)−
n−1
n
c(y−i)).

With these allocation and tax rules, consumers are incentivized to communicate their

true preferences, and sufficient funds are raised to produce a Pareto efficient level of

the public good.2

2To verify incentive compatibility, note that maxy−i
(
∑

j 6=i vj(y)− n−1
n c(y−i)) is independent of

vi, so to maximize his utility, i should report arg maxvi v
∗
i (y)− (c(y(v−i‖vi, c))−

∑
j 6=i vj(y(v−i‖vi)).

Because y(v−i‖v∗i ) = arg maxy v
∗
i (y) +

∑
j 6=i vj(y)− c(y), this quantity is indeed maximized when

vi = v∗i .
A sufficient condition for Pareto efficiency is the Samuelson condition [88], that the sum of the

marginal benefit of a public good over all consumers equals its marginal cost. With this allocation
rule, the level of y maximizing consumer surplus is y such that

∑
d
dyvi(y) = d

dy c(y). Assuming
incentive compatibility, this is equivalent to the condition that the sum of the marginal benefit of y
is equal to the marginal cost, so the allocation rule is Pareto efficient.

It can be easily verified that the sum of payments is at least c(y). Since it may be strictly greater,
the payments collected are not guaranteed to be Pareto efficient (even though the privacy level y is).
This is a problem addressed in [38] through different tax and allocation rules, but these modifications
complicate the privacy utility model in our setting so we opt for these simpler rules.
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4.4.3 Warm-Up Privacy Market

In our setting, privacy is a public good. The mechanism, data contributors, and analyst

respectively play the roles of government, consumers, and producer in the public goods

market due to [22, 37, 38]. Our approach is to solicit preferences for privacy from the

data contributors, determine an efficient level of privacy and appropriate payments

using this public goods market, and then compute a statistic of the input data with

noise calibrated for the target privacy level.

We fix the sets of privacy parameters, preference functions, and cost functions as:

Y := R+, V := {y 7→ vi ln(y + 1) : vi ∈ R+}, C := {y 7→ cy : c ∈ R+}.

This choice of privacy parameters and cost functions follows [22, 38]. Logarithmic

privacy preferences V help us establish privacy, which we discuss in Section 4.5.1 when

proving privacy for the more general class of markets in Section 4.4.4. We identify V

and C with R+ in the natural way. For the warm-up, we fix D := {0, 1} and R := R,

and then Mechanism 4 publishes a noisy sum R̂ ≈
∑

i∈[n] di, following [34].

Mechanism 4 Warm-Up Privacy Market

Inputs: Database d ∈ {0, 1}n, preferences v ∈ (R+)n, cost c ∈ R+.
1: v̄i ← min(vi, c lnn) for all i ∈ [n].

2: y ← (
∑
i v̄i
c
− 1)+.

3: ε← 3 lnn/
√
y.

4: δ ← exp(−2
√
y − lnn).

5: pi ← cy−
∑

j 6=i v̄j ln(y+1)+ max
y−i≥0

(∑
j 6=i v̄j ln(y−i + 1)− n−1

n
cy−i

)
for each i ∈ [n].

6: P̂ ← c(y + γ) with γ drawn from Lap(
√
y + lnn).

7: R̂←
∑
di + γ′ with γ′ drawn from Lap(

√
y/ lnn).

8: Privately output y, ε, δ, collect pi from each i ∈ [n], pay analyst P̂ , and publish R̂.

Endogenous privacy follows from Lemma 4.5.2 for the general class of privacy

markets. Accuracy of R̂ depends on the noise Lap(
√
y/ lnn) = Lap(3/ε) in the usual

way. Assuming that vi, c are constant with respect to n, then ε = Θ(1/
√
n) and δ

is negligible, and no vi will be truncated in Step 1, so the y computed in Step 2 is
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Pareto optimal. Incentive compatibility also follows from [97, 22, 37, 38], and the

conditions of Lemma 4.5.4 for individual rationality hold as well. The mechanism

is budget-balanced in expectation, with the probability of a deficit ≥ t decreasing

exponentially with t/Θ(
√
n).

4.4.4 General Class of Privacy Markets

The general class of markets uses an exogenous differentially private mechanism

as a black-box subroutine for the analysis task, so we leave the database d ∈ Dn

and published statistic R̂ ∈ R of general types. We assume that the analysis goal is

characterized by some query (or class of queries) q : Dn → R. We assume the existence

of some mechanismMq : Dn → R that is parametrized by εq, δq such that it is (εq, δq)-

differentially private (in the standard sense) when instantiated on any εq, δq in some

legal set of privacy parameters that includes arbitrarily small εq ≥ 0. For accuracy,

we should have Mq(d) ≈ q(d), where the approximation is a statistically meaningful

metric on R, with accuracy depending reasonably on the privacy parameters εq, δq.

We again fix the sets of privacy parameters, preference functions, and cost functions:

Y := R+, V := {y 7→ vi ln(y + 1) : vi ∈ R+}, C := {y 7→ cy : c ∈ R+}.

At the end of Section 4.5.1, we show how to extend our results to other preference

families V .

Mechanism 5 first truncates the privacy valuations (according to parameter ∆). It

then computes the Pareto efficient privacy level y and incentive-compatible charges

to the data contributors, using the allocation and tax rules from [22, 37, 38]. The

mechanism adds noise to the analyst’s payment (according to a function f of the

privacy level y), and the statistic R̂ is computed by Mq with privacy parameters

εq = ∆/f(y − ∆) and fixed δq. We will see that truncation and noise suffice for

proving endogenous privacy. Lemma 4.5.5 provides guidance for setting parameters;

∆ = lnn and f(y) =
√
y + ∆ as in the warm-up mechanism are reasonable choices.
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Mechanism 5 Privacy Market

Parameters: Truncation rule ∆ ∈ R+ and differentiable noise function f : R→ R+;
mechanism Mq : Dn → R and fixed δq.

Inputs: Database d ∈ Dn, preferences v ∈ (R+)n, cost c ∈ R+.
1: v̄i ← min(vi, c ·∆) for all i ∈ [n].

2: y ← (
∑
i v̄i
c
− 1)+.

3: ε← 3∆/f(y −∆).
4: δ ← δq + 1/ exp(1/f ′(y −∆)).

5: pi ← cy−
∑

j 6=i v̄j ln(y+1)+ max
y−i≥0

(∑
j 6=i v̄j ln(y−i + 1)− n−1

n
cy−i

)
for each i ∈ [n].

6: P̂ ← c(y + γ) with γ drawn from Lap(f(y)).
7: R̂←Mq(d) with privacy parameters εq = ∆

f(y−∆)
and δq.

8: Privately output y, ε, δ, collect pi from each i ∈ [n], pay analyst P̂ , and publish R̂.

The main theorem below is an immediate corollary of the lemmas and discussion in

Sections 4.5.1 and 4.5.2:

Theorem 4.4.5. Fix any ∆ ∈ R+, any function f : R→ R+ that is increasing, con-

cave, and differentiable with f ′(0) ≤ 1, and any mechanism Mq that is differentially

private in the standard sense for arbitrarily small εq and fixed δq. Then Mechanism 5

instantiated with ∆, f,Mq is endogenously differentially private, it is incentive com-

patible with respect to privacy valuations, it is individually rational when c ≤
∑
v̄i/e,

it is budget-balanced in expectation, and it selects a Pareto efficient level of privacy

when max vi ≤ c ·∆.

4.5 Proofs of Positive and Negative Results

4.5.1 Endogenous Privacy of Mechanism 5

After fixing c(y) = cy for c, y ∈ R+ following [22, 38], the main goal is to release

P̂ ≈ cy in an endogenously differentially private manner for some appropriate choices

of ε and δ. Classical differential privacy techniques would suggest first bounding

sensitivity ∆ of y, and then P̂ = c(y + Lap(∆/ε)) is ε-differentially private for some

fixed (exogenous) ε. We begin the privacy proof by bounding the sensitivity of y, and

then we derive functions ε, δ that are positive and decreasing in y and for which we
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can prove endogenous privacy.

For consistency with the perspective of y as a public good, willingness-to-pay

functions vi(y) should be nonnegative, increasing, and concave. With c(y) = cy,

the unique consumer surplus-maximizing level of privacy will have
∑

d
dy
vi(y) = c

unless y = 0. When vi(y) = vi ln(y + 1), the uniquely optimal privacy level is given

by
∑
vi/c − 1. We control the sensitivity by first truncating the preferences to

v̄i := min(vi, c ·∆), denoting the non-negative surplus-maximizing level of privacy as:

y(v, c) :=

(∑
v̄i
c
− 1

)+

. (Step 2)

Then sensitivity of y is immediate from |(
∑
v̄i/c− 1)+ − (

∑
v̄′i/c− 1)+| ≤ |(v1 − v′1)/c|,

assuming without loss of generality that neighboring v,v′ differ on the first row:

Fact 4.5.1 (Sensitivity of y). For any c ∈ R+ and neighboring v ∼ v′, we have

|y(v, c)− y(v′, c)| ≤ ∆.

We may worry that truncating vi will generate sample bias, as argued in [34]. Indeed,

if data contributors have negative utilities for privacy loss, a mechanism operating

on truncated costs will not be able to adequately compensate data contributors, and

if these privacy-sensitive data contributors are able to opt out of the mechanism,

this may bias the data. Alternatively, we may worry that truncation might break

truthfulness. In the next section, however, Lemma 4.5.3 shows that truncation

preserves the incentive compatibility argument of [38], and Lemma 4.5.4 shows that

our positive-value mechanism is individually rational for all data contributors as long

as analyst cost is not too high relative to data contributor valuations.

It remains to determine the functions ε(y) and δ(y) for which P̂ ≈ cy is endoge-

nously differentially private, given the sensitivity of y. The standard deviation of the

Laplace noise added to y in Step 6 should be small enough that the analyst is not over-

or under-compensated by too much, but it should be an appropriate function of y that

permits provable privacy for ε(y), δ(y) decreasing as y →∞. Our mechanism leaves
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this noise parameter as a general positive function f(y), and we derive functions ε(y)

and δ(y) depending on ∆ and f for which we can guarantee endogenous differential

privacy in Lemma 4.5.2. Note that in our mechanism, noise is heteroskedastic in that

the variance of the noise added to y is not uniform across all values of y. This deviates

significantly from the usual privacy scenario, and it requires δ > 0 even though the

noise for privacy is Laplace.

Lemma 4.5.2 (Privately publishing y). Define ε(y) := 2∆/f(y−∆) and δ(y) :=

1/ exp(1/f ′(y−∆)) for increasing, differentiable, concave f : R+ → R+ with f ′(0) ≤ 1,

fixed ∆ ∈ R+, and any y ∈ R+. For any c ∈ R+ and neighboring v ∼ v′, let

y = y(v, c), y′ = (v′, c), and let γ and γ′ denote random variables with distributions

Lap(f(y)) and Lap(f(y′)), respectively. Then for any T ⊆ R,

Pr[y + γ ∈ T ] ≤ exp(ε(y)) · Pr[y′ + γ′ ∈ T ] + δ(y), and (4.5.1)

Pr[y′ + γ′ ∈ T ] ≤ exp(ε(y)) · Pr[y + γ ∈ T ] + δ(y). (4.5.2)

Proof. We show (4.5.1) for y < y′ and then for y′ < y. Then (4.5.2) follows by

symmetry. First note that if y < y′, then Pr[y + γ = t] ≤ Pr[y′ + γ′ = t] for t

sufficiently far from y′, and otherwise their ratios differ maximally at t = y. Then it is

enough to show Pr[y + γ = y]/Pr[y′ + γ′ = y] ≤ ε(y):

Pr[y + γ = y]

Pr[y′ + γ′ = y]
=

1
2f(y)

· exp( −0
f(y)

)

1
2f(y′)

· exp(−(y′−y)
f(y′)

)

≤ f(y′)

f(y)
exp(∆/f(y′))

≤ exp(ln
f(y′)

f(y)
+

∆

f(y′)
)

≤ exp(
∆

f(y)
(f ′(y) + 1)).

The final expression is at most exp(ε(y)) as long as f ′(y) ≤ f ′(0) ≤ 1, which is true

by assumption.
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Now consider y′ < y. Set t∗ = y + f(y)/f ′(y −∆) so that
∫∞
t∗

Pr[y + γ = t]dt =

exp(−1/f ′(y −∆))/2. Since Pr[y+γ=t]
Pr[y′+γ′=t]

increases with t > y and these probabilities

decrease with t, it is enough to show that Pr[y + γ = t∗]/Pr[y′ + γ′ = t∗] ≤ ε(y):

Pr[y + γ = t∗]

Pr[y′ + γ′ = t∗]
≤ Pr[γ = f(y)/f ′(y −∆)]

Pr[γ′ = f(y)/f ′(y −∆) + ∆]

≤ f(y′)

f(y)
exp

(
f(y)/f ′(y −∆) + ∆

f(y′)
− f(y)/f ′(y −∆)

f(y)

)
≤ exp

(
f(y′) + ∆f ′(y′)

f(y′)
/f ′(y −∆) +

∆

f(y′)
− 1/f ′(y −∆)

)
≤ exp

(
∆

f(y′)
·
(
f ′(y′)/f ′(y −∆) + 1

))
≤ exp(

2∆

f(y′)
),

where the final inequality follows from f increasing and concave.

Note that y(v, c) is the unique y in the privacy support of M(d,v, c) for any

fixed inputs. Therefore, Lemma 4.5.2 establishes endogenous differential privacy

(Definition 4.3.1) of P̂ = c(y + Lap(f(y))) for the ε, δ in the lemma statement.

Endogenous differential privacy of the overall mechanism (Theorem 4.4.5) is an

immediate corollary, assuming Mq is differentially private in the standard sense and

using the general composition theorem for differential privacy.

Privacy for Non-Logarithmic Preferences

Mechanism 5 relies on the assumption each data contributor’s utility for the level of y

provided by the mechanism is represented by some vi(y) = vi ln(y + 1). This choice of

logarithmic utility functions was the convenient one, since it allows us to easily bound

the sensitivity of y using a simple truncation rule. However, many other non-negative,

increasing, concave functions of y may be appropriate models of the utility to data

contributors of y.

Consider the case that each data contributor has valuation function vi(y) = viy
1/a

for a > 1. As before, we first truncate the vi so that v̄i := max(vi, vmax) for some vmax
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to be determined later to adequately control the sensitivity of the consumer surplus

maximizing level of privacy y(v, c) := arg maxy≥0

∑
v̄i(y)− cy. Then we have:

y(v, c) =

(∑
v̄′i

ac

) a
a−1

|y(v−i‖vi, c)− y(v, c)| = (ac)
a−1
a · |(v′i +

∑
j 6=i

vj)
a
a−1 − (vi +

∑
j 6=i

vj)
a
a−1 |

≤ (ac)
a−1
a ·

(
(vmax +

∑
j 6=i

vj)
a
a−1 − (

∑
j 6=i

vj)
a
a−1

)

≤ (ac)
a−1
a ·

(
(nvmax)

a
a−1 − ((n− 1)vmax)

a
a−1

)
≤
(

(n− 1)vmax

ac

) a
a−1

·
(

(1 +
1

n− 1
)

a
a−1 − 1

)
≤
(

(n− 1)vmax

ac

) a
a−1

·

(
a
a−1

(1 + 1/n)
1
a−1

n

)

In the case that a ≥ 2, we have |y(v−i‖vi, c)− y(v, c)| ≤ (nvmax/c)
a
a−1/n. Then

if we set vmax = c∆
a−1
a /n1/a, the sensitivity of y is ∆ for some fixed ∆ as before,

and privacy follows as in Lemma 4.5.2. Incentive compatibility also follows as in

Lemma 4.5.3 below. Individual rationality, however, does not appear to hold for

agents with low privacy sensitivity. In particular, when vi = 0, i will always be

charged pi > 0 whenever
∑

j 6=i vj > 0. With the exception of individual rationality,

the other properties of Lemma 4.5.5 hold with Θ(n) replaced with Θ(na/(a−1)). It

remains an open problem to identify further classes of valuation functions for which

our mechanism or variants of it satisfy all desired properties for endogenous privacy

markets.

4.5.2 Market Properties of Mechanism 5

Recall notation for the optimal level of privacy, and define another function for

individual taxes computed by the mechanism on inputs v ∈ (R+)n, c ∈ R+, recalling
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that v̄i := min(vi, c ·∆):

y(v, c) :=

(∑
v̄i
c
− 1

)+

pi(v, c) := cy(v, c)−
∑
j 6=i

v̄j ln(y(v, c) + 1) + max
y−i

(
∑
j 6=i

v̄j ln(y−i + 1)− n−1
n
cy−i).

Lemma 4.5.3. Mechanism 5 is incentive compatible.

Proof. Fix any i ∈ [n] and v∗i ∈ R+, and denote the utility of i as

Ui(v, c) := v∗i (y(v, c))− pi(v, c)

= (v∗i +
∑
j 6=i

v̄j) ln(y(v, c) + 1)− cy(v, c)− max
y−i≥0

(
∑
j 6=i

v̄j ln(y−i + 1)− n−1
n
cy−i).

For incentive compatibility, we need to show that for any v−i ∈ (R+)n−1 and c ∈ R+,

we have v∗i ∈ arg maxvi Ui(v−i‖vi, c).

Observing that maxy−i≥0(
∑

j 6=i v̄j ln(y−i + 1)− n−1
n
cy−i) has no dependence on vi,

we see that Ui(v, c) increases with y until y = (v∗i +
∑

j 6=i v̄j)/c − 1. Therefore, by

declaring vi = v∗i , y(v, c) coincides with i’s optimal value of y if v∗i ≤ c ·∆, and it it

maximizes i’s utility subject to truncation otherwise.

We prove individual rationality for a restricted set of preference inputs:

Lemma 4.5.4. Mechanism 5 is individually rational on inputs v ∈ (R+)n, c ≤
∑
v̄i/e.

Proof. First note that vi ln(y(v, c) + 1) = vi ln
∑
v̄i
c
≥ v̄i, so it is enough to show that

pi(v, c) ≤ v̄i. Bound pi as follows:

pi(v, c) = cy(v, c)−
∑
j 6=i

v̄j ln(y(v, c) + 1) + max
y−i

(
∑
j 6=i

v̄j ln(y−i + 1)− n− 1

n
cy−i)

= (
∑

v̄i − c)−
∑
j 6=i

v̄j ln

∑
v̄i
c

+
∑
j 6=i

v̄j

((
ln

∑
j 6=i v̄j
n−1
n
c

)
− 1

)
+
n− 1

n
c

= v̄i −
c

n
−
∑
j 6=i

v̄j(1 + ln

∑
v̄i
c
− ln

∑
j 6=i v̄j
n−1
n
c

)

= v̄i −
c

n
−
∑
j 6=i

v̄j ln
en−1

n

∑
v̄i∑

j 6=i v̄j
.
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Since the v̄i are nonnegative, it is enough to show that en−1
n
≥ 1, which clearly holds

for any n ≥ 2.

Note that the conditions for individual rationality hold whenever c ≤ n and
∑

min(vi, c·

∆)/n ≥ e. The mechanism could easily be modified to enforce c ≤ n and in many

scenarios it may be a reasonable to assume a distribution on vi satisfying the latter

requirement.3 Note that these qualifications affect the positive-value negative result

(Theorem 4.2.3) since a mechanism running on this restricted set of inputs cannot

output a privacy level with arbitrarily small value to the data contributors. How-

ever, we can modify our negative results for the restricted set of inputs as follows.

Note that v = (0, . . . , 0, ce) satisfies c ≤
∑
v̄i/e for ∆ ≥ 1. Mechanism 5 outputs

y =
∑
v̄i/c − 1 = e − 1 on v, c, and

∑
vi(e − 1) = ce ln(e − 1 + 1) = ce. Then

with standard differential privacy, individually rational mechanisms running on the

restricted set of inputs can pay the analyst at most ce with almost 1/2 probability.4

Endogenous privacy of course escapes this bound.

Parameters for Accuracy and Efficiency. The internally chosen consumer sur-

plus maximizing privacy level y is noiseless, so its Pareto efficiency follows immediately

by the arguments of [38] whenever truncation is avoided, i.e., when each vi ≤ ∆ · c.

The chosen level of privacy differs from the Pareto efficient level by
∑

(vi − v̄i)/c,

which grows with the total amount truncated. If we expect constant vi and c, we

3If qualified individual rationality is undesired, one might consider applying the propose-test-
release strategy of [26] and aborting as a first step if the conditions of Lemma 4.5.4 are not met.
However, note that

∑
v̄i/c has sensitivity ∆. Adding noise Lap(∆/ε) for differential privacy (although

there would be some modifications to make this endogenously private) would overwhelm the threshold
e when ∆ = ω(1) as in the usual case, so this strategy seems unlikely to work directly. We leave the
issue of unqualified individual rationality as a question for future work.

4Recall that Theorem 4.2.3 concerns mechanisms with arbitrarily small value to the data contrib-
utors, i.e. for any P > 0 there exists some v ∈ Vn with

∑
vi(εi) < P for any ε in the support of M

on v. If instead we only require v with
∑
vi(εi) < P0 for some fixed rather than arbitrarily small

P0, then such a mechanism that satisfies standard differential privacy and individual rationality can
never pay the analyst more than P0 and maintain a balanced budget, and it can pay the analyst
more than P0 with probability at most exp(

∑
εi,inf)/2 while maintaining Pr[P̂ >

∑
pi] ≤ 1/2. This

argument applies to the above case for P0 = ce.
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should set ∆ = ω(1) to avoid truncation.

Accuracy of the released statistic R̂ is inherited directly from Mq with the chosen

privacy parameters, and the overall mechanism is endogenously private. For vi, c

constant, we will expect y linear in n, so we should have ∆ = o(f(n)) to ensure that ε

decreases with n, and f ′(n) = o(1/ lnn) will ensure δ(y) ≤ 1/poly(n) for small enough

δq. Since y = 0 results in zero privacy utility, we should have ε(0) = ∞ with ε(y)

finite for y > 0, which we get with f(−∆) = 0 and strictly increasing. The budget

balances in expectation since
∑
pi ≥ cy and P̂ = c(y + Lap(f(y))). To ensure that

the mechanism is not likely to run too great a deficit, we should have f(n) = o(n). In

summary:

Lemma 4.5.5. Let ∆ = ω(1), let f increasing, differentiable, and concave with

f(Θ(n)) = ω(∆), f(Θ(n)) = o(n), f(−∆) = 0, f ′(0) ≤ 1, and f ′(Θ(n)) =

o(1/ lnn), and let Mq be accurate for εq = Θ(∆/f(Θ(n))) and δq = 1/poly(n).

If vi, ci = Θ(1), then Mechanism 5 is accurate, incentive compatible, individually ra-

tional, Pareto efficient, budget-balanced in expectation with deficit ≥ t with probability

≤ exp(−t/f(Θ(n)))/2, and endogenously private with ε = o(1) and δ = 1/poly(n).

4.5.3 Negative Results for Exogenous Privacy in Endogenous Markets

Before proving Theorems 4.2.2 and 4.2.3 from Section 4.2, we first present the original

theorem statement and proof of the negative result of [34] for comparison. Recall the

exogenous privacy definition used by [34] (Definition 4.2.1) and the definitions of other

properties from Section 4.4.1. We give the proof using the syntax of Model 3, noting

that the framework of [34] allows mechanisms to output a separate guarantee εi to

each data contributor i ∈ [n], which we discuss after presenting their original result.

Theorem (Theorem 5.1 from [34]). If data contributors’ preferences for privacy

may be arbitrarily negative, then no individually rational direct revelation5 mechanism

5A direct revelation mechanism is one that request players true types. This term sometimes refers
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M can protect the privacy of data contributor preferences and promise nontrivial

accuracy (unless the analyst always pays an infinite amount).

Proof [34]. If M is nontrivially accurate and private with respect to private data,

then
∑
εi ≥ ln 4/3 for the εi output byM on any set of inputs. (See [34] for accuracy

definition and calculation.)

Assume for simplicity that V ↔ R+ with vi(εi) = −vi · εi. Consider the εi, P̂ , pi

output by M on arbitrary inputs v ∈ Vn,d ∈ Dn, c ∈ C with vmin := min vj. By

individual rationality (and balanced budget):

−P̂ =
∑
−pi ≥

∑
−vi(εi) ≥ vmin

∑
εi ≥ vmin ln 4/3, (4.5.3)

and so Pr[−P̂ < vmin ln 4/3] = 0 for P̂ ← M(v,d, c). Let P := vmin ln 4/3. Then

for any inputs v′,d′, we note that v,d can be obtained by a sequence of single row

changes for rows i = 1, . . . , n, and so by (worst-case, per-row) privacy with respect to

data contributors’ private data and privacy preferences, we have:

Pr[−P̂ < P | P̂ ←M(v′,d′, c)] ≤ exp(
∑
εi) · Pr[−P̂ < P | P̂ ←M(v,d, c)] = 0.

(4.5.4)

Since v could have been chosen with arbitrarily large vmin, it follows that M can

never charge an analyst less than any finite payment P .

When mechanisms need not be private with respect to preferences as in the insensitive

value model of [34], it may be useful to output a separate guarantee εi to each

data contributor i ∈ [n]. However, it is unclear how a mechanism that is private

with respect to preferences could fulfill heterogeneous guarantees εi, and so our new

negative results focus on mechanisms in Model 3 that output a single privacy guarantee

ε = y ∈ Y := R+ (with δ = 0). Furthermore, heterogeneous privacy guarantees εi are

to mechanisms that incentivize players to report their true types, but note that incentive compatibility
is not assumed in this proof (or the new proofs that follow).
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not needed for the above negative result. In fact, the theorem holds for any arbitrarily

large lower bound in Inequality (4.5.3). Since accuracy and arbitrarily large privacy

loss costs are only required in this step, we can replace them with the following two

requirements:

M has imperfect privacy, i.e., it is differentially private (Definition 4.2.1) with

0 < εinf := inf{ε←M(v,d, c),v ∈ Vn,d ∈ Dn, c ∈ C}.

V are arbitrarily negative, i.e., every v ∈ V is monotonically nonincreasing in ε,

and for any B, ε > 0, there exists some v ∈ V such that −v(ε) > B.

Observe that in order for M to guarantee perfect privacy ε = 0, it would have to

ignore all of its inputs, so necessarily it could provide no accuracy whatsoever. The

requirements of Theorem 4.2.2, (1) are therefore weaker than those of Theorem 5.1

from [34], so the new result is stronger. 6

We also note that the proof in [34] implicitly assumes that M must be budget-

balanced. We make this requirement explicit, and Theorem 4.2.2, (2) shows that when

we relax the requirement somewhat, the result stays mostly in tact, with a probabilistic

dependency on εinf . Note that as privacy preferences become arbitrarily negative,

reasonable mechanisms should output very small ε. In particular, if εinf = o(1/n),

then the theorem roughly implies that if an analyst has any fixed (arbitrarily large)

budget, we expect M on any fixed input to charge the analyst more than his budget

with probability almost 1/2.

Theorem (4.2.2). Consider any mechanism M in Model 3 with imperfect privacy,

and assume data contributors’ preferences are arbitrarily negative.

6[80] also strengthened the [34] negative result, although in different ways. They show that a mild
incentive compatibility property is enough to preclude very minimal accuracy. They model the cost
of privacy loss as a function of all of the inputs and outputs of the mechanism, and this function is
bounded by (data-dependent) privacy characteristics of the mechanism. However, their mechanisms
do not choose a privacy level internally, so their results are not applicable to the problem studied in
this work.
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1. If M is individually rational and budget-balanced, then for any finite B > 0, we

have that M running on any fixed inputs always charges the analyst −P̂ > B.

2. IfM is individually rational and likely budget-balanced, then for any finite B > 0,

we have that M running on any fixed inputs charges the analyst −P̂ ≤ B with

probability at most exp(n · εinf)/2.

Proof. Fix any B > 0 and ε ∈ (0, εinf), and choose v ∈ V such that −v(ε) > B. Then

choose any inputs v ∈ Vn,d ∈ Dn, c ∈ C such that v1 = v, and consider the pi output

by M on v,d, c. By monotonicity and individual rationality:

∑
−pi ≥

∑
−vi(εinf) ≥

∑
−vi(ε) > B,

and so Pr[−P̂ ≤ B] ≤ Pr[−P̂ < −
∑
pi] for (P̂ ,p) ← M(v,d, c). Then for any

inputs v′,d′, we note that v,d can be obtained by a sequence of single row changes

for rows i = 1, . . . , n, and so by privacy, we have:

Pr[−P̂ ≤ B | P̂ ←M(v′,d′, c)] ≤ exp(
∑
εinf) · Pr[−P̂ ≤ B | P̂ ←M(v,d, c)]

≤ exp(n · εinf) · Pr[−P̂ < −
∑
pi | (P̂ ,p)←M(v,d, c)].

IfM must be strictly budget-balanced, the last term above is zero, and it follows that

M can never charge the analyst at most any finite payment B, completing (1). If

M is likely budget-balanced, this final probability is bounded by 1/2 and the second

conclusion (2) follows.

When a privacy guarantee has positive value to data contributors, note that any

standard moneyless differentially private mechanism is trivially individually rational,

and such a mechanism is accurate and differentially private in the usual sense for

some exogenous ε. Strictly speaking, this assumption of nonnegative utility for privacy

circumvents the impossibility result of [34], albeit in a way that does not make any

progress towards determining a sensible value of ε endogenously. However, we are able
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to provide results analogous to Theorem 4.2.2 in assuming positive privacy preferences

that roughly show that only these trivial mechanisms that do not make any monetary

transfers are possible. Now instead of assuming imperfect privacy and arbitrarily

negative preferences, Theorem 4.2.3 requires that:

V are arbitrarily small, i.e. for any R > 0, there exist some d ∈ Dn,v ∈ Vn, c ∈ C

such that
∑
vi(ε) < R for any ε in the privacy support of M(d,v, c).

Following the argument from Theorem 4.2.2, the second part of this theorem roughly

says that for sufficiently small εinf , the analyst will fall short of any arbitrarily small

target revenue R with probability almost 1/2. The proof follows the structure of the

previous proof almost exactly and is given only for completeness.

Theorem (4.2.3). Consider any private mechanismM in Model 3, and assume data

contributors’ preferences are positive and arbitrarily small.

1. If M is individually rational and budget-balanced, then for any fixed R > 0, we

have that M running on any fixed inputs always pays the analyst P̂ < R.

2. IfM is individually rational and likely budget-balanced, then for any fixed R > 0,

we have that M running on any fixed inputs pays the analyst P̂ ≥ R with

probability at most exp(n · εinf)/2.

Proof. Fix any R > 0, and let d ∈ Dn,v ∈ Vn, c ∈ C be such that
∑
vi(ε) < R for any

ε in the privacy support of M(d,v, c). By monotonicity and individual rationality:∑
pi ≤

∑
vi(ε) < R,

and so Pr[P̂ ≥ R] ≤ Pr[P̂ ≥
∑
pi] for (P̂ ,p) ← M(d,v, c). Then for any inputs

v′,d′, we note that v,d can be obtained by a sequence of single row changes for rows

i = 1, . . . , n, and so by privacy, we have:

Pr[P̂ ≥ R | P̂ ←M(v′,d′, c)] ≤ exp(
∑
εinf) · Pr[P̂ ≥ R | P̂ ←M(v,d, c)]

≤ exp(n · εinf) · Pr[P̂ ≥
∑
pi | (P̂ ,p)←M(v,d, c)].
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IfM must be strictly budget-balanced, the last term above is zero, and it follows that

M can never pay the analyst at least any minimum payment R, completing (1). If

M is likely budget-balanced, this final probability is bounded by 1/2 and the second

conclusion (2) follows.

Underlying the first part of each of the above theorems is the zero probability event

that a strictly budget-balanced mechanism pays the analyst more than it can charge

data contributors for some fixed inputs and corresponding privacy guarantees (or

charges the analyst less than required to compensate data contributors for privacy loss).

By privacy, this event must remain impossible for any set of inputs. When we relax the

balanced budget assumption, this arbitrary bound on analyst charge/payment carries

over to any other set of inputs through the strongest privacy guarantees εinf if the stan-

dard notion of input-independent differential privacy is used. The probability bound

in Theorem 4.2.3, for example, arises from collapsing the bounds in probabilities of the

event that the mechanism pays the analyst P̂ ≥ R on neighboring pairs of databases

in the chain of databases v(0) = v′, . . . ,v(j) = (v1, . . . , vj, v
′
j+1, . . . , v

′
n), . . . ,v(n) = v

where v is such that
∑
vi(ε) < R and v′ is arbitrary. With endogenous privacy, the

reference databases and not εinf determine the probability differences across neigh-

boring databases. Let ε(j) denote the minimum privacy parameter in the support of

M(v(j)). Then endogenous privacy yields the bound:

Pr[ P̂ ≥ R | P̂ ←M(v′)] ≤ exp(ε(1)) Pr[P̂ ≥ R | P̂ ←M(v(1))]

. . .

≤ exp(
∑
ε(i)) Pr[P̂ ≥ R | P̂ ←M(v)]

≤ exp(
∑
ε(i))/2.

For v small enough for
∑
vi(ε) < R, we expect the ε(i) for large i to be large, making

this bound loose if not trivial. We also get a similar bound for every permutation π
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on [n] identifying a different chain of hybrid databases between v′ and v, but in all of

these cases, the ε(i) for large i should be large.

Future Work On Privacy Markets

The new class of endogenously private mechanisms is based on a special case of the

market for Pareto efficient allocation of goods described in [38]. Their framework

is actually much more general, allowing for multiple public goods with different

production prices. This generality could be readily exploited to create markets for

privacy with multiple analysts, possibly with different levels of ε for different databases

or different queries.

A downside of applying the public goods allocation problem to the privacy setting

is that the former implicitly assumes a prevalence of producers who pressure each other

to not overstate their production costs. Without this assumption, the mechanism

is incentive compatible for consumers (data contributors) but not for the producer

(analyst). Generalizations allowing for multiple analysts that compete for access to

the data may partially resolve this concern. Nonetheless, future works should consider

the worst-case effects of an analyst who strategically misreports his accuracy costs, or,

ideally, the mechanism can be modified to be incentive compatible on both sides.

Laplace mechanism and generalizations guarantee ε-differential privacy for all i by

adding noise to the true query answer. This fact influences our perspective of privacy

as a public good, and so we focus on mechanisms providing a single privacy guarantee

for all data contributors. Outputting a single noisy query answer while guaranteeing

heterogeneous εi is an interesting question for future research.

While the view of privacy as a positively-valued good may be appropriate for

settings in which data contributors have already divulged their private data to an

entity that they can expect will try to profit from it, it remains a very interesting

open question whether the endogenous differential privacy relaxation alone is enough
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to circumvent the negative result of [34] when data contributors have disutility for

imperfect privacy. The techniques used in Section 4.4 rely heavily on the view of

privacy as a public good, but we may hope that other techniques could yield incentive

compatible endogenous privacy markets when loss of privacy is costly as is assumed

in most of the prior literature.
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CHAPTER V

CONCLUSION AND FUTURE DIRECTIONS

The connection between differential privacy and game theory was first explored in [70],

who developed the powerful differentially private exponential mechanism for setting

the price in a digital goods auction. In the same way that the exponential mechanism

protects the privacy of buyers’ bids, it also bounds their incentives to lie about their

values for the good, making approximate incentive compatibility a convenient and

powerful side effect of privacy.

[81] surveys several subsequent works exploring this connection between privacy

and game theory. A number of these works also use the fact that privacy can be used as

a tool to limit how much a player can gain by misreporting his type, and truthfulness as

an approximately dominant strategy is an almost automatic consequence of differential

privacy. However, [78] argued against the idea of approximate truthfulness that results

from differentially private mechanisms, noting that even if a player cannot gain much

by falsely reporting his type, it may not be safe to assume he will report truthfully

as a default, particularly when it is easy to see that another strategy is better (if

only slightly). Since differential privacy is so dependent on random noise, settling on

economically sensible notions of approximate equilibria and approximate truthfulness

is important for future work at the intersection of differential privacy and game theory.

In ongoing work [60], we consider the issue of private computation of correlated

equilibrium. The notion of correlated equilibria generalizes the notion of Nash equilibria

in that players need not choose their strategies independently. It is easiest to think

of a correlated equilibrium as a traffic light: each player has some probability of

crossing an intersection, but these probabilities are not independent. We show that
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this is not possible for general games, in which equilibria may be highly sensitive to a

single player’s type. Another recent work proposed a private recommender mechanism

that selects an approximate correlated equilibrium in large games where the outcome

observed by a single player is insensitive to the reported type of any other player

[50]. Rather than impose some a priori bound on how much an individual can affect

the utility of another player, we investigate more generally the qualities of games

whose sets of correlated equilibria are highly sensitive to a single player’s type, and we

seek to develop private equilibrium computation methods for games whose equilibria

are not too sensitive to individual players. Better understanding the sensitivity of

equilibria to small changes in a game will likely yield many nice privacy results, but

this question is also of interest to game theorists independent of privacy goals.

Although we cannot hope to be able to privately compute equilibria for general

games, computational game theory is rich with privacy applications. Differential

privacy as a feature of methods for equilibrium computation is a fascinating and wide

open area for future research.
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optimal network design with selfish agents,” Theory of Computing, vol. 4, no. 1,
pp. 77–109, 2008.

[5] Arora, S., Ge, R., Moitra, A., and Sachdeva, S., “Provable ICA with un-
known gaussian noise, and implications for gaussian mixtures and autoencoders,”
arXiv:1206.5349, 2012.

[6] Balcan, M.-F., Blum, A., and Mansour, Y., “Improved equilibria via
public service advertising,” in Proceedings of the twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), (Philadelphia, PA, USA), pp. 728–
737, Society for Industrial and Applied Mathematics, 2009.

[7] Balcan, M.-F., Blum, A., and Mansour, Y., “Circumventing the price of
anarchy: Leading dynamics to good behavior,” SIAM Journal on Computing,
vol. 42, no. 1, pp. 230–264, 2013.

[8] Balcan, M.-F., Krehbiel, S., Piliouras, G., and Shin, J., “Near-
optimality in covering games by exposing global information,” ACM Trans.
Econ. Comput., vol. 2, pp. 13:1–13:22, Oct. 2014.

[9] Bar-Ness, J. W., Carlin, Y., and Steinberger, M. L., “Bootstrapping
adaptive interference cancelers - some practical limitations,” in Proc. the Globe-
com Conference, pp. 1251–1255, 1982.

[10] Bendlin, R., Krehbiel, S., and Peikert, C., “How to share a lattice
trapdoor: Threshold protocols for signatures and (h)ibe,” in Applied Cryptog-
raphy and Network Security (Jacobson, M., Locasto, M., Mohassel, P.,
and Safavi-Naini, R., eds.), vol. 7954 of Lecture Notes in Computer Science,
pp. 218–236, Springer Berlin Heidelberg, 2013.

108



[11] Bengio, Y., “Learning deep architectures for AI,” Foundations and trends in
Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[12] BenOr, M., Goldwasser, S., and Wigderson, A., “Completeness theorems
for non-cryptographic fault-tolerant distributed computation,” 20th STOC,
pp. 1–10, 1988.

[13] Biswal, B. and Ulmer, J., “Blind source separation of multiple signal sources
of fMRI data sets using independent component analysis,” J. of Computer
Assisted Tomography, vol. 23, pp. 265–271, 1999.

[14] Blum, A., Ligett, K., and Roth, A., “A learning theory approach to non-
interactive database privacy,” in Proceedings of the 40th annual ACM symposium
on Theory of computing, pp. 609–618, ACM, 2008.

[15] Buchbinder, N., Lewin-Eytan, L., Naor, J. S., and Orda, A., “Non-
cooperative cost sharing games via subsidies,” Theory of Computing Systems,
vol. 47, pp. 15–37, July 2010.
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