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ABSTRACT
Buffer pools are essential for disk-based database management sys-

tem (DBMS) performance as accessing memory on disk is orders of

magnitude more expensive than accessing data in-memory. As such,

one of the most important techniques for DBMS performance im-

provement is proper buffer pool management. Althoughmuch work

has already gone into page replacement policies for buffer pools,

relatively little attention has been paid to developing intelligent

page prefetching strategies.

Commonly used sequential prefetching strategies only handle

sequential accesses but fail to predict more complex page reference

patterns. More complex prediction techniques exist—particularly

those that leverage the predictive power of deep learning. Although

such models can achieve a high prediction accuracy, due to their

size and complexity, they cannot deliver predictions in time for the

corresponding pages to be prefetched. With the tension between

timeliness and prediction accuracy in mind, in this work, we in-

troduce a machine learning-based strategy capable of predicting

useful pages to prefetch for complex memory access patterns with

an inference latency low enough for its predictions to be delivered

in time. When evaluated on a subset of the TPC-C benchmark, our

strategy is capable of reducing execution time by up to 13% while a

commonly-used sequential prefetching yields only a 6% reduction.

1 INTRODUCTION
Advances in hardware for computation have far outpaced advances

in memory technology. As a result, many applications tend to be

I/O-bound; that is, the application is bottlenecked by I/O reads

and writes rather than useful computations. In particular, online

transaction processing (OLTP) applications, which consist of high-

throughput lookup and update queries, tend to be I/O-bound on

disk-based databases. To alleviate I/O-caused performance drops,

such databases use buffer pools to cache recently accessed pages

in-memory; this way, requests to access pages that are already in

the buffer pool (buffer pool hits) can be served quickly without

needing to fetch the page from disk [1].

Buffer pools are key for maintaining the performance of disk-

based databases, as fetching a page from disk is around two orders

of magnitude slower than reading an in-memory page. Thus, the

buffer pool should be managed so as to maximize the buffer pool hit

rate. There are two components to buffer pool management—page

replacement and page prefetching. Much work has already gone

into developing page replacement policies such as LRU and CLOCK,

which attempt to evict the least useful pages from the buffer pool

first. However, prefetching techniques are currently mostly limited

to strategies that exploit sequential patterns [2]. However, such

techniques fail to deal with more complicated, non-sequential page

reference patterns.

Machine learning has had great success in recognizing patterns

in complex data and making accurate predictions. The problem of

accurate prefetching into the buffer pool is essentially the prediction

of future page accesses given the potentially complex sequence of

past access patterns, so naturally, machine learning models would

seem to be the ideal solution.

However, success in solving the problem of offline prediction

does not necessarily translate into success in solving the problem of

real-time prediction. Large deep learning models such as those pre-

sented are notoriously slow. Although the computation has become

much faster than memory access, the sheer magnitude of computa-

tions a deep learning model requires even just for inference renders

such approaches difficult in practice. Even when memory lies on

disk and not in memory, access time is measured in microseconds. If

the model can only compute a prediction after several milliseconds,

the predicted accesses will have already occurred, rendering the pre-

diction irrelevant. In order to prevent its predictions from becoming

stale as soon as they are made, a model must perform inference un-

der tight latency constraints. In this context, large, compute-heavy

deep learning are not ideal solutions to the problem of prefetching.

To avoid the high latencies of deep learning models, we propose

a gradient-boosted decision tree ensemble architected and trained

so as to provide predictions that are both accurate and delivered in

a timely manner.

2 RELATEDWORK
Pavlo et al. [3] are the first to introduce the idea that predictive

analytics and deep learning in particular are essential to a truly

self-driving DBMS—a DBMS could manage itself by conducting

the same data analysis, action planning, and action execution that

an expert would, thereby removing the need for a database ad-

ministrator while still maintaining and perhaps even improving

performance. Along these lines, much work has already been done

on optimizing DBMS operations using AI. For example, researchers

have investigated optimizing database index selection [3]–[5]. Ma

et al. [4] themselves employ both simple models such as linear

regression and complex models such as long short-term memory

networks (LSTMs) to analyze historical query arrival rates in order

to generate forecasts of workload volume in the future, which in-

form index selection decisions. Even when workloads are highly

unpredictable, Perera et al. [5] show that reinforcement learning

(RL) can still improve index selection by framing index selection

as a multi-armed bandit problem and employing a variant of the

upper confidence bound algorithm to select the most performance-

enhancing indices. The task of index selection, however, does not

have the same tight latency constraints that prefetching does.

Researchers have also experimented with optimizing index struc-

tures using AI. For example, Llaveshi, Sirin, and Ailamaki [6] use

regression to accelerate the search for database records in index
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structures. More radically, researchers have replaced index struc-

tures altogether with AI models that act as a "learned index" [7],

[8]. Due to the sheer complexity of the data typically by DBMSs

and the latency requirements of a performant index structure, one

monolithic model would either be too slow when predicting record

locations or too simple to properly learn record locations—a simi-

lar problem prefetching techniques face. As a result, Kraska et al.
[7] and Ding et al. [8] tackle the problem by creating a hierarchy

of neural networks of varying complexities that work together to

narrow down the locations of the records corresponding to given

keys—a recursive model index (RMI), as they term it.

Though they are at a lower level than DBMSs, hardware cache

management serves the same role and faces the same fundamental

problems as buffer pool management. Memory access is expensive,

so CPUs must spend much of its time waiting for data transfer to

or from memory [9]. Caches exist as an intermediary between the

CPU and memory; it contains a small subset of memory addresses

that the CPU can access much more quickly. The goal of cache man-

agement is to maximize the proportion of future memory accesses

that lie within the cache (cache hits), so that the time spent waiting

on memory accesses is minimized. Cache prefetching, an effective

way of increasing cache hit rates, traditionally uses algorithms like

stride prefetching and correlation prefetching [10], [11]. Hashemi et
al. [11] show that deep learning—namely, LSTM models—can also

learn complex memory access patterns at the hardware level with-

out explicitly tracking memory access history. However, they do

not deploy their model as a prefetcher in real-time; they admit that

whether their model can meet the latency demands of hardware

is unclear. Deep learning models perform many computations and

often deal with floating-point arithmetic; since memory accesses

happen on the order of nanoseconds, models like what Hashemi et
al. [11] develop are almost certainly too slow to prefetch effectively.

Shi et al. [12] note the infeasibility of directly employing deep

learning models in hardware. In their work, they tackle a different

but related cache management problem, cache replacement (decid-

ing which blocks should be stored in the cache and which blocks

should be evicted from the cache). Although cache replacement poli-

cies do not need to actually predict what future memory accesses

are, they face the same tight latency demands that prefetchers do,

i.e. decisions must occur on the order of nanoseconds. To solve

this problem, after training a deep attention-based LSTM model,

Shi et al. [12] manually analyze their model’s behavior by exper-

imenting with input data to the model. They derive several key

insights about the nature of the patterns learned by the model from

this analysis and develop an integer support vector machine whose

computational expense is an order of magnitude less than that of

their LSTM model while still achieving comparable accuracy. Other

works that have had success with significantly less memory and

compute expensive techniques include Yang et al. [13], who use

gradient boosted decision trees, and Bhatia et al. [14], who use

simple perceptrons.

3 METHODS
3.1 Experimental Setup
We run all experiments on a machine with four fourteen-core Intel

Xeon E5-2690 CPUs and a Micron SSD.We use the Spitfire, a custom

C++-based multi-threaded buffer manager, and run experiments

with a subset of the TPC-C benchmark—specifically, we focus on

a workload with one warehouse that executes only TPC-C order

status transactions in order to limit the workload’s complexity. In

all experiments, we run the workload until three million pages are

read, on a 9.7 GB database with a buffer pool size of 16 MB (1000

pages with page size 16 KB) with the 2Q page replacement policy.

With these parameters, without any prefetching, the buffer pool

hit rate is 70%. Given a page prediction model, when the model

predicts a set of pages and requests those pages to prefetched, the

prefetching system launches one or more threads that fetch those

pages into the buffer pool, concurrently with the main workload

execution thread.

3.2 Preliminaries
Pages need to have unique identifiers to which the prefetcher can

refer. For this purpose, each page is uniquely identified by a page

identifer (PID). PIDs are assigned to each page in each heapfile

starting from 0 being assigned to the first page of the first heapfile,

1 being assigned to the second page of the first heapfile, and so on.

Thus, PIDs that are close together represent pages that are nearby

each other in memory.

Similar to Smith [15]’s reduced block reference string, we will

define a reduced page reference string (RPRS) as the sequence of

page references from which repeated page accesses are removed.

For example, for the sequence of PIDs 𝑝𝑎, 𝑝𝑎, 𝑝𝑎, 𝑝𝑏 , 𝑝𝑏 , 𝑝𝑐 , 𝑝𝑏 where

𝑝𝑎, 𝑝𝑏 , and 𝑝𝑐 are distinct PIDs, the RPRS is 𝑝𝑎, 𝑝𝑏 , 𝑝𝑐 , 𝑝𝑏 . We will

call a sequence of 𝑛 page accesses "close" if, for the corresponding

PID accesses 𝑝1, 𝑝2, 𝑝3, ..., 𝑝𝑛 ,𝑚𝑎𝑥{𝑝1, 𝑝2, ..., 𝑝𝑛}−𝑚𝑖𝑛{𝑝1, 𝑝2, ..., 𝑝𝑛}
is sufficiently small. That a page is accessed repeatedly is not predic-

tive of future page misses (perhaps the same page will be accessed

again, but this page will already be in the buffer pool after the

first access), so RPRSs are preferable to work with over raw page

reference strings.

3.3 Observations
We first observe that in the TPC-C benchmark, the parameters for

the queries (e.g. the customer identifier) are independently pulled

from a random distribution for each transaction. This means that

page accesses invoked during a particular transaction will not be

predictive of page accesses during subsequent transactions. Thus,

inference during a particular transaction can likely safely ignore

PIDs from previous transactions without any loss in prediction

accuracy.

We also observe that the majority of page accesses and the most

predictable page accesses appear to occur during an index scan

after a leaf is hit in the B-Tree traversal. The corresponding PIDs

of the pages accessed tend to be close, and sequential page access

patterns (i.e. sequences of page accesses such that 𝑝𝑖 = 𝑝𝑖−1 + 1 for

1 < 𝑖 ≤ 𝑛 for the corresponding RPRS 𝑝1, 𝑝2, ..., 𝑝𝑛) almost all occur

during the post-leaf part of an index scan. So, we narrow our focus

to predicting post-leaf index scan page accesses (hereby referred to

simply as post-leaf page accesses).

The B-Tree is shallow but wide; thus, pre-leaf page accesses

are not very predictive of post-leaf page accesses since there are

many B-Tree leaves that are children of B-Tree internal nodes. For
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Figure 1: System architecture

this reason, we opt to feed the model only post-leaf page accesses

in predicting future post-leaf page accesses. Specifically, for the

RPRS 𝑝1, 𝑝2, ..., 𝑝𝑛 corresponding to all post-leaf page accesses for a

particular scan, the model should make a prediction about the RPRS

suffix, 𝑝 𝑗+1, ..., 𝑝𝑛 , given the corresponding RPRS prefix 𝑝1, 𝑝2, ..., 𝑝 𝑗
along with any other relevant features. With a longer input prefix,

i.e. a larger 𝑗 , the model has more information to predict the output

suffix; however, it comes at the cost of not being able to predict the

first unique 𝑗 post-leaf pages during a scan.

3.4 Problem Formulation
To reduce model complexity, we decide that predicting the exact

order of future page accesses is not important; that is, it is suffi-

cient to predict the post-leaf RPRS suffix as a set rather than as a

sequence. However, rather than predicting each individual member

of this set, given that post-leaf page accesses often contain long

sequential page accesses, we opt to predict a contiguous interval

of PIDs. A contiguous interval requires only two numbers for its

representation, e.g. a minimum and a maximum, as opposed to one

number per PID in the post-leaf RPRS suffix.

Although this formulation reduces problem complexity, a con-

tiguous interval cannot perfectly cover arbitrary sets of PIDs. If

the post-leaf RPRS suffix 𝑠 is not a permutation of𝑚𝑖𝑛{𝑠},𝑚𝑖𝑛{𝑠} +
1,𝑚𝑖𝑛{𝑠} + 2, ...,𝑚𝑎𝑥{𝑠}, then any contiguous interval of PIDs will

either not capture all elements of 𝑠 or capture PIDs not present in

𝑠 . Both cases are problematic for prefetching; either some future

pages are guaranteed to not be prefetched (an opportunity cost)

or some useless pages are needlessly prefetched (a cost in buffer

pool pollution). That said, some intervals are better to redict than

others. For example, consider the hypothetical post-leaf RPRS suffix

5, 6, 7, 8, 9, 100, 101. Intuitively, the best contiguous interval would

be [5, 9] (where [𝑎, 𝑏] is the interval of integers from 𝑎 to 𝑏, in-

clusive), which is better than intervals such as [100, 101], which
capture less useful pages, and [5, 101], which capture many useless

pages.

To quantify how fit a contiguous interval is for prefetching given

the post-leaf RPRS suffix, we assign a weight to each PID in a

potential interval and sum all the weights. PIDs that are present

in the RPRS suffix are weighted positively, while those that are

not are weighted negatively. That is, the fit of an interval [𝑎, 𝑏] for
prefetching given the post-leaf RPRS suffix 𝑠 is:

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝑎, 𝑏, 𝑠) =
𝑏∑︁
𝑖=𝑎

𝑤𝑝,𝑛 (𝑠, 𝑖)

where𝑤𝑝,𝑛 (𝑠, 𝑖) is:

𝑤𝑝,𝑛 (𝑠, 𝑖) =
{

𝑝, if 𝑖 ∈ 𝑠

𝑛, if 𝑖 ∉ 𝑠

for some positive real number 𝑝 and some negative real number

𝑛.

Calculating an interval with maximal fitness for a given post-leaf

RPRS suffix 𝑠 , argmax𝑎,𝑏 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝑎, 𝑏, 𝑠), can be formulated as amax-

imal sum subarray problem. Specifically, the maximal fitness inter-

val is a maximal sum subarray of the array𝐴where𝐴𝑖 = 𝑤𝑝,𝑛 (𝑠, 𝑆𝑖 )
where 𝑆 is the array min (𝑠),min (𝑠) + 1,min (𝑠) + 2, ...,max (𝑠). In
case of multiple intervals with the same maximal fitness, we choose

the interval [𝑎, 𝑏] with a minimal 𝑏 and the minimum 𝑎 for that

minimal 𝑏–hereby𝑀 (𝑠) for a post-leaf RPRS suffix 𝑠 .

The final prediction problem for our model to solve is: for a

particular post-leaf RPRS 𝑠𝑡𝑜𝑡𝑎𝑙 during a scan, predict𝑀 (𝑠𝑠𝑢𝑓 𝑓 𝑖𝑥 )
given 𝑠𝑝𝑟𝑒 𝑓 𝑖𝑥 (where 𝑠𝑝𝑟𝑒 𝑓 𝑖𝑥 is some prefix of 𝑠 and 𝑠𝑠𝑢𝑓 𝑓 𝑖𝑥 is the

corresponding suffix) along with any other relevant features known

before the first page of 𝑠𝑠𝑢𝑓 𝑓 𝑖𝑥 is accessed.

We choose to test ourmodel on a subset of the TPC-C benchmark—

namely, the TPC-C order status transaction. As such, in addition

to 𝑠𝑝𝑟𝑒 𝑓 𝑖𝑥 , we also feed an integer 𝑞 that uniquely identifies dif-

ferent queries run a TPC-C order status transaction as well as the

identifiers for the district and customer a particular query is be-

ing executed for (ignoring the warehouse identifier, as we run our

benchmark with only one warehouse).
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4 SOLUTION
4.1 Model
Given the problem as formulated above, we choose to use gradient-

boosted decision trees (GBDT) for our model. As the number of

input and output features is fixed, a GBDT model is well-suited for

the problem and can perform inference more efficiently than large

deep learning models. Specifically, we use XGBoost, a popular open

source GBDT implementation. The XGBoost regression model is

trained to predict an interval by predicting its start and its end

separately.

To further expedite inference, after training, we use Treelite, a

software tool for GBDT prediction optimization. Treelite translates

a GBDT model into a callable C module with optimizations such

as threshold quantization (mapping floating-point thresholds to

integer thresholds) for faster integer computation as opposed to

slower floating-point computation and compiler branch annota-

tions (giving hints to the compiler that particular branches are likely

or unlikely to be taken, based on the training data) for fewer costly

branch mispredictions. We also modify the Treelite-generated code

by removing checks for missing features; such checks are unneces-

sary since the model is always guaranteed to be fed the full 𝑠𝑝𝑟𝑒 𝑓 𝑖𝑥
string as well as the district and customer identifiers.

Through experimentation, we find that |𝑠𝑝𝑟𝑒 𝑓 𝑖𝑥 | = 2, 𝑝 = 1,

𝑛 = −0.5, Ie feed the model are the parameters of the query being

executed at the time as well as an integer 𝑞 identifying different

types of queries.

4.2 Prefetching Details
Prefetching is performed in threads separate from the main TPC-C

execution thread. Whenever a scan is executed, after leaf of the

B-tree is reached and two post-leaf pages are accessed (i.e. when

the input data necessary for the model—𝑠𝑝𝑟𝑒 𝑓 𝑖𝑥 and the district

and customer identifiers—is available), prefetching is triggered via

a semaphore. The input data is fed to the model, and once the

output is available, each page ID in the interval [𝑎, 𝑏] is prefetched,
working backwards from the highest value (𝑏) to the lowest (𝑎). This

is because sequential page accesses are frequent in post-leaf RPRSs,

meaning the greater page IDs tend to be fetched last. Since there

is a latency associated with inference even with our small model,

it is likely that a few pages will be accessed during the interim

when the model has received the input data and is still calculating

its predictions of future page accesses. By prefetching the lowest

pages last, the prefetcher prioritizes prefetching pages that are the

least likely to have been already accessed during the interim. This

also avoids potential thread contention; if the model predicts the

interval with a high accuracy and prefetches each future page in

exact chronological order, it is likely that the main reading thread

will catch up to the prefetching thread. At that point, there may be

thread contention for the same pages between the main thread and

the prefetching thread. In the worst case scenario, the main thread

will have to wait for the prefetching thread to finish its processing

for every single access, which would cause a major performance

drop. Prefetching in the reverse order solves this issue. Also, if the

scan has already finished by the time the output is ready or we

find that the scan has finished during prefetching, the prefetcher

stops prefetching and waits for the next semaphore alert to begin

prefetching again. Again, the model is trained to predict only pages

accessed during a particular scan, so once that scan has finished

being executed, any of its leftover predictions are almost guaranteed

to not be useful.

We use 2Q as our buffer pool page replacement policy. 2Q main-

tains an LRU queue for pages useful in the short-term (A1in) and

one for pages useful in the long-term (Am), which is useful for us as

prefetched pages are likely only useful in the short-term. We also

make some modifications to the traditional 2Q policy concerning

the special treatment of prefetched pages. Intuitively, the future

reference patterns of pages that are speculatively prefetched into

the buffer pool are very likely to be different than those of pages

that are fetched normally, particularly for pages brought in due

to prefetcher mispredictions. With this in mind, we make three

changes to the 2Q page replacement policy in the way prefetched

pages are treated.

We ignore prefetching requests for pages that are already in-

memory. Normally, when in-memory pages are accessed, their

position in the A1in or Am queues is moved to the back of the

queue in order to extend their lifetime in the queue, as it is likely

that the page will be accessed again (either in the short-term for

the A1in queue or in the long-term for the Am queue). A page

being prefetched itself is not an indication that it will be used again

unless it is fetched normally; that is, if a page is prefetched due to

a misprediction and ends up not being fetched in the near future,

extending its lifetime in the queue by moving it to the back only

serves to pollute the buffer pool. Thus, prefetch requests for in-

memory pages should not change the state of the queue.

Prefetched pages are always pushed into the A1in queue; even

those that are found in the A1out queue. Our prefetching strategy

always fetches post-leaf pages during scans, which are short-term

predictions. Post-leaf pages accessed during scans pages are un-

likely to be important in the long-term as they will likely only be

accessed when a query with similar query parameters occurs again.

As such, we opt to always place prefetched pages in the A1in queue,

the queue dedicated for storing pages that are hot in the short-term.

Finally, we periodically clean the A1in queue, removing stale

prefetched pages. Given our prefetching strategy of predicting only

pages that occur in the post-leaf RPRS, if a page not already in

the buffer pool is prefetched during a particular scan and is not

accessed by the end of that scan, it is highly unlikely that page will

be prefetched any time in the near future. Nor is there any reason

to believe such a page would be important in the long-term. Once

the scan is over, such pages are simply polluting the buffer pool. As

such, upon the end of a scan, we launch a thread that checks the

A1in queue for any pages that were prefetched during the scan but

ended up not being accessed and evict those pages from the buffer

pool to make room for more useful pages.

We compare our model against the class 1 prefetching strategy

described in [15], a sequential prefetching strategy that looks 𝑘

pages ahead, which we will call Sequential. If the 𝑗th page, with

PID 𝑝 , of the RPRS of a sequential access pattern is a buffer pool

miss, the 𝑘 = 𝛼 ( 𝑗) pages ahead of 𝑝—𝑝 + 1, 𝑝 + 2, ..., 𝑝 + 𝑘—are

prefetched. For example, if 𝛼 (4) = 3 and we observe a sequence of

PIDs 10, 2, 13, 14, 14, 15, 16 and the page with PID 16 is a buffer pool

miss, the RPRS of the thus far observed sequential access pattern

is 13, 14, 15, 16, so we prefetch pages with PIDs 17, 18, 19, and 20.
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Figure 2: Offline prefetcher performance

Figure 3: Prefetching effect on cache miss rate

Smith [15] outline a formula for 𝛼 ( 𝑗) such that 𝛼 ( 𝑗) is the optimal

number of pages to look ahead for a particular set of fetching costs—

the cost of fetching an arbitrary page, the cost of fetching adjacent

pages, and the cost of fetching a useless page. We estimate these

costs based on empirical data when constructing 𝛼 .

We also compare our model with a LSTM model. The LSTM

model uses an 300-dimension embedding from one-hot vector rep-

resentations of PIDs and takes as input a post-leaf RPRS of length

up to 10 and produces as output a multi-hot vector representing

offsets from the leaf PID (e.g. for a leaf PID 𝐿, if the LSTM model

will produce a multi-hot vector representing offsets 𝑎, 𝑏, 𝑐 , then the

PIDs 𝐿 + 𝑎, 𝐿 + 𝑏, 𝐿 + 𝑐 are prefetched).

5 RESULTS
I now present the results of applying the aforementioned techniques—

Sequential, LSTM, and XGBoost—on the TPC-C benchmark, in

Figure 4: Prefetching effect on overall execution time

terms of offline metrics (precision and recall) and online metrics

(cache miss reduction and overall speedup).

When calculating precision and recall, we determine a prefetch-

ing strategy’s prediction for a particular page to be correct if that

page is accessed normally within the window for which the strategy

generated predictions. For example, for XGBoost, this means a page

is predicted correctly if the page is fetched after the prediction is

made but before the end of the current scan. For the baseline se-

quential model, a page is predicted correctly if the page is accessed

in the continuation of the sequential RPRS that invoked prediction.

True positives are correct predictions, and false positives are incor-

rect predictions. We consider all PIDs accessed in the workload but

not prefetched by a model to be false negatives.

Figure 2 shows the precision and recall obtained by each tech-

nique on the validation dataset extracted from the TPC-C bench-

mark trace without considering the effects of inference latency.

The LSTM boasts the highest overall results at a precision of 0.91

and recall of 0.6. This is to be expected given that the LSTM is the

most complex model and takes in the most information—a variable-

length history of page-ids along with query metadata—while the

other techniques only utilize query parameters and at most three

page-ids per inference cycle. XGBoost has the next best offline per-

formance, coming in at a precision of 0.87 and a recall of 0.56. iThe

sequential prefetcher yields a precision of 0.47 and a recall of 0.17.

Sequential achieves relatively poor offline performance metrics;

however, it makes up for it with near negligible inference latency.

Figure 3 and Figure 4 show the cache miss reduction and overall

speedup, respectively, caused by each prefetching technique when

run in real-time during the TPC-C benchmark workload. XGBoost

has the best performance here, reducing the cache miss rate by 10%

and yielding a 13% overall speedup. Despite having the best offline

performance, the LSTM has the worst performance online, only

reducing the cache miss rate by 0.2% and yielding a meager speedup

of 0.6%. This is because of its high inference latency; although its

predictions are correct, they arrive too late for them to be useful

as the pages it predicted were already fetched by the main reading
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thread by the time inference finished. On the other hand, XGBoost is

orders of magnitude faster—it takes merely 50 microseconds during

an inference cycle, while the LSTM model takes an entire millisec-

ond, on average. This explains why XGBoost’s online performance

is far superior to that of the LSTM model despite the LSTM model’s

edge over XGBoost in an offline setting. The LSTMmodel is so slow,

in fact, that the sequential prefetcher still outperforms it, with a

cache miss rate reduction of 5% and a overall speedup of 6%.

Overall, XGBoost appears to be the most promising technique

to be deployed as a prefetcher in real-time. That said, there are still

important tradeoffs to consider when deciding between different

techniques in different contexts.

6 DISCUSSION
Machine learning-based prefetchers do indeed appear to be able

to improve DBMS performance. However, at this stage, such mod-

els may need to be developed and deployed with their particular

use cases in mind. As illustrated in prior sections, models trained

on raw PID data failed to accurately learn page access patterns,

with the exception of complex models, like the LSTM model. These

models are complex to the point that their inference latency is too

high for their predicted pages to be fetched in a short enough time

span to be useful. Feeding models higher-level features—labels of

different types of queries and B-Tree key values in our case—greatly

reduces the necessary model complexity at the cost of generaliz-

ability. Moreover, our models were tuned to target pages accessed

specifically during B-Tree scans; workloads that are lookup-heavy

will benefit less from techniques like ours.

Additionally, concurrency is critical for prefetching to be useful;

the prefetcher must fetch pages concurrently with the main reading

thread(s) for its fetched pages to arrive in the buffer pool in time for

them to be useful. As a result, context-dependent factors, including

the concurrency-friendliness of the database’s page replacement

algorithm, available disk I/O throughput (since oversaturating the

throughput will stall prefetching threads), and avialable threads the

hardware can support, will also influence the extent to which ma-

chine learning-based prefetching can improve performance. Further

research must be conducted to determine whether our techniques

fare well in different contexts and how to adapt to contexts in which

our approach does not perform well. For example, while TPC-C

transactions only perform few unique types of queries, there may

be workloads where a great variety of queries are performed. In

such an enviornment, mere query type labeling may not be sufficent

information for a machine learning model to easily predict future

pages, and other ways to incorporate information about queries

into the input features will need to be explored, e.g. embeddings

similar to those used in natural language processing contexts.

There are additional opportunities thatmay further improve data-

base performance beyond the techniques we have experimented

with. For example, coordination between the prefetcher and the

page replacement policy may further increase the cache hit rate.

An ML-based prefetcher that is trained to look only in the near

future will generally fetch pages that will either indeed be used

in the near future (when the prefetcher has predicted correctly)

or will not be used at all (when the prefetcher has mispredicted).

Thus, if prefetched pages have not been used in a certain period of

time after they were first prefetched, we know with a high degree

of confidence that those pages will not be used at all and are thus

needlessly taking up space in the buffer pool. At that point, it may

be beneficial for the page replacement policy to recognize such

needlessly prefetched pages and evict them as soon as possible to

allow room for other, potentially useful, pages in the buffer pool.

In addition to pages prefetched for short-term use, if a model is

developed to predict pages that are useful only in the long run,

pages prefetched by such a model can be treated specially as well.

For example, in the 2Q page replacement policy, which includes

separate queues for pages useful in the short-term and pages useful

in the long-term, pages prefetched for the long-term can be placed

directly into the long-term queue.

7 CONCLUSION
We have demonstrated the utility of machine learning in buffer

pool prefetching for improving database performance in handling

OLTP workloads, but there are many avenues for exploring tech-

niques to further improve upon the models we have improved here

and extending our techniques for use in a variety of different con-

texts. Buffer pool prefetching is not a commonly discussed route

for improving database performance, but our work shows that

perefetching can be a major performance boost when leveraging

the predictive power of AI.
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