
Instrument Timbres and Pitch Estimation in Polyphonic

Music

A Thesis
Presented to

The Academic Faculty

by

Beatus Dominik Loeffler

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

May 2006

Instrument Timbres and Pitch Estimation in Polyphonic

Music

Approved by:

Professor Chin-Hui Lee
School of Electrical and Computer Engineering
Georgia Institute of Technology, Advisor

Professor Aaron D. Lanterman
School of Electrical and Computer Engineering
Georgia Institute of Technology

Professor David V. Anderson
School of Electrical and Computer Engineering
Georgia Institute of Technology

Date Approved: April 10, 2006

To

Michael and Waltraud Löffler

iii

ACKNOWLEDGEMENTS

I want to thank my advisor Dr. Chin-Hui Lee for his guidance and patience, Dr. Lanterman

and Dr. Anderson for additional input, Dr. Rüdiger Naumann-Etienne and his foundation

for generously sponsoring my studies throughout the two past years, and Carlton Parker

of the World Student Fund for his administrative and organizational work. Without their

support, this work would not have been possible.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . x

I INTRODUCTION . 1

1.1 Organization and Goals of this Project . 1

1.2 Pitch . 1

1.2.1 Definition . 1

1.2.2 Harmonics, Overtones, and Partials 2

1.2.3 Pitch Spacing in Western Music . 4

1.2.4 Musical Scales and the Weber-Fechner-Law of Perception 5

1.2.5 Motivation for Pitch Estimation . 6

1.3 Timbre of Instruments . 6

1.3.1 The Three Phases of a Tone . 7

1.3.2 Pitch Dependency of Timbre . 8

1.3.3 Characteristics of some Specific Instruments 9

1.4 Human Auditory Perception of Pitch . 12

1.4.1 F0 Extraction Only . 12

1.4.2 Minimum Difference of Adjacent Harmonics 12

1.4.3 Highest Common Factor . 13

II OVERVIEW OF PITCH ESTIMATION APPROACHES 15

2.1 Spectral Smoothing Using “Specmurt Anasylis” (sic) 15

2.2 An Expectation Maximization for a Constrained GMM Using an Informa-
tion Criterion . 16

2.3 A General Iterative Multipitch Estimation Algorithm 16

2.4 Partial Searching Algorithm with a Tree Search and Dynamic Programming 17

v

2.5 Independent Subspace Analysis, Prior Subspace Analysis, Generalized Prior
Subspace Analysis . 17

III A GMM APPROACH TO PITCH ESTIMATION 19

3.1 General Fundamentals of Expectation Maximization Algorithms 19

3.2 Fundamentals of Gaussian Mixture Models (GMM) 21

3.3 An EM Algorithm for GMM Parameter Estimation 22

3.4 Missing Data in EM/GMM Analysis of Monophonic Music (Number of
Components) . 22

3.5 Reinterpretation of the Magnitude Spectrum as a Spectral Density 24

3.6 Modification of the EM Algorithm to Accept the “Frequency Density” whose
Parameters Are to Be Estimated . 25

3.7 Missing Data in EM/GMM Analysis of Polyphonic Music (Number of Tones,
Number of Components) . 26

IV HEURISTICS FOR INITIAL ESTIMATES 27

4.1 Limiting the Frequency Range (“Cut-Off”) 27

4.2 Leveraging the Spacing of the Harmonics 29

4.2.1 Peak-Picking Function . 29

4.2.2 Peak Filtering Heuristic . 30

4.2.3 Core Heuristic: Basic Idea . 30

4.2.4 Interpolation for “Missing Peaks” 32

4.3 Dynamic Determination of Number of Mixtures 32

4.4 Extension to Polyphonic Cases . 32

4.4.1 Maximum Number of Polyphonic Tones 32

4.4.2 Iterative Scheme . 33

4.4.3 Constrained EM Algorithm . 34

4.5 Chapter Review . 35

V PRELIMINARY RESULTS AND ANALYSIS 36

5.1 Implementation Remarks: Single-Pitch Prototype 36

5.1.1 Results for Single Pitch Cases . 38

5.1.2 Potential Difficulties in Adopting GMM For Pitch Estimation . . . 38

5.2 Discussion of the Final Implementation . 39

5.2.1 Summary of Issues . 44

vi

VI CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH . 46

6.1 Conclusions . 46

6.2 Directions for Future Work . 46

6.2.1 Account for Harmonic Overlapping of Pitches 46

6.2.2 Follow Klapuri Closely . 46

6.2.3 Confidence Score for Missing Harmonic Interpolation 47

6.2.4 Tune Some of the EM Numerical Parameters such as Termination . 47

6.2.5 Set Up an Instrument Identifier on the Separated Sources 47

APPENDIX A — PITCH TABLE . 48

APPENDIX B — CODE LISTINGS . 49

REFERENCES . 79

vii

LIST OF TABLES

1 Common pitch spacing . 5

2 HCF example . 13

viii

LIST OF FIGURES

1 Harmonics of strings [26] . 3

2 Harmonics of an oboe C4 tone, DFT magnitude 4

3 Onset of clarinet and sax, from [12] p.205 7

4 LTAS of the viola’s F4 and A4 tones . 8

5 LTAS of the cello’s F4 tone . 9

6 Pitch overlap in the string instrument family 10

7 Spectrum of the oboe’s C4 tone (no LTAS) 11

8 The piano’s amplitude over time . 11

9 General multipich estimation principle by [17] 17

10 Many components arising from low pitch (bass trombone, F#1) 23

11 Only one component arising from high pitch (flute, B6) 24

12 Illustration of the behavior of the EM algorithm for Gaussian Mixture Models 26

13 Reducibility of the spectrum . 28

14 Spectrogram result without spectral cutoff 28

15 Spectrogram result with spectral cutoff . 29

16 Summary of cutoff ranges . 30

17 GUI screenshot of single-pitch prototype . 37

18 GUI screenshot of the final implementation 40

19 Heuristic working well in a high-pitch example 41

20 Excess pitches in medium-pitch example . 42

21 Excess pitches in a medium-pitch example - without spectral smoothing . . 43

22 Excess pitches in medium-pitch example - escaping the heuristic 44

ix

SUMMARY

In the past decade, the availability of digitally encoded, downloadable music has

increased dramatically, pushed mainly by the release of the now famous MP3 compression

format (Fraunhofer-Gesellschaft, 1994). Online sales of music in the US doubled in 2005,

according to a recent news article [2], while the number of files exchanged on P2P platforms

is much higher, but hard to estimate.

The existing and coming informational flood in digital music prompts the need for

sophisticated content-based information retrieval. Query-by-Humming is a prototypical

technique aimed at locating pieces of music by melody; automatic annotation algorithms

seek to enable finer search criteria, such as instruments, genre, or meter. Score transcription

systems strive for an abstract, compressed form of a piece of music understandable by

composers and musicians. Much research still has to be performed to achieve these goals.

This thesis connects essential knowledge about music and human auditory perception

with signal processing algorithms to solve the specific problem of pitch estimation. The

designed algorithm obtains an estimate of the magnitude spectrum via STFT and models

the harmonic structure of each pitch contained in the magnitude spectrum with Gaus-

sian density mixtures, whose parameters are subsequently estimated via an Expectation-

Maximization (EM) algorithm. Heuristics for EM initialization are formulated mathemati-

cally.

The system is implemented in MATLAB, featuring a GUI that provides for visual (spec-

trogram) and numerical (console) verification of results. The algorithm is tested using an

array of data ranging from single to triple superposed instrument recordings. Its advantages

and limitations are discussed, and a brief outlook over potential future research is given.

x

CHAPTER I

INTRODUCTION

1.1 Organization and Goals of this Project

This introductory chapter explains some fundamental knowledge and frequently used terms

about pitch, timbre and human perception of pitch. Some special cases of instrument

timbres and pitch perceptional peculiarities are treated in more detail to demonstrate the

breadth of the field of study.

Chapter 2, Overview of Pitch Estimation Approaches, gives a brief overview of some

previous approaches to pitch estimation in the simpler monophonic context. Also, a general

algorithm scheme for developing polyphonic pitch estimators is enumerated.

Chapter 3, A GMM Approach to Pitch Estimation, introduces key mathematical con-

cepts used in a subsequent implementation of a pitch estimation system, first for a mono-

phonic case, then for the more general polyphonic case. A Gaussian Mixture Model (GMM)

is used to model the harmonics in the spectral magnitude. Model parameters are estimated

via an Expectation Maximization algorithm.

The subsequent chapter, Development of Heuristics for Initial Estimates, discusses ways

our EM algorithm can be initialized in the case of pitch estimation, both for single and

multiple pitch cases. Issues related to running the algorithms on real data are discussed,

and further heuristics are developed.

Finally, Chapters 5 and 6 discuss problems with and limitations of our current imple-

mentation and propose various future enhancements.

1.2 Pitch

1.2.1 Definition

The term pitch describes a psychoacoustic sensation of the auditory system and is therefore

subjective. It should not be confused with frequency or note, although it has intimate

1

relationships with those terms.

A particular note on the keyboard of a piano can be matched to a pure sinusoidal single

frequency by a listener, but the frequency spectrum of the signal produced by the piano will

carry more than that sinusoidal frequency. Instead, it will show a more complex mixture of

different frequencies with different weights, enabling the listener to clearly discern between

instruments (Chapter 1.3). Psychoacoustic studies try to discover how the human hearing

system matches these two quite different signals.

Frequency denotes a precisely defined analytic term, such as the number of vibrations of

a string per second or the resulting vibration of atmospheric pressure carrying the signal to

the listener’s ear. The term will often be used in the context of the DFT or spectrograms,

which contain DFT analyses.

For the purpose of this thesis, a note is simply the standardized name of a pitch, such

as A#, or the graphical representation of it on the staff. It can thus be considered a

synonym for pitch, if the definition relating the two is known. This leads to the topic of

pitch standards, and there is a long history of such. Today, the most commonly used pitch

standard is ISO 16 [14] (Appendix).

In ISO 16, the A above middle C (A4) must be tuned to 440Hz. This note is the center

of attention in pitch standards, and all other pitches are typically tuned with respect to it.

1.2.2 Harmonics, Overtones, and Partials

As mentioned before, a pitch may be considered more complex than a single frequency; it

is a mixture of sinusoids of different frequencies with different weights that are perceived to

be equivalent to a single frequency. These “other components” are the so-called harmonics,

which make the tone richer and more interesting to the listener. In fact, in music, we

almost never deal with pure tones, that is, pitches of single frequency. These sound bland

and boring, and the possibility of electronically producing a pure tone has not been around

for long, considering the entire history of music. This mixture of frequencies is a kind of

“signature” or “fingerprint” called timbre, which is dependent on the instrument’s physical

specifications (length, diameter, width, girth, specific shape, density of the materials used,

2

Figure 1: Harmonics of strings [26]

etc). We can think of timbre as the “color” or “quality” of sound.

For an example of timbre, when a string vibrates, it does not vibrate like only a single

sinusoid. It will vibrate with a basic frequency ω0, but it will also vibrate at integer multiples

of that basic frequency.

Expressed in the frequency domain,

ωm = m · ω0 . (1)

The same principle can be observed with the air pressure in a trumpet or other winds, or

the human voice. The above description is a simplification; the partials of real instruments

have amplitudes and frequencies that change with time. In particular, they may not line

up at exact integer multiples, and even the fundamental may change frequency over time

due to a vibrato.

Figure 2 shows a Discrete Fourier Transform of a short (64ms) piece of an oboe’s C4

pitch. Recall that the Fourier transform of a single sinusoid is

F [sin(ωct)] =
1
2
j (δ(ω + ωc)− δ(ω − ωc)) . (2)

This makes it clear that if we show only the positive frequency range and if we take the

magnitude, we will see a single delta peak in the spectrum. We should discover something

similar for the DFT magnitude of a musical pitch. Each harmonic should yield a spike

located near an integer multiple of the fundamental (typically the spike with the lowest

frequency).

3

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f/Hz

|F
F

T
(f

)|
/m

ax
(|

F
F

T
(f

)|
)

oboe−c4−excerpt.wav

fundamental
or first harmonic

second harmonic

third harmonic

Figure 2: Harmonics of an oboe C4 tone, DFT magnitude

Figure 2 does show significant peaks. Of course, they are not true delta peaks, since the

analysis is over a finite window of data and real instruments cannot be perfectly periodic.

We also see that the peaks of the harmonics are located at or near integer multiples of the

fundamental.

The term overtone is a general term for referring to all the frequency components besides

the fundamental. Overtones will be categorized into harmonics that are integer multiples

of the fundamental, and partials, which consist of the rest.

This nomenclature is not standard; most authors consider all harmonics to be partials

(but not all partials to be harmonics). Our convention allows us to avoid the cumbersome

expression “nonharmonic partials.” (see Figure 2)

1.2.3 Pitch Spacing in Western Music

The following table shows the pitches of a chromatic scale from C4 to C5 in western music.

This scheme of musical tuning is called a 12-tone equal temperament system, in which

an octave is subdivided into a series of equal pitch ratios. The pitch is not linearly spaced

across the octave (the last row shows the numbers for a hypothetical linear spacing) since

humans perceive frequencies logarithmically. Mathematically speaking, the pitches of the

scale follow a geometric sequence.

4

Table 1: Common pitch spacing
Note C4 C#4 D4 D#4 E4 F4 F#4 G4
Pitch/Hz 261.6 277.2 293.7 311.1 329.6 349.2 370 392
Lin. 261.6 283.4 305.2 327 348.8 370.1 392.5 414.3
Note G#4 A4 A#4 B4 C5
Pitch/Hz 415.3 440 466.2 493.9 523.3
Lin. 436.1 457.9 479.7 501.5 523.3

1.2.4 Musical Scales and the Weber-Fechner-Law of Perception

Human perception, in general, is not associated with a linear scale. A general law describing

human response to physical stimulus was discovered by Ernst Heinrich Weber and Gustav

Theodor Fechner in 1860 [6]. A later extension was made by Stanley Smith Stevens in 1957

[27].

Stimulus (S) and perception (p) can be related by the differential equation

dp = k · dS

S
, (3)

which is solved by

p = k · ln
(

S

S0

)
= k · ln(2) · log2

(
S

S0

)
= k̃ · log2

(
S

S0

)
, (4)

where k̃ is an experimentally determined constant, and S0 denotes a stimulus threshold

below which nothing is perceived. Vice versa, this means that if we scale the perception

linearly, such as with the musical scale, the stimulus will be a certain exponential function.

In the case of pitch and the table above, it is

S = S0 · 2p/k̃ = S0 · 2p/12 . (5)

To verify this, set S0 = 261.6 and let p = 1, 2, . . .13. The spacing of the pitches are

important in note transcription systems, in which a nearest-neighbor classification based on

this result might be used.

A measure frequently appearing in the literature is the cent, which equals one hundredth

of an equal tempered semitone. This is equivalent to one twelve-hundredth of an octave,

since there are twelve semitones to the octave. Thus, if the frequency f2 is said to be a cent

5

higher than f1, then
f1

f2
= 21/1200 ≈ 1.00057779 . (6)

Humans can notice a difference in pitch of about 5 to 6 cents, which is an astoundingly

high degree of resolution.

Despite this result for the pitch scale, a deviation can be observed for very high fre-

quencies such as the 7th and 8th octaves and higher. Pitches perceived and performed by

absolute pitch possessors and flutists, respectively, exceed the theoretical value, and do so

increasingly the higher the note. An experimental study and discussion of physiological

origins can be found in [22]. For the purpose of this project, this phenomenon shall not be

taken into account.

1.2.5 Motivation for Pitch Estimation

Some applications of pitch estimation include

• Melody note detection and query-by-humming (information retrieval)

• Score transcription systems / conversion to MIDI

• Music visualization

• Polyphonic sound separation, e.g. for instrument identification

1.3 Timbre of Instruments

The general ideas of pitch, timbre and the relationship of the harmonics have been pre-

sented previously. This section makes some more general remarks and reviews specific

characteristics of instrument timbres.

In particular, timbres differ mostly in the weight and number of the harmonics, and

differ to a much lesser extent in the basic shape of the peaks (this fact will be exploited

later in our mathematical modeling). The spectral magnitude of most acoustic instruments

approximately follows a 1/f curve above a certain frequency, so most of the significant

timbral parameters are found in the lower frequency bands. This fact will also be exploited

later.

6

Figure 3: Onset of clarinet and sax, from [12] p.205
fig:peakCutoffs

1.3.1 The Three Phases of a Tone

So far, we have assumed that timbre is constant over time. The three temporal phases of a

tone (onset/attack, steady state, offset/release/decay) each help define the overall timbre of

an instrument. The attack particularly enriches the musical listening experience and seems

to reveal important physical parameters not contained in the other phases. The decay, on

the other hand, is far less important as far as timbre recognition is concerned, since the

timbral characteristics can be clearly heard during the (often much longer) steady-state

phase, which inherently always precedes the offset phase.

A typical spectral magnitude of a 64ms frame of a monophonic piece in the steady state

is shown in the introduction, but for better analysis of this phase, it is useful to look at

time-averaged spectra to be certain of observing general tendencies (often called long-term

average spectra, or LTAS). Any noise present in the signal will then approximately average

to zero.

For the onset phase on the other hand, LTAS would be detrimental, since we have an

explicit time dependency of the spectral features. This can be easily demonstrated by some

spectrograms, as in Figure 3.

The two instruments in Figure 3 not only differ in number of harmonics and their

weighting (the latter is not visible here), but especially in time onset structure of harmonics.

7

These two instruments, clarinet and saxophone, could easily be differentiated from an organ.

As also shown in [12], a principal 8’ open flue organ stop has a second harmonic that begins

much earlier than the fundamental (about 35ms).

1.3.2 Pitch Dependency of Timbre

Generally, the timbral parameters in all phases are pitch-dependent. This is one reason

why a reliable pitch estimation system is a prerequisite to instrument identification. Figure

4 shows the notes A4 and F4 performed by the same viola in the same environment, on

different strings.

Figure 4: LTAS of the viola’s F4 and A4 tones

Although the pitches are quite close, the weights of the harmonics vary considerably

between these two tones. This is not a special case; it seems impossible to create a single

weighting profile for an instrument across all its pitches.

Figure 5 shows the LTAS of an F4 from a cello. Of course, telling instruments apart

within a family such as the strings (violin, viola, cello, bass) is challenging. This is further

complicated by the range overlap between different instruments, as shown for the string

family in Figure 6.

Furthermore, there is not just an overlap between instruments but also strings on the

same instrument (see also Figure 6). This would have to be considered when training a

model for an instrument, dramatically increasing the number of samples needed.

8

Figure 5: LTAS of the cello’s F4 tone

1.3.3 Characteristics of some Specific Instruments

Many instruments have distinctive characteristics. For instance

• Figure 7 show that the peak “feet” have a distinctive shape. One side typically has

a sharp upward or downward turn, but on the other side of the valley the change is

slight.

• Plucked instruments (such as guitar, strings, harp) and the piano have a particular

short-time energy or amplitude envelope. Figure 8 shows the time samples of a piano

note, thus indicating the energy envelope.

• The trumpet has strong and regular harmonics up through high frequencies.

• Overblowing of wind instruments or organ pipes allows another octave (or octave and

perfect fifth for stopped pipes) to be reached, that otherwise would not be available

to the instrument. The timbre changes audibly.

• Stopped organ pipes sound an octave lower than open pipes at the same length, but

only the odd-numbered harmonics are present. Conversely, an open pipe and a closed

pipe at half the length produce the same pitch, but their timbres are quite different

because of the lack of even-numbered harmonics in the signal of the closed pipe ([12]

p.176).

9

C
2

B
2

C
4

B
3

C
3

B
4

C
5

B
5

C
6

C
1

B
1

Octave

1

Octave

2

Octave

3

Octave

4

Octave

5

Octave

6

C
e
llo

. . .
. . .

. . .
. . .

. . .
. . .

CGDA

V
io

la

cgd
’

a
’

B
6

V
io

lin
d
’

a
’

e
’’

g

Octave

7

. . .
B

7
C

7

string

instrument

p
itc

h
C

C
B

B
C

B
c

b
c
’

b
’

c
’’

b
’’

c
’’’

b
’’’

c
’’’’

b
’’’’

C
2

G
b
4

G
2

E
5

D
3

D
5

A
3

A
5

C
3

B
4

G
3

G
5

D
4

E
b

6

A
4

A
b

6

G
3

B
3

D
4

C
6

A
4

F
6

E
5

D
b
7

Figure 6: Pitch overlap in the string instrument family

10

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f/Hz

|F
F

T
(f

)|
/m

ax
(|

F
F

T
(f

)|
)

oboe−c4−excerpt.wav

Figure 7: Spectrum of the oboe’s C4 tone (no LTAS)

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.015

−0.01

−0.005

0

0.005

0.01
Piano C7

time in s

Figure 8: The piano’s amplitude over time

11

1.4 Human Auditory Perception of Pitch

Perceptional studies show that the auditory system is not straightforward. It is still not clear

exactly how the auditory cortex, a part of the brain, processes information or how training

is performed. However, indications point towards a tonotopical organization of the auditory

cortex, that is, certain cells are sensitive to specific frequencies ([23, 30]). Spectrally rich

pitches are easier to discriminate than those of sinusoidal tones [28]. Further, it appears that

the brain separates encoding of spectrally complex information from temporally complex

information [28]. In a similar way it may separate phonetic content from musical content

[29].

However the brain processes auditory information internally, some important results

may be derived using a black-box approach in which the listener is asked to give subjective

perceptual judgement on specially prepared sound sources. The first experiments of this

kind were performed by Helmholtz [32], who also formulated the place theory of pitch

perception, which will be discussed in more detail here. The counterpart, the temporal theory

of pitch perception, will be skipped because it does not directly relate to our spectrum-based

pitch estimation algorithm. Note that neither of the theories alone can sufficiently model

actual perception in all cases.

1.4.1 F0 Extraction Only

The most straightforward pitch determining method extracts only the fundamental, i.e. the

first harmonic. The problem is that some sounds may be missing the fundamental, yet the

perceived pitch is still the same as if it were present. Examples of sounds of this category

are overblown flutes and organs. This fact is also used in small loudspeakers that cannot

reproduce lower frequencies well.

1.4.2 Minimum Difference of Adjacent Harmonics

The pitch perception of a sound with a missing harmonic suggests that the brain looks at

the spacing between adjacent peaks for pitch determination, so the same idea is used here.

pitch = min
j∈1..M−1

fj+1 − fj . (7)

12

While this method works for navigating around the simple case where only the funda-

mental is missing, different mixtures can be created for which this method does not work

either. An example is presented in Table 2, in which there are only three harmonics at rather

high frequencies relative to their distances. exist. The pitch extracted by the minimum-

difference method would clearly be 200Hz, but this does not match interpretation of a

human subject.

1.4.3 Highest Common Factor

Suppose we have M harmonics present. To overcome the shortcomings of the preceding

methods, the highest common factor approach divides each center frequency of a harmonic

by a sequence of integers 1..N . N should be sufficiently larger tham M . Among this set

of numbers, we find the M that are closest to each other so that we will pick one number

uniquely from each set associated with a certain harmonic. The pitch is then computed by

simply taking the arithmetic mean of these M numbers. Let π1 . . . πM denote the M closest

values. The pitch estimate is then

pitch =
1
M

M∑

i=1

πi . (8)

In Table 2, there are three harmonics, so M = 3. The three bold numbers in the table

correspond to the three closest ones, prohibiting two or more from the same row.

Table 2: HCF example
div by → 1 2 3 4 5 6 7 8
harmonic ↓
1 1040 520 346.7 260 208 173.3 148.6 130
2 1240 620 413.3 310 248 206.7 177.1 155
3 1440 720 480 360 288 240.0 205.7 180

The pitch is then determined to be

pitch =
208 + 206.7 + 205.7

3
= 206.8 ≈ 207 , (9)

which corresponds exactly to a human subject’s matching of the test tone with a pure

frequency.

13

The reason for looking at these special cases and discussing human perception is that

we would like our pitch estimator to work similarly to our brain, in the hope that its results

would match what we hear. The heuristics in Chapter 4 do not take all the above discussed

cases into account. However, the reader should keep in mind that estimating a pitch is

generally a complex task, and that for a more sophisticated system developed in the future,

perceptional aspects might assume a higher priority.

14

CHAPTER II

OVERVIEW OF PITCH ESTIMATION APPROACHES

To our knowledge any approach to the problem of pitch estimation can be categorized into

one of two general categories: short-time frame based, or spectrogram based. The former

looks at isolated signal slices and the latter uses the whole spectrogram of the entire piece.

While the short-time slice approach could be viewed as just a special case of the spectro-

gram approach, the distinction makes sense if we look at the mathematical formulations.

Furthermore, the different approaches are often uses in two application contexts, namely

audio streaming and entire-file-based analysis.

The first four sections present four approaches for the time-slice technique. The last

section summarizes some spectrogram-based techniques. This overview is not meant to be

exhaustive, but it should show some breadth and highlight important general concepts.

2.1 Spectral Smoothing Using “Specmurt Anasylis” (sic)

In principle, the “specmurt anasylis” approach [24] finds the pitch by reducing the set of

harmonics to a single peak by a signal filtering technique. It is meant to produce piano-roll

visualizations, which are similar to spectrograms. The piano-roll output has a linear pitch

frequency axis and is obtained using a wavelet transform (might also use a CQT). The pitch

is modeled as a single delta peak in the frequency domain, and the resulting spectrum v(x)

is obtained by the convolution of this delta distribution u(x) (or in the polyphonic case,

superposed deltas) with a “common harmonic structure” h(x):

v(x) = h(x) ∗ u(x) . (10)

The left side is a known (signal spectrum). We must make an educated guess about

the common harmonic structure h(x) (basically, the timbre information), which is crucial

to this technique’s performance. All that remains is a “simple” deconvolution of the above

equation to obtain the pitch estimate(s), which must be picked from the remaining peak(s).

15

The authors of [24] do not go this far, though, and are satisfied with the visual output and

a comparison to the MIDI equivalent. To convert the piano-rolls of their described system

to a musical score, a pitch-spelling algorithm would need to be attached (a comparison of

such algorithms is given in [20]).

The follow-up paper [25] discusses how to optimize the shape of the common harmonic

structure.

2.2 An Expectation Maximization for a Constrained GMM
Using an Information Criterion

This approach, given in [15], [16], models each “harmonic structure” (set of harmonics for

a particular pitch) with a constrained Gaussian Mixture Model, and is thus similar to the

formulation in Chapter 3. The difference is that [15] uses a log-frequency transform and

an alternate maximization part which does not only constrain the means, as we do here,

but the weights as well. The Akaike information criterion (AIC) is used for estimating the

number of concurrent pitches, in this paper denoted as K. A high parameter (in the range

of K = 12) is initially assumed, and then iteratively reduced. The minimizer of the AIC

function across these values will determine the best guess of the true value of K. Thus,

this implementation requires the reestimation of the parameters via EM as many as 12

times. The authors of [15] have not included any analytical or experimental remarks about

computational complexity.

2.3 A General Iterative Multipitch Estimation Algorithm

The paper titled “Robust Multipitch Estimation for the Analysis and Manipulation of Poly-

phonic Musical Signals” [17], introduces a general scheme for polyphonic pitch estimation

and describes a particular approach to pitch estimation based on Short-Time Fourier Trans-

form (STFT). Bandwise processing of DFT frames is used to come up with bandwise pitch

estimates that are then combined into a single score.

The first part of the general scheme, predominant pitch estimation, finds the pitch of the

most prominent sound standing out from the background interference of other harmonics

and noisy sounds. In the second part, the spectrum of the detected sound is estimated and

16

mixture

signal Predominant pitch

detection
Remove

partials

iterate

store the pitch

Estimate

sound

spectrum

Figure 9: General multipich estimation principle by [17]

subtracted from the mixture. The estimation and subtraction steps are then repeated for

the residual signal, until a predefined maximum number of pitches has been reached, or no

new pitch estimates can be found confidently.

The follow-up paper [31] takes the outputs of the multipitch estimator described in [17]

and improves on their accuracy in the least-squares sense while retaining the structure of

the sounds. Smooth linear models are constructed for all significant sounds; the parameters

of the models are obtained with a least-squares solution.

2.4 Partial Searching Algorithm with a Tree Search and
Dynamic Programming

The algorithm presented in [34] assumes that the fundamentals for each pitch are given. It

recognizes that a particular significant peak can be “shared” by the harmonics of two differ-

ent pitches, and comes up with the best guess for a solution. It tries to find these respective

harmonics via a “relaxed harmonics condition,” using a particularly defined tree search

algorithm and dynamic programming. A peak-picking heuristic, or some other method

of coming up with the prospective harmonic locations on the frequency axis, can be used

prior to running the algorithm. The results don’t look overly promising at present when

the number of pitches is not known in advance. However, to our present knowledge, this

approach should be investigated further.

2.5 Independent Subspace Analysis, Prior Subspace Anal-
ysis, Generalized Prior Subspace Analysis

Independent Subspace Analysis (ISA; [4]) considerably extends Independent Component

Analysis (ICA; [13]). First, the one-dimensional signal is projected onto a two-dimensional

space using the STFT or Constant-Q Transform [3]. Then, the ICA constraint of requiring

17

as many mixture observation signals as there are sources is relaxed. Further, dynamic inde-

pendent components are allowed to account for the nonstationarity of the signal. Sources

are tracked by the similarities of dynamic components over small time steps.

Prior Subspace Analysis (PSA; [10], [8]) requires an individual prior subspace for each

note of an instrument. Since this is a large collection for most instruments, the first appli-

cation of PSA to music analysis was an application to drum sounds.

The magnitude spectrogram of the signal is modeled as the superposition of l unknown

spectrograms Yj , and each of the spectrograms can be represented as the outer product of

an invariant frequency basis function and an invariant amplitude basis function:

Y =
l∑

j=1

Yj =
l∑

j=1

ajsj . (11)

PSA assumes that there are known frequency basis functions or prior subspaces apr that

are good approximations to the actual subspaces (these must be found using some domain

knowledge). Substituting for the aj with these prior subspaces yields

Y =
l∑

j=1

aprsj = Aprs , (12)

which is solved in PSA by premultiplying the overall spectrogram with the pseudo-inverse

of the frequency basis functions, to get an initial estimate for s. ICA is used to improve

these estimates.

In Generalized Prior Subspace Analysis, given in [9], Equation 11 is essentially rein-

terpreted in such a way that the prior subspaces are viewed as an undercomplete signal

dictionary and that the data is sparse in nature, which results in a new version of the PSA

algorithm [9].

18

CHAPTER III

A GMM APPROACH TO PITCH ESTIMATION

This chapter provides the necessary theoretical tools for the pitch estimation approach

presented in this document. Our algorithm merely takes spectral information into account,

via STFT.

In general, the DFT serves as a good basis for frequency analysis, since its properties

are well-explored and implementations using the Fast Fourier Transform (FFT) are effi-

cient. However, other transformations such as the Modulation Spectrogram [11] (originally

thought of speech), the Constant-Q-Transform (CQT; [3]), or wavelet transformations make

sense [24]. The CQT is mainly motivated by the way it scales the frequency axis: it is linear

in the pitches of the chromatic scale discussed in 1.2.3. Generally, psychoacoustic results of

pitch perception question the efficiency of the DFT as the basis of the further analysis, but

a more detailed study of the suitability of other transforms is outside of the scope of this

thesis.

The following sections discuss in detail the mathematical modeling of the harmonics

via Gaussian Mixture Models and the Expectation Maximization algorithm designed to

estimate the parameters of the model, eventually leading to a set of frequencies (ideally)

corresponding to the true center frequencies of the harmonics.

3.1 General Fundamentals of Expectation Maximization Al-
gorithms

The Expectation Maximization (EM) technique is a general method for solving maximum

likelihood (ML) estimation problems with incomplete data. It was first formally formulated

by Dempster, Laird, and Rubin [18] and extended for superimposed signals by Feder and

Weinstein [7].

Assume the probability density function of an observable random variable Y is fY(y; Θ).

19

In the EM approach, we hypothesize a “complete data” random variable X, which is nonob-

servable. They two kinds of data are related by a noninvertible and unknown function H,

H(X) = Y . (13)

Therefore, the density for X can be expressed by

fX(x; Θ) = fX|Y=y(x; Θ) · fY(y; Θ) (14)

over the complete support of H. Rearranging and taking the logarithm of both sides yields

log(fY(y; Θ)) = log(fX(x; Θ))− log(fX|Y=y(x; Θ)) . (15)

If we now take the conditional expectation with respect to X given Y = y for a parameter

value Θ′ on both sides, we are left with

log(fY(y; Θ)) = E [log(fX(x; Θ))|Y = y; Θ′]−
E

[
log(fX|Y=y(x; Θ))|Y = y; Θ′

]
.

(16)

This looks cumbersome, so for convenience we define

L(Θ) = log(fY(y; Θ))

U(Θ, Θ′) = E [log(fX(x; Θ))|Y = y; Θ′]

V (Θ, Θ′) = E
[
log(fX|Y=y(x; Θ))|Y = y; Θ′

]
,

(17)

to get the more elegant expression

L(Θ) = U(Θ,Θ′)− V (Θ, Θ′) . (18)

This is a special way of writing the original loglikelihood that we want to maximize.

Using Jensen’s inequality on the V -term yields

V (Θ, Θ′) ≤ V (Θ′, Θ′) . (19)

We infer that if U(Θ,Θ′) > U(Θ′,Θ′), then

L(Θ) > L(Θ′) . (20)

An EM algorithm starts from an arbitrary initialization point Θ̂(0) at time t = 0.

Subsequent parameter estimates are computed in the following manner:

20

• Expectation-step: Compute

U(Θ, Θ̂(t)) . (21)

• Maximization-step:

Θ̂(t+1) = max
Θ

(U(Θ, Θ̂(t))) . (22)

• The iteration is repeated, for instance, until

∥∥∥Θ̂(T) − Θ̂(T+1)
∥∥∥ ≤ ε (23)

for some iteration step T (other conditions such as a maximum number of iterations are

also possible). Smaller epsilons result in more precise final estimates at the cost of more

iteration steps needed to converge.

The formulation follows the scheme of a steepest-descent algorithm. Hence, EM algo-

rithms will converge to a local maximum, and in general we do not know whether or not

a particular found local maximum coincides with the global maximum we want. The final

results are thus heavily dependent on the starting points, but the EM procedure itself does

not define those.

3.2 Fundamentals of Gaussian Mixture Models (GMM)

Gaussian mixture models are intended to express a more general, multimodal probability

density function (i.e., multiple peaks) as a superposition of single Gaussian distributions

(called “mixtures”). This is convenient because the ML estimates of the parameters of

Gaussians are analytically tractable and well-known. In most cases, the GMM formulation

can be used as a good approximation to a real distribution, even if mixture components are

not really Gaussian. The mathematical formulation is simply

fX(x; Θ) =
∑M

m=1
wm ·N(x; Θm) , (24)

where the wm are mixture-weights that must sum to unity, i.e.
∑M

m=1 wm = 1, and Θm =

[σ2
m, µm] denote the means and variances, as found in the Gaussian density function

N(x; σ2, µ) =
1√

2πσ2
· exp

(
−(x− µ)2

2σ2

)
. (25)

21

Further,

Θ =
M⋃

m=1

Θm , (26)

and M , the number of mixture components, is assumed to be known for now.

With knowledge of the observable data xi, the (unbiased) ML parameter estimates of a

single Gaussian are [5]

µ̂ = 1
N ·∑N

i=1 xi

σ̂2 = 1
N−1 ·

∑N
i=1 (xi − µ)2 .

(27)

3.3 An EM Algorithm for GMM Parameter Estimation

The general EM approach can now be adapted to work on GMM problems. The “missing

data” are the means, variances, and weights (or prior member probabilities) of the mixture

components, which must be estimated from a limited number of samples.

• The typical expectation step for a GMM [21] yields

P̂ (m|xi)t =
ŵt

m ·N(xi; σ̂2 t
m , µ̂t

m)∑M
k=1 ŵt

k ·N(xi; σ̂2 t
k , µ̂t

k)
, (28)

which is the estimated probability (at iteration step t) that a sample xi belongs to

Gaussian component m.

• The maximization part gives

ŵt+1
m = 1

N

∑N
i=1 P̂ (m|xi)t

µ̂t+1
m = 1∑N

i=1
P̂ (m|xi)t

·∑N
i=1 xiP̂ (m|xi)t

σ̂2 t+1
m = 1∑N

i=1
P̂ (m|xi)t

·∑N
i=1 (xi − µt

m)2P̂ (m|xi)t .

(29)

• An instance of a termination condition for the iterative scheme is given above (general

EM), and is also used in our implementation.

3.4 Missing Data in EM/GMM Analysis of Monophonic
Music (Number of Components)

Now that we have an iterative scheme for estimating the mixture parameters, let us take a

look back at the pitch estimation problem. The fundamental and the harmonics are spread

22

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f/Hz

|F
F

T
(f

)|
/m

ax
(|

F
F

T
(f

)|
)

frame of bassTrombone−f#1.wav

Figure 10: Many components arising from low pitch (bass trombone, F#1)

in approximately equal distance from each other across the magnitude-spectrum. A lower

pitch results in these peaks being closer to each other, and higher pitches force them farther

apart.

Given the limited frequency interval of typically 0..8kHz (for a 16kHz sampling fre-

quency), we will see a different number of mixture components if we look at different

pitches. Figures 10 and 11 demonstrate this. A low pitch has many components (bass

trombone F#1 in Figure 10), whereas a high pitch has few components (flute B6 in Figure

11).

Naturally, if the assumed number of components M does not coincide with the actual

number, our estimation is not optimal, even with the best initial parameter guess. There

are a number of reasonably well-explored algorithms to determine M (see [1]), but they are

not low in complexity. In testing of the EM at this single pitch stage we experimented with

different choices for M and found that for many cases, 15 ≤ M ≤ 20 works best (although

still far from the desired quality). More discussion about this is given in Chapter 5.1.

23

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f/Hz

|F
F

T
(f

)|
/m

ax
(|

F
F

T
(f

)|
)

frame of flute−b6.wav

Figure 11: Only one component arising from high pitch (flute, B6)

3.5 Reinterpretation of the Magnitude Spectrum as a Spec-
tral Density

So far, an EM algorithm has been formulated to work on monophonic cases using a GMM

formulation. However, we assume that we have samples xi from the unknown distribution.

In our problem of pitch estimation, we are not supplied with these samples. The definition

of the (discrete) Fourier Transform does not provide any meaning for some “sample” to form

a frequency density, simply because a single sample does not carry an inherent frequency.

Indeed, the DFT is deterministic in nature.

The EM presented above can be reformulated to merely work with the input of the den-

sity (strictly speaking, it is a probability mass function, or pmf, the discrete equivalent to the

probability density) of the samples. In the implementation, this density is the magnitude-

spectrum for a single frame of the sound file. Note that we are using a probabilistic artifice

to solve what is basically a deterministic function fitting problem.

24

3.6 Modification of the EM Algorithm to Accept the “Fre-
quency Density” whose Parameters Are to Be Esti-
mated

Let the “frequency density” input to the EM algorithm be denoted by φ(ωi), where the

support points ωi are the frequencies at which the DFT for a sound frame was computed

(it is mandatory that
∑Ω

i=1 ωi = 1 in order to be a valid density).

• Expectation-step

Γ(m,ωk)t =
wt

m ·N(ωi; σ̂2 t
m , µ̂t

m)∑M
k=1 wt

k ·N(ωi; σ̂2 t
k , µ̂t

k)
. (30)

This is the curve of a single Gaussian component at its current parameters, normalized

over the sum over all mixtures. Comparing this to the former equation for P , this

expression gives a likelihood measure for each abscissa value of the density graph,

whereas before, probabilities were computed for each such value, even if it occurred

multiple times. The “number of occurrences” is accounted for by the multiplication

with φ(ωk) in the maximization step, where now real positive values can and will also

be assumed.

• Maximization-step:

ŵt+1
m =

Ω∑
k=1

φ(ωk) · Γ(m,ωk)t ,

µ̂t+1
m = 1

ŵt+1
m

·
Ω∑

k=1
ωk · φ(ωk) · Γ(m, ωk)t ,

σ̂2 t+1
m = 1

ŵt+1
m

·
Ω∑

k=1
(ωk − µ̂t

m)2 · φ(ωk) · Γ(m,ωk)t .

(31)

This formulation enables a better understanding of the nature of this EM algorithm:

multiplication of each mixture with the observed data will move it towards the next peak

and eventually converge, yet depending on the initial estimates, some peaks may be “out

of reach,” especially if the amplitudes between the peaks are very close to zero. Figure 12

demonstrates this visually.

25

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Principle of the modified EM − an illustrative example

x (amplitude)

orig
current est
product

Figure 12: Illustration of the behavior of the EM algorithm for Gaussian Mixture Models

3.7 Missing Data in EM/GMM Analysis of Polyphonic
Music (Number of Tones, Number of Components)

Progressing now to the polyphonic case, the formula for GMM introduced above would still

be able to describe any multitone mix, yet the membership of each Gaussian component to

a particular tone is not expressed. This necessitates a GMM formulation for the polyphonic

case:

fX(x; Θ) =
P∑

p=1

M(p)∑

m=1

wp
m ·N(x; Θp

m) . (32)

The number of components M is now dependent on the pitch they belong to, and here

denoted M(p). P is the number of overlaid pitches. The parameters Θp
m = [σ2 p

m , µp
m] are

now clearly separated according to pitch membership, and the means for a particular p

should be thought of as, at least ideally, equally spaced from each other in the frequency

domain. The problem of finding a good guess for P will be addressed in Chapter 4.

26

CHAPTER IV

HEURISTICS FOR INITIAL ESTIMATES

As previously mentioned in Chapter 3.1, the performance of an EM algorithm will heavily

depend on its initialization because of its nature as a steepest-descent algorithm. This

chapter tackles this problem for the specific domain of pitch estimation in polyphonic music,

and also features other heuristics that are necessary for the current system to work well on

real data. Chapters 4.1 through 4.3 discuss heuristics for single-pitch cases, and 4.4 leaves

everything untouched except for the core heuristic, which is modified to support polyphony.

4.1 Limiting the Frequency Range (“Cut-Off”)

The optimization described in this section may seem insignificant, but it can have a tremen-

dous effect on the number of iterations needed for the (unconstrained) EM algorithm to

converge. The idea is that we can disregard the highest frequency portion of the magnitude

spectrum of a frame. In many cases, the significant peaks are located in the lower regions;

sometimes even up to 60− 70% of the spectrum does not provide much discrimination in-

formation. Hence, reducing the data becomes appealing, as illustrated by the magnitude

spectrum of a real piece of music (sampled at 16kHz) shown in Figure 13.

The cutoff frequency should be determined for each frame independently. It was exper-

imentally determined to be well chosen by

ωcutoff = arg max
ωk

({ωk|φ(ωk) ≥ 0.025 ·max(φ(ωk))}) , (33)

in other words, the largest frequency for which the spectral density value is larger than or

equal to 0.025 of the global maximum. In Figure 13, only the spectrum inside the red box

will be passed on to any further processing. The rest is discarded since it does not carry

useful information for our purposes.

Figures 14 and 15 show spectrogram results for the (unconstrained) EM algorithm but

with and without the spectral cutoff heuristic (and without further heuristics). This simple

27

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
spectral cutoff at 1706Hz (frame of E. Grieg’s "Puck")

f/Hz

F
F

T
(f

)/
m

ax
(F

F
T

(f
))

Figure 13: Reducibility of the spectrum

Pitch est. w/ 5 mixtures for bassTrombone−c4

Time in seconds

F
re

qu
en

cy
 in

 H
z

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

1000

2000

3000

4000

5000

6000

7000

pitch estimatesmixture means

Figure 14: Spectrogram result without spectral cutoff

28

Pitch est. w/ 5 mixtures for bassTrombone−c4

Time in seconds

F
re

qu
en

cy
 in

 H
z

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1000

2000

3000

4000

5000

6000

7000

8000
pitch estimatesmixture means

Figure 15: Spectrogram result with spectral cutoff

heuristic yields a 47% reduction of EM algorithm iterations for the given spectrogram. The

saving will generally depend on musical timbres and pitches contained in the data.

4.2 Leveraging the Spacing of the Harmonics

As discussed in the introduction, we know that the locations of the peaks belonging to

a particular pitch should adhere closely to frequencies that are integer multiples of the

fundamental (1). Assuming we are given a recording with reasonable SNR, we can also

assume that the peaks we seek generally have significantly higher amplitudes than any

noise-related peaks. Supposing we can find a set of such peaks that follow these principles

with some tolerance, we can use this set as a good initial estimate for the EM algorithm.

4.2.1 Peak-Picking Function

A code module that finds all local maxima of a curve had to be added (low complexity). This

module finds all the local maxima, no matter where they are located, and no matter how

29

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f/Hz

F
F

T
(f

)/
m

ax
(F

F
T

(f
))

bass−g1−sulE.wav

φ(ω
k
)>0.05*max(φ(ω

k
))

ω
k
>45Hz

Figure 16: Summary of cutoff ranges

flat the peaks might be. Further filtering of these peaks had to be applied; the discussion

follows.

4.2.2 Peak Filtering Heuristic

Examination of a lot of data has shown that there may be a low-frequency peak with a high

amplitude that does not fit into the harmonic structure. Although it is not entirely clear

where such peaks come from, we suspect it may be a recording issue. It is necessary to

exclude them (fk ≤ 45Hz). Furthermore, we exclude extremely low amplitude peaks from

consideration as components (those ≤ 0.05 · max (φ(ωk))). This results in the following

peak exclusion window (after peak-picking):

This means that the set of peaks will be initialized according to:

Λ := maxlocal(φ(ωk));

Λ := Λ\ {λk|λk < 45Hz ∨ φ(λk) < 0.05 ·max(Λ)} ;
(34)

4.2.3 Core Heuristic: Basic Idea

Here, the core heuristic will be explained for the single pitch case, and in Chapter 4.4

extended to support polyphony.

Suppose the peak-picking function returns a set of frequency locations for the peaks,

30

denoted by Λ = {λk}, where k = 1 . . . K, and K is the total number of peaks found, which

is not predictable because of noise. The basic idea of the heuristic described in this section

can be expressed in pseudocode as (let the initial guesses we are seeking be denoted by µ̂0
m):

m = 1 : µ̂0
1 := λ1;

for (m := 2; m := m + 1; m < bλK

µ̂0
1
c)

if ∃λk ∈ Λ :
∣∣mµ̂0

1 − λk

∣∣ ≤ δf

then

µ̂0
m := arg min

λk

∣∣mµ̂0
1 − λk

∣∣ ;

else

µ̂0
m := ∞

endif

endfor

(35)

In other words, we assume the peak at the lowest frequency to be the fundamental.

Then we proceed to look for integer multiples of it (within some tolerance) across the entire

frequency range. The tolerance with which the peaks are allowed to deviate from their

ideal locations (+ or −) is defined as δf . This value has to be determined experimentally.

We also have to consider the pitch range we want to investigate. The difficulty is that for

low pitches, we would want δf to be low because otherwise we might consider a tolerance

corridor that extends over adjacent peaks. For higher pitches, peaks are far apart, and then

it would make sense to increase δf , to allow for a little more variation. From experience,

we currently recommend using

δf = min(50Hz, µ̂0
1/4) , (36)

which prevents the tolerance from increasing unboundedly. This yields reasonable values

for a pitch range from the second to the ninth octave (approx. 65− 15800Hz). The lowest

pitches are hard to estimate, because the fluctuation of the peak locations over the frequency

range of the many peaks is quite significant. Chapter 5 discusses this problem further.

31

4.2.4 Interpolation for “Missing Peaks”

Suppose we have a low-amplitude harmonic in the mid-frequency range that is so weak it

would be excluded from the set of peaks Λ after the peak-filtering heuristic discussed in

4.2.2. Instead of only recognizing the first consecutive set of found harmonics, counting

from lowest frequency on, and discarding the rest, it makes sense to fill any “holes” or

“missing peaks” of “not found” harmonics up to the highest valid found harmonic.

For example, if we have a set of found harmonics

50 100 150 200 Inf 300 350 Inf Inf ,

where the Inf entries represent harmonics that are not found in the set of filtered peaks,

we interpolate the Inf entry between 200 and 300, but the two others are deemed uncertain

and/or imprecise. However, this is not done by filling in the mean of the two adjacent

values, instead, the heuristic looks at the set of peaks that was returned before peak-filtering

occurred. If there is nothing found within that frequency range, only the entries of 50 to

200 are considered to belong to this pitch (this more significance for the polyphonic case

treated later). This modification is not given here analytically because it is straightforward.

It can be followed in the code.

4.3 Dynamic Determination of Number of Mixtures

If the peak-picking heuristic works well, the problem of the user having to enter the correct

number of mixtures is also solved. It is clear that the above formulation (Chapter 4.2.3)

can terminate at any step, and hopefully, we will receive an M , equaling the number of

peaks found, that will be equal to the true number of components for that pitch.

4.4 Extension to Polyphonic Cases

4.4.1 Maximum Number of Polyphonic Tones

In the implementation of the GUI, a field was added that lets the user specify the maxi-

mum number of simultaneous tones played in the data (the user/developer should ideally

know this for testing purposes). This value serves as upper termination condition for the

polyphonic-capable heuristic developed next.

32

4.4.2 Iterative Scheme

Suppose we are given Λ, the set of peaks, as outlined earlier in this chapter. For notational

simplicity, we drop the superscript zero indicating the initial estimate, since this should be

understood by now. We define µ̂p
m as the initial estimate of the mth mixture mean of the pth

pitch, and P as the user-defined maximum of simultaneous pitches available in the signal.

The extension to the polyphonic case is realized with this iterative scheme:

p := 1;

while (p < P & |Λ| = K > 0)

m = 1 : µ̂p
1 := λ1;

for (m := 2; m := m + 1; m < bλK

µ̂p
1
c)

if ∃λk ∈ Λ : |mµ̂p
1 − λk| ≤ δf

then

µ̂p
m := arg min

λk

|mµ̂p
1 − λk| ;

Λ := Λ \ µ̂p
m;

else

µ̂p
m := ∞

endif

endfor

p := p + 1;

endwhile

(37)

It is thus possible for the algorithm to terminate before p = P has been reached, and

this will be the case if all significant peaks have been used up in prior set(s) of peaks. This is

useful because P is entered as a global parameter for a piece of music, in which the number

of simultaneous tones can vary, and the above iterative scheme merely works on a single

frame of typically 64ms.

All non-initialized means for a certain value of p and its successors can be subsequently

regarded as a pitch (or pitches) which is (or are) not available at this time frame. Conse-

quently, no EM algorithm will be executed for those means.

33

4.4.3 Constrained EM Algorithm

In this subsection, the EM algorithm working on GMM will be modified in such a manner

as to only allow component means that adhere to a harmonic structure. The motivation

for this is that we expect both the initial estimates by the heuristic and the final estimates

of the EM algorithm to be in that range. Constraining the EM algorithm also saves us

precious computation time, since the constraint should cut down on the number of iterations

necessary for convergence.

Let the initial estimates, the outputs of the heuristic, be denoted by µ̂p
m(0) and σ̂p

m(0).

These are the estimates of the means and variances for each pitch p = 1..P and each

component m = 1..M(p) as previously defined (see Chapter 3.7 on polyphonic GMM), at

t = 0 (init). While there is only a loosely enforced harmonic spacing condition in these

initial estimates, the subsequent EM algorithm iterations will place strict requirements on

the component means.

• Auxiliary EM Initialization: µ̂p
m(0) = m · µ̂p

1(0) , or any other pitch computation

scheme as discussed in Section 5.1 (here, we use the “fundamental only” scheme)

• Expectation-step:

Γ(p,m, ωk)t =
wp

m(t) ·N(ωi; σ̂2 p
m (t), µ̂p

m(t))
∑M

k=1 wp
k(t) ·N(ωi; σ̂

2 p
k (t), µ̂p

k(t))
. (38)

• Maximization-step:

ŵp
m(t + 1) =

Ω∑
k=1

φ(ωk) · Γ(m,ωk)t ,

µ̂p
m(t + 1) = 1

ŵp
m(t+1)

·
Ω∑

k=1
ωk · φ(ωk) · Γ(p, m, ωk)t ,

σ̂2 p
m (t + 1) = 1

ŵp
m(t+1)

·
Ω∑

k=1
(ωk − µ̂p

m(t))2 · φ(ωk) · Γ(p,m, ωk)t .

(39)

• Enforcing strict harmonic spacing for next iteration:

∆f (t + 1) = 1
M(p) ·

M(p)∑
m=1

1
m (µ̂p

m(t + 1)− µ̂p
m(t)) ,

µ̂p
m(t + 1) = m · (µ̂p

1(t) + ∆f (t + 1)) .

(40)

This deserves some explanation. In the previous two steps, the same unconstrained

EM formulation given before has been used. The parameters can flow freely. After

34

that, we look at how the means changed in comparison to the previous means. The

formula for ∆f is the mean of these changes. It will be positive if the sum of all

components moving up in frequency is larger than those moving downward, thus

following the overall dominant trend. This will be accounted for in a correction to the

component means, which are in this step strictly located according to the harmonics

condition.

• Modified termination condition. Iterate until

|∆f | ≤ 0.01 or

|∆f (t) + ∆f (t + 1)| = 0 or

µ̂p
m(t + 1) ≥ µ̂p

m(0) · 21/24 or

µ̂p
m(t + 1) ≤ µ̂p

m(0) · 2−1/24 .

(41)

The first line is defined in analogy with the previously used termination condition.

The second line is necessary because, in some cases, subsequent ∆f have the same

magnitude but alternate in sign, and this is regardless of the first condition. Condi-

tions three and four are simple sanity-checks for the moving of the first mixtures –

we do not want them to move more than half a semitone (see the introduction for

details).

4.5 Chapter Review

This chapter discussed how initial estimates for polyphonic music can be found using

straightforward heuristics, and how the EM algorithm can be constrained and terminated

using knowledge of the application. At this stage, the EM algorithm is executed serially for

each harmonic structure reflecting one pitch, assuming at each time that it were the only

pitch present. Some problems with this assumption will be discussed in Chapter 5.2.

35

CHAPTER V

PRELIMINARY RESULTS AND ANALYSIS

5.1 Implementation Remarks: Single-Pitch Prototype

Figure 17 shows a screenshot of a MATLAB-based visualizer that plots the spectrogram and

computes pitch estimates dependent on some user input parameters. The input parameters

include:

• Frame length (defaulting 64ms)

• Number of components (typically 15 to 20), constant over all frames

• Method selector: how to determine pitch value from the sets of mixture mean estimates

The last bullet has not been discussed yet; and several different approaches may come

to mind. We implemented the following:

• Fundamental only: p = µ̂T
1 (T is not a matrix transpose, it denotes the final value of

the estimation process)

• Second harmonic minus fundamental: p = µ̂T
2 − µ̂T

1 (if M > 1)

• Mean: p = 1
M

M∑
m=1

µ̂T
m

m (if M > 1)

• “Sum and Divide”: p = 1
M(M+1)/2

M∑
m=1

µT
m (if M > 1)

The idea for the latter is that if, in the ideal case, µ̂T
m = mµ̂T

1 for all m, then

M∑

m=1

µ̂T
m =

M∑

m=1

mµ̂T
1 = µ̂T

1

M∑

m=1

m = µ̂T
1

M(M + 1)
2

, (42)

where µ̂T
1 is the pitch coinciding with the fundamental that we would like to discover. Other

parameters include:

• Frame overlap set to 50%

36

Figure 17: GUI screenshot of single-pitch prototype

• Hamming-windowing of the time frames

• Sample rate usually 16kHz (but works with all of course)

The EM algorithm is initialized by the following procedure:

• Spread mixture means (µ’s) equally across the entire frequency range

• Set all variances equal to a fraction of the global variance

• Initialize all mixture weights with 1/M (note the weights sum to unity)

This GUI system running in MATLAB was used in all the later parts of the pitch

estimation project for visual verification purposes. During the course of the research, it

underwent some changes that will be discussed later.

The graph in Figure 17 should be interpreted as follows. The spectrogram shows the

development of the signal’s spectral magnitude over time (the time axis is scrollable for

37

better resolution of long files). The harmonics are apparent in the graph as thin red hor-

izontal lines, with red indicating larger amplitude. These are the peaks of each frame.

Blue indicates low amplitude. Due to the 1/f falloff typical of acoustic instruments, higher

frequency regions tend towards blue.

The white lines show where the EM estimated the harmonics to be. Ideally, we would

want them to lay exactly on top of the red lines of the data. Finally, the only black line in

the graph shows the actual pitch estimate. It should ideally be close (but not necessarily

identical) to the fundamental, which is the lowest of the red lines.

5.1.1 Results for Single Pitch Cases

We tested with labeled data [19], so we know what the true numerical pitch values of the

recorded notes should be. We discovered that for many of the samples, the pitch was not

identical to the scientific pitch notation [33]. We verified the operation of the EM algorithm

by looking at how well the means matched the peaks of the given data. After all, if we have

an A4 recording and the first peak is at 449Hz and the second at 893Hz, instead of 440Hz

and 880Hz, for instance, it does not make sense to try to adapt an implementation to the

latter. Our observations do not mean that the basic truths (labeling) are wrong1, just that

the perceived pitch is a bit more involved, as laid out earlier in the introduction. Hence,

we currently have no sophisticated numerical statistics summarizing our tests.

5.1.2 Potential Difficulties in Adopting GMM For Pitch Estimation

• The Gaussian function will inevitably return numerical values so small that they are

considered zero. This happens in frames whose peaks are widely spread across the

whole spectral range. The normalization of the E-step would divide by zero, which

clearly has to be prevented. This might seem unlikely to happen, but we found it

occurred quite frequently.

• Peaks are sometimes extremely narrow, so variances that become numerically close

to zero are possible. Additional precautions have to be taken when implementing to

1Unfortunately, the authors of [19] did not return feedback concerning the question of how tuning was
arranged and which pitch standard was used.

38

prevent this from causing trouble. In particular, the Gaussian function, which takes

in the frequency range, as well as the parameter estimates of mean and variance, has

to be modified also to work with zero variance inputs if we do not prohibit this by

defaulting to a minimum nonzero variance. In such cases, we returned a vector that

evaluates to zero everywhere but at the specified mean, at which some arbitrary large

value is chosen (we chose 1000).

• Some noise peaks may confuse the EM algorithm. Smoothing may resolve this issue

and make the peaks more similar to Gaussians. We tried a little bit of running-average

smoothing with a window of two and experimented with other values as well. If we

smooth using this technique, the window should not be chosen large, because this

could merge larger peaks into one. This is generally not desired, unless the heuristics

explicitly account for such cases.

5.2 Discussion of the Final Implementation

The main limitations of the system (see Figure 18 for a screenshot) with all the described

heuristics (GUI screenshot in Figure) for polyphonic operation is that it is dependent on a

user-specified maximum number of tones P . If this maximum is correct, we enjoy relatively

robust number of tone detection. However, for certain cases, the algorithm will find excess

pitches not present in the data if P is chosen too high.

Figure 19 shows pitch estimation results superimposed over the spectrogram of a high-

pitched triad (C diminished in octave 6, ideally having pitches of 1047, 1319, 1480Hz). The

results are quite good. We can see that at about t = 2s, the C6 pitch fades out, one of

the pitch lines discontinues (blue), and the two remaining lines take over the remaining two

pitches. Also, the precision of the pitch estimates seems to visually follow the spectrogram

lines of the fundamentals. Note that the rapid decline of the last remaining pitch at the

end is due to offset artifacts.

The verbose MATLAB console printout for the experiment shown in Figure 19 looks

like:

runEM: frame 22 of 73

39

Figure 18: GUI screenshot of the final implementation

40

Pitch est. w/ 3 tones for CDim_fluteC6_fluteE6_fluteG6Flat.wav

Time in seconds

F
re

qu
en

cy
 in

 H
z

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

1000

2000

3000

4000

5000

6000

7000

pitch estimate tone 1
pitch estimate tone 2
pitch estimate tone 3

Figure 19: Heuristic working well in a high-pitch example

myEM (tone 1): init(heur.) means: 1062.5 2125

myEM (tone 1): init(pitch) means: 1062.5 2125

myEM (tone 1): after EM: 1063.8381 2127.6762

myEM (tone 2): init(heur.) means: 1343.75 2687.5

myEM (tone 2): init(pitch) means: 1343.75 2687.5

myEM (tone 2): after EM: 1341.3972 2682.7945

myEM (tone 3): init(heur.) means: 1500 3000

myEM (tone 3): init(pitch) means: 1500 3000

myEM (tone 3): after EM: 1500.8629 3001.7259

In other octaves, more problems occur. In Figure 20, an undesired effect occurs at

t = 1.8s, where the estimated number of pitches does not change, but in reality, a tone

fades out at this point. The blue (top) line is not desired here. There are several reasons for

this. The fundamentals of the tones E4 and G4 lie close together, and in this case appear

41

Pitch est. w/ 3 tones for CMajor_celloC4SulA_violaE4SulC_violinG4SulD.wav

Time in seconds

F
re

qu
en

cy
 in

 H
z

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

1000

2000

3000

4000

5000

6000

7000

pitch estimate tone 1
pitch estimate tone 2
pitch estimate tone 3

Figure 20: Excess pitches in medium-pitch example

to be wider than usual. Furthermore, there is some apparent imprecision in the recordings

(pitches should be more distant from each other, E4=329.6Hz, G4=392Hz), and the moving

average process also contributes to the merging of the two fundamentals into one. Thus, the

peak-picking heuristic will come up with only one value here. The following heuristic picks

one fundamental and then looks for integer multiples of it, however, without assuming that

certain peaks can be “shared.” It then follows that there will be a higher spurious peak

detected within the range of the second harmonics, which of course separate out better. In

reality this is not an actual new fundamental of another pitch, but just the harmonic of one

of the pitches that unfortunately merged together as just described.

Figure 21 shows the behavior of the algorithm when the spectral magnitude is not

smoothed prior to executing the heuristics and the EM algorithm. It becomes clear that

the E4 and G4 fundamentals now separate better, considering all the places where the blue

and white pitch lines lie close together, as they should.

Another effect that potentially occurs when two harmonics of two different pitches lie

42

Pitch est. w/ 3 tones for CMajor_celloC4SulA_violaE4SulC_violinG4SulD.wav

Time in seconds

F
re

qu
en

cy
 in

 H
z

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

500

1000

1500

2000

2500

3000

3500

pitch estimate tone 1
pitch estimate tone 2
pitch estimate tone 3

Figure 21: Excess pitches in a medium-pitch example - without spectral smoothing

close together is that the EM algorithm, in its current implemented form of being serially

executed for each pitch, will tend to try combining the two harmonics into a larger one,

thus shifting the initial estimate towards the middle of the two adjacent peaks. Precautions

have been taken, however, to limit this behavior (namely small component variance and a

maximum deviation from the initial pitch estimate as one of the termination conditions).

This effect may be leveled out by the opposite tendencies of higher harmonics. In our tests,

we generally did not find this issue to cause much concern.

The third issue we mention is that despite allowing for some variation from the ideal

harmonic spacing, the highest harmonics of a complex tone (i.e. one with a high number

of harmonics) may escape the heuristic and thus lead to spurious high pitch estimates that

do not exist in the data. This is demonstrated in Figure 22.

43

Pitch est. w/ 3 tones for AMinor1stInverse_celloC4SulA_violaE4SulC_violinA4SulA.wav

Time in seconds

F
re

qu
en

cy
 in

 H
z

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

500

1000

1500

2000

2500

3000

3500

pitch estimate tone 1
pitch estimate tone 2
pitch estimate tone 3

Figure 22: Excess pitches in medium-pitch example - escaping the heuristic

5.2.1 Summary of Issues

Clearly, this approach is highly dependent on the quality of the heuristics. The EM algo-

rithm is a great mathematical tool for making precise estimates of the needed parameters,

but its nature as a steepest descent algorithm demands that great effort go into finding good

initialization. Our heuristic techniques are not claimed to be highly sophisticated, but they

should encourage further investigations into this approach. In particular, the assumption

that one peak always reflects only a single harmonic is too simplistic and quickly leads to

problems when the degree of polyphony increases.

Some concepts for that may be useful in this application can be found in [34].

The main issues found mey be summarized as follows:

• We need to set a small constant variance for the Gaussian mixtures, so that the EM

algorithm will not gravitate too much toward an adjacent peak that belongs to a

different pitch.

44

• Limited peak resolution, the smearing of two peaks close to each other but belonging

to different pitches, is aggravated by spectral smoothing.

• The number of pitches is not estimated very reliably in all octaves.

• This approach is good if peaks have some minimum frequency distance between each

other.

• If there are many harmonic belonging to a pitch, the highest harmonics seem prone

to escape the heuristic, and spurious high pitches are detected.

45

CHAPTER VI

CONCLUSIONS AND DIRECTIONS FOR FUTURE

RESEARCH

6.1 Conclusions

The final system we developed allows for good estimates of pitches in the middle to high

octaves. It uses a low number of EM steps, especially compared to our earlier unconstrained

version without the heuristics. The total number of iterations (for a piece of music of length

2 − 3s) has been reduced from the order of 10, 000 to the order of 100, while also usually

coming up with better estimates. The implementation requires entering the maximum

number of pitches (P) played simultaneously, which is a much more practical parameter

than the number of components found in an early version. Many instruments, such as winds

and bowed strings (excluding special cases), are only capable of producing a single pitch at

a time, so for some ensembles in which the instrumentation should be known, this could

already be a usable application. For other instruments such as the piano and the harp, P

might not be obvious at all.

6.2 Directions for Future Work

6.2.1 Account for Harmonic Overlapping of Pitches

The possibility of one peak being “shared” by two different harmonic structures should be

incorporated into our heuristics. Due to the harmonic composition principles of western

music, the “sharing” of harmonics is quite likely to happen.

6.2.2 Follow Klapuri Closely

The paper by Klapuri [17] proposes that after a decision about the membership of a set

of mixtures to a specific pitch has been made, the spectrum should be recomputed. This

computation simply takes the previous spectrum and subtracts the set of estimated mixtures

46

belonging to the current pitch. The next steps would then involve re-picking the peaks,

running the heuristic, and subtracting again, until the maximum number of pitches is

reached.

Klapuri’s proposal makes sense, because neighboring peaks have a mutual influence on

their weights: the closer they are together, the higher they will appear, when in reality, they

are lower. This is not important for pitch estimation itself because we are only interested in

the mixture means, but suppose we were interested in identifying what instruments played

the pitches; then, the weights are the crucial parameters (and to some minor extent, maybe

also the variances). Some problems discussed in the previous chapter could also be resolved.

6.2.3 Confidence Score for Missing Harmonic Interpolation

The decision of what to do with “missing harmonics” has to consider two notions:

• The harmonics found after the gap could also be the first harmonics of other pitches,

• The pitch’s harmonics may actually have ended at the missing harmonic (such timbres

exist; we only need to mix the “right” instruments)

To better account for this, some kind of “confidence score” could allow us to decide

whether or not to interpolate the missing harmonic.

6.2.4 Tune Some of the EM Numerical Parameters such as Termination

More testing with the termination condition described in Section 4.4.3 and possibly other

termination conditions, should be done.

6.2.5 Set Up an Instrument Identifier on the Separated Sources

If we receive a good separation of pitches, we can use our work to identify different instru-

ments. Some further literature review would need to be done prior to this.

47

APPENDIX A

PITCH TABLE

Table of note frequencies - Key: Frequency in hertz (semitones from middle C
Octave 0 1 2 3 4 5 6 7 8 9
Note ↓
C 16.35 32.70 65.41 130.8 261.6 523.3 1047 2093 4186 8372

(-48) (-36) (-24) (-12) (0) (+12) (+24) (+36) (+48) (+60)
C# 17.32 34.65 69.30 138.6 277.2 554.4 1109 2217 4435 8870

(-47) (-35) (-23) (-11) (+1) (+13) (+25) (+37) (+49) (+61)
D 18.35 36.71 73.42 146.8 293.7 587.3 1175 2349 4699 9397

(-46) (-34) (-22) (-10) (+2) (+14) (+26) (+38) (+50) (+62)
D# 19.45 38.89 77.78 155.6 311.1 622.3 1245 2489 4978 9956

(-45) (-33) (-21) (-9) (+3) (+15) (+27) (+39) (+51) (+63)
E 20.60 41.20 82.41 164.8 329.6 659.3 1319 2637 5274 10548

(-44) (-32) (-20) (-8) (+4) (+16) (+28) (+40) (+52) (+64)
F 21.83 43.65 87.31 174.6 349.2 698.5 1397 2794 5588 11175

(-43) (-31) (-19) (-7) (+5) (+17) (+29) (+41) (+53) (+65)
F# 23.12 46.25 92.50 185.0 370.0 740.0 1480 2960 5920 11840

(-42) (-30) (-18) (-6) (+6) (+18) (+30) (+42) (+54) (+66)
G 24.50 49.00 98.00 196.0 392.0 784.0 1568 3136 6272 12544

(-41) (-29) (-17) (-5) (+7) (+19) (+31) (+43) (+55) (+67)
G# 25.96 51.91 103.80 207.7 415.3 830.6 1661 3322 6645 13290

(-40) (-28) (-16) (-4) (+8) (+20) (+32) (+44) (+56) (+68)
A 27.50 55.00 110.00 220.0 440.0 880.0 1760 3520 7040 14080

(-39) (-27) (-15) (-3) (+9) (+21) (+33) (+45) (+57) (+69)
A# 29.14 58.27 116.50 233.1 466.2 932.3 1865 3729 7459 14917

(-38) (-26) (-14) (-2) (+10) (+22) (+34) (+46) (+58) (+70)
B 30.87 61.74 123.50 246.9 493.9 987.8 1976 3951 7902 15804

(-37) (-25) (-13) (-1) (-1) (+23) (+35) (+47) (+59) (+71)

48

APPENDIX B

CODE LISTINGS

B.1 GUI Code

1 function varargout= pitchVisGUI (vararg in)

2 % varargout= pitchVisGUI (vararg in)

3 % GUI fo r p i t c h e s t ima t ion and rep l ay o f sound f i l e s

4 % Author : Dominik L o e f f l e r . (c) 2005/2006

5 gu i S i n g l e t on= 1 ;

6 gu i S t a t e = s t r u c t (’ gui Name ’ , mfilename , . . .

7 ’ gu i S i n g l e t on ’ , gu i S ing l e t on , . . .

8 ’ gui OpeningFcn ’ , @pitchVisGUI OpeningFcn , . . .

9 ’ gui OutputFcn ’ , @pitchVisGUI OutputFcn , . . .

10 ’ gui LayoutFcn ’ , [] , . . .

11 ’ gu i Ca l lback ’ , []) ;

12 i f nargin && i s cha r (vararg in {1})

13 gu i S t a t e . gu i Ca l lback = s t r 2 func (vararg in {1}) ;

14 end

15 i f nargout

16 [varargout {1 :nargout }] = gui main fcn (gu i Sta te , vararg in { :}) ;

17 else

18 gui main fcn (gu i Sta te , vara rg in { :}) ;

19 end

20

21 % −−− Executes j u s t b e f o r e pitchVisGUI i s made v i s i b l e .

49

22 function pitchVisGUI OpeningFcn (hObject , eventdata , handles ,

vara rg in)

23 handles . p i tchPlotHandle= [] ;

24 handles . s l i d e rHand l e= [] ;

25 handles .EMOut= [] ;

26 handles . f i l eLocCur r en tP l o t= ’ ’ ;

27 % Update hand les s t r u c t u r e

28 handles . output = hObject ;

29 set (gcf , ’ DefaultAxesColorOrder ’ , [0 0 0 ; 1 1 1 ; 0 0 1 ; 0 1 0 ; 1 0

0]) ;

30 guidata (hObject , handles) ;

31 % UIWAIT makes pitchVisGUI wai t f o r user response (see UIRESUME)

32 % uiwa i t (hand les . f i g u r e 1) ;

33

34 % −−− Outputs from t h i s f unc t i on are re turned to the command l i n e .

35 function varargout = pitchVisGUI OutputFcn (hObject , eventdata ,

handles)

36 % Get d e f a u l t command l i n e output from hand les s t r u c t u r e

37 varargout {1} = handles . output ;

38

39 function f rameLengthFie ld Cal lback (hObject , eventdata , handles)

40 % Hints : g e t (hObject , ’ S tr ing ’) r e tu rns con ten t s o f frameLengthFie ld

as t e x t

41 % s t r 2doub l e (g e t (hObject , ’ S tr ing ’)) r e tu rns con ten t s o f

frameLengthFie ld as a doub le

42 % frameLength i s expec ted to come in in m i l l i s e c ond s

43 set (hObject , ’ UserData ’ , 10ˆ(−3)∗ s t r2doub l e (get (hObject , ’ S t r ing ’)))

;

44 guidata (hObject , handles) ;

50

45

46 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l p r o p e r t i e s

.

47 function f rameLengthFie ld CreateFcn (hObject , eventdata , handles)

48 % Hint : e d i t c on t r o l s u s u a l l y have a whi te background on Windows .

49 % See ISPC and COMPUTER.

50 i f i s p c && i s e qua l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))

51 set (hObject , ’ BackgroundColor ’ , ’ white ’) ;

52 end

53

54 function noTonesFie ld Cal lback (hObject , eventdata , handles)

55 % Hints : g e t (hObject , ’ S tr ing ’) r e tu rns con ten t s o f noTonesField as

t e x t

56 % s t r 2doub l e (g e t (hObject , ’ S tr ing ’)) r e tu rns con ten t s o f

noTonesField as a doub le

57 set (hObject , ’ UserData ’ , s t r2doub l e (get (hObject , ’ S t r ing ’))) ;

58 guidata (hObject , handles) ;

59

60 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l p r o p e r t i e s

.

61 function noTonesField CreateFcn (hObject , eventdata , handles)

62 % Hint : e d i t c on t r o l s u s u a l l y have a whi te background on Windows .

63 % See ISPC and COMPUTER.

64 i f i s p c && i s e qua l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))

65 set (hObject , ’ BackgroundColor ’ , ’ white ’) ;

66 end

67

51

68 % −−− Executes on but ton pre s s in browseButton .

69 function browseButton Cal lback (hObject , eventdata , handles)

70 [f i leName , f i l ePa t h] = uiget f i l e (’ ∗ . wav ’ , ’ S e l e c t the wave− f i l e to be

analyzed ’) ;

71 i f i s s t r (f i leName) % user made a v a l i d s e l e c t i o n

72 s= [f i l ePa t h f i leName] ; % the current s e l e c t i o n

73 i f ˜strcmp (get (hObject , ’ UserData ’) , s) % in e q u a l i t y wi th

prev ious s e l e c t i o n

74 handles . meansMatrix= [] ;

75 handles . t imeAxis= [] ;

76 end

77 set (handles . runButton , ’ Enable ’ , ’On ’) ;

78 set (handles . playButton , ’ Enable ’ , ’On ’) ;

79 set (handles . FileNameDisplayText , ’ S t r ing ’ , f i leName) ;

80 else % t h i s happens i f d i a l o g g e t s c anc e l l e d

81 s= ’ none ’ ;

82 set (handles . runButton , ’ Enable ’ , ’ Off ’) ;

83 set (handles . playButton , ’ Enable ’ , ’ Off ’) ;

84 set (handles . FileNameDisplayText , ’ S t r ing ’ , s) ;

85 end

86 set (hObject , ’ UserData ’ , s) ;

87 guidata (hObject , handles) ;

88

89 % −−− Executes on but ton pre s s in saveFigureButton .

90 function saveFigureButton Cal lback (hObject , eventdata , handles)

91 [f i leName , pathName] = uiputf i le (’ ∗ .∗ ’ , ’ S e l e c t f i l e to write ,

i n c lude extens i on ’) ;

92 i f i s c h a r (f i leName)

93 plotCp= f i ndob j (gcf , ’Type ’ , ’ axes ’) ; % 1) legend 2) axes

52

94 p= get (plotCp (2) , ’ Po s i t i on ’) ;

95 s h i f t= [− .00 −.1 0 .02 0 . 0 9] ; % i f you en la rge the copy in the

new window ,

96 p= p+s h i f t ; % matlab w i l l e rase e v e r y t h in g (bug ?)

97 set (plotCp (2) , ’ Po s i t i on ’ , p) ;

98 newFig= f igure (’ V i s i b l e ’ , ’ o f f ’) ;

99 newAxes= copyobj (plotCp , newFig) ;

100 set (plotCp (2) , ’ Po s i t i on ’ , p−s h i f t) ;

101 saveas (newFig , [pathName fi leName]) ; % only f o r whole f i g u r e s !

102 delete (newFig) ;

103 end

104

105 function runButton Cal lback (hObject , eventdata , handles)

106 f i l e L o c a t i o n= get (handles . browseButton , ’ UserData ’) ; %ge t : [path

f i l ename]

107 tonesNo= get (handles . noTonesField , ’ UserData ’) ;

108 windowLength= get (handles . frameLengthField , ’ UserData ’) ;

109 t ic ;

110 clc ;

111 handles .EMOut= runEM(f i l eL o c a t i o n , windowLength , tonesNo) ;

112 set (handles . s t a t i s t i c sT ex t , ’ S t r ing ’ , [’ exec time : ’ num2str(toc) ’

s ; ’ . . .

113 ’ t o t a l EM i t e r a t i o n s : ’ num2str(handles .EMOut. iterEM)]) ;

114 % d i s p l a y specgram . w/ time s l i d e r i f necessary .

115 imagesc ([handles .EMOut. timeAxis (1) handles .EMOut. t imeAxis (end)] , . . .

116 [handles .EMOut. f r eqAx i s (1) handles .EMOut. f r eqAx i s (round(end/2))

] , . . .

117 log (handles .EMOut. spec t ra lMat r i x (1 : round(end/2) , :))) ;

53

118 set (gca , ’YDir ’ , ’ normal ’) ; % b/c image−f unc t i on behaves abnormal ly

. . .

119 [pathstr , f i leName , ext , versn] = f i l e p a r t s (f i l e L o c a t i o n) ;

120 t i t l e ([’ Pitch e s t . w/ ’ num2str(tonesNo) ’ tones f o r ’ f i leName ext

] , ’ I n t e r p r e t e r ’ , ’ none ’) ;

121 xlabel (’Time in seconds ’) ;

122 ylabel (’ Frequency in Hz ’) ;

123 colormap (jet) ;

124 % ################## CREATING SCROLL BAR FOR TIME AXIS

####################

125 s h i f t P l o t= [0 0 .02 0 −0 .02] ;

126 pos= get (gca , ’ p o s i t i o n ’) ;

127 i f ˜isempty (handles . s l i d e rHand l e) % c l e a r o ld s t u f f

128 delete (handles . s l i d e rHand l e) ;

129 handles . s l i d e rHand l e= [] ;

130 set (gca , ’ p o s i t i o n ’ , [pos (1) pos (2) pos (3) pos (4)]− s h i f t P l o t) ;

131 end

132 i f handles .EMOut. t imeAxis (end) > 2 ;

133 dx= 2 ; % dx i s the width o f the a x i s ’window ’

134 % Set appropr ia t e a x i s l im i t s and s e t t i n g s

135 set (gcf , ’ doub l ebu f f e r ’ , ’ on ’) ;

136 % This avo ids f l i c k e r i n g when updat ing the ax i s

137 set (gca , ’ xl im ’ , [windowLength dx] , ’ yl im ’ , [0 handles .EMOut.

f r eqAx i s (round(end/2))]) ;

138 pos= get (gca , ’ p o s i t i o n ’) ;

139 set (gca , ’ p o s i t i o n ’ , [pos (1) pos (2) pos (3) pos (4)]+ s h i f t P l o t) ;

140 % Generate cons tan t s f o r use in u i c on t r o l i n i t i a l i z a t i o n

141 s c ro l lBarPos= [pos (1) pos (2) −0.1 pos (3) 0 . 0 5] ;

142 % This w i l l c r ea t e a s l i d e r which i s j u s t underneath the ax i s

54

143 % but s t i l l l e a v e s room fo r the ax i s l a b e l s above the s l i d e r

144 xmax= handles .EMOut. t imeAxis (end) ;

145 S= [’ s e t (gca , ’ ’ xl im ’ ’ , get (gcbo , ’ ’ va lue ’ ’)+[’ num2str(

windowLength) ’ ’ num2str(dx) ’]) ’] ;

146 % Se t t i n g up c a l l b a c k s t r i n g to modify XLim of a x i s (gca)

147 % based on the p o s i t i o n o f the s l i d e r (gcbo)

148 % Creat ing Uicon t ro l

149 handles . s l i d e rHand l e= uicontrol (’ s t y l e ’ , ’ s l i d e r ’ , . . .

150 ’ un i t s ’ , ’ normal ized ’ , ’ p o s i t i o n ’ , s c ro l lBarPos , . . .

151 ’ c a l l b a ck ’ ,S , ’min ’ ,0 , ’max ’ ,xmax−dx) ;

152 end

153 handles . f i l eLocCur r en tP l o t= f i l e L o c a t i o n ; % update f i l e L o c a t i o n to

current

154 hold on ; % add means t r a c e s and p i t c h to specgram

155 % add p i t c h e s t ima t ion p l o t to specgram

156 handles . p i tchPlotHandle= plot (handles .EMOut. timeAxis , handles .EMOut

. p i t ches , ’ LineWidth ’ , 2) ;

157 hold o f f ;

158 for t=1: tonesNo

159 l e g endS t r i ng s { t}= [’ p i t ch es t imate tone ’ num2str(t)] ;

160 end

161 legHandle= legend (handles . pitchPlotHandle , l e g endS t r i ng s) ;

162 set (legHandle , ’ Color ’ , [. 7 . 9 . 7]) ;

163 set (handles . axes1 , ’ V i s i b l e ’ , ’On ’) ;

164 set (handles . saveFigureButton , ’ Enable ’ , ’On ’) ;

165 guidata (hObject , handles) ;

166

167

168 % −−− Executes on but ton pre s s in p layButton .

55

169 function playButton Cal lback (hObject , eventdata , handles)

170 % hObject handle to p layButton (see GCBO)

171 % eventda ta re se rved − to be de f ined in a f u t u r e ve r s i on o f MATLAB

172 % hand les s t r u c t u r e wi th hand les and user data (see GUIDATA)

173 f i l e L o c a t i o n= get (handles . browseButton , ’ UserData ’) ;

174 [wave , Fs , b i t s]= wavread(f i l e L o c a t i o n) ;

175 wavplay (wave , Fs) ;

56

B.2 STFT Analysis

1 function out= runEM(f i l eL o c a t i o n , windowLength , tonesNo)

2 % out= runEM(f i l eLo ca t i on , windowLength , tonesNo)

3 % STFT ana l y i s o f f i l e (50% over l ap) , invokes EM fo r p i t c h

e s t imat ion

4 % − f i l e L o c a t i o n : path and f i lename , concatenated

5 % − windowLength : un i t s h a l l be seconds .

6 % common d e f i n i t i o n : windowLength==64msec

7 % − tonesNo : number o f tones assumed to be hidden in f i l e

8 % − out . s p e c t r a lMa t r i x : f o r spectrogram p l o t t i n g o f

9 % the input f i l e , u n f i l t e r e d

10 % − out . f r e q : f requency po in t s f o r which DFT was computed

11 % − out . t imeAxis : v e c t o r o f frame ana l y s i s s t a r t po in t s

12 % (in sec) , f o r p l o t t i n g the out . p i t c h e s and specgram

13 % − out . p i t c h e s : columns correspond to frames , rows to

14 % (maximally tonesNo) p i t c h e s . In f entry / e n t r i e s i n d i c a t e

15 % tha t f o r t h i s frame : no o f a c t ua l p i t c h e s < tonesNo

16 % − out . iterEM : t o t a l number o f EM i t e r a t i o n s f o r the f i l e

17 %

18 % Author : Dominik L o e f f l e r Date : Mar 15 , 2006

19 % Version : 7

20

21 i f nargin˜=3 | | nargout˜=1

22 error (’runEM: must have exac t l y 3 input and 1 output parameters

’) ;

23 end

24 i f windowLength <= 2∗eps

25 error (’runEM: windowLength input parameter too smal l ’) ;

57

26 end

27 [path , f i leName , ext , versn]= f i l e p a r t s (f i l e L o c a t i o n) ;

28 t ry

29 [wave , Fs , b i t s]= wavread(f i l e L o c a t i o n) ;

30 catch

31 e r r o r d l g (’ Could not open f i l e . ’) ;

32 error (’ pitchEstEM : could not open f i l e . ’) ;

33 end

34 % windowSize e qua l s to 1024 samples at 16kHz and 0.064 s

35 windowSize= round(Fs∗windowLength) ;

36 i f mod(windowSize , 2)==1

37 windowSize= windowSize+1; % ensure i t ’ s a lways even

38 end

39 disp ([’ Analyzing f i l e ’ f i leName]) ;

40 f f t S i z e= max(windowSize , 256) ;

41 % f r e q s f o r which DFT w i l l be computed

42 out . f r eqAx i s= 0 : Fs/windowSize : Fs/2−Fs/windowSize ;

43

44 % advancing window in windowSize /2 s t e p s a lways (−> 50% over l ap)

45 i n d i c e s= windowSize : windowSize /2 : length (wave) ;

46 % standard hamming window ; s i z e== windowSize x 1

47 hamm= hamming(windowSize) ;

48 out . spec t ra lMat r i x= zeros (windowSize /2 , length (i n d i c e s)) ;

49 specSmoothTemp= zeros (windowSize /2 , 1) ;

50 nAvg= 2 ; % smoothing parameter f o r running average

51

52 % for each frame , save a l l the ob ta ined means f o r each mixture

53 out . p i t ch e s= zeros (tonesNo , length (i n d i c e s)) ;

54 spec= zeros (windowSize , 1) ;

58

55 iterFrame= 0 ;

56 out . iterEM= 0 ;

57 for k= i nd i c e s

58 iterFrame= iterFrame +1;

59 disp ([’runEM: frame ’ num2str(iterFrame) ’ o f ’ . . .

60 num2str(length (i n d i c e s))]) ;

61 spec= hamm.∗wave (k−windowSize+1:k) ;

62 i f sum(realpow (spec , 2)) /windowSize <= 7∗10ˆ−8 % s i l e n c e

d e t e c t o r

63 spec= abs (f f t (spec , f f t S i z e)) ;

64 out . spec t ra lMat r i x (: , i terFrame)= spec (1 : windowSize /2) ;

65 out . p i t ch e s (: , i terFrame)= Inf∗ ones (tonesNo , 1) ;

66 disp (’runEM: s i l e n c e detec ted ; EM skipped f o r t h i s frame ’) ;

67 cont inue ;

68 end

69 spec= abs (f f t (spec , f f t S i z e)) ;

70 out . spec t ra lMat r i x (: , i terFrame)= spec (1 : windowSize /2) ;

71 specSmoothTemp= f i l t e r (ones (1 , nAvg) . / nAvg , 1 , . . .

72 out . spec t ra lMat r i x (: , i terFrame)) ;

73 %specSmoothTemp= out . s p e c t r a lMa t r i x (: , i terFrame) ;

74 % f ind hi−f r e q c u t o f f f requency

75 ind= find (specSmoothTemp>=0.1∗max(specSmoothTemp)) ;

76 cu t o f f I nd= ind (end)+round(windowSize /2/100) ;% add 1% of t o t a l

l e n g t h

77 [p i t ches , pr iorProbs , var iances , i t e r a t i o n s]= . . .

78 myEM(out . f r eqAx i s (1 : cu t o f f I nd) , . . .

79 specSmoothTemp (1 : cu t o f f I nd) ’ , tonesNo) ;

80 out . iterEM= out . iterEM + i t e r a t i o n s ;

81 out . p i t ch e s (: , i terFrame)= p i t ch e s ;

59

82 end

83

84 out . t imeAxis= i nd i c e s . / Fs ;

85 disp (’ ∗∗ f unc t i on runEM terminated s u c c e s s f u l l y ∗∗ ’) ;

86 end % func t i on runEM

60

B.3 Core Heuristic

1 function [harmonicsFreq , hInd]= pitchTrace (f req , spec , tonesNo ,

verbose)

2 % [harmonicsFreq , hInd]= pi tchTrace (f req , spec , tonesNo , verbose)

3 % Core h e u r i s t i c f o r EM algor i thm i n i t i a l i z a t i o n

4 % − f r e q : row vec to r (on ly 1−D data !) f requency p t s f o r which

spectrum de f .

5 % − spec : f f t magnitude value , abs (f f t)

6 % − tonesNo : number o f po lyphonic tones we assume to be hidden in

source

7 % − harmonicsFreq : f r e q po in t s a t which h e u r i s t i c supposes

harmonics o f a

8 % p i t c h . c e l l array o f (tonesNo , ?) dimensions , 2nd dim

expanded

9 % dynamica l ly f o r each tone

10 % − hInd : i n d i c e s in f r e q corresponding to harmonics in

harmonicsFreq

11 %

12 % Author : Dominik L o e f f l e r Date : Mar 30 , 2006

13 % Version : 7 (+ weak harmonics i n t e r p o l a t i o n)

14 i f ˜ i s e qua l (s ize (f r e q) , s ize (spec))

15 error (’ p i tchTrace : s i z e o f f r e q and spec arguments must match ’)

;

16 end

17 Nfreq= length (f r e q) ;

18 i f tonesNo > Nfreq

19 error ([’ p i tchTrace : not enough frequency po in t s to s t a r t ’ . . .

20 ’ e s t imat ing ’ num2str(tonesNo) ’ tones ’]) ;

61

21 end

22

23 [peakVal , peakInd]= lmax (spec , 0 , f a l s e) ;

24 % f i l t e r out very sma l l peaks which are u n l i k e l y r e a l harmonics ;

25 % cut o f f some low−f r equency peaks t ha t cause t r o u b l e when we

assume them

26 % to be the fundamental be low . most ly occurs at very low p i t c h e s .

27 cutoffPeakAmpl= 0 . 0 5 ;

28 s i g I n d i c e s= find (peakVal >= cutoffPeakAmpl∗max(peakVal) & . . .

29 f r e q (peakInd) > 45) ;

30 s igPeak= peakVal (s i g I n d i c e s) ;

31 sigPeakFreq= f r e q (peakInd (s i g I n d i c e s)) ;

32

33 harmonicsFreq= num2cel l (Inf∗ ones (tonesNo , 1)) ;

34 hInd= num2cel l (zeros (tonesNo , 1)) ;

35 sigPeakFreqTemp= sigPeakFreq ;

36 for t= 1 : tonesNo

37 % need to have a t l e a s t as many s i g n i f i c a n t peaks as tones

38 i f isempty (sigPeakFreqTemp) % no more peaks a v a i l a b l e −> q u i t

39 disp ([’ p i tchTrace : not enough s i g n i f i c a n t peaks in spectrum

f o r ’ . . .

40 ’ e s t imat ing ’ num2str(tonesNo) ’ tones . ’ . . .

41 ’ I did ’ num2str(t−1) ’ tone (s) . ’]) ;

42 return ;

43 end

44 currentFundamental= sigPeakFreqTemp (1) ;

45 harmonicsFreq{ t}= Inf∗ ones (1 , round(sigPeakFreqTemp (end) /

currentFundamental)) ;

46 hInd{ t}= zeros (s ize (harmonicsFreq{ t })) ;

62

47 % to l e r anc e in Hz hat harmonics can de v i a t e at the max from

48 % th e i r i d e a l f requency l o c a t i o n s

49 t o l= min(50 , currentFundamental /4) ;

50 harmonicsFreq{ t } (1)= currentFundamental ;

51 % remove so in next i t e r a t i o n choose d i f f e r e n t fundamental

52 sigPeakFreqTemp (1)= [] ;

53 hInd{ t } (1)= find (f r e q==currentFundamental) ;

54 for k= 2 : length (harmonicsFreq{ t })

55 b i n Ind i c e s= find (abs (sigPeakFreqTemp−k∗ currentFundamental)

<= to l) ;

56 i f ˜isempty (b i n Ind i c e s)

57 indC lo s e s t= f indapprox (sigPeakFreqTemp (b in Ind i c e s) , k∗
currentFundamental) ;

58 harmonicsFreq{ t }(k)= sigPeakFreqTemp (b in Ind i c e s (

i ndC lo s e s t)) ;

59 %harmonicsFreq{ t }(k)= sigPeakFreqTemp (b in Ind i c e s (round (

l en g t h (b i n Ind i c e s) /2))) ;

60 hInd{ t }(k)= find (f r e q==harmonicsFreq{ t }(k)) ;

61 % remove the peak j u s t found

62 sigPeakFreqTemp (b in Ind i c e s (i ndC lo s e s t))= [] ;

63 end % e l s e : l e a v e the p r e i n i t i a l i z e d In f e n t r i e s t h e r e

64 end

65

66 % ∗∗∗ V7: op t imize t h i s here by i n t e r p o l a t i n g miss ing e n t r i e s

∗∗∗
67 % remove any t r a i l i n g consecu t i v e In f e n t r i e s

68 indNotInf= find (harmonicsFreq{ t}˜=Inf) ;

69 harmonicsFreq{ t}= harmonicsFreq{ t } (1 : indNotInf (end)) ;

70 hInd{ t}= hInd{ t } (1 : indNotInf (end)) ;

63

71 % now i n t e r p o l a t e remaining In f en t r i e s , i f any

72 in f I nd= find (harmonicsFreq{ t}==Inf) ;

73 i f ˜isempty (i n f I nd) % && some other cond i t i on ?

74 for k= in f Ind

75 b in Ind i c e s= find (abs (f r e q (peakInd)−k∗ currentFundamental)

<= to l) ;

76 i f ˜isempty (b i n Ind i c e s) % attempt to i n t e r p o l a t e wi th

low−amp peak

77 indC lo s e s t= f indapprox (f r e q (peakInd (b i n Ind i c e s)) , k∗
currentFundamental) ;

78 harmonicsFreq{ t }(k)= f r e q (peakInd (b i n Ind i c e s (

i ndC lo s e s t))) ;

79 hInd{ t }(k)= find (f r e q==harmonicsFreq{ t }(k)) ;

80 %disp (’ p i tchTrace : i n t e r p o l a t e d miss ing harmonic ’) ;

81 else % in t e r p o l a t i o n f a i l e d − s top here

82 harmonicsFreq{ t}= harmonicsFreq{ t } (1 : k−1) ;

83 hInd{ t}= hInd{ t } (1 : k−1) ;

84 break ;

85 end

86 end

87 end

88 end % for

89

90

91 % −−−− only i f ve rbose i s s e l e c t e d −−−−−−−−−−−−−−−−−−−
92 i f ˜ verbose

93 return ;

94 end

95 % graph i c a l output (op t i ona l)

64

96 f igure (2) ;

97 cla ;

98 hold on ;

99 plot (f req , spec) ; % spectrum

100 %stem (sigPeakFreq , sigPeak , ’ gd ’ , ’ LineWidth ’ , 1 . 6) ; %s i g n i f i c a n t

peaks

101 plotProp= { ’ ro ’ , ’ k∗ ’ , ’ r ˆ ’ , ’ y ’ } ;

102 l eg endSt r ing {1}= ’ spectrum ’ ;

103 for t= 1 : tonesNo

104 stem(harmonicsFreq{ t } , . . .

105 (1.1− t ∗0 . 2) ∗max(peakVal) ∗ ones (1 , length (harmonicsFreq{ t })) ,

. . .

106 plotProp {mod(t , 4) }) ; % p i t c h t race

107 l egendSt r ing { t+1}= [’ tone ’ num2str(t)] ;

108 %stem (f r e q (hInd{ t }) , spec (hInd{ t }) , ’ g ˆ ’) ;

109 end

110 hold o f f ;

111 legend (l e g endSt r ing) ;

112 t i t l e (’ r e s u l t s f o r p i tchTrace (i n i t i a l e s t imate s f o r EM invoca t i on)

’) ;

113 xlabel (’ f /Hz ’) ;

114 ylabel (’FFT(f) /max(FFT(f)) ’) ;

115

116 disp ([’ p i tchTrace : s i gn . peaks : ’ num2str(f r e q (peakInd))]) ;

117 for t= 1 : tonesNo

118 disp ([’ p i tchTrace (tone ’ num2str(t) ’) : found t ra c e : ’ . . .

119 num2str(harmonicsFreq{ t })]) ;

120 %disp ([’ p i tchTrace (tone ’ num2str (t) ’) : we found ’ . . .

121 % num2str (100∗ l e n g t h (f i nd (harmonicsFreq{ t}˜=In f)) . . .

65

122 % / l eng t h (harmonicsFreq{ t })) . . .

123 % ’ per cent s i g n i f i c a n t peaks o f the trace ’]) ;

124 end

125 disp ([’ p i tchTrace : t o l e r an c e i s : ’ num2str(t o l) ’Hz ’]) ;

126

127 end % func t i on pi tchTrace

66

B.4 Expectation Maximization Algorithm

1 function [p i t ches , pr iorProbs , var iances , i t e r a t i o n s]= myEM(freq ,

spec , tonesNo)

2 % [p i t che s , pr iorProbs , var iances , i t e r a t i o n s]= myEM(freq , spec ,

tonesNo)

3 % Expecta t ion Maximization Algorithm , constra ined , working on GMM

4 % − f r e q : row vec to r (on ly 1−D data !) f requency p t s

5 % for which spectrum de f ined

6 % − spec : f f t magnitude value , abs (f f t)

7 % − tonesNo : number o f tones assumed to be hidden in f i l e

8 % − p i t c h e s : p i t c h e s t ima t e s f o r each tone

9 % − pr iorProbs : b e s t e s t imate o f p r i o r prob f o r each mixture (P(X|
mix i))

10 % − var iances : analogous . . .

11 % − i t e r a t i o n s : i t e r a t i o n s needed f o r EM a l g to converge

12 %

13 % Author : Dominik L o e f f l e r Date : Mar 15 , 2006

14 % Version : 7

15

16 Nfreq= length (f r e q) ;

17 i f ˜ i s e qua l (s ize (f r e q) , s ize (spec))

18 error (’myEM: s i z e o f f r e q and spec arguments must match

p r e c i s e l y ’) ;

19 end

20 sumSpec= sum(spec) ;

21 i f sumSpec/Nfreq < eps % shou ld be caught by s i l e n c e d e t e c t o r on

c a l l e r s i d e

67

22 error (’myEM: ex i t ed prematurely (sum of spectrum near 0 −
s i l e n c e !) ’) ;

23 end

24 spec= spec . / sumSpec ;

25

26 % use t h i s h e u r i s t i c to f i nd good i n i t i a l e s t ima t e s

27 % meansOld : a c e l l array o f tonesNo elements , each element wi th

v a r i a b l e

28 % components as determined by the h e u r i s t i c ” p i tchTrace ”

29 [meansOld , meansInd]= pitchTrace (f req , spec , tonesNo , f a l s e) ;

30 % 2nd dim w i l l be expanded in the f o l l ow i n g loop

31 means= num2cel l (Inf∗ ones (tonesNo , 1)) ;

32 va r i ance s= means ; % s tay s cons tant in t h i s ve r s i on

33 pr iorProbsOld= means ; pr io rProbs= means ;

34 mixtures= zeros (1 , tonesNo) ; % no of peaks f o r each tone

35 p i t ch e s= Inf∗ ones (tonesNo , 1) ;

36 i t e r a t i o n s= 1 ;

37 for t= 1 : tonesNo

38 % he u r i s t i c couldn ’ t come up with anyth ing s e n s i b l e

39 i f meansOld{ t } (1)==Inf

40 disp ([’myEM (tone ’ num2str(t) . . .

41 ’) : h e u r i s t i c output : not enough data f o r t h i s tone ’]) ;

42 return ;

43 end

44 mixtures (t)= length (meansOld{ t }) ;

45 va r i ance s { t}= 10∗ ones (1 , mixtures (t)) ;

46 pr iorProbsOld { t}= spec (meansInd{ t }) ; % then normal ize

47 pr iorProbsOld { t}= priorProbsOld { t } . /sum(pr iorProbsOld { t }) ;

48 means{ t}= zeros (1 , mixtures (t)) ;

68

49 pr iorProbs { t}= means{ t } ;

50

51 disp ([’myEM (tone ’ num2str(t) . . .

52 ’) : i n i t (heur .) means : ’ num2str(meansOld{ t })]) ;

53 %disp ([’myEM: i n i t i a l pr iorProbs : ’ num2str (pr iorProbsOld { t })])

;

54 %disp ([’myEM: i n i t i a l var iance : ’ num2str (var iances { t })]) ;

55

56 y= zeros (mixtures (t) , Nfreq) ;

57 %meansOld{ t}= . . .

58 % [1 : mixtures (t)] . ∗ (sum ((1 : mixtures (t)) .ˆ−1.∗meansOld{ t }) . . .

59 % /mixtures (t)) ; % r e s e t t i n g wi th good i n i t i a l p i t c h

es t imate

60 f i r s tP e ak= meansOld{ t } (1) ;

61 meansOld{ t}= [1 : mixtures (t)] .∗ meansOld{ t } (1) ;

62 disp ([’myEM (tone ’ num2str(t) ’) : i n i t (p i t ch) means : ’ num2str

(meansOld{ t })]) ;

63 deltaF= 0 ; deltaFOld= 0 ;

64

65 while (1) % loop f o r the EM of one p i t c h

66 sumY= zeros (1 , Nfreq) ; % E−s t ep

67 for k= 1 : mixtures (t)

68 y (k , :)= priorProbsOld { t }(k) ∗ . . .

69 myGauss (f req , [sqrt (va r i ance s { t }(k)) , meansOld{ t }(k

)] , t rue) ;

70 sumY= sumY + y(k , :) ;

71 end

72 sumYZeroInd= find (sumY==0) ;

73 i f ˜isempty (sumYZeroInd)

69

74 sumY(sumYZeroInd)= eps ;

75 %disp ([’myEM (tone ’ num2str (t) . . .

76 % ’) : zero sum of l i k e l i h o o d s occurred , f i x i n g i t

now ’]) ;

77 end

78

79 for k= 1 : mixtures (t)

80 y (k , :)= y (k , :) . /sumY;

81 specMultY= spec .∗ y (k , :) ;

82 sumSpecMultY= sum(specMultY) ;

83 i f sumSpecMultY==0

84 % seems to happen when unsmoothed or few d i s t r o

va l u e s

85 means{ t}= zeros (1 , mixtures (t)) ;

86 pr io rProbs { t}= zeros (1 , mixtures (t)) ;

87 va r i ance s { t}= zeros (1 , mixtures (t)) ;

88 disp (’myEM: ex i t ed prematurely (sum(spec .∗ y (k , :)) ’ ’

==0) ’) ;

89 return ;

90 end

91 pr io rProbs { t }(k)= sumSpecMultY ; % M−s t ep

92 means{ t }(k)= sum(f r e q .∗ specMultY) /sumSpecMultY ;

93 end

94

95 %de l taF= sum(means{ t}−meansOld{ t }) /sum(abs (means{ t}−
meansOld{ t })) ;

96 % i f pos : i n c r ea s e s in f requency h i gher than decrease s

97 deltaF= sum((1 : mixtures (t)) .ˆ−1.∗(means{ t}−meansOld{ t })) /

mixtures (t) ;

70

98 means{ t}= [1 : mixtures (t)] .∗ (meansOld{ t } (1)+deltaF) ;

99 %disp ([’ de l taF ’ num2str (de l taF)]) ;

100 i f abs (de ltaF) <= 0.01 | | abs (de ltaF+deltaFOld) <= 2∗eps

| | . . .

101 means{ t } (1) > f i r s tP e ak ∗(2ˆ1/24) | | . . .

102 means{ t } (1) < f i r s tP e ak ∗(2ˆ−1/24)

103 break ;

104 end

105

106 pr iorProbsOld { t}= pr iorProbs { t } ;

107 meansOld{ t}= means{ t } ;

108 deltaFOld= deltaF ;

109 i t e r a t i o n s= i t e r a t i o n s +1;

110 end % whi l e

111

112 % sor t the ou tpu t s in ascending order o f the means

113 % (sometimes they ge t f l i p p e d around by EM)

114 [means{ t } , ind]= sort (means{ t }) ;

115 pr io rProbs { t}= pr iorProbs { t }(ind) ;

116 p i t ch e s (t)= means{ t } (1) ;

117 disp ([’myEM (tone ’ num2str(t) . . .

118 ’) : a f t e r EM: ’ num2str(means{ t })]) ;

119 end % for

120

121 end % func t i on myEM

71

B.5 Gaussian Function

1 function g= myGauss (input , params , d i r tyF ix)

2 % g= gauss (input , [sigma mean] , d i r t yF i x)

3 % l i k e gaussmf , but gaussmf i s not good enough :

4 % need cases wi th sigma==0 and the s c a l i n g f a c t o r

5 % 1/(s q r t (2∗ p i)∗ sigma) f o r most genera l uses .

6 % note t ha t sigma denotes s tandard d e v i a t i on==s q r t (var iance)

7 % − input : 1−D vec to r wi th r e a l va l u e s on ly

8 % − params : 1x2 vec t o r :

9 % params (1)=standard dev ia t i on , params (2)=mean

10 % − d i r t yF i x : l o g i c a l , i n d i c a t e s whether or not a case o f

11 % var iance=0 shou ld be f i x e d by re turn ing 1000 f o r the input

12 % va lue c l o s e s t (not n e c e s s a r i l y equa l !) to the mean s p e c i f i e d

13 % in ”params ” . This guarantees t ha t the output v ec t o r be nonzero .

14 %

15 % Author : Dominik L o e f f l e r Date : Oct 20 , 2005 Last update : Nov 06

16 % Version : 5 (+ r e a l va l u e s op t im i za t i on w/ realpow ,

17 % + d i r t yF i x)

18

19 i f nargin˜=3

20 error (’myGauss : wrong number o f input arguments ’) ;

21 end

22 i f (˜ i s e qu a l (s ize (params) , [1 2]) | | params (1) < 0)

23 error (’myGauss : wrong input parameters ”params” ’) ;

24 end

25 i f ˜ i s v e c t o r (input)

26 error (’myGauss : input i s not a vec to r ’) ;

27 end

72

28 i f isempty (input)

29 error (’myGauss : input vec to r i s empty ’) ;

30 end

31 i f ˜ i s l o g i c a l (d i r tyF ix)

32 error (’myGauss : th i rd input parameter i s not a l o g i c a l ’) ;

33 end

34

35 sigma= params (1) ;

36 mean= params (2) ;

37 i f sigma==0 % −> gauss goes to i n f i n i t y in cont inuous case

38 g= zeros (s ize (input)) ;

39 i f d i r tyF ix

40 % choose the next two l i n e s i f your ” input ” vec t o r can

41 % have some a r b i t r a r y va lues , i . e . i t s e lements are

42 % not unique

43 %c l o s e s t= f i nd (abs (input−mean)==min(abs (input−mean))) ;

44 %g (c l o s e s t (round (l en g t h (c l o s e s t) /2)))= 1000;

45 [m mIndex]= min(abs (input−mean)) ;

46 g (mIndex)= 1000 ;

47 else

48 equal= find (input==mean) ;

49 i f isempty (equal)

50 warning ([’myGauss : r e tu rn ing zero output ’ . . .

51 ’ vec to r due to zero var iance ’]) ;

52 end

53 g (equal)= 1000 ;

54 end

55 else

56 g= (1/(sqrt (2∗pi) ∗ sigma)) ∗ . . .

73

57 exp(−realpow (input−mean, 2) /(2∗ realpow (sigma , 2))) ;

58 end

59

60 end % func t i on myGauss

74

B.6 Local Maxima

1 function [lmval , indd]=lmax (xx , f i l t , s t r i c t)

2 %LMAX [lmval , indd]=lmax (xx , f i l t) . Find l o c a l maxima

3 % in vec to r XX, where LMVAL i s the output v ec t o r wi th

4 % maxima va lues , INDD are the corresponding indexes ,

5 % FILT i s the number o f passes o f the sma l l running

6 % average f i l t e r in order to ge t r i d o f sma l l peaks .

7 % Defau l t va lue FILT =0 (no f i l t e r i n g) . FILT in the

8 % range from 1 to 3 i s u s u a l l y s u f f i c i e n t to remove

9 % most o f a sma l l peaks

10

11 %∗∗|
12 % Serge Koptenko , Guigne In t e r na t i o na l Ltd . , |
13 % phone (709) 895−3819 , fax (709) 895−3822 |
14 %−−−−−−−−−−−−−−06/03/97−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
15

16 x= xx ;

17 l en x= length (x) ;

18 f l t r =[1 1 1] / 3 ;

19 i f nargin < 2

20 f i l t= 0 ;

21 else

22 x1= x (1) ;

23 x2= x(l en x) ;

24 for j j= 1 : f i l t

25 c= conv (f l t r , x) ;

26 x= c (2 : l en x +1) ;

27 x (1)= x1 ;

75

28 x (l en x)= x2 ;

29 end

30 end

31 lmval = [] ; indd = [] ;

32 i =2; % s t a r t a t second data po in t in time s e r i e s

33 while i < l en x−1

34 i f x (i) > x (i −1)

35 i f x (i) > x (i +1) % d e f i n i t e max

36 lmval= [lmval x (i)] ;

37 indd= [indd i] ;

38 e l s e i f (x (i) == x(i +1)) && (x (i) == x(i +2)) % ’ long ’ f l a t

spo t

39 i f ˜ s t r i c t

40 lmval= [lmval x (i)] ;

41 indd= [indd i] ;

42 end

43 i= i +2; % sk i p 2 po in t s

44 e l s e i f x (i) == x(i +1) % ’ short ’ f l a t spo t

45 i f ˜ s t r i c t

46 lmval= [lmval x (i)] ;

47 indd= [indd i] ;

48 end

49 i= i +1; % sk i p one po in t

50 end

51 end

52 i= i +1;

53 end

54 i f f i l t >0 && ˜isempty (indd)

55 i f (indd (1) <= 3) | | (indd (length (indd))+2 > length (xx))

76

56 rng= 1 ; % check i f index too c l o s e to the edge

57 else

58 rng= 2 ;

59 end

60 for i i =1: length (indd) % Find the r e a l maximum va lue

61 [va l (i i) i i nd (i i)]= max(xx (indd (i i)−rng : indd (i i)+rng)) ;

62 i i nd (i i)= indd (i i)+i i nd (i i)−rng−1;

63 end

64 indd= i i nd ;

65 lmval= va l ;

66 end

77

B.7 Findapprox

1 function i= f indapprox (vector , s c a l a r)

2 % i= f indapprox (vec tor , s c a l a r)

3 % Find c l o s e s t e lement in vec tor , akin to f i nd .

4 % − s c a l a r : va lue we ’ re t r y i n g to match aga in s t v e c t o r

5 % − vec to r : o f same da ta type as s c a l a r

6 % i f t he r e i s no element in vec to r equa l to sca lar , the index

7 % of the element be ing c l o s e s t to i t w i l l be re turned (thus

8 % the name findAPPROX) . I f more t ha t cou ld be more than one index ,

9 % the f i r s t (l e f tmo s t) i s taken only .

10 %

11 % USE WITH CAUTION. i t doesn ’ t check f o r input e r ro r s .

12 % Author : Dominik L o e f f l e r Last update : Nov 26 , 2005

13

14 d i f f = abs (vector−s c a l a r) ;

15 i = find (min(d i f f)==dif f , 1 , ’ f i r s t ’) ;

16

17 end % func t i on f indapprox

78

REFERENCES

[1] Akaike, H., “A new look at the statistical model identification,” IEEE Transactions
on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.

[2] AssociatedPress, “Online and wireless music sales tripled in 2005.” WWW, January
2006. Accessed: March 06, 2006.

[3] Brown, J. C., “Calculation of a constant q spectral transform,” The Journal of the
Acoustical Society of America, vol. 89, no. 1, pp. 425–434, 1991.

[4] Casey, M. A. and Westner, A., “Separation of mixed audio sources by independent
subspace analysis,” in Proceedings of ICMC, pp. 154–161, 2000.

[5] Duda, R. O., Hart, P. E., and Stork, D. G., Pattern Classification. Hoboken, NJ:
John Wiley & Sons, second ed., 2001.

[6] Fechner, G. T., Elemente der Psychophysik. Bristol, UK: Thoemmes Press, sec-
ond ed., 1889. First ed. 1860.

[7] Feder, M. and Weinstein, E., “Parameter estimation of superimposed signals using
the em algorithm,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 36, no. 4, pp. 477–489, 1988.

[8] Fitzgerald, D., Automatic Drum Transcription and Source Separation. PhD thesis,
Dublin Institute of Technology, 2004.

[9] Fitzgerald, D., “Generalised prior subspace analysis for polyphonic pitch transcrip-
tion,” in Proceedings of DAFX, 2005.

[10] Fitzgerald, D., Lawlor, R., and Coyle, E., “Prior subspace analysis for drum
transcription,” in Proceedings of AES 114th Convention, 2003.

[11] Greenberg, S. and Kingsbury, B. E. D., “The modulation spectrogram: in pursuit
of an invariant representation of speech,” in Proceedings of ICASSP, 1997.

[12] Howard, D. M. and Angus, J., Acoustics and Psychoacoustics. Burlington, MA:
Focal Press/Elsevier, 1996.

[13] Hyvarinen, A., Karhunen, J., and Oja, E., Independent Component Analysis.
Hoboken, NJ: John Wiley & Sons, 2001. GT library call number: QA278 .H98 2001.

[14] ISO, “Acoustics - standard tuning frequency (standard musical pitch): Iso 16.” WWW,
1975.

[15] Kameoka, H., Nishimoto, T., and Sagayama, S., “Accurate f0 detection algorithm
for concurrent sounds based on em algorithm and information criterion,” in Proceedings
of Special Workshop in Maui (SWIM), 2004.

79

[16] Kameoka, H., Nishimoto, T., and Sagayama, S., “Separation of harmonic struc-
tures based on tied gaussian mixture model and information criterion for concurrent
sounds,” in Proceedings of ICASSP, 2004.

[17] Klapuri, A., Virtanen, T., and Holm, J.-M., “Robust multipitch estimation for
the analysis and manipulation of polyphonic musical signals,” in Proceedings of DAFX,
2000.

[18] Laird, N. M., Dempster, A. P., and Rubin, D. B., “Maximum likelihood from
incomplete data via the em algorithm,” Ann. Royal Statistical Society, pp. 1–38, 1977.

[19] University of Iowa, Electronic Music Studios, “Musical instrument samples.”
WWW. Accessed: March 2006.

[20] Meredith, D. and Wiggins, G., “Comparing pitch spelling algorithms,” in Proceed-
ings of ISMIR, pp. 280–287, 2005.

[21] Mitchell, T. M., Machine Learning. New York, NY: McGraw-Hill, 1997.

[22] Ohgushi, K. and Ano, Y., “The relationship between musical pitch and temporal
responses of the auditory nerve fibers,” in Integrated Human Brain Science: Theory,
Method, Application (Music) (Nakada, T., ed.), pp. 357–364, Elsevier Science B. V.,
2000.

[23] Pantev, C., Eulitz, C., Verkindt, C., Hampson, S., Schruierer, G., and El-
bert, T., “Specific tonotopic organizations of different areas of the human auditory
cortex revealed by simultaneous magnetic and electric recordings,” Electroencephalog-
raphy and clinical Neurophysiology, vol. 94, pp. 26–40, 1995.

[24] Sagayama, S., Takahashi, K., Kameoka, H., and Nishimoto, T., “Specmurt
anasylis: A piano-roll-visualization of polyphonic music signal by deconvolution of
log-frequency spectrum,” in Proceedings of ISCA. SAPA, 2004.

[25] Saito, S., Kameoka, H., Nishimoto, T., and Sagayama, S., “Specmurt anasylis
of multi-pitch music signals with adaptive estimation of common harmonic structure,”
in Proceedings of ISMIR, pp. 84–91, 2005.

[26] Schmidt-Jones, C., “Connexions project (cnx): Harmonic series.” WWW. Accessed:
March 2006.

[27] Stevens, S. S., “On the psychophysical law,” Psychological Review, vol. 64, no. 3,
pp. 153–181, 1957.

[28] Tervaniemi, M., “Automatic processing of musical information evidenced by eeg and
meg recordings,” in Integrated Human Brain Science: Theory, Method, Application
(Music) (Nakada, T., ed.), pp. 325–335, Elsevier Science B. V., 2000.

[29] Tervaniemi, M., Kujala, A., Alho, K., Virtanen, J., Ilmoniemi, R., and
Näätänen, R., “Functional specialization of the human auditory cortex in processing
phonetic and musical sounds: A magnetoencephalographic study,” NeuroImage, no. 9,
pp. 330–336, 1999.

80

[30] Tiitinen, H., Alho, K., Huotilainen, M., Ilmoniemi, R., Simola, J., and
Näätänen, R., “Tonotopic auditory cortex and the magneto encephalographic (meg)
equivalent of the mismatch negativity,” Psychophysiology, vol. 30, pp. 537–540, 1993.

[31] Virtanen, T. and Klapuri, A., “Separation of harmonic sounds using linear models
for the overtone series,” in Proceedings of ICASSP, vol. 2, pp. 1757–1760, 2002.

[32] von Helmholtz, H. L. F., On the Sensations of Tone as a Physiological Basis for
the Theory of Music. New York, NY: Dover Publications, 1954. First ed. (German)
1863. GT library call number: ML3820.H42 1957.

[33] Wikipedia, “Scientific pitch notation.” WWW.

[34] Xue, W. and Sandler, M., “A partial searching algorithm and its application for
polyphonic music transcription,” in Proceedings of ISMIR, pp. 690–695, 2005.

81

