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Abstract

The majority of computer graphics
images are generated as part of a
sequence of animation frames. The
usual approach for producing these
images, however, is to render each frame
in an animation as if it were a single,
isolated image. We describe a technique
that exploits spatial-temporal coherence
between frames to speed up the
generation of a ray-traced animation
sequence. The concept is that the
information gained when ray-tracing a
particular frame in a sequence may be
used to speed up the ray-tracing of other
nearby frames. Based on a stereoscopic
generation technique that generates the
second half of a stereo pair for as little as
5% of the effort required to fully ray-
trace the first half, this approach
promises significant savings when ray-
tracing animations with certain
characteristics. Our algorithm is tested
on an animation with many reflective
surfaces, yet it still attains an overall
60% savings over full ray-tracing in
terms of the number of rays solved.

Key Words: Display algorithms, Ray-
traced animation, Spatial Coherence,
Temporal Coherence.

Introduction
Ray-tracing is an attractive method of
generating images because of its simplicity and
its capability of producing many realistic optical
effects such as refraction, reflection and
shadowing. Ray-tracing's major drawback,
however, is its large computational cost, due
mainly to calculating ray-object intersections
[Wh80]. This computational cost for complex
images can run from several minutes to several
hours on current workstations, depending on the
machine used and the efficiency of the
algorithm implementation. General speedup
techniques for ray-tracing usually concentrate
on improving ray-object intersection algorithms
for some specific category of objects, or on
eliminating unnecessary ray-object intersection
tests by using bounding volumes or some type
of hierarchical structuring of the data. For ray-
tracing of animation sequences, a further
speedup approach is to take advantage of spatio-
temporal coherence from one frame to the next.
The idea is that each frame is usually very
similar to the frames that immediately precede



and succeed it. Therefore, the information
gained when ray-tracing a particular frame in a
sequence may be used to speed up the ray-
tracing of other nearby frames.

In this paper we present an algorithm that
exploits spatio-tempral coherence between
frames to significantly decrease the rendering
time of ray-traced animations produced by
changing the camera's position with respect to a
static scene.

Previous Work

Many attempts have been made to speed up the
ray-tracing of individual frames, but most fall
into only two categories. In the first, the
algorithm seeks to decrease rendering time by
reducing the number of intersection tests.
Examples of this category include Rubin's
nested bounding volumes for testing against
increasing levels of detail [RW80], and space
subdivision methods of Glassner's Octrees
[G184] and Fujimoto's ARTS system [Fu86]. In
the second category, time is saved by providing
more efficient intersection tests. Often, this
involves better bounding volumes, such as the
bounding volume work by Bouville [Bo85] and
Kay's work with intersections with convex hulls
[KK86].

Several algorithms also attempt to use frame-to-
frame coherence to speed up animation. Most
of these have used object space coherence for
their speed-up method. Hubschman's object
visibility tests process static convex objects
based on when they will become visible [HZ82].
Glassner created 4-D bounding volumes
extending through both time and space to reduce

both bounding volume creation and duplicated
intersection tests [G188]. Chapman designed a
method which finds the intersection of
"continuous intersections” between rays and
polygons through time, so that a pixel need only
be retraced when the current continuous
intersection ends [CC91].

Sequin stored the ray tree at each pixel so that
image attributes could be changed in the image
without having to cast any additional rays
[SS89]. Unfortunately, the method does not
work when objects move, since the algorithm
cannot determine visible surface movement.
This method was extended for animation by
Murakami [MH90], by subdividing space into
voxels and storing a list of voxels for every ray
in each ray tree. Moving objects are noted in
the voxels, and all rays which pass through the
changed voxels are retraced. However, memory
requirements for storing the lists are very large
and the computational load is heavy because of
the many tree traversals. Further, ray trees are
completely lost if only the first ray is moved.

Jevans stored in each voxel a tag to the original
generating pixel which spawned the ray passing
through the voxel [Je92]. Changed voxels
caused the appropriate pixels to be re-traced.
Jevans' approach is limited in that it only works
for static cameras and a change in a ray of any
level causes the entire pixel to be retraced.
Also, his voxel tags represent large blocks of
pixels rather than individual pixels because of
the memory constraints.



Image Space Coherence and Related Work in
Stereoscopic Ray-Tracing

Badt in 1988 proposed a method of image space
coherence by reusing the pixels from one frame
of a diffuse-object animation to determine many
of the pixels in the next frame [Ba88]. His
method led to gaps and unintended pixels in the
new frame. These problems were repaired to a
large degree by clean-up routines, but not
completely nor consistently. Ezell, realizing
that a stereoscopic pair is the equivalent to two
animation frames in which the objects remain
motionless and the viewpoint moves some small
distance, implemented Badt's method for the
generation of stereoscopic ray-traced images
[EH90]. However, this implementation suffered
from the same limitations and image problems
as Badt had in his animation frames.

We have previously recognized the causes of the
image problems in Badt's method [AH92a].
Using the geometry of stereoscopic viewing, we
eliminated the image problems as well as the
tests needed by Badt and Ezell when attempting
to fix their images. Further, we developed the
method to allow full ray-tracing of stereoscopic
images. We demonstrated that even though the
higher levels of ray-tracing must be done twice
(as they are eye-point dependent), the majority
of the savings will remain [AH92b]. Given
what we have learned from the specific case of
stereo pairs, we return to animation frames: Our
new method produces inferred ray-traced
images of any scene which can be ray-traced
with a guarantee that no pixel will exist out of
place by more than a 1/2 pixel when rendering
at a single ray per pixel, a visual error which can
be attributed to undersampling. These are not

approximated frames created from weighted
averages of other frames (e.g. [FL90]), nor are.
they frames patched together from near-frame
pixels values (e.g. [CL90]). Our algorithm
guarantees that a color seen in a pixel will be
returned by a ray passing through that pixel, but
not necessarily though the center of the pixel.
Further, the algorithm can be shown to increase
in efficiency when more objects are added to the
scene. While we produce images assuming a
static object set, we believe that this method is
extendible to animation with moving objects
and/or light sources.

A Special Case of Animation:

Stereoscopic Ray-Tracing
In stereoscopic rendering, there must be. two
centers of projection so that a different
perspective view is produced for each eye.
Figure 1 illustrates that the two viewing
positions are separated parallel to the X axis by
a distance e and that they are both a distance d
from the projection plane [H092]. Stereoscopic
ray-tracing is really a special case of generalized
animation, with the small exception that the
viewing window remains fixed in three-space
while in animation it is set at a certain distance
and orientation to the viewpoint. We will
therefore first look at certain issues in stereo
before extending them to the full animation
case. The following is a summary of work
which can be found in [AH92b].

Given the particulars of the stereoscopic
viewing geometry, a ray intersection at (Xp, yp.
zp) projecting to position (X, Y) in the left-eye
view will appear on the same scan-line or
reproject to the position (X +e * zp / [d+zp], Y)



in the right eye view. Reprojected pixels have
the same diffuse color, shadowing, three-
dimensional intersection, normal, and texture as
the original pixel. While reflected components,
refractive components, and highlights will
differ, first level ray-tracing savings amount to
50-95% in most images. In the same way, we
wish to determine where a pixel from one frame
of an animation will appear in the next frame.
Unfortunately, we cannot merely reproject and
ray-trace the remaining positions.
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Figure 1. The Stereoscopic Viewing

Geometry

When pixels reproject in the stereoscopic
geometry, one of four things can happen in the
second view. First, a pixel position may have
exactly one pixel value reproject into it. These
are called good pixels and we may use their
color and position values directly. Positions
which receive no reprojections are called missed
pixels and must be fully ray-traced. Overlapped
pixels are those in which two or more previous
pixels values reproject to the same pixel
position. We have shown that by processing
pixels consecutively in either direction on the
scan-line we can always extract the closest

reprojection.  Finally, pixels which were
consecutive on the original scan-line may.
reproject with a gap between them, allowing
other pixels to be viewed through the gap even
though they should be obscured. These bad
pixels can only be eliminated by clearing the
values of all positions between two pixels which
reproject with a positive gap between them (i.e.
if newx is the reprojection function, and pixels x
and x+1 reproject such that newx(x+l) -
newx(x) > 1, we clear positions newx(x) + 1

through newx(x+1) - 1).

Generalizing Reprojection

As in stereoscopic ray-tracing, it is possible to
make reprojection equations for a general
movement in three-space. Unfortunately, these
movements are far more computationally
intensive and they do not take into account
rotations, which must be provided separately.
Instead, it is more efficient to preserve the three-
dimensional intersections between rays and
objects and project them to the new viewing
position.

Characteristics of the Animation

Our technique will create efficient frames of any
view which can be ray-traced. We are not
limited, for example, to diffuse polygons.
While the savings of our technique will increase
with the complexity of the image and a
preponderance of diffuse objects, we can still
achieve a large degree of savings with reflective
and refractive objects. However, to take
advantage of the spatio-temporal coherence in a
similar manner to stereoscopy, our animation
needs to have three primary characteristics:



(1) The ray-tracing method is point-sample
oriented. "Pure" ray-tracing involves following
lines through the scene, and these lines are
considered infinitesimally thin. Since we are
projecting pixels based upon their three-
dimensional intersection, we must have these
point samples to allow reprojection. Methods
such as beam tracing [HH84] or cone tracing
[Am84] are therefore forbidden in the first level
of ray-tracing. Anti-aliasing can still be
accomplished by a point-source oriented method
such as adaptive super-sampling, and other
methods of ray-tracing may be used for the
higher-order rays involved with reflection and
refraction.

(2) The light source(s) do not change position,
intensity, or color. The limitation allows us to
reuse the diffuse color of an object from frame
to frame as well as to reuse the shadow ray.
Lifting the limitation would require recasting
the shadow rays and recalculating the diffuse
color. This by no means eliminates all savings,
as we shall show (in estimation) later.

(3) Objects are static. There are two problems
with allowing objects to move. First, their
shadows will also move, requiring us to recast
the shadow ray. Second, our method operates
under the assumption that we can see all
movement from the viewpoint. New or
obscured objects may appear, but only because
of a movement of the visible scene. If an object
which was hidden previously became visible
because of its own movement, our technique
would have no way of recognizing the new
object. We illustrate this in figure 2.

The initial frame of the animation must be
completely ray-traced. For each pixel in this
first frame, we save the three-dimensional
intersection point, the normal vector, the diffuse
color, a bit for each light source representing
whether the intersection is in shadow, and an id-
tag to the object on which the intersection
occurs. We are now ready to infer new frames.

FRAME N FRAME N+1

@ —@3

0 Viewing Position o

Figure 2. The algorithm can only process

known pixels from frame N when creating

frame N+1. If an object moves on its own,
those pixels are not recognized.

The Buzzbuffer and Overlapped Pixels in
Inferred Animation Frames

The camera in the new frame is given to be d
units from the projection plane. We create a
four by four matrix which translates the new
viewing position to (0, 0, -d) and rotates the
axes to match the orthogonal world axes. Each
previous pixel projection is transformed by the
matrix to a three-dimensional point (xt, yt, Zt),
and projected to the new viewing position by the
equations



X=xt*d/(d+zp),
Y=yt*d/(d+zp.

We would, of course, retain the d / (d + z) term
from the X calculation to save one addition and
multiplication in the Y calculation. Unlike the
translation equations in stereo, we have no
simple way of knowing how far a pixel has
moved on the projection plane, and unless we
are performing motion blur on the image we do
not need this information. However, close
objects will appear to move more from frame to
frame than distant objects when the camera
movement is a translation, as the reader will
recognize from his own experience as a moving

viewpoint.

As in stereoscopic ray-tracing, we have four
possibilities for pixels. The good and missed
pixels are, respectively, used directly and fully
ray-traced. The solutions to the overlapped and
bad pixel problems were solved in stereo by
taking advantage of the stereoscopic geometry
and the pixel processing order. In animation,
we no longer have these conveniences.

Since pixels may move in any direction because
of a camera movement or rotation, we require a
full-size (window sized) data structure to hold
the new pixels. We call this data structure a
Buzzbuffer, after the first image we rendered
using this technique, an image of the Georgia
Tech mascot.

The overlapped pixel problem, in which more
than one pixel value from the previous frame
would be viewed through the same pixel in the
current frame, is solved by the Buzzbuffer. Like

a Z buffer, the Buzzbuffer uses the depth of the
transformed pixels to select the closest
intersection projected to a pixel. In addition, the
Buzzbuffer also holds the intersection point,
normal vector, color information, shadow bits,
and id tag to the intersected object (id_tag).
This data will be used in calculating highlights,
reflection, and refraction, as well as being
written to disk for use in creating the next
frame.

Solving the Generalized Bad Pixel Problem
Although we have access to all the pixels from
the previous frame, we do not know what
intersections may have been rejected because
they were not the closest hit to the eyepoint. It
is possible when the pixels are projected to the
new viewpoint that some of these "lost"
intersections should be seen; instead, portions of
the image which should now be obstructed are
visible (Figure 3).

FRAME N

Viewing Position @

Figure 3. Anything hidden in frame N, such
as object A, could be visible in frame N+1
and obscure known objects, like object B.

We need to recognize the possibility of
unknown objects in the shaded area of frame
N+1.



The solution to this problem requires accounting
for these intersections. In stereoscopic ray-
tracing, the pixel positions where the lost
intersections might appear were easily found
because positive direction gaps would open in
the image. In the general animation movement,
these gaps might occur in any direction, so we
are required to perform more calculations.

Anything along a line from the previous viewing
position through the intersection (which lies
behind the intersection itself) could potentially
block more distant but already rendered pixels.
We may consider the far endpoint of this line to
be at some distance which we define or, if all
the data is not relatively close to the viewing
position, infinity. In either case we can
calculate the projected position of this endpoint,
and represent a line on the Buzzbuffer of
possibly obscured pixels. We approximate this
line by rounding both the intersection projection
and endpoint projection to the nearest pixel and,
using a Bresingham-type line stepping
algorithm, test the pixels' Z values against the
intersection of the three-dimensional line and
planes through the pixel edges. Note that even
if a pixel from a previous frame projects outside
the new frame, it is still possible that it was
obscuring an object which remains in the image.
The algorithm is as follows:

Initialize Buzzbuffer by setting all z values =
HUGE and id_tag to -2 (all our objects have
positive tags)

Project old pixel to Buzzbuffer at (begx, begy),
with depth miny.

If (begx, begy) is within the range of the
Buzzbuffer and is the closest hit

Buzzbuffer(begx, begy).z = miny
Buzzbuffer(begx, begy).data = pixel
information (i.e. intersection, normal, color,
shadow, id_tag).
Calculate to where the endpoint of a line L from
the old viewing position through the three-
dimensional intersection would project from the
new viewing position. Call this point (endx,
endy).
Let C be the line defined by the points (begx,
begy) and (endx, endy).
Extract the portion of C which lies within the
Buzzbuffer. Call this C1
For each point (midx, midy) of C1 excluding
(begx, begy)

If Buzzbuffer(midx, midy).z < HUGE
Calculate planes through the new
viewpoint and the sides of pixel (midx,
midy).

Calculate depth of the intersection

between these planes and the line L.

Let int_z be the maximum z value of all

intersections

If Buzzbuffer(midx, midy).z > int_z
Buzzbuffer(midx, midy).z = int_z
Buzzbuffer(midx, midy).id_tag = -2.

The last two steps make sure that nothing will
project into the pixel unless it has a Z value of
less than int_z, and if nothing reprojects to this
position the -2 tag will allow complete ray-
tracing of the pixel.

Note that if the rotation of the viewpoint is such
that the transformed viewing volume planes still
have positive z components, we may change the
step

If Buzzbuffer(midx, midy).z < HUGE



to
If (Buzzbuffer(midx, midy).z < HUGE) and
(Buzzbuffer(midx, midy).z > miny).

Also, depending on which pixels are in C1, it is
possible to reuse some of the ray-plane
intersections.

The total time for reading in new data,
transforming it, projecting it, and running this
algorithm to clean up is generally minimal. In
our test images it accounts for 13% of the
rendering time in very simple scenes
(background polygon only), and as little as 0.7%
in one complex test scene (1.5 million rays).

The " Creeping Pixel' Problem.

Suppose we are rendering a square polygon
against a very distant background, as in figure 4.
In the next frame, we approach the polygon such
that the pixels reproject as shown in the figure.
The distant pixels of the background do not
move. The four pixels of our polygon project
outwards, leaving a gap of four pixels which are
ray-traced. However, there are now gaps along
the polygon edge which are not recognized by
the algorithm. If uncorrected, this process
continues, and incorrect pixels can migrate
further into the polygon, causing creeping
pixels.

Without limiting pixel processing order, = can
recognize these gaps after all reprojection is
finished. We search both horizontally and
vertically for gaps within objects, checking all
pixels inside the gap to verify that those pixels
have z values less than the maximum of the two

endpoints of the gap. The clean up routine is as

follows:
FRAME N+1 FRAME N+1
FRAMEN Reprojected With Creeping Pixels
2] A
B ¥
. B : g
41 {1 l

D Background Polygon
Foreground Polygon
B Biank Pixel
Figure 4. Creeping pixels occur when
consecutive edge pixels do not reproject
consecutively.

/* Assumes an N by M image and objects have
positive id_tags */
/* Vertical Cleanup */
For each column j
Find the first positive id_tag such that the
same id_tag appears later after a gap of other
id_tag(s). If any id_tags = -2 before both
endpoints of this gap is found, ray-cast the
position.
Set test_z to the maximum z value of the
two endpoint.
For each position k in the gap
If Buzzbuffer(j, k) > test_z
Ray-cast position (§, k)
Set Buzzbuffer(j, k) with
intersection and object information
Continue cleanup from the first position in
the just-checked gap.



/* Horizontal Cleanup, Ray-Tracing, and
Enhancements (i.e. highlights, reflection,
refraction, etc.) */
For each row i
Find the first positive id_tag such that the
same id_tag appears later after a gap of other
id_tag(s).
Enhance and write to disk any all pixels
up to and including the first gap pixel.
Set test_z to the maximum z value of the
two endpoint.
For each position k in the gap
If Buzzbuffer(k, i) > test_z
Ray-cast position (k, i)
Set Buzzbuffer(k, i) with intersection
and object information
Continue cleanup from the first position in
the just-checked gap.

This algorithm is O(N?2M?2) in terms of
comparisons, but since gaps are almost always
small the ray-casting will occur only
occasionally and the actual expected time of the
algorithm is minimal.

The New Object Problem

In most animation, the projection plane moves
along with the viewpoint, usually at a constant
distance and relative orientation. The possibility
arises that objects may enter the scene because
of camera movement. If pixels on the edges do
not move enough, portions of this new data will
not be rendered. For example, suppose we had a
frame containing an infinitely distant vertical
plane. If we had a camera movement to the
side, these pixels would not change their
position, so no gaps would appear to allow
newly viewed data to be intersected.

If we study the three-dimensional viewing
volume from a particular position, it appears to
be a pyramid with its apex at the viewing
position. If the next frame of the animation is
not identical, the viewing volume of the new
viewing position will differ as well. It is in this
area of difference that data may exist, and in
order to render new objects we must be sure not
to project pixels into the contested area.

For every frame we save the coefficients
defining the four planes of the viewing volume.
If we are generating a new frame in which data
enters (or we suspect we are at such a point), we
will specify a distance k in Z behind which
(relative to the viewpoint) the new data will
appear. We calculate a plane P parallel to the
projection plane (the x-y plane) and passing
through the transformed point, a simple matter
since we require the orthogonal axes as camera

information.

We first calculate which portion of P will be
within the previous viewing volume as defined
by the four planes previously saved. This area
of P is clipped to a rectangular polygon
corresponding to the current viewing volume at
a depth k. We are left with a polygon of no
more than eight vertices. This polygon is scan
converted, with all interior positions and edges
given a Buzzbuffer Z value of HUGE, external
points given a -1 to represent possible new data.

Generally, we would do this scan-conversion as
a pre-processing step. However, there may be
cases in which the value of k is uncertain. It is
possible to scan-convert after the projection of



the previous pixels (but before the clean-up for
the creeping pixel problem), using (for example)
the minimum Z of the projected points for the
value of k. In this case, all exterior points of the
scan-conversion would be cleared of any
projected pixels.

We also note that rotations of the camera only
will automatically move pixels, so this solution
need only concern us when data enters a frame
because of a movement of the camera.

Performance Tests

To test the algorithm, we generated a short (600
frame) animation consisting of 755 polygons
and 41 quadric surfaces with a single light
source. Of these surfaces, 578 of the polygons
and all 41 quadrics were partially reflective;
additionally, four of the quadrics were also
partially refractive. The animation was rendered
with one light source at 640 by 480 resolution
and one ray per pixel. Camera movement
included rotations about all three axes. The
image displays a large degree of interreflection,
from which we attain no reduction in rendering
time. We therefore call the savings generated
here an informal lower bound.

There are two ways of measuring performance
on this algorithm. The first is in the number of
total rays saved. This gives an indication of
how much time we save, but it does not take
into account the overhead of the reprojection
and clean-up routines. If instead we take as our
metric the actual time required to generate
frames, we are also dealing with the
implementation method as well as the load on
the rendering machine at any given moment.

We will therefore indicate both measures of
savings, and claim that the actual savings is
somewhere in the range between the two.

We fully ray-traced 85 frames of the animation
to get an approximate idea of the number of rays
and time involved with completely ray-tracing
the animation. We have placed this data in
tables 1 and 2, along with the information
gathered from inferring the animation. Frame 0
(seen in figure 5) is completely ray-traced to
serve as our base data frame. It would have
been more efficient to fully ray-trace frame 300,
which would allow us to infer frames towards
both ends of the animation simultaneously.
However, frame 0 contains nothing except the
ground and sky planes, meaning that the "meat"
of the animation must be inferred by our
algorithm. For demonstration purposes, we feel
that this method best illustrates the abilities of
the method.

Figure 5. Frame 0 of the animation. Two
infinite planes.

For analysis, we separate the rest of the
animation into two sections, frames 1-24 and
25-599. The first 25 frames' data as seen in



table 1 represents ray-tracing against two
infinite planes, both of which have no reflective
or refractive components. Only the ground
plane has highlights and shadowed pixels.
Although the algorithm saved many of the rays -
almost 88% - the overhead of reprojection and
clean up routines were such that we actually had
a net loss in rendering time of 15%. We are not
very concerned with this result, however, since
just about any ray-tracing speed-up technique

would perform poorly on such trivial frames.

The data for the last 574 frames is in table 2.
These frames contain buildings with reflective
surfaces and one Yellowjacket, also reflective.
Since these reflective rays are eye-point
dependent, they must all be rendered at each
frame. Yet despite an average of over 196,000
secondary rays per frame, we save over 60% of
the total number of rays cast. Just as before,
overhead time eats into the actual rendering time
savings. Nonetheless, even ignoring machine
load effects on rendering time, we saved over
53% over a traditional ray-tracer in rendering

time.

Many algorithms which purport to speed
animation generation time use diffuse images
for testing. We have refrained from doing so to
show the power of our technique. It is a simple
matter to count rays, however, and we have
found that were this a strictly diffuse animation,
we would save almost 80% of the ray casting by
using our method. Even if we assume the same
amount of time for overhead, a diffuse image
would save over 70% in rendering time.

Image Quality

11

No quantity of ray savings is significant if the
animation frames produced are not of quality..
In figures 6-8, we have inferred frame 150, the
same frame fully ray-traced, and the difference
image between the two with enhanced pixel
values for easier viewing. We have done the
same in figures 9-11 for frame 450.

Visually, there is little difference between the
inferred frames and the fully ray-traced frames.
The difference images reveal that the disparity
occurs on edge boundaries. This exists because
the boundaries in the inferred frames have
reprojected from other frames and, while they
can be seen if we send a ray somewhere through
that pixel, do not quite match up with the rays
sent through the center of the pixels in the fully
ray-traced view.

Figure 6. Inferred frame 150.



Figure 7. Fully ray-traced frame 150 Figure 10. Fully ray-traced frame 450.

]

Figure 8. Difference image of figures 6 and 7. . . .
Pixel values in the range of 0-100 have been Figure 11. Difference image of figures 9 and

mapped to 0-2585. 10. Again, pixel values have been enhanced.

Finally, we present figure 12. Inferred frame
599, inferred through 598 steps from the initial
frame. We leave it to the reader to judge the
quality.

Figure 9. Inferred frame 450.

Figure 12. Inferred frame 599.
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Storage Details

Our inter-frame information file requires over
17 megabytes of storage at one ray per pixel and
640 by 480 resolution. This includes at each
pixel three double precision numbers for the
three-dimensional intersection and normal
vector, 3 bytes for the diffuse color, one byte (8
bits) to represent up to & shadow rays, and one
integer for an object tag. This is 56 bytes per
pixel, plus an additional 200 bytes for the frame
representing the four planes of the previous
viewing volume, the old viewing position, and
the size of the image in x and y.

If storage is at a premium, the first order of
business would be to reduce the double
precision numbers to standard floating points.
This will put the storage requirements at less
than 10 megabytes. If needed, we could
recalculate the diffuse color every time, saving

almost another megabyte of storage.

This file need only be saved, however, until the
next frame is rendered. Or to be more precise,
until the information contained in the file has
been reprojected.

Future Work

Anti-Aliasing

It is interesting to note that aliasing from distant
objects will be less objectionable usiny cur
rendering technique than a traditional ray-tracer
would be. Remember that distant objects will
appear to move more slowly than closer objects.
This means that a distant aliasing problem, say a
checkerboard ground plane, will tend to move
slowly as one piece and not change its aliasing

13

from frame to frame. The closer objects with
aliasing are often not noticed because, while
their aliasing will differ between frames, they
are changing position too quickly for the
aliasing to register.

But let us suppose that we desire anti-aliasing in
our animation frames. Any point-related anti-
aliasing technique will suffice, and we have
developed a limited adaptive super-sampling
method which will function for our renderer.
We subdivide the Buzzbuffer by a factor of 2L-1
+ 1, where L is the maximum number levels we
wish our frames to super-sample. A subpixel of
the Buzzbuffer is shown in figure 13. After
anti-aliasing in a given frame, we save all traced
positions, and reproject all of them in the next
frame. The creeping pixel cleanup routine must
be changed so that only positions which have
had reprojections are considered. No ray-
tracing of intermediate pixels is done until
sampling time.

Just as we guarantee reprojections within 1/2
pixel at one ray per pixel, this method will
always reproject within 1/2 of the subpixel size
involved. For example, at three levels of
potential super-sampling, reprojections will fall
within 1/8 of a pixel of their actual position.
This will significantly reduce the error apparent

in the difference images above.



Figure 13. Pixel-sized data structure to allow
adaptive super-sampling.

This 5 by 5 structure would allow up to three
levels of sampling. The numbers in the
sub-pixels represent the level of sampling at
which the sub-pixel would be ray-traced.

Despite the improved image quality, we will
often want to limit sampling to as few levels as
necessary. The more levels of super-sampling
we allow, the more storage we will require for
the frame information, the larger the Buzzbuffer
will have to be, and the greater the chance that
reprojecting pixels will be wasted, as in figure
14.

Pt-0 | ?

0

Figure 14. Reprojection doesn't always mean
savings!
Here, four sub-pixels reproject into the inferred
frame such that savings occur only if we go to
the third level of sampling in the pixel.

14

We provided this technique in our studies of
stereoscopic ray-tracing [AH92b]. From those
results, we estimate that the savings will
decrease by about 10% because of wasted
reprojections and additional overhead of larger
data structures.

Multiple Light Sources

We rendered our images with one light source.
If multiple light sources exist, we will have a bit
representing the shadows of each. However, we
have previously shown that if the light sources
are static, then the savings are unchanged
[AH92b]. The pixels which must be retraced
require more computations with multiple light
sources, and therefore the percentage of rays
and color combination calculations saved
remains the same.

Variable Light Sources

If light sources are static but change intensity or
color, we will need to recalculate the diffuse
color for pixels which are not in shadow from
the changing light source. Since we already
save the object tag, intersection, and normal,
there is only slightly more work involved with
recalculating the color of the object.

Moving Objects

As we have stated previously, our method only
works properly when we are assured that no
objects change their position. If only light
sources move, we may use the algorithm as is
but recast the appropriate shadow rays. For our
animation, the savings in frames 25-599 would
still be over 30% if we were casting such rays,
and 41% if we ignore non-diffuse rays.

Multiple light sources will continue to degrade



the saving as the number of sources grows, but
even with five moving light sources our
animation would achieve 12.5% savings overall.

It is often the case that we want objects to move
independently. We have not implemented such
an algorithm, but we suggest the following,
based upon Jevans [Je92]. Object space is
divided into voxels by some space partitioning
method. For a new frame, we calculate which
voxels will have changed because of an object
movement. These voxels are set with a single
bit. After the reprojection of previous frame
pixels and before the creeping pixel cleanup, we
test every reprojected pixel in the Buzzbuffer.
For each pixel, if a line between the intersection
and the new viewing position passes through a
set voxel, the position is cleared to be fully ray-
traced later. If the pixel survives this test, we
check a line between the intersection and each
light source. If a set voxel is intersected, we
may keep the position, but we need to
recalculate the diffuse color and recast that
shadow ray.

More efficient, but at the cost of higher storage,
would be to save the parametric t for each light
source rather than a bit to represent the shadow
on the intersection. In that case, the shadow line
need only be checked as far as the voxel at
distance t. If the light source itself moved, we
would need to recast the ray to that light source
for all pixels, although we may keep the diffuse
color if we find that a shadowed position
remained shadowed.

While it is outside the scope of this paper, it
would seem that the method outlined above
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might be an improvement over Jevans'
algorithm for animations with few or no higher-
order rays.

Parallelization of Frame Generation

The creation of animation frames using this
technique is a linear process; we have to finish
creating the previous frame before we can begin
the next frame. It may be desirous in long
animations to render frames on different
machines. Obviously, camera cuts are natural
points of breaking the animation. Otherwise, we
suggest that if an appropriate anti-aliasing
technique is used that every kth frame be fully
ray-traced (k an arbitrarily large odd integer, but
based on the number of machines available and
their relative speed), and infer the L/2] frames

on either side of the fully ray-traced image.

If we are not using anti-aliasing, the aliasing
artifacts will not match at the join points, so the
matching points should be placed in sections of
fast camera movement to reduce their notability.

Conclusions
Decreasing animation frame generation time by
exploiting spatio-temporal coherence with a
moving camera position has been largely
ignored because of the general perception that
all information is lost when the camera moves.
We have shown not only that we can save data
from fhe first level of ray-tracing, but that we
can also save the shadow ray information. We
are not aware of any other system that can create
inferred exact frames and save the shadow rays
without saving the entire ray tree at each pixel.
This represents an important advantage when
storage facilities are not large. While we lose



some savings to the eye-point dependent
reflection and refraction rays, it should be noted
that most of the world is not reflective and
refractive but predominately diffuse.

In our animation performance test, the algorithm
saved approximately 60% of the rays, and 53%
in rendering time. A similar animation with
diffuse-only objects would have resulted
approximately in an 80% reduction in rays cast.
Our animation consisted of ellipsoids and
quadric surfaces, but the technique is not limited
to these objects. Any scene which can be ray-
traced in a point-sampling manner - quadrics,
fractals, implicit surfaces - is usable material for
the method. This algorithm has potential for
adding moving objects, moving light-sources,
and anti-aliasing. As such, it represents an
important step towards using spatio-temporal
coherence as an aid in creating animation
sequences.
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Table 1
Comparison data for Frames 1-24 (Background Polygons Only)
Time is expressed in seconds per frame, rays in thousands per frame

Fully Ray-Traced Frames Inferred Frames

Mean Set Up Time! N/A 5.6
Mean Reprojection Time? | N/A 34.8
Mean Total Time 261 295

¢ for Mean Total Time 17 30
Mean Primary Rays 307 34
Mean Primary Shadow Rays 154 24
Mean Total Rays 461 58
Mean Primary Rays / Pixel 1.00 0.11
Mean Total Rays / Pixel 1.50 0.19
Savings in terms of rays cast 87.5%
Savings in terms of total time -15.3%

1 Set up time includes the time needed to create the transformation matrix and generate the bounding planes of the new

viewing volume. & is 0.5 seconds.

2 Reprojection time includes the time to read the previous pixels, transform them, project them, and fix the bad pixel

problem. o is 1.8 seconds.
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Table 2
Comparison data for Frames 25-600
Time is expressed in seconds per frame, rays in thousands per frame

Fully Ray-Traced Frames Inferred Frames
Mean Set Up Time! N/A 6.8
Mean Reprojection Time2 N/A 27.7
Mean Total Time 5763 2693~
Mean Primary Rays 307 62
Mean Primary Shadow Rays 291 58
Mean Secondary Rays 196 196
Mean Total Rays 795 317
Mean Primary Rays / Pixel 1.00 0.39
Mean Total Rays / Pixel 2.59 1.03
Savings in terms of rays cast 60.1%
Savings in terms of total time 53.3%
Savings in terms of primary and shadow rays cast 79.9%
Savings in time, diffuse scene (estimated) 70.2%

1 get up time includes the time needed to create the transformation matrix and generate the bounding planes of the new

viewing volume. o is 0.6 seconds.

2 Reprojection time includes the time to read the previous pixels, transform them, project them, and fix the bad pixel

problem. ©is 9.2 seconds.

20



