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SUMMARY

Atmospheric aerosols are known to exert a significant influence on the Earth’s cli-

mate system; however, the magnitude of this influence is highly uncertain because of the

complex interaction between aerosols and water vapor to form clouds. Toward reducing

this uncertainty, this dissertation outlines a series of laboratory and in-situ field measure-

ments, instrument technique development, and model simulations designed to characterize

the ability of aerosols to act as cloud condensation nuclei (CCN) and form cloud droplets.

Specifically, we empirically quantify the mixing state and thermodynamic properties of

organic aerosols (e.g., hygroscopicity and droplet condensational uptake coefficient) mea-

sured in situ in polluted and non-polluted environments including Alaska, California, and

Georgia. It is shown that organic aerosols comprise a substantial portion of the aerosol

mass and are often water soluble. CCN measurements are compared to predictions from

theory in order to determine the error associated with simplified composition and mixing

state assumptions employed by current large-scale models, and these errors are used to

constrain the uncertainty of global and regional cloud droplet number and albedo using a

recently-developed cloud droplet parameterization adjoint model coupled with the NASA

GMI chemical transport model. Quantifying the sensitivities of these cloud parameters to

aerosol number is important because cloud droplet number and albedo are the main deter-

minants of climate forcing.

We also present two novel techniques for fast measurements of CCN concentrations

with high size, supersaturation, and temporal resolution that substantially improve the state

of the art by several orders of magnitude. The first, called Scanning Flow CCN Anal-

ysis (SFCA) allows measurement of CCN supersaturation spectra (i.e., CCN concentra-

tions over a range of supersaturations) in as little as 10-15 seconds (versus 30-60 minutes
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for the conventional technique). SFCA has been successfully deployed in a ground-based

study in Atlanta during 2009 and in an airborne study in California during 2010, both with

good success. In addition, we present Scanning Mobility CCN Analysis (SMCA) as a new

technique for measuring size-resolved CCN concentrations and droplet growth kinetics by

coupling a TSI Scanning Mobility Particle Sizer (SMPS) to a Droplet Measurement Tech-

nologies CCN counter. By applying the same inversion algorithm to the CCN data as used

for the SMPS, size-resolved CCN distributions can be obtained concurrently with particle

size distributions over the timescale of a typical SMPS scan (typically 60-120 seconds).

Fast measurement techniques such as SFCA and SMCA are particularly important for air-

borne studies, where the aircraft may sample particles and pollution plumes over several

kilometers in only a few tens of seconds.

The techniques developed in this dissertation provide the means to comprehensively

characterize the aerosol-water interactions relevant for constraining the indirect effects of

aerosols on climate; however, the current global dataset of CCN observations remains lim-

ited mostly to continental regions in the Northern Hemisphere, where we show that cloud

properties are relatively insensitive to changes in the CCN-active aerosol number. In direct-

ing future field studies focusing on CCN, the results of this dissertation suggest that these

efforts should be directed toward the pristine regions in the Alaska-Canadian Arctic and

southern oceans, where cloud properties (i.e., droplet number and albedo) are most sensi-

tive to small perturbations in aerosol number. Ultimately, this work represents a step toward

better understanding how atmospheric aerosols influence cloud properties and Earth’s cli-

mate.
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CHAPTER I

INTRODUCTION

It is widely-recognized that humans are changing Earth’s climate in ways that are unsustain-

able, and which will likely lead to significant changes in the global and regional distribution

of food, water, and clean air (Solomon et al., 2007). Meanwhile efforts to mitigate or adapt

to these climatic impacts will impose additional constraints on existing energy, health, and

regulatory infrastructures. In order to inform future policy efforts toward solving these

problems, it is essential to develop regional and global models that can be used to capture

current and future climate trends. The key to improving these models is to develop a better

understanding of the different physical mechanisms that contribute to Earth’s climate.

Much work in past decades has contributed to elucidating how atmospheric gases and

particles affect climate; however, the link between aerosols and clouds remains highly un-

certain even today (Solomon et al., 2007). This is due, in part, to the non-linearity of

cloud processes and also because they span multiple scales from nanometer-sized particles

and micrometer-sized droplets to large stratiform cloud decks on the order of hundreds of

kilometers. Many of these scales are much smaller than the typical resolution of a global

climate model (∼ 100 km by 100 km grid cells), which means that these models must nec-

essarily rely on simplified assumptions and parameterizations of these sub-grid processes.

This motivates research into both characterizing aerosol-cloud interactions using these sim-

ple parameterizations as well as quantifying the uncertainties associated with these assump-

tions. In this study, we focus on measuring the properties of atmospheric aerosols and their

ability to form cloud droplets, and on how measurements of these interactions can be used

to assess and improve their representation in large scale models.
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1.1 Climatic Effects of Aerosols

Aerosols can affect climate directly through the absorption and scattering of shortwave and

longwave radiation or indirectly by acting as cloud condensation nuclei (CCN) to form

droplets that are usually more effective at absorbing and scattering light. These indirect

effects manifest themselves in a number of ways shown in Figure 1.1. The first indirect

effect (Twomey, 1974, 1977a) posits that an increased number of aerosols in a polluted at-

mosphere leads to a concomitant increase in the number of cloud droplets because there

are more particles on which water vapor can condense. The plentiful, “polluted” droplets

would be smaller than their “non-polluted” counterparts, assuming a constant amount of

liquid water. This would lead to a denser, brighter cloud that would reflect more incoming

solar radiation back into space than the less-dense, less-bright “non-polluted” clouds. Since

these low-level, liquid clouds are at nearly the same temperature as the surface and assum-

ing them to be black bodies, which is a good assumption for typical droplet concentrations

above ∼10 cm−3 (Mauritsen et al., 2011), the net effect on outgoing infrared radiation is

negligible since infrared emission scales with temperature to the fourth power. Thus, the

first indirect effect is expected to lead to greater planetary cooling.

The second indirect effects follow logically from the first effect, in that the smaller

droplets would be less likely to grow large enough to form drizzle and be removed to the

surface as precipitation (Albrecht, 1989). Meanwhile, the suppressed precipitation invig-

orates the cloud updraft, entraining outside air and leading to taller clouds (Pincus and

Baker, 1994). The increase in cloud lifetime from these phenomena increases the total

amount of solar radiation reflected to space, even as the first indirect effect enhances the

clouds’ reflectivity.

It is currently thought that the cumulative impact of aerosols on climate (both direct and

indirect) leads to a net cooling influence, which is comparable to the warming influence of

carbon dioxide (Solomon et al., 2007). This is shown in Figure 1.2 in terms of a globally-

averaged, anthropogenic radiative forcing that reflects the impact that humans have had
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Figure 1.1: Schematic diagram showing the various radiative mechanisms associated with
cloud effects that have been identified as significant in relation to aerosols (modified from
Haywood and Boucher (2000)). The small black dots represent aerosol particles; the larger
open circles cloud droplets. Straight lines represent the incident and reflected solar radia-
tion, and wavy lines represent terrestrial radiation. The filled white circles indicate cloud
droplet number concentration (CDNC). The unperturbed cloud contains larger cloud drops
as only natural aerosols are available as cloud condensation nuclei, while the perturbed
cloud contains a greater number of smaller cloud drops as both natural and anthropogenic
aerosols are available as cloud condensation nuclei (CCN). The vertical grey dashes rep-
resent rainfall, and LWC refers to the liquid water content. Figure and caption reproduced
with permission from Figure 2.10 of Solomon et al. (2007).

on influencing Earth’s climate since pre-industrial times. The magnitudes of these forc-

ings (±1-2 W m−2) are tiny compared to the Earth’s overall incoming and outgoing energy

fluxes (∼341 W m−2; Trenberth et al., 2009), but they still have a large impact on climate.

For example, the globally-averaged temperature has risen by 0.76±0.19◦C from the latter

half of the 19th century to present day, and is currently increasing at a rate of 0.13±0.03◦C

per decade (Solomon et al., 2007). This global average reflects a large degree of regional

temperature variation with smaller changes near the equator and larger changes near the

poles. Predicting future climatic changes requires an accurate assessment of both green-

house gas-induced warming and aerosol-induced cooling. While the warming effects are

fairly well-understood (Figure 1.2), the magnitude of this cooling is highly uncertain, pri-

marily because of the large uncertainty associated with the aerosol indirect effects. Until
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we can constrain this quantity with some degree of certainty, it will be impossible for so-

ciety to assess its impact on the Earth system. The key to understanding the link between

aerosols and clouds is their hygroscopic properties (i.e., aerosol-water interactions).

1.2 Aerosol Hygroscopicity

Aerosol hygroscopic properties are chiefly dependent on particle size and chemical compo-

sition, and cloud droplet formation depends on this hygroscopicity and on the availability

of water vapor (Seinfeld and Pandis, 2006; Dusek et al., 2006). The typical size range of

atmospheric aerosols spans several orders of magnitude (a few nanometers to tens of mi-

crometers) and particles may contain any of the hundreds of different organic species, the

eight or so inorganic species (Na+, K+, NH+
4 , Ca2+, Mg2+, SO2−

4 , Cl−, NO−3 ), and water.

Particle size and chemistry vary widely throughout the atmosphere depending on, e.g., lo-

cal meteorology and proximity to emissions sources. Meanwhile, gas- and aerosol-phase

chemical reactions in the atmosphere change both the amount of material in the aerosol

phase and also the hygroscopic properties of these aerosols over time. Thus, it is important

to investigate the properties of atmospheric aerosols either in situ or through realistic labo-

ratory experiments (e.g, ambient filter extracts or the oxidation of gas-phase precursors in

a smog chamber).

Köhler theory is the thermodynamic equilibrium model that describes the conditions

under which atmospheric particles uptake water and either exist as stable haze droplets

or experience rapid and uncontrolled condensational growth as cloud condensation nuclei

to form larger cloud droplets (Köhler, 1936). The theory is expressed as the competition

between the Kelvin effect and the Raoult effect:

s = ln
Pw
P ◦w

=
4Mwσ

RTρwDp,wet

− MwρsφsνsDp,dry

ρwMsD3
p,wet

(1.1)

where s is equilibrium water vapor supersaturation, Pw is the ambient vapor pressure of

water, P ◦w is the temperature-dependent, saturated vapor pressure of water, Mw is the molar
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Figure 1.2: Global mean radiative forcing (RF) estimates and ranges in 2005 for anthro-
pogenic carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and other important
agents and mechanisms, together with the typical geographical extent (spatial scale) of the
forcing and the assessed level of scientific understanding (LOSU). The net anthropogenic
radiative forcing and its range are also shown. These require summing asymmetric un-
certainty estimates from the component terms, and cannot be obtained by simple addition.
Additional forcing factors not included here are considered to have a very low LOSU. Vol-
canic aerosols contribute an additional natural forcing but are not included in this figure
due to their episodic nature. The range for linear contrails does not include other possi-
ble effects of aviation on cloudiness. Figure and caption reproduced with permission from
Figure SPM.2 of Solomon et al. (2007).
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mass of water, ρw is the density of water, σ is the solution surface tension,R is the universal

gas constant, Dp,wet is the droplet diameter, Dp,dry is the dry particle diameter, and Ms, ρs,

φs, and νs are the molar mass, density, osmotic coefficient, and stoichiometric van’t Hoff

factor, respectively. The first term on the right hand side of Equation 1.1 represents the

effect of surface tension and droplet curvature to increase the equilibrium vapor pressure

over the droplet relative to that over a flat surface (i.e., the Kelvin effect). The second term

is the Raoult (or solute) term, which represents the effect of dissolved solute in lowering

the equilibrium water vapor pressure over the solution droplet relative to pure water. Ex-

ample “Köhler curves” for ammonium sulfate, a common aerosol constituent, are shown in

Figure 1.3. The maximum of each Köhler curve represents a transition point, commonly

referred to as the critical supersaturation, sc, and critical droplet diameter, Dc,wet. At am-

bient supersaturations lower than sc (and Dp,wet < Dc,wet), the droplet exists in a stable

equilibrium; small perturbations in droplet size caused by a few molecules of condensing

or evaporating water are canceled out by the change in equilibrium supersaturation, and the

droplet returns to the unperturbed size. When the ambient supersaturation exceeds sc (and

Dp,wet ≥ Dc,wet), however, a small increase in droplet size leads to further uninhibited con-

densational droplet growth. Such growth is referred to as activation and particles capable

of activating to form cloud droplets are referred to as cloud condensation nuclei (CCN).

When the ambient supersaturation exceeds the sc of the aerosol, even if only for a short

time, the particle activates into a cloud droplet and continues to grow unless the ambient

supersaturation decreases below roughly 0% supersaturation (see Figure 1.3).

Köhler theory has been shown to adequately capture the CCN activity of single- and

multi-component aerosol by a large number of laboratory studies (e.g., Cruz and Pandis,

1997; Raymond and Pandis, 2002, 2003; Giebl et al., 2002; Padró et al., 2007). However,

atmospheric aerosols are much more complex than those in the laboratory, so a number of

modifications have been proposed in recent years to account for the presence of soluble

trace gases (Laaksonen et al., 1998), slightly-soluble but surface-active solutes (Shulman
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et al., 1996), water adsorption on insoluble but hydrophilic particles (Sorjamaa and Laak-

sonen, 2007), curvature enhanced solubility (Padró and Nenes, 2007), and slow dissolution

kinetics (Asa-Awuku and Nenes, 2007). While these approaches are rigorous representa-

tions of how aerosols can act as CCN, they require detailed thermodynamic properties (e.g.,

molar mass, density, surface tension depression, ionic dissociation constants, and activity

coefficients) for the dry particle inorganic and organic components. However, the properties

and speciation of the organic aerosol components are typically unknown for measurements

of atmospheric aerosol.

Consequently, there have been a number of Köhler theory-based parameterizations de-

veloped that attempt to simplify much of this complexity into a single, or a few, lumped

parameters that capture the “effective” aerosol solubility or hygroscopicity (e.g., Junge
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and McLaren, 1971; Fitzgerald, 1973; Rissler et al., 2006; Petters and Kreidenweis, 2007;

Lance, 2007). Of these, the single-parameter parameterization of Petters and Kreidenweis

(2007) has become the most widely used in recent years, and the hygroscopicity parameter,

κ, has become an effective way of communicating the overall compositional dependence

of CCN activity without explicitly differentiating between dissolved solute (Raoult) and

surface tension (Kelvin) effects. Insoluble but hydrophilic particles have a κ of zero, while

soluble salts such as sodium chloride have a κ value of around unity (Petters and Kreiden-

weis, 2007). Thus, a simple way of interpreting the κ parameterization would be to say

that a particle with κ=0.1 (as is commonly observed for some soluble secondary organic

aerosol species) has the same hygroscopicity as a particle composed of 10% NaCl and 90%

insoluble material.

As with any empirical parameter, ambient measurements are necessary to constrain the

range of realistic values for the atmosphere, and a global picture of aerosol hygroscopicity

is beginning to emerge with typical continental κ ∼ 0.1-0.4 and higher marine κ ∼ 0.4-

1.0 (Andreae and Rosenfeld, 2008; Pringle et al., 2010). However, observations of CCN

hygroscopicity have been limited to only a few locations worldwide, and continued field

measurements are necessary to better understand how κ varies in space and time, as well

as with aerosol composition and mixing state. Understanding these variations is likely to

become even more important as future global modeling efforts begin to focus on smaller,

more-regional scales where assuming the aerosol to be well mixed may no longer represent

reality.

1.3 Cloud Droplet Formation and Growth

In addition to composition impacts on CCN hygroscopicity, it has also been suggested that

the presence of slightly-soluble organics can significantly hinder the rate at which parti-

cles activate and grow into droplets (Nenes et al., 2001a; Shantz et al., 2003; Ruehl et al.,

2009). This may occur through gradual solute dissolution (Asa-Awuku and Nenes, 2007) or
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the formation of organic surface films that hinder condensational water uptake (e.g., Fein-

gold and Chuang, 2002, and references therein). In terms of climate impacts, slow droplet

growth has the same effect as increased aerosol concentration, resulting in more numerous,

but smaller droplets (Nenes et al., 2002). This is because the ambient water vapor super-

saturation in an ascending cloud parcel is not depleted as quickly as it would otherwise be,

and may actually increase (as in the case of a strong convective cloud). Thus, it is essential

that we understand the impact of aerosol properties on influencing droplet growth rates.

The growth rate of an activated cloud droplet is governed by the Maxwellian diffusional

growth equation (Seinfeld and Pandis, 2006)

Dp
dDp

dt
=

s∞ − s
ρwRT∞

4P ◦w(T∞)DvMw
+ ∆Hvρw

4kaT∞

(
∆HvMw

T∞R
− 1
) (1.2)

where s∞ is the water vapor supersaturation far from the droplet, T∞ is the temperature

far from the droplet, Dv is the diffusivity of water vapor in air corrected for noncontinuum

effects, ∆Hv is the enthalpy of vaporization of water, and ka is the effective thermal con-

ductivity of air corrected for noncontinuum effects. The modified diffusivity and thermal

conductivity both include accommodation coefficients to account for the probability that

a water vapor molecule that collides with the water droplet is assimilated into the droplet

and for the dissipation of heat into the surrounding air. The values of these coefficients

can range from 0 to 1 and are highly uncertain; reported values for pure water range from

0.03 to 1, and some suggest that values are closer to unity for pure water (Mozurkewich,

1986; Davis, 2006). Li et al. (2001) found values between 0.17 and 0.32 for the mass

accommodation coefficient and unity for the thermal coefficient. Shaw and Lamb (1999)

suggest 0.06 for the mass accommodation coefficient and 0.7 for the thermal accommo-

dation coefficient. The presence of surface-active organic species in the droplets likely

limits water uptake by forming hydrophobic surface films that would decrease the mass

accommodation coefficient (Chuang et al., 1997), even as these same surface-active organ-

ics may facilitate CCN activation by lowering the droplet surface tension and decreasing
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the Kelvin effect (Facchini et al., 1999; Shulman et al., 1996; Nenes et al., 2002). In-situ

measurements of atmospheric aerosol provide the means to better assess the influence of

aerosol composition on droplet activation and growth in order to better understand under

what conditions aerosol composition alters droplet growth rates and under what conditions

it does not. As discussed in Chapters 2-4, this dissertation contributes new techniques for

fast measurements of droplet growth rates and CCN activation, which are applied to look

for slow growth kinetics during a unique case study of organic-rich aerosol near the 2010

Gulf of Mexico oil spill (Chapter 7).

1.4 Dissertation Outline

The goal of this dissertation is to expand the global data set of CCN observations in order to

develop robust relationships between aerosol hygroscopicity and aerosol composition and

mixing state inferred using a variety of new techniques for fast measurements of CCN suit-

able for either airborne or ground-based deployment. Chapters 2 and 3 discuss the devel-

opment and characterization of two new techniques for operating a commercially-available

CCN counter, which enable size-resolved and supersaturation-resolved CCN concentration

measurements that improve measurement time resolution (and in the case of aircraft mea-

surements, spatial resolution) by several orders of magnitude over the current state of the

art. Chapter 4 presents a laboratory study of concentrated marine organic matter using

the previously-developed Köhler Theory Analysis (KTA, Padró et al., 2007; Asa-Awuku

et al., 2008) technique to simultaneously determine the molar mass and surface tension

depression relevant for these organic aerosol.

In Chapters 5 through 8, the hygroscopic properties of ambient CCN sampled in Alaska,

California, Atlanta, GA, and near the 2010 Deepwater Horizon oil spill are characterized in

terms of aerosol size, chemical composition, and mixing state to constrain the mean values

of κ and its variability for each region. In addition, size and chemical composition measure-

ments are used to assess “CCN closure”, which reflects the discrepancy between measured
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CCN concentrations and predictions from Köhler theory using simplifying assumptions

typically used in large-scale models. The closure uncertainties are combined with those

from approximately thirty other published studies in Chapter 9 to assess the global sensi-

tivity of cloud droplet concentrations and cloud albedo, and hence aerosol indirect forcing,

to these CCN uncertainties. This is accomplished using the NASA Global Modeling Initia-

tive chemical transport model and the recently-developed adjoint of the Kumar et al. (2009)

cloud droplet parameterization. Finally, Chapter 10 discusses the impact of this dissertation

in advancing the state of the art in measuring and characterizing aerosol-cloud interactions

and possible future directions for measurements of ambient CCN.
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CHAPTER II

SCANNING FLOW CCN ANALYSIS (SFCA)

The Continuous-Flow Streamwise Thermal-Gradient Cloud Condensation Nuclei Counter

is a commercially-available instrument that is widely used for laboratory and field mea-

surements of cloud condensation nuclei (CCN). Typically, the instrument is operated at

a constant flow rate, and supersaturation is adjusted by changing the column streamwise

temperature difference, which is slow and may introduce particle volatilization biases. This

chapter presents a new mode of operation, termed “Scanning Flow CCN Analysis” (SFCA),

in which the flow rate in the growth chamber is changed over time, while maintaining a con-

stant temperature gradient. This causes supersaturation to continuously change, allowing

the rapid and continuous measurement of supersaturation spectra over timescales relevant

for airborne measurements (∼10-60 seconds and potentially even less) without being af-

fected from shifts in activation kinetics and aerosol composition. SFCA has been evaluated

with both calibration and ambient aerosol with excellent results.

2.1 Introduction

Atmospheric aerosols, through their ability to act as cloud condensation nuclei (CCN), ex-

ert a significant influence on the Earth’s climate and hydrological cycle (e.g., Lohmann and

Leck, 2005; Ramanathan et al., 2001). The ability of aerosol to behave as CCN depends on

the ambient water vapor supersaturation as well as aerosol size and chemical composition.

While thermodynamic theory (Köhler, 1936) has been shown to accurately predict these

dependencies (e.g., Kanakidou et al., 2005; McFiggans et al., 2006), ambient aerosols are

This chapter published as: Moore, R., and A. Nenes (2009), Scanning flow CCN analysis – a method
for fast measurements of CCN spectra, Aerosol Science and Technology, 43, 1192-1207, doi:10.1080/
02786820903289780. Copyright © 2009 Taylor & Francis. Reproduced with permission.
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chemically complex and highly variable. Given this, and the important role of aerosol-

cloud interactions on anthropogenic climate change (e.g., Twomey, 1977a; Albrecht, 1989;

Solomon et al., 2007; Levin and Cotton, 2009), extensive and long-term measurements of

CCN are required to constrain regional and global climate models.

A number of instruments have been developed in recent decades to measure the concen-

tration of CCN as a function of water vapor supersaturation. All are based on the principle

of exposing the aerosol to a specified supersaturation and counting the number of particles

that “activate” to form cloud droplets. Instruments are classified as either “CCN counters”

or “CCN spectrometers”, with the former typically operating at a single (or a few) dis-

crete supersaturation(s) and the latter concurrently measuring CCN concentrations over the

range of atmospherically-relevant supersaturations (i.e., a CCN spectrum). Since the orig-

inal parallel-plate static diffusion CCN counter was introduced by Twomey (1963), CCN

counter designs have evolved by developing new methods for droplet detection (Lala and

Jiusto, 1977), continuous-flow sampling (Sinnarwalla and Alofs, 1973), and cylindrical ge-

ometry designs (Roberts and Nenes, 2005; Chuang et al., 2000a; Leaitch and Megaw, 1982;

Hoppel et al., 1979). Another class of counters includes the CCN Remover (Ji et al., 1998)

and the Differential Activation Separator (DAS) (Osborn et al., 2008), which use gravita-

tional settling of activated droplets to differentiate CCN from interstitial aerosol. Fukuta

and Saxena (1979) developed a spectrometer based on the continuous-flow, parallel-plate

diffusion concept, but with a temperature difference (and supersaturation) that varies for

each streamline. By sampling aerosol across streamlines, a CCN supersaturation spectrum

(0.1-0.9%) could be obtained in 10-15 seconds (Zhang et al., 2008; Fukuta and Saxena,

1979). Spectra obtained with this instrument are inherently limited to supersaturations

above 0.1%, mostly because of the time required for droplets to grow to detectable sizes

(Nenes et al., 2001b). To address this, VanReken et al. (2004) proposed a trapezoidal ge-

ometry to increase the aerosol residence time at the lower-supersaturation streamlines; al-

though promising, the design has not been realized to date. Hudson (1989) (and later
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Chuang et al. (2000a)) designed a continuous-flow CCN spectrometer where the sample

aerosol encounters a continuously increasing supersaturation as it moves through the flow

chamber. The CCN spectrum is then inferred from the outlet droplet size distribution using

critical supersaturation - droplet size relationships obtained from activation of calibration

aerosol. Accurate inversion requires that the water uptake coefficient and Köhler curves

are identical for ambient and calibration aerosol with the same critical supersaturation – a

criterion that may not always be fully satisfied if organic species are present in the CCN

(e.g., Shantz et al., 2003; Asa-Awuku et al., 2008; Ruehl et al., 2008).

The continuous flow streamwise thermal gradient CCN counter (CFSTGC) of Roberts

and Nenes (2005), which has been commercialized by Droplet Measurement Technologies

(Lance et al., 2006; Rose et al., 2008), has proven to be reliable, robust, and relatively sim-

ple to operate for ground-based and airborne measurements (e.g., Lance et al., 2009; Cubi-

son et al., 2008; Moore et al., 2008; Sorooshian et al., 2008; Wang et al., 2008; Asa-Awuku

et al., 2008, 2010; Medina et al., 2007; Padró et al., 2007, and others). The supersaturation

profile in the CFSTGC depends on pressure, flow rate, the streamwise temperature gradi-

ent, and to a lesser extent, the inlet temperature (Roberts and Nenes, 2005). Typically, the

streamwise temperature difference is varied in a stepping manner, while maintaining con-

stant flow rate and pressure, to effect a supersaturation change (e.g., Cubison et al., 2008;

Rose et al., 2008; Sorooshian et al., 2008; Wang et al., 2008; Medina et al., 2007, and

others). While this is a well-established and robust mode of operation, some limitations

exist. First, instrument temperature stabilization is slow (on the order of 20-40 seconds for

the column temperatures and sometimes as much as 3 minutes for the OPC temperature

to stabilize); data collected during these transient periods are often discarded, which may

be problematic for airborne measurements in highly heterogeneous environments. Con-

sequently, the CFSTGC is generally limited to only a single (or a few) supersaturations

during measurements. In addition, recent work by Asa-Awuku et al. (2008) has shown that

organic-rich aerosol may partially volatilize in the instrument, which affects the observed
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CCN activity. For this reason, CCN activity measurements should be carried out as close

to ambient temperatures as possible, which is not always feasible using the “conventional”

method of temperature stepping.

To date, there is no technique that combines the simplicity and robustness of a CCN

counter (such as the CFSTGC) with the dynamical range and temporal resolution of a CCN

spectrometer. This study presents a new methodology for operating the CFSTGC, termed

Scanning Flow CCN Analysis (SFCA), which largely addresses this need. SFCA entails

scanning the instrument flow rate over a short period of time, while maintaining a constant

temperature difference. This allows the measurement of CCN spectra during a flow cycle,

using the well-established and robust hardware of the CFSTGC. An added advantage of

SFCA is that CCN measurements are carried out at a constant column temperature differ-

ence (which can be only a few degrees above ambient), therefore minimizing biases from

partial volatilization of aerosol in the instrument. In subsequent sections, we present the

theory of SFCA and experimentally demonstrate the power of the method for laboratory-

generated calibration aerosol and ambient aerosol sampled in Atlanta, GA.

2.2 Instrument Description

The CCN counter used to develop and demonstrate SFCA was a Droplet Measurement

Technologies CFSTGC (CCN-100, DMT). The CFSTGC consists of a cylindrical metal

tube (0.5 m in length with a 23 mm inner diameter and 10 mm wall thickness) with a wetted

inner wall on which a linear temperature gradient is applied in the streamwise direction.

The temperature gradient is controlled using three thermoelectric coolers (TECs) located

on the outer wall of the flow chamber (Figure 2.1), and water flows continuously through a

2.5-mm-thick, porous, ceramic bisque that lines the inside of the cylinder. Heat and water

vapor diffuse toward the centerline of the flow chamber. Since moist air is largely composed

of N2 and O2, which are heavier molecules than H2O, the latter has a higher molecular

velocity, hence diffuses more quickly than heat (which is transferred primary via collisions
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Figure 2.1: Schematic of the setup used for the Scanning Flow CCN Analysis (SFCA).

between slower N2, O2). Under developed flow conditions, a quasi-parabolic water vapor

supersaturation is generated across the cross-section of the tube, which is maximum at the

centerline (Roberts and Nenes, 2005). The aerosol sample enters the top of the column at

the centerline and is surrounded by a blanket of humidified, aerosol-free sheath air. If the

supersaturation in the instrument exceeds the critical supersaturation (sc) of the aerosol,

16



the particles activate and form droplets, which are counted and sized by an optical particle

counter (OPC) using a 50 mW, 658-nm-wavelength laser diode light source. The droplet

size distribution information obtained in the OPC also allows using the CFSTGC to study

CCN activation kinetics.

2.3 Description of SFCA
2.3.1 Method

SFCA entails varying the flow rate through the column in a controlled manner, while main-

taining a constant streamwise temperature difference, ∆T , and pressure, P . In this work,

the flow rate in the chamber is increased linearly between a minimum flow rate (Qmin) and

a maximum flow rate (Qmax) over a specified “ramp time” (tup). The flow is maintained

at Qmax for a time period, tpeak, and is then linearly decreased to Qmin over another ramp

time, tdown. Finally, the flow rate is held constant at Qmin for a period, tbase, and the scan

cycle is repeated. Droplet concentrations and size distributions at the OPC are continuously

measured during this scan cycle with 1-second resolution.

A critical step for the success of SFCA is relating instantaneous CCN concentrations

measured in the OPC to a specific level of supersaturation, so that a spectrum can be ob-

tained over a scan cycle. This requires an understanding of the dynamics of CCN activation

in the instrument. For this, two characteristic timescales are introduced: i) τQ, the charac-

teristic timescale of flow change (tup or tdown) and ii) τr, the diffusivity timescale in the

radial direction (R
2

Γ
, where R is the flow tube inner radius and Γ is a characteristic diffusiv-

ity for momentum, heat, and water vapor). Since the dimensionless Schmidt Number (Sc)

is less than the Prandtl Number (Pr), which are both less than unity, diffusion of momen-

tum is the slowest of all transport processes in the radial direction. Hence, Γ = µ
ρ
, where µ

and ρ are the air viscosity and density, respectively, and τr ∼ 10 s at 298 K, and 1013 mbar.

If τQ � τr, then the instantaneous velocity, water vapor, and temperature distributions will

approach their steady-state profiles, and particles exiting the flow column at each point in
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time will be exposed to this quasi-steady-state supersaturation, ssteady, and activate. Since

ssteady depends linearly on flow rate (Roberts and Nenes, 2005), supersaturation will vary

linearly with time. Under these conditions, SFCA will provide CCN spectra with minimal

data processing as concentrations will correspond to the instantaneous supersaturation in

the instrument (assuming that the OPC integration time, τOPC , is much less than τQ). When

τQ ≤ τr, the flow rate varies too quickly with respect to the radial transport timescale, and

the velocity, temperature and water concentrations deviate substantially from steady-state

values. Supersaturation still develops, but it is a nonlinear function of time (flow rate) and

the control parameters (scan time, temperature). Quantifying the departure from steady-

state behavior, as well as other instrument response characteristics (e.g., the size to which

activated droplets grow, which is key for determining droplet growth detection limitations)

requires the application of a comprehensive computational fluid dynamics model of SFCA.

In subsequent sections, the numerical model and simulation characteristics are briefly

presented, together with an analysis of simulations using the geometric characteristics and

operation limitations of the CFSTGC. The objectives of the analysis are to i) determine the

combination of control parameters for which steady-state approximation of supersaturation

applies, ii) ensure that sufficient size separation exists between activated droplets and in-

terstitial aerosol, and iii) verify that activated droplets are in the detectable size range of

the OPC.

2.3.2 Instrument and Droplet Growth Models

The CFSTGC instrument and droplet growth models (Roberts and Nenes, 2005; Lance

et al., 2006) were used to simulate the response of the instrument as a function of the scan-

ning flow cycle parameters. The instrument model numerically solves the Navier-Stokes

equations and the conservation equations for heat and water vapor to produce the transient

velocity, pressure, water vapor supersaturation, and temperature fields in the instrument.

The model has been shown to successfully simulate instrument behavior over a wide range
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of operating conditions (Lance et al., 2006; Rose et al., 2008).

Extension of the instrument model to simulate SFCA is fairly straightforward. Opera-

tional parameters used in the model are the total flow rate (Q), scanning characteristics (tup,

tpeak, tdown, tbase), inlet pressure (P ) and temperature (Tinlet), and the inner wall tempera-

ture difference between the entrance and exit of the flow chamber (∆Tinner). Non-steady

state forms of the conservation equations are used, where the axial velocity boundary con-

dition at the inlet of the flow chamber is assumed to be uniform in the radial direction and

to vary with time in a manner proportional toQ; all other boundary conditions are the same

as those used in steady-state operation of the model (Lance et al., 2006). Heat and mass

balances in the wetted walls, as well as slight nonlinearities in the temperature profile (from

thermal resistances) are not accounted for in the analysis.

2.3.3 Supersaturation Profiles

Figure 2.2 shows the simulated maximum centerline supersaturation, smax, in the instru-

ment as a function of Q, ∆Tinner, and flow ramp time (tup = tdown). The simulated super-

saturation curves for different ∆Tinner collapse neatly on top of each other, indicating that,

while ∆Tinner determines the magnitude of the maximum supersaturation, it does not affect

the shape of the response curve. For slow scans (i.e., τQ � τr ∼ 10 s), supersaturation

approaches its steady-state linear dependence on flow rate, while at shorter scan times (i.e.,

τQ ≤ τr ∼ 10 s) a transient hysteresis develops between the upscan and downscan curves.

From Figure 2.2, the linear profile regions appear to be complementary (i.e., the upscan

provides good supersaturation resolution at higher Q and vice versa for low Q during the

downscan).

The quasi-steady-state behavior is not reflected only in the value of smax but also in the

overall profile of s in the flow chamber. This is shown in Figure 2.3, which presents se-

lected instantaneous centerline supersaturation profiles over the course of a 60-second flow

scan for ∆Tinner = 10 K. Upscan profiles are represented by solid traces, and downscan
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profiles are given by dashed traces. The vertical lines in Figure 2.3 denote the steady-state

supersaturation entrance length xs (Lance et al., 2006),

xs = 0.05ReDD +
D2

4αT
U (2.1)

where ReD = ρUD
µ

is the Reynolds number based on the chamber inner diameter, D, and

the instantaneous average air velocity, U , and αT is the thermal diffusivity of air. The good

agreement between xs and the entry lengths for the transient profiles suggests that the max-

imum supersaturation and droplet growth kinetics are closely related to the instantaneous

flow rate.

The instrument supersaturation also depends on pressure (Roberts and Nenes, 2005),

and simulations were conducted to evaluate this dependence. Figure 2.4 shows the simu-

lated maximum centerline supersaturation during a flow cycle for a range of ramp times and

pressures. Changing the pressure affects both the magnitude and the dynamic behavior of

the supersaturation profile, because τr, through changes in Γ, scales inversely with pressure

(e.g., τr ∼ 4, 6, 8 s at 400, 600, 800 mb, respectively). The decrease in τr at lower pressures

allows the supersaturation profile to develop more quickly so that the steady-state behavior

is even a better approximation than at higher pressures. Hence, SFCA can be operated over

a climatically-relevant range of supersaturations and pressures, which ensures that it can be

successfully used in aircraft observations of CCN. In fact, the simulation indicates that the

decrease in τr at low pressures allows a quasi-steady s profile to develop even at 5 s ramp

times (Figure 2.4).

2.3.4 Droplet Activation and Size

An important issue with any CCN measurement is whether particles are allowed enough

time to activate into cloud droplets and grow to detectable sizes. Simulations were carried

out to assess whether SFCA satisfies this requirement. Figure 2.5 presents a characteristic

example and shows how the droplet diameter at the exit of the instrument changes during a
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flow scan cycle. The simulations shown are for 50-nm ammonium sulfate aerosol, a ramp

time of 60 s, and a wide range of values for the effective water uptake coefficient (γ). The

effective water uptake coefficient accounts for the transfer of gaseous water vapor across the

interfacial surface to the droplet bulk, which affects the mass transfer rate of water vapor

onto growing droplets. Reported values of γ for water range from 0.01 to 1 (e.g., Asa-

Awuku et al., 2008; Fountoukis et al., 2007; Davis, 2006; Li et al., 2001). Lower values of

γ may be associated with the presence of hydrophobic, film-forming organics that hinder

water uptake (e.g., Bigg et al., 1969; Bigg, 1986; Rubel and Gentry, 1984; Asa-Awuku et al.,

2008).

The common feature of all of the predicted growth curves of Figure 2.5 is a dramatic

shift in droplet size in the OPC when the instantaneous flow rate exceeds the critical flow

rate corresponding to the particles’ critical supersaturation (Q > Qc). This point reflects

the process of CCN activation in the CFSTGC. Overall, activated droplet sizes are rel-

atively constant, despite the supersaturation variations experienced during the flow scan.

Some variations, however, are seen in droplet size between Qc and Qmax (at 50-70 s).

When the downscan commences (∼80 s), the droplet size exhibits similar variability to

the upscan (in reverse), but with droplet size peaking at relatively larger values. This is

because supersaturation, for the same instantaneous Q, tends to be higher during the down-

scan than in the upscan (Figures 2.2-2.4) and drives growth to larger sizes. Nevertheless,

these variations are relatively small, all to within 0.5 µm of the average activated diameter

size during the upscan (or downscan) phase. Simulations show that γ strongly affects the

outlet droplet size (particularly for γ < 0.1), but that the droplet sizes are still above the

lower detection limit (1 µm) of the OPC (Figure 2.5; Lance et al. (2006)). This ensures that

the hardware currently available in the Droplet Measurement Technologies CCN counter

(which is a commercially-available CFSTGC) can be readily used for application of SFCA

to measurements of ambient aerosol.

A simple analysis of CCN growth can be used to rationalize CCN activation droplet
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growth kinetics in SFCA. As particles move through the flow chamber, condensation and

evaporation of water affect their size and is described by Maxwellian diffusional growth

(e.g., Seinfeld and Pandis, 2006; Nenes and Seinfeld, 2003):

Dp
dDp

dt
= G (s− seq) (2.2)

where Dp is the wet size of the droplet, G is a growth parameter that depends weakly

on particle size and the water vapor mass transfer coefficient (Nenes and Seinfeld, 2003;

Seinfeld and Pandis, 2006), s is the local water vapor supersaturation, and, seq is the equi-

librium water vapor supersaturation of the particle. Integration of Equation 2.2 provides the

droplet size at the exit of the flow chamber, but requires knowledge of the supersaturation

trajectory during the droplet’s transit in the instrument; this is presented below.

As a particle traverses the instrument during a flow upscan (which, by neglecting dif-

fusional and inertial effects, can be assumed to move along the centerline with twice the

average air velocity), its displacement from the chamber inlet, x, is determined by its in-

stantaneous velocity:

dx

dt
=

2

πR2
(Qmin + βt) (2.3)

where β=(Qmax −Qmin) /tramp. Assuming that x=0 at t=0, Equation 2.3 can be integrated

to relate x and t,

t =
−Qmin +

√
Q2
min + βπR2x

β
(2.4)

Substituting Equation 2.4 into Equation 2.3 for t yields

dx

dt
=

2

πR2

√
Q2
min + βπR2x (2.5)

which is the instantaneous velocity as a function of location for particles introduced into the

instrument at the beginning of a flow cycle. Equation 2.5 can be combined with Equation
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2.2, using the chain rule, to represent the droplet growth rate as a function of axial distance

from the inlet

Dp
dDp

dx
=

(
Dp

dDp

dt

)(
dt

dx

)
=

πR2G (s− seq)
2
√
Q2
min + βπR2x

(2.6)

Assuming that G is constant over the size range of interest and that seq=0 after droplet

activation (Nenes and Seinfeld, 2003), Equation 2.6 can be integrated from the point of

CCN activation, xa, to the end of the flow tube (x=L),

D2
p(L)−D2

p(xa) = πR2G

∫ L

xa

sdx√
Q2
min + βπR2x

(2.7)

Since s scales linearly with flow rate for quasi-steady-state conditions (i.e., τQ � τr),

ds

dt
= α

dQ

dt
(2.8)

where α is the proportionality constant that relates instantaneous instrument s andQ (Roberts

and Nenes, 2005). Since s=0 at Q=0, one obtains for the supersaturation at any instant dur-

ing the upscan:

s = α (Qmin + βt) (2.9)

Substitution of t in Equation 2.9 with Equation 2.4 provides the supersaturation as a func-

tion of location (temporarily neglecting the effects of the supersaturation entry length, xs,

which are accounted for later on),

s = α
√
Q2
min + βπR2x (2.10)

s in Equation 2.7 can be substituted with Equation 2.10 and integrated to provide the droplet

size at the exit of the growth chamber,

D2
p(L) = D2

p(xa) + πR2Gα (L− xa) (2.11)
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For most CCN, growth to the critical wet diameter, Dc, occurs rapidly when exposed to the

critical supersaturation sc (i.e., Dp(xa)∼Dc) (Nenes et al., 2001a). Consequently, Equa-

tion 2.11 becomes

Dp(L) =
√
D2
c + πR2Gα (L− xa) (2.12)

From Köhler theory, Dc = 2A
3sc

, where A = 4σw(T )Mw

ρwR̄T
, σw (T ) is the temperature-dependent

surface tension of water, Mw and ρw are the molar mass and density of water, R̄ is the

universal gas constant, and T is absolute temperature.

Equation 2.12 is able to explain the observed growth kinetic behavior shown in Fig-

ure 2.5. The first term under the square root represents the initial droplet size at activation,

while the second term represents the subsequent condensational growth after activation.

Initially, the instrument supersaturation is less than sc and particles do not activate until

Q = Qc (i.e., s = sc). Then, particles close to the exit of the flow chamber activate, but

do not grow to their largest possible size because the particle is already downstream of the

point at which s becomes fully-developed (i.e., the supersaturation entry length, xs), and

xa > xs. As time passes, particles initially residing farthest away from the exit reach the

OPC; the size of the droplets at the exit thus increases until xa ∼ xs, where the second term

of Equation 2.12 reaches a maximum. As the flow rate further increases, xa and xs remain

equal, approach L, and the exit droplet size decreases. During the downscan, the decrease

in flow rate increases the droplet residence time in the flow tube after activation, and the

exit droplet size increases (as described by the second term of Equation 2.12) until Q ≤ Qc

where droplets cease to activate.

Equation 2.12 is valid only if the CCN, once exposed to a supersaturation exceeding sc,

remain in the developed flow region (i.e., xs does not exceed xa after the particle has acti-

vated). Otherwise, the particle will be outside the fully-developed region and the particle

may experience deactivation if supersaturation falls below sc. This undesirable situation

could be avoided if the particle velocity is larger than the migration rate of xs, i.e., if
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dxs
dt
< dx

dt
∼ 2U , which after substitution yields:

β

2Q

(
0.05ρD2

µ
+

D2

4αT

)
< 1 (2.13)

Since the left hand side of Equation 2.13 scales with τr/τQ and τQ � τr, Equation 2.13

is always satisfied for a slowly varying field (e.g., τQ > 18 s at T=298.15 K and P=1013

mb). Hence, pseudo-steady state operation of SFCA ensures that the CCN, once exposed

to s > sc, will continue to grow as they flow through the instrument. Since the flow field

is decelerating during the downscan (β < 0), Equation 2.13 is satisfied regardless of ramp

speed. As τQ approaches τr, Equation 2.13 is not satisfied for a fraction of the upscan (e.g.,

Q < 365 cm3 min−1 for tup = tdown=10 s and Q < 245 cm3 min−1 for tup = tdown=15 s),

which is seen in the numerical simulations (Figure 2.2) and confirmed by the experimental

10-second SFCA data (Section 4).

2.4 Evaluation of SFCA
2.4.1 Laboratory Aerosol

Figure 2.1 shows the experimental setup for evaluating SFCA. Calibration aerosol is gener-

ated from an aqueous salt solution using an atomizer. The aerosol are subsequently dried in

a silica gel diffusion dryer (residence time ∼ 5 s, RH < 20%) and charge-neutralized by a

Kr-85 ionizer (3077A, TSI) before entering the differential mobility analyzer (DMA 3080,

TSI). The sheath-to-aerosol ratio in the DMA is maintained at 10:1 with an aerosol flow of

1 lpm, controlled with a mass flow controller (FC260, Tylan). The classified aerosol stream

is combined with filtered dilution air before being introduced into the condensation particle

counter (CPC 3022A, TSI) and the CFSTGC. As the flow rate in the CFSTGC increases

during a flow scan, additional filtered dilution air is added to the monodisperse stream,

proportionately decreasing the total aerosol concentration; conversely, as the flow rate is

decreased, the total aerosol concentration increases (this can be observed in the CCN and

condensation nuclei (CN) number concentrations in Figure 2.6). This “dilution effect” was
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used to synchronize the CCN and CN timeseries during the inversion.

The pressure in the flow chamber was also varied using a Droplet Measurement Tech-

nologies’ pressure-control box (PCB), developed to maintain constant instrument pressure

during aircraft operation. In this study, a 300 µm orifice, operated sub-critically, was placed

upstream of the CFSTGC inlet and the flow was split between the instrument and the PCB

(as shown in Figure 2.1). By maintaining a constant flow rate through the orifice, a stable

pressure in the flow chamber is achieved.

Examples of CCN and CN concentration timeseries obtained for classified ammonium

sulfate aerosol are shown in Figure 2.6 (tup = tdown = 10 s). CCN activation is charac-

terized by the CCN to CN ratio (activated ratio), Ra, which is a function of instantaneous

flow rate (or time). Ra data were fit to the sigmoidal equation:

Ra ≡
CCN

CN
= a0 +

a1 − a0

1 + (Q/Q50)−a2
(2.14)

where a0, a1, a2, andQ50 are constants which describe the minimum, maximum, slope, and

inflection point of the sigmoid, respectively, and Q is the instantaneous volumetric flow

rate. This procedure was applied to Ra data for classified ammonium sulfate and sodium

chloride calibration aerosol to determineQ50 as a function of dry particle mobility diameter

over a range of tup, tdown, and nominal temperature difference (∆Tnom). The contribution

of doubly-charged particles and the DMA transfer function width were neglected, as this

introduces negligible uncertainty in the determination of Q50 for the size range and the

sheath-to-aerosol ratios examined.

Exemplary sigmoidal activation curves are shown in Figure 2.7. Ideally, a0 is 0 and a1

is expected to be unity; however, values for a1 obtained from inorganic calibration aerosol

are typically in the range of 0.9-1.0 and as low as 0.6 for the smallest ∆Tnom, which are

in agreement with instrument behavior at steady-state conditions. Consequently, Ra values

were scaled by 1/a1, similar to the procedure of Rose et al. (2008).

A parameter, termed the “critical flow rate”, Q50, is introduced and corresponds to
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the instantaneous flow rate that produces a level of supersaturation required to activate the

monodisperse calibration aerosol. In other words,Q50 corresponds to the critical supersatu-

ration, sc, of the particle. Köhler Theory can then be applied to compute sc from knowledge

of the particle dry diameter, ds, and chemical composition:

sc =

(
4A3

27B

)1/2

(2.15)

where B = φsνsMwρsd3s
ρwMs

and Ms, φs, νs, and ρs are the molar mass, osmotic coefficient,

stoichiometric van’t Hoff factor, and density of the solute, respectively. The osmotic coef-

ficient accounts for incomplete solute dissociation and was calculated for (NH4)2SO4 and

NaCl using the ion-interaction approach of Pitzer and Mayorga (1973) with parameters

taken from Clegg and Brimblecombe (1988). Finally, a dynamic shape factor of 1.08 was

applied to account for the non-sphericity of NaCl (Kämer et al., 2000). The simplifying

assumptions in applying this form of the Köhler equation to determine sc of size-resolved

calibration aerosol have been critically assessed by Rose et al. (2008); based on this analy-

sis, we estimate the cumulative relative uncertainty in sc to be less than 2%.

Determination of Q50 and sc over a wide range of conditions allows a comprehensive

characterization of the relationship between instantaneous flow rate and instrument super-

saturation. Calibration curves are shown in Figure 2.8 for a 60-second scan at ∆Tnom =

10 K, and, in Figure 2.9 for 10-second scans at multiple values of ∆Tnom. The longer, 60-

second scan calibration shown in Figure 2.8 agrees well with the trend predicted from the

instrument model (although the hysteresis is more pronounced than the model predictions,

which is likely due to thermal wall effects not considered in the simulations). Data obtained

from 10-second scans are also in good qualitative agreement with simulations (Figures 2.2

and 2.9), in that the upscan and downscan supersaturation curves appear to follow the same

trend with flow rate; however, when the upscan curves are aligned by adjusting the ordi-

nate scaling, the downscan curves do not collapse on top of each other (Figure 2.9). This

may result from wall thermal effects, but more likely can be attributed to droplet inertial
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effects causing the droplets to lag slightly behind the rapidly accelerating and decelerat-

ing flow. Indeed, this effect is more pronounced at higher ∆T (Figure 2.9), where the

droplets are larger. Activation curves for the 60 s scans (Figure 2.8) are notably steeper

and shifted compared to the 10 s scans (Figure 2.9). The difference can be attributed to

the aforementioned droplet inertial effects (which accounts for the observed shift) and the

OPC integration time, which, as τQ becomes comparable to τOPC , integrates droplets from

multiple supersaturations simultaneously, causing a broadening in the activation ratio. The

current OPC acquisition software uses a 1 Hz integration time, so a large supersaturation

dynamic range is sampled every second during 10 s scans. Either a data inversion and/or

shorter OPC integration time could rectify both effects and will be the subject of a future

study.

Calibration curves at reduced pressures, typical of those used during aircraft studies,

are shown in Figure 2.10 for a 10-second ramp time and a constant ∆Tnom = 10 K. As the

operating pressure is reduced, the supersaturation also decreases consistent with steady-

state operation. Furthermore, the shape of the response curve during the flow upscan and

downscan also changes; the calibration curves move closer together and upscan-downscan

segments tend to be parallel, which is consistent with the instrument model simulations.

An example of the stability of SFCA is presented in Figure 2.11 which shows the acti-

vation of 50-nm ammonium sulfate aerosol measured continuously over a 12-hour period

using both 20-second and 60-second ramp times. The experiment was conducted in a labo-

ratory maintained at nearly constant pressure (P∼990 mb) and temperature varied between

23◦C and 27◦C. Figure 2.11 suggests that the activation spectrum remains fairly constant

with time and no systematic drift is apparent. Some outlying scans are present, particularly

for the shorter scan time, and these are related to occasional shifts in column temperature

caused by changes in the inlet air temperature (which could be accounted for in an advanced

inversion). Activation curves obtained from (NH4)2SO4 and NaCl aerosol remained con-

stant over several weeks (Figures 2.8-2.10), which ensures that SFCA is a stable mode of
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operation in the CFSTGC for both fast and slow scan times.

2.4.2 Ambient Aerosol

CCN spectra of ambient aerosol in Atlanta, GA, were measured using SFCA during the pe-

riod of November to December 2008. Sampling was conducted on the Georgia Tech rooftop

measurement platform in Midtown Atlanta (33◦46’44.75”N; 84◦23’45.15”W; ∼30-40 m

elevation). The aerosol sampled at this location is expected to be representative of an urban

environment with strong biogenic influences. The inlet stream was split between one CF-

STGC operating in SFCA mode, another CFSTGC operating in “conventional” (stepping-

∆T and constant-Q) mode, and a CPC measuring CN concentrations. Activation experi-

ments using calibration aerosol with both instruments operating in stepping-∆T -mode sug-

gested a 6% deviation between the CCN concentrations measured by both instruments, and

this difference was accounted for in the instrument intercomparison. Timeseries Ra data

are shown for both instruments in Figure 2.12; SFCA was carried out using two different

scan times (60, 10s) and two different values of ∆Tnom. Both instruments are in excellent

qualitative agreement with identical peaks and troughs in the Ra timeseries throughout the

weeks of operation.

A direct quantitative comparison of the SFCA timeseries to the stepping-∆T-mode

timeseries is shown in Figure 2.13. Data from both instruments were averaged over each

stepping-∆T-mode time period. Both the ambient SFCA and ambient stepping-∆T-mode

data shown in Figure 2.13 are in excellent agreement (R2=0.985, 0.977 for the 60 and 10

s scans, respectively). 10 s scans tend to exhibit somewhat larger scatter (inset of Figure

2.13b) than for 60 s scans (inset of Figure 2.13a); the symmetric nature of the scatter and

its relation to scantime suggests that it is broadening from the OPC integration time, which

can be addressed either during the inversion process or through decreasing the OPC inte-

gration time. Nevertheless, Figure 2.13 conclusively shows that SFCA compares well with

the well-established and robust technique of varying the instrument temperature difference,
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Figure 2.12: Continuous measurements of Ra for Atlanta aerosol using both SFCA and
stepping-∆T methods. Data shown for (top) ∆Tnom = 10 K, tup = tdown = 60 s, tpeak =
tbase = 20 s; (middle) ∆Tnom = 6 K, tup = tdown = 10 s, tpeak = tbase = 10 s; and (bottom)
∆Tnom = 10 K, tup = tdown = 10 s, tpeak = tbase = 10 s.
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Figure 2.13: Comparison plots of A) 60-second-scan and B) 10-second-scan SFCA spectra
to the stepping-∆T mode spectra for November 7-14, 2008 and December 8-15, 2008.

but with much better temporal and supersaturation resolution.
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In addition to CCN activation, SFCA provides high-resolution droplet growth infor-

mation. The average droplet size measured at the OPC can be compared against that of

ammonium sulfate calibration aerosol at the same flow rate (superaturation) to evince any

kinetic limitation on droplet growth from the presence of organic compounds. An example

is shown in Figure 2.14 for successive 60-second scans of ambient Atlanta aerosol taken

on 09 November 2008. The droplet size distribution trends with expectations – the initial

increase in droplet size caused by increasing supersaturation is followed by a decrease in

droplet size where the decreasing residence time at the higher flow rates allows less time

for droplet growth. The black curves represent the maximum droplet size obtained for

(NH4)2SO4 calibration aerosol with sc equal to instrument s; the ambient aerosol grow to

sizes roughly consistent with (or even slightly larger than) the inorganic salt (±0.5µm).

Thus, the ambient aerosol displays the same (fast) activation kinetics as calibration aerosol.

If slow activation kinetics are observed, then the instrument and droplet growth models

could be used to parameterize the delayed droplet growth in terms of changes in γ (e.g.,

Asa-Awuku et al., 2008; Ruehl et al., 2008).

2.5 Summary and Conclusions

Scanning Flow CCN Analysis (SFCA) is a new method that allows rapid, high-resolution

measurements of CCN spectra using the CFSTGC design of Roberts and Nenes (2005).

SFCA is based on varying the instrument flow rate while keeping the instrument pressure

and streamwise temperature difference constant. Varying the flow in the growth chamber

at a sufficiently slow rate (but still adequate for airborne CCN measurements) allows for

instrument operation at “pseudo-steady” state, where droplets grow to detectable sizes,

and, instantaneous supersaturation linearly correlates with flow rate and greatly facilitates

inversion of the CCN timeseries to a CCN spectrum.

Activation of laboratory-generated inorganic calibration aerosol and ambient aerosol

are shown to be in excellent agreement with the instrument simulations and conventional
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operation of the CCN counter. SFCA can be employed on existing Droplet Measurement

Technologies CFSTGC instruments with a software upgrade. Current hardware allows

CCN activity and droplet size spectra to be obtained in as little as 10 seconds with very

stable performance, which is adequate for airborne measurements and vastly superior to

the 3600-seconds required by the conventional “stepping-∆T” mode. If operated at lower

pressures, even faster scans can be obtained, but would require a transfer function deconvo-

lution to correct for droplet inertial effects and OPC integration time. SFCA is a technique

that combines the simplicity and robustness of the CFSTGC with the dynamic range and

resolution of a CCN spectrometer. For a wide range of operation conditions, SFCA pro-

vides spectra unbiased by shifts in activation kinetics and aerosol composition.
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CHAPTER III

SCANNING MOBILITY CCN ANALYSIS (SMCA)

This chapter presents Scanning Mobility CCN Analysis (SMCA) as a novel method for

obtaining rapid measurements of size-resolved cloud condensation nuclei (CCN) distribu-

tions and activation kinetics. SMCA involves sampling the monodisperse outlet stream of

a Differential Mobility Analyzer (DMA) operated in scanning voltage mode concurrently

with CCN and condensation particle counters. By applying the same inversion algorithm as

used for obtaining size distributions with a scanning mobility particle sizer (SMPS), CCN

concentration and activated droplet size are obtained as a function of mobility size over the

timescale of an SMPS scan (typically 60-120s). Methods to account for multiple charging,

non-sphericity effects and limited counting statistics are presented. SMCA is demonstrated

using commercial SMPS and CFSTGC instruments with the manufacturer-provided control

software. The method is evaluated for activation of both laboratory aerosol and ambient

aerosol obtained during the NEAQS-ITCT2k4 field campaign. It is shown that SMCA

reproduces the results obtained with a DMA operating in voltage “stepping” mode.

3.1 Introduction

Predictive understanding of aerosol-cloud interactions in climate and hydrological cycle

studies (e.g., Solomon et al. (2007); Levin and Cotton (2009)) requires a global network

of cloud condensation nuclei (CCN) measurements. With the advent of the Continuous-

Flow Streamwise Thermal Gradient CCN Chamber (CFSTGC; Roberts and Nenes (2005))

and its commercialization by Droplet Measurement Technologies (Lance et al., 2006; Rose

This chapter published as: Moore, R. H., A. Nenes, and J. Medina (2010), Scanning mobility CCN
analysis - A method for fast measurements of size-resolved CCN distributions and activation kinetics, Aerosol
Science and Technology, 44, 861-871, doi:10.1080/02786826.2010.498715. Copyright © 2010 Taylor &
Francis. Reproduced with permission.
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et al., 2008), this is rapidly becoming a reality.

CCN instruments can be utilized in various ways to complement aerosol-cloud interac-

tion studies. They can be used as “counters”, where the concentration of CCN is measured

at a given level of supersaturation. This mode of operation is commonly used for “CCN

closure” studies, i.e., to assess the ability of thermodynamic theory to predict CCN con-

centrations from measurements of aerosol size distribution and chemical composition (e.g.,

Rose et al., 2010; Jurányi et al., 2010; Bougiatioti et al., 2009; Lance et al., 2009; Cubison

et al., 2008; Sorooshian et al., 2008; Wang et al., 2008; Vestin et al., 2007; Medina et al.,

2007; Broekhuizen et al., 2006, and others). The maximum potential of CCN measure-

ments is realized when CCN instruments, operating in either counting mode or in “spec-

trometer” mode (Moore and Nenes, 2009), are coupled with a differential mobility analyzer

(DMA) to obtain size-resolved measurements. These methods provide the CCN concen-

tration across supersaturations and particle sizes, which when coupled with theory, enables

the parameterization of composition impacts on cloud droplet formation (e.g., Rose et al.,

2010; Petters et al., 2009; Dusek et al., 2010; Carrico et al., 2008; Petters and Kreiden-

weis, 2007; Wex et al., 2007; Padró et al., 2007, 2010; Padró Martinez, 2009; Lance, 2007),

the characterization of chemical ageing and mixing state of aerosol (e.g., Shinozuka et al.,

2009; Cubison et al., 2008; Kuwata et al., 2008; Lance, 2007; Padró Martinez, 2009), and

the evaluation of CCN activation kinetics (e.g., Asa-Awuku et al., 2008; Shantz et al., 2008;

Sorooshian et al., 2008; Ruehl et al., 2008, 2009). Under certain conditions, size-resolved

measurements allow for the inference of average molar volume and surfactant characteris-

tics of the water-soluble carbonaceous aerosol fraction (e.g., Padró et al., 2007; Asa-Awuku

and Nenes, 2007; Asa-Awuku et al., 2010, 2008; Engelhart et al., 2008; Moore et al., 2008;

Padró et al., 2010).

Most studies to date operate the DMA in “stepping mode”, where the voltage applied

to the DMA is held constant during a CCN measurement; the voltage is increased step-

wise for another CCN measurement to cover the entire size range of the DMA (e.g., Rose
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et al., 2010; Gunthe et al., 2009; Petters et al., 2009; Asa-Awuku and Nenes, 2007; Petters

and Kreidenweis, 2007, and others). The technique described in this manuscript, entitled

“Scanning Mobility CCN Analysis” (SMCA), provides an alternative method for perform-

ing size-resolved CCN measurements; the DMA is operated as a Scanning Mobility Particle

Sizer and the voltage is ramped exponentially, typically over a period of 60-120 seconds

(Wang and Flagan, 1989). SMCA has been successfully applied in a number of studies

(Padró et al., 2007; Asa-Awuku and Nenes, 2007; Asa-Awuku et al., 2010, 2008; Engelhart

et al., 2008; Moore et al., 2008; Padró et al., 2010) and presented in detail here. SMCA can

be applied to commercial SMPS and CFSTGC instruments with the manufacturer-provided

control software coupled with simple post-processing routines (available for download

from http://nenes.eas.gatech.edu). In subsequent sections, we present SMCA, an overview

of the data analysis, and validation of the method with both laboratory aerosol and ambient

aerosol sampled during the 2004 ICARTT-ITCT2k4 field campaign.

3.2 Description of SMCA
3.2.1 Instrumentation Setup

The instrumentation setup is shown in Figure 3.1. Polydisperse dry aerosol is charge-

neutralized using a Kr-85 neutralizer (TSI 3077A) and introduced into a differential mo-

bility analyzer (DMA, TSI 3081L) for classification by electrical mobility. The classified

aerosol is then split between a condensation particle counter (CPC, TSI 3010 or 3022a) for

measurement of total aerosol (condensation nuclei, CN) concentration, and a Droplet Mea-

surement Technologies Continuous-Flow, Streamwise Thermal-Gradient Chamber (CF-

STGC) (Roberts and Nenes, 2005; Lance et al., 2006; Rose et al., 2008) to measure CCN

concentrations. In order to maintain a sample flow rate of 1 LPM through the DMA, filtered

make-up air is supplied to the classified aerosol stream or to the CPC stream (the latter be-

ing preferable in cases where low aerosol concentrations limit the counting statistics in the

CFSTGC). In this study, the voltage applied to the DMA is exponentially scanned using the
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TSI Aerosol Instrument Manager control software, which also manages data acquisition in

the CPC and inversion to provide the aerosol number size distribution. The software also

provides the raw CN counts reported by the CPC every 0.1 s during each scan cycle. While

not further discussed here, any instrument control software could be used to control and

invert the SMPS data.

The CFSTGC consists of a cylindrical growth chamber with internally-wetted walls

upon which a constant streamwise temperature gradient is applied. The difference between

the diffusivity of heat and water vapor generates a supersaturation that depends on the flow

rate, the streamwise temperature gradient and the pressure in the chamber. Figure 3.1 il-

lustrates the components and flow diagram of the CFSTGC. The inlet flow is first split into

“sheath” and “sample” flows. The latter is directed to the center of the growth chamber,

whereas the “sheath” flow is filtered and humidified prior to its entry in the chamber. Both

flows travel through the column, exposing aerosol about the centerline to an approximately

constant supersaturation (after the decay of entry length effects), a fraction of which acti-

vate to form cloud droplets. An optical particle counter (OPC) then counts and sizes the

activated droplets at the outlet of the column. The CCN counts are accumulated over a

time period of 1s. The relationship between instrument supersaturation and operating con-

ditions (column temperature gradient, flow rate and column pressure) is determined using

calibration aerosol, following the procedure of Lance et al. (2006), Rose et al. (2008), and

Bougiatioti et al. (2009).

3.2.2 Application of SMCA

The DMA voltage is continuously cycled between a minimum and maximum value, and

the timeseries of CN and CCN counts are recorded (examples are presented in Figures 3.2a

and 3.2b for high and low aerosol concentration, respectively). The particle size distribution

is then obtained from the CN timeseries using well-established SMPS inversion techniques
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(e.g., Crump and Seinfeld (1981); Hagen and Alofs (1983); Wang and Flagan (1989); Rus-

sell et al. (1995); Collins et al. (2002)). In this study, the CN timeseries is inverted using

the TSI AIM software (which uses the method of Wang and Flagan (1989)). The timeseries

of CN, CCN is used to determine the “activation” ratio of CCN to CN concentration, Ra,

(see right ordinate axis in Figure 3.2) and applied to the inverted aerosol size distribution

to obtain the CCN size distribution (discussed in section 3.2.3).

For this study, the centroid mobility diameter obtained from the DMA ranged between

10 and 300 nm, size distribution scans were obtained every 135 or 270 seconds (120/240

seconds for the voltage “upscan”, and, 15/30 seconds for the voltage “downscan”, respec-

tively), where the longer scan time was applied for low concentration measurements to

improve counting statistics. The sample flow rate in the DMA was adjusted to be 1 L

min−1 and the sheath-to-aerosol flow was maintained at a 10:1 or 5:1 ratio. The TSI 3010

CPC (used in the field experiments) operates at 1 L min−1, while the TSI 3022a (used in

the laboratory experiments) operates at 1.5 L min−1 (with a 0.3 L min−1 internal flow). The

CCN counter was operated at a flow rate of 0.5 L min−1 at a sheath-to-aerosol flow ratio of

10:1. The supersaturation at the CCN counter is changed every 3-4 voltage scan cycles in

the DMA (by changing either the flow rate or the streamwise temperature gradient). When-

ever the temperature gradient is changed, up to 2 minutes are required for the instrument

profiles to stabilize.

3.2.3 Data Inversion and Multiple Charge Correction

The inversion to obtain CCN and CN size distributions is applied to the data collected

during the voltage upscan. The CPC and CCN counts time series are obtained from the

AIM software and CFSTGC software, respectively, and are normalized by flow rate to ex-

press them in terms of number concentration. The time series are aligned by matching the

minimum in counts that occurs during the transition between upscan and downscan (Fig-

ure 3.2). Owing to the longer plumbing time associated with the CFSTGC, its minimum
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occurs some fixed time after the corresponding CPC signal (here about 15 seconds). After

alignment, the CCN time series is mapped into size space using the size-scantime rela-

tionship provided by the AIM software (which uses the voltage-time relationship used in

the DMA, accounting for the plumbing time between DMA and CPC and assuming that

particles carry a single charge). The aerosol number distribution is then inverted, and Ra

determined from the CPC/CCN timeseries is used to obtain the CCN number distribution.

Since the timeseries are influenced by multiple charged particles, it is necessary to

rebin the CN and CCN counts based on an equilibrium charge distribution. The following

procedure is used:

1. The aerosol number size distribution, nn(Dp), is obtained by inversion of the CPC

timeseries (here using the TSI AIM software).

2. The aligned CN and CCN timeseries are binned to a common time grid. The grid

spacing by default is 1s (the reporting time of the CFSTGC), although it can vary to

ensure sufficient counting statistics.

3. The size-dependent activation efficiency, R∗a(Dp) = CCCN(Dp)/CCN(Dp), is esti-

mated from the CCN and CN timeseries and the size-scantime relationship provided

by the AIM software.

4. The CCN and CN timeseries are then corrected for multiple-charging. Starting from

the largest aerosol size bin of the CN timeseries (and moving to each successive

smaller bin), the number of particles with +2 and +3 charges are removed and placed

in the CN timeseries bin with the correct mobility diameter. The procedure starts

from the largest size, because an impactor is placed in front of the sample flow of the

DMA, so that the largest size bin in the inverted distributions (corresponding to the

50% cutoff diameter of the impactor) contains only singly-charged particles.

The number of multiply-charged particles is computed assuming equilibrium charg-

ing in the aerosol neutralizer. For particles with n=+1,+2 charges, expressions from
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Wiedensohler (1988) are used to compute the fraction of particles with dry size Dp

(here equal to the centroid mobility diameter of each aerosol size bin) and n charges,

f(Dp, n),

f(Dp, n) = 10
(∑5

i=0 ai(n)(logDp)i)
(3.1)

where ai(n) are empirical coefficients presented in Wiedensohler (1988). For n =+3,

the parameterization presented in TSI, Incorporated (2003); Gunn (1955); Gunn and

Woessner (1956) is used,

f(Dp,+3) = Φ exp
−
(
n− 2πε0DpkT

e2
ln
(
Zi+

Zi−

))2

4πε0DpkT/e2
(3.2)

where Φ = e√
4π2ε0DpkT

, e is the elementary charge, ε0 is the dielectric constant of

air, k is the Boltzmann constant, T is absolute temperature, and Zi+/Zi− = 0.875 is

the ion mobility ratio (TSI, Incorporated, 2003).

Calculation of the mobility diameter is done using the fundamental DMA equation

(Wang and Flagan, 1989):

Dp

nCc(Dp)
=

2eV (t)

3µqsln
r1
r2

(3.3)

where Cc(Dp) = 1 + 2λ
Dp

[
1.257 + 0.4 exp

(
−1.1Dp

2λ

)]
is the size-dependent Cunning-

ham slip correction factor (Seinfeld and Pandis, 2006), V (t) is the applied voltage at

a given time t during the scan, µ is the viscosity of air, qs is the sheath flow rate, and

r1, r2 are the inner and outer radii of the DMA annular space, respectively.

5. The CCN timeseries is processed similarly to the CN timeseries, with the difference

that the CCN counts in each size bin j is multiplied by R∗a(Dpj).

6. The processed CCN and CN timeseries are used to update R∗a(Dp); Steps 4-6 are

iterated until convergence of Ra(Dp) (typically within 2-3 iterations).
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7. The CCN number size distribution at the instrument supersaturation, ns(Dp), is given

by ns(Dp) = Ra(Dp)nn(Dp).

The above algorithm is one of numerous approaches presented in the literature to cor-

rect for multiply-charged particles in size-resolved CCN measurements using electrical

mobility classification. Frank et al. (2006) corrected for multiple charging by removing

the fraction of particles with +2 or more charges scaled by an activation efficiency deter-

mined from an average of five spectra. Rose et al. (2008) assumed a constant fraction of

doubly-charged particles across the entire size distribution as determined from the hump of

the CCN/CN response curve and subtracted from fraction from the CCN and CN distribu-

tions. Petters and Kreidenweis (2007) fit the CCN and CN response curves to a function

that incorporates the size-dependent DMA transfer function, multiple charge fraction, and

activation efficiency. By iteratively minimizing the χ2 statistic, the activation efficiency of

the particle distribution can be determined with a substantial fraction of multiply-charged

particles. King et al. (2009) simulate the instrument response by employing a function

similar to Petters and Kreidenweis (2007), but with a binary activation efficiency (being

unity if activated, or zero if unactivated) based on the size-dependent critical supersatu-

ration computed from Köhler Theory (using measured composition and assumed organic

properties). Petters et al. (2009) developed a matrix form of the inversion used by Petters

and Kreidenweis (2007) to calculate the activation efficiency from the measured CCN and

CN size distribution without an iterative process. All the above methods do not employ the

DMA in scanning voltage mode.

Particle sphericity is often assumed to determine the diameter corresponding to the cen-

troid mobility of each size bin; this may lead to important sizing biases for non-spherical

particles (e.g., black carbon, mineral dust, or crystalline inorganics). This issue can be

accounted for by using a “dynamic shape factor”, which accounts for the difference in

hydrodynamic drag force experience by a non-spherical particle compared to a spherical

particle of the same mass. Shape factors for pure salts are often known (e.g., 1.08 for
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NaCl, Kämer et al. (2000)), but its determination for ambient particles may require auxil-

iary measurements of aerodynamic sizing (e.g., DeCarlo et al. (2004); Kuwata and Kondo

(2009)).

3.3 Measurement Uncertainty

As with all particle detection methods, sufficient counting statistics are required to obtain

meaningful distributions. Both the CFSTGC and the CPC accumulate counts, N , over a

time period τaccum. N is then divided by the volume of aerosol sample, Qa, that flows

through the optics during τaccum to provide the concentration of CN, CCN (CCN , CCCN ).

The relative uncertainty in concentration, εC , is then determined from the relative counting

uncertainty, εN , and the flow rate uncertainty, εQa , as

ε2
C =

(σC
C

)2

= ε2
N + ε2

Qa
(3.4)

where σC is the absolute concentration uncertainty and εN , εQa are the relative uncertainties

of N and Qa, respectively. Qa is continuously measured in the instrument, so εQa can be

directly determined as σQa

Qa
. The CFSTGC samples at a lower flow rate (0.018–0.25 L

min−1) than either of the CPCs in this work. For the CFSTGC, εQa almost never exceeded

4%, reported flow rate uncertainties for the TSI 3010 CPC and TSI 3022a CPC are 10% and

5%, respectively. Assuming that particles are randomly distributed in space throughout the

sampled volume, Poisson statistics can be used to estimate εN , since the sample standard

deviation equals the square root of the mean (εN = σN
N

= N−1/2). Accumulating counts

over τaccum seconds, yields a modified form of Equation 3.4,

ε2
C = (CQa)

−1 + ε2
Qa

(3.5)

Then, the combination of applying Equation 3.5 for CCCN and CCN yields the uncertainty

for the activation efficiency, Ra = CCCN

CCN
, as

ε2
Ra

= (CCNQCN)−1 + (CCCNQCCN)−1 + ε2
QCCN

+ ε2
QCN

(3.6)
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Table 3.1: Calculated relative uncertainty in CN Concentration, CCN , CCN Concentration,
CCCN , and Activated Ratio, Ra, (evaluated at Ra=0.5) for selected values of CCN .

CCN (cm−3) εCCCN
εCCN

εRa

20 0.37 0.11 0.38
100 0.17 0.067 0.18
200 0.12 0.059 0.14

1000 0.065 0.052 0.083
2000 0.054 0.051 0.074

Table 3.1 provides values of εCCCN
and εCCN

for selected values ofCCN (evaluated atRa =

0.5). A sample flow rate in the CFSTGC of 0.045 L min−1 is assumed (total flow rate of 0.5

L min−1, 10:1 sheath-to-aerosol flow ratio) and a 0.3 L min−1 internal flow rate is assumed

for the TSI 3022a CPC. Thus, for most atmospherically-relevant CN concentrations, εCCN

is 7% or less, while εCCCN
is less than 17% and εRa is less than 18%.

The validity of applying Poisson statistics to approximate the concentration uncertainty

was confirmed experimentally by activation of classified (NH4)2SO4 aerosol of 80-600 nm

diameter at CFSTGC supersaturations between 0.16% and 0.39%. A comparison between

predicted and observed εN exhibits excellent agreement (not shown).

3.4 Evaluation of SMCA
3.4.1 SMCA for laboratory aerosol

SMCA was evaluated using aerosol generated via atomization of an aqueous salt solution,

followed by drying of the droplets with silica gel diffusion dryers. The dry polydisperse

aerosol was introduced into a DMA, which was operated using both SMCA and “stepping

mode”. Figure 3.3 displays Ra as a function of mobility diameter, when the DMA is

operated in scanning mode (closed symbols) and stepping mode (open symbols). Data is

shown for aerosol composed of (NH4)2SO4 (top panel) and NaCl (bottom panel). Ordinate

error bars represent the standard deviation of 3 scan repetitions (at each size); abscissa
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error bars are the half-width of the DMA transfer function (±5% for the 10:1 sheath-to-

aerosol ratio used). Activation curves obtained using SMCA and “stepping mode” of the

DMA are largely identical. There is a slight “broadening” of the activation curves at the

lower ∆T (supersaturation) associated with the OPC integration time (which is enhanced

at large particle sizes). This issue could be addressed by increasing the voltage scan time at

low supersaturations, or accounting for the integration time in the inversion (e.g., Russell

et al. (1995); Collins et al. (2002)). The experiments for obtaining scanning mode curves

in Figure 3.3 were performed in approximately 20 minutes.

The activation curves display a characteristic “sigmoidal” shape; the dry diameter, dp50,

for which 50% activation of the calibration particles act as CCN is called “dry activa-

tion diameter”. Figure 3.3 shows the activation curves without multiple charge correction,

hence the minor secondary activation peak to the left of dp50. When multiple charge cor-

rection is applied, the secondary peak vanishes, and the slope of the sigmoid steepens (see

Figure 3.4). The uncertainty in dp50 associated with neglecting multiple charges is approx-

imately 3-4%, consistent with the results of Rose et al. (2008) (whom operated the DMA

in “voltage-stepping” mode).

dp50 corresponds to the particle with critical supersaturation equal to the instrument su-

persaturation, and should not change if the DMA is operated in “stepping” or “scanning”

mode. This is shown in Figure 3.5a, which presents dp50 (determined by both methods)

for (NH4)2SO4 (open symbols) and NaCl (filled symbols) aerosol. Error bars represent the

half-width of the DMA transfer function (±5%). The excellent agreement in dp50 between

both methods implies that calibration of instrument supersaturation should also be in agree-

ment. This is shown in Figure 3.5b; Köhler Theory (Seinfeld and Pandis, 2006) is applied

to compute the critical supersaturation of particles sc from knowledge of d50 and chemical

composition:

sc =

(
4A3

27B

)1/2

(3.7)

where A = 4Mwσw
RTρw

, B =
ρsMwφsνsd350

ρwMs
and Mw, σw, ρw are the molar mass, surface tension
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Figure 3.3: Example of activation curves obtained by SMCA (filled symbols) and by
stepping-mode measurements (open symbols). Top panel is for activation of (NH4)2SO4

aerosol, while bottom is for NaCl aerosol. All curves were corrected for multiple charges
using the algorithm described in the text. Explanation of error bars is provided in the text.
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Figure 3.5: (a) Dry activation diameter determined by SMCA and stepping mode opera-
tion for (NH4)2SO4 and NaCl particles. Explanation of error bars is provided in the text.
(b) Instrument supersaturation calibration as determined by SMCA and stepping mode op-
eration for (NH4)2SO4 and NaCl particles. Results shown for different column temperature
gradients.

and density of water, respectively. φs, νs, and ρs are the osmotic coefficient, stoichiometric

van’t Hoff factor, and density of the solute, respectively. A dynamic shape factor of 1.08

was applied to d50 to account for the non-sphericity of NaCl (Kämer et al., 2000). φs

accounts for incomplete solute dissociation and was calculated for (NH4)2SO4 and NaCl

using the ion-interaction approach of Pitzer and Mayorga (1973) with parameters taken

from Clegg and Brimblecombe (1988). Instrument supersaturation calibrated by “stepping”

or “scanning” modes are virtually identical; at the lower supersaturation, there is a minor

(∼3%) difference in supersaturation from the smearing effect of the long integration time

of the CFSTGC OPC.

SMCA also allows for the measurement of the size of activated CCN (droplets) exiting

the flow chamber, as a function of particle dry diameter. An example is shown in Fig-

ure 3.6, where the (wet) size of the activated CCN detected in the OPC is plotted against

dry mobility diameter, determined from SMCA (filled symbols) and “stepping mode” (open

symbols) operation of the DMA. Data is shown for a number of supersaturation levels in the

CFSTGC. As expected, the droplet size at constant supersaturation increases with aerosol
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Figure 3.6: Size of activated (NH4)2SO4 particles measured at the OPC of the CCN instru-
ment, as a function of dry mobility diameter and instrument supersaturation for the data
presented in Figure 3.3.

dry diameter (Lance et al., 2006); exposing particles of constant dry diameter to higher

supersaturation also increases the droplet diameter at detection (Lance et al., 2006). Diam-

eters using both modes of DMA operation are in excellent agreement.

3.4.2 SMCA for ambient aerosol

SMCA was used for ambient aerosol measurements obtained at the University of New

Hampshire (UNH) AIRMAP Observing Station (http://airmap.unh.edu) at Thompson Farm.

The site is located in Durham, NH, approximately two miles south of the University of

New Hampshire (43.11N, 70.95W, elevation 75ft). The aerosol at this location is an inter-

nal mixture of organic and inorganic material and is ideal for evaluating SMCA. A detailed

description of the station and dataset can be found in Medina et al. (2007); data shown here

were collected on August 8th, 2004, during the NEAQS-ITCT2K4 campaign (July-August

2004).

Figure 3.7 presents exemplary aerosol size distributions and activation efficiency curves
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Figure 3.7: Example of differential activation spectra obtained by SMCA with multiple-
charge correction for aerosol sampled at the AIRMAP Thompson Farm site during the
NEAQS-ITCT2K4 campaign. The limited counting statistics are addressed by averaging
(post-measurement) consecutive 1s bins, the number of which is noted beside each point.

61



0

250

500

750

1000

1250

1500

1750

2000

0:00 3:00 6:00 9:00 12:00

Time

CCN Counter

SMCA

CCN Counter

SMCA

C
C

N
 C

o
n

c
e
n

tr
a
ti

o
n

, 
0
.3

%
 (

c
m

  
 )

-3
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the NEAQS-ITCT2K4 campaign. Shown are results obtained from direct measurements of
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sampled at three different supersaturations. As expected, the CCN distribution increasingly

converges towards the total aerosol number size distribution as the instrument supersatura-

tion increases. If particle composition is size-invariant, the CCN distribution would be zero

for all sizes less than a single characteristic value (i.e., where the particle critical supersat-

uration equals the instrument supersaturation), and the sigmoidal activation curve would

appear as a step function. This is not the case however in Figure 3.7, as chemical het-

erogeneity (size-dependent composition and mixing state) broadens the transition towards

activation.

We test SMCA by assessing “closure” with another CCN instrument. This is done by

comparing total CCN concentrations obtained by integration of the differential size spectra

(like those in Figure 3.7) with measurements obtained independently with another CCN
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instrument measuring the total aerosol distribution. The CCN concentrations from the

integrated SMCA distributions (red symbols) agree with CCN measurements obtained with

the other CFSTGC (blue symbols) to within measurement variability (Figure 3.8).

3.5 Summary and Conclusions

We present Scanning Mobility CCN Analysis (SMCA), a novel method for obtaining fast

measurements of size-resolved CCN activity and growth kinetics, by coupling a CPC and

a CCN counter with the monodisperse outlet stream of a scanning DMA. By applying the

same inversion algorithm as is currently used for obtaining size distributions, CCN activity

and droplet growth kinetics are obtained as a function of mobility size over the timescale of

a SMPS scan. The performance of the new method is evaluated for activation of laboratory-

generated aerosol composed of (NH4)2SO4, NaCl and for ambient aerosol measured at

the AIRMAP Thompson Farm site during the ITCT2K4 field campaign. Overall, SMCA

performs remarkably well, as essentially identical CCN properties are seen measured with

“scanning” and “stepping” modes of the DMA.

SMCA has been successfully used in studies focused on size-resolved CCN measure-

ments (e.g., Padró et al., 2007; Asa-Awuku and Nenes, 2007; Asa-Awuku et al., 2010, 2008;

Engelhart et al., 2008; Moore et al., 2008; Padró et al., 2010). The fast time response and

ease of setting up SMCA are attractive features, especially if measurements are to be car-

ried out in polluted environments and the laboratory (where counting statistics are most

favorable for rapid measurements). SMCA can also be used to study the size-resolved

CCN activity in clean environments, at the expense of some temporal (or size) resolution.

Finally, SMCA can be applied to commercial SMPS and CFSTGC instruments with the

manufacturer-provided control software coupled with a simple post-processing routines

(available for download from http://nenes.eas.gatech.edu) to align the instrument response

curves, correct for multiple charges, and correct for the non-sphericity of the aerosol.
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CHAPTER IV

KÖHLER THEORY ANALYSIS OF MARINE DISSOLVED

ORGANICS

The CCN-relevant properties and droplet growth kinetics are determined for marine or-

ganic matter isolated from seawater collected near the Georgia coast. The organic matter

is substantially less CCN active than (NH4)2SO4, but droplet growth kinetics were simi-

lar. Köhler Theory Analysis (KTA) is used to determine the average organic molar masses

of two samples, which are 4370±24% and 4340±18% kg kmol−1. KTA is used to infer

surface tension depression, and is in excellent agreement with direct measurements. For

the first time it is shown that direct measurements of surface tension are relevant for CCN

activation, and this study highlights the power of KTA.

4.1 Introduction

Oceanic surface waters contain a substantial amount of dissolved organic matter (DOM)

that is transferred to the aerosol phase during the process of sea spray generation. The

ocean surface layer contains large amounts of surfactants (Cavalli et al., 2004), which can

influence the ability of marine aerosol to act as cloud condensation nuclei (CCN). Measure-

ments of primary marine aerosol composition have observed a size-dependent enrichment

of organics (particularly water-insoluble species) in submicron aerosol (O’Dowd et al.,

2004; Oppo et al., 1999). Despite their potential importance, the CCN-relevant properties

of marine organics are largely unknown. This is because DOM is difficult to isolate, as its

concentration in bulk seawater is orders of magnitude lower than inorganic salts (Ogawa

This chapter published as: Moore, R. H., E. D. Ingall, A. Sorooshian, and A. Nenes (2008), Molar
mass, surface tension, and droplet growth kinetics of marine organics from measurements of CCN activ-
ity, Geophysical Research Letters, 35, L07801, doi:10.1029/2008GL033350. Copyright © 2008 American
Geophysical Union. Reproduced with permission.
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and Tanoue, 2003). Recently, Vetter et al. (2007) developed a method to remove most of

the salt in seawater samples via a combination of electrodialysis and reverse osmosis, thus

enabling direct characterization of marine DOM.

Köhler Theory Analysis (KTA, Padró et al., 2007) is a technique to infer the molar vol-

ume, surfactant characteristics, and droplet growth kinetics of organic aerosol constituents,

all of which are important for linking organic aerosol with cloud formation. KTA has

been previously evaluated for aerosol composed of C3-C9 organics mixed with (NH4)2SO4

(Padró et al., 2007), for water-soluble organics in biomass burning aerosol (Asa-Awuku

et al., 2008), and for secondary organic aerosol formed from the ozonolysis of biogenic

volatile organic carbon (Asa-Awuku et al., 2010). Asa-Awuku et al. (2010) first extended

KTA to infer surface tension as well, which is useful when sample size prohibits direct

measurement of surface tension; this aspect of KTA is further developed here.

In this study, we measure the CCN-relevant properties of marine DOM and then use

KTA to infer its average molar mass and surface tension depression characteristics. The

potential impact of marine surfactants on droplet growth kinetics is also explored. To eval-

uate KTA, inferred values of surface tension are compared against direct measurements

using the pendant drop technique.

4.2 Experimental
4.2.1 Sample Collection

Seawater samples were collected near the Georgia Coast on board the Research Vessel

Savannah during an October 2006 research cruise in the Atlantic Ocean. 200-l samples

from the Gulfstream current (31◦32.5’N, 79◦13.8’W, 84 m depth) and the Ogeechee River

estuary (31◦56.6’N, 81◦9.1’W, 2 m depth) were collected in Niskin bottles and filtered

to remove suspended particulates greater than 0.45 µm with a polypropylene filter. The

estuarine sample was collected under tidal conditions. Inorganic salt concentrations were

similar in both samples (3.7×104 ppm in the Gulfstream sample and 3.1×104 ppm in the
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estuarine sample); however, more organics were initially present in the estuarine sample

than the Gulfstream sample (4.36 ppm and 0.95 ppm, respectively).

The DOM in each sample was subsequently concentrated using the electrodialysis/reverse

osmosis (ED/RO) technique of Vetter et al. (2007). In this method, ED is first used to re-

move the majority of the inorganic salts and is followed by RO to remove excess water.

This cycle is repeated until a desired concentration of DOM is attained, after which the

sample is freeze-dried. Typical DOM recoveries range from 64-93% (Vetter et al., 2007),

and water conductivities were reduced by over 99.98%. During the process, all Cl− is

depleted, and the remaining inorganic fraction is primarily Na2SO4 and (NH4)2SO4.

4.2.2 Chemical Composition of Samples

The water-soluble organic carbon (WSOC) content of both samples was measured with a

total organic carbon (TOC) analyzer (Sievers Model 800 Turbo). Additionally, inorganic

ions (SO2−
4 , Cl−, NO−3 , Na+, NH+

4 , Ca2+, Mg2+, and K+) were measured using a dual ion

chromatography (IC) system (Dionex ICS-2000). TOC concentrations of the Gulfstream

and estuarine dry samples are 0.111 kgC kg−1 and 0.249 kgC kg−1, respectively. From the

IC measurements, the major inorganic species present in the DOM extract are Na2SO4 and

(NH4)2SO4. The solution pH is neutral, suggesting that the organics do not substantially

dissociate.

4.2.3 Surface Tension Measurements

Surface tension measurements were performed using the pendant drop method with a KSV

CAM 200 goniometer. Each droplet was allowed to equilibrate for 20-30 seconds, allow-

ing sufficient time for organics to partition between the bulk and surface layers (Taraniuk

et al., 2007). The droplet shape was fit to the Young-Laplace equation to obtain the sur-

face tension, σ, at the liquid-air interface. The temperature (approximately 297 K) was

monitored throughout each set of measurements using a 50 kΩ thermistor (Digikey ERT-

D2FHL503S). Seven pendant drops were photographed at ten frames per second for each
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surface tension measurement.

Multiple solutions of each sample (done by preparing ∼2000 ppm samples, which are

successively diluted down to 100 ppm) were prepared to determine σ as a function of

dissolved carbon concentration, C. The data are fit to the Szyskowski-Langmuir (SL) ad-

sorption isotherm (Langmuir, 1917):

σ = σw − αT ln(1 + βC) (4.1)

where σw is the surface tension of water (i.e., an “infinite dilution” sample), T is the

absolute temperature, and α and β are empirical constants obtained from least-squares

fits to the data. While the SL isotherm is an adsorption model for one compound, it is

able to model the complex DOM/salt system reasonably well (Figure 4.2). α and β, were

determined to be 2.952 mN m−1 K−1 and 2×10−6 l mg−1.

4.2.4 CCN Activity and Droplet Growth Kinetics Measurements

The experimental setup used for CCN activity measurements is described in detail else-

where (e.g., Asa-Awuku et al., 2008; Padró et al., 2007). Aerosol is generated by atomizing

an aqueous solution of each of the seawater samples. The particles are dried and introduced

into a scanning mobility CCN analyzer (SMCA, Moore et al., 2010), for characterization

of size-resolved CCN activity and growth kinetics. SMCA uses a differential mobility

analyzer (DMA, TSI 3081), operating in voltage-scanning mode, to classify the aerosol.

The monodisperse stream is then introduced simultaneously into a Droplet Measurement

Technologies Continuous-Flow Streamwise Thermal Gradient CCN Counter (DMT-STGC,

Roberts and Nenes, 2005) and a condensation particle counter (CPC, TSI 3022). The time-

series of the DMT-STGC and CPC counts are inverted to obtain curves of CCN/CN as a

function of mobility diameter (while maintaining instrument supersaturation at a constant

value). The dry diameter, dp, for which 50% of particles are activated (neglecting multiply-

charged particles) represents the aerosol that activates at the instrument supersaturation, sc.
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The DMT-STGC uses an optical particle counter (OPC) to obtain the size distribution of

activated droplets exiting the instrument column.

The CCN activity of aerosol containing the estuarine sample and a known amount of

added (NH4)2SO4 was also measured in order to see if a “salting out” effect could be

observed. The effect occurs at relatively high electrolyte concentrations (∼50 wt%, dry

concentration), when the salts enhance surfactant partitioning to the droplet surface, dra-

matically reducing the surface tension and increasing the CCN activity (Asa-Awuku et al.,

2010). Two samples were prepared to total salt concentrations of approximately 60 and 90

wt%. The 60 wt% salt sample was also used as an independent mixture to infer molar mass

and surface tension depression.

For all CCN measurements, the flow rate of air through the column was maintained

at 0.5 l min−1 (10:1 sheath-to-aerosol ratio), which corresponds to a residence time of 15

seconds. The DMT-STGC instrument supersaturation was varied from 0.2% to 1.4%.

4.3 Results and Discussion
4.3.1 CCN Activity

The CCN activation curves for both samples and pure (NH4)2SO4 are shown in Figure 4.1.

For a CCN composed of soluble non-surfactant compounds, Köhler theory suggests that the

“critical supersaturation”, sc, scales with dp to the −3/2 power (Köhler, 1936). However,

for aerosol containing surfactants, this scaling will change, tending to be lower at smaller

d and approaching −3/2 at larger d. This is because at smaller particle diameters, the high

concentration of WSOC depresses σ, which lowers sc more than would be expected from

the solute effect alone; at larger d, the WSOC concentration is insufficient to induce this

effect (Padró et al., 2007).

The activation curve of the Gulfstream sample aerosol (blue circles) is almost identical

to (NH4)2SO4 (yellow triangles), despite the presence of ∼40 wt% surface-active DOM. It

is likely that the surface tension depression from the organic fraction compensates for the
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Figure 4.1: Critical supersaturation versus dry particle diameter for all samples considered.

decreased soluble mole fraction. The estuarine sample aerosol contains ∼85 wt% organic

matter and is much less CCN active than (NH4)2SO4 (red circles in Figure 4.1). Addition-

ally, the activation curve deviates from the −3/2 exponential power law fit (as indicated

by the dotted line) at low dry particle diameters and high sc, where the concentration of

organic matter is high enough to significantly affect the droplet surface tension (C > 1000

mg l−1, from Figure 4.2).

4.3.2 Köhler Theory Analysis (KTA)

The organic molar mass and surface tension depression were inferred from the CCN activity

measurements using KTA, method b2 (Padró et al., 2007; Asa-Awuku et al., 2008, 2010).

For each sc/dp measurement, the fitted CCN activity (FCA) parameter, ω, is calculated from

ω = scd
3/2
p (4.2)
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KTA entails expressing FCA in terms of its constituents, assuming the aerosol is composed

of N components (Padró et al., 2007):

ω = 2

(
4Mwσ

3RTρw

)3/2
[

N∑
i=1

(
ρw
Mw

)(
Mi

ρi

)
1

εiνi

]1/2

(4.3)

where Mw, ρw are the molar mass and density of water, respectively, R is the universal gas

constant, and Mi, ρi, εi, νi are the molar mass, density, volume fraction, and effective van’t

Hoff factor of component i, respectively. Denoting the organic fraction as component “j”

and rearranging Equation 4.3 to solve explicitly for Mj and σ yields

Mj =
ρjεjνj

256
27
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)2 (
1
RT
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σ3ω−2 −
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(4.5)

σ corresponds to the value at activation, and the surfactant carbon concentration is given

by (Padró et al., 2007),

Cact =
27

8
xc,jεjρj

d3
ps

3
c

A3
(4.6)

where A = 4Mwσ
RTρw

and xc,j = 0.29 is the mass fraction of carbon in the DOM, estimated

from the Redfield ratio (C:N:P = 106:16:1) (Schulz and Zabel, 2006; Redfield et al., 1963).

In applying Equations 4-6, we assume an organic density, ρj , of 1400 kg m−3 (Schulz and

Zabel, 2006), an effective van’t Hoff factor of 1 for the organics (Dinar et al., 2007), and

2.5 for (NH4)2SO4 and Na2SO4 (Padró et al., 2007).

To compute Mj and σ from KTA, the following procedure is used: First, the average

organic molar mass, M∗
j , is estimated for each sc/dp pair (Equation 4.4) initially assuming

the surface tension of pure water. Equations 4.5 and 4.6 are used to estimate σ for the sc/dp

data of the sample plus 60% (NH4)2SO4. The updated σ values are used to reevaluate M∗
j
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Figure 4.2: Fractional surface tension depression with respect to pure water. Shown are
direct measurements (open symbols) and values inferred from KTA (closed symbols).

and this process is iterated until the σ and M∗
j values converge. This procedure allows the

concurrent inference of Mj and σ (as a function of WSOC concentration) from the CCN

activity data alone.

Mj is estimated to be 4370±26% kg kmol−1 and 4340±6% kg kmol−1 for the Gulf-

stream and estuarine samples, respectively, (the reported uncertainty is one standard de-

viation from the mean Mj over all sc/dp pairs). The sensitivities of Mj to each of the

independent parameters is computed with the method of Padró et al. (2007) (Table 4.1).

Using this method, the total estimated uncertainties of Mj for the estuarine and Gulfstream

samples are 18% and 24%, respectively. As expected, the Gulfstream sample uncertainty

exceeds the estuarine sample uncertainty, since the lower organic mass increases the Mj

sensitivity to most of the independent parameters (Padró et al., 2007).

Both molar masses are consistent with each other and fall in the mid-range of the
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Table 4.1: Molar mass uncertainty, ∆Mj , from parameter uncertainty, ∆x, for the estuarine
(Gulfstream) samples.

ω(m3/2) ρj (kg m−3) νj xc,j (%)

Base x Value 1400 1 0.29
∆x 1.47(2.16) 400b 0.2c 0.044b

×10−15a

∆Mj , % 3.7 (6.9) 10 (17) 0.2 (0.1) 15 (16)
Total molar mass 18 (24)
uncertainty, %

aOne standard deviation from the mean FCA value.
bSchulz and Zabel (2006)
cDinar et al. (2007)

high molar-mass fraction that comprises 30-35% of the marine surface DOM (Ogawa and

Tanoue, 2003). The inferred Mj is also consistent with that of a theoretical Redfield-based

molecule, (CH2O)106(NH3)16H3PO4 (Schulz and Zabel, 2006). While most of the DOM is

recovered, it is expected that the small amount of DOM not recovered during the ED/RO

process would be low-molar-mass species that can permeate the ED membranes easiest;

therefore, higher molar-mass DOM in the sample may be enriched in the process and the

Mj of the sample (and hence, that inferred using KTA) may be greater than Mj of in-situ

marine DOM.

The inferred σ is in excellent agreement with the SL fit to direct measurements (Fig-

ure 4.2). The agreement is still excellent if other functions for fitting the data are used;

the variability in inferred Mj remains within the reported uncertainty (not shown). Since

the inferred values are derived independently of the direct measurements, their agreement

shows conclusively that diffusion of surface-active molecules to the droplet surface is suffi-

ciently rapid to achieve equilibrium surface tension depression. Taraniuk et al. (2007) and

Asa-Awuku and Nenes (2007) showed that humic-like organic species (∼500 kg kmol−1) in

growing droplets are in equilibrium; we find this to apply for marine DOM with a tenfold

higher molar mass (hence, ∼
√

10 times lower diffusivity). The latter finding is consistent
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with the analysis of Asa-Awuku and Nenes (2007), as a diffusivity of 2×10−10 (= 6×10−10

101/2
,

with 6×10−10 being the diffusivity of HULIS, Taraniuk et al., 2007) implies that the or-

ganic concentration at the droplet surface is more than 90% of its equilibrium value for the

supersaturation range considered here.

While the inferred and measured surface tension agree, the surfactants require tenfold

higher concentrations to give the same effect as organics isolated from marine aerosol (Cav-

alli et al., 2004). This difference reflects the enrichment of marine aerosol in organic sur-

factants from the process of bubble bursting. Hence, the samples investigated here are

representative of natural marine DOM, but should be interpreted as the lower limit of CCN

activity of primary marine organic aerosol.

4.3.3 Droplet Growth Kinetics

The mean droplet sizes for each sample measured by the DMT-STGC OPC at varying

values of sc are shown in Figure 4.3. All samples studied exhibit growth similar to that of

pure (NH4)2SO4 for most supersaturations. For the three middle supersaturations (0.6%,

0.8%, and 1.0%) it appears that both seawater samples grow to larger droplet sizes than for

pure (NH4)2SO4. Since it is not expected that organics would enhance droplet growth, the

observed discrepancy may be caused by slight shifts in the laser scattering during the sizing

measurement, resulting from the presence of a compressed film. (NH4)2SO4 growth could

also be depressed because of water vapor depletion in the column during the calibrations;

however, this is unlikely since the total CCN concentrations were relatively low (∼500

cm−3) and constant for all supersaturations. Laser shifts over long time periods are unlikely,

as the results are reproducible. The data suggest that the dissolved organics, compared to

pure (NH4)2SO4, do not significantly alter the droplet growth kinetics (i.e., the water vapor

mass transfer coefficient).
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Figure 4.3: Activated droplet sizes for CCN with Sc = Sinstrument.

4.4 Summary and Conclusions

In this study, measurements of CCN activity, droplet growth kinetics, and WSOC/ionic

composition of marine DOM were used to infer its CCN-relevant properties. Köhler The-

ory Analysis (KTA) determined the molar masses of the organic matter in the Gulfstream

sample and estuarine sample to be 4370±24% and 4340±18%, respectively. This is consis-

tent with the high-molar-mass marine DOM typically found in surface ocean waters. KTA

was used to infer the organic surface tension depression, and was found to be in excellent

agreement with direct measurements using the pendant drop technique. This shows that

very large organic molecules are able to diffuse to the surface of a growing droplet and

establish an equilibrium surface tension depression; in fact, direct equilibrium surface ten-

sion measurements adequately describe droplet surface tension at activation. Furthermore,

KTA is proven to be a powerful technique that can be used to infer organic surface tension
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depression using small amounts of aerosol generated from a dilute solution. Finally, while

the dissolved organics form compressed surface films that can substantially change surface

tension, they exhibited similar growth to pure (NH4)2SO4.
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CHAPTER V

HYGROSCOPICITY AND COMPOSITION OF ALASKAN

ARCTIC CCN

This chapter presents a comprehensive characterization of cloud condensation nuclei (CCN)

sampled in the Alaskan Arctic during the 2008 Aerosol, Radiation, and Cloud Processes

affecting Arctic Climate (ARCPAC) project, a component of the POLARCAT and Interna-

tional Polar Year (IPY) initiatives. Four distinct air mass types were sampled including rela-

tively pristine Arctic background conditions as well as biomass burning and anthropogenic

pollution plumes. Despite differences in chemical composition, inferred aerosol hygro-

scopicities were fairly invariant and ranged from κ = 0.1-0.3 over the atmospherically-

relevant range of water vapor supersaturations studied. Analysis of the individual mass

spectral m/z 43 and 44 peaks show the organic aerosols sampled to be well-oxygenated,

consistent with long-range transport and aerosol aging processes. However, inferred hy-

groscopicities are less than would be predicted based on previous parameterizations of

biogenic oxygenated organic aerosol, suggesting an upper limit on organic aerosol hy-

groscopicity above which κ is less sensitive to the O:C ratio. Most Arctic aerosol act as

CCN above 0.1% supersaturation, although the data suggest the presence of an externally-

mixed, non-CCN-active mode comprising approximately 0-20% of the aerosol number.

CCN closure was assessed using measured size distributions, bulk chemical composition

measurements, and assumed aerosol mixing states; CCN predictions tended toward over-

prediction, with the best agreement (± 0-20%) obtained by assuming the aerosol to be

This chapter published as: Moore, R. H., R. Bahreini, C. A. Brock, K. D. Froyd, J. Cozic, J. S. Holloway,
A. M. Middlebrook, D. M. Murphy, and A. Nenes (2011), Hygroscopicity and composition of Alaskan Arctic
CCN during April, 2008, Atmospheric Chemistry and Physics Discussions, 11, 21789-21834, doi:10.5194/
acpd-11-21789-2011. Republished under the Creative Commons Attribution 3.0 license.
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externally-mixed with soluble organics. Closure also varied with CCN concentration, and

the best agreement was found for CCN concentrations above 100 cm−3 with a 1.5- to 3-fold

overprediction at lower concentrations.

5.1 Introduction

The Arctic is particularly sensitive to climatic changes because of the complex feedbacks

between surface temperature and surface albedo, among other factors. Trace gas and

aerosol species have the potential to modify this feedback through their interaction with

shortwave and longwave radiation, and, are thus, an important area of active research. A

number of long-term measurements around the Arctic have indicated that these species vary

seasonally, and their concentrations peak during late winter and early spring when mid-

latitude anthropogenic pollution is transported northward and injected into the vertically-

stratified springtime Arctic atmosphere (Quinn et al., 2007; Shaw, 1995).

Termed “Arctic haze”, these pollution layers can persist for days or weeks and have

been attributed mostly to anthropogenic sources in northern Europe and Asia (Law and

Stohl, 2007). Recent work indicates that biomass burning emissions may contribute more

to the haze layers than previously thought (Warneke et al., 2010; Quinn et al., 2008a; Stohl

et al., 2007, 2006), possibly because industrial emissions contributing to the haze have

steadily decreased over past decades (Quinn et al., 2007), or because of improved instru-

mental capabilities for detecting and attributing the biomass burning contribution.

Aerosol species can impact the Arctic energy balance directly by absorbing and scat-

tering sunlight, and also indirectly, through their ability to act as cloud condensation nuclei

(CCN) and modify cloud properties. It is known that increased CCN loadings produce

more numerous, and smaller cloud droplets, which reflect more incoming shortwave, solar

radiation back into space, thereby cooling the Earth’s surface (Twomey, 1977a). However, it

has been suggested by a number of studies that this cooling effect is more than offset in the

Arctic by changes in longwave cloud emissivity (Alterskjær et al., 2010; Garrett and Zhao,
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2006; Lubin and Vogelmann, 2006; Shupe and Interieri, 2004; Garrett et al., 2002). This is

because of decreased solar insolation during the Arctic winter-spring and because low-level

Arctic clouds tend to be diffuse and optically-thin. Additionally, the high albedo of surface

snow and ice limits the potential cooling associated with light scattering from these clouds.

Smaller cloud droplets also inhibit ice crystal riming and droplet collision-coalescence pro-

cesses, which increase the cloud lifetime against precipitation (Lance et al., 2011; Borys

et al., 2003, 2000; Albrecht, 1989). Thus, accurate in-situ observations of aerosol and

cloud properties are essential for models to account for these “indirect effects” of aerosols

on Arctic clouds and climate.

In past decades, measurements of CCN have been made on a variety of ground-based

and airborne platforms throughout the Arctic by exposing particles to a specified water

vapor supersaturation and counting the number of droplets that are formed. Hoppel et al.

(1973) used a thermal-gradient diffusion cloud chamber to measure vertical profiles of

CCN above the Yukon Valley, approximately 100 miles north of Fairbanks, Alaska, during

February. A distinct vertical gradient was observed and CCN concentrations were found

to increase by about a factor of three above 2-km altitude (from ∼100 CCN cm−3 near the

surface) and exhibited increased sensitivity to supersaturation.

Shaw (1986) performed CCN measurements of episodic Arctic haze in central Alaska

during January-February, also using a thermal diffusion chamber, and found that particles

behaved like soluble salts, with approximately 10-30 CCN cm−3 measured at ∼ 0.3-0.5%

supersaturation.

Hegg et al. (1995) studied CCN during seven research flights in April, 1992, which were

conducted 350 km north of Alaska during the Arctic Leads Experiment (LEADEX). CCN

concentrations were generally less than 100 cm−3 with a mean of 47 ± 19 cm−3, while

the Aitken mode particle concentration varied from 135 to 4600 cm−3. Most aerosols

did not act as CCN even at 1% supersaturation (the mean CCN-active fraction was 0.15

± 0.08). This unexpectedly-low CCN-active fraction was attributed to the prevalence of
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smaller, Aitken mode particles. Concurrent SO2−
4 measurements did not correlate with

CCN concentrations at 0.3% supersaturation (r=0.046), but improved at 1% supersaturation

(r=0.640), suggesting that the sulfate was present in the smaller particles.

Hegg et al. (1996) made measurements of aerosol size, volatility, and CCN activity near

Prudhoe Bay, Alaska, during June, 1995. At 1% supersaturation, they found mean CCN

concentrations of 0 to 178 cm−3, corresponding to CCN-active fractions of around 0.10,

similar to those of Hegg et al. (1995). The CCN-active fraction was found to correlate

weakly with the aerosol mass fraction volatile at 320◦C (e.g., sulfate and organic species),

suggesting that compositional effects were important in modulating CCN concentrations

(Hegg et al., 1996).

Bigg and Leck (2001) measured CCN from an icebreaker in the central Arctic Ocean

during July to September using a CCN-remover-type instrument (Ji et al., 1998), and found

CCN concentrations of 1-1000 cm−3 at 0.25% supersaturation, with median daily concen-

trations of 15-50 cm−3. The highest concentrations were observed over open water and

were reduced to less than 200 cm−3 after 24 hrs. transport over the ice pack. Assum-

ing that all particles were composed of ammonium sulfate generally overpredicted CCN

concentrations by 30%. Single-particle electron microscopy indicated that the majority of

particles were internally-mixed, but also showed the presence of organic species or other

non-hygroscopic, non-volatile aerosol inclusions that likely led to the overprediction bias.

Yum and Hudson (2001) measured the vertical distribution of CCN concentrations

(0.04-0.8% superaturation) approximately 500 km north of the Alaskan coast as part of the

Arctic Clouds Experiment (ACE) and Surface Heat Budget of the Arctic Ocean (SHEBA)

projects in May, 1998. They found that both CCN and CN increased with altitude, on aver-

age, from less than 100 cm−3 in the boundary layer to 150-200 cm−3 aloft. Average CCN

concentrations at all altitudes increased from roughly 10 cm−3 at 0.02% supersaturation

to 100 cm−3 at 0.1% supersaturation and 200-300 cm−3 at 0.8% supersaturation, and the
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authors attributed the relatively high CCN-active fraction of 0.63 and the slope of the CCN-

supersaturation spectrum as indicative of aged aerosol with few small particles (Yum and

Hudson, 2001), in contrast to the prevalent small particles and low CCN activation ratios

observed by Hegg et al. (1995).

More recently, Kammermann et al. (2010) measured summertime CCN and aerosol

hygroscopic growth during the Abisco campaign at the Stordalen mire, Sweden, and saw

CCN concentrations ranging from 30-700 cm−3 with mean CCN-active fractions of 7-27%

at 0.1-0.7% supersaturation. Inferred values of the hygroscopicity parameter, κ (Petters and

Kreidenweis, 2007), obtained from the CCN measurements, were found to range from 0.07

at the highest supersaturation to 0.21 at the lowest supersaturation. CCN concentration clo-

sure was assessed by using κ values obtained from the hygroscopic growth measurements

to predict CCN, and agreement was typically achieved to within ±11%.

In summary, measurements of Arctic CCN over the past decades have found concentra-

tions to be highly variable, in part due to seasonal changes, but typically on the order of a

few tens to hundreds of CCN cm−3, which constitute only 7-63% of total particles present

even at supersaturations as high as 0.7-1%. Both CCN and total particle concentrations

have been observed to increase with altitude, underscoring the need for additional airborne

studies to complement surface measurements. Additionally, the aerosol mixing state re-

mains poorly-characterized with some limited evidence for size-variant aerosol chemistry

and the presence of a small non-hygroscopic aerosol mode.

In this paper, we present observations of the CCN activity and hygroscopic properties of

Arctic aerosol sampled during Spring 2008 and quantify the uncertainty in CCN predictions

based on simplified models of aerosol mixing state and chemical composition relevant for

global climate models. We also examine the relationship between aerosol hygroscopicity

and oxidation state. It has been suggested that more-oxidized organic aerosol are more

hygroscopic (Jimenez et al., 2009), and we explore this relationship in the context of well-

aged, Arctic air masses.
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5.2 Observational Data Set
5.2.1 Study Location

An extensive description of the ARCPAC mission and aerosol instrumentation is given

by Brock et al. (2011a), so only a brief summary is included here. Measurements were

made aboard the National Oceanic and Atmospheric Administration WP-3D aircraft based

out of Fairbanks, AK (64◦ 48’ 54” N, 147◦ 51’ 23” W). A total of eight research flights

were conducted from April 3rd-23rd, 2008, including two transit flights into and out of

Alaska. We restrict our analysis, here, to five of the research flights conducted entirely

within the Alaskan Arctic (April 12th, 15th, 18th, 19th, and 21st). As described by Brock

et al. (2011a), these flights extended from western Alaska near Nome, northeast to the

Beaufort Sea, and intercepted four distinct types of air masses (background, biomass burn-

ing plumes, anthropogenic pollution plumes, and pristine air in the Arctic boundary layer),

which will be discussed in detail in Section 5.3.1. A map of the flight tracks is shown in

Figure 5.1.

5.2.2 Chemical Composition Measurements

Mass loadings of non-refractory, sub-micron aerosol species were obtained from a com-

pact time-of-flight aerosol mass spectrometer (C-ToF-AMS) with a pressure-controlled in-

let (Bahreini et al., 2008; DeCarlo et al., 2006; Drewnick et al., 2005). The C-ToF-AMS

focuses the sample aerosol stream into a narrow beam, which is impacted on a hot plate.

Particles are vaporized and ionized before being detected with a compact time of flight

mass spectrometer. The instrument was operated in either “particle time of flight” mode

or in “mass spectrum” mode. In the former mode, the narrow particle beam is periodi-

cally interrupted by a rotating chopper, and the particle time-of-flight across the vacuum

chamber is detected and related to size. Size-resolved mass distributions were averaged to

five-minute intervals to improve counting statistics. In the latter mode, the chopper is alter-

nated in and out of the beam line so that the differential mass spectrum is obtained at 0.1
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Figure 5.1: (Left) Aircraft trajectories for the research flights on April 12th, 15th, 18th,
19th, and 21st, colored by air mass type. Due to vertical profiling, some air mass types
overlap. (Right) Vertical profiles showing the altitudes at which each air mass type was
frequently encountered.

Hz with good counting statistics, but for the entire particle size distribution. Mass loadings

for sulfate, nitrate, ammonium, and organic aerosol constituents were then calculated from

the mass spectra following the procedure of Allan et al. (2003), with relative uncertainties

of ±34-38% (Bahreini et al., 2009).

The C-ToF-AMS provides information about the mass fraction of non-refractory chem-

ical constituents, but gives relatively little information on refractory aerosol (e.g., sea salt,

mineral dust, elemental carbon) and the aerosol mixing state. Such information is obtained

using a particle analysis by laser mass spectrometry (PALMS) instrument (Murphy et al.,

2006; Thomson et al., 2000). The PALMS instrument ablates and ionizes single particles

(0.15-0.75 µm diameters) using a laser, and analyzes the resulting ions with a time-of-flight

mass spectrometer. The positive- or negative-ion mass spectral patterns of each particle are

then used to classify the particle as one of six different compositional types according to

the dominant constituent in each particle. The compositional types are biomass/biofuel,

sulfate/organic, sea salt, mineral dust, elemental carbon, and unclassified. The unclassified
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compositional type refers to particles that could not be identified by the automated data

processor, although subsequent inspection of these spectra showed them to be consistent

with the distribution of other particle types. In addition, elemental carbon was found to

constitute less than 1% of particle number. Consequently, we neglect the unclassified and

elemental carbon particle type categories in this analysis. Particle number concentrations

of each type were computed with a 60-second resolution and an estimated uncertainty of

15%, relative.

5.2.3 Particle Size Distribution Measurements

Dry particle size distribution measurements (0.003 to 8.3 µm diameters) were obtained at

1 Hz from a white-light optical particle counter (WLOPC), an ultra-high sensitivity aerosol

size spectrometer (UHSAS), and a nucleation mode aerosol size spectrometer (NMASS).

An impactor with 1 µm cutoff diameter was located upstream of the UHSAS. The NMASS

consists of five condensation particle counters, with 0.004, 0.008, 0.015, 0.030, and 0.055

µm cutoff diameters. Fine particle size distributions (0.003 to 1 µm diameters) were then

calculated by coupling these five size bins to the UHSAS distribution using a nonlinear

inversion algorithm (Brock et al., 2000). The calibrated uncertainty of the fine particle

concentrations is approximately ± 20%, although an additional bias of 5-10% was noted

during aircraft ascent and descent (Brock et al., 2011a).

5.2.4 CCN Measurements

CCN measurements were made using a Droplet Measurement Technologies (DMT) stream-

wise thermal-gradient cloud condensation nuclei counter (CCNC, Lance et al., 2006; Roberts

and Nenes, 2005), which was located downstream of the 1-µm-cutoff-diameter impactor.

The CCNC consists of a cylindrical flow tube with wetted walls, on which a linear stream-

wise temperature gradient is applied. Owing to the greater mass diffusivity of water vapor

than the thermal diffusivity of air, a supersaturation is generated, which is maximum at

the centerline of the flow tube. The supersaturation depends on the applied temperature
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gradient, flow rate, pressure, and, to a lesser extent, the temperature at the instrument inlet

(Roberts and Nenes, 2005). During ARCPAC, the instrument was operated at a constant

flow rate (0.75 L min−1) and pressure (450 hPa). A flow orifice and active control sys-

tem were used to ensure that the pressure remained constant, despite changes in ambient

pressure with altitude. In the rare instances when the ambient pressure decreased below

450 hPa, the instrument pressure fluctuated freely with the ambient pressure. All CCN and

total particle concentration measurements during ARCPAC are reported here at standard

temperature and pressure (STP, 1013 hPa and 273.15 K).

During the research flights, the CCNC instrument supersaturation was varied between

0.1% and 0.6% in a stepwise manner by changing the streamwise temperature gradient,

∆T . Supersaturation, s, scales linearly with ∆T (at constant flow rate and pressure), and

this relationship was determined using ammonium sulfate calibration aerosol and Scanning

Mobility CCN Analysis (SMCA, Moore et al., 2010). This technique couples the CCNC

to an aerosol generation system and scanning mobility particle sizer (SMPS). Ammonium

sulfate aerosol are size-classified by the SMPS before being introduced into the CCNC, and

particles above a critical dry diameter, Dp,c, act as CCN and are detected by the CCNC.

Köhler theory (Köhler, 1936), is then used to determine s from the measured Dp,c for

each ∆T following the procedure of Rose et al. (2008) and Moore et al. (2010). Parame-

ters for computing the osmotic coefficient using the ion-interaction approach of Pitzer and

Mayorga (1973) were obtained from Clegg and Brimblecombe (1988). The secondary acti-

vation peak associated with doubly-charged particles was removed. The effect of the width

of the DMA tranfer function and particle non-sphericity were not considered; however, the

error associated with these assumptions is less than 3%, relative (Rose et al., 2008), which

is less than the variability of s from the calibrations throughout the field measurements

(±0.04%, absolute). The instrument operating temperature was operated well above the

ambient temperatures encountering during ARCPAC, which may cause some particles to
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partially volatilize prior to activation (Asa-Awuku et al., 2009); however, insufficient in-

formation was available to deduce this effect. The total uncertainty in the reported CCN

number concentration derived from counting statistics and small variations in temperature,

pressure, and flow rate is 7-16% for CCN concentrations above 100 cm−3 STP, which were

typical.

5.3 Results and Discussion
5.3.1 Air Masses Sampled

During the five research flights from April 12th-21st, the WP-3D aircraft sampled aerosol

from four distinct air mass types (Brock et al., 2011a), characterized as:

1. Background: Air masses where both carbon monoxide and acetonitrile mixing ratios

were less than 170 ppbv and 100 pptv, respectively, and that did not contain layers

with enhanced aerosol and trace gas concentrations. Organics constitute 51% of

aerosol volume, on average, with the remaining volume divided between ammonium

nitrate, ammonium sulfate, ammonium bisulfate, and sulfuric acid by an average

ratio of approximately 0:2.5:4:3.5, respectively.

2. Biomass Burning Plumes: Air masses where both carbon monoxide and acetonitrile

mixing ratios were greater than 170 ppbv and 100 pptv, respectively. Often layers

with enhanced aerosol and trace gas concentrations were present. Organics constitute

70% of aerosol volume, on average, with the remaining volume divided between

ammonium nitrate, ammonium sulfate, ammoninum bisulfate, and sulfuric acid by

an average ratio of approximately 1:4:4:1, respectively.

3. Anthropogenic Pollution: Air masses where the carbon monoxide mixing ratio ex-

ceeded 170 ppbv, but where the acetonitrile mixing ratio was less than 100 pptv. This

case was only observed on April 15th for a short period of time. Organics constitute
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40% of aerosol volume, on average, with the remaining volume divided between am-

monium nitrate, ammonium sulfate, ammoninum bisulfate, and sulfuric acid by an

average ratio of approximately 0:1.5:7:1.5, respectively.

4. Arctic Boundary Layer: Air masses over sea ice and below the inversion layer, where

ozone mixing ratios were less than 20 ppbv and/or photochemically-active bromine

was enhanced, indicating sea-ice surface interaction. Organics constitute 25% of

aerosol volume, on average, with the remaining volume divided between ammonium

nitrate, ammonium sulfate, ammoninum bisulfate, and sulfuric acid by an average

ratio of approximately 0:1.2:6.4:2.3, respectively.

A detailed description of additional aerosol properties as well as the source and transport

characteristics for each air mass type is given by Brock et al. (2011a).

Aerosol volume fractions reported above were calculated from the the C-ToF-AMS

mass loadings, assuming internally-mixed aerosol, tabulated inorganic species densities,

and an organic density of 1400 kg m−3. Partitioning of the inorganic aerosol fraction

between neutral and acidic sulfate species for each air mass was calculated using the molar

ratio of ammonium ions to sulfate and nitrate ions, RSO4 , and mass balance as per Nenes

et al. (1998). Nitrate constitutes a small fraction of aerosol volume in all air mass types and

is assumed to be completely neutralized. ForRSO4 > 2, the sulfate is present as ammonium

sulfate, while for 1 < RSO4 < 2, the sulfate is present as a mixture of ammonium sulfate

and ammonium bisulfate. Finally, for RSO4 < 1, the sulfate is present as a mixture of

ammonium bisulfate and sulfuric acid. The ion balance indicates that much of the aerosol

sampled during ARCPAC is partially acidic.

Figure 5.1 shows the geographical distribution of the different air mass types sampled

by the WP-3D. Background and biomass burning air masses coexist throughout northern

Alaska at all altitudes sampled, but were sampled most frequently between 3.5 and 5.5

km. Only a few anthropogenic pollution plumes were intercepted at similar altitudes to the
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Figure 5.2: Average dry particle size distributions for each air mass type sampled during
April 12th-21st. Error bars denote one standard deviation from the mean.

biomass burning layers. It is important to note that the sampling strategy of the aircraft is

reflected somewhat in this frequency distribution, as different air masses were specifically

targeted during some research flights.

The average size distributions for the air mass types are shown in Figure 5.2. Error bars

denote the standard deviation in particle number concentration. The size distributions for

all air mass types are dominated by the accumulation mode, with average geometric mean

diameters of approximately 170 nm for all air mass types except for the biomass plumes,

which were more variable (Dg = 189 ×÷ 1.19 nm) (Brock et al., 2011a).

A much smaller nucleation mode (Dg < 50 nm) is also commonly present for the back-

ground case, but is reflected only as a very slight increase in the average concentration

at smaller sizes in Figure 5.2. Although the small features at the lower end of the size
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distributions (< 80 nm) in Figure 5.2 may not be statistically significant due to uncer-

tainties in the lowest NMASS size bins, the background nucleation mode remains even

after averaging over the five research flights, suggesting that it is likely real. Size distri-

butions similar to the background case have been observed previously for the springtime

Arctic atmosphere at Svalbard for well-aged, continental air masses transported northward

from the mid-latitudes (e.g., Ström et al., 2003; Covert and Heintzenberg, 1993; Heintzen-

berg, 1980). Meanwhile, Shaw (1983, 1984) report a more significant nucleation mode for

springtime Alaskan Arctic haze aerosol with concentrations on the order of those of the

accumulation mode, which was also seen by Hegg et al. (1995) but at tenfold lower par-

ticle concentrations over the Arctic Ocean. Measurements also indicate that these Aitken

and nucleation modes become increasingly dominant during the summer months as larger

particles are removed via deposition and local sources become important (Korhonen et al.,

2008; Heintzenberg et al., 2006; Ström et al., 2003; Hegg et al., 1996). Thus, the aerosols

sampled during ARCPAC are representative of large, well-aged springtime Arctic pollution

aerosol with a significant biomass burning influence. The strong biomass burning contri-

bution even throughout the background air mass type means that while this background is

representative of the Alaskan Arctic during Spring 2008, it is not necessary representative

of the Arctic as a whole. In subsequent sections we evaluate the relative impacts of particle

size and chemical composition on the CCN activity of these air mass types.

5.3.2 CCN Activity

Vertical profiles of measured CCN concentration, NCCN , and fine particle condensation

nucleus (CN) concentration, NCN , for each air mass type are shown in Figures 5.3 and 5.4,

respectively. Fine particle concentrations were generally in the range of 100-1500 cm−3,

and show little systematic dependence with altitude, except for the Arctic boundary layer air

type, whereNCN increases by a factor of four with height over the first kilometer in altitude.

Particle concentrations in the biomass burning plumes generally exceeded the background
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Figure 5.3: Vertical profiles of CCN concentrations measured during ARCPAC. Data
shown are 1 Hz measurements and are color-coded by air mass type as in Figures 5.1
and 5.2.

by roughly two-fold, and even larger enhancements can be observed in layers between

1500-3000 m (April 19th) and at 4500 m (April 21st). This structure is largely reflected in

the CCN concentrations, which range from a few tens of particles per cm3 to concentrations

on the order of NCN . While a small amount of this variability can be attributed to the

range of water vapor supersaturations studied (0.1-0.6%), low CCN concentrations were

measured frequently at high supersaturations and vice versa.

As a quantitative comparison between CCN and CN, activation curves showing the frac-

tion of CCN-active particles (Ra = NCCN/NCN ), across the entire aerosol size distribution

and as a function of instrument supersaturation, were computed for each air mass type and

are shown in Figure 5.5. The circles and fitted trend lines in Figure 5.5 denote the median
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Figure 5.4: Vertical profiles of fine particle (CN) concentrations measured during AR-
CPAC. Data shown are 1 Hz measurements and are color-coded by air mass type as in
Figures 5.1 and 5.2.

activated fraction at each supersaturation, while the shaded area denotes the interquartile

range. Dark, black lines denote the theoretical activated fractions calculated for constant

aerosol hygroscopicity, κ, using the average size distribution for each air mass type (dis-

cussed in Section 5.3.3). It can be seen that the activation curves are very similar across air

mass types with a majority of particles acting as CCN around 0.1% supersaturation. Much

of the similarity of these CCN activation curves can be attributed to the similarity of the

aerosol size distributions; that is, size effects are more dominant than chemical effects in

determining CCN activity (Dusek et al., 2006; Twomey, 1977b).

Compositional effects appear to become important at the 0.3-0.6% supersaturation range,

where the activated fraction reaches a maximum, whose median value is less than unity.

This suggests the presence of an externally-mixed, non-CCN-active aerosol fraction that
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Figure 5.5: Median CCN activated fraction (Ra = NCCN/NCN ) as a function of instru-
ment supersaturation for each air mass sampled during April 12th-21st. Thick, colored
curves are sigmoidal fits of the form Ra = a0/(1 + (s/a1)−a3), where a0, a1, and a2 are
fitting constants, and the shaded region in the figure is the interquartile range. Thin, black
lines denote constant values of the hygroscopicity parameter, κ, computed based on the
average size distribution for each air mass type. The stacked bars show the number fraction
of each particle type from the PALMS instrument for particle diameters of 150-750 nm.
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constitutes approximately 0-20% of the aerosol number, and as much as 40% for the back-

ground air mass type where increased numbers of nucleation-mode particles were some-

times observed; although, the combined measurement uncertainties of NCCN and NCN (7-

16% and 20%, respectively), make this a weaker conclusion. For the background case, the

maximum activated ratio is lower than the other cases because of the sub-40-nm nucleation

mode, whose particles are too small to act as CCN regardless of their composition. Mea-

surements of the sub-750-nm, single-particle number fractions from the PALMS, which

are also shown in Figure 5.5, indicate a non-negligible dust fraction for all air mass types

which would likely contribute to this non-CCN-active fraction, as well as less-oxidized or-

ganic species present as sulfate/organic or biomass/biofuel particle types. Previous studies

have also detected the presence of a small, externally-mixed and less-hygroscopic aerosol

mode either through humidified tandem differential mobility analyzer (HTDMA) measure-

ments (e.g., Herich et al., 2009; Covert and Heintzenberg, 1993) or from inferences based

on volatility measurements (e.g., Engvall et al., 2008; Hegg et al., 1996).

Past airborne and ground-based studies of springtime Arctic CCN have reported av-

erage concentrations in the range of 0-300 cm−3 and average activated fractions, Ra, of

0.15-0.63 for supersaturations of 0.3-1% (Yum and Hudson, 2001; Hegg et al., 1995; Shaw,

1986). Hegg et al. (1996) and later Kammermann et al. (2010) measured Arctic CCN

during the summer and found higher CCN concentrations of 0-675 cm−3 and Ra of 0.10-

0.17 on average. This study finds 95th-percentile CCN concentrations of 100-550 cm−3 at

0.15-0.42% supersaturations for the background and Arctic boundary layer air mass types,

which would be expected to be most representative of normal springtime Arctic conditions

among the four air types encountered during ARCPAC. These increased CCN concentra-

tions appear to be more consistent with measurements of the summertime Arctic than with

the springtime studies; however CN concentrations remain consistent with past springtime

studies while the CCN-active number fractions measured in this study are much higher.

Thus, the enhancement in CCN likely results from the dearth of smaller particles for all air
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mass types except portions of the background. The 95th-percentile CCN concentrations at

0.15-0.42% supersaturations for the anthropogenic pollution and biomass burning air mass

types were 300-800 cm−3 and 500-1500 cm−3, respectively.

5.3.3 Inferring Hygroscopicity

The ability of a particle to act as a CCN depends on its size and chemical composition and

on the ambient water vapor supersaturation. This relationship is described by Köhler the-

ory (Köhler, 1936), and a single parameter representation of this theory has been recently

developed and widely-adopted (Petters and Kreidenweis, 2007). The critical water vapor

supersaturation that a particle must be exposed to to act as a CCN, sc, is given by

sc ≈

√
4

κD3
p

(
4σMw

3RTρw

)3

(5.1)

where Dp is the dry particle diameter, κ is the hygroscopicity parameter (Petters and Krei-

denweis, 2007), R is the gas constant, T is the absolute temperature, σ is the surface ten-

sion of the solution droplet, and Mw and ρw are the molar mass and density of water,

respectively. Although organic surfactants present in atmospheric aerosols can depress the

droplet surface tension below that of pure water (Asa-Awuku et al., 2009; Decesari et al.,

2003; Facchini et al., 1999), most field measurement studies, including this one, assume

the surface tension of water in Equation 5.1 for simplicity.

An alternate and equivalent way of expressing Equation 5.1 is to state that when parti-

cles with a given κ are exposed to a constant water vapor supersaturation, those particles

larger than some critical dry diameter, Dp,c will act as CCN. Thus, we can infer κ directly

from measurements of CCN and the particle size distribution by first determining Dp,c by

integrating the particle size distribution to match the measured CCN concentration at a

specified supersaturation,

NCCN =

∫ ∞
Dp,c

nCNdDp (5.2)
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where NCCN is the measured CCN number concentration and nCN is the particle size

distribution function. The derived Dp,c for each supersaturation is then substituted into

Equation 5.1 to find κ. Implicit in this method is the assumption that the aerosols larger

thanDp,c are internally-mixed. Given that κ is most sensitive to size aroundDp,c, we expect

that the κ derived in this way is most characteristic of particles with size Dp,c.

Inferred median κ values from the CCN and size distribution measurements are plotted

against their corresponding values of Dp,c in Figure 5.6; error bars denote the interquartile

range of inferred values. Also shown for comparison are predicted κ values from size-

averaged and size-resolved C-ToF-AMS compositions calculated as

κ =
∑
i

εiκi (5.3)

where εi and κi are the volume fraction and pure-component hygroscopicity of species i,

respectively. Values of κi were found from

κi = (ρi/Mi)(Mw/ρw)νi (5.4)

where ρi, Mi, and νi are the density, molar mass, and van’t Hoff factor of the pure solute,

respectively. An organic κ of 0.11 was assumed, which corresponds to a theoretical organic

species with a molar mass of 0.200 kg mol−1, density of 1400 kg m−3, and a van’t Hoff

factor of unity.

It is apparent from Figure 5.6 that the CCN-derived hygroscopicities are substantially

lower than those suggested by the non-refractory aerosol composition, and these values also

show a strong size-dependence. This apparent discrepancy could reflect size-dependent

chemistry, where less-soluble organics are enhanced in the smaller particles relative to the

larger particles measured by the C-ToF-AMS. For example, Kammermann et al. (2010)

found similar κ values of 0.07-0.21 for accumulation mode aerosol (D = 50-200 nm) sam-

pled in the remote subarctic Stordalen mire in northern Sweden using a DMT CCNC and

a hygroscopicity tandem differential mobility analyzer (HTDMA). Alternatively, the lower
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Figure 5.6: Inferred values of the hygroscopicity parameter, κ, obtained from the mea-
sured CCN concentrations and size distributions and plotted against the critical activation
diameter, Dp,c (squares). Also shown are κ values calculated for particle compositions
obtained from size-resolved (circles) and size-averaged (diamonds) C-ToF-AMS measure-
ments. Markers denote the median values for each air mass type, while error bars denote
the interquartile range. The solid line shows the average particle size distribution from
Figure 5.2.
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κ could reflect the presence of an externally-mixed, non-CCN-active aerosol mode such as

insoluble organics or even mineral dust, which constitutes ∼ 6% by number (Figure 5.5).

Since the hygroscopicities shown in Figure 5.6 were calculated assuming an internally-

mixed aerosol, the presence of this less-CCN-active mode would serve to decrease κ.

This is especially true for the lowest values of the CCN-derived κ (s > 0.3%), where

all of the CCN-active particles have already activated and the effect of a less-hygroscopic

mode would disproportionately affect predictions made assuming an internal mixture. The

derived hygroscopicities of 0.1-0.3 in this study are consistent with those of aged pyro-

genic aerosol (Andreae and Rosenfeld, 2008), which is not surprising given the influence

of biomass burning aerosol, present in all air mass types sampled.

5.3.4 Hygroscopicity and Organic Oxygenation

It was also observed during ARCPAC that the geometric mean diameter of the aerosol size

distribution varied with carbon monoxide mixing ratio for the biomass burning and back-

ground air types (Figure 8 in Brock et al., 2011a), and it was suggested that dilution of

the biomass burning aerosols may evaporate some semi-volatile organic species present in

these particles (Brock et al., 2011a). An alternate explanation would be that the plumes

were emitted with lower gas-phase concentrations or were diluted early in transport, lead-

ing to less secondary aerosol production and smaller particles. CCN and large particle con-

centrations were also found to correlate linearly with CO (Lance et al., 2011). It would be

expected that the least volatile organic species would be the most oxidized, and hence most

CCN-active species, while the semi-volatile organics would be less-oxidized and therefore

less CCN-active (Jimenez et al., 2009). To test this assumption, Figure 5.7 shows the aver-

age aerosol size distribution and hygroscopicities plotted versus the CO mixing ratio for all

biomass burning plumes encountered during ARCPAC. A notable decrease in the aerosol

geometric mean diameter and number concentration is apparent with decreasing CO, and
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Figure 5.7: (a) Average particle size distribution for all biomass burning plumes sam-
pled, colored by number concentration, and plotted versus CO mixing ratio. The black
trace denotes the distribution geometric mean diameter. (b) CCN-derived biomass burning
aerosol hygroscopicity, colored by aerosol organic volume fraction from the C-ToF-AMS,
and plotted versus CO mixing ratio. (c) f44 ratio obtained from the C-ToF-AMS (aver-
aged to 5-minute intervals) plotted versus CO mixing ratio. The black-circles in (b) and (c)
denote the mean κ and error bars represents one standard deviation from the mean.
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this trend coincides with an increase in the average κ from 0.1 to 0.2 and increased variabil-

ity of κ. While the decrease in organic volume fraction, and corresponding increase in the

higher-κ inorganic fraction is sufficient to explain this behavior, a slight shift in the degree

of organic oxidation toward more-oxidized aerosol was also observed. The C-ToF-AMS

mass fraction of the m/z 44 peak (mostly the CO+
2 fragment of highly oxygenated organics

such as, e.g., di-acids and esters) to total organic mass, f44, is correlated with the organic

O:C ratio (Aiken et al., 2008; Zhang et al., 2005a), which, in turn, relates to the organic

hygroscopicity (Jimenez et al., 2009). This is shown for the biomass burning plumes in

Figure 5.7c. The relationship between f44 and the O:C ratio was calculated using the cor-

relation of Aiken et al. (2008). In biomass burning plumes an average f44 of ∼ 0.26 ±

0.03 was observed, and the average f44 increased very slightly from 0.24 ± 0.02 to 0.27

± 0.06 as CO decreased from ∼ 400 ppbv to 150 ppbv. The very small change in f44 and

κ with CO lends support to the early dilution / reduced SOA formation explanation versus

evaporation of less-oxidized, semi-volatile species during later plume dilution.

Figure 5.8 shows the 95% simultaneous confidence ellipses for f44 and f43, where f43

is the ratio of the m/z 43 peak (mostly C3H+
7 and C2H3O+ fragments) to the total organic

mass. The center of each ellipse denotes the mean values of f43 and f44. Also shown in

Figure 5.8 is the triangular bounding region reported by Ng et al. (2010) that encompasses

ambient and chamber data for oxygenated organic aerosol (OOA). While Ng et al. (2010)

define fX as the ratio of m/z X to only the oxygenated organic aerosol mass and this study

uses the total organic mass measured by the C-ToF-AMS, direct comparison is reasonable

because of the expected dominance of OOA (versus hydrocarbon-like organics) in the aged

air masses sampled during ARCPAC. This assumption may explain why the ARCPAC

confidence ellipses are shifted slightly toward larger f43 values relative to the triangular

region.

Most organic aerosols sampled during ARCPAC exhibited f44 > 0.15, indicative of

well-oxygenated species (O:C ∼ 0.8-1.2 using the correlation of Aiken et al. (2008)).
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Model atmospheric compounds with O:C ratios in this range include succinic, glutaric,

and malic acids, although these model species have slightly lower molar masses (0.118 kg

mol−1, 0.132 kg mol−1, and 0.134 kg mol−1, respectively) than the average organic molar

mass inferred from κ during ARCPAC (∼ 0.200 kg mol−1). Jimenez et al. (2009) have

shown that the organic hygroscopicity varies linearly with the O:C ratio for biogenic or-

ganics in smog chambers and for a number of field studies. Extrapolating the Jimenez et al.

(2009) parameterization to O:C∼ 1.0 implies an organic κ of∼ 0.43, which is significantly

greater than the hygroscopicities inferred here. This suggests that increased organic oxy-

genation via aging processes may increase hygroscopicity only up to a point (κ ∼ 0.2-0.3),

after which the organic hygroscopicity is less sensitive to the O:C ratio. Despite uncertain-

ties with regard to the aerosol mixing state, the high O:C ratios and lower hygroscopicities

observed here may suggest, apart from the different aerosol sources, a different secondary

organic aerosol formation pathway than purely gas-phase oxidation chemistry. The ubiq-

uity of Arctic clouds and recent modeling simulations showing oxalate concentrations of

20-30% that of sulfate in the Arctic suggest that this formation pathway may be through

aqueous phase chemistry (Myriokefalitakis et al., 2011), which can produce both organic

acids in cloud droplets and multi-functional humic-like substances with O:C ratio ∼ 1 in

wet aerosols (Lim et al., 2010; Ervens et al., 2004).

5.3.5 Sensitivity of CCN to Composition Effects

While being consistent with previous studies of pyrogenic aerosol, the hygroscopicities

inferred in Section 5.3.3 are notably lower than expected from the C-ToF-AMS measure-

ments, especially at higher supersaturations. However, given that most particles have ac-

tivated already above about 0.1% supersaturation (see Figure 5.5), it is unclear how im-

portant these differences in κ are for CCN concentrations. Here, we assess the sensitivity

of CCN concentrations to composition effects using parameters typical of those measured

during ARCPAC.
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The sensitivity of CCN concentrations to changes in chemical composition can be com-

puted analytically by, first, using Equation 5.1 to find the sensitivity of Dp,c to κ, and then

determining the sensitivity of CCN concentration to changes in Dp,c determined by the

steepness of the size distribution function:

∂NCCN

∂κ
=

(
∂Dp,c

∂κ

)(
∂NCCN

∂Dp,c

)
(5.5)

Differentiating Equation 5.1 yields

∂Dp,c

∂κ
=
−Dp,c

3κ
(5.6)

For simplicity, we assume here that the aerosol size-distribution is lognormal as

nCN =
NCN√

2πDp lnσg
exp

(
− ln2(Dp/Dg)

2 ln2 σg

)
(5.7)

where Dg is the geometric mean diameter of the size distribution and σg is the geometric

standard deviation. Substituting Equation 5.7 into Equation 5.2 and differentiating with

respect to Dp,c gives

∂NCCN

∂Dp,c

=
−NCN√

2πDp,c lnσg
exp

(
− ln2(Dp,c/Dg)

2 ln2 σg

)
(5.8)

Finally, substituting Equations 5.6 and 5.8 into Equation 5.5 and incorporating κ and NCN

into the left-hand-side yields

∂Ra

∂ lnκ
=

1

3
√

2π lnσg
exp

(
− ln2(Dp,c/Dg)

2 ln2 σg

)
(5.9)

Equation 5.9 is expressed in terms of the size distribution constants and Dp,c, which de-

pends on s and κ. Thus, for a given κ, we can express ∂Ra/∂ lnκ across the range of rele-

vant supersaturations. This is shown in Figure 5.9 for Dg = 170 nm and σg = 1.5, which are

values representative of the average size distributions for the background, anthropogenic

pollution, and Arctic boundary layer air mass types (Brock et al., 2011a)
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The log-normal nature of ∂Ra/∂ lnκ can be interpreted as that Ra is most sensitive to

composition effects when Dp,c is near the maximum of the size distribution, where a small

change in Dp,c translates into a larger change in CCN than at the tails of the distribution.

This is also true in s-space for a constant value of κ. The curves for κ = 0.1-0.2 shown in

Figure 5.9 indicate that CCN concentrations are most sensitive to composition effects near

s ∼ 0.1-0.2, because this combination of s and κ produces values of Dp,c ∼ Dg.

The dashed curve in Figure 5.9 shows the approximate CCN sensitivity of an externally-

mixed aerosol with the same log-normal size distribution as before, but now with 50%

inorganic particles (κ = 0.6) and 50% organic particles (κ = 0.1), by number. This is com-

puted as the sum of the individual modal sensitivity distributions weighted by the number

fraction of each mode. The externally-mixed case shows a similar sensitivity to that of the

internally-mixed case with κ = 0.2, but with a slightly wider distribution in s-space.

This analysis implies that weakly-forced Arctic stratiform clouds with maximum su-

persaturations of around 0.1-0.2% are at the peak of sensitivity to aerosol chemical com-

position effects.

5.3.6 CCN Closure

In this section, we use chemical compositions from the C-ToF-AMS and the measured size

distributions to quantify the uncertainty associated with CCN predictions and to test the

impacts of mixing state and solubility assumptions commonly employed in models. Such

“CCN closure” analyses are commonplace in the literature and typical reported overpre-

diction uncertainties range from 0-20% (e.g., Asa-Awuku et al., 2011; Rose et al., 2010;

Wang et al., 2010a; Bougiatioti et al., 2009; Broekhuizen et al., 2006; Rissler et al., 2004;

VanReken et al., 2003, and others).

The C-ToF-AMS was not operational during the April 12th flight, so we restrict our

analysis to the flights on April 15th, 18th, 19th, and 21st. Only the April 19th flight ex-

amined supersaturations above 0.3%, so we also restrict our analysis here to water vapor
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Figure 5.9: Sensitivity of Ra to κ as a function of superaturation. Solid traces were com-
puted assuming an internal mixture and constant values of κ, while the dashed trace repre-
sents an external mixture of 50% inorganic aerosol (κ = 0.6) and 50% organic aerosol (κ =
0.1), by number.

supersaturations of 0.1, 0.2, and 0.3%. Finally, because of relatively low aerosol mass

loadings at particle diameters less than 150-200 nm, the resolution of the C-ToF-AMS is

too noisy to assess closure using size-resolved composition measurements as has been per-

formed by some previous studies in more polluted environments (e.g., Asa-Awuku et al.,

2011; Medina et al., 2007), and size-invariant chemistry is assumed for this analysis. From

Figure 5.6 it can be seen that the size-averaged and size-resolved compositions yield simi-

lar values of κ over the diameter range of 200-800 nm, as this is where the mass distribution

is located, which would seem to support the size-invariance assumption; however, it is an

open question whether the measured particle composition at these sizes is the same as at
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Table 5.1: Percent overprediction (Φ− 1)×100% in CCN number concentration from dif-
ferent organic solubility and mixing state assumptions. Data from the CCNC, C-ToF-AMS,
and size distributions were averaged over 10-second periods, and N reflects the number of
0.1-Hz data points used to calculate each mean and standard deviation.

Internal Mixture External Mixture Size
Soluble Insoluble Soluble Insoluble Dependent

Air Mass Type N Organics Organics Organics Organics Mixturea

Anthropogenic Pollution
s = 0.1 ± 0.04 (%) 93 81±22 73±22 20±20 9±22 44±20
s = 0.2 ± 0.04 (%) 77 20±10 19±10 -7±8 -31±11 -7±8
s = 0.3 ± 0.04 (%) 53 13±9 13±9 -1±8 -35±9 -1±8

Biomass Burning Plumes
s = 0.1 ± 0.04 (%) 1088 47±27 18±25 -12±16 -65±21 17±18
s = 0.2 ± 0.04 (%) 540 16±10 9±10 -4±9 -70±14 -4±9
s = 0.3 ± 0.04 (%) 267 12±8 9±7 3±9 -67±12 3±9

Background
s = 0.1 ± 0.04 (%) 471 95±79 79±77 21±45 -4±48 48±51
s = 0.2 ± 0.04 (%) 298 34±37 30±33 3±26 -30±30 3±27
s = 0.3 ± 0.04 (%) 282 19±13 17±13 3±11 -47±21 3±11

Arctic Boundary Layer
s = 0.1 ± 0.04 (%) 76 61±18 55±21 15±19 1±28 35±18
s = 0.2 ± 0.04 (%) 64 38±13 37±13 17±13 3±18 19±14
s = 0.3 ± 0.04 (%) 41 41±9 41±9 29±9 10±16 29±9

All Air Mass Types
s = 0.1 ± 0.04 (%) 1715 62±52 39±53 0±31 -42±43 27±34
s = 0.2 ± 0.04 (%) 955 23±24 18±23 -1±17 -50±31 0±18
s = 0.3 ± 0.04 (%) 623 17±13 15±13 5±12 -51±26 5±12

aParticles with Dp > 200 nm assumed to be internally mixed, while particles with Dp < 200 nm are
externally mixed. Organics are assumed to be soluble.

smaller sizes.

CCN concentrations are predicted as follows. First, C-ToF-AMS mass loadings are

used to find the volume fractions of organics, ammonium nitrate, ammonium sulfate, am-

monium bisulfate, and sulfuric acid, where the inorganic species are partitioned as de-

scribed in Section 5.3.1. Then, Equations 5.3 and 5.4 are used to find the overall hy-

groscopicity of the aerosol, which is used in Equation 5.1 to find the critical activation

diameter, Dp,c, above which particles will act as CCN.

In applying Equations 5.1, 5.3, and 5.4, it is necessary to make an assumption about
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the aerosol mixing state. For example, one can assume that the aerosols are internally

mixed with a composition that yields one Dp,c for the entire population, and NCCN is

found directly from Equation 5.2.

Alternatively, one can assume that the aerosol are externally mixed, where each particle

contains either only organic species or only inorganic species, and the number fraction of

each particle type is described by the overall volume fractions. In this case, two distinct

particle populations exist, each with their own Dp,c. Since the organic species are less

hygroscopic than the inorganic species, Dp,c,org > Dp,c,inorg, and

NCCN =

∫ Dp,c,org

Dp,c,inorg

(1− εorg)nCNdDp

+

∫ ∞
Dp,c,org

nCNdDp (5.10)

Equation 5.10 treats all particles (both organic and inorganic) larger than Dp,c,org as CCN,

while only the inorganic fraction of particles with diameters between Dp,c,inorg and Dp,c,org

are counted as CCN.

In addition, it is necessary to make an assumption regarding the hygroscopicity of the

organic species. In this analysis we test two cases: one where the organic particle fraction

can be assumed to be slightly soluble (κ = 0.11) and one where the organic particle fraction

is assumed to be completely insoluble (κ = 0). Given the aged nature of the organics, the

latter assumption is unlikely, but still a useful sensitivity scenario. Closure is reported in

this section in terms of a CCN prediction error ratio, Φ = NCCN,predicted/NCCN .

CCN predictions tended toward overprediction, and the average percent overprediction

for each supersaturation and air mass type are shown in Table 5.1. Overall, the largest

discrepancies between predicted and measured concentrations were observed at s = (0.1 ±

0.4)%. This is consistent with Figures 5.5 and 5.9; a small change in κ at ∼ 0.1% supersat-

uration would cause a large change in the activated fraction, and hence CCN concentration.

Assuming the aerosol to be internally-mixed with soluble organics produced the largest
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Figure 5.10: CCN prediction error for 0.1-0.3% supersaturation versus measured CCN
concentrations. Predictions were computed assuming that the aerosol is (a) internally-
mixed, or (b) externally-mixed. Organic species are assumed to be soluble with κ = 0.11.
Markers denote the median error for each air mass type (colored as in Figures 5.1-5.5), and
bars denote the interquartile range. The dotted line at Φ=1 denotes perfect agreement and
the solid bounding curves denote the CCN measurement uncertainty. The inset shows the
frequency distribution of Φ for all 0.1 Hz data points.

overprediction of the four models tested, and treating the organics as insoluble reduced

this overprediction only slightly. Assuming the aerosol to be externally-mixed with soluble

organics resulted in a reasonable overall closure (Φ ∼ 1-1.2 for all air mass types), which

was worsened substantially by assuming that organics were insoluble (Φ ∼ 0.5 for all air

mass types).

Thus, assuming Arctic aerosol to be composed of an external mixture of soluble organic

and inorganic particles allowed prediction of CCN concentrations to within roughly 0-20%,

on average. This was also true for the individual air mass types, except for within the Arc-

tic boundary layer, where assuming insoluble organics further improved closure. The good

closure obtained from assuming an externally-mixed aerosol is somewhat unexpected, con-

sidering the long lifetime of these particles in the atmosphere, during which time, particle

coagulation, gas condensation, and photochemistry would be expected to shift the aerosol

population toward a more internally-mixed state. One explanation for this result is that the
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organic species are significantly less-soluble (κ < 0.11), or even insoluble, and that the

aerosol mixing state is some combination of internally- and externally-mixed aerosol.

The PALMS data products show clearly that the fine mode aerosols are an external

mixture of different particle types from different sources (Figure 5.5 here and Figure 7 in

Brock et al. (2011a)), while examination of single particle spectra show that most parti-

cles are compositionally internally mixed with both secondary sulfate and organic species.

Thus, the internal and external mixture cases explored here bound reality and constrain the

CCN activity of the real aerosol population. As an intermediate case, a size-dependent mix-

ing state scenario was examined, where particles greater than a specified threshold diameter

are assumed to be internally mixed, while particles smaller than the threshold diameter are

treated as externally mixed. Organic species present across the entire size distribution are

treated as slightly soluble as before. During ARCPAC, the mass spectra signal-to-noise

ratio was very low for particle diameters below 150-200 nm, and so we use 200 nm as the

threshold diameter in this scenario. The average overprediction assuming a size-dependent

mixing state is shown in Table 5.1. Comparing this closure scenario to the internal mixture

and external mixture cases with soluble organics shows the overprediction to be the same

as the externally-mixed case at 0.2-0.3% supersaturations. Meanwhile the closure overpre-

diction for s = (0.1± 0.04)% falls between the two bounding cases. This is consistent with

the peak sensitivity uncovered in Section 5.3.5, and provides a closure prediction estimate

that is more consistent with the PALMS observations.

FLEXPART modeling of the transport of the biomass burning and anthropogenic pol-

lution plumes indicates an Asian source with transport times of 4-9 days, while the back-

ground and Arctic boundary layer air mass types may reside in the Arctic atmosphere for a

longer time (Brock et al., 2011a; Fisher et al., 2010; Warneke et al., 2009). We speculate,

then, that the biomass burning and anthropogenic plumes undergo aging and mixing pro-

cesses during transport that result in an internally-mixed, well-oxidized-organic-dominated
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aerosol type that is injected into the stratified Arctic atmosphere, where further mixing pro-

cesses are somewhat suppressed. Meanwhile, the background and Arctic boundary layer

air mass types are dominated by an existing population of predominantly-inorganic aerosol.

The fact that PALMS shows a significant biomass burning signature for all air mass types

indicates that mixing of air types is not completely suppressed, however, and aging pro-

cesses blur the distinction between different particle types.

CCN prediction error was also found to vary with number concentration, as shown in

Figures 5.10a and 5.10b for the internally-mixed and externally-mixed cases, respectively

(and assuming soluble organics). The median overprediction increases for both cases as

CCN concentration decreases, which cannot be fully-explained by the increase in mea-

surement uncertainty associated with decreased CCN counting statistics (solid curves in

Figure 5.10). Higher AMS composition uncertainties at low particle concentrations may

also contribute somewhat to this uncertainty. Additionally, analysis of PALMS spectra ob-

tained during periods of low CCN concentration (< 70 cm−3) in the background air masses

suggests a relatively larger role of mineral dust with less soluble material than present at

higher CCN concentrations. This would not be reflected in the closure calculation and

may also explain the increased overprediction. CCN concentrations below 100 cm−3 were

somewhat infrequent during ARCPAC and had little influence on the overall predictions

reported in Table 5.1, as reflected by the low occurrence of large Φ values in the inset fre-

quency plots in Figure 5.10. However, the range of 0-300 CCN cm−3 for springtime Arctic

aerosol reported by previous studies suggests that the CCN prediction uncertainties asso-

ciated with more pristine conditions occurring in the absence of strong biomass burning

conditions may be even greater. Given the susceptibility of Arctic stratus to composition

effects, under low CCN concentrations, such errors become important.
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5.4 Summary and Conclusions

Measurements of CCN and aerosol properties obtained during the ARCPAC project in

April, 2008, are presented and analyzed. We find that size effects dominate the CCN ac-

tivity because of the accumulation mode size distribution, and that most particles act as

CCN above 0.1% supersaturation. However, we also find that aerosol chemistry and mix-

ing state have important secondary effects, particularly in the prediction of CCN number

concentration, which is shown to be sensitive to compositional assumptions near 0.1%

supersaturation. Assuming the aerosol to be internally-mixed significantly overpredicts

CCN concentration, and the best closure (0-20% overprediction error) is obtained assum-

ing externally-mixed aerosol with soluble organics. Closure worsens for low CCN concen-

tratrations (< 100 cm−3), where CCN are overpredicted by a factor of 1.5-3. While these

low concentration periods were infrequent during ARCPAC, and thus do not substantially

affect the overall closure, past studies have frequently reported CCN concentrations in this

range. Consequently, CCN prediction errors might be expected to be even greater for those

conditions.

While this study indicates that aerosol mixing state plays a significant role in deter-

mining CCN activity, many current models treat aerosols solely as internal mixtures for

computational efficiency. Consequently, we also quantify the CCN activity in terms of the

size-dependent hygroscopicity parameter, κ, which was found to vary with supersaturation

(and, hence,Dp,c) from 0.04 at the highest supersaturations (s = 0.4-0.6%) to 0.15-0.3 at the

lowest supersaturations (s = 0.1-0.3%). This observed size-dependence captures the size-

dependent chemistry and mixing state effects not explicitly treated by the single-parameter

model.

Strong biomass burning plumes originating in Asia and advected into the Arctic atmo-

sphere during this study made this dataset particularly useful for examining a wide variety

of Arctic pollution sources; however, mixing of the biomass emissions across air types

means that extrapolating these results to more pristine springtime conditions without a
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significant biomass burning signature should be done with care. Recent work suggests,

however, that biomass burning may be a larger contributor to Arctic haze than previously

thought, and a warming climate will likely increase the prevalence of severe fire years in

the future (Warneke et al., 2010; Stocks et al., 1998).
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CHAPTER VI

HYGROSCOPICITY AND COMPOSITION OF CALIFORNIA CCN

This chapter presents an overview and analysis of cloud condensation nuclei (CCN) sam-

pled in California by a NOAA WP-3D aircraft during the 2010 CalNex project. Four

distinct geographical regions are characterized, including the Los Angeles basin, the San

Joaquin and Sacramento Valleys, and the eastern Pacific Ocean west of southern California.

Median size distributions in the Central Valley were unimodal (Dg ∼ 25 nm) with a larger

fraction of organic species and smaller fraction of nitrate species in the Sacramento Valley

aerosol than in the San Joaquin Valley aerosol. Size distributions in the Los Angeles basin

and marine outflow were bimodal (Dg ∼ 30, 90-100 nm) with similar organic fractions

and some replacement of nitrate with sulfate in the marine outflow. Both fine particle and

CCN concentrations were found to decrease above 2 km altitude, with CCN concentrations

ranging from ∼10-104 cm3 STP, while fine particle concentrations (0.004-1 µm diameters)

ranged from∼103-105 cm−3 STP. Values of the hygroscopicity parameter, κ, inferred from

the CCN measurements varied from 0.1-0.25, with the highest values in the marine out-

flow and the lowest values in the Sacramento Valley. The κ values agreed well with the

predictions based on size-resolved aerosol composition, but were overpredicted by almost

twofold when size-averaged composition is used. CCN closure was assessed for simplified

compositional and mixing state assumptions, and it was found that assuming the aerosol to

be internally mixed overpredicted CCN concentrations by 30-75% for all air mass types ex-

cept within the Sacramento Valley, where good closure (<10%) was achieved by assuming

insoluble organics. Assuming a partially externally-mixed aerosol fraction or incorporating

size-resolved composition data improved closure in the other three regions, consistent with

This chapter to be submitted for publication as: Moore, R. H., K. Cerully, C. A. Brock, A. M. Middle-
brook, and A. Nenes, Hygroscopicity and Composition of California CCN During Summer, 2010.
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the bimodal nature of the aerosol size distribution.

6.1 Introduction

The central and southern portions of California experience some of the most severe air

quality problems in the United States. This is due to intense local emissions sources com-

bined with topographically-influenced air flow that contains these emissions within the

low-lying valleys and basins throughout the region between Los Angeles and Sacramento.

Much work has been conducted in the past decades to understand the magnitude and spa-

tiotemporal distribution of this pollution. A strong seasonal variation has been observed

by multiple studies indicating that the highest particle concentrations are reached during

the winter when strong temperature inversions limit vertical mixing and ventilation of the

Los Angeles basin and San Joaquin valleys. During the summer, a more westerly flow

driven by diabatic heating in Mojave Desert draws air inland, which significantly decreases

local particle concentrations, relative to those observed during winter (e.g., Chow et al.,

2006; Rinehart et al., 2006; Dillon et al., 2002; Green et al., 1992, and references therein).

The prevailing westerly winds enter the Central Valley through the Carquinez Strait east

of San Francisco, and move northward into the Sacramento Valley and southward into the

San Joaquin Valley; infrequently, air enters the San Joaquin Valley through additional en-

trance points to the south. Similar to the sea breeze influence in the Los Angeles basin,

these winds can induce a west-east pollution gradient with higher aerosol concentrations

accumulating on the upslope side of the Sierra Nevada and San Gabriel mountain ranges.

It is known that increased concentrations of soluble aerosols affect cloud properties and

lifetime by increasing droplet number and reducing the mean cloud droplet sizes (Twomey,

1977a; Albrecht, 1989). Recent work has suggested that these aerosol indirect effects on

clouds can also suppress orographic precipitation on the windward side the southern Sierra

Nevada mountains (Rosenfeld et al., 2008; Givati and Rosenfeld, 2004). This implies that

clouds are able to persist long enough to be transported over the crest of the mountains
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before either raining out or evaporating on the leeward side (Rosenfeld et al., 2008), with

important implications for regional water cycling. While urban pollution plumes were

found to be important sources of these enhanced aerosol concentrations, Rosenfeld et al.

(2008) also report that non-urban primary and secondary aerosol sources likely play an

important role.

In addition to inland transport, coastal pollution sources also can be transported out over

the eastern Pacific ocean and influence the structure of stratocumulus cloud decks near the

coast (e.g., Hegg et al., 2009; Furutani et al., 2008; Roberts et al., 2006). These observed

effects of aerosols on clouds and precipitation motivated the need to better understand the

ability of California aerosol to affect droplets by contributing cloud condensation nuclei

(CCN). The ability of a particle to act as a CCN depends on both its size and chemical

composition, which are, in turn, dependent on aerosol microphysical processes and primary

emissions sources.

Major summertime emissions sources in the San Joaquin Valley and Los Angeles basin

include secondary production of nitrate and organic aerosol (36-38% by mass), motor ve-

hicle emissions (13-25%), fugative dust (16-19%), and agricultural and animal husbandry

operations (4-5%) (Chen et al., 2007). Wintertime emissions sources are more heavily af-

fected by secondary nitrate aerosol production and residental wood burning (Chen et al.,

2007). Neuman et al. (2003) found evidence of gas-phase NO3 depletion associated with

secondary gas-to-particle production of NH4NO3 aerosol in the San Joaquin Valley and

Los Angeles basin during April and May, 2002, which was not observed in the Sacramento

Valley or over the coastal Pacific Ocean. This highlights the importance of agricultural

ammonia emissions from local animal husbandry operations as the dominant source of at-

mospheric bases; Sorooshian et al. (2008) and Zhang and Anastasio (2001) also observed

smaller sources of organic nitrogen (e.g., amines and amino acids) in the San Joaquin Val-

ley that could neutralize NO−3 . The timescale of secondary nitrate and organic aerosol

production is thought to be much less than the boundary layer mixing timescale, which
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results in horizontal and vertical aerosol concentration gradients in the Los Angeles basin

and Central Valley (Neuman et al., 2003; Collins et al., 2000). Consequently, using mea-

surements at one or several locations to represent an entire global model grid cell (∼ 100

km by 100 km) can lead to substantial uncertainties (Collins et al., 2000).

In this study, we seek to comprehensively characterize the compositional and size-

dependence of CCN activation and hygroscopicity of California aerosol over a wide hor-

izontal and vertical sampling area during May-June, 2010. Average aerosol size, com-

position, and hygroscopic properties are presented, relevant for scales typical of a global

models. Thus, this work will complement previous, more-focused studies of Los Angeles

CCN measured near local sources (Cubison et al., 2008), of Central Valley CCN affected

by the plume from a large commercial cattle operation (Sorooshian et al., 2008), of the

coastal CCN gradient west of Los Angeles (Furutani et al., 2008), and of eastward CCN

transport in the southern Sacramento Valley (Rosenfeld et al., 2008).

6.2 Observational Data Set
6.2.1 Study Location

Measurements were made aboard a National Oceanic and Atmospheric Administration

WP-3D aircraft based out of Ontario, California (34◦3’10”N, 117◦37’40”W). Eighteen re-

search flights were conducted throughout the Los Angeles basin, San Joaquin and Sacra-

mento Valleys, and coastal regions of California during the CalNex campaign from May

4th – June 20th, 2010 (Table 6.1). A map of the flight tracks is shown in Figure 6.1.

6.2.2 Chemical Composition Measurements

Non-refractory aerosol chemical compositions were obtained from a compact time-of-flight

aerosol mass spectrometer (C-ToF-AMS) with a pressure-controlled inlet (Bahreini et al.,

2008; DeCarlo et al., 2006; Drewnick et al., 2005). The C-ToF-AMS operates by focusing

the sample aerosol stream onto a hot plate to vaporize the non-refractory aerosol compo-

nents, which are subsequently ionized and detected by the time-of-flight mass spectrometer.
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Figure 6.1: Overview of NOAA WP-3D flights during CALNEX.
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Table 6.1: Research flights during 2010 CalNex.

Research Local Time
Flight Date (PDT, UTC-7 hrs.) Flight Location and Description

1 4 May 11:40-16:27 Los Angeles basin
2 7 May 10:04-16:58 Transects across the Central Valley
3 8 May 11:05-18:09 Los Angeles basin
4 11 May 10:03-17:13 Rice fields near Sacramento and coastal inflow through the Carquinez Strait
5 12 May 10:00-18:48 Transects across the Central Valley
6 14 May 10:01-16:12 Los Angeles basin and upwind over the Pacific Ocean coast
7 16 May 10:58-18:42 Los Angeles basin and upwind over the Pacific Ocean coast
8 19 May 10:27-17:11 Los Angeles basin
9 21 May 08:27-11:26 Ship plume interception and upwind of the Los Angeles basin

10 24 May 16:07-22:00 Los Angeles basin to coast and Central Valley
11 30 May 18:58-00:45 Los Angeles basin during nighttime
12 31 May 21:59-03:54 Los Angeles basin during nighttime
13 2 Jun 00:58-07:08 Los Angeles basin during early morning
14 3 Jun 00:58-07:41 Los Angeles basin during early morning
15 14 Jun 10:55-18:16 Rice fields near Sacramento and inflow through the Carquinez Strait
16 16 Jun 11:02-17:57 Transects across the Central Valley
17 18 Jun 11:03-18:08 Transects across the Central Valley, flow through the Carquinez Strait, and

westward profile of coastal emissions gradient over the Pacific Ocean
18 20 Jun 10:57-18:04 Los Angeles basin

The instrument can be operated in either “time of flight” mode or in “mass spectrum” mode,

where the former involves periodically interrupting the aerosol stream with a rotating chop-

per to measure the size-dependent particle time-of-flight across the vacuum chamber, while

the latter alternates the chopper in and out of the beam line to obtain size-averaged differ-

ential mass spectra. Both methods of operation yield mass spectra at 0.1 Hz, although,

the size-resolved mass distributions were averaged over five-minute intervals to improve

counting statistics. Mass loadings (µg cm−3) of sulfate, nitrate, ammonium, and organic

aerosol constituents were then obtained from the mass spectra via the procedure of Allan

et al. (2003), with relative uncertainties of ±34-38% (Bahreini et al., 2009).

6.2.3 Particle Size Distribution Measurements

The dry aerosol size distribution (0.003 to 8.3 µm diameters) was measured using a white-

light optical particle counter (WLOPC), an ultra-high sensitivity aerosol size spectrometer

(UHSAS), and a nucleation mode aerosol size spectrometer (NMASS). The NMASS con-

sists of five condensation particle counters with 0.004, 0.008, 0.015, 0.030, and 0.055 µm

cutoff diameters, and the fine particle size distributions (diameters < 1 µm) were obtained
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by coupling these five size bins to the UHSAS distribution using a nonlinear inverison al-

gorithm (Brock et al., 2000). The calibrated uncertainty of the fine particle concentrations

is approximately ± 20%.

6.2.4 CCN Measurements

CCN measurements were conducted using a Droplet Measurement Technologies stream-

wise, thermal-gradient cloud condensation nuclei counter (CCNC, Roberts and Nenes,

2005; Lance et al., 2006), which was located downstream of a 1-µm-cutoff-diameter im-

pactor. The CCNC consists of a cylindrical tube with wetted walls, on which a linear

streamwise temperature gradient is applied in the axial direction. Since the diffusivity of

water vapor is greater than the thermal diffusivity of air, a water vapor supersaturation is

generated in the flow tube, which is maximum at the centerline. Particles are introduced at

the column centerline, and those that activate to form droplets are counted and sized by an

optical particle counter at the base of the column.

The CCNC supersaturation profile mainly depends on the applied temperature gradient,

flow rate, and pressure (Roberts and Nenes, 2005). During CALNEX, the instrument was

operated as a CCN spectrometer using the Scanning Flow CCN Analysis (SFCA) technique

of Moore and Nenes (2009). SFCA entails dynamically scanning the instrument flow rate

over time to produce a nearly-instantaneous change in supersaturation, while maintaining a

constant applied temperature gradient and pressure. A flow orifice and active flow control

system were employed to maintain a constant instrument pressure of 500 hPa, while the

applied temperature gradient was kept constant at 12 K. Upscan and downscan ramp times

of 15 seconds were used, and CCN counts were integrated over each second to obtain 1-Hz

CCN concentrations.

Supersaturations were calibrated in terms of the CCNC internal temperature gradient,

the instantaneous flow rate, and the overall flow rate range (i.e., the minimum and maxi-

mum flow rate in each scan). The relationship between supersaturation and instantaneous
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flow rate was found following the procedure of Moore and Nenes (2009), where size-

classified ammonium sulfate aerosol from a differential mobility analyzer (DMA) were

introduced into the CCNC, and the DMA voltage was varied in a stepwise manner so that

approximately three CCNC flow scans were obtained at each particle size. Sigmoidal acti-

vation curves of CCN versus flow rate are obtained, and the inflection point of the sigmoid

is used as the critical activation flow rate, Qc, which corresponds to the critical super-

saturation, sc, above which particles act as CCN. For each particle size, sc is obtained

from Köhler theory (Köhler, 1936), as in Rose et al. (2008) and Moore et al. (2010). The

molality-dependent osmotic coefficient of ammonium sulfate used in Köhler theory is com-

puted using the ion-interaction approach of Pitzer and Mayorga (1973) with parameters

obtained from Clegg and Brimblecombe (1988). The absolute uncertainty of the calibrated

CCNC supersaturation is estimated to be ±0.04%, while the uncertainty in CCN number

concentration from counting statistics and fluctuations in temperature, pressure, and flow

rates during flight operation is estimated to be 7-16% for CCN concentrations above 100

cm−3 STP, which is comparable to the uncertainty of the instrument operating in constant

flow mode (Moore et al., 2011). The overall flow rate range was found to be sensitive to the

large changes in the ambient air temperature (∼10◦C) encountered throughout the CalNex

mission and would gradually shift toward larger values as the aircraft cabin temperature

increased during flight. This temperature-dependence was found to impact the calibrated

supersaturations during the flow downscans, while only weakly-influencing the calibrated

supersaturations during the upscans. Consequently, calibration curves for multiple flow

ranges were obtained to account for these effects, and only flow upscan data are used for

this analysis.
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Figure 6.2: (Left) Median size distributions for each geographical region. Shaded area
denotes the interquartile range. (Right) Average aerosol volume fractions obtained from
the C-ToF-AMS.

6.3 Results and Discussion
6.3.1 Regional Air Types

During the eighteen research flights from May 4th – June 20th, the WP-3D aircraft sampled

aerosol in four distinct geographical regions: the Los Angeles basin, the marine coastal

environment west of Los Angeles, the San Joaquin Valley, and the Sacramento Valley.

Figure 6.1 shows the aircraft flight trajectories during CalNex, as well as the geographical

regions used for this analysis.
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The median particle size distributions and mean aerosol volume fractions for each sam-

pling region are shown in Figure 6.2. Distinct aerosol modes are present at 30 nm and 90

nm in the Los Angeles basin, with a similar but slightly larger bimodal distribution in the

marine outflow from the basin (Dg = 30, 100 nm). A similar bimodal size distribution was

seen by Cubison et al. (2008) for measurements in Riverside, California, during Summer,

2005. They attribute small mode organics observed with an aerosol mass spectrometer

to be externally-mixed with a larger, aged, internally-mixed mode of organics and inor-

ganics (Cubison et al., 2008), consistent with measurements in other urban and non-urban

settings (e.g., Murphy et al., 2006; Zhang et al., 2005b). Median size distributions in the

San Joaquin and Sacramento valleys were found to be primarily unimodal (Dg ∼ 25 nm).

The average aerosol volume fractions shown in Figure 6.2 were calculated from the

C-ToF-AMS mass loadings assuming the aerosol to be internally mixed. Inorganic species

densities were obtained from tabulated values and an organic density of 1400 kg m−3 is as-

sumed (Lance et al., 2009). Neutral and acidic sulfate species were differentiated using the

molar ratio of ammonium ions to sulfate ions, RSO4, and mass balance as per Nenes et al.

(1998). ForRSO4 > 2, sulfate is fully neutralized by the available ammonium and is present

as ammonium sulfate, while for 1 < RSO4 < 2, the sulfate is present as ammonium sulfate

and ammonium bisulfate. For RSO4 < 1, the sulfate is a mixture of ammonium bisulfate

and sulfuric acid. Nitrate was found to constitute a significant fraction of the aerosol vol-

ume and is likely neutralized since HNO3 is volatile at the ambient temperatures typically

encountered during CALNEX. In a limited number of cases constituting less than 10% of

the sampling time in the Los Angeles basin and San Joaquin Valley, the measured ammo-

nium mass was insufficient to fully neutralize both the measured sulfate and nitrate mass

loadings. This suggests either the presence of other cations not explicitly resolved by the

C-ToF-AMS (e.g., aminium salts) or the presence of externally mixed acidic sulfate. The

“excess nitrate” that cannot be neutralized by ammonium does not contribute significantly

to the overall aerosol compositions shown in Figure 6.2, but was found to comprise less
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than 6% of aerosol volume during some periods in the Los Angeles basin and San Joaquin

Valley. Given the uncertainty of the C-ToF-AMS measurements and external mixing ef-

fects, this estimate likely represents an upper limit. Sorooshian et al. (2008) measured

the aerosol composition downwind of a large bovine source in the San Joaquin Valley and

found a significant contribution from amines even in the presence of ammonia. Excess

nitrate mass loadings reportedly reached 0.89-1.72 µg m−3 within the source plume, but

were close to zero for background conditions in the valley (Sorooshian et al., 2008). Or-

ganic species dominate all mass types (∼49-79% by volume), with smaller contributions

from ammonium sulfate and ammonium nitrate. Overall, unneutralized sulfate and excess

nitrate species constitute only 8-14% of aerosol volume on average.

6.3.2 CCN Activity

Vertical profiles of the measured CCN concentration,NCCN , and fine particle condensation

nucleus (CN, 0.004-1 µm diameters) concentration, NCN , are shown in Figure 6.3. Fine

particle concentrations range from 500-100,000 cm−3 STP, and concentrations exhibit a

decreasing trend above about 1-2 km altitude. CCN concentrations follow a similar trend,

but with at least ten-fold lower concentrations, typically ranging from a few tens to several

thousand particles per cm3 STP. The overall trends of the vertical profiles observed in each

sampling region are similar.

SFCA provides fast measurements of CCN concentrations over 0.25-0.65% supersatu-

ration, s, during a 15-second flow scan, and these values were fit to a sigmoidal function of

the form:

NCCN(s) =
a0

1 +
(
s
a1

)a2 (6.1)

where a0, a1, and a2 are empirical fitting constants. The fit function was then used to find

the differential CCN distribution, dNCCN/ds over the range of 0.2-0.7% supersaturation

for each flow upscan. This indirect procedure has the advantage of smoothing out any
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Figure 6.3: Vertical profiles of CCN concentrations at 0.25-0.65% supersaturation (left)
and submicron, fine particle concentrations (right) measured during CALNEX. Data are
color-coded by sampling region as in Figure 6.2.

Poisson counting statistics uncertainty for the 1 Hz CCN concentrations, and is analagous

to concentration averaging over 10-second and 30-second periods employed by Moore et al.

(2011) and Asa-Awuku et al. (2011) for constant flow operation of the instrument.

Figure 6.4 shows the average CCN and particle size distributions as a function of C-

ToF-AMS organic volume fraction for each sampling region. The geometric mean super-

saturation of the CCN distribution varies between 0.35-0.40% for all sampling regions,

while the breadth of the distribution is more variable. Most of the CCN distribution falls

within 0.2-0.4% supersaturation in the Los Angeles basin and marine outflow regions, al-

though broadening toward higher supersaturations occurs at the highest organic loadings.

The bimodal structure seen in Figure 6.2 for these regions is also reflected in the size dis-

tribution when the organic volume fraction, εorg is below 0.6. As εorg increases, the size

distribution transitions to a unimodal shape. This may reflect particle aging and secondary

organic aerosol formation that blurs the distinction between a smaller mode of “fresh”, pri-

mary particles and a larger mode of well-aged background aerosol similar to that observed

by Cubison et al. (2008). Although total fine particle concentrations peak at the high-

est εorg for the marine region, dNCCN/ds decreases in magnitude and broadens consider-

ably, which, perhaps, reflects coastal sources of organic-rich and less-CCN-active pollution
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aerosol.

The particle size distributions shown in Figure 6.4 for the San Joaquin and Sacramento

Valleys are much more concentrated and unimodal. A more pronounced increase in particle

size with increasing εorg is observed, which is consistent with condensational growth of

small, freshly-emitted or nucleated particles. The dNCCN/ds distributions in the valleys

are much broader than in the Los Angeles basin, although the increase in geometric mean

supersaturation between the regions is relatively small. This CCN polydispersity peaks at

εorg ∼ 0.5-0.7 in the San Joaquin Valley and 0.7-0.75 in the Sacramento Valley, suggesting

external mixing of hygroscopic and less-hygroscopic aerosol modes.

In summary, while there is some variation in the regional size distribution, most parti-

cles are present in the 10-100 nm size range, which constrains the range of supersaturations

required for CCN activation, consistent with the well-known principle that size is more im-

portant than composition in determining CCN activity (Dusek et al., 2006; Twomey, 1977a).

Composition does play an important role, however, which is reflected in the broadening of

the CCN spectrum at high aerosol organic fraction. This is seen most clearly in the Central

Valley, particularly the Sacramento Valley, where the aerosol organic fraction is greatest.

6.3.3 Inferring Hygroscopicity

The compositional and size-dependence of CCN activation is described by Köhler the-

ory (Köhler, 1936), and a single parameter representation of this theory has been widely-

adopted in recent years (Petters and Kreidenweis, 2007). The critical water vapor supersat-

uration, sc, required for a particle to act as a CCN is given by

sc ≈

√
4

κD3
p,c

(
4σMw

3RTρw

)3

(6.2)

where Dp,c is the corresponding critical dry particle diameter, κ is the hygroscopicity pa-

rameter, R is the universal gas constant, T is the absolute temperature, σ is the surface

tension of the solution droplet at the point of activation, and Mw and ρw are the molar
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Figure 6.4: Average CCN supersaturation distributions (left) and particle size distributions
(right) plotted versus the C-ToF-AMS organic volume fraction. Solid traces denote the
geometric mean supersaturation and geometric mean diameter.
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mass and density of water, respectively. Here, the surface tension of pure water is assumed

following the convention of Petters and Kreidenweis (2007).

As in Moore et al. (2011), Equation 6.2 can be rearranged to state that when particles

of a given κ are exposed to a constant water vapor supersaturation, those larger than the

critical dry diameter, Dp,c will act as CCN. Thus, κ can be determined by finding Dp,c from

integrating the the particle size distribution to match the measured CCN concentration at a

given supersaturation,

NCCN =

∫ ∞
Dp,c

nCNdDp (6.3)

where NCCN is the measured CCN number concentration, Dp is the dry particle diameter,

and nCN is the particle size distribution function. The derived values of Dp,c are then used

in Equation 6.2 to find κ.

Figure 6.5 shows the median, CCN-derived κ values plotted versus Dp,c for each super-

saturation measured. Although, the CCN measurements are not size-resolved, it is expected

that κ would be most characteristic of the aerosol size range near Dp,c, since that is where

CCN concentrations would be most sensitive to small changes in κ. The error bars in

Figure 6.5 denote the interquartile range of observed values. Also shown for comparison

are κ values calculated from the size-resolved and bulk (i.e., size-averaged) C-ToF-AMS

compositions as

κ =
∑
i

εiκi (6.4)

where εi and κi are the volume fraction and pure-component hygroscopicity of species, i,

respectively. Pure-component inorganic κ values are computed as in Moore et al. (2011),

and an organic κ of either 0 or 0.11 is assumed. The C-ToF-AMS size-resolved composi-

tions yield much better agreement with the CCN-derived κ than is achieved with the bulk

compositions. Assuming the organic species to be insoluble or slightly soluble has a small

effect on the size-resolved κ predictions, but the CCN-derived κ seems to agree best with
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Figure 6.5: Aerosol hygroscopicity, κ, inferred from the measured CCN concentrations
and aerosol size distributions, plotted against the critical activation diameter, Dp,c for each
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the predictions based on insoluble organics. This may point to an externally-mixed aerosol

with both fresh (non-hygroscopic) and aged (more hygroscopic) organic species. Aerosol

mixing state influences will be considered in the CCN closure study in Section 6.3.6. Hy-

groscopicities derived from bulk C-ToF-AMS chemistry significantly overpredict those

measured by the CCNC by almost twofold, which is consistent with Cubison et al. (2008),

who found size-dependent aerosol compositions were necessary to accurately reproduce

the CCN concentrations observed in Riverside, CA.
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6.3.4 Organic Oxygenation

Figure 6.5 shows that the CCN-derived κ is more consistent with size-resolved C-ToF-AMS

predictions assuming insoluble organics, although mixing state effects would be expected

to also play a role. Past studies have found organic aerosol hygrosocopicity to vary with

the degree of oxygenation (e.g., Jimenez et al., 2009; Duplissy et al., 2011; Chang et al.,

2010), with more-oxidized organics expected to be less-volatile and more hygroscopic.

The C-ToF-AMSm/z 43 and 44 peaks can be used to characterize the organic oxygenation

sincem/z 44 is mostly the CO+
2 fragment of highly oxygenated organics (e.g., dicarboxylic

acids and esters) and m/z 43 is mostly C3H+
7 and C2H3O+ fragments. The ratio of each

peak to the total organic aerosol mass (f44 and f43, respectively) is then a proxy for the total

oxygenation of the organic aerosol with higher f44 values correlated with higher O:C (Aiken

et al., 2008; Zhang et al., 2005b) and hygroscopicity (Jimenez et al., 2009).

Figure 6.6 shows the 95% simultaneous confidence ellipses for f43 and f44 for each

sampling region, where the center of each ellipse denotes the mean f43 and f44 values.

Also shown is the triangular bounding region reported by Ng et al. (2010) that describes

the range of observations for ambient and chamber oxygenated organic aerosol (OOA).

Ng et al. (2010) define fX as the ratio of m/z X to only the OOA aerosol mass, while

this study uses the total organic mass. These different definitions are unlikely to bias the

comparision between the range of f44 values, but would be expected to shift the f43 values

in this study to higher values than seen by Ng et al. (2010) since m/z 43 incorporates both

oxygenated and non-oxygenated fragments.

It can be seen from Figure 6.6 that the organic oxygenation of aerosol in the San Joaquin

and Sacramento Valleys is less variable than that observed in the Los Angeles basin and ma-

rine outflow. Typical f44 values were ∼0.1-0.2, which corresponds to an approximate O:C

ratio of ∼0.45-0.85 (Aiken et al., 2008) and organic κ of ∼0.06-0.2 (Jimenez et al., 2009).

This range of organic κ agrees very well with the CCN-derived κ in Figure 6.5, reflecting

the dominance of organic species at small aerosol sizes. An open question is whether the
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O:C ratio derived from size-averaged C-ToF-AMS measurements is truly representative of

the smaller Aitken-mode particles that determine CCN activity. These results indicate that

approximating the CCN-sensitive small aerosol mode with size-dependent composition and

size-averaged organic oxygenation properties gives a reasonable prediction of the observed

CCN hygroscopicity.

6.3.5 Sensitivity of CCN to Composition Effects

While quantifying the aerosol hygroscopicity is important for parameterizing CCN acti-

vation and growth, it is also important to assess the overall sensitivity of CCN to κ. To

do these, we examine the theoretical sensitivity of the CCN activated ratio, Ra, which

is defined as the CCN concentration normalized by the total fine particle concentration.

Following Wang et al. (2008) and Moore et al. (2011), we assume that the aerosol size

distribution for each region (shown in Figure 6.2) can be represented well by the sum of

two, lognormal aerosol modes. The sensitivity of Ra is then given as

∂Ra

∂ lnκ
=
nCN

3
(6.5)

where nCN is the size distribution function given as

nCN =
2∑
i

1√
2π lnσg,i

exp

(
− ln2(Dp,c/Dg,i)

2 ln2 σg,i

)
(6.6)

and Dg,i and σg,i are the geometric mean diameter and geometric standard deviation of

each mode, i. Since Dp,c is related to κ and sc in Equation 6.2, we can express ∂Ra/∂ lnκ

across the range of possible supersaturations. This is shown in Figure 6.7 for sampling

region, using bimodal fits to the median size distributions shown in Figure 6.2.

As discussed by Moore et al. (2011), the shape of ∂Ra/∂ lnκ implies that Ra is most

sensitive to composition changes when Dp,c is near the maximum of the size distribution.

As discussed in the preceding section, California CCN exhibit κ ∼ 0.1-0.2, and the sensi-

tivity curves in Figure 6.7 for these values suggest that aerosol in the Los Angeles basin
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and marine outflow are at peak sensitivity to compositional effects between 0.25-0.4% su-

persaturation, while aerosol in the Sacramento and San Joaquin Valleys are more sensitive

to κ above 0.35% supersaturation.

These estimates are based only on the measured, median size distributions for each

sampling region. Yet, the derived range of supersaturations where Ra is sensitive to κ

agrees very well with the range over which SFCA-measured dNCCN/ds values are highest

(Figure 6.4). This implies that California convective and stratiform clouds with supersatu-

rations on the order of 0.2-0.4% are particularly sensitive to aerosol chemical composition

effects. This analysis also implies that much of the average CCN supersaturation distribu-

tion can be captured assuming a constant aerosol size distribution and a constant value of

κ ∼ 0.1-0.2.

6.3.6 CCN Closure

In addition to quantifying the measured size and compositional impacts on CCN activity

in terms of κ, we also seek to quantify the uncertainty associated with using common

simplifying assumptions typical of those in large scale models. Termed “CCN closure”,

this type of error analysis has been performed for a wide range of urban and rural sites (e.g.,

Asa-Awuku et al., 2011; Moore et al., 2011; Rose et al., 2010; Ervens et al., 2010; Wang

et al., 2010a; Bougiatioti et al., 2009; Lance et al., 2009; Cubison et al., 2008; Broekhuizen

et al., 2006; Rissler et al., 2004; VanReken et al., 2003, and others).

The CCN concentrations are computed following Moore et al. (2011), where the C-ToF-

AMS compositional data are first used to find the volume fractions of organics, ammonium

nitrate, ammonium sulfate, ammonium bisulfate, and sulfuric acid. These volume fractions

are then used to find the aerosol κ (Equation 6.4) and the critical activation diameter, Dp,c,

above which all particles act as CCN (Equation 6.2).

In applying these equations, it is necessary to make assumptions regarding the aerosol

mixing state (e.g., internal versus external), organic hygroscopicity (e.g., κorg=0 or κorg=0.11),
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and whether the aerosol composition varies with particle size (e.g., size-dependent or size-

invariant). In this study, we examine seven scenarios as follows:

1. Ammonium Sulfate: All particles are composed of ammonium sulfate (κ=0.6)

2. Internal Mixture, Soluble Organics: All particles have the same composition as de-

termined by the size-averaged, C-ToF-AMS-derived volume fractions. Organics are

soluble with κ = 0.11.

3. Internal Mixture, Insoluble Organics: All particles have the same composition as

determined by the size-averaged, C-ToF-AMS-derived volume fractions. Organics

are insoluble with κ = 0.

4. External Mixture, Soluble Organics: Particles are composed of pure components

(e.g., organic particles, ammonium sulfate particles, etc.), and the number of each

type is determined by the size-averaged, C-ToF-AMS-derived volume fractions. Or-

ganics are soluble with κ = 0.11.

5. External Mixture, Insoluble Organics: Particles are composed of pure components

(e.g., organic particles, ammonium sulfate particles, etc.), and the number of each

type is determined by the size-averaged, C-ToF-AMS-derived volume fractions. Or-

ganics are insoluble with κ = 0.

6. Internal Mixture, Size-Dependent Composition, Soluble Organics: Particles in each

size distribution bin have the same composition as determined by the size-resolved,

C-ToF-AMS-derived volume fractions, but the particle compositions in different size

bins may not be the same. Organics are soluble with κ = 0.11.

7. Internal Mixture, Size-Dependent Composition, Insoluble Organics: Particles in each

size distribution bin have the same composition as determined by the size-resolved,

C-ToF-AMS-derived volume fractions, but the particle compositions in different size

bins may not be the same. Organics are insoluble with κ = 0.
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Closure was assessed for each scenario in terms of a CCN prediction error ratio, Φ =

NCCN,predicted/NCCN . CCN predictions tended toward overprediction, and the mean per-

cent overprediction (Φ−1)×100% for each sampling region and instrument supersaturation

are shown in Table 6.2. The scenarios are arranged in columns with increasing complex-

ity from left to right. Assuming the aerosol to be pure ammonium sulfate substantially

overpredicts CCN concentrations in all sampling regions, while a modest improvement is

gained by incorporating C-ToF-AMS compositions, assuming an internally-mixed aerosol

population. Good agreement is found for internally-mixed aerosol with insoluble organics

in the Sacramento Valley (Φ ∼ 0.92-1.01); although, given the large measured organic vol-

ume fractions and expected sources of secondary organic aerosol in this region, assuming

the organics to be insoluble seems unlikely.

Treating the aerosol as externally mixed overpredicts CCN concentrations if organics

are assumed to be soluble and underpredicts CCN concentrations if organics are assumed

to be insoluble. The Central Valley is an exception, with good closure (Φ ∼ 0.99-1.08)

obtained for the San Joaquin Valley, again for the insoluble organics case. Finally, in-

corporating size-dependent compositions improves closure to within ±10-25% for most

sampling regions, which is similar to predictions using size-averaged composition data (Φ

∼ 0.8-1.2), despite the increased complexity.

Figure 6.8 shows the variation of prediction error ratios with measured CCN concen-

tration, and it can be seen that the internally-mixed scenario assuming soluble organics

consistently overpredicts CCN over the range of concentrations (Φ ∼ 1.1-2.0), while the

externally-mixed, insoluble organics scenario gives a lower overall Φ but with more scatter

(∼ 0.5-1.5). For both scenarios, the median prediction error ratio increases with deceasing

CCN concentration beyond what can be explained by decreased CCN counting statistics.

Although some of this uncertainty may be associated with increased C-ToF-AMS com-

position uncertainties at low particle concentrations. The concentration dependence also
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Table 6.2: Percent overprediction (Φ− 1)×100% in CCN number concentration from dif-
ferent organic solubility and mixing state assumptions. Data from the CCNC, C-ToF-AMS,
and size distributions were averaged over 30-second periods, and N reflects the number of
data points used to calculate each mean and standard deviation.

Internal Mixture External Mixture Size-Dep. Int. Mix.
Ammonium Soluble Insoluble Soluble Insoluble Soluble Insoluble

Air Mass Type N Sulfate Organics Organics Organics Organics Organics Organics

Los Angeles Basin
s = 0.33 ± 0.04 (%) 1940 125±204 73±129 54±117 51±110 0±85 37±86 18±85
s = 0.38 ± 0.04 (%) 4268 93±110 54±60 40±55 35±53 -13±44 27±40 6±43
s = 0.43 ± 0.04 (%) 4306 83±88 49±42 36±37 33±37 -18±35 26±33 6±35
s = 0.48 ± 0.04 (%) 4323 83±82 51±46 39±38 36±37 -18±35 30±34 10±35
s = 0.53 ± 0.04 (%) 4344 85±77 54±45 42±41 40±40 -17±36 35±35 16±36
s = 0.58 ± 0.04 (%) 4218 84±71 56±41 45±41 42±36 -16±37 39±36 20±37
s = 0.63 ± 0.04 (%) 4098 76±63 49±57 39±37 37±49 -20±34 35±34 18±35

San Joaquin Valley
s = 0.33 ± 0.04 (%) 591 152±145 75±107 45±88 57±92 8±59 48±86 28±75
s = 0.38 ± 0.04 (%) 1283 143±278 75±230 47±183 56±191 4±91 42±70 23±68
s = 0.43 ± 0.04 (%) 1303 139±310 72±268 47±220 57±230 2±97 42±70 23±65
s = 0.48 ± 0.04 (%) 1314 138±115 70±90 46±79 56±80 1±49 43±66 23±62
s = 0.53 ± 0.04 (%) 1320 143±98 74±70 49±63 60±64 3±46 48±63 28±60
s = 0.58 ± 0.04 (%) 1163 140±86 68±47 43±42 56±48 1±47 42±59 24±60
s = 0.63 ± 0.04 (%) 1037 136±84 63±44 37±38 51±48 -1±49 37±58 19±59

Sacramento Valley
s = 0.33 ± 0.04 (%) 132 389±537 36±60 -2±44 21±53 -56±33 10±59 -14±77
s = 0.38 ± 0.04 (%) 319 195±215 24±31 -6±29 11±26 -59±25 7±37 -19±51
s = 0.43 ± 0.04 (%) 320 140±101 19±25 -8±25 11±22 -60±21 4±31 -20±43
s = 0.48 ± 0.04 (%) 317 124±78 22±24 -4±23 14±21 -59±20 7±29 -15±39
s = 0.53 ± 0.04 (%) 320 120±72 25±24 -1±23 18±21 -58±20 9±28 -10±35
s = 0.58 ± 0.04 (%) 318 116±63 28±23 1±22 21±21 -57±21 13±29 -6±38
s = 0.63 ± 0.04 (%) 321 105±55 24±22 -2±21 17±20 -58±20 8±27 -13±45

Marine Outflow Near LA Basin
s = 0.33 ± 0.04 (%) 657 81±97 50±80 37±76 31±71 -8±57 20±62 1±61
s = 0.38 ± 0.04 (%) 1455 61±88 33±43 22±39 17±38 -21±33 9±42 -10±41
s = 0.43 ± 0.04 (%) 1505 56±104 29±32 20±28 17±30 -24±29 8±26 -11±31
s = 0.48 ± 0.04 (%) 1466 55±90 29±31 20±26 18±30 -25±29 9±26 -8±31
s = 0.53 ± 0.04 (%) 1464 58±105 31±32 23±26 21±30 -24±29 13±25 -4±29
s = 0.58 ± 0.04 (%) 1463 58±77 34±32 25±26 24±30 -23±30 16±25 0±29
s = 0.63 ± 0.04 (%) 1457 53±66 29±30 21±24 21±28 -26±28 14±24 -2±27

appears to be slightly more pronounced for the external mixture, insoluble organics sce-

nario than for the internally-mixed, soluble organics case. The greatest underpredictions

are seen for the Sacramento Valley, where CCN concentrations were highest when εorg was

high (Figure 6.4). Consequently, the significant underprediction observed at high concen-

trations may occur from assuming insoluble organics.

This analysis shows that the assumed aerosol mixing state and organic solubility are

important for predicting CCN in California, and that the aerosol are likely to be at least par-

tially externally mixed with both soluble and insoluble organics; however, it is not possible
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Figure 6.8: CCN prediction error for 0.30-0.65% supersaturation versus measured CCN
concentrations. Predictions were computed assuming that the aerosols is internally-mixed
with κorg=0.11 (left) and externally-mixed with κorg=0 (right). Markers enote the median
error for each sampling region, while the bars denote the interquartile range. The dotted
line at Φ = 1 denotes perfect agreement and the solid bounding curves indicate the CCN
measurement uncertainty. The inset plots show the frequency distribution of Φ for all 30-
second-averaged data points.

to deconvolute these effects. Asa-Awuku et al. (2011) and Wang et al. (2010a) were able

to achieve closure to within similar uncertainties (∼ 20%) for urban aerosol in the vicinity

of Houston, TX, and Mexico City, Mexico, respectively. The latter study notes that agree-

ment was predicated on most aerosol having κ > 0.1 (Wang et al., 2010a). Cubison et al.

(2008) performed CCN closure for aerosol sampled in Riverside, California, and report

substantially higher prediction uncertainties (Φ ∼ 4-6) for similar size-averaged scenarios

as employed here (Ervens et al., 2010), which were attributed to the influence of fresh

emissions of non-CCN-active elemental carbon and small particles (Cubison et al., 2008).

Ship-based measurements in the ship channel near Houston, TX, also showed large CCN

overpredictions (Φ ∼ 1.7-2.4) in a recent closure study, which again were explained by

close proximity to local emissions sources (Quinn et al., 2008a; Ervens et al., 2010). Thus,

while these results are broadly representative of the regional aerosol near Los Angeles and

the Central Valley of California, they do not seem to capture the increased uncertainty asso-

ciated with localized fresh emissions sources that may be important for assessing air quality
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impacts. Given the relatively low resolution of large scale models, however, the more re-

gional nature of these measurements may be more appropriate for future assessments of

climate prediction uncertainties.

6.4 Summary and Conclusions

Measurements of CCN and aerosol properties obtained during the CalNex project in May-

June, 2010, are presented and analyzed. Assuming the aerosol to be internally-mixed was

found to significantly overpredict CCN concentration by 30-75% for all sampling regions

except the Sacramento Valley, where good closure (<10%) was achieved assuming insolu-

ble organics. Assuming the aerosol to be externally-mixed with insoluble organics under-

predicted CCN concentrations, on average. This suggests that California aerosol is likely

to be only partially externally mixed, which is consistent with the observed biomodal size

distributions and with the coexistence of both fresh and aged aerosol.

We also quantify the compositional dependence of CCN activity in terms of the hy-

groscopicity parameter, κ, which was found to vary between 0.1-0.2 with very little su-

persaturation or size dependence. CCN-derived κ and those calculated from size-resolved

C-ToF-AMS compositions were found to agree very well; although, using size-averaged

C-ToF-AMS compositions overpredicted κ by almost twofold. Calculations based on the

median size distributions for each sampling region suggest that CCN concentrations are

at peak sensitivity to compositional effects for supersaturations between 0.2-0.6%, which

is agrees remarkably well with the measured dNCCN/ds distributions, which were also

centered in this range. This suggests that using regional aerosol properties is sufficient for

capturing the overall trend in CCN concentrations; although, this likely does not account

for small scale features such as fresh emissions plumes.
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CHAPTER VII

HYGROSCOPICITY AND GROWTH KINETICS OF SECONDARY

ORGANIC AEROSOL FROM THE DEEPWATER HORIZON OIL

SPILL

Secondary organic aerosol (SOA) resulting from the oxidation of organic species emit-

ted by the Deepwater Horizon oil spill were sampled during two survey flights conducted

by a National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft in June

2010. A new technique for fast measurements of cloud condensation nuclei (CCN) su-

persaturation spectra called Scanning Flow CCN Analysis (SFCA) was deployed for the

first time on an airborne platform. Retrieved CCN spectra show that most particles act

as CCN above (0.3±0.05)% supersaturation, which increased to (0.4±0.1)% supersatura-

tion for the most organic-rich aerosol sampled. The aerosol hygroscopicity parameter, κ,

was inferred from both measurements of CCN activity and from humidified-particle light

extinction, and varied from 0.05-0.10 within the emissions plumes. However, κ values

were lower than expected from chemical composition measurements, indicating a degree

of external mixing or size-dependent chemistry, which was reconciled assuming bimodal,

size-dependent composition. The CCN droplet effective water uptake coefficient, γcond,

was inferred using a comprehensive instrument model, and no significant delay in droplet

activation kinetics from the presence of organics was observed, despite a large fraction of

hydrocarbon-like SOA present in the aerosol.

This chapter submitted for publication as: Moore, R. H., T. Raatikainen, J. M. Langridge, R. Bahreini,
C. A. Brock, J. S. Holloway, D. A. Lack, A. M. Middlebrook, A. E. Perring, J. P. Schwarz, J. R. Spackman,
and A. Nenes (submitted), CCN spectra, hygroscopicity, and droplet activation kinetics of secondary organic
aerosol resulting from the 2010 Deepwater Horizon oil spill, Environmental Science and Technology.
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7.1 Introduction

The explosion and loss of the Deepwater Horizon (DWH) oil platform on 20 April 2010 re-

sulted in the release of millions of barrels of oil into the waters of the Gulf of Mexico during

April-July, 2010 (Crone and Tolstoy, 2010). While a large portion of the oil-gas mixture re-

mained dissolved or dispersed in the water column, a substantial portion reached the water

surface and evaporated into the atmosphere over a period of hours to days (Ryerson et al.,

2011; de Gouw et al., 2011). Volatile organic carbon (VOC) and intermediate volatility or-

ganic carbon (IVOC) species are oxidized in the atmosphere, which lowers their volatility

causing them to nucleate new particles or condense onto existing aerosol particles. Termed

secondary organic aerosol (SOA), these particles are an important but uncertain contributor

to adverse air quality and climate change (de Gouw and Jimenez, 2009; Hallquist et al.,

2009).

This chapter presents a detailed characterization of the hygroscopic and droplet-forming

properties of SOA formed in the vicinity of the DWH site during two survey flights con-

ducted by the National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft

on 8 and 10 June 2010. These survey flights provide a unique case study of hydrocarbon-

derived SOA that has experienced relatively little atmospheric oxidative processing and

whose concentrations exceed those of the more oxidatively-aged organic aerosol back-

ground. Both fresh and aged SOA coexist in urban environments, although the latter species

are usually much more abundant (Zhang et al., 2007), and, hence, may obscure the influ-

ence of the former on measured cloud condensation nuclei (CCN) activation and droplet

growth.

7.2 Methodology

The observational data were obtained on two survey flights conducted near the site of the

DWH oil platform (28◦44’12”N, 88◦23’13”W) on 8 and 10 June 2010. Data were filtered

to include only those sampled within the lower portion of the marine boundary layer at
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Figure 7.1: Aircraft trajectories for the survey flights on 8 June (left) and 10 June (right)
when the aircraft was sampling near the DWH spill site. Markers are colored by the CCN-
derived hygroscopicity and sized by the aerosol organic volume fraction. The gray shaded
area represents the satellite-derived extent of surface oil (both fresh and aged) (NOAA-
NESDIS, 2010). Winds on June 8th were light and variable, but were more sustained from
the southeast on 10 June. P1 and P2 denote the separate plume interceptions on 10 June
described by (de Gouw et al., 2011). The ordinate and abscissa denote degrees latitude and
longitude, respectively.

between 50 and 150 meters altitude above sea level. Intermittent periods with elevated

CO mixing ratios (>150 ppbv), indicative of combustion sources, were rarely observed

but were also excluded from the dataset in order to focus solely on the SOA signature.

This filtering process also excludes the interception of the plume from a surface oil burn

southwest of the DWH site on 8 June (Perring et al., 2011). Flight tracks near the DWH

site are shown in Figure 7.1, while the entire, unfiltered flight tracks are provided in the

supporting information (Section 7.5).

7.2.1 CCN and Aerosol Measurements

CCN concentration measurements were obtained using a Droplet Measurement Technolo-

gies (DMT) stream-wise thermal-gradient cloud condensation nuclei counter (CCNC) (Roberts

and Nenes, 2005; Lance et al., 2006), which exposes an aerosol to a specified water vapor
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supersaturation and counts and sizes the droplets that form. Since the supersaturation in

the instrument is sensitive to pressure fluctuations, the pressure inside the growth chamber

was kept constant at 500 hPa using a flow orifice and active control system. On 8 June,

the CCNC was operated at a constant flow rate (0.5 L min−1) and a single supersaturation

of 0.33% for the duration of the flight, while on 10 June, the CCNC supersaturation was

dynamically scanned over a range of supersaturations (0.2-0.7%) every 15 seconds using

Scanning Flow CCN Analysis (SFCA) (Moore and Nenes, 2009). Supersaturations were

calibrated in terms of the CCNC internal temperature gradient and flow rate using size-

classified ammonium sulfate aerosol and Köhler theory (Köhler, 1936; Rose et al., 2008;

Moore et al., 2010). The supersaturation absolute uncertainty is estimated to be ±0.04%.

Subsaturated hygroscopicity measurements were obtained from a cavity ringdown (CRD)

spectrometer measuring aerosol extinction at 532 nm wavelength under both dry (10%RH)

and humidified (70-95%RH) conditions (Langridge et al., 2011).

Fine mode dry particle size distribution measurements (0.004 to 1 µm diameter) were

obtained every second from an ultra-high sensitivity aerosol size spectrometer (UHSAS)

and a nucleation mode aerosol size spectrometer (NMASS). The NMASS consists of five

condensation particle counters (0.004, 0.008, 0.015, 0.030, and 0.055 µm cutoff diameters)

that are coupled to the UHSAS distribution using a nonlinear inversion algorithm to obtain

the complete size distribution (Brock et al., 2000, 2011a).

Non-refractory, sub-micron aerosol chemical composition was measured using a com-

pact time-of-flight aerosol mass spectrometer (C-ToF-AMS) with a pressure-controlled in-

let (Bahreini et al., 2008; DeCarlo et al., 2006; Drewnick et al., 2005). The instrument was

operated in “mass spectrum” mode to obtain bulk (i.e., size-averaged) mass spectra with a

0.1 Hz resolution and in “time-of-flight” mode to obtain size-resolved mass spectra, which

were then averaged over 5 minute periods to improve signal-to-noise. The mass spectra

were integrated to calculate the total mass loadings for sulfate, nitrate, ammonium, and or-

ganic aerosol components. Mass loadings of elemental carbon were obtained from a single
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particle soot photometer (SP2) and were found to be much smaller than the non-refractory

mass measured by the C-ToF-AMS (Perring et al., 2011; Schwarz et al., 2008).

7.2.2 Coupled CCNC Instrument Model

An important feature of the DMT CCNC is the ability to measure the size distribution of

activated droplets leaving the flow chamber; this makes it possible to infer information

about activation kinetics. To first order, this can be done by qualitatively comparing the

measured droplet size distribution to that obtained for calibration aerosol (e.g., (NH4)2SO4

or NaCl) at the same instrument operating conditions (flow rate, pressure, and applied tem-

perature gradient). If the measured mean droplet size exceeds that for calibration aerosol,

slow activation kinetics can be ruled out, while a lower measured mean droplet size may

suggest slow kinetics. Termed Threshold Droplet Growth Analysis, this procedure has been

applied in a number of past studies with success (Lathem and Nenes, 2011). However, in

addition to the basic instrument operating parameters, droplet sizes are also dependent on

the aerosol size distribution, and to a lesser extent, the aerosol number concentration in the

growth chamber (Lathem and Nenes, 2011). We use a detailed numerical model to decon-

volve these dependencies, allowing the quantification of composition impacts on droplet

activation kinetics in terms of an empirical water uptake coefficient, γcond, that accounts

for gas- and particle-phase mass transfer resistances, solute dissolution kinetics, and for

the sticking probability of a water vapor molecule colliding with a growing water droplet.

The coupled CCNC instrument and droplet growth model (Lance et al., 2006; Lathem

and Nenes, 2011), together with recent improvements by Raatikainen et al. (A Coupled

Instrument and Droplet Growth Model for Inferring CCN Activation Kinetics From the

DMT CCNC, manuscript in preparation, 2011) is used here to numerically solve the cou-

pled momentum, mass, and energy balance equations for an aerosol population traversing

the CCNC flow field. Model predictions of both the droplet number concentration and

size distribution leaving the CCNC growth chamber are compared to the measurements in
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order to determine the value of γcond that gives the best agreement between predicted and

measured droplet sizes.

7.2.3 Analysis

The ability of a particle to act as a CCN depends on its size, chemical composition, and on

the ambient water vapor supersaturation (Köhler, 1936). This compositional dependence is

commonly parameterized in terms of a hygroscopicity parameter, κ, in Köhler theory (Pet-

ters and Kreidenweis, 2007)

κ =
4

s2D3
p,c

(
4σMw

3RTρw

)3

(7.1)

where s is the water vapor supersaturation, Dp,c is the particle critical dry diameter (above

which all particles act as CCN), σ is the surface tension of the solution droplet, R is the

gas constant, T is the absolute temperature, and Mw and ρw are the molar mass and density

of water, respectively. In this study, the surface tension of pure water is assumed. Follow-

ing Moore et al. (2011), κ is calculated by integrating the aerosol size distribution above

some Dp,c so that the integrated concentration matches the measured CCN concentration at

a specified supersaturation. This value of Dp,c is then used in Equation 7.1 to find κ.

While the hygroscopicity parameter is unable to unambiguously account for complex

aerosol mixing state or surface tension impacts, using the above approach offers a simple

way to parameterize composition for global models and is applicable to other measures

of water uptake, such as in subsaturated conditions. While κ is expected to be similar for

both water vapor saturation ratios less than and greater than unity, solution non-ideality or

surface tension effects in the former may yield a derived subsaturated κ that is somewhat

lower than for supersaturated cloud droplets, which are more dilute (Petters and Kreiden-

weis, 2007; Cerully et al., 2011).

The subsaturated humidity dependence of the CRD aerosol extinction was used to de-

rive the aerosol humidification factor, γext, as
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σRH
σRHref

=

[
1−RH

1−RHref

]γext
(7.2)

where σRH is the measured aerosol extinction at relative humidity, RH. The humidification

factor represents the dependence of aerosol extinction on RH, which results from changes

in the particle size and refractive index upon humidification. Thus, γext and κ are related

quantities and one can employ Mie theory with a number of assumptions to independently

derive κ from γext. These calculations were performed using the CRD data together with

the measured dry particle distribution and a prescribed refractive index (RI) of 1.45 - 0i.

Further details regarding the calculation approach and sensitivity to the RI assumption are

presented in the supporting information (Section 7.5).

7.3 Results and Discussion
7.3.1 CCN Activity and Hygroscopicity

Figure 7.1 shows the collocated spatial distribution of the CCN-derived κ and the organic

aerosol volume fraction for the low-level flight legs near the DWH site. Greater variability

in κ for adjacent points far from the DWH site on 10 June exceeds that seen on 8 June,

which may reflect size-dependent aerosol composition because the changing instrument

supersaturation during SFCA operation on 10 June also changes the size range over which

CCN measurements are most sensitive (i.e., diameters near Dp,c). Winds on 8 June were

light with variable direction, while a more sustained southeasterly flow was present on

10 June. This gives rise to a distinct plume of low-hygroscopicity, organic aerosol to the

northwest of the DWH site on the 10th. de Gouw et al. (2011) examined the gas- and

aerosol-phase composition on this day for a plume transect near the DWH site (P1) and

a transect farther downwind (P2). They found a narrow plume of VOCs surrounded by a

much broader plume of hydrocarbon-like SOA, with the organic aerosol concentration and

size distribution both increasing from P1 to P2 (de Gouw et al., 2011). Transport calcu-

lations based on wind speed and direction suggest that the enhancement in SOA results
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from less-volatile IVOC precursors (likely C14 to C16 compounds), which evaporate over

a period of hours to days after surfacing and are chemically transformed to SOA within a

few hours in the atmosphere (de Gouw et al., 2011). The importance of a sustained wind

direction in dispersing the oil emissions is apparent from the lack of an appreciable organic

fraction south of the DWH site on the 10th, but a wider impacted area on the 8th. Satel-

lite imagery of the spill extent (gray shaded region in Figure 7.1) on both days does not

necessary coincide with enhancements in gas- or aerosol-phase species, suggesting that the

“highly-aged” portion of the oil slick consists of low volatility compounds, which do not

contribute appreciably to SOA.

The changes in the total particle size distribution (dNCN /dlogDp) and CCN supersatu-

ration distribution (dNCCN /ds) across different organic aerosol fractions are shown in Fig-

ure 7.2. The solid trace denotes the geometric means and the circles denote the mean values

for P1 and P2. A small accumulation mode of a few thousand particles per cm3 is present

at all organic fractions with a significant Aitken mode appearing at organic fractions above

60%. The mean size of the Aitken mode increases by roughly three-fold over the observed

range of organic fractions, consistent with condensational growth from semi-volatile or-

ganic vapors. A large Aitken mode is also present in Figure 7.2 between 30%-40% or-

ganics, which reflects the sampling of freshly nucleated particles in the absence of organic

condensation on existing large particles just upwind of the DWH site (Brock et al., 2011b).

For organic volume fractions less than 75-80%, the peak of the CCN distribution is around

(0.30±0.05)% supersaturation, which broadens considerably and shifts to approximately

(0.4±0.1)% supersaturation at the highest organic fractions.

The increase in critical supersaturation coincides with an increase in the mean particle

diameter, which implies a significant decrease in the particle hygroscopicity since increas-

ing particle size tends to strongly decrease the critical supersaturation. This is shown by

the inverse correlation between κ, γext, and organic volume fraction in Figure 7.3a,b. The

overall κ for an aerosol containing n components is calculated as
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κ =
n∑
i

εiκi (7.3)

where εi and κi are the volume fraction and hygroscopicity of the i-th aerosol component,

respectively. Two-component mixing lines were calculated from Equation 7.3 assuming

a constant inorganic hygroscopicity, κinorg, of 0.6 and a constant organic hygroscopicity,

κorg, of either 0 or 0.1 (dashed traces in Figure 7.3a). It can be seen from Figure 7.3a that

the observed aerosol hygroscopicity lies below even the κorg=0 mixing line, which likely

reflects size-dependent composition or a partially externally-mixed aerosol population not

captured by these simple, but commonly-employed mixing rules. Extrapolating the piece-

wise linear fit of the median κ data in Figure 7.3a to εorg=1 yields an effective κorg=0.05. In

modeling the condensational growth rate of SOA near the DWH site, Brock et al. (2011b)

assumed an intermediate-volatility organic species with a molar mass of 0.292 kg mol−1

and density of 1000 kg m−3. Using these values and a unit van’t Hoff factor to estimate

κorg = (Mw/ρw)(ρorg/Morg), yields a value of 0.06 consistent with the CCN-derived esti-

mate.

A number of ambient and SOA chamber studies have shown that the pure organic hy-

groscopicity increases with increasing organic oxygenation (Jimenez et al., 2009; Chang

et al., 2010; Duplissy et al., 2011). The C-ToF-AMS mass fraction of the m/z 44 peak to

total organic mass, f44, is correlated with the organic O:C ratio (Aiken et al., 2008; Zhang

et al., 2005a), and the relationship between κorg and f44 or O:C has been reported for some

previous measurements (Chang et al., 2010; Duplissy et al., 2011). From Figure 7.3c, it can

be observed that aerosol composed almost entirely of SOA are less-oxidized than aerosol

composed only partially of SOA. This trend reflects the varying contribution of the low-

O:C, fresh SOA and the higher-O:C, aged background organic aerosol to the total aerosol

composition, where the former dominate at high εorg near the DWH site and the latter dom-

inate at lower εorg outside of these SOA plumes. Using two parameterizations for κorg and
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a constant κinorg=0.6 yields the dark shaded regions shown in Figure 7.3a, which consider-

ably overpredict the aerosol hygroscopicity parameter by a similar amount as the κorg=0.1

mixing line.

As shown in Figure 7.2, a distinct accumulation size mode is present throughout the

survey flights with a more prominent Aitken size mode associated with the organic-rich

aerosol near the DWH site. Consequently, size-resolved C-ToF-AMS chemical composi-

tion was used to look for compositional differences between the two modes, which may ex-

plain the overprediction shown in Figure 7.3a. As discussed in the supporting information

(Section 7.5), a lower size-resolved, organic volume fraction εSR,org was observed for the

accumulation mode (∼0.4-0.8) versus the Aitken mode (∼0.85-1). While the larger-sized

particles affect the bulk (i.e., size-averaged) C-ToF-AMS composition more so than the

smaller particles, the Aitken-mode-dominated number size distribution is a more important

determinant of CCN activity. Using the average composition for each mode, κ was cal-

culated for both the accumulation mode and the Aitken mode aerosol assuming κorg=0.05

and κinorg=0.6. The overall κ is then obtained from a CCN number-weighted average of

the two modes and is shown as the blue shaded region in Figure 7.3, where it can be seen

that predictions of κ based on a two-mode, size-dependent composition are in much better

agreement with observations than those obtained from bulk (i.e., size-averaged) composi-

tion, both using the same simple mixing rule assumptions.

A comparison between the supersaturated, CCN-derived κCCN and the subsaturated,

CRD-derived κCRD is shown for the entire June 8th flight in the lower part of Figure 7.4.

For most of the flight, κCRD is approximately 50% less than κCCN (Figure 7.7), although

the data are highly correlated assuming a constant 50% bias (R2 = 0.75). A similar discrep-

ancy (∼30-50%) has been previously observed for comparision of CCN-derived hygro-

scopicities and those inferred from subsaturated measurements with an humified tandem

differential mobility analyzer (HTDMA) (Cerully et al., 2011; Roberts et al., 2010). This

suggests that while the humidification of organic-rich aerosol has a small effect on their
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size and light scattering (κCRD ∼ 0.01-0.05), these particles have a greater contribution to

CCN activation (κCCN ∼ 0.05-0.10).

7.3.2 Droplet Activation Kinetics

Figure 7.4 presents the droplet size distribution of activated CCN in the CCNC (normalized

by the total number of droplets), the number-averaged mean droplet size, and the modeled

mean droplet size for aerosol with an effective water uptake coefficient, γcond, of 0.2. It can

be seen that the temporal variability is strongly correlated for the measured and modeled

mean droplet sizes when accounting for supersaturation depletion effects from moderate

CCN concentrations in the CCNC growth chamber (∼1000-3000 cm−3 STP) (Lathem and

Nenes, 2011). Neglecting the depletion effects leads to a larger mean droplet size and

much less variability in the predictions, which is not in agreement with observations. This

is because, even though supersaturation depletion has a limited effect on the measured

CCN concentration, it can have an observable effect on the measured droplet size distribu-

tion. The simulated traces were corrected by a constant 2.3 µm bias, which gives the best

agreement between the γcond=0.2 simulated and observed droplet sizes (see Section 7.5).

Simulations of ammonium sulfate calibration aerosol reveal a 2.1 µm model overprediction

bias, which is in good agreement with the correction bias applied here. Regression analysis

of the modeled versus measured mean droplet sizes indicates that a constant value of γcond

between 0.1 and 0.2 reproduces the observed droplet size variability for the entire dataset.

While it is known that droplet formation is less sensitive to changes in γcond in the range

of 0.1-1 versus lower values (Nenes et al., 2002), the exact value of γcond, even for pure

water droplets, remains uncertain with reported values in the range of 0.04 to 1 (Davis,

2006; Li et al., 2001; Shaw and Lamb, 1999; Mozurkewich, 1986). The most realistic value

is probably between 0.06 and 0.3 (Fountoukis et al., 2007; Li et al., 2001; Shaw and Lamb,

1999). As the inferred coefficients in this study are similar to the reference values for

pure water, this suggests that the fresh SOA generated near the DWH site do not promote
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kinetic delays upon condensation on ambient CCN. Given the relatively low hygroscop-

icity and hydrocarbon-like nature of the organic species (O:C ratios ∼ 0.4-0.5 around the

plume), this is a somewhat unexpected result. Previous work has shown that hydrophobic

organic compounds may retard water uptake through slow dissolution, which reduces the

amount of solute in the droplet and shifts the water vapor-liquid equilibrium more towards

the gas-phase than if all of the solute had immediately dissolved (Asa-Awuku and Nenes,

2007). Alternatively, organics may form compressed films on the droplet surface, which

increases the condensational mass transfer resistance (Rubel and Gentry, 1984). A num-

ber of past studies have found distinctly slower activation kinetics for smog-chamber SOA

resulting from the photo-oxidation of β-caryophyllene (Asa-Awuku et al., 2008), aerosol

above the Pacific marine boundary layer (Ruehl et al., 2009), biogenic aerosol in rural

Canada (Shantz et al., 2010), and both urban and rural aerosol at ground-based locations

around the United States (Ruehl et al., 2008). Lance et al. (2009) examined airborne mea-

surements of CCN in Houston, TX, during the 2006 GoMACCS campaign and found no

evidence for slow activation kinetics (Lance et al., 2009), contrary to Ruehl et al. (2009)

and Asa-Awuku et al. (2011), who did observe delayed CCN activation from concurrent

ground-based and airborne platforms. Since some of these studies were carried out with

size-selected aerosol (i.e., a small fraction of the overall CCN concentration was sampled

at a time), supersaturation depletion effects may not have caused the apparent kinetic de-

lays. A potential difference may be the phase state of the aerosol (e.g., glassy/amorphous

versus partially-deliquesced) and its impact on water uptake kinetics. Given that most ki-

netic delays were reported for dry aerosol may lend some support to this hypothesis. A

previously-deliquesced aerosol state is consistent with the current results as even a small

amount of residual water could inhibit glassy transition and promote rapid activation ki-

netics. If true, this suggests that condensation of even the most hydrophobic SOA onto

existing inorganic CCN may not impact activation kinetics. This finding is relevant for

the growth of newly-formed particles in the atmosphere, which have been hypothesized to
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form as H2SO4 seeds and grow to CCN-relevant sizes primarily through the condensation

of SOA from IVOCs and VOCs (Kulmala and Kerminen, 2008; Smith et al., 2008; Wang

et al., 2010b).

7.4 Conclusions

CCN and hygroscopicity measurements of the SOA formed from Deepwater Horizon oil

spill emissions are presented and parameterized in terms of aerosol composition. Parti-

cles composed almost entirely of organic species were observed to be relatively unoxidized

(O:C ratio ∼ 0.4-0.5), and exhibited hygroscopicities, κ, of 0.05-0.1. Hygroscopicity in-

creased with decreasing organic fraction at a rate less than that suggested by simple mixing

rules, but which was consistent with size-dependent composition across the Aitken and

accumulation size modes. The validity of the derived κ is supported by the overall good

correlation between supersaturated, CCN-derived κCCN and subsaturated, CRD-derived

κCRD. The derived κCRD was approximately 50% less than κCCN , indicating that while

the SOA are CCN-active, subsaturated hygroscopic growth is more limited. Finally, fast

measurements of CCN spectra resulting from the first airborne deployment of Scanning

Flow CCN Analysis (SFCA) indicate that most aerosol act as CCN above approximately

0.30%±0.05% supersaturation, with a higher and broader range of critical supersaturations

observed for the most organic-rich aerosol (0.4%±0.1% supersaturation).

A coupled instrument and droplet growth model was used to invert the droplet distri-

bution measured by the CCNC, and activation kinetics were parameterized in terms of an

effective water uptake coefficient, γcond. Regression analysis suggests that the best corre-

lation between predicted and measured droplet sizes (R2 ∼ 0.51) occurs for γcond=0.1-0.2

when CCN-concentration-dependent water vapor depletion effects are considered. When

water vapor depletion effects are neglected, the correlation worsens significantly, which

may lead to underestimation of γcond. Based on the inferred γcond, we conclude that the

large presence of organics in the CCN encountered in the humid, marine boundary layer
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near the Gulf of Mexico do not retard droplet activation kinetics.

7.5 Supporting Information
7.5.1 Flight Overview Maps
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Figure 7.5: Complete aircraft trajectories for the survey flights on 8 June (top) and 10
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7.5.2 CRD-Derived Hygroscopicity

The data from the cavity ringdown (CRD) spectrometer were used to infer the hygroscop-

icity parameter, κ, as follows:

1. The extinction-derived humidification factor, γext, was used to calculate the change

in extinction between a dry particle at 10%RH and a humidified particle at 85%RH,

f(85%RH), as

f(85%RH) =
σ85%RH

σ10%RH

=

[
1− 0.85

1− 0.10

]γext
(7.4)

where σRH is the is the aerosol extinction at relative humidity, RH.

2. Mie theory equations (Bohren and Huffmann, 1983) were iteratively solved to find

the hygroscopic growth factor, g(85%RH) = Dp(85%RH)

Dp(10%RH)
, consistent with the ob-

served f(85%RH), where Dp(RH) is the RH-dependent particle diameter. The Mie

theory calculations were performed at the CRD laser wavelength of 532 nm and used

the fine particle size distribution (Dp < 2 µm) with a prescribed complex refractive

index (RI) of 1.45 - 0i that is characteristic of alkane and aromatic species (Riazi and

Al-Sahhaf , 1995). At each iteration step, the humidified particle refractive index is

calculated by volume-weighting the dry particle refractive index with that of water

(1.33 - 0i).

3. The hygroscopicity parameter, κ, is then calculated as (Petters and Kreidenweis,

2007)

κ =
(
g3 − 1

)(exp( A
Dpg

)

RH
100

− 1

)
(7.5)

where A = (4Mwσw)/(RTρw), R is the ideal gas constant, T is the absolute temper-

ature of the measurement, and σw, Mw and ρw are the surface tension, molar mass,

and density of water, respectively.
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Table 7.1: Pure component densities and refractive indices used to compute κCRD.

Density Refractive
Component (kg m−3) Index

Ammonium Sulfate 1769a 1.53−0.00ia,b

Ammonium Nitrate 1725a 1.61−0.00ia

Organic Carbon 1400c 1.45−0.00id

Elemental Carbon 1800e 1.95−0.79ie

Water 996a 1.33−0.00ia
aGreen and Perry, (Green and Perry, 2008)
bToon et al., (Toon et al., 1976)
cAlfarra et al., (Alfarra et al., 2006)
dRiazi and Al-Sahhaf, (Riazi and Al-Sahhaf , 1995)
eBond and Bergstrom, (Bond and Bergstrom, 2006)

Implicit in this method is the assumption that the aerosol are internally-mixed and can

be described well by a single, complex refractive index. To test the sensitivity of the de-

rived κCRD to the RI assumption, the measured aerosol composition from a compact time of

flight aerosol mass spectrometer (C-ToF-AMS) and a single particle soot photometer (SP2)

was used to compute an RI based on a volume-weighted average of the pure component re-

fractive indices (Table 7.1). As shown in Figure 7.6a, the derived κCRD is insensitive to the

assumed RI over the range of observed values (Figure 7.6b,c) with the uncertainty in κCRD

from this assumption estimated to be less than 0.02, absolute. While elemental carbon has

the potential to significantly impact aerosol extinction because of its large RI, the low mass

loadings observed during the the 8 June flight do not appear to have a large influence (Fig-

ure 7.6b,c). The observed insensitivity of κCRD to the refractive index assumption may not

be true for some heterogeneous environments with large local sources of elemental carbon,

however, the finding is consistent with at least one previous study (Ervens et al., 2007).

Figure 7.7 shows a direct comparison between κCCN and κCRD for the June 8 flight,

with the corresponding timeseries shown in Figure 7.4 of the main article. Overall, the
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CRD-derived hygroscopicity is approximately two-fold lower than the CCN-derived hy-

grosopicity, with κCCN ranging from 0.05-0.6, while κCRD varies from 0.01-0.2. A linear

fit between the two quantitities gives a slope of 0.47 and a coefficient of determination,

R2 = 0.75. An interesting feature of Figure 7.7 is that a clear minimum value of κCCN is

apparent between 0.05-0.10, despite wider variation in κCRD. Similarly, κCRD reaches a

maximum value of 0.15-0.20, despite much wider variation in κCCN . These asymptotic

limits coincide with high and low organic volume fractions, and seem to imply that organic

species reduce subsaturated hygroscopic growth more so than CCN activation.

7.5.3 Size-Dependent CCN Composition

Figure 7.8 shows the size-resolved organic aerosol volume fraction (εSR,org) plotted versus

the bulk (i.e., size-averaged) organic volume fraction (εorg). The Aitken mode aerosol con-

tains mostly organics (εSR,org∼0.85-1), but its influence is eclipsed by the more-massive

accumulation mode aerosol resulting in lower values of bulk εorg. A 100-nm cutsize was

used to differentiate the two modes, and the average composition in each mode was used to

determine the modal κ = εSR,orgκorg + εSR,inorgκinorg, assuming κorg=0.05 and κinorg=0.6.

As shown the lower part of Figure 7.8, the accumulation mode κ is roughly two-fold greater

than the Aitken mode κ. The modal κ were linearly regressed against the bulk εorg, and

were combined in an aerosol number-weighted average to find the overall aerosol hygro-

scopicity, shown as filled circles in Figure 7.8. Using a number-weighted average versus

a volume-weighted average is analogous to assuming the two modes are externally mixed

rather than internally mixed.
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7.5.4 Coupled CCNC and Droplet Growth Model

A detailed description of the coupled CCNC instrument and droplet growth model is given

by Raatikainen et al. (A Coupled Instrument and Droplet Growth Model for Inferring

CCN Activation Kinetics From the DMT CCNC, manuscript in preparation, 2011), so only

a brief description is included here. A simplified form of the coupled model was em-

ployed here, which assumes parabolic velocity fields while solving the water vapor and

energy conservation equations. Neglecting explicit calculation of the velocity fields has a

negligible effect on the simulation results, but substantially decreases the necessary com-

putational time (Raatikainen et al., in preparation). The model has been successfully ap-

plied in the past to simulate the instrument behavior for both steady-state and transient

operation (Moore and Nenes, 2009; Rose et al., 2008; Lance et al., 2006). Recent work

by Lathem and Nenes (2011) has shown that moderately high CCN concentrations in the

growth chamber can slightly decrease the centerline supersaturation profile. This effect ap-

pears to be unimportant for measurements of CCN concentrations below 104 cm−3 (Lathem

and Nenes, 2011), which is the typical mode of operation. However, supersaturation deple-

tion can have a detectable effect on the OPC-measured droplet size distribution when the

CCN concentrations exceed several hundred per cm3. The model can be used to simulate

the CCN droplet size distributions, both with and without such supersaturation depletion

effects as a function of the effective water uptake coefficient, γcond. The optimal value of

γcond is then found by iteratively matching the simulated and measured droplet size distri-

butions.

As described in detail by Raatikainen et al., in preparation, a number of uncertain-

ties exist that challenge the simulations. For example, aerosol mixing state and size-

dependent composition give rise to a polydisperse hygroscopicity distribution, which is

poorly-constrained. Additionally, there are various instrument non-idealities (e.g., column

thermal resistance, possible OPC sizing biases, incomplete wetting of the column wall and

overall mass transfer coefficient changes, non-linearity of the wall temperature profile). To
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quantify the impact of these effects, CCN droplet distributions for ammonium sulfate cal-

ibration aerosol were compared to those predicted by the model, and it was found that the

model simulations overpredict the measured mean droplet size by approximately 2.1 µm,

which agrees well with the correction bias of 2.3 µm uncovered for γcond=0.2 (Table 7.2)

and applied to the June 8th simulation timeseries in Figure 7.4.

Figure 7.9 shows 1:1 comparison plots for the uncorrected simulated mean droplet size

(D̄p,sim) versus the OPC measured mean droplet size (D̄p), and the linear regression co-

efficients are listed in Table 7.2. It can be seen that forcing the regression slope to unity

has a negligible effect on the coefficient of determination for all simulations except those

where supersaturation depletion effects are neglected. Simulations assuming γcond=0.05-1

show the best correlation with observations (R2∼0.51), and the overprediction bias for the

γcond=0.1-0.2 simulations is most similar to the 2.1 µm bias identified from calibrations.

The correlation worsens significantly for γcond <0.05 or when depletion effects are ne-

glected. Thus, the regression analysis indicates that CCN near the Deepwater Horizon oil

spill do not exhibit slow activation kinetics and derived values of γcond are consistent with

those for ammonium sulfate calibration aerosol and previously reported values for pure

water droplets (Li et al., 2001; Shaw and Lamb, 1999).

161



6.2

6.0

5.8

5.6

5.4

5.2

5.0

3.83.63.43.23.02.82.6

6.4

6.2

6.0

5.8

5.6

5.4

5.2

3.83.63.43.23.02.82.6

With Depletion Effects Without Depletion Effects

6.0

5.8

5.6

5.4

5.2

5.0

4.8

3.83.63.43.23.02.82.6

6.2

6.0

5.8

5.6

5.4

5.2

5.0

3.83.63.43.23.02.82.6

5.8

5.6

5.4

5.2

5.0

4.8

4.6

3.83.63.43.23.02.82.6

6.0

5.8

5.6

5.4

5.2

5.0

4.8

3.83.63.43.23.02.82.6

5.6

5.4

5.2

5.0

4.8

4.6

4.4

3.83.63.43.23.02.82.6

5.6

5.4

5.2

5.0

4.8

4.6

4.4

3.83.63.43.23.02.82.6

3.6

3.4

3.2

3.0

2.8

2.6

2.4

3.83.63.43.23.02.82.6

3.8

3.6

3.4

3.2

3.0

2.8

2.6

2.4

3.83.63.43.23.02.82.6

γ    = 1.00cond

γ    = 0.20cond

γ    = 0.10cond

γ    = 0.05cond

γ    = 0.01cond

γ    = 1.00cond

γ    = 0.20cond

γ    = 0.10cond

γ    = 0.05cond

γ    = 0.01cond

S
im

u
la

te
d
 M

e
a
n
 D

ro
p
le

t 
S

iz
e
 (

µ
m

)

Measured Mean Droplet Size (µm)

Figure 7.9: Comparison plots of the simulated CCN droplet sizes obtained from the instru-
ment model versus the measured mean droplet sizes during the 8 June flight. Solid traces
are a 1-parameter linear fit (constant bias), and dashed traces are a 2-parameter linear fit
(slope and bias). Regression coefficients are listed in Table 7.2.
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Table 7.2: Linear regression coefficients between modeled and observed mean droplet
sizes for model simulations with varying water uptake coefficients and with supersaturation
depletion effects considered or turned off. Both 1-parameter (D̄p,sim = D̄p + Bias) and 2-
parameter (D̄p,sim = Slope× D̄p + Bias) are listed.

Model Simulation 1-Parameter Fit 2-Parameter Fit
γcond Depletion Effects? Bias R2 Slope Bias R2

1.00 Yes 2.46 0.49 0.76 3.20 0.53
0.20 Yes 2.29 0.50 0.76 3.03 0.53
0.10 Yes 2.09 0.49 0.76 2.83 0.54
0.05 Yes 1.70 0.49 0.76 2.45 0.53
0.04 Yes 1.53 0.47 0.76 2.28 0.52
0.03 Yes 1.25 0.44 0.75 2.03 0.50
0.02 Yes 0.78 0.39 0.73 1.63 0.46
0.01 Yes -0.21 0.26 0.65 0.88 0.37
0.008 Yes -0.53 0.22 0.62 0.67 0.35
0.005 Yes -1.11 0.04 0.52 0.41 0.29

1.00 No 2.69 0.15 0.56 4.06 0.36
0.20 No 2.50 0.18 0.58 3.82 0.36
0.10 No 2.27 0.20 0.60 3.53 0.36
0.05 No 1.85 0.24 0.63 3.02 0.36
0.04 No 1.66 0.25 0.64 2.79 0.36
0.03 No 1.36 0.25 0.65 2.46 0.35
0.02 No 0.85 0.26 0.66 1.91 0.35
0.01 No -0.19 0.22 0.63 0.97 0.34
0.008 No -0.51 0.19 0.61 0.72 0.33
0.005 No -1.10 0.04 0.52 0.42 0.29
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CHAPTER VIII

HYGROSCOPICITY, MIXING STATE, AND VOLATILITY OF

ATLANTA CCN

The diurnal variation of CCN-derived hygroscopicity and mixing state are presented for

measurements conducted in Atlanta during March, 2009. The CCN-active fraction de-

creases by 20-50% during the morning rush hour, while aerosol hygroscopicity and a met-

ric for chemical homogeneity both increase during the day and peak in the early afternoon,

indicative of photochemical oxidative aging. Measurements of aerosol volatility and re-

sulting changes in CCN activity from treatment with a thermal-denuder are also presented

for typical Aitken-mode, background aerosol and for aerosol resulting from a new particle

formation (NPF) event. It was found that 40-nm particles formed from freshly-nucleated

particles are highly-hygroscopic and of limited volatility, consistent with neutralized and

unneutralized sulfate species. Organics likely comprise a larger fraction of the background

aerosol, which is reflected in the larger amount of volume evaporated in the thermal denuder

and the overall lower derived values of the CCN hygroscopicity parameter, κ of 0.3-0.45

versus 0.55-0.7 during the NPF event.

8.1 Introduction

The Atlanta metropolitan area is characterized by a large concentration of anthropogenic

point and mobile emissions sources juxtaposed with a strong, regional biogenic emissions

This chapter to be submitted for publication as: Moore, R. H. and A. Nenes, Diurnal Variability in the
CCN Activity and Mixing State of Atlanta Aerosol During Spring, 2009.

and Moore, R.H, J. Scheckman, B. Williams, J. Jiang, P. McMurry, J. Zhao, J. Smith, and A. Nenes,
Volatility and Hygroscopicity of Atlanta CCN During New Particle Formation Events in Summer, 2009
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background from surrounding forest and pasture land. This environment has important im-

plications for the regulation of ambient air quality, since the abundant sources of natural

volatile organic carbon (VOC) species make the city a NOx-limited environment for con-

trolling ozone, whose concentrations frequently exceed values set by the National Ambient

Air Quality Standards (NAAQS). Fine mode particle concentrations (diameters < 2.5 µm)

are also often out of compliance with the NAAQS. A number of past studies conducted in

the Atlanta area have shown the aerosol to be composed of roughly 50% organic species

and 50% inorganic sulfate species (Lim and Turpin, 2002), and 50-60% of the organic

carbon mass is water soluble (WSOC) (Sullivan and Weber, 2006). The majority of the

Atlanta WSOC has been linked to biogenic VOCs (Weber et al., 2007), which may parti-

tion to the particle phase via the tradiational photochemical oxidation pathways or through

a two-step aqueous dissolution and heterogeneous reaction chemistry pathway during peri-

ods of high ambient relative humidity (Hennigan et al., 2009). Despite this biogenic origin,

the secondary organic aerosol (SOA) in Atlanta has also been observed to vary diurnally

and correlate with anthropogenic emissions sources (Hennigan et al., 2009; Weber et al.,

2007), reflecting the role of daytime photochemistry in both ozone production and SOA

formation.

Biogenic SOA accounts for an important fraction of atmospheric aerosol worldwide (Hal-

lquist et al., 2009; Goldstein and Galbally, 2007; Kanakidou et al., 2005), and elucidating

the chemical production mechanisms and properties of SOA has been an important area

of active research in recent years. Of particular interest is the determination of the hy-

groscopic properties of SOA, because of the ability of atmospheric aerosol to act as cloud

condensation nuclei (CCN) and form cloud droplets, which, in turn, influence the Earth’s

climate. A number of recent laboratory and field measurements of SOA report values of the

Petters and Kreidenweis (2007) hygroscopicity parameter, κ, of between 0.1 and 0.2 (e.g.,

Engelhart et al., 2011; Dusek et al., 2010; Gunthe et al., 2009, and others), and a mean
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κ of ∼0.3±(0.1-0.2) has been suggested for continental aerosol (Pringle et al., 2010; An-

dreae and Rosenfeld, 2008), which incorporates the contributions of the relatively lower-κ

organics and higher-κ inorganic species to the overall aerosol hygroscopicity.

While a constant κ value for continental and marine environments may be suitable

for large-scale modeling of aerosol-cloud interactions, it likely does not reflect the vari-

ability present at smaller spatial and temporal scales relevant for regional air quality and

climate. For example, Ervens et al. (2010) evaluated the error associated with using simpli-

fied compositional assumptions to predict CCN concentrations close to and far from emis-

sions sources. They found that CCN were overpredicted by almost 2-6-fold near emissions

sources, but that agreement between predictions and observations was much better (within

20-60%) farther from these sources.

In this study, we characterize the diurnal variability of the CCN properties of Atlanta

aerosol during a characteristic week in Spring, 2009. The city of Atlanta provides the ideal

environment for studying the combined influence of regional biogenic and local anthro-

pogenic influences on aerosol hygroscopic properties. In addition, we present results of the

CCN activity of ambient aerosol during a particle nucleation and growth event in Summer,

2009. These conditions allow us to quantify the extent to which aerosol hygroscopicity

agrees with or varies from the proposed mean κ values for continental aerosol.

8.2 Observational Data Set

Measurements were conducted from March-July, 2009, on the rooftop measurement plat-

form of the Ford Environmental Science and Technology building on the Georgia Institute

of Technology campus in midtown Atlanta (33◦46’45”N, 84◦23’45”W, ∼30-40 m AGL).

For this study, we focus on the week of 8 March – 15 March. Relative humidity varied diur-

nally between 50-80% and the ambient temperature was 10-25◦C during this week, except

for a rain event on 14 March. NOAA HYSPLIT backtrajectories for the sample period at

the measurement location and 200 m AGL are shown in Figure 8.1, and two distinct periods
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are visible: a more southwesterly flow during the beginning of week and a northeasterly

during the end of the week when the temperature decreased. The vertical component of the

trajectories shows that the air sampled is representative of the surface, which is ideal for

evaluating the impact of local emissions sources.

CCN measurements were also conducted during July-August, 2009 as part of the Nucle-

ation and Cloud Condensation Nuclei (NCCN) experiment at the Jefferson Street monitor-

ing site, approximately 3-4 miles west of the Georgia Tech campus (33◦46’34”N, 84◦24’58”W),

which employed a more comprehensive suite of aerosol and gas phase instrumentation than

during the Spring period. The NCCN measurements will be the subject of future work, and

only a special experiment related to the volatility of CCN-active aerosol is discussed here.

8.2.1 CCN and Aerosol Measurements

CCN concentration measurements were obtained using a Droplet Measurement Technolo-

gies stream-wise, thermal-gradient cloud condensation nuclei counter (CCNC Roberts and

Nenes, 2005; Lance et al., 2006), which was located downstream of a differential mobility

analyzer (DMA) for size-resolved measurements. The flow rate in the CCNC was dynam-

ically scanned over a 60-second period using the Scanning Flow CCN Analysis (SFCA)

technique of Moore and Nenes (2009). To keep the sample flow rate through the DMA

constant, the CCNC inlet flow rate was controlled using a flow orifice and active control

system that maintained a constant CCNC instrument pressure of 600 hPa. The streamwise

temperature gradient in the CCNC was kept constant at 14K, and the functional depen-

dence of the instrument supersaturation on flow rate was calibrated using size-classified

ammonium sulfate aerosol and Köhler theory (Köhler, 1936; Rose et al., 2008; Moore and

Nenes, 2009). The supersaturation absolute uncertainty is estimated to be ±0.04%.

The monodisperse output from the DMA was split between the CCNC and a condensa-

tion particle counter (CPC, TSI 3010) to measure the total particle concentration in a setup

similar to the Scanning Mobility CCN Analysis (SMCA) technique of Moore et al. (2010).
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Figure 8.1: 48-hour, NOAA HYSPLIT backtrajectories for the 8 March - 15 March period
colored by red for the first half of the week and blue for the second half. Boxes denote the
sampling location in midtown Atlanta. Trajectories were computed every eight hours using
EDAS40 archived meteorological fields. Data obtained from the online HYSPLIT model
at http://www.arl.noaa.gov/ready.php (Draxler and Rolph, 2011; Rolph, 2011).
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However, instead of dynamically scanning the DMA size range over a short period of time,

the DMA size was stepped through 20, 40, 60, 80, and 100 nm diameters over 6-minute

intervals. This enables measurement of a complete set of size-resolved CCN spectra each

half hour.

During the Summer NCCN measurement period, the CCNC was operated in a simi-

lar manner to obtain size-resolved CCN spectra, but the flow orifice was replaced with a

custom-built laminar flow control system to achieve the same constant flow through the

DMA while operating the CCNC at ambient pressure. Two special experiments were

conducted where a thermal-denuder was placed directly downstream of a DMA (set to

a constant 40 nm diameter size) and the outflow from the thermal-denuder was then sent

to the scanning CCNC to obtain CCN spectra and to a scanning mobility particle sizer

(SMPS) to obtain the size distribution. The thermal-denuder was operated at five differ-

ent elevated temperatures (50-150◦C) to evaporate any semi-volatile species present in the

aerosol, which adsorb on the denuder walls. The less-volatile aerosol cores are then mea-

sured by the CCNC and SMPS.

8.2.2 Analysis

The ability of an aerosol to act as a CCN depends on its size, chemical composition, and the

ambient water vapor supersaturation. Consequently, size-resolved CCN spectra (i.e., CCN

concentrations over a range of supersaturations) allow inferences to be drawn about the

composition and mixing state of the aerosol population. A typical CCN spectra is shown

in Figure 8.2 for 60 nm ambient particles measured on 12 March. Following Lance (2007)

and Cerully et al. (2011), we fit the CCN spectrum to a sigmoidal function of the form

Ra(s) ≡
NCCN(s)

NCN

=
E

1 + (s/s∗)C
(8.1)

where Ra is the activated ratio, NCCN is the CCN number concentration, NCN is the fine

particle number concentration, s is the instrument supersaturation, and E, s∗, and C are
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Figure 8.2: Exemplary CCN activation curve for ambient 60-nm particles in Atlanta, GA.
CCN and CN concentrations are plotted versus supersaturation on the left axis, while the
corresponding activated ratio is shown on the right axis. The relationship between cali-
brated instrument supersaturation and instantaneous instrument flow rate is shown on the
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empirical fit parameters that describe the maximum CCN-active fraction, the characteristic

supersaturation corresponding to the inflection point of the sigmoid, and the slope of the

sigmoid, respectively.

Treating s∗ as the characteristic critical supersaturation for the aerosol of constant di-

ameter, dp, allows direct computation of the aerosol hygroscopicity, κ (Petters and Krei-

denweis, 2007), using Köhler theory

κ =
4A3

27s2d3
p

(8.2)

where A = (4Mwσ)/(RTρw), R is the universal gas constant, T is the absolute tem-

perature, and Mw, ρw, and σ are the molar mass, density, and surface tension of water,
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respectively.

8.3 Results and Discussion
8.3.1 Diurnal Variation of CCN Hygroscopicity and Mixing State

The timeseries of CCN concentrations measured during the 8 March – 15 March, 2009

are shown in Figure 8.3, where the points are colored by instrument supersaturation. The

highest CCN concentrations are observed in the 80-100 nm size range with few particles

detected at the smallest diameter even at 1.5% supersaturation, which is reflective of the

typical Atlanta aerosol size distribution in the Aitken (i.e., 40-80 nm) and accumulation

(i.e., 80-300 nm) size modes. Occasional bursts of small particles are detected even at low

supersaturations, which could be from freshly-nucleated particles, although there does not

appear to be a sustained growth of the particles into the larger size modes. The fact that 20-

nm particles can act as CCN at supersaturations less than 0.5% indicates that these aerosol

are highly hygroscopic and may consist of unneutralized sulfate species. The maximum

number concentrations in the 100-nm size bin varies from 50 to 150 cm−3 throughout

the week, although there does not appear to be a systematic diurnal variation of CCN

concentrations.

A more pronounced diurnal trend is apparent, however, for the 60-nm, fitted CCN spec-

tra parameters shown in Figure 8.4. Approximately 80% of particles are CCN active, al-

though a substantial decrease in the maximum activated ratio (E) is observed during the

morning rush hour beginning around 06:00 and lasting until 12:00 local time. This is con-

sistent with the emission of fresh, ultrafine combusion particles from traffic that are too

small and/or non-hygroscopic to act as CCN. An interesting feature of the time series is

the absence of a similar decrease in E during the evening rush hour. This can be explained

by daytime diabatic surface heating that drives buoyancy and increases the height of the

well-mixed, planetary boundary layer. This larger mixed layer rapidly dilutes the after-

noon/evening emissions more so than during the morning commute when the mixed layer

171



1
5

0

1
0

0

5
0 0 0

0
:0

0

3
/8

/0
9

0
0

:0
0

3
/9

/0
9

0
0

:0
0

3
/1

0
/0

9

0
0

:0
0

3
/1

1
/0

9

0
0

:0
0

3
/1

2
/0

9

0
0

:0
0

3
/1

3
/0

9

0
0
:0

0

3
/1

4
/0

9

0
0

:0
0

3
/1

5
/0

9

L
o

c
a

l 
S

ta
n

d
a

rd
 T

im
e

1
5

0

1
0

0

5
0 0

1
5

0

1
0

0

5
0 0

CCN Number Concentration (cm   )
-3

1
5

0

1
0

0

5
0 0

1
5

0

1
0

0

5
0 0

1
.5

1
.0

0
.5

0
.0

S
u
p
e
rs

a
tu

ra
ti
o

n
 (

%
)

2
0

 n
m

4
0
 n

m

6
0
 n

m

8
0

 n
m

1
0

0
 n

m

Fi
gu

re
8.

3:
Ti

m
es

er
ie

s
of

si
ze

-r
es

ol
ve

d,
am

bi
en

t
C

C
N

co
nc

en
tr

at
io

ns
co

lo
re

d
by

in
st

ru
m

en
t

su
pe

rs
at

ur
at

io
n.

D
at

a
sh

ow
n

ar
e

fo
r

8
M

ar
ch

–
15

M
ar

ch
,2

00
9.

172



height is low. A similar effect was observed by Gentner et al. (2009) for whole gasoline

source contributions to VOC emissions in Riverside, CA.

The diurnal variation of s∗ also shows a slight increase from ∼0.6% to ∼0.8% at dawn

during the morning rush hour, but then decreases to a minimum of ∼0.35% as the day

progresses. These values of s∗ are converted to κ using Equation 8.2, and the diurnal

trend of κ is also shown in Figure 8.4. A nighttime, background κ is on the order of

0.2±0.1, which decreases to 0.1 at dawn before increasing to ∼0.4 near midday. The

aerosol κ peaks around 13:00 local time and gradually decreases to a nighttime minimum

around 21:00. Without aerosol composition measurements, it is not possible to attribute

this change in κ to the influence of organic or inorganic species; although, both likely

play a role. For example, the increased mixed layer height in midday can entrain aged, free

tropospheric aerosols and power plant sulfate plumes aloft, which are likely to be inorganic-

rich. Meanwhile photochemical oxidation of organic species would be expected to increase

the organic hygroscopicity as the degree of oxygenation increases (Duplissy et al., 2011;

Chang et al., 2010; Jimenez et al., 2009).

Finally, the exponential constant (C) in Equation 8.1 corresponds to the slope of the

sigmoidal fit function, and is therefore, a metric for the degree of aerosol chemical hetero-

geneity. Small values of C produce shallow CCN spectra slopes, indicating a more hetero-

geneous aerosol population that act as CCN across a range of supersaturations. Meanwhile,

larger values of C produce steep slopes where most particles act as CCN above a narrow

range of supersaturations. The interpretation of the diurnal variation ofC seen in Figure 8.4

is less clear than the other CCN spectra parameters. A decrease in the aerosol homogeneity

is seen between 06:00 and 09:00 (C decreases), while the midday trend mirrors that of κ

with increasing homogeneity until a peak around 13:00 before decreasing to a minimum

at 21:00. The clarity of the trend is interrupted by the sharp drop in C between 09:00

and 12:00; however, the idea that photochemical aging and physical coagulation processes
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would increase both the aerosol hygroscopicity and homogeneity is consistent with the tran-

sition from an external mixture of fresh and aged aerosol toward a more internally-mixed,

aged aerosol population.

The diurnal trends shown in Figure 8.4 for 60 nm particles were also determined for 40,

80, and 100 nm particle sizes and are shown in Figure 8.5. Low particle counting statistics

prevented fitting many of the 20 nm spectra with good confidence. It can be observed

that all sizes exhibit the same decrease in E during the morning rush hour; although, the

decrease is more pronounced at the smaller sizes. This is consistent with hypothesis that

mobile traffic sources introduce less-hygroscopic ultrafine particles that are poor CCN. A

size dependence to the κ diurnal variation is also apparent, with larger particles having

slightly larger hygroscopicities than the smaller particle sizes. This suggests that Atlanta

aerosol exhibit a strong size-dependence in both aerosol mixing state (E ∼ 0.4-0.8 from

06:00-12:00 and∼ 0.65-0.9 during all other times) and in aerosol hygroscopicity (κ∼ 0.2-

0.6 throughout the day). This is consistent with the results of a recent CCN closure study in

Atlanta (Padró et al., in review) and in other urban studies (e.g., Wang et al., 2010a; Ervens

et al., 2010; Cubison et al., 2008).

8.3.2 Volatility and CCN Activity of Newly-Formed Particles

Another source of variability in urban and non-urban aerosol emissions is the nucleation

of new particles and their subsequent growth to CCN-relevant sizes. It is currently thought

that while new particle formation (NPF) proceeds via condensation of gas-phase sulfu-

ric acid, the growth phase must be dominated by the condensation of secondary organic

species in order to reconcile mass-based field observations with theory (Laaksonen et al.,

2008; Kulmala et al., 2004). This implies size-dependent aerosol composition with varying

amounts of organic species, yet the impact of these organics on the aerosol hygroscopic

properties remains poorly characterized. In this section, we use a thermal-denuder to se-

lectively strip away the semi-volatile aerosol components (e.g., less-oxygenated organics)
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leaving only the less-volatile components (e.g., sulfate and more-oxygenated organics).

Two experiments with the thermal-denuder were conducted on 7 August and 27 August

2009, and the measured particle size distributions during both days are shown in Figure 8.6.

A burst of small particles is apparent at around 11:20 on 7 August and these particles serve

as condensation nuclei for non-volatile and semi-volatile vapors and grow to larger sizes.

Meanwhile the experiment on 27 August was conducted during much lower atmospheric

particle loadings with diameters centered in the 10-40 nm size range. The DMA upstream

of the thermal-denuder in both experiments was set to select only 40±4 nm diameter par-

ticles (sheath:aerosol flow ratio of 10:1), and the size distribution and CCN spectra of the

denuded aerosol were measured downstream of the thermal-denuder. Figure 8.7 shows

lognormal fits to the size distribution data as a function of thermal-denuder temperature

for both days. It can be seen that the decrease in aerosol size associated with the NPF

aerosol on 7 August is much smaller than that seen for background aerosol on 27 August,

which suggests a greater and lessor contribution of less-volatile sulfate species on each

day, respectively. Additionally, the size distribution at 150◦C is broader for the background

aerosol than for the nucleated aerosol indicating a wider range of volatilities (i.e., some

particles are more volatile and some particles are less volatile).

The magnitude of the particle size decrease and the increase in the breadth of the size

distribution is shown in the left part of Figure 8.8. It can be seen that the decrease in parti-

cle diameter for the background aerosol is almost twice that of the aerosol during the NPF

event. Aerosol hygroscopicity was determined from the size-resolved CCN spectra using

Equations 8.1 and 8.2, and are shown as a function of thermal-denuder temperature in the

right portion of Figure 8.8. For both days, κ increases by about 0.1-0.2 over the studied

temperature range; although, the κ for 7 August was much higher than the κ on 27 August.

The former is more consistent with neutralized or unneutralized sulfate species, while the

latter is more consistent with a mixture of soluble organics and inorganics. This finding

indicates that newly-formed particles in Atlanta are able to grow to diameters ∼ 40 nm
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solely from the condensation of sulfate species and without appreciable organic fractions.

Aerosol composition measurements on 7 August with a thermal-desorption chemical ion-

ization mass spectrometer (TDCIMS) showed that sulfate salts of ammonium and dimethyl

ammonium comprised ∼60% of the total molar composition, consistent with the observed

CCN hygroscopicity. TDCIMS compositions were unavailable for the 27 August exper-

iment, but the aerosol composition is likely to be composed of 50% organics and 50%

inorganics based on past measurements (Lim and Turpin, 2002). This finding is inconsis-

tent with hygroscopicity measurements of nucleated aerosols in other parts of the world

showing a decrease in the aerosol hygroscopicity during NPF (e.g., Dusek et al., 2010),

which may suggest that the high SO2−
4 and NH+

4 concentrations in Atlanta make this area

anomalous with regard to the growth of newly formed particles as there is ample inorganic

material to grow the particles to larger sizes without a large contribution from semi-volatile

organic species.

8.4 Summary and Conclusions

Measurements of the diurnal variation of CCN activity, hygrosopicity, and mixing state are

presented for Atlanta aerosol. A distinct increase in the externally-mixed, non-CCN active

fraction is apparent during the morning rush hour, while both aerosol hygroscopicity and

and chemical homogeneity both decrease during this period before increasing throughout

the daytime. This is likely due to photochemical oxidation and coagulation processes that

move the aerosol population toward a more internally-mixed and more hygroscopic state.

While the mean κ was found to agree well with proposed estimates for continental aerosol

of 0.3±0.2, variation in κ between 0.15 and 0.6 throughout the day suggest that neglecting

this diurnal variation may result in substantial CCN prediction errors. This makes sense

given the large local emissions sources within the city, however, these the spatial extent

affected by these trends may be too small to have a significant impact on regional CCN

prediction errors.
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Additionally, we characterize the aerosol volatility and CCN hygroscopicity during new

particle formation events (NPF) and during background conditions. The results suggest

that NPF and subsequent growth in Atlanta is driven almost entirely by less-volatile sulfate

species, while organics comprise a more substantial aerosol fraction during background

conditions. Exposing the aerosol to high temperatures (∼150◦C) both decreases the particle

size by 8-20%, but also increases κ by 0.1-0.2. In the case of the background aerosol, the

resulting hygroscopicity is greater than previously reported for the most aged SOA species

∼ 0.3 (e.g., Engelhart et al., 2011; Asa-Awuku et al., 2010; Padró et al., 2010; Engelhart

et al., 2008), which implies that the aerosol is an internal mixture of both organic and

sulfate species.
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CHAPTER IX

ADJOINT SENSITIVITY OF GLOBAL AND REGIONAL CLOUD

DROPLET NUMBER TO CCN PREDICTION UNCERTAINTY

In this chapter, we use the Global Modeling Initiative (GMI) chemical transport model with

a cloud droplet parameterization adjoint to quantify the sensitivity of cloud droplet num-

ber concentration to uncertainties in predicting CCN concentrations. We use published

CCN closure prediction uncertainties for six different simplifying compositional and mix-

ing state assumptions as proxies for modeled CCN uncertainty arising from application of

those scenarios. It is found that cloud droplet number concentrations are fairly insensitive

to CCN-active aerosol number concentrations over the continents (∂Nd/∂NCCN ∼ 20%),

but the sensitivities approach 100% in pristine regions such as the Alaskan Arctic and re-

mote oceans. Since most of the anthropogenic indirect forcing is concentrated over the

continents, this work shows that the application of Köhler theory and attendant simplifying

assumptions in models is not a major source of uncertainty in predicting cloud droplet num-

ber or anthropogenic aerosol indirect forcing. However, it does highlight the sensitivity of

some remote regions to pollution brought into the region via longe-range transport or from

seasonal biogenic sources (e.g., phytoplankton as a source of dimethylsulfide in the south-

ern oceans). Since these transient processes are not captured well by current large-scale

models, the uncertainties in aerosol-cloud interactions during these events could be much

larger than those uncovered here. This motivates additional measurements in these pristine

regions, which have recieved little attention to date, in order to quantify the impact of and

uncertainty associated with transient processes in effecting changes in cloud properties.

This chapter to be submitted for publication as: Moore, R. H., V. A. Karydis, S. L. Capps, and A. Nenes,
Adjoint Sensitivity of Global and Regional Cloud Droplet Number to CCN Prediction Uncertainty.
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9.1 Introduction

The ability of atmospheric aerosols to act as cloud condensation nuclei (CCN) to form

clouds remains one of the largest sources of uncertainty in current global climate modeling

efforts (Solomon et al., 2007). This is because aerosols are chemically-complex and are

derived from a variety of primary emissions sources and from secondary gas-to-particle

conversion in the atmosphere. Given this complexity, there is a need for an extensive global

observational dataset that can be used to improve the representation of these processes in

models.

Measurements of CCN spectra (i.e., CCN concentrations over a range of water vapor su-

persaturations) have been made for many decades (e.g., Twomey, 1977a; Hudson, 1993, and

references therein), which have yielded CCN datasets at a few locations worldwide, particu-

larly in marine environments. While providing information on the spatiotemporal variation

of CCN concentrations and the total particle size distributions, many of these pioneering

studies lacked the detailed aerosol composition information needed to fully explain the

observed CCN variability. Recent improvements in instrument capabilities in the past sev-

eral years have greatly improved the state of the art for measuring the chemical composition

and CCN activity of aerosols. This includes the development of the the Particle-Into-Liquid

Sampler (PILS, Weber et al., 2001) for measuring water-soluble aerosol composition, the

Aerodyne Aerosol Mass Spectrometer (AMS, Jayne et al., 2000; Jimenez et al., 2003)

for measuring non-refractory aerosol composition, and the Droplet Measurement Tech-

nologies Continuous-Flow, Streamwise, Thermal-Gradient CCN Counter (CCNC, Roberts

and Nenes, 2005; Lance et al., 2006) for measuring CCN activation and droplet growth.

Together with traditional and newer techniques for measuring the aerosol size distribu-

tion (e.g., Wang and Flagan, 1989; Flagan, 2004; Cai et al., 2008; Olfert et al., 2008), these

robust and commercially-available instruments have enabled a multitude of field studies

that have comprehensively characterized the compositional and size dependence of ambi-

ent CCN. With this information, it is now possible to empirically evaluate our theoretical
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understanding of aerosol-cloud interactions using in situ field data.

CCN concentrations are almost exclusively predicted in models with Köhler theory

(Köhler, 1936), which has been shown to adequately capture the CCN activity of single-

and multi-component aerosol by a large number of laboratory studies (e.g., Cruz and Pan-

dis, 1997; Raymond and Pandis, 2002, 2003; Giebl et al., 2002; Padró et al., 2007). How-

ever, atmospheric aerosols are much more complex than those in the laboratory, so appli-

cation of Köhler theory-based models and parameterizations must necessarily make sim-

plifying assumptions regarding the aerosol mixing state and composition in order to reduce

their computational burden. To evaluate the uncertainty associated with these simplifying

assumptions, a number of “CCN closure” studies have been performed, where the aerosol

size distributions and chemical compositions measured in the field are used with the sim-

plifying assumption scenarios to predict CCN number concentrations (NCCN ), which are

then compared to concurrent CCN measurements with a CCNC. The deviation between the

measured and predicted concentrations is interpreted as the uncertainty introduced by that

set of simplifying assumptions.

While quantifying the uncertainty in our predictive understanding of CCN concentra-

tions is important, it represents only one link in our understanding of the aerosol-cloud

indirect effects on climate. The second link is the combination of CCN concentrations with

cloud dynamics (e.g., ambient liquid water content, updraft velocity, and droplet conden-

sational growth rates) to determine the overall cloud droplet concentration (Nd), which, in

turn, determines the cloud albedo (A) and radiative properties. A few studies have com-

bined ambient measurements of Nd with cloud parcel model simulations using measured

NCCN and dynamical parameters to perform “cloud droplet closure” (e.g., Hallberg et al.,

1997; Chuang et al., 2000b; Snider and Brenguier, 2000; Snider et al., 2003; Conant et al.,

2004; Meskhidze et al., 2005; Fountoukis et al., 2007). The agreement between predictions

and measurements has generally been quite good despite large observed aerosol variability

in some studies, with average Nd predicted-to-measured ratios on the order of 0.71-1.2 and
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some larger ratios reported by Hallberg et al. (1997).

In addition to these field studies, model simulations are an important tool for examin-

ing the sensitivity of Nd to changes in CCN and other parameters by selectively turning

on and off certain effects. For example, Lance et al. (2004) used a large number of 1-

D parcel model simulations to look at the competing influences of aerosol chemistry and

cloud updraft velocity in determining Nd under a wide variety of conditions. They found

that chemical effects can account for 28-100% of the variability in Nd for both marine

and continental environments. Rissman et al. (2004) extended the droplet parameterization

of Abdul-Razzak et al. (1998) to include the effects of surfactants and derived the analytical

sensitivities ofNd with respect to the parameterization inputs, and reached a similar conclu-

sion that Nd can be up to 1.5-times as sensitive to aerosol composition and surface tension

effects as it is to cloud dynamical effects under certain atmospherically-relevant conditions.

Sotiropoulou et al. (2006) used a droplet parameterization to propagate the CCN closure

uncertainties observed by Medina et al. (2007) during the ICARTT campaign to uncertain-

ties in Nd. Using a campaign-average, prescribed CCN spectrum and size distribution in

the parameterization, they found the uncertainty of Nd to be 50% of that for NCCN over

a range of conditions. Ervens et al. (2010) also modeled the sensitivity of Nd uncertainty

to NCCN uncertainty and found that a 100% overprediction of NCCN leads to only a 15%

overprediction in Nd. These findings highlight the potential importance of aerosol effects

versus cloud dynamic effects, and motivate future work with larger scale, global models to

better understand where clouds are most sensitive to aerosol composition effects and where

they are not.

Toward this end, Sotiropoulou et al. (2007) parameterized the CCN uncertainty from

the ICARTT study in terms of supersaturation and used this relationship with the global

Nd and NCCN outputs from the NASA Goddard Institute for Space Studies Version II’

(GISS II’) general circulation model (GCM) to quantify the resulting errors in Nd, aerosol
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indirect forcing, and autoconversion rate. This is achieved by running two present-day sim-

ulations: a base case simulation with normal present day emissions and a perturbed case

simulation where the size distribution is varied to alter the CCN concentration according to

the ICARTT uncertainty. Their results suggest that a global average CCN prediction error

of 10-20% translates into a 7-14% uncertainty in Nd and 10-20% uncertainty in aerosol

indirect forcing (Sotiropoulou et al., 2007). While this study gives important first-order

constraints on how CCN uncertainty may affect global indirect forcing estimates, the ap-

proach does not account for regional differences in the uncertainty of NCCN or how the

model pertubation may induce other, non-linear effects in the simulation. A thorough dis-

cussion of some of these challenges is presented by Lee et al. (2011), who has developed a

new statistical method for estimating model sensitivities to input uncertainies.

In summary, while there have been several studies to date examining the sensitivity

of cloud droplet number concentration uncertainty to uncertainties in CCN number con-

centration, there is still no clear estimate of the global magnitude of this sensitivity or

how it varies regionally. In this study, we address these questions by combining data ob-

tained from over thirty published CCN closure studies with simulations conducted with the

recently-developed adjoint of the Kumar et al. (2009) cloud droplet parameterization. The

adjoint tracks the sensitivity of model parameters to inputs concurrently with the forward

model execution and without perturbing the the simulation parameters. Thus, it is able to

find the sensitivity of Nd to NCCN (or a large number of other parameters) with analyti-

cal precision and requires only a single model run. In the following sections, we briefly

discuss the published datasets and the adjoint model before comparing and contrasting the

simulation results with observations. The goal of this work is to improve the understanding

of the global and regional sensitivities of modeled cloud droplet number to the CCN con-

centration uncertainty introduced through simplified model assumptions regarding aerosol

mixing state and chemical composition.
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9.2 Methods
9.2.1 CCN Prediction Uncertainty Measurements

In this work, we use CCN prediction uncertainties measured at multiple locations world-

wide as a proxy for CCN prediction uncertainty in models employing Köhler theory. Ta-

ble 9.1 lists the thirty-three closure studies considered, which were selected because they

involve ambient measurements of CCN concentration, aerosol size distribution, and aerosol

chemical composition. Additionally, they report CCN closure uncertainties for at least one

of six common closure scenarios as follows:

1. Ammonium Sulfate: All particles are composed of ammonium sulfate (κ=0.6)

2. Internal Mixture, Soluble Organics: All particles have the same composition as de-

termined by the size-averaged, aerosol composition measurements. Organics are

soluble with κ = 0.11.

3. Internal Mixture, Insoluble Organics: All particles have the same composition as

determined by the size-averaged, aerosol composition measurements. Organics are

insoluble with κ = 0.

4. External Mixture, Soluble Organics: Particles are composed of pure components

(e.g., organic particles, ammonium sulfate particles, etc.), and the number of each

type is determined by the size-averaged, aerosol composition measurements. Organ-

ics are soluble with κ = 0.11.

5. External Mixture, Insoluble Organics: Particles are composed of pure components

(e.g., organic particles, ammonium sulfate particles, etc.), and the number of each

type is determined by the size-averaged, aerosol composition measurements. Organ-

ics are insoluble with κ = 0.

6. Internal Mixture, Size-Dependent Composition, Insoluble Organics: Particles in each

size distribution bin have the same composition as determined by the size-resolved,
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aerosol composition measurements, but the particle compositions in different size

bins may not be the same. Organics are insoluble with κ = 0.

where the aerosol hygroscopicity is reported using the κ parameter of Petters and Kreiden-

weis (2007). These simplified mixing state and composition assumptions are characteristic

of those used in large-scale models to improve computational efficiency. In another form of

CCN closure, some other studies in the literature use the aerosol hygroscopicity obtained

from humidified aerosol growth factor measurements to predict CCN concentrations with

typically good agreement (e.g., Kim et al., 2011; Kammermann et al., 2010; Vestin et al.,

2007; Good et al., 2010; Gasparini et al., 2006; Dusek et al., 2003; Covert et al., 1998).

While important for assessing the uncertainties associated with using the same hygroscop-

icity to predict both subsaturated and supersaturated water uptake, this type of closure study

is less relevant for comparing against mass-composition-based models and is not included

here.

The studies shown in Table 9.1 reflect a diverse mixture of urban, rural, and marine

sampling on both airborne and ground-based platforms. The majority of published studies

focus on locations in North America, and CCN concentrations range from zero to a few

thousand particles per cm3 with the highest concentrations observed in the vicinity of local

urban emissions sources (e.g., Houston, TX; Riverside, CA; Mexico City, Mexico) and

within a targeted ship plume. Most studies report CCN concentration and closure data at a

single or a few discrete supersaturations, and the tabulated values reflect the average across

all supersaturations. A detailed description of each closure study location, measurements,

and data analysis is given by the references in Table 9.1.

The CCN overprediction uncertainties reported by these studies are shown in Table 9.2.

Most studies tend toward overprediction with the external mixing scenarios producing

lower predicted CCN concentrations than the ammonium sulfate or internal mixing scenar-

ios. As discussed by Ervens et al. (2010), some studies report large CCN overpredictions

on the order of 2-5-fold, which likely reflects the contribution of local emissions sources
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Table 9.2: CCN number concentration percent overprediction (Φ-1)×100% for different
closure scenarios reported by the studies in Table 9.1.

Internal Mixture External Mixture

Study Location (NH4)2SO4 Sol. Org. Insol. Org. Size-Dep. Sol. Org. Insol. Org.

1 Alaskan Arctic (ARCPAC) 57±50 49±47 – 11±30 -23±36
2 Amazon Rainforest, Brazil (AMAZE-08) – 14.1 – – – –
3 Atlanta, GA (AMIGAS) 194 157 146 – 169 40
4 Chebogue Point, Canada (ICARTT) – 40±40 -10±40 – 20±30 -30±30
5 Duke Forest, NC (Celtic) – 71 20 – – –
6 Ebert, Ontario, Canada (CARE) – -29 – -14 – –
7 Ebert, Ontario, Canada (CARE) – – -3 – – –
8 Finokalia, Greece (FAME-07) – 1.8±12 -2.8±14 -7±11 – –
9 Florida Coast (CRYSTAL-FACE) 6 – – – – –
10 Guangzhou, China (PRIDE-PRD2006) – 20.7 – – – –
11 Gulf Coast, Houston, TX (GoMAACS) – 130±190 70±100 – 140±190 90±110
12 Gulf of Mexico Background Air (CalNex)
13 Holme Moss, UK – -10±50 -20±50 – 20±60 0±50
14 Houston, TX (GoMACCS) 36.5 – 2.6 – – –
15 Houston, TX (TexAQS) 11.6±9.3 -3.6±7.7 -16.1±10.0 -13.1±8.4 – -60.9±6.4
16 Jeju Island, Korea (ABC-EAREX) 27±29 – – – – –
17 Jeju Island, Korea (ABC-EAREX) 16±18 – – – – –
18 Jungfraujoch, Switzerland – 4±3 – – – –
19 Los Angeles, CA (CalNex) 84±97 54±57 41±51 18±85 38±49 -16±42
20 Mexico City, Mexico (MILAGRO) – 10±20 -50±20 10 10±10 -50±20
21 Monterey, CA (MASE) – 10±60 10±60 – 30±60 30±60
22 Monterey, CA, Above Cloud (MASE) -54 17 -29 – -11 -78
23 Monterey, CA, Marine Boundary Layer (MASE) -8 – -5 – – –
24 Pacific (Eastern), N. California Coast (CIFEX) 79 – – – – –
25 Pacific (Eastern), Los Angeles, CA (CalNex) 58±90 32±39 23±34 -5±31 20±36 -23±33
26 Riverside, CA (SOAR-I) – 500±210 360±170 – 390±170 340±180
27 San Joaquin Valley, CA (CalNex) 141±187 71±154 45±126 28±75 56±132 2±67
28 Sacramento Valley, CA (CalNex) 150±190 25±29 -3±26 -14±77 16±25 -59±22
29 Ship Channel, Houston, TX (GoMACCS) – 320±320 300±300 – 300±300 140±190
30 Ship Exhaust Plume, Monterey, CA (MASE-II) – – 23±6 16±6 – –
31 Southern Great Plains ARM Site, OK 92±192 – – – – –
32 Thompson Farms, NH (ICARTT) – – 35.7±28.5 17.4±27.1 – –
33 Toronto, Canada – – – 12 – –

Number of Studies 15 21 22 11 14 15
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near the sampling locations that may produce a size-varying, externally-mixed aerosol that

cannot be captured well from bulk chemical composition measurements. In some locations

(e.g., Houston, TX, and Los Angeles, CA), airborne studies covering a wide horizontal and

vertical sampling area report a smaller closure uncertainty than that from ground-based

sites in the same area. These conflicting values probably stem from the more local na-

ture of the ground measurements versus the regional nature of airborne measurements.

To capture the observed range of variablity, we evaluate the uncertainties from both sets

of measurements, recognizing that the former are probably more relevant for small-scale

air quality modeling while the latter are probably more appropriate for comparison with

coarser-resolution GCM climate predictions.

9.2.2 Model Description

Simulations were conducted with the NASA Global Modeling Initiative (GMI) chemical

transport model (CTM) using offline wind fields and an online aerosol simulation module

coupled with the Kumar et al. (2009) droplet activation parameterization and its adjoint.

The GMI model (http://gmi.gsfc.nasa.gov/) is a modular CTM capable of multi-

year, global simulations of aerosol concentrations and compositions (Rotman et al., 2001;

Considine et al., 2005). The aerosol module used for this study is that of Liu et al. (2005),

which uses emissions inputs for SO2, dimethyl sulfide, H2O2, elemental carbon (EC), or-

ganic carbon (OC), mineral dust, and sea salt from Liu et al. (2005). The online aerosol

module outputs the global distribution of aerosol mass concentrations, which is used to

drive the cloud droplet parameterization and its adjoint.

Before running the offline parameterization, the aerosol mass is first classified as one of

four, externally-mixed aerosol modes: fossil fuels (SO2−
4 , OC, and EC), biomass burn-

ing (OC and EC), marine (SO2−
4 and sea salt), and mineral dust. The aerosol within

each mode are assumed to be internally mixed and follow a prescribed size distribution

as given by Chuang et al. (1997) and Radke et al. (1988) for fossil fuel aerosols, Anderson
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et al. (1996) for biomass burning aerosols, Lance et al. (2004) for marine aerosols, and

d’Almeida (1987) for mineral dust aerosols. The aerosol number concentration for each

type is then computed using these size distributions and a mass-fraction-weighted average

of the component densities (e.g., SO2−
4 , OC, EC) as described in more detail by Karydis

et al. (in press).

The aerosol number distributions are then used to drive an offline cloud droplet pa-

rameterization (Kumar et al., 2009; Barahona and Nenes, 2007; Fountoukis and Nenes,

2005; Nenes and Seinfeld, 2003) that employs a physically-based method for calculating

the aerosol CCN spectrum (i.e., the number of particles that act as CCN as a function of su-

persaturation) and the maximum supersaturation, smax, for ascending cloud parcels in the

global model. The total cloud droplet number, Nd, is then the value of the CCN spectrum

at smax in each model grid cell.

Recently, the adjoint of the cloud droplet parameterization has been developed (Kary-

dis, V., et al., Elucidating the Relative Significance of Aerosol and Dynamical Parameters

on Global Cloud Droplet Number, in preparation), which continuously tracks the sensitiv-

ity ofNd to the parameterization input parameters (i.e, NCCN and compositions) during the

forward model run. This allows the simultaneous computation of both the mean parameter

values and their sensitivities with analytical precision.

9.2.3 Model Application

The model simulation spans the one year period from March 1997 to February 1998, in-

cluding a one-month spin up time that is not included in the analysis. This simulated time

period was selected to complement the modeling study of Karydis et al. (in press). Mete-

orological fields were obtained from the GISS II’ global climate model (Koch and Rind,

1998; Rind and Lerner, 1996), with a horizontal resolution of 4◦ latitude by 5◦ longitude

and with 23 vertical layers from surface pressure to 0.017 hPa. The meteorological infor-

mation in the simulation was updated every three hours. For the droplet parameterization
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and adjoint, a constant effective water uptake coefficient of 0.06 was assumed (Fountoukis

et al., 2007), and realistic updraft velocities were prescribed based on observed values for

stratocumulus clouds over land (w = 0.3 m s−1) (Chuang et al., 2000b; Guibert et al., 2003;

Meskhidze et al., 2005).

9.3 Results and Discussion
9.3.1 Global NCCN Distributions

The simulated global annual mean NCCN and smax are shown in Figure 9.1 and are found

to be mostly anti-correlated, consistent with the mechanism of increased CCN concentra-

tions in modulating cloud dynamics (i.e., aerosol indirect effects). The highest concen-

trations (and lowest smax) are seen over the eastern United States, Europe, and east Asia

from anthropogenic emissions. Higher concentrations are also predicted for the southern

hemisphere near and downwind of biomass burning sources. Meanwhile, the lowest con-

centrations (and highest smax occur in the the pristine southern and subtropical oceans and

the Alaska-Canadian Arctic. The simulated global mean CCN concentration is 1967±5341

for a mean smax of 0.2±0.1%.

A quantitative comparison between the simulated NCCN at smax and the observed

NCCN at varying s is given in Table 9.3. Since the studies are mostly land-based, the simu-

lated smax in these locations is lower than the global average while the simulated NCCN is

nearly two-fold higher. For many regions, simulated concentrations agree reasonably well

with the observed range of values, although much higher simulated:observed NCCN ratios

are found in a number of locations (e.g., the Amazon Rainforest, Duke Forest, Finokalia,

the Florida coast, Jeju Island, and others), which may be reflective of seasonal differences

or varying local emissions sources that are not captured by either the short-term field study

or the simulated annual mean.
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Figure 9.1: Simulated global spatial distribution of the annual mean NCCN (top) and smax
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Table 9.3: Comparison of regional observed and simulated CCN number concentrations,
NCCN , simulated cloud droplet concentrations, Nd, and the normalized cloud droplet
concentration sensitivities, (∂Nd/∂NCCN )(NCCN/Nd). All simulation results are annual
means.

Observed Observed Simulated Simulated Simulated (
∂Nd

∂NCCN

)(
NCCN
Nd

)
Study Location s (%) NCCN (cm−3) smax (%) NCCN (cm−3) Nd (cm−3)

1 Alaskan Arctic (ARCPAC) 0.1-0.3 100-500 0.33 356 245 0.74
2 Amazon Rainforest, Brazil (AMAZE-08) 0.10-0.82 40-200 0.22 1,103 415 0.39
3 Atlanta, GA (AMIGAS) 0.2-1.0 500-10,000 0.06 8,803 1,008 0.10
4 Chebogue Point, Canada (ICARTT) 0.65 0-4,000 0.11 2,475 689 0.15
5 Duke Forest, NC (Celtic) s.ss-s.ss 0-3,000 0.06 7,691 901 0.06
6 Ebert, Ontario, Canada (CARE) 0.32 400-5,000 0.11 3,324 817 0.19
7 Ebert, Ontario, Canada (CARE) 0.42 0-10,000 0.11 3,324 817 0.19
8 Finokalia, Greece (FAME-07) 0.21-0.73 500-4,000 0.07 8,247 845 0.03
9 Florida Coast (CRYSTAL-FACE) 0.20-0.85 230-380 0.08 3,557 696 0.08
10 Guangzhou, China (PRIDE-PRD2006) 0.068-0.47 1,000-10,000 0.07 11,293 932 0.05
11 Gulf Coast, Houston, TX (GoMAACS) 0.44 3,000-30,000 0.06 5,960 744 0.005
12 Gulf of Mexico Background Air (CalNex) 0.25-0.65 0.06 6,886 902 0.08
13 Holme Moss, UK 0.23 400-1,200 0.08 6,365 672 -0.05
14 Houston, TX (GoMACCS) 0.35-1.0 200-15,000 0.06 6,710 835 0.04
15 Houston, TX (TexAQS) 0.30-0.71 200-2,000 0.07 6,755 909 0.09
16 Jeju Island, Korea (ABC-EAREX) 0.6 1,500-3,500 0.06 10,935 943 0.05
17 Jeju Island, Korea (ABC-EAREX) 0.09-0.97 400-4,600 0.06 10,935 943 0.05
18 Jungfraujoch, Switzerland 0.12-1.18 0-1,500 0.07 15,302 1,022 0.07
19 Los Angeles, CA (CalNex) 0.25-0.65 0-7,000 0.16 1,877 626 0.20
20 Mexico City, Mexico (MILAGRO) 0.29 7,000-17,000 0.09 4,178 831 0.13
21 Monterey, CA (MASE) 0.1 300-1,300 0.15 1,472 486 0.15
22 Monterey, CA, Above Cloud (MASE) 0.2 0-1,700 0.15 1,472 486 0.15
23 Monterey, CA, Marine Boundary Layer (MASE) 0.2 0-1,700 0.15 1,472 486 0.15
24 Pacific (Eastern), N. California Coast (CIFEX) 0.2-0.8 200-1,000 0.13 903 293 0.13
25 Pacific (Eastern), Los Angeles, CA (CalNex) 0.25-0.65 50-6,000 0.14 1,790 564 0.16
26 Riverside, CA (SOAR-I) 0.27 11,000-19,000 0.16 1,877 625 0.20
27 San Joaquin Valley, CA (CalNex) 0.25-0.65 100-8,000 0.18 1,721 631 0.24
28 Sacramento Valley, CA (CalNex) 0.25-0.65 50-7,000 0.16 1,269 464 0.18
29 Ship Channel, Houston, TX (GoMACCS) 0.44 400-3,000 0.06 6,710 835 0.04
30 Ship Exhaust Plume, Monterey, CA (MASE-II) 0.10-0.35 200-30,000 0.11 1,441 365 0.03
31 Southern Great Plains ARM Site, OK 2.1-2.8 100-11,000 0.07 6,426 962 0.13
32 Thompson Farms, NH (ICARTT) 0.2-0.6 100-4,000 0.10 3,728 856 0.16
33 Toronto, Canada 0.58 0-3,500 0.09 4,515 911 0.15

Mean of All Studies (weighted equally) 0.11±0.06 4,708±3,420 708±221 0.13±0.13
Mean of All Studies (weighted by area) 0.19±0.11 3,430±4,144 524±314 0.37±0.30
Global Mean Values 0.20±0.10 1,967±5,341 352±310 0.47±0.29
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9.3.2 Global Nd Distribution and Relative Sensitivity of Nd to NCCN

Simulated droplet concentrations, Nd, are also shown in Table 9.3 and in the upper portion

of Figure 9.2. The global distribution ofNd is similar to that ofNCCN but with substantially

lower concentrations (approximately five-fold on average). This is shown quantitatively in

Figure 9.3, where it can been seen that nearly all CCN form droplets at low concentra-

tions, but the impact on Nd of increasing NCCN gradually decreases above ∼100 cm−3.

This implies a concentration-dependent sensitivity of Nd to NCCN , which is shown in Fig-

ures 9.2 and 9.3. Low values of NCCN correlate with the highest smax and greatest cloud

droplet sensitivity, while the highest NCCN correlate with the lowest smax and smallest

cloud droplet sensitivity. The sensitivity decreases from nearly unity at 100 cm−3 to nearly

zero at 104 cm−3, however, there is no clear trend in smax within this transition region (Fig-

ure 9.3, which likely arises as aerosol concentration effects become more important than

cloud dynamics in determining Nd.

The Nd sensitivities shown in Table 9.3 indicate that most of the closure studies carried

out in the past decade have taken place in moderately to heavily-polluted areas, where Nd

is fairly insensitive to changes in NCCN (∼ 5-20%). Two studies in the Alaskan Arctic

and the Amazon Rainforest show lower simulated NCCN and higher simulated smax and

sensitivity of Nd to NCCN (∼ 40-75%). The global mean sensitivity is 0.47±0.29.

Sotiropoulou et al. (2007) simulated global cloud droplet number concentrations and

anthropogenic aerosol indirect forcing using the GISS II’ GCM and uncovered a similar

geographical distribution as modeled here, but with nearly two-fold lower droplet concen-

trations in some regions. They found that the spatial pattern of regional aerosol indirect

forcing agreed very well with the spatial pattern of Nd, which implies that the results of

this study are directly relevant for aerosol indirect forcing estimates even though the direct

calculation of aerosol indirect forcing with a radiative transfer model was not performed in

this study.
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Figure 9.3: Simulated Nd (left) and sensitivity of Nd to NCCN (right) plotted versus simu-
lated NCCN for all grid model grid cells. Points are colored by the grid-cell smax.

9.3.3 Global Cloud Albedo Distribution and Relative Sensitivity of A to NCCN

The cloud droplet sensitivity discussed in the previous section provides important infor-

mation regarding the potential sensitivity of clouds in a given region to changes in aerosol

concentrations, but it says nothing about whether or not the clouds would form in the the

first place. This is because global and regional cloudiness is driven by air flow dynamics

(e.g., vertical updrafts) and moisture fluxes (e.g., liquid water content) in addition to the

presence of CCN. Quantifying these individual processes on a global scale is challenging;

however, satellite measurements over the past decades have been able to discern global

cloudiness with good accuracy. In this study, we use the global annually-averaged cloud

albedo (A) obtained from the NASA CERES satellite to capture all of these effects. The

cloud albedo is found by differencing the total sky and clear sky albedos for 2003 obtained

from the NASA Giovanni online data system (Acker and Leptoukh, 2007). Since A in-

corporates both cloudiness fraction and the reflectivity of those clouds, it directly captures

the indirect effect of aerosols on clouds. The global distribution of A is shown in the upper

portion of Figure 9.4. Synoptic scale dynamics play a large role in the observed distribution

of A, with higher albedos seen along the equatorial intertropical convergence zone (ITCZ)
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and in the mid-latitudes. Meanwhile, the observed cloud albedo is lowest in the subtropical

subsidence zones.

In a landmark paper, Twomey (1991) defined the cloud albedo susceptibility to cloud

droplet number as

∂A

∂Nd

=
A (1− A)

3Nd

(9.1)

for a constant amount of liquid water and by making a number of simplifying assumptions

regarding the radiative properties of liquid water droplets. Equation 9.1 indicates that A is

at peak sensitivity to Nd when A=0.5, where ∂A/∂Nd = 1
12
Nd.

Combining ∂A/∂Nd obtained from the CERES satellite measurements and Equation 9.1

with ∂Nd/∂NCCN obtained from the GMI model simulations yields the overall sensitivity

of cloud albedo to the CCN-active aerosol fraction, ∂A/∂NCCN , which is shown in the

lower portion of Figure 9.4. Overall, the spatial distribution of the albedo sensitivity is

very similar to the cloud droplet number sensitivity, except that the former exhibits de-

creased sensitivity in the subtropical subsidence zones, where there both Nd and cloudi-

ness are low. The most sensitive regions are in the southern oceans, Arctic regions, and

eastern Europe and Asia where a doubling of aerosol concentrations can be seen to induce

a 6-8% change in albedo, which is very large! The high satellite-derived albedos in the

polluted eastern Europe and east Asia appear to compensate for the decreased simulated

cloud droplet sensitivity in these regions. An additional interesting feature in Figure 9.4

is the negative sensitivity of albedo to NCCN near Great Britain and along the coasts of

the continents. This arises because of the slight negative ∂Nd/∂NCCN predicted by the

model from the addition of coarse mode sea salt aerosol that act as giant CCN (GCCN).

The GCCN are large enough to activate at very low supersaturations and remove enough

water vapor through their condensational growth that the clouds smax is decreased. This

means that fewer droplets form, resulting in an inverse-Twomey effect and a net warming

effect. It is important to note that anthropogenic aerosol perturbations are too small to act
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as GCCN, so while this inverse-Twomey effect is relevant for assessing uncertainties in lo-

cal marine aerosol (i.e., coarse sea salt), it does not capture the cooling impact of episodic

anthropogenic emissions transport not considered by the model.

9.3.4 Cloud Droplet Number Uncertainties and Implications for the Indirect Effect

In this section, the the CCN closure uncertainties from Section 9.2.1 (Table 9.2) and the

modeled cloud droplet sensitivities from Section 9.3.2 (Table 9.3) are combined to estimate

the overallNd uncertainty arising from the application of simplified forms of Köhler theory.

Figure 9.5 gives the field measurement uncertainties for four of the size closure scenarios.

The left panels show the approximate spatial extent of the thirty-three study areas consid-

ered and are colored by the NCCN overprediction uncertainty (∆NCCN ) from Table 9.2.

The right panels show the estimated Nd overprediction uncertainty (∆Nd) calculated as

∆Nd =

(
∂Nd

∂NCCN

)
∆NCCN (9.2)

The color scale for ∆NCCN in Figure 9.5 is twice that for ∆Nd, with light blue denoting

zero overprediction uncertainty (i.e., perfect agreement between Köhler theory predictions

and measurements). For most regions in the continental United States and Europe, ∆Nd

is quite small (∼ 0-20%), despite large variation in NCCN , which reflects the relative in-

sensitivity of Nd to NCCN uncovered by the model for continental regions (Figure 9.2).

Larger ∆Nd values are observed in California, in the Alaskan Arctic, and in the Ama-

zon rainforest, although only one closure scenario is considered in the Amazon study. In

Los Angeles, the large ∆Nd reflects the large (nearly five-fold) CCN overprediction uncer-

tainted reported by Cubison et al. (2008) and Ervens et al. (2010) for all closure scenarios.

In the Los Angeles basin and California Central Valley, Moore et al. (in preparation) report

smaller values of ∆NCCN that vary from -59 to 79%, which translates into ∆Nd ∼ 0-20%.

Reported Arctic CCN uncertainties are considerably lower (Moore et al., 2011), but still

have a large effect on ∆Nd because of the relatively low modeled droplet concentrations
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Table 9.4: Percent overprediction of CCN concentration (∆NCCN ) and simulated cloud
droplet concentration (∆Nd) averaged over the field studies’ domain, with equal weighting
given to each study location regardless of area. Reported are the mean ± one standard
deviation across the 33 different data sets. Since individual field studies do not apply all
scenarios, the overprediction values cannot be directly compared; however, the domain-
averaged sensitivity ratios (∆Nd/∆NCCN ) are directly comparable.

Measured Mean Simulated Mean
Closure Scenario N NCCN Overprediction (%) Nd Overprediction (%) Ratio

(NH4)2SO4 9 23±44 2±13 0.09
Internal Mixture, Soluble Organics (κorg = 0.11) 21 77±125 18±35 0.23
Internal Mixture, Insoluble Organics (κorg = 0) 22 45±101 11±24 0.24
Size-Resolved, Internal Mixture, Insoluble Organics (κorg = 0) 11 4±15 1±5 0.25
External Mixture, Soluble Organics (κorg = 0.11) 14 86±122 17±30 0.20
External Mixture, Insoluble Organics (κorg = 0) 15 20±106 3±30 0.15

and relatively high modeled Nd sensitivities in pristine regions.

Table 9.4 shows average uncertainty statistics for the six closure scenarios in this study.

These mean values reflect the small sampling bias of being on the North American conti-

nent, which limits the generalizability of these numbers to a global scale. Additionally,

the number of studies and the locations of those studies employing each closure sce-

nario are different, which prevents direct cross-scenario comparison. However, the ratio

of ∆Nd/∆NCCN should be representative of the domain-averaged sensitivities, which can

be directly compared despite different sample sizes. We find this ratio to be fairly invari-

ant at 0.09-0.25, with the lowest values for the externally-mixed aerosol scenarios and the

largest values for the internally-mixed aerosol cases. This is consistent with estimates of

the Nd sensitivity made by Ervens et al. (2010) (∼15%) using parcel model, and with aver-

age Nd uncertainties of 7-14% reported by Sotiropoulou et al. (2007) for the United States

and Europe. Interestingly, the averageNCCN uncertainties reported in the GCM study were

also ∼ 10-20%, suggesting a much larger Nd sensitivity than we find here.

Sotiropoulou et al. (2007) also used the the GISS II’ radiative transfer model to evaluate

the impact of CCN uncertainty on the overall cloud indirect forcing. They find that a 10-

20% uncertainty in global NCCN results in a 10-20% uncertainty in the global indirect
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effect, comprising 0.1-0.2 W m−2 out of the total global mean radiative forcing of -1.00 W

m−2. While this uncertainty is relatively small on a global scale, regional effects are likely

to be more substantial. This is especially true when considering larger CCN prediction

uncertainties than the range of 10-20% assumed by Sotiropoulou et al. (2007), and which

are suggested by some regional CCN closure studies in Table 9.2.

9.4 Summary and Conclusions

Modeling simulations conducted with the GMI chemical transport model and cloud param-

eterization adjoint are used to interpret and extend the results of thirty-three published CCN

closure studies in the literature to estimate the overall uncertainty in cloud droplet number

concentration from applying Köhler theory-based parameterizations with simplifying as-

sumptions. We find that the prediction of cloud droplet number is most susceptible to CCN

uncertainty at low CCN concentrations (NCCN < 100 cm−3) and becomes insensitive to

uncertainty in NCCN for concentrations above 104 cm−3. Thus, pristine areas such as the

Arctic and remote oceans are found to be most sensitive (> 70%), while the sensitivity

over continental regions is on the order of 10-30%, which is consistent with some previ-

ous estimates. While the simplying assumptions employed by past CCN closure studies

produce signficant overprediction of NCCN when compared to observations, the impact of

these uncertainties on the prediction of Nd is on the order of ±10% over the continental

United States, but as high as 30-50% in the Alaskan Arctic and in Los Angeles, CA, where

extremely high NCCN prediction uncertainties were observed.

This work shows that the regional sensitivity of Nd to NCCN is important when assess-

ing the uncertainty in cloud droplet number and albedo, and hence indirect forcing, associ-

ated with simplified assumptions regarding CCN. Most CCN closure studies to date have

been located in continental regions, and future measurements of CCN and aerosol prop-

erties should focus on these remote regions to improve the coverage of the global dataset.

Much of the past global anthropogenic indirect forcing has been over the continents, and
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the results of this study indicate that uncertainties in estimating the global aerosol indirect

effect (present day minus pre-industrial) arising from the simplified composition assump-

tions in models are relatively small. Two questions remain, however, that motivate future

research. First, most current models employ prescribed size distributions for aerosol com-

position modes, which are likely to be a large source of uncertainty; however, the closure

studies employed in this study use measured size distribution information. Consequently,

size distribution effects are not reflected in the ∆NCCN proxy. Second, the impact of tran-

sient events such as long-range pollution transport or seasonal biogenic emissions sources

on changing CCN concentrations remains unclear; the regional sensitivities uncovered in

this study indicate that these events could have a substantial climatic impact. This motivates

future field measurements directed at measuring CCN in the southern oceans and Arctic,

where observations are limited and seasonal variations have been shown to be significant.

These datasets would provide important information to quantify the impact and uncertainty

associated with transient pollution events on influencing CCN concentrations, and hence,

clouds and climate.
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CHAPTER X

CONCLUSIONS, FUTURE DIRECTIONS, AND

RECOMMENDATIONS

10.1 Conclusions and Future Directions

The complexity of aerosol-cloud interactions challenges their accurate representation in

large scale models. The methods and analysis presented in this work represent a step to-

ward better understanding the ability of atmospheric aerosols to act as cloud condensation

nuclei (CCN) and form cloud droplets. Two new techniques are presented for operating the

commercially-available Droplet Measurement Technologies (DMT) streamwise, thermal-

gradient, CCN counter that enable size-resolved and supersaturation-resolved measure-

ments over timescales small enough to be relevant for airborne sampling, while increasing

the overall size and supersaturation resolution of the measurement. While these represent

major advances in the state of the art, continued refinement of the techniques will increase

data reliability and further push the lower boundaries of time resolution and minimum de-

tectable concentrations.

In addition, we used laboratory and in-situ field measurements to characterize the hy-

groscopic properties of atmospheric aerosols, particularly the organic components, which

are least understood. In Chapter 4, the properties of marine dissolved organic matter, rel-

evant for aerosol generated via sea spray and bubble bursting, were quantified using CCN

measurements and Köhler Theory Analysis, as well as bulk solution techniques to find

composition and surface tension. It is shown that diffusion of even high-molar-mass or-

ganic molecules in growing droplets is sufficiently rapid that the surface tension of these

droplets can be described well by equilibrium surface tension measurements. Since the dif-

fusivities of these molecules are expected to be at the low end of those for most atmospheric
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organic molecules, this work shows that bulk solution measurements are directly applicable

to aerosol-cloud parameterizations, and that Köhler Theory Analysis may provide impor-

tant surface tension information for a wide variety of chemical engineering applications

with sample volumes too small for bulk measurements.

In Chapters 5-8, ambient measurements of urban and non-urban CCN are used to quan-

tify the impact of the aerosol size distribution, mixing state, and chemical composition on

CCN hygroscopicity and droplet growth rates. It is shown that size-dependent composition

and mixing state are necessary to explain the observed CCN activity. This is due to the

influence of local emissions sources or the long-range transport of emissions that form an

external mixture with the aged, background aerosol population. In urban environments,

such as Atlanta, GA, the mixing state and hygroscopicity exhibit a distinct diurnal depen-

dence, consistent with a mobile source contribution in the morning and a combination of

boundary layer dynamics and photochemical transformation throughout mid-day and after-

noon. While, attempts to capture this complexity with a single, mean hygroscopicity and

CCN-active fraction may be sufficient for large-scale models with relatively coarse reso-

lution, future regional air quality and climate modeling efforts will likely need to account

for these changes (e.g., an observed two-fold diurnal change in both κ and the CCN-active

aerosol number fraction in Atlanta).

Accounting for the size-dependence of aerosol composition and hygroscopicity will

be especially important for linking subsaturated hygroscopic growth (relevant for aerosol

direct radiative effects) and supersaturated CCN activity (relevant for aerosol indirect ra-

diative effects). This is because light scattering and extinction are most sensitive to the

aerosol mass size distribution (typically 0.2-1 µm diameter size range), while CCN and

droplet concentrations are most sensitive to the aerosol number size distribution (typically

0.04-0.2 µm size range). The composition of the large aerosol mode is easily measured

by widely-used instrumentation such as the aerosol mass spectrometer (AMS) or particle-

into-liquid sampler (PILS); however, measurements of small-mode aerosol composition
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continues to challenge the resolution of these techniques outside of heavily-polluted en-

vironments. Thermal-desorption chemical ionization mass spectrometry (TDCIMS) is a

promising technique for measuring the small-mode aerosol composition, but requires long

sampling times to accumulate a statistically-significant amount of sample (∼5-10 minutes).

Given these challenges, the direct measurement of subsaturated and supersaturated aerosol

hygroscopicity seems to be the most promising future path toward linking aerosol direct

and indirect effects.

The Droplet Measurement Technologies CCN counter (CCNC) using Scanning Flow

CCN Analysis (SFCA) provides the means to accomplish this goal with the high temporal

and relative-humidity (supersaturation) resolution required for airborne studies. Using a

dual-column CCNC (DMT model CCN-200), one column would have the typical, positive,

linear temperature gradient to produce a flow-rate-dependent water vapor supersaturation.

Meanwhile, the linear temperature gradient in the other column would be inverted follow-

ing Ruehl et al. (2010) to produce a flow-rate-dependent subsaturated relative humidity (.

99%). Deployment of the dual column instrument would be straightforward with opera-

tion the same as the SFCA technique developed in this dissertation, and provide unprece-

dented information about the link between aerosol hygroscopicity relevant for the direct

and indirect effects. As with the CCN measurements outlined in this dissertation, the sub-

saturated measurements would also implicitly capture complex aerosol mixing state and

size-dependent composition impacts, which can be deconvoluted with concurrent measure-

ments of the aerosol size distribution.

In addition to measurements of aerosol hygroscopicity and CCN activity, it is essen-

tial that future field work evaluate the conditions under which cloud droplets’ growth may

be affected by aerosol composition as this can have a profound impact on aerosol indi-

rect effects estimates. The work described in Chapter 7 of this dissertation suggests that

relatively un-oxygenated secondary organic aerosol near the Deepwater Horizon oil spill

do not exhibit slow droplet growth, despite the ability of these hydrocarbon-like organics
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to form surface films that retard droplet growth. This result is surprising since some past

studies have found slow growth kinetics, which points to the importance of additional en-

vironmental factors (e.g., temperature and relative humidity) that control the hydration and

phase state of the aerosol. While no kinetic delays were observed in the warm, humid envi-

ronment of the Gulf of Mexico, future studies in cooler, continental regions are warranted.

Ideally, a global dataset of CCN observations would elucidate the conditions under which

models need to account for composition-induced changes in droplet growth kinetics and

the conditions under which they do not.

The techniques developed in this dissertation provide the means to comprehensively

characterize the aerosol-water interactions relevant for both the aerosol direct and indirect

effects. What is lacking is an extensive global dataset of CCN measurements. In directing

and planning future field studies focusing on CCN, this work provides some guidance from

modeling simulations of cloud sensitivities to aerosol concentration (Chapter 9). Simu-

lations conducted with the NASA GMI chemical transport model and the recently devel-

oped adjoint model of the Kumar et al. (2009) cloud droplet parameterization indicate that

clouds are most susceptible to aerosol concentration uncertainties in the pristine regions

such as the Alaska-Canadian Arctic and the southern oceans, and in the polluted regions

of Eurasia where cloud albedo is large. However, most studies of CCN properties and

prediction uncertainty (i.e., “CCN closure”) have been conducted within the North Amer-

ican and European continents, where simulations suggest that clouds are less sensitive to

aerosol concentrations. Consequently, future field studies should focus on pristine regions

where cloud droplet and albedo sensitivities are largest. In particular, regions susceptible

to anthropogenic modification from long-range pollution transport (e.g., the Arctic) or to

seasonal variability in biogenic emissions (e.g., the southern oceans) are critical, and have

more limited observational datasets to date.

Does the relative cloud insensitivity to aerosol concentrations over continents mean that

future CCN measurements are unimportant in these regions? In terms of global climate,
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this is probably true given the already high levels of atmospheric aerosols in these locations.

However, local emissions sources in the vicinity of urban areas and large point (e.g., power

plants) and mobile (e.g., cars, trucks, and ships) sources may have significant local and

regional climate implications as seen in, e.g., the Los Angeles basin in Figure 9.5. In

these cases, this work (and others) find that a detailed knowledge of aerosol mixing state

and chemical composition is needed to predict CCN. As future climate modeling efforts

begin to focus more on regional impacts, the need to adequately capture this smaller scale

variation becomes important.

10.2 Recommendations for Future Work

While the Scanning Flow CCN Analysis (SFCA) technique (Chapter 2) has been deployed

on both ground-based and airborne platforms with good success, hardware improvements

and minor adjustments to the flow scan profile would likely fix an observed temperature

sensitivity and down scan transient profile. The current implementation of SFCA uses a

proportional valve to control the total flow rate, and a fixed, calibrated polynomial relation-

ship between applied valve voltage and total flow rate is used to linearly ramp the flow rate

during an SFCA scan. This relationship does not currently account for changes in the air

flow temperature and pressure, which would alter the voltage – flow rate relationship. One

solution might be to use the built-in pressure transducers at the column inlet to provide a

control feedback loop in ramping the valve voltage. A simpler, first-order improvement

would be to bypass the proportional valve with a volumetric flow controller (e.g., Alicat

Scientific MC-5SLPM) that would internally account for temperature and pressure changes

and virtually negate the need for periodic flow calibrations.

Decoupling the flow control system from the DMT software would also enable custom

flow scan profiles to be performed easily (e.g., sawtooth, sinusoidal, or other asymmet-

ric upscan/downscan profiles), while taking advantage of the existing well-characterized

and robust software for operating the instrument. During low pressure operation or when
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streamwise temperature gradients less than ∼10-12K are used with a zig-zag flow profile

and fast scan times (< 30-second ramps), transient behavior was observed for the flow

downscans where CCN concentrations would decrease rapidly to zero and only recover

during the beginning portion of the flow upscan. This likely occurs because of the flow

“shock” associated with rapidly transitioning from an accelerating flow field to a decelerat-

ing flow field, although the exact cause is still unclear. Future simulations and experimental

work on SFCA should explore alternate flow profiles as a potential solution.

The Scanning Mobility CCN Analysis (SMCA) technique (Chapter 3) has been vali-

dated over a greater number of laboratory and field studies than SFCA, and data inversion

techniques are relatively mature, fast, and robust. While the current Excel-based data anal-

ysis processor is suitable (and possibly even superior) for short laboratory experiments and

calibrations, it is currently unable to easily handle large datasets spanning multiple days.

An important component of the data analysis procedure is the visual alignment of the CCN

counter and Scanning Mobility Particle Sizer response curves for each sample scan, and

this alignment step has proven difficult to automate. Future development of the SMCA

technique should focus on developing algorithms to facilitate this process, after which,

automated curve fitting and analysis should be fairly straightforward.

In addition to this instrument and technique development work, a substantial portion of

this thesis has focused on characterizing the hygroscopicity and mixing state of ambient

CCN over a range of environments (Chapters 5-8). Using the size-resolved SFCA tech-

nique for some of these measurements has enabled the direct measurement of differential

supersaturation spectra (dNCCN/ds), which together with κ provides important informa-

tion for evaluating aerosol-cloud interactions in global models. Using fast measurement

techniques, such as SFCA, in future field studies will enable more detailed characterization

of not only the mean aerosol hygroscopicity, but also the shape of the observed hygroscop-

icity probability density function. As this distribution represents the complete picture of
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aerosol size, composition, and mixing state influences, it is ideal for future model parame-

terizations of CCN.

In Chapter 9, the data from these studies and approximately thirty others published in

the literature were used to produce a global map of CCN closure uncertainties that can

be compared to model simulations. Most of the published closure studies are focused on

North America, with relatively few or no measurements in Eurasia, Africa, and remote re-

gions. However, extensive measurements of CCN-derived and composition-derived κ have

been reported for some of these regions, suggesting that unpublished data is available for

closure analysis. In addition to parameterizing κ, it is important that future studies also

use the field data to assess the prediction error associated with simplifying assumptions

used by models. Even in continental regions where simulations suggest that cloud droplet

number is relatively insensitive to CCN concentrations, there may be some polluted areas

with fresh, local sources and several-fold CCN prediction uncertainties that could be sig-

nificant. Thus, future CCN closure assessments outside of North America are needed to

help constrain global model simulations of cloud droplet formation and the aerosol indirect

effect. The data analysis products, particularly the closure scenarios, produced in this dis-

sertation for CCN in Alaska, California, Georgia, and the Gulf of Mexico are common to

some other studies, which if more widely-adopted would enable even more comprehensive

global comparisons to be made with model simulations.

The global impact of aerosol-cloud interactions is too large and complex to be directly

observed; however, important advances in improving model confidence and uncertainties

can be achieved by combining measurements and modeling; the work outlined in this dis-

sertation represents an important contribution toward that goal.
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KULMALA, M., H. VEHKAMÄKI, T. PETÄJÄ, M. D. MASO, A. LAURI, V.-M. KER-
MINEN, W. BIRMILI, and P. H. MCMURRY (2004), Formation and growth rates of
ultrafine atmospheric particles: A review of observations, Journal of Aerosol Science,
35, 143–176, doi:10.1016/j.jaerosci.2003.10.003. 8.3.2

KUMAR, P., I. N. SOKOLIK, and A. NENES (2009), Parameterization of cloud droplet
formation for global and regional models: Including adsorption activation from insoluble
CCN, Atmospheric Chemistry and Physics, 9, 2517–2532, doi:10.5194/acp-9-2517-
2009. 1.4, 9.1, 9.2.2, 10.1

KUWATA, M., and Y. KONDO (2009), Measurements of particle masses of inorganic salt
particles for calibration of cloud condensation nuclei counters, Atmospheric Chemistry
and Physics, 9, 5921–5932, doi:10.5194/acp-9-5921-2009. 3.2.3

KUWATA, M., Y. KONDO, Y. MIYAZAKI, Y. KOMAZAKI, J. H. KIM, S. S. YUM,
H. TANIMOTO, and H. MATSUEDA (2008), Cloud condensation nuclei activity at
Jeju Island, Korea in spring 2005, Atmospheric Chemistry and Physics, 8, 2933–2948,
doi:10.5194/acp-8-2933-2008. 3.1, 9.1

LAAKSONEN, A., P. KORHONEN, M. KULMALA, and R. J. CHARLSON (1998), Mod-
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V. WISMANN, A. HERBER, and G. KÖNIG-LANGLO (2003), One year of particle size
distribution and aerosol chemical composition measurements at the Zeppelin Station,
Svalbard, March 2000 – March 2001, Physics and Chemistry of the Earth, 28, 1181–
1190, doi:10.1016/j.pce.2003.08.058. 5.3.1

STROUD, C. A., A. NENES, J. L. JIMENEZ, P. F. DECARLO, J. A. HUFFMAN, R. BRU-
INTJES, E. NEMITZ, A. E. DELIA, D. W. TOOHEY, A. B. GUENTHER, and S. NANDI

(2007), Cloud activating properties of aerosol observed during CELTIC, Journal of the
Atmospheric Sciences, 64, 441–459, doi:10.1175/JAS3843.1. 9.1

SULLIVAN, A. P., and R. J. WEBER (2006), Chemical characterization of the ambient
organic aerosol soluble in water: 1. Isolation of hydrophobic and hydrophilic fractions
with a XAD-8 resin, Journal of Geophysical Research, 111, D05314, doi:10.1029/
2005/JD006485. 8.1

239

http://dx.doi.org/10.5194/acp-8-5489-2008
http://dx.doi.org/10.1029/2005GL025148
http://dx.doi.org/10.1029/2006JD007834
http://dx.doi.org/10.1029/2006JD007834
http://dx.doi.org/10.1023/A:1005306001055
http://dx.doi.org/10.1029/2006JD007216
http://dx.doi.org/10.5194/acp-7-511-2007
http://dx.doi.org/10.1016/j.pce.2003.08.058
http://dx.doi.org/10.1175/JAS3843.1
http://dx.doi.org/10.1029/2005/JD006485
http://dx.doi.org/10.1029/2005/JD006485


TARANIUK, I., E. R. GRABER, A. KOSTINSKI, and Y. RUDICH (2007), Surfactant prop-
erties of atmospheric and model humic-like substances (HULIS), Geophysical Research
Letters, 34, L16807, doi:10.1029/2007GL029576. 4.2.3, 4.3.2

THOMSON, D. S., M. E. SCHEIN, and D. M. MURPHY (2000), Particle analysis by laser
mass spectrometry WB-57F instrument overview, Aerosol Science and Technology, 33,
153–169, doi:10.1080/027868200410903. 5.2.2

TOON, O. B., J. B. POLLACK, and B. N. KHARE (1976), The optical constants
of several atmospheric aerosol species: Ammonium sulfate, ammonium oxide, and
sodium chloride, Journal of Geophysical Research, 81, 5733–5748, doi:10.1029/
JC081i033p05733. 7.1

TRENBERTH, K. E., J. T. FASULLO, and J. KIEHL (2009), Earth’s global energy bud-
get, Bulletin of the American Meteorological Society, 90, 311–323, doi:10.1175/
2008BAMS2634.1. 1.1

TSI, INCORPORATED (2003), 3936 Scanning Mobility Particle Sizer. 4, 4

TWOMEY, S. (1963), Measurements of natural cloud nuclei, Journal de Recherches Atmo-
spheriques, 1, 101–105. 2.1

TWOMEY, S. (1974), Pollution and the planetary albedo, Atmospheric Environment, 8,
1251–1256, doi:10.1016/0004-6981(74)90004-3. 1.1

TWOMEY, S. (1977a), The influence of pollution on the shortwave albedo of clouds, Jour-
nal of the Atmospheric Sciences, 34, 1149–1152, doi:10.1175/1520-0469(1977)
034<1149:TIOPOT>2.0.CO;2. 1.1, 2.1, 5.1, 6.1, 6.3.2, 9.1

TWOMEY, S. (1977b), Atmospheric Aerosols, Developments in Atmospheric Science, El-
sevier Scientific. 5.3.2

TWOMEY, S. (1991), Aerosols, clouds and radiation, Atmospheric Environment, 25, 2435–
2442, doi:10.1016/0960-1686(91)90159-5. 9.3.3

VANREKEN, T. M., T. A. RISSMAN, G. C. ROBERTS, V. VARUTBANGKUL, H. H. JON-
SSON, R. C. FLAGAN, and J. H. SEINFELD (2003), Toward aerosol/cloud condensation
nuclei (CCN) closure during CRYSTAL-FACE, Journal of Geophysical Research, 108,
4633, doi:10.1029/2003JD003582. 5.3.6, 6.3.6, 9.1

VANREKEN, T. M., A. NENES, R. C. FLAGAN, and J. H. SEINFELD (2004), Concept for
a new cloud condensation nucleus (CCN) spectrometer, Aerosol Science and Technology,
38, 639–654, doi:10.1080/02786820490479842. 2.1

VESTIN, A., J. RISSLER, E. SWIETLICKI, G. P. FRANK, and M. O. ANDREAE (2007),
Cloud-nucleating properties of the Amazonian biomass burning aerosol: Cloud con-
densation nuclei measurements and modeling, Journal of Geophysical Research, 112,
D14201, doi:10.1029/2006JD008104. 3.1, 9.2.1

240

http://dx.doi.org/10.1029/2007GL029576
http://dx.doi.org/10.1080/027868200410903
http://dx.doi.org/10.1029/JC081i033p05733
http://dx.doi.org/10.1029/JC081i033p05733
http://dx.doi.org/10.1175/2008BAMS2634.1
http://dx.doi.org/10.1175/2008BAMS2634.1
http://dx.doi.org/10.1016/0004-6981(74)90004-3
http://dx.doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
http://dx.doi.org/10.1016/0960-1686(91)90159-5
http://dx.doi.org/10.1029/2003JD003582
http://dx.doi.org/10.1080/02786820490479842
http://dx.doi.org/10.1029/2006JD008104


VETTER, T. A., E. M. PERDUE, E. INGALL, J.-F. KOPRIVNJAK, and P. H. PFROMM

(2007), Combining reverse osmosis and electrodialysis for more complete recovery of
dissolved organic matter from seawater, Separation and Purification Technology, 56,
383–387, doi:10.1016/j.seppur.2007.04.012. 4.1, 4.2.1

WANG, J., Y.-N. LEE, P. H. DAUM, J. JAYNE, and M. L. ALEXANDER (2008), Effects of
aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect
aerosol effect, Atmospheric Chemistry and Physics, 8, 6325–6339, doi:10.5194/acp-
8-6325-2008. 2.1, 3.1, 6.3.5, 9.1

WANG, J., M. J. CUBISON, A. C. AIKEN, J. L. JIMENEZ, and D. R. COLLINS (2010a),
The importance of aerosol mixing state and size-resolved composition on CCN con-
centration and the variation of the importance with atmospheric aging of aerosols, At-
mospheric Chemistry and Physics, 10, 7267–7283, doi:10.5194/acp-10-7267-2010.
5.3.6, 6.3.6, 6.3.6, 8.3.1, 9.1

WANG, L., A. F. KHALIZOV, J. ZHENG, W. XU, Y. MA, V. LA, and R. ZHANG (2010b),
Atmospheric nanoparticles formed from heterogeneous reactions of organics, Nature
Geoscience, 3, 238–242, doi:10.1038/ngeo778. 7.3.2

WANG, S. C., and R. C. FLAGAN (1989), Scanning electrical mobility spectrometer, Jour-
nal of Aerosol Science, 20, 1485–1488, doi:10.1016/0021-8502(89)90868-9. 3.1,
3.2.2, 4, 9.1

WARNEKE, C., R. BAHREINI, J. BRIOUDE, C. A. BROCK, J. A. DE GOUW, D. W. FA-
HEY, K. D. FROYD, J. S. HOLLOWAY, A. MIDDLEBROOK, L. MILLER, S. MONTZKA,
D. M. MURPHY, J. PEISCHL, T. B. RYERSON, J. P. SCHWARZ, J. R. SPACKMAN, and
P. VERES (2009), Biomass burning in Siberia and Kazakhstan as an important source for
haze over the Alaskan Arctic in April 2008, Geophysical Research Letters, 36, L02,813,
doi:10.1029/2008GL036194. 5.3.6

WARNEKE, C., K. D. FROYD, J. BRIOUDE, R. BAHREINI, C. A. BROCK, J. COZIC, J. A.
DE GOUW, D. W. FAHEY, R. FERRARE, J. S. HOLLOWAY, A. M. MIDDLEBROOK,
L. MILLER, S. MONTZKA, J. P. SCHWARZ, H. SODEMANN, and J. R. SPACKMAN

(2010), An important contribution to springtime Arctic aerosol from biomass burning in
Russia, Geophysical Research Letters, 37, L01,801, doi:10.1029/2009GL041816. 5.1,
5.4

WEBER, R. J., D. ORSINI, Y. DAUN, Y.-N. LEE, P. J. KLOTZ, and F. BRECH-
TEL (2001), A particle-into-liquid collector for rapid measurement of aerosol bulk
chemical composition, Aerosol Science and Technology, 35, 718–727, doi:10.1080/
02786820152546761. 9.1

WEBER, R. J., A. P. SULLIVAN, R. E. PELTIER, A. RUSSELL, B. YAN, M. ZHENG,
J. DE GOUW, C. WARNEKE, C. BROCK, J. S. HOLLOWAY, E. L. ATLAS, and
E. EDGERTON (2007), A study of secondary organic aerosol formation in the
anthropogenic-influenced southeastern United States, Journal of Geophysical Research,
112, D13302, doi:10.1029/2007JD008408. 8.1

241

http://dx.doi.org/10.1016/j.seppur.2007.04.012
http://dx.doi.org/10.5194/acp-8-6325-2008
http://dx.doi.org/10.5194/acp-8-6325-2008
http://dx.doi.org/10.5194/acp-10-7267-2010
http://dx.doi.org/10.1038/ngeo778
http://dx.doi.org/10.1016/0021-8502(89)90868-9
http://dx.doi.org/10.1029/2008GL036194
http://dx.doi.org/10.1029/2009GL041816
http://dx.doi.org/10.1080/02786820152546761
http://dx.doi.org/10.1080/02786820152546761
http://dx.doi.org/10.1029/2007JD008408


WEX, H., T. HENNIG, I. SALMA, R. OCSKAY, A. KISELEV, S. HENNING,
A. MASSLING, A. WIEDENSOHLER, and F. STRATMANN (2007), Hygroscopici growth
and measured and modeled critical supersaturations of an atmospheric HULIS sample,
Geophysical Research Letters, 34, L02818, doi:10.1029/2006GL028260. 3.1

WIEDENSOHLER, A. (1988), Technical note: An approximation of the bipolar charge dis-
tribution for particles in the submicron size range, Journal of Aerosol Science, 19, 387–
389, doi:10.1016/0021-8502(88)90278-9. 4, 4

YUM, S. S., and J. G. HUDSON (2001), Vertical distributions of cloud condensation nu-
clei spectra over the springtime Arctic Ocean, Journal of Geophysical Research, 106,
15,045–15,052, doi:10.1029/2000JD900357. 5.1, 5.3.2

YUM, S. S., G. ROBERTS, J. H. KIM, K. SONG, and D. KIM (2007), Submicron aerosol
size distributions and cloud condensation nuclei concentrations measured at Gosan, Ko-
rea, during the Atmospheric Brown Clouds–East Asian Regional Experiment 2005, Jour-
nal of Geophysical Research, 112, D22S32, doi:10.1029/2006JD008212. 9.1

ZHANG, D., K. F. MOORE, R. R. FRIEDL, and M.-T. LEU (2008), Design and characteri-
zation of a horizontal thermal gradient cloud condensation nucleus spectrometer, Journal
of Aerosol Science, 39, 30–39, doi:10.1016/j.jaerosci.2007.10.004. 2.1

ZHANG, Q., and C. ANASTASIO (2001), Chemistry of fog waters in california’s Central
Valley – Part 3: Concentrations and speciation of organic and inorganic nitrogen, Atmo-
spheric Environment, 35, 5629–5643, doi:10.1016/S1352-2310(01)00337-5. 6.1

ZHANG, Q., M. R. ALFARRA, D. R. WORSNOP, J. D. ALLAN, H. COE, M. R.
CANAGARATNA, and J. L. JIMENEZ (2005a), Deconvolution and quantification of
hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrome-
try, Environmental Science and Technology, 39, 4938–4952, doi:10.1021/es048568l.
5.3.4, 7.3.1

ZHANG, Q., D. R. WORSNOP, M. R. CANAGARATNA, and J. L. JIMENEZ (2005b),
Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: Insights into sources
and processes of organic aerosols, Atmospheric Chemistry and Physics, 5, 3289–3311,
doi:10.5194/acp-5-3289-2005. 6.3.1, 6.3.4

ZHANG, Q., J. L. JIMENEZ, M. R. CANAGARATNA, J. D. ALLAN, H. COE, I. ULBRICH,
M. R. ALFARRA, A. TAKAMI, A. M. MIDDLEBROOK, Y. L. SUN, K. DZEPINA,
E. DUNLEA, K. DOCHERTY, P. F. DECARLO, D. SALCEDO, T. ONASCH, J. T. JAYNE,
T. MIYOSHI, A. SHIMONO, S. HATAKEYAMA, N. TAKEGAWA, Y. KONDO, J. SCHNEI-
DER, F. DREWNICK, S. BORRMANN, S. WEIMER, K. DEMERJIAN, P. WILLIAMS,
K. BOWER, R. BAHREINI, L. COTTRELL, R. J. GRIFFIN, J. RAUTIAINEN, J. Y. SUN,
Y. M. ZHANG, and D. R. WORSNOP (2007), Ubiquity and dominance of oxygenated
species in organic aerosols in anthropogenically-influenced Northern Hemisphere mid-
latitudes, Geophysical Research Letters, 34, L13801, doi:10.1029/2007GL029979.
7.1

242

http://dx.doi.org/10.1029/2006GL028260
http://dx.doi.org/10.1016/0021-8502(88)90278-9
http://dx.doi.org/10.1029/2000JD900357
http://dx.doi.org/10.1029/2006JD008212
http://dx.doi.org/10.1016/j.jaerosci.2007.10.004
http://dx.doi.org/10.1016/S1352-2310(01)00337-5
http://dx.doi.org/10.1021/es048568l
http://dx.doi.org/10.5194/acp-5-3289-2005
http://dx.doi.org/10.1029/2007GL029979


VITA

Richard Moore was born in Harrisburg, Pennsylvania, USA, in 1982 to Herbert and Mari-

anne Moore. He attended Middletown Area High School, Middletown, PA, before earning

B.S. and M.S. degrees in chemical engineering from Bucknell University in Lewisburg, PA.

His masters thesis was supervised by Professor Timothy M. Raymond. In 2006, Richard

entered the Ph.D. program of the School of Chemical & Biomolecular Engineering at the

Georgia Institute of Technology, Atlanta, Georgia, under the direction of Professor Athana-

sios Nenes. He is the author or co-author of eleven peer-reviewed journal publications with

six additional publications currently in preparation or in review. As a graduate student at

Georgia Tech, Richard was supported by graduate research fellowships from the Depart-

ment of Energy Global Change Education Program and the National Aeronautics and Space

Administration Earth and Space Science Program, a Georgia Institute of Technology Pres-

ident’s Fellowship, and a Sam Nunn School of International Affairs Fellowship. He is also

the recipient of five awards for outstanding student conference presentations and posters,

as well as an award for exemplary academic achievement in the School of Chemical &

Biomolecular Engineering at Georgia Tech. He will graduate in December of 2011 with

a Ph.D. in chemical engineering, a certificate in public policy, and having completed the

“Tech to Teaching” program. In 2012, Richard will begin a postdoctoral fellowship at the

NASA Langley Research Center under the direction of Dr. Bruce Anderson. He currently

lives in Atlanta with his wife, Emily.

243


	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables 
	List of Figures 
	Summary
	Chapter 1 — Introduction
	1.1 Climatic Effects of Aerosols
	1.2 Aerosol Hygroscopicity
	1.3 Cloud Droplet Formation and Growth
	1.4 Dissertation Outline

	Chapter 2 — Scanning Flow CCN Analysis (SFCA)
	2.1 Introduction
	2.2 Instrument Description
	2.3 Description of SFCA
	2.3.1 Method
	2.3.2 Instrument and Droplet Growth Models
	2.3.3 Supersaturation Profiles
	2.3.4 Droplet Activation and Size

	2.4 Evaluation of SFCA
	2.4.1 Laboratory Aerosol
	2.4.2 Ambient Aerosol

	2.5 Summary and Conclusions

	Chapter 3 — Scanning Mobility CCN Analysis (SMCA)
	3.1 Introduction
	3.2 Description of SMCA
	3.2.1 Instrumentation Setup
	3.2.2 Application of SMCA
	3.2.3 Data Inversion and Multiple Charge Correction

	3.3 Measurement Uncertainty
	3.4 Evaluation of SMCA
	3.4.1 SMCA for laboratory aerosol
	3.4.2 SMCA for ambient aerosol

	3.5 Summary and Conclusions

	Chapter 4 — Köhler Theory Analysis of Marine Dissolved Organics
	4.1 Introduction
	4.2 Experimental
	4.2.1 Sample Collection
	4.2.2 Chemical Composition of Samples
	4.2.3 Surface Tension Measurements
	4.2.4 CCN Activity and Droplet Growth Kinetics Measurements

	4.3 Results and Discussion
	4.3.1 CCN Activity
	4.3.2 Köhler Theory Analysis (KTA)
	4.3.3 Droplet Growth Kinetics

	4.4 Summary and Conclusions

	Chapter 5 — Hygroscopicity and Composition of Alaskan Arctic CCN
	5.1 Introduction
	5.2 Observational Data Set
	5.2.1 Study Location
	5.2.2 Chemical Composition Measurements
	5.2.3 Particle Size Distribution Measurements
	5.2.4 CCN Measurements

	5.3 Results and Discussion
	5.3.1 Air Masses Sampled
	5.3.2 CCN Activity
	5.3.3 Inferring Hygroscopicity
	5.3.4 Hygroscopicity and Organic Oxygenation
	5.3.5 Sensitivity of CCN to Composition Effects
	5.3.6 CCN Closure

	5.4 Summary and Conclusions

	Chapter 6 — Hygroscopicity and Composition of California CCN
	6.1 Introduction
	6.2 Observational Data Set
	6.2.1 Study Location
	6.2.2 Chemical Composition Measurements
	6.2.3 Particle Size Distribution Measurements
	6.2.4 CCN Measurements

	6.3 Results and Discussion
	6.3.1 Regional Air Types
	6.3.2 CCN Activity
	6.3.3 Inferring Hygroscopicity
	6.3.4 Organic Oxygenation
	6.3.5 Sensitivity of CCN to Composition Effects
	6.3.6 CCN Closure

	6.4 Summary and Conclusions

	Chapter 7 — Hygroscopicity and Growth Kinetics of Secondary Organic Aerosol From the Deepwater Horizon Oil Spill
	7.1 Introduction
	7.2 Methodology
	7.2.1 CCN and Aerosol Measurements
	7.2.2 Coupled CCNC Instrument Model
	7.2.3 Analysis

	7.3 Results and Discussion
	7.3.1 CCN Activity and Hygroscopicity
	7.3.2 Droplet Activation Kinetics

	7.4 Conclusions
	7.5 Supporting Information
	7.5.1 Flight Overview Maps
	7.5.2 CRD-Derived Hygroscopicity
	7.5.3 Size-Dependent CCN Composition
	7.5.4 Coupled CCNC and Droplet Growth Model


	Chapter 8 — Hygroscopicity, Mixing State, and Volatility of Atlanta CCN
	8.1 Introduction
	8.2 Observational Data Set
	8.2.1 CCN and Aerosol Measurements
	8.2.2 Analysis

	8.3 Results and Discussion
	8.3.1 Diurnal Variation of CCN Hygroscopicity and Mixing State
	8.3.2 Volatility and CCN Activity of Newly-Formed Particles

	8.4 Summary and Conclusions

	Chapter 9 — Adjoint Sensitivity of Global and Regional Cloud Droplet Number to CCN Prediction Uncertainty
	9.1 Introduction
	9.2 Methods
	9.2.1 CCN Prediction Uncertainty Measurements
	9.2.2 Model Description
	9.2.3 Model Application

	9.3 Results and Discussion
	9.3.1 Global NCCN Distributions
	9.3.2 Global Nd Distribution and Relative Sensitivity of Nd to NCCN
	9.3.3 Global Cloud Albedo Distribution and Relative Sensitivity of A to NCCN
	9.3.4 Cloud Droplet Number Uncertainties and Implications for the Indirect Effect

	9.4 Summary and Conclusions

	Chapter 10 — Conclusions, Future Directions, and Recommendations
	10.1 Conclusions and Future Directions
	10.2 Recommendations for Future Work

	References
	Vita

