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The way was long, and wrapped in gloom did seem,

As I urged on to seek my vanished dream.

Qu Yuan, translated by Yang Hsien-yi and Gladys Yang
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SUMMARY

We model and analyze the dynamics of religious group membership and size. A groups

is distinguished by its strictness, which determines how much time group members are

expected to spend contributing to the group. Individuals differ in their rate of return for

time spent outside of their religious group. We construct a utility function that individ-

uals attempt to maximize, then find a Nash Equilibrium for religious group participation

with a heterogeneous population. We then model dynamics of group size by including

birth, death, and switching of individuals between groups. Group switching depends on

the strictness preferences of individuals and their probability of encountering members of

other groups. We show that in the case of only two groups one with finite strictness and

the other with zero there is a clear parameter combination that determines whether the

non-zero strictness group can survive over time, which is more difficult at higher strictness

levels. At the same time, we show that a higher than average birthrate can allow even the

highest strictness groups to survive. We also study the dynamics of several groups, gaining

insight into strategic choices of strictness values and displaying the rich behavior of the

model. We then move to the simultaneous-move two-group game where groups can set up

their strictnesses strategically to optimize the goals of the group. Affiliations are assumed

to have three types and each type of group has its own group utility function. Analysis

on the utility functions and Nash equilibria presents different behaviors of various types

of groups. Finally, we numerically simulated the process of new groups entering the reli-

gious marketplace which can be viewed as a sequence of Stackelberg games. Simulation

results show how the different types of religious groups distinguish themselves with regard

to strictness.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Religion can be highly dynamic. Unless stifled by government regulations that hinder

competition, religious groups will come and go as they experience inflows and outflows of

membership [1, 2]. As shown in a comprehensive study of American religion, religious

market dynamics are seen in the high rates of religious switching and reaffiliation among

churchgoers [3]. While some groups win in this competition for adherents, others lose,

and the outcome is a vibrant religious marketplace with a diversity of forms of religious

practice.

A body of research during the last few decades has drawn inspiration from economic

models of markets and group production to explain this vibrancy, yet this work provides

only an incomplete understanding of the dynamic processes in religious markets. Two cen-

tral thrusts of research are most relevant. The first identifies the locus of religious activity

in the religious group, with the group serving as a collective-production entity that is sus-

ceptible to free-rider problems. The theory demonstrates that strict religious groups better

confront free-rider problems than their less-strict counterparts, thereby enabling the strict

groups to more successfully provide religious goods and services [4, 5]. This insight helps

to explain why strict churches have grown faster during the last several decades [6]. The

second is that wide diversity of religious preferences can sustain a wide range of religious

groups and practices when religious suppliers are allowed to enter and compete [7, 8, 9].

As in the markets for other goods, there are differences in tastes for different types and

styles of religion, and a diversity of forms of religious practice are needed to satisfy the di-

verse tastes. Entrepreneurs supply this diversity, and high religious pluralism results from

religious consumers with different tastes making their optimal affiliation decisions.

This dissertation constructs and examines a dynamic model of religious competition
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that combines these two theories into a single framework. In so doing we are able to

reconcile what may at first appear to be a contradiction between the two views. While

the latter theory recognizes the viability of all types of religious practice styles, the former

implies that strict religious groups should outperform and possibly drive their less-strict

competitors out of the market. We propose that the theories do work together but that

additional factors are also relevant to a broader understanding of religious competition. In

particular, we suppose that the relative success of different religious groups will depend

not just on strictness but also on several other factors mentioned in the literature but not yet

examined in a formal dynamic framework. Among these other factors are the strength of the

cultural transmission of religious preferences across generations, the likelihood of exposure

to other groups, the underlying distribution of preferences for non-religious goods, and

birth rates.

The incorporation of these features into our model draws inspiration from two other

literatures. One literature establishes the vital role of demographic factors in the growth and

decline of religious groups [10, 11]. The second literature uses dynamic models of cultural

transmission to understand the spread of religious practices within and across generations

[12, 13]. Our model thus combines key elements of several different strains of analysis,

namely, the club model of religious production, spatial models of religious competition,

demographic models of religious growth and decline, and the dynamic models of cultural

transmission.

The mathematical and simulation analysis herein reveals that the dynamics of a reli-

gious market with these many features are rich but that several patterns are still emergent.

One finding is that very strict groups will die out unless they have sufficiently high birth

rates and retention. This finding has been predicted in prior work [14], and our analysis

reveals that it is robust to several additional complexities in the market. A second finding

is that moderate groups can survive if their strictnesses advantageously place them near

the mean of the underlying distribution for non-religious goods. That moderate groups
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can survive and thrive has been noted before in explicit dynamic studies [15, 16], but we

demonstrate how several other factors not mentioned in those studies can also contribute to

the persistent success of moderate groups.

Three prior attempts to explicitly model religious market dynamics are most similar

to ours. Montgomery [15] examined an environment with three strictness levels and the

ability for religious groups to adjust strictness levels as their membership compositions

changed over time. He found that the low-strictness groups do shrink and die out as pre-

dicted under some parametric configurations, but that they also survive and thrive under

others. Makowsky [16] allowed for a wider range of possible strictnesses to show why the

less-strict groups might thrive. Lighter membership requirements allow for larger in-group

heterogeneity in more moderate rates of free-rider mitigation, thus allowing for a degree of

success in the market. Finally, Scheitle et al [11] simulated the growth of a hypothetical

American religious group under different assumptions about in-group fertility and religious

switching. They show that both fertility and switching play key roles, and that switching

plays a particularly important role in the long run. Our model differs from these prior stud-

ies in its formal synthesis of the several factors mentioned earlier, i.e., cultural transmission

across generations, differential rates of interaction among individuals of different groups,

and variation in birth rates. Ultimately, our work demonstrates how these many factors

contribute to the variety of outcomes possible in a religious market.

We also study the competitions of groups in the religious market in this dissertation.

In prior models, religious groups are often assumed to enter the marketplace at different

times so that groups currently in the market must care about potential entrants. Barros and

Garoupa [17] treated churches as Stackelberg leaders followed by sects. McBride [8, 9]

used a two-stage representation of group entry allowing groups to postpone the decision at

stage two instead of entering at stage one. In our work, we first analyze the simultaneous-

move two-group games to gain some understanding of the behavior of different types of

groups at the Nash equilibria. Then we adopt the idea that current groups have to be con-

3



cerned about the future potential followers and simulate how groups sequentially enter the

religious market. This process can be viewed as a sequence of Stackelberg games. Simula-

tion results reveal how religious groups with different goals arrange themselves with regard

to strictness.
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CHAPTER 2

SINGLE GROUP MODEL

2.1 Individual Utility Function

Each individual must decide what portion of his or her time will be devoted to in-group

activities, with the remaining portion devoted to out-group activities. Without loss of gen-

erality, we assume that each person has a total time of 1, and the amount that individual i

then devotes to in-group activities is denoted by ti. It is assumed that in-group time is spent

communally by the members of the group in production of “goods” that are distributed

amongst the group members evenly, regardless of their individual contribution.

We define the in-group utility function Uin of person i as

Uin = c

(∑
j tj

Ng

)1/2

, (2.1)

where c > 0 is a constant, Ng is the total population of the religious group g to which

individual i belongs, and
∑

j is taken over all members of group g, including member i.

As is standard in economic models, the utility function represents how the individual

ranks different possible alternatives that may arise in the course of social interaction. A

technical condition is that, as all tj ≤ 1, the sublinearity of the in-group utility in terms of

the mean in-group time contribution causes the utility to be greater than the mean, reflecting

the efficiency of group work. Of course, raising the mean in-group time contribution to any

positive power less than 1 would do the same; we choose the power to be 1/2 for simplicity.

We also assume that all groups share the same factor c, such that no groups are inherently

better at producing group utility than others. Finally, implicit in (2.1) is the assumption

that Ng > 1, otherwise the “group” would merely be a single individual. If Ng = 1, then

Uin = 0.
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Out-group activities yield a utility that is linear in the time spent outside the group,

1− ti, such that

Uout = ri(1− ti). (2.2)

The factor ri ≥ 0 could reflect something like an hourly wage that can be earned at a

job away from the group, but more generally reflects how much an individual personally

values her time away from the group, during which she can engage in whatever activities

she prefer. We will assume throughout that the values of ri for the various individuals are

drawn from a probability density R(r).

The religious group is subject to potential free-rider problems. The amount that individ-

ual i earns from in-group activities may be dominated by the various tj of the other group

members, while the out-group utility is determined solely by the actions of individual i in

such a way that time spent in-group returns a smaller Uout. Hence, many individuals may

maximize their utility by simply choosing to contribute ti = 0, which will maximize Uout

while in many circumstances leaving Uin relatively unchanged. To combat such behavior,

we allow the group to administer a punishment such that those members contributing less

than what the group deems a minimal acceptable level will have their utilities reduced by

an amount

P = βg(λg − ti)+.

Here, βg ≥ 0 sets the overall scale for punishment within group g, while λg ∈ [0, 1] is

defined to be the the “group strictness”, which is the main trait that will serve to differentiate

groups within our model, and (·)+ denotes the positive part of (·). The larger λg is, the

stricter the group and the more time the group demands of its members. However, a member

is only punished she fails to contribute at least λg to the in-group activity. The punishment

conceptualized here may be reflected in many ways: actual withholding of some of the

group-produced goods from the individual, social pressures that may lead to ostracizing,

or something else. Stricter groups have the means to enforce in-group norms, including
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norms related to in-group contributions.

The overall utility function U of person i in group g is equal to the sum of in-group

production Uin and out-group production Uout minus the punishment P . Without loss of

generality, we will scale all utilities by the common factor c and redefine ri and βg in terms

of this standard scale, such that our final individual utility function is

Ui = Uin + Uout − P

=

(∑
j tj

Ng

)1/2

+ ri(1− ti)− βg(λg − ti)+. (2.3)

2.2 Single Group Nash Equilibrium

We now consider the case of a single group with parameters λg = λ and βg = β and

with a fixed set of members, such that the population size Ng = N and the set of r val-

ues present within the group are unchanging. Then, to be determined for each individual

in the group is what value of ti she should choose. It is assumed that every individual is

attempting to maximize her own personal Ui through this choice, but note that each per-

son’s Ui is also partially determined by the decisions of every other group member through

the Uin term. Then, this is a classical game-theoretic problem, where the standard solu-

tion concept is the Nash Equilibrium. In this case, a Nash Equilibrium would be a set

of in-group times of each member t⃗ = {t1, t2, . . . , ti, . . . , tN} with corresponding mem-

ber utilities U⃗ = {U1, U2, . . . , Ui, . . . , UN} such that there does not exist any alternative

t⃗′ = {t1, t2, . . . , t′i, . . . , tN} in which only member i has changed his choice such that the

corresponding U⃗ ′ = {U ′
1, U

′
2, . . . , U

′
i , . . . , U

′
N} would satisfy U ′

i > Ui, for any i. In other

words, in a Nash Equilibrium, no individual i can increase her utility by unilaterally chang-

ing to a different ti.

In principle there are five options for ti which could possibly maximize Ui for an indi-

vidual, given that all other tj are fixed: 0, 1, λ, and two potential critical points we might
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call λ < ta < 1 and 0 < tb < λ located at

ta =
1

4Nr2i
− Ti ≡ ai + (1− ai)λ, 0 < ai < 1, (2.4)

tb =
1

4N(ri − β)2
− Ti ≡ biλ, 0 < bi < 1, (2.5)

where Ti =
∑

j ̸=i tj . Note that, due to constraints on the intervals where they may be

located, ta is only available to individuals whose ri satisfies

1

2
√

N(1 + Ti)
< ri <

1

2
√
N(λ+ Ti)

, (2.6)

and tb is only a valid critical point for individuals with

1

2
√

N(λ+ Ti)
+ β < ri <

1

2
√
NTi

+ β. (2.7)

For fixed Ti , Ui(1) = Ui(λ) at an ri value within the range of values in (2.6), with ri

values higher than this causing Ui(1) < Ui(λ). Similarly, U(λ) = U(0) at an ri value in the

interval in (2.7), with ri values higher than this causing Ui(0) > Ui(λ). Also note that for

fixed Ti and ti = 0, 1, or λ, Ui is trivially non-decreasing in ri. For ta, which is a function

of ri, we have

Ui(ta) =
1

4Nri
+ ri(1 + Ti) , (2.8)

which is also increasing on the region of ri values for which ta is available, and ranges over

values between Ui(1) and Ui(λ). Similarly,

Ui(tb) =
1

4N(ri − β)
+ ri(1 + Ti)− β(λ+ Ti) , (2.9)

which is also increasing in ri for all values for which it is available and ranges between the

values Ui(λ) and Ui(0). Hence, for fixed Ti, the maximal value of Ui is a non-decreasing

function of ri, and the optimal ti smoothly transitions from 1→ ta(ri)→ λ→ tb(ri)→ 0
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as ri ranges from 0 → ∞. These results motivate the following Nash Equilibrium for a

single group.

Theorem 2.1. Let r⃗ denote the list of ri values for the N members of the group, sorted

from least to greatest. There exists a number R1 > 0 that is a function of r⃗, N , λ, and

β such that, if all individuals with ri < R1 choose ti = 1, all with ri = R1 choose ta

with a potentially specific value of a, all with R1 < ri < R1 + β choose ti = λ, all with

ri = R1+β choose tb with a potentially specific value of b, and all with ri > R1+β choose

ti = 0, the system is in a Nash Equilibrium.

Proof. Consider a set of nonnegative integer values N1, Na, Nλ, Nb, and N0 such that the

first N1 members of r⃗ choose ti = 1, the next Na choose ti = ta = a + (1 − a)λ with

0 ≤ a ≤ 1, the next Nλ choose ti = λ, the next Nb choose ti = tb = bλ with 0 ≤ b ≤ 1,

and the final N0 choose ti = 0. For any given individual, Ti = T − ti, where T =
∑

j tj

for the state we are examining. Then for all those individuals choosing ti = 1, Ti = T − 1

and the lower bound in (2.6) becomes

1

2
√
NT
≡ R1.

Hence, so long as ri < R1, for i ≤ N1, all of the N1 individuals will be making their

optimal choice and not want to unilaterally switch. Similarly, for the individuals choosing

ti = λ, Ti = T − λ and the upper bound of (2.6) becomes R1 while the lower bound

of (2.7) becomes 1/2
√
NT + β = R1 + β. So, as long as R1 < ri < R1 + β for all

N1 + Na < i ≤ N1 + Na + Nλ, all of the Nλ individuals will be making their optimal

choice and not want to unilaterally switch. In this same way, so long as ri > R1 + β for all

i > N1+Na+Nλ+Nb all the N0 individuals will also be making their optimal choice. For

those choosing ti = ta, Ti = T − ta, so that (2.4) will be satisfied regardless of ta so long as

ri = 1/2
√
NT = R1, which is the case for these individuals, so they are also playing their

optimal choice. Finally, for those ti = tb, (2.5) will be satisfied regardless of tb so long as
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ri = 1/2
√
NT + β = R1 + β, which is the case for these individuals. Since all ri values

are accounted for and no individual can increase utility by unilaterally switching strategy,

this is a Nash Equilibrium.

We now show that such an equilibrium always exists. First, let F (r) be the number of

individuals with ri ≤ r, and let P (r) be the number of individuals with ri = r. Then the

total amount of time spent in group activities is

T = [F (R1)− P (R1)] + [a+ (1− a)λ]P (R1)+

λ [F (R1 + β)− F (R1)− P (R1 + β)] + bλP (R1 + β)

= (1− λ) [F (R1)− (1− a)P (R1)] + λ [F (R1 + β)− (1− b)P (R1 + β)] . (2.10)

At the same time, we know from the definition of R1 above that T and R1 are related via

T =
1

4NR2
1

. (2.11)

Then, so long as an R1 (and potentially corresponding values for a and/or b) exists that

satisfies both (2.10) and (2.11), the Nash Equilibrium above exists. But this can always

be made the case: (2.11) is a monotonically-decreasing, continuous function taking on all

positive values as R1 ranges from 0+ to∞, while (2.10) is a non-decreasing function that

can be made to take on any value between its minimum of λ[F (β)−P (β)] to its maximum

of N by adjusting a and/or b as needed as R1 ranges from 0 to∞. Hence, the two curves can

be made to intersect, and this intersection point is unique with regard to R1 and therefore

T , so the Nash Equilibrium exists and the various Nx values are all unique.

An illustration of the Nash Equilibrium is shown in Fig. 2.1. Here, ten individuals

with ri values shown as blue X marks on the horizontal axis are members of a group with

λ = 0.25 and β = 0.15. The solid red curve is (2.11), while the discontinuous black curve

is (2.10) with a ≈ 0.62 and b = 0.6 (though the value of b is unimportant in this particular

10



0 0.1 0.2R
1

R
1
+β

r

0
2

4
6

8
1

0

T

Figure 2.1: An illustration of the existence and determination of the Nash Equilibrium for
the single group case. Here, the ri of the group members are shown as blue X marks on the
horizontal axis, the solid red curve is (2.11), and the discontinuous black curve is (2.10).

case). Note the single point of intersection of these two curves, guaranteeing that the Nash

Equilibrium exists, which in this case occurs at the r value of one of the group members,

and is labeled as R1. Then the two individuals with ri < R1 will choose ti = 1, the single

individual at ri = R1 will choose ti = a+ (1− a)λ with a ≈ 0.62, the six individuals with

R1 < ri < R1+β will choose ti = λ, and the one remaining individual will choose ti = 0.

2.3 Ideal Strictness and Punishment Levels

The previous section considers how a variety of individuals with varying ri will determine

their ti given the group strictness λ and punishment factor β. Here, we study a somewhat

different problem, focusing on one value of ri at a time and asking what the ideal strictness

and punishment factor are for individuals with that particular ri value. To do so, we assume

that N people with identical parameters ri = r are originally unaffiliated, meaning they

are not currently a member of any group and receive only Uout. They would like to form

a group together of strictness λ to get a higher payoff than being unaffiliated. We assume

for now that, since all individuals have the same ri, they will all choose the same ti; we

11



will prove later that this can be made to be so. If this is the case, then they will all choose

ti = λ of the group they have formed; choosing ti = 0 leaves them no better off than

they currently are being unaffiliated, and choosing ti = 1, ta, or tb would be equivalent to

forming a group with λ corresponding to that specific choice. Then, each individual will

receive payoff

U =
√
λ+ r(1− λ) . (2.12)

This payoff is maximized for ideal strictness λ = 1/4r2. Note, though, that since λ ≤ 1 by

definition, if r < 1/2, the ideal strictness is simply λ = 1. For this reason, in the remainder

of the paper we generally assume that all ri ≥ 1/2. If the group adopts the ideal strictness

level, they will end up with a maximized utility of Umax = r + 1/4r.

However, we must now determine whether the above situation is a Nash Equilibrium as

discussed above. Specifically, with all N individuals having the same ri = r, in a group of

strictness λ = 1/4r2, we require all individuals playing ti = λ to result in a threshold R1

such that R1 < r < R1+β, which is the condition needed for the Nash Equilibrium. In this

case, T = λN , so that R1 = r/N < r from (2.11). But, this is only a Nash Equilibrium if

r < R1 + β, so that we need β > r(1 − 1/N). To allow for a group of any potential size,

then, we could simply use β = r. With this being the case, the total punishment for a person

were she to choose ti = 0 instead of ti = λ would be P = βλ =
√
λ/2 ≤ 1/2, which is

less than the Uin received from being in the group. Hence, a minimum punishment level

is necessary to guarantee that no individuals in this group will be tempted to switch from

ti = λ to ti = 0, but this punishment level is bounded and need not completely remove the

benefits of being in the group (Uin) to be entirely effective. This is a classical example of

the “free-rider” problem, which in this case can be solved with sufficient punishment for

free-riding.

It is possible to set a bounded punishment level that dissuades any of the ri = r mem-

bers of the group from deviating from the choice ti = λ without completely removing that

member’s Uin. But can the same be done to dissuade outsiders with differing ri > r from
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joining the group and playing ti = 0? Imagine another individual with ri > r joining the

existing group, so that N increases by one, but λ and β are as indicated above. Any such

individual can only decrease the value of R1, but never so much that R1 + β < r given our

β value, so all the original individuals will always continue to play ti = λ. However, the

added individual will only free ride if her utility from doing so is greater than her utility

from choosing ti = λ. That happens if

√
λ+ ri(1− λ) <

√
λN/(N + 1) + ri − βλ , (2.13)

which would only necessarily be the case in arbitrarily sized groups if β < ri. At the same

time, though, this new individual will only join the group to free-ride if the utility of doing

so is greater than the utility of simply being unaffiliated, which only happens if

√
λN/(N + 1) + ri − βλ > ri . (2.14)

So, by choosing β =
√

N/λ(N + 1), the group can prevent all possible free riding. Of

course, in this case the punishment for free riding is P = βλ ≈
√
λ, so that the punishment

is to simply remove the entirety of Uin.

One can also consider what may happen if an individual with ri < r joins the group.

Again, note that adding such individuals can only decrease R1, but never so much so that

R1 + β < r, so any such added individuals will never cause the existing group members

to become free riders. The newly added individual can therefore only play ti = 1, λ,

or a linear combination of the two (ta). Upon adding such an individual, the intersection

between (2.10) and (2.11) can only occur at one of three places: at an R1 > ri where (2.10)

yields λN + 1 and ti = 1, at R1 = ri where (2.10) yields λ(N + 1) + a(1 − λ) and ti

is a linear combination of one and λ, or at an R1 < ri where (2.10) yields λ(N + 1) and

ti = λ. But in the first case, R1 = 1/2
√

(N + 1)(1 + λN) < 1/2 so ri cannot satisfy

ri < R1, as we have already constrained all ri ≥ 1/2, so the first case is impossible and
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the new individual does not play ti = 1. The third case gives R1 = r/(N + 1), so any

ri > r/(N + 1) will cause the new individual to choose ti = λ, which is quite likely in

a very large group. Finally, any 1/2 ≤ ri ≤ r/(N + 1) will cause this individual to play

a linear combination of one and λ. In fact, this argument is easily extended to a situation

in which there are many ri values present, all ≤ r, in which case at most the individual(s)

with the smallest ri may play a linear combination of 1 and λ, but all others will play λ.

14



CHAPTER 3

MULTIPLE GROUP MODEL

We now turn to a more dynamic situation, in which case there are potentially several groups

to choose from, and individuals may be changing their affiliations over time. The overall

goal of the model will be to describe how the sizes of religious groups vary over time, given

the distribution of r values in the population, the strictness values of the various groups,

and other considerations discussed below. This variation is of course directly determined

by the rate at which individuals enter a group versus the rate at which they leave a group,

and these rates are themselves determined by two mechanisms that we will consider: 1)

birth and death of group members and 2) individuals switching group affiliation. Both

factors are important for understanding the trajectory of religious group membership [11].

We cover each effect separately below, and summarize the model in Fig. 3.1.

Before describing these effects in detail, we define a few more aspects of the model.

First, we assume that the values ri for all of the individuals within the entire society, en-

compassing all existing groups, are derived from a probability density R(r). Second, we

will at times wish to consider a special group known as the “unaffiliated group” whose

strictness is by definition 0 and for whose “members” there is no Uin. As the name implies,

this group really encompasses all those individuals who are not affiliated with any standard

group with λ > 0; as such, these individuals are not partaking in any in-group activities

whatsoever and all choose ti = 0.

Given the results above regarding ideal strictness and punishment levels, we make the

following simplification moving forward. Specifically, we will assume that all groups will

select a β that dissuades any possible free-riding, and that therefore all of the members of

any group will simply play ti = λ. The only approximation involved in this assumption is

that we are ignoring the possibility of the member(s) with the smallest ri values playing a
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Figure 3.1: A flowchart detailing the various pieces of the multigroup model.

linear combination of one and λ, but this is a very borderline case that should not affect the

remainder of the results.

3.1 Birth, Death, and Inheritance

We assume that each group has a per capita birth rate bg, which could potentially be group

dependent, but that each group has the same per capita death rate d. When individuals

die, they are simply removed from the population, thus decreasing Ng by 1 for the group to

which they belonged. When individuals are born, it is assumed that their initial affiliation is

the same as that of their parent(s), so they will increase Ng by 1 for the group that they are

born into. In addition, whenever a new individual is born, with probability z his ri is equal

to that of his parent and with probability 1−z his ri is taken randomly from the distribution

R(r). Parameter z thus captures the degree of in-group cultural transmission from parent

to child. If all individuals exhibit the same birth rate, this mechanism will cause R(r) to be

stationary in time, in expectation.
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3.2 Changing Affiliation

We assume that every individual has one chance in their life to change their group affilia-

tion. This opportunity is given to each individual effectively directly after his or her birth,

for simplicity, though this is meant to capture the possibility of switching groups once an

individual becomes an independent adult.

Group switching is conceptualized in the following way for individual i who is currently

a member of group g and values out-group activities at rate ri. First, given the set of

M groups and their corresponding strictness values λg′ , individual i could in principal

associate with any of the groups g′ and thereby obtain utility

Uig′ =
√

λg′ + ri(1− λg′) . (3.1)

In a system with perfect and complete information, each individual would simply de-

termine which g′ provides the maximum utility and choose that group. For M groups with

strictnesses λ0 = 0 < λ1 < λ2 < · · · < λM−1, we define cutoff values rg in the out-group

rate distribution such that individuals with r values in (rg+1, rg) would get their maximal

utility within the group with strictness λg. By finding the specific r value that would have

an equal payoff between the two groups λg+1 and λg, we determine that the cutoff between

these groups lies at rg = 1/(
√
λg−1+

√
λg) where g = 1 . . .M−1; we define r0 =∞ and

rM = 1/2 for notational convenience. If R(r) is stationary in time and in expectation, then

a model in which all players simply choose their optimal group would immediately place

all individuals in their ideal group, and the system would remain in that same configuration

for all time, in expectation, regardless of birth and death. We refer to this simple model as

the “stationary model”.

However, the simple “stationary model” neglects an important aspect of switching reli-

gious groups, which is the exposure to the group: if one is exposed to members of a group

frequently, the chance of switching to that group should be higher than that of switching

17



to a group whose members you have never met, all else being equal. This motivates us to

define what we will call the exposure probability of an individual currently in group g to

members of group g′

αgg′ = 1−
[
1− (1− λg′)Ng′∑

k(1− λk)Nk

]s(1−λg)

, (3.2)

where s > 0 is a model parameter and Ng is the number of members in group g.

Underlying this exposure probability is the assumption that during out-group time, all

members of society are well mixed. Then, for any given out-group chance encounter of an

individual, the probability that the person met is in group g′ is simply proportional to the

number of people from g′ who are spending time out of group at that moment, which is

(1 − λg′)Ng′ . Of course, the number of out-group chance encounters that an individual in

g experiences throughout her life up until the moment she may select to switch groups is

proportional to the amount of time she spends in general outside the group, represented by

the s(1 − λg) term. Then, αgg′ is the probability that our individual has had at least one

encounter with a person from group g′ by the time she may choose to switch groups. The

exceptions to (3.2) are for the case g′ = g, in which case αgg = 1 since everyone has had

encounters with members of their own group for certain, and the case g′ = 0, for which

we also assume αg0 = 1 since one need not encounter unaffiliated individuals in order to

“join” the unaffiliated “group”.

Given then the utilities Uig′ and exposure probabilities αgg′ , switching for individual i

currently in g occurs in the following way. First, we sort the groups such that g′ is in front

of g′′ if

1. Uig′ > Uig′′ .

2. Uig′ = Uig′′ and αgg′ > αgg′′ .

3. Uig′ = Uig′′ , αgg′ = αgg′′ and λg′ < λg′′ .
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This leaves us with a permutation of groups, denoted by σ(j) where j = 0, 1, . . . ,M − 1.

Then we simply march down the permutation starting with j = 0, at each point determining

whether i chooses group σ(j) via the exposure probability αgσ(j) until she probabilistically

joins a group. This procedure is attempting to assign every individual to her highest utility

group, but only does so if there was sufficient exposure to that group, else the next highest

utility group is attempted, etc. Note that this procedure will always end with i joining some

group, because αgg and αg0 are both 1, so in the extreme case she can always stay in her

current group or become unaffiliated.

Note that if person i spends all her time in in-group activities, which should only occur

if λg = 1, then all the αgg′ are zero except for αg0 and αgg. Such an individual has no

opportunity to switch to any but the unaffiliated group, or simply remain in her current

group. Furthermore, if any group g has λ = 1, then for any other group g′ ̸= g, 0 we

have αg′g = 0. Therefore, the size of a group with strictness 1 will never grow due to

new members joining from the outside, and can only drop if members choose to become

unaffiliated.

3.3 Differential Equation Model for Group Size

Given the dynamics specified above, one could implement a discrete, agent-based model

immediately to observe how the system evolves. Here, we instead cast the problem in terms

of ordinary differential equations, so as to achieve a greater ability to understand the model

analytically. The assumption here is that the overall population size is very large, so that

taking an expectation of the stochastic dynamics may yield a good approximation to the

discrete case.

We assume going forward that no two groups share the same strictness level: λg ̸= λg′

for all g ̸= g′. Then, given the number of groups M and their various strictness levels, each

potential r value from the distribution R(r) can be classified by its permutation σr(j) of the

groups strictly in terms of the utility of the groups to a person with parameter ri = r. As
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such, we can divide the total population into a finite number S of subpopulations, each of

which is labeled by the permutation of groups σ that all members of that subpopulation have

in common. Then our model need only track the number of individuals in group g that are

members of subpopulation σ over time, labeled as ngσ(t). Note that
∑J

σ ngσ(t) = Ng(t).

We define the fraction of the distribution R(r) that encompasses subpopulation σ to be fσ.

Then the differential equation governing the expected value of ngσ(t) is

dngσ

dt
= −ngσ +

M−1∑
g′=0

bg′ [zng′σ + fσ(1− z)Ng′ ] pg′gσ . (3.3)

Here, we have scaled time by the common death rate d, so that bg is now the relative (to

death) birth rate of group g. The new term pg′gσ is simply the probability that when a

person currently in g′ is given the opportunity to switch groups, she switches to group g,

conditional on being a member of subpopulation σ. If group g takes position J in ordering

σ, then

pg′gσ = αg′g

J−1∏
j=0

(
1− αg′σ(j)

)
. (3.4)

That is, in order to choose g given preference σ, one needs to not choose any of the groups

σ(j) with j < J that are higher in the ordering, and then needs to choose to join g, with all

of the probabilities dictated by the various αg′σ(j).

In general it is more convenient to consider the size of a given population relative to

the total population size N , so we now recast (3.3) in terms of new variables ñgσ = ngσ/N

and Ñg = Ng/N . Given that the differential equation for N in time units scaled by the

common death rate d is
dN

dt
= −N +

M−1∑
g′=0

bg′Ng′ ,

we obtain the differential equation

dñgσ

dt
=

M−1∑
g′=0

bg′
([

zñg′σ + fσ(1− z)Ñg′

]
pg′gσ − Ñg′ñgσ

)
, (3.5)
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where the p values are the same as above, and the α values still follow (3.2) but with Nj

replaced with Ñj . In general we will use (3.5) from now on with all tildes dropped, and

all references to sizes of populations will be scaled by total population size, which may or

may not be constant.

3.4 Two Group Case

In this section, we present some analytical results for the simplest non-trivial case, that of

two groups. The groups here are the unaffiliated group labeled 0 and an affiliated group

labeled 1 with some strictness value λ1 = λ > 0. Since there are only two groups, we

only have S = 2 subpopulations with different ordering preferences σ, {0, 1} and {1, 0},

which we will refer to as simply σ0 = 0 and σ1 = 1, respectively. Then, let f1 = f so that

f0 = 1− f1 = 1− f . Finally, note that N0 +N1 = 1.

According to the rules of switching,

1. People can always stay in the original group if they prefer that group. Thus α00 =

α11 = 1. Then p000 = p111 = 1 and p010 = p101 = 0.

2. People can always switch to the unaffiliated group if they prefer it. Thus α10 = 1.

Then p100 = 1 and p110 = 0.

3. People who are originally in group 0 and prefer group 1 can switch to group 1 with

probability

p011 ≡ p = α01 = 1−
[
1− (1− λ)N1

1− λN1

]s
. (3.6)

4. People who are originally in group 0 and prefer group 1 will nonetheless stay in

group 0 with probability p001 = 1− p.

First, consider the case in which all birth rates have the same value, which we set to
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unity without loss of generality. Then (3.5) becomes



dn00

dt
= −n00 + z(n00 + n10) + (1− f)(1− z)

dn01

dt
= −n01 + [zn01 + f(1− z)N0)] (1− p)

dn10

dt
= −n10

dn11

dt
= −n11 + [zn01 + f(1− z)N0] p+ [zn11 + f(1− z)N1]

(3.7)

At equilibrium, then, we clearly have n10 = 0 and n00 = 1 − f . Given that the total

population size adds to unity, we can recast the remaining two equations in terms of a

single variable, which we will choose to be n11 = N1 = n. For notational simplicity, let

K = z + f(1− z) (so f ≤ K ≤ 1). Then at equilibrium we have

dn

dt
= (f −Kn)p+Kn− n ≡ g(n) = 0, (3.8)

where

p(n) = 1−
[
1− n

1− λn

]s
. (3.9)

In the extreme case λ = 1, we have p = 0 so that at equilibrium n = 0 unless K = 1,

which can only happen if f = 1 and/or z = 1. For cases λ < 1, we have the following

result:

Theorem 3.1. If g′(0) = fs(1 − λ) +K − 1 ≤ 0, then the equation dn
dt

= g(n) has only

the trivial equilibrium point n = 0 and it is stable. Otherwise the trivial equilibrium point

becomes unstable and the equation has another stable equilibrium at a point n0 in (0, f).

Proof. To prove our claim, we first note that g(0) = 0 and g(f) = f(1−K)(p(f)−1) < 0

since p(f) < 1 when f < 1. We will then need to take the first and second order derivatives
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of g(n):

g′(n) =(f −Kn)p′(n)−Kp(n) +K − 1 (3.10)

g′′(n) =(f −Kn)p′′(n)− 2Kp′(n) , (3.11)

where

p′(n) =s(1− λ)
(1− n)s−1

(1− λn)s+1
, (3.12)

p′′(n) =s(1− λ)
(1− n)s−2

(1− λn)s+2
[−(s− 1)(1− λ) + 2λ(1− n)] . (3.13)

Therefore,

g′′(n) =s(1− λ)
(1− n)s−2

(1− λn)s+2
((f −Kn) [−(s− 1)(1− λ) + 2λ(1− n)]−

2K(1− n)(1− λn))

=s(1− λ)
(1− n)s−2

(1− λn)s+2
[(2K + (s− 1)(1− λ)K − 2λf)n−

(2K + (s− 1)(1− λ)f − 2λf)]. (3.14)

Note that s(1− λ) (1−n)s−2

(1−λn)s+2 > 0 on [0, 1). Let us consider the function

h(n) = (2K + (s− 1)(1− λ)K − 2λf)n− (2K + (s− 1)(1− λ)f − 2λf), (3.15)

which is a linear function of n. The slope of h can be rewritten as

(1 + λ)K + s(1− λ)K − 2λf ≥ (1 + λ)K − 2λf > 0, (3.16)

since 0 < λ < 1, s > 0, and 0 < f ≤ K ≤ 1. Similarly, the negative intercept of h can be
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rewritten as

2K + sf(1− λ)− (1 + λ)f ≥ 2K − (1 + λ)f > 0. (3.17)

So h(n) is an increasing function that attains 0 at

n∗ =
2K + (s− 1)(1− λ)f − 2λf

2K + (s− 1)(1− λ)K − 2λf
. (3.18)

If s ≤ 1 then since K ≥ f , n∗ ≥ 1. So in this case g′′(n) < 0 on [0, 1) so that g′(n)

is strictly decreasing on [0, 1). So, if g′(0) > 0 there exists one non-trivial zero point n0 of

g(n) on [0, 1) with n0 < f and g′(n0) < 0; otherwise we only have a trivial zero point of

g(n) at n = 0.

If s > 1, then n∗ < 1, so g′(n) is decreasing on [0, n∗) and increasing on (n∗, 1). We

notice that

−h(f) =2K + (s− 1)(1− λ)f − 2λf − f(2K + (s− 1)(1− λ)K − 2λf) (3.19)

=(2K − 2λf)(1− f) + (s− 1)(1− λ)f(1−K) (3.20)

>(2K − 2λf)(1− f) (3.21)

>0 (3.22)

That implies f < n∗. So similar to the first case, we have if g′(0) > 0 there exists one non-

trivial zero point n0 of g(n) on [0, f) and g′(n0) < 0. Furthermore, since g′(1) = −1 < 0,

g′ remains negative on (n0, 1), so there are no other zero points of g in the interval (n0, 1).

If g′(0) < 0 on the other hand, we only have a trivial zero point of g(n) at n = 0.

Theorem 3.2. If g′(0) = fs(1 − λ) + K − 1 > 0, then the non-trivial equilibrium n0

satisfies ∂n0

∂λ
< 0, ∂n0

∂z
> 0, ∂n0

∂s
> 0.
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Proof. Applying implicit function theorem, we have

∂g

∂n
(n0)

∂n0

∂λ
+ (f −Kn0)

∂p

∂λ
(n0) + p(n0)f

′(λ) = 0 (3.23)

∂g

∂n
(n0)

∂n0

∂z
+ (−p(n0) + fp(n0) + 1)n0 = 0 (3.24)

∂g

∂n
(n0)

∂n0

∂s
+ (f −Kn0)

∂p

∂s
(n0) = 0 (3.25)

By Theorem 3.1, we have ∂g
∂n
(n0) < 0. And f −Kn0 > f(1 −K) > 0 since n0 < f .

Note that f is given by the fraction of R(r) for which being in group 1 is preferable to

being in group 0, and is given by

f =

∫ 1/
√
λ

1/2

R(r)dr .

Hence, f ′(λ) < 0. Moreover, the probability

p = 1− (
1− n

1− λn
)s

also satisfies ∂p
∂λ
(n0) < 0. Therefore, according to (3.23), ∂n0

∂λ
< 0.

In (3.24), (−p(n0) + fp(n0) + 1)n0 > 0 as p(n0) < 1. This gives ∂n0

∂z
> 0.

We also notice that since 1−n0

1−λn0
< 1, p is increasing in s implying ∂p

∂s
(n0) > 0. There-

fore (3.25) provides that ∂n0

∂s
> 0.

Summarizing the results above, the group with strictness λ > 0 will only survive as a

finite fraction of the population at equilibrium if fs(1−λ)+f(1−z) > 1−z. Presumably

the inheritance rate z and the parameter s are not under the control of any of the groups,

but λ, and thereby f , are chosen by each individual group. Note that f is decreasing in λ,

so that more strict groups are more apt to have a small population or even die out over time

than less strict groups. And, for any given R, z, and s, there is some maximal strictness

that the group can adopt and still continue to survive in the long run.
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Raising the probability of inheritance z will tend to prevent group 1 from dying out;

see Fig. 3.2. Inheriting the r value from their parents means that the children also have the

same preference as their parents. Hence, if somebody is already in her optimal group, her

descendants who inherit her r value are not going to make any switch, causing the group

to maintain its size from internal birth more so than in cases where inheritance is low. In

an extreme case that z = 1 and everybody can take the r value from her ancestors, at the

equilibrium, everybody will stay in her favorite group.
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Figure 3.2: The size of group 1 at equilibrium is plotted as a function of its strictness λ for
varying values of z, with s = 0.75 fixed and the distribution R(r) chosen at each λ such
that f = 0.5.

Increasing the model parameter s has a similar effect; see Fig. 3.3. That is because the

larger s is, the greater the αgg′’s are, so there is a higher probability for people to switch

to their optimal group. When s goes to∞, α0,1 goes to 1 unless λ1 = 1. In this extreme

case, everybody will end up in their optimal group if λ1 ̸= 1. On the other hand, when s

goes to 0, α0,1 goes to 0. So people in group 0 preferring group 1 are never capable to make

the switch. However, people in group 1 can always become unaffiliated if this is a better

choice. Then group 1 keeps losing people and will eventually die out.

The results above only apply to the case in which the two groups have a common birth
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Figure 3.3: The size of group 1 at equilibrium is plotted as a function of its strictness λ for
varying values of s, with z = 0.5 fixed and the distribution R(r) chosen at each λ such that
f = 0.5.

rate, and show that in some circumstances the strict group will die out. In reality we often

see that stricter religious groups have higher birth rates relative to less strict groups [11,

18]. A high birth rate in the strict group can counteract the fact that there is relatively

low conversion of external individuals to the group, given low exposure to the group and

possibly an inherently smaller fraction of the population for whom such a strict group

is ideal. This in turn could potentially allow a stricter group to continue to survive by

increasing its internal growth rate. Therefore, we now consider the case in which group

0 retains birth rate 1, but group 1 has birth rate b ≥ 1. Then the differential equations

governing the fractional populations are



dn00

dt
= z(n00 + bn10) + (1− f)(1− z)(N0 + bN1)(1− n00)

dn01

dt
= [zn01 + f(1− z)N0)] (1− p)− (N0 + bN1)n01

dn10

dt
= −(N0 + bN1)n10

dn11

dt
= [zn01 + f(1− z)N0] p+ b [zn11 + f(1− z)N1]− (N0 + bN1)n11

(3.26)

As in the case above, we again find that at equilibrium n10 = 0, so we can cast the equi-
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librium equations in terms of n11 = N1 = n, with N0 = 1 − n still. After some algebraic

manipulations we find that the population n at equilibrium satisfies

{
−K(b− 1)n2 + n [(b− 1)(Kz + f(1− z))−K(1− z)] + f(1− z)

}
p(n)+{

−(b− 1)2n2 + n(b− 1)(bK + z − 2) + (1− z)(bK − 1)
}
n = gb(n) = 0 . (3.27)

Then the following result holds:

Theorem 3.3. For any 0 < λ ≤ 1, there exists a minimal birthrate bmin that allows for

survival of the stricter group at equilibrium.

Proof. Note gb(0) = 0, while gb(1) = b(K − 1) < 0. Then if g′b(0) > 0, gb must have at

least one root on the interval (0, 1). The derivative

g′b(0) = fs(1− λ) + bK − 1 .

So, if b > bmin ≡ [1− fs(1− λ)] /K, the stricter group can survive with a finite fraction

of the population at equilibrium.

The result above highlights the fact that for very strict groups, a higher than average

birthrate may be necessary for long term survival, but also guarantees that this is always

possible, at least in the case of two groups. Also, bmin is increasing in λ, so the stricter

a group wishes to be, the greater the birthrate necessary for survival, assuming the group

could not survive at b = 1. Finally, note that the largest possible value of bmin, occurring

at λ = 1, could not be greater than 1/z, so any group with a birthrate higher than this is

guaranteed to survive regardless of their λ. Fig. 3.4 illustrates that if the strict group has a

higher birth rate, while all the other parameters are fixed, it can still survive.
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Figure 3.4: The size of group 1 at equilibrium is plotted as a function of its strictness λ for
varying values of b, with s = 0.75 and z = 0.5 fixed and the distribution R(r) chosen at
each λ such that f = 0.5.

3.5 Three or More Groups

In the previous section, we determined the conditions under which a single group with pos-

itive strictness level may survive at equilibrium alongside the unaffiliated group. Of course,

in the real religious marketplace, many groups simultaneously coexist, so one would ide-

ally want to analyze multigroup cases within the context of our model. Unfortunately, the

model’s complexity increases very rapidly with the number of groups due to two main fac-

tors: the possibility of inheritance of r values and the rapid growth in the number of group

preference orderings σ with number of groups M .

For example, consider now a scenario where M = 3. Then there are four different σ

orderings of the groups that can occur: σ0 = {0, 1, 2}, σ1 = {1, 0, 2}, σ2 = {1, 2, 0}, and

σ3 = {2, 1, 0}. Given an inheritance level z ̸= 0, we must keep track of the number of in-

dividuals of each ordering within each of the three groups, leading to a twelve-dimensional

system, which can be reduced by one dimension down to 11 due to the constraint that the

total population size is 1. Due to the dynamics of group switching, some of the subpopula-

29



tions will simply exponentially decay, namely n10, n20, and n21, leaving us with effectively

an eight-dimensional system for the case of only three groups. This unfortunately makes

analytical work even for this small number of groups quite difficult. We therefore pro-

ceed using numerical simulations, a method that has been used before to study religious

markets and the dynamics of religious group growth [15, 16, 19]. We solve the ode (3.3)

numerically with the initial condition such that everybody starts in their favorite group and

determine that the equilibrium is reached if the numerical derivative at this point is smaller

than a very small threshold.

Consider first the results presented in Fig. 3.5, where we explore the equilibrium sizes of

each of three groups as the strictnesses of the two affiliated groups vary, given the dynamics

of (3.5) and an initial condition in which all groups are equally sized. In each figure, we

fix the strictness value of one of the groups, which we refer to as the “preexisting” group,

and plot the equilibrium group sizes as a function of the strictness of the third group, which

we refer to as the “new” group; this choice of terminology will be explained below. In all

cases, we have chosen parameter values s = 3 and z = 0.5, use uniform birthrates, and

use a lognormal distribution for R so that r − 1/2 ∼ Lognormal(µ, v2), where µ = −1/2

and v = 2. The last assumption reflects the fact that income distributions are typically

understood to be lognormal [20], and our R distribution can be interpreted as capturing

the value of outside-group activities including work for pay. In the two group case, these

parameters and distribution would allow a single group with strictness up to approximately

0.83 to survive alongside the unaffiliated group, without the need to increase their birthrate

beyond the baseline value. We will refer to this strictness value as the absolute maximal

strictness in our discussions below.

Some immediate observations stand out from Fig. 3.5. First, if the strictness of the

new group is too high, they cannot sustain their population and eventually die out, which

is to be expected. Further, the maximal strictness value that the new group can adopt and

still survive is always less than the absolute maximal strictness of 0.83, again as expected.
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Figure 3.5: Equilibrium sizes of three groups as the strictnesses of the two affiliated groups
vary. In all cases, s = 3, z = 0.5, birthrates are uniform, and the distribution R is lognormal
with parameters given in the text. (Left) The preexisting group has strictness 0.25; (Center)
the preexisting group has strictness 0.50; (Right) the preexisting group has strictness 0.75.

Perhaps less obvious, though, is the fact that the maximal strictness the new group can adopt

is not monotonic in the strictness of the preexisting group. When the preexisting group has

rather low strictness, the new group may adopt relatively high strictness values and still

survive, and as the strictness of the preexisting group increases toward approximately 0.5

in this case, the maximal strictness of the new group is reduced. But, as the strictness of

the preexisting group rises above 0.5, the maximal strictness of the new group also rises.

Another observation is that, as the strictness of the preexisting group increases, its

maximal possible size at equilibrium decreases, as expected; with higher strictness fewer

people rank the group highly in their group ordering, and it is less probable for those who

do to join the group given the probabilities α. But, more interestingly, the minimal possible

size – over strictnesses of the new group – of the preexisting group is not monotonic in the

preexisting group’s strictness. When the preexisting group’s strictness is very low, a new

group with only a slightly higher strictness value will steal most of the members from the

preexisting group, making the lowest size for the preexisting group quite small. Similarly,

if the preexisting strictness is quite high, any sufficiently low strictness for the new group

will completely eliminate the preexisting group. On the other hand, when the strictness of

the preexisting group is more moderate – say near 0.5 in this case – their minimal size is

still a relatively large fraction of the overall population.

These two observations become quite important when we imagine groups choosing
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their strictness levels in a strategic way. Consider a scenario in which only a single, pre-

existing group exists alongside the unaffiliated group. We might imagine that this group is

free to choose whatever strictness level it would like for itself, but should do so in a way

that will optimize some objective function. Suppose that the group’s main concern is that

it have a high membership. Then, if this preexisting group were to ignore the possibility

of any new groups forming or breaking away from it, it ought to choose an arbitrarily low

strictness level, and thereby recruit almost everyone. However, this choice would leave the

preexisting group very vulnerable should a third group form, since, as observed above, the

new group could easily steal away almost all of the preexisting groups members by choos-

ing its own strictness carefully. To guard against this, then, the preexisting group should

instead choose a somewhat moderate strictness value, such that a new group entering would

a) have fewer possible strictness values to choose from in order to survive and b) have a

minimized possible impact on the size of the preexisting group. Note that this finding is

similar that those found in prior studies [8, 9] but with the added twist that the new group

must avoid being too strict to prevent from eventually dying out due to loss of members

by insufficient births into the group. We thus see strong market pressures toward moderate

religion that can only be countered with sufficiently high birth rates in the strictest groups.

More insights into the behavior of the three group case can by seen by examining

Fig. 3.6. Here, we display the rates at which individuals transition between the three groups

– given by the numbers displayed above the corresponding arrows – and at which they are

retained from the births within the group – given by the numbers on the loops starting and

ending on the same group – once the system has reached equilibrium. Initial conditions

are that every ngσ has an equal size, and the equilibrium group sizes are N0 ≈ 0.344,

N1 ≈ 0.429, and N2 ≈ 0.228. In this case, we have employed the same lognormal R(r)

distribution used to construct Fig. 3.5, have chosen s = 5 and z = 0.5 with constant birth

rates, and chosen strictness levels for the two affiliated groups such that the fraction of peo-

ple who rank each group at the top of their ordering is equal for all three groups. Because
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Figure 3.6: Scaled flowrates of newly born individuals between groups or remaining within
a given group at equilibrium. See text for parameters used in this simulation.

of this, no group in this case has an inherent advantage merely due to the number of people

who might prefer that group above all others, which causes the resulting dynamics to be

more dominated by the probabilities of switching directly.

Figure 3.6 reveals an interesting behavior not seen in prior models. Note that there is

a greater flow from the high strictness group to unaffiliated than from high strictness to

moderate strictness. Prior models based purely on ideal strictness levels [7, 8, 9] would

generally predict the opposite, as individuals from the highest strictness group would tend

to choose the next lowest strictness group when switching groups instead of choosing to not

affiliate with any group. In our model, however, the transition probabilities greatly affect

the model outcome. It is much more likely for a member of the high strictness group to

transition to the unaffiliated group than the moderate group, all else being equal, because

the individuals who are dissatisfied in the high-strictness group do not get enough exposure

to the moderate group to make switching to that moderate group likely. The dissatisfied
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individuals become unaffiliated because that option is the only alternative that is assumed

to not require prior exposure.

Moving beyond three groups, the system becomes ever more complex and even simple

numerical experiments become unwieldy as there are too many parameters to vary. But,

as an example, we do provide simulated results in the case of eight groups here. For these

simulations, a lognormal R(r) was chosen, and the strictnesses of the eight groups are

selected such that each of the eight groups has an equal fraction of the population that

ranks that group most highly. We use initial conditions such that every subpopulation is

equally sized, and plot equilibrium sizes of the eight groups as functions of s (with z fixed

at 0.5) and z (with s fixed at 2) in Fig. 3.7. As is clear from Fig. 3.7, the relative sizes

of the groups at equilibrium varies significantly with s and z. Some interesting patterns

are evident. For example, some of the low strictness groups are among the smallest in

size, despite the fact that they are equally as preferred as other groups and generally more

probable to join. Specifically, the group with strictness 0.001 has a smaller population than

the group with strictness 0.003 under all parameters tested. Similarly, the 0.015 strictness

group has a smaller size than the 0.035 group under many parameters combinations. This

may be related to the phenomenon observed in the three group case, whereby a group could

steal away many members from a low strictness group by having a slightly higher strictness

value. At the higher end of the strictness scale, we find that the general trend is that the

highest strictness group does quite poorly, while the next two highest groups can do very

well. The origin of this effect is a bit clearer. For smaller s or z values, the 0.107 strictness

group evidently picks up all of the individuals who prefer it or the two highest groups; in

these parameter regimes, the lower α values for switching to the highest two groups cause

them to die out. But, as s or z is increased, the probability for joining the strictness 0.252

group increases enough so that it now is able to recruit many of those who prefer it, as well

as those that prefer the highest strictness group, all at the expense of the strictness 0.107

group, whose size drops accordingly.
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Figure 3.7: Equilibrium sizes for a system with eight groups, as parameters s or z varies.
When not varying, s = 2 and z = 0.5. The distribution R(r) is lognormal, and strict-
nesses are chosen such that every group is ranked most highly by an equal fraction of the
population. Initial conditions set each subpopulation to an equal size.
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CHAPTER 4

NASH EQUILIBRIUM IN SIMULTANEOUS-MOVE TWO-GROUP GAMES

We now move to a higher level case where groups have the flexibility to choose their strict-

ness levels. There might be various types of groups with different utility functions and they

compete with each other. The strictness level of each group will be selected strategically in

order to maximize its own utility function in the group competition.

It is assumed that there are three types of groups:

Type A This type of group cares about the group production contributed by its members.

Its utility function is the average time spent in group activities.

Type B This type of group is concerned about its membership or size, hence the utility

function is the population of the group.

Type C This type of group would like to help everybody in the society to optimize their

payoffs. So its utility function is the average individual payoff over the whole popu-

lation.

The same simplification of the model as we discussed in the previous chapter is applied

here. Groups will have a sufficiently large punishment level β to deter free-riding and we

have the approximation that all the members of a group will play ti = λ. Therefore, the

goal of Type A groups is simplified to maximizing its strictness λ.

We are going to consider the simultaneous-move game between two groups of different

types (A vs B, A vs C, B vs C). Through the choice of strictness λ, each group is trying to

optimize the group payoff. However, due to the presence of the other group, the group goal

might be affected, which makes the problem game-theoretical. The main objective of this

chapter will be to study the Nash equilibrium of the two-group game.
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4.1 Stationary Model

4.1.1 Two-Group Game without Unaffiliated Group

We start the discussion with a simple scenario, where there are only 2 groups and everybody

can switch to her optimal group. We recall that since the individual payoff Uig in group g

is

Uig =
√

λg + ri(1− λg),

if λg < λg′ , then people with r > rgg′ = 1/(
√
λg +

√
λg′) will prefer group g to g′, while

people with r < rgg′ will prefer group g′ to g.

If group g has the same strictness level as g′, we distinguish these two groups in the

following way. The cutoff rgg′ can be considered as the limit when the strictness λg ap-

proaches λg′ from the left. So people with r > 1/(2
√
λg) are in group g while people with

r < 1/(2
√
λg) are in group g′. We refer to this scenario as undercutting. Alternatively, λg

can approach λg′ from the right, leaving people with r < 1/(2
√

λg) in group g while peo-

ple with r > 1/(2
√

λg) in group g′. This scenario is denoted as overcutting. The analysis

below shows that undercutting or overcutting make no difference in the utility functions of

a Type A or Type C group as the utilities are continuous. For a Type B group, its payoff

when λg = λg′ is assumed to be the larger of the one by undercutting and by overcutting so

that its utility is upper semi-continuous, as required by the proofs of Theorems 4.1 and 4.2.

To study the Nash equilibrium, we need to analyze the response of group strictness λ

given the strictness level of the other group λg. The objective function of Type A group

is independent of the choice of the other group. Hence the response of Type A group will

always be λ = 1 regardless of the value λg.
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Given λg, the utility function of Type B group with strictness λ becomes

UB(λ) =



∫∞
rg

R(r)dr if 0 ≤ λ < λg;

max(
∫∞
1/(2
√

λg)
R(r)dr,

∫ 1/(2
√

λg)

1/2 R(r)dr) if λ = λg;∫ rg
1/2

R(r)dr if λg < λ ≤ 1,

(4.1)

where rg = 1/(
√

λg +
√
λ) is the cutoff value of these 2 groups. If λ ≤ λg, to maximize

UB equates to minimizing the lower bound of the integral rg, which is further equivalent

to maximizing λ. So Type B group will undercut group g. On the other hand, if λ > λg,

a similar analysis suggests that type B group will overcut group g. The optimal payoff of

Type B group will be the larger of UB(λ
−
g ) and UB(λ

+
g ).

The objective function of Type C group with strictness λ is

UC(λ) =



∫ rg

1/2

R(r)[
√

λg + r(1− λg)]dr+∫ ∞

rg

R(r)[
√
λ+ r(1− λ)]dr

if 0 ≤ λ < λg;

∫ rg

1/2

R(r)[
√
λ+ r(1− λ)]dr+∫ ∞

rg

R(r)[
√
λg + r(1− λg)]dr

if λg < λ ≤ 1.

(4.2)

Since everybody is able to switch to her favorite group, after introducing a Type C group,

the members of this group are the only ones who have an increase in their payoffs. There-

fore, the group goal can also be understood as to maximize the total increase in the payoffs
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of those who join it from outside. So UC(λ) can be rewritten as

UC(λ) =



∫ ∞

1/2

R(r)[
√

λg + r(1− λg)]dr+∫ ∞

rg

R(r)[
√
λ−

√
λg + r(λg − λ)]dr

if 0 ≤ λ < λg;

∫ ∞

1/2

R(r)[
√

λg + r(1− λg)]dr+∫ rg

1/2

R(r)[
√
λ−

√
λg + r(λg − λ)]dr

if λg < λ ≤ 1.

UC(λg) is a continuous function. It is clear that undercutting or overcutting other groups

by choosing the same strictness will give a Type C group no increase in the payoff of its

members. Conversely, choosing a different strictness can at least attract and benefit some

fraction of the population. Therefore UC gets the global minimum at λ = λg.

Moreover, thanks to the fact rg = 1/(
√

λg +
√
λ),

U ′
C(λ) =


∫∞
rg

R(r)[ 1
2
√
λ
− r]dr if 0 ≤ λ < λg,∫ rg

1/2
R(r)[ 1

2
√
λ
− r]dr if λg < λ ≤ 1.

We notice that limλ→0 U
′
C(λ) = ∞, U ′

C(1) < 0 as r ≥ 1/2 and λ = λg is the global

minimum of UC , so UC attains the maximum on (0, λg) at λ1 and the maximum on (λg, 1)

at λ2 where λ1 and λ2 are zero points of U ′
C(λ). The optimal payoff of Type C group should

be the larger of UC(λ1) and UC(λ2). This group will choose between λ1 and λ2 whichever

makes UC larger. As λg varies, the global maximum might switch from one interval to the

other. Hence the response of Type C group might not depend continuously on the given λg.

Based on the analysis above, we are able to study the Nash equilibrium of this two-

group game. In the game between a Type A group and a Type B group, Type A group

will respond λA = 1 at all time. In the meantime, Type B group will either undercut or

overcut the Type A group. The cutoff point of r now becomes 1/(
√
λA +

√
λB) = 1/2. As

r ≥ 1/2, Type B group will undercut Type A group by choosing λB = 1−, taking all the
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population and eliminating its competitor completely.

The game between Type A group and Type C groups also has a pure Nash Equilibrium,

λA = 1 and

λC = arg max
λ∈[0,1)

∫ rg

1/2

R(r)dr +

∫ ∞

rg

R(r)[
√
λ+ r(1− λ)]dr

where the cutoff rg = 1/(1 +
√
λ). Type C group will choose a lower strictness than λA to

attract a fraction of the total population and raise their payoffs.

There is no pure Nash Equilibrium in the simultaneous-move game between Type B

and Type C groups. It is known that Type B group prefers the same strictness as the other

group while Type C group would rather have a different one. As a result, at no point in

[0, 1] × [0, 1] will both groups be at a utility maximum simultaneously, so there cannot

be a pure Nash Equilibrium. Theorem 4.1 guarantees the existence of the mixed Nash

equilibrium.

Theorem 4.1. There exists mixed Nash equilibrium of the game between Type B and Type

C groups

G = ([0, 1]× [0, 1], (UB, UC))

where UB and UC are defined in (4.1) and (4.2).

The proof of Theorem 4.1 can be found in the Appendix. To illustrate the mixed Nash

equilibria, we discretize the strategy space [0, 1] and approximate the game G by finite

games. We use Lemke-Howson algorithm [21, 22, 23] to compute the mixed Nash equilib-

ria of the finite approximation. Fig. 4.1 presents the mixed Nash equilibrium when the r

distribution is r − 1/2 ∼ Lognormal(µ, σ2) with µ = −1/2 and σ = 2, the same as in the

previous chapter. Type B group tends to choose a strictness near 0 while Type C group has

a probability around 0.41 to choose λ slightly above 0, a probability around 0.53 to choose

λ ≈ 0.455 and some very small probabilities to choose λ in between these two values.
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Figure 4.1: Mixed Nash equilibria of finite approximation of game B vs C. Stationary
model without unaffiliated group is used. (Left) Strategy of Type B group; (Right) Strategy
of Type C group.

4.1.2 Two-Group Game with Unaffiliated Group

In this subsection, the unaffiliated group is taken into consideration. It is assumed that a

small minimum strictness level λmin exists in order to prevent overcutting of the unaffiliated

group.

Given the strictness levels of the three groups, 0 = λ0 < λg < λg′ , there are 2 cutoff

points r0g = 1/
√

λg and rgg′ = 1/(
√

λg +
√

λg′). The unaffiliated group will take the

population with r > r0g, group g will have the population with rgg′ < r < r0g and group g′

will contain the rest.

The response of Type A group will still be λ = 1 in this case. The utility function of

Type B becomes

UB(λ) =



∫ r0
rg

R(r)dr if λmin ≤ λ < λg;

max(
∫ 1/λg

1/(2λg)
R(r)dr,

∫ 1/(2λg)

1/2
R(r)dr) if λ = λg;∫ rg

1/2
R(r)dr if λg < λ ≤ 1,

(4.3)

where r0 = 1/
√
λ and rg = 1/(

√
λg +

√
λ). On the closed interval [λmin, λg], the max-

imum of UB can either be attained at the endpoints or at a point λ∗ in the interior where
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U ′
B = 0. Hence the choice of Type B group will be the best of the following

1. λ = λmin, the minimum of allowed strictness levels;

2. λ = λ∗ ∈ (0, λg) if UB has local maxima on (0, λg);

3. λ = λ−
g to undercut group g;

4. λ = λ+
g to overcut group g.

After adding the unaffiliated group, the utility function of Type C group becomes

UC(λ) =



∫ rg

1/2

R(r)[
√

λg + r(1− λg)]dr+∫ r0

rg

R(r)[
√
λ+ r(1− λ)]dr +

∫ ∞

r0

R(r)rdr

if λmin ≤ λ < λg;

∫ rg

1/2

R(r)[
√
λ+ r(1− λ)]dr+∫ r0g

rg

R(r)[
√

λg + r(1− λg)]dr +

∫ ∞

r0g

R(r)rdr

if λg < λ ≤ 1.

(4.4)

Since undercutting group g will never benefit Type C group, similar results apply here that

the response of Type C group is the better of the local maximum point on [λmin, λg) and

the local maximum point on (λg, 1].

We investigated the Nash equilibrium of this two-group game using some lognormal

distributions r − 1/2 ∼ Lognormal(µ, σ2). The minimum strictness λmin is 0.001. If Type

A group is in the game, it will always set its strictness λA to 1 regardless of the choice of

the other groups. Fig 4.2 shows the optimal choices of Type B and Type C groups given

that λA = 1 as µ and σ vary. When σ is small, the r values are close to the mean value. It

is easy to attract most people by placing the strictness level close to the average preferred

strictness. As µ grows, people tend to prefer less strict groups. So the response of Type B

group λB drops continuously from 1− to λmin. On the other hand, when σ is big, r values

are more widely spread. Putting strictness in (λmin, 1) might not be so appealing to Type B

group. Thus it instead chooses λB = 1− for small µ values and λB = λmin for big µ values.
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The response of Type C group λC decreases both in µ and in σ. That is because, when µ

increases, Type C group can obtain a larger population by choosing a smaller strictness;

when σ increases, more people prefer the Type A group, therefore Type C group will lower

its strictness to benefit more people from the unaffiliated group.
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Figure 4.2: Contour plots of the optimal choices of Type B and Type C groups given that
λA = 1 as µ and σ vary. (Left) Type B group; (Right) Type C group.

Theorem 4.2 guarantees the existence of the mixed Nash equilibrium in the game be-

tween Type B and Type C groups as long as λmin is sufficiently small. The proof is in the

appendix.

Theorem 4.2. There exists λ∗ > 0 such that if λmin < λ∗ then there exists mixed Nash

equilibrium of the game between Type B and Type C groups

G = ([λmin, 1]× [λmin, 1], (UB, UC))

where UB and UC are defined in (4.3) and (4.4).

However, there may also exist pure Nash equilibria in the game between Type B and

Type C groups. For example, with the same lognormal distribution of R as in the previous

discussions, namely r − 1/2 ∼ Lognormal(µ, σ2) with µ = −1/2 and σ = 2, there exists

a pure Nash equilibrium. Fig 4.3 shows the optimal responses of Type B group and Type C
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group as λg varies. The two curves intersects at (λB, λC) = (0.001, 0.382), which is a pure

Nash Equilibrium.
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Figure 4.3: The responses of Type B group and Type C group as λg varies and a zoomed-in
version near the intersection. The blue line presents the response λC in the vertical axis
given λB. The red line shows the response λB in the horizontal axis given λC .

4.2 Dynamic Model

In this section, we investigate the best responses of all types of groups given the strictness

of the other group λg on the prior dynamic model that assumes birth, death and inheritance

among group members and allows each individual to have one chance in their lifetime to

change their affiliation. The initial condition is chosen so that everybody is in their favorite

group.

We choose parameter values s = 3 and z = 0.5, use uniform birthrates, and use a

lognormal distribution for R so that r − 1/2 ∼ Lognormal(µ, σ2), where µ = −1/2 and

σ = 2. The minimum allowed strictness for any affiliation is λmin = 0.001. In the dynamic

model, the λ that maximize the group utility might possibly lead to zero population at the

equilibrium, but the group goal will never be accomplished in an empty group. As a result,

it is assumed as well that groups will attempt to maintain a minimum population ϵ = 0.01

in addition to optimizing their goals. We recall here that in the case with the unaffiliated

group and an affiliated one, a single group with strictness up to approximately 0.83 is able
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to survive alongside the unaffiliated group under these parameters and distribution. This

strictness is referred as the absolute maximal strictness.

Fig. 4.4 presents the optimal responses of all types of groups. The immediate observa-

tion comes out that if λg is larger than the absolute maximal strictness, it will be eliminated

in the game. In this case, each type of group is able to perform their optimal choice assum-

ing that only the unaffiliated group is present. So type A group will choose approximately

0.83; type B group will undercut the unaffiliated group from the right; and type C group

will select around 0.31.

The choice of Type A group λA depends continuously on λg, but not monotonically.

When λg is close to 0, λA is close to the absolute maximal strictness. As λg grows, Type

A group tends to lower its strictness at first. By doing so, this group will still maintain a

considerable fraction of the population that prefers it in order not to die out in the group

competition. When λg gets beyond approximately 0.58 but less than the absolute maximal

strictness, the best choice of Type A group becomes to undercut the other group. Any

strictness above that will result in a group population smaller than the threshold ϵ.

There is no continuous relationship between λB and λg. A small λg will cause type B

group to overcut it, stealing most of its members. When λg grows to around 0.5, it is more

appealing for type B group to select λmin instead. For an even larger λg, a choice between

0 and λg will give the largest population. This can also be seen in Fig. 3.5. If we view

the preexisting group as group g and the new group as the Type B group, then the figure

shows the population at the equilibrium with λg in 0.25, 0.5, 0.75 and λB varying in [0, 1].

It is clear from the figure that when λg = 0.25, the optimal response is λB = 0.25; when

λg = 0.5, the optimal response becomes λB = 0; when λg = 0.75, the optimal response

lies near 0.1.

Type C group still will not pick the same strictness as other groups, which is as ex-

pected. Type C group will choose approximately 0.31 if there is only the unaffiliated group

existing. We refer to this baseline strictness as λ∗
C . When 0 < λg < 0.22, the response
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λC > λ∗
C ; when 0.22 < λg < 0.83, the response λC < λ∗

C . When λg > 0.83, λC = λ∗
C

as the group g dies out. Comparing this with the response in the stationary model in Fig.

4.3, we have several observations. (1) With λg being small, Type C group tends to be more

strict in the stationary model. In the dynamic model, the probability α to switch to a high

strictness group is comparatively small, so Type C group needs to lower its strictness to in-

crease the chance of each individual switching to their optimal group in order to maximize

the group objective; (2) with a relatively larger λg around 0.7, the response in the dynamic

model is larger. That is because in this case, group g will have a much smaller size at the

equilibrium in the dynamic model than in the stationary model. A slightly larger strictness

will benefit those who prefer group g but end up on the Type C group.
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Figure 4.4: Optimal responses of the three types of groups as the strictness λg varies. In
all cases, s = 3, z = 0.5, birthrates are uniform, and the distribution R is lognormal with
parameters given in the text. (Left) the response of Type A group; (Center) the response of
Type B group; (Right) the response of Type C group.

By combining the responses of two different types of groups in one figure, we are able

to analyze the pure Nash equilibrium of the game by looking at the intersection of response

curves in Fig. 4.5. There is an intersection of the curves of Type A group and Type B group

around (λA, λB) = (0.587, 0.5), which is a pure Nash equilibrium of the game between

these two groups. Clearly no intersections exist in the figure A vs C or B vs C, which

implies that there are no pure Nash equilibria in the game involving Type C group. We

use Lemke-Howson algorithm to obtain mixed Nash equilibria of finite approximations

of games A vs C and B vs C respectively, as shown in Fig. 4.6. In the game A vs C,

Type A group chooses strictness levels in the interval [0.65, 0.71], while Type C group has
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a very large probability to play 0.185. In the game B vs C, the average strictness of the

strategy of Type B group is 0.27 while the average strictness of the strategy of Type C

group is 0.37. It is notable that the Nash equilibria of the games on the dynamic model are

obtained assuming that once the group strictnesses are selected, they will never be changed.

However, in the real religion market, groups can change their strictness levels over time,

leading to more complicated results.
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Figure 4.5: Responses of two of the three groups to various λg. In all cases, s = 3, z = 0.5,
birthrates are uniform, and the distribution R is lognormal with parameters given in the
text. (Top) the response of Type A and Type B group and the zoomed-in version near the
region where the two curves are close; (Bottom Left) the response of Type A and Type C
group; (Bottom Right) the response of Type B and Type C group.
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Figure 4.6: Mixed Nash equilibria of finite approximations of games A vs C and B vs C.
Dynamic model is used. (Top Left) Strategy of Type A group in the Game A vs C; (Top
Right) Strategy of Type C group in the Game A vs C; (Bottom Left) Strategy of Type B
group in the Game B vs C; (Bottom Right) Strategy of Type C group in the Game B vs C.
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CHAPTER 5

SIMULATIONS ON SEQUENTIAL STACKELBERG GAMES

In the previous chapter, we analyzed the strategies of choosing strictness of various types

of groups in the game of two or three groups which come into existence simultaneously.

However, in the real religious marketplace, new affiliations are founded one at a time and

enter the market sequentially and successively. In this chapter, we are going to present

several simulation results of such procedures.

We will consider the same three types of groups as in the previous chapter. Originally

everybody is unaffiliated, in other words, there is only the unaffiliated group. The groups

then come into the marketplace sequentially. Each group has to take a different strictness

level from all the other existing groups in the market in order to distinguish itself. The

prioritized goal of all the group is to maintain a size above some population threshold ϵ

because if a group becomes too small, there is a high probability that it will disappear com-

pletely, given the group switching rules of the model. Once groups meet the requirement

of minimum population, they will maximize their own utilities. Moreover, when a group

is joining the marketplace, it thinks one more step ahead that there will be another group

following it. We refer to these two groups as the current group and the following group,

respectively, for short. The following group has an equal chance to be any one of the con-

sidered types. For example, if it is assumed that all the groups are of Type B, then the

following group can only be a Type B group; if all three types are taken into account, then

the following group has 1/3 chance to be each of those three types. The following group

also prioritizes getting a size at least ϵ. Given a λ value of the current group, the optimal

strictness of the following group λopt
foll of any given type can be calculated numerically.

The current group then chooses a strictness level λopt
curr that can maximize the expectation

of its utility function given λopt
foll of each type while keeping the size above ϵ. The whole
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procedure can be viewed as a series of Stackelberg games [24].

It is also assumed that after a group enters, the groups that die out will be removed from

the market. So a new group can retake the same strictness as a previous group that has been

eliminated before. We remark here that the current group will not come to the marketplace

if no λ values can satisfy the minimum population condition. In addition, a Type C group

will also not enter if existence of this group will lower the average payoff of individuals

within the society, that is, if its maximum utility is negative, as this is against the goal of a

Type C group.

We discretize the domain of λ into meshes and only allow groups to choose the λ

values on the grid points denoted by the points Λ. We refer to the set of strictnesses of

all the previous groups that have not died out by Λactive. The minimum possible strictness

λmin of any affiliation is automatically given by the mesh. The algorithm for adding one

group is presented in Algorithm 5.

5.1 Stationary Model with Switching Penalty

We first simulate this procedure using the “stationary multigroup model”. We do not take

birth, death, or inheritance into account. Further, we allow everybody to switch groups infi-

nite times, but individuals will only switch to a group with a utility higher than their current

group. Specifically we also introduce a penalty p in group switching. People will switch

to a new group only if they can gain p more there. This is done to prevent undercutting

and overcutting to some extent. Otherwise, a new group of the same type as a pre-existing

group could under or over cut them and gain all of their members, without really offering

anything new to those individuals. This penalty term also causes this stationary model to

exhibit some history dependence, as the order in which group arise will affect where in-

dividuals end up; this would not happen in a penalty-free model if infinite switching were

allowed. The cutoff r value for members of a preexisting group to switch to a new group is
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Algorithm 5.1 Algorithm of adding one group in the simulation of sequential Stackelberg
games.

for λcurr in Λ− Λactive do
if The population of current group is below ϵ then

continue
end if
for Group type of following group in set of group types do

for λfoll in Λ− Λactive − {λcurr} do
Evaluate the goal of following group Ufoll. Goal is −∞ if population is below ϵ.

end for
Obtain λopt

foll and U opt
foll in the for loop.

if λopt
foll exists then

Evaluate the goal of the current group Ucurr,type given λopt
foll. Goal is −∞ if pop-

ulation is below ϵ.
else

Evaluate the goal of the current group Ucurr,type without λopt
foll. Goal is −∞ if

population is below ϵ.
end if

end for
Ucurr ← the average of all the Ucurr,type’s

end for
Obtain λopt

curr and U opt
curr in the for loop. λopt

curr does not exist if no groups can be added.
if λopt

curr exists then
Λactive ← Λactive ∪ {λopt

curr}
end if
Remove the strictnesses of all the groups with zero population from Λactive

51



given by

r =

√
λpreexisting −

√
λnew + p

λpreexisting − λnew

.

We note that if λpreexisting is fixed, r does not decrease monotonically as λnew grows in

some neighborhood of λpreexisting, unlike the penalty-free switching. This means that in

some extreme cases a group can choose its strictness between 2 other preexisting groups

and eliminate one of them as shown in the example below.

Suppose 4 groups with strictnesses λ1 = 0.04, λ2 = 0.033, λ3 = 0.004, λ4 = 0.021

are sequentially added, with penalty p = 0.01. The r ranges of people in each group after

a group is added are listed in Table 5.1. Note that, after the joining of the fourth the group,

the second group dies out. The second group will survive in this scenario if there is no

penalty in switching.

Table 5.1: An example of the stationary model with switching penalty where a group joins
between two other groups and eliminates one of them. The intervals in the cells indicate
the range of r values in each group.

With switching penalty First Group Second Group Third Group Fourth Group
After the Third Group Joins (0.5, 4.05) (4.05, 4.43) (4.43, 13.31)
After the Fourth Group Joins (0.5, 3.43) ∅ (4.43, 13.31) (3.43, 4.43)

Without switching penalty First Group Second Group Third Group Fourth Group
After the Third Group Joins (0.5, 2.62) (2.62, 4.08) (4.08, 15.81)
After the Fourth Group Joins (0.5, 2.62) (2.62, 3.06) (4.80, 15.81) (3.06, 4.80)

The following r distribution is used in the simulation: r − 1/2 ∼ Lognormal(µ, σ2)

with µ = −0.5 and σ = 2. The population threshold is ϵ = 0.01 and the penalty term is

p = 0.01. The λ domain is discretized evenly into 1000 parts such that all the feasible λ’s

are a positive multiple of 1/1000.

We first assume that all the groups that will join the marketplace are of the same type.

In this simulation, when a groups thinks one more step ahead, it only needs to consider a

group that has the same type as itself. The simulation terminates if no group can be added.

Fig.5.1 shows the strictnesses of the group added at each step and their final sizes for all

the three types.
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Seventy-six Type A groups can coexist under this distribution. The first Type A group

being added has strictness λ = 1. When the first type A group is added, it takes around

0.458 of the population leaving 0.542 to the unaffiliated one. All the following groups have

to locate themselves between two existing groups and tend to be as close to the stricter one

as possible. We observe that the strictnesses of following groups decreases monotonically

until no more groups can be added. The sizes of some groups still drop below the threshold

ϵ. That is because when a group joins the market, it does not consider that there is a

second group coming after the following group. However when the following group is

being added, it does consider the second group. So in order to survive, the λ value that the

following group chooses might be a little bit smaller than what the current group thinks.

As the r cutoff of the current group with λcurr and a following group with λfoll does not

depend monotonically on λfoll when a switching penalty exists, an even smaller λfoll might

harm the size of the current group instead of helping it. For example, the second group has

strictness 0.978 and thinks the third group will play 0.957. But the third group instead

chooses 0.956, making the population of the second group drop from 0.011 to 0.002.

Unlike Type A groups, only nine Type B groups can be added to the marketplace.

The strictness of the first Type B group is λ = 0.311. The Type B groups that join later

just select a strictness level in between other preexisting groups attempting to maintain a

minimum population while maximizing their size. All the groups can end up with a size

larger than ϵ. The average strictness of all the Type B groups is 0.2826.

Eight Type C groups coexist in the end. The strictness of the first Type C group is

λ = 0.552, larger than that of first Type B group. That is because by choosing such a

strictness, it might not gain a population as large as the Type B group, but it will benefit

more on the payoffs of its members and increase the overall average payoff. We also

observe that the first Type C group even has a larger population in the end than the first of

the Type B groups. Because purely aiming at a high size does not necessarily give the best

increase in the overall average payoff, Type C groups do not compete for population size
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as much as Type B groups, which gives opportunities for the first Type C group to preserve

a relatively large size. All the Type C groups that have entered the marketplace have an

average strictness at 0.2445.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
tr

ic
tn

e
s
s

Type A Type A

0 10 20 30 40 50 60 70

10-2

10-1

P
o

p
u

la
ti
o

n

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
tr

ic
tn

e
s
s

Type B Type B

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

P
o

p
u

la
ti
o

n

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
tr

ic
tn

e
s
s

Type C Type C

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

P
o

p
u

la
ti
o

n

Figure 5.1: Simulation of the sequential Stackelberg game on the stationary model with
switching penalty. The left column shows the strictnesses of groups added at each step and
the right column presents the population of each group in the end of the simulation. (Top)
Type A groups only; (Middle) Type B groups only; (Bottom) Type C groups only.
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We also run the simulation with all three group types available. The procedure will end

if 10 affiliations have been added. We iterate over all possible combinations of group types

and present the statistics of group strictnesses in Table 5.2 and Fig. 5.2. We notice that as

expected, the Type A groups are much stricter than the other two types. Type C groups are

slightly stricter than Type B groups.

Table 5.2: Statistics of simulation of the sequential Stackelberg game on the stationary
model with switching penalty. Groups have an equal chance to be any of the three types.

Strictnesses Type A Groups Type B Groups Type C Groups
Maximum 1 0.754 0.778

75-percentile 1 0.311 0.297
50-percentile 0.76 0.07 0.069
25-percentile 0.34 0.007 0.017

Minimum 0.001 0.001 0.001
Average 0.6504 0.1721 0.1747
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Figure 5.2: Boxplot of simulation of the sequential Stackelberg game on the stationary
model with switching penalty. Groups have an equal chance to be any of the three types.

5.2 Dynamic Model

The procedure of adding groups is also simulated on the dynamic model described in Chap-

ter 3. When a new group is founded, it initially has an entirely new set of individuals ac-
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cording to the population-wide r distribution R with size ϵ/(1 − ϵ). We then renormalize

the whole population to 1. After renormalization, the new group has a population which is

equal to the minimum population threshold ϵ and the sizes of all the preexisting groups are

multiplied by (1−ϵ) while the r distribution in each group remains intact. The equilibrated

population after the entering of a new group can be obtained by solving the ODE (3.3) with

the initial condition mentioned above. In numerical simulations, we set ngσ in the ODE

to zero if the value drops below some small threshold and a group g is considered to be

eliminated if
∑

σ ngσ = 0. Moreover, to avoid people switching to a group with similar

strictnesses, the probability of switching from group g to group g′ αg,g′ (3.2) is multiplied

by a factor
1

1 + e10−1000△λ
where △λ = |λg − λg′| is the difference of the strictness levels

of those two groups. When △λ is very small, the probability of switching is also close

to zero; when △λ is larger than around 0.02, the factor is almost 1, so the probability of

switching is nearly the same as the original one. By doing so, undercutting and overcutting

are prevented to some extent, but not completely. That is because by choosing a similar

strictness level to a preexisting group, even if the new group can steal negligible population

from the preexisting group, it can still beat that preexisting group in the group rankings of

people in some other groups and attract those people.

The same R(r) and population threshold as the previous section are used, namely r −

1/2 ∼ Lognormal(µ, σ2) with µ = −0.5 and σ = 2 and ϵ = 0.01. In the ordinary

differential equation, the parameters are s = 3 and z = 0.5 . The λ domain is discretized

evenly into 500 parts such that all the feasible λ’s are a positive multiple of 1/500.

The first simulation is done under the assumption that all the groups that will enter the

market are of the same type. Due to the intensive nature of this computation, the program

was run on a compute cluster in parallel. The results are presented in Fig. 5.3. In all

simulations the strictest group has λ no more than 0.6. If a group chooses an even higher

strictness, it will easily be eliminated by the following group. The first Type A group has

strictness 0.564. At each step, there is always only one group other than the unaffiliated
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one that has population larger than 0.1 and the strictness level of that group is decreasing

along the simulation. We also notice that the affiliation with the largest size is the least

strict among all the affiliations. The first Type B group has strictness 0.468. After 100

steps, around nine groups including the unaffiliated one can coexist with size larger than

0.01. The strictness levels of the eight affiliations are spaced at a distance around 0.08. The

simulation of Type C groups has a quite different behavior from the other two. It terminates

at 10 steps. No more groups can enter the market because they will either fail to maintain

a minimum population size or will decrease the average payoff of individuals within the

society by eliminating some preexisting groups and causing those members to leave their

ideal group .

Similar to the previous section, we also run the simulation with the assumption that the

groups have an equal chance to be any of the three types and a random type of group will

join the market at each round. We end the procedure if 7 affiliations have been added and

search over all possible combinations of group types. The results are shown in Table 5.3

and Fig. 5.4. Only groups with population above the threshold ϵ = 0.01 are taken into

account. We observe that there are clear distinctions among the strictnesses of these three

types of groups. Type A groups have an average strictness 0.5722 with over 75% of them

being no more than 0.03 below or above the average. Type B groups are generally less strict

than Type A groups. The average strictness of Type B groups is 0.3436. Type C groups

have an average strictness 0.1322, which are the least strict. The strictnesses of 75% of the

Type C groups are no more than 0.220. By choosing low strictnesses, Type C groups can

raise the chance of people who prefer it to join it in the dynamic model. The overall payoff

of the whole population will grow if more people can stay in their favorite groups. It is also

notable that among the 37 possible combinations, on average 5.27 groups can have final

population above ϵ.
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Figure 5.3: Simulation of the sequential Stackelberg game on the dynamic model with
modified α. The left ones show the strictness levels of groups with size larger than 0.1 at
each step while the right ones present the strictness levels of groups with size larger than
the population threshold 0.01 at each step. (Top) Type A groups only; (Middle) Type B
groups only; (Bottom) Type C groups only.
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Table 5.3: Statistics of simulation of the sequential Stackelberg game on the dynamic model
with modified α. Groups have an equal chance to be any of the three types.

Strictnesses Type A Groups Type B Groups Type C Groups
Maximum 0.608 0.562 0.590

75-percentile 0.594 0.480 0.220
50-percentile 0.584 0.394 0.056
25-percentile 0.558 0.164 0.028

Minimum 0.288 0.026 0.014
Average 0.5722 0.3436 0.1322
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Figure 5.4: Boxplot of simulation of the sequential Stackelberg game on the dynamic model
with modified α. Groups have an equal chance to be any of the three types.
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CHAPTER 6

CONCLUSIONS

In this dissertation, we have constructed a dynamic model for the sizes of religious groups,

based on a unidimensional categorization of groups by their strictness level λ, interpreted

as the amount of time they expect their members to spend within the group contributing to

the common good. This model is similar to previous such models in the way it accounts for

how the strictness of a group interacts with the preferences of the members of the overall

population, who are effectively described by some distribution over strictness preferences

based on the individual’s utility function for out of group activities. Based on an indi-

vidual’s rate of utility for these out group activities r, all existing religious groups can be

ranked from highest to lowest utility, based on the group strictness levels. But, our model

adds to the existing literature by including a probabilistic component to group switching,

such that an individual may not necessarily be able to switch into her most preferred group

as in the stationary model and have to settle for one of lesser utility. Crucially, the prob-

ability of an individual being able to join a group is directly related to the probability of

having encountered members of that group during time when both the individual and the

group members were engaged in out of group time. Hence, it is more probable to join

larger groups, as one is more likely to have encountered its members by sheer number, and

to join lower strictness groups, as those individuals spend more time out of group during

which you might encounter them. At the same time, members of high strictness groups

may find it difficult to switch to another group, as they will have spent little time out of

group themselves. All of these effects, including possible inheritance from parents to off-

spring of religious preferences and possibly varying birthrates of the various groups, are

summarized by a system of ordinary differential equations for the various population sizes

in time.
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Analysis of the dynamic model has confirmed several phenomenon seem in prior mod-

els. For example, we have shown that when the only options are a single group with some

finite strictness and another “group” with zero strictness (capturing the ability of people to

be unaffiliated with any group), the size of the affiliated group decreases with strictness,

such that the group may not be able to survive at equilibrium if their strictness is too high.

This effect is not merely due to a reduced fraction of the population that would thrive with

such high strictnesses, and is intimately tied to the decreased probability of individuals join-

ing such a high strictness group. High rates of inheritance can mitigate this effect, as can

group switching probabilities that require fewer encounters with members before one can

readily join a group. Importantly, we have shown that a group of any strictness can survive

if the birthrate of its members is high enough in relation to the birthrate of non-members.

We also briefly examined from a numerical viewpoint a scenario with several (8) groups.

Our results highlight the inherent complexity of the system, given that the eventual equi-

librium varies significantly with parameters, and general trends are somewhat difficult to

discern. Further exploration of a setting with several groups will be of interest to social

scientists trying to understand the rich dynamics of religious markets, including the forces

that drive some groups to thrive and others to die out. This work may also be of interest

to a more general mathematical audience, who might find in it a rich source of interesting

mathematical problems.

Going beyond the multi-group model, we studied how groups might arrange themselves

with regard to strictness to optimize the goals of the group, be they simply maximizing the

contribution of their members (Type A), gaining the largest size (Type B), or maximizing

the average utility of the whole population in the society (Type C). Pure Nash equilibria

are not guaranteed to exist in the simultaneous-move games between two different types of

groups. Analysis of the games has shown that Type A group has a high strictness; Type B

group often tends to undercut or overcut the other group in the stationary model; Type C

group wants to distinguish itself from other groups.
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Finally, we analyzed the effects of new groups of these three types entering the religious

market. This procedure can be viewed as a sequence of Stackelberg games. Simulations

show how the three types of religious groups differentiate themselves with regard to strict-

ness. In the stationary model with switching penalty, Type A groups have the highest

strictness levels while Type B groups and Type C groups have roughly the same strictness

level. In the dynamic model, Type A groups are the strictest; Type B groups are moderate;

Type C groups tend to have low strictness levels.
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APPENDIX A

PROOFS OF THEOREMS 4.1 AND 4.2

Before proving the theorems, we present some basic concepts in game theory as well as

some definitions and results introduced by Reny et. al. [25] and Allison et. al. [26].

We denote an N -player game by G = (Xi, ui)
N
i=1 where Xi is the strategy space and

ui : X → R where X = ×iXi is the payoff function of of player i. The subscript−i means

all the other players except i. If each Xi is a pure strategy space, we can extend each ui

to M = ×iMi where Mi is the set of probability measures on the Borel subsets of Xi by

defining ui(µ) =
∫
X
ui(x)dµ. The mixed extension of G is denoted by Ḡ = (Mi, ui)

N
i=1.

Definition A.1. If Xi is a nonempty compact subset of a topological vector space and ui is

bounded for every i, then the game G is called a compact game. If Xi is further a Hausdorff

set, then the game G is a compact Hausdorff game.

Definition A.2. Player i can secure a payoff of α ∈ R at x ∈ X if there exists x̄i ∈ Xi, such

that ui(x̄i, x
′
−i) > α for all x′

−i in some open neighborhood of x−i. A game G is better-

reply secure if whenever (x∗, u∗) is in the closure of the set {(x, u) ∈ X × RN |u = u(x)}

and x∗ is not an equilibrium, some player i can secure a payoff strictly above u∗ at x∗. A

game G is payoff secure if for every x ∈ X and every ϵ > 0, each player i can secure a

payoff of u(x)− ϵ at x.

Definition A.3. A game G satisfies disjoint payoff matching if for all xi ∈ Xi , there exists

a sequence of deviations {xk
i } ⊂ Xi such that the following holds:

1. lim infk ui(x
k
i , x−i) ≥ ui(xi, x−i) for all x−i ∈ X

i
;

2. lim supk Di(x
k
i ) = ∅where Di(xi) = {x−i ∈ X

i
: ui is discontinuous in x−i at (xi, x−i)}

is the set of discontinuities of player i.
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Definition A.4. A game G is reciprocally upper semi-continuous if whenever (x, u) is in

the closure of the set {(x, u) ∈ X × RN |u = u(x)} and ui(x) ≤ ui for every i, then

ui(x) = ui for every i.

Proposition A.1. Suppose that G is a compact game and G satisfies disjoint payoff match-

ing, then G is payoff secure.

Proposition A.2. If G is reciprocally upper semi-continuous and payoff secure, then it is

better-reply secure.

Proposition A.3. Suppose that G is a compact, Hausdorff game, then G possesses a mixed

strategy Nash equilibrium if its mixed extension Ḡ is better-reply secure.

With all the definitions and propositions above, we now present the proofs of Theorems

4.1 and 4.2.

Proof of Theorem 4.1. As the strategy space [0, 1]×[0, 1] is a compact Hausdorff set and the

utilities UB and UC are bounded, the game G is a compact and Hausdorff game. Denoting

the set of probability measures on the Borel subsets of [0, 1]× [0, 1] by M , then the mixed

strategy µ can be defined as Ug(µ) =
∫
[0,1]×[0,1]

Uidµ where g ∈ {B,C}. The mixed

extension of the game is referred as Ḡ = (M, (UB, UC)), which is also compact.

UC(λB, λC) is continuous on [0, 1]× [0, 1]. On the other hand, UB(λB, λC) has discon-

tinuity at λB = λC but UB(λB, λB) = max(UB(λ
−
B, λB), UB(λ

+
B, λB)), thus UB is upper

semi-continuous in (λB, λC) on [0, 1]×[0, 1], so it is with sum UB+UC . Therefore UB+UC

is also upper semi-continuous in µ on M . So the mixed extension Ḡ is reciprocally upper

semi-continuous.

Since UC is continuous, to check whether G satisfies disjoint payoff matching, we only

need to study the utility of the Type B group. The set of discontinuities of Type B group

DB(λB) is

D(λB) = {λC ∈ [0, 1] : UB(λB, λC) is discontinuous in λC at (λB, λC)},
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so D(λB) = {λB}. For a given λB, without loss of generality, we assume that UB(λB, λB) =

UB(λ
−
B, λB) (We will have a similar proof otherwise). Then clearly λB ̸= 0 and we can

find an strictly increasing sequence λk ↑ λB. So

lim inf
k
UB(λk, λC) = UB(λB, λC), ∀λC ∈ [0, 1].

Further, we have

lim sup
k

DB(λk) = lim sup
k
{λk} = ∅,

since all the λk’s are distinct. So the game G satisfies disjoint payoff matching. Hence its

mixed extension Ḡ is payoff secure.

Reciprocal upper semi-continuity and payoff security of Ḡ ensure that Ḡ is better-reply

secure by A.2. Therefore according to A.3, the original game G has a mixed Nash equilib-

rium.

Proof of Theorem 4.2. It is sufficient to prove that

UB(λmin, λmin) = UB(λ
+
min, λmin),

then UB is upper semi-continuous on [λmin, 1]× [λmin, 1]. We can use the same method as

in Theorem 4.1 to show that the game has mixed Nash equilibrium.

We recall that

UB(λ
−
B, λB) = lim

λ↑λ−
B

UB(λ, λB) =

∫ ∞

1/(2λB)

R(r)dr,

and

UB(λ
+
B, λB) = lim

λ↓λ+
B

UB(λ, λB) =

∫ 1/(2λB)

1/2

R(r)dr.

Thus the former function is increasing while the latter one is decreasing. Moreover, UB(0
−, 0) =

0 < UB(0
+, 0) and UB(1

−, 1) > UB(1
+, 1) = 0. Thus there exists a λ∗ > 0 such that
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UB(λ
−
∗ , λ∗) = UB(λ

+
∗ , λ∗).

Hence for λmin < λ∗, we have UB(λ
−
min, λmin) < UB(λ

+
min, λmin), then

UB(λmin, λmin) = max(UB(λ
−
min, λmin), UB(λ

+
min, λmin)) = UB(λ

+
min, λmin)

which completes the proof.
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