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SUMMARY 

 Advancing the field of nanotechnology to incorporate the unique properties 

observed at the nanoscale into functional devices has become a major scientific thrust of 

the 21st century.  New fabrication tools and assembly techniques are required to design 

and manufacture devices based on one-dimensional nanostructures.  Three techniques for 

manipulating nanomaterials post-synthesis have been developed.   Two of them involve 

direct contact manipulation through the utilization of a physical probe.  The third uses 

optically generated surface acoustic waves to reproducibly control and assemble one-

dimensional nanostructures into desired locations.  The nature of the third technique is 

non-contact and limits contamination and defects from being introduced into a device by 

manipulation. 

 While the effective manipulation of individual nanostructures into device 

components is important for building functional nanosystems, commercialization is 

limited by this one-device-at-a-time process.  A new approach to nanostructure synthesis 

was also developed to site-specifically nucleate and grow nanowires between two 

electrodes.  Integrating synthesis directly with prefabricated device architectures leads to 

the possible mass production of NEMS, MEMS and CMOS systems based upon one-

dimensional nanomaterials.  

 The above processes have been pursued to utilize piezoelectric ZnO nanobelts for 

applications in high frequency electronic filtering as well as biological and chemical 

sensing.  The high quality, single crystal, faceted nature of these materials make them 

ideal candidates for studying their properties through the designs of a bulk acoustic 

resonator.  The first ever piezoelectric bulk acoustic resonator based on bottom-up 

synthesized belts will be demonstrated.  Initial results are promising and new designs are 

implemented to scale the device to sub-micron dimensions. 

 xxix



 Multiple models will be developed to assist with design and testing. Some of 

models presented will help verify experimental results while others will demonstrate 

some of the problems plaguing further investigations. 
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CHAPTER 1 

INTRODUCTION 

 The first chapter of this thesis is intended to provide the framework upon which 

the following dissertation may be viewed in its entirety.  Background information, 

scientific principles and fundamental equations will be presented in order to arm the 

reader with the necessary tools to comprehend the impact of this body of work on the 

scientific community.  An introduction to nanotechnology and one-dimensional 

nanostructure synthesis will be provided along with a fundamental description of 

piezoelectricity and acoustic wave propagation in elastic media.  Lastly, a brief outline of 

the thesis body will be given to chronicle the remainder of the document. 

1.1 Nanotechnology 

 Richard Feynman gave a talk on December 29th 1959 to the American Physical 

Society at the California Institute of Technology (Caltech) entitled, “There’s Plenty of 

Room at the Bottom:  An Invitation to Enter a New Field of Physics.”  He proposed a 

new area of solid-state physics where little research had been done, but had the potential 

to teach scientists a great deal about “strange phenomena in complex situations.”  His 

speech began by addressing the problem of “manipulating and controlling things at a 

small scale.”  Feynman talked about storing information, entire encyclopedias, by writing 

data on the head of a pin.  He addressed limitations in electron microscopy and the 

necessity to “see” with atomic resolution (in order to read the head of the pin, of course).  

Feynman theorized that the properties of matter made up of only a few atoms would no 

longer obey the classical rules of physics, opening up a new realm of properties and 

applications for materials.  He anticipated problems with lubrication in motors at the 

nanoscale due to the increased viscosity in fluids and also foresaw problems with 

electrical resistance in building small scale electronic circuits.  Feynman introduced a 

paradigm shift in the way scientists view science.  He envisioned what is now termed the 
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“bottom-up” approach to manufacturing by building molecules, one atom at a time, to 

atomic perfection; His vision was Nanotechnology. 

 Towards the end of the talk, Feynman asked, ‘How do we make such a tiny 

mechanism?”  His response was merely, “I leave that to you.” Little was it known, that 

on that day, a vision for the new millennium of science and research was born[1].   

 Thirteen years later, in 1972, Cowley first demonstrated the ability to see atoms 

using transmission electron microscopy (TEM)[2], but it wasn’t until the 1980’s that 

scientists truly began to innovate in the area of nanotechnology.  It was the invention of 

the scanning tunneling microscope (STM) by Binning and Rohrer at IBM labs in Zurich, 

Switzerland, in 1981, that enabled scientists to explore at the atomic scale.  In STM, a 

sharp probe tip, with a radius on the order of one or two atoms, is scanned over the 

surface of a material at a distance of approximately 1nm.  A voltage is then applied 

between the surface and the probe tip.  At a certain potential, electrons begin to tunnel 

between the tip and the sample resulting in a weak electrical current.  A feedback loop is 

used to maintain a constant tunneling current by adjusting the height of the tip relative to 

the surface as it rasters back-and-forth.  By monitoring the change in height during a 

scan, a map of the surface topography can be reconstructed with a high enough resolution 

to distinguish individual atoms.  The advantage of this technique is not only in its ability 

to resolve atoms, but in its ability to touch them [3]. 

 In 1989, Eigler demonstrated the STM’s ability to manipulate individual xenon 

atoms on a single crystal nickel surface with atomic precision.  Eigler operated under the 

principle that the tip of the STM always exerts a finite force on an adsorbed atom which 

contained both electrostatic and Van Der Waals contributions.  He was able to tune the 

magnitude of the applied force by adjusting the height of the tip and amplitude of the 

applied potential.  Taken with the fact that it required less force to pull an atom across the 

surface rather than completely detach it, made it possible to drag atoms into desired 
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locations while leaving them bound.  Figure 1 shows the experiment Eigler performed to 

construct an “array” of xenon atoms on a single crystal (110) nickel surface[4]. 

 

Figure 1.1 A sequence of STM images taken during Eigler’s experiment to construct a 

patterned array of xenon atoms on a (110) nickel surface in order to spell out IBM[4]. 

 

 Beyond this initial experiment, Eigler was also able to design and build one of the 

first nanoscale devices.  By reversibly moving a single xenon atom back-and-forth 

between two stationary conducting leads (a conductive surface and the STM probe), he 

demonstrated a new class of small electronic devices—an atomic switch[5].  While this 

work is interesting from a scientific standpoint, the problem of scalability limits any 
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practical application of this one-device-at-a-time process.  The ability to build multiple 

nanodevices simultaneously is one of the critical hurdles still being addressed in the 

scientific community today.  It is also a major thrust of the work presented in this thesis.  

 While Eigler and his colleagues were manipulating atoms one at a time, designing 

molecules to atomic precision, and building nanodevices, other less brute force 

techniques were being developed in order to synthesize nanomaterials on a larger scale.  

Techniques such as arc-discharge[6], laser ablation[7] and chemical vapor deposition[8] 

all helped lead to the first discovery and mainstreaming of the carbon nanotube. 

 A single walled carbon nanotube (SWCNT) consists of individual sheets of 

graphite, commonly known as graphene, rolled up into a seamless tubular cylinder.  The 

direction in which the nanotube rolls dictates its chirality as well as some of its material 

properties.  The top left corner of Figure 1.2 shows a schematic of a graphite sheet 

demonstrating the different rolling directions.  A pair of indices (n,m), called the chiral 

vector, are used to indicate the potential unit vectors in the two-dimensional honeycomb 

lattice.  If m=0 then the nanotube is referred to as zig-zag.  If n=m the nanotube is termed 

armchair.  If the nanotube exhibits some other combination of values in between the two 

vectors then it is simply called chiral.  Typically, carbon nanotubes are composed of 

more than just a single sheet of grapheme; rather they consist of multiple graphite 

cylinders sheathed one-by-one coaxially[9].  These are called multi-walled carbon 

nanotubes (MWCNT) as shown below in Figure 1.2 as well. 
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earlier.  Realistically, the existence of carbon nanotubes was known many years prior, in 

the 1970s, due to a controversial image published by Oberlin in 1976[18].  The image 

depicts a 5nm carbon wire that resembles a carbon nanotube.  The authors did not claim it 

as such and to this day still raises question as to whether or not this is a SWCNT or 

MWCNT.  Even with the discovery in 1976, existence of nanosized carbon filaments can 

be traced back even further to a paper published in the Journal of Physical Chemistry of 

Russia in 1952[19], and in some cases to as early as 1889 in a patent filed by Edison to 

use such filaments in light-bulb applications. 

 So, with all of this rediscovery of carbon nanotubes, why wasn’t it until 1991 that 

the scientific community finally accepted the phenomenon?  One possible answer is that 

the mechanism of carbon nanotube growth was being investigated in order to prevent it 

from forming in the coal and steel industry.  Since its existence was highly undesirable, 

there were no real advantageous applications associated with the structure in order to 

pursue it further.  It wasn’t until the 1990s that an interest in nanotechnology motivated 

scientists to study the carbon nanotube in an attempt to control its properties and increase 

its prevalence[20].   

 The term nanotechnology was officially coined in 1986 and defined as, “A 

technology based on the manipulation of individual atoms and molecules to build 

structures to complex, atomic specifications[21].”  The National Nanotechnology 

Initiative broadened the definition in the ‘90s to, “The understanding and control of 

matter at dimensions of roughly 1 to 100 nanometers, where unique phenomena enable 

novel applications[22].”  Since then, we have morphed these definitions into what we 

now term nanoscience and nanotechnology.  Nanoscience describes the physical, 

chemical, and biological properties of materials at the nanoscale that are either enhanced 

or differ from the properties of bulk matter.  Nanotechnology is a process by which to 

manufacture materials and machines to atomic precision using a bottom-up approach. 
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1.2 One-Dimensional Nanostructures and Synthesis 

 In the previous section, a brief description of carbon nanotubes along with a few 

of the synthesis techniques used to grow them was introduced.  Here, a clear definition of 

one-dimensional nanostructures will be presented along with other nanostructure 

morphologies in order to help differentiate between common nanomaterial 

nomenclatures.  This section will be used to introduce one-dimensional metal oxide 

nanowires and nanobelts with a focus on the synthesis techniques used to grow them.   A 

detailed explanation of the synthesis methodologies used within the body of this 

dissertation will be given. 

1.2.1 Nanostructure Classifications 

 A nanostructure is defined as a material system or object where at least one of the 

dimensions lies below 100nm.  Oxide nanostructures can be classified into three different 

categories: zero-dimensional (0D); one-dimensional (1D); two-dimensional (2D).  0D 

nanostructures are materials in which all three dimensions are at the nanoscale.  A good 

example of these materials are buckminster fullerenes[23] and quantum dots[24].  1D 

nanostructures are materials that have two physical dimensions in the nanometer range 

while the third dimension can be large, such as in the carbon nanotube described above.  

2D nanostructures, or thin films, only have one dimension in the nanometer range and are 

used readily in the processing of complimentary metal-oxide semiconductor (CMOS) 

transistors[25] and micro-electro-mechanical systems (MEMs)[26].  Since the focus of 

this work is on one-dimensional metal oxide nanostructures, all others from this point 

forward will cease to be discussed. 

 1D nanostructures have stimulated a great deal of interest due to their importance 

in fundamental scientific research and potential technological applications in nano-

electronic, nano-optoelectronic and nano-electro-mechanical systems [27-44].  Many 

unique properties have already been demonstrated for this class of materials, such as 
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superior mechanical toughness [45], increased luminescent efficiency [46], enhanced 

thermoelectric figure of merit [47] and lower lasing threshold [48].  While most of the 

work to date has focused on semiconductor systems such as Si[49], Ge[50], GaN[51], 

GaAs[52], InAs[53], it is only recently that 1D oxide nanostructures have emerged as 

promising nanoscale building blocks due to their diverse functionality, surface 

cleanliness and chemical/thermal stability[54]. 

 Within the class of 1D nanostructures exists a sub-category of morphologies 

reported in literature.  This includes nanotubes[7], nanorods[55], nanowires[56] and most 

recently, nanobelts[57].  Each can be seen in Figure 1.3. 

 

Figure 1.3 SEM micrographs of four one-dimensional nanostructure types (a) nanorods 

(b) nanowires (c) nanotubes (d) nanobelts[58]. 

 

Nanorods and nanowires are similar in that they have an outer diameter with a solid 

center.  In some cases this diameter has a cylindrical cross-section, while others can have 

facets with symmetry about the long axis.  The terms rod and wire are merely used to 

differentiate between large aspect ratios (nanowires) and small aspect ratios (nanorods) 

within this classification.  The figure above depicts ZnO nanorods (Figure 1.3a) and 

nanowires (Figure 1.3b).  Nanotubes, like the carbon nanotube described above and the 

ZnO nanotube depicted in Figure 1.3c, have a similar cross-section to nanowires.  

However, nanotubes are defined by an inner diameter in addition to its outer diameter 
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resulting in a hollow center.  The fourth structure, the nanobelt, differs from the other 

three 1D nanostructures in that they have a faceted belt or beam-like morphology with a 

rectangular cross-section.  This structure is especially interesting since it enables the 

study of dimensionally-confined transport phenomena in functional oxides in all three 

dimensions[44, 54].  Nanobelts will be highlighted in the following section since they are 

the structure of interest with regards to applications pursued in later chapters. 

1.2.2 Nanobelts 

 Since their inception in 2001 by Pan et. al., nanobelts have attracted a significant 

amount of interest due to their unique morphology and structure-dependent physical, 

chemical, and electrical characteristics.  As-synthesized, nanobelts are pure, structurally 

uniform, single-crystals with well defined crystallographic planes and most are free from 

defects or dislocations [57].  Nanobelts are commonly classified by their composition, 

growth direction, and faceted surfaces.  Nanobelt sizes typically range from 30-300nm in 

width, width-to-thickness ratios of 5-10, and lengths of up to a few millimeters.  As a 

consequence of their large aspect ratio, nanobelts are extremely flexible when compared 

to the bulk ceramics counterparts from which they are composed.  In addition, nanobelt 

size and geometry can be controlled by simply varying the pressure, temperature and 

length of time in which a synthesis experiment is conducted—a detailed description of 

the synthesis process will be given shortly.  Figure 1.4 depicts a series of TEM images 

with the respective electron diffraction patterns showing the length (a), flexibility (b, c), 

thickness (d, e), and single-crystal nature (f) of ZnO nanobelts [57].  An SEM image of 

the spaghetti-like deposit can be seen in Figure 1.5a along with high resolution TEM 

images in Figure 1.5e showing the low defect nature of the structure. 
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Figure 1.5 (a) SEM image of as-synthesized ZnO nanobelts  (b) (c) (d)Transmission 

electron microscopy images (e) HRTEM image of a defect free nanobelt.  From the 

diffraction patterns it can be seen that the nanobelts are single crystals[57]. 

 

 As previously mentioned, nanobelts are commonly classified according to their 

growth direction and faceted surfaces.  Although bulk ZnO naturally occurs in both 

wurtzite (hexagonal) and zinc blende (cubic) crystal structures, ZnO nanobelts are always 

hexagonal and are defined by the three lowest energy surfaces within the crystal: 

{ } { } { }0112,0101,0001 .  Figure 1.6 schematically shows four possible nanobelt 

configurations and their crystallographic orientations with respect to one another.  It is 

important to note that each of these configurations has been observed and can be 
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achieved by controlling the relative growth parameters inside the synthesis vessel.  Zinc 

oxide nanobelts with the 1st configuration grow along the [ ]0001  direction.  They are 

commonly observed because the [ ]0001  direction is the fastest growth direction within 

the wurtzite crystal.  However, the lowest energy configuration for this growth direction 

is the nanowire depicted in Figure 1.3b, and the most common ZnO nanobelt is found 

with the 2nd configuration growing along the [ ]0101  direction.  In this orientation, planar 

defects such as stacking faults are occasionally observed.  Finally, the 3rd and 4th 

configurations grow along the [ ]0101 and [ ]0112  directions, respectively, and are 

defined as polar-surface-dominated (PSD) nanobelts because their primary surfaces 

(largest surfaces) correspond to the polar ( )0001±  surfaces of Figure 6.  These 

configurations are extremely rare and lead to many of the unique spring- and ring-like 

morphologies documented in literature[59, 60]. 
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Figure 1.6 Schematic showing four types of ZnO belts and their crystallographic 

orientations with respect to one another, where a, b, c are the three defining surfaces of 

each belt. Configurations 3 and 4 are polar-surface-dominated belts. 

 

 Although initial research in nanobelt synthesis has focused on semiconducting 

oxides such as: ZnO, CdO, In2O3, Ga2O3, and SnO2 [57], more recent investigations have 

produced a variety of compound semiconductors such as ZnS [59], GaP [60], AlN [61], 

Al2O3 [62], GaN [63] and CdSe[61].  Table 1.1 summarizes common nanobelt materials 

along with their growth direction and characteristic surfaces[9, 62].  It can be seen that 

this belt-like morphology is common to a variety of materials and crystal classes. 
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Table 1.1 List of materials synthesized as nanobelts 

Material 
Crystal 

Structure 
Growth Direction Top Surface Side Surfaces 

ZnO Wurtzite 

]0001[ , ]0101[  

or  

]0112[  

}0112{ or  

}0001{  

}0101{ , {  }0001

or  

}0112{  

Ga2O3 Monoclinic ]001[ or [  ]010 }100{  or {  }100 }010{  or }110{  

t-Sn02 Rutile ]101[  }110{  }010{  

o-SnO2 Orthorhombic ]010[  }100{  }001{  

In2O3 C-rare earth ]001[  }100{  }010{  

CdO NaCl ]001[  }100{  }010{  

PbO2 Rutile ]010[  }201{  }110{  

MoO3 Orthorhombic ]001[  }010{  }100{  

MgO 
Face center 

cubic 
]100[  }001{  }010{  

CuO Monoclinic ]110[  }110{  }001{  

Al2O3 Hexagonal ]0001[  }0101{  }0211{  

ZnS Wurtzite ]0101[  }0211{  }0001{  

CdSe Wurtzite ]0101[  }0211{  }0001{  

GaN Wurtzite ]0110[  }0101{  }0001{  

GaP Zinc blende ]111[  }100{  }110{  

AlN Wurtzite ]0001[  }0211{  }0101{  

  

From the above listed nanobelt materials, ZnO is the most extensively studied and will be 

considered in detail from hereafter[62]. 

 14



1.2.3 Synthesis 

 During the last decade, one-dimensional nanostructures have been extensively 

investigated with an emphasis on synthesis and characterization.  Several approaches 

have been well established, which include chemical vapor deposition (CVD)[63, 64], 

physical vapor deposition (PVD)[28, 54, 57, 59], pulsed laser deposition (PLD)[42, 56, 

65], molecular beam epitaxy (MBE)[66-68], atomic layer deposition (ALD)[69, 70], 

metal-organic chemical vapor deposition (MOCVD)[71-73], and wet chemical processes 

(hydrothermal synthesis)[74-76].  Since only PVD and hydrothermal synthesis were used 

in this body of work, a detailed description of both is given below. 

1.2.3.1 Physical Vapor Deposition (PVD) 

 The nanobelts utilized for this dissertation were grown using a physical vapor 

deposition process (PVD) by way of thermal evaporation.  The technique is based on the 

sublimation of a heated powder source material at the center of a single zone tube furnace 

under vacuum.  Water-cooled end caps are placed on the outside ends of the furnace 

system to create a temperature gradient that decreases moving away from the center.  The 

resulting vapor phase flows downstream into cooler regions via a carrier gas where it 

condenses on a deposition substrate.  A schematic of the entire system can be seen in 

Figure 1.7.  The geometry of the nanomaterial deposit is controlled by varying the 

conditions inside the furnace during synthesis (temperature, ramp-rate, pressure, carrier 

gas, vapor concentration and experimental duration).  This direct deposition implies that 

no chemical reactions are permitted to occur either in the vapor, or between the vapor and 

the deposition substrate. 

 The furnace system used for this technique is made up of two main components: 

the furnace and the vacuum system.  A Thermolyne 79300 single-zone split-tube furnace 

was used to carry out the experiments.  Exposed heating element coils embedded into a 

ceramic fiber insulation enabled the heating of the furnace to a maximum of 1500 °C.  
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Figure 1.7 Single zone tube furnace used to synthesize nanobelts. 

 

 An alumina tube measuring 30” in length, with a 1.75” outer diameter and 1.50” 

inner diameter, was placed inside the furnace.  The alumina tube was routinely cleaned 

with ethanol prior to each run.  Since the furnace only measures 24” in length, the 

alumina tube protrudes outside the furnace body six inches on either side.  Three-inch 

diameter tube collars where placed on either end in order to support the tube inside the 

furnace.  Once the tube was in position, the source material and collection substrates were 

loaded inside.  A designated amount of source material was weighed on a Denver 

Instrument XE-3100D mass balance.  The source was then transferred to an alumina boat 

and inserted 15” into the center of the tube.  Deposition substrates were cut out of square 

alumina wafers using a tile saw and were positioned 13cm away from the end of the tube, 

downstream from the source.  Once the substrates and source material were in position, 

the synthesis chamber was sealed.  Two water-cooled end caps were designed to fit on 

each end of the alumina tube.  One was connected to the pressure system and the other to 

the mass flow controller.  Rubber O-rings coated with high temperature vacuum grease 

were used to seal the end caps to the alumina tube and connect the vacuum system and 

the furnace together. 
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  A BOC Edwards RV8 hydrocarbon rotary vacuum pump was used to remove 

residual gases inside the furnace system prior to starting an experiment.  The mechanical 

pump was connected to the synthesis chamber through a series of aluminum t-bars and 

cross-bars.  The pump was then turned on in order to begin the evacuation process.  

Monitoring the pressure inside the alumina tube was achieved through the use of two 

analog gauges, one being a BOC Edwards analog Pirani vacuum gauge series 500, which 

monitors lower pressures ranging from 10+2- 10-3 mbar.  This gauge was only used during 

the initial evacuation of the furnace. 

 Once the mechanical pump was turned on, the closed diaphragm isolation valve 

was slowly opened so that the purging rate of the chamber was ~100 mbar/s.  This 

relatively slow evacuation rate was employed to ensure that the powder source material 

was not disturbed during evacuation.  The ultimate pressure achieved with the rotary 

pump was ~2x10-3
 mbar which required ~2hrs of pumping, after which the synthesis 

process could begin by heating the furnace to its set-temperature. 

 The furnace was ramped to temperature using a C1 programmable controller with 

one stored program of eight segments.  Each segment consisted of three sub-segments: a 

ramp rate (ranging from 1 °C/min to 60 °C/min), a temperature set point (ranging from 

100°C to 1500°C), and a dwell time (ranging from 0.1 min to 999.9 min).  A BOC 

Edwards analog dial vacuum gauge series CG16K was used to monitor the system 

pressure and control it within an acceptable range.  The dial gauge measures pressures 

from 20 to 1000 mbar in increments of 20mbar.  A Cole-Palmer multi-turn needle valve 

was also used during synthesis to make fine adjustments in order to maintain the pressure 

constant. 

Unless otherwise stated, all synthesis experiments were run in the following 

manner:  The furnace would continuously heat at a rate of 20 ºC/min until it reached a 

set-point of 800oC; the furnace was held for 30 minutes in order to allow the system to 

equilibrate; an inert Argon (Ar) gas was allowed to flow through an Aalborg mass flow 
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controller which regulated the gas to 50 standard cubic centimeters (sccm); the gas would 

enter the chamber via 3/8” plastic tubing connected from the flow controller to the water-

cooled end cap; once the system was equilibrated to ~ 300mbar ±20mbar, the furnace 

would begin to ramp again at 20 ºC/min to the final set-point of 1450 oC for ZnO 

nanobelt synthesis; the temperature and pressure was held for the duration of the 

experiment which ranged from 0.5 hours to 24 hours. 

 Once the experiment reached the designated experimental duration, the furnace 

controller was shut off, allowing the furnace to cool to room temperature.  In some cases 

a cooling fan might be used in order to quench the system as quickly as possible. This 

was critical for temperatures that were much higher than the minimum sublimation 

temperature of the source material.  If the system was permitted to cool slowly, then 

deposition could occur for several minutes after the furnace was turned off.  In addition, 

as the system cooled the temperature gradient changed which could possibly affect the 

morphology of the as-deposited material.  The pressure was maintained throughout the 

duration to ensure that this parameter would not influence the morphology during the 

cool down phase.  Once the cooling process was complete, the flow of the carrier gas into 

the system was stopped.  The diaphragm valve was then fully opened so that any 

potentially harmful vapor still left in the chamber would be purged from the system[61]. 

1.2.3.2 Hydrothermal Synthesis 

 Recently, wet chemical methods for growing 1D nanostructures have become an 

attractive alternative to PVD because of their ability to synthesize nanomaterials at much 

lower temperatures (50-95oC).  Utilization of polymers as a growth substrate for flexible 

electronic devices has been one of the key drivers for reducing the synthesis temperature.  

In 1990, Verges et al. reported the first ZnO micro-rods grown in an aqueous solution at 

temperatures below 80 oC[74].  About 10 years later, others successfully decreased the 
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size of the wires to sub-micron dimensions and reported well aligned ZnO arrays [75, 

76]. 

 The process for growing ZnO nanowires hydrothermally involves a 50 mL 

aqueous solution made up of Fluka brand Zn(NO3)2 • 6H20, (zinc nitrate hexahydrate 

with a MW of 297.47 g/mol) and C6H12N4, (hexamethylenetetramine, HMTA, with a 

MW of 140.22 g/mol).  The solution was mixed inside a Pyrex bottle and capped to 

prevent the solvent from evaporating during synthesis.  Synthesis employed the use of a 

Yamato DKN400 box furnace with ± 1oC control over the internal temperature up to 

210oC.  Here, the synthesis vessel was not introduced into the box furnace until it reached 

its equilibrium temperature; therefore, the ramp rate was not crucial.  In addition, no 

system for controlling the pressure was implemented and was assumed to be 1 atm.  Like 

PVD, experiment durations can range anywhere from 0.5 hours up to 24 hours depending 

on the desired length and radius of the nanowire growth.  The aqueous solution was 

heated to temperatures between 50 - 95 oC resulting in ZnO nanowires due to the 

following chemical reactions[77]: 

 

  C6H12N4 + 6H2O ↔ 6CH2O +4NH3     (1.1) 

  NH3 + H2O ↔ NH4
+ + OH-      (1.2) 

  2OH- + Zn2+ → ZnO(s) +H2O      (1.3) 

 

Hydroxide ions are formed through the decomposition of HMTA which reacts with Zn2+ 

to precipitate ZnO.  Au films and ZnO seed layers are sometimes utilized to initiate 

nucleation and growth. 
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1.3 Piezoelectricity 

   In the late 1870’s the Curie bothers were conducting investigations and 

categorizing materials such as tourmaline, quartz, topaz, cane sugar and rochelle salt that 

displayed surface charge when they were mechanically stressed.  As a result, they 

published the first scientific work describing the phenomena in 1880[78].  The 

observation was considered a dramatic discovery and the term piezoelectricity was coined 

to describe the effect.  The word “piezo,” which means “to press,” came from the ancient 

Greeks who were actually credited for observing a “mysterious attractive power” when 

materials were rubbed.  They called this property elektron (amber).   

 The necessary condition for a material to exhibit piezoelectricity is quantified by 

its crystal symmetry.  Piezoelectric materials have non-centrosymmetric crystals; thereby, 

when the crystal is deformed, the lack of symmetry results in a dipole that is established 

across the bulk of the material.  Piezoelectricity was defined by Cady as, “an electric 

polarization produced by mechanical strain in crystals belonging to certain classes, the 

polarization being proportional to the strain and changing sign with it.”[79]  The direct 

piezoelectric effect described here can be written as: 

     Pi = dij Tj     (1.4) 

Where Pi is the polarization vector, dij is the piezoelectric coefficient and Tj is a stress 

tensor.  In addition to the direct effect, the converse effect is: 

     Sj = dij Ei     (1.5) 

where an applied electric field (Ei) across a non-centrosymmetric crystal results in a 

mechanical strain (Sj).  The direct/converse piezoelectric effects state that piezoelectric 

materials are electro-mechanical transducers with the ability to convert mechanical 

energy into electrical energy and conversely convert electrical energy into mechanical 

energy.  While the direct effect was discovered by the Curie brothers, the converse effect 

was first predicted thermodynamically by Lippmann in 1881[80].  However, the Curie 
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brothers were the first to experimentally verify the converse effect following Lippmann’s 

work. 

 This was not fully exploited until World War I when Paul Langevin developed the 

first serious application of piezoelectric materials for ultrasonic submarine detection.  The 

transducer he built was made of a thin quartz crystal glued between two steel plates.  The 

device was used to transmit a high frequency “chirp” signal into the water and measure 

the depth by timing the return echo.  It was the invention of sonar that first initiated an 

intense research interest in the area of piezoelectrics resulting in many of the modern 

applications such as microphones, accelerometers, ultrasonic transducers, etc.[81]  

1.3.1 Elastic Constitutive Equations 

 To fully understand the origin of the piezoelectric effect, it is necessary to 

introduce the constitutive equations that describe it.  Hooke’s law describes the 

stress/strain relationship between the application of an external force on a solid body that 

results in internal stresses and distortions.  The linear relationship can be described in 

three dimensions by 

     T klijklij Sc=      (1.6) 

     S klijklij Ts=      (1.7) 

where T is stress (N/m2), S is strain (m/m), c is the elastic stiffness coefficient or Young’s 

modulus (N/m2), and s is the elastic compliance coefficient (m2/N)—the inverse of c.  

Within these equations, the indices i and j correspond to stress terms while k and l 

correspond to strain terms; where i, j, k, l represent x, y, z. 

 Written in expanded notation, (1.6) and (1.7) respectively contain nine equations 

with nine terms.  Although not fully independent, the stiffness (c) and compliance (s) 

coefficients can be organized into 9x9 matrices with 81 elements in each.  (1.8) is the 

expanded matrix format of (1.6).   

 

 21





































•





































=



































zz

zy

zx

yz

yy

yx

xz

xy

xx

zzzzzzzyzzzxzzyzzzyyzzyxzzxzzzxyzzxx

zyzzzyzyzyzxzyyzzyyyzyyxzyxzzyxyzyxx

zxzzzxzyzxzxzxyzzxyyzxyxzxxzzxxyzxxx

yzzzyzzyyzzxyzyzyzyyyzyxyzxzyzxyyzxx

yyzzyyzyyyzxyyyzyyyyyyyxyyxzyyxyyyxx

yxzzyxzyyxzxyxyzyxyyyxyxyxxzyxxyyxxx

xzzzxzzyxzzxxzyzxzyyxzyxxzxzxzxyxzxx

xyzzxyzyxyzxxyyzxyyyxyyxxyxzxyxyxyxx

xxzzxxzyxxzxxxyzxxyyxxyxxxxzxxxyxxxx

zz

zy

zx

yz

yy

yx

xz

xy

xx

S
S
S
S
S
S
S
S
S

ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc

T
T
T
T
T
T
T
T
T

  (1.8) 

 

 The number of elements can be reduced by applying symmetrical stress and strain 

conditions.  For example, symmetry of T causes cijkl = cijkl for j≠ i and reduces the number 

of variables from 81 to 54.  In addition, symmetry of S causes cijkl = cijkl for l ≠ k and 

reduces the number of variables from 54 to 36. Such operations significantly reduce the 

complexity of the equation and are shown below in (1.9). 

 

    (1.9) 



























•



























=



























xy

zx

yz

zz

yy

xx

xyxyxyzxxyyzxyzzxyyyxyxx

zxxyzxzxzxyzzxzzzxyyzxxx

yzxyyzzxyzyzyzzzyzyyyzxx

zzxyzzzxzzyzzzzzzzyyzzxx

yyxyyyzxyyyzyyzzyyyyyyxx

xxxyxxzxxxyzxxzzxxyyxxxx

xy

zx

yz

zz

yy

xx

S
S

S
S

S
S

cccccc
cccccc
cccccc
cccccc
cccccc
cccccc

T
T

T
T

T
T

 

Adopting the abbreviated notation c , where I and J represent 1 through 6, 

Hooke’s Law is written in reduced matrix format by following the procedure outlined in 

Table 1.2.  Within this matrix the upper left, upper right, lower left and lower right 

quadrants represent coupling between longitudinal stresses and strains, longitudinal 

stresses and shear strains, shear stresses and longitudinal strains, and shear stresses and 

IJijkl c⇒
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strains respectively.  Equation (1.10) represents the ability of a material to strain (stress) 

in the direction of applied stress (strain), as well as, in directions perpendicular to the 

stress (strain).  Stated otherwise, an x-directed stress will couple to y- and z-directed 

strains with varying magnitude.  It should be noted that an equivalent matrix is also 

available for (1.7).  In this simplified notation, indices 1,2,3 represent the Cartesian 

directions x,y,z, while 4,5,6 represent shear directions yz, zx, xy. 

 

Table 1.2 Matrix notation 

ij or kl Cartesian I or J  

11 xx 1 

22 yy 2 

33 zz 3 

23 or 32 yz or zy 4 

 31 or 13 zx or xz  5 

12 or 21 xy or yx 6 
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   (1.10) 

For accuracy and consistency among the nomenclature, the abbreviated 

components outlined above in Table 1.2 do not always correspond to the respective 

tensor components.  For example, a multiplicative factor of 2 is required for shear strains 

because of their inherent definition[82].  Subsequent relationships are found for the 

elastic compliance coefficient (s) as well.  Table 1.3 summarizes the relationship between 

the abbreviated indices and their respective tensor components.  
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Table 1.3 Abbreviated indices compared to their respective tensors 

Stress Jij TT =   jiji ≠= and/or      

Elastic Stiffness IJijkl cc =   jiji ≠= and/or      

Strain 
Jij

Jij

SS

SS

=

=

2
    

ji
ji

≠
=

Elastic Compliance 

IJijkl

IJijkl

IJijkl

ss

ss

ss

=

=

=

4

2   

   and  
or      

  and  

lkji
lkji
lkji

≠≠
≠≠
==

  

 

 Adopting the abbreviated notation, the linear constitutive equations for elasticity 

are:  

JIJI ScT =      (1.11) 

JIJI TsS =      (1.12) 

where I and J represent 1 through 6.  In the section to follow an equivalent constitutive 

equation will be developed for electrostatics.   

1.3.2 Charge Consideration 

 In addition to the elastic equations, it is also necessary to consider the force of 

attraction and repulsion between two point charges, calculate the electric field from a 

point charge and calculate the electric field from a dipole.  As defined by Coulomb’s 

Law, the electrostatic force of attraction or repulsion between two point charges (q1 and 

q2) are separated by a distance r is given by: 

2
21

4
1

r
qq

F
oπε

=      (1.13) 

where oε is the permittivity of free space (F/m).  Each point charge exerts a force equal in 

magnitude and opposite in direction to its neighboring charge, and thus forms an action-

reaction pair.  As a sign convention, a positive test charge q0 replaces q2 in Coulomb’s 
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Law when calculating the electric field caused by a point charge.  When incorporated into 

the definition of an electric field, the magnitude of the electric field vector at a point 

charge is given by:   

    2
1

0 4
1

r
q

q
FE

oπε
==      (1.14) 

The direction of the electric field coincides with the direction of force: towards the point 

source if q1 is negative; away from the point source if q1 is positive.  In order to develop 

the concept of the piezoelectric effect, we must extend the above listed formulation to an 

electric dipole, thereby accounting for the interaction between anions and cations. 

An electric dipole is defined as a pair of point charges with equal magnitude and 

opposite signs that are separated by a fixed distance.  As shown below in Figure 1.8, an 

electric dipole produces an electric field at a distance z from the midpoint of the dipole 

along its axis.  Within this schematic, it is assumed that the distance between the electric 

dipole d is significantly smaller than the distance z.   

 

     

d

r(+)

r(-)

z

-q +q E(+)E(-)

d

r(+)

r(-)

z

-q +q E(+)E(-)

Figure 1.8 Electric field vectors E(-) and E(+) caused by the two charges at r(-) and 

r(+)[62]. 
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 Applying the superposition principle for electric fields, the magnitude of the 

electric field E at a distance z is calculated by; 
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where E(+) and E(-) are the electric field vectors at distances r(+) and r(-), respectively. 

Expanding the above equation via the binomial theorem provides simplification; d/2z is 

much smaller than one and therefore only the first two terms of the expansion need to be 

considered when calculating the electric field intensity [83].  Equation (1.16) shows that 

the electric-field intensity of a dipole is proportional to the dipole moment (p=qd).  

Consequently, any change in the dipole moment (qd) will cause a corresponding change 

in the electric field.  This concept is the origin of the piezoelectric effect[84]. 
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  (1.16) 

Prior to external stimuli, the model depicted in Figure 1.9 is neutral since its 

centers-of-charge coincide.  However, upon mechanical deformation the centers-of-

charge separates, thereby producing a dipole moment (p=qd). The accumulation of dipole 

moments within a piezoelectric crystal causes the polarization (P) of surface charges.  

Such polarization generates an electric field (as described above in Figure 1.8) and is 

commonly used to transform mechanical energy into electrical energy.   

 26



 

Figure 1.9 Electric polarization produced by mechanical deformation. The polarization is 

proportional to the strain and changing sign with it[85]. 

 

Although the models are intuitive, they are far too simple to provide a 

comprehensive understanding and appreciation for the complexity of piezoelectricity in 

real-world applications.  In the sections to follow, linear piezoelectric constitutive 

equations will be defined in three-dimensions using tensor notation. 

1.3.3 Dielectric Constitutive Equations 

In order to properly characterize piezoelectricity, both coupled and uncoupled 

polarization must be considered.  When a potential difference is applied across a 

dielectric material, molecular dipoles accumulate throughout the volume of the crystal 

and cause uncoupled polarization.  Uncoupled polarization is given by ; where P 

is the polarization vector (C/m

NpP =

2), N is the number of dipoles per unit volume (m-3) and p 

is the dipole moment (Cm).  The polarization is, in general, proportional to the electric 

field and given by: 

   1,2,3          == iExP kikoi ε     (1.17) 
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where oε  is the permittivity of free space (F/m), x  is the electric susceptibility 

(dimensionless), and E is the electric field (V/m).  As defined, the electric susceptibility 

expresses how readily a material will polarize when subjected to an electric field. 

The significance of (1.17) is that polarization is not necessarily in the same 

direction as the induced electric field, and therefore may couple to other directions.  “This 

may occur, for example, if the charges are constrained at certain symmetry directions 

(which constrains the direction of P) while the external field is skewed to these 

directions.”[82]  For convenience, uncoupled polarization is often replaced with electrical 

displacement to limit the electrical variables in the dielectric constitutive equation to E 

and D via; 

1,2,3for        

)1(

==

+=

+=

iED

xED

PED

jiji

ijjoi

ijoi

ε

ε

ε

   (1.18) 

where D is the electrical displacement (C/m2) and ( )ijoij x+= 1εε . 

1.3.4 Resulting Piezoelectric Constitutive Equations 

Although all materials will polarize under the influence of an external electric 

field, only piezoelectric materials will supplement the total polarization via charge 

separation.  As described above, the Curie brothers are unequivocally recognized for 

experimentally determining the coupling relationships between stress and polarization 

(direct effect), as well as strain and electric field (converse effect).  More precisely, the 

direct and converse piezoelectric effects are expressed again using the abbreviated 

nomenclature listed above: 

Direct:  6  to1   3  to1      === JiTdP JiJi   (1.19) 

Converse: 3  to1   6  to1      ==′= iJEdS iJiJ   (1.20) 
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where d is the piezoelectric coupling coefficient (C/N) for the strain-charge form.  Within 

these equations, the indices i and J respectively represent polarization and mechanical 

stress/strain components.  More specifically, for the direct effect, the first subscript, i, of 

the piezoelectric coupling coefficient, d, refer to the direction of the electric field, while 

the second subscript, J, refers to the direction of the longitudinal or shear stress.  Among 

the six components of the stress tensor, J=1,2,3 represents longitudinal stresses while 

J=4,5,6 represents shear stresses.  For example, d33 possesses an electric field parallel to 

the z-axis and a piezoelectric-induced tensile strain in the same direction.  It should be 

noted that the abbreviated notation has reduced the piezoelectric strain matrix from 27 

terms to 18 independent terms by once again applying the symmetry condition jiij TT = .   

The fundamental linear constitutive equations for piezoelectricity are shown 

below in abbreviated notation (1.21) to (1.24), where all specified variables are 

summarized in Table 1.4.  In addition, the superscripts among each equation denote the 

constant conditions from which variables must be measured.  For example, the 

superscripts E and T within (1.21) state that the compliance and permittivity must be 

measured under conditions of constant electric field and stress, respectively.  Although 

the piezoelectric equations listed below can be derived by combining and manipulating 

(1.11), (1.12), (1.19) and (1.20), they can also be derived by the thermodynamic 

principles outlined by Cady, Ikeda, and the IEEE standard on Piezoelectricity[79, 86, 87].  
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Table 1.4 Matrix variables used in the piezoelectric constitutive equations 

Symbol Meaning Object Type Size Units

T stress components vector 6x1 N/m2 

S strain components vector 6x1 m/m 

E electric field components vector 3x1 N/C 

D electric charge density displacement components vector 3x1 C/m2 

s compliance components matrix 6x6 m2/N 

c stiffness components matrix 6x6 N/m2 

ε electric permittivity matrix 3x3 F/m 

d piezoelectric coupling coefficient for strain-charge form matrix 3x6 C/N 

e piezoelectric coupling coefficient for stress-charge from matrix 3x6 C/m2 

g piezoelectric coupling coefficient for strain-voltage form matrix 3x6 m2/C 

h piezoelectric coupling coefficient for stress-voltage form matrix 3x6 N/C 

 

 Of the 32 classes of crystals, 21 of them are non-centrosymmetric, of which 20 

exhibit the direct piezoelectric phenomena.  Of these 20 crystal structures, emphasis of 

this thesis will focus on the wurtzite structure of ZnO[62, 86]. 

1.4 Zinc Oxide (ZnO) 

 Zinc oxide (ZnO) is a piezoelectric, transparent, semiconducting oxide.  It is 

commonly used as a catalyst[88], sensor[85], piezoelectric transducer[89], surface 

acoustic wave propagator[90] and photonic material [91].  With a direct bandgap of 3.37 

eV and a large excitation binding energy (60 meV), ZnO exhibits near-UV emission, 

transparent conductivity, and resistance to high temperature electronic degradation.  In 

addition, ZnO is the hardest of the II-VI semiconductors (therefore more resistant to 

wear), as well as one of the semiconductors with the most dominant piezoelectric 

properties. 
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Structurally, ZnO has a non-centrosymmetric wurtzite crystal structure with polar 

surfaces as shown in Figure 1.10. 

 

Figure 1.10 Crystal structure of ZnO (a) 3-D representation (b) 2-D representation. 

 

It is categorized as a hexagonal Bravias lattice (ao = 3.25Å and co = 5.20Å) with 6mm 

point group symmetry; where ‘6mm’ is the Herman-Mauguin crystallographic 

nomenclature used to describe the 6 mirror planes within the basal planes of the crystal.  

As a consequence of ZnO’s hexagonal symmetry, the stiffness, piezoelectric and 

dielectric matrices are reduced to the following: 

   c     (1.25) 
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The values of each independent parameter are provided below in Table 1.5.   

 

Table 1.5 Physical properties of ZnO 

Parameter Value Units 

Density 5.7 103 kg/m3 

ε11 8.6 

ε33 10.0 
dimensionless 

e33 1.32 

e31 -0.57 

e15 -0.48 

C/m2 

c11 210 

c12 121 

c13 105 

c33 211 

c44 43 

109 N/m2 

 

 It is important to reiterate that ZnO nanobelts grow in three primary directions: 

the < >, <0001 0101 > and < 0112 > families.  Since the direct and converse 

piezoelectric effects are dependent on the direction in which the stimulus is applied, the 

maximum piezoelectric effect will be experienced in the polar direction, though all of the 

nanobelts, regardless of orientation, can be utilized in piezoelectric applications[62].  

This will provide a unique opportunity to explore the “piezoelectric confinement” effects 

at the nanoscale in ZnO nanobelts. 
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1.5 Acoustic Waves in Elastic Media 

Acoustics is defined as the study of time-varying deformation in material media 

concerned with the macroscopic phenomena as if matter were a continuum—does not 

deal with atomic levels.  Most people only associate acoustics with sound; however, in 

principle, it describes any mechanical vibration or elastic wave that is not an 

electromagnetic wave.  In this section, the groundwork is laid for the study of crystal 

acoustics by developing fundamental mechanical equations.  The properties of acoustic 

wave propagation in solids, as well as their electrical excitation and detection in 

piezoelectric materials, will be explored. 

An elastic medium (or material) can be modeled as a distributed mass-spring 

element where the displacement of a single element or “particle” results in the 

propagation of strain throughout the structure.  Particles are not molecules in the physical 

or chemical sense; they do not have defined physical or chemical properties.  A particle is 

an imaginary infinitesimally small volume of the medium that exists in the mind’s eye so 

that this movement can be visualized and described quantitatively.  In this case, it is best 

to think of a particle as a grouping of atoms that move in unison. 

 Waves that propagate in a solid depend both on the material properties of the solid 

as well as the boundary conditions.  A particle at a free surface is different from one 

interior to the bulk, in that it is constrained by adjacent particles from only one side.    For 

this reason, surface disturbances can behave somewhat differently from those in the 

interior of a solid.  The following four figures pictorially represent some of the different 

acoustic waves commonly observed in elastic media.  The first two are bulk waves and 

the last two are surface waves.  In each case the wave propagation is from left to right 

and the particle displacement distinguishes each of the wave types[92]. 

 In a longitudinal wave, as shown in Figure 1.11, the particle displacement is 

parallel to the direction of wave propagation. Imagine the red wall in the figure 

oscillating back and forth to send a compression wave down the tube of the solid.  The 
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particles do not move down the tube with the wave; they simply oscillate back and forth 

about their individual equilibrium positions.  Notice the periodicity in the particles that 

create high-density regions about which the particles oscillate. 

 

 

Figure 1.11 Longitudinal wave propagating from left to right, parallel to the particle 

displacement.  Red arrow denotes particle displacement. 

 

 In a transverse wave (shear wave), as shown in Figure 1.12, the particle 

displacement is perpendicular to the direction of wave propagation.  The particles do not 

move along with the wave; they simply oscillate up and down about their individual 

equilibrium positions as the wave passes by. 

 

 

Figure 1.12 Transverse wave (or shear wave) propagating from left to right with the 

particle displacement perpendicular to the direction of the traveling wave. The red arrow 

denotes particle displacement. 
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 Unlike the bulk waves just described, surface waves involve a combination of 

both longitudinal and transverse motions.  Figure 1.13 depicts a typical ocean wave.  As 

the name intuitively describes, ocean waves in elastic media are analogous to surface 

waves one might see crashing on a sandy beach or propagating in a bathtub.  In the 

figure, the wave is propagating from left to right; however, the particle displacement 

takes a clockwise elliptical path which is much different from the linear path found in the 

longitudinal and shear waves.  Note that the radius of the circle that defines the particle 

path decreases as the penetration depth into the surface increases. 

 

 

 

Wave 
Propagation 
Direction 

Particle 
Displacement

Figure 1.13 Schematic description of an ocean wave where the acoustic wave 

propagation is from left to right, and the particle displacement is clockwise. 

 

 Another example of waves with both longitudinal and transverse motion are 

Rayleigh waves (Figure 1.14).  Rayleigh waves are different from ocean waves in one 

important way.  In an ocean wave, all particles travel in clockwise trajectory.  In a 

Rayleigh wave, particles at the surface trace out a counter-clockwise elliptical path.  As 

the depth into the solid increases, the width of the elliptical path decreases to zero until a 

depth of more than 1/5th the acoustic wavelength where particles begin to trace out a 

clockwise elliptical path[93].  Rayleigh waves are associated with earthquakes and 
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subterranean movement of magma, as well as with other sources of seismic energy such 

as explosions. 

 

 

 

Wave 
Propagation 
Direction 

Particle 
Displacement

Figure 1.14 Schematic description of a Rayleigh wave where the acoustic wave 

propagation is from left to right, and the particle displacement is counter-clockwise at the 

surface and clockwise in the interior of the bulk. 

 

 In addition to the acoustic waves described above, there are other wave types 

known to propagate in elastic media: Love waves[94], Lamb waves[95], Stoneley 

waves[96] and flexural plate waves[97], to name a few.  Each is unique in its manner of 

propagation and each has unique applications.  However, they will not be addressed 

further.  

In the next set of sub-sections, a self-consistent set of equations that describe the 

propagation of mechanical strain in a one-dimensional solid will be given.  This will be 

used to build the three dimensional equation of motion (the Christoffel equation).  

Finally, the piezoelectric contribution to acoustic stiffening will be presented. 
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1.5.1 Mechanical Equation of Motion in One-Dimension 

 A self-consistent set of equations that describe the propagation of mechanical 

strain in a 1D solid is derived in this section.  Just as in Maxwell’s equations for 

electromagnetics, there are a set of four relationships between four mechanical variables 

that are required for characterizing mechanical motion in elastic media.  The four 

variables are stress (T), strain (S), particle displacement (u) and particle velocity (v).  The 

four necessary equations are as follows: 

 

1) Newton’s 2nd Law: 

Consider a slab with cross-section dA and dimensions dx and dy.  Also consider two 

apposing traction forces T1 and T2 that are opposite but not equal resulting in a net force 

on the slab normal to the cross-sectional area.  Describing the internal coupling as 

springs,         

            dF         =       m         +      a 
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∂
∂
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   or 

    2

2
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u

z
T

∂
∂

=
∂
∂ ρ      (1.28) 

where ρ is density in kg/m3. 

 

2) Particle Velocity: 

    t
u

∂
∂

=ν       (1.29) 

which can be seen as the time derivative of particle displacement. 
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3) Strain: 

The gradient of the particle displacement with respect to position (spatial rate of change) 

    z
uS

∂
∂

=       (1.30) 

This equation is only valid if strains are small, which may not be realistic in some 

practical cases. 

 

4) Hooke’s Law: 

     cST =       (1.6) 

This equation was addressed extensively in section 1.3.1 and defines the properties of 

connected springs.  For given stress components, a stiff spring results in a relative small 

strain whereas a compliant spring results in a large strain.  These four equations enable 

the solving of the four variables listed above.  There are two fundamental physical laws, 

(1.28) and (1.30) and two constitutive equations (1.29), (1.6). 

 By taking the derivative of (1.29), (1.28) can be simplified to t
u

z
T

∂
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Differentiating z
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=  with respect to t and using (1.6) 
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This set of equations can now be solved to give the 1D wave equation.  Differentiating 

(1.31) with respect to t and (1.28) with respect to z gives 
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Since the terms with cross derivatives are equal, 

    2
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2

2 11
t
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=
∂
∂

ρ      (1.32) 

Equation (1.32) is the 1D wave equation with the solution va, which is the phase velocity 

of the acoustic wave shown in (1.33) 

    ρ
c

a =v       (1.33) 

 In the 1D acoustic system, it can be seen that the solution is a plane wave with the 

acoustic polarization in the direction of the wave propagation (longitudinal wave).  In a 

3D system, three possible acoustic polarizations will result as solutions to the 

equation[82].   

1.5.2 Three Dimensional Christoffel Equation 

 The 3D wave equation is generally referred to as the Christoffel equation.  It 

yields three solutions, the properties of which are determined by the relationship between 

propagation direction and the stiffness matrix.  To start, it is necessary to expand the 

definitions of (1.28) and (1.30) by considering the 3D physical equations where Newton’s 

law is 2

2

t
uT

∂
∂

=∇ ρ , and the definition of strain becomes uS s∇= .  The constitutive 

relationships remain the same; however, things become more complex now that it is 

necessary to consider the full 6x6 stiffness tensor as derived above in section 1.3.1.   

 First, manipulation of these equations using the constitutive relations to form the 

wave equation is performed.  Each is written in terms of T and v. 

    t
vT

∂
∂

= ρ∇       (1.34) 

    t
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t
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∂
=

∂
∂

= :∇     (1.35)  
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Differentiating (1.34) with respect to t and multiplying (1.35) by c gives: 
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=
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∂ ρ∇      (1.36) 

    t
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Since c is simply the inverse of s, c:s = 1 (the colon symbol denotes matrix 

multiplication).  Substituting t
T

∂
∂

 from Equation (1.37) into (1.36) results in 
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which is the wave equation in 3D.  Next, it is possible to derive an equation of identical 

form for the particle displacement u.  If c and v are scalars with particle velocity in the Z 

direction, (1.38) reduces to, 
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which can be written in a more convenient 3x6 matrix where Ijs ∇→∇  I = 1 to 6, j = 1 

to 3.  The expression  is a 6x6 matrix, making vc s∇: ): vc s( ∇⋅∇  a vector. 

 

Therefore, the 3D wave equation reduces to 
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which contains three summations over the dummy indices j, K, L where is the 6x3 

matrix in (1.40) and  is simply the transpose. 

Lj∇
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Lj∇  can be simplified by considering the time and space dependence of propagating 

acoustic waves.  Unlike electromagnetic waves where displacement, electric field, 

magnetic field and induction are all in phase, in acoustic systems particle displacement is 

out of phase with particle velocity.  An arbitrary plane wave propagation direction  is 

considered and can be written as, 

^
L

         (1.41) 
^^^^
kljlilL zyx ++=

where lx, ly and lz are the projections of the unit vector  on three Cartesian axes.  The 

3D time and space dependant phase relationship is written as, 

^
L

     v     (1.42) 
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where  is given by (1.41),  and 
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, (1.42) can be written as: 
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    (1.43) 
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Now it is simply a matter of differentiation to obtain 
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By substituting (1.43) back into the derivative, 
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Recalling (1.40), the L matrix in (1.45) has the same form as the gradient operator matrix 

and each of its components represents a propagation direction of the acoustic wave. 
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Next, (1.39) can be rewritten as  

  ∇  (1.46) ijijjLjKLikjLjKLiK vvkvlclkvc 222 )( ρω−=Γ−=−→∇

where,  is the Christoffel matrix.  This matrix is 3x3 with elements that 

depend solely on the propagation direction of the wave and the stiffness constants of the 

crystal.  Solving the Christoffel equation involves solving an eigenvalue problem where 

the three eigen solutions are the three acoustic velocities of the possible propagating 

waves.  The three corresponding eigenvectors are called the acoustic polarization and are 

simply the particle direction[82]. 

LjKLikij lcl=Γ
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1.5.3 Piezoelectrically Stiffened Christoffel Equation 

 The presence of piezoelectricity in crystals has an effect on the propagation 

characteristics of acoustic waves in elastic media.  It is possible to develop the Christoffel 

matrix for piezoelectric materials and show the dependence of piezoelectricity on crystal 

orientation.  Of the four necessary acoustic equations, all remain the same except for 

Hooke’s law.  Since any stress applied to the crystal results in an electrical polarization, it 

is necessary to include the additional term as shown in the stress-charge form given 

previously in section 1.3.4.     

         (1.22) 
k
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kkJJ
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EeScT

ε+=

−=

In addition, it is necessary to consider the three electrical equations in order to re-

calculate of the Christoffel equation to include an electrical perturbation. 

t
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∂
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−=×∇ (Faraday’s Law) 

J
t
DH +

∂
∂

=×∇ (Ampere’s Law) 

HB µ=  

Using these equations enables the direct coupling of the acoustic wave equation to the set 

of electromagnetic wave equations in 3D (letting J=0). 

First, the strain equation (1.35) is multiplied by the stiffness matrix under a 

constant electric field: 

t
Scvc E

s
E

∂
∂

=∇ :      (1.47) 

Next, (1.22) is differentiated with respect to t: 
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Using (1.47) 
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Differnetiating Netwon’s law gives 
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(This is also equation 1.36 from above) 

Substituting (1.49) into (1.50) results in: 
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Next, we consider the electromagnetic wave equation in 3D: 
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Using 1.22 gives, 
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Eliminating the strain term by substituting (1.35) gives the electromagnetic wave 

equation with an acoustic perturbation term: 
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Equations (1.51) and (1.54) are the two equations that couple the electric field E to the 

acoustic field v.  In the absence of piezoelectricity ( )0→e  they reduce to the uncoupled 

equations for the acoustic and electric fields. 
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The electrical coupling term from (1.51) is 
t
Ee

∂
∂

⋅ :∇ .  For plane waves[82], 
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The acoustic perturbation term in (1.54) is
t
ve So ∂

∂
∇:µ .  The term can be seen to poses a 

3X1 matrix as it must.  Analagous to (1.55), 
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It must be assumed that the presence of the acoustic wave does not cause electromagnetic 

radiation in the crystal.  This assumption is called the quasistatic approximation.  The 

assumption that there is no coupling to an electromagnetic wave with an acoustic wave 

and thus no acoustically-generated magnetic field implies that 0=×∇ E .  Therefore, the 

electric field can be written as a gradient, Φ−∇=E .  The implication of this is that the 

electric field is continuously being generated by the propagation of the strain wave.  

Furthermore, assuming a plane wave, the spatial variation of the electric potential only 

varies in the direction of the acoustic wave stating that the electric field is in the direction 

of . 
^
l

 Setting the left side of (1.54) to zero, substituting Φ−∇=E  into (1.51) and (1.54) 

and taking the divergence gives: 
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and, 
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Next, converting to a plane wave, 

( ) ( )Φ=+− jKjiKijLjKLiK lelkjvvlclk 22 ωρω   (1.59) 

because ( )( jkl j −Φ→Φ )∇  and, 
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Equations (1.59) and (1.60) are a set of two equations with two unknowns, one acoustic 

(v) and one electric (Φ).  Solving (1.60) for Φ gives, 
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Substituting (1.61) into (1.59) gives the result we are looking for: 
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This form is nearly identical to the uncoupled Christoffel equation from section 1.5.2 

with a few extra terms from the piezoelectric and permittivity matrix included.  It is said 

that these components stiffen the matrix.  This form of the equation will be revisited 

towards the end of the thesis in Chapter 4[82]. 
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1.6 Thesis Matter 

 Piezoelectric ZnO nanowires and nanobelts will be the nanomaterial of focus 

throughout this body of work.  The following chapters will address some of the issues 

Feynman introduced during his speech to Caltech.  Progress in the areas of manipulating 

small things will be demonstrated using novel techniques in Chapter 2.  Some techniques 

utilize brute force manipulation through the physical contact of probe tips.  Others more 

elegantly enable non-contact manipulation by using optically generated surface acoustic 

waves to push microstructures and nanomaterials into desired locations.  Chapter 3 will 

demonstrate the first ever bulk acoustic resonator (BAR) based on bottom-up synthesized 

ZnO belts.  In this chapter, many non-traditional fabrication methods will be introduced 

as necessary tools for fabricating the nanodevice.  Device fabrication and testing will be 

presented along with one-dimensional modeling to confirm device performance.    

Chapter 4 will introduce a 2nd generation design for the bulk acoustic resonator.  Here, 

slow, low yield nanofabrication will be abandoned for traditional photolithograpy in 

order to streamline the process and increase throughput.  In this section a redesign of the 

device presented in Chapter 3 will result in freestanding nanobelt resonators.  In addition, 

a novel approach for site-specifically growing nanostructures between two electrodes will 

be presented for the purpose of integrating nanomaterials directly into prefabricated 

MEMS, NEMS and CMOS systems without the need for manipulation.  This can be seen 

as an advantageous solution to mass production of nanodevices.  In Chapter 5, device 

performance of each nanoresonator type will be analyzed along with modeling to 

describe some of the hurdles limiting further success.  Finally, concluding remarks and an 

outline for future work will be detailed for anybody wishing to continue this type of 

research. 
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CHAPTER 2 

NANOMANIPULATION 

  Bottom-up synthesized nanomaterials have received a great deal of attention from 

the scientific community in recent years.  Their unique optical and electronic properties 

are seen as promising components in a variety of novel applications such as field effect 

transistors[98], light emitting diodes[99], sensors[100], resonators[44] and power 

generators[101].  Some of the key scientific hurdles to overcome when building 

functional devices around nanomaterials are controllable handling, manipulation and 

assembly[102].  Some scientists have developed synthesis procedures in order to site-

specifically grow nanostructures in desired locations via catalysis[91].  This technique is 

preferred yet sometimes limited to a vertical growth direction and not ideal when 

considering more complex device designs and geometries.  Others have obtained control 

over the position of individual nanostructures by manipulating them post synthesis.  The 

atomic force microscope (AFM) has been demonstrated as a useful direct-contact 

technique by applying lateral forces to the nanomaterial via a probe tip[103].  Alternating 

current dielectrophoresis has been used to separate metallic carbon nanotubes from semi-

conducting nanotubes by aligning them between two electrodes[104].  Infrared optical 

traps have been used to transfer and assemble semi-conducting nanowires in a fluid 

environment[105].  Other techniques have been developed that utilize magnetic 

fields[106], Langmuir-Blodgett troughs[107] and micro-fluidic channels[108]; each is 

seen as a step forward in the nano-fabrication process. 

 This chapter deals with the techniques pioneered and utilized in order to build 

devices using ZnO nanobelts.  Some of them involve direct contact between a probe tip 

and the individual nanostructure, while others utilize laser induced acoustic waves for 

non-contact manipulation of 1D microstructures and nanomaterials. 
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2.1 Direct Contact Manipulation of Nanomaterials 

 This section will highlight two direct contact techniques used to manipulate 

bottom-up synthesized nanobelts.  The first, utilizes the build up of eletrostatic charge to 

generate attractive forces between the nanostructure and a tungsten probe.  The second 

involves the “welding” of platinum (Pt) to a small probe in direct contact with a 1D 

nanostructure in order to create a physical bond by which to pick up the nanomaterial.  

The former is useful for manipulating large structures with thickness and width 

dimensions in the low micron to high nanometer range, while the latter is useful when 

manipulating extremely small nanomaterials.  Each has its own advantages and 

limitations which will be addressed below.  These techniques are synonymous with the 

STM manipulation experiments Eigler performed.  However, instead of building devices 

one atom at a time, the materials are grown to atomic precision using large scale 

synthesis first and then integrated with other device components.  

2.1.1 Electrostatic Manipulation 

 This technique was developed around the desire for an inexpensive process that 

required little training and a minimal amount of equipment for implementation.  The 

technique utilizes two DC probes, an optical microscope, an insulating substrate and the 

as-synthesized nanomaterial.  

 First, 400nm of Si3N4 was deposited using PECVD onto a silicon wafer.  The as- 

grown nanobelts/nanowires were scraped from the deposition substrate using a pair of 

fine tipped tweezers and allowed to freely disperse onto the nitride thin film.  The wafer 

was then placed onto the probe station underneath the optical scope.  Two tungsten DC 

probe tips model PTT-120/4-25 made by Cascade Microtech with a 12µm tip radius were 

fixed to Cascade micromanipulators and then positioned just above the wafer within the 

microscopes field of view. 
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 The probe stage was moved in the X and Y directions until a suitable 

nanostructure could be identified for manipulation.  Once the desired structure was 

sighted, one of the probes was lowered using the Z-position on the micromanipulator 

until it contacted the nitride film just behind the structure.  With the probe in contact with 

the insulator, it was then skated forward until it achieved contact with the nanomaterial.  

With the probe in intimate contact with both the substrate and the nanomaterial, it was 

then pushed forward further to slide the nanostructure across the insulating surface in 

order to build up static charge.  This is similar to the way a person would rub their shoes 

back and forth on fuzzy carpet.  Due to the build-up of static charge resulting in 

coulombic attraction between the probe tip and the nanomaterial, the nanostructure would 

attach itself to the end of the probe.  After moving a finite distance, the micromanipulator 

was retracted, causing the tip to skate backwards with the nanostructure in intimate 

contact (similar to what Eigler did by sliding atoms along the surface of nickel to build 

arrays of molecules).  As the probe was raised from the substrate, the nanostructure 

remained secure, withdrawing it from the surface.  Once this was done, the underlying 

substrate can be repositioned without disturbing the static bond between the probe tip and 

the nanostructure.  Next, the new substrate on which the structure is to be deposited can 

be moved into the field of view just beneath the nanomaterial.  The probe is then lowered 

into contact and positioned so that the nanostructure is set in its desired resting place.  At 

this time the nanostructure is still in contact with the probe.  Attempts were made to 

agitate the structure by scraping it across the substrate; however, mechanical forces were 

insufficient to detach it from the probe tip.  In order to release the nanobelt a second 

probe was brought into contact with the free end of the nanostructure in order to 

discharge the built up static electricity.  This is similar to touching a door knob after one 

has rubbed his or her feet on a shaggy carpet to generate a spark (one probe is the floor, 

the other probe is the door knob, the person with built up charge is the belt).  Once this 

was done, the nanostructure remained on the surface and both probes were retracted 
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without disturbing it.  In some cases, if the final resting position is not ideal, the probes 

can be brought in again in order to repeat the manipulation.  If the surface on which the 

nanostructure was deposited is a good conductor, it may not be possible to pick up the 

nanomaterial again.  This is sometimes advantageous if the operator of the probes simply 

wants to reposition the nanomaterial and not physically lift it.  A series of video files 

were captured with a Moticam 2300 digital camera with 3.0 mega-pixel resolution in 

order to document the reproducibility of this technique.  Individual frames from one of 

the movies are shown starting with Figure 2.1 and ending with Figure 2.18.  Each frame 

is captioned to describe what is going on during the manipulation experiment. 

 

ZnO Belt 

Figure 2.1 This is the first frame of the manipulation experiment.  Both probes can be 

seen and each is freely suspended just above the nitride coated wafer.  The probe on the 

left will be used to pick up the ZnO microbelt in the frame.  There is some other 

contamination on the surface, but this can be ignored. 
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Figure 2.2 The probe is lowered until it is in intimate contact with the nitride layer.  The 

right side probe is still hovering above the surface.  It will not be utilized until the final 

step of manipulation. 

 

Figure 2.3 The probe is skated forward into contact with the ZnO belt.  At this time the 

probe is in contact with both the nitride and the ZnO. 
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Figure 2.4 In this frame, the probe is kept in contact with the nitride and retracted in the 

X-direction in order to see whether or not the belt is stuck to the probe.  Since the belt 

moves backwards with the probe, it is assumed that the coulombic attraction has attached 

the ZnO belt to the probe tip. 

 

Figrue 2.5 The manipulator is raised in the Z-direction out of contact with the nitride.  It 

is possible to see the reflection of both the belt and the probe off the surface beneath it.  It 

can bee seen that the belt is clearly in contact with the tungsten probe. 
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Figure 2.6 In this frame, the operator is agitating the manipulator back-and-forth 

violently in order to see if the belt can be detached.  It is impossible to truly demonstrate 

this without a movie; however, this still is taken at the end of agitation to verify that the 

belt has remained in contact. 

 

Figure 2.7 The micromanipulator is being raised further above the substrate.  A faint 

reflection of the belt can still be seen as it is being raised. 
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Figure 2.8 Once the probe has been moved far enough away from the surface, the 

substrate on which the belt will be deposited can be moved into the field of view.  In this 

case the belt will be deposited on top of a series of electrodes in order to test certain 

functional characteristics of the ZnO belt.  The device consists of six electrodes with a 

trench that has been etched into a SiO2 layer (three electrodes are above the trench; three 

are below).  The nature of this device will be discussed in subsequent chapters 3 and 4. 

 

Figure 2.9 Here the micromanipulator is being lowered into contact with the device 

electrodes in order for the belt to be deposited into its final resting position. 
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Figure 2.10 This is another intermediate step that shows the continued lowering of the 

manipulator along with the belt just before it finally touches down on the device pads. 

 

Figure 2.11 The belt is now in direct contact with the device pads though it is also still 

statically attached to the end of the tungsten probe. 
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Figure 2.12 Here the probe is pulled back slightly so as to drag the belt across the surface 

of the electrodes.  This was done in an attempt to mechanically strip the belt from the end 

of the probe.  However, the mechanical forces were not strong enough since the belt is 

still in contact with the probe tip. 

 

Figure 2.13 The probe is pushed forward again after attempting to remove it 

mechanically.  It can be seen that the mechanical forces are capable of pivoting the belt 

around the contact point between the belt and the probe.  As a result, the belt is no longer 

perpendicular to the device electrodes.  However, since this is an acceptable position for 
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the belt, and it is not necessary that it be ideally configured for measurement purposes, it 

was left as is. 

 

Figure 2.14 The second probe is being brought in from the right hand side.  This probe 

was used to discharge the static electricity and release the structure. 

 

Figure 2.15 The second probe (discharge probe) is brought in closer to the belt.  The 

actual probe and its reflection can be seen in this frame. 
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Figure 2.16 Both probes are now touching the ZnO.  As a result, all three components 

should share the same potential.  The belt should no longer be attracted to one (or either) 

of the probes. 

 

Figure 2.17 Both probes have been pulled back away from the ZnO nanostructure.  It can 

be seen that the ZnO is sitting alone across a trench. 
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Figure 2.18 This is the last frame of the movie showing both probes suspended in air 

above the nanostructure they were used to manipulate. 

 

One of the main drawbacks of this technique is that it utilizes direct contact for 

manipulation.  As a result, the nanomaterials can be damaged, shattered, or contaminated, 

which can interfere with device functionality.  In addition to contamination, this 

technique loses some of its utility when attempting to manipulate extremely small 

nanomaterials.  The smallest nanostructure successfully demonstrated was approximately 

700-800 nm wide.  It is possible to go smaller; however, probes with a finer tip radius 

and an optical microscope capable of higher magnification would be necessary.  It is the 

length of the nanostructure that is the limiting factor with this technique, not the diameter.  

When the nanobelt is shorter than the tip radius of the probe, picking it up is relatively 

easy; however, there is not enough surface area left to bring in a second probe to dissipate 

the charge.  Probes with finer tip radii could provide a larger contact patch on the 

nanostructure to increase the usefulness of this technique.  Cascade does make similar 

probes with a 60nm tip radius that would be more suited for manipulating nanomaterials.  

A technique utilized for manipulating smaller nanostructures will be discussed in the next 

section.  
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2.1.2 Focused Ion Beam Assisted Manipulation 

 One of the key limitations of the above technique has to do with the size of the 

structure capable of being manipulated.  Another has to do with the lack of knowledge a 

researcher has about the nanomaterial being integrated into his or her device.  As stated in 

Chapter 1, nanobelts provide a unique opportunity to study a variety of crystal 

orientations and confinement effects along different facets of the structure.  In order to do 

this, some form of characterization is required before or after manipulation.  If 

characterization is done after manipulation, the device is subject to a statistical chance 

that one orientation will be selected over another.  Even though the crystal orientation can 

be characterized later, it limits control over a decisive direction for a research project.  

For commercial applications, if one orientation is deemed preferable relative to another, 

characterization prior to manipulation would be necessary. 

 The following technique utilizes a Hitachi HF-2000 field emission (200kV) 

transmission electron microscope (TEM) in conjunction with an FEI NOVA Nanolab 200 

focused ion beam (FIB) microscope in order to successfully manipulate ZnO nanobelts.  

Synthesized ZnO nanobelts are first dispersed onto a copper TEM grid which is inserted 

into the TEM in order to record diffraction patterns and other crystallographic 

information.  The nanobelts’ locations are then mapped by comparing the real image in 

the TEM to the belts respective position recorded in a series of SEM micrographs.  The 

copper grid is then transferred to the FIB, which is retrofitted with a Kleindiek 

micromanipulator probe station that was used to manipulate the nanobelts.  

 FIB is a tool that somewhat resembles the operation of a scanning electron 

microscope (SEM).  However, while an SEM uses an electron beam to image the surface 

of a sample, the FIB uses a focused beam of gallium ions.  A liquid metal gallium ion 

source (LMIS) is heated up until the gallium metal wets the tip of a tungsten filament.  

An electric field is applied to the end of the tip in order to ionize the gallium resulting in 

field emission of ions.  The gallium ions are accelerated through a series of 
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electromagnetic lenses and focused onto the surface of a sample.  Unlike SEM, FIB is 

inherently destructive to a sample.  In addition to generation of secondary electrons, 

backscatter electrons and x-ray photons from the sample, when high energy ions strike 

the surface, atoms will also be sputtered away.  This sputtering process is utilized as a 

tool for micromachining and nanofabrication at submicron dimensions. 

 In addition to its machining capabilities, FIB is also useful for depositing material 

via ion beam assisted chemical vapor depositions (CVD).  FIB-assisted CVD occurs 

when a gas, in our case an organic platinum precursor supplied by FEI, is introduced 

inside the vacuum chamber and allowed to chemisorb onto the samples surface.  By 

scanning a local area with the ion beam, the gas precursor reduces into Pt metal where the 

ion beam interacts.  In addition to Pt, FIB has also shown to be useful for depositing other 

materials like, tungsten, silica, carbon and a variety of other insulating, semiconducting 

and conductive materials[109].  The FEI NOVA used in these experiments has an SEM 

column positioned vertical in the chamber in addition to the ion gun tilted 52o relative to 

the electron gun—this is a dual beam system. 

 Inside the vacuum chamber, a Kleindiek micromanipulator was utilized to contact 

a nanobelt with a Picoprobe model T-4-10-1mm tip, and in conjunction with the FIB-

assisted CVD, “weld” a bit of Pt between the tip and the nanobelt in order to create a 

physical bond.   Once the bond was created, the nanobelt was lifted away from the copper 

grid and positioned just above a series of contact electrodes.  Once the belt was in 

position, FIB was used again to mill the physical bond away, leaving the nanobelts in its 

desired location across the device electrodes.   An example of the process is shown below 

in a series of SEM images that were taken during the manipulation experiment. 
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300µm 

Figure 2.19 This is an SEM micrograph of the copper TEM grid with nanobelts 

dispersed across the surface.  The red circle identifies the area from which two polar 

surface nanobelts lie, one of which will be successfully manipulated using the Kleindiek 

micromanipulator. 

 

 

b) a) 

Both of these 
are polar surface 
dominated 
nanobelts 

c) 

Figure 2.20 (a) Here is the region circled in the above image.  Red arrows point to two 

polar surface belts.  (b)TEM image from one of the nanobelts.  (c) Diffraction pattern 

showing six-fold symmetry. 
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Figure 2.21 In this step the copper grid is tilted 52o relative to the SEM column so that it 

is perpendicular to the ion gun for Pt deposition.  This also enables more effective 

positioning of the probe since the SEM column can be used in conjunction with the ion 

beam to monitor the Z-position as well as the X and Y position of the probe.  The red 

circle shows where the probe will contact the nanobelt in order to weld them together. 

 

Figure 2.22 Zooming in on the back of the nanobelt, the probe has been positioned just to 

the side. 
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Figure 2.23 The probe is now in direct contact with the nanobelt.  The slight hook in the 

probe is used to cradle the belt for Pt deposition. 

 

Figure 2.24 This is a low current ion beam image showing exactly where the probe is 

positioned relative to the nanobelt in the X-Y plane. 

 

Since the SEM images from above are taken 52o from normal, this snapshot was taken to 

ensure everything was lined up properly just before deposition.  The ion beam snapshot 

was only taken while looking at a very small region of the belt.  This was done to ensure 
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that no sputtering or contamination occurred in any regions of the belt that were to be 

used in the nanobelt device.  

 

Pt weld 

Figure 2.25 At this point the organic platinum precursor was introduced inside the 

chamber through a thin needle inserted just above the probe/nanobelt.  A small rectangle 

of Pt was deposited using software to control the rastering of the ion beam.  A thin weld 

of Pt can be seen connecting the nanobelt to the probe tip. 

 

Figure 2.26 Here the magnification of the SEM was reduced in order to prepare to move 

the tip with the micromanipulator positioning system.  As long as the belt is secured to 
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the probe tip, it will be possible to overcome any weak interaction forces between the 

nanobelt and the copper grid by lifting it away. 

 

Figure 2.27 At this point the micromanipulator was retracted from the grid.  The 

nanobelt caused a small piece of formvar film to tear back from the grid where the belt 

was weakly attached. 

 

Figure 2.28 As the probe continues to retract, the formvar tears and a small square piece 

of polymer is observed to be stuck to the free end of the nanobelt.   
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Figure 2.29 At this point, the nanobelt was no longer in contact with the copper grid and 

was completely free to be repositioned across the prefabricated device electrodes. 

 

Probe tip

Figure 2.30 The speed of the manipulator was increased and was agitated violently to 

attempt to detach the nanobelt from the probe.  This was done to test the robustness of 

this process. 
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Figure 2.31 It seems that during the “wiggling” process, the small piece of polymer that 

was stuck to the free end of the belt was shaken loose. 

 

Figure 2.32 A 3X3 array of prefabricated device electrodes were positioned beneath the 

probe in order to complete the final steps of manipulation by severing the Pt weld.  
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Unfortunately, due to a severe amount of charging that occurred in the SiO2 insulting 

layer that is a major component of this device architecture, it was difficult to obtain any 

images during this step in the process.  The final image showing the nanobelt across two 

freestanding gold flaps can be seen below. 

 

Spot where FIB 
severed nanobelt 

4µm 

Figure 2.33 Here is the final resting position of the polar ZnO nanobelt.  It is lying across 

two gold electrodes and ready for the final fabrication steps to prepare it for testing.  A 

small mill line in the underlying gold electrode can be seen where the FIB was used to 

sever the nanobelt from the Picoprobe. 

 

Very low beam currents (~10pA) were used and only the region being milled was 

ever imaged with the ion beam.  The remainder of the nanobelt was kept out of the field 

of view of the ion beam in order to prevent any possible contamination from the gallium 

ion source.  The actual utility of such a device will be discussed in subsequent chapters; 

only manipulation is being addressed here. 

 FIB-assisted CVD and milling has been demonstrated as a useful tool for 

manipulating nanostructures.  Pre-characterizing the as-synthesized material in TEM 

prior to manipulation has been shown to complement this technique and enhance its 

utility.  Unfortunately, there are still drawbacks that leave less brute force techniques to 

be desired.  It is still a direct contact process, and possible contamination can be 

introduced into the system via the Picoprobe.  In addition, while platinum metal only 
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decomposes where the ion beam interacts, the methyl platinum precursor ends up coating 

the entire area around the nanostructure even in regions outside the field of view of the 

SEM.  It is unknown if these functional molecules have any effect on the surface 

properties of the nanobelt.  If defects or vacancies are created, this would likely disrupt 

the natural electronic properties, resulting in measurable data that is false and device 

performance that is undesirable.  Finally, this technique required a lenghty time 

commitment.  Manipulating one structure could take a full day or longer since it requires 

the use of three sophisticated tools (TEM, SEM and FIB). 

2.2 Non-Contact Manipulation of Nanomaterials 

 The nature of the techniques just described can introduce contamination or cause 

damage to the nanostructure.  In addition to the techniques used above, others are also 

susceptible to contamination from an AFM probe tip or the viscous media used in 

dielectrophoresis and optical trapping.  This becomes a concern when considering the 

high level of cleanliness necessary for maintaining high performance and yield in the 

MEMS, NEMS and CMOS systems being integrated with these nanomaterials. 

2.2.1 Acoustic “tweezers” for Non-contact Manipulation 

 Impulsive Stimulated Thermal Scattering (ISTS) utilizes a pulsed laser along with 

beam-shaping optics in order to induce complex acoustic wave patterns in a thin film.  

Pulses of light from an excitation laser are focused through a series of lenses onto a 

beam-shaping optical mask (diffraction grating), causing the light to diffract into an array 

of line sources.  The two primary diffraction orders then pass through an achromatic lens 

pair in order to focus the converging beams onto the sample creating an interference 

pattern on the sample surface.  Absorption of the light in the surface layer of the film 

results in local heating and thermal expansion defined by the interference pattern.  The 

thermal disturbances launch acoustic waves that consist of surface modes and bulk waves 

that travel into the interior of the sample[110].  Through the utilization of the diffraction 
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grating it is possible to control the propagation direction of an acoustic wave and tune its 

acoustic wavelength.  This technique is typically used for the purpose of characterizing 

high frequency acoustic propagation in thin films[111].  Here, it has been adapted to 

generate acoustic waves in micro/nanomaterials in order to induce physical, controllable 

motion.  This technique is non-contact and does not require the use of a liquid medium.  

Figure 2.34 schematically illustrates the ISTS tool.   

 

Figure 2.34 Schematic diagram of the ISTS tool. 

 

2.2.1.1 Experimental Set-Up 

For this specific experimental set-up, the excitation laser pulses with an average 

on/off frequency of 1500Hz and a pulse length of 500psec.  The average power from the 

excitation laser is tunable from 0.97mW to 6.72mW.  In order to optimize the behavior, 

copper is deposited as an optically absorbent thin film capable of efficiently absorbing 
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the 532nm optical wavelength of the excitation laser as heat.  Unless otherwise specified, 

the intensity for all experiments was chosen to be 2.77mW since it was determined to be 

the maximum laser power that can be used without causing damage to the copper layer.  

Extremely high intensities will result in the melting of copper causing permanent and 

irreversible damage.  This would be an undesirable effect when touting the non-

destructive nature of this manipulation technique as a benefit.  The ISTS tool used for 

these experiments enables acoustic wavelengths ranging from 5µm to 25µm.  Unless 

otherwise specified, all results were obtained by fixing the acoustic wavelength at 8.2µm.  

An example of the line source spacing can be seen in Figure 2.35.  This image was 

created by increasing the power of the excitation laser to the maximum 6.72mW in order 

to intentionally melt the copper and burn an image of the line source into the thin film.  

The SEM micrograph depicts the copper surface after re-solidification. 

40μm

8.2μm

40μm

8.2μm

 

Figure 2.35 SEM micrograph of the line source used to generate the 8.2 micron acoustic 

response in the copper surface.  This was burned in by the 6.72mW excitation laser. 
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ZnO nanobelts were used for the following experiments in order to demonstrate 

the usefulness of ISTS as a manipulation tool.  Four substrates were prepared in order 

demonstrate the utility of the technique and prove the mechanism responsible for driving 

the manipulation.  First, ZnO nanobelts were grown in a single zone tube furnace using a 

PVD process[112].  The bottom-up synthesized nanomaterials were then dry-dispersed 

onto a silicon wafer coated with 400nm of PECVD Si3N4.  The Si3N4 layer was not 

necessary; such wafers were readily available for these experiments.  Once the material 

was dispersed, 75 nm of Cu was sputtered on top in order to coat the surface of the 

nanobelts and the nitride wafer.  The second sample was prepared much in the same way 

as the first; however, this time 75nm of aluminum was deposited instead of copper.  The 

third sample was made by sputtering 75nm of copper onto the nitride-coated wafer prior 

to dry-dispersing the nanobelts.  In this situation, only the nitride wafer was coated with 

copper while the uncoated nanobelts rested on the copper surface.  The final wafer was 

created by removing some of the copper-coated nanobelts from the first wafer and 

placing them onto a bare nitride coated wafer.  Once the samples were prepared, each 

was investigated separately with ISTS in order to quantify the behavior of the 

nanostructures. 

The excitation beam in ISTS is fixed at a specific position inside the instrument 

(much like in SEM).  The sample was placed on a stage capable of moving in the X, Y, 

and Z directions with a minimum controllable step size of 1.25µm.  Z-positioning was 

used to ensure the wafer was set at the focal plane of the excitation laser, while X and Y 

movements were used to seek out appropriate nanobelts for testing as well as guide the 

manipulation experiment once one was identified.  Each of the experiments were 

conducted in the following fashion:  First, a burn pattern was made using the maximum 

power of the excitation laser.  This defined the precise location of the line-source relative 

to a cross-hair at the center of the image.  A belt was identified by scanning the surface 

with the optical microscope integrated with the ISTS.  Once a candidate structure was 
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found, the stage was used to center the nanobelt in the path of the excitation laser.  The 

excitation laser was turned on and allowed to interact with the belt, causing it to shift.  

The light source reflecting and scattering off the surface of the wafer/structure would 

created spots in the camera’s image that agitated as long as the belt was moving.  Once 

the diffracted light stopped agitating, it was determined that the structure had come to rest 

and the beam was turned off.  The stage was moved to position the belt back into the path 

of the excitation laser for the next step in the manipulation process.  A still image of the 

initial and final position was captured from the computer screen, or a movie file was used 

to record the entire experiment.  Individual frames were used to analyze the results 

described below. 
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2.2.1.2 Results 

All of the results, unless otherwise stated, were obtained using the first sample 

that had copper sputtered both on top of the ZnO belts, as well as the nitride substrate.  

Figures 2.36, 2.37 and 2.38 show a series of before, during and after images of a single 

microbelt as it was moved from left to right.   

 

Figures 2.36, 2.37, 2.38 Three separate manipulations seperated into their individual 

steps.  (a) Initial position of the belt prior to turning on the excitation laser. (b) Excitation 

laser is turned on and is generating acoustic waves. (c) Final position of the belt once the 

laser has been turned off. 
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Images 2.36a, 2.37a and 2.38a show the initial position of a ZnO belt prior to 

three subsequent manipulation experiments.  2.36b, 2.37b, 2.38b are snapshots of the 

beam once it’s turned on and fired at the nanostructure.  2.36c, 2.37c, and 2.38c depict 

the final resting position of the belt in each experiment once the excitation laser was 

turned off.  In order to continue pushing the belt across the surface, it was necessary to 

move the stage and reposition the belt underneath the beam.  In Figures 2.37a and 2.38a, 

the belt’s initial position was intentionally different from its position in 2.36a in order to 

determine if travel distance was fixed or if it depended on some other parameter.  It can 

be seen when comparing figures 2.36c, 2.37c, and 2.38c that the total travel distance of 

the belt is dependent on its initial position.  In 2.36c the belt moved ~62µm, in 2.37c it 

moved ~25µm, and in 2.38c it moved ~71µm, all while maintaining the power of the 

laser and acoustic wavelength constant.  It is important to note that the final resting 

position in each of the experiments was the same relative to the cross-hair in the 

micrograph.  An analysis of this behavior will be given below. 

The next set of figures shows the same microbelt during six subsequent 

movements to the right, followed by six movements back to the left.  In the series of 

images it can be seen how the microbelt shifts relative to two prominent features nearby.  

Red hash marks identify the previous position of the structure in each frame and are used 

to track the progress of the belt as it is pushed along. 
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120 μm120 μm
 

Figure 2.39 (a) Acoustic manipulation of the microbelt toward the right (b) Manipulating 

the same microbelt to the left. 

  

In addition to the microbelt in Figure 2.39, other microstructures and nanobelts 

were successfully manipulated.  The next figure shows two snapshots taken from a video 

that was used to capture the entire manipulation process.  The power of the excitation 

laser was increased to the maximum 6.72mW in order to determine how acoustic 

intensity effected the overall travel distance.  Only the initial and final positions are 

shown even though five steps were used to move it the total distance from Figure 2.40a to 

2.40b.   
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If its initial position is deep into the acoustic field, it will have to travel a great distance 

until it reaches the outer boundary.  In addition, since the geometry and mass of the two 

structures discussed so far are not identical, they are not directly comparable.  The travel 

distance will be defined as the distance from the centermost excitation spot to the final 

resting position of the trailing end of the structure.  As a result, at 2.77mW of power, the 

belt moved ~60µm during one firing of the laser, while at 6.72mW it moved ~118µm.  

Figure 2.42 is a visual model of how acoustic waves are being generated in the 

nanostructure and resulting in mechanical motion. 

 

a) b) c) 

Figure 2.42 Model depicting how acoustic waves generated from the excitation laser 

induce motion in the structure. (a) Initial position of the belt before the excitation laser is 

turned on (b) Excitation laser is fired causing thermal expansion generating ripples in the 

structure (c) The acoustic wave pushes the belt until it is outside the acoustic field where 

it comes to rest. 

 

In addition to large 1D microstructures, it was also possible to manipulate 1D 

nanostructures using this technique.  Working with nano-sized belts resulted in a 

somewhat opposite behavior compared to that experienced with the microbelts.  Up, 

down and rotational control was observed, yet no horizontal control was possible.  In 

addition, movement in the up and down vertical plane required that the nanostructure be 

positioned perpendicular to the direction of motion, not parallel.  Results from this are 

shown below while an analysis of the behavior is discussed in section 2.2.1.3. 
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Figure 2.43 shows two stills taken from a movie where a 1D nanobelt was 

manipulated.  This time the structure runs perpendicular to the direction of motion and 

was manipulated a total of ~300µm in the vertical direction.  Instead of turning the 

excitation laser on and off between movements, the laser was left on while moving the 

stage continuously in one direction.  The following images were overlaid in such a way to 

compare features that remained idle while the nanobelt was being driven upward.  Both 

the stationary features and the structure being manipulated are circled in each still to 

make this comparison more obvious.  The moving structure is circled in white with some 

of the stationary features circled in black. 

Moved ~300µm Up

120µm

a) b)

Moved ~300µm Up

120µm

a) b)

 

Figure 2.43 Overlay of images to demonstrate the manipulation of nanobelts in the 

vertical direction. (a) Initial position (b) Final position. 

 

Figure 2.44 shows the same nanostructure, only this time its initial position was 

not directly perpendicular or parallel to the line source array, but rather up and to the 

right of it.  This was done to see if it was possible to rotate the nanostructure as well as 

cause it to migrate in a direction other than parallel or perpendicular to the traveling 

acoustic wave.  It can be seen from the figure that the nanobelt moved oblique in the X 

and Y plane closer to a small stationary particle nearby.  In addition, it can be seen that 

the structure slightly rotated itself towards the particle. 
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Figure 2.44 Nanostructure is pushed up and to the right. (a) Initial position (b) Final 

Position. 

 

The same effect was achieved by positioning the nanostructure on the opposite 

side (up and to the left) of the acoustic field as shown in Figure 2.45.  Notice that in this 

case the structure also rotates away in the opposite direction, as demonstrated in Figure 

2.44. 
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Figure 2.45 Manipulation and rotation of structure up and to the left, away from the 

acoustic field. (a) Initial position (b) Final position [Note that (a) is to the right of (b)] 

 

After the experiment, the actual structure was identified in an SEM and can be 

seen in Figure 2.46.  This was done by using burn marks as references when searching for 

the structure.  The dimensions are somewhat inconclusive due to the way the structure is 

lying on the substrate.  However, the width is assuredly sub-micron, with the thickness 

and width ranging somewhere between 300-600nm while the length is on the order of 

100µm or more. 

20µm

a)

1µm

b)

20µm

a)

20µm

a)

1µm

b)

1µm

b)

 

Figure 2.46 SEM images of the structure that was used in the above experiments. 
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 The smallest nanobelt manipulated to date is shown in Figure 2.47.  

Unfortunately, it was never found in the SEM and the dimensions were never measured 

properly.  Measurements taken from the optical image would put the length at ~20µm.  

Comparing the width of the belt to the structure from Figure 2.45 would result in a 

measurement decisively in the low nanometer range.   

~20μm Long

120μm

a) b)
~20μm Long

120μm

a) b)

 

Figure 2.47 Smallest nanobelt manipulated to date. 

2.2.1.3 Analysis and Discussion 

One of the most immediate questions raised by these experiments is, “How can 

you be sure that the manipulation is acoustic in nature and not driven by photon 

momentum?”  In order to prove that manipulation results from the propagation of 

acoustic waves and not momentum transfer from light, the same experiment was 

performed on a sample coated with 75nm of aluminum instead of copper.  Due to its 

relatively high optical reflectivity, aluminum would be more likely than copper to convert 

photonic energy from the excitation laser directly into motion than.  Recall that copper 

more readily absorbs green wavelengths.  Looking at Figure 2.48, it can be seen when 

comparing the time dependent acoustic response in both copper and aluminum that there 

is more acoustic energy generated with the copper-coated materials than with aluminum-

coated.  As a result, the film in which the most prevalent motion was observed will 

indicate which behavior is dominant. 
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Figure 2.48 Acoustic response of copper thin films and aluminum thin fims on Si3N4. 

 

No appreciable motion was observed in the Al coated ZnO belts.  Even with the 

power of the laser increased to the maximum 6.72mW, the nanomaterials would only 

occasionally move very small distances and in an inconsistent and uncontrollable manner.  

This demonstrates that aluminum is not as efficient as copper when absorbing 532nm 

light as heat and generating acoustic waves.  Since manipulation was more prevalent with 

copper coated belts than with the aluminum coated ones, acoustic waves must be the 

mechanism responsible.  It should also be noted that even at the highest intensity, it was 

not possible to produce melting in the aluminum layer as was possible with the copper.  

Another consideration is that the excitation laser is positioned normal to the surface.  

Since there is little to no lateral component to the incident beam, any momentum transfer 

would simply push the belt into the substrate (assuming the belts have flat top surfaces).  
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Since each belt translation was observed to be reversible, the hypothesis of photon 

reflection from a unilaterally-slanted surface reflector was discarded. 

Since the manipulation was determined to be driven by acoustic energy, questions 

about whether the acoustic waves are being generated in the underlying copper, in the 

nanostructure itself, or both still remain.  The nanomaterial is clearly smaller than the 

spot-size of the beam, so either situation is possible.  It is for this reason that the final two 

wafers (one with copper on the wafer but not on the belts; another with copper on the 

belts but not on the wafer) were evaluated.  Since ZnO is transparent, it can not absorb 

sufficient photonic energy as heat from a 532nm laser.  Any physical motion observed in 

the sample, with no copper coating the ZnO, would then be solely attributed to the 

acoustic waves generated in the underlying substrate.  Many tests were performed at a 

variety of intensities and on a large number of nanostructures of varying size and shape.  

At no time was any movement observed in the uncoated ZnO belts.   

The final substrate (with copper coated nanobelts dispersed on bare nitride) was 

designed to eliminate any acoustic waves in the support wafer and to isolate propagation 

to the nanostructure itself.  This configuration did result in successful manipulation and, 

in some cases even more control was obtained when compared to the wafer with copper 

coating both the nanobelts and the wafer.  This clearly indicates that acoustic waves 

traveling inside the nanostructure itself are responsible for manipulation.  

It was mentioned above that two basic phenomena were observed using this 

technique.  One was confined to large microbelts moving horizontally in the direction of 

acoustic propagation as defined by the line source array.  The other resulted in smaller 

nanostructures moving in the vertical direction, perpendicular to their direction of 

orientation.  First, it is necessary to realize that there are two consequences by which 

acoustic waves are generated from the excitation laser.  The first was addressed above 

and is dictated by the diffraction grating that fixes the dominant acoustic wavelength and 

propagation direction.  The second has not been addressed and has to do with the fact that 
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the excitation laser is pulsing at 1500Hz with a 500psec on time and a 666.67µsec off 

time.  This on/off switching also generates a periodic heating and cooling that will result 

in thermal expansion and retraction in the surface layer.  Since this behavior is not 

defined by the diffraction grating, any acoustic response is going to propagate radially in 

all directions from each line as if it were a point source.  Since the length of time the laser 

pulse is actually on is much shorter than the time it is off, all acoustic waves will have 

dissipated prior to the onset of the next pulse.  This can be treated as a source with a finite 

duration resulting in acoustic waves with an infinite bandwidth[113].  The acoustic waves 

generated laterally in the horizontal plane are reinforced to a wavelength of 8.2µm 

through the replication of point sources every 8.2µm.  However the waves propagating in 

the vertical direction are not so reinforced and therefore a large spectrum of wavelengths 

are allowed to propagate in this direction.   

Since the excitation laser launches a variety of acoustic modes, it is important to 

determine the likely mode responsible for manipulation.  All types of longitudinal waves 

and love waves can be ruled since both the wave direction and particle displacement run 

parallel to the surface, lacking any perturbation manifesting as an in-plane force on the 

nanobelt.  An in-plane shear wave is also not likely to result in manipulation since the 

particle displacement is only perpendicular to the surface, and there is no lateral force 

capable of driving the structure forward.  The likely mechanism for generating acoustic 

manipulation is a Rayleigh wave.  As discussed in Chapter 1, both Rayleigh waves and 

ocean waves have rotational particle displacements that exhibit both vertical and 

horizontal components.  However, ocean waves aren’t typically observed in solids. 

Rayleigh waves have a surface particle displacement that is counter-clockwise 

relative to a wave propagating to the right and a clockwise rotation with a wave 

propagating to the left.  For the purpose of this exercise, assume a Rayleigh wave is 

propagating to the right inside a ZnO belt.  The ZnO nanobelt should be treated as an 

unbound surface as represented in Figure 2.49.  The left side of the figure describes 
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Rayleigh wave propagation in bound solids, and the right side shows what it looks like in 

unbound solids (nanobelts).  Also, for the purpose of this discussion, assume the acoustic 

response is driven by the spacing in the line source as described above for the larger 

structures. 

 

Figure 2.49 (a) Rayleigh waves propogating in a bound surface (d) Rayleigh waves 

propogating in an unbound surface.  Images (b), (c), (e) and (f) are higher order 

harmonics of the same. 

 

As one penetrates deeper beneath the surface of a propagating Rayleigh wave, the 

width of the particle displacement begins to decrease until a null point is reached at a 

depth of 1/5 the acoustic wavelength[114].  At this point the horizontal particle 

displacement inverts, generating a clockwise rotation described by an ocean wave at the 

lower free surface (in our case 1/5 of 8.2µm is 1.64µm).  As long as the belt is thicker 

than 1.64µm, the underside of the structure in contact with the substrate is going to 

experience the anti-symmetric polarization clockwise rotation associated with an ocean 

wave.  Since the particle displacement has surface normal and lateral retrograde 

components, an equal and opposite force will act on the belt propelling it forward.  This 
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wave type is commonly observed in thin plates with free surfaces on either side and is 

also called an anti-symmetric Lamb wave[115].  The particle displacement can be seen in 

Figure 2.50. 

Counter-Clockwise Particle Displacement
at the Top Surface

Clockwise Particle Displacement
at the Bottom Surface

Counter-Clockwise Particle Displacement
at the Top Surface

Clockwise Particle Displacement
at the Bottom Surface

Counter-Clockwise Particle Displacement
at the Top Surface

Clockwise Particle Displacement
at the Bottom Surface

 

Figure 2.50 Rayleigh surface wave particle displacement in an unbound surface.  This 

wave type is also called an anti-symmetric Lamb wave. 

 

The reason only the large belts can be pushed horizontally by the line source is 

because belts with small dimensions are thinner than the 1.64µm necessary thickness to 

generate the appropriate particle displacement.  They will still have a counter-clockwise 

rotation at the interface.  Large belts oriented perpendicular to the propagation direction 

are thick enough; however, they are now too narrow and likely fit somewhere in between 

two crests of the acoustic wave. 
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The small nanobelts moving in the vertical direction are being driven by the point 

source created by the pulsating laser.  Since there is a wide range of frequencies being 

generated, the higher end of the frequency spectrum has shorter acoustic wavelengths that 

are likely to be sufficient for generating Rayleigh/Lamb waves in the smaller structure.  

The lower the wavelength, the smaller the structure can be and still experience the ocean 

wave particle displacement at the interface capable of driving it forward.   The reason the 

belt in Figure 2.44 and 2.45 was able to rotate and move oblique in the X-Y plane was 

due to the radial acoustic path of the acoustic pulse. 

Even though only a few successful manipulation experiments were actually 

shown here, 10s of data points were documented to help draw these conclusions and 

ensure the above process was reproducible. 

2.3 Conclusions and Future Work 

Three techniques for manipulating bottom-up synthesized nanomaterials have 

been presented.  The nature of the first two required direct contact between the structure 

and a physical probe.  Electrostatic manipulation has shown to be useful as an 

inexpensive, simple technique easy enough to set up in any lab, though it is limited in its 

ability to work with smaller nanomaterials.  Utilizing TEM in conjunction with FIB is 

significantly more sophisticated than a probe station and has shown to be very useful 

when manipulating small nanostructures, especially when some information about the 

crystal structure is also desired.  This technique is still limited due to contamination 

introduced during the welding and milling process.  Also, it requires a long time 

commitment to manipulate one structure. 

A new technique for manipulating nanomaterials using surface acoustic waves has 

been developed.  The technique is non-contact and does not introduce contamination like 

the first two.  Both microstructures and nanomaterials can be manipulated using this tool.  

Work is currently being done to model the observed phenomenon and ensure that the 
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generalized Rayleigh/Lamb wave surface traction hypothesis is correct.  Work is also 

being done to modify the instrument in order to incorporate multiple excitation beams 

and multiple diffraction gratings.  Through the utilization of multiple beams along with 

additional beam shaping optics, an instrument could be envisioned whereby each beam 

would govern motion in a specified direction.  One set of optics would control lateral 

movement of nanomaterials.  Another set would control motion up and down, while a 

third would be designed for rotational control.  Modeling will be performed in order to 

determine the grating geometries for generating the desired acoustic response.  All optical 

gratings will be fabricated using traditional lithographic processing.  

Work is also being done to identify a sufficient optically absorbent material other 

than copper.  The need to deposit copper onto nanomaterials in order to achieve control 

over their position is one of the few limitations of this tool.  Polymeric materials are 

being investigated as possible replacements.  A polymer that could be spun on or 

otherwise deposited on the structure could easily be burned off in oxygen plasma once 

the final position is achieved[116]. 
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CHAPTER 3 

ACOUSTIC DEVICES 

 Below is a description of lumped circuit (RLC) resonators as well as piezoelectric 

resonators.  Advantages of piezoelectric resonators over circuit resonators will be given 

as well as how modern technology has progressed with the desire to find replacements for 

the current piezoelectric resonators.  The usefulness of resonators as mass sensors will 

also be presented along with the appropriate techniques for making measurements on 

resonant devices.   

 The first ever bulk acoustic resonator based on bottom-up synthesized ZnO belts 

will be discussed.  The fabricated device was characterized using the vector network 

analysis.  Both the first and third harmonics of resonance were observed at approximately 

246.81 MHz and 270.44 MHz respectively.  In addition, a 1-dimensional Krimholt-

Leedom-Matthaei model (KLM) was utilized to predict the resonant frequency of the 

device and confirm the observed behavior. 

3.1 Microwave Resonators 

 Resonators are useful in a variety of applications including filters, oscillators, 

amplifiers and frequency meters.  Resonance can be defined as a state in which an 

alternating voltage and current traveling through a circuit are in phase; the capacitance 

and inductance values are equal (net reactance is zero) and the only quantity left is a pure 

resistance.  The simplest of resonators is made up of lumped circuit elements in either 

series or a parallel.   Since the capacitance and inductance cancel, resonance for a series 

circuit will be observed as a minimum impedance.  A series resonant circuit can be seen 

in Figure 3.1, and the magnitude of impedance is plotted as a function of frequency.   
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Figure 3.1 A series RLC resonant circuit and its response (a) A series RLC circuit. (b) 

The input impedance magnitude vs. frequency. 

 

 The input impedance of such a circuit is defined by the circuit elements, where 

1Z R j L
j C

ω
ω

= + +      (3.1)  

and 

21
2

P I R j L 1
j C

ω
ω


= + +

 


     (3.2) 

The Power dissipated by the resistor is determined to be 

 

21
2lossP I= R      (3.3) 

 

and the average magnetic energy stored by the inductor is 

21
4mW I= L      (3.4) 
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as well as, the average electric energy stored in the capacitor is 

2
2

1 1
4eW I

Cω
= 
 


     (3.5) 

Since resonance occurs when the average stored magnetic and electric energies are equal, 

the reactance terms cancel each other out, and impedance is simply equal to a pure 

resistance (Z = R).  Therefore, the resonant frequency must be defined as: 

1
o LC

ω =      (3.6) 

 Like a series RLC circuit, the parallel resonant circuit is displayed in Figure 3.2. 

The key difference between the two is that when the capacitance and inductance terms 

cancel, impedance is observed at a maximum in a parallel resonant circuit instead of a 

minimum. 

 

Figure 3.2 A parallel RLC resonant circuit and its response (a) The parallel RLC circuit. 

(b) The input impedance magnitude vs. frequency. 

 

 For the parallel case the inverse terms are additive.  So, 

1 1 1 j C
Z R j L

ω
ω

= + +     (3.7) 
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and 

21 1 1
2

P V j C
R j L

ω
ω

 
= + +

 
    (3.8) 

The Power dissipated by the resistor is 

2
1
2loss

V
P

R
=      (3.9) 

The average magnetic energy stored by the inductor is 

2
2

1 1
4mW V

Lω
= 
 


     (3.10) 

and the average electric energy stored in the capacitor is 

21
4eW V= C      (3.11) 

Again, parallel resonance (or sometimes known as anti-resonance) occurs when the 

average stored magnetic and electric energies are equal and Z = R.  Just like the series 

resonance, the parallel resonant frequency is also calculated to be 

1
o LC

ω =      (3.12) 

 

 In order to characterize the quality of a resonant circuit a Q, or quality factor, is 

measured.  Where,   

average energy stored
energy loss/second

Q ω
 

= 
 


m e

l

W W
P

ω
 +

= 
 

   (3.13) 

Thus, Q is the measure of the loss of a resonant circuit—the lower the loss, the higher the 

Q.  Since at resonance Wm = We,  

2 1m o
o

loss o

W LQ
P R

ωω
ω

 
= = = 

  RC
    (for a series resonance)   (3.14) 
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o
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P L

ω
ω

 
= = = 

 
oRCω     (for a parallel resonance)   (3.15) 

 It can be seen from the above equations that for a series resonance, Q increases as 

R decreases.  Conversely, for a parallel circuit Q increases as R increases.  Further 

treatment and assumptions about the relative circuits near resonance results in a 

simplification where the real power delivered to the circuit is one-half that delivered at 

resonance (for a more rigorous treatment see, Pozar 2005 3rd Edition).  As a result the Q 

for any resonator is calculated to be 

1Q
BW

= 
 


      (3.16) 

Where BW is the fractional bandwidth shown above in figures 1 and 2[117]. 

3.2 Bulk Acoustic Wave Devices 

 As stated before, piezoelectrics of low-loss, high dielectric constant materials can 

be used as bulk acoustic resonators (BAR).  When these devices are placed into a 

transmission line they are indistinguishable, in principal, from the above described circuit 

resonators.  The characteristic resonant frequency is dictated by the material properties as 

well as its geometry. 

 As mentioned, piezoelectric materials can be used as BARs in RF components.  

Applying an AC voltage to a BAR results in an acoustic oscillation.  As the AC 

frequency is swept, a natural oscillation occurs where the amplitude reaches a maximum 

at a specific frequency (the resonant frequency).  This behavior can be described as being 

analogous to a tuning fork.  The high dielectric constant of these materials ensures that 

almost all of the electric field lines will be contained within the BAR; however, there can 

be some leakage through the sides and ends of the resonator[117].  The equivalent circuit 

for a BAR can be represented by a constant clamped capacitance in parallel with an 

acoustic motional arm.  It is called the motional arm because it is these elements that are 
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associated with the large amplitude of vibrational motion caused by the piezoelectric 

effect.  A suitable equivalent circuit, the Butterworth-Van Dyke model (BVD), is shown 

in Figure 3.3. 

 

Figure 3.3 BVD equivalent circuit displaying both the parameters and impedances of the 

circuit elements. 

 

 The BVD takes into account both the series and parallel resonance observed in 

RLC resonant circuits.  The values of the circuit element are derived in terms of the 

fundamental acoustic and electrical parameters (attenuation, phase velocity…) and can be 

calculated from the impedance values of the clamped capacitance and the motional 

arm[84, 118].   The admittance (Y) is thus given by the following:  

1 1 1 1
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where Zm is the impedance of the motional arm and Zo is the impedance of the clamped 

capacitance.  Taking the inverse of admittance results in 
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By multiplying the numerator and the denominator by the complex conjugate we get 

3 2 2
2

2
2 2 2
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L C Co
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 =
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As mentioned before, the condition for resonance is satisfied when the reactance—the 

imaginary portion of the equivalent circuit (the portion in brackets)—is equal to zero. So, 

3 2 2
2

210
m

m o
m m o

m m m

L C CoL L C
C C C oR Cωω ω ω

ω ω
= − − + − −  (3.19) 

Solving the quadratic equation results in two solutions 
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The first root of the calculation is the series resonant frequency, and the second is the 

parallel (or anti-resonant) frequency, which can be simplified to 

1 1
2R

m m

f
L Cπ

=        (3.20) 

      1 1 1
2A

m m m o

f
L C L Cπ

= +     (3.21) 

It can be seen from the allowable solutions that anti-resonance will always be greater than 

resonance[84]. 

 Bellow is a graphical depiction of a BAR as the swept frequency approaches and 

passes through resonance.  In Figure 3.4, the magnitude of impedance (|Z|) as well as the 

phase angle of impedance (θ) is shown as a function of frequency. 
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Figure 3.4 Display of a typical measurement of |Z| and θ as a function of frequency.  The 

scale for θ is linear, while |Z| is on a log scale. 

 

A Q can also be calculated for BAR using (3.16) treated above. 

 Since the behavior of the resonator is dependant on the properties of the crystal, 

we are able to relate each of the individual circuit elements to the stiffness, mass and loss 

of the system.  Co describes the behavior of the dielectric material and can be modeled as 

a simple a capacitor. 

l
AC oεε=      (3.22) 

Where ε is the dielectric constant of the resonator and t is the thickness of the dielectric.   

This behavior dominates when the frequency sweep is significantly far from resonance.   

 The equivalent capacitance of the motional arm relates to the elastic stiffness of 

the resonator where ε is the piezoelectric constant, and E is the appropriate elastic 

constant.   

2

m 2

8A = C
tE
ε

π
     (3.23) 

The equivalent inductance of the motional arm is directly related to the mass of the 

resonator, which includes any coating on the surface (i.e. electrodes) and the fluid in 

contact with the surface.  Where, ρ is the density of the piezoelectric, and 

3

m 2

t = 
8A

L ρ
ε

     (3.24) 
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Finally, the equivalent resistance describes the loss, or mechanical dampening associated 

with the device (r is the dampening coefficient) of which there are internal and external 

losses of electrical energy. 

3

m 2

t rR  = 
8Aε

     (3.25) 

 First, electrical energy can be converted into thermal energy in the crystal 

(internal loss).  Second, electrical energy can dissipate out of the crystal into a fluid (air, 

water…), which is in contact with the resonator (external loss).  The latter loss 

mechanism depends upon the bulk properties of the “fluid” and the nature of the 

interaction.[118]   

 This raises the question, “What is the advantage of the BAR over a conventional 

resonant circuit?”  The most important reason lies in the values, which conventional 

components would have to provide in order to simulate the behavior of the crystal.  The 

simulation of C0 would present no problem, but the simulation of other parameters is, in 

general, difficult.  For example, the value of Cm in a typical 5-MHz AT-cut unit may be 

of the order of 0.01 pF.  A capacitor of this size could scarcely be built, since its leads, if 

any, would probably have more capacitance than this.  The value of Lm is of the order of 

0.1H and Rm is perhaps 10 ohms.  A coil having an inductance of 0.1H would ordinarily 

require many turns of wire on a ferromagnetic core.  To construct such a coil with a 

resistance of only 10 ohms in a volume less than 0.5 cm3 is probably unlikely[84].   

 Second, RLC resonant circuits are susceptible to changes in resonant frequency as 

a function of temperature.  While a BAR is also susceptible, it is more stable over a broad 

temperature range.  Also, certain crystal cuts result in orientations where an increase in 

thermal expansion of the crystal results in a proportional increase in the acoustic velocity, 

keeping resonance unchanged.  This is how quartz watches are manufactured in order to 

prevent a thermal dependence on time.   In addition, RLC circuits are fairly bulky while 

piezoelectric devices come in much smaller robust packages.  Piezoelectric resonators are 
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cheaper, lighter in weight and are known to have much higher Q values than equivalent 

RLC resonator.  To design a useful filter it takes an array of resonators in series or 

parallel for low-pass, band-pass and stop-band applications.  This can become 

cumbersome in RF applications where small, portable devices are desired.[82, 84, 117-

119] 

 In addition to applications in RF communications, BAR devices have been used 

as mass sensors.  It is the direct piezoelectric effect that is the basis for force, pressure, 

vibration and acceleration sensors and the converse effect for actuator and displacement 

devices[120].  The use of piezoelectric BAR devices as gravimetric sensors has origins in 

the work of Sauerbey.  Sauerbey demonstrated, under an AC field, the mass/frequency 

relationship between rigid layers attached to a quartz resonator and treated it as an 

equivalent mass change to the crystal itself[121].  The following equation demonstrates 

that the frequency change is directly proportional to the added mass: 

          (3.26)  

Where, ∆f is the change in resonant frequency due to the added mass, fro is the unloaded 

resonant frequency of the resonator.  ρq and Gq are the density and the shear modulus of 

the crystal.  A is the surface area of the resonator and ∆mq is the change in mass[122].  

This concept has been exploited extensively in the fabrication of chemically selective 

sensors, where a binding agent is incorporated onto a BAW device[123].  Since the 

description of this behavior, BAR devices have been used to quantify the thickness of 

sputtered metal[124], detect phase transitions[125], evaluate contamination in food[126], 

and sense viruses[127]. 
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3.3 Thin Film Bulk Acoustic Resonators 

 Due to the growing need for high performance frequency control devices in 

wireless networks with low power consumption.  A point has been reached where even 

the acoustic devices described above are considered bulky for RF applications.  

Subsystem miniaturization in cell phones, pagers, navigation systems, satellite 

communication and various forms of data communication are all pushing towards on-

chip components instead of the off-chip quartz filters that are currently being used[128]. 

In particular there is a need for front-end filters that protect receivers from adjacent 

channel interference and output filters that limit the bandwidth of transmitter noise[129].  

The most promising candidates for these applications are the solidly mounted resonator 

(SMR)[130] and the thin-film bulk acoustic resonator (FBAR)[131]. 

 SMR and FBAR devices are very similar to the BAW devices described above; 

however, they are scaled down to operate in the GHz frequency range.  It can be seen 

from Figure 3.5, the device consists of a thin piezoelectric film sandwiched between two 

electrodes.  An RF signal applied through the thickness of the film produces mechanical 

motion, and fundamental resonance occurs when the film thickness equals λ/2 the input 

signal.  Note that the SMR is fabricated on top of an acoustic reflector in order to prevent 

loss from being transmitted into the underlying silicon. In order for this to work, three or 

four pairs of acoustically dissimilar materials must be used.  The FBAR deals with loss 

by creating a freestanding device as shown in Figure 3.5b.  The creation of an air/crystal 

interface prevents interaction between the resonator and the underlying substrate[132].  

Both of these devices are attractive since they can be fabricated to occupy the same or 

similar packages as high frequency integrated circuits.  Both are seen as a promising 

replacement for ceramic devices used in mobile communications that operate between 

200MHz and 6GHz. 
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Figure 3.5 (a) Schematic view of an SMR (b) Schematic view of an FBAR. 

 

  

The beam resonator, Figure 3.6, operates differently from an FBAR in that the 

flexural mode is excited[133].  This design uses a piezoelectric film to drive a silicon 

beam into oscillation.  The vibration travels as a transverse wave through the beam to a 

piezoelectric film on the other side, which then converts the mechanical oscillation back 

into an electrical signal.  This type of device is useful in lower frequency applications 

where a greater sensitivity to mass is desired.  Beam resonators have the added benefit 

that the resonant frequency can be capacitively tuned using an additional electrode 

fabricated just bellow the resonator[134].  There are many promising applications of 

flexural modes resonators as a pressure, mass and chemical sensors[135, 136]. 

 

Figure 3.6 Schematic of a clamped-clamped beam resonator. 
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 The piezoelectric materials currently being utilized are typically grown via sputter 

deposition.  The results of this are low quality films made up of oriented grains with a 

high concentration of defects (Figure 3.7)[137].  ZnO is one of the more commonly 

utilized materials due to its ease of deposition; however, it is particularly sensitive to 

temperature, acids, bases and even water.  As a result, other processing like cleaning, 

etching, metal layer patterning, passivation, reactive ion etching and the stripping of 

photoresist all degrade the quality of the ZnO[138].  High quality single crystals are 

desirable; however, micro-fabrication techniques result in poor material properties. 

 

b)a)

1µm 600nm

Figure 3.7 SEM micrographs of sputter deposited a ZnO film (a) Cross-section (b) Top 

View. 

3.4 Network Analysis 

 Network analyzers have become one of the most important measurement tools for 

characterizing the performance of high-frequency components and devices, including 

resonators[139].  Vector network analysis (VNA) can accurately measure the effect a 

device under test (DUT) has on the amplitude and phase of test signals swept across a 

frequency range.  The best way to describe the concept of network analysis is using the 

light wave analogy. 
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Figure 3.8 Light wave analogy as it relates to high-frequency device characterization 

using network analysis. 

 

 When light strikes a transparent lens, some of the light is reflected back, while 

most of it is transmitted through to the other side.  If a lens has a mirrored surface, then a 

majority of the incident light will be reflected while little to no light will be transmitted 

through.  Network analyzers act in very much the same way.  Network analyzers measure 

the incident, reflected and transmitted energy off of a DUT during a frequency sweep.  

By taking the measurements as a ratio of the detected voltage to the incident voltage 

enables the use of reflection and transmission coefficients that are independent of 

variations in power as a function of frequency.  Reflection measurement data is often 

shown as 

 = reflected L

Incident L o

V oZ Z
V Z Z

−
Γ =

+
    (3.27) 

where ZL is the load impedance of the signal incident on the DUT from the network 

analyzer and Zo is the characteristic impedance of the DUT.  When Zo and ZL are equal, 

all of the incident energy is transmitted through the DUT and Γ = 0.  When the Zo and ZL 

are not equal, some of the energy is reflected by the DUT and Γ is greater then zero.  If 

Zo is equivalent to an open or short than Γ = 1. 
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The transmission coefficient (Τ) is defined as  

transmitted

Incedent

V
V

Τ =     (3.28) 

Whereby, if the transmitted voltage is greater than the absolute value of the incident 

voltage, then the DUT is said to have gain, where 

( )gain( ) 20 logdb = Τ     (3.29) 

If the absolute value of the transmitted voltage is less than the incident voltage, the DUT 

is said to have insertion loss, where 

( )insertion loss( ) 20 logdb = − Τ    (3.30) 

 Low-frequency device or network characterization is usually based on the 

measurement of admittance functions (Y and Z parameters).  In order to completely 

characterize the unknown device, the measurements of Γ and Τ are taken as scattering 

parameters (S-parameters).    The measured S-parameters are easily converted to polar 

coordinates or real and imaginary components of Y and Z parameters by use of a Smith 

chart. 

 The number of S-parameters that can be measured relates to the square of the 

number of ports for the DUT.  If there is only one port, then only one S-parameter can be 

measured (S11); if there are two ports, then four S-parameters can be measured (S11, S21, 

S12, S22) and so on.  The convention for the numbering of S-parameters defines the first 

number following the S as the number from which the energy coming from the DUT 

enters the network analyzer.  The second number defines the port at which the network 

analyzer sends the incident signal to the DUT.  So, an S21-parameter is measuring the 

signal being transmitted from the network analyzer from port 1, transmitted thru the 

device and detected by port 2.  An S11-parameter is a reflection measurement where the 

incident signal is sent from port 1, reflected off of the DUT and sensed by port 1[140].   
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3.5 Krimholt-Leedom-Matthaei (KLM) Model 

 To assist with the measurements it is necessary to use a model in order to predict 

the location of resonance based on the geometry and material properties of the nanobelt. 

It can sometimes be difficult to locate resonance in a large frequency sweep, and 

modeling can help identify a frequency range in which to start looking.  This model will 

also be used to validate the test results from a nano-resonator.  To do this, a 1-

dimensional KLM model will be employed. 

 

Figure 3.9 The KLM model of a piezoelectric transducer. 

 

 The KLM model is depicted in the above Figure where, V3 and I3 are the voltage 

and current applied to the piezoelectric crystal.  The converse piezoelectric effect results 

in a force F and acoustic velocity U that is felt at the respective faces.  The velocities of 

the wave inside the crystal are + νB, νF, where the subscript F indicates a forward 

traveling wave propagating towards interface 2, and subscript B indicates a backward-

traveling wave propagating towards interface 1.  The + defines waves propagating in the 

right and left half of the crystal.  The model input parameters include the thickness of the 

crystal d, the contact area of the electrodes applying a stimulus to the crystal A, and the 

characteristic load impedance of transmission line, Zo.  Impedances Z1 and Z2 are the 
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respective impedances of the backlayers, or the medium, into which the crystal is 

oscillating (in our case, air). 

 In order to complete the model, it is also necessary to include a capacitor, Co, that 

results from dielectric properties of  the material; impedance X1, and a transformer with 

the ratio (1:Φ) that converts the electrical signal into the appropriate acoustic values.  The 

values for these parameters are 

 

where ε is the permittivity of the piezoelectric, absent an applied voltage, h is the 

piezoelectric pressure constant for the crystal, ρ is the density, and c is the speed of the 

sound waves in the crystal.  From this, it is possible to calculate the input impedance 

from the model parameters as done above with the BVD circuit parameters[141]. 

 The key advantage of this model results from its ability to predict higher order 

harmonics, while the BVD is only able to predict the primary mode of resonance.  This 

model has been utilized as a MatLAB computer simulation which will be described in the 

following section. 

3.6 Bulk Acoustic Resonators Based on ZnO Microbelts 

 The bottom-up approach of nanotechnology has yielded many high quality, single 

crystal, and defect free structures like the nanobelt[57].  Piezoelectric nanobelts of ZnO 

become attractive in these applications because of their perfectly faceted, free-standing, 

beam-like geometry, making them ideal candidates as SMR, FBAR, and beam 

resonators[85].  However, handling nanobelts can be cumbersome when attempting to 

manipulate these materials into useful devices.  In addition, the current operational 

frequency range for devices that utilize electro-mechanical filters are between 200MHz 
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and about 6GHz.  In order to fabricate devices that operate within this range, films on the 

order of 500nm-15µm thick are desired. 

 Work accomplished thus far has utilized the process of nanotechnology to 

synthesize larger structures for the above mentioned radio frequency (RF) applications 

and incorporate them into a working resonator.  While the materials were synthesized 

using a bottom-up approach, traditional fabrication techniques were employed to 

manufacture other components of the resonator, like the support substrate, ground pads 

and contact electrodes.  Network analysis was implemented to measure the scattering 

parameters (S11) and fully characterize the working device[142].  A one-dimensional 

KLM model was also used to compare predicted resonant frequencies to those that were 

measured experimentally[141]. 

3.6.1 Experimental Method 

 The ZnO nanobelts were grown using a single zone tube furnace.  The furnace 

was operated for a period of 12 hours in order to increase the size of the nanobelts per our 

application; typical width dimensions of the belts varied between 5 and 30 µm, while the 

thickness ranged from a few hundred nm up to 5 µm thick.  In some cases the nanobelts 

were grown up to a centimeter long.  As mentioned before, these large nanobelts will 

resonate in a frequency range suitable for modern RF communication systems. 

 A (100) oriented silicon wafer was chosen as the support substrate for device 

fabrication. PECVD was used to deposit 400nm of Si3N4 onto the surface to provide an 

electrically insulating barrier between the device and the low resistivity silicon substrate.  

Thermal evaporation was then used to deposit 2000 Ǻ of aluminum.  An electron beam 

sensitive negative resist (ma-N2410) was spun onto the aluminum surface at 4000 RPM 

to obtain a thickness of approximately 1µm.  The wafer was then cured at 90oC on a 

hotplate and subsequently diced into small chips approximately 1cm2.  A JEOL JSM-

5910 SEM, modified with a J.C. Nabity Nanometer Pattern Generation System (NPGS), 
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was used to pattern the contact electrodes for the device into the resist via e-beam 

lithography (Patterns were designed using DesignCAD LT2000).  The chip was 

subsequently developed with a 2.5% tetramethyl ammonium hydroxide (TMAH) solution 

for 90 seconds and rinsed with deionized water (DI).  After the pattern was inspected 

with an optical microscope, an aluminum etchant made up of acetic, phosphoric and 

nitric acid was heated to 50oC and used to remove the unwanted metal and define the 

large contact pads.  The remainder of the resist was then dissolved in acetone and rinsed 

with isopropanol (IPA) and DI.  The electrodes were inspected again to ensure the 

desired features were achieved and free from contamination. 

 The next stage of processing involved manipulating the as-synthesized nanobelts 

appropriately between the ground pads and the drive/sense electrode.  First, ZnO 

nanobelts were dispersed onto the surface of a clean silicon chip.  A long thin glass 

capillary that had been pulled to a fine point was fixed to a set of Cascade Microtech 

MPH series micromanipulators.  Under an optical microscope with a large working 

distance, the manipulators were carefully operated in order to identify a nanobelt 

appropriate for testing.  The capillary interaction forces between the tip of the glass rod 

and the nanobelt resulted in a weak adhesion sufficient to lift the nanobelt off of the 

surface of the silicon and redeposit it in between the electrodes.  Figure 12 shows a 

schematic of the as fabricated device electrodes and the perceived manipulation of a 

nanobelt into position in between.  Figure 12b and 12c are SEM micrographs of a 

successful manipulation. 
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Figure 3.10 (a) Schematic of ground electrodes and position of nanobelt prior to 

establishing contact (b) SEM micrograph of nanobelt between electrodes (c) close-up of 

side facets. 

 

 In order to make contact to the nanobelt, an FEI NOVA dual-beam, focused ion 

beam microscope (FIB) was used.  Typically, FIB is used for milling into a sample by 

accelerating gallium ions toward the sample’s surface.  Deposition of metal (instead of 

milling) can occur using an ion-beam-assisted-CVD of an organometallic precursor.  In 

our case, a methyl platinum gas was introduced into the chamber using a small capillary 

that suspends just above the sample.  Gas molecules adsorb on the surface but only 

decompose into platinum metal (Pt) where the ion beam interacts[143].  A software 

package was used to control the position of the ion beam in order to deposit Pt on the side 

facets of the belt.  Thin Pt leads were then deposited to connect the electrodes on the belt 

to the large Al contact pads.  The deposited Pt electrodes, along with the lead wires that 

connect the belt to the contact pads, can be seen in Figure 13b and 13c. 
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Figure 3.11 (a) Schematic of resonator before testing (b) SEM micrograph of nanobelt 

resonator (c) Close-up of side facets and lead wires (d) Depiction of stimulus applied 

through the thickness of the nanobelts. 

 

 For characterizing the device and measuring the resonant frequency of the ZnO 

resonator, an Agilent ENA series 5071B network analyzer was used.  Cascade Microtech 

Infinity ground-signal-ground (GSG) probes with a 150µm pitch were utilized to make 

the on-wafer measurements.  Phase-matched K-Type 3.5mm cables send the signal from 

the NA to the probes and back to the NA for analysis of the S11-parameters.  In order to 

isolate the system and remove as many random errors as possible, the entire measurement 

was performed on a Herzan TS-140 active isolation table. 

 In order to ensure a high quality signal it is common to first calibrate the network 

analyzer using vector error correction.  A calibration standard consisting of an open, short 

and load (50 ohms) was used to quantify imperfections in the test equipment.  The 

systematic errors were then stored in the network analyzer and an error model was 
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calculated to remove the effects from the subsequent measurement. This enables a full 

calibration all the way to the probe tips.  However, in addition to the testing equipment, 

additional systematic errors are introduced through contact resistance and pad parasitics 

of the fabricated device.  An additional method, response calibration, was performed to 

remove any systematic errors created by these fixtures.  To do this, a set of bare 

electrodes, absent the nanobelt, were contacted and the data was stored in the network 

analyzer’s memory.  The trace was then displayed as “data divided by memory” to 

normalize the signal.  The probes were then raised and positioned into contact with the 

actual device.  This additional process allowed calibration of the entire system all the way 

to the resonator[144]. 
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3.6.2 Results 

Figure 3.12 is a plot of the data from the NA displayed as the magnitude of 

impedance (|Z|) in blue, and the phase angle (θ) in red as a function of frequency. 
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Figure 3.12 Plots of magnitude (|Z|) and phase angel (θ) of impedance.  The full 

frequency sweep from 200MHz to 900MHz is shown as well as the zoomed-in portions 

of the 1st and 3rd harmonics. 

 

 The primary mode of resonance and anti-resonance is observed at 246.81 MHz 

and 270.44 MHz respectively.  No quality factor (Q) was calculated, however, it can be 

seen that the very large bandwidth at resonance and anti-resonance is the result of a lossy, 

low Q device.  This results primarily from the interaction between the nanobelt and the 

underlying substrate.  Due to manipulation, the nanobelt cannot be considered to be in 

intimate contact with the support substrate, nor can it be considered to be free standing.  
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This quasi-substrate/nanobelt interaction gives rise to an additional dampening 

mechanism other than the traditional dampening caused by ambient conditions in the 

environment.  In addition, it can be seen that there is a taper in the belt.  The width varies 

from 11.9 µm at one end of the device to 12.3 µm at the other.  This asymmetry will 

broaden the resonant peak creating a resonance that is averaged across the thickness 

variation rather than defined at a specific dimension.  In addition to the 1st harmonic, we 

are also able to identify the 3rd at a factor three times the primary peak (753.88MHz).  It 

is common in lossy systems for subsequent harmonics to exhibit even lower Q behavior, 

which is why the higher order mode appears even broader than the 1st.  However, the 

existence of the third mode is a strong indication that the piezoelectric resonator is 

working properly. 

 In order to ensure that the measured signal is coming from a working device, a 1-

dimensional KLM computer simulation was used to predict the resonant frequency based 

on a series of inputs.  The parameters are thickness (chosen to be 12.1 µm), density, 

acoustic velocity, dielectric constant, coupling coefficient, quality factor, as well as the 

load impedance (50 ohms) and the acoustic impedance of the back layers, which were 

assumed to be air.  All of the material properties were taken as bulk values for ZnO.  

Results are displayed in Figure 3.13, and it can be seen that the theoretical results are in 

good agreement with the experimentally measured values. 
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Figure 3.13 Experimental data plotted along with the predicted traces calculated from the 

KLM model confirming the results from the working device. 

 

From the above experimental data it is also possible to calculate the coupling coefficient 

from the values of resonance and anti-resonance.  The electromechanical coupling 

constant describes the efficiency in which mechanical energy is converted into electrical 

energy (or visa versa) and is related to the piezoelectric coupling constant, K2, by, 

      2

2
2

1 K
Kkt +

=      (3.31) 

rc
eK

ε33

2
332 =      (3.32) 

where  is the electromechanical coupling constant.  The theoretical K2
tk 2 and  values 

for a longitudinal wave traveling along the c-axis of ZnO are 8% and 7.4%, respectively 

2
tk
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[145].  It is important to note that the frequency separation between resonance and anti-

resonance (Figure 4.16) is intimately linked to the electromechanical coupling constant 

[145] for the first harmonic. 

2
222 8 






=−

d
k a

tRA
νωω     (3.33) 

2
tk  was calculated in this device to be 0.6%.  When compared to a theoretical 

value of 7.4%, the electrical component of the ZnO belt is loosely coupled to its 

mechanical counterpart.  It is important to note that the frequency stability among 

piezoelectric crystals increases as K2 and therefore  decreases.  Physically this means 

that if the piezoelectric coupling coefficient is small, changes in the parameters of the 

electric circuit have minimum effect upon the mechanical properties of the resonator 

[84]. 

2
tk

3.6.3 Initial Design Improvements 

 This initial result is exciting, yet there are a few ways the above design may be 

improved upon.  First, the large impedance is attributed to the contact area of the 

electrode.  The nanobelt is very thin, and while the length of the contact electrode is very 

long (~110 µm), the resultant contact area is still very small.  The large impedance that 

results could make it challenging to identify resonance as we begin to work with smaller 

and smaller belts.  Reducing the contact area further could cause the signal to be buried in 

the background noise, preventing confirmation of a working device.  In order to deal with 

this issue, an attempt has been made at increasing the contact area by making contact to 

the top and bottom faces of the belt instead of the side facets. Figure 3.14 shows a 

schematic of the 1-port transmission design. 

 118



 

V~
Connecting Pt Strip to Al ZnO Nanobelt 

Pt Strip 

Al Ground 

b)a) 

 

Figure 3.14 Schematic of SMR/FBAR designed to increase the contact area of the 

electrodes (a) Device cross-section (b) Top view of device. 

 

The contact electrodes for this configuration are manufactured using the 

experimental procedure described above (e-beam lithography, etching…); only the design 

has been modified to achieve resonance through the thickness of the nanobelt instead of 

“width.” This time the belt is manipulated to span two center electrodes so that the 

bottom of the belt is in direct contact with both Al pads.  The FIB is then used to deposit 

a thin Pt strip down the length of the belt to act as the top electrode.  At one end, Pt is 

deposited down the side-wall of the belt to establish contact between the Pt strip and one 

of the large Al contact pads as shown in Figure 3.15a.  As a result, the contact area is 

increased, and resonance should be observed at much higher frequencies.  This design 

could be considered to be an SMR without an acoustic reflector. Good data has yet to be 

obtained from this design for reasons to be described in a moment. 

 

 119



 

  

25 µm

Pt Contact 
to Al Pad 

15 µm

Pt Strip

AL Pad

a) b)

 

Figure 3.15 Nanobelt SMR (a) SEM of as fabricated device (b) close-up of device. 

  

 In addition to the nanobelt SMR, preliminary studies on ZnO nanobelt beam 

resonators are also being pursued for mass and chemical sensing applications.  In order to 

fabricate this type of device, it is necessary to mill or etch a trench beneath the belt to 

eliminate any losses associated with substrate/resonator interaction.  Again, the design of 

the device has been modified into a two port transmission configuration.  In Figure 3.16, 

a cross-section and top-view schematic illustrates an early attempt.   
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Figure 3.16 Schematic of beam resonator (a) Device cross-section (b) top view of device. 
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It can be seen that an “H-like” pattern is used as the ground electrode and contact 

between the drive/sense electrodes are established using the FIB (just like SMR design).  

In the following figure a few early attempts are displayed. 
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Figure 3.17 Clamped-clamped beam nanobelt resonator  (a) Nanobelt manipulated across 

the prefabricated electrodes (b) Drive/sense electrode fabrication using FIB  (c) 

Completed  device  (d) SEM micrograph showing the contact established between the top 

electrode and the Al contact pad. 

 

Results have yet to be obtained from either of these designs due to poor contact between 

the bottom Al electrode and the nanobelt.  The top electrode poses no issue since the ion 

beam CVD creates a good bond between the Pt and the ZnO.  However, subsequent to 
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manipulation there is nothing to establish a successful bond between the nanobelt and the 

underlying ground pad, figure 21.  A few annealing procedures have been implemented 

to create a diffusion of metal into the ZnO.  However, since the two components are not 

in intimate contact, there is no interface for diffusion to take place. 

 
25 µm 

a) 
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15 µm 
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Poor Contact

 

Figure 3.18 SEM images showing the lack of contact between the ground pads and the 

ZnO nanobelt (a) beam resonator (b) SMR/FBAR design. 

3.7 Conclusions and Further Work 

 In conclusion, a new approach to resonator fabrication utilizing ZnO belts has 

been demonstrated.  A union between the bottom-up synthesis of nanotechnology and 

MEMS/NEMS fabrication techniques has resulted in the first ever bulk acoustic resonator 

based on ZnO belts.  A model was presented that explains the location of the resonant 

peaks as well as the breadth.  While the above design resulted in a low Q device, proof 

has been shown that the piezoelectric properties of ZnO belts can be exploited, and 

further studies will confirm the benefits of a high quality single crystal. 

 The following chapters will deal with streamlining fabrication and scaling down 

of the process to work with smaller nanobelts.  FIB will no longer be used as a major tool 

in fabrication.  It is an inherently slow process and only capable of producing one device 
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at a time.  Since most of the device architecture is fairly large, a series of 

photolithography masks will be designed in order to mass produce the basic components 

of the device (electrodes and support substrate).  Manipulation will be necessary, though 

alternative techniques will be explored in order to make sufficient contact between the 

nanobelts and the underlying electrodes. 

 One of the techniques will focus on the direct synthesis of the piezoelectric 

nanostructures laterally between two free-standing electrodes.  This technique could 

eliminate the need for any post-synthesis manipulation and could result in the mass 

production of nanodevices. 

 It will also be necessary to expand upon the one-dimensional model presented 

here in order to describe the resonant behavior of nanobelts in three dimensions.  A 

treatment of the Hook’s law in the calculation of the Christoffel matrix will be used to 

expand this model and demonstrate how reducing the frequency determining dimension 

will shift the resonant frequency of the device.  Other geometries, like the beam 

resonator, and the exploration of lateral field excited acoustic waves in nanobelts will be 

discussed as well. 
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CHAPTER 4 

FREE-STANDING ZNO NANOBELT RESONATORS 

 (2ND GENERATION) 

  The first ever bulk acoustic resonator based on bottom-up synthesized ZnO belts 

was demonstrated in Chapter 3.  While this result is interesting, there is a great deal of 

room for improvement with regards to design, fabrication and device performance.  As a 

result, Chapter 4 will focus on four main thrusts: 1) Develop a new fabrication scheme 

that eliminates the need for non-traditional fabrication techniques like e-beam lithography 

and FIB and design a process flow that is based solely on the well established methods of 

photolithography. 2) Scale down the device to work with nano-sized belts in order to 

study their possible change in properties and push the limits of their sensing capabilities.  

3) Realize freestanding nanobelt resonators for high frequency FBAR and low frequency 

beam resonator applications.  Specific device architectures will be fabricated in order to 

benefit from the characteristic that nanobelts grow naturally freestanding.  Capitalizing 

on this will result in low loss/high Q devices.  4) Develop a new synthesis scheme to site-

specifically grow individual ZnO nanowires between two electrodes.  Achieving this will 

eliminate the need for nanomanipulation and result in a process that is completely 

integratable with a traditional process flow. 

 One of the key barriers to commercialization of any nanodevice is mass 

production.  While the nanoBAR is the focus of this thesis, mass production would 

impact the field of nanotechnology as a whole and be applicable to a variety of functional 

nanodevices.  Photolithography will be used to fabricate the device architecture while 

hydrothermal techniques as described in Chapter 1 will be utilized for synthesis.   
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4.1 Resonator Redesign 

One of the limitations in fabricating a resonator using a top-down approach is the 

large acoustic impedance mismatch that must exist on both sides of the piezoelectric 

element.  This requires the inclusion of a Bragg reflector on the bottom side of the 

piezoelectric (SMR) or an air/crystal interface under the resonator (FBAR)[146].  If one 

chooses to make an air/crystal interface on both sides of the piezoelectric, aggressive 

processing techniques are required to etch sacrificial layers from underneath the 

piezoelectric which can cause stress and degradation in the film[146].  As stated, one of 

the key advantages of ZnO nanobelts is that they are naturally grown to be freestanding.  

By pre-processing the air/crystal interface prior to laying down the ZnO nanobelt, 

increased device performance could be realized.  

Another way to limit the effects of loss is to utilize the lateral field excitation 

(LFE) of BARs instead of the thickness excitation (TE) as presented in Chapter 3.  

Lateral field excitation in resonators is also known as an “electrodeless” technique 

because the electrode layers are not in the acoustic path[82].  Figure 4.1 shows an LFE 

resonator fabricated on top of an acoustic reflector.  In this configuration the electric field 

between the two electrodes runs perpendicular to the acoustic wave.  This makes LFE 

devices better suited for sensing applications since the metal electrodes that are usually 

responsible for acoustic wave scattering are no longer in the acoustic path[147].  In 

theory, LFE resonators experience higher coupling coefficients and higher Q’s when 

compared to TE devices at all frequencies[82, 148].  This type of excitation along with 

TE nanoresonators will be the focus of this chapter. 
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Figure 4.1 Depiction of LFE-SMR[147]. 

4.1.1 Fabrication 

Two distinctly unique processes for fabricating freestanding nanoBARs are 

described below.  The first process enables mass production of the device support 

architecture using photolithography to help streamline the process resulting in an LFE 

device.  No e-beam or FIB will be required for any step in the process flow; however, 

individual manipulation of nanobelts is required.  The second process involves growing 

nanowires site-specifically between two electrodes resulting in a TE design.  In addition 

to elimination of non-traditional nanofabrication techniques, this technique would also 

remove any need for post-synthesis manipulation.  Integrating bridged nanowires directly 

into prefabricated device architecture would be a dramatic leap in the mass production of 

nanodevices and a step toward commercial nanosystems based on individual 1D 

nanostructures. 
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4.1.1.1 Free-Standing Fabrication Utilizing Manipulation 

In order to fabricate freestanding nanobelt resonators, a new approach was 

envisioned to work out the contact issues described at the end of Chapter 3.  The FIB has 

proven to be a very useful tool since it provides a great deal of freedom when designing 

and prototyping devices.  However, certain steps within the process become time 

consuming (milling large holes and fabricating large contact pads) when compared with 

alternative techniques.  A new process was designed in order to eliminate the need for 

non-traditional nanofabrication in favor of a traditional photolithography process flow.  

These devices were designed to incorporate trenches and contact pads into the pre-

fabricated support substrate.  Patterning, lift-off, dry-etching and wet-chemical etching 

were used along with some of the manipulation techniques (described in Chapter 2) in 

order to build the next generation of nanoresonators.  New chemicals were also 

investigated as alternatives to the strong acids and bases used in CMOS and MEMS 

processing in order to prevent the ZnO nanobelts from being etched.   

In order to utilize photolithography exclusively in this redesign, some creative 

processing solutions were required.  The photolithographic process is used in the 

semiconductor industry to transfer circuit patterns onto a semiconductor wafer. This is 

done by projecting light through a patterned reticle (or mask) onto a silicon wafer 

covered with a photosensitive polymer (photoresist).  The mask is made up of a glass 

plate with a layer of chrome on one side.  The chrome areas block the light, thereby 

preventing unwanted regions of the resist from being exposed.  In order to deposit the 

photoresist on a wafer, spin-coating is employed by rotating a wafer at high speed in 

order to spread the fluid by centrifugal force until a uniform thickness is achieved.  The 

speed at which the spin-coater rotates and the viscosity of the resist will dictate its 

ultimate thickness.  Belts dispersed or manipulated onto specific locations prior to spin-

coating are likely to shift their position once spin-coating commences.  To deal with this, 

the electrode material will be sputter deposited on top of the nanobelts to pin them down.  
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Subsequent patterning will define the electrode regions on top.  This will be discussed in 

greater detail below in the process flow outline[149]. 

From Chapter 3 it should be noted that the resonator is not just the active 

piezoelectric material, but includes all of the device fixtures coupled to it.  Therefore, a 

novel approach for achieving a freestanding resonator (along with the electrodes) was 

required.  A full description of the process flow is given below. 

 A 500 µm thick, 4” (100) silicon wafer was treated and cleaned by soaking it in 

acetone for 5 minutes.  After soaking, the wafer was rinsed subsequently with isopropyl 

alcohol (IPA), methanol and finally de-ionized water (DI).  The wafer was blown dry 

with nitrogen and baked at 115oC on a hotplate for two minutes to remove any excess 

moisture. 

SiSi
 

Figure 4.2 Bare silicon wafer after cleaning, prior to metallization. 

 

A thin 10nm layer of titanium (Ti) was e-beam evaporated on top of the silicon in order 

to act as an adhesion layer for 200nm of Au which was subsequently deposited. 

Si
Au
Si

Au

 

Figure 4.3 200nm of Au deposited on top of the silicon wafer. 
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Plasma enhanced chemical vapor deposition (PECVD) was used to deposit a 3 µm thick 

film on top of the Au layer.  PECVD uses reactant gases; in this case, 5% SiH4 in helium 

was chemically reacted with N2O in a Unaxis PECVD chamber at a pressure of 900 

mTorr.  The ions in the plasma are in an excited state and easily react with the silicon 

wafer. 

Si

SiO2

Au
Si

SiO2

Au

 

Figure 4.4 SiO2 insulation layer deposited using PECVD. 

 

1827 Shipley photoresist was spun onto the surface of the SiO2 at 1000 RPM in order to 

achieve a film thickness of approximately 5µm.  A Quintel Corporation Ultra µ line series 

mask aligner with a UV wavelength of 405nm was operated at 200mJ/cm2 in order to 

transfer the necessary pattern from a chrome reticle (designed in AutoCAD and built by 

PhotoSciences) into the photoresist.  After the exposure was complete, the pattern was 

developed in MF-319 developer for 2 minutes to reveal the pattern.  The wafer was then 

rinsed with DI and hard baked at 115oC for 4 min.  The pattern defines five square 

regions which were dry etched to reveal the underlying gold layer. 

 Inductively coupled plasma etching (ICP) is a dry etch process that uses reactive 

ions to anisotropically etch away the insulator from the open regions in the photoresist.  

Each of the ions reacts chemically and there is no physical bombardment of the surface, 

as in sputtering. 
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Dry Etch ViasDry Etch Vias

 

Figure 4.5 Trenches etched into the SiO2 layer to reveal the underlying Au. 

 

Next a 2.7µm layer of Shipley 1827 photoresist is spun across the surface of the 

wafer at 3000 RPM to fill the trenches and planarize the surface.  It is necessary to step 

away from the process flow for a moment to discuss a problem that typically plagues the 

photolithographic process and explain how it is being exploited here as an advantageous 

solution.  When spin-coating into deep pits in a wafer, the thickness of the resist inside 

the pit is not equivalent to that on the surface.  One of the characteristics of a quality 

resist is that during spin-coating, it does not conform to surface features but eliminates 

any roughness by filling in voids and planarizing the wafer to form a new surface.  Figure 

4.6 depicts this phenomena using Shipley 1827 photoresist spun at 3000 RPM to achieve 

a resist thickness of 2.7µm. 

3μm
2.7μm 5.7μm

3μm
2.7μm 5.7μm

 

Photoresist 

Silicon Wafer 

Figure 4.6 Depiction of how photoresist planarizes a surface with 3µm deep features 

affecting the thickness in these regions.  The model here is for Shipley 1827 resist spun at 

3000 RPM. 
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A 2.7µm thick layer of Shipley 1827 resist requires a 200mJ/cm2 dose in order to 

properly transfer the pattern in a reticle to the polymer layer.  The average intensity of the 

mask aligner in this case is 25mW/cm2, which means that the length of time necessary to 

successfully transfer the pattern is eight seconds.  Since the resist inside the pit is 5.7µm 

and the resist on other regions of the wafer is the desired 2.7µm, the deep regions in the 

wafer will be underdosed, and the photoresist will remain behind after development.  

This is depicted in Figure 4.7 below. 

 

Photoresist 

Silicon Wafer 

Figure 4.7 Depiction of how resist can be left in deep pits and trenches when 

underdosed. 

 

This behavior is usually considered disruptive to further processing; however, it was used 

to our advantage by intentionally under-dosing the photoresist inside the trench so that it 

would act as a sacrificial layer during fabrication.  Once fabrication is complete, O2 

plasma can be used to burn out the unwanted polymer, leaving a self-supporting structure 

above the trench. 
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Spin PhotoresistSpin Photoresist

 

Figure 4.8 Photoresist spun across the surface to fill the deep trenches and planarize the 

surface. 

 

Moving along with the actual process, at this point, the wafer is diced into small chips 

with nine individual devices in a 3X3 array.  Each chip is about 2mm X 2mm in size.  

This was done so that it was not necessary to manipulate 1000’s of belts before being 

able to complete the process.  This way it is possible to manipulate a few belts at a time 

to finish out the process in order to optimize any unforeseen problems that might arise 

during testing.  This is the 3X3 array depicted in Chapter 2, Figure 2.32. 

 Next, individual chips (no mask) are exposed under the UV lamp at 300mJ/cm2 to 

under-dose the photoresist.  The chip is developed in MF-319 developer in 30 second 

time intervals in order to inspect the surface and monitor the progress in between.  As a 

result, photoresist deposit fills only the trench cavities created by the ICP process. 

 

Figure 4.9 In this figure it can be seen how photoresist is left to fill the cavities created 

by the ICP. 
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Next, manipulation was accomplished by using one or all of the three techniques 

described in Chapter 2.  Since the surface is planar relative to the surface oxide, the 

nanobelt is sufficiently supported across the gap. 

Position ZnO NanobeltPosition ZnO Nanobelt

 

Figure 4.10 Figure showing the nanobelt lying across the trench filled with photoresist 

after manipulation. 

 

Next, 200nm of aluminum was sputtered on top of the nanobelt to pin it for spin-coating.  

The aluminum layer was also patterned in the next step to serve as the drive and sense 

electrodes. 

Sputter AlSputter Al

 

Figure 4.11 Sputtering of aluminum to conformally coat the belt and wafer. 
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Photoresist was spun again at 3000 RPM and the chip was realigned in the mask aligner 

to define the electrode regions on either side of the nanobelt.  A 10g K3Fe(CN)6:1g KOH: 

100ml DI solution was used as an aluminum etchant since it is capable of etching 

aluminum preferentially without attacking the ZnO.  

 

Figure 4.12 Aluminum drive and sense electrodes patterned on top of the nanobelt for 

lateral field excitation of the ZnO. 

 

Finally, O2 plasma was used to burn away the remaining polymer, defining a nanobelt 

resonator freely suspended across the gap. 

 

Figure 4.13 Free-standing nanobelt resonator. 

 

   The figure below depicts the device architecture fabricated excluding the step to 

include a nanobelt.  This was done to insure the polymer sacrificial layer did its job in 

keeping all electrical contacts open.  The small gap that was intentionally fabricated 

between the drive/sense electrodes and the underlying ground that runs beneath the SiO2 

can be seen.  Even though it is difficult to confirm this with an optical/SEM image, a 
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voltmeter was used to probe the electrical circuit and each of the three electrodes 

measured open, indicating that no short had been created by the process. 

SiO2

Au

Al

Al

Gap

Gap

40µm 10µm

1µm

a)
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b)

Al

SiO2

Au

Al
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Al

 

Figure 4.14 Series of images depicting the gap created between the drive/sense 

electrodes and the ground.  (a) Tilted side view (b) Showing the aluminum flap 

suspended over the trench (c) Close-up to show the gap between the aluminum and gold. 

 

Since the process has been demonstrated to be useful, it was then implemented along 

with manipulation to fabricate working nanobelt resonators.  Figure 4.15 depicts an actual 

device where a ZnO belt has been successfully integrated into the prefabricated 

architecture.  All electrodes were tested again and still remained open from each-other. 
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Figure 4.15 Integration of a ZnO belt into the device architecture. (a) ZnO belt integrated 

in between the electrodes. (b) Zoomed in view of the same. (c) Side view of belt showing 

the C-plane which is determined from the side faceting. (d) Close-up of the aluminum 

connecting the belt to the contact pad. 

 

It can be seen from Figures 4.15b and 4.15c that the belt has stacking faults on the side 

facets indicating that this is the ]0101[  fast growth direction. 

 In some cases the nanowires were placed on top of the electrodes, as in Figure 

2.33.  The figure is re-shown here to refresh the reader.  Both of these configurations 

result in the lateral field excitation of ZnO nanobelts. 
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Figure 4.16 Polar surface dominated nanobelt spanning two freely suspended electrodes. 

 

Discussion on testing these devices will be presented in the results section.  First, the 

processing method for growing nanowires site-specifically between two electrodes will 

be introduced so that all the results may be addressed at the same time.  

4.1.1.2 Mass Production Without Manipulation 

The above process enables fabrication of resonators using nanobelts, but it only 

allows for fabrication of one device at a time.   For these new devices to have any real 

commercial implications it is necessary to consider the cost of manufacturing.  

Manipulation of individual nanostructures would be cost-prohibitive to any commercial 

applications these systems might have, making a bulk process necessary.  Some people 

have attempted to deal with this by growing nanostructures in desired positions or aligned 

arrays[150].  Others have looked to new techniques like dip-pen lithography[151] and 

micro-contact printing[152] of functional molecules to assist with alignment.  However, 

it ultimately forces re-tooling of a FAB and benchmarking of a process in order to 

incorporate these techniques into an assembly line.   

Using mainstream techniques like photolithography to manufacture nanodevices, 

makes the utilization of nanowires in MEMS/NEMS and CMOS systems more readily 

integratable.  A technique to grow ZnO nanowires site-specifically between two 
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electrodes will be explored for the mass production of nanoresonators.  This technique 

benefits from full CMOS and MEMS process flow integration of nanomaterials into 

prefabricated device architecture, making the need for post-synthesis manipulation 

obsolete. 

 There has been some recent success in bridging individual Si nanowires using 

MOCVD to grow them across a microscale trench on a Si or silicon on insulator (SOI) 

substrate [153, 154].  The PVD process described in Chapter 1 has also been used in 

conjunction with a ZnO seeding layer to laterally grow ZnO nanowires across a Si trench 

[155].  Unfortunately, the high temperatures required for these deposition techniques 

limits their application in many areas where high temperatures could induce unwanted 

oxide formation, degrade metal contacts and initiate diffusion of localized dopants into 

unwanted regions of a device.  Using a low temperature process like hydrothermal 

synthesis can be seen as an ideal solution when designing devices with these constraints 

in mind.  In addition, hydrothermal synthesis can be advantageous when considering the 

integration of nanomaterials with polymer substrates for applications in flexible 

electronics [75, 76, 156]. 

In this section, hydrothermal synthesis is demonstrated for growing similar 

structures at much lower temperatures (60-80oC).  Large-scale, laterally bridged ZnO 

nanowires with diameters ranging from 50nm to 1µm have been successfully grown 

across a trench, in between two gold electrodes, with a separation distance of 500nm and 

10µm.  The process began with the deposition of 100nm of SiO2 on a 4-inch silicon wafer 

(p-type, <100>, 0.01 Ω.cm) (Figure 4.17) by way of PECVD.  Lithography was used to 

pattern AZ5214 negative photoresist.  The pattern was subsequently transferred into SiO2 

via dry etching using a Plasma-Therm ICP etcher.  The Bosch process was then 

employed to fabricate deep trenches (~100µm or more) into the underlying silicon 

utilizing the SiO2 layer as a hard mask.  Next, a 100nm-thick gold coating was deposited 

via sputtering onto the wafer to conformally coat the surface and the side walls of each 
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trench.  Finally, the top SiO2 layer was lifted off using hydrofluoric acid (HF), taking the 

surface gold layer with it.  A second substrate was fabricated in a similar fashion to the 

first, only a ZnO seeding layer was deposited to coat the inner wall of the trench as well. 

The growth of ZnO nanowires was initiated by suspending either the substrate 

coated with gold or one with ZnO seeds in a Pyrex glass bottle filled with an equal molar 

aqueous solution of zinc nitrate hexahydrate (Zn(NO3)2.6H2O, 0.01 M) and 

hexamethylenetetramine (C6H12N4, 0.01 M) at 80oC.  The reaction time ranged from 1-4 

hours for both substrates.  After synthesis was complete, the substrates were removed 

from the solution, rinsed with de-ionized water, and then dried in air at 65oC overnight.  

Figure 4.17 shows a schematic diagram of the synthesis strategy. 

 

Figure 4.17 Fabrication and growth processes for growing bridged nanowires across 

trenched electrodes[157]. 
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Figure 4.18 is a set of SEM images of the as-grown nanowires on the gold-coated 

substrate.  The left part of Figure 4.18a shows the nanowires selectively growing from 

one of the side-walls of the gold electrodes at 10µm separation distance, but without 

touching the opposite side.  By increasing the growth time, the nanowires grew longer 

and eventually touched the second gold electrode (Figure 4.18b).  

 

Figure 4.18 SEM images showing various configurations of as-grown nanowires 

bridging across Au/Si electrodes[157]. 

 

The diameter of the wires were measured to be ~2µm.  From the magnified SEM image 

in Figure 4.18b, it can be seen that the wire grew across the trench from right to left, as 

shown by the rooted region on the right side of the trench.  An inset of an EDS spectrum 

taken from the side wall confirms the existence of the gold layer on Si. 

Using a ZnO seeding layer enabled a large scale, well aligned array of nanowire 

bridges.  Figure 4.19 is a set of SEM images showing horizontally aligned nanowires 

across a 500nm trench array.  In Figures 4.19a and 4.19b, sparsely grown ZnO nanowires 

span across each trench, forming a network of horizontal nanowire bridges.  These 

nanowires have a uniform diameter of ~50nm.  As the growth time increased, the 

densities of the nanowire networks also increased, as indicated in figures 4c and 4d.  

Figure 4.19f is a magnified SEM image showing the densely packed nanowire bridges 

embedded in two trenches.  A 50nm ZnO seed layer can be seen as indicated by the 

orange arrow[157]. 

 140



 

Figure 4.19 Bridged ZnO nanowire arrays across a 500-nm nanotrench array with 

different densities, where (a) and (b) are the most sparse ones, (c) and (d) are the dense 

ones, and (e) and (f) are the dense ones after removal of the ZnO nanowires from the top 

of the trenches. 

 

This technique is simple and results in large networks of nanowires growing 

across a gap in between two electrodes.  Expanding on this technique, a new 

methodology was developed to physically pattern the inner walls of a trench with specific 

dimensions with the intent to locally control the position of a single nanowire.  To do 

this, further understanding of the synthesis mechanism is required. 
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Figure 4.20 shows a flat gold-coated deposition substrate (with no trenches) that 

was lowered into the synthesis vessel and fixed perpendicular to the liquid surface.  This 

was done to determine the optimal depth inside the solution for growing ZnO nanowires.  

It can be seen from the figure that the highest density growth is obtained directly at the 

gas/solution interface where a thin line of dense wires can be seen to precipitate.  The 

nucleation density quickly drops off just below the liquid surface and continues to 

decrease deeper into the solution.  As a result, a new growth substrate was designed and 

fabricated in order to benefit from the high density synthesis that results at the interface.  

To do this it was necessary to etch through an entire wafer from the backside so that the 

inner walls of the trench were exposed to both the liquid and gas regions. 

10µm

Gas/Solution Interface

Decrease 
in Wire 
Density

10µm

Gas/Solution Interface

Decrease 
in Wire 
Density

 

Figure 4.20 Gold deposition substrate showing nanowire density as a function of depth in 

the synthesis solution. 
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The following process flow began with a double-sided polished (100) wafer and is 

outlined schematically starting with Figure 4.21 and ending with Figure 4.32.  Having 

both faces of the wafer polished smooth was necessary since photolithography was 

performed on both sides.  Next, a 3µm thick film of SiO2 was deposited on top of the Si 

using PECVD.  The wafer was flipped over and deposited with 400nm of Si3N4 via 

PECVD on the back side.  Both sides of the wafer were spun with 1827 photoresist at 

3000RPM, and photolithography was used to pattern large square openings in the 

photoresist on the backside nitride layer.  Buffered oxide etchant (BOE) was used to etch 

through and transfer the pattern to the nitride thin film to create a nitride hard mask for 

wet etching through a 500µm thick Si wafer.  Photoresist was spun on the front side of 

the wafer to protect the 3µm oxide layer from being etched by the BOE.  Once the pattern 

was transferred, the photoresist was stripped in acetone and the wafer was inspected for 

defects.  Next, the wafer was fixed inside a tan wafer holder with an opening on one side 

and the nitride layer facing out.  The wafer was secured using a series of plastic bolts and 

rubber o-rings to prevent KOH from leaking through to the other side and contaminating 

the oxide layer.  A large bath of 45% KOH etching solution was heated on a hotplate and 

stirred with a magnetic stir bar until the solution temperature reached 80oC.  Once the 

bath had reached the desired temperature, the tan holder, along with the wafer, was 

submerged into the solution and secured for a period of 24-36 hours for anisotropic 

etching of Si.  The last five hours of the etching process was monitored closely to identify 

when the through-etch had come to completion.  Once finished, the holder was taken out 

of the KOH, the wafer was then removed from the holder, rinsed with DI, blown dry with 

nitrogen, and inspected for defects that might limit further processing.  At this point, the 

oxide layer formed 1000s of individual membranes on the other side with dimensions of 

150µmX150µm square.  Also, alignment marks patterned on the back side had also 

etched through so that they were visible from the front.  Assuming that the through-etch 

was successful, all membranes were intact, and alignment marks visible, the wafer was 
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flipped to the front side and spun with 1827 resist at 1000RPM to achieve a resist 

thickness of ~5.7µm.  The wafer was then positioned inside the mask aligner to transfer 

the next pattern from a reticle into the photoresist.  This opened a series of rectangles at 

the center of the freestanding membrane.  There were six regions on the wafer and each 

was defined by the mask to have different rectangular dimensions.  Each had an 

equivalent length of 100µm but varying widths of 150µm, 100µm, 50µm, 25µm, 10µm 

and 5µm.  Once the pattern was revealed in the photoresist, the wafer was transferred to 

the ICP etcher in order to etch through the oxide.  This created a series of trench walls 

that could then be reached from both sides of the wafer.  Next, a thin gold layer was 

sputter-deposited on top of the wafer to coat the surface as well as the inner side walls.  

SEM micrographs of the as-fabricated substrate can be seen in Figure 4.27.  A full 

representation of the masks designed for this process can be seen in Appendix A. 

SiSi
 

Figure 4.21 Step1—Double-sided polished Si wafer. 

Si

3μm SiO2

Si

3μm SiO2

 

 

Figure 4.22 Step2—3µm thick film of SiO2 is PECVD deposited on the top-side.  
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Figure 4.23 Step3—PECVD nitride is deposited on the back-side. 
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Figure 4.24 Step4—PECVD nitride is etched in BOE on the back-side. 
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Figure 4.25 Step5—Wet chemically etched Si with 45% KOH solution to create 

freestanding SiO2 membranes. 
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Figure 4.26 Step6—Trench etched into the oxide membrane to create an opening that 

could be reached from both sides. 

200nm Au (Sputtered) ICP Etched Trench200nm Au (Sputtered) ICP Etched Trench

 

Figure 4.27 Step7—200nm sputtered gold layer coats the top surface as well as the inner 

walls of the trench. 
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Figure 4.28 SEM micrographs of the fabricated substrate.  a) Topside showing multiple 

trenches. b) Close-up of a single trench. c) Close-up of a Au trench sidewall. d) Cross-

section of the substrate. e) Close-up of (d). f)  Backside showing the Si through etch. g) 

Close-up of a few membranes seen from the back of the wafer. 

 

At this point the sample is ready for synthesis; however, further processing can 

add additional functionality by patterning a thin gold strip inside the trench that runs back 

to large contact pads.  To do this, 1827 resist is spun across the surface of the substrate.  

Due to the high viscosity of the resist, a self-supporting polymer meniscus spans the 

etched trench at the center of the membrane.  As a result, the resist coats the inner walls 

of the trench, protecting the gold layer from further processing.  The substrate is then 

exposed to UV light to pattern the photoresist on the surface as well as inside the trench.  

Figure 4.29 shows optical microscopy images of a polymer bridge that spans the trench at 

the center. 
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Figure 4.29 Step8—Resist bridge spanning a 10µm gap (a and b) and a 100µm gap (c 

and d).  It can be seen that the resist coats the side walls of the trench only in the center 

where it spans. 

 

The result is a pattern that protects the inner Au wall at the center of the trench so 

that the unprotected regions to the left and right can be etched using a potassium iodide 

gold etchant solution (4g KI:1g K2:40ml DI) with an average etch rate of 0.5-1.0 

µm/min[25].  A schematic of the processing step can be seen in Figure 4.30 along side 

actual SEM image of the result. 
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Figure 4.30 Step9—(a) Schematic of process for patterning the inner trench walls by 

etching the gold layer with KI (b) SEM micrograph of the actual fabrication. 

 

With the inner walls of the trench coated with gold, the substrate can be 

positioned inside the synthesis vessel in such a way that it floats upside-down on top of 

the solution, as shown in Figure 4.31.  This will put the two side walls right at the 

gas/solution interface resulting in growth in the trench as shown in Figure 4.32.  Different 

experiments may be performed by controlling the concentration of ions in solution, 

temperature, time, and substrate depth to control the density of the nanowire deposition. 
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Figure 4.31 Synthesis vessel with as-fabricated substrate turned upside-down inside the 

bottle to generate nucleation and growth of nanowires at the interface, between the trench 

walls. 
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Figure 4.32 Schematics of the expected results using either substrate for synthesis. 

  

Initial synthesis results can be seen in the following set of images.  In the first 

series, the deposition substrate is submerged slightly below the water line so that the cups 

on the backside of the wafer are also filled with the synthesis solution.  This was done to 

more closely resemble the synthesis conditions of the bridged growth observed in the 

earlier experiments in order to ensure reproducibility before altering the experiment 

conditions further.  Bridged growth can still be achieved using the new design. 

1µm1µm

a) b)

1µm1µm

a) b)

 

Figure 4.33 Figure showing ZnO nanowires spanning a 5µm trench to contact both side 

walls. 

 

Conducting synthesis on the patterned substrates resulted in preferential nanowire 

nucleation and growth on the gold regions over SiO2, as shown in Figure 4.34.  There is 

some growth on SiO2; however, it is much less dense and little bridging is observed.  This 

could be important for large-scale fabrication of nanodevices given that only the wires in 

direct contact with both electrodes will be incorporated into the function of the 
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nanodevice.  If the gold contacts can be made small enough to nucleate a single 

nanowire, synthesis can be allowed to take place in other regions without interfering with 

device performance. 

a)

c) d)

b)a)

c) d)

b)

 

Figure 4.34 Four SEM micrographs showing preferential nanowire nucleation and 

growth on gold relative to SiO2. 

 

 In one instance it was possible to nucleate a single wire from one side to the other 

(Figure 4.35) without generating other high density growth to block its path.  The 

nanowire was actually growing from one trench wall into a small gold agglomerate that 

formed as an artifact on the other side.  It would seem that this small piece of gold was 

unetched in the KI solution during fabrication resulting in the defect.  Fortunately, 

sufficient contact was made between the sidewall and the agglomerate, which was 

confirmed by the conductivity measurements made on the individual nanowire (as shown 

in Figure 4.35b). 
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Figure 4.35 (a) Single nanowire grown between two patterned electrodes (b) I/V 

measurements from the wire. 

 

The measurement was taken by probing the sample with the same tungsten probes used 

for manipulation in Chapter 2.  Both probes were connected through a signal generator to 

a picoammeter.  The signal generator supplied a 0.5Hz triangle wave with an amplitude 

of 5V.  While sweeping the voltage, the current was measured through the 

picoammeter[158]. 

It can be seen from Figure 4.34 that the nanowires do not typically grow 

completely perpendicular to each of the sidewalls.  The result in Figure 4.35 is a 

fortuitous occurrence that has not yet been replicated.  The nanowires grow randomly and 

in a weed-like fashion, likely due to sidewall surface roughness.  Since ICP did not 

reproducibly generate sufficiently smooth sidewalls, a few membranes were purposefully 

fractured with a tungsten DC probe tip.  They were punctured in such a way as to 

preserve the left side of the trench that was fabricated by ICP while a clean break was 

generated in the glass membrane on the right side, resulting in a smooth sidewall.  Once 

this was done on a series of membranes, gold was sputtered to coat both the rough trench 

wall and the smooth trench wall.  This is not a common procedure that should be worked 

into a process flow, but it is useful for determining the effect of surface roughness on 
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synthesis.  It is clear from Figure 4.36 that surface roughness plays a large role in whether 

or not the nanowires grow perpendicular to the surface.   

20µm 10µm

a) b)
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Figure 4.36 Intentionally-broken membrane used to demonstrate the effect of surface 

roughness on growth orientation of the nanowires. 

 

Surface roughness is going to be an important parameter to control in order to achieve 

high device yield using this technique since the more nanowires growing perpendicular, 

the higher the likelihood they will bridge. 

 It should be observed that the density of nanowire growth inside the trench is 

much higher than that on the surface of the membrane.  For this synthesis run, the 

membrane was still submerged slightly below the liquid level.  Positioning the trench at 

the gas/liquid interface resulted in a high density, continuous network of nanowires 

growing between all four side-walls of the trench (Figure 4.37).  The conductivity of this 

thin film of nanowires was measured and is shown in Figure 4.38. 
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Figure 4.37 Fully-dense network of nanowires growing from one side of the trench to the 

other.  No nanowires can be seen growing on the surface. 
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Figure 4.38 I/V measurement of fully-dense nanowire network shown in Figure 4.37. 

 

It can be seen in Figure 4.33 that the wires nucleate and grow on oxide just as readily as 

gold, which was observed on all sidewalls. 

4.1.2 Results from Network Analysis 

 The resonance of many devices fabricated in section 4.1.1.1, as well as some of 

the bridged nanowires that were grown in section 4.1.1.2, were characterized using vector 

network analysis using the same methods presented in Chapter 3.  A compilation of the 

data can be seen in Figure 4.39.  Images (a), (b), (c), (d) are all S11 reflection 

measurements on devices fabricated above in 4.1.1.1; (e) and (f) are S21 transmission 

lines from the bridged wire grown in 4.1.1.2 (Figure 4.34a).  Unfortunately, none of the 

data from any of these devices fits the 1D KLM model presented in Chapter 3.  In order 

to see if the resonance data is a result of some unusual propagation direction, the 1D 
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model will be expanded into 3D using the piezoelectrically-stiffened Christoffel matrix as 

outlined in Chapter 1. 

a)

b)

a)

b)

c)

d)

c)

d)

e)

f)

e)

f)

 

Figure 4.39 Compilation of resonance data measured from a series of devices fabricated 

in section 4.1.1.  (a) Real portion of impedance from one of the devices. (b) Imaginary 

portion of impedance from the same device as in (a).  (c) Real portion of impedance from 

another device. (d) Imaginary portion of impedance from the same device as in (c).  (e) 

Real portion of impedance from one of the other devices. (f) Imaginary portion of 

impedance from the same device as in (e). 

4.1.3 Three Dimensional Christoffel Model 

A simulation of the 3D piezoelectrically-stiffened Christoffel equation, as 

presented in Chapter 1, is utilized here to expand on the 1D KLM model by calculating 

the three possible Eigen solutions.  All bulk values for ZnO, as outlined in Table 1.5, 

were utilized for the calculation.  A data manipulation software package (MatLAB) was 

used due to its efficiency in handling matrix multiplication.  The actual code for the 

piezoelecrically-stiffened case (Equation 1.47) can be seen in Appendix B in case one is 

interested in reproducing the results presented here. 
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 First, code was written to calculate the acoustic velocity of the three allowable 

solutions in 2D by defining a (001) reference direction and solving (1.47) in that direction 

(this is the C-direction).  Next, the Y-axis rotation matrix was applied by rotating in the 

X-Z plane around the Y- axis one degree at a time while re-solving the equation at each 

degree step along the way.  This process was repeated until 360 directions resulting in 

1080 solutions (three solutions per direction) were calculated. 
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Next, an X-axis rotation matrix was applied to the solver in order to now rotate one 

degree in Y-Z plane, re-solving all 1080 solutions in the new X-Z plane. 
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 (X-axis rotation matrix) 

The calculated direction was rotated again in the Y-Z plane and continuously solved for 

180 total rotations in each new X-Z plane until a full three dimensional representation of 

each solution could be reconstructed.  A large scale graphical representation of the three 

solutions to the problem can be seen in Appendix B.  Figure 4.40 shows each solution on 

a smaller scale along with the relative orientation of the ZnO crystal as applied to the 

problem.  There is one longitudinal wave, which is the fastest propagating solution, and 

two slower propagating shear waves.  The 3D surfaces generated by the model are 

presented in the following three figures.  The units of each axis are in meters per second 
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and a contour of each solution in the X-Z plane can be seen at the base of each figure.  

d33

a)

c) d)

b)

d33d33d33

a)

c) d)

b)

 

Figure 4.40 All solutions from above (a) longitudinal (b) shear 1 (c) shear 2; represented 

along with a depiction of (d) the ZnO crystal orientation as it relates to the 3D simulation.  

 

 Even once the solutions from this calculation was integrated with the KLM model 

presented in Chapter 3, no reasonable predictive result matched that which was measured 

experimentally by the network analyzer.  Thus, it is likely that the resonance peaks 

measured are not acoustic and come from some other fixture in the test set-up.  To 
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determine what is actually contributing to the resonance measurement, the entire device 

architecture must be modeled.  This will be addressed in Chapter 5. 

4.1.4 Summary and Conclusions 

New methods for fabricating nanodevices using ZnO nanobelts have been 

introduced.  Non-traditional fabrication techniques, such as e-beam lithography and FIB, 

have been replaced with a traditional process flow capable of utilizing photolithography 

for all of the fabrication.  A few novel fabrication steps were implemented, for example, 

underdosing photoresist to act as a sacrificial layer. 

The result from growing bridged nanowires site-specifically between two 

electrodes is promising.  Future plans for this type of synthesis include the following: 

pursue a deeper understanding of the hydrothermal nucleation process to control the size, 

shape and growth direction of ZnO nanowires on gold; use resist or other poisoning 

agents as a masking layer to prevent synthesis on the unwanted SiO2 regions; investigate 

functional molecules that could be used to initiate nucleation and enhance the growth 

process on gold; use patterned ZnO seeding layers to assist the synthesis process. 

Obtaining control over this technique could be important in eliminating the need 

for nanostructure manipulation.  Even though the specific device targeted in this thesis 

was unsuccessful, achieving the goal of integrating nanowires with other CMOS and 

MEMS devices would be a large leap for the future of nanotechnology. 

Unfortunately it seems that there are issues when scaling the BAR down to work 

with ZnO belt dimensions in the nanometer range.  A series of techniques to de-embed 

the resonator by storing data from a dummy device have been used to remove any of 

these impedance contributions.  However, even with pad de-embedding, no acoustic 

signal was measured.  An explanation of reasons will be presented in Chapter 5.  
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CHAPTER 5 

IMPEDANCE MODELING 

 An attempt to scale down the above acoustic resonator to work with nano-sized 

belts has been unsuccessful.  Experimental data from a number of devices fabricated 

using a variety of approaches does not match the 1D KLM model developed in Chapter 3.  

The 1D model was expanded to 3D using the piezoelectrically-stiffened Christoffel 

equation to describe all possible acoustic velocities and propagation directions in ZnO.  

Still, the measured resonance values are orders of magnitude lower than what was 

predicted by either model.  In this section, an equivalent circuit model along with finite 

element analysis (FEA) is presented to explain where the observed resonance originates 

from.  Suggestions on how to move forward with this project are outlined in Chapter 6. 

5.1 Resonator Equivalent Circuit 

 To do this, it is first necessary to break down the device architecture into its 

individual components.  Each component can be described by an equivalent circuit as 

shown in Figure 5.1. 

Rm Cm Lm

Cp

C0

RP2Rp1LP1 LP2

Rm Cm Lm

Cp

C0

RP2Rp1LP1 LP2

 

Figure 5.1 Equivalent circuit model describing the as fabricated nano-BAR.  
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Where Co is the capacitance of the ZnO nanobelt everywhere but at resonance and Rm, 

Cm, Lm makes up the motional arm as described in Chapter 3.  Cp is the parasitic 

capacitance attributed to the SiO2 insulation layer acting as the support for the resonator.  

Rp1 and Rp2 is the resistance of the lead-wires and contact pads.  Lp1 and Lp2 is the 

inductance of the thin metal layers at high frequency. 

 Since the resonance being detected by the NA is not attributed to the acoustic 

oscillation of the ZnO nanobelt, it is reasonable to assume that the nanobelt is only 

behaving like a dielectric.  Making this assumption the circuit diagram of the device, as 

shown in Figure 5.1, can be simplified by eliminating the motional arm.  

Cp

C0

RP2RP1LP1 LP2

Cp

C0

RP2RP1LP1 LP2

 

Figure 5.2 Simplified equivalent circuit model assuming the ZnO nanobelt is not 

resonating. 

 

From here, it is necessary to calculate which of the two capacitors in the model 

has the lowest device impedance.  Since the applied AC current will take the path of 

lowest impedance, this will be through the larger capacitance due to the inverse 

relationship
Cj

ZC ω
1

= .  It is usually sufficient to relate two capacitors in parallel by 

using the 
l
A

orεε=C  relationship where C is the total capacitance, εr is the dielectric 
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constant, εo is the permittivity of free space, A is the area of each plate or electrode, and l 

is the distance between the plates.  However, this equation is only applicable if l is very 

small in relation to the area of the plates.  Due to the size of the nanobelts and nanowires 

integrated into these devices, in some cases l is much larger than A, making this 

calculation invalid.  In addition, the distance between the two electrodes is not fixed due 

to the lateral orientation of the contact pads, making l difficult to define without applying 

a set of differential equations.  Therefore, finite element analysis (FEA) will be used to 

make an accurate calculation of the capacitance of each component given the true 

dimensions of the device. 

5.2 Finite Element Analysis (COMSOL) 

 COMSOL, also known as FemLab, is a finite element analysis (FEA) modeling 

tool that breaks complex geometries down into discrete portions (finite elements) that are 

connected by nodes.  This creates a structured grid called a mesh where equations of 

equilibrium, in conjunction with applicable physical considerations such as compatibility 

and constitutive relations can be applied to each element resulting in the construction of a 

system of simultaneous equations. The system of equations is solved for unknown values 

using the techniques of partial differential equations[159]. 

COMSOL was used here to create an accurate depiction of the device outlined in 

Chapter 4.   The electrostatics model based on the differential form of Gauss’s law was 

used ( eor V ρεε =∇⋅∇− ), where the divergence of the electric field
→

E  is related to the 

electric charge density ρ at any point in space[160].  Dimensions were defined to 

resemble the actual device as closely as possible while including a factor of safety that 

forced the model to generate the best possible case for a working nanobelt resonator.  

This resulted in the highest possible capacitance value for the nanobelts making certain 

dimensional assumptions. 
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First, the area being modeled only includes the footprint of a single device.  All 

other devices that would normally surround it were not included in the model even 

though they are likely contributing to the parasitic.  The geometric model of the device is 

shown in Figure 5.3. 
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Figure 5.3 Simulated geometry of ZnO nanobelt in parallel with underlying 

parasitics (a) Model of the silicon wafer is highlighted in green, SiO2 is in Blue. (b) Both 

aluminum electrodes are shown in red. (c) ZnO nanobelt spanning the trench and pinned 

under each electrode (d) This is the model of the nanobelt without the device parasistics, 

suspended in air (e) Close-up of ZnO nanobelt suspended in air. 
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The silicon wafer base was defined to be 1050 long (y-direction) X 400µm wide 

(x-direction) X 200µm thick (z-direction) according to the axes in the figure.  The SiO2 

insulation layer has the same length and width of the silicon portion; however, it is only 

3µm thick, which is the actual thickness in the device (Figure 5.3a).  At the center there is 

trench modeled in the SiO2, 3µm deep (opening to the silicon layer), 100µm wide and 

25µm long.  On top of the trench is a ZnO nanobelt (Figure 5.3c).  The nanobelt’s length 

if fixed at 150µm for each model even though the width and thickness are scaled down to 

the nanometer range.  However, the aspect ratio of the width-to-thickness is fixed at 15:1 

as the nanobelt is scaled down as well.  This ratio is on the high end of what is typically 

observed.  Also, as the belt gets smaller in the width and thickness dimensions, it will 

also get shorter.  Fixing these dimensions was done to give the belt a larger surface area 

for electrical contact, resulting in a factor of safety for the calculation.  The flaps that 

hang over the trench, as depicted in Figure 4.14 and 4.15, are also modeled here and are 

designed to conformally coat the belt; however, they do not run the full width of the 

trench and they are assumed to be at the same height as the nanobelt (Figure 5.3b).  As 

seen in Figure 4.15, this is not actually the case, and the aluminum electrodes get much 

closer to the gold underlayer.  Since this effect would only compound the problem and 

push the parasitic capacitance even higher, not including it is another factor of safety for 

the calculation.  An air box was also placed around the geometry in order to simulate the 

electric field that might be generated between the electrodes through air.   

Once the geometry was defined, the boundary conditions were set.  Each 

electrode is defined by the VCQ ⋅= charge relationship.  The dielectric constants for 

each material were taken from a library of values stored in COMSOL: 8.3 for the ZnO 

nanobelt, 4.2 for SiO2, 11.7 for silicon and 1.0 for air.  The materials were assumed to be 

isotropic and based on the linear constitutive relationship ED orεε=  where D is the 

dielectric displacement.  To ensure continuity of the electric field lines,  0)( 21 =−⋅ DDn  
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is used to set the boundary between two dielectrics and 0=⋅ Dn  sets the continuity 

condition of electric field lines outside of the device in air.  Once the boundary conditions 

are set, the mesh can be generated. 

Figure 5.4 shows the mesh that was generated by COMSOL to simulate 

equilibrium between nodes.  The mesh is coarse in regions were there is not a lot of 

detail.  In regions close to the electrode layer and near the belt where small dimensions 

exist, the mesh is finer in order to more accurately represent the detail in those regions. 
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Figure 5.4 Mesh generated by COMSOL. 

 

The model can be solved to calculate the potential distribution through the device.  

Vertical and horizontal slices through the device center are used to portray the visual 

result. 
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Figure 5.5 (a) Resulting potential distribution through the full device. (b) Close-up of a).  

(c) Potential distribution from the ZnO nanobelt. (d) Close-up of c). 

 

Since this model was applied to a range of nanobelt dimensions, the Co presented below 

will be for a moderately-sized belt with a width of 500nm, thickness of 33.33nm and 

length of 150µm.  From the potential and the charge considerations, the capacitance can 

be calculated for the device support and ZnO nanobelts.  The results are: 

 

Capacitance of the Nanobelt Co = 3.55x10-16F 

Capacitance for Parasitics Cp = 2.13x10-14F 
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 The result from the FEA calculation confirms that the parasitic capacitance of the 

device is much higher than Co.  The resulting impedance value is two orders of 

magnitude lower through the oxide layer than through the nanobelt.  As a result, the 

circuit diagram shown in Figure 5.2 can be simplified again to the one in Figure 5.6. 

Cp

RP2RP1LP1 LP2

Cp

RP2RP1LP1 LP2

 

Figure 5.6 Simplified circuit diagram assuming Cp is orders of magnitude higher than Co. 

 

Given the new circuit diagram, it is now easy to see that the resonance measured by the 

NA could be attributed to the lumped circuit elements made up by the contact pads, lead 

wires and support substrate on which the resonator was fabricated.  The impedance 

mismatch problems will only be compounded further by working with smaller nanobelts. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

 Advancing the field of nanotechnology to incorporate the unique properties 

observed at the nanoscale into functional devices has become a major scientific thrust of 

the 21st century.  New fabrication tools and assembly techniques are required to design 

and manufacture devices based on one-dimensional nanostructures.  This body of work 

has contributed to three new techniques for manipulating nanomaterials post synthesis.   

Two of them involve direct contact manipulation through the utilization of a physical 

probe.  The third uses optically generated surface acoustic waves to reproducibly control 

and assemble one-dimensional nanostructures into desired locations.  The nature of the 

third technique is non-contact and limits contamination and defects from being 

introduced into a device by manipulation. 

 While the effective manipulation of individual nanostructures into device 

components is important for building functional nanosystems, commercialization is 

limited by this one-device-at-a-time process.  A new approach to nanostructure synthesis 

was developed to site-specifically nucleate and grow nanowires between two electrodes.  

Integrating synthesis directly with prefabricated device architectures leads to the possible 

mass production of NEMS, MEMS and CMOS systems based upon one-dimensional 

nanomaterials. 

 The manipulation and synthesis accomplished here, was driven by the desire to 

realize nanosized bulk acoustic resonators for applications in high frequency electronic 

filtering as well as biological and chemical sensing.  The first ever piezoelectric bulk 

acoustic resonator based on bottom-up synthesized belts has been demonstrated.  Initial 

results were promising however scaling the device to sub-micron dimensions has posed 

some problems.  Due to electronic limitations, studying material properties and quantum 

 169



confinement effects in piezoelectric oscillators has been unsuccessful.  Unfortunately, the 

size of nanobelts results in large electrical impedances that limit performance. 

 Multiple models were developed within this body of work to assist with design 

and testing. Some of models were presented to verify the experimental results while 

others were designed explain the problems currently plaguing further investigations.  The 

piezoelectrically stiffened Christoffel equation was implemented to describe all possible 

acoustic velocities in each direction within a three dimensional ZnO crystal.  Finite 

element analysis was used to calculate impedance through multiple fixtures of the an 

equivalent circuit diagram based on the nanobelt BAR. 

 The work presented here has contributed new manipulation and synthesis 

techniques that can help other scientists advance their own research in nanotechnlogy.  

Successes and challenges in manufacturing BARs based on nanomaterials will help the 

scientific community make decisions as to the next steps with regards to future work. 

6.2 Future Work and Recommendations 

 The electrostatic manipulation and FIB assisted manipulation techniques 

presented in Chapter 2 have proven their utility and there is no further work planned at 

this time.  The non-contact acoustic “tweezers” method has generated promising data and 

much more is planned to understand and develop this technique further.  First, modeling 

will be pursued to determine with more certainty whether or not the Rayleigh/Lamb wave 

hypothesis is the wave type responsible for driving the nanobelts.  All experiments done 

to date have been at the acoustic wavelength of 8.2µm.  Experiments will be designed to 

vary the acoustic wavelength and determine how this variable affects the manipulation 

process.  More work will be conducted by varying the intensity of the excitation laser to 

quantify results from laser power in between the 2.77mW and 6.72mW power used 

above.  Modifications are being planned to enhance the functionality of the ISTS tool by 

including multiple excitation lasers and multiple beam shaping optics.  By altering the 
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interference pattern it should be possible to control other nanomanipulation trajectories.  

Materials other than ZnO nanobelts like carbon nanotubes, silicon nanowires will also be 

demonstrated with this tool.  New optically absorbent materials that are more readily 

stripped will be investigated as a substitute for copper.  A new excitation laser with an 

optical wavelength in the UV range will be considered for the manipulation of ZnO 

nanobelts without the need for a copper absorption layer.   

 Mass production of nanodevices based on an integratable synthesis process will 

continue to be researched.  Investigating the process thus far has raised as many questions 

as it has answered with regard to the variables effecting site-specific nucleation and 

growth.  Additional reticles will be designed to incorporate poisoning layers (polymers, 

functional molecules…) onto regions of the substrate where growth is unwanted.  ZnO 

seeding layers and other metal layers will be investigated as potential nucleation sites for 

enhanced synthesis.  Better control over side-wall roughness inside the trench will also be 

pursued to limit sporadic growth in any direction other than perpendicular to the side-

wall. 

 Based on conclusions drawn from scaling down the BAR based on ZnO 

nanobelts, there are a few possible solutions that could still result in a successful device.  

First, it is possible to increase the over all capacitance of the nanobelt by incorporating 

multiple structure in parallel with eachother.  This can be achieved in two ways.  The first 

and easiest would be to grow a high density array of vertically aligned nanowires on top 

of a metal contact pad.  Taking another electrode and sandwiching the nanowires in 

between could result in a parallel array of nanoresonators with a low enough combined 

impedance to resonate above the noise floor of the parasitic fixtures.  Another way would 

be take the same structure designed in Chapters 3 and 4 and scale down the electrode 

dimensions.  If it were possible to reduce the pad footprint to something smaller than the 

contact area on the belt, the parasitic impedance could be increased to a level where the 

optimal current path through the device under test is through the piezoelectric nanobelt or 
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nanowire.  This is difficult since small nanosized contacts would be required to 

sufficiently probe the device. 

 Another possible solution could be to identify an alternative support substrate that 

has a lower capacitance.  Since the lowest possible dielectric constant known in the 

universe comes from a vacuum, this is likely unattainable.  The final recommendation 

could be to operate the device at elevated temperatures.  Since ZnO exhibits hopping 

conduction, the impedance of the nanowire will decrease as temperature increases.  Since 

the silicon based support exhibits band conduction, the impedance through the parasitics 

will increase as a function of temperature.  An equilibrium temperature could be 

identified where the impedance through either component switches, resulting in a Zo that 

is lower than Zp.  ZnO is a high temperature ceramic; however, the necessary temperature 

would still have to be low enough to not interrupt the contact resistance of the electrodes. 
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APPENDIX A 

PHOTOLITHOGRAPHY MASK DESIGNS 

 

 The fabrication process outlined in Section 4.1.1.2 utilized three basic mask layers 

for photolithography.  The first mask involves a series of square patterns that will be 

transferred into the nitride layer on the backside of the wafer in order to create a hard 

mask for KOH etching.  The square dimensions were designed specifically around a 

500µm wafer so that after the through etch, pits with 54.74o sidewalls would result in a 

100µm or 150µm square windows on the opposing side.  Each square is spaced 50µm 

from each other.  The first mask layer can be seen in Figure A.1. 

a)

c)

b)

Alignment mark for wafer flat

a)

c)

b)

Alignment mark for wafer flat

 

Figure A.1 First layer used to transfer the pattern into a nitride hard mask (a) Full view 

of 5x5 mask showing six distinct regions (b) A blow up view of one of these regions 

showing the individual squares. (c) Increased magnification of b). 
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First, it is important to note that there are six main regions on the wafer.  Each consists of 

300-400 devices.  The full wafer is not used due to the through etch.  Etching through the 

wafer will prevent further spin-coating since a good vacuum is needed to seal the wafer 

to a chuck while spinning.  This would not be possible with holes in the wafer.  The 

center region was left solid for this purpose.  There is also a thin green line at the bottom 

of Figure A.1a.  This line is used to align the flat of a (100) wafer.  This is important so 

that the (111) planes are etched in accordance with the design. 

 The next layer can be seen in Figure A.2.  This layer is used on the top-side of the 

wafer to reveal regions for ICP etching. 

a)

c)

b)

Alignment marks to line this
layer with the through etch

a)

c)

b)

Alignment marks to line this
layer with the through etch

 

Figure A.2 Top-side mask for plasma etching a trench into the center of the membrane 

(a) full reticle view (b) increased magnification of one region (c) increased magnification 

to see individual trenches. 
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Since the mask aligner did not have backside alignment, it was necessary to design 

alignment features that would be etched through the backside in order to be seen on the 

topside.  These alignment markings can be seen in Figure A.3. 

 

b) a) 

Figure A.3 Alignment marks to orient subsequent masks to the previous ones (a) Coarse 

alignment features (b) Fine alignment features. 

 

 The final mask in the series was used once the gold had been deposited and it was 

necessary etch unwanted gold regions away leaving thin strips inside the inner walls of 

the trench that run back to large contact pads.  This is the step that creates the bridge of 

resist spanning the trench. 
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a)

c)

b)

Solid lines of varying dimensions 
creating the resist bridge across the trench

a)

c)

b)

Solid lines of varying dimensions 
creating the resist bridge across the trench

a)

c)

b)a)

c)

b)

Solid lines of varying dimensions 
creating the resist bridge across the trench

 

Figure A.4 Final mask layer used to etch Au with KI. (a) full view (b) one region 

magnified (c) magnified again to show the solid line designed to span the trench in order 

to create a self supporting strip of resist. 

 

Figure A.5 shows how all of these masks work together. 
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Figure A.5 Overlay of all layers to show how each works together to fabricate the 

desired product. 
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APPENDIX B 

STIFFENED CHRISTOFFEL EQUATION 

(3D MODEL MATLAB CODE) 

  

 This is the actual code used in order to simulate the three dimensional results 

presented in Chapter 4, Section 4.1.3.  Any individual wishing to reproduce the results or 

modify the code for their own application need only copy it from below and run it in 

Matlab 

 
%Acoustic velocity and slowness surface calculations using the 
Christoffel Eq. for ZnO 
 
 
%density of ZnO 
rho=5.7*10^3;  
%Stiffness Tensor 
C=10^9*[210 121 105 0 0 0;121 210 105 0 0 0;105 105 211 0 0 0;0 0 0 43 
0 0;0 0 0 0 43 0;0 0 0 0 0 44.5]; 
%Dielectric Constants 
eps=8.85*10^-12*[8.6 0 0;0 8.6 0;0 0 10]; 
%Piezoelectric Coefficients 
e=[0 0 0 0 -.48 0;0 0 0 -.48 0 0;-.57 -.57 1.32 0 0 0]; 
ref=[0;0;1]; 
theta=0; 
phi=0; 
 
%Stiffened Calculation 
thetas = []; 
phis = []; 
for H=0:1:(180-1); 
    theta=H*(pi/180); 
    RMX=[1 0 0;0 cos(theta) sin(theta);0 -sin(theta) cos(theta)]; 
     for I=0:1:(360-1); 
        phi=I*(pi/180); 
        RMY=[cos(phi) 0 sin(phi);0 1 0;-sin(phi) 0 cos(phi)]; 
         
        l=RMX*RMY*ref; 
        lp=[l(1,1) 0 0 0 l(3,1) l(2,1);0 l(2,1) 0 l(3,1) 0 l(1,1);0 0 
l(3,1) l(2,1) l(1,1) 0]; 
        temp1=e'*l*l'*e; 
        temp2=l'*eps*l; 
        temp3=temp1./temp2; 
        temp4=C+temp3; 
        ch=lp*temp4*lp'; 
        [V,D]=eig(ch); 
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        %Extracts the index of the minimum and maximum values for  
  plotting 
        %for assigning appropriate shear and longitudinal velocities 
        D2=sum(D); 
        [mn,minidx]=min(D2); 
        [mx,maxidx]=max(D2); 
        vash1s(H*360+I+1)=sqrt(D2(minidx)/rho); 
        vash2s(H*360+I+1)=sqrt(D2(6-minidx-maxidx)/rho); 
        vlongs(H*360+I+1)=sqrt(D2(maxidx)/rho); 
        thetas = [thetas theta]; 
        phis = [phis phi]; 
         
     end; 
end; 
  
% Convert cartesian data from spherical 
[sh1x,sh1y,sh1z] = sph2cart(thetas,phis,vash1s); 
[sh2x,sh2y,sh2z] = sph2cart(thetas,phis,vash2s); 
[longx,longy,longz] = sph2cart(thetas,phis,vlongs); 
  
% reshape converts 1-d matrices to 2-d matrices for the purpose of 
plotting 
% with surf function 
figure 
xxvlong=reshape(longx,360,180); 
yyvlong=reshape(longy,360,180); 
zzvlong=reshape(longz,360,180); 
surfc(xxvlong,yyvlong,zzvlong); 
  
figure 
xxvsh1=reshape(sh1x,360,180); 
yyvsh1=reshape(sh1y,360,180); 
zzvsh1=reshape(sh1z,360,180); 
surfc(xxvsh1,yyvsh1,zzvsh1); 
  
figure 
xxvsh2=reshape(sh2x,360,180); 
yyvsh2=reshape(sh2y,360,180); 
zzvsh2=reshape(sh2z,360,180); 
surfc(xxvsh2,yyvsh2,zzvsh2); 
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Figure B.1 First Eigen solution (a longitudinal wave).  
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Figure B.2 Second Eigen solution (a shear wave). 
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Figure B.3 Third Eigen solution (another shear wave) 
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