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Abstract: High Q traveling-wave resonators (TWR)s are one of the key 

building block components for VLSI Photonics and photonic integrated 

circuits (PIC). However, dense VLSI integration requires small footprint 

resonators. While photonic crystal resonators have shown the record in 

simultaneous high Q (~10
5
-10

6
) and very small mode volumes; the 

structural simplicity of TWRs has motivated many ongoing researches on 

miniaturization of these resonators with maintaining Q in the same range. In 

this paper, we investigate the scaling issues of silicon traveling-wave 

microresonators down to ultimate miniaturization levels in SOI platforms. 

Two main constraints that are considered during this down scaling are: 1) 

Preservation of the intrinsic Q of the resonator at high values, and 2) 

Compatibility of resonator with passive (active) integration by preserving 

the SiO2 BOX layer (plus a thin Si slab layer for P-N junction fabrication). 

Microdisk and microdonut (an intermediate design between disk and ring 

shape) are considered for high Q, miniaturization, and single-mode 

operation over a wide wavelength range (as high as the free-spectral range). 

Theoretical and experimental results for miniaturized resonators are 

demonstrated and Q's as high as ~10
5
 for resonators as small as 1.5 µm 

radius are achieved. 
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1. Introduction 

Optical traveling-wave resonator (TWR) structures have been extensively employed for the 

realization of many on-chip photonic devices [1–4]. One of the major research directions, in 

such devices, has been the miniaturization of resonator sizes, especially in the silicon-on-

insulator (SOI) platform [5–12]. This is because of the potential of SOI for monolithic 

electronic-photonic integration. In an SOI platform, the high refractive index contrast between 

the silicon and the oxide (BOX) layer enables shrinking the size of the resonators while 

preserving a high quality factor (Q). The rationale for resonator down-scaling is manifold. 

The obvious advantage is a smaller footprint for resonator-based devices. Correspondingly, 

large scale integration of functionalized high Q resonators is envisioned [4]. Additionally, 

free-spectral range (FSR) scales inversely proportional to the resonator size and the increased 

FSR can be highly advantageous for high-throughput wavelength-division multiplexing 

(WDM) systems [4] and spectroscopic applications [14]. Also, for resonator-based 

modulators and switches, small resonators are preferred as their power consumptions is 

directly proportional to the size of the resonator [8,9]. The TWR miniaturization has also been 

pursued in III-V materials (while preserving a very high Q) for enhancing light-matter 

interaction and cavity quantum electrodynamics (QED) effects and the results have been very 

promising [13]. 

In some of the previous studies, in an SOI platform, small silicon microring resonators 

with radii ranging from 1.5 µm-2.0 µm have been investigated [5–7]. The typical experimental 

Q's reported for such miniaturized Si microrings fall within the range of 5,000-15,000 [5,6]. 

For these small microrings, the intrinsic Q of the resonator (i.e., Qi which is the Q when the 

resonator is isolated and not coupled to a waveguide or any other devices) is limited by the 

radiation loss because of the sharp bend as well as the scattering loss because of the sidewall 
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roughness, and the trend of Q at very small radii is eventually governed by the radiation loss 

(or correspondingly radiation Q (Qrad)), predominantly. Racetrack resonators, as an extension 

of microring structures, have been a promising architecture for providing a stronger 

waveguide-resonator coupling and they have been extensively used for many functionalities 

[15]. However, achieving very compact sizes and large FSRs with this resonator architecture 

(while preserving a high Qi) is challenging. This is mainly due to the presence of a large 

modal mismatch between the straight portion and the bend portion of the racetrack resonator, 

especially for the small bend radii and as a result the resonator loss dramatically increases [6]. 

Hence, racetrack resonators may not be the best choice when high Qi and very small size 

(large FSR) resonators are simultaneously needed. For the sake of miniaturization, microdisk 

resonators are more promising compared to microring and racetrack. This is because of 

perfect circular symmetry and presence of one sidewall which forms a whispering gallery 

mode (WGM) at the perimeter of the microdisk [see Fig. 1(a) and 1(b)]. Such microdisk 

resonators can have a very high Qi [16,17]. In contrast to microdisks, microring resonators 

have two sidewalls [see Fig. 1(a) and 1(c)]. A closer examination reveals that the inner 

sidewall of microrings will force the mode energy distribution out of the resonator as the bend 

radius is reduced, resulting in more energy leakage into the radiation modes. Also, the 

exposure of optical field to this additional sidewall will increase the scattering loss, further 

degrading the Qi. Thus, it is naturally expected that microdisk resonators will exhibit higher 

Qi than microrings under similar conditions of size and radius. 

 

Fig. 1. (a) Structure of an axially symmetric silicon TWR structure seated on a substrate and 

covered by a cladding material. When Rin is zero the resonator is a microdisk; otherwise it is a 

microring or a microdonut. A ray approaches to the propagation of the traveling mode of the 

resonator for (b) a microdisk, (c) a microring, and (d) a microdonut. The mode leakage from 

the external wall of the resonators due to sidewall bending is shown. 

The presence of the multiple radial modes can make the microdisk resonators 

inappropriate for applications that require a single resonance operation over the entire or a 

large portion of the FSR. In contrast, microring resonators do not exhibit such multiple radial 

modes for small ring widths. This issue of multiple radial mode operation of a conventional 

microdisk can be alleviated by modifying the conventional microdisk architecture to that of a 

microring with a thicker ring width [18]. In this device architecture, which can also be termed 

as a microdonut resonator [see Fig. 1(a) and 1(d)], the donut width is optimized in such a way 

that the internal wall of the donut has minimal interactions with the first radial mode of the 

resonator and very strong interactions with the higher order modes, thereby rendering these 

higher-order modes strongly radiative. We will show that such microdonut resonator 

architecture is promising for realizing miniaturized and high Q resonators. 
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In this paper, we investigate the scaling of silicon traveling-wave microresonators down to 

ultimate miniaturization levels in an SOI platform. Two main constraints that are considered 

during this down scaling are: (1) preservation of the intrinsic Q of the resonator at high values 

(e.g. Qi ~10
5
) and (2) compatibility of resonator with active or passive integration. Microdisk 

and microdonut resonators are introduced as the promising architectures for achieving such 

ultimate miniaturization and high Q, and their performances are compared. A constraint in the 

design is to preserve the oxide (BOX) layer (i.e. no undercutting). This BOX layer is found to 

be necessary both for thermal management [19] and ease of dense integration with other 

electronic and photonic devices. Resonators with both air and oxide cladding are considered 

during the size scaling analysis. In addition, miniaturized resonator architectures in which the 

resonator is seated on a thin silicon slab, suitable for electronic integration [3] is also studied. 

Single mode operation over the entire FSR range is achieved in optimized scaled 

microresonators without incurring significant radiation losses. Experimental results for 

miniaturized resonators with radii ranging from 1.5µm to 2.5µm are provided and compared 

with the theoretical simulation results. 

The organization of the paper is as follows: Section 2 discusses the theoretical modeling 

and optimization of the resonator and impact of the resonator scaling on the Q and 

electromagnetic mode volume of the resonator. Section 3 provides the experimental results 

and the necessary discussions. Finally, conclusions are made in Section 4. 

2. High Q and Miniaturized TWR: Design and optimization 

In practice, the Q of a Si resonator is related to the aggregate of its intrinsic radiation loss (i.e. 

bending loss), when the resonator is ideal, and the losses resulted from other non-idealities 

introduced by fabrication imperfections and linear and nonlinear absorption properties of Si. 

The total Q (Qt) of a resonator coupled to a waveguide can be expressed as 

 

1 1 1

1 1 1 1 1 1 1

, ,[ ] [ ]

t linear nonlinear

rad b abs s abs scat c TPA TPA FC

Q Q Q

Q Q Q Q Q Q Q

− − −

− − − − − − −
−

= + =

+ + + + + +
  (1) 

where, Qlinear is the contribution of linear losses to the total Q. Qlinear is composed of intrinsic 

radiation Q (Qrad), the material bulk absorption Q (Qb,abs), the surface state absorption Q 

(Qs,abs which is the absorption loss in the resonator due to generation of free carriers via 

surface electronic states at resonator surfaces), the Rayleigh scattering Q (Qscat, which 

quantifies the coupling of the resonator mode to the radiation mode due to the surface 

roughness) [17], and the coupling Q (Qc which quantifies the coupling of the resonator to the 

waveguide). The Qi is the outcome of Qrad, Qb,abs, Qs,abs, and Qscat. Qnonlinear is the 

manifestation of nonlinearity-induced loss, which is composed of QTPA (which quantifies the 

loss of the resonator mode due to the two-photon absorption (TPA) at high optical powers) 

[20], and QTPA-FC (which quantifies the resonator loss due to the TPA-induced free-carrier 

absorption) [20]. 

At lower powers in which the nonlinear contribution to the Qi is negligible (and is the case 

of this paper), the total Q can be represented by the terms in the first bracket in Eq. (1). For an 

ideal resonator we are interested to find Qrad, especially at miniaturized radii where Qrad can 

be the dominant term in determining the Qi of the resonator. In the following subsection, we 

theoretically model the resonator to extract its Qrad. 

2.1 Modeling the TWR and the Qrad 

We simulate TWRs with different radii using the finite-element method (FEM) in the 

vectorial form in cylindrical coordinates. A detailed discussion on the FEM implementation 

can be found in Ref [21]. The FEM formulation is based on the magnetic Helmholtz equation 
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where H  represents the magnetic field vector; n is the refractive index; c is the speed of 

light; and ω0 is the resonance frequency. ω0 can be a complex number to contain the 

information about the resonator Qrad. Because of the cylindrical symmetry of the structure, the 

magnetic field can be written as 

 
0

( , )exp( )H z i t imρ ω ϕ= Η −   (3) 

where m is the azimuthal harmonic mode number of the resonator; and ρ, z and φ represent the 

coordinates in the cylindrical system. The outer boundaries of the domain are terminated by 

axially-symmetric perfectly-matched layer (PML) absorbing boundary conditions [22]. 

Therefore, we are able to extract the real and imaginary part of the resonance frequency and 

from that to extract the intrinsic quality factor as 

 
0 0

( ) /  [2 ( )].
rad

Q Real w Imag w=   (4) 

The differential equation in Eq. (2) with the field axial symmetry given by Eq. (3) is 

reformulated to be implemented in the COMSOL Multiphysics to take the advantage of its 

mode solver and graphical user interface. In all the analysis shown in this paper, the thickness 

of the Si resonator is 230 nm (a thicker Si device layer can increase the radiation Q, however 

because of the commonly used thickness in the range of 200-250nm we have chosen this 

value of thickness). In the analysis, the refractive index of the silicon and oxide are 3.475 and 

1.444, respectively; and the polarization of the resonator mode is TE (electric field 

predominantly in the plane of the resonator). The choice of TE is because it provides a higher 

Qrad compared to the TM polarization (magnetic field predominantly in the plane of the 

resonator) at small radii. This is because the traveling mode of the resonator for the TM 

polarization has a lower effective index compared the one for the TE case. At smaller bending 

radii, a lower effective mode index result in a larger bending loss. In order to get a better 

understanding for this we can look at the effective index. The effective index of the traveling 

mode of a resonator is given by [23] 

 
0 0 0

2 / (2 )

( / ) ( / )
eff

m R mc
n

c c R

ϕβ π π
ω ω ω

= = =   (5) 

where βφ is the azimuthal propagation constant of the traveling mode, c is speed of light, m is 

the azimuthal harmonic mode number mentioned in Eq. (3), and R is the resonator radius. 

When going to smaller radii, it can be shown that neff (or equivalently, the ratio m/R) becomes 

smaller. This can be qualitatively explained through the fact that at smaller bending radii 

mode energy extends more to the outside of the resonator which results in a lower effective 

mode index (see Fig. 2 where m for different Rs is given). However, for TM polarization, the 

neff is further smaller compared to the TE case (because of smaller m for TM). As a result, a 

smaller neff increases the leakage and coupling of the TM mode to the radiation modes. 
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Fig. 2. Variation of the radiation Q of the 1st radial order TE mode of a miniaturized silicon 

microdisk resonator with a thickness of 230 nm versus its radius for three different cases as 

shown in the legend of the figure. The markers correspond to the obtained simulation points. 

The azimuthal harmonic mode number (m) of each resonance mode is shown next to each 

mode number. In all the simulations the radius of the microdisk is adjusted such that the 

resonance wavelength is in the range 1550 ± 10 nm. The refractive indices of silicon, oxide and 

air are assumed to be 3.475, 1.444, and 1, respectively. The inset shows the cross section of the 

microdisk in the cylindrical coordinate. 

We initially consider a miniaturized Si microdisk and study the effect of its radius, the 

substrate, and the cladding on the radiation Q of the resonator. Figure 2 shows the calculated 

radiation Q of the first radial order TE mode of this resonator at different small radii for the 

following cases: 1- both substrate and cladding are SiO2; 2- substrate is SiO2 and the cladding 

is air; and 3- both substrate and cladding are air. Figure 2 clearly shows the large impact of 

the index contrast between the resonator and the surrounding material on the Qrad of the 

resonator, especially at smaller radii where bending loss is higher. When both substrate and 

cladding are oxide (which is the most practical case) and the disk radius is ~1.2 µm, the Qrad is 

on the order of ~2600. For such a case, if the fabrication condition is good, then the Qi can be 

dominantly defined by the Qrad and not limited by scattering Q (Qscat) [17]. 

As discussed in section 1, a microdisk can be multimode in the radial direction which may 

not be desirable for some applications. However, when moving to smaller radii (e.g., r < 2.5 

µm), higher radial order modes become very radiative. This is because they have a smaller 

effective index which becomes much lower than the first radial order mode at smaller radii. 

Hence, the bending loss for higher order modes is expected to be much larger. To design a 

single mode miniaturized resonator, it is enough to concentrate on the first and the second 

radial order modes and try to make the Qrad of the second order mode as low as possible while 

preserving the Qrad of the first order mode at a high level. By doing so, the Qrad of other radial 

order modes (with radial mode orders more than 2) becomes automatically very small or 

negligible. The strategies pursued to achieve the single mode operation over a wide 

wavelength range (or the entire FSR) can be summarized as follows: 
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1. Higher radial order modes can be pushed to the strongly radiative region by changing 

the disk structure to a donut (i.e., a thick ring) shape as discussed before. By doing 

this modification, the effective index of the first radial mode is less affected while 

those of higher order modes (which have more interaction with the internal wall of 

the resonator) are reduced, especially, when the radial order becomes larger. In 

addition, because of the roughness induced at sidewalls by fabrication imperfections, 

the higher order modes suffer from Rayleigh scattering from the two sidewalls while 

the first radial order modes is exposed only to the outer sidewall. 

2. The dimensions of the resonator can be adjusted in such a way that the resonance 

frequency of the 1st order radial mode is as far as possible from those of the higher 

order modes. As a result, the resonator can operate in the single mode condition for a 

large wavelength range. 

3. The excitation of a resonator is normally through an adjacent waveguide. Therefore, if 

the waveguide-resonator coupling for higher order modes is weak, they do not 

contribute to the transmission spectrum. The strength of waveguide-resonator 

coupling is strongly dependent on the phase matching between the waveguide mode 

and the resonator mode, and the waveguide-resonator spacing. By proper 

engineering of the waveguide-resonator coupling geometry, we can considerably 

reduce the waveguide-resonator coupling strength for higher order modes of the 

resonator [23] and suppress them from the transmission spectrum (i.e., we avoid 

coupling to higher order modes to essentially achieve single mode resonance 

operation). 

4. Lowering the thickness of the resonator can strongly reduce the mode effective index, 

especially for higher order modes. Correspondingly, their Qrad can strongly reduce. 

In this paper, we only pursue the first two methods mentioned above for the single mode 

resonator design (for example for the third method, Ref [23]. can be seen for more details of 

waveguide-resonator coupling). 

In a microdisk, when the radius becomes smaller, the first radial order is more localized 

and concentrated toward the edge of the disk. This fact has been shown in Fig. 3 by 

comparing the energy distribution of the first radial order mode of the disk with respect to the 

disk edge for different radii. Hence, as mentioned earlier, by knowing the radial distribution 

of the first radial order mode we can appropriately perforate an inner hole into the center of 

the disk to form a donut for minimal (maximal) interaction with first (higher) order mode 

(modes). For more clarification, Fig. 4 shows the simulation results for the first and the 

second radial order modes of a microdonut resonator with an external small radius of 2.05 µm 

and with various internal radii, with both substrate and cladding being oxide. The external 

radius is selected to have all the resonances of the 1st and 2nd radial order mode close to each 

other (around ~1550 nm) to have a fair comparison of their Qrad. As we see from Figs. 4(a)–

4(d), we can reduce the donut width down to a point where the first radial order has negligible 

interaction with the inner wall of the donut, while the 2nd radial mode is subject to strong 

interaction with the two sidewalls of the donut. Figures 4(e) and 4(f) show the Qrad and the 

resonance wavelengths of the 1st and the 2nd radial order modes for different donut widths, 

respectively. As seen from these figures, by reducing the donut width (W), the Qrad and the 

resonance wavelength of the first order mode have very small changes. This is an evidence of 

the weak interaction of the internal wall of the donut. One can take the benefit of the weak 

interaction of the resonance mode profile of the microdonut with the internal microdonut wall 

to have a fine resonance wavelength control (i.e. sub-nanometer) for the 1st order mode by 

applying a relatively large change to the internal radius [see Fig. 4(f), the red plot]. This is 

especially advantageous when we have resolution limitation in lithography where we want to 
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fabricate resonators with resonance frequencies very close to each other. The second radial 

mode, however, is dramatically affected by reducing the donut width. This can be seen from 

Fig. 4(e) and 4(f) through the large changes in Q and the resonance wavelength, respectively. 

As an example from the table, for the donut width of W = 700 nm, the 1st radial order mode 

has its Qrad almost intact, while that of 2nd order mode has reduced down below 300. By 

appropriate waveguide-resonator coupling design [23], the contribution of the 2nd order mode 

to the transmission spectrum can be suppressed. 

 

Fig. 3. Radial distribution of the normalized-to-peak electric energy density of the 1st order 

radial TE mode for Si microdisk resonators with a thickness of 230 nm and different radii R = 

2 µm, 10 µm, and 20 µm, as specified in the figure. The point 0 in the horizontal axis 

corresponds to the position of the outside edge of the microdisk. All plots are for the variations 

of energy across a line in the radial direction and passing through the middle of the microdisk 

thickness. 

When replacing a microring by a microdisk or a microdonut resonator to achieve a higher 

Qi, another important physical parameter of resonator which needs to be considered is the 

electromagnetic mode volume (Vm) defined as 

 

2 2

2

max

| |

(| | )
m

n E dv
V

nE
= ∫   (6) 

where |E| represents the electric field magnitude; n is the refractive index; and the integration 

is performed over the entire space to consider the mode distribution. Knowing that the 

enhancement and sensitivity of light-matter interaction is proportional to Q /Vm, it is important 

to know how the mode volume changes when replacing the ring by a disk or donut. In a 

TWR, the radial and vertical confinements of the mode energy, as well as the resonator 

traveling length (which is proportional to the radius), determine the energy localization and 

mode volume of the resonator. While the vertical confinement for both the microring and the 

microdisk resonator architecture on the same substrate is almost the same, the microring has 

stronger radial confinement enforced by two sidewalls of the microring. However, as seen in 

Fig. 3, when shrinking the radius of a microdisk, the mode is highly localized at the edge of 

the disk. Therefore, we intuitively expect the radial mode confinement of the disk to approach 

the same level as that of a microring with a given typical width (e.g., 500 nm). To verify this, 

we calculated the mode volumes of both microring and microdisk resonator architectures for 

different diameters. 
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Fig. 4. (a)-(d) The cross sections of the mode energy of the 1st and the 2nd radial mode order 

of a microdonut resonator with an external radius of 2.05 µm, and widths (W)s of 1.45 µm and 

0.85 µm, respectively. The silicon layer has a thickness of 230 nm and is surrounded by an 

oxide cladding. (e) and (f) Variation of the radiation Q and the resonance wavelength of the 

microdonut for the first 2 radial order modes for a fixed external radius of 2.05 µm versus 

different donut widths. The azimuthal mode number m (shown for each simulation point) is 

chosen in such a way that the resonance wavelength to be in the range of 1550 ± 15 nm. 

Figure 5 shows the variation of the mode volume of the 1st, 2nd, and 3rd order radial TE 

modes of a Si microdisk as well as that of the fundamental TE mode of a Si microring 

resonator (with a width of 500 nm) versus their external diameters. All these resonators have a 

thickness of 230 nm and are on a SiO2 substrate and covered by air. As seen from Fig. 5, for a 

microdisk, the mode volume of the 1st order radial mode is the smallest compared to its 

higher-order radial modes. For the same external diameter, the mode volume of a microring is 

smaller than that of all the modes of the microdisk. At smaller resonator diameters, the mode 

volumes of the modes of the microdisk and microring approach each other. This is especially 

clear for the 1st TE modes of the microdisk and microring. This can be simply explained 

through what we observe in Fig. 3, where at smaller radii, the radial confinement of the mode 

energy is smaller and more localized toward the edge of the microdisk. In other words, in a 

microdisk, when going to smaller radii (i.e., ~1.5 µm), the effective radial width of the mode 

energy becomes smaller and is comparable and almost at the same level as that of a microring 

with the same radius and a width > 500 nm. Hence, at smaller disk radii, we take one further 

action by modifying the disk to a donut in which the 1st radial mode is strongly confined and 

higher-order radial modes can be pushed to cut-off. 

#130161 - $15.00 USD Received 14 Jun 2010; revised 18 Aug 2010; accepted 24 Aug 2010; published 30 Aug 2010
(C) 2010 OSA 13 September 2010 / Vol. 18,  No. 19 / OPTICS EXPRESS  19549



 

Fig. 5. Calculated normalized mode volume (Vm /(λ0/nSi)
3) of the first three radial TE modes of 

a Si microdisk resonator, as well as the one for the fundamental TE mode of a microring 

resonator versus their outer diameters. In all the resonators, the resonator thickness is 230 nm, 

the substrate is SiO2, and the cladding is air. The microring width is 500 nm. For all the 

simulations, the mode volume was calculated for one of the resonance wavelengths (λ0) that 

existed in the range of 1550 ± 20 nm. 

2.2 Miniaturized resonators compatible with active integration 

As previously demonstrated [3], by adding a thin Si slab at the interface of a microring 

resonator and the underlying substrate, the resonator can be integrated with a p-n junction. 

Correspondingly, high-speed modulators and switches can be realized. A smaller resonator 

can reduce the power consumption of such modulators. At smaller resonator radii, a 

simultaneous presence of oxide cladding and the Si slab layer (which are essential in the 

integration of p-n junction) can dramatically increase the energy leakage of the resonator 

mode. The slab thickness has to be large enough to ensure efficient electron transport from the 

p-n junction and through the slab layer. In a recent report, a 30 nm slab thickness in a Mach-

Zehnder interferometer is shown to be sufficient for high-speed electron transport [24] from 

the p-n junction to the arm of the Mach-Zehnder device. In this section, we have analyzed the 

Qrad of a microdonut resonator with different slab thicknesses and donut widths. The intention 

to employ the microdonut architecture is to preserve a high Q for the 1st radial order mode 

and potentially suppress higher-order modes. Figures 6(a) and 6(b) show the cross section of 

the mode profiles of the 1st and the 2nd radial order TE modes of such a resonator with an 

external radius of 2.5 µm, a donut width of 1 µm, and a thin Si slab thickness of P = 50 nm. 

Both substrate and the cladding are oxide. From these two figures we see that 2nd radial order 

mode has more leakage to the outside as well as more interaction with the internal sidewalls 

of the donut compared to the 1st radial order mode. To have a quantitative comparison 

between these two modes, we have calculated their Qrad. Figure 6(c) shows the Qrad of a 1st 

and the 2nd radial order modes of the microdonut resonator versus its external radius at 

different thin Si slab thicknesses (P) and donut widths (W). From this analysis, we see that the 

Qrad of the 2nd radial order mode is dramatically reduced while a high Qrad for the 1st radial 

order mode is still achievable. For instance, at a radius of 2.5 µm, with a thin Si slab thickness 

of P = 30 nm and a donut width of 800 nm, the 2nd order mode has Qrad ~130, while the Qrad 

of the 1st radial mode for the same resonator is ~2.8 × 10
6
 which is very high. The results 

shown in Fig. 6 suggest that the advantages of a microdonut resonator are not affected by the 

addition of the thin Si slab layer. Thus, microdonut resonators can be integrated with p-n 
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junction in a way similar to microring resonators without losing high Q, small mode volume, 

single mode operation, and compact size. 

 

Fig. 6. Cross section of the z component of the magnetic field profile (Hz) of (a) the 1st and (b) 

the 2nd radial order modes of a microdonut resonator with a radius of R = 2.5 µm and a width 

of W = 1 µm, seated on a thin silicon slab layer with a thickness of P = 50 nm. (c) Calculated Q 

of the 1st and the 2nd radial order TE modes of a Si microdonut resonator versus its external 

radius for different donut widths and thin slab thicknesses as specified in the figure. In all 

simulations, both the substrate and the cladding are oxide, the silicon thickness is 230 nm, and 

the calculated Q is for one of the resonance wavelengths (λ0) that exists in the range of 1550 ± 

25 nm. 

3. Fabrication and characterization of miniaturized resonators 

We fabricate miniaturized resonators with radii ranging from 1.5 µm to 2.5 µm to 

experimentally study their performance. The resonators are fabricated on an SOI wafer with 

Si thicknesses ranging from 210 nm to 230 nm seated on top of a 1 µm thick buried oxide 

substrate. The devices are patterned using a JEOL JBX-9300FS electron beam lithography 

(EBL) system. The electron resist used is HSQ (which is a negative resist) with a thickness of 

110 nm. After the lithography, the patterns are etched in chlorine-based plasma in an 

inductively-coupled plasma reactive ion etching system. At the end of etching, the remaining 

HSQ (with an approximate thickness of 60 nm) is kept. For the cases that the cladding is 

oxide, a 2 µm thick oxide is deposited on the sample using a plasma-enhanced chemical vapor 

deposition (PECVD). The details of the optical characterization setup can be found in [16]. 
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Fig. 7. (a) SEM image of a microdisk resonator with a radius of ~1.53 µm coupled to a 

waveguide with a width of 400 nm. The gap between the waveguide and the resonator is ~210 

nm. The thickness of the Si microdisk is 213 nm, and there is a thin HSQ layer with a thickness 

of ~60 nm on top of the microdisk and the waveguide. (b) Transmission spectrum of the 

resonator showing the 1st radial order TE mode. (c) Detailed resonance spectrum of the 1st 

radial order TE mode of the resonator in (a), which shows resonance splitting. By fitting theory 

to experiment, the intrinsic Q's ≈110,000 and 88,000 are obtained for the two standing-wave 

modes. The value of the coupling Q (Qc) is ~99,000 in the fitted data is close to the calculated 

value from coupled-mode theory. The azimuth harmonic mode number of this mode is m = 13 

and its mode volume is ~6.3 (λ0/n)3 with n = 3.475. 

Figure 7(a) shows the scanning electron microscopy (SEM) image of a microdisk 

resonator with a radius of 1.53 µm coupled to a straight ridge waveguide with a width of 400 

nm. The substrate is oxide and the cladding is air. Figure 7(b) shows the transmission 

spectrum of this resonator for which only one resonance mode with strong extinction is seen 

over the entire FSR range. This resonance mode is the 1st radial order TE mode, and the 

theoretical simulations accurately predict it with an azimuth mode number m = 13. From the 

simulations, the FSR and the mode volume of this mode are FSR ≈70 nm and Vm = 6.3 (λ0/n)
3
 

(with n = 3.475), respectively. Figure 7(c) shows a zoomed view of the resonance mode 

spectrum shown in Fig. 7(b). As seen from Fig. 7(c), resonance splitting due to the coupling 

between the degenerate clockwise (CW) and counterclockwise (CCW) modes (because of 

fabrication-induced surface roughness) results in two standing-wave modes. A quality factor 

of Qsplit is designated to this resonance splitting, and it is calculated as [17,21] 

 04

| |
split

splitCW CCW

Q
E E dv

λ
λδε ∗

= =
∆∫

  (7) 

where δε is the permittivity perturbation of the resonator, λ0 is the resonance wavelength, 

∆λsplit is the wavelength split, and Ecw and Eccw are respectively, the electric fields of the CW 

and CCW modes of the resonator normalized to their mode energy. By fitting the 
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experimental data into the theoretical simulations using the coupled mode theory of 

waveguide-resonator coupling (including the mutual coupling of CW and CCW modes of the 

resonator) [21,25], the resonator Q's can be obtained. From the fitting results, the intrinsic Q's 

of ~110,000 and 88,000 are obtained for the two standing-wave modes of this resonator (with 

conservative consideration of the Fabry-Perot distortion). Theoretical simulation shows that a 

resonator with such dimensions has the Qrad ~4.5 × 10
5
 while experiment shows total intrinsic 

Qi in the order of 10
5
. This shows that the achieved Qi is still limited by scattering and 

fabrication imperfections. Also, the appearance of the resonance splitting is further evidence 

that the resonator Qi is dominated by fabrication-induced scattering. By further optimizing the 

fabrication process, the Q has the potential to be improved at least four folds to reach what is 

shown in Fig. 2 (i.e., 4.5 × 10
5
). 

 

Fig. 8. (a) Top: An array of 32 donut resonators side coupled to a waveguide. Bottom: The 

SEM image of one of the resonators in the array. The structure has oxide cladding. An inner 

hole with a radius of 0.6 µm has been made at each disk center. The external radius of the 

resonators in the array is distributed in the range of 1.92 µm to 2 µm. (b) The resonance 

spectrum of the resonators array shown in (a). (c) and (d) The details of two of the resonance 

features shown in (b). These resonances belong to two different resonators with 5 nm 

difference in their external radii. In (c), resonance splitting with a doublet in the transmission is 

observed.  In (d) resonance splitting has resulted in the flattening of the transmission.  Strong 

Fabry-Perot fringes of the waveguide with a period of ~31 pm are observed. By fitting theory 

and experiment in (d) intrinsic Q's of ~82,500 and 75,000 are obtained for the two standing-

wave modes of the resonator. 

For a small microdisk with a radius ~1.5 µm, adding an oxide cladding significantly 

reduces the Qrad as theoretically shown in Fig. 2. Hence, to preserve a high Qrad while adding 

an oxide cladding, we increase the radius to ~2 µm. To better study this resonator (i.e., its 

high Q properties, single mode operation, fabrication induced randomness), we make an array 

of these resonators with slightly different radii from each other (near ~2 µm) coupled to a 

straight waveguide, as shown in Fig. 8(a). The array includes 32 individual resonators with 
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radii distributed in the range of 1.92 µm to 2 µm so that their resonance wavelengths are 

distributed in almost the entire FSR (which is ~57 nm from theoretical calculations). The 

SEM picture in Fig. 8(a) shows one of these resonators in the array before adding the oxide 

cladding. An inner hole with a radius of 0.6 µm has been perforated at the center of each disk 

to form a donut resonator. A 2 µm oxide deposited by plasma-enhanced chemical vapor 

deposition (PECVD) used as cladding on top of the resonators. Figure 8(b) shows the 

transmission response of the 32 resonators in the array shown in Fig. 8(a). As seen from  

Fig. 8(b), strong power extinctions for all the resonators are observed. Figures 8(c) and 8(d) 

show a detailed view of the resonance spectra of two microdonuts with a 5 nm difference in 

their radius. As seen from Fig. 8(c), resonance splitting with the appearance of a doublet with 

a wavelength splitting of 40.6 pm is observed. In general, when a doublet is observed, the 

coupling Q (Qc) is larger than the splitting Q (Qsplit) [21 (see chapter 3)]. By reducing the Qc 

of the waveguide resonator toward and below the Qsplit, the doublet in the resonance spectrum 

moves toward flattening and becoming a singlet. Figure 8(d) shows a scenario in which a very 

weak doublet is observed in the spectrum, and the transmission response around the center 

resonance is almost flattened. Although, the Qc for the resonators of Figs. 8(c) and 8(d) are 

almost the same, the randomness in the fabrication has resulted in different sidewall 

roughness and consequently different Qsplit. By fitting the experimental data to the theory, we 

are able to extract the Qi of ~75,000 and 82,500 for the standing wave modes in Fig. 8(d). It is 

noted that because the period of Fabry-Perot fringes (from the facets of the chip) is 

comparable to the linewidth of the resonance, the Fabry-Perot effect can strongly load the 

resonator and make the resonator spectrum broader. Therefore, in the fitting, the effect of the 

Fabry-Perot fringes has to be considered. The red dashed-dotted curve in Fig. 8(d) shows the 

result of the fitting when the Fabry-Perot effect is considered and the green dotted curve is 

when the Fabry-Perot is absent. In other words, when Fabry-Perot fringes from the facets of 

the chip exists in the experiment; the measured linewidth of the experimental resonance 

spectrum is larger than the actual linewidth of the resonator. 

In the experiment in Fig. 8, by scanning the wavelength of laser source over the FSR 

range and imaging of the resonators by a CCD camera it is observed that each resonator gets 

bright only at one wavelength which corresponds to its resonance. In addition, this imaging 

verifies that each resonator in the array is single mode. This is in agreement with what 

discussed in theory section, where for such small resonators with an oxide cladding, the 2nd 

and higher-order modes were predicted to be strongly leaky, and as a result, they have a very 

weak coupling to the waveguide. However, to gather further experimental evidence of this, 

another structure is designed and fabricated, as shown in the inset of Fig. 9. This structure is a 

1st order add-drop filter made of a single resonator. The resonator and the waveguide 

dimensions and their spacing are similar to those of the resonator array in Fig. 8. Figure 9 

shows the transmission spectrum of the drop port of this add-drop filter. As seen from Fig. 9, 

two resonance modes are observed, which are the 1st radial order TE modes with a 

wavelength FSR ~57 nm and azimuth mode numbers m = 18 and m = 19, corresponding to 

the longer and the shorter resonance wavelengths, respectively. The resonance wavelength 

locations and the FSR of these modes agreed well with the theoretical simulations. From the 

measurements, a linewidth of ~50 pm is measured for the resonances of this filter. As seen 

from Fig. 9, only the 1st radial order mode appears in the power transmission spectrum, and 

other higher radial order modes are below the noise floor. From the temporal coupled-mode 

theory [26], the normalized power transmission of the drop port in Fig. 9 and at resonance is 

 0 2

1
( )

(1 0.5 / )c i

T
Q Q

ω =
+

  (8) 

where, as mentioned, Qi is the intrinsic Q of the resonator mode, and Qc is the coupling Q of 

the resonator mode to one of the waveguides (we have assumed that Qc of both waveguides to 
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the resonator in Fig. 9 is the same). Using Eq. (8) and from the spectrum in Fig. 9 we can say 

that Qc for higher radial order modes is much higher than their Qi which has resulted in the 

weak transmission (below noise floor in Fig. 9) for these modes. Knowing that such a large 

contrast exists between the Qc and Qi for the higher radial order modes, we can make some 

conclusions on the behavior of the higher order modes of the resonators in Fig. 8(which have 

similar waveguide-resonator dimensions with the one in Fig. 9 (i.e. nearly similar Qc and 

similar Qi)). In addition, the resonator modes in Fig. 8 need the critical coupling condition 

(i.e. Qc ~Qi) to show strong transmission in the spectrum. However, as mentioned before, for 

the higher order modes Qc is much larger that Qi, which confirms their absence in the 

transmission spectrum in Fig. 8(b). 

 

Fig. 9. The SEM image of a miniaturized add-drop filter before covering with oxide. The 

waveguide width and thickness are 400 nm and 230 nm, respectively. The employed microdisk 

resonator has a radius of r = 1.97 µm with an inner hole with a radius of r = 0.6 µm at its center. 

The gap between the waveguide and the resonator is 240 nm. The final structure has an oxide 

cladding. (b) Transmission spectrum of the drop port of the filter showing the two resonances 

belonging to the 1st order radial family modes with azimuth mode numbers (m) specified in the 

figure. 

We also fabricate miniaturized resonators compatible with active integration. In our 

design, we consider a target thin Si slab [P in Fig. 6(a)] of 35 nm. For a microdonut with an 

external radius of 2 µm, a thin slab thickness of 35 nm, and an oxide cladding, we observe a 

very low Qi and leaky resonator, confirming our theoretical calculations in Fig. 6. Therefore, 

we increased the resonator radius to reduce the radiative leakage and as a result increase the 

Qi. Considering these facts, a microdonut resonator with an external radius of 2.5 µm, an 

internal radius of 1.3 µm, on a thin Si slab layer is fabricated. The measured thickness of the 

slab layer (after fabrication) using the ellipsometry technique is 33 nm, while the Si device 

layer is 216 nm. Figure 10(a) shows the transmission spectrum of this resonator coupled to a 

waveguide. The inset in Fig. 10(a) shows the SEM image of this resonator coupled to a 

waveguide with a width of 400 nm. The gap between the waveguide and the resonator is 250 

nm. The structure is covered by a 2 µm layer of PECVD oxide, which is close to a realistic 

case where the resonator is integrated with a p-n junction. As can be seen from Fig. 10(a), 

three resonances belonging to the 1st radial order TE mode and with different azimuth mode 

numbers are observed. Figure 10(b) shows a zoomed view of one of the resonances in  

Fig. 10(a) with an azimuth mode number m = 23. A measured loaded spectral linewidth of 

~115 pm is obtained for this resonance mode with an extinction of ~15 dB as shown in  

Fig. 10(b). Correspondingly, the Qi of this resonator is ~24,000 which is very far from that of 

the ideal resonator (Qrad >10
6
) due to the fabrication imperfections. The presence of the thin 
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slab layer increases the chance of coupling of the microdisk mode to the leaky radiation 

modes in the slab due to surface roughness. We also note that by reducing the slab thickness 

to zero we expect the Qi to increase as observed in our experimental results (see Fig. 8). 

While this Qi is not large, this resonator can still be employed for many applications where 

this level of Q is satisfactory. As an example, a 2nd order coupled-resonator filter (with a 

bandwidth of ~1 nm at 1550 nm) made of two resonators with the mentioned Qi has an 

insertion loss less than 1 dB. However, by improving the fabrication process, the Qi of this 

architecture with such small radii can be further improved. 

 

Fig. 10. (a) Transmission spectrum of a Si microdonut resonator seated on a thin Si slab. Inset 

shows the SEM image of the resonator. The resonator has internal and external radii of 1.3 µm 

and 2.5 µm, respectively, and coupled to a waveguide with a width of 400 nm. The gap 

between the waveguide and the resonator is 250 nm. The thickness of the underneath thin slab 

layer is 33 nm and the overall height of the Si device layer is 216 nm. (b) A zoomed view of 

one of the resonance modes. 

In this paper our emphasis is to preserve the high Qi properties of the resonator while 

shrinking its size. When the fabrication quality is good and the resonator becomes further 

smaller, the Qi of the resonator is ultimately dominated by the Qrad of the resonator. This is 

true, especially with the recent progresses in nanofabrication of Si photonic structures that 

have dramatically reduced the roughness of the sidewalls of the fabricated waveguides and 

resonators. As an example, for a microdisk with a radius ~1.22 µm with both substrate and 

cover being oxide, the Qrad from Fig. 2 is ~2,600. Hence, with the current available good 

fabrication technology, we expect to get such a Q for the resonator. In such an operation 

regime, phenomena like resonance splitting (which is a signature of the fabrication limited 

regime) never occur. However, lack of resonance splitting does not mean that the resonator is 

in the radiation limit. A low waveguide-resonator coupling lifetime (i.e., a strong waveguide-

resonator coupling) or low resonator scattering lifetime compared to the CW-CCW coupling 

lifetime (which is normally high) can result in a singlet response instead of a splitting 

response in the spectrum of the resonator. 

In addition to the mentioned advantages of microdisk and microdonuts over a microring, a 

microdisk is very promising for applications where the high-speed and efficient thermal 

tuning of the resonator is needed. In microdisk architectures, a heater electrode can be directly 

seated on the Si microdisk (which is highly thermally conductive) [27]. The heater electrode 

is deposited close to the center of the disk and far from the perimeter of the disk [27]. In this 

manner, while thermal energy is efficiently delivered to the resonator, the 1st radial order 

mode of the microdisk (which is close to the perimeter) is not perturbed and higher order 

modes are further suppressed by the presence of the metallic heater electrode. 
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4. Conclusion 

In this paper, we presented Si microdisk and microdonut resonators as promising elements for 

miniaturized photonic functionalities in an SOI platform. We showed that miniaturized 

microdisks and microdonuts have several advantages over the conventionally used microrings 

without sacrificing any performance measures. We showed that at very small radii, all the 

higher radial order modes of microdisk becomes strongly radiative and can leave the 

microdisk as a single mode resonator over the entire FSR. In addition, the mode volume of the 

miniaturized microdisk is similar to that of a microring with the same radius, while a much 

higher intrinsic Q can be obtained for a microdisk. To further guarantee the single mode 

condition, by adding a hole at the center of the disk and forming a donut (which is a thick 

ring), higher order modes are subject to stronger leakage while the first radial mode is almost 

intact. As the resonator is traveling-wave architecture, its excitation through a waveguide is 

very dependent on the phase matching between the waveguide and the resonator mode. 

Because different radial modes of a microdisk have different effective indices, their coupling 

to a waveguide are different. Therefore, a proper waveguide-resonator coupling design can 

add another degree of freedom to suppress all the higher order modes from the transmission 

spectrum. We demonstrated single mode Si resonators with radii as small as 1.5 µm, FSR~70 

nm and Qi > 10
5
 when substrate is oxide and cladding is air. To preserve a high Qi for the 

resonator with both substrate and cladding being oxide, we increased the radius to ~2 µm and 

demonstrated a single mode resonator with Qi ~80,000 and FSR ~57 nm. We believe such 

miniaturized microdisks and microdonuts can replace conventionally used microrings in Si 

photonic structures to enable much denser integration of optical functionalities, much larger 

operation bandwidth and much faster, low-power reconfiguration compared to existing 

devices. 
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