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SUMMARY 

An accurate computation of the atmospheric transmittance for 

beam radiation is necessary to predict the beam normal solar 

irradiation. The object of this work is to expand the present 

knowledge about the dependence of beam normal fraction and clearness 

index using the information collected at Shenandoah, Georgia since 

1979. The result is vital for predicting the performance of 

concentrators, for which the pertinent resource is the beam irradiation 

and is necessary to accurately predict the total irradiation on a 

surface of general orientation. 

The main goals of this work are: 

1. Develop a five-year data base to be used for the model 

development. Clcse screening of the collected pyranometer and 

pyrheliometer data will result to usable hourly irradiation 

data (8112 hourly values). 

2. Develop an algorithm to accurately compute the solar astronomy 

angles. This is presented in a form of a subroutine and 

computes the declination, equation of time and hour angle. 

3. Process the irradiation data on an hourly basis to calculate 

the corresponding hourly extraterrestrial normal irradiation 

and extraterrestrial horizontal irradiation. Thus, the hourly 

clearness index and hourly beam transmittance can be 

calculated and used, for statistical analysis. There are nine 
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bands of data defined, based on hourly clearness index values. 

4. Perform the statistical analysis on the five-year data and 

develop a five -year model. The principal result of the 

statistical analysis on the two fh«.racf:ei Istics of the 

population, clearness index and be-m transmittance, is a 

piecewise continuous linear regression model. This model was 

prepared by performing homogeneous least square fits for each 

band of data. Its continuous format provides for an 

easy-to-use model which makes it the most attractive (compared 

to Randal1-Whitson model, piecewise linear regression model 

and a polynomial regression model). The five_year model is 

shown to be preferable to any annual model from a constituant 

year. It is also similar to the well known Randall-Whitson 

model except in the highest range of clearness indices. 

5. Verify the developed model and the data processing procedures. 

The Shenandoah model was compared to other major models, The 

results indicate general agreement between the different 

models, but at higher clearness indices the Shenandoah model 

should be preferred. Finally, the data processing procedures 

are verified by conducting a numerical experiment. 
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CHAPTER I 

INTRODUCTION 

1.1 Problem Statement 

Hourly values for the beam normal solar irradiation are needed 

for such purposes as calculating the irradiation on tilted surfaces and 

assessing the performance of concentrating collectors. The most direct 

method of gaining knowledge about beam normal radiation is by measuring 

it, using a pyrheliometer. 

The consistently adequate operation of tracking pyrheliometers 

is demanding on time and other resources (i.e. frequent adjustment). 

This is the most important problem that developes when one is trying to 

obtain accurate information in this fashion. As a result exact and 

reliable beam-normal radiation data is not so readily available as 

global, pyranometer, data. Historically many meteorological stations 

have not recorded beam normal radiation, probably due to the instrument 

complexity. Thus, great gaps appear in many of the historical data 

bases. 

This situation has made the development of models for estimation 

of beam radiation from global radiation a high priority among solar 

energy researchers. 
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1.2 Objective 

The main objective of this thesis is to develop a function which 

most accurately correlates the hourly beam normal function and the 

hourly clearness index. This will be done by using a selected set of 

well screened and validated beam normal and global radiation 

measurements, from the Shenandoah STEP site, over a five year period. 

From this correlation then, the beam normal radiation can be simply and 

reliably calculated given a reliable global radiation measurement. 
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CHAPTER II 

PREVIOUS WORK 

This thesis deals mainly with hourly solar radiation relations. 

Following is a summary of several categories of models available in the 

literature and related to this work. 

Many studies have prodused equations for hourly beam normal 

irradiation as a function of various meteorological variables such as 

sunshine duration, surface pressure, percipitable water, turbidity, 

total ozone content and relative humidity. Such equations can be found 

in the works of Hoyt [1], Atwater and Ball [2], Davies and McKay [3], 

and Sherry and Justus [4]. 

There have been models, however, which do not require that 

amount of data as input. Thus, a number of investigators have chosen 

to correlate the hourly fraction of diffuse horizontal radiation 

against the hourly clearness index (originally referred to by Liu and 

Jordan [5] as cloudiness index) to obtain relationships of the form: 

F, = Id / I = £, (kT), (2.1) 

where 

I . = hourly diffuse horizontal iradiation, 
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I = hourly global irradiation, 

I Q = hourly extraterrestrial horizontal irradiation. 

k T = hourly clearness index, (l/I0), and 

Although the idea originated by Liu and Jordan and their daily 

correlation has been used on hourly basis, according to [6] it is not 

suitable for this purpose, A widely used model of this form is due to 

Orgill and Hollands [7] and also Bruno [8], more recent results have 

been presented by Erbs, Klein, and Duffie [9] and by Spencer [10]. 

An alternative presentation is to consider the ratio of the 

hourly beam normal irradiation to the hourly extraterrestrial normal 

irradiation. This ratio should probably be called (according to [5] 

and [11]), the "hourly beam transmittance of the atmosphere", and can 

be correlated against the hourly clearness index. Correlations of this 

form: 

T b = Ibn / Jon = *a(*T>. (2-2> 

have special intuitive appeal since one expects the beam transmittance 

to increase monotonically with clearness index. Possibl}' the foremost 

model of this type is the result of work by Randall and Whitson [12] 

which has been concisely restated in [13]. 
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The Randal1-Whitson model is also called the Aerospace model. 

The algorithm estimates the direct normal solar radiation. It attempts 

to characterize the statistical variations of actual data from a 

correlation and it has been used to fill in the direct normal field in 

SOLMET [14] data tapes. A model to predict the beam normal irradiation 

from measured global solar radiation is also available by Turner and 

Mujahid [15], In the development of the model, statistical regression 

tests were conducted over a range of solar altitude angles. The model 

was compared to the Randal1-Whitson model, and overall the two models 

were found very similar. It is indicated though in [15] that the 

Aerospace model is the best available model. 

It can be shown that models in the form of either Equation (2.1) 

or Equation (2.2) are approximately algebraically equivalent. For 

hourly data the beam normal irradiation can be related to the global 

and diffuse horizontal irradiances by defining an hourly average 

A 

incident cosine, cos6z, such that 

I b n = (I - Id)/cos9z. (2.3) 

Substituting this result into the definition for the hourly beam 

transmittance one has: 

?b= U-Ep • kT • (2.4) 



6 

Such an algebraically transformed relationship probably should not be 

considered as a rigorously equivalent statistical result, because the 

manipulation has altered the dependent variable. However such 

Lransformed relations are useful at least for qualitative comparisons. 

Other correlations on the clearness index are possible. The 

beam transmittance may be expected to follow a Bouguer's Law dependence 

on atmospheric extinction (due to absorption and scattering) and air 

mass [16], such that: 

^ b = exp(-K - a ) , (2.5) 

where 

K = extinction coefficient, and 

m = standard air mass. 

The extinction coefficient, or some suitably normalized function, could 

then be correlated against the clearness index as has been done in 

[17]. 

An important alternative model is constructed by defining a 

modified clearness index based on an independent model for the clear 

day global irradiance. Correlations in this format, with quite similar 

results, have been presented by Stauter and Klein [18] and by Turner 

and Salim [19] . 



Correlations of the hourly diffuse fraction, I ,/It to the ratio 

of the hourly global radiation to an estimate of hourly clear sky 

radiation, I/IQ have also been developed by Bugler [20], for a series 

of correlations over zenith-angle bands. Clear day models and 

comparisons of these different models are included in Mujahid and 

Turner [21] . Diffuse radiation correlations were investigated in [6]. 

In this thesis the development of a model in the form of 

Equation (2.2) will be presented, verified and compared to some other 

models, which were previously presented. This model is based on five 

years of data from the STEP site, beginning in 1979. The resulting 

model is an improved solar radiation model for determining the amount 

of beam normal irradiation when only the data for global irradiation is 

present. 
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CHAPTER III 

DATA BASE PREPARATION 

3.1 The Solar Total Energy Project 

The Solar Total Energy Project (STEP) at Shenandoah, Georgia 

(33.4042 N, 84.7478° W) is a cooperative effort between the United 

States Department of Energy and the Georgia Power Company, to further 

the search for new sources of energy. The project is a prototype solar 

thermal total energy plant, being in operation since early 1982. The 

site is composed of 114 parabolic solar dish collectors (each, 7 meters 

in diameter). 

The Shenandoah plant employs concentrating collectors. Each 

parabolic dish acts as a concentrator producing a concentration ratio 

of 250. The concentrated rays heat the circulating silicone transfer 

fluid to 750 F. The heat transfer fluid is then pumped to a heat 

exchanger, where it boils vater and superheats steam. The superheated 

steam drives a turbine generator, producing electricity. Medium 

pressure steam is extracted from the turbine for knitwear pressing at 

the near-by factory. Low-pressure steam exhausted from the turbine is 

used to produce chilled water for air-conditioning. 
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3.2 Calibration of Instruments 

A meteorological station at the site, operated by Georgia 

Institute of Technology, constantly monitors the amount of solar energy 

available. The solar insolation and surface weather instruments make 

it one of the most sophisticated stations in America for gathering data 

about the sun and is considered to be a pioneer modern automated 

station. 

The basic data set assembled at the STEP includes of irradiation 

values integrated over fifteen-minute periods and recorded at the end 

of each period. The pertinent instruments at the site are an Epply 

precision spectral pyranotneter (PSP), to measure global irradiation and 

two Epply normal incidence pyrheliometers (NIP) on a common polar mount 

to measure beam normal irradiation. 

During 1984 the solar monitoring station was reconfigured. It 

now includes two global pyranometers for redundancy. Redundancy in the 

beam normal measurements was enhaced by a third pyrheliometer on the 

common mount being converted from measurements in the infrared band to 

full-spectrum measurements. 

A fourth pyrheliometer was added on a separate mount for 

complete redundancy, and in late 1984 this mount was converted to 

reliable PV power via a DC to AC inverter from an adjacent PV array 

with battery storage. One should note that the inverter powered unit 

shows poor performance, due to poor temperature stability. 
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The pyranometer and the NIP are not self-checking or absolute 

instruments. Their sensitivity should be determined by comparing them 

with some other "standard" instrument. Thus, all instruments have been 

periodically calibrated. The NIP's were calibrated by comparison with 

a TMI MK VI absolute cavity radiometer (SN 67812) traceable to the 

World Radiation Reference (WRR). No significant calibration 

adjustments have been necessary for any of the NIP's deployed in this 

station since operations began in 1977. 

Calibration adjustments from the original calibration for the 

two principal instruments average only 0.8% and -0.37. respectively. 

The PSP for the global irradiation measurement has been recalibrated by 

comparison with a carefully maintained NBS~traceable Epply PSP (SN 

18044). Its average deviation from initial calibration has been -1.5%. 

The PSP has shown a slight trend of degradation in response, which has 

been fully compensated by recalibration. The NIP's show no trend in 

response degradation. 

3.3 Quality Control 

The accuracy of a statistical model is strongly affected by its 

underlying data base. This is especially true for solar radiation data 

since one expects that systematic errors resulting from substandard 

operation or maintenance of the instruments will introduce low values, 

especially for the pyrheliometer data, and thereby introduce a 

one-sided bias in the data. Consequently, an effective data quality 



control procedure and elimination of questionable data is essential to 

produce a reliable model. 

3.3.1 Automatic Quality Controls 

A routine quality-control procedure has been implemented for the 

data from the STEP site, since its inception. The procedure first 

involves an automated quality-control algorithm which computes a set of 

redundancy, limit and consistency checks between instruments. Its 

purpose is to efficiently check the data in order to indicate 

suspicious data, which then will be flagged. The quality control 

algorithm is described in [22]. Briefly the checks for beam normal 

data comprise the following;: 

1. Redundancy checks; NIP data are compared and deviations 

exceeding +45 KJ/m2 per period C +57. of clear sky value of 900 

KJ/m2 per period) are flagged. The NIP data are also compared 

with the beam normal radiation inferred from the global 

irradiation and the horizontal diffuse irradiation inferred 

from the global irradiation and the horizontal diffuse 

irradiation measured by an Epply PSP with shading disc. 

Disagreement exceeding 45 KJ/m2 per period is flagged. 

2. Limit check; NIP data are compared with a clear sky model, 

described in [23], which constitutes a practical upper bound. 

All data within 45 KJ/m2 per period of this limit are flagged. 

3. Model check; NIP data are compared with the value predicted by 
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the Randal 1-Whit.son model from the prevailing global 

irradiation. Values deviating more than 45 KJ/m2 per period, 

possibly indicating poor tracking, are flagged. 

The global irradiation data which employ a wide aperture 

instrument and no tracking are much more reliable than the beam normal 

data. The quality control algorithm still includes a consistency check 

(comparison of the global with the sum of diffuse horizontal and 

calculated beam horizontal irradiation), a limit check (comparison with 

the clear day model), and currently a redundancy check among the two 

instruments now deployed. The flags from the automated checks are 

called "internal flags" and denote only suspicious, not necessarily 

invalid, data. The vast majority of such data is reliable. An 

additional manual check will be intoduced in the following section to 

assure that all spurious data has been detected. 

3.3.2 Manual Quality Controls 

The second step is a manual inspection of all data in the form 

of computer generated graphs with special attention paid to all data 

flagged by the quality-control algorithm. This is necessary since the 

"internal flags" were assigned with very broad limits. That is to say 

that in most cases the intarnal error flags represented only suspicious 

data and not actual faults in the data. 

No data is eliminated on the basis of the automated check alone. 

Instead, daily graphs of all the radiation data and the pertinent 



models are inspected by an experienced investigator. Special attention 

is given to all previously flagged data. Systematic problems can be 

identified by inspection of the daily plots. For example, an error in 

the beam normal data caused by poor tracking can be idencified by the 

presence of low beam normal data simultaneously with low diffuse 

horizontal data. With the aid of the site operator's daily log, most 

unreliable data can be identified and flagged for exclusion from 

further analysis. These final flags resulting from manual verification 

of internal flags or manual indentification of spurious cata are called 

"external flags". Consequently, the data bases of this work were 

judged on the "external flags" only. 

3.4 Data Validation Procedures 

At this point the data was assembled in monthly files including 

the external error flags. The unflagged data is expected to be highly 

reliable. However,there are some periods or even days that data were 

not recorded. These gaps can be due to station failure, periodic 

calibration, or routine maintenance. 

In order to complete the monthly files with the exact number of 

periods and days, an algorithm was developed called CREATE3. The gaps 

will be filled by keeping track of the time (month, day, hour, minute) 

and by inserting dummy values of nine's for all other variables. As a 

result the data are automatically flagged and are not used in any 

following analysis. This procedure will complete a file with 96 



periods a day and for every day of the month. This is an advantage for 

the programmer, who then has to deal with a known standard amount of 

data. 

Using this program, one has also the opportunity to check for 

the correctness of the data. The experience that the author gained 

from processing the data base, boils down to the fact that despite all 

the previous checks, some "garbage" can still exist in the data (i.e. 

repeated periods, misrecorded dates, overflow in the hexadecimal 

external flags or a period of less than 15 minutes). 

As it can be seen from Figure 3.1, the program operates as 

follows; it reads the data and based on the recorded time of the next 

period can specify if a period is missing. A warning message will come 

to your attention in a case that a reasonable looping time was spend 

looking for the expected next period without any success. The user 

then has to cross examine the periods of the completed data file (with 

the dummy variables) with the ones from the original data file. 

Special attention should be given to the area where a great number of 

dummy periods are recorded. This kind of problem would occur when a 

period that was read included something erroneous and as a result: did 

not agree with the expected standard period format. This for the 

algorithm, is an indication of missing periods and the time counters 

are incremented trying to reach an agreement between the created period 

and the expected one. 

The process of detecting problems of this nature is rather 

tedious, but the result reasures the user that the data does not 

include anything erroneous. It is also necessary to have available a 
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complete data file before proceeding with the following analysis. The 

discovery of these problems gave a strong initiative to review the 

procedures of processing the data up to this point, locate the 

prospective causes of the problems and resolve them. A commented 

listing of CREATE3 can be found in APPENDIX A. 

To prevent any residual poor data from contaminating the 

results, three additional screening checks were instituted for the 

present analysis: 

1. Daily validation checks, 

2. Hourly validation checks, and 

3. Empirical error bound checks. 

The daily validation test was instituted to eliminate certain 

days from further consideration. Days that were mostly overcast were 

rejected for two reasons: primarily because little beam radiation 

occurs on such days and secondarily because it is difficult to verify 

the pyrheliometer data on such days. Additionally, days with one-half 

or more of their periods flagged as unreliable were totally excluded as 

a conservative measure to preclude erroneous data. For this daily 

screening only periods with solar altitudes greater than 6 were 

considered. No data with lower altitudes is used in the beam radiation 

model to avoid the consepuent refraction effects on tracking accuracy. 

Also it is felt that beam radiation at low solar altitudes has little 

practical significance but might confuse the model because of the 

effects of the large intervening air- mass. 

The next step was to plot the good daily data for each year and 

to compare it with published models (Collares-Pereira and Rabl [24], 



Liu and Jordan [l] and Speigel [25]). All relate H./H, the daily 

diffuse fraction, to kT, the ratio of daily global to daily 

extraterrestrial radiation, H /HQ. The general agreement indicated was 

an encouraging verification of the quality check procedures used thus 

far. The result of the above was the compilation of all the reasonably 

reliable days for each year. 

The next step was a closer examination of the data on an hourly 

basis the monthly files were processed again excluding all previously 

identified unreliable, or uninteresting, days. An hourly data base was 

assembled from the fifteen-minute data. The criterion used in this 

step is that at least three of the four intervals used in calculating 

the hourly value passed the previous quality checks. 

Additionally, the data are screened based on the pyranometer 

readings. If the pyranometer data are less than 107J of clear day data, 

then these values are considered invalid due to inconcistancies. On 

the other hand, it might occur that unusually high pyranometer data are 

recorded (greater than the clear day total horizontal irradiation). 

These data exceed possible pyranometer values and being erroneous are 

discarded. The result of this procedure is the development of a new 

data base containing only good hourly irradiation values for the year. 

The final check on the hourly data was a comparison of the 

calculated beam transmittance against empirical upper and lower bounds 

for a given clearness index. This step was instituted as a final 

verification of the previous checks. As detailed in [17], a scatter 

plot of the hourly beam transmittances versus clearness indices for 

1980 was used to establish empirical bounds for hourly data. Upper and 
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lower boundary curves were estimated and then adjusted until data just 

outside the curves were found on close inspection likely to be spurious 

and any data just inside the curves were found likely to be reliable. 

Four types of isolated errors were found to create such spurious 

data: 

1. A pyranometer "glitch". A sudden drop in global irradiation 

with steady beam and diffuse data. Probably caused by 

temporary shading (e.g. during cleaning or by a resting bird) 

of the pyranometer. This causes a spuriously low clearness 

index. 

2. A pyrheliometer "glitch". A steady and high global 

irradiation, accompanying an isolated low pyrheliometer 

reading. Also caused by apparent temporary shading. This 

causes a spuriously low beam transmittance. 

3. Tracking failure. A sudden sustained drop in the beam 

radiation data (close to zero) while global and diffuse 

irradiation fluctuate normally. This is caused by a power 

failure or slippage in the drive mechanism. Most such data is 

detected routinely but residual errors at the beginning of 

such intervals could be over looked. Again, such faults cause 

spuriously low beam transmittances. 

4. Partial tracking. A lower than expected beam radiation value 

caused by imperfect tracking. Usually this is a result of 

poor aligment of the mount or slippage in the drive. This 

fault can be detected by viewing an entire day's data as it 
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tends to smoothly increase or decrease. 

The most direct way of measuring beam normal radiation is by 

using a pyr>i-»li-rrittr. It should be clear by the above discussion that 

since we -re dealing with a tracking instrument, there is always the 

possibility of a malfunction which would produce suspicious data. The 

addition of the fourth pyrheliometer, mounted on an independent 

tracking base (since 1984) at the STEP site, was indeed necessary. It 

will increase the confidence on the pyrheliometer data and decrease the 

possibility of mulfunctions causing missing data. The data though used 

for this work included only two measurements from the common mount 

pyrheliometers. To account for a pyrheliometer malfunction, the 

following have to be done: 

1. If one of the pyrheliometer measures a very low beam normal 

radiation (less than 10 KJ/m2) then the value of that reading 

is changed to equal that of the other pyrheliometer. 

2. If both pyrheliometers measure a low beam normal radiation, 

then both these values are set to zero and the period is 

flagged. 

3. If both pyrheliometers are functioning satisfactorily, then 

the value used for farther analysis is the average of the two 

measurements. 

The check for the pyrheliometer malfunctions is done only during 

the day time, while during the night these checks are ignored. A 

similar process can easily be applied in the future for four 
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instruments to account for the measurements of the additional 

pyrheliometers. The empirical error bound test was instituted 

primarily as a proof against grossly erroneous data. Only eighteen 

hours from 2,477 in the entire set were excluded for 1980. 

Later in this thesis (Chapter V) the data is used in a monthly 

fashion, to develop monthly models. Despite the screening of the data 

up to this point, it was found that there were still some outliers 

included. A close examination of these points is desirable to 

determine whether or not are spurious. These points were first 

identified and then the corresponding daily radiation charts were 

examined. Only two points were justified to be spurious: 

1. On January 15, 1979 during the hourly period ending at 9:30. 

Looking at Figure 3.2 one can note that during this period 

the global value (symbolized by a cross) remains steady while 

the beam normal values (symbolized by a square and a circle) 

experience a dramatic drop. This is considered as a 

pyrheliometer glitch and results to a lower value of T^ (equal 

to 0.444) for a high clearness index (equal to 0.783). 

2. On December 4, 1979 during the hourly period ending at 10:15. 

Looking at Figure 3.3 one can identify a similar occurrence 

of a pyrhel I .iineter glitch. There is an identifiable 

difference in the values of the two pyrheliometers which 

indicates that there was a problem associated with the 

instrument (and its tracking). Again, the result is a 

decrease of the beam normal value from the expected value for 
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a given clearness index. The expected value was about 0.9 

while it was recorded as 0.615 for a clearness index of 0.754. 

This close inspection confirms the reliability of the data. 

3.5 Five Year Data Base 

The resulting data base is a set of hourly irradiation values 

closely screened for reliability excluding data from predominantly 

overcast days and excluding data for very low solar altitudes (i.e. 

less than 6 ). Data from year 1982 was excluded due to a series of 

electronic and mechanical failures which degraded the performance of 

the monitoring system substantially. Only 41 days out of the whole 

year were classified as good days and from these 270 hourly periods 

passed all the checks and were available as usable periods. 

Consequently, five annual data sets were available for further 

analysis, which combined generate the 5-Year usable hourly data base 

(with a total of 8112 periods). 

The important information in this data are: 

1. The date, namely year,month,day,hour, and minute, 

2. The radiation data, namely the direct beam and hourly global 

irradiation, 

3. The clearness index and beam normal transmittance values, and 

4. The percent of 15-minute periods and their identification, 

that were missing from the hour of interest. 



CHAPTER IV 

SOLAR ASTRONOMY 

The availability of solar energy at the earth's surface is not 

uniform; it depends primarily on the optical state of the atmosphere 

and the apparent daily motion of the sun across the celestial vault. 

Thus, it is understandable that it is of vital importance to present 

how the angular position of the sun (relative to the center of the 

earth) can be expressed in terms of easily calculated declination and 

hour angles. The degree of accuracy for these calculations depends on 

the requirements of the particular application. For the purpose of 

this work, where we are dealing with solar radiation analysis, an 

accuracy of +0.5 - 1.0 degrees is satisfactory. A FORTRAN subroutine 

to implement these calculations will be described below. The algorithm 

provides acceptable precission and accuracy but: is much more simpified 

compared to the one used for generating the tabular values in 

The American Ephemeris and Nautical Almanac which has very high 

accuracy (0.1 seconds of the arc). In general one should always 

consider the accuracy versus simplicity trade-off. 

In order to fully understand this algorithm, one first needs to 

explain the sun's apparent motion about an observer on earth by 

studying both, the revolution of the earth about the sun, and the 
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rotation of the earth on its axis. 

4.1 Principles 

A.1.1 Determination of the Sun's Position 

The position of the sun relative to a specific point on the 

earth varies throughout the day and season due to the spin of the earth 

around its axis and to its orbiting around the sun. The earth revolves 

around the sun in an elliptical orbit of small eccentricity. The 

earth's motion about the sun is affected primarily by the gravitational 

attraction between the earth and the sun. For simplicity, we will 

ignore any other influences by other planets and assume that the earth 

is the only celestial object orbiting about the sun. Since the sun has 

a much greater mass than the planets, one can assume that the sun 

remains approximately stationary as the earth moves in its orbit. 

According to Kepler's First: Law (Law of El1ipses-1609) the orbit of 

each planet is an ellipse, with the sun at the one of the focuses, as 

it is indicated in Figure 4.1. The amount by which the orbit deviates 

from circularity, that is the eccentricity (e) of the ellipse, is very 

small, and can be defined as: 

where 

e=c/ot, (4.1) 



ECCENTRICITY 0.0167 MEAN ORBITAL DISTANCE 1.497-10 

PERIHELION 
( e a r l y January) 

APHELION 
(early July) 

EARTH 

Figure 4 . 1 . Ea r th ' s E l l i p t i c a l O r b i t Around the Sun 
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c • distance from the center to a focus, and 

a = semimajor axis. 

In Figure 4.1 of course, the eccentricity of the earth's orbit is 

exaggerated, for illustration purposes. 

The fixed plane containing the earth's orbit is called the 

ecliptic plane. The earth's axis of rotation is tilted at 23 26.5 

(1984 value) with respect to the ecliptic plane (Figure 4.2). This 

angle is called the obliquity of the ecliptic, £, and it can be 

considered fixed for our purposes (there is an actual decrease of 

approximately 47 arc-sec per century). 

4.1.2 Calculations of the '.earth's Elliptic Motion 

Let S be the sun's center and 0E0 the ellipse, with S at one 

focus, in which the earth makes its annual revolution (Figure 4.3). 

Consider the circle CE/C'(same area) with its center at S and its 

radius SE' = l/2•(00') = . This is a hypothetical circular orbit. The 

earth, E, orbiting the sun elliptic orbit is called eccentric earth, 

while E orbiting the sun on a circular motion is called "mean earth". 

The "mean earth" is assumed to revolve about the sun with the same 

period as the eccentric earth. 

According to Kepler's Third Law (1618) a planet moves more 

slowly the greater its distance from the sun in a particular fashion. 

One can assume that the twc earths are at the same position, aligned 

with the sun, at the Perihelion. Starting from that point, as time 
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progresses, the "mean earth" is behind the eccentric earth. Close to 

the Aphelion the "mean earth" leads the eccentric earth and from there 

returning back towards the Perihelion, the eccentric earth progresses 

faster. 

There are two angles of interest: OSE and CSE' These angles are 

called respectively eccentric anomaly (TM) and mean anomaly (H). The 

orbital velocities according to Kepler's Second Law are non-uniform but 

vary in a regular fashion (Law of Equal Areas~1609) . The farther the 

earth is from the sun, the more slowly it moves in its orbit. The 

speed of the planet is actually inversely proportional to the square 

distance at the Aphelion and the Perihelion. 

The eccentric earth returns to the Perihelion in an interval 

called the anomalistic year (365.2596 mean solar days), which is 

slightly longer than the time it takes for earth to make one complete 

circuit of its orbit (360 ) relative to the stars (siderial year). 

Earth's siderial year is equal to 365.25634 ephemeric days (or 3.155815 

•10 seconds). This is due to the influence of the planets on the axis 

of the earth's orbit. The mean earth completes its orbit during the 

same period but it travels at a constant angular rate. As a result, 

when both the eccentric and mean earth make a complete revolution 

around the sun, they are again aligned with the sun's position at the 

Perihelion. Since the anomalistic year is 365,2596 days, the mean 

anomaly (M) is: 

M=M0+(360/365.2596 days)-d, (4.2) 
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where 

M 0 = mean anomaly at standard epoch, and 

d = time in days in Universal time since the standard 
epoch. 

An epoch is simply another aspect of time, and it is no more 

than a point of time selected as a fixed reference. It so happens that 

a scholar named Joseph Scaliger in 1582 first conceived the idea and 

proposed the Julian System,. This system takes as the arbitrary initial 

epoch 12:00 UT January 1, <+713 BC. The Julian Date (JD) at this 

instant was by definition zero. It is obvious that such an early 

starting epoch creates large numbers laborious to handle in 

calculations. Various other fundamental epochs have been suggested and 

in many cases the standard epoch is considered to be 12:00 UT, January 

1, 2000 (or indicated as J 2000). Then Equation 4.2 becomes: 

M-357.528+0.985600-d. (4.3) 

Equation (4.3) is equivalent to the "low precision" formulas given in 

Reference [27] and [28] and should be accurate to 0.01 until year 2050. 

The time of a phenomenon in days since 0 January 0 UT, d, is 

calculated from: 



d-N+(6 -\)/24 (morning), or 

d=N+ (29h-\)/24 (evening), 

where 

N - day of the year, and 

A = sun's true longitude, in hours. 

The true longitude, X, is just 

A=TM+j3, (4.6) 

where 

fi= longitude of Perihelion. 

It is desirable lihat we have available an expression to 

calculate the earth-sun distance, since the solar radiation arriving on 

the top of the earth's atmosphere varies with the square of the 

distance to the sun. Reference [29] provides a relation based on the 

mean anomaly (M): 

(4.4) 

(4.5) 

R =1.00014-0.01671-cos(M)-0.00014-cos(2-M). (4.7) 
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The units of R m (the mean distance between the earth and the sun) are 

in astronomical units (AU). The astronomical unit is defined as the 

length of the radius of the unperturbed circular orbit of a body of 

negligible mass (compared to the sun) moving around the sun with a 

sidereal angular velocity of 0.017202098950 radian per day of 86,400 

ephemeris seconds (1AU=1.4959787*10 m). 

4.2 The Celestial Vault 

For many purposes, star positions may be represented by points 

on the surface of an imaginary sphere of arbitrary radius, centered on 

the earth's center. Such a unit sphere is called the Celestial Vault. 

The rotation axis of the earth intersects this sphere at the north and 

south celestial poles. The projection of the earth's equatorial plane 

onto the celestial vault and containing the center, is called the 

celestial equator or the equinoctial (Figure 4.4). The equator's plane 

is perpendicular to the axis of apparent rotation of the celestial 

vault and it is everywhere 90 from both celestial poles. The 

intersection of the great circle of the celestial sphere, in which the 

sun appears to perform its annual movement: (the ecliptic), with the 

celestial equator provides two fixed points on the celestial equator, 

180 apart (since both are great circles). These intersections are the 

equinoctial points (Vernal and Autumnal equinoctial points) or 

equinoxes. The points on the ecliptic that are 90 from the equinoxes 

are the solstitial points or solstices. An alternative term for the 
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Figure 4.4. The Basic Lines and Points of the Celestial Vault 
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Vernal equinox is the First Point of Aries (y) . The great circle 

normal to the celestial equator and passing through the sun, is called 

the hour circle. 

4.2.1 Celestial Coordinate Systems 

The position of the stars on the celestial vault can be defined 

by two perpendicular or curvilinear coordinates. There are four 

available reference planes: 

A. The Ecliptic System, 

B. The Equatorial System, 

C. The Hour Angle System, and 

D. The Horizontal System, 

A. The Ecliptic System. The primary reference plane is the ecliptic 

and the secondary is the ecliptic meridian of Aries (Figure 4.5). The 

direction of the sun, point S, can be defined by the ecliptic latitude 

and-the ecliptic longitude, The ecliptic latitude, |3, is the angular 

distance between the direction of the observer to the sun and the 

ecliptic measured in the ecliptic meridian of S from 0 to 90 . It is 

positive when measured northward and negative southward the complement 

of the true latitude is the true polar distance. The true (or 

ecliptic) longitude, A, is the angle between the ecliptic meridian of 

the sun and that of the equinox measured from the vernal equinox, y, to 

the east, in the ecliptic from 0 to 360 . 
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Figure A.5. The Ecliptic System of Coordinates (|3 and A) 
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B. The Equatorial System. The primary reference plane is the 

celestial equator and the secondary is the plane defined by the NCP and 

SCP on the celestial vault - the equinoctial colure (Figure 4.6). Let 

S be the arbitrary position of the sun on the celestial vault. Its 

direction is given by the declination, 5, and the right ascension, RA. 

The right ascension is the angle between the hour angle of S and the 

equinoctial colure, measured from the vernal equinox, y, to the east in 

h h © o 
the plane of the celestial equator from 0 to 24 or from 0 to 360 . 

C. The Hour Angle System. The primary reference is the celestial 

equator and the secondary is the hour circle containing the observer's 

celestial meridian (Figure 4.7). The direction of the sun, point S, 

can be defined by the hour angle and declination. The hour angle, OJ, 

is the angular distance between the hour circle and the observer's 

meridian. It is positive when measured westward from the observer. 

The declination, 5, is the angular distance from the celestial equator 

to the sun measured on the hour circle. It is taken with a positive 

sign on the northern half of the celestial sphere and with a negative 

sign on the southern half. 

D. The Horizontal System. The primary plane is the celestial 

meridian (Figure 4.8). The direction of the sun, point S, can be 

defined by the elevation and the azimuth. The elevation, a, is the 
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angular distance between the direction of the observer and the sun and 

the celestial horizon measured from 0 to 90 in the plane of the 

vertical circle through the position of the sun. It is considered 

positive above the horizon and with a negative sign below. Its 

compliment is called zenith angle, Q . The azimuth angle, y , is the 

angular distance between the vertical plane of the sun and the 

celestial meridian of the observer measured from the direction of the 

north point to the east in the celestial horizon from 0 to 360 . 

4.2.2 Conversions Between the Equatorial and Ecliptic Systems 

Consider the celestial vault in Figure 4.9 where the equatorial 

and ecliptic systems are shown together. We can note immediately that 

for the north ecliptic pole RA=270 and the longitude of the north 

celestial pole is 90 . The following relations may be obtained by 

applying the laws of sine, cosine and the five elements of spherical 

trigonometry on the spherical triangle (Figure 4.10). The resulting 

sets of equations are [30]: 

cosS'COs (RA)=cos/J-cosX, (4.8) 

sin6=cosj3*sinX*sin€+sin #• cose, (4.9) 

cos5-sin (RA)=cosj3' sinX*cose-sin(3*sin£, (4.10) 

cosjJ-cos\=cos5*cos (RA) , (4.11) 
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Figure 4.9. Relations Between the Equatorial and Ecliptic System 
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sinj3=-cosS- sin(RA) * sine+sin 5-cos€ , and (4.12) 

cos0«sinX=cos 6* sin(RA)•cos£+sin5«sin€. (4.13) 

If the ecliptic parameters ,̂X,j3 are known, then RA is found by 

dividing Equation 4.10 by Equation 4.8, i.e. 

tan(RA) =tanX»cos£-tan/J.sin£/cosX, (4, 14) 

and 5 is given by Equation 4.9. 

If the equatorial parameters RA,5,6 are known, then X is found 

by dividing Equation 4.13 by 4.11, i.e. 

tanX=tan(RA)•cos€+tan fi.sine/cos(RA), (4.15) 

and j3 is given by Equation 4.12. To determine the appropriate quadrant 

of RA or X one can check the corresponding sines and the signs of the 

cos ines. 

4.2.3 Conversions Between the Hour Angle and Equatorial Systems 

For practical calculations the hour angle is more useful than 

the right ascension, since it accounts for the observer's local 
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meridian and changes with the diurnal motion of the rotating earth. 

Both systems though use the equatorial plane as their primary reference 

thus, the declination is a common parameter. 

Let us consider the celestial equator.viewed from the north 

celestial pole. From Figure 4.11 one can identify the Local Sidereal 

Time (LST) defined as the hour angle of the vernal equinox: 

LST^W+RA. (4.16) 

If LST and hour angle parameter, CJ> are known, then RA is found by: 

RA-LST-CJ. (4.17) 

If the equatorial parameter (RA) is known, then CJ is found by: 

W=LST-RA. (4.18) 

4.2.4 Conversions Between the Horizontal and Hour Angles System 

Consider the northern half of the celestial vault as shown i/i 

Figure 4.12. The relations between the parameters of the horizon and 

the hour angle may be derived again by using the astronomic triangle 
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ZNCPS and the bas ic laws of s p h e r i c a l t r igonometry L30J . 

This a n a l y s i s w i l l r e s u l t to the fol lowing t rans format ion 

equat ions app l i ed to Figure 4 . 1 3 : 

s in # 2 - s in7 s =-cos5»s inc j , (4.19) 

cos 6 ~sin5»sin0+cosS •COSGJ«COS0, (4. 20) 

s in^7*cosy = s i n 8 ' c o s 0 - c o s 6*cos u)-s in0 , (.4.21) 

cosd-s ino j ' - s in 02 ' s in-v , (4.22) 

sinfi^cos 6 • sin<J>+sin d • C0S7 * cos0, and (4.23) 

cos 5*COSCJ-COS0 • cos0~sin0 • cos y • s i n 0 . (4. 24) 

where 

<P = astronomical or geographical latitude of a plane on 

the earth's surface, which is the complement of the 

acute angle between the astronomical vertical and 

the earth's axis of rotation, positive (negative) 

in the northern (southern) hemisphere, 

The astronomical vertical (ZN) is a line determined 

by the direction of the local gravitational field. 

If the hour angle parameters oj, 5,0 are known then the azimuth 

angle is found by dividing Equation 4.19 by Equation 4.21, i.e. 

tan0 =~cot 6'sino;/cos0*tanu>sin0, (4. 25) 
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and the zenith angle is given by Equation 4.20. 

If the horizon parameters are available Q , 7Q, 0 then the hour 
Z « 

angle is found by dividing Equation 4.22 by 4.24, i.e. 

tanur-tan0 'sir-7 /cos^+tany /sin0, (4.26) 

and the declination is given by Equation 4.23, 

4.3 Algorithm for Calculating the Position of the Sun 

The preceeding discussion should help the reader to understand 

and use the fundamental relations in the FORTRAN subprograms included 

in APPENDIX B. Subroutine HELGO (named after the Greek words 

Heliaci-Gonia, Solar Angle) is primarily based on subprograms written 

at the McDonnell Douglas Corporation [31], to control the tracking of a 

high performance modular dish collector system with an advanced heat 

engine receiver. 

4.3.1 Basic Equations for Calculating the Position of Sun 

The basic equations used in this subroutine (HELGO) are 

essentially the so-called "lower precision" formulae from the 



Almanac for Computers . The incorporation of this subroutine in the 

present analysis was based on the desire to use a simple but accurate 

subroutine to perform the calculations for the position of the sun. 

Some rather interesting refinements are included in HELGO, in 

order to obtain the most accurate results: 

1. A polynomial expression in terms of CL is used for the 

correction for the atmospheric refraction. This correction is 

most valid for low elevations, (X , and is not applied for 

less than 5 . This should amount for nearly all cases of 

practical interest. 

2. An expression for the change in the orbital eccentricity is 

included to refine the value computed for the ecliptic 

longitude. 

3. An expression for the change in obliquity is also included. 

The main part of subroutine HELGO computes the declination, 5 i 

the equation of time, E T, and the distance of sun^earth. Function 

GAST, is a function subprogram that computes the Greenwich Apparent 

Siderial Time accurately using the equation of Equinoxes. Finally, 

Function XJDAY, is a function that computes the Julian date. 

The irregularities in the earth's rate of rotation make 

Universal Time (the local mean time of the prime meridian) unsuitable 

for the comparison of theory with observation. This fact created the 

obvious need to be able to define with precision on a uniform time 

scale the instant of some phenomenon or observation. That was 

previously called an epoch (J 2000). The time interval elapsed between 
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two epochs measured in units of some time scale, is the so called time 

interval and for this system: 

d=JD-TREF, (4.27) 

where 

TREF=245I545, 

or 

d=-5479.5-N+UT/24, (4.28) 

where 

N = number of whole days since 0 UT, 0 January 1985. 

The world is divided into twenty-four zones each having a width 

of 15 degrees (one hour) of longitude, in each of which the same 

standard time is kept. The meridian of Greenwich is taken as the 

reference point and namely zone zero. Zones to be east are numbered 

20NE=~1,-2,-3,... and those to the west Z0NE=1,2,3,... according to 

the number of hours to be added to the local standard time (CVLT). 

Thus, 

UT=CVLT+ZONE. (4.29) 



The STEP site is located west of Greenwich, five zones, which gives the 

Universal Time to be used for the locality as 

UT-CVLT+5 (in hours). (4.30) 

In addition to the above, since 1966, for six months each year 

(from the last Sunday in April to the last Sunday in October) the time 

in each zone is advanced one hour, thus defining the daylight savings 

time (DST). 

To determine 5 and GJ a change should be made from the horizontal 

plane to the equitorial reference system. The calculation of 0J from 

the RA was analyzed in the previous sections of this chapter. As a 

point of caution, one must always make sure that the hour angle is in 

the correct quadrant. To eliminate the- ambiquity of sign or quadrant, 

use of the two argument arctangent function is suggested. Otherwise 

numerous problems would arise and certaintly an error will be 

introduced in the following calculations. Once the value of CJ is 

calculated in degrees, one can easily obtain the apparent solar time 

(AST) 

AST=U>+12f\ (4.31) 
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so at 00=0, AST=12 noon. Similarly the mean solar time (MST) 

MST=LST+ (4.32) 

where 

LST = local standard time, 

<^S| = standard longitude, 75°W, and 

^ = longitude of the locality, 84.7076'w. 

All the necessary parameters to calculate the equation of time 

(ET) are available at thin point. The E T is defined as the difference 

between the apparent and mean solar time: 

ET=AST-MST (in minutes). (4.33) 

The equation of time may also be defined as the quantity which 

must be added to the mean longitude of the sun to give the sun's right 

ascension. What causes the necessity to define the principle of E T is: 

1. The eccentricity of earth's orbit, and 

2. The obliquity of earth's orbit, 

namely 
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ET=E-, (eccentricity)+E2 (obliquity) . (4.34) 

At Greenwich, apparent solar noon varies between 11 44 05' and 

12 14 19 . Maximum contribution from earth's orbital eccentricity is 

approximately eight minutes; from earth's obliquity is approximately 

ten minutes. AST and HST agree four times a year. An approximate 

expression for E T (Watt's equation) is also available 

ET=9.87.sin(2-D)-7.53*cos(D)-1.5.sin(D) (in minutes), (4.35) 

where 

D = 360-{n-81)/364, and 

n • day of the year l<n<365. 

The results are valid for any year reasonably close to the present. 

The apparent solar time, numerically measured by the hour angle 
i _ 

of the sun plus 12 , is no longer of importance in time keeping. In 

the American Ephemeris and the British Astronomical Ephemeris,, since 

1965, the equation of time was eliminated and replaced by the Ephemeris 

Time of transit of the sun, and no reference was any longer made to 

apparent solar time. However, in applications to solar engineering, 

navigation and surveying, there is still need for means to determine 

the hour angle of the sun. In such cases one should recall that AST is 
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a time scale paced according to the apparent sun such that: 

OJ -(AST-12.0)- 15°/hr. (A.36) 

In this time scale CO equals zero when AST equals 12:00 (solar noon) or 

when the apparent sun is due south, 

4.3.2 Results Using Subroutine Helgo 

Subroutine HELGO was developed in order to replace the one used 

in [17], in an attempt to improve the accuracy of the modeling 

procedures. The results from both subroutines were compared against 

the 1983 Nautical Almanac [32] at 12:00 noon local Greenwich time. 

Program TABLE3 utilizes both methods and compares the corresponding 

values with the ones from the Almanac. A commented copy of the program 

is included in APPENDIX B. A part of the results from the above 

comparison, for January 1983, is givsn in Table 4.1. There are three 

groups of results, each including the declination, the hour angle and 

equation of time. The first set of data includes the results from 

subroutine DAILY used in [17], namely the declination by Cooper's 

equation and the equation of time by Watt's method. The second set of 

data includes the results from subroutine HELGO and the last set of 

data is from the Nautical Almanac. Annual results of the comparison of 
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Table 4.1. Daily Values of the Declination, Hour Angle, and Equation 
of Time from Subroutines DAILY, HELGO, and the Nautical 
Almanac for the month of January 1983 

DELTA 
(DEGR-MIN) 

(COOPER) 

DAILY (17) 
OMEGA 

(DEGR-MIN) 
EOT 

(MIN-SEC) 

(WATT) 

23 
•22 
-22 
-22 
-22 
-22 
-22 
-22 
-22 
- 22 
-21 
-21 
- 2 1 
- 2 1 
- 2 1 
-2 1 
- 2 0 
- 2 0 
- 2 0 
- 2 0 
- 2 0 
- 19 
- 19 
- 19 
- 19 
- 19 
- 13 
- 18 
- 18 
- ia 
- 17 

. 7 0 
5 5 . 8 3 
5 0 . 5G 
44 . 88 
s a . ao 
3 2 . 3 1 
2 5 . 42 
18 . 14 
1 0 . 4 5 

2 . 3 3 
5 3 . 91 
4 5 . 0 5 
35 81 
2 6 . 18 
16 . 17 
5.78 

55.02 
43.88 
32. 33 
20.51 
8. 28 

55.69 
42 .75 
29. 46 
15.82 
1 .34 

47 .52 
32 . 86 
17 .88 

2 .57 
46 . 94 

-2 
-2 

-: 
-2 
-2 
-2 
- 2 
-2 
-2 
2 

-2 
-? 
-2 
-2 
-3 
-3 
-3 

-47.82 
-53.67 
-59.48 

5.25 
10.96 
16.61 
22.21 
27.74 
33. 19 
38.58 
43.88 
49. 10 
54.23 
59.28 
4.22 
9.07 
13.81 
18.45 
22.S7 
27.38 
31.68 
35.85 
39.89 
43.81 
47.60 
51. 25 
54. 77 
58. 1 4 
1 . 30 
4 . 46 
7 . 40 

-3 
-3 

-a 
-4 
'4 
-5 
-5 
5 
•€ 
-£ 
-6 
-7 
- / 
-7 
-8 
-8 
-i 
-9 

-9 

-9 

• 10 

• 10 

- 10 
- 10 
- 1 1 

- 1 J 

- 1 1 
- 12 
- 12 
- 12 

1 1.27 
34 69 
57.93 
20.99 
43.84 
6. 46 

28.83 
50. 9 4 
12.77 
34. 3 1 
55.52 

16 . 40 
36.94 
57. iO 
16. 89 
36. 28 
55.25 
13. 79 
31.89 
49. 54 
6.71 

23. 39 
39 58 
55.25 
10.40 
25.01 
39.07 
52 .58 

5 . 5 1 
17 . 86 
2 9 . 62 

HELGO 

DELTA 
(DEGR-MIN) 

OMEGA 
(DEGH-MIN) 

EOT 
(MIN-SEC) 

-23 
-22 
-22 
-22 
-22 
-22 
-22 
-22 
-22 
-2 ' 
-2 1 
-21 
- 2 1 
-21 
-21 
-20 
-20 
-20 
-20 
-20 
-19 

- 19 
-19 
- 19 
- 19 
- 18 
- 18 
- 18 
- IS 
- 17 
- 17 

1 . 6 0 
5 6 . 5 5 
5 i .04 
4 5 . 0 8 
38 .66 
3 1 . 8 0 
2 4 . 4 9 
15 .74 
8 . 5 6 

5 9 . 94 
5 0 . 8 8 
4 1 . 4 1 
3 1 . 5 1 
2 1 . 2 0 
1 0 . 4 8 
5 9 . 3 5 
4 7 . 8 2 
3 5 . 8 9 
2 3 . 5 7 
1 0 . 8 7 
5 7 . 79 
4 4 . 34 
3 0 . 5 2 
16. 34 
1 .80 

46. 92 
31.70 
16. 13 

.24 
44.03 
27.50 

-2 
-2 
- 2 
-? 
-2 
•2 

-2 
-7 
- 2 
- 2 
-a 
-3 

3 
-3 
-3 
-3 
-3 
- 3 

3 

- 5 1 . 4 7 
-58 54 

5 
12 
19 
25 
32 
j a 
45 
51 
57 

3 
s 

5 2 
4 2 
2 1 
89 
-4 6 
9 1 
24 
4 2 
47 
37 
12 

14 .7 1 
2 0 . 15 
2 5 . 4 1 
3 0 . 50 
3 5 . 4 2 
4 0 . 16 
44 . 7 1 
49 . 0 8 
53 
5? 

1 
4 

. 6 
2 5 
0 4 
64 

3 . 0 3 
1 1 
14 
17 
i9 

23 
22 
02 
60 
99 

- 3 
-a 
- 4 
- J 

< 5 

- 5 
• 6 
-6 
- 7 

7 
-7 
a 

" 2 

- S , 

- 9 
3 

- 1 0 
- 10 
- i o 
- i o 
- 1 1 
- 1 1 
- 1 1 
- 1 2 
- 1 2 
- 1 2 
- 12 
- 1 2 
- 13 
- 13 
- 13 

25.86 
54 IS 
22.09 
49.66 
16.83 
43. 57 
9.86 

35.65 
.94 

25.69 
49.88 
13.49 
36.49 
5a.86 
20.58 
4 1.64 
2.01 

2 1 .68 
40.63 
58.85 
16.33 
33.04 
48.99 
4. 16 
18.54 
32. 13 
44.92 
56. 90 
8 .06 
18.4 1 
27.95 

NAUTICAL ALMANAC (32) 
DELTA OMEGA EOT 

(DEG8 MIN) (DEGR MIN) (MIN SEC) 

-23 1.6 359 8.9 -3 24 .0 
-22 56.5 359 1 .9 -3 52.0 
-22 51.0 358 54 . 9 -4 2O.0 
-22 45.0 358 48. 1 -4 47.0 
-22 38.6 358 41.3 -5 14.0 
-22 31.8 358 34.6 -5 41.0 
-22 24.5 358 28.0 -6 7.0 
-22 1 6 7 358 21 .6 e 33.0 
-22 8.5 358 15.2 -6 59.0 
-21 59.9 358 9.0 - 1 23.0 
-21 50.9 358 3.0 --> 48.0 
-21 41.4 357 57. 1 -8 1 1 O 
-21 31.5 357 51.3 -d 34.0 
-2 1 21.2 357 45. 7 -a 57.0 
-21 10.5 357 40. 2 -S 19.0 
-20 59.4 357 35.0 -9 40.0 
-20 47.8 357 29.9 -10 0 
-20 35.9 357 25.0 - 10 20.0 
-20 23.6 357 20- 2 - 10 39.0 
-20 10.9 357 15.7 -IO 57.0 
- 19 57.8 357 11.3 - 1 1 14.0 
-19 44.4 357 7. 1 - 1 1 31.0 
- 19 30.6 357 .3. 2 - 1 1 47.0 
- 19 16.4 356 59. 4 -12 2.0 
- 19 1 .9 356 55.8 - 12 16.0 
- 18 47 .0 356 52.4 - 12 30.0 
- IB 31.8 356 49. 3 - 12 43 0 
- 18 16.2 356 46 3 - 12 55.0 
- ia .3 356 43. 5 - 13 6.0 
- 17 44 . 1 356 4 1.0 - 13 lb . O 
- 17 27.6 356 38 . 6 - 13 25 0 

LTI 
-J 



HELGO and DAILY with the values from the Nautical Almanac are given 

in Table A.2 in terms of maximum error and root mean square error 

(RMS) . 

Table A.2. Comparison of the Error Coefficients Between Subroutines 
HELGO and DAILY 

ERRORS COMPARED TO 1983 NAUTICAL ALMANAC 

VARIABLE HELGO DAILY 
MAXIMUM. RMS MAXIMUM RMS 

5 

E 

0.006° 0.002 1.196° 0.5A8 

0.057 min 0.028 1.581 min 0.634 

The annual results for the declination calculated by the two 

subroutines are compared with the values from the Almanac in Figure 

4.14. The error using HELGO is: 

e7=5-5h , (4.37) 

where 

5= declination value from Almanac, and 

Or= declination predicted by HELGO. 



OJOO 4QJM aouoo 12O0Q T6O00 20O00 24QJOQ 
DAY OF THE YEAR 

280.00 32000 38O00 4OOJ0O 

Figure 4 . 1 4 . Comparison of the Ca lcu la t ed Annual Values of 
D e c l i n a t i o n , from Subrout ines HELGQ ( d i s t o r t e d 
curve) , DAILY (curve i d e n t i f i e d with "o") with 

1983 Naut ica l Almanac ( s o l i d smooth curve) 
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The error using DAILY is 

e2=5-6c, (4.38) 

where 

6 = declination value from Almanac, and 

declination predicted by Coopers 

formula. 

The Almanac declination is plotted in Figure A.14. To illustrate the 

annual pattern, the subroutine results are plotted with the errors 

exagurated, so that the plotted values are as follow: 

1. to illustrate HELGO such that 

51=5-1000*61 , and 

2. to illustrate DAILY such that 

52=5 -l0-e2 . 

It was necessary to exagerate the error using HELGO by a factor 

of 1000 to make it distiaguishable from the Almanac values. Results 

from DAILY were exaggerated by only a factor of 10 to be 

distinguishable. Also note that results from DAILY are uniformly low, 
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whereas results from HELGO are slightly above and below the Almanac 

results. 

Figure 4.14 indicates that for the month of March for example 

(between the 59 and 9C day of the year) declination by HELGO is 

higher than the value calculated by DAILY. Then, the azimuth angle 

would be lower or cos 67 would have a higher value for HELGO (than 

DAILY). This would affect the calculated value of I 0 (increase) and as 

a consequence the clearness index would decrease. Such behavior was 

observed when the data were plotted for both cases and cross compared. 

The data points were shifted to the left (towards lower k T values on 

the plots of k T versus T^) when subroutine HELGO was used. 

In addition to the improvement of the calculation of the 

declination, hour angle and equation of time, the mean distance of 

sun-earth, Rm, in (AU) can be an additional advantage. For 1983 the 

daily values of Rm were calculated, with the following characteristic 

values: 

(Rm)min = 0.983290 AU on (January 3, 1983), and (4.39) 

(Rm)max - 1.01699 AU on (July 6, 1983). (4.40) 

The variation of the sun-earth distance, +1.685%, is due to the 

eccentricity of the earth's orbit around the sun, as it was previously 

discussed. The principal result is a +3.4% variation in the amount: of 

extratterestrial radiation reaching the earth, 



The results from the comparison with the precise values from the 

Nautical Almanac are substantial evidence that allow us to conclude 

that subroutine HELGO produces extremely small error and for 

engineering applications should be prefered and can be used with 

confidence. For this study, the three main improvements, namely in 

declination, equation of time and the mean sun-earth distance, along 

with a very accurate latitude and longitude for the site, allow more 

accurate calculations of extraterrestrial radiation values. 

For each hour it is possible to calculate the extraterrestrial 

normal irradiation as follows: 

Ion=Gsc-(l/Rm)-At, (4.41) 

where 

Gsc • solar constant, 1367 W/m2 , 

Rm - mean sun-earth distance, R/Rave, 

R = prevailing sun-earth distance, 

Rave = average sun-earth distance, and 

At = time interval, 1.0 hour, 

One should note the value of the solar constant (1367 W/m2) 

used in this work. Several publications are available in the 

literature about the seasonal variation of the solar constant but there 

is still disagreement between researchers on its absolute value [35]. 
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Since though, the radiometers used at Shenandoah STEP site are 

traceable to the WRR, it was decided for consistency to employ the 

solar constant of 1367 W/m2 adopted by the World Meteorological 

Organization (WMO). In the present analysis the solar constant is only 

a normalizing factor, and the model depends only on surface 

observations. The actual value of the solar constant is not 

fundamentally important, and the adopted value should be continued to 

be used in applying this model. 

The extraterrestrial horizontal irradiation was calculated 

according to the formula: 

IQ= (12/TT) ' Gsc -(Rave/R) • {cos (j) cos 5 (sintO.jsinCO,) 

+ (00-0*) sin0sin51, (A. 42) 

where 

(p = latitude of the locality, 

0 - solar declination, and 

CJ2, 0)-,= hour angle at start, end of hour. 

Thus, an easy to use subroutine (HELGO) is now available, for 

calculating the position of the sun and can be used in the modeling 

process to calculate more accurately the desired radiation parameters. 

In Equations (4,41) and (4.42) the earth-sun distance, the 

declination, and the equation of time used to compute the hour angles 



were computed at the middle of each hour (in [17] the calculations are 

made at the beginning of each day). In APPENDIX B a commented program 

called CKTTB2 is presented, that illustrates the use of subroutine 

HELGO. CKTTB2 is used to recalculate the k T and ^b val ues at the 

midpoint of the hourly intervals, using only the radiation data from 

the 5-Year data base. This program is more accurate and is much 

simpler in organization than the one used in [17], although the basic 

equations are the same. For example, the solar constant was used as 

1377 W/m2 and the values for Longitude and Latitude were not that 

accurate. Again in CKTTB2 the calculations (for Rm, to , E-) are 

performed at the beginning of each day, for comparison reasons. The 

results from the calculations showed that one can use CKTTB2 to 

reproduce the values of k- and '"E'b (the maximum difference was 0.37., 

which can be attributed to round off error). 

Once the results from CKTTB2 were verified, CKTTB1 was 

developed, with the only difference being that it performs the 

calculations (through HELGO) at the middle of each hourly period. As a 

result, a simple and accurate way for calculating k T and t^ is now 

available. Realizing that CO and 5 do not change substantially during 

the day, a difference of about 1.1% was noticed in comparison to the 

results obtained in [17] (or in other words 1.1% improvement in the 

accuracy of the calcualted values). 

The 5-Year data was sorted based on the k T value calculated by 

CKTTB1 in order to reach its final form. There were actually two 

programs, LSMAIN6 and LSMAIN7 (APPENDIX B), which performed the sorting 

of the data. This was necessary due to the use of large numbers of 
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arrays. LSMAIN7, sorts the date data values for each hourly period and 

the value of the old kT. Similarly, LSMAIN6 sorts the remaining data. 

Combining the two outputs, one has the final form of the 5-Year data 

(8112 cases, listed in ascending order based on kT) which can be used 

in all the following calculations. Note that LSMAIN7 precedes LSMAIN6 

in the executing procedure since one would like to keep the permutation 

vector developed after the first sorting in order to make sure that the 

same one is used for the sorting of the second group of data. The 

sorting subroutines are implemented through subroutines VSRTP and VSRTU 

(APPENDIX B) from the IMSL Library [36]. 

One can compare the present subroutine (HELGO) with the earlier 

one (DAILY [17]) by developing the corresponding models, based on the 

5-Year data, as indicated in Figure 4.15. The line with the crosses 

indicates that subroutine DAILY was used, while the squares indicate 

subroutine HELGO was incorporated in the modeling analysis. The shift 

to the left and upwards (lower kT, higherTb) is obvious for the square 

line (the situation was previously discussed). 
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0.00 

Figure A.15. Comparison of the Model Prodused Using Subroutine HELGO 
(curve identified with rhombi) With the One Using DAILY 
(curve identified with crosses) 
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CHAPTER V 

STATISTICAL ANALYSIS 

A 5-Year data base was previously developed. From these hourly 

data, k T and tT^ can be easily calculated following the procedures 

indicated in the previous chapters. Processing of these data is done 

in a Similar fashion as the annual data. Thus, the 5-Year model can be 

obtained . In this chapter, the available models will be compared, on 

a statistical, to determine the best model for the Shenandoah data. 

5.1 Annual and Five~Year Models 

The available data for the 5-Year model are data that have 

passed all previous tests and contain only hourly observed data. The 

5-Year model was prepared by performing homogeneous least square fits 

for each band of data. For consistency the same bands were selected as 

were used by Randall and Whitson. The coefficients for the piecewise 

linear function T^=A ̂ ^T+B*v are shown in Table 5,1 according to [33]:: 



Table 5.1 Coefficients for the Piecewise 

Linear Function t̂ =A-tkT+B-L 

INTERVAL FOR A; B', 

KT 

0.00-0.05 0.04 0.00 

0.05 - 0.15 0.01 0.002 

0.15 - 0.25 0.06 -0.006 

0.25 - 0.35 0.32 -0.071 

0.35 - 0.45 0.82 -0.246 

0.45 - 0.55 1.56 -0.579 

0.55 - 0.65 1.69 -0.651 

0.65 - 0.75 1.49 -0.521 

0.75 - 0.85 0.27 0.395 
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The initial screening already excluded data with very low 

clearness indices (kT<0.05). Thus, the regression analysis was 

conducted for the eight remaining bands in sequence. For each band the 

regression model which assures simple continuity is: 

where 

x0'L - lower limit of bound î -

y0*L = regression model at Xo'i , 

/3' L = regression coefficient, and 

£j = residual error for data (KT]"'^})* 

Each individual year as well as the aggregate 5-Year set was 

analyzed separately. Reference [17] suggests that the best model for 

the Shenandoah data is the piecewise continous linear regression. Its 

continuous format provides for an easy-to-use model which makes it the 

most attractive. Let us look at Table 5.2 where the annual results for 

1980 are tabulated, comparing different types of models. 

The Randall-Whitson model produces the largest sum of square 

errors (SSE). This represents the accuracy with which the 

Randall-Whitson model describes the data and is the value with which to 

compare the other regression results,, The piecewise linear regression 

produces the smallest SSE, which makes it attractive from a statistical 



Table 5.2 Model Comparison 

TYPE OF MODEL SUM OF SQUARE ERROR 

Randal1-Whitson, Piecewise 15.76 

Continuous Linear Equations 

Piecewise Linear Regressions 13.67 

Piecewise Continuous Linear Regressions 13.73 

Polynomial Regression 2nd Degree 13.81 

Polynomial Regression 3rd Degree 13.76 

Polynomial Regression 4th Degree 13.76 



71 

standpoint. The slope discontinuities of this model have no physical 

basis, and therefore, this model can not be recommended. The 

polynomial regressions produce higher SSE values and they would tend to 

over predict the beam normal fraction at high clearness indices. 

Similar observations were made for the other four annual models and 

5-Year model. 

The obvious choice for the Shenandoah model, that is the set of 

piecewise continuous linear regressions, was verified. The 

coefficients for all annual models and the 5-Year model, can be found 

in Table 5.3. Scatter plots for each year and the combined 5-Years are 

shown in Figures 5.1 through 5.6, with the resulting regression models 

superimposed along with the Randal1-Whitson model (solid line). An 

extra plot, Figure 5.7, is included for the 5~Year case, without the 

data, in order to assist the reader in distinguishing the corresponding 

model and Randal1-Whitson model. 

Several observations are pertinent relative to the annual models 

and the 5-Year model. All six models are qualitatively similar with 

one exception. The 1984 model has an anomalous coefficient, actually 

zero, in the highest band. This seems to represent a seasonal effect 

since no data were collected due to operational problems during the 

winter and early spring. These seasons account for essentially all of 

the clearest weather experienced in northern Georgia. At Lhese times 

cold, dry continental air masses penetrate this transitional region 

which is otherwise most strongly influenced by neighboring tropical 

maritime air masses originating over the mid-Atlantic and the Gulf of 

Mexico. In the absence of these clear weather patterns a very few 



Table 5.3. Annual and Five-Year Regression Coefficients for Shenandoah STEP 

INTERVALS OF 

CLEARNESS INDEX 

1979 

tCt ) 

1980 

(8D 

1981 

<6l> 

1983 1984 

{ & } 

5 -YEAR 

0 . 0 0 < k < 0 . 0 5 O . 0 0 0 0 0.OOOO O.OOOO O.OOOO 0.OOOO 0.OOOO 

0 . 0 5 < k < 0 . 1 5 O.OOOO 0 . 0 0 0 4 0 . 0 O 3 2 O.OOOO O.OOOO 0 . 0 0 0 7 

0 . 1 5 < k < 0 . 2 5 0 . 0 1 6 8 0 . 0 3 17 0 . 0 5 1t 0 . 0 3 0 1 0 . 0 3 1 0 0 . 0 2 9 7 

0 .25<-k < 0 . 3 5 0 . 2 5 6 4 0 . 2 3 3 7 0 . 2 5 9 1 0 . 2 8 7 9 0 . 1 7 3 3 O . 2 4 9 0 

0 . 3 5 < k < 0 . 4 5 0 . 8 5 6 2 O . 8 7 9 6 0 . 8 8 5 1 1 . 0 7 13 1 . 174 0 . 9 4 6 6 

0 . 4 5 < k < 0 . 5 5 1 . 3 5 : 1 1 . 3 4 7 3 1 . 6 4 3 0 1 . 5 6 0 : 1 . 5 1 1 1 1 . 4 7 7 2 

0 . 5 5 < k < 0 . 6 5 1 . 8 0 8 4 1 . 3 3 1 4 1 . 5 2 5 3 1 . 4 9 5 9 1 . 6 3 9 3 1 . 5 6 8 0 

0 . 6 5 < k < 0 . 7 5 2 . 0 1 7 4 2 . 1 2 1 4 2 . 3 5 2 7 2 . 0 0 5 9 1 . 9 3 2 5 2 . 0 7 7 3 

0 . 7 5<k < 0 . 8 5 1 . 4 4 7 8 2 . 2 6 6 4 1 .3337 0 . 8 4 3 9 0.OOOO 1 .3771 

"VJ 

ro 
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5.1. Scatter Plot of and Piecewise Regression on Shenandoan 
STEP Data for 1979. The Randall-Whitson Model is shown 
by the Plain Line 
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Figure 5.2. Scatter Plot of and Piecewise Regression on Shenandoah 
STEP Data for 1980. The Randall-Whitson Model is shown 
by the Plain Line 
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by the Plain Line 
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Figure 5.7. The 5-Year Shenandoah STEP Regression Model Compared 
With the Randall-Whitson Model (plain line) 



spurious outliers, dominate the regression. 

There is an obvious contrasting behaviour of the models at high 

clearness indices. The anomalous character of the regression for 1984 

demonstrates two possible explanations. The entire regression for 

kT>0.75 is determined by only nine data, one of which is a possible 

spurious outlier. Our 1984 data is truncated because no winter data is 

included. This sparcity of clear sky data makes our 1984 model the 

least reliable of all tested, much less reliable than even the 

Randall-Whitson model. 

Several of the data sets employed by Randal1-Whitson (e.g. 

Raleigh, North Carolina Fort Hood, Texas and Maynard, Massachusetts) 

seem similarly depleted. Additionally, the two data sets available to 

Randall-Whitson with the largest number of clear sky data (both for 

Albuquerque, New Mexico) were deemed by them, less reliable and only 

"limited use" of these data were made in their model development. The 

limited data for clearest skies are reason enough to question such 

data. Additionally, the possibility that an outlier (an exceptional or 

spurious datum) could overly influence the data is enhacec. when only a 

few data are available. Again, at least two of their data sets 

(Raleigh, North Carolina and Fort Hood, Texas) include many outliers, 

some of which, based on our experience, might be identifiable as 

spurious on closer examination. 



81 

5.2 Monthly Models 

The data are grouped in such a way that would be easy to further 

examine them and proceed from the annual models to monthly models. The 

only requirement is to group the 5-Year data (8112 periods) in periods 

that belong to the same month. The monthly data were used to create 

monthly models and plot them against the 5-Year model. The monthly 

model coefficients are listed in Table 5,4 and all 12 plots are 

illustrated in Figures 5.8 to 5.20. The 5-Year model is the solid line 

while the corresponding monthly model is the line identified with 

squares. 

Examining these figures one can see that there is a difference 

in the data distribution during different seasons. The data are 

grouped at higher clearness index values during the winter months, 

compared with the summer months were there is a much more uniform 

distribution. The seasonal dependence is quite obvious. During the 

summer months the corresponding models are below the 5-Year model. As 

we move along towards the winter months the over all slope of the model 

increases, moving closer to the 5-Year model, and during the winter 

months it clearly has higher values. 

The model is very sensitive to outliers, especially at the last 

band where only a few data points exist (i.e. four data points out of 

389, in the case of January). A closer examination of these points, 

presented in Chapter III, determined that some of them were spurious 

outliers and were removed from the 5-Year monthly data. 



T a b l e 5 . 4 . M o n t h l y R e g r e s s i o n C o e f f i c i e n t s f o r S h e n a n d o a h STEP 
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Figure 5.8. Scatter Plot of and Piecewise Regression on Shenandoah 
STEP Data for the Five Year Months of January. The 
Randal1-Whitson Model is Shovm by the Plain-Line 
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Figure 5.9. Scatter Plot of and Piecewise Regression on Shenandoah 
STEP Data for the Five Year Months of February. The 
Randall-Whitson Model is Shown by the Plain-Line 
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Figure 5.10. Scatter Plot of and Piecewise Regression on Shenandoah 
STEP Data for the Five Year Months of March. The 
Randal1-Whitson Model is Shown by the Plain-Line 
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Figure 5.11. Scatter Plot of and Piecewise Regression on Shenandoah 
STEP Data for the Five Year Months of April. The 
Randall-Whitson Model is Shown by the Plain-Line 
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Figure 5.12. Scatter Plot of and Piecewise Regression on Shenandoah 
STEP Data for the Five Year Months of May. The 
Randall-Whitson Model is Shown by the Plain-Line 
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5.13. Scatter Plot of and Piecewise Regression on Shenandoah 
STEP Data for the Five Year Months of June. The 
Randall-Whits on Model is Shown by the Plain-Line 
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Figure 5.14. Scatter Plot of and Piecewise Regression on Shenandoah 
STEP Data for the Five Year Months of July. The 
Randal1-Whitson Model is Shown by the Plain-Line 



9U 

UG 5' 

1.00 

Figure 5.15. Scatter Plot of and Piecewise Regression on Shenandoah 
STEP Data for the Five Year Months of August:. The 
Randall-Whitson Model is Shown by the Plain-Line 
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Figure 5.16. Scatter Plot of and Piecewise Regression on Shenandoah 
STEP Data for the Five Year Months of September. The 
Randall-Whitson Model is Shown by the Plain-Line 
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Figure 5.17. Scatter Plot of and Piecewise Regression on Shenandoah 
STEP Data for the Five Year Months of Octomber. The 
Randal1-Whitson Model is Shown by the Plain-Line 
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Figure 5.18. Scatter Plot of and Piecewise Regression on Shenandoah 
STEP Data for the Five Year Months of November. The 
Randall-Whitson Model is Shown by the Plain-Line 



o 
DO 

d 

5.19. Scatter Plot of and Piecewise Regression on Shenandoah 
STEP Data for the Five Year Months of December. The 
Randal1-Whitson Model is Shown by the Plain-Line 



95 

The identified spurious point in January was the only one, in 

the last band, but certainly for the other months there are some more 

suspicious outliers. These points (identified with a circle) were not 

taken off due to lack of justification; there was not any indication of 

instrument malfunction of any type, in order to prove the measured 

data, eroneous. 

The seasonal dependence is currently under an extensive 

investigation. From the preliminary results, one can conclude that the 

model tends to underpredict the beam normal irradiation during the 

winter months and overpredict it during the summer months, which 

supports the model's seasonal dependence, This seasonal dependence 

though, averages out when considering the whole year. 

5.3 Regression Analysis 

Statistics may be regarded as the study of populations. The 

initial meaning of populations referred to human beings. It is evident 

though, that if a measurement is to be repeated for a large number of 

times, the aggregate of the results is a population of measurements. 

For our purposes we are considering a population that cosists of two 

variables: clearness index kT, and beam transmittance 'fv, . The 

populations which are the object of any statistical study, always 

display variation in one or more respects. Their distribution, though 

generally tends to the normal form as the size of the population is 

increased. For this study we have a very high number of measurements 



and it is reasonable to assume that such statistics are normally 

distributed and limit consideration of their variability to 

calculations of the standard error (the theory of large samples [34]). 

Various data distribution plots were previously presented (kT versus 

T b) as scatter diagrams. Each dot represents a pair of observations. 

These diagrams usually suggest whether or not any significant 

correlation exists between the variables and in general, how good the 

model represents the data. It is not possible, though, to determine by 

inspection which one of the annual models, the 5-Year model or the 

Randall-Whitson is the best for the corresponding data base. The 

following analysis will provide the necessary tools to accomplish the 

task of determining a way to compare these models and justify the 

general acceptance of one of them, if possible. 

5.3.1 Statistical Procedures 

To determine how well a linear model can explain a relationship 

between two variables, kT and T^, in a case of scatter data, we have to 

use what is called "measures of correlation". The least square line 

approximating the set of points (x ,y ) i=l,2,..„,n has the equation: 

y=a Q+a rx, (5.2) 

where 

x = independent variable, k 



^7 

y - dependent variable, T̂ ,, and 

aQ, a1 • constants to be determined. 

For this statistical analysis, the International Mathematical and 

Statistical Libraries [36] will be used, to determine constants a 0 and 

• f 

Program TBREG5, included in APPENDIX C, was developed to perform 

the statistical analysis. It is a compact program that actually 

summarizes a lot of the previously presented analysis. TUREG5 can be 

used with the 5-Year data base, to produce the annual models as well as 

the 5-Year model. In the form of a subroutine, SUBI in APPENDIX C, it 

can be used to recalculate the kT and Tfafrom the radiation data. There 

is an option if one prefers to perform the calculations at the 

mid-period (using SUBI) or at the beginning of each day. It can 

provide the slopes of the linear regression models, create the 

corresponding plots and perform the statistical analysis by comparing 

the 5-Year models with any annual or the Randal1-Whitson model. 

A summary of the most important statistical parameters is 

presented. The total sum of squares error (SUME2) Ls calculated as the 

summation of all the sum of square errors for each band (SSE1, 

SSE2,...., SSE8). These sums were calculated using subroutine RLONE 

from [36]. 

The total variation cf y, Syy, is a measure of the scatter in 

the data, and is defined as [37] : 



n 
Syy=I( y i -yV =SS R+SS E, (5 , 3) 

1=1 

where 

n - ^2 
SSc • unexplained variation, E(yi~y^) and mea-u — s 

the residual variation left unexplained b*" the 

regression line, 

n A _ 2 
SS p • explained variation, X (y-, ~y ) and measures the 

" » = l L 

amount of variability in the y-L accounted by 

the regression line, 
/s 

y = estimated regression model, and 

y = (l/n)£yi. 

The development of equation (5.3) is presented in APPENDIX C. 

In order judge the adequacy of a regression model, a quantity 

called the coefficient of determination ( r 2 ) , can be of help. It is 

defined as the ratio of the explained variation to the total variation: 

r 2=SS R/Syy=l-(SS E/Syy). (5.4) 

The coefficient of determination is a measure of how much of the 

variation in the beam transmittance is accounted for by the piecewise 

linear dependence on kT, established in the regression analysis. In 

the case that we have Syy=SSp or the total variation of (y) to equal 



the explained variation, then the coefficient of determination equals 

one (perfect positive relationship between the two variables). On the 

other hand, if the total variation of (y; equals the unexplained 

variation, then the r2 equals zero (no relationship between the two 

variables). Clearly 0<r2<L. 

Caution is advised, though, regarding the use of the statistic 

r2. It is possible to make r2 equal to unity, that is 100 percent of 

the variability in the data will be accounted for by the model, by 

simply adding enough terms to the model. That would result to the 

misleading conclusion that the fit of the data to the model is 

"perfect". The r2 statistic must be used with caution when comparing 

the results obtained from analyses of different models. 

It is convenient that we have chosen the case with a linear 

relationship between a dependent and an independent variable, so that 

one can be concerned with the linear regression of T b on kT. Thus, in 

this case that the variables are linearly related, the correlation 

coefficient is a measure of the degree of relationship present. The 

correlation coefficient may be defined as : 

r-iVsVSyy"^- <5-5> 

The ratio of the explained variation to the total variation (or 

the coefficient of determination) is always positive, while the 

correlation of coefficient lies between -l<r<l. The sign of r is the 



same as the sign of slope in the regression equation. It follows that, 

a value of r=0, would mean no linear relationship between k T and ^b • 

If the value is nonzero then that means that a large number of kT 

values tends to be associated with a large number oi t± values. The 

results of the analysis for all six models are listed in Table 5.5. 

For all the years there is a positive relationship between k-r and 'Z'b 

but it is not perfect. The correlation coefficient for 1984 is 0.9222 

which is related to the scatter of the plotted points about the line 

representing their trend (Figure 5.5). 

The next step in our analysis is to determine the significance 

of the difference observed between the 5-Year and annual models, and 

between the 5-Year and the Randall-Whitson model. All previously 

developed parameters will be used to test whether the 5~Year continuous 

linear model can adequately describe the annual models. For this work 

the null hypothesis is that the Randall-Whitson model or an annual 

model is tenable. The alternative hypothesis is that the 5-Year model 

is more tenable based on the 5-Year data base. 

The most appropriate test statistic for comparing regression 

lines is the Fisher F-statistic, which is computed according to the 

formula [38]: 

F- f (RSSNH-RSSAJ / (dfNH-d£AH) i / (RSSAH/dfAH) , (5.6) 

where 



Table 5.5 Model Coefficients of Determination and Correlation 

MODEL COEFFICIENT OF COEFFICIENT OF 

DETERMINATION CORRELATION 

(r2) (r) 

1979 0.9070 0.9524 

1980 0.8933 0.9451 

1981 0.8823 Q.93S3 

1983 0.9116 0.9548 

1984 0.8504 0.9222 

5-YEAR 0.8865 0.9415 
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RSSM = unexplained variation for the hypothesized model 

(i.e. an annual model or the Randal1-Whitson), 

RSSA , = unexplained variation for the alternative model 
AH 

(i.e. the five-year model), 

df • degrees of freedom for the hypothesized model, n, 
N H 

df = degrees of freedom for the alternative model n~p, 
r\ n 

n = total number of observations for the five-years, 

8112, and 

p = numbtir of parame ters {#1} , 8. 

The F statistic gives evidence against the null hypotheses if the value 

of F calculated by Equation 5.4 is large when compared to the 

percentage points of F(dfN|_-dfAH, dfAH) . For example, F(S,°o)=2.64 with 

a confidence of 0.09. Then the model provided by the null hypotheses 

is not as good as the one provided by the alternative hypothesis. On 

the other hand, if the model is adequate when compared to the general 

model F will be small, 

5.3.2 Results from Statistical Analysis 

Results from the analysis of variation are given in Table 5.6. 

The 5-Year model has the lowest RSS since its parameters were 

calculated to minimize the residual error, The annual models were 

computed from a subset of data while the Randal1-Whitson model is 
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Table 5,6 Model Comparison Based on the Residual Regression, 
F-Statistic, and Probability Values 

Model RSS F P(Z<F) 

1979 48.40 20.000 1.00 

1980 54.84 157.454 1.00 

1981 49.49 43.325 1.00 

1983 49.12 35.392 1.00 

1984 49.83 50.410 1.00 

R-W 50.26 59.601 1.00 

5-YEAR 47.46 0.000 0.00 



independent of this data so their RSS's are higher. A higher value of 

the F-statistic tends to support the 5-Year model as a better 

alternative to the hypothesized less inclusive models. As can be seen 

from the table the f-statistics for every hypothesized model is quite 

large. Consequently, one would tend to reject all of these in favor of 

the 5-Year model. 

Also shown in Table 5.6 are the probabilities P(Z<F) that a 

random variable Z would have a value less than the computed value of F. 

Again, all the hypothesized models have P=1.0. The literal 

interpretation is that there is essentially no chance that a long-

period would have the same regression model as any of the short-period, 

annual models or as the Randall~Whitson model. As a practical matter 

the F distribution should not be trusted implicitly in this 

application. The F distribution assumes that the errors in Equation 

(5.1) are randomly distributed about the regression line with uniform, 

although unknown, variance [38] . 

Observation of the scatter plot, Figure 5.6, for the 5-Year set 

reveals that while the distribution does have a random appearance at 

any given kT the variance is by no means constant. It is obvious that 

the variance is small both for large k T (>c.0.75) and small kT 

(<c.0.4). In contrast, the variance as manifested by the breadth of 

the scatter plot is lsrge for indermediate clearness indices. 

Nevertheless, the high probabilities that an adequate model would have 

lower RSS than the observed for the limited models is convincing 

evidence that all, including the Randall~Whitson model, should be 

rejected in favor of the new 5-Year model. 



As a practical matter, however, inspection of Figure 5.7, shows 

that the Randall-Whitson model hardly differs from the 5-Year model 

except in the highest kT band (0.75<kT<0.85). Otherwise the 

correlations are nearly identical. Even at kT=0.75 the models differ 

by only 5.1 percentage points. One can conclude on the basis of the 

STEP data that the Randall-Whitson model is a tenable correlation for 

kT<0.65. For higher clearness indices the 5-Year correlation is 

preferred. 



CHAPTER VI 

MODEL VALIDATION 

6*1 Model Comparison 

The Shenandoah solar radiation models were developed in the 

previous chapters, for determining the amount of beam normal 

irradiation when only the data for global irradiation is present. The 

recommented models were piecewise continuous linear models correlating 

two variables, clearness index and beam normal fraction. The 

Shenandoah model for 1980 was compared with other models, like the 

Randall-Whitson model and the Orgi1l~Hollands, Erbs-Klein-Duffie and 

Spencer transformed diffused fraction models. The transformation used 

was : rb={l-(i0/l).kT}. 

The results, as indicated in Figure 6.1, showed that the 

Shenandoah model follows the other models up to a clearness index of 

about 0.7. After this point the other models tend to drop in slope, 

while the Shenandoah model does not follow that pattern. The bend of 

the other models is due to a lack of data in the high clearness index 

regions. The Shenandoah data included high clearness index values, 

upto 0.82. One can be confident that the Shenandoah model provides 

accurate information at the most important region of high k T values. 
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6.2 Verification of Data Processing Procedures 

An additional check was performed in order to provide an overall 

verification of the data processing procedures used to produce the 

Shenandoah models. This was done by conducting the following numerical 

experiment: create an artificial data base containing a synthesized 

global and beam irradiation with a predefined relationship between t*b 

and kT. If the data processing procedures are working correctly they 

should detect the predefined relationship precisely. 

For this purpose a FORTRAN program was developed to create a 

data base by recalculating the radiation data. The necessary 

information inputs are the coordinates of the site (33.4046 N and 

84.7478° W). The main features of this algorithm are: 

A. Calculate daily sunrise and sunset hour angles, and standard 

time of sunrise and sunset. 

B. Calculate the irradiation values for each period. 

C. Calculate the global irradiation and clearness index for 

each period. 

D. Calculate the beam normal irradiation from (C) using the 

predefined relation between T^ and kT. 

It is important that the calculations are performed between 

sunrise and sunset, in order to obtain meaningful results. Fundamental 

equations are used to calculate the declination, hour angle, equation 

of time and standard time of sunrise and sunset. Declination, 5, is 

given from Cooper's equation (1969): 
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6=23. 45- sin(360 -(284+n)/365), (6.1) 

where 

n - day of the year. 

Duffie and Beckman [26] propose that for the sunset hour angle, 0JCC> 

one can use: 

CJss=-tan0.tan5, (6.2) 

where 

(f> = latitude of the location. 

The sunrise hour angle is simply, 

W s r~« s s. (6.3) 

The equation of time, ET, is given by (Watt, 1978) 

ET=-1A.2.sin((n-7)-0.028303) Kn<106 (6.4) 

Ey=4 sin{(n-106)-0.053247} 107<n<166 (6.5) 



no 

E T —6.5-s in{(n-166) - 0.03927} 

ET=16.4 -s in{(n-247) • 0.027802} 

167<n<246 

247<n 

(6.6) 

(6.7) 

The relation of solar time to standard time can be used to calculate 

the standard time of solar noon [26]: 

STDTSN=12-ET-(STMER-L0NG), (6.8) 

where 

STDTSN • standard time of solar noon, 

STMER = standard meridian for the local time zone, 

75°W, and 

LONG = longitude of the location, 84.7478° W. 

The sunrise (SRTIME) and sunset (SSTIME) standard time are then simply: 

SRTIME-STDTSN-CJ^ and 

SUTIME-STDTSN+Wgg. 

(6.9) 

(6.10) 

The irradiation for each period is the area under the curve 

(shaded area in Figure 6.2), obtained by performing an integration 



between start-end of the period. Let time (t~At) represent the time 

that a period starts and (t) the ending time. The integration limits 

of the first and last period, within the usable part of the day 

(between sunrise-sunset) have to be specified. One can use the sunrise 

time (tsr) to determine the lower integration limit; 

1. If tsr>t then that period is neglected since irradiation 

equals zero. 

2. If tsr<t-At then sunrise occured before the start time of 

the period. Then the lower integration limit, T^ , is set equal 

to the starting time of the period or f^t-vdt. 

3. If t-At<tsr<t then t^tgj- . 

(G) 
Resultant 
frradiance 

%r 
4 ^ ^ • • • - . - . • • - • • - • • • • • • • • • V ' 

t - A t t 
!• I5min—•-4 

(I) 
IRRADIATION-

t - a t t 
H I 5 m i n — i 

Figure 6.2. Daily Irradiation Limits 

A similar analysis should also be performed for the last period: 

1. If t_ <t~At then all the periods after sunset are neglected, 
s s 



since all irradiation equals zero. 

2. If tss>t then the sunset occured after the end of the last 

period. The higher integration limit, t j , is set equal to the 

ending time of the period tjft. 

3. If t-At<tsS
<t then the higher integration limit becomes 

Vt, r 

For all other periods within t sr and tSs, it is obvious that f^t-At 

and t ^ t . The times considered here are the standard times. 

The integration limits, rtL and t%, are now available. At the 

avearge value (Tfave= C^ + 'Ê ) /2) that is at the middle of each period one 

can calculate: 

1. The hour angle, CO negative in the morning, positive in the 

afternoon, 

2. The zenith angle, <L, [26] 

cos02=cos5*cos 0.coscL^-sinCJsin0, (6, 11) 

3. The solar altitude angle,C< , 

<*-9O-0z> (6.12) 



4. The air mass, AM, 
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AM-l/sin(*), (6.13) 

5. The extraterrestrial radiation, GQ(y which remains constant 

during a day [26] , 

Gon=Gsc-(l+0.033.cos(360.n/365)), (6.14) 

where 

Gsc - solar constant,1367 W/m , 

n = day of the year, 

and finally, 

6. The beam normal radiation. For this analysis one can ignore 

atmospheric refraction and then can assume that the air mass 

value is constant, i.e. 

Gbn=Gon exp(-K-AM), (6.15) 

where 

K = extinction coefficient, 0.25. 



The global irradiation (I) can be computed by integrating the 

irradiance (G) with respect to time, between T^ and Tz, namely 

I-\G(T)d*r-\Gbn cos0z(r)dr. (6.16) 

If one assumes no diffuse irradiation (ignoring refraction), then G 

can be brought out of the integral and the global irradiation becomes 

I-GbnAcos(^dT. (6.17) 

Equivalently the integration can be performed between the hour 

angles U?-, and CJ2 for a period. The hour angle tor the low integration 

limit Cx31, is the difference between the starting standard time (Tt) of 

the period of interest and the time of solar noon. The value of OJi is 

negative in the morning and positive in the afternoon. Similarly the 

higher integration limit, CJ2, is the difference between the ending 

standard time C^g) of the period in interest and the solar noon time. 

One can substitute Equation 6.11 in Equation 6.17 to obtain: 

•Tfc 

I=Gbn* Vcos5-cos0-cosa^-sin5.sin0)dr, (6.18) 

t 
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or in terms of integration between LU^ and ^z, 

• U ) 2 

I*Gu Kcosb-cos ^cosuu+sinc sin^>)dui. (6.19) 'bn 

Equation 6.19 yields: 

I=(12/7r)* 3600 *G. n* (coso*-cos <$>.(sinU^-sin4^) + (u)z~ ̂ j) *sinO sir4>) . (6.20) 

The extraterrestrial horizontal irradiation can similarly be defined 

as: 

I0=(12/TT) ' 3 6 0 0 - G Q ^ {cosS-cos4>-(sinUi2-sinwi) + (aJ2-UJi) 'sin£.sin^} . (6.21) 

The extraterrestrial normal irradiation is simply, 

Ion=3600-Gon*(^-^i) . (6.22) 



The clearness index, kT, is defined as the ratio of the global 

irradiation to the extraterrestrial horizontal irradiation, i.e. 

kT=I/l0. (6.23) 

The beam normal transmictance is defined as the ratio of the beam 

normal irradiation to the extraterrestrial normal irradiation 

?b=Ibn/Ion, (6.24) 

or 

W*VW (6.25) 

The test one would like to perform is to define an arbitrary 

relation between kT and T^ and to observe if the output is the same as 

the input relation. Let T^_= (1/2) * kT. Then by substituting in Equation 

6.25 

I. =(l/2).kT-Ion. (6.26) 
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All the desired radiation data needed are now available. An 

artificial data file was created including only the data that are 

necessary and used from the algorithms that is, the time variables, the 

direct beam irradiation and the global irradiation. This file was used 

to test all FORTRAN programs used in this work. The format of the 

artificial data files is shown in Table 6.1. The first group of data 

is part of the artificial Monthly file constructed for this test, and 

below it a group of data from the original Shenandoah data. The odd 

lines provide the year, day of the year, month, day of the month, hour, 

minute and the error flags. For the purposes of this test, the error 

flags were set arbitrarily to zero. The same was done for all other 

instruments in the even lines except the two beam normal and global 

irradiation values. A commented listing of the program called VERIF 

can be found in APPENDIX D. 

The result of the procedures described above is an artificial 

data base covering one year, but with a predefined relationship between 

the beam normal and global irradiation, such that T^=0.5*kj. This data 

base was then analyzed using the same data processing procedures. 

Figure 6.3 shows a plot of kT versus T b as computed from the 

artificial data base using the developed data processing procedures. 

As expected the result is a straight line with a slope of 0.5 and a 

zero intercept. Actually it looks like there is some small dispersion. 

First, consider "the resultant line is not fine but actually includes 

some small dispersion. This arises from two sources. First, the 

created radiation data was formatted in a way such that it would be 

similar to the format of the true data files. By doing so,, a round off 



Table 6.1. Monthly Output Format for January 1, 1980 

BO 

BO 

CO 

1 1 0 30 OOOOOOOOOOPPPOOPOOOOOOOPOPPPPPOO OOOOOOPOPOOOOPPPOPOPOPPOPPOPOPOP 
O O P 0 221. 221. P 123. P O O P O P p 

a6" ' "V i " i »"«$ dbooobboooooooaoooboooob'o'bbbb'abd 6'&boooi6o6ooo666o'o6dbbbo"d'ooooboo*d 
O O O O O 247 247. P 157. O 0 P P P P p 

(10 I 1 1 10 O OOOOPOOOPOOOPOOOOPOOPPOOOOPOOOOO OPPPPOOPOOOPPOPPOPOPPPOOPPOOOOOP 
P P P O O 269. 2 G 9 . O 1B9. P P P O O P P 

80 1 1 1 lO 15 OOOOOOOOOOOOOOOOOOPQOOPOOPOOOOOQ OPOPOOPPPOPOPOOPOPOPOOOOOOOOOPOP 
0 P O P O 288. 208. P 221. O P P O O O P 

00 I t 1 10 30 POOOOOOOOOPPPOPOPOOOOOOOOPOOPPOP OOPPPOPOOPOOOPOOOPOOPPPOPpppOPPO 
P O P P P 3P3. 303. P 251. O P P O P O O T " i t o 4S o o b 6 b b b o ' o b o 6 p p b b b ' o O P b o b b ' 6 6 ' b b b b b ' o " a b o b b b o o o ' b b o o o o ' b o b d b b b o d ' b d b b b b d b 

O P O 3 1 5 . 3 1 5 O 1 7 3 . O O P O O P O 
1 i l l P PPOPOPOPOPOOPOOOOOOOOOOOOOOOOPPO POOOOOOPOOOOPPOPOOOOOOOPOOPOPOOO 

0 O O 3 2 5 . 3 2 5 . O 3 0 3 . O O O O O O O 
fiO 1 1 1 11 I S OOOOPOOPOPOOOOOOOOOOOOPOOOOOOOOO OOOOPOOPPOOOOPPOOOOOOOOPOPOOOOOO 

O O P 0 P 3 3 4 . 3 3 4 . P 3 2 G . P O O P P O P 
1 1 11 3 P OOOOOOOOOOOPPPPPPOOOPOOOOOOOOOOO P O P O O P O O P O P P O P O O P P O P O P O P P P O O P P P O 

O O O O 3 4 1 , 3 4 1 . O 3 4 5 . O 0 P P P O 

eo i 1 9 10 
2 70 16 95 17 
60 1 1 9 45 
280 19 95 17 
CO 1 1 10 0 
260 20 &5 lb 
60 ] L 1 10 15 
2 70 21 95 IS 
60 L 1 10 30 
260 iv ^5 21 
00 L 1 10 45 
270 18 95 22 

eo L 1 11 0 
280 15 94 23 
BO L 1 11 15 
260 IB •34 26 
80 1 1 11 30 
260 1ft 92 29 

OOOOCO0O00OCC0OOC0CCO0CCCOC10COI tCCtCOCilCOOC 00 3 0000 0 0 00 COO 3000 C0 
9915 0 - 1 0 - 1 1 34 36 32 15 32 2 105 2 
UCC0O0030 0000Q0CCC000COC001C0OO 00 OC 0 00 0 000 00 0000000 000 00000 0000 
9EJ.7 0 - 1 0 - 1 1 23 26 22 6 22 3 162 2 
croocoooooooocoooocaoooooooioooo ooooocoocooooooooooooooooooocooo 
9 n 2 0 0 - 1 0 - 1 1 37 39 34 15 35 0 217 3 
C0C0O0 0O00O0 0OOQO0O0O0CCC0 01OCC0 0O0CCCO300000CO0000OD0OC00000000 
9822 0 -10 -11 30 32 ?3 12 27 1 165 4 
c c c c o o o o o o o o o o o r > o e c o o o c c e e o i c c o o QuC jOucoccoojot 'OoooGoooooooooooo 
CF?3 0 -10 -11 43 44 39 ie 39 0 251 6 
00000 009000 00000 0 00000 00000 10000 OOCOOCt 'JGOC000000000000C00 000000 
9e24 0 -10 -1C 46 47 42 20 42 0 258 B 

coocoooooooooooooccooocccooioooo coocooooooococooooooooooooooooco 
9525 0 -10 -11 45 4fc 40 19 41 0 277 8 
C00000O0000O0O0OOO00OOCC0001C000 COGCOC'JOOOCOJOOJGOOOOOOCGGOOCOOO 
9926 0 -9 -1C 99 ^8 63 51 89 0 491 13 
C0OCO000O0OO0000 0CQ0O0CCOO010000 tOOt^O^OCOOCJ0OOCO000 00OCO0OO0C0 
q^25 0 -9 -1C 93 93 92 <• 7 t>3 0 481 16 
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error was introduced, creating some inaccuracies. Secondly, each 

"data" point is actually represented by a sizeable dot. In any case 

the results are satisfactory and sufficient to support confidence in 

the conclusion that the dara processing procedures operate correctly. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

The main goal of this work has been the development of an 

improved model for estimating the amount of beam normal irradiation 

when only global irradiation data is available. In Chapter V it was 

shown that a 5-Year model, based on all of the available data from the 

Shenandoah STEP, is clearly preferable to any annual model from a 

constituant year. The resulting model is shown to be similar to the 

well-known Randall-Whitson model except in the highest range of 

clearness indices. The evidence previously presented tends to support 

a preference for the new model in the region of disagreement. One 

should note that the highest clearness index in the data base is 0.82, 

and therefore under no circumstances would it be appropriate to 

extrapolate the results beyond this value. The 5-Year model reported 

in this work may be preferred for all similar sites. 

Many of the comparisons in this work were based on detailed 

statistical analyses of the Shenandoah STEP data base. An analysis 

similar to the one used for the 5-Year can be used to compare the 

monthly models presented in Chapter V as well. Algorithm TBREG5 can 

easily be extented and be used for a seasonal analysis. 



Statistics can be a powerful tool, but the user must be 

extremely careful because it is easy to find accidental correlations in 

data as diverse and varied as meteorological records. Adherence to 

critical standards in handling statistical data could avoid some of the 

confusion that has often characterized research in this area. These 

standards should include the following: 

1. Understanding the properties of the data: errors, biases, 

scatter, autocorrelation, spatial coherence, frequency 

distribution, and stationarity, 

2. Choosing statistical methods appropriate both to properties of 

the data and the purpose of the analysis, 

3. Critically examining the statistical significance of the 

results and making proper allowance for spatial coherence, 

autocorrelations and smoothing and data selection, and 

4. Testing the result on one or more independent data sets, or 

subsets, of the original data. 

While the coefficient of determination for the proposed model is 

high (897.) , there is eviderxe of considerable seasonal influence. The 

model could likely be improved either by including the effect of 

atmospheric conditions (e.g. relative or specific humidity, turbidity) 

or by disaggregating the data to support seasonal models. One should 

also consider the investigation of the air-mass dependence and the 

development of a model using 15 minute data. 

An interesting point is to investigate the effect, if any, that 

the eruption of El Chicon in 1982, could have had on the presented 
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correlations, based on the collected data at the Shenandoah STEP site. 

Additionally, the recent strong El Nino events in the Pacific [43] 

should also be of interest. In general, El Nino events are known to 

produce major changes on the climate, since it is now recognized as 

part of a global pattern of anomalies in the atmosphere. The fact that 

the 1982 - 1983 El Nino is considered as being the strongest in the 

century, could have very well effected the Shenandoah data and thus the 

developed model between Fall 1982 and Fall 1983. Studies that have 

already been conducted on the subject [44], conclude that the 

combination of El Chichon and El Nino created substantial climatic 

disturbances,&that in fact do produse a small change in the global 

correlations. 

One could investigate the correlation of ("O versus (k_) 

resulted, by using the Shenandoah data broken into optimally adjusted 

number of linear bands (for different kT values). This is believed to 

produce a better fit model. Calculations should be performed for each 

year and the entire 5-Year sample, in a similar fashion as this 

concluded analysis. 

Finally, as an alternate method that one can investigate, is a 

non-parametric statistical analysis, such as a cumulative distribution 

and a random number generator. This is an attempt to actually account 

for the dispersion of the data and produce a more realistic model. 



APPENDIX A 

CREATE3 : Program to Complete the Monthly Data Files 
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PROGRAM CREATE3(INPUT,OUTPUT,TAPE10,TAPE6=OUTPUT,TAPE5 = INPUT, 
&TAPE3) 

C 
C 
C C. BALARAS 12-20-8A 
C 
C...THIS PROGRAM READS THE Q-FILE, LOCATES THE MISSING DAYS 
C OR PERIODS FOR THE MONTH AND SUBSTITUTES THEM WITH DUMMY 
C VARIABLES. A NEW Q-FILE WILL BE CREATED, INCLUDING ALL 
C 96 PERIODS FOR EVERY DAY OF THE MONTH. 
C FOR EACH PARTICULAR MONTH HAVE TO ACCOUNT FOR THE NUMBER 
C OF DAYS (THE MONTH-LENGTH 31-28-31-30-31-30-31-31-30-31-30-31). 
C 
C...DECLARATIONS 

INTEGER JDAYC,DAYC,HRC,MINC,DAY,HR,MIN,MODAY,YR,JDAY,MONTH, 
&FLAG1,FLAG2,FLAG3,FLAGA,FLAGS,FLAG6,Al,A2,A3,AA,A5,A6, 
&A7,A8,A9,AlO,All,Al2,Al3,AlA,Al5,Al6,DAYF,HRF,MINF,LEAP 

C 
C 
C...DEFINITIONS 
C JDAYC 
C DAYC 
C HRC 
C MINC 
C JDAY 
C DAY 
C HR 
C MIN 
C MODAY 
C DAYF 
C HRF 

JULIAN DAY COUNTER 
DAYLY COUNTER 
HOURLY COUNTER 
MINUTE COUNTER 
JULIAN DAY 
DAY OF THE MONTH 
HOUR IN THE DAY 
MINUTES IN THE HOUR FOR EVERY PERIOD 
THE LAST DAY OF EACH MONTH 
LAST RECORDED DAY IN THE MONTH QFILE 
LAST RECORDED HOUR IN THE MONTH QFILE 

MINF : LAST RECORDED MINUTE IN THE MONTH QFILE 
C 
C...INITIALIZE VARIABLES AND SET COUNTERS 

DAYC-1 
HRC=0 
MINC=15 
LEAP=0 
WRITE(6,*) "INPUT NUMBER OF DAYS IN MONTH' 
READ(5,*) MODAY 
WRITE (6,*) 'THE LAST PERIOD OF THE MONTH:DAY,HR,MIN' 
READ(5,*) DAYF,HRF,MINF 

C...READ THE FIRST LINE OF THE Q-FILE 
READ(10,1) YR,JDAY,MONTH,DAY,HR,MIN,FLAGl,FLAG2,FLAG3,FLAGA, 
&FLAG5,FLAG6 

1 FORMAT(I2,1X,I3,1X,I2,1X,I2,1X,I2,1X,I2,1X,Z11,Z11,Z10,1X,Z11, 
&Z11,Z10) 
READ(10,2) Al,A2,A3,A4,A5,A6,A7,A8,A9,Al0,Ail,Al2,Al3,Al4,Al5,Al6 

2 FORMAT(13,15,1A,15,16,15,15,15,15,15,15,15,15,15,15,15) 
C 
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WHILE (DAYC.LE. MODAY) DO 
MONTHC=MONTH 
IF (DAY.EQ.1.AND.HR.EQ.0.AND.MIN.EQ.0) MONTHC=MONTH~l 
IF (FLOAT (YR)/4.-FLOAT (YR/4) .GT.O.Ol) LEAP-1 

C...CALCULATE THE JULIAN DAY COUNTER 
IF (MONTHC.EQ.l) JDAVC=DAYC 
IF (MONTHC.EQ.2) JDAYC=DAYC+31 
IF (MONTHC . EQ. 3) JDAYODAYC+59 
IF (MONTHC.EQ.4) JDAYC-DAYC+90 
IF (MONTHC.EQ.5) JDAYC=DAYC+120 
IF (MONTHC.EQ.6) JDAYC-DAYC+151 
IF (MONTHC.EQ.7) JDAYC-DAYC+181 
IF (MONTHC.EQ.8) JDAYC-DAYC+212 
IF (MONTHC.EQ.9) JDAYC=DAYC+243 
IF (MONTHC.EQ.10) JDAYC-DAYC+273 
IF (MONTHC.EQ.il) JDAYC=DAYC+304 
IF (MONTHC.EQ.12) JDAYC-DAYC+334 
IF ((MONTHC.GE.3).AND.(LEAP.EQ.O)) JDAYC-JDAYC+1 

C 
C...LOCATE THE DATA WHICH IS IN THE CORRECT ORDER 
C IF (DAY.LT.DAYC) DAY=DAYC 

IF (DAY.EQ.DAYC.AND.HR.EQ.HRC.AND.MIN.EQ.MINC) THEN 
WRITE(3,3) YR,JDAY,MONTHC,DAY,HR,MIN,FLAG1,FLAG2,FLAG3,FLAG4, 
&FLAG5,FLAG6 

3 FORMAT(12,IX,13,IX,12,IX,12,IX,12,IX,12,IX,Zl1,211,210,IX,211, 
&211.210) 
WRITE(3,4) Al,A2,A3,A4,A5,A6,A7,A8,A9,Al0,All,Al2,Al3,Al4,Al5,Al6 

4 FORMAT (13,15 ,14,15 ,16 ,15 ,15 ,15 ,15,15,15 ,15 ,15 ,15 ,15 ,15) 
ELSE 

C 
C...LOCATE THE MISSING LINES AND COMPLETE THEM WITH DUMMY VARIABLES 

WHILE(DAYC.NE.DAY.OR.HRC.NE.HR.OR.MINC.NE.MIN) DO 
WRITE(3,5) YR,JDAYC,MONTHC,DAYC,HRC,MINC,'99999999999999999999', 
&'999999999999','99999999999999999999999999999999' 

5 FORMAT(12,IX,13,IX,12,IX,12,IX,12,IX,12,IX,A20,A12,IX,A32) 
WRITE(3,6) '999','99',* 99','999',* 9999 V 999 V 999 V 999', 
&'999 \ '999','999','999','999','999','999','999' 

6 FORMAT(A3,3X,A2,2X,A2,2X,A3,2X,A4,2X,A3,2X,A3,2X,A3,2X,A3,2X,A3, 
&2X,A3,2X,A3,2X,A3,2X,A3,2X,A3,2X,A3) 

C 
C...INCREMENT THE COUNTERS FOR THE "DUMMY" DATA 

MINC=MINC+15 
IF (MINC.GE.60) THEN 
MINC=0 
HRC=HRC+1 
END IF 
IF (HRC.GE.24) THEN 
HRC=0 
DAYC=DAYC+1 
JDAYC=JDAYC+1 

MONTHC.EQ.il


END IF 
IF (DAYC.GT.32) THEN 
WRITE(6,*) 'SOMETHING IS WRONG COSTA THE LIMIT WAS OVERUNNED' 
GO TO 111 
END IF 
IF (DAYC.GT.MODAY) GO TO 112 
END WHILE 
WRITE (3,7) YR,JDAY,MONTHC,DAY,HR,MIN,FLAG1,FLAG2,FLAG3,FLAG4, 
&FLAG5,FLAG6 

7 FORMAT(I2,1X,I3,1X,I2,1X,I2,1X,I2,1.X,I2,1X,Z11,Z11,Z10,1X,Z11, 
SZ11,Z10) 
WRITE (3,8) Al,A2,A3,A4,A5,A6,A7,A8,A9,Al0,All,Al2,Al3,A14,Al5,Al6 

8 FORMAT (13,15 ,14,15 ,16,15 ,15 ,15,15 ,15 ,15,15 ,15 ,15,15 , 15) 
END IF 

C 
C...INCREMENT THE COUNTERS FOR THE CORRECT DATA 

MINC=MINC+15 
IF (MINC.GE.60) THEN 
MINC=0 
HRC=HRC+1 
END IF 
IF (HRC.GE.24) THEN 
HRC=0 
DAYC=DAYC+1 
END IF 
IF (DAY.EQ.DAYF.AND.HR.EQ.HRF.AND.MIN.EQ.MINF)THEN 
WRITE (3,100) YR,JDAYC,MONTHC,DAYC,HRC,MINC,'99999999999999999999', 
&'999999999999','99999999999999999999999999999999' 

100 FORMAT(12,IX,13,IX,12,IX,12,IX,12,IX,12,IX,A20,A12,1X.A32) 
WRITE (3,101) '999','99','99','999', '9999','999','999','999', 
& * 999','999','999', * 999','999',»999 *,'999 *,'999' 

101 FORMAT(A3,3X,A2,2X,A2,2X,A3,2X,A4,2X,A3,2X,A3,2X,A3,2X,A3,2X,A3, 
&2X,A3,2X,A3,2X,A3,2X,A3,2X,A3,2X,A3) 
WHILE (DAYC.LE.M0DAY.AND.HRC.LE.23.AND.MINC.LE.45) DO 

C... INCREMENT THE COUNTERS FOR THE "DUMMY" DATA 
MINC=MINC+15 
IF (MINC.GE.60) THEN 
MINC=0 
HRC=HRC+1 
END IF 
IF (HRC.GE.24) THEN 
HRC=0 
DAYC=DAYC+1 
JDAYC=JDAYC+1 
END IF 
IF (DAYC.EQ.M0DAY+1.AND.HRC.EQ.O.AND.MINC.EQ.O) GO TO 112 
WRITE (3,102) YR,JDAYC,MONTHC,DAYC,HRC,MINC, '99999999999999999999', 
&'999999999999','99999999999999999999999999999999' 

102 FORMAT(12,IX,13,IX,12,IX,12,IX,12,IX,12,IX,A20,A12,IX,A32) 
WRITE (3,103) '999','99','99',»999 ' ,'9999','999','999','999', 



&'999','999','999',* 999','999','999','999','999' 
103 FORMAT(A3,3X,A2,2X,A2,2X,A3,2X,A4,2X,A3,2X,A3,2X,A3,2X,A3,2X,A3, 

&2X,A3,2X,A3,2X,A3,2X,A3,2X,A3,2X,A3) 
END WHILE 
IF (DAYC.EQ.MODAY.AND.HRC.EQ.23.AND.MINC.EQ.45) THEN 
DAYC=DAYC+1 
GO TO 200 
END IF 
END IF 

C 
C...READ THE NEXT LINE OF THE Q-FILE 
200 READ(10,9) YR,JDAY,MONTH,DAY,HR,MIN,FLAG1,FLAG2,FLAG3,FLAG4, 

&FLAG5,FLAG6 
9 FORMAT(12,IX,13,IX,12,IX,12,IX,12,IX,12,IX,Zll,Zll,Z10,IX,211, 

&Z11,Z10) 
READ(10,10) A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16 

10 FORMAT(13,15,14,15,16,15,15,15,15,15,15,15,15,15,15,15) 
END WHILE 

C 
C...COMPLETE THE LAST PERIOD OF THE MONTH 

IF (DAY.EQ.DAYF.AND.HR.EQ.HRF.AND.MIN.EQ.MINF) THEN 
WRITE (3,11) YR,JDAY,MONTH,DAY,HR,MIN,FLAG1,FLAG2,FLAG3,FLAG4, 
&FLAG5,FLAG6 

11 FORMAT(I2,1X,I3,1X,I2,1X,I2,1X,I2,1X,I2,1X,Z11,Z11,Z10,1X,Z11, 
&Z11,Z10) 
WRITE (3,12) Al,A2,A3,A4,A5,A6,A7,A8,A9,Al0,All,Al2,Al3,A14,A15,Al6 

12 FORMAT(13,15,14,15,16,15,15,15,15,15,15,15,15,15,15,15) 
ELSE 

112 DAYOl 
HRC=0 
MINC=0 
MONTHC=MONTHC+l 
IF (M0NTHC.EQ.13) THEN 
MONTHC=l 
YR=YR+1 
JDAYC=1 
END IF 
WRITE(3,104) YR,JDAYC,MONTHC,DAYC,HRC,MINC,'99999999999999999999*, 
&'999999999999*,'99999999999999999999999999999999' 

104 FORMAT(12,IX,13,IX,12,IX,12,IX,12,IX,12,IX,A20,A12,IX,A32) 
WRITE (3,105) »999,,,99','99*,'999','9999',* 999 *,'999 * ,'999 *, 
& * 999','999','999',•999 *,'999 *,* 999',* 999','999' 

105 FORMAT(A3,3X,A2,2X,A2,2X,A3,2X,A4,2X,A3,2X,A3,2X,A3,2X,A3,2X,A3, 
&2X,A3,2X,A3,2X,A3,2X,A3,2X,A3,2X,A3) 
END IF 

111 CONTINUE 
END 
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SUBROUTINE HELGO(IYEAR,MONTH,IDAY,CVLT,ALONGD,ALATD,ALONST,ZONE, 
ScALTR, DECL, EOT, HANG, RADIUS) 

C. BALARAS 1-31-85 

THIS IS THE LATEST VERSION OF THE SUBROUTINE USED IN PROGRAMS (DY104) 
AND (H0UR5). THE INPUTS IN THIS SUBROUTINE ARE INTEGER VALUES UNDER 
THE FOLLOWING VARIABLE NAMES: IYEAR (CURRENT YEAR, I.E. 83) 

MONTH (CURRENT MONTH, I.E. 3 FOR MARCH) 
IDAY (THE CURRENT DAY IN THE MONTH) 
CVLT (THE CIVIL LOCAL TIME) 
ALONGD (LONGITUDE IN DEGREES) 
ALATD (LATITUDE IN DEGREES) 
ALONST (STANDARD LONGITUDE IN DEGREES) 
ZONE (TIME ZONE OF THE LOCALITY 

E-W OF GREENWICH) 
(ALTITUDE UNITS ARE RADIANS) 
(DECLINATION UNITS ARE RADIANS) 
(EQUATION OF TIME UNITS ARE MINUTES) 
(HOUR ANGLE UNITS ARE RADIANS) 

RADIUS(RADIUS OF EARTH'S ORBIT IN ASSTRONOMICAL UNITS) 
FOR OTHER POSSIBLE OUTPUTS COULD CONSIDER THE CALCULATED HOUR ANGLE, 
THE ALTITUDE AND AZIMUTH ANGLES (IN RADIANS). 
FOR SOME OF THE FOLLOWING CALCULATIONS, LOW PRECISION EQUATIONS ARE 
USED (TAKEN FROM THE ALMANAC FOR COMPUTERS 198A) AS PRESENTED BY 
R.L. JOHNSON OF MCDONNELL DOUGLAS 

THE OUTPUTS ARE: ALTR 
DECL 
EOT 
HANG 

THIS SUBROUTINE WAS TESTED BY COMPARING ITS COMPUTED VALUES WITH THE 
ALMANAC OF COMPUTERS (PROGRAM (MCDON) FOR THE YEAR OF 1983 AND THE 
LOCALITY OF GREENWICH). 

DEFINITIONS OF VARIABLES 
ANGCR 
AZIM 
ALONGH 
ALONST 
ALATR 
ALT 
CVLT 
DECL 
DRCONV 
ECLL 

ECLO 
GAST 
HANG 
RADIUS 
RTAS 
SMALAL 
TREF 

MEAN ANOMALY 
AZIMUTH, UNITS ARE RADIANS 
LONGITUDE IN HOURS 
STANDARD LONGITUDE IN DEGREES 
LATITUDE, UNITS ARE RADIANS 
ALTITUDE, UNITS ARE DEGREES 
LOCAL TIME, UNITS ARE HOURS 
DECLINATION, UNITS ARE RADIANS 
DEGREES TO RADIANS CONVERSION 
ECLIPTIC LONGITUDE OR TRUE GEOCENTRIC LONGITUDE, 
UNITS ARE RADIANS 
OBLIQUITY OF THE ECLIPTIC, UNITS ARE RADIANS 
GREENWICH ACTUAL SIDERAL TIME, UNITS ARE HOURS 
LOCAL HOUR ANGLE OF THE SUN, UNITS ARE RADIANS 
THE.DISTANCE OF SUN TO EARTH IN ASTRONOMICAL UNITS 
RIGHT ASCENSION, UNITS ARE RADIANS 
SMALLEST ALTITUDE ALLOWED 
STANDARD EPOCH JANUARY 2000.0 



C WHICH IS 12 UT, 1 JANUARY 2000.0 
C UT : UNIVERSAL TIME, LOCAL TIME FROM GRENWICH MIDNIGHT IN HOURS 
C XCON : STANDARD EPOCH 0 UT, 0JANUARY 1984 
C WHICH IS MIDNIGHT UT STARTING 31 DECEMBER 1983 
C XD : DAYS SINCE STANDARD EPOCH TREF 
C XL1 : MEAN LONGITUDE 
C XN : DAYS SINCE STANDARD EPOCH XCON 
C 
C...CONSTANTS 
C...CONSTANTS FOR LOW PRECISION EQUATIONS FOR ECLL AND ECLO 

DATA Al, A2,A3,A4,A5,A6,A7,A8,A9,TREF,XCON/6.2400408, 
&J.720197E-2,4.8934184,1.7202536E-2,3.3479055E-2, 
S,2.2936565E-9,3.7606585E-4,4.0911372E-l,6.21199E-9, 
&2451545.0,2445699.5/ 

C...CONSTANTS FOR ATMOSPHERIC REFRACTION EQUATION 
DATA Bl,B2,B3,B4,B5/-9.036938093E-5,-1.600076095E-5, 
&2.948314656E-4,-3.278909E-6,-1.234081940E-8/ 
PI-4.0*ATAN(1.0) 
TWOPI=2.0*PI 
DRCONV-PI/180.0 
ALONGH-ALONGD/15. 
ALATR-ALATD''fDRCONV 
CLAT=COS(ALATR) 
SLAT-SIN(ALATR) 
SMALAL-0.008 
HRCONV-15.0*DRCONV 
IYEAR2-IYEAR+1900 

C 
CALL JDAY(XJUDAT,IYEAR2,MONTH,IDAY) 

C 
C... CALCULATE THE UNIVERSAL TIME FOR THE LOCATION (EAST US: 5) 

UT»CVLT+ZONE 
C... CALCULATE THE MEAN ANOMALY 

TD-XJUDAT-TREF+UT/24.0 
ANGCR»A1+A2*TD 
ANGCR-(ANGCR/TWOPI-AINT(ANGCR/TWOPI))*TWOPI 

C... CALCULATE THE DISTANCE OF SUN FROM EARTH IN ASTRONOMICAL UNITS 
RADIUS-1.00014-0.01671*COS(ANGCR)-0.00014*C0S(ANGCR) 

C...CALCULATE THE MEAN LONGITUDE 
XL1«A3+A4*TD 

C...CALCULATE THE TRUE LONGITUDE 
ECLL=XL1+ (A5-A6'VTD) *SIN (ANGCR) +A7*SIN (2. 0*ANGCR) 
ECLL-(ECLL/TWOPI-AINT(ECLL/TWOPl))ATWOPI 

C... CALCULATE THE OBLIQUITY 
ECL0=A8-A9*TD 

C...CONVERT TO RT ASCENSION AND DECINATION 
RTAS=ATAN2(SIN(ECLL) *COS(ECLO) ,COS(ECLL)) 
SLSE=SIN (ECLL)*SIN(ECLO) 
DECL=ATAN2(SLSE,SQRT(1.0"SLSE**2.0)) 

C...CALCULATE THE HOUR ANGLE 
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XN-XJUDAT-XCON 
DAY=XN+UT/24.0 
HANG=HRCONV*(GAST(XN,UT,DAY)-ALONGH)-RTAS 
HANG=AMOD(HANG,TWOPI) 
IF (HANG.GT.PI.AND.HANG.LT.TWOPI) HANG=HANG~TWOPI 
IF (HANG.LT.-PI) HANG-HANG+TWOPI 

C...CONVERT TO ELEVATION AND AZIMUTH 
ALT=ASIN(SLAT*SIN(DECL)+COS(DECL)*COS(HANG)*CLAT) 
IF (ALT.LT.SMALAL) ALT-SKALAL 
AZIM—ATAN2 (SIN (HANG) , (COS (HANG) '"SLAT-TAN (DECL) *CLAT) ) 

C..-REFRACTION, RC-0.0, IF ALT<=5 DEGREES-0.08727 RADIANS 
C NO CORRECTION FOR REFRACTION IS MADE FOR ALTITUDES LESS THAN 5 DEGREES 

RC=0.0 
IF (ALT.GT.0.08727) 

&RC=B1,UALT)+B2+B3*(1/ALT)+B4*((1/ALT)**2.0)+B5M(1/ALT)**3) 
ALTR=ALT+RC 

C...CALCULATE THE HOUR ANGLE IN DEGREES 
HANGDE-HANG/DRCONV 
HANGDE-AMOD(HANGDE,360.) 
IF (HANGDE.GT.180.0.AND.HANGDE.LT.360.0) HANGDE-HANGDE-360. 
IF (HANGDE.LT.-180.O.AND.HANGDE.GT.-360.0) HANGDE-HANGDE+360. 

C... CALCULATE THE APARENT SOLAR TIME 
AST-HANGDE/15.+12. 

C...CALCULATE THE MEAN SOLAR TIME 
AMST-CVLT+(ALONST-ALONGD)/15.0 

C...CALCULATE THE EQUATION OF TIME 
EOT-(AST-AMST)*60. 
IF (HANGDE. GT. 180) EOT—EOT 
EOT-AMOD(EOT,1440.) 
RETURN 
END 
FUNCTION GAST(XN,UT,DAY) 

C... CALCULATE THE GREENWICH ACTUAL SIDERAL TIME 
C BASED ON EQUATIONS IN ALMANAC FOR COMPUTERS 1984 
C 
C...DEFINITIONS 
C DAY : XN+UT/24.0 
C DRCONV : CONVERSION FROM DEGREES TO RADIANS 
C E : EQUATION OF THE EQUINOXES, IN HOURS 
C GAST : GREENWICH ACTUAL SIDERAL TIME, IN HOURS 
C GMST : GREENWICH MEAN SIDERAL TIME(VERNAL EQUINOX ANGLE FROM 
C GREENWICH), IN HOURS. 
C UT : LOCAL TIME (FROM GREENWICH MIDNIGHT), UNITS ARE HOURS 
C XN : DAYS SINCE STANDARD EPOCH XCON 
C XOMEGA : MEAN LONGITUDE OF ASCENDING NODE OF THE MOON'S ORBIT, 
C & IN RADIANS 
C 

DATA Gl,G2,G3,G4,G5,G6/6.5905966,0.0657098242, 
& 1.00273791,74.5658,-0.0529539,-0.00029/ 
PI=4.0*ATAN(1.0) 



DRCONV-PI/180. 
GMST«G1+G2*XN+G3*UT 
GMST=24.0*(GMST/24.0-AINT(GMST/24.0)) 
XOMEGA-DRCONV*(G4+G5*DAY) 
E-G6*SIN(XOMEGA) 

C...IN THE NEXT STATEMENT GMST IS CORRECTED 
C FOR PERTUBATIONS INDUCED BY MOTION OF THE MOON TO 
C YIELD AN ACCURATE VALUE FOR GAST 

GAST=GMST+E 
RETURN 
END 
SUBROUTINE JDAY(XJUDAT,IYEAR2,MONTH,IDAY) 

C...SUBROUTINE JDAY CALCULATES THE STANDARD JULIAN DATE 
C NOTE: VARIOUS STANDARD EPOCHS ARE USED IN APPLICATIONS 

JD-IDAY+1461*(IYEAR2+4800+(MONTH-14)/12)/4 
& +367*(MONTH-2-(MONTH-14)/12*12)/12 
JD-JD-32075-3*((IYEAR2+4900+(MONTH-14)/12)/100)/4 
XJUDAT-JD-0.5D0 
RETURN 
END 



PROGRAM TABLE3(INPUT,OUTPUT,TAPE4=0UTPUT,TAPE3-INPUT,TAPE8, 
&TAPE7,TAPE5,TAPE2) 

C 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
G 

c . 
c 
c. 
c 
c 
c 
c 
c 
c 
c 
c 
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c 
c.. 
c 
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c 
c 
c 
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: 

c 
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< : 

c 
c 

C. BALARAS 11-12-34 

.THIS PROGRAM TABULATES VALUES FOR THE DECLINATION, THE 
ALTITUDE OF THE SUN AND THE EQUATION OF TIME, CALCULATED 
AT 12.0 NOON STANDARD TIME, 1983. 
THESE PARAMETERS ARE CALCULATED BY TWO METHODS AND 
COMPARED TO THE NAUTICAL ALMANAC. 
FIRST METHOD : EQUATION OF TIME BY WATT AND DECLINATION 
BY COOPER. 
SECOND METHOD : ACCORDING TO SUBROUTINE HELGO 
THE 1983 DATA FROM THE ALMANAC IS IN TAPE'/. 

.DEFINITIONS 

.VARIABLES USED IN THE FIRST METHOD 
DELTA : DECLINATION ANGLE IN RADIANS 
EQOT : EQUATION OF TIME IN MINUTES 
OMEGA : HOUR ANGLE IN RADIANS 
DELTAD : DECLINATION IN DEGREES 
OMEGAD : HOUR ANGLE IN DEGREES 
IDELTAD, DELTAM :DECLINATION IN DEGREES, MINUTES 
IEQOT, EQOTS : EQUATION OF TIME IN MINUTES, SECONDS 
IOMEGAD, OMEGAM : HOUR ANGLE IN DEGREES, MINUTES 
DRCONV : DEGREES TO RADIANS CONVERSION FACTOR 

.VARIABLES USED IN THE SECOND METHOD 
DECL 
EOT 
HANG 
DECLD 
HANGD 
IDECLDE. 
IEOTM, EOTS 
IHANGDR HANGM 

DECLINATION ANGLE IN RADIANS 
EQUATION OF TIME IN MINUTES 
HOUR ANGLE IN RADIANS 
DECLINATION IN DEGREES 
HOUR ANGLE IN DEGREES 
DECLM : DECLINATION IN DEGREES, MINUTES 

EQUATION OF TIME IN MINUTES, SECONDS 
HOUR ANGLE IN DEGREES AND MINUTES 

.VARIABLES FROM THE NAUTICAL ALMANAC 
IDELTAO DELATOM : THE DECLINATION IN DEGREES AND MINUTES 
IEOTOM EOTOS : EQUATION OF TIME IN MINUTES AND SECONDS 
IHANGO HANGOM : HOUR ANGLE IN DEGREES AND MINUTES 

DATA AMAXE1,AMAXE2,AMAXE3,AMAXE4,AMAXE5,AMAXE6,SUMl,SUM2, 
&SUM3,SUM4,SUM5,SUM6,MONTH/0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
&.O. 0,0. 0,0.0,0. 0,1/ 
IYEAR=1983 
CVLT=12.0 
WRITE (8,101) 'YEAR=',I YEAR, 'LOCAL TIME=",CVLT 

101 F0RMAT(1X,A5,I4,5X,A11,F4.1,/) 
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WRITE (8,111) 'DAY', 'DELTA*,'OMEGA','EOT', 'DELTA' ,'OMEGA' , 'EOT', 
&*DELTA','OMEGA','EOT' 

111 FORMAT(1X,A3,8X,A5,10X,A5,9X,A3,10X,A5,8X,A5,8X,A3,13X, 
&A5,8X,A5,9X,A3) 
WRITE (8,11A) '(DEGR-MIN) ' ,* (DEGR-MIN) ' ,' (MIN-SEC) ' , ' (DEGR-MIN) ', 
&'(DEGR-MIN)','(MIN-SEC)','(DEGR-MIN)', * (DEGR-MIN)',* (MIN-SEC)' 

114 FORMAT(9X,Al0,5X,Al0,4X,A9,5X,Al0,3X,Al0,2X,A9,7X,Al0,3X, 
&A10,4X,A9,/) 
WRITE (8,113) ' (COOPER) ' , ' (DAILY) ' , ' (WATT.) ' , ' (HELGO) ' , 
&'(NAUTICAL ALMANAC)' 

113 F0RMAT(11X,A8,6X,A7,20X,A7,13X,A18,/) 
C 

DO 100 1*1,365 
IDAY=I 
Tl-11.875 
T2-12.125 
READ(7,*) IHANGO,HANGOM,IDELTAO,DELTAOM,IEOTOM,EOTOS 

C 
CALL SOTIME(DELTA,EQOT,I,Tl,T2,OMEGAV) 

C... CALCULATE THE DECLINATION IN DEGREES AND MINUTES 
PI=4.0*ATAN(1.0) 
DRCONV=PI/180.0 
DELTAD=DELTA/DRCONV 
IDELTAD=INT(DELTAD) 
DELTAM=(DELTAD-IDELTAD)*60. 
IF (DELTAD. LT.-1.0) DELTAM- (IDELTAD-DELTAD) *60. 0 

C... CALCULATE THE EQUATION OF TIME IN MINUTES AND SECONDS 
IEQOT=INT(EQOT) 
EQOTS= (EQOT-IEQOT)*60. 
IF (EQOT.LT.-1.0) EQOTS=(IEQOT-EQOT)*60.0 

C... CALCULATE THE HOUR ANGLE IN DEGREES AND MINUTES 
OMEGAD=OMEGAV/DRC0NV 
IOMEGAD=INT(OMEGAD) 
OMEGAM=(OMEGAD-1OMEGAD) *60. 
IOMEGAD=MOD(lOMEGAD,360) 
IF (OMEGAD. LT.-1.0) OMEGAM- (IOMEGAD-OMEGAD) ''c60. 0 

C 
CALL HELGO(IYEAR,MONTH,IDAY,CVLT,DECL,HANG,EOT) 

C... CALCULATE THE DECLINATION IN DEGREES AND MINUTES 
DECLD=DECL/DRCONV 
IDECLDE=INT(DECLD) 
DECLM= (DECLD-IDECLDE) ,v60. 
IF (DECLD.LT.-1.0) DECLM- (IDECLDE-DECLD) ,v60. 0 

C... CALCULATE THE HOUR ANGLE IN DEGREES AND MINUTES 
HANGD=HANG/DRCONV 
HANGD=AMOD(HANGD,360.) 
IHANGDR=INT(HANGD) 
HANGM= (HANGD-IHANGDR) 7'(60. 
IHANGDR=MOD(IHANGDR,360) 
IF (HANGD.LT.-1.0) HANGM=(IHANGDR-HANGD)A60.0 



HANGD=AMOD(HANGD,360.) 
C... CALCULATE THE EQUATION OF TIME IN MINUTES AND SECONDS 

IE0TM=INT(E0T) 
EOTS=(EOT-IEOTM)*60, 0 
IF (EOT.LT.-1,0) EOTS-(IEOTM-EOT)*60.0 

C... CALCULATE THE MAXIMUM ERROR IN COMPARISON WITH THE 
C NAUTICAL ALMANAC 

DELTAO-IDELTAO+DELTAOM/60. 
IF (IDELTAO.LT.0) DELTAO-IDELTAO-DELTAOM/60. 
HANGO=IHANGO+HANGOM/60. 
EOTO=IEOTOM+EOTOS/60. 
IF (IEOTOM.LT.O) EOTO=IEOTOM-EOTOS/60. 
OMEGAl=OMEGAD 
OMEGA2=HANGO 
0MEGA3=HANGD 
IF (OMEGAD.GT.180.) 0MEGAl=OMEGAD-360. 
IF (HANGD.GT.180.) OMEGA3=HANGD-360. 
IF (HANGO.GT.180.) OMEGA2-HANGO-360. 
E1=ABS(DELTAO-DELTAD) 
E2=ABS (OMEGA2-OMEGA1.) 
E3=ABS(EOTO-EQOT) 
E4=ABS(DELTAO-DECLD) 
E5=ABS(OMEGA2-OMEGA3) 
E6=ABS(EOTO-EOT) 
IF (E1.GT.AMAXE1) AMAXE1-E1 
IF (E2.GT.AMAXE2) AMAXE2-E2 
IF (E3.GT.AMAXE3) AMAXE3=E3 
IF (E4.GT.AMAXE4) AMAXE4=E4 
IF (E5.GT.AMAXE5) AMAXE5-E5 
IF (E6.GT.AMAXE6) AMAXE6=E6 

C... CALCULATE THE TOTAL SQUARE ERROR 
Smi=SUMl+El*El 
SUM2=SUM2+E2*E2 
SUM3=SUM3+E3*E3 
SUM4=SUM4+E4*E4 
SUM5=SUM5+E5*E5 
SUM6=SUM6+E6*E6 
WRITE(5,*) 'I-',IDAY,'El-',El,' E2=',E2,' E3= ',E3,' E4= ',E4, 
S.'E5»' ,E5, 'E6=*,E6 
WRITE (8,103) I,IDELTAD,DELTAM,IOMEGADT0MEGAM,IEQ0T,EQ0TS, 
&IDECLDE,DECLM,IHANGDR,HANGM,IEOTM,EOTS, 
&IDELTAO,DELTAOM,IHANGO,HANGOM,IEOTOM,EOTOS 

103 F0RMAT(1X,I3,5X,I4,1X,F6.2,3X,I3,2X,F6.2,IX,14,IX,F6.2, 
&4X,I4,1X,F6.2,2X,I4,1X,F6.2,2X,I4,1X,F6.2, 
&6X,I4,1X,F5.1,3X,I4,1X,F5.1,3X,I3,2X,F5.1) 

100 CONTINUE 
C... CALCULATE THE ROOT MEAN SQUARE ERROR (RMS) 

RMS1=SQRT(SUM1/I) 
RMS2=SQRT(SUM2/I) 
RMS3=SQRT(SUM3/I) 
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C, 

c 
C 
C 
c 
c 
c 
c 
c 
c 
c 
C 
C 
c 
c 
c 
C 

c 
C 
c 
c 
c 
c 
C 
C 
c 
c 
c 
c 

RMS4=SQRT(SUM4/l) 
RMS5=SQRT(SUM5/I) 
RMS6=SQRT(SUM6/I) 
WRITE (8,*) ' ' 
WRITE (8,115) 'MAXIMUM ERRORS COMPARED TO THE NAUTICAL ALMANAC' 

115 FORMAT(23X,A47,/) 
WRITE(8,116) 'DELTA','OMEGA','EOT','DELTA','OMEGA','EOT', 

116 FORMAT(12X,A5,8X,A5,8X,A3,10X,A5,8X,A5,8X,A3,/) 
WRITE(8,117) AMAXE1,AMAXE2,AMAXE3,AMAXE4,AMAXE5,AMAXE6 

117 FORMAT(1IX,F6.3,7X,F7.3,5X,F6.3,8X,F6.3,6X,F 7.3,5X,F7.3,/) 
WRITE (8,118) 'SQUARE ROOT MEAN SQUARE ERROR' 

118 FORMAT(32X.A29,/) 
WRITE(8,119) RMS1,RMS2,RMS3,RMS4,RMS5,RMS6 

119 FORMAT(1IX,F6.3,7X,F7.3,5X,F6.3,8X,F6.3,6X,F7.3,5X,F7.3,/) 
END 
SUBROUTINE SOTIME(DELTA,EQOT,IDAY,Tl,T2,OMEGAV) 

DEFINITIONS OF VARIABLES 
ALAT 
ALON 
ALONSM 

ALPHAV 
DELTA 
DRCONV 
EQOT 

GSC 
HANGSS 
HRCONV 
ISHR 
ISMIN 
OMEGA 
OMEGA1 
0MEGA2 
OMEGAV 
SRTIME 
SSTIME 
STDTSN 
Tl 
T2 
TAU1 
TAU2 
TAUAV 
THETAZ 

LATITUDE IN DEGREES 
LONGITUDE IN DEGREES 
STANDARD MERIDIAN FOR THE LOCAL TIME ZONE 
(15 DEGREES FOR EVERY TIME ZONE E-W FROM GREENWICH) 
CORRESPONDING AVERAGE OF THE SOLAR ALTITUDE 
DECLINATION ANGLE IN RADIANS 
CONVERSION 7ACTOR FROM DEGREES TO RADIANS 
EQUATION OF TIME IN MINUTES 
NORMAL TO THE RADIATION ON THE NTH DAY OF THE YE.AR 
SOLAR CONSTANT(W/M/M) 
HOUR ANGLE AT SUNSET(STANDARD TIME) 
CONVERSION FACTOR FROM HRS TO RAD 
APPARENT SOLAR TIME OF THE HOUR 
APPARENT SOLAR TIME FOR THE MIN. 
HOUR ANGLE IN RADIANS 
HOUR ANGLE CORRESPONDING TO THE LOWER INTIGRATION LIMIT 
HOUR ANGLE CORRESPONDING TO THE HIGHER INTIGRATION LIMIT 
CORRESPONDING AVERAGE OF THE HOUR ANGLE-SOLAR TIME 
SUNRISE STANDARD TIME 
SUNSET STANDARD TIME 
STANDARD TIME OF SOLAR NOON 
STANDARD TIME AT WHICH EACH PERIOD STARTS 
STANDARD TIME AT WHICH EACH PERIOD ENDS 
INTEGRATION LOWER LIMIT FOR EVERY PERIOD (STD.TIME) 
INTEGRATION UPPER LIMIT FOR EVERY PERIOD (STD.TIME) 
INTEGRATION AVERAGE TIME (STD. TIME) 
ZENITH ANGLE OF THE SUN IN RADIANS 

COMMON/WHERE/ALAT,ALON,ALONSM 

PI-4.0*ATAN(1.0) 
ALON=0.0 
ALAT=51.47 



ALONSM=0.0 
DRCONV^PI/180.0 
SLAT=ALAT*DRCONV 
HRCONV-15.0*DRCONV 

C... CALCULATE THE DECLINATION 
DELTA=23. 45*SIN (2. 0*PI* (284.0+IDAY) /365 . 0) *DRCONV 

C...CALCULATE THE SUNSET HOUR ANGLE 
HANGSS=ACOS("TAN(SLAT)*TAN(DELTA)) 

C... CALCULATE THE EQUATION OF TIME 
IF (IDAY.GT.106) GO TO 10 
EQOT—14. 2*SIN ( (IDAY+7. 0) *0.028303) 
GO TO 40 

10 IF (IDAY.GT.166) GO TO 20 
EQOT=4.0*SIN((IDAY-106.0)*0.053247) 
GO TO 40 

20 IF (IDAY.GT.246) GO TO 30 
EQOT—6.5*SIN((IDAY-166.0)*0. 03927) 
GO TO 40 

30 EQOT-16.4*SIN((IDAY-247.0)*0.027802) 
C... CALCULATE THE STANDARD TIME OF SOLAR NOON 
40 STDTSN=12.0-(EQOT/60.0)-(ALONSM-ALON)/15.0 
C... CALCULATE THE SUNRISE STANDARD TIME 

SRTIME'STDTSN-(HANGSS/HRCONV) 
C... CALCULATE THE SUNSET STANDARD TIME 

SSTIME=STDTSN+(HANGSS/HRCONV) 
C . .CALCULATE TAUl 
C FOR PERIODS BEFORE SUNRISE 

IF (SRTIME.GT.T2) THEN 
ALPHAV=0.0 
GO TO 101 
ELSE 

C FOR PERIODS BETWEEN SUNRISE AND SUNSET 
IF (SRTIME.LT.T1) TAll-Tl 
IF (SRTIME.GT.T1) TAU1=SRTIME 
END IF 

C...CALCULATE TAU2 
C FOR PERIODS AFTER SUNSET 

IF (SSTIME.LT.Tl)THEN 
ALPHAV-0.0 
GO TO 101 
ELSE 

C FOR PERIODS BETWEEN SUNRISE AND SUNSET 
IF (SSTIME.GT.T2) TAU2-T2 
IF (SSTIME.LT.T2) TAU2=SSTIME 
END IF 

C... CALCULATE THE AVERAGE INTEGRATION LIMITS(STD„ TIME) 
TAUAV=(TAU1+TAU2) /2.0 

C... CALCULATE THE CORRESPONDING AVERAGE OF THE 
C HOUR ANGLE 

IF (TAUAV.LE.STDTSN) THEN 



OMEGAV=-(STDTSN-TAUAV)*HRCONV 
ELSE 
OMEGAV=(TAUAV-STDTSN)*HRCONV 
END IF 

C SOLAR ALTITUDE 
THETA2=(ACOS(COS(DELTA)*COS(SLAT)*C0S(OMEGAV)+SIN(DELTA)* 
&SIN(SLAT))) 
ALPHAV=(PI/2.0)-THETAZ 

101 RETURN 
END 



PROGRAM CKTTB2(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE26, 
&TAPE30) 
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C. BALARAS 
C. BALARAS 
C. BALARAS 

4-30-85 
5-13-85 
5-20-85 

.THIS PROGRAM RECALCULATES THE KT AND TB FROM THE RADIATION DATA 
INCLUDED IN TAPE26. THE CALCULATIONS WILL BE PERFORMED USING 
SUBROUTINE HELGO AT 0:00 HRS AND THE SCREENED DATA SET (SDS). 
THE RESULTS WILL BE COMPARED WITH THE CORRESPONDING VALUES 
WE ARE CURRENTLY USING (FROM SDS), AND REPORT ANY 
SUBSTANTIAL DEVIATIONS OR AGREEMENT. 

FOR CKTTB1 THE ONLY CHANGE IS INDICATED WHEN CALLING 
SUBROUTINE HELGO, IN SUCH A WAY THAT THE CALCULATIONS 
ARE PERFORMED AT THE MID-PERIOD. 

DEFINITIONS 

DECLARATIONS 
ALATD : LATITUDE OF THE LOCALITY IN DEGREES 
ALONGD : LONGITUDE OF THE LOCALITY IN DEGREES 
ALONST : STANDRD LONGITUDE IN DEGREES 
AMAXKT : MAXIMUM ERROR OF KT VALUES 
AMAXTB : MAXIMUM ERROR OF TB VALUES 
CVLT : LOCAL TIME IN HOURS 
DIR : BEAM IRRADIATION IN KJ/M/M 
EKT : ABSOLUTE VALUE OF ERROR BETWEEN KT VALUES 
ETB : ABSOLUTE VALUE OF ERROR BETWEEN TB VALUES 
Fl : SOLAR CONSTANT IN KJ/M/M/RAD 
F2 : SOLAR PARAMETER DEPENDING ON RADIUS EARTH SUN KJ/M/M/RAD 
GSC : SOLAR CONSTANT IN W/M/M 
HRZTOT : GLOBAL IRRADIATION IN KJ/M/M 
10 : EXTRATERRESTRIAL HORIZONTAL IRRADIATION IN KJ/M/M 
KTl : CLEARNESS INDEX FROM SDS 
KT2 : RECALCULATED CLEARNESS INDEX 
TBI : BEAM NORMAL rRANSMITTANCE FROM SDS 
TB2 : RECALCULATED BEAM NORMAL TRANSMITTANCE 
ZONE : TIME ZONE OF LOCALITY 
INTEGER YR,DAY,HR,BADPER 
REAL KT1,KT2,I0N,I0,I02,I0N2 

CONSTANTS 
PI-4.0*ATAN(1.0) 
DRCONV=PI/180.0 
ALATD=33.4046 
ALAT=33.4046*DRCONV 
ALONGD=84.7478 



ALONST=75. 
Z0NE=5. 
GSC=1367. 
F1=GSC*12.0*3600.O/PI/1000.0 

C 
DATA AMAXKT.AMAXTB/O.0,0.0/ 
DATA AMKTPR/0.0/ 

C 
WRITE(30,*) ' ' 
WRITE (30,*) ' ' 
WRITE(30,40) *YR',*MO','DAY',*HR','MIN','HRZTOT','DIR','KTl', 
&'KT2','ERROR','TBI','TB2','ERROR*,'PCT','BADPER','DIFFl' 

40 F0RMAT(1X,A2,2X,A2,2X,A3,1X,A2,2X,A3,5X,A6,4X,A3,9X,A3,4X,A3, 
&5X,A5,6X,A3,4X,A3,4X,A5,5X,A3,2X,A6,2X,A5) 
WRITE (30,*) ' ' 
DO 30 1=1,1963 

C 
102=0.0 
I0N2=0.0 
0MEG1A=0. 
OMEG2A=0. 
0MEG3A=0. 
OMEG4A=0. 

C 
C...READ ONE HOURS DATA ENDING AT HR+MIN/60 

READ(26,10) YR,MO,DA?,HR,MIN,KTl,TBI,HRZTOT,DIR,PCT,BADPER 
10 FORMAT(IX,12,2X,12,2X,3(12,IX),IX,F5.3,2X,F5.3,2 (2X,F7.1), 

&2X,F4.2,2X,I2) 
C 
C...CALL SUBROUTINE HELGO FOR 0:00 HOURS 

CALL HELGO(YR,MO,DAY,0.,ALONGD,ALATD.ALONST,ZONE,ALPHA, 
&DELTA,EOT,OMEGA,R) 
YR=YR-1900 

C...TO PRFORM CALCULATIONS AT THE MID-PERIOD FOR CKTTB1 
C MUST CALCULATE THE CIVIL LOCAL TIME 
C CVLT=(HR+MIN/60.)-0.5 
C AND CALL HELGO FOR TIME-0.5 HOURS 
C CALL HELGO(YR,MO,DAY,CVLT,ALONGD,ALATD,ALONST,ZONE,ALPHA, 
C DELTA,EOT,OMEGA,R) 
C 
C... CALCULATE OMEGA AT THE MIDDLE OF THE PERIOD 

ALONGD=84.7478 
AMST-CVLT+(ALONST-ALONGD)/15. 
AST=AMST+EOT/60. 
OMEGA=(AST-12.0)*15.*DRCONV 

C 
C...CALCULATE THE HOUR ANGLES AT THE START END OF THE PERIOD 

0MEGA1=0MEGA-15.0/2.*DRCONV 
OMEGA2=OMEGA+15.0/2.*DRCONV 

C...CORRECT HOUR ANGLES FOR FIRST AND LAST PERIODS OF DAY 



WSS=ACOS(-TAN(ALAT)*TAN(DELTA) ) 
IF(0MEGA2.GT.WSS) 0MEGA2=WSS 
IF (OMEGAl. LT.-WSS) OMEGAl—WSS 

C 
C...DETERMINE MISSING PERIOD 

IPD=IFIX(AMOD(FLOAT(BADPER),10.)) 
C...DETERMINE HOUR ANGLES 
C IF FIRST PERIOD IS MISSING 

IF (IPD.EQ.1) OMEGAl-OMEGAl+15./4.*DRCONV 
C IF LAST PERIOD IS MISSING 

IF (IPD.EQ.4) 0MEGA2=0MEGA2-15./4.*DRC0NV 
C IF SECOND PERIOD IS MISSING 

IF (IPD.EQ.2) THEN 
0MEGlA=0MEGAl+15./4.*DRCONV 
0MEG2A=0MEGlA+15./4,*DRC0NV 

C CALCULATE THE EXTRATER. HORIZONTAL IRRADIATION 
C FOR THE MISSING PERIOD 

102=(Fl/R**2)*((COS(DELTA)*COS(ALAT)*(SIN(0MEG2A)-SIN(OMEGlA))) 
&+((0MEG2A-0MEG1A)*SIN(DELTA)*SIN(ALAT))) 

C CALCULATE THE EXTRATTER. NORMAL IRRADIATION 
C FOR THE MISSING PERIOD 

I0N2=3.6*GSC/R**2*(OMEG2A-OMEGlA)*180./PI/15. 
END IF 

C IF THIRD PERIOD IS MISSING 
IF (IPD.EQ.3) THEN 

OMEG3A=OMEGAl+15./2.*DRCONV 
0MEG4A=0MEG3A+15./4.*DRCONV 

C CALCULATE THE EXTRATER. HORIZONTAL IRRADIATION 
C FOR THE MISSING PERIOD 

102=(Fl/R**2)*((COS(DELTA)*COS(ALAT)*(SIN(0MEG4A)-SIN(0MEG3A))) 
&+((0MEG4A-0MEG3A)*SIN(DELTA)*SIN(ALAT))) 

C CALCULATE EXTRATTER. NORMAL IRRADIATION 
I0N2=3.6*GSC/R**2*(OMEG4A-OMEG3A)*180./PI/15. 
END IF 

C 
C... CALCULATE EXTRATERRESTRIAL NORMAL RADIATION 

G0N=GSC/R**2 
C 
C...CALCULATE EXTRATERRESTRIAL NORMAL IRRADIATION 

ION=3.6*GON*(OMEGA2-OKEGA1)*180.0/PI/15. 
C...ACCOUNT FOR A MISSING PERIOD 

I0N=I0N-I0N2 
C 
C...CALCULATE EXTRATERRESTRIAL HORIZONTAL IRRADIATION 

F2=F1/R**2 
I0=F2*((COS(DELTA)*C0S(ALAT)*(SIN(0MEGA2)-SIN(OMEGAl))) 

&+((0MEGA2-0MEGA1)ASIN(DELTA)*SIN(ALAT) ) ) 
C...ACCOUNT FOR A MISSING PERIOD 

10=10-102 
C 



c 
C... CALCULATE CLEARNESS INDEX 

KT2=HRZT0T/I0 
C 
C... CALCULATE BEAM NORMAL TRANSMITTANCE 

TB2-DIR/ION 
C 
C...CALCULATE ERROR BETWEEN THE NEW AND OLD VALUES OF KT, TB 

EKT-ABS(KT2-KT1) 
ETB-ABS(TB2-TB1) 

C 
C...CALCULATE % DIFFERENCE BETWEEN THE TWO VALUES 

DIFF1-((KT1-KT2)/KT1)*100. 
C 
C... CALCULATE MAXIMUM CORRESPONDING ERRORS 

IF (EKT.GT.AMAXKT) AMAXKT-EKT 
IF (ETB.GT.AMAXTB) AKAXTB-ETB 

C 
C... CALCULATE MAXIMUM I ERROR 

IF (DIFF1.GT.AMKTFR) AMKTPR-DIFF1 
C 

WRITE (30,20) YR,M0,DAY,HR,MIN,HRZT0T,DIR,KT1,KT2,EKT,TB1,TB2, 
&ETB,PCT,BADPER,DIFF1 

20 FORMAT(IX,12,4(2X,12),4X,2(F7.1,2X),4X,2(F5.3,2X),F9.5, 
&3X,2(F5.3,2X),F9.5,2X,F4.2,2X,I2,5XtF6.3) 

C 
30 CONTINUE 

WRITE(30,*) ' ' 
WRITE (30,*) ' ' 
WRITE(30,31) 'MAXIMUM ERROR FOR KT -'.AMAXKT 

31 F0RMAT(1X,A22,1X,F6.5) 
WRITE(30,32) 'MAXIMUM ERROR FOR TB -',AMAXTB 

32 F0RMAT(1X,A22,1X,F6.5) 
C 

WRITE(30,33) 'MAXIMUM 7. ERROR FOR KT=',AMKTPR 
33 FORMAT(lX,A23,lXtF6.3) 

END 



144 

PROGRAM LSMAIN7(INPUT,OUTPUT,TAPE5=INPUT,TAPE6==OUTPUT,TAPE26, 
&TAPE13,TAPE25) 

C 
C C. BALARAS 4-8-85 
C C. BALARAS A-22-85 
C 
C...IN THIS UPDATED VERSION THE DATA THAT WILL ALLOW US TO RECALCULATE 
C THE KT AND TB, IS INCLUDED IN TAPE25. 
C...THIS PROGRAM PUTS THE DATA FROM TAPE26 IN ORDER, BASED ON THE 
C INCREASING CLEARNESS INDEX. OUTPUT DATA FILE IS IN TAPE25. 
C... 

DIMENSION KT2C811A),KT1(8114,1),YR(8114,1),MO(8114,l), 
&DAY(8114,1),HR(8114,1),MIN(8114,1) 
COMMON /RAD/ KT1,KT2,NPAIRS,TAVE,YR,MO,DAY,HR,MIN 
INTEGER YR,MO,DAY,HR,MIN 
REAL KT1.KT2 

C...ENTER DATA FROM 5-YEAR PROCESSING 
NPAIRS=8114 

DO 100 J=l,8114 
READ(26,33) YR(J,1),MO(J,l),DAY(J,1),HR(J,1),MIN(J,1),KT1(J,1) , 

&IKT2(J) 

33 F0RMAT(1X,I2,4(2X,I2),26X,2(F5.3,2X)) 
100 CONTINUE 
C...SORT THE DATA 

CALL SORTR 
STOP 
END 



SUBROUTINE SORTR 
C...ARRANGES CLEARNESS AND TRANSMITTANCE DATA IN ASSENDING ORDER 

COMMON /RAD/ KT1,KT2,NPAIRS,TAVE,YR,MO,DAY,HR,MIN 
DIMENSION KT2(8114),IRVS(8114),KT1(8114,1),WK(1),YR(8114,1), 
&MO(8114,l),DAY(8114,l),HR(8114,l),MIN(8114,1) 
DIMENSION IRVS2 (8114),IRVS3 (8114),IRVS4(8114),IRVS5(8114), 
&IRVS6C8114),IRVS7(8114) 
INTEGER YR,MO,DAY,HR,MIN 

C... 
DO 10 I=1,NPAIRS 

10 IRVS(I)-I 
C... 

CALL VSRTP(KT2,NPAIRS,IRVS) 
WRITE (13,*) IRVS 

C... 
DO 200 1=1,NPAIRS 

200 IRVS2(I)-IRVS(I) 
DO 201 1=1,NPAIRS 

201 IRVS3(I)=IRVS(I) 
DO 202 1=1,NPAIRS 

202 IRVS4(I)=IRVS(I) 
DO 203 1=1,NPAIRS 

203 IRVS5(I)=IRVS(I) 
DO 204 I-1,NPAIRS 

204 IRVS6(I)=IRVS(I) 
CALL VSRTU(KTl,8114,NPAIRS,1,1,IRVS,WK) 
CALL VSRTU(YR,8114,NPAIRS,1,1,IRVS2,WK) 
CALL VSRTU(MO,8114,NPAIRS,1,1,IRVS3,WK) 
CALL VSRTU(DAY,8114,NPAIRS,1,1,IRVS4,WK) 
CALL VSRTU (HR,8114,NPAIRS,1,1,IRVS5,WK) 
CALL VSRTU(MIN,8114,NPAIRS,1,1,IRVS6,WK) 
WRITE (6,*) 'ARRAYS ARE SORTED' 
DO 101 K-1,8114 
WRITE(25,21) YR(K,1) ,MO(K,1) ,DAY(K,1) ,HR(K,1) ,MIN(K,1) ,KT1(K,1) , 

&.KT2 (K) 
101 CONTINUE 
21 F 0 R M A T ( 1 X , I 2 , 2 X , I 2 , 2 X , I 2 , 1 X , I 2 , 1 X , I 2 , 3 ( 2 X , F 5 . 3 ) ) 

C. . . 
RETURN 
END 
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THE FOLLOWING SUBROUTINE MAY BE A PROPRIETARY PRODUCT AND HAS 
BEEN PURCHASED OR SUBSCRIBED TO BY GEORGIA TECH FOR OUR CONTROL DATA 
USERS. ANY REPRODUCTION OF THIS CODE, AS IN A THESIS OR DISSERTATION 
FOR DUPLICATION OF RESULTS, SHOULD INCLUDE THE FOLLOWING STATEMENTS: 

THE LISTED CODE IS PART OF A PROPRIETARY PRODUCT BELONGING 
TO . 

THE LISTINGS ARE REPRODUCED WITH THE PERMISSION OF 

THE LISTINGS MAY NOT BE EXTRACTED FOR OTHER PURPOSES, OR USED 
AS THE BASIS FOR ANY SOFTWARE DEVELOPMENT. 

IMSL ROUTINE NAME - VSRTP 

COMPUTER 

LATEST REVISION 

PURPOSE 

USAGE 

ARGUMENTS A 

LA 

IR 

- CDCFT5/SINGLE 

JANUARY 1, 1978 

- SORTING OF ARRAYS BY ABSOLUTE VALUE -
PERMUTATIONS RETURNED 

- CALL VSRTP (A,LA,IR) 

- ON INPUT, A CONTAINS THE ARRAY TO BE SORTED, 
ON OUTPUT, A CONTAINS THE SORTED ABSOLUTE 
VALUES OF THE ARRAY,. 

- INPUT VARIABLE CONTAINING THE NUMBER OF 
ELEMENTS IN THE ARRAY TO BE SORTED. 

- VECTOR OF LENGTH LA. 
ON INPUT, IR CONTAINS THE INTEGER VALUES 
1,2,...,LA. SEE REMARKS. 

ON OUTPUT, IR CONTAINS A RECORD OF THE 
PERMUTATIONS MADE ON THE VECTOR A. 

PRECISION/HARDWARE - SINGLE/ALL 

REQD. IMSL ROUTINES - NONE REQUIRED 

NOTATION 

REMARKS 

- INFORMATION ON SPECIAL NOTATION AND 
CONVENTIONS IS AVAILABLE IN THE MANUAL 
INTRODUCTION OR THROUGH IMSL ROUTINE UHELP 

THE VECTOR IR MUST BE INITIALIZED BEFORE ENTERING 
VSRTP. ORDINARILY, IR(1)=1, IR(2)=2, 
IR(LA)-LA. FOR WIDER APPLICABILITY, ANY INTEGER 
THAT IS TO BE ASSOCIATED WITH A(I) FOR 1=1,2,...,LA 



C MAY BE ENTERED INTO IR(l). 
C 
C COPYRIGHT - 1978 BY IMSL, INC. ALL RIGHTS RESERVED. 
C 
C WARRANTY - IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN 
C APPLIED TO THIS CODE. NO OTHER WARRANTY, 
C EXPRESSED OR IMPLIED, IS APPLICABLE. 
C 
c  

C 
SUBROUTINE VSRTP (A,LA,IR) 

C SPECIFICATIONS FOR ARGUMENTS 
INTEGER LA,IR(LA) 
REAL A (LA) 

C SPECIFICATIONS FOR LOCAL VARIABLES 
INTEGER IU(21),IL(21),I,M,J,K,IJ,IT,L,ITT 
REAL T,TT,R 

C FIRST EXECUTABLE STATEMENT 
C FIND ABSOLUTE VALUES OF ARRAY A 

IF (LA.LE.O) RETURN 
DO 5 1=1,LA 

IF (A(I) .LT. 0.0) A(I)=-A(I) 
5 CONTINUE 
M-l 
1-1 
J-LA 
R=.375 

10 IF (I .EQ. J) GO TO 55 
15 IF (R .GT. .5898437) GO TO 20 

R=R+3.90625E-2 
GO TO 25 

20 R=R-.21875 
25 K=I 

C SELECT A CENTRAL ELEMENT OF THE 
C ARRAY AND SAVE IT IN LOCATION T 

IJ=I+(J-I)*R 
T=A(IJ) 
IT=IR(IJ) 

C IF FIRST ELEMENT OF ARRAY IS GREATER 
C THAN T, INTERCHANGE WITH T 

IF (A(I) .LE. T) GO TO 30 
A(IJ)=A(I) 
A(I)=T 
T-A(IJ) 
IR(IJ)=IR(I) 
IR(I)-IT 
IT-IR(IJ) 

30 L=J 
C IF LAST ELEMENT OF ARRAY IS LESS THAN 
C T, INTERCHANGE WITH T 



IF (A(J) .GE. T) GO TO 40 
A(IJ)-ACJ) 
A(J)-T 
T-A(IJ) 
IR(IJ)-IR(J) 
IR(J)-IT 
IT=IR(IJ) 

IF (A(I) .LE. T) GO TO 40 
A(IJ)-A(I) 
A(I)-T 
T-A(IJ) 
IR(IJ)=IR(I) 
IR(l)-IT 
IT-IR(IJ) 
GO TO 40 

35 IF (A(L).EQ.A(K)) GO TO 40 
TT=A(L) 
A(L)=A(K) 
A(K)=TT 
ITT=IR(L) 
IR(L)=IR(K) 
IR(K)=ITT 

40 L=L-1 
IF (A(L) 

45 K=K+1 
IF (A(K) 

GT. T) GO TO 40 

LT. T) GO TO 45 

IF (K .LE. L) GO TO 35 

IF FIRST ELEMENT OF ARRAY IS GREATER 
THAN T, INTERCHANGE WITH T 

FIND AN ELEMENT IN THE SECOND HALF OF 
THE ARRAY WHICH IS SMALLER THAN T 

FIND AN ELEMENT IN THE FIRST HALF OF 
THE ARRAY WHICH IS GREATER THAN T 

INTERCHANGE THESE ELEMENTS 

SAVE UPPER AND LOWER SUBSCRIPTS OF 
THE ARRAY YET TO BE SORTED 

IF (L-I 
IL(M)=I 
IU(M)=L 
I-K 
M=M+1 
GO TO 60 

50 IL(M)=K 
IU(M)=J 
J=L 
M=M+1 
GO TO 60 

55 M-M-l 

LE. J-K) GO TO 50 

BEGIN AGAIN ON ANOTHER PORTION OF 
THE UNSORTED ARRAY 



IF (M .EQ. 0) RETURN 
I-IL(M) 
J=IU(M) 

60 IF (J-I .GE. 11) GO TO 25 
IF (I .EQ. 1) GO TO 10 
1=1-1 

65 1=1+1 
IF (I .EQ. J) GO TO 55 
T-A(I+I) 
ir-iR(rt-i) 
IF (A(I) .LE. T) GO TO 65 
K-I 

70 A(K+1)=A(K) 
IR(K+1)=IR(K) 
K-K-l 
IF (T .LT. A(K)) GO TO 70 
A(K+1)=T 
IR(K+1)=IT 
GO TO 65 
END 
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THE FOLLOWING SUBROUTINE MAY BE A PROPRIETARY PRODUCT AND HAS 
BEEN PURCHASED OR SUBSCRIBED TO BY GEORGIA TECH FOR OUR CONTROL DATA 
USERS. ANY REPRODUCTION OF THIS CODE, AS IN A THESIS OR DISSERTATION 
FOR DUPLICATION OF RESULTS, SHOULD INCLUDE THE FOLLOWING STATEMENTS: 

THE LISTED CODE IS PART OF A PROPRIETARY PRODUCT BELONGING 
TO . 

THE LISTINGS ARE REPRODUCED WITH THE PERMISSION OF 

THE LISTINGS MAY NOT BE EXTRACTED FOR OTHER PURPOSES, OR USED 
AS THE BASIS FOR ANY SOFTWARE DEVELOPMENT. 

IMSL ROUTINE NAME - VSRTU 

COMPUTER 

LATEST REVISION 

PURPOSE 

USAGE 

ARGUMENTS 

IZ 

N 
M 
IND 

IR 

WK 

- CDCFT5/SINGLE 

- JANUARY 1, 1978 

- INTERCHANGE THE ROWS OR COLUMNS OF A MATRIX 
USING A PERMUTATION VECTOR SUCH AS THE ONE 
OBTAINED FROM IMSL ROUTINES VSRTP OR 
VSRTR 

- CALL VSRTU (2,IZ,N,M,IND,IR,WK) 

-INPUT MATRIX OF DIMENSION N BY M TO BE 
INTERCHANGED. ON OUTPUT, Z CONTAINS 
THE INTERCHANGED MATRIX. 

- ROW DIMENSION OF MATRIX Z EXACTLY AS 
SPECIFIED IN THE DIMENSION STATEMENT IN THE 
CALLING PROGRAM. (INPUT) 

- NUMBER OF ROWS IN Z. (INPUT) 
- NUMBER OF COLUMNS IN Z. (INPUT) 
- .CNPUT OPTION PARAMETER. 

IF IND IS GREATER THAN ZERO, THE ROWS OF Z 
WILL BE INTERCHANGED ACCORDING TO THE 
INFORMATION IN VECTOR IR. 

OTHERWISE, THE COLUMNS OF Z WILL BE 
INTERCHANGED ACCORDING TO THE 
INFORMATION IN VECTOR IR. 

- INPUT INTEGER PERMUTATION VECTOR OF LENGTH 
N, IF IND IS POSITIVE, AND OF LENGTH M 
OTHERWISE. IR CONTAINS THE FIRST N OR M 
POSITIVE INTEGERS. SEE PROGRAMMING NOTES. 
IR IS DESTROYED ON OUTPUT. 

- WORK VECTOR OF LENGTH M IF IND IS POSITIVE 
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PRECISION/HARDWARE 

REQD. IMSL ROUTINES 

NOTATION 

COPYRIGHT 

WARRANTY 

AND OF LENGTH N OTHERWISE. 

- SINGLE/ALL 

- NONE REQUIRED 

- INFORMATION ON SPECIAL NOTATION AND 
CONVENTIONS IS AVAILABLE IN THE MANUAL 
INTRODUCTION OR THROUGH IMSL ROUTINE UHELP 

- 1978 BY IMSL, INC. ALL RIGHTS RESERVED. 

- IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN 
APPLIED TO THIS CODE. NO OTHER WARRANTY, 
EXPRESSED OR IMPLIED, IS APPLICABLE. 

SUBROUTINE VSRTU (2,I2,N,M,IND,IR,WK) 

DIMENSION Z (IZ.l),WK(1) ,IR(1) 
FIRST EXECUTABLE STATEMENT 

IPTR - 1 
IF (IND .GT. 0) GO TO 45 

SORT Z BY COLUMNS 
CHECK IF ALL COLUMNS ARE SORTED 

5 IF (IPTR .GE. M) GO TO 85 
CHECK IF COLUMN IPTR HAS BEEN SORTED 

IF (IR(IPTR) .GT. 0) GO TO 15 
10 IPTR = IPTR +•1 

GO TO 5 
CHECK IF COLUMN IPTR NEED BE MOVED 

15 IF (IR(IPTR) .EQ. IPTR) GO TO 10 
K = IPTR 

STORE COLUMN IPTR IN TEMPORARY VECTOR 
DO 20 I - 1,N 

WK(I) - Z(I,K) 
20 CONTINUE 
25 L = IR(K) 

IF (L .EQ. IPTR) GO TO 35 

DO 30 I = 1,N 
Z(I,K) - Z(I,L) 

30 CONTINUE 

IR(K) = 0 
K = L 
GO TO 25 

CHECK IF TEMPORARY VECTOR NEEDED HERE 

INSERT COLUMN L INTO COLUMN K 

MARK COLUMN K AS ALREADY SORTED 

INSERT TEMPORARY VECTOR IN COLUMN K 
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35 DO 40 I = 1,N 
Z(I,K) - WK(I) 

40 CONTINUE 
IR(K) = 0 
GO TO 10 

SORT Z BY ROWS 
45 IF (IPTR .GE. N) GO TO 85 

IF (IR(IPTR) .GT. 0) GO TO 55 
50 IPTR - IPTR * 1 

GO TO 45 
55 IF (IR(IPTR) .EQ. IPTR) GO TO 50 

K = IPTR 
DO 60 I = 1,M 

WK(I) - Z(K,I) 
60 CONTINUE 
65 L = IR(K) 

IF (L .EQ. IPTR) GO TO 75 
DO 70 I = 1,M 

Z(K,I) - Z(L,I) 
70 CONTINUE 

IR(K) = 0 
K = L 
GO TO 65 

75 DO 80 I = 1,M 
Z(K,I) = WK(I) 

80 CONTINUE 
IR(K) = 0 
GO TO 50 

85 RETURN 
END 
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APPENDIX C 

TBREG5 : Model Development and Regression-Statistical Analysis 

SUBI : Subroutine to Calculate k and from Radiation Data 

CLRL : Subroutine to Plot Regression Lines 

MDFD : Subroutine to Calculate the Probability Distribution Function 

Development of Total Variation Identity 



PROGRAM TBREG5(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE26,TAPE2) 
C 
C C. BALARAS 31-5-85 
C C. BALARAS 6~6-85 
C 
C...PIECEWISE REGRESSION OF TB ON KT 
C...ASSUMES INPUT FILE IS SORTED BY KT 
C. 
C . VARIABLE DICTIONARY 
C SYY=TOTAL VARIATION 
C RSST= RESIDUAL VARIATION 
C RSS(IB)= RESIDULA VARIATION FOR BAND IB 
C NPTST= TOTAL NUMBER OF DATA POINTS 
C.MODIFICATIONS NEEDED 
C..OPEN PLOT FILE, PLOT AND LABEL AXES 
C.AFTER EACH DATUM IS READ PLOT THAT POINT 
C.AFTER PROCESSING PLOT THE REGRESSION LINES 
C.AFTER PROCESSING CALCULATE THE F-STATISTIC 
C . .DECLARATIONS 

DIMENSION BETA(9),XO(10) ,HBETA(9) 
DIMENSION RSS(9) 
DIMENSION IBUF(512) 
DIMENSION KTARR(8112),TBARR(8112),IRVS(8112),WK(1) 
REAL KTiK,KTl,TBlfTB,ION,IO,I02,ION2 
REAL KTARR 
INTEGER BADPER,YR,DAY,MO,HR,MIN 
WRITE (6,*) 'WHAT IS THE TITLE (ALL 80)' 
READ(5,10) TITLE 

10 FORMAT(A6) 
WRITE (6,*) 'PERFORM CALCULATIONS AT MID-PERIOD? 1 YES, 0 NO' 
READ(5,5) ICAL 
IF(ICAL.EQ.l) THEN 
WRITE(6,*) 'KT CALCULATED AT CURRENT TIME* 
ELSE 
WRITE (6,*) 'KT FROM DATA FIE' 
ENDIF 
WRITE (6,*) 'PERFORM CALCULATIONS FOR ALL 5YEARS? 1 YES, 0 NO' 
READ(5,6) IALL 

6 FORMAT(II) 
WRITE(6,*) 'CALCULATIONS FOR SEASONAL ANALYSIS? 1=YES, 0=NO' 
READ(5,14) ISEASO 

14 FORMAT(II) 
IF (ISEASO.EQ.l) THEN 
WRITE (6,*) 'PERFORM CALCULATIONS FOR WHAT MONTHS ?' 
WRITE (6, *) '01-JAN/02-FEB, ... 12-DEC 
READ(5,15) IMO 

15 FORMAT(12) 
END IF 
IF (IALL.EQ.O) THEN 
WRITE(6,*) 'PERFORM CALCULATIONS FOR WHAT YEAR? (I.E. 80)' 



'SYMBOL FOR PLOTTING REGRESSION LINES (5)' 
ISYM 

'SYMBOL FOR PLOTTING RANDALL WHITSON MODEL (15) 
ISYMRW 

'SHOW DATA POINTS? 1 YES, 0 NO' 
I SHOW 

'WHAT IS THE HYPOTHESIZE'!) MODEL?' 
'1-79, 2-30, 3=81, 4-83, 5=84, 6=5Y, 7-R-W 
IHYPO 

READ (5,7) IYR 
7 FORMAT(12) 

ELSE 
IYR=0 
END IF 

5 FORMAT(II 
WRITE (6,* 
READ (5, 9) 

9 FORMAT(II 
WRITE (6,* 
READ(5,12 

12 FORMAT(12 
WRITE (6,* 
READ(5,11 

11 FORMAT(II 
WRITE (6,* 
WRITE(6,* 
READ(5,13 

13 FORMAT(II 
C...GLOBAL INITIALIZATIONS 

DATA BETA/9*0.0/ 
DATA XO/0.0,0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85/ 
IB-1 
IFRST-1 
SUMTSQ-SUMT-0.0 

C 
C...CONSTANTS 

ALATD=33.4046 
ALGNGD=84.7478 
ALONST=75.0 
ZONE=5.0 
GSC=1367.0 
NPAIRS=0 

C 
C...INITIALIZE VARIABLES FOR FIRST BAND 

YO-0.0 
SUMX=SUMY=SUMXSQ=SUMYSQ=SUMXY=0.0 
NPTS=NPTST=0 

C..***OPEN PLOT FILES, DRAW AND LABEL AXES, SET SCALES 
CALL PLOTS(IBUF,512,2,40) 
CALL PLOTMX(18.5) 
CALL FACTOR(1.5) 
CALL PLOT(3.0,1.0,-3) 

C...DRAW X-AXIS 
CALL AXIS(0.0,0.0,' ',-10,5.0,0.0,0.0,0.2) 

C...DRAW Y-AXIS 
CALL AXIS(0.0,0.0,* ',10,5.0,90.0,0.0,0.2) 

C...TITLE GRAPH 
CALL SYMBOL(2.5,5.15,0.2,TITLE,0.0,6) 

C...INSERT LABELS 



CALL SYMBOL(2.4,-0*5,0.30,'&<K;T',0.0,5) 
CALL SYMBOL(-0.6,2.5,0.30,'&<#S;B',0.0,6) 

C...BEGIN ANALYSIS 
C...ENTER HOURLY LOOP 

DO 200 IDA-1,8112 
C...READ ONE HOURS DATA 

READ(26,20) YR,MO,DAY,HR,MIN,HRZTOT,DIR,KT1, 
&KT,TB1,TB,PCT,BADPER 

20 FORMAT (IX,12,4(2X,12),4X,2 (F7.1,2X),4X,2(F5.3,2X), 
&4X,2(F5.3,2X),4X,F4.2,2X,12) 

C...TEST FOR SEASONAL CALCULATIONS 
IF (ISEAS0.EQ.1) THEN 
IF (MO.NE.IMO) THEN 
GO TO 200 
END IF 
END IF 

C...TEST FOR ANNUAL CALCULATIONS 
IF (IALL.EQ.O) THEN 
IF (YR.NE.IYR) THEN 
GO TO 200 
END IF 
END IF 

C 
NPAIRS-NPAIRS+1 
IF(ICAL.EQ.l) THEN 

C...CALL SUBROUTINE HELGO FOR TIME-0.5 HOURS 
CVLT=(HR+MIN/60.)-0.5 
CALL HELGO(YR,MO,DAY,CVLT,ALONGD,ALATD,ALONST,ZONE,ALPHA, 
&DELTA,EOT,OMEGA,R) 

C 
C...CALL SUBROUTINE IRRADIATION 

CALL SUBI(OMEGA,ALATD,DELTA,BADPER,GSC,IFRST,R,HRZTOT,DIR, 
&KT,TB) 
ELSE 
KT=KT1 
TB'TBl 
ENDIF 
IF (ISHOW.EQ.O) GO TO 703 

C..***PLOT THIS DATUM USING 'CALL SYMBOL' 
K=KT/.2 
T-TB/,2 
CALL SYMBOL(K,T,0.035,19,0.0,-1) 

C.PLACE DATA IN ARRAYS 
703 KTARR(NPAIRS)=KT 

TBARR(NPAIRS)=TB 
IRVS(NPAIRS) =NPAIRS 

200 CONTINUE 
WRITE(6,*) * NPAIRS-',NPAIRS 

C...CALL IMSL SORTING ROUTINES 
END IF 



CALL VSRTP(KTARR,NPAIRS,IRVS) 
CALL VSRTU(TBARR,NPAIRS,NPAIRS,1,1,IRVS,WK) 
DO 300 IDA-1,NPAIRS 
KT=KTARR(IDA) 
TB=TBARR(IDA) 
IF( (KT.GT.XO(lB+l)).OR.(IDA.EQ.NPAIRS ) ) THEN 
IF(SUMXY.GT.O.O) THEN 
BETA(IB)=SUMXY/SUMXSQ 

ELSE 
BETA(IB)=0.0 

ENDIF 
YO=YO+BETA(IB)*(XO(IB+1)-XO(IB) ) 
RSS(IB)=SUMYSQ-2.0)VBETA(IB)*SUMXY+BETA(IB)*BETA(IB)*SUMXSQ 
NPTST=NFTST+NPTS 
IB=IB+1 

C REINITIALIZE VARIABLES FOR NEXT BAND 
SUMX=SUMY=SUMXSQ=SUMYSQ=SUMXY=0.O 
NPTS=0 

C BRANCH IF DATA IS EXHAUSTED 
ENDIF 

C ANALYSIS OF BAND NO. IB CONTINUES 
XBND=KT-X0(IB) 
YBND=TB-YO-
SUMT=SUMT+TB 
SUMTSQ=SUMTSQ+TB*TB 
SUMX-SUMX+XBND 
SUMY=SUMY+YBND 
SUMXSQ=SUMXSQ+XBND*XBND 
SUMYSQ=SUMYSQ+YBND*YBND 
SUMXY =SUMXY +XBND*YBND 
NPTS=NPTS+1 

C THIS HOUR'S COMPUTATIONS COMPLETED 
C WRITE (6,988) NPTS,KT,TB,SUMXSQ,SUMXY 
C988 FORMAT(l7,2F7.4,2F10.3) 
C ALL HOURLY COMPUTATIONS COMPLETED 
300 CONTINUE 
C...PLOT THE REGRESSION LINES 
C FOR THE SHENANDOAH AND R-W MODEL 

CALL CLRL(BETA,XO,ISYM,ISYMRW) 
C...COMPLETE THE PLOTTING JOB 

CALL PLOT(7.0,0.0,3) 
CALL PLOT(7.0,0.0,999) 

C...SUMMARY COMPUTATIONS 
TAVE=SUMT/FLOAT(NPTST) 
SYY=SUMTSQ-2.0*TAVE*SUMT+NPTST*TAVE*TAVE 
WRITE(6,*) BETA 
WRITE(6,*) RSS 
WRITE(6,*) SYY 

C...REPEAT SUMMARY COMPUTATIONS 
RSST=0.0 
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SYY-0.0 
YO-O.O 
IB-1 
DO 600 JK-1,NPAIRS 
KT=KTARR(JK) 
TB=TBARR(JK) 
IF(KT.GT.X0(IB+1) ) THEN 
Y0-Y0+BETA(IB)*(XO(IB+1)~X0 (IB) ) 
IB-IB+'I 

END IF 
YEST-YO+BETA (IB)* (KT-XO (IB)) 
RSST=RSST+(TB-YEST)**2 
SYY-SYY+ (TB-TAVE) 'Wr2 

600 CONTINUE 
C... CALCULATE THE EXPLAINED VARIATION 

SSREG-SYY-RSST 
C... CALCULATE THE COEFFICIENT OF CORRELATION 

AR=SQRT(SSREG/SYY) 
C... CALCULATE THE COEFFICIENT OF DETERMINATION 

AR2=AR*AR 
WRITE(6,*) SSREG,AR2 

C...REPEAT CALCULATIONS FOR THE HYPOTHESIZED 
C MODEL, ANNUAL MODEL OR THE RANDAL WHITSON MODEL 
C...SCF - SOLAR CONSTANT FACTOR, TO ACCOUNT FOR THE DIFFERENCE 
C IN THE SOLAR CONSTANT VALUE BETWEEN OUR VALUE 1367.0 
C AND THE VALUE USED FOR THE R-W MODEL (1377 W/M/M) 
C IN ALL OTHER CASES SCF-1 

SCF-1.0 
IF (IHYPO.EQ.1) THEN 
HBETA(2)-0. 
HBETA(3)=0.01680610898376 
HBETA(4)=0.2563727495389 
HBETA(5)=0.856204541161 
HBETA(6)=1.351087178326 
HBETA (7)-1.80842889396 
HBETA(8)-2.017398031243 
HBETA(9)=1.447819544956 
END IF 
IF (IHYPO.EQ.2) THEN 
HBETA (2)-0.0004458185646733 
HBETA(3)-0.03166244709482 
HBETA(4)-0.2337467649286 
HBETA(5)-0.8796391441972 
HBETA(6)-1.347261835858 
HBETA(7)-1.331416536751 
HBETA(8)-2.121394821706 
HBETA(9)=2.266402906436 
END IF 
IF (IHYPO.EQ.3) THEN 
HBETA(2)=0.0031907794 76716 



HBETA(3)-0.05111871536509 
HBETA(4)-0.2590704091887 
HBETA(5)-0.8850880372326 
HBETA(6)-1.643031036335 
HBETA(7)-1.525337244653 
HBETA(8)=2.352748816485 
HBETA(9)-1.333663078997 
END IF 
IF (IHYP0.EQ.4) THEN 
HBETA(2)-0.0 
HBETA(3)=0.03098476893561 
HBETA(4)=0.2879876505518 
HBETA(5)=1.071358223407 
HBETA (6) -1.560173112.096 
HBETA(7)=1.495866981226 
HBETA(8)=2.005941455909 
HBETA(9)-0.8438980215066 
END IF 
IF (IHYP0.EQ.5) THEN 
HBETA(2)=0.0 
HBETA(3)=0.03098057710589 
HBETA(4)=0.1733451088209 
HBETA(5)=1.174526276132 
HBETA(6)-1.511159104577 
HBETA(7)-1.639333183761 
HBETA(8)=1.932529200337 
HBETA(9)=0.0 
END IF 
IF (IHYP0.EQ.6) THEN 
HBETA(2)=0.0007178049038916 
HBETA(3)=0.02972517920018 
HBETA(4)=0.2490303701482 
HBETA(5)=0.9466134865964 
HBETA(6)=1.477191594315 
HBETA(7)=1.56801154 
HBETA(8)=2.077319493401 
HBETA(9)=1.377810138749 
END IF 
IF (IHYPO.EQ.7) THEN 
HBETA(2)-0.01 
HBETA(3)=0.06 
HBETA(4)=0.32 
HBETA(5)=0.82 
HBETA(6)=1.56 
HBETA(7)=1.69 
HBETA(8)-X.49 
HBETA(9)=0.27 

C...ACCOUNT FOR THE SOLAR CONSTANT DIFFERENCE 
SCF-1367.0/1377.0 
END IF 



HRSST=0.0 
HSYY=0.0 
Y0=0.0 
IB=1 

C 
DO 601 JL-1,NPAIRS 
KT-KTARR(JL)*SCF 
TB-TBARR(JL)*SCF 
IF (KT.GT.XO(IB+l)) THEN 
YO-YO+HBETA(IB) * (XO (IB+1) -XO (IB) ) 
IB-IB+1 
END IF 
HYEST=Y0+HBETA(IB)*(KT-XO (IB)) 
HRSST=HRSST+(TB-HYEST)**2 
HSYY=HSYY+(TB-TAVE)**2 

601 CONTINUE 
C 
C...CALCULATE THE F-STATISTIC 
C HRSST=RESIDUAL VARIATION FOR THE HYPOTHESIZED MODELS 
C (ANNUAL MODEL OR R-W) 
C RSST=RESIDUAL VARIATION FOR THE ALTERNATIVE HYPOTHESIS 
C (FIVE YEAR MODEL) 
C DFH=DEGREES OF FREEDOM FOR HYPOTHESIZED MODEL, N 
C DFA=DEGREES OF FREEDOM FOR THE ALTERNATIVE MODEL, N-P 
C N-NUMBER OF DATA POINTS, 8112 
C P-NUMBER OF PARAMETERS, 8 
C 

DFH=8112 
DFA=8112-8 
F-((HRSST-RSST)/(DFH-DFA))/(RSST/DFA) 

C... CALCULATE CONFIDENCE AND ALPHA 
Nl=8 
N2=8112-8 
CALL MDFD(F,N1,N2,P,IER) 
ALPHA=1.-P 

C 
WRITE (6,*) RSST,HRSST,F,P,ALPHA 
WRITE(6,*) RSST,SYY 
STOP 
END 



SUBROUTINE SUBI(OMEGA,ALATD,DELTA,BADPER,GSC,IFRST,R,HRZTOT,DIR, 
&KT,TB) 

C 

c 
c 
c, 
c 
c 
c 
c 
c 
: 
c 
c 
c 
c 
c 
c 
c 
c 
G 

C BALARAS 5-31-85 

.SUBROUTINE TO RECALCULATE THE KT AND TB AT THE MIDPOINT OF 
EACH PERIOD. 

INPUTS: 
OMEGA 
ALATD 
DELTA 
BADPER 
GSC 
IFRST 
R 
HRZTOT 
DIR 

OUTPUTS: 
KT 
TB 

HOUR ANGLE IN RADIANS (FROM HELGO) 
LATITUDE OF LOCALITY IN DEGREES 
DECLINATION IN RADIANS (FROM HELGO) 
15-MINUTE PERIOD MISSING 
SOLAR CONSTANT, 1367 W/M/M 
TO PREVENT REPETITION OF CALCULATIONS 
EARTH-SUN DISTANCE IN AU (FROM HELGO) 
HOURLY HORIZONTAL IRRADIATION 
DIRECT BEAM IRRADIATION 

CLEARNESS INDEX AT THE MID-PERIOD 
HOURLY BEAM TRANSMITTANCE AT THE MID-PERIOD 

333 

INTEGER BADPER 
REAL KT,ION,IO,I02,ION2 
IF (IFRST.LT.l) GO TO 333 
PI-4.0*ATAN(1.0) 
DRCONV-PI/180.0 
ALAT=ALATD*DRCONV 
F1-GSC*12.0*3600.0/PI/1000.0 
FAl«3.6*GSC*180.0/PI/15.0 
IFRST=0 
CONTINUE 

..SUBROUTINE INITIALIZATIONS 
F2=F1/R**2 
FA2=FA1/R**2 
102=0.0 
ION2=0.0 
0MEG1A-0.0 
0MEG2A=0.0 
OMEG3A=0.0 
OMEGAA-0.0 

..CALCULATE THE HOUR ANGLES AT THE START END OF THE PERIOD 
OMEGAl=OMEGA-15.0/2.*DRCONV 
OMEGA2=OMEGA+15.0/2.*DRCONV 

..CORRECT HOUR ANGLES FOR FIRST AND LAST PERIODS OF DAY 
WSS=ACOS(-TAN(ALAT)*TAN(DELTA)) 
IF(OMEGA2.GT.WSS) OMEGA2-WSS 
IF(OMEGAl.LT.-WSS) OMEGAl=-WSS 

C...DETERMINE MISSING PERIOD 
IPD=IFIX(AMOD(FLOAT(BADPER),10.)) 



C...DETERMINE HOUR ANGLES 
C IF FIRST PERIOD IS MISSING 

IF (IPD.EQ.1) OMEGAl=OMEGAl + 15./4..*DRCONV 
C IF LAST PERIOD IS MISSING 

IF (IPD.EQ.4) OMEGA2«OMEGA2-15./4.*DRC0NV 
C IF SECOND PERIOD IS MISSING 

IF (IPD.EQ.2) THEN 
OMEGlA=OMEGAl+15./4.*DRCONV 
OMEG2A=OMEGlA+15./4.*DRCONV 

C CALCULATE THE EXTRATER. HORIZONTAL IRRADIATION 
C FOR THE MISSING PERIOD 

I02=F2*((COS(DELTA)*COS(ALAT)*(SIN(OMEG2A)-SIN(OMEGlA))) 
&+((OMEG2A-OMEG1A)*SIN(DELTA)* SIN(ALAT))) 

C CALCULATE THE EXTRATTER. NORMAL IRRADIATION 
C FOR THE MISSING PERIOD 

ION2=FA2*(OMEG2A-OMEG1A) 
END IF 

C IF THIRD PERIOD IS MISSING 
IF (IPD.EQ.3) THEN 

0MEG3A=0MEGAl +15 J2,*DRCONV 
0MEG4A=OMEG3A+15./4.*DRCONV 

C CALCULATE THE EXTRATER. HORIZONTAL IRRADIATION 
C FOR THE MISSING PERIOD 

I02=F2*((COS(DELTA)*COS(ALAT)*(SIN(0MEG4A)-SIN(OMEG3A))) 
&+((OMEG4A-OMEG3A)*SIN(DELTA)*SIN(ALAT))) 

C CALCULATE EXTRATTER. NORMAL IRRADIATION 
ION2=FA2*(OMEG4A-OMEG3A) 
END IF 

C 
.C...CALCULATE EXTRATERRESTRIAL NORMAL RADIATION 

GON=GSC/R**2 
C 
C... CALCULATE EXTRATERRESTRIAL NORMAL IRRADIATION 

ION-FA2*(OMEGA2-OMEGA1) 
C...ACCOUNT FOR A MISSING PERIOD 

ION=ION-ION2 
C 
C... CALCULATE EXTRATERRESTRIAL HORIZONTAL IRRADIATION 

IO=F2*((COS(DELTA)*COS(ALAT)*(SIN(OMEGA2)-SIN(OMEGAl))) 
&+((0MEGA2-0MEGA1)ASIN(DELTA)^SIN(ALAT))) 

C...ACCOUNT FOR A MISSING PERIOD 
IG-IO-I02 

C 
C... CALCULATE CLEARNESS INDEX 

KT=HRZTOT/IO 
C 
C... CALCULATE BEAM NORMAL TRANSMITTANCE 

TB=DIR/I0N 
RETURN 
END 



SUBROUTINE CLRL(BETA,XO,ISYM,ISYMRW) 

c 
c 
c 
c. 

C. BALARAS 5-31-85 c 
c 
c. .SUBROUTINE TO PLOT THE REGRESSION LINES FOR THE 
c SHENANDOAH AND R-W MODELS 
c INPUTS: 
c BETA : SLOPE COEFFICIENTS FOR EACH BAND 
c XO : INITIAL KT VALUES AT THE BEGINNING OF 
c EACH BAND 
c ISYM : SYMBOL FOR THE REGRESSION LINE FOR 
c SHENANDOAH MODEL 
c ISYMRW : SYMBOL FOR THE REGRESSION LINE FOR 
c 
c 

THE R-W MODEL c 
c 

DIMENSION BETA(9) ,XO(10) ,X(9) ,Y(9) ,XRW(9) , YRW(9) ,A(9) ,B(9) 
X(6)-0.0 
X(7)-0.2 
Y(6)«0.0 
Y(7)-0.2 
XRW(6)-0.0 
XRW(7)-0.2 
YRW(6)=0.0 
YRW(7)-0.2 

c. .INITIALIZE 
YO-O.O 

c. .RANDALL WHITSON SLOPES FOR SEPARATE BANDS 
A(2)-0.01 
B (2)-0.002 
A(3)«0.06 
B (3)—0.006 
A(4)-0.32 
B(4)—0.071 
A(5)-0.82 
B (5)—0.246 
A(6)-l.56 
B(6)—0.579 
A(7)-1.69 
B(7)—0.651 
A(8)-1.49 
B(8)— 0.521 
A(9)-0.27 
B(9)-0.395 

DO 700 J=2,9 
YO-(Y0+(XO(J)-XO(J-1))*BETA(J-1)) 
W-XO(J+l)-XO(J) 

DO 701 L=l,5 
COORDINATES FOR THE SHENANDOAH MODEL 
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X(L) = (XO(J)+W*(L-1)/4.0) 
Y (L) = (Y0+ (X (L) -XO (J) ) *BETA (J) ) 

C...COORDINATES FOR THE R~W MODEL 
XRW(L)=X(L) 
YRW (L) =B (J) +XRW (L) *A (J) 
XRW(L)=XRW(L)* (1377. 0/1367.0) 
YRW (L)=YRW(L)* (1377.0/1367.0) 

701 CONTINUE 
C 
C...PLOT CONNECTED LINEAR REGRESSION LINES 

CALL LINE(X,Y,5,1,1,ISYM) 
C...PLOT RANDALL WHITSON MODEL 

CALL LINE(XRW,YRW,5,1,1,ISYMRW) 
C 
700 CONTINUE 

RETURN 
END 



165 

THE FOLLOWING SUBROUTINE KAY BE A PROPRIETARY PRODUCT AND HAS 
BEEN PURCHASED OR SUBSCRIBED TO BY GEORGIA TECH FOR OUR CONTROL DATA 
USERS. ANY REPRODUCTION OF THIS CODE, AS IN A THESIS OR DISSERTATION 
FOR DUPLICATION OF RESULTS, SHOULD INCLUDE THE FOLLOWING STATEMENTS: 

THE LISTED CODE IS PART OF A PROPRIETARY PRODUCT BELONGING 
TO . 

THE LISTINGS ARE REPRODUCED WITH THE PERMISSION OF 

THE LISTINGS MAY NOT BE EXTRACTED FOR OTHER PURPOSES, OR USED 
AS THE BASIS FOR ANY SOFTWARE DEVELOPMENT. 

IMSL ROUTINE NAME - MDFD 

COMPUTER 

LATEST REVISION 

PURPOSE 

USAGE 

ARGUMENTS F 

Nl 

N2 

P 

IER 

PRECISION/HARDWARE 

REQD. IMSL ROUTINES 

CDCFT5/SINGLE 

JUNE 1, 1981 

F PROBABILITY DISTRIBUTION FUNCTION 

CALL MDFD (F,N1,N2,P,IER) 

INPUT CONSTANT TO WHICH INTEGRATION IS 
PERFORMED. F MUST BE GREATER THAN OR EQUAL 
TO ZERO. 

INPUT FIRST DEGREE OF FREEDOM. A POSITIVE 
INTEGER. 

INPUT SECOND DEGREE OF FREEDOM, A POSITIVE 
INTEGER. 

OUTPUT PROBABILITY THAT A RANDOM VARIABLE 
FOLLOWING THE F DISTRIBUTION WITH DEGREES 
OF FREEDOM Nl AND N2 WILL BE LESS THAN OR 
EQUAL TO INPUT F. 

ERROR PARAMETER. (OUTPUT) 
TERMINAL ERROR 
IER = 129 INDICATES EITHER Nl OR N2 IS 
LESS THAN ONE OR N1+N2 IS GREATER THAN 
20,000. P IS SET TO POSITIVE MACHINE 
INFINITY. 

IER - 130 INDICATES F IS LESS THAN ZERO. 
P IS SET TO POSITIVE MACHINE INFINITY. 

SINGLE/ALL 

MERROERFC, UERTST, UGETIO 



NOTATION - INFORMATION ON SPECIAL NOTATION AND 
CONVENTIONS IS AVAILABLE IN THE MANUAL 
INTRODUCTION OR THROUGH IMSL ROUTINE UHELP 

COPYRIGHT - 1978 BY IMSL, INC. ALL RIGHTS RESERVED. 

WARRANTY - IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN 
APPLIED TO THIS CODE. NO OTHER WARRANTY, 
EXPRESSED OR IMPLIED, IS APPLICABLE. 

SUBROUTINE MDFD (F,N1,N2,P,IER) 

SPECIFICATIONS FOR ARGUMENTS 
INTEGER 
REAL 

N1,N2,IER 
F,P 

SPECIFICATIONS FOR LOCAL VARIABLES 
INTEGER Il,I2P,l2,I,L2,MNM,MXM 
REAL ACONS,A,BIGE,B,CBR1,CBR2,C,DPL,DP,FlF,Fl,F2P, 
1 F2,R1D3,R2D9,R2DPI,RINFP,STS,S,TEMP 1,TEMP, 
2 THETA,VP,X1,X2,XI 
DATA RINFP/.126501A0831E+323/ 
DATA R2D9/.22222222222222/,R1D3/.33333333333333/ 

R2DPI = 2/PI 
DATA R2DPI/.63661977236758/ 
DATA B T_ GE/741.6/, ACONS/1.E215/ 

FIRST EXECUTABLE STATEMENT 
TEST FOR INVALID INPUT 

MXM = MAX0(N1,N2) 
MNM = MIN0(N1,N2) 
IF (MNM.LT.l.OR.MXM.GT.(20000-MNM)) GO TO 100 
IF (F.LT.0.0) GO TO 105 
IER = 0 
IF (F.EQ.0.0) GO TO 115 
Fl = Nl 
F2 - N2 
DP = 0.0 
VP = F1+F2-2.0 
FlF = F1*F 
F2P = F2+F1F 
XI = F2/F2P 
X2 = 1.0-X1 
IF (X2.EQ.0.0) GO TO 115 
IF ((Nl/2)*2-Nl.EQ.0.AND.Nl.LE.5O0) GO TO 5 
IF ((N2/2)*2-N2.EQ.0.AND.N2.LE.500) GO TO 30 
IF (N1+N2.LE.500) GO TO 55 
Fl = R2D9/F1 
F2 = R2D9/F2 
CBR1 = R1D3*ALQG(F) 
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IF (ABS(CBR1).GT.BIGE) GO TO 120 
CBR1 - EXP(CBRl) 
CBR2 - CBR1*CBR1 
S = (CBR1*(1.0-F2)-1.0+F1)/SQRT(F1+CBR2*F2) 
P-.70710678118655 
P - .5*ERFC(~P*S) 
GO TO 95 

C Nl IS EVEN AND LESS THAN 500 
5 TEMPI = 0. 
TEMP = ,5*F2*AL0G(X1) 
IF (N1.EQ.2) GO TO 25 
II = Nl-2 
XI = Fl 
DO 10 12=2,11,2 

L2 - 12 
XI - XI-2. 
VP = VP-2. 
DP = X2*VP/XI*(1.+DP) 
IF (DP.GT.ACONS) GO TO 15 

10 CONTINUE 
GO TO 25 

15 IF (L2.GE.I1) GO TO 25 
DPL = ALOG(DP) 
I2P = L2+2 
XI = F1-I2P 
DO 20 I2-I2P.I1,2 

VP = VP-2. 
DPL = DPL+AL0G(X2*VP/XI) 
XI - XI-2. 

20 CONTINUE 
TEMP = TEMP+DPL 
IF (ABS(TEMP).LE.BIGE) TEMPI = EXP(TEMP) 
P = 1.-TEMPI 
GO TO 95 

25 IF (ABS(TEMP).LE.BIGE) TEMPI = EXP(TEMP) 
P = 1.0-TEMP1*(1.0+DP) 
GO TO 95 

C N2 IS EVEN AND LESS THAN 500 
30 TEMPI = 0. 

TEMP = .5*F1*AL0G(X2) 
IF (N2.EQ.2) GO TO 50 
II = N2-2 
XI = F2 
DO 35 12=2,11,2 

L2 - 12 
XI - XI-2. 
VP - VP-2. 
DP = X1*VP/XI*(1.+DP) 
IF (DP.GT.ACONS) GO TO 40 

35 CONTINUE 



GO TO 50 
40 IF (L2.GE.I1) GO TO 50 

DPL - ALOG(DP) 
I2P - L2+2 
XI = F2-I2P 
DO 45 I2-I2P,I1,2 

VP = VP-2. 
DPL = DPL+ALOG(Xl*VP/XI) 
XI = XI-2. 

45 CONTINUE 
TEMP - TEMP+DPL 
IF (ABS(TEMP).LE.BIGE) TEMPI - EXP(TEMP) 
P - TEMPI 
GO TO 95 

50 IF (ABS(TEMP).LE.BIGE) TEMPI - EXP(TEMP) 
P - TEMPI*(l.+DP) 
GO TO 95 

SUM OF DFS ARE 
55 DP = SQRT(F1F/F2) 

THETA = ATAN(DP) 
STS = F1F/F2P 
A = 0.0 
B = 0.0 
IF (N2.EQ.1) GO TO 70 
IF (N2.EQ.3) GO TO 65 
II = N2-3 
XI = F2 
DO 60 12=2,11,2 

XI - XI-2. 
A = X1*(XI-1.0)/XI*(1.0+A) 

60 CONTINUE 
65 A = X1*DP*(1.0+A) 
70 A = A+THETA 

IF (Nl.EQ.l) GO TO 90 
IF (N1.EQ.3) GO TO 80 
11 = Nl-3 
XI - Fl 
DO 75 12=2,11,2 

XI = XI-2. 
VP = VP-2. 
B = STS*VP/XI*(1.0+B) 

75 CONTINUE 
80 B = DP*Xl*(1.0+B) 

IF (N2.EQ.1) GO TO 90 
12 - N2/2 
C - 1.0 
DO 85 1=1,12 

B = B*Xl*C/(C-0.5) 
C = C+1.0 

85 CONTINUE 



90 P = R2DPI*(A-B) 
95 IF (P.LT.0.0) P = 0.0 

IF (P.GT.1.0) P - 1.0 
GO TO 9005 

100 IER = 129 
GO TO 110 

105 IER = 130 
110 P - RINFP 

GO TO 9000 
115 P = 0.0 

GO TO 9005 
120 P = .5 

GO TO 9005 
9000 CONTINUE 

CALL UERTST (IER,'MDFD ') 
9005 RETURN 

END 



Equation 5.3 states: 

Syy=SSR+SSE, 

or iiyi-yf-lfy-yf+£(n-fO • 

Note: l(y[-yf =Z[(yi-y;)-(yry)J* 

=i(yi -h )z +i*i ~y)2 " 4 ( ^ ""y) (y'̂  "y^} 

One must show the last term 2(y- _y) • (y- ~y. ) =0, or 

I (y ; -y) • (yt ~y;)=Iy; • y^y -y^ -Xfrt1 + ^ y^ * 

Term by term, 

Jy ryp^ ' -y^u - . -xVy^^ 'n y+£sxy-£y.yt 

=-y2y;=-n-Y*. 

-jfyf - 2 [ c V ' ^ . ( x ; - x ) ] Z = - ^ [ ^ + 2 ^ '^ • (x- 1 -x)+^(x ; -x)* ] 
i ' i . 

—nfr'*-2-£.fc(0)-fckxx 

- - n S A - ^ S x x . 

2 y-y; =ylyf -y jW+fc •(*;-*) 3 -y •*<* '• 
i i i 

Substituting &*»Y, and £=Sxy/Sxx 

n•Yz-n-Y2-nY2+n-Y
a+(Sxy/Sxx)- (S^y/Sxx)=0 

This concludes the proof of the identity. 
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APPENDIX D 

VERIF : Clearness Index vs. Beam Normal Fraction 
Verification of Model Development 
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PROGRAM VERIF(INPUT,OUTPUT,TAPE6=OUTPUT,TAPE5=INPUT) 

C BALARAS 6"29~84 

.THIS PROGRAM CALCULATES THE GLOBAL RADIATION AND BEAM 
NORMAL IRRADIATION, FOR EVERY 15 MINUTES (96 PERIODS) 
DURING EACH DAY OF THE YEAR, TO CREATE A DUMMY Q-FILE 
FOR TESTING PURPOSES. 

DEFINITIONS 
ALAT : SOLAR LATITUDE IN RADIANS 
ALONG : LONGITUDE OF THE LOCALITY IN DEGREES 
ALPHAV : CORRESPONDING AVERAGE OF THE SOLAR. ALTITUDE 
AMV : CORRESPONDING AVERAGE OF THE AIR MASS 
DAY : DAY OF THE MONTH 
DELTA : DECLINATION ANGLE, IN RADIANS 
DRCONV : CONVERSION FACTOR FROM DEGREES TO RADIANS 
EQOT : EQUATION OF TIME, IN MINUTES 
EXTC : ATMOSPHERIC EXTINCTION COEFFICIENT 
FACTOR : CONVERSION FACTOR FROM W TO KJ/15MIN 
GBNAV : AVERAGE EXTRATERRESTRIAL BEAM NORMAL RADIATION 
GLOBAL : GLOBAL RADIATION 
GON : EXTRATERRESTRIAL RADIATION MEASURED ON THE PLANE 

NORMAL TO THE RADIATION ON THE NTH DAY OF THE YEAR 
GSC : SOLAR CONSTANT (W/M/M) 
HANGSR : HOUR ANGLE AT SUNRISE (STANDARD TIME) 
HANGSS : HOUR ANGLE AT SUNSET (STANDARD TIME) 
HR : HOURS DURING THE DAY, STARTING AT MIDNIGHT OF THE 

PREVIOUS DAY OR AT 0 HOURS OF THE NEW DAY 
CONVERSION FACTOR FROM HRS TO RAD 
MONTH OF THE YEAR 
BEAM NORMAL IRRADIATION 
EXTRATERRESTRIAL HORIZONTAL IRRADIATION 
EXTRATERRESTRIAL NORMAL IRRADIATION 
CLEARNESS INDEX 
MINUTES (15 MINUTE INTERVAL) 
THE NUMBER OF DAYS IN A MONTH 
DAY OF THE YEAR 
HOUR ANGLE CORRESPONDING TO THE LOWER INTEGRATION LIMIT 
HOUR ANGLE CORRESPONDING TO THE HIGHER INTEGRATION LIMIT 
CORRESPONDING AVERAGE OF THE HOUR ANGLE-SOLAR TIME 
LATITUDE (DEGREES) OF THE LOCALITY 
HOUR ANGLE IN SOLAR TIME 
SUNRISE STANDARD TIME 
SUNSET STANDARD TIME 
STANDARD TIME OF SOLAR NOON 
STANDARD MERIDIAN 
STANDARD TIME AT WHICH EACH PERIOD STARTS 
STANDARD TIME AT WHICH EACH PERIOD ENDS 
INTEGRATION LOWER LIMIT FOR EVERY PERIOD (STD. TIME) 

HRCONV 
I 
IBN 
10 
ION 
KT 
MIN 
MONLEN 
N 
OMEGA1 
0MEGA2 
OMEGAV 
PHI 
SHANGL 
SRTIME 
SSTIME 
STDTSN 
STMER 
Tl 
T2 
TAU1 



C TAU2 : INTEGRATION UPPER LIMIT FOR EVERY PERIOD (STD. TIME) 
C TAUAV : INTEGRATION AVERAGE TIME (STD. TIME) 
C THETAZ : ZENITH ANGLE OF THE SUN 
C YR : YEAR OF INTEREST (1980) 
C 
C...VARIABLE DECLARATIONS 

INTEGER YR,HR,DAY 
REAL IBN,10,ION,KT,OMEGAl,0MEGA2,OMEGAV,PHI,SHANGL 

C 
DIMENSION M0NLEN(12) 
DATA MONLEN/31,29,31,30,31,30,31,31,30,31,30,31/ 

C 
C...INITIALIZE VARIABLES 

PI=4.0*ATAN(1.0) 
DRCONV=PI/180.0 
PHI=33.42 
ALAT=PHI*DRCONV 
FACTOR=3.6 
HRCONV-15.0*DRCONV 
ALONG=84.75 
STMER=75.0 
N=0 
YR=80 
DAY=0 

C 
C...PERFORM CALCULATIONS FOR EVERY DAY OF THE MONTH (I) 

DO 350 1-1,12 
L=M0NLEN(I) 
DO 250 J=1,L 
N=N+1 
DAY-DAY+1 

C 
C... CALCULATE THE DECLINATION 

DELTA=23.45*SIN(2.0*PI*(284.O+N)/365.0)*DRC0NV 
C... CALCULATE THE SUNSET HOUR ANGLE 

HANGSS=ACOS (-TAN (SALT) *TAN (DELTA) ) 
C... CALCULATE THE SUNRISE HOUR ANGLE 

HANGSR=~HANGSS 
C 
C...CALCULATE THE EQUATION OF TIME 

IF (N.GT.106) GO TO 100 
EQOT=-l4.2*SIN((N+7.0)*0.028303) 
GO TO 400 

100 IF (N.GT.166) GO TO 200 
EQ0T=4. 0''fSIN ((N-106 . 0) *0. 053247) 
GO TO 400 

200 IF (N.GT.246) GO TO 300 
EQ0T=-6.5*SIN((N-166.0)*0.03927 
GO TO 400 

300 EQOT-16.4*SIN ((N-247.0)*0.027802) 



c 
C... CALCULATE THE STANDARD TIME OF SOLAR NOON 
400 STDTSN=12. 0- (EQOT/60. 0) - (STMER-LONG) /ISA) 
C... CALCULATE THE SUNRISE STANDARD TIME 

SRTIME=STDTSN-(HANGSS/HRCONV) 
C...CALCULATE THE SUNSET STANDARD TIME 

SSTIME=STDTSN+(HANGSS/HRCONV) 
C... CALCULATE THE EXTRATERRESTRIAL NORMAL RADIATION 

GSC=1353.0 
G0N=GSC*(1.0+0.033*COS(2.0*PI*N/365.0)) 

C 
C... CALCULATE THE INTEGRATION LIMITS TAU1,TAU2 FOR EACH 
C 15 MINUTE INTERVAL, STARTING AT MIDNIGHT OF THE PREVIOUS 
C DAY OR AT 0:00 HOURS OF THE NEW DAY 

T1=0.0 
T2-15.0/60.0 
GLOBAL=0.0 
IBN=0.0 
HR=0 
MIN=15 

C 
WRITE(6,20) YR,N,I,DAY,HR,MIN,'000000000000' 
& * 00000000000000000000 00000000000000000000000000000000' 

20 F0RMAT(I2,1X,I3,4(1XVI2),1X,A12,A53) 
WRITE (6,21) '0','0','0','0',*0',IBN,IBN, '0',GLOBAL,'0', 
&'0' , 'O'/O'/O', '0', '0' 

21 FORMAT(2X,Al,4X,Al,3X,Al,4X,Al,6X,Al,F5.0,F5.0,4X,Al,F5.0, 
SJ(4X,Al)) 

C 
DO 10 K=2,96 
T1-T1+15./60. 
T2=T2+15./60. 

C...CALCULATE TAU1 
C FOR PERIODS BEFORE SUNRISE 

IF (SRTIME.GT.T2) THEN 
GLOBAL=0.0 
IBN=0. 
GO TO 50 
ELSE 

C FOR THE PERIODS BETWEEN SUNRISE SUNSET 
IF (SRTIME.LE.T1) TAU1-T1 
IF (SRTIME.GT.T1) TAU1=SRTIME 
END IF 

C...CALCULATE TAU2 
C FOR PERIODS AFTER SUNSET 

IF (SSTIME.LT.T1) THEN 
GLOBAL=0. 
IBN=0. 
GO TO 50 
ELSE 



C FOR PERIODS BETWEEN SUNRISE SUNSET 
IF (SSTIME.GE.T2) TAU2=T2 
IF (SSTIME.LT.T2)TAU2=SSTIME 
END IF 

C 
C... CALCULATE THE AVERAGE INTEGRATION LIMITS (STD. TIME) 

TAUAV=(TAU1+TAU2)/2. 
C... CALCULATE THE CORRESPONDING AVERAGE OF THE 
C HOUR ANGLE 

OMEGAV-(TAUAV-STDTSN)*HRCONV 
C SOLAR ALTITUDE 

THETAZ=(ACOS(COS(DELTA)*C0S(SLAT)*COS(OMEGAV)+SIN(DELTA)* 
&SIN(SJLAT)))*I80.O/P3 
ALPHAV-(90.0-THETAZ)*DRCONV 

C AIR MASS 
AMV=1.0/SIN(ALPHAV) 

C... CALCULATE THE AVERAGE BEAM NORMAL RADIATION 
EXTC=0.25 
GBNAV=GON*EXP(~EXTC*AMV) 

C 
C... CALCULATE THE HOUR ANGLE FOR THE LOWER INTEGRATION LIMIT 

0MEGA1=(TAU1-STDTSN) )VHRCONV 
C... CALCULATE THE HOUR ANGLE FOR THE HIGHER INTEGRATION LIMIT 

OMEGA2=(TAU2-STDTSN)*HRCONV 
C 
C... CALCULATE THE GLOBAL RADIATION BETWEEN SUNRISE SUNSET 

GLOBAL-(12.0/Pl)*GBNAV 
&*(COS(DELTA) *COS(ALAT)*(SIN(OMEGA2)-SIN(OMEGAl))) 
&+ (0MEGA2-0MEGA1) *SIN (DELTA) *SIH (ALAT) ) 
GLOBAL=GL0BAL*FACTOR 

C...CALCULATE THE EXTRATERRESTRIAL HORIZONTAL IRRADIATION 
IO=(12.0/PI)*GON 

fc* (COS (DELTA) * (COS (ALAT) * (SIN (OMEGA2) -SIN (OMEGAl) ) ) 
&+ (OMEGA2-OMEGA1) *SIN (DELTA) *SIN (ALAT) ) 
10=I0*FACTOR 

C... CALCULATE THE CLEARNESS INDEX 
KT=GLOBAL/IO 

C... CALCULATE THE EXTRATERRESTRIAL NORMAL IRRADIATION 
ION-GON*(TAU2-TAU1)*FACTOR 

C... CALCULATE THE BEAM NORMAL IRRADIATION 
Q-(1./2.)*RT 
IBN=Q*ION 

50 MIN=MIN+15 
IF (MIN.EQ.60) GO TO 5 
GO TO 500 

5 HR=HR+1 
MIN=0 
IF (HR.EQ.24.AND.MIN.EQ.0) THEN 
HR=0 
MIN=0 



N=N+1 
DAY=DAY+1 
IF (DAY.EQ.L) DAY=1 
IF (DAY.EQ.l) 1=1+1 
ELSE 
GO TO 500 
END IF 

C 
500 WRITE(6,22) YR,N,I,DAY,HR,MIN,'000000000000' 

&'00000000000000000000 00000000000000000000000000000000' 
22 F0RMAT(I2,1X,I3,4(1X,I2),1X,A12,A53) 

WRITE(6,23) 'O'.'OV.'O'/O", '0' ,IBN,IBN, '0',GLOBAL, '0', 
i'OVO' ,'0*, '0' , '0' , '0' 

23 FORMAT (2X, Al, 4X, Al, 3X, Al, 4X, Al, 6X, Al, F5 . 0, F5 .0, 4X, Al, F5 .0, 
&7(4X,A1)) 

C 
10 CONTINUE 

N-N-l 
DAY=DAY-1 

250 CONTINUE 
350 CONTINUE 

END 
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