A THESIS

Presented to
The Faculty of the Division of Graduate Studies

By
Constantinos Agelou Balaras

```
In Partial Fulfillment of the Requirements for the Degree Master of Science in Mechanical Engineering
```

Georgia Institute of Technology
March, 1985

INVESTIGATION OF THE DEPENDENCE OF ATMOSPHERIC TRANSMITTANCE FOR BEAM RADIATION ON CLEARNESS INDEX

Approved :

Date Approved by Chairman 22 (luquet 1985

ACKNOWLEDGEMENTS

The author is indebted to many people who have assisted him both directly and indirectly in preparation of this work.

Particular gratitude is expressed for the time, encouragement, and professional guidance given by the faculty advisor, Dr. Sheldon M. Jeter. Also the author is thankful to Dr. James I. Craig for his assistance throughout the development of this thesis. Dr. Carl G. Justus is due a special note of thanks for his sincere interest and expeditious reading and commenting on the preliminary draft.

This work was performed under the financial support of Georgia Power Company, to which I express my sincere appreciation for the opportunity.

Finally, the author is very grateful to his family for their support and understanding and dedicates this work in memory of his late grandfather, Charilaos, and grandmother, Theano.

TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS ii i
LIST OF TABLES vii
LIST OF FIGURES viii
SUMMARY xi
Chapter Page
I. INTRODUCTION 1
1.1 Problem Statement
1.2 Objective
II. PREVIOUS WORK 3
III. DATA BASE PREPARATION 8
3.1 The Solar Total Energy Project
3.2 Calibration of the Instruments
3.3 Qualitative Control
3.3.1 Automatic Quality Controls
3.3.2 Manual Quality Controls
3.4 Data Validation Procedures
3.5 Five-Year Data Base
IV. SOLAR ASTRONOMY 24
4.1 Principles4.1.1 Determination of the Sun's Position4.1.2 Calculation of the Earth's Elliptic Motion
4.2 The Celestial Vault
4.2.1 Celestial Coordinate System
4.2.2 Conversions Between the Equotorial andEcliptic System
4.2.3 Conversions Between the Hour Angle and Equatorial Systems
4.2.4 Conversions Between the Horizontal andHour Angles System
4.3 Algorithm for Calculating the Position of the Sun4.3.1 Basic Equations for Calculating thePosition of the Sun
4.3.2 Results Using Subroutine HELGO
Chapter Page
v. STATISTICAL ANALYSIS 67
5.1 Annual and Five-Year Models
5.2 Monthly Models
5.3 Regression Analysis
5.3.1 Statistical Procedures
5.3.2 Results from Statistical Analysis
VI. MODEL VALIDATION 106
6.1 Model Comparison6.2 Verification of Data Processing Procedures
VII. CONCLUSIONS AND RECOMMENDATIONS 121
Appendix Page
A. 124
CREATE3: Program to Compute Monthly Data Files 125
B. 129
HELGO: Subroutine Calculating the Position of the Sun 130
TABLE3: Comparison of HELGO with DAILY and Nautical Almanac 134
CKTTB2: Calculations of k_{T} and τ_{b} Using Subroutine Helgo 140
LSMAIN7: Sorting of Date Data According to k_{T} 144
SORTR: Sorting Subroutine 145
VSRTP: Sorting Subroutine from IMSL Library 146
VSRTU: Sorting Subroutine from IMSL Library 150
C. 153
TBREG5: Model Development and Regression- Statistical Analysis 154
SUBI: Subroutine to Calculate k_{T} and τ_{b} from Radiation Data 161
CLRL: Subroutine to Plot Regression Lines 163
MDFD: Subroutine to Calculate the Probability Distribution Function 165
Development of Total Variation Identity 170
D. 171
VERIF: Clearness Index versus Beam Normal Fraction Verification of Model Development 172

BIBLIOGRAPHY. 177
Table Page
4.1. Daily Values of the Declination, Hour Angle, and Equation of Time from Subroutines DAILY, HELGO, and the Nautical Almanac for the month of January, 1983 57
4.2. Comparison of Error Coefficients Between Subroutines HELGO and DAILY. 58
5.1. Coefficients for the Piecewise Linear Function, $\tau_{b}=A_{i}{ }^{*} k T+B_{i}$. 68
5.2. Model Comparison. 70
5.3. Annual and Five-Year Regression Coefficients for Shenandoah STEP. 72
5.4. Monthly Slope Coefficients for Shenandoah STEP 82
5.5. Model Coefficients of Determination and Correlation 101
5.6. Model Comparison Based on the Residual Regression, f -Statistic, and Probability Values. 103
6.1. Monthly Output Format for January 1, 1980 118

LIST OF FIGURES

Figure Page
3.1. Flowchart for Algorithm CREATE3 15
3.2. Daily Radiation Chart for January 15,1979 21
3.3. Daily Radiation Chart for December 4,1979. 22
4.1. Earth's Elliptical Orbit Around the Sun 26
4.2. Earth's Ecliptic Plane 28
4.3. Variation in the Motion of the Mean and Eccentric Earths... 29
4.4. The Basic Lines and Points of the Celestial Vault. 34
4.5. The Ecliptic System of Coordinates (β and λ) 36
4.6. The Equatorial System of Coordinates (δ and RA) 37
4.7. The Hour Angle System of Coordinates (δ and ω) 39
4.8. The Horizontal System of Coordinates (a and $\boldsymbol{\gamma}_{S}$) 40
4.9. Relations Between the Equatorial and Ecliptic Systems 42
4.10. The Ecliptic Triangle 43
4.11. Relations Between the Hour Angle and Equatorial Systems. 45
4.12. Relations Between the Horizontal and Hour Angle Systems 47
4.13. The Astronomic Triangle. 48
4.14. Comparison of the Calculated Annual Values of Declination, from Subroutines HELGO (distorted curve), DAILY (curve identified with "o") with 1983 Nautical Almanac (solid smooth curve) 59
4.15. Comparison of the Model Prodused Using Subroutine HELGO (curve identified with rhombi) with the One Using DAILY (curve identified with crosses) 66
5.1. Scatter Plot of and Piecewise Regression on Shenandoah
Figure Page
STEP Data for 1979. The Randall-Whitson Model is Shown by the Plain-Line 73
5.2. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for 1980. The Randall-Whitson Model is Shown by the Plain-Line 74
5.3. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for 1981. The Randall-Whitson Model is Shown by the Plain-Line 75
5.4. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for 1983. The Randall-Whitson Model is Shown by the Plain-Line 76
5.5. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for 1984. The Randall-Whitson Model is Shown by the Plain-Line 77
5.6. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the 5-Years. The Randall-Whitson Model is Shown by the Plain-Line 78
5.7. The 5-Year Shenandoah STEP Regression Model Compared With Randall-Whitson Model (plain line) 79
5.8. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of January The Randall-Whitson Model is Shown by the Plain-Line 83
5.9. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of February The Randal1-Whitson Model is Shown by the Plain-Line 84
5.10. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of March The Randall-Whitson Model is Shown by the Plain-Line 85
5.11. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of April The Randall-Whitson Model is Shown by the Plain-Line. 86
5.12. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of May The Randall-Whitson Model is Shown by the Plain-Line 87
Figure Page
5.13. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of June The Randall-Whitson Model is Shown by the Plain-Line 88
5.14. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of July The Randall-Whitson Model is Shown by the Plain-Line 89
5.15. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of August The Randall-Whitson Model is Shown by the Plain-Line 90
5.16. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of September The Randall-Whitson Model is Shown by the Plain-Line 91
5.17. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of Octomber The Randall-Whitson Model is Shown by the Plain-Line 92
5.18. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of November The Randall-Whitson Model is Shown by the Plain-Line 93
5.19. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of December The Randall-Whitson Model is Shown by the Plain-Line 94
6.1. Beam Normal Fraction-Clearness Index Models 107
6.2. Daily Iradiation Limits 111
6.3. Clearness Index vs. Beam Normal Transmittance Model Verification for 1980 119

SUMMARY

An accurate computation of the atmospheric transmittance for
beam radiation is necessary to predict the beam normal solar
irradiation. The object of this work is to expand the present
knowledge about the dependence of beam normal fraction and clearness
index using the information collected at Shenandoah, Georgia since
1979. The result is vital for predicting the performance of
concentrators, for which the pertinent resource is the beam irradiation
and is necessary to accurately predict the total irradiation on a
surface of general orientation.

The main goals of this work are:

1. Develop a five-year data base to be used for the model development. Close screening of the collected pyranometer and pyrheliometer data will result to usable hourly irradiation data (8112 hourly values).
2. Develop an algorithm to accurately compute the solar astronomy angles. This is presented in a form of a subroutine and computes the declination, equation of time and hour angle.
3. Process the irradiation data on an hourly basis to calculate the corresponding hourly extraterrestrial normal irradiation and extraterrestrial horizontal irradiation. Thus, the hourly clearness index and hourly beam transmittance can be calculated and used for statistical analysis. There are nine
bands of data defined, based on hourly clearness index values.
4. Perform the statistical analysis on the five-year data and develop a five -year model. The principal result of the statistical analysis on the two charactoristics of the population, clearness index and be~m transmittance, is a piecewise contimuous linear regression model. This model was prepared by performing homogeneous least square fits for each band of data. Its continuous format provides for an easy-to-use model which makes it the most attractive (compared to Randall-Whitson model, piecewise linear regression model and a polynomial regression model). The five-year model is shown to be preferable to any annual model from a constituant year. It is also similar to the well known Randall-Whitson model except in the highest range of clearness indices.
5. Verify the developed model and the data processing procedures. The Shenandoah model was compared to other major models, The results indicate general agreement between the different models, but at higher clearness indices the Shenandoah model should be preferred. Finally, the data processing procedures are verified by conducting a numerical experiment.

INTRODUCTION

1.1 Problem Statement

Hourly values for the beam normal solar irradiation are needed for such purposes as calculating the irradiation on tilted surfaces and assessing the performance of concentrating collectors. The most direct method of gaining knowledge about beam normal radiation is by measuring it, using a pyrheliometer.

The consistently adequate operation of tracking pyrheliometers is demanding on time and other resources (i.e. frequent adjustment). This is the most important problem that developes when one is trying to obtain accurate information in this fashion. As a result exact and reliable beam-normal radiation daía is not so readily available as global, pyranometer, data. Historically many meteorological stations have not recorded beam normal radiation, probably due to the instrument complexity. Thus, great gaps appear in many of the historical data bases.

This situation has made the development of models for estimation of beam radiation from global radiation a high priority among solar energy researchers.

1.2 Objective

The main objective of this thesis is to develop a function which
most accurately correlates the hourly beam normal function and the
hourly clearness index. This will be done by using a selected set of
well screened and validated beam normal and global radiation
measurements, from the Shenandoah STEP site, over a five year period.
From this correlation then, the beam normal radiation can be simply and
reliably calculated given a reliable global radiation measurement.

CHAPTER II

PREVIOUS WORK

This thesis deals mainly with hourly solar radiation relations. Following is a summary of several categories of models available in the literature and related to this work.

Many studies have prodused equations for hourly beam normal irradiation as a function of various meteorological variables such as sunshine duration, surface pressure, percipitable water, turbidity, total ozone content and relative humidity. Such equations can be found in the works of Hoyt [1], Atwater and Ball [2], Davies and McKay [3], and Sherry and Justus [4].

There have been models, however, which do not require that amount of data as input. Thus, a number of investigators have chosen to correlate the hourly fraction of diffuse horizontal radiation against the hourly clearness index (originally referred to by Liu and Jordan [5] as cloudiness index) to obtain relationships of the form:

$$
\begin{equation*}
F_{1}=I_{d} / I=f_{1}\left(k_{T}\right), \tag{2.1}
\end{equation*}
$$

where

$$
I_{d}=\text { hourly diffuse horizontal iradiation, }
$$

```
I = hourly global irradiation,
I
k}\mp@subsup{T}{}{=}=\mathrm{ hourly clearness index, ( I/ I I ), and
```

Although the idea originated by Liu and Jordan and their daily correlation has been used on hourly basis, according to [6] it is not suitable for this purpose. A widely used model of this form is due to Orgill and Hollands [7] and also Bruno [8], more recent results have been presented by Erbs, Klein, and Duffie [9] and by Spencer [10].

An alternative presentation is to consider the ratio of the hourly beam normal irradiation to the hourly extraterrestrial normal irradiation. This ratio should probably be called (according to [5] and [11]), the "hourly beam transmittance of the atmosphere", and can be correlated against the hourly clearness index. Correlations of this form:

$$
\begin{equation*}
\tau_{b}=I_{b n} / I_{o n}=f_{2}\left(k_{T}\right) \tag{2.2}
\end{equation*}
$$

have special intuitive appeal since one expects the beam transmittance to increase monotonically with clearness index. Possibly the foremost model of this type is the result of work by Randall and Whitson [12] which has been concisely restated in [13].

The Randall-Whitson model is also called the Aerospace model. The algorithm estimates the direct normal solar radiation. It attempts to characterize the statistical variations of actual data from a correlation and it has been used to fill in the direct normal field in SOLMET [14] data tapes. A model to predict the beam normal irradiation from measured global solar radiation is also available by Turner and Mujahid [15]. In the development of the model, statistical regression tests were conducted over a range of solar altitude angles. The model was compared to the Randall-Whitson model, and overall the two models were found very similar. It is indicated though in [15] that the Aerospace model is the best available model.

It can be shown that models in the form of either Equation (2.1) or Equation (2.2) are approximately algebraically equivalent. For hourly data the beam normal irradiation can be related to the global and diffuse horizontal irradiances by defining an hourly average incident $\cos i n e, \cos \hat{\theta}_{z}$, such that

$$
\begin{equation*}
I_{b n}=\left(I-I_{d}\right) / \cos \hat{\theta}_{z} \tag{2.3}
\end{equation*}
$$

Substituting this result into the definition for the hourly beam transmittance one has:

$$
\begin{equation*}
\tau_{b}=\left(1-F_{1}\right) \cdot k_{T} . \tag{2.4}
\end{equation*}
$$

Abstract

Such an algebraically transformed relationship probably should not be considered as a rigorously equivalent statistical result, because the manipulation has altered the dependent variable. However such iransformed relations are useful at least for qualitative comparisons. Other correlations on the clearness index are possible. The beam transmittance may be expected to follow a Bouguer's Law dependence on atmospheric extinction (due to absorption and scattering) and air mass [16], such that:

$$
\begin{equation*}
\tau_{b}=\exp (-K \cdot m) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& K=\text { extinction coefficient, and } \\
& m=\text { standard air mass. }
\end{aligned}
$$

The extinction coefficient, or some suitably normalized function, could then be correlated against the clearness index as has been done in [17].

An important alternative model is constructed by defining a modified clearness index based on an independent model for the clear day global irradiance. Correlations in this format, with quite similar results, have been presented by Stauter and Klein [18] and by Turner and Salim [19].

Correlations of the hourly diffuse fraction, I_{d} / I, to the ratio of the hourly global radiation to an estimate of hourly clear sky radiation, I / I_{o} have also been developed by Bugler [20], for a series of correlations over zenith-angle bands. Clear day models and comparisons of these different models are included in Mujahid and Turner [21]. Diffuse radiation correlations were investigated in [6].

In this thesis the development of a model in the form of Equation (2.2) will be presented, verified and compared to some other models, which were previously presented. This model is based on five years of data from the STEP site, beginning in 1979. The resulting model is an improved solar radiation model for determining the amount of beam normal irradiation when only the data for global irradiation is present.

DATA BASE PREPARATION

3.1 The Solar Total Energy Project

The Solar Total Energy Project (STEP) at Shenandoah, Georgia $\left(33.4042^{\circ} \mathrm{N}, 84.7478^{\circ} \mathrm{W}\right)$ is a cooperative effort between the United States Department of Energy and the Georgia Power Company, to further the search for new sources of energy. The project is a prototype solar thermal total energy plant, being in operation since early 1982. The site is composed of 114 parabolic solar dish collectors (each, 7 meters in diameter).

The Shenandoah plant employs concentrating collectors. Each parabolic dish acts as a concentrator producing a concentration ratio of 250 . The concentrated rays heat the circulating silicone transfer fluid to $750^{\circ} \mathrm{F}$. The heat transfer fluid is then pumped to a heat exchanger, where it boils water and superheats steam. The superheated steam drives a turbine generator, producing electricity. Medium pressure steam is extracted from the turbine for knitwear pressing at the near-by factory. Low pressure steam exhausted from the turbine is used to produce chilled water for air-conditioning.

3.2 Calibration of Instruments

A meteorological station at the site, operated by Georgia Institute of Technology, constantly monitors the amount of solar energy available. The solar insolation and surface weather instruments make it one of the most sophisticated stations in America for gathering data about the sun and is considered to be a pioneer modern automated station.

The basic data set assembled at the STEP includes of irradiation values integrated over fifteen-minute periods and recorded at the end of each period. The pertinent instruments at the site are an Epply precision spectral pyranometer (PSP), to measure global irradiation and two Epply normal incidence pyrheliometers (NIP) on a common polar mount to measure beam normal irradiation.

During 1984 the solar monitoring station was reconfigured. It now includes two global pyranometers for redundancy. Redundancy in the beam normal measurements was enhaced by a third pyrheliometer on the common mount being converted from measurements in the infrared band to full-spectrum measurements.

A fourth pyrheliometer was added on a separate mount for complete redundancy, and in late 1984 this mount was converted to reliable $P V$ power via a $D C$ to $A C$ inverter from an adjacent $P V$ array with battery storage. One should note that the inverter powered unit shows poor performance, due to poor temperature stability.

The pyranometer and the NIP are not self-checking or absolute instruments. Their sensitivity should be determined by comparing them with some other "standard" instrument. Thus, all instruments have been periodically calibrated. The NIP's were calibrated by comparison with a TMI MK VI absolute cavity radiometer (SN 67812) traceable to the World Radiation Reference (WRR). No significant calibration adjustments have been necessary for any of the NIP's deployed in this station since operations began in 1977.

Calibration adjustments from the original calibration for the two principal instruments average only 0.8% and -0.3% respectively. The PSP for the global irradiation measurement has been recalibrated by comparison with a carefully maintained NBS-traceable Epply PSP (SN 18044). Its average deviation from initial calibration has been -1.5%. The PSP has shown a slight trend of degradation in response, which has been fully compensated by recalibration. The NIP's show no trend in response degradation.

3.3 Quality Control

The accuracy of a statistical model is strongly affected by its underlying data base. This is especially true for solar radiation data since one expects that systematic errors resulting from substandard operation or maintenance of the instruments will introduce low values, especially for the pyrheliometer data, and thereby introduce a one-sided bias in the data. Consequently, an effective data quality
control procedure and elimination of questionable data is essential to produce a reliable model.

3.3.1 Automatic Quality Controls

A routine quality-control procedure has been implemented for the data from the STEP site, since its inception. The procedure first involves an automated quality-control algorithm which computes a set of redundancy, limit and consistency checks between instruments. Its purpose is to efficiently check the data in order to indicate suspicious data, which then will be flagged. The quality control algorithm is described in [22]. Briefly the checks for beam normal data comprise the following:

1. Redundancy checks; NIP data are compared and deviations exceeding $\pm 45 \mathrm{KJ} / \mathrm{m}^{2}$ per period ($+5 \%$ of clear sky value of 900 $\mathrm{KJ} / \mathrm{m}^{2}$ per period) are flagged. The NIP data are also compared with the beam normal radiation inferred from the global irradiation and the horizontal diffuse irradiation inferred from the global irradiation and the horizontal diffuse irradiation measured by an Epply PSP with shading disc. Disagreement exceeding $45 \mathrm{KJ} / \mathrm{m}^{2}$ per period is flagged.
2. Limit check; NIP data are compared with a clear sky model, described in [23], which constitutes a practical upper bound. All data within $45 \mathrm{KJ} / \mathrm{m}^{2}$ per period of this limit are flagged.
3. Model check; NIP data are compared with the value predicted by
the Randall-Whitson model from the prevailing global irradiation. Values deviating more than $45 \mathrm{KJ} / \mathrm{m}^{2}$ per period, possibly indicating poor tracking, are flagged.

The global irradiation data which employ a wide aprture instrument and no tracking are much more reliable than the beam normal data. The quality control algorithm still includes a consistency check (comparison of the global with the sum of diffuse horizontal and calculated beam horizontal irradiation), a limit check (comparison with the clear day model), and currently a redundancy check among the two instruments now deployed. The flags from the automated checks are called "internal flags" and denote only suspicious, not necessarily invalid, data. The vast majority of such data is reliable. An additional manual check will be intoduced in the following section to assure that all spurious data has been detected.

3.3.2 Manual Quality Controls

The second step is a manual inspection of all data in the form of computer generated graphs with special attention paid to all data flagged by the quality-control algorithm. This is necessary since the "internal flags" were assigned with very broad limits. That is to say that in most cases the internal error flags represented only suspicious data and not actual faults in the data.

No data is eliminated on the basis of the automated check alone. Instead, daily graphs of all the radiation data and the pertinent
models are inspected by an experienced investigator. Special attention is given to all previously flagged data. Systematic problems can be identified by inspection of the daily plots. For example, an error in the beam normal data caused by poor tracking can be idenified by the presence of low beam normal data simultaneously with low diffuse horizontal data. With the aid of the site operator's daily log, most unreliable data can be identified and flagged for exclusion from further analysis. These final flags resulting from manual verification of internal flags or manual indentification of spurious data are called "external flags". Consequently, the data bases of this work were judged on the "external flags" only.

3.4 Data Validation Procedures

At this point the data was assembled in monthly files including the external error flags. The unflagged data is expected to be highly reliable. However, there are some periods or even days that data were not recorded. These gaps can be due to station failure, periodic calibration, or routine maintenance.

In order to complete the monthly files with the exact number of periods and days, an algorithm was developed called CREATE3. The gaps will be filled by keeping track of the time (month, day, hour, minute) and by inserting dummy values of nine's for all other variables. As a result the data are automatically flagged and are not used in any following analysis. This procedure will complete a file with 96
periods a day and for every day of the month. This is an advantage for the programmer, who then has to deal with a known standard amount of data.

Using this program, one has also the opportunity to check for the correctness of the data. The experience that the author gained from processing the data base, boils down to the fact that despite all the previous checks, some "garbage" can still exist in the data (i.e. repeated periods, misrecorded dates, overflow in the hexadecimal external flags or a period of less than 15 minutes).

As it can be seen from Figure 3.1, the program operates as follows; it reads the data and based on the recorded time of the next period can specify if a period is missing. A warning message will come to your attention in a case that a reasonable looping time was spend looking for the expected next period without any success. The user then has to cross examine the periods of the completed data file (with the dummy variables) with the ones from the original data file. Special attention should be given to the area where a great number of dummy periods are recorded. This kind of problem would occur when a period that was read included something erroneous and as a result did not agree with the expected standard period format. This for the algorithm, is an indication of missing periods and the time counters are incremented trying to reach an agreement between the created period and the expected one.

The process of detecting problems of this nature is rather tedious, but the result reasures the user that the data does not include anything erroneous. It is also necessary to have available a

Figure 3.1. Flowchart for Algorithm CREATE3
complete data file before proceeding with the following analysis. The discovery of these problems gave a strong initiative to review the procedures of processing the data up to this point, locate the prospective causes of the problems and resolve them. A commented listing of CREATE3 can be found in APPENDIX A.

To prevent any residual poor data from contaminating the results, three additional screening checks were instituted for the present analysis:

1. Daily validation checks,
2. Hourly validation checks, and
3. Empirical error bound checks.

The daily validation test was instituted to eliminate certain days from further consideration. Days that were mostly overcast were rejected for two reasons: primarily because little beam radiation occurs on such days and secondarily because it is difficult to verify the pyrheliometer data on such days. Additionally, days with one-half or more of their periods flagged as unreliable were totally excluded as a conservative measure to preclude erroneous data. For this daily screening only periods with solar altitudes greater than 6° were considered. No data with lower altitudes is used in the beam radiation model to avoid the consepuent refraction effects on tracking accuracy. Also it is felt that beam radiation at low solar altitudes has little practical significance but might confuse the model because of the effects of the large intervening air- mass.

The next step was to plot the good daily data for each year and to compare it with published models (Collares-Pereira and Rabl [24],

Liu and Jordan [1] and Speigel [25]). All relate H_{d} / H, the daily diffuse fraction, to k_{T}, the ratio of daily global to daily extraterrestrial radiation, H / H_{o}. The general agreement indicated was an encouraging verification of the quality check procedures used thus far. The result of the above was the compilation of all the reasonably reliable days for each year.

The next step was a closer examination of the data on an hourly basis the monthly files were processed again excluding all previously identified unreliable, or uninteresting, days. An hourly data base was assembled from the fifteen-minute data. The criterion used in this step is that at least three of the four intervals used in calculating the hourly value passed the previous quality checks.

Additionally, the data are screened based on the pyranometer readings. If the pyranometer data are less than 10% of clear day data, then these values are considered invalid due to inconcistancies. On the other hand, it might occur that unusually high pyranometer data are recorded (greater than the clear day total horizontal irradiation). These data exceed possible pyranometer values and being erroneous are discarded. The result of this procedure is the development of a new data base containing only good hourly irradiation values for the year.

The final check on the hourly data was a comparison of the calculated beam transmittance against empirical upper and lower bounds for a given clearness index. This step was instituted as a final verification of the previous checks. As detailed in [17], a scatter plot of the hourly beam transmittances versus clearness indices for 1980 was used to establish empirical bounds for hourly data. Upper and
lower boundary curves were estimated and then adjusted until data just outside the curves were found on close inspection likely to be spurious and any data just inside the curves were found likely to be reliable.

Four types of isolated errors were found to create such spurious data:

1. A pyranometer "glitch". A sudden drop in global irradiation with steady beam and diffuse data. Probably caused by temporary shading (e.g. during cleaning or by a resting bird) of the pyranometer. This causes a spuriously low clearness index.
2. A pyrheliometer "glitch". A steady and high global irradiation, accompanying an isolated low pyrheliometer reading. Also caused by apparent temporary shading. This causes a spuriously low beam transmittance.
3. Tracking failure. A sudden sustained drop in the beam radiation data (close to zero) while global and diffuse irradiation fluctuate normally. This is caused by a power failure or slippage in the drive mechanism. Most such data is detected routinely but residual errors at the beginning of such intervals could be over looked. Again, such faults cause spuriously low beam transmittances.
4. Partial tracking. A lower than expected beam radiation value caused by imperfect tracking. Usually this is a result of poor aligment of the mount or slippage in the drive. This fault can be detected by viewing an entire day's data as it
```
tends to smoothly increase or decrease.
```

The most direct way of measuring beam normal radiation is by using a nyrholiomater. It should be clear by the above discussion that since we -re dealing with a tracking instrument, there is always the possibility of a malfunction which would produce suspicious data. The addition of the fourth pyrheliometer, mounted on an independent tracking base (since 1984) at the STEP site, was indeed necessary. It will increase the confidence on the pyrheliometer data and decrease the possibility of mulfunctions causing missing data. The data though used for this work included only two measurements from the common mount pyrheliometers. To account for a pyrheliometer malfunction, the following have to be done:

1. If one of the pyrheliometer measures a very low beam normal radiation (less than $10 \mathrm{KJ} / \mathrm{m}^{2}$) then the value of that reading is changed to equal that of the other pyrheliometer.
2. If both pyrheliometers measure a low beam normal radiation, then both these values are set to zero and the period is flagged.
3. If both pyrheliometers are functioning satisfactorily, then the value used for farther analysis is the average of the two measurements.

The check for the pyrheliometer malfunctions is done only during the day time, while during the night these checks are ignored. A similar process can easily be applied in the future for four
instruments to account for the measurements of the additional pyrheliometers. The empirical error bound test was instituted primarily as a proof against grossly erroneous data. Only eighteen hours from 2,477 in the entire set were excluded for 1980.

Later in this thesis (Chapter v) the data is used in a monthly fashion, to develop monthly models. Despite the screening of the data up to this point, it was found that there were still some outliers included. A close examination of these points is desirable to determine whether or not are spurious. These points were first identified and then the corresponding daily radiation charts were examined. Only two points were justified to be spurious:

1. On January 15,1979 during the hourly period ending at 9:30. Looking at Figure 3.2 one can note that during this period the global value (symbolized by a cross) remains steady while the beam normal values (symbolized by a square and a circle) experience a dramatic drop. This is considered as a pyrheliometer glitch and results to a lower value of τ_{b} (equal to 0.444) for a high clearness index (equal to 0.783).
2. On December 4, 1979 during the hourly period ending at 10:15. Looking at Figure 3.3 one can identify a similar occurrence of a pyrheliometer glitch. There is an identifiable difference in the values of the two pyrheliometers which indicates that there was a problem associated with the instrument (and its tracking). Again, the result is a decrease of the beam normal value from the expected value for

Figure 3.2. Daily Radiation Chart for January 15, 1979

Figure 3.3. Daily Radiation Chart for December 4. 1979
a given clearness index. The expected value was about 0.9
while it was recorded as 0.615 for a clearness index of 0.754 .

This close inspection confirms the reliability of the data.

3.5 Five Year Data Base

Abstract

The resulting data base is a set of hourly irradiation values closely screened for reliability excluding data from predominantly overcast days and excluding data for very low solar altitudes (i.e. less than 6°). Data from year 1982 was excluded due to a series of electronic and mechanical failures which degraded the performance of the monitoring system substantially. Only 41 days out of the whole year were classified as good days and from these 270 hourly periods passed all the checks and were available as usable periods. Consequently, five annual data sets were available for further analysis, which combined generate the 5-Year usable hourly data base (with a total of 8112 periods).

The important information in this data are:

1. The date, namely year, month, day,hour, and minute,
2. The radiation data, namely the direct beam and hourly global irradiation,
3. The clearness index and beam normal transmittance values, and
4. The percent of 15 -minute periods and their identification, that were missing from the hour of interest.

SOLAR ASTRONOMY

The availability of solar energy at the earth's surface is not uniform; it depends primarily on the optical state of the atmosphere and the apparent daily motion of the sun across the celestial vault. Thus, it is understandable that it is of vital importance to present how the angular position of the sun (relative to the center of the earth) can be expressed in terms of easily calculated declination and hour angles. The degree of accuracy for these calculations depends on the requirements of the particular application. For the purpose of this work, where we are dealing with solar radiation analysis, an accuracy of $\pm 0.5-1.0$ degrees is satisfactory. A FORTRAN subroutine to implement these calculations will be described below. The algorithm provides acceptable precission and accuracy but is much more simpified compared to the one used for generating the tabular values in The American Ephemeris and Nautical Almanac which has very high accuracy (0.1 seconds of the arc). In general one should always consider the accuracy versus simplicity trade-off.

In order to fully understand this algorithm, one first needs to explain the sun's apparent motion about an observer on earth by studying both, the revolution of the earth about the sun, and the
rotation of the earth on its axis.

4. 1 Principles

4.1.1 Determination of the Sun's Position

The position of the sun relative to a specific point on the earth varies throughout the day and season due to the spin of the earth around its axis and to its orbiting around the sun. The earth revolves around the sun in an elliptical orbit of small eccentricity. The earth's motion about the sun is affected primarily by the gravitational attraction between the earth and the sun. For simplicity, we will ignore any other influences by other planets and assume that the earth is the only celestial object orbiting about the sun. Since the sun has a much greater mass than the planets, one can assume that the sun remains approximately stationary as the earth moves in its orbit. According to Kepler's First Law (Law of Ellipses-1609) the orbit of each planet is an ellipse, with the sun at the one of the focuses, as it is indicated in Figure 4.1. The amount by which the orbit deviates from circularity, that is the eccentricity (e) of the ellipse, is very small, and can be defined as:

$$
\begin{equation*}
\mathrm{e}=\mathrm{c} / \alpha \tag{4.1}
\end{equation*}
$$

Figure 4.1. Earth's Elliptical Orbit Around the Sun

$$
\begin{aligned}
& c=\text { distance from the center to a focus, and } \\
& \alpha=\text { semimajor axis. }
\end{aligned}
$$

In Figure 4.1 of course, the eccentricity of the earth's orbit is exaggerated, for illustration purposes.

The fixed plane containing the earth's orbit is called the ecliptic plane. The earth's axis of rotation is tilted at $23^{\circ} 26.5^{\prime}$ (1984 value) with respect to the ecliptic plane (Figure 4.2). This angle is called the obliquity of the ecliptic, ε, and it can be considered fixed for our purposes (there is an actual decrease of approximately 47 arc-sec per century).

4.1.2 Calculations of the Earth's Elliptic Motion

Let S be the sun's center and OEO'the ellipse, with S at one focus, in which the earth makes its annual revolution (Figure 4.3). Consider the circle $C E^{\prime} C^{\prime}($ same area) with its center at S and its radius $S E^{\prime}=1 / 2 \cdot\left(O O^{\prime}\right)=$. This is a hypothetical circular orbit. The earth, E, orbiting the sun elliptic orbit is called eccentric earth, while E^{\prime} orbiting the sun on a circular motion is called "mean earth". The "mean earth" is assumed to revolve about the sun with the same period as the eccentric earth.

According to Kepler's Third Law (1618) a planet moves more slowly the greater its distance from the sun in a particular fashion. One can assume that the two earths are at the same position, aligned with the sun, at the Perihelion. Starting from that point, as time

Figure 4.2. Earth's Ecliptic Plane

Figure 4.3. Variation in the Motion of the Mean and Eccentric Earth's
progresses, the "mean earth" is behind the eccentric earth. Close to the Aphelion the "mean earth" leads the eccentric earth and from there returning back towards the Perihelion, the eccentric earth progresses faster.

There are two angles of interest: $\widehat{O S E}$ and $\widehat{C S E}$. These angles are called respectively eccentric anomaly (TM) and mean anomaly (M). The orbital velocities according to Kepler's Second Law are non-uniform but vary in a regular fashion (Law of Equal Areas-1609). The farther the earth is from the sun, the more slowly it moves in its orbit. The speed of the planet is actually inversely proportional to the square distance at the Aphelion and the Perihelion.

The eccentric earth returns to the Perihelion in an interval called the anomalistic year (365.2596 mean solar days), which is slightly longer than the time it takes for earth to make one complete circuit of its orbit $\left(360^{\circ}\right)$ relative to the stars (siderial year). Earth's siderial year is equal to 365.25634 ephemeric days (or 3.155815 $\cdot 10^{7}$ seconds). This is due to the influence of the planets on the axis of the earth's orbit. The mean earth completes its orbit during the same period but it travels at a constant angular rate. As a result, when both the eccentric and mean earth make a complete revolution around the sun, they are again aligned with the sun's position at the Perihelion. Since the anomalistic year is 365.2596 days, the mean anomaly (M) is:

$$
\begin{equation*}
M=M_{o^{+}}+(360 / 365.2596 \text { days }) \cdot d \tag{4.2}
\end{equation*}
$$

where
$M_{0}=$ mean anomaly at standard epoch, and
 epoch.

An epoch is simply another aspect of time, and it is no more than a point of time selected as a fixed reference. It so happens that a scholar named Joseph Scaliger in 1582 first conceived the idea and proposed the Julian System. This system takes as the arbitrary initial epoch 12:00 UT January 1, 4713 BC. The Julian Date (JD) at this instant was by definition zero. It is obvious that such an early starting epoch creates large numbers laborious to handle in calculations. Various other fundamental epochs have been suggested and in many cases the standard epoch is considered to be 12:00 UT, January 1, 2000 (or indicated as J 2000). Then Equation 4.2 becomes:

$$
\begin{equation*}
M=357.528+0.985600 \cdot d \tag{4.3}
\end{equation*}
$$

Equation (4.3) is equivalent to the "low precision" formulas given in Reference [27] and [28] and should be accurate to 0.01° until year 2050 . The time of a phenomenon in days since 0 January 0^{h} UT, d, is calculated from:

$$
\begin{array}{ll}
d=N+\left(6^{h}-\lambda\right) / 24 & \text { (morning), or } \\
d=N+\left(29^{h}-\lambda\right) / 24 & \text { (evening), } \tag{4.5}
\end{array}
$$

where
N - day of the year, and

```
\lambda= sun's true longitude, in hours.
```

The true longitude, λ, is just

$$
\begin{equation*}
\lambda=\mathrm{TM}+\beta \tag{4.6}
\end{equation*}
$$

where

$$
\beta=\text { longitude of Perihelion. }
$$

It is desirable that we have available an expression to calculate the earth-sun distance, since the solar radiation arriving on the top of the earth's atmosphere varies with the square of the distance to the sun. Reference [29] provides a relation based on the mean anomaly (M):

$$
\begin{equation*}
R_{m}=1.00014-0.01671 \cdot \cos (M)-0.00014 \cdot \cos (2 \cdot M) \tag{4.7}
\end{equation*}
$$

The units of R_{m} (the mean distance between the earth and the sun) are in astronomical units (AU). The astronomical unit is defined as the length of the radius of the unperturbed circular orbit of a body of negligible mass (compared to the sun) moving around the sun with a sidereal angular velocity of 0.017202098950 radian per day of 86,400 ephemeris seconds ($1 \mathrm{AU}=1.4959787 \cdot 10^{11} \mathrm{ra}$).

4.2 The Celestial Vault

For many purposes, star positions may be represented by points on the surface of an imaginary sphere of arbitrary radius, centered on the earth's center. Such a unit sphere is called the Celestial Vault. The rotation axis of the earth intersects this sphere at the north and south celestial poles. The projection of the earth's equatorial plane onto the celestial vault and containing the center, is called the celestial equator or the equinoctial (Figure 4.4). The equator's plane is perpendicular to the axis of apparent rotation of the celestial vault and it is everywhere 90° from both celestial poles. The intersection of the great circle of the celestial sphere, in which the sun appears to perform its annual movement (the ecliptic), with the celestial equator provides two fixed points on the celestial equator, 180° apart (since both are great circles). These intersections are the equinoctial points (Vernal and Autumnal equinoctial points) or equinoxes. The points on the ecliptic that are 90° from the equinoxes are the solstitial points or solstices. An alternative term for the

Figure 4.4. The Basic Lines and Points of the Celestial Vault

Vernal equinox is the First Point of Aries (y). The great circle normal to the celestial equator and passing through the sun, is called the hour circle.

4.2.1 Celestial Coordinate Systems

The position of the stars on the celestial vault can be defined by two perpendicular or curvilinear coordinates. There are four available reference planes:
A. The Ecliptic System,
B. The Equatorial System,
C. The Hour Angle System, and
D. The Horizontal System.
A. The Ecliptic System. The primary reference plane is the ecliptic and the secondary is the ecliptic meridian of Aries (Figure 4.5). The direction of the sun, point S, can be defined by the ecliptic latitude and the ecliptic longitude. The ecliptic latitude, β, is the angular distance between the direction of the observer to the sun and the ecliptic measured in the ecliptic meridian of S from 0° to 90°. It is positive when measured northward and negative southward the complement of the true latitude is the true polar distance. The true (or ecliptic) longitude, λ, is the angle between the ecliptic meridian of the sun and that of the equinox measured from the vernal equinox, y, to the east, in the ecliptic from 0° to 360°.

Figure 4.5. The Ecliptic System of Coordinates (β and λ)

Figure 4.6. The Equatorial System of Coordinates (δ and RA)
B. The Equatorial System. The primary reference plane is the celestial equator and the secondary is the plane defined by the NCP and SCP on the celestial vault - the equinoctial colure (Figure 4.6). Let S be the arbitrary position of the sun on the celestial valt. Its direction is given by the declination, δ, and the right ascension, RA. The right ascension is the angle between the hour angle of S and the equinoctial colure, measured from the vernal equinox, γ, to the east in the plane of the celestial equator from 0^{h} to 24^{h} or from 0° to 360°.
C. The Hour Angle System. The primary reference is the celestial equator and the secondary is the hour circle containing the observer's celestial meridian (Figure 4.7). The direction of the sun, point S, can be defined by the hour angle and declination. The hour angle, ω, is the angular distance between the hour circle and the observer's meridian. It is positive when measured westward from the observer. The declination, δ, is the angular distance from the celestial equator to the sun measured on the hour circle. It is taken with a positive sign on the northern half of the celestial sphere and with a negative sign on the southern half.
D. The Horizontal System. The primary plane is the celestial meridian (Figure 4.8). The direction of the sun, point S, can be defined by the elevation and the azimuth. The elevation, α, is the

Figure 4.7. The Hour Angle System of Coordinates (δ and ω)

Figure 4.8. The Horizontal System of Coordinates (a and $\boldsymbol{\gamma}_{S}$)
angular distance between the direction of the observer and the sun and the celestial horizon measured from 0° to 90° in the plane of the vertical circle through the position of the sun. It is considered positive above the horizon and with a negative sign below. Its compliment is called zenith angle, θ_{z}. The azimuth angle, γ_{S}, is the angular distance between the vertical plane of the sun and the celestial meridian of the observer measured from the direction of the north point to the east in the celestial horizon from 0° to 360°.

4.2.2 Conversions Between the Equatorial and Ecliptic Systems

Consider the celestial vault in Figure 4.9 where the equatorial and ecliptic systems are shown together. We can note immediately that for the north ecliptic pole $R A=270^{\circ}$ and the longitude of the north celestial pole is 90°. The following relations may be obtained by applying the laws of sine, cosine and the five elements of spherical trigonometry on the spherical triangle (Figure 4.10). The resulting sets of equations are [30]:

$$
\begin{align*}
& \cos \delta \cdot \cos (\mathrm{RA})=\cos \beta \cdot \cos \lambda, \tag{4.8}\\
& \sin \delta=\cos \beta \cdot \sin \lambda \cdot \sin \epsilon+\sin \beta \cdot \cos \epsilon, \tag{4.9}\\
& \cos \delta \cdot \sin (\mathrm{RA})=\cos \beta \cdot \sin \lambda \cdot \cos \epsilon-\sin \beta \cdot \sin \varepsilon, \tag{4,10}\\
& \cos \beta \cdot \cos \lambda=\cos \delta \cdot \cos (\mathrm{RA}), \tag{4.11}
\end{align*}
$$

Figure 4.9. Relations Between the Equatorial and Ecliptic System

Figure 4.10. The Ecliptic Triangle

$$
\begin{align*}
& \sin \beta=-\cos \delta \cdot \sin (\mathrm{RA}) \cdot \sin \epsilon+\sin \delta \cdot \cos \epsilon, \text { and } \tag{4.12}\\
& \cos \beta \cdot \sin \lambda=\cos \delta \cdot \sin (\mathrm{RA}) \cdot \cos \epsilon+\sin \delta \cdot \sin \epsilon \tag{4.13}
\end{align*}
$$

If the ecliptic parameters ϵ, λ, β are known, then $R A$ is found by dividing Equation 4.10 by Equation 4.8 , i.e.

$$
\begin{equation*}
\tan (R A)=\tan \lambda \cdot \cos \epsilon-\tan \beta \cdot \sin \epsilon / \cos \lambda, \tag{4.14}
\end{equation*}
$$

and δ is given by Equation 4.9.
If the equatorial parameters $R A, \delta, \epsilon$ are known, then λ is found by dividing Equation 4.13 by 4.11 , i.e.

$$
\begin{equation*}
\tan \lambda=\tan (R A) \cdot \cos \epsilon+\tan \delta \cdot \sin \epsilon / \cos (R A), \tag{4.15}
\end{equation*}
$$

and β is given by Equation 4.12. To determine the appropriate quadrant of RA or λ one can check the corresponding sines and the signs of the cosines.
4.2.3 Conversions Between the Hour Angle and Equatorial Systems

For practical calculations the hour angle is more useful than the right ascension, since it accounts for the observer's local

Figure 4.11. Relations Between the Hour Angle and Equatorial Systems
meridian and changes with the diurnal motion of the rotating earth.
Both systems though use the equatorial plane as their primary reference thus, the declination is a common parameter.

Let us consider the celestial equator, viewed from the north
celestial pole. From Figure 4.11 one can identify the Local Sidereal
Time (LST) defined as the hour angle of the vernal equinox: $\mathrm{LST}=\omega+\mathrm{RA}$.

If LST and hour angle parameter, ω, are known, then RA is found by:

$$
\begin{equation*}
\mathrm{RA}=\mathrm{LST}-\omega . \tag{4.17}
\end{equation*}
$$

If the equatorial parameter (RA) is known, then ω is found by:

$$
\begin{equation*}
\omega=\mathrm{LST}-\mathrm{RA} . \tag{4.18}
\end{equation*}
$$

4.2.4 Conversions Between the Horizontal and Hour Angles System

Consider the northern half of the celestial vault as shown in Figure 4.12. The relations between the parameters of the horizon and the hour angle may be derived again by using the astronomic triangle

Figure 4.12. Relations Between the Horizontal and Hour Angle Systems

Figure 4.13. The Astronomical Triangle

ZNCPS and the basic laws of spherical trigonometry [30]. This analysis will result to the following transformation equations applied to Figure 4.13:

$$
\begin{align*}
& \sin \theta_{Z} \cdot \sin \gamma_{S}=-\cos \delta \cdot \sin \omega, \tag{4.19}\\
& \cos \theta_{Z}=\sin \delta \cdot \sin \phi^{+} \cos \delta \cdot \cos \omega \cdot \cos \phi, \tag{4.20}\\
& \sin \theta_{Z^{\prime}} \cdot \cos \gamma_{S}=\sin \delta \cdot \cos \phi^{-} \cos \delta \cdot \cos \omega \cdot \sin \phi, \tag{4.21}\\
& \cos \delta \cdot \sin \omega^{=-} \sin \theta_{Z^{\prime}} \sin \gamma_{S} \tag{4.22}\\
& \sin \delta^{\prime}=\cos \theta_{Z} \cdot \sin \phi^{+} \sin \theta_{Z} \cdot \cos \gamma_{S^{\prime}} \cos \phi, \text { and } \tag{4.23}\\
& \cos \delta \cdot \cos \omega^{2} \cos \theta_{Z^{*}} \cos \phi^{-} \sin \theta_{Z^{*}} \cos \gamma_{S} \cdot \sin \phi \tag{4.24}
\end{align*}
$$

where
$\phi=$ astronomical or geographical latitude of a plane on the earth's surface, which is the complement of the acute angle between the astronomical vertical and the earth's axis of rotation, positive (negative) in the northern (southern) hemisphere. The astronomical vertical $(2 N)$ is a line determined by the direction of the local gravitational field.

If the hour angle parameters ω, δ, ϕ are known then the azimuth angle is found by dividing Equation 4.19 by Equation 4.21 , i.e.

$$
\begin{equation*}
\tan \theta_{z}=-\cot \delta \cdot \sin \omega / \cos \phi+\tan \omega \cdot \sin \phi \tag{4.25}
\end{equation*}
$$

and the zenith angle is given by Equation 4.20.
If the horizon parameters are available $\theta_{z}, \boldsymbol{\gamma}_{S}, \phi$ then the hour angle is found by dividing Equation 4.22 by 4.24 , i.e.

$$
\begin{equation*}
\tan \omega=-\tan \theta_{Z^{\prime}} \cdot \sin \gamma_{S} / \cos \phi+\tan \gamma_{S} / \sin \phi, \tag{4.26}
\end{equation*}
$$

and the declination is given by Equation 4.23 .

4.3 Algorithm for Calculating the Position of the Sun

The preceeding discussion should help the reader to understand and use the fundamental relations in the FORTRAN subprograms included in APPENDIX B. Subroutine HELGO (named after the Greek words Heliaci-Gonia, Solar Angle) is primarily based on subprograms written at the McDonnell Douglas Corporation [31], to control the tracking of a high performance modular dish collector system with an advanced heat engine receiver.

4.3.1 Basic Equations for Calculating the Position of Sun

```
    The basic equations used in this subroutine (HELGO) are
essentially the so-called "lower precision" formulae from the
```

Almanac for Computers. The incorporation of this subroutine in the present analysis was based on the desire to use a simple but accurate subroutine to perform the calculations for the position of the sun.

Some rather interesting refinements are included in HELGO, in order to obtain the most accurate results:

1. A polynomial expression in terms of a is used for the correction for the atmospheric refraction. This correction is most valid for low elevations, a, and is not applied for less than 5°. This should amount for nearly all cases of practical interest.
2. An expression for the change in the orbital eccentricity is included to refine the value computed for the ecliptic long itude.
3. An expression for the change in obliquity is also included.

The main part of subroutine HELGO computes the declination, δ, the equation of time, E_{T}, and the distance of sun-earth. Function GAST, is a function subprogram that computes the Greenwich Apparent Siderial Time accurately using the equation of Equinoxes. Finally, Function XJDAY, is a function that computes the Julian date.

The irregularities in the earth's rate of rotation make Universal Time (the local mean time of the prime meridian) unsuitable for the comparison of theory with observation. This fact created the obvious need to be able to define with precision on aniform time scale the instant of some phenomenon or observation. That was previously called an epoch (J 2000). The time interval elapsed between

```
two epochs measured in units of some time scale, is the so called time
interval and for this system:
```

$$
\begin{equation*}
\mathrm{d}=\mathrm{JD}-\mathrm{TREF}, \tag{4.27}
\end{equation*}
$$

where

$$
\mathrm{TREF}=2451545,
$$

or

$$
\begin{equation*}
\mathrm{d}=-5479.5-\mathrm{N}+\mathrm{UT} / 24, \tag{4.28}
\end{equation*}
$$

where
$\mathrm{N}=$ number of whole days since 0 UT, 0 January 1985.

The world is divided into twenty-four zones each having a width of 15 degrees (one hour) of longitude, in each of which the same standard time is kept. The meridian of Greenwich is taken as the reference point and namely zone zero. Zones to be east are numbered ZONE $=-1,-2,-3, \ldots$ and those to the west $Z O N E=1,2,3, \ldots$ according to the number of hours to be added to the local standard time (CVLT). Thus,

The STEP site is located west of Greenwich, five zones, which gives the Universal Time to be used for the locality as

$$
\begin{equation*}
\mathrm{UT}=\mathrm{CVLT}+5 \quad \text { (in hours). } \tag{4.30}
\end{equation*}
$$

In addition to the above, since 1966, for six months each year (from the last Sunday in April to the last Sunday in October) the time in each zone is advanced one hour, thus defining the daylight savings time (DST).

To determine δ and ω a change should be made from the horizontal plane to the equitorial reference system. The calculation of ω from the RA was analyzed in the previous sections of this chapter. As a point of caution, one must always make sure that the hour angle is in the correct quadrant. To eliminate the ambiquity of sign or quadrant, use of the two argument arctangent function is suggested. Otherwise numerous problems would arise and certaintly an error will be introduced in the following calculations. Once the value of ω is calculated in degrees, one can easily obtain the apparent solar time (AST)

$$
\begin{equation*}
\mathrm{AST}=\omega+12^{\mathrm{h}} \tag{4.31}
\end{equation*}
$$

so at $\omega=0$, AST=12 noon. Similarly the mean solar time (MST)

$$
\begin{equation*}
\mathrm{MST}=\mathrm{LST}+\left(\mathcal{L}_{\mathrm{St}}-\mathcal{L}\right) \tag{4.32}
\end{equation*}
$$

```
where
LST = local standard time,
L}\mp@subsup{\mathcal{St}}{}{=}\mathrm{ standard longitude, }7\mp@subsup{5}{}{\circ}\textrm{W}\mathrm{ , and
\mathcal{L}=1\mathrm{ longitude of the locality, }84.707\mp@subsup{6}{}{\circ}\textrm{W}.
```

```
    All the necessary parameters to calculate the equation of time
(E E ) are available at this point. The E ET is defined as the difference
between the apparent and mean solar time:
```

$$
\begin{equation*}
E_{T}=A S T-M S T \quad \text { (in minutes). } \tag{4.33}
\end{equation*}
$$

The equation of time may also be defined as the quantity which must be added to the mean longitude of the sun to give the sun's right ascension. What causes the necessity to define the principle of E_{T} is:

1. The eccentricity of earth's orbit, and
2. The obliquity of earth's orbit,
namely

$$
\begin{equation*}
E_{T}=E_{1} \text { (eccentricity) }+E_{2} \text { (obliquity). } \tag{4.34}
\end{equation*}
$$

Abstract

At Greenwich, apparent solar noon varies between $11^{\mathrm{h}} 44^{\mathrm{m}} 05^{\mathrm{s}}$ and $12^{\mathrm{h}} 14^{\mathrm{m}} 19^{\mathrm{s}}$. Maximum contribution from earth's orbital eccentricity is approximately eight minutes; from earth's obliquity is approximately ten minutes. AST and MST agree four times a year. An approximate expression for E_{T} (Watt's equation) is also available $$
\begin{equation*} E_{T}=9.87 \cdot \sin (2 \cdot D)-7.53 \cdot \cos (D)-1.5 \cdot \sin (D) \quad \text { (in minutes), } \tag{4.35} \end{equation*}
$$ where $D=360 \cdot(n-81) / 364$, and $\mathrm{n}=$ day of the year $1<\mathrm{n}<365$.

The results are valid for any year reasonably close to the present.
The apparent solar time, numerically measured by the hour angle of the sun plus 12^{h}, is no longer of importance in time keeping. In the American Ephemeris and the British Astronomical Ephemeris, since 1965, the equation of time was eliminated and replaced by the Ephemeris Time of transit of the sun, and no reference was any longer made to apparent solar time. However, in applications to solar engineering, navigation and surveying, there is still need for means to determine the hour angle of the sun. In such cases one should recall that AST is
a time scale paced according to the apparent sun such that:

$$
\begin{equation*}
\omega=(\operatorname{AST}-12.0) \cdot 15^{\circ} / \mathrm{hr} \tag{4.36}
\end{equation*}
$$

In this time scale ω equals zero when AST equals 12:00 (solar noon) or when the apparent sun is due south.
4.3.2 Results Using Subroutine Helgo

Subroutine HELGO was developed in order to replace the one used in [17], in an attempt to improve the accuracy of the modeling procedures. The results from both subroutines were compared against the 1983 Nautical Almanac [32] at 12:00 noon local Greenwich time. Program TABLE3 utilizes both methods and compares the corresponding values with the ones from the Almanac. A commented copy of the program is included in APPENDIX B. A part of the restits from the above comparison, for January 1983, is given in Table 4.1. There are three groups of results, each including the declination, the hour angle and equation of time. The first set of data includes the results from subroutine DAILY used in [17], namely the declination by Cooper's equation and the equation of time by Watt's method. The second set of data includes the results from subroutine HELGO and the last set of data is from the Nautical Almanac. Annual results of the comparison of

Table 4.1. Daily Values of the Declination, Hour Angle, and Equation of Time from Subroutines DAILY, HELGO, and the Nautical
Almanac for the month of January 1983

Day	DAILY (17)						HELGO						NAUTICAL ALMANAC (32)					
	$\begin{gathered} \text { DELTA } \\ \text { (DEGR-MIN) } \end{gathered}$		$\begin{gathered} \text { OMEGA } \\ \text { (DEGR-MIN) } \end{gathered}$		$\begin{gathered} \text { EOT } \\ (\mathrm{HIN}-\mathrm{SEC}) \end{gathered}$		$\begin{aligned} & \text { DELTA } \\ & \text { (DEGR-MIN) } \end{aligned}$		$\begin{gathered} \text { OMEGA } \\ \text { (DEGR-MIN) } \end{gathered}$		$\begin{gathered} \text { EOT } \\ (M 1 N-S E C) \end{gathered}$		$\begin{gathered} \text { DELTA } \\ \text { (DEGR-MIN) } \end{gathered}$		$\begin{gathered} \text { OMEGA } \\ \text { (DEGR-MIN) } \end{gathered}$		$\begin{gathered} \text { EOT } \\ (M I N-S E C) \end{gathered}$	
	(COO	ER)				ATT)												
1	-23	70	0	-47.82	-3	11.27	-23	1.60	0	-51.47	-3	25.86	-23	1.6	359	8.9	-3	24.0
2	-22	55.33	0	-53.67	-3	34.69	-22	56.55	0	-58.54	-3	54.15	-22	56.5	359	1.9	-3	52.0
3	-22	50.56	0	-59.48	-3	57.93	-22	51.04	-i	5.52	-4	22.09	-22	51.0	358	54.9	-4	20.0
4	-22	44.88	-1	5.25	-4	20.99	-22	45.08	-1	12.42	-4	49.66	-22	45.0	358	48.1	-4	47.0
5	-22	38.80	-1	10.96	-4	43.84	-22	38.66	-1	19.21	-5	16.83	-22	38.6	358	41.3	-5	14.0
6	-22	32.31	-1	16.61	-5	6.46	-22	31.80	-1	25.89	-5	43.57	-22	31.8	358	34.6	-5	41.0
7	-22	25.42	- 1	22.21	-5	28.83	-22	24.49	-1	32. 46	-6	9.86	-22	24.5	358	28.0	-6	7.0
8	-22	18. 14	- 1	27.74	-5	50. 94	-22	15.74	-1	38.91	-6	35.65	-22	16.7	358	21.6	-6	33.0
9	-22	10.45	-1	33.19	-6	12.77	-22	8.56	-1	45.24	-7	. 94	-22	8.5	358	15.2	-6	59.0
10	-22	2.38	-1	38.58	-6	34. 31	-21	59.94	-1	51.42	-7	25.69	-21	59.9	358	9.0	-7	23.0
11	-21	53.91	-1	43.88	-6	55.52	-21	50.88	-1	57.47	-7	49.88	-21	50.9	358	3.0	-7	48.0
12	-21	45.05	-1	49. 10	-7	16.40	-21.	41.41	-2	3.37	-8	13.49	-21	41.4	357	57.1	-8	11.0
13	-21	35.81	-1	54.23	-7	36.94	-21	31.51	-2	9.12	-8	36. 49	-21	31.5	357	51.3	-8	34.0
14	-21	26. 18	-1	59.28	-7	57.10	-21	21.20	-2	14.71	-8	58.86	-21	21.2	357	45.7	-8	57.0
15	-21	16. 17	-2	4.22	-8	16.89	-21	10.48	-2	20.15	-9	20.58	-21	10.5	357	40.2	-9	13.0
16	-21	5.78	-2	9.07	-8	36.28	-20	59.35	-2	25.41	-9	41.64	-20	59.4	357	35.0	-9	40.0
17	-20	55.02	-2	13.81	-8	55.25	-20	47.82	-2	30.50	-10	2.01	-20	47.8	357	29.9	-10	. 0
18	-20	43.88	-2	18.45	-9	13.79	-20	35.89	-2	35.42	-10	21.68	-20	35.9	357	25.0	- 10	20.0
19	-20	32.38	-2	22.97	-9	31.89	-20	23.57	-2	40. 16	-10	40.63	-20	23.6	357	20.2	-10	39.0
20	-20	20.51	-2	27.38	-9	49.54	-20	10.87	-2	44.71	-10	58.85	-20	10.9	357	15.7	-10	57.0
21	-20	8.28	-2	31.68	- 10	6.71	-19	57.79	-2	49.08	-11	16.33	-19	57.8	357	11.3	-11	14.0
22	-19	55.69	-2	35.85	-10	23.39	-19	44.34	-2	53.26	-11	33.04	-19	44.4	357	7.1	-11	31.0
23	-19	42.75	-2	39.89	-10	39.58	-19	30.52	-2	57.25	-11	48.99	-19	30.6	357	.3. 2	-11	47.0
24	- 19	29.46	-2	43. 81	-10	55.25	-19	16.34	-3	1.04	-12	4. 16	-19	16.4	356	59.4	-12	2.0
25	-19	15.82	-2	47.60	-11	10.40	-19	1.80	-3	4.64	-12	18.54	-19	1. 9	356	55.8	-12	16.0
26	-19	1.84	-2	51.25	-11	25.01	-18	46.92	-3	8.03	-12	32. 13	-18	47.0	356	52.4	-12	30.0
27	-18	47.52	-2	54.77	-11	39.07	-18	31.70	-3	11.23	-12	44.92	-18	31.8	356	49.3	-12	43.0
28	-18	32.86	-2	58. 14	-11	52.58	-18	16. 13	-3	14.22	- 12	56.90	-18	16.2	356	46.3	-12	55.0
29	-18	17.88	-3	1. 38	-12	5.51	-18	. 24	-3	17.02	-13	8.00 -	-18	. 3	356	43.5	-13	6.0
30	-18	2.57	-3	4. 46	-12	17.86	-17	44.03	-3	19.60	-13	18.41	-17	44. 1	356	44.0	-13	16.0
31	-17	46.94	-3	7.40	-12	29.62	-17	27. 50	-3	21.99	-13	27.95	-17	27.6	356	38.6	-13	25.0

HELGO and DAILY with the values from the Nautical Almanac are given in Table 4.2 in terms of maximum error and root mean square error (RMS).

Table 4.2. Comparison of the Error Coefficients Between Subroutines HELGO and DAILY

VARIABLE	ERRORS COMPARED TO 1983 NAUTICAL ALMANAC			
	HELGO		DAILY	
	MAXIMUM	RMS	MAXIMUM	RMS
δ	0.006°	0.002	1.196°	0.548
E	0.057 min	0.028	1.581 min	0.634

The annual results for the declination calculated by the two subroutines are compared with the values from the Almanac in Figure 4.14. The error using HELGO is:

$$
\begin{equation*}
\epsilon_{1}=\delta-\delta_{h}, \tag{4,37}
\end{equation*}
$$

where

$$
\begin{aligned}
& \delta=\text { declination value from Almanac, and } \\
& \delta_{h}=\text { declination predicted by HELGO. }
\end{aligned}
$$

Figure 4.14. Comparison of the Calculated Annual Values of Declination, from Subroutines HELGO (distorted curve), DAILY (curve identified with " 0 ") with 1983 Nautical Almanac (solid smooth curve)

The error using DAILY is

$$
\begin{equation*}
\epsilon_{2}=\delta-\delta_{c}, \tag{4.38}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where } \\
& \qquad \begin{array}{l}
\delta=\text { declination value from Almanac, and } \\
\delta_{c}=\text { declination predicted by Coopers }
\end{array}
\end{aligned}
$$

formula.

The Almanac declination is plotted in Figure 4.14. To illustrate the annual pattern, the subroutine results are plotted with the errors exagurated, so that the plotted values are as follow:

$$
\begin{aligned}
& \text { 1. to illustrate HELGO such that } \\
& \delta_{1}=\delta-1000 \cdot \epsilon_{1} \text {, and } \\
& \text { 2. to illustrate DAILY such that } \\
& \delta_{2}=\delta-10 \cdot \epsilon_{2} .
\end{aligned}
$$

It was necessary to exagerate the error using HELGO by a factor
of 1000 to make it distinguishable from the Almanac values. Results
from DAILY were exaggerated by only a factor of 10 to be
distinguishable. Also note that results from DAILY are uniformly low,
whereas results from HELGO are slightly above and below the Almanac results.

Figure 4.14 indicates that for the month of March for example (between the $59^{\text {th }}$ and $90^{\text {th }}$ day of the year) declination by HELGO is higher than the value calculated by DAILY. Then, the azimuth angle would be lower or $\cos \theta_{z}$ would have a higher value for HELGO (than DAILY). This would affect the calculated value of I_{o} (increase) and as a consequence the clearness index would decrease. Such behavior was observed when the data were plotted for both cases and cross compared. The data points were shifted to the left (towards lower k_{T} values on the plots of k_{T} versus τ_{b}) when subroutine HELGO was used.

In addition to the improvement of the calculation of the declination, hour angle and equation of time, the mean distance of sun-earth, Rm, in (AU) can be an additional advantage. For 1983 the daily values of Rm were calculated, with the following characteristic values:

$$
\left.\left.\begin{array}{l}
(\mathrm{Rm}) \min =0.983290 \mathrm{AU} \\
(\mathrm{Rm})_{\max }=1.01699 \mathrm{AU} \tag{4.40}
\end{array} \quad \text { on (January } 3,1983\right), \text { and } \text { (July } 6,1983\right) .
$$

The variation of the sun-earth distance, $\pm 1.685 \%$, is due to the eccentricity of the earth's orbit around the sun, as it was previously discussed. The principal result is $a \pm 3.4 \%$ variation in the amount of extratterestrial radiation reaching the earth.

The results from the comparison with the precise values from the Nautical Almanac are substantial evidence that allow us to conclude that subroutine HELGO produces extremely small error and for engineering applications should be prefered and can be used with confidence. For this study, the three main improvements, namely in declination, equation of time and the mean sun-earth distance, along with a very accurate latitude and longitude for the site, allow more accurate calculations of extraterrestrial radiation values.

For each hour it is possible to calculate the extraterrestrial normal irradiation as follows:

$$
\begin{equation*}
I_{o n}=G s c \cdot(1 / \mathrm{Rm})^{2} \cdot \Delta t, \tag{4.41}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{Gsc}=\text { solar constant, } 1367 \mathrm{~W} / \mathrm{m}^{2}, \\
& \mathrm{Rm}=\text { mean sun-earth distance, } \mathrm{R} / \text { Rave, } \\
& \mathrm{R} \quad=\text { prevailing sun-earth distance, } \\
& \text { Rave }=\text { average sun-earth distance, and } \\
& \Delta \mathrm{t}=\text { time interval, } 1.0 \text { hour } .
\end{aligned}
$$

One should note the value of the solar constant (1367 W/m²) used in this work. Several publications are available in the literature about the seasonal variation of the solar constant but there is still disagreement between researchers on its absolute value [35].

Since though, the radiometers used at Shenandoah STEP site are traceable to the $W R R$, it was decided for consistency to employ the solar constant of $1367 \mathrm{~W} / \mathrm{m}^{2}$ adopted by the World Meteorological Organization (WMO). In the present analysis the solar constant is only a normalizing factor, and the model depends only on surface observations. The actual value of the solar constant is not fundamentally important, and the adopted value should be continued to be used in applying this model.

The extraterrestrial horizontal irradiation was calculated according to the formula:

$$
\begin{align*}
I_{0}=(12 / \pi) \cdot G s c \cdot(\operatorname{Rave} / R)^{2} \cdot & \left\{\cos \phi \cos \delta\left(\sin \omega_{2}-\sin \omega_{\}}\right)\right. \\
& \left.+\left(\omega_{2}-\omega_{1}\right) \sin \phi \sin \delta\right\} \tag{4.42}
\end{align*}
$$

where

$$
\begin{aligned}
& \phi=\text { latitude of the locality, } \\
& \boldsymbol{\delta}=\text { solar declination, and } \\
& \boldsymbol{\omega}_{2}, \omega_{1}=\text { hour angle at start, end of hour. }
\end{aligned}
$$

Thus, an easy to use subroutine (HELGO) is now available, for calculating the position of the sun and can be used in the modeling process to calculate more accurately the desired radiation parameters.

In Equations (4.41) and (4.42) the earth-sun distance, the declination, and the equation of time used to compute the hour angles
were computed at the middle of each hour (in [17] the calculations are made at the beginning of each day). In APPENDIX B a commented program called CKTTB2 is presented, that illustrates the use of subroutine HELGO. CKTTB2 is used to recalculate the k_{T} and τ_{b} values at the midpoint of the hourly intervals, using only the radiation data from the 5 -Year data base. This program is more accurate and is much simpler in organization than the one used in [17], although the basic equations are the same. For example, the solar constant was used as $1377 \mathrm{~W} / \mathrm{m}^{2}$ and the values for Longitude and Latitude were not that accurate. Again in CRTTB2 the calculations (for $R m, \omega, E_{T}$) are performed at the beginning of each day, for comparison reasons. The results from the calculations showed that one can use CKTTB2 to reproduce the values of k_{T} and τ_{b} (the maximum difference was 0.3%, which can be attributed to round off error).

Once the results from CKTTB2 were verified, CKTTB1 was developed, with the only difference being that it performs the calculations (through HELGO) at the middle of each hourly period. As a result, a simple and accurate way for calculating k_{T} and τ_{b} is now available. Realizing that ω and δ do not change substantially during the day, a difference of about 1.1% was noticed in comparison to the results obtained in [17] (or in other words 1.1% improvement in the accuracy of the calcualted values).

The 5-Year data was sorted based on the k_{T} value calculated by CKTTB1 in order to reach its final form. There were actually two programs, LSMAIN6 and LSMAIN7 (APPENDIX B), which performed the sorting of the data. This was necessary due to the use of large numbers of
arrays. LSMAIN7, sorts the date data values for each hourly period and the value of the old k_{T}. Similarly, LSMAIN6 sorts the remaining data. Combining the two outputs, one has the final form of the 5 -Year data (8112 cases, listed in ascending order based on k_{T}) which can be used in all the following calculations. Note that LSMAIN7 precedes LSMAIN6 in the executing procedure since one would like to keep the permutation vector developed after the first sorting in order to make sure that the same one is used for the sorting of the second group of data. The sorting subroutines are implemented through subroutines VSRTP and VSRTU (APPENDIX B) from the IMSL Library [36].

One can compare the present subroutine (HELGO) with the earlier one (DAILY [17]) by developing the corresponding models, based on the 5-Year data, as indicated in Figure 4.15. The line with the crosses indicates that subroutine DAILY was used, while the squares indicate subroutine HELGO was incorporated in the modeling analysis. The shift to the left and upwards (lower k_{T}, higher τ_{b}) is obvious for the square line (the situation was previously discussed).

Figure 4.15. Comparison of the Model Prodused Using Subroutine HELGO (curve identified with rhombi) With the One Using DAILY (curve identified with crosses)

CHAPTER V

STATISTICAL ANALYSIS

Abstract

A 5-Year data base was previously developed. From these hourly data, k_{T} and τ_{b} can be easily calculated following the procedures indicated in the previous chapters. Processing of these data is done in a similar fashion as the annual data. Thus, the 5-Year model can be obtained. In this chapter, the available models will be compared, on a statistical, to determine the best model for the Shenandoah data.

5.1 Annual and Five-Year Models

The available data for the 5 -Year model are data that have passed all previous tests and contain only hourly observed data. The 5-Year model was prepared by performing homogeneous least square fits for each band of data. For consistency the same bands were selected as were used by Randall and Whitson. The coefficients for the piecewise linear function $\tau_{b}=A_{i} \cdot K_{T}+B_{i}$ are shown in Table 5.1 according to [33]:

```
Table 5.1 Coefficients for the Piecewise
Linear Function \(\tau_{b}=A_{i} k_{T}+B_{i}\)
```

\qquad
INTERVAL FOR
$A_{i} \quad B_{i}$
K_{T}
K_{T}

$0.00-0.05$	0.04	0.00

$0.05-0.15$	0.01	0.002

 \(0.15-0.25\)
 \(0.06-0.006\)
 \(\begin{array}{lll}0.25-0.35 & 0.32 & -0.071\end{array}\)
 \(\begin{array}{lll}0.35-0.45 & 0.82 & -0.246\end{array}\)
 \(\begin{array}{lll}0.45-0.55 & 1.56 & -0.579\end{array}\)
 \(0.55-0.65\)
 \(1.69-0.651\)
 \(0.65-0.75\)
 \(1.49 \quad-0.521\)
 \(0.75-0.85\)
 0.27
 0.395
 The initial screening already excluded data with very low clearness indices $\left(K_{T}<0.05\right)$. Thus, the regression analysis was conducted for the eight remaining bands in sequence. For each band the regression model which assures simple continuity is:

$$
\begin{equation*}
\left(\tau_{b j}-y_{o i}\right)=\beta_{i} \cdot\left(k_{T j}-x_{o i}\right)+\epsilon_{j}, \tag{5.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& x_{o i}=\text { lower limit of bound } i, \\
& y_{o i}=\text { regression model at } x_{o i}, \\
& \beta_{i}=\text { regression coefficient, and } \\
& \epsilon_{j}=\text { residual error for data }\left(K_{T j}-\tau_{b j}\right) .
\end{aligned}
$$

Each individual year as well as the aggregate 5 -Year set was analyzed separately. Reference [17] suggests that the best model for the Shenandoah data is the piecewise continous linear regression. Its continuous format provides for an easy-to-use model which makes it the most attractive. Let us look at Table 5.2 where the annual results for 1980 are tabulated, comparing different types of models.

The Randall-Whitson model produces the largest sum of square errors (SSE). This represents the accuracy with which the Randall-Whitson model describes the data and is the value with which to compare the other regression results. The piecewise linear regression produces the smallest $S S E$, which makes it attractive from a statistical

Table 5.2 Model Comparison
TYPE OF MODEL SUM OF SQUARE ERROR
$\begin{array}{ll}\text { Randall-Whitson, Piecewise } & 15.76\end{array}$
Continuous Linear Equations
$\begin{array}{ll}\text { Piecewise Linear Regressions } & 13.67\end{array}$
$\begin{array}{ll}\text { Piecewise Continuous Linear Regressions } & 13.73\end{array}$
Polynomial Regression 2nd Degree 13.81
Polynomial Regression 3rd Degree
13.76
Polynomial Regression 4 th Degree
13.76
standpoint. The slope discontinuities of this model have no physical basis, and therefore, this model can not be recommended. The polynomial regressions produce higher SSE values and they would tend to over predict the beam normal fraction at high clearness indices. Similar observations were made for the other four annual models and 5-Year model.

The obvious choice for the Shenandoah model, that is the set of piecewise continuous linear regressions, was verified. The coefficients for all annual models and the 5-Year model, can be found in Table 5.3. Scatter plots for each year and the combined 5-Years are shown in Figures 5.1 through 5.6, with the resulting regression models superimposed along with the Randall-Whitson model (solid line). An extra plot, Figure 5.7, is included for the 5-Year case, without the data, in order to assist the reader in distinguishing the corresponding model and Randall-Whitson model.

Several observations are pertinent relative to the annual models and the 5-Year model. All six models are qualitatively similar with one exception. The 1984 model has an anomalous coefficient, actually zero, in the highest band. This seems to represent a seasonal effect since no data were collected due to operational problems during the winter and early spring. These seasons account for essentially all of the clearest weather experienced in northern Georgia. At these times cold, dry continental air masses penetrate this transitional region which is otherwise most strongly influenced by neighboring tropical maritime air masses originating over the mid-Atlantic and the Gulf of Mexico. In the absence of these clear weather patterns a very few

Table 5.3. Annual and Five-Year Regression Coefficients for Shenandoah STEP

INTERVALS OF		1979	1980	1981	1983	1984	5-YEAR
CLEARNESS	INDEX	(6i)	\{6i\}	$\{\mathrm{bi}\}$	\{ 61 \}	$\left\{b_{i}\right\}$	$\{8 i\}$
$0.00<k$	<0.05	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$0.05<k$	<0. 15	0.0000	0.0004	0.0032	0.0000	0.0000	0.0007
O. $15<k$	<0.25	0.0168	0.0317	0.0511	0.0301	0.0310	0.0297
0. $25<k$	<0. 35	0.2564	0.2337	0.2591	0.2879	0.1733	0.2490
- $.35<k$	<0.45	0.8562	0.8796	0.8851	1.0713	1. 174	0.9466
$0.45<k$	<0.55	1.3511	1.3473	1.6430	1.5602	1.5111	1.4772
0. $55<k$	<0.65	1.8084	1.3314	1. 5253	1.4959	1.6393	1.5680
$0.65<k$	<0.75	2.0174	2. 1214	2. 3527	2.0059	1.9325	2.0773
$0.75<k$	<0.85	1. 4478	2.2664	1.3337	0.8439	0.0000	1.3778

Figure 5.1. Scatter Plot of and Piecewise Regression on Shenandoan STEP Data for 1979. The Randall-Whitson Model is shown by the Plain Line

Figure 5.2. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for 1980. The Randall-Whitson Model is shown by the Plain Line

Figure 5.3. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for 1981. The Randall-Whitson Model is shown by the Plain Line

Figure 5.4. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for 1983. The Randall-Whitson Model is shown by the Plain Line

Figure 5.5. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for 1984. The Randall-Whitson Model is shown by the Plain Line

Figure 5.6. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the 5-Years. The Randall-Whitson Model is Shown by the Plain-Line

Figure 5.7. The 5-Year Shenandoah STEP Regression Model Compared With the Randall-Whitson Model (plain line)
spurious outliers, dominate the regression.
There is an obvious contrasting behaviour of the models at high clearness indices. The anomalous character of the regression for 1984 demonstrates two possible explanations. The entire regression for $k_{\boldsymbol{T}}>0.75$ is determined by only nine data, one of which is a possible spurious outlier. Our 1984 data is truncated because no winter data is included. This sparcity of clear sky data makes our 1984 model the least reliable of all tested, much less reliable than even the Randall-Whitson model.

Several of the data sets employed by Randall-Whitson (e.g. Raleigh, North Carolina Fort Hood, Texas and Maynard, Massachusetts) seem similarly depleted. Additionally, the two data sets available to Randall-Whitson with the largest number of clear sky data (both for Albuquerque, New Mexico) were deemed by them, less reliable and only "limited use" of these data were made in their model development. The limited data for clearest skies are reason enough to question such data. Additionally, the possibility that an outlier (an exceptional or spurious datum) could overly influence the data is enhaced when only a few data are available. Again, at least two of their data sets (Raleigh, North Carolina and Fort Hood, Texas) include many outliers, some of which, based on our experience, might be identifiable as spurious on closer examination.

5.2 Monthly Models

The data are grouped in such a way that would be easy to further examine them and proceed from the annual models to monthly models. The only requirement is to group the 5 -Year data (8112 periods) in periods that belong to the same month. The monthly data were used to create monthly models and plot them against the 5 -Year model. The monthly model coefficients are listed in Table 5.4 and all 12 plots are illustrated in Figures 5.8 to 5.20 . The 5 -Year model is the solid line while the corresponding monthly model is the line identified with squares.

Examining these figures one can see that there is a difference in the data distribution during different seasons. The data are grouped at higher clearness index values during the winter months, compared with the summer months were there is a much more uniform distribution. The seasonal dependence is quite obvious. During the summer months the corresponding models are below the 5 -Year model. As we move along towards the winter months the over all slope of the model increases, moving closer to the 5 -Year model, and during the winter months it clearly has higher values.

The model is very sensitive to outliers, especially at the last band where only a few data points exist (i.e. four data points out of 389, in the case of January). A closer examination of these points, presented in Chapter III, determined that some of them were spurious outliers and were removed from the 5 -Year monthly data.

Table 5.4. Monthly Regression Coefficients for Shenandoah STEP

Figure 5.8. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of January. The Randall-Whitson Model is Shown by the Plain-Line

Figure 5.9. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of February. The Randall-Whitson Model is Shown by the Plain-Line

Figure 5.10. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of March. The Randall-Whitson Model is Shown by the Plain-Line

Figure 5.11. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of April. The Randall-Whitson Model is Shown by the Plain-Line

Figure 5.12. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of May. The Randall-Whitson Model is Shown by the Plain-Line

Figure 5.13. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of June. The Randall-Whitson Model is Shown by the Plain-Line

Figure 5.14. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of July. The Randall-Whitson Model is Shown by the Plain-Line

Figure 5.15. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of August. The Randall-Whitson Model is Shown by the Plain-Line

Figure 5.16. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of September. The Randall-Whitson Model is Shown by the Plain-Line

Figure 5.17. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of Octomber. The Randall-Whitson Model is Shown by the Plain-Line

Figure 5.18. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of November. The Randall-Whitson Model is Shown by the Plain-Line

Figure 5.19. Scatter Plot of and Piecewise Regression on Shenandoah STEP Data for the Five Year Months of December. The Randall-Whitson Model is Shown by the Plain-Line

The identified spurious point in January was the only one, in the last band, but certainly for the other months there are some more suspicious outliers. These points (identified with a circle) were not taken off due to lack of justification; there was not any indication of instrument malfunction of any type, in order to prove the measured data, eroneous.

The seasonal dependence is currently under an extensive investigation. From the preliminary results, one can conclude that the model tends to underpredict the beam normal irradiation during the winter months and overpredict it during the summer months, which supports the model's seasonal dependence. This seasonal dependence though, averages out when considering the whole year.

5.3 Regression Analysis

Statistics may be regarded as the study of populations. The initial meaning of populations referred to human beings. It is evident though, that if a measurement is to be repeated for a large number of times, the aggregate of the results is a population of measurements. For our purposes we are considering a population that cosists of two variables: clearness index k_{T}, and beam transmittance τ_{b}. The populations which are the object of any statistical study, always display variation in one or more respects. Their distribution, though generally tends to the normal form as the size of the population is increased. For this study we have a very high number of measurements
and it is reasonable to assume that such statistics are normally distributed and limit consideration of their variability to calculations of the standard error (the theory of large samples [34]). Various data distribution plots were previously presented $\left(k_{T}\right.$ versus τ_{b}) as scatter diagrams. Each dot represents a pair of observations. These diagrams usually suggest whether or not any significant correlation exists between the variables and in general, how good the model represents the data. It is not possible, though, to determine by inspection which one of the annual models, the 5 -Year model or the Randall-Whitson is the best for the corresponding data base. The following analysis will provide the necessary tools to accomplish the task of determining a way to compare these models and justify the general acceptance of one of them, if possible.

5.3.1 Statistical Procedures

To determine how well a linear model can explain a relationship between two variables, k_{T} and τ_{b}, in a case of scatter data, we have to use what is called "measures of correlation". The least square line approximating the set of points $(x, y) \quad i=1,2, \ldots, n$ has the equation:

$$
\begin{equation*}
y=a_{0}+a_{1} \cdot x, \tag{5.2}
\end{equation*}
$$

where

$$
x=\text { independent variable, } k_{T} \text {, }
$$

$$
\begin{aligned}
& y=\text { dependent variable, } \tau_{b}, \text { and } \\
& a_{0}, a_{1}=\text { constants to be determined. }
\end{aligned}
$$

For this statistical analysis, the International Mathematical and Statistical Libraries [36] will be used, to determine constants a and a_{1}.

Program TBREG5, included in APPENDIX C, was developed to perform the statistical analysis. It is a compact program that actually summarizes a lot of the previously presented analysis. TBREG5 can be used with the 5 -Year data base, to produce the annual models as well as the 5-Year model. In the form of a subroutine, SUBI in APPENDIX C, it can be used to recalculate the k_{T} and τ_{b} from the radiation data. There is an option if one prefers to perform the calculations at the mid-period (using SUBI) or at the beginning of each day. It can provide the slopes of the linear regression models, create the corresponding plots and perform the statistical analysis by comparing the 5 -Year models with any annual or the Randall-Whitson model.

A summary of the most important statistical parameters is presented. The total sum of squares error (SUME2) is calculated as the summation of all the sum of square errors for each band (SSE1, SSE2,...., SSE8). These sums were calculated using subroutine RLONE from [36].

The total variation of y, Syy, is a measure of the scatter in the data, and is defined as [37]:

$$
\begin{equation*}
\text { Syy }=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=S S_{R}+S S_{E}, \tag{5,3}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{SS}_{\mathrm{E}}= & \text { unexplained variation, } \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \text { and mearu-n } \\
& \text { the residual variation left unexplained } \mathrm{E}-\cdots \text { the } \\
& \text { regression line, } \\
\mathrm{SS}_{\mathrm{R}}= & \text { explained variation, } \sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} \text { and measures the } \\
& \text { amount of variability in the } y_{i} \text { accounted by } \\
& \text { the regression line, } \\
\hat{y}= & \text { estimated regression model, and } \\
\bar{y}= & (1 / n) \sum_{i=1}^{n} y_{i} .
\end{aligned}
$$

The development of equation (5.3) is presented in APPENDIX C.
In order judge the adequacy of a regression model, a quantity called the coefficient of determination (r^{2}), can be of help. It is defined as the ratio of the explained variation to the total variation:

$$
\begin{equation*}
r^{2}=S S_{R} / S y y=1-\left(S S_{E} / S y y\right) \tag{5.4}
\end{equation*}
$$

The coefficient of determination is a measure of how much of the variation in the beam transmittance is accounted for by the piecewise linear dependence on k_{T}, established in the regression analysis. In the case that we have $S y y=S S_{R}$ or the total variation of (y) to equal
the explained variation, then the coefficient of determination equals one (perfect positive relationship between the two variables). On the other hand, if the total variation of (y) equals the unexplained variation, then the r^{2} equals zero (no relationship beiween the two variables). Clearly $0<r^{2}<1$.

Caution is advised, though, regarding the use of the statistic r^{2}. It is possible to make r^{2} equal to unity, that is 100 percent of the variability in the data will be accounted for by the model, by simply adding enough terms to the model. That would result to the misleading conclusion that the fit of the data to the model is "perfect". The r^{2} statistic must be used with caution when comparing the results obtained from analyses of different models.

It is convenient that we have chosen the case with a linear relationship between a dependent and an independent variable, so that one can be concerned with the linear regression of τ_{b} on k_{T}. Thus, in this case that the variables are linearly related, the correlation coefficient is a measure of the degree of relationship present. The correlation coefficient may be defined as :

$$
\begin{equation*}
r= \pm \sqrt{S S_{R} / S_{y y}}= \pm \sqrt{r^{2}} \tag{5.5}
\end{equation*}
$$

The ratio of the explained variation to the total variation (or the coefficient of determination) is always positive, while the correlation of coefficient lies between $-1<r<1$. The sign of r is the
same as the sign of slope in the regression equation. It follows that, a value of $r=0$, would mean no linear relationship between k_{T} and τ_{b}. If the value is nonzero then that means that a large number of k_{T} values tends to be associated with a large number of τ_{b} values. The results of the analysis for all six models are listed in Table 5.5. For all the years there is a positive relationship between k_{T} and τ_{b} but it is not perfect. The correlation coefficient for 1984 is 0.9222 which is related to the scatter of the plotted points about the line representing their trend (Figure 5.5).

The next step in our analysis is to determine the significance of the difference observed between the 5 -Year and annual models, and between the 5 -Year and the Randall-Whitson model. All previously developed parameters will be used to test whether the 5 -Year continuous linear model can adequately describe the annual models. For this work the null hypothesis is that the Randall-Whitson model or an annual model is tenable. The alternative hypothesis is that the 5 -Year model is more tenable based on the 5-Year data base.

The most appropriate test statistic for comparing regression lines is the Fisher F-statistic, which is computed according to the formula [38]:

$$
\begin{equation*}
\mathrm{F}=\left\{\left(\mathrm{RSS}_{\mathrm{NH}}-\mathrm{RSS}_{\mathrm{AH}}\right) /\left(\mathrm{df}_{N H^{-d f}}-\mathrm{df}\right)\right\} /\left(\mathrm{RSS}_{\mathrm{AH}} / \mathrm{df}_{\mathrm{AH}}\right), \tag{5.6}
\end{equation*}
$$

where

Table 5.5 Model Coefficients of Determination and Correlation

MODEL	COEFFICIENT OF	COEFFICIENT OF
	DETERMINATION	CORRELATION
	$\left(r^{2}\right)$	(r)
1979	0.9070	0.9524
1980	0.8933	0.9451
1981	0.8823	$0.93 \leq 3$
1983	0.9116	0.9548
1984	0.8504	0.9222
5-YEAR	0.8865	0.9415

```
RSS }\mp@subsup{N}{NH}{}=\mathrm{ unexplained variation for the hypothesized model
    (i.e. an annual model or the Randall-Whitson),
RSS
    (i.e. the five-year model),
df}\mp@subsup{\textrm{NH}}{}{=}=\mathrm{ degrees of freedom for the hypothesized model, n,
df}AH= degrees of freedom for the alternative model n-p
n = total number of observations for the five-years,
        8112, and
p = number of parameters {bi},8.
```

The F statistic gives evidence against the null hypotheses if the value of F calculated by Equation 5.4 is large when compared to the percentage points of $\mathrm{F}\left(\mathrm{df}_{\mathrm{NH}}-\mathrm{df}_{\mathrm{AH}}, \mathrm{df}_{\mathrm{AH}}\right)$. For example, $\mathrm{F}(8, \infty)=2.64$ with a confidence of 0.09 . Then the model provided by the null hypotheses is not as good as the one provided by the alternative hypothesis. On the other hand, if the model is adequate when compared to the general model F will be small.

5.3.2 Results from Statistical Analysis

Results from the analysis of variation are given in Table 5.6. The 5 -Year model has the lowest RSS since its parameters were calculated to minimize the residual error. The annual models were computed from a subset of data while the Randall-Whitson model is

Table 5.6 Model Comparison Based on the Residual Regression, F-Statistic, and Probability Values

Mode1	RSS	F	
1979	48.40	20.000	1.00
1980	54.84	157.454	1.00
1981	49.49	43.325	1.00
1984	49.83	35.392	1.00
R-W			

independent of this data so their RSS's are higher. A higher value of the F-statistic tends to support the 5 -Year model as a better alternative to the hypothesized less inclusive models. As can be seen from the table the f-statistics for every hypothesized model is quite large. Consequently, one would tend to reject all of these in favor of the 5-Year model.

Also shown in Table 5.6 are the probabilities $P(Z<F)$ that a random variable Z would have a value less than the computed value of F. Again, all the hypothesized models have $P=1.0$. The literal interpretation is that there is essentially no chance that a longperiod would have the same regression model as any of the short-period, annual models or as the Randall-Whitson model. As a practical matter the F distribution should not be trusted implicitly in this application. The F distribution assumes that the errors in Equation (5.1) are randomly distributed about the regression line with uniform, although unknown, variance [38].

Observation of the scatter plot, Figure 5.6, for the 5-Year set reveals that while the distribution does have a random appearance at any given k_{T} the variance is by no means constant. It is obvious that the variance is small both for large $k_{T}(>c .0 .75)$ and small k_{T} (<c.0.4). In contrast, the variance as manifested by the breadth of the scatter plot is large for indermediate clearness indices. Nevertheless, the high probabilities that an adequate model would have lower RSS than the observed for the limited models is convincing evidence that all, including the Randall-Whitson model, should be rejected in favor of the new 5 -Year model.

Abstract

As a practical matter, however, inspection of Figure 5.7, shows that the Randall-Whitson model hardly differs from the 5 -Year model except in the highest k_{T} band $\left(0.75<\mathrm{k}_{\mathrm{T}}<0.85\right)$. Otherwise the correlations are nearly identical. Even at $\mathrm{k}_{\mathbf{T}}=0.75$ the models differ by only 5.1 percentage points. One can conclude on the basis of the STEP data that the Randall-Whitson model is a tenable correlation for $\mathrm{k}_{\mathrm{T}}<0.65$. For higher clearness indices the 5 -Year correlation is preferred.

MODEL VALIDATION

6.1 Model Comparison

Figure 6.1. Beam Normal Fraction - Clearness Index Models

6.2 Verification of Data Processing Procedures

An additional check was performed in order to provide an overall verification of the data processing procedures used to produce the Shenandoah models. This was done by conducting the following numerical experiment: create an artificial data base containing a synthesized global and beam irradiation with a predefined relationship between τ_{b} and k_{T}. If the data processing procedures are working correctly they should detect the predefined relationship precisely.

For this purpose a FORTRAN program was developed to create a data base by recalculating the radiation data. The necessary information inputs are the coordinates of the site $\quad\left(33.4046^{\circ} \mathrm{N}\right.$ and $\left.84.7478^{\circ} \mathrm{W}\right)$. The main features of this algorithm are:
A. Calculate daily sunrise anc sunset hour angles, and standard time of sunrise and sunset.
B. Calculate the irradiation values for each period.
C. Calculate the global irradiation and clearness index for each period.
D. Calculate the beam normal irradiation from (C) using the predefined relation between τ_{b} and k_{T}.

It is important that the calculations are performed between sunrise and sunset, in order to obtain meaningful results. Fundamental equations are used to calculate the declination, hour angle, equation of time and standard time of sunrise and sunset. Declination, δ, is given from Cooper's equation (1969):

$$
\begin{equation*}
\delta=23.45 \cdot \sin (360 \cdot(284+n) / 365), \tag{6.1}
\end{equation*}
$$

where

$$
\mathrm{n}=\text { day of the year }
$$

Duffie and Beckman [26] propose that for the sunset hour angle, $\omega_{S S}$, one can use:

$$
\begin{equation*}
\omega_{S S}=-\tan \phi \cdot \tan \delta \tag{6.2}
\end{equation*}
$$

where

$$
\phi=\text { latitude of the location. }
$$

The sunrise hour angle is simply,

$$
\begin{equation*}
\omega_{S r}=-\omega_{S S} \tag{6.3}
\end{equation*}
$$

The equation of time, E_{T}, is given by (Watt, 1978):

$$
\begin{array}{lr}
E_{T}=-14.2 \cdot \sin \{(n-7) \cdot 0.028303\} & 1<n<106 \\
E_{T}=4 \sin \{(n-106) \cdot 0.053247\} & 107<n<166
\end{array}
$$

$$
(6.4)
$$

$$
\begin{align*}
& E_{T}=-6.5 \cdot \sin \{(n-166) \cdot 0.03927\} \\
& E_{T}=16.4 \cdot \sin \{(n-247) \cdot 0.027802\} \tag{6.7}
\end{align*}
$$

The relation of solar time to standard time can be used to calculate the standard time of solar noon [26]:

$$
\begin{equation*}
\text { STDTSN }=12-E_{T}-(\text { STMER-LONG }), \tag{6.8}
\end{equation*}
$$

where

```
STDTSN = standard time of solar noon,
STMER = standard meridian for the local time zone,
                        75
LONG = longitude of the location, 84.7478 }\mp@subsup{}{}{\circ}\textrm{W}
```

The sunrise (SRTIME) and sunset (SSTIME) standard time are then simply:

$$
\begin{gather*}
\text { SRTIME }=\text { STDTSN }-\omega_{\mathrm{SS}} \text { and } \tag{6.9}\\
\text { SSTIME }=\operatorname{STDTSN}+\omega_{\mathrm{SS}}{ }^{*} \tag{6.10}
\end{gather*}
$$

The irradiation for each period is the area under the curve (shaded area in Figure 6.2), obtained by performing an integration
between start-end of the period. Let time ($t-\Delta t$) represent the time that a period starts and (t) the ending time. The integration 1 imits of the first and last period, within the usable part of the day (between sunrise-sunset) have to be specified. One can use the sunrise time $\left(t_{S r}\right)$ to determine the lower integration limit:

1. If $t_{S r}>t$ then that period is neglected since irradiation equals zero.
2. If $t_{S r}<t-\Delta t$ then sunrise occured before the start time of the period. Then the lower integration limit, τ_{\perp}, is set equal to the starting time of the period or $\tau_{\perp}=t-\Delta t$.
3. If $t-\Delta t<t_{S r}<t$ then $\tau_{\perp}=t_{S r}$.

Figure 6.2. Daily Irradiation Limits

A similar analysis should also be performed for the last period:

1. If $t_{s s^{<}}-\Delta t$ then all the periods after sunset are neglected,
since all irradiation equals zero.
2. If $t_{S S}>t$ then the sunset occured after the end of the last period. The higher integration Iimit, τ_{2}, is set equal to the ending time of the period $\tau_{2}=t$.
3. If $t-\Delta t<t_{s s}<t$ then the higher integration limit becomes $\tau_{2}=\mathrm{t}_{\mathrm{S}}$.

For all other periods within $t s r$ and $t_{S S}$, it is obvious that $\tau_{\perp}=t-\Delta t$ and $\tau_{2}=t$. The times considered here are the standard times.

The integration limits, τ_{1} and τ_{2}, are now available. At the avearge value $\left(\boldsymbol{\tau}\right.$ ave $=\left(\tau_{1}+\tau_{2}\right) / 2$) that is at the middle of each period one can calculate:

1. The hour angle, $\vec{\omega}$ negative in the morning, positive in the afternoon,
2. The zenith angle, $\bar{\theta}_{\dot{z}}$, [26]

$$
\begin{equation*}
\cos \bar{\theta}_{z}=\cos \delta \cdot \cos \phi \cdot \cos \omega+\sin \omega \sin \phi \tag{6.11}
\end{equation*}
$$

3. The solar altitude angle, $\bar{\alpha}$,

$$
\begin{equation*}
\bar{\alpha}=90^{\circ}-\theta_{z} \tag{6.12}
\end{equation*}
$$

4. The air mass, $\overline{A M}$,

$$
\begin{equation*}
\overline{A M}=1 / \sin (\alpha), \tag{6.13}
\end{equation*}
$$

5. The extraterrestrial radiation, $G_{\text {on }}$, which remains constant during a day [26],

$$
\begin{equation*}
G_{o n}=\operatorname{Gsc} \cdot(1+0.033 \cdot \cos (360 \cdot n / 365)), \tag{6.14}
\end{equation*}
$$

where

$$
\begin{aligned}
\text { Gsc } & =\text { solar constant, } 1367 \mathrm{~W} / \mathrm{m}^{2}, \\
\mathrm{n} & =\text { day of the year, }
\end{aligned}
$$

and finally,
6. The beam normal radiation. For this analysis one can ignore atmospheric refraction and then can assume that the air mass value is constant, i.e.

$$
\begin{equation*}
\overline{\mathrm{G}}_{\mathrm{bn}}=\mathrm{G}_{\mathrm{on}} \cdot \exp (-\mathrm{K} \cdot \mathrm{AM}), \tag{6.15}
\end{equation*}
$$

where

$$
K=\text { extinction coefficient, } 0.25 \text {. }
$$

The global irradiation (I) can be computed by integrating the irradiance (G) with respect to time, between τ_{1} and τ_{2}, namely

$$
\begin{equation*}
\mathrm{I}=\int_{\tau_{1}}^{\tau_{2}} \mathrm{G}(\tau) \mathrm{d} \tau=\int \bar{G}_{\mathrm{b} n} \cos \bar{\theta}_{\mathrm{z}}(\tau) \mathrm{d} \tau . \tag{6.16}
\end{equation*}
$$

If one assumes no diffuse irradiation (ignoring refraction), then G can be brought out of the integral and the global irradiation becomes

$$
\begin{equation*}
I=G \operatorname{bn}^{\cdot} \int_{\tau_{1}}^{\tau_{2}} \cos \theta_{z} d \tau \tag{6.17}
\end{equation*}
$$

Equivalently the integration can be performed between the hour angles ω_{1} and ω_{2} for a period. The hour angle for the low integration limit ω_{1}, is the difference between the starting standard time (τ_{1}) of the period of interest and the time of solar noon. The value of ω_{1} is negative in the morning and positive in the afternoon. Similarly the higher integration limit, ω_{2}, is the difference between the ending standard time $\left(\tau_{2}\right)$ of the period in interest and the solar noon time. One can substitute Equation 6.11 in Equation 6.17 to obtain:

$$
\begin{equation*}
I=\bar{G} b \cdot \int_{\tau_{1}}^{\tau_{2}}(\cos \delta \cdot \cos \phi \cdot \cos \omega+\sin \delta \cdot \sin \phi) d \tau, \tag{6.18}
\end{equation*}
$$

or in terms of integration between ω_{1} and ω_{2},

$$
\begin{equation*}
I=\bar{G}_{b n} \int_{W_{1}}^{\omega_{2}}(\cos \delta \cdot \cos \phi \cdot \cos \omega+\sin \delta \sin \phi) d w . \tag{6.19}
\end{equation*}
$$

Equation 6.19 yields:
$\mathrm{I}=(12 / \pi) \cdot 3600 \cdot \bar{G}_{b n} \cdot\left\{\cos \delta \cdot \cos \phi \cdot\left(\sin \omega_{2}-\sin \omega_{1}\right)+\left(\omega_{2}-\omega_{1}\right) \cdot \sin \delta \sin \phi\right\}$.

The extraterrestrial horizontal irradiation can similarly be defined as:
$I_{0}=(12 / \pi) \cdot 3600 \cdot G{ }^{\prime} n^{*}\left\{\cos \delta \cdot \cos \phi \cdot\left(\sin \omega_{2}-\sin \omega_{1}\right)+\left(\omega_{2}-\omega_{1}\right) \cdot \sin \delta \cdot \sin \phi\right\}$.

The extraterrestrial normal irradiation is simply,

$$
\begin{equation*}
I_{\text {on }}=3600 \cdot G_{\text {on }} \cdot\left(\tau_{2}-\tau_{1}\right) \tag{6.22}
\end{equation*}
$$

The clearness index, k_{T}, is defined as the ratio of the global irradiation to the extraterrestrial horizontal irradiation, i.e.

$$
\begin{equation*}
k_{T}=I / I_{0} . \tag{6.23}
\end{equation*}
$$

The beam normal transmittance is defined as the ratio of the beam normal irradiation to the extraterrestrial normal irradiation

$$
\begin{equation*}
\tau_{b}=I_{b n} / I_{o n}, \tag{6.24}
\end{equation*}
$$

or

$$
\begin{equation*}
I_{b n}=\tau_{b} \cdot I_{o n} \tag{6.25}
\end{equation*}
$$

The test one would like to perform is to define an arbitrary relation between k_{T} and τ_{b} and to observe if the output is the same as the input relation. Let $\tau_{b}=(1 / 2) \cdot \mathrm{k}_{\mathrm{T}}$. Then by substituting in Equation 6.25

$$
\begin{equation*}
I_{b n}=(1 / 2) \cdot k_{T} \cdot I_{\text {on }} \tag{6.26}
\end{equation*}
$$

All the desired radiation data needed are now available. An artificial data file was created including only the data that are necessary and used from the algorithms that is, the time variables, the direct beam irradiation and the global irradiation. This file was used to test all FORTRAN programs used in this work. The format of the artificial data files is shown in Table 6.1. The first group of data is part of the artificial monthly file constructed for this test, and below it a group of data from the original Shenandoah data. The odd lines provide the year, day of the year, month, day of the month, hour, minute and the error flags. For the purposes of this test, the error flags were set arbitrarily to zero. The same was done for all other instruments in the even lines except the two beam normal and global irradiation values. A commented listing of the program called VERIF can be found in APPENDIX D.

The result of the procedures described above is an artificial data base covering one year, but with a predefined relationship between the beam normal and global irradiation, such that $\tau_{b}=0.5 \cdot k_{T}$. This data base was then analyzed using the same data processing procedures.

Figure 6.3 shows a plot of k_{T} versus τ_{b} as computed from the artificial data base using the developed data processing procedures. As expected the result is a straight line with a slope of 0.5 and a zero intercept. Actually it looks like there is some small dispersion. First, consider the resultant line is not fine but actually includes some small dispersion. This arises from two sources. First, the created radiation data was formatted in a way such that it would be similar to the format of the true data files. By doing so, a round off

Table 6.1. Monthly Output Format for January 1, 1980

Figure 6.3. Clearness Index Versus Beam Normal Transmittance Model Verification for 1980
error was introduced, creating some inaccuracies. Secondly, each "data" point is actually represented by a sizeable dot. In any case the results are satisfactory and sufficient to support confidence in the conclusion that the data processing procedures operate correctly.

CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

The main goal of this work has been the development of an improved model for estimating the amount of beam normal irradiation when only global irradiation data is available. In Chapter V it was shown that a 5 -Year model, based on all of the available data from the Shenandoah STEP, is clearly preferable to any annual model from a constituant year. The resulting model is shown to be similar to the well-known Randall-Whitson model except in the highest range of clearness indices. The evidence previously presented tends to support a preference for the new model in the region of disagreement. One should note that the highest clearness index in the data base is 0.82 , and therefore under no circumstances would it be appropriate to extrapolate the results beyond this value. The 5 -Year model reported in this work may be preferred for all similar sites.

Many of the comparisons in this work were based on detailed statistical analyses of the Shenandoah STEP data base. An analysis similar to the one used for the 5 -Year can be used to compare the monthly models presented in Chapter V as well. Algorithm TBREG5 can easily be extented and be used for a seasonal analysis.

Statistics can be a powerful tool, but the user must be extremely careful because it is easy to find accidental correlations in data as diverse and varied as meteorological records. Adherence to critical standards in handling statistical data could avoid some of the confusion that has often characterized research in this area. These standards should include the following:

1. Understanding the properties of the data: errors, biases, scatter, autocorrelation, spatial coherence, frequency distribution, and stationarity,
2. Choosing statistical methods appropriate both to properties of the data and the purpose of the analysis,
3. Critically examining the statistical significance of the results and making proper allowance for spatial coherence, autocorrelations and smoothing and data selection, and
4. Testing the result on one more independent data sets, or subsets, of the original data.

While the coefficient of determination for the proposed model is high (89%), there is evidence of considerable seasonal influence. The model could likely be improved either by including the effect of atmospheric conditions (e.g. relative or specific humidity, turbidity) or by disaggregating the data to support seasonal models. One should also consider the investigation of the air-mass depenclence and the development of a model using 15 minute data.

An interesting point is to investigate the effect, if any, that the eruption of E1 Chicon in 1982, could have had on the presented
correlations, based on the collected data at the Shenandoah STEP site. Additionally, the recent strong E1 Ninõ events in the Pacific [43] should also be of interest. In general, El Ninõ events are known to produce major changes on the climate, since it is now recognized as part of a global pattern of anomalies in the atmosphere. The fact that the 1982 - 1983 El Ninö is considered as being the strongest in the century, could have very well effected the Shenandoah data and thus the developed model between Fall 1982 and Fall 1983. Studies that have already been conducted on the subject [44], conclude that the combination of El Chichon and El Nino created substantial climatic disturbances, \& that in fact do produse a small change in the global correlations.

One could investigate the correlation of $\left(\tau_{b}\right)$ versus $\left(k_{T}\right)$ resulted, by using the Shenandoah data broken into optimally adjusted number of linear bands (for different k_{T} values). This is believed to produce a better fit model. Calculations should be performed for each year and the entire 5 -Year sample, in a similar fashion as this concluded analysis.

Finally, as an alternate method that one can investigate, is a non-parametric statistical analysis, such as a cumulative distribution and a random number generator. This is an attempt to actually account for the dispersion of the data and produce a more realistic model.

CREATE3 : Program to Complete the Monthly Data Files

```
            PROGRAM CREATE3(INPUT,OUTPUT,TAPE10,TAPE6=OUTPUT,TAPE5=INPUT,
        &TAPE3)
C
C
C C. BALARAS 12-20-84
C
C...THIS PROGRAM READS THE Q-FILE, LOCATES THE MISSING DAYS
C OR PERIODS FOR THE MONTH AND SUBSTITUTES THEM WITH DUMMY
C varIABLES. A NEW Q-FILE WILL BE CREATED, INCLUDING ALL
C }96\mathrm{ PERIODS FOR EVERY DAY OF THE MONTH.
C FOR EACH PARTICULAR MONTH HAVE TO ACCOUNT FOR THE NUMBER
C OF DAYS (THE MONTH-LENGTH 31-28-31-30-31-30-31-31-30-31-30-31).
C
C...DECLARATIONS
            INTEGER JDAYC,DAYC,HRC,MINC,DAY,HR,MIN,MODAY, YR, JDAY, MONTH,
            &FLAG1, FLAG2, FLAG3, FLAG4, FLAG5, FLAG6, A1, A2, A3, A4, A5, A6,
    &A7, A8, A9, A10, A11, A12,A13, A14, A15, A16, DAYF, HRF ,MINF, LEAP
C
C
C...DEFINITIONS
C JDAYC : JULIAN DAY COUNTER
C DAYC : DAYLY COUNTER
C HRC : HOURLY COUNTER
C MINC : MINUTE COUNTER
C JDAY : JULIAN DAY
C DAY : DAY OF THE MONTH
C HR : HOUR IN THE DAY
C MIN : MINUTES IN THE HOUR FOR EVERY PERIOD
C MODAY : THE LAST DAY OF EACH MONTH
C DAYF : LAST RECORDED DAY IN THE MONTH QFILE
C HRF : LAST RECORDED HOUR IN THE MONTH QFILE
C MINF : LAST RECORDED MINUTE IN THE MONTH QFILE
C
C...INITIALIZE vaRIABLES AND SET COUNTERS
    DAYC=1
    HRC=0
    MINC=15
    LEAP=0
    WRITE(6,*) 'INPUT NUMBER OF DAYS IN MONTH'
    READ (5,*) MODAY
    WRITE(6,*) 'THE LAST PERIOD OF THE MONTH:DAY,HR,MIN'
    READ (5,*) DAYF,HRF,MINF
C...READ THE FIRST LINE OF THE Q-FILE
    READ (10,1) YR, JDAY,MONTH, DAY, HR,MIN, FLAG1, FLAG2, FLAG3, FLAG4,
        &FLAG5, FLAG6
        FORMAT(I2,1X,I3,1X,I2,1X, I2,1X,I2,1X,I2,1X,Z11,Z11,Z10, 1X,Z11,
        &Z11,210)
        READ(10,2) A1, A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16
2 FORMAT(I3,I5,I4, I5, I6,I5,I5, I5, I5, I5, I5, I5, I5, I5, I5, I5)
C
```

```
    WHILE (DAYC.LE. MODAY) DO
    MONTHC=MONTH
    IF (DAY.EQ.1.AND.HR.EQ.0.AND.MIN.EQ.0) MONTHC=MONTH-1
    IF (FLOAT(YR)/4.-FLOAT(YR/4).GT.0.01) LEAP=1
C...CALCULATE tHE JULIAN DAY COUNTER
    IF (MONTHC.EQ.1) JDAYC=DAYC
    IF (MONTHC.EQ.2) JDAYC=DAYC+31
    IF (MONTHC.EQ.3) JDAYC=DAYC+59
    IF (MONTHC.EQ.4) JDAYC=DAYC+90
    IF (MONTHC.EQ.5) JDAYC=DAYC+120
    IF (MONTHC.EQ.6) JDAYC=DAYC+151
    IF (MONTHC.EQ.7) JDAYC=DAYC+181
    IF (MONTHC.EQ.8) JDAYC=DAYC+212
    IF (MONTHC.EQ.9) JDAYC=DAYC+243
    IF (MONTHC.EQ.10) JDAYC=DAYC+273
    IF (MONTHC.EQ.11) JDAYC=DAYC+304
    IF (MONTHC.EQ.12) JDAYC=DAYC+334
    IF ((MONTHC.GE.3).AND. (LEAP.EQ.0)) JDAYC=JDAYC+1
C
C...LOCATE tHE DATA WHICH IS IN THE CORRECT ORDER
C IF (DAY.LT.DAYC) DAY=DAYC
    IF (DAY.EQ.DAYC.AND.HR.EQ.HRC.AND.MIN.EQ.MINC) THEN
    WRITE (3, 3) YR, JDAY, MONTHC,DAY,HR,MIN, FLAG1, FLAG2, FLAG3, FLAG4,
        &FLAG5,FLAG6
    3 FORMAT (I2,1X,I3,1X,I2,1X,I2,1X,I2,1X,I2,1X,Z11,Z11,Z10,1X,Z11,
    &Z11,Z10)
    WRITE (3,4) A1, A. , A3, A4, A5,A6,A7,A8, A.9,A10, A11, A12, A13, A14, A15,A16
    4 FORMAT (I 3, I5,I4,I5, I6,I5,I5,I5,I5,I5,I5,I5,I5,I5, I5,I5)
    ELSE
C
C...LOCATE THE MISSING LINES AND COMPLETE THEM WITH DUMMY VARIABLES
    WHILE (DAYC.NE.DAY.OR.HRC.NE.HR.OR.MINC.NE.MIN) DO
    WRITE (3,5) YR, JDAYC,MONTHC,DAYC, HRC, MINC, '99999999999999999999',
    &'999999999999', '999999999999999999999999999999999'
    F FORMAT (I2, 1X, I3, 1X, I2, 1X, I2, 1X,I2, 1X,I2, 1X, A20, A12, 1X,A32)
    WRITE(3,6) '999','99','99','999','9999','999','999','999',
    &'999','999','999','999','999','999','999','999'
```



```
    &2X, A3, 2X, A3, 2X, A3, 2X, A3, 2X, A3, 2X, A3)
C
C...INCREMENT THE COUNTERS FOR THE "DUMMY" DATA
    MINC=MINC+15
    IF (MINC.GE.60) THEN
    MINC=0
    HRC=HRC+1
    END IF
    IF (HRC.GE.24) THEN
    HRC=0
    DAYC=DAYC + 1
    JDAYC= JDAYC + 1
```

```
        END IF
        IF (DAYC.GT.32) THEN
        WRITE (6,*) 'SOMETHING IS WRONG COSTA THE LIMIT WAS OVERUNNED'
        GO TO 111
        END IF
        IF (DAYC.GT.MODAY) GO TO 112
        END WHILE
        WRITE (3, 7) YR, JDAY, MONTHC , DAY, HR ,MIN, FLAG1, FLAG2, FLAG3, FLAG4,
        &FLAG5, FLAG6
    7 FORMAT(I2, 1X,I3,1X,I2,1X,I2,1X,I2,1X,I2, 1X,Z11,Z11,Z10,1X,Z11,
        &Z11,Z10)
        WRITE (3,8) A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16
8 FORMAT (I3,I5,I4,I5,I6,I5,I5,I5,I5,I5,I5,I5,I5,I5,I5,I5)
        END IF
C
C...INCREMENT THE COUNTERS FOR THE CORRECT DATA
        MINC=MINC+15
        IF (MINC.GE.60) THEN
        MINC=0
        HRC=HRC+1
        END IF
        IF (HRC.GE.24) THEN
        HRC=0
        DAYC=DAYC+1
        END IF
        IF (DAY.EQ.DAYF.AND.HR.EQ.HRF.AND.MIN.EQ.MINF)THEN
        WRITE (3, 100) YR, JDAYC,MONTHC,DAYC, HRC,MINC, '99999999999999999999',
        &'999999999999','99999999999999999999999999999999'
100 FORMAT (I2, 1X, I3, 1X,I2, 1X, I2, 1X,I2, 1X, I2, 1X, A20, A12, 1X,A32)
        WRITE(3,101) '999','99','99','999','9999','999','999','999',
        &'999', '999','999','999','999', '999', '999', '999'
```



```
    &2X, A3, 2X, A 3, 2X, A3 , 2X, A3, 2X, A3, 2X, A.3)
        WHILE (DAYC.LE.MODAY.AND.HRC.LE.23.AND.MINC.LE.45) DO
C...INCREMENT THE COUNTERS FOR THE "DUMMY" DATA
        MINC=MINC+15
        IF (MINC.GE.60) THEN
        MINC=0
        HRC=HRC+1
        END IF
        IF (HRC.GE.24) THEN
        HRC=0
        DAYC=DAYC + 1
        JDAYC=JDAYC + 1
        END IF
        IF (DAYC.EQ.MODAY+1.AND.HRC.EQ.O.AND.MINC.EQ.0) GO TO 112
        WRITE (3,102) YR, JDAYC,MONTHC,DAYC,HRC,MINC, '99999999999999999999',
        &'999999999999', '99999999999999999999999999999999'
102 FORMAT(I2, 1X,I3, 1X, I2, 1X,I2, 1X,I2, 1X, I2, 1X, A 20, A12, 1X, A32)
    WRITE(3,103) '999','99','99','999','9999','999','999','999',
```

```
        &'999','999','999','999','999','999','999','999'
    103 FORMAT (A3, 3X, A 2 , 2X, A2 , 2X, A3, 2X, A 4 , 2X, A 3 , 2X, A 3 , 2X, A 3, 2X, A 3, 2X, A 3,
        &2X,A3, 2X, A3 , 2X, A3 , 2X, A3, 2X, A3, 2X, A3)
        END WHILE
        IF (DAYC.EQ.MODAY.AND.HRC.EQ.23.AND.MINC.EQ.45) THEN
        DAYC=DAYC+1
        GO TO 200
        END IF
        END IF
C
C...READ THE NEXT LINE OF THE Q-FILE
    200 READ (10, 9) YR, JDAY,MONTH, DAY, HR, MIN, FLAG1, FLAG2, FLAG3, FLAG4,
        &FLAG5, FLAG6
    9 FORMAT (I2 , 1X,I3, 1X,I2,1X,I2,1X,I2,1X,I2, 1X,Z11, Z11, Z10, 1X,Z11,
        &Z11,Z10)
        READ (10, 10) A1, A. , A3, A4, A5, A6, A 7, A8, A9, A10, A11, A12, A13, A14, A15, A16
```



```
        END WHILE
C
C...COMPLETE THE LAST PERIOD OF THE MONTH
        IF (DAY.EQ.DAYF.AND.HR.EQ.HRF.AND.MIN.EQ.MINF) THEN
        WRITE (3,11) YR, JDAY, MONTH,DAY, HR,MIN, FLAG1, FLAG2, FLAG3, FLAG4,
    &FLAG5, FLAG6
    11 FORMAT (I2,1X,I3,1X,I2,1X,I2,1X,I2,1X,I2,IX,Z11, Z11,Z10,1X,Z11,
        &Z11,Z10)
        WRITE (3, 12) A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A.15, A16
```



```
        ELSE
112 DAYC=1
        HRC=0
        MINC=0
        MONTHC=MONTHC+1
        IF (MONTHC.EQ.13) THEN
        MONTHC=1
        YR=YR+1
        JDAYC=1
        END IF
        WRITE (3, 104) YR, JDAYC,MONTHC,DAYC, HRC,MINC, '99999999999999999999',
    &'999999999999','999999999999999999999999999999999'
104 FORMAT (I2, 1X, I3, 1X, I2 , 1X, I2 , 1X, I2, 1X, I2, 1X, A 20, A12, 1X, A 32)
        WRITE (3,105) '999','99','99','999','9999','999','999','999',
        &'999','999', '999', '999','999', '999', '999', '999'
105 FORMAT (A3, 3X, A2 , 2X, A2 , 2X, A 3, 2X, A 4, 2X, A 3 , 2X, A 3 , 2X, A 3 , 2X, A 3, 2X, A 3,
    &2X, A3, 2X, A3, 2X, A3, 2X, A3 , 2X, A3 , 2X, A3)
        END IF
111 CONTINUE
    END
```


APPENDIX B

```
HELGO : Subroutine for Calculating the Position of the Sun
TABLE3 : Comparison of HELGO with DAILY and Nautical Almanac
CKTTB2 : Calculations of }k\mathrm{ and Using Subroutine HELGO
LSMAIN7 : Sorting of Date Data Acoording to k
SORTR : Sorting Subroutine
VSRTP : Sorting Subroutine from IMSL Library
VSRTU : Sorting Subroutine from IMSL Library
```

SUBROUTINE HELGO (IYEAR, MONTH, IDAY, CVLT, ALONGD, ALATD, ALONST, ZONE, \&ALLTR,DECL, EOT, HANG, RADIUS)
C
C
C. BALARAS 1-31-85
C.
C...THIS IS THE LATEST VERSION OF THE SUBROUTINE USED IN PROGRAMS (DY104)

C AND (HOUR5). THE INPUTS IN THIS SUBROUTINE ARE INTEGER VALUES UNDER
C THE FOLLOWING VARIABLE NAMES: IYEAR (CURRENT YEAR, I.E. 83)
C MONTH (CURRENT MONTH, I.E. 3 FOR MARCH) IDAY (THE CURRENT DAY IN THE MONTH) CVLT (THE CIVIL LOCAL TIME) ALONGD (LONGITUDE IN DEGREES) alatd (Latitude in degrees) ALONST (STANDARD LONGITUDE IN DEGREES) ZONE (TIME ZONE OF THE LOCALITY E-W OF GREENWICH)
the outputs are: altr (altitude units are radians)
DECL (DECLINATION UNITS ARE RADIANS)
EOT (EQUATION OF TIME UNITS ARE MINUTES)
hang (hour angle units are radians)
RADIUS (RADIUS OF EARTH'S ORBIT IN ASSTRONOMICAL UNITS)
FOR OTHER POSSIBLE OUTPUTS COULD CONSIDER THE CALCULATED HOUR ANGLE, THE ALTITUDE AND AZIMUTH ANGLES (IN RADIANS).
FOR SOME OF THE FOLLOWING CALCULATIONS, LOW PRECISION EQUATIONS ARE USED (TAREN FROM THE ALMANAC FOR COMPUTERS 1984) AS PRESENTED BY R.L. JOHNSON OF MCDONNELL DOUGLAS

THIS SUBROUTINE WAS TESTED BY COMPARING ITS COMPUTED VALUES WITH THE ALMANAC OF COMPUTERS (PROGRAM (MCDON) FOR THE YEAR OF 1983 AND THE LOCALITY OF GREENWICH).
C
C...definitions of variables

C ANGCR : MEAN ANOMALY
C AZIM : AZIMUTH, UNITS ARE RADIANS
C ALONGH : LONGITUDE IN HOURS
C ALONST : STANDARD LONGITUDE IN DEGREES
C ALATR : LATITUDE, UNITS ARE RADIANS
C Alt : ALTITUDE, UNITS ARE DEGREES
C CVLT : LOCAL TIME, UNITS ARE HOURS
C DECL : DECLINATION, UNITS ARE RADIANS
C DRCONV : DEGREES TO RADIANS CONVERSION
C ECLL : ECLIPTIC LONGITUDE OR TRUE GEOCENTRIC LONGITUDE,
C UNITS ARE RADIANS
C ECLO : OBLIQUITY OF THE ECLIPTIC, UNITS ARE RADIANS
C GAST : GREENWICH ACTUAL SIDERAL TIME, UNITS ARE HOURS
C HANG : LOCAL HOUR aNGLE OF THE SUN, UNITS ARE RADIANS
C RADIUS : THE DISTANCE OF SUN TO EARTH IN ASTRONOMICAL UNITS
C RTAS : RIGHT ASCENSION, UNITS ARE RADIANS
C SMALAL : SMALLEST ALTITUDE ALLOWED
C TREF : STANDARD EPOCH JANUARY 2000.0

```
C WHICH IS 12 UT, 1 JANUARY 2000.0
C UT : UNIVERSAL TIME, LOCAL TIME FROM GRENWICH MIDNIGHT IN HOURS
C XCON : STANDARD EPOCH O UT, OJANUARY 1984
C WHICH IS MIDNIGHT UT STARTING 31 DECEMBER }198
C XD : DAYS SINCE STANDARD EPOCH TREF
C XL1 : MEAN LONGITUDE
C XN : DAYS SINCE STANDARD EPOCH XCON
C
C...CONSTANTS
C...CONSTANTS FOR LOW PRECISION EQUATIONS FOR ECLL AND ECLO
    DATA A1,A2, A3, A4, A.5,A6,A7, A8,A9,TREF, XCON/6.2400408,
    &1.720197E-2,4.8934184,1.7202536E-2,3.3479055E-2,
    &2.2936565E-9,3.7606585E-4, 4.0911372E-1,6.21199E-9,
    &2451545.0,2445699.5/
C...CONSTANTS FOR ATMOSPHERIC REFRACTION EQUATION
    DATA B1,B2,B3,B4,B5/-9.036938093E-5,-1.600076095E-5,
    &2.948314656E-4,-3.278909E-6,-1.234081940E-8/
        PI=4.0*ATAN (1.0)
        TWOPI=2.0*PI
        DRCONV=PI/180.0
        ALONGH=ALONGD/15.
        ALATR=ALATD**DRCONV
        CLAT=COS (ALATR)
        SLAT=SIN (ALATR)
        SMALAL=0.008
        HRCONV=15.0*DRCONV
        IYEAR2=IYEAR+1900
C
    CALL JDAY (XJUDAT, IYEAR2,MONTH, IDAY)
C
C...CALCULATE THE UNIVERSAL TIME FOR THE LOCATION (EAST US: 5)
    UT=CVLT+ZONE
C...CALCULATE THE MEAN ANOMALY
    TD=XJUDAT-TREF+UT/24.0
    ANGCR * A1 + A2*TD
    ANGCR = (ANGCR/TWOPI-AINT (ANGCR/TWOPI)) *TWOPI
C...CALCULATE THE DISTANCE OF SUN FROM EARTH IN ASTRONOMICAL UNITS
    RADIUS =1.00014-0.01671*COS (ANGCR) -0.00014*COS (ANGCR)
C...CALCULATE THE MEAN LONGITUDE
    XLI=A3+A4**D
C. . CALCULATE THE TRUE LONGITUDE
    ECLL=XL1+ (A5-A6*TD)*SIN (ANGCR) +A A *}\textrm{AIN
    ECLL=(ECLL/TWOPI-AINT (ECLL/TWOPI)) *}\mp@subsup{}{}{*}TWOP
C...CALCULATE THE OBLIQUITY
    ECLO=A8-A9*TD
C...CONVERT TO RT ASCENSION AND DECINATION
    RTAS=ATAN2 (SIN (ECLL) *COS (ECLO), COS (ECLL))
    SLSE=SIN (ECLL)*SIN (ECLO)
    DECL=ATAN2 (SLSE,SQRT (1.0-SLSE**2.0))
C...CALCULATE THE HOUR ANGLE
```

```
    XN=XJUDAT-XCON
    DAY=XN+UT/24.0
    HANG=HRCONV* (GAST (XN ,UT, DAY)-ALONGH)-RTAS
    HANG=AMOD (HANG,TWOPI)
    IF (HANG.GT.PI.AND.HANG.LT.TWOPI) HANG=HANG-TWOPI
    IF (HANG.LT.-PI) HANG=HANG+TWOPI
C...CONVERT TO ELEVATION AND AZIMUTH
    ALT = ASIN (SLAT*SIN (DECL) +COS (DECL) *COS (HANG) *CLAT)
    IF (ALT.LT.SMALAL) ALT=SMALAL
    AZIM=-ATAN2 (SIN (HANG), (COS (HANG) *SLAT-TAN (DECL) *CLAT))
C...REFRACTION, RC=0.0, IF ALT<=5 DEGREES=0.08727 RADIANS
C NO CORRECTION FOR REFRACTION IS MADE FOR ALTITUDES LESS THAN 5 DEGREES
        RC=0.0
        IF (ALT.GT.0.08727)
        &RC=B1* (ALT)+B2+B3* (1/ALT)+B4* ((1/ALT)**2.0)+B5* ((1/ALT)**3)
            ALTR=ALT+RC
C...CALCULATE the hour angle in DEGREES
            HANGDE=HANG/DRCONV
            HANGDE=AMOD (HANGDE,360.)
            IF (HANGDE.GT.180.0.AND.HANGDE.LT.360.0) HANGDE=HANGDE-360.
            IF (HANGDE.LT.-180.0.AND.HANGDE.GT.-360.0) HANGDE=HANGDE+360.
C...CALCULATE THE APARENT SOLAR TIME
            AST=HANGDE/15.+12.
C...CalCulate the mean solar time
    AMST=CVLT+ (ALONST-ALONGD)/15.0
C...CALCULATE THE EQUATION OF TIME
    EOT= (AST-AMST) *60.
    IF (HANGDE.GT.180) EOT=-EOT
    EOT=AMOD (EOT,1440.)
    RETURN
    END
    FUNCTION GAST(XN,UT,DAY)
C...CALCULATE THE GREENWICH ACTUAL SIDERAL TIME
C BASED ON EQUATIONS IN ALMANAC FOR COMPUTERS }198
C
C...DEFINITIONS
C DAY : XN+UT/24.0
C DRCONV : CONVERSION FROM DEGREES TO RADIANS
C E : EQUATION OF THE EQUINOXES, IN HOURS
C GAST : GREENWICH ACTUAL SIDERAL TIME, IN HOURS
C GMST : GREENWICH MEAN SIDERAL TIME (VERNAL EQUINOX ANGLE FROM
                                    GREENWICH), IN HOURS.
    UT : LOCAL TIME (FROM GREENWICH MIDNIGHT), UNITS ARE HOURS
    XN : DAYS SINCE STANDARD EPOCH XCON
    XOMEGA : MEAN LONGITUDE OF ASCENDING NODE OF THE MOON'S ORBIT,
    & IN RADIANS
C
    DATA G1,G2,G3,G4,G5,G6/6.5905966,0.0657098242,
    & 1.00273791,74.5658,-0.0529539,-0.00029/
    PI=4.0*ATAN (1.0)
```

```
    DRCONV=PI/180.
    GMST }=\textrm{G}1+\textrm{G}\mp@subsup{2}{}{*}\textrm{XN}+\textrm{G}3*U
    GMST=24.0*(GMST/24.0-AINT (GMST/24.0))
    XOMEGA=DRCONV* (G4+G5*DAY)
    E=G6*SIN(XOMEGA)
C...IN THE NEXT STATEMENT GMST IS CORRECTED
C FOR PERTUBATIONS INDUCED BY MOTION OF THE MOON TO
C YIELD AN ACCURATE VALUE FOR GAST
        GAST=GMST +E
        RETURN
        END
        SUBROUTINE JDAY(XJUDAT,IYEAR2,MONTH,IDAY)
C...SUBROUTINE JDAY CALCULATES THE STANDARD JULIAN DATE
C NOTE: VARIOUS STANDARD EPOCHS ARE USED IN APPLICATIONS
            JD=IDAY+1461* (IYEAR 2+4800+(MONTH-14)/12)/4
        & +367* (MONTH-2-(MONTH-14)/12*12)/12
            JD=JD-32075-3*}((IYEAR2+4900+(MONTH-14)/12)/100)/4
            XJUDAT= JD-0.5D0
            RETURN
            END
```

```
    PROGRAM TABLE3(INPUT,OUTPUT,TAPE4=OUTPUT,TAPE3=INPUT,TAPE8,
    &TAPE7,TAPE5,TAPE2)
C
C C. BALARAS 11-12-84
C
C...THIS PROGRAM TABULATES valuES FOR THE DECLINATION, THE
C altitude OF the SuN aND the EQUATION OF tIME, CALCULATED
C AT 12.0 NOON STANDARD TIME, 1983.
C THESE PARAMETERS aRE CALCULATED bY TWO METHODS aND
C COMPARED TO THE NAUTICAL ALMANAC.
C FIRST METHOD : EQUATION OF TIME BY WATT AND DECLINATION
C BY COOPER.
C SECOND METHOD : ACCORDING TO SUBROUTINE HELGO
C THE 1983 DATA FROM THE ALMANAC IS IN TAPE7.
C
C...DEFINITIONS
C
C...VARIABLES USED IN THE FIRST METHOD
C DELTA : DECLINATION ANGLE IN RADIANS
C EQOT : EQUATION OF TIME IN MINUTES
C OMEGA : HOUR ANGLE IN RADIANS
C DELTAD : DECLINATION IN DEGREES
C OMEGAD : HOUR ANGLE IN DEGREES
C IDELTAD, DELTAM :DECLINATION IN DEGREES, MINUTES
C IEQOT, EQOTS : EQUATION OF TIME IN MINUTES, SECONDS
C IOMEGAD, OMEGAM : HOUR ANGLE IN DEGREES, MINUTES
C DRCONV : DEGREES TO RADIANS CONVERSION FACTOR
C
C...VARIABLES USED IN THE SECOND METHOD
C DECL : DECLINATION ANGLE IN RADIANS
C EOT : EQUATION OF TIME IN mINUTES
C HANG : HOUR ANGLE IN RADIANS
C DECLD : DECLINATION IN DEGREES
C HANGD : HOUR ANGLE IN DEGREES
C IDECLDE, DECLM : DECLINATION IN DEGREES, MINUTES
C IEOTM, EOTS : EQUATION OF TIME IN MINUTES, SECONDS
C IHANGDR HANGM : HOUR ANGLE IN DEGREES AND MINUTES
C
C...vARIABLES FROM THE NAUTICAL ALMANAC
C IDELTAO DELATOM : THE DECLINATION IN DEGREES AND MINUTES
C IEOTOM EOTOS : EQUATION OF TIME IN MINUTES AND SECONDS
C IHANGO HANGOM : HOUR ANGLE IN DEGREES AND MINUTES
C
    DATA AMAXE1,AMAXE2,AMAXE3,AMAXE4,AMAXE5, AMAXE6,SUM1,SUM2,
    &SUM3, SUM4, SUM5, SUM6,MONTH/0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
    &0.0,0.0,0.0,0.0,1/
        IYEAR=1983
        CVLT=12.0
        WRITE (8,101) 'YEAR=',IYEAR,'LOCAL TIME=',CVLT
101 FORMAT(1X,A5,I4,5X,A11,F4.1,/)
```

```
            WRITE(8,111) 'DAY','DELTA','OMEGA','EOT','DELTA','OMEGA','EOT',
        &'DELTA','OMEGA','EOT'
    111 FORMAT (1X, A3, 8X, A5,10X, A5, 9X, A3,10X, A5, 8X, A5, 8X, A3, 13X,
        &A5,8X,A5,9X, A3)
            WRITE (8,114) '(DEGR-MIN)','(DEGR-MIN)','(MIN-SEC)','(DEGR-MIN)',
            &'(DEGR-MIN)','(MIN-SEC)','(DEGR-MIN)','(DEGR-MIN) ','(MIN-SEC)'
114 FORMAT (9X,A10, 5X, A10 4X, A9, 5X, A10, 3X, A10, 2X, A9, 7X, A10, 3X,
        &A10,4X,A9,/)
            WRITE (8,113) '(COOPER)','(DAILY)','(WATT)','(HELGO)',
        &'(NAUTICAL ALMANAC)'
    113 FORMAT (11X, A8,6X, A7, 20X, A7, 13X, A18,/)
C
        DO 100 I=1,365
        IDAY=I
        T1=11.875
        T2=12.125
        READ(7,*) IHANGO, HANGOM, IDELTAO, DELTAOM, IEOTOM, EOTOS
C
        CALL SOTIME (DELTA,EQOT, I,T1,T2,OMEGAV)
C...CALCULATE THE DECLINATION IN DEGREES AND MINUTES
        PI=4.0*ATAN (1.0)
        DRCONV=PI/180.0
        DELTAD=DELTA/DRCONV
        IDELTAD=INT (DELTAD)
        DELTAM=(DELTAD-IDELTAD)*60.
        IF (DELTAD.LT.-1.0) DELTAM=(IDELTAD-DELTAD)*60.0
C...CALCULATE THE EQUATION OF TIME IN MINUTES AND SECONDS
        IEQOT=INT (EQOT)
        EQOTS=(EQOT-IEQOT)*60.
    IF (EQOT.LT.-1.0) EQOTS=(IEQOT-EQOT)*60.0
C...CalCulate the hour angle in degrees and minutes
    OMEGAD=OMEGAV/DRCONV
    IOMEGAD=INT (OMEGAD)
    OMEGAM=(OMEGAD-IOMEGAD)*60.
    IOMEGAD=MOD (IOMEGAD, 360)
    IF (OMEGAD.LT.-1.0) OMEGAM=(IOMEGAD-OMEGAD)*60.0
C
    CALL HELGO(IYEAR,MONTH, IDAY,CVLT, DECL, HANG, EOT)
C...CALCULATE tHE DECLINATION IN DEGREES AND MINUTES
    DECLD=DECL/DRCONV
    IDECLDE=INT (DECLD)
    DECLM=(DECLD-IDECLDE)*60.
    IF (DECLD.LT.-1.0) DECLM=(IDECLDE-DECLD)*60.0
C...CALCULATE THE HOUR ANGLE IN DEGREES AND MINUTES
    HANGD=HANG/DRCONV
    HANGD=AMOD (HANGD, 360.)
    IHANGDR=INT (HANGD)
    HANGM= (HANGD - IHANGDR)*60.
    IHANGDR=MOD (IHANGDR, 360)
    IF (HANGD.LT. -1.0) HANGM=(IHANGDR-HANGD)*60.0
```

HANGD=AMOD (HANGD, 360.)
C...CALCULATE THE EQUATION OF TIME IN MINUTES AND SECONDS

IEOTM=INT (EOT)
EOTS $=($ EOT-IEOTM $) * 60.0$
IF (EOT.LT.-1.0) EOTS $=($ IEOTM-EOT $) * 60.0$
C...CALCULATE THE MAXIMUM ERROR IN COMPARISON WITH THE

C NAUTICAL ALMANAC
DELTAO $=$ IDELTAO + DELTAOM/60.
If (IDELTAO.LT.0) DELTAO=IDELTAO-DELTAOM/60.
HANGO $=$ IHANGO + HANGOM $/ 60$.
EOTO $=$ IEOTOM + EOTOS $/ 60$.
IF (IEOTOM.LT.O) EOTO $=$ IEOTOM-EOTOS $/ 60$.
OMEGA1 $=0$ MEGAD
OMEGA2 $=$ HANGO
OMEGA3=HANGD
IF (OMEGAD.GT.180.) OMEGA1=OMEGAD-360.
IF (HANGD.GT.180.) OMEGA3=HANGD-360.
IF (HANGO.GT.180.) OMEGA2=HANGO-360.
E1 $=$ ABS (DELTAO-DELTAD)
E2=ABS (OMEGA2-OMEGA1)
E3=ABS (EOTO-EQOT)
E4=ABS (DELTAO-DECLD)
E5=ABS (OMEGA2-OMEGA3)
E6=ABS (EOTO-EOT)
IF (E1.GT. AMAXE1) AMAXE1=E1
IF (E2.GT.AMAXE2) AMAXE2=E2
IF (E3.GT. AMAXE3) AMAXE3=E3
IF (E4.GT.AMAXE4) AMAXE4=E4
IF (E5.GT.AMAXE5) AMAXE5=E5
IF (E6.GT.AMAXE6) AMAXE6=E6
C...CALCULATE THE TOTAL SQUARE ERROR

SUM $1=$ SUM $1+E 1 * E 1$
SUM2 $=$ SUM2 $2+E 2$ *E2
SUM3=SUM3 + E3*E3
SUM4 $=$ SUM4 $4+$ E4*E4
SUM $5=$ SUM $5+$ E 5 *E5
SUM6=SUM6+E6*E6
WRITE (5,*) 'I=', IDAY,'E1=', E1,'E2=', E2,'E3=',E3,'E4=',E4,
\&'E5=',E5,'E6=',E6
WRITE $(8,103)$ I, IDELTAD, DELTAM, IOMEGAD, OMEGAM, IEQOT, EQOTS,
\& IDECLDE, DECLM, IHANGDR, HANGM, IEOTM, EOTS,
\& IDELTAO, DELTAOM, IHANGO, HANGOM, IEOTOM, EOTOS
103 FORMAT ($1 \mathrm{X}, \mathrm{I} 3,5 \mathrm{X}, \mathrm{I} 4,1 \mathrm{X}, \mathrm{F} 6.2,3 \mathrm{X}, \mathrm{I} 3,2 \mathrm{X}, \mathrm{F} 6.2,1 \mathrm{X}, \mathrm{I} 4,1 \mathrm{X}, \mathrm{F} 6.2$, \& $4 \mathrm{X}, \mathrm{I} 4,1 \mathrm{X}, \mathrm{F} 6.2,2 \mathrm{X}, \mathrm{I} 4,1 \mathrm{X}, \mathrm{F} 6.2,2 \mathrm{X}, \mathrm{I} 4,1 \mathrm{X}, \mathrm{F} 6.2$,
\&6X,I4, 1X,F5.1, 3X, I4 , 1X, F5.1, 3X, I3, 2X,F5.1)
100 CONTINUE
C. . CALCULATE THE ROOT MEAN SQUARE ERROR (RMS)

RMS $1=$ SQRT (SUM1/I)
RMS2 $=$ SQRT $(S U M 2 / I)$
RMS3=SQRT (SUM3/I)

```
    RMS4=SQRT (SUM4/I)
    RMS5=SQRT (SUM5/I)
    RMS6=SQRT (SUM6/I)
    WRITE (8,*) ' '
    WRITE (8,115) 'MAXIMUM ERRORS COMPARED TO THE NAUTICAL ALMANAC'
115 FORMAT (23X,A47,/)
    WRITE (8,116) 'DELTA','OMEGA','EOT','DELTA','OMEGA','EOT',
116 FORMAT (12X, A5 , 8X, A5 , 8X, A3, 10X , A5 , 8X, A5 , 8X, A3 , /)
    WRITE (8,117) AMAXE1, AMAXE2, AMAXE3, AMAXE4, AMAXE5, AMAXE6
117 FORMAT(11X,F6.3,7X,F7.3,5X,F6.3,8X,F6.3,6X,F7.3,5X,F7.3,/)
    WRITE (8,118) 'SQUARE ROOT MEAN SQUARE ERROR'
118 FORMAT (32X,A29,/)
    WRITE (8,119) RMS1,RMS2,RMS3,RMS4,RMS5,RMS6
119 FORMAT(11X,F6.3,7X,F7.3,5X,F6.3,8X,F6.3,6X,F7.3,5X,F7.3,/)
        END
        SUBROUTINE SOTIME(DELTA,EQOT,IDAY,T1,T2,OMEGAV)
C...DEFINITIONS OF vARIABLES
C ALAT : LATITUDE IN DEGREES
C ALON : LONGITUDE IN DEGREES
C ALONSM : STANDARD MERIDIAN FOR THE LOCAL TIME ZONE
                (15 DEGREES FOR EVERY TIME ZONE E-W FROM GREENWICH)
    ALPHAV : CORRESPONDING AVERAGE OF THE SOLAR ALTITUDE
    dELTA : DECLINATION ANGLE IN RADIANS
    DRCONV : CONVERSION FACTOR FROM DEGREES TO RADIANS
    EQOT : EQUATION OF TIME IN MINUTES
                NORMAL TO THE RADIATION ON THE NTH DAY OF THE YEAR
    GSC : SOLAR CONSTANT (W/M/M)
    HANGSS : HOUR ANGLE AT SUNSET(STANDARD TIME)
    HRCONV : CONVERSION FACTOR FROM HRS TO RAD
    ISHR : APPARENT SOLAR TIME OF THE HOUR
    ISMIN : APPARENT SOLAR TIME FOR THE MIN.
    OMEGA : HOUR ANGLE IN RADIANS
    OMEGA1 : HOUR ANGLE CORRESPONDING TO THE LOWER INTIGRATION LIMIT
    OMEGA2 : HOUR ANGLE CORRESPONDING TO THE HIGHER INTIGRATION LIMIT
    OMEGAV : CORRESPONDING AVERAGE OF THE HOUR ANGLE-SOLAR TIME
    SRTIME : SUNRISE STANDARD TIME
    SSTIME : SUNSET STANDARD TIME
    STDTSN : STANDARD TIME OF SOLAR NOON
    T1 : STANDARD TIME AT WHICH EACH PERIOD STARTS
    T2 : STANDARD TIME AT WHICH EACH PERIOD ENDS
    TAU1 : INTEGRATION LOWER LIMIT FOR EVERY PERIOD (STD.TIME)
    TAU2 : INTEGRATION UPPER LIMIT FOR EVERY PERIOD (STD.TIME)
    TAUAV : INTEGRATION AVERAGE TIME (STD. TIME)
    THETAZ : ZENITH ANGLE OF THE SUN IN RADIANS
    COMMON/WHERE/ALAT, ALON, ALONSM
C
    PI=4.0*ATAN (1.0)
    ALON=0.0
    ALAT=51.47
```

```
    ALONSM=0.0
    DRCONV=PI/180.0
    SLAT=ALAT*}\mp@subsup{}{}{*}\mathrm{ DRCONV
    HRCONV=15.0*DRCONV
C...CALCULATE THE DECLINATION
    DELTA=23.45*SIN (2.0**PI* (284.0+IDAY)/365.0)*DRCONV
C...CALCULATE THE SUNSET HOUR ANGLE
    HANGSS=ACOS (-TAN (SLAT) *TAN (DELTA))
C...CALCULATE THE EQUATION OF TIME
            IF (IDAY.GT.106) GO TO 10
            EQOT=-14.2*SIN ((IDAY+7.0)*0.028303)
            GO TO 40
            IF (IDAY.GT.166) GO TO 20
            EQOT=4.0*SIN ((IDAY-106.0)*0.053247)
            GO TO 40
    20 IF (IDAY.GT.246) GO TO 30
    EQOT=-6.5*SIN ((IDAY-166.0)*0.03927)
    GO TO 40
    30 EQOT=16.4*SIN ((IDAY-247.0) *0.027802)
C...CALCULATE THE STANDARD TIME OF SOLAR NOON
    40 STDTSN=12.0-(EQOT/60.0)-(ALONSM-ALON)/15.0
C...CALCULATE THE SUNRISE STANDARD TIME
    SRTIME=STDTSN- (HANGSS/HRCONV)
C...CALCULATE THE SUNSET STANDARD TIME
    SSTIME=STDTSN+ (HANGSS/HRCONV)
C...CALCULATE TAU1
C........FOR PERIODS BEFORE SUNRISE
    IF (SRTIME.GT.T2) THEN
    ALPHAV=0.0
    GO TO 101
    ELSE
C........FOR PERIODS BETWEEN SUNRISE AND SUNSET
    IF (SRTIME.LT.T1) TAU1=T1
    IF (SRTIME.GT.T1) TAU1=SRTIME
    END IF
C...CALCULATE TAU2
C........FOR PERIODS AFTER SUNSET
    IF (SSTIME.LT.T1) THEN
    ALPHAV=0.0
    GO TO 101
    ELSE
C........FOR PERIODS BETWEEN SUNRISE AND SUNSET
    IF (SSTIME.GT.T2) TAU2=T2
    IF (SSTIME.LT.T2) TAU2=SSTIME
    END IF
C...CALCULATE THE AVERAGE INTEGRATION LIMITS(STD. TIME)
    TAUAV=(TAU1+TAU2)/2.0
C...CALCULATE THE CORRESPONDING AVERAGE OF THE
C........HOUR ANGLE
    IF (TAUAV.LE.STDTSN) THEN
```

```
OMEGAV=- (STDTSN-TAUAV)*HRCONV
ELSE
OMEGAV = (TAUAV -STDTSN)*HRCONV
END IF
C. . . . . . . SOLAR ALTITUDE THETAZ \(=\left(\right.\) ACOS \(\left(\operatorname{COS}(D E L T A){ }^{*} \operatorname{COS}(S L A T){ }^{*} C O S(O M E G A V)+\right.\) SIN (DELTA) * \&SIN (SLAT)) ) ALPHAV \(=(\) PI \(/ 2.0)-\) THETAZ RETURN
END
```

101

PROGRAM CKTTB2 (INPUT, OUTPUT,TAPE5=INPUT, TAPE6=OUTPUT, TAPE26, \&TAPE30)
C
C C. BALARAS 4-30-85
C C. BALARAS 5-13-85
C C. BALARAS 5-20-85
C
C...THIS PROGRAM RECALCULATES THE KT AND TB FROM THE RADIATION DATA

C INCLUDED IN TAPE26. THE CALCULATIONS WILL BE PERFORMED USING
C SUBROUTINE HELGO aT 0:00 HRS AND THE SCREENED DATA SET (SDS).
C the results will be colpared with the corresponding values
C WE ARE CURRENTLY USING (FROM SDS), AND REPORT ANY
C SUBSTANTIAL DEVIATIONS OR AGREEMENT.
C
C...FOR CKTTB1 THE ONLY CHANGE IS INDICATED WHEN CALLING

C SUBROUTine helgo, in such a way that the calculations
C ARE PERFORMED AT THE MID-PERIOD.
C
C. . . DEFINITIONS

C
C. ..DECLARATIONS

C ALATD : LATITUDE OF THE LOCALITY IN DEGREES
C ALONGD : LONGITUDE OF THE LOCALITY IN DEGREES
C ALONST : STANDRD LONGITUDE IN DEGREES
C AMAXKT : MAXIMUM ERROR OF KT VALUES
C AMAXTB : MAXIMUM ERROR OF TB VALUES
C CVLT : LOCAL TIME IN HOURS
C DIR : BEAM IRRADIATION IN KJ/M/M
C EKT : ABSOLUTE Value of ERror between kt values
C ETB : ABSOLUTE Value of ERror between tb values
C F1 : SOLAR CONSTANT IN KJ/M/M/RAD
C F2 : SOLAR PARAMETER DEPENDING ON RADIUS EARTH SUN KJ/M/M/RAD
C GSC : SOLAR CONSTANT IN W/M/M
C hrZTOT : GLOBAL IRRADIATION IN $\mathrm{KJ} / \mathrm{M} / \mathrm{M}$
C IO : EXTRATERRESTRIAL HORIZONTAL IRRADIATION IN KJ/M/M
C KT1 : CLEARNESS INDEX FROM SDS
C KT2 : RECALCULATED CLEARNESS INDEX
C TB1 : BEAM NORMAL TRANSMITTANCE FROM SDS
C TB2 : RECALCULATED BEAM NORMAL TRANSMITTANCE
C ZONE : TIME ZONE OF LOCALITY
INTEGER YR, DAY, HR, BADPER
REAL KT1, KT2, ION, IO, IO2, ION2
C
C
C. . . CONSTANTS

PI $=4.0$ *ATAN (1.0)
DRCONV=PI/ 180.0
ALATD $=33.4046$
ALAT $=33.4046$ *DRCONV
ALONGD=84.7478

```
    ALONST=75.
    ZONE=5.
    GSC=1367.
    F1=GSC*12.0*3600.0/PI/1000.0
C
        DATA AMAXKT,AMAXTB/0.0,0.0/
        DATA AMKTPR/0.0/
C
        WRITE (30,*) ',
        WRITE (30,*) ' '
        WRITE(30,40) 'YR','MO','DAY','HR','MIN','HRZTOT','DIR','KT1',
        &'KT2','ERROR','TB1','TB2','ERROR','PCT','BADPER','DIFF1'
    40 FORMAT (1X, A2 , 2X, A2 , 2X, A3,1X, A2 , 2X, A. 3, 5X, A6, 4X, A3 , 9X, A3, 4X, A3,
    &5X,A5,6X, A3, 4X, A3 , 4X, A5 , 5X, A3 , 2X, A6, 2X, A5)
        WRITE (30,*) ' '
        DO 30 I=1,1963
C
            IO2=0.0
        ION2=0.0
        OMEG1A=0.
        OMEG2A=0.
        OMEG3A=0.
        OMEG4A=0.
C
C...READ ONE HOURS DATA ENDING AT HR+MIN/60
            READ (26,10) YR,MO,DAY,HR,MIN,KT1,TB1,HRZTOT,DIR, PCT, BADPER
            10 FORMAT (1X,I2, 2X,I2, 2X,3(I2,1X), 1X,F5.3,2X,F5.3,2(2X,F7.1),
        &2X,F4.2, 2X,I2)
C
C...CALL SUBROUTINE HELGO FOR 0:00 HOURS
            CALL HELGO(YR,MO, DAY, O. ,ALONGD, ALATD, ALONST, ZONE, ALPHA,
            &DELTA, EOT, OMEGA,R)
            YR=YR-1900
C...TO PRFORM CALCULATIONS AT THE MID-PERIOD FOR CKTTB1
C MUST CALCULATE THE CIVIL LOCAL TIME
C CVLT=(HR+MIN/60.)-0.5
C AND CALL HELGO FOR TIME-0.5 HOURS
C CALL HELGO(YR,MO,DAY, CVLT, ALONGD, ALATD, ALONST, ZONE, ALPHA,
C DELTA,EOT, OMEGA,R)
C
C...CALCULATE OMEGA AT THE MIDDLE OF THE PERIOD
    ALONGD=84.7478
    AMST=CVLT+(ALONST-ALONGD)/15.
    AST=AMST+EOT/60.
    OMEGA=(AST-12.0)*15.*DRCONV
C
C...CALCULATE THE HOUR ANGLES at THE START END OF THE PERIOD
    OMEGA1=OMEGA-15.0/2. *DRCONV
    OMEGA2=OMEGA+15.0/2. *DRCONV
C...CORRECT HOUR ANGLES FOR FIRST AND LAST PERIODS OF DAY
```

```
    WSS=ACOS (-TAN (ALAT) *TAN (DELTA))
    IF (OMEGA2.GT.WSS) OMEGA2=WSS
    IF(OMEGA1.LT.-WSS) OMEGA1=-WSS
C
C...DETERMINE MISSING PERIOD
    IPD=IFIX(AMOD(FLOAT (BADPER),10.))
C...DETERMINE HOUR ANGLES
C IF FIRST PERIOD IS MISSING
        IF (IPD.EQ.1) OMEGAI=OMEGA1+15./4.*}DRCON
C IF LAST PERIOD IS MISSING
        IF (IPD.EQ.4) OMEGA2=OMEGA2-15./4. *DRCONV
C IF SECOND PERIOD IS MISSING
        IF (IPD.EQ.2) THEN
        OMEG1A=OMEGA1+15./4. *DRCONV
        OMEG2A=OMEG1A+15./4. *DRCONV
C CALCULATE THE EXTRATER. HORIZONTAL IRRADIATION
C FOR THE MISSING PERIOD
                IO2=(F1/R**2)* ((COS (DELTA)*COS (ALAT)* (SIN (OMEG2A)-SIN (OMEG1A)))
        &+((OMEG2A-OMEG1A)*SIN (DELTA)*SIN (ALAT)))
C CALCULATE THE EXTRATTER. NORMAL IRRADIATION
C FOR THE MISSING PERIOD
        ION2=3.6*}\mp@subsup{6}{}{*}\textrm{GSC}/\mp@subsup{R}{}{**}\mp@subsup{2}{}{*}(OMEG2A-OMEG1A)*180./PI/15
        END IF
C IF THIRD PERIOD IS MISSING
                IF (IPD.EQ.3) THEN
            OMEG3A=OMEGA1 + 15./2. *}\mathrm{ DRCONV
                OMEG4A=OMEG3A+15./4. *DRCONV
C CALCULATE THE EXTRATER. HORIZONTAL IRRADIATION
C FOR THE MISSING PERIOD
                IO2 = (F1/R**2)* ((COS (DELTA)*COS (ALAT)* (SIN (OMEG4A) -SIN (OMEG3A)))
            &+((OMEG4A-0MEG3A)*SIN (DELTA)*SIN (ALAT)))
C CALCULATE EXTRATTER. NORMAL IRRADIATION
        ION2=3.6*GSC/R**2* (OMEG4A-OMEG3A)*180./PI/15.
            END IF
C
C...CALCULATE EXTRATERRESTRIAL NORMAL RADIATION
    GON=GSC/R**2
C
C...CALCULATE EXTRATERRESTRIAL NORMAL IRRADIATION
    ION=3.6*GON* (OMEGA2-OMEGA1)*180.0/PI/15.
C...ACCOUNT FOR A MISSING PERIOD
    ION=ION-ION2
C
C...CALCULATE EXTRATERRESTRIAL HORIZONTAL IRRADIATION
    F2=F1/R**2
    IO=F2* ((COS (DELTA) *COS (ALAT) * (SIN (OMEGA2) -SIN (OMEGA1)))
    &+((OMEGA2-OMEGA1)*SIN(DELTA) *SIN (ALAT)))
C...ACCOUNT FOR A MISSING PERIOD
        IO=IO-IO2
```

C

```
C
C...CALCULATE CLEARNESS INDEX
    KT2=HRZTOT/IO
    C
    C...CALCULATE bEAM NORMAL TRANSMITTANCE
        TB2=DIR/ION
    C
    C...CALCULATE ERROR BETWEEN THE NEW AND OLD VALUES OF KT, TB
        EKT=ABS (KT2-KT1)
        ETB=ABS (TB2-TB1)
    C
    C...CALCULATE % dIFFERENCE BETWEEN THE TWO VALUES
        DIFF1=((KT1-KT2)/KT1)*100.
    C
    C...CALCULATE MAXImUM CORRESPONDING ERRORS
        IF (EKT.GT.AMAXKT) AMAXKT=EKT
        IF (ETB.GT.AMAXTB) AMAXTB=ETB
    C
    C...CALCULATE MAXImUM % ERROR
        IF (DIFF1.GT.AMKTPR) AMKTPR=DIFF1
    C
        WRITE (30, 20) YR,MO,DAY,HR,MIN,HRZTOT,DIR,KT1,KT2,EKT,TB1,TB2,
        &ETB,PCT, BADPER,DIFF1
    20 FORMAT (1X, I2 , 4(2X, I2) , 4X, 2(F7.1, 2X), 4X,2(F5.3, 2X) , F9.5,
        &3X,2(F5.3,2X),F9.5, 2X,F4.2, 2X, 12,5X,F6.3)
    C
    30 CONTINUE
        WRITE (30,*) ' '
        WRITE (30,*) ' '
        WRITE (30,31) 'MAXIMUM ERROR FOR KT =',AMAXKT
        FORMAT (1X, A22, 1X, F6.5)
        WRITE (30,32) 'MAXIMUM ERROR FOR TB =',AMAXTB
    32 FORMAT (1X, A22, 1X, F6.5)
C
        WRITE (30,33) 'MAXIMUM % ERROR FOR KT=',AMKTPR
3 3
        FORMAT (1X,A23,1X,F6.3)
        END
```

```
            PROGRAM LSMAIN7(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE26,
        &TAPE13,TAPE25)
C
C C. BALARAS 4-8-85
C
C
C...IN THIS UPDATED VERSION THE DATA THAT WILL ALLOW US TO RECALCULATE
C THE KT AND TB, IS INCLUDED IN TAPE25.
C...THIS PROGRAM PUTS THE DATA FROM TAPE26 IN ORDER, BASED ON THE
C INCREASING CLEARNESS INDEX. OUTPUT DATA FILE IS IN TAPE25.
C...
            DIMENSION KT2(8114), KT1 (8114,1), YR (8114,1),MO (8114,1),
        &DAY}(8114,1),\operatorname{HR}(8114,1),MIN (8114,1
        COMMON /RAD/ KT1,KT2,NPAIRS,TAVE, YR,MO, DAY,HR,MIN
        INTEGER YR,MO,DAY,HR,MIN
        REAL KT1,KT2
C...ENTER DATA FROM 5-YEAR PROCESSING
            NPAIRS=8114
        DO 100 J=1,8114
        READ (26, 33) YR (J, 1) ,MO(J, 1) , DAY (J,1) , HR (J, 1),MIN (J, 1) , KT1 (J, 1),
        &KT2(J)
    33 FORMAT (1X,I2, 4 (2X,I2), 26X,2(F5.3, 2X))
100 CONTINUE
C...SORT THE DATA
            CALL SORTR
            STOP
            END
```

SUBROUTINE SORTR
C...ARRANGES CLEARNESS AND TRANSMITTANCE DATA IN ASSENDING ORDER

COMMON /RAD/ KT1, KT2, NPAIRS, TAVE, YR, MO, DAY, HR, MIN
DIMENSION KT2 (8114), $\operatorname{IRVS}(8114), \operatorname{KT1}(8114,1)$, $\operatorname{WK}(1), \operatorname{YR}(8114,1)$, \&MO $(8114,1), \operatorname{DAY}(8114,1), \operatorname{HR}(8114,1), \operatorname{MIN}(8114,1)$
DIMENSION IRVS2 (8114), IRVS3 (8114), IRVS4 (8114), IRVS5 (8114),
\&IRVS6 (8114), IRVS7 (8114)
INTEGER YR,MO,DAY,HR,MIN
C. . .

DO $10 \mathrm{I}=1$,NPAIRS
$10 \quad \operatorname{IRVS}(\mathrm{I})=I$
C. . .

CALL VSRTP (KT2,NPAIRS,IRVS)
WRITE (13,*) IRVS
C. . .

DO $200 \mathrm{I}=1$, NPAIRS
$200 \operatorname{IRVS} 2(I)=\operatorname{IRVS}(I)$
DO $201 \mathrm{I}=1$, NPAIRS
IRVS3 (I) $=\operatorname{IRVS}(I)$
DO $202 \mathrm{I}=1$, NPAIRS
IRVS $4(I)=\operatorname{IRVS}(I)$
DO $203 \mathrm{I}=1$, NPAIRS
IRVS5 (I) = IRVS (I)
DO $204 \mathrm{I}=1$, NPAIRS
IRVS6 (I) $=\operatorname{IRVS}(\mathrm{I})$
CALL VSRTU (KT1, 8114, NPAIRS, 1,1, IRVS, WK)
CALL VSRTU (YR , 8114, NPAIRS,1,1, IRVS2,WK)
CALL VSRTU (MO, 8114, NPAIRS, 1,1, IRVS3, WK)
CALL VSRTU (DAY, 8114,NPAIRS,1,1,TRVS4,WK)
CALL VSRTU (HR, 8114, NPAIRS, 1,1, IRVS5,WK)
CALL VSRTU (MIN, 8114,NPAIRS,1,1,IRVS6,WK)
WRITE (6,*) 'ARRAYS ARE SORTED'
DO $101 \mathrm{~K}=1,8114$
WRITE $(25,21)$ YR (K, 1) , MO (K, 1) , DAY $(K, 1), \operatorname{HR}(K, 1), M I N(K, 1), K T 1(K, 1)$, \&KT2 (K)
101 CONTINUE
21 FORMAT (1X, I2 , 2X, I2 , 2X, I2 , 1X, I2 , 1X, I2 , 3 ($2 \mathrm{X}, \mathrm{F} 5.3$))
C...

RETURN
END

THE FOLLOWING SUBROUTINE MAY BE A PROPRIETARY PRODUCT AND HAS BEEN PURCHASED OR SUBSCRIBED TO BY GEORGIA TECH FOR OUR CONTROL DATA USERS. ANY REPRODUCTION OF THIS CODE, AS IN A THESIS OR DISSERTATION FOR DUPLICATION OF RESULTS, SHOULD INCLUDE THE FOLLOWING STATEMENTS:

THE LISTED CODE IS PART OF A PROPRIETARY PRODUCT BELONGING TO -----.

THE LISTINGS ARE REPRODUCED WITH THE PERMISSION OF -----.
THE LISTINGS MAY NOT BE EXTRACTED FOR OTHER PURPOSES, OR USED AS THE BASIS FOR ANY SOFTWARE DEVELOPMENT.

```
IMSL ROUTINE NAME - VSRTP
```

COMPUTER - CDCFT5/SINGLE
LATEST REVISION - JANUARY 1, 1978
PURPOSE - SORTING OF ARRAYS BY ABSOLUTE VALUE -
PERMUTATIONS RETURNED
USAGE - CALL VSRTP (A,LA,IR)
ARGUMENTS A - ON INPUT, A CONTAINS THE ARRAY TO BE SORTED.
ON OUTPUT, A CONTAINS THE SORTED ABSOLUTE
VALUES OF THE ARRAY.
LA - INPUT VARIABLE CONTAINING THE NUMBER OF
ELEMENTS IN THE ARRAY TO BE SORTED.
IR - VECTOR OF LENGTH LA.
ON INPUT, IR CONTAINS THE INTEGER VALUES
$1,2, \ldots$, LA. SEE REMARKS.
ON OUTPUT, IR CONTAINS A RECORD OF THE
PERMUTATIONS MADE ON THE VECTOR A.
PRECISION/HARDWARE - SINGLE/ALL
REQD. IMSL ROUTINES - NONE REQUIRED
NOTATION - INFORMATION ON SPECIAL NOTATION AND
CONVENTIONS IS AVAILABLE IN THE MANUAL
INTRODUCTION OR THROUGH IMSL ROUTINE. UHELP
REMARKS THE VECTOR IR MUST BE INITIALIZED BEFORE ENTERING
VSRTP. ORDINARILY, $\operatorname{IR}(1)=1, \operatorname{IR}(2)=2, \ldots$,
$\operatorname{IR}(L A)=$ LA. FOR WIDER APPLICABILITY, ANY INTEGER
THAT IS TO BE ASSOCIATED WITH A(I) FOR $I=1,2, \ldots$, LA


```
    IF (A(J) .GE. T) GO TO 40
    A(IJ) =A (J)
    A(J)=T
    T=A (IJ)
    IR (IJ)=IR (J)
    IR (J)=IT
    IT=IR(IJ)
C
C
    IF (A(I) .LE. T) GO TO 40
    A(IJ)=A(I)
    A(I) =T
    T=A(IJ)
    IR (IJ) = IR (I)
    IR (I)=IT
    IT=IR (IJ)
    GO TO 40
    35 IF (A (L).EQ.A(K)) GO TO 40
        TT=A (L)
    A(L) =A(K)
    A(K)=TT
    ITT=IR(L)
    IR(L)=IR(K)
    IR (K)=ITT
C
C
    40 L=L-1
    IF (A(L) .GT. T) GO TO 40
C
C
    45 K=K+1
    IF (A(K) .LT. T) GO TO 45
C
    IF (K . LE. L) GO TO }3
C
C
    IF (L-I .LE. J-K) GO TO 50
    IL (M)=I
    IU (M)=L
    I=K
        M=M+1
        GO TO 60
        50 IL (M) =K
        IU}(M)=
        J=L
        M=M+1
        GO TO 60
C
C
        55M=M-1
    IF FIRST ELEMENT OF ARRAY IS GREATER
    THAN T, INTERCHANGE WITH T
FIND AN ELEMENT IN THE SECOND HALF OF THE ARRAY WHICH IS SMALLER THAN T
FIND AN ELEMENT IN THE FIRST HALF OF THE ARRAY WHICH IS GREATER THAN T
INTERCHANGE THESE ELEMENTS
SAVE UPPER AND LOWER SUBSCRIPTS OF THE ARRAY YET TO BE SORTED
BEGIN AGAIN ON ANOTHER PORTION OF THE UNSORTED ARRAY
```

```
    IF (M .EQ. 0) RETURN
    I=IL(M)
    J=IU(M)
6 0 ~ I F ~ ( J - I ~ . G E . ~ 1 1 ) ~ G O ~ T O ~ 2 5 ~
    IF (I .EQ. 1) GO TO 10
    I=I-1
65 I=I+1
    IF (I .EQ. J) GO TO 55
    T=A(I+1)
    IT=IR (I+1)
    IF (A(I) .LE. T) GO TO 65
    K=1
70 A(K+1)=A(K)
    IR (K+1)=IR (K)
    K=K-1
    IF (T .LT. A(K)) GO TO 70
    A (K+1)=T
    IR (K+1)=IT
    GO TO 65
    END
```

THE FOLLOWING SUBROUTINE MAY BE A PROPRIETARY PRODUCT AND HAS been purchased or subscribed to by georgia tech for our control data USERS. ANY REPRODUCTION OF THIS CODE, AS IN A THESIS OR DISSERTATION FOR DUPLICATION OF RESULTS, SHOULD INCLUDE THE FOLLOWING STATEMENTS:

THE LISTED CODE IS PART OF A PROPRIETARY PRODUCT BELONGING TO ------

THE LISTINGS ARE REPRODUCED WITH THE PERMISSION OF -----
the listings may not be extracted for other purposes, or used AS THE BASIS FOR ANY SOFTWARE DEVELOPMENT.

IMSL ROUTINE NAME - vSRTU

```
COMPUTER - CDCFT5/SINGLE
```

 LATEST REVISION - JANUARY 1, 1978
 PURPOSE - INTERCHANGE THE ROWS OR COLUMNS OF A MATRIX
 USING A PERMUTATION VECTOR SUCH AS THE ONE
 OBTAINED FROM IMSL ROUTINES VSRTP OR
 VSRTR
 USAGE - CALL VSRTU (\(Z, I Z, N, M, I N D, I R, W K\))
 ARGUMENTS \(\quad z \quad-\) INPUT MATRIX OF DIMENSION \(N\) BY M TO BE
 INTERCHANGED. ON OUTPUT, z CONTAINS
 THE INTERCHANGED MATRIX.
 IZ - ROW DIMENSION OF MATRIX Z EXACTLY AS
 SPECIFIED IN THE DIMENSION STATEMENT IN THE
 CALLING PROGRAM. (INPUT)
 N - NUMBER OF ROWS IN \(Z\). (INPUT)
 M - NUMBER OF COLUMNS IN \(z\). (INPUT)
 IND - INPUT OPTION PARAMETER.
 IF IND IS GREATER THAN ZERO, THE ROWS OF Z
 WILL BE INTERCHANGED ACCORDING TO THE
 INFORMATION IN VECTOR IR.
 OTHERWISE, THE COLUMNS OF Z WILL BE
 INTERCHANGED ACCORDING TO THE
 INFORMATION IN VECTOR IR.
 IR - input integer permutation vector of length
 N, IF IND IS POSITIVE, AND OF LENGTH M
 OTHERWISE. IR CONTAINS THE FIRST N OR M
 POSITIVE INTEGERS. SEE PROGRAMMING NOTES.
 IR IS DESTROYED ON OUTPUT.
 WK - WORK VECTOR OF LENGTH M IF IND IS POSITIVE


```
    35 DO 40 I = 1,N
        Z(I,K) = WK(I)
    4 0 \text { CONTINUE}
        IR (K) = 0
        GO TO 10
C
    4 5 ~ I F ~ ( I P T R ~ . G E . ~ N ) ~ G O ~ T O ~ 8 5 ~
    IF (IR(IPTR) .GT. 0) GO TO 55
    50 IPTR = IPTR + 1
    GO TO 45
5 5 ~ I F ~ ( I R ( I P T R ) ~ . E Q . ~ I P T R ) ~ G O ~ T O ~ 5 0 ~
    K = IPTR
    DO 60 I = 1,M
        WK(I) = Z(K,I)
    6 0 \text { CONTINUE}
    65 L = IR(K)
    IF (L .EQ. IPTR) GO TO 75
    DO 70 I = 1,M
        Z(K,I) = Z(L,I)
    70 CONTINUE
    IR(K) = 0
    K = L
    GO TO 65
75\cdotDO 80 I = 1,M
        Z(K,I) = WK (I)
    80 CONTINUE
    IR (K) = 0
    GO TO 50
85 RETURN
    END
```

APPENDIX C

TBREG5 : Model Development and Regression-Statistical Analysis
SUBI : Subroutine to Calculate k and from Radiation Data
CLRL : Subroutine to Plot Regression Lines
MDFD : Subroutine to Calculate the Probability Distribution Function Development of Total Variation Identity
C C. BALARAS 31-5-85
C
C. BALARAS 6-6-85
C
C...PIECEWISE REGRESSION OF TB ON KT
C...ASSUMES INPUT FILE IS SORTED BY KT
C.
C..VARIABLE DICTIONARY
C SYY=TOTAL VARIATION
C RSST= RESIDUAL VARIATION
C $\operatorname{RSS}(I B)=$ RESIDULA VARIATION FOR BAND IB
C NPTST = TOTAL NUMBER OF DATA POINTS
C. .MODIFICATIONS NEEDED
C. OPEN PLOT FILE, PLOT AND LABEL AXES
C. AFTER EACH DATUM IS READ PLOT THAT POINT
C. . AFTER PROCESSING PLOT THE REGRESSION LINES
C. . AFTER PROCESSING CALCULATE THE F-STATISTIC
C. . . DECLARATIONS
DIMENSION BETA (9), XO (10), HBETA (9)
DIMENSION RSS (9)
DIMENSION IBUF (512)
DIMENSION KTARR (8112), TBARR (8112), IRVS (8112) ,WK (1)
REAL KT, K, KT1, TB1, TB, ION, IO, IO2, ION2
REAL KTARR
INTEGER BADPER, YR, DAY,MO, HR, MIN
WRITE (6,*) 'WHAT IS THE TITLE (ALL 80)'
$\operatorname{READ}(5,10)$ TITLE
10 FORMAT (A6)
WRITE $(6, *)$ 'PERFORM CALCULATIONS AT MID-PERIOD? 1 YES, 0 NO'
$\operatorname{READ}(5,5)$ ICAL
IF (ICAL.EQ. 1) THEN
WRITE $(6, *)$ ' $K T$ CALCULATED AT CURRENT TIME'
ELSE
WRITE (6,*) 'KT FROM DATA FIE'
ENDIF
WRITE (6,*) 'PERFORM CALCULATIONS FOR ALL 5 YEARS? 1 YES, 0 NO'
$\operatorname{READ}(5,6)$ IALL
6 FORMAT (I1)
WRITE $(6, *)$ 'CALCULATIONS FOR SEASONAL ANALYSIS? 1=YES, $0=N O$ '
$\operatorname{READ}(5,14)$ ISEASO
14 FORMAT (I1)
IF (ISEASO.EQ.1) THEN
WRITE $(6, *)$ 'PERFORM CALCULATIONS FOR WHAT MONTHS ?'
$\operatorname{WRITE}(6, *) \quad ' 01=\mathrm{JAN}, 02=\mathrm{FEB}, \ldots 12=\mathrm{DEC}$ '
$\operatorname{READ}(5,15)$ IMO
15 FORMAT (I2)
END IF
IF (IALL.EQ.O) THEN
WRITE $\left(6,{ }^{*}\right)$ ' PERFORM CALCULATIONS FOR WHAT YEAR? (I.E, 80)'

```
        READ (5,7) IYR
    7 FORMAT (I2)
        ELSE
        IYR=0
        END IF
        F FORMAT (I1)
        WRITE (6,*) 'SYMBOL FOR PLOTTING REGRESSION LINES (5)'
        READ (5,9) ISYM
    9 FORMAT (I1)
        WRITE(6,*) 'SYMBOL FOR PLOTTING RANDALL WHITSON MODEL (15)'
        READ (5,12) ISYMRW
        12 FORMAT (I2)
        WRITE (6,*) 'SHOW DATA POINTS? 1 YES, O NO'
        READ (5,11) ISHOW
        11 FORMAT (I1)
        WRITE (6,*) 'WHAT IS THE HYPOTHESIZED MODEL?'
        WRITE (6,*) ' }1=79,\quad2=80, 3=81, 4=833, 5=84, 6=5Y, 7=R-W'
        READ (5,13) IHYPO
13 FORMAT (II)
C...GLOBAL INITIALIZATIONS
        DATA BETA/9*0.0/
        DATA X0/0.0,0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85/
        IB=1
        IFRST=1
        SUMTSQ=SUMT=0.0
C
C...CONSTANTS
    ALATD=33.4046
    ALONGD=84.7478
    ALONST=75.0
    ZONE=5.0
    GSC=1367.0
    NPAIRS=0
C
C...INITIALIZE VARIABLES FOR FIRST BAND
    YO=0.0
    SUMX=SUMY = SUMXSQ =SUMY SQ =SUMXY=0.0
    NPTS=NPTST=0
C. .***OPEN PLOT FILES, DRAW AND LABEL AXES, SET SCALES
    CALL PLOTS (IBUF,512, 2,40)
    CALL PLOTMX (18.5)
    CALL FACTOR (1.5)
    CALL PLOT (3.0,1.0, -3)
C...DRAW X-AXIS
    CALL AXIS (0.0,0.0,' , , 10,5.0,0.0,0.0,0.2)
C...DRAW Y-AXIS
    CALL AXIS (0.0,0.0,' ', 10,5.0,90.0,0.0,0.2)
C...TITLE GRAPH
    CALL SYMBOL(2.5,5.15,0.2,TITLE,0.0,6)
C...INSERT LABELS
```

CALL SYMBOL $\left(2.4,-0.5,0.30,{ }^{\prime} \delta_{\alpha}<\mathrm{K} ; \mathrm{T}^{\prime}, 0.0,5\right)$
CALL SYMBOL $\left(-0.6,2.5,0.30,{ }^{\prime} \&<\right.$ 非S; B' 0.0 .6$)$
C...BEGIN ANALYSIS
C. . ENTER HOURLY LOOP

DO 200 IDA=1, 8112
C. . READ ONE HOURS DATA

READ (26, 20) YR, MO, DAY, HR, MIN, HRZTOT, DIR, KT1, $\& K T, T B 1, T B, P C T, B A D P E R$
20 FORMAT (1X, I2, 4 (2X, I2) , 4X, 2 (F7.1, 2X) , 4X, 2 (F5.3, 2X),
$\& 4 \mathrm{X}, 2(\mathrm{~F} 5.3,2 \mathrm{X}), 4 \mathrm{X}, \mathrm{F} 4.2,2 \mathrm{X}, \mathrm{I} 2)$
C...TEST FOR SEASONAL CALCULATIONS

IF (ISEASO.EQ.1) THEN
IF (MO.NE.IMO) THEN
GO TO 200
END IF
END IF
C...TEST FOR ANNUAL CALCULATIONS

IF (IALL.EQ.O) THEN
IF (YR.NE.IYR) THEN
GO TO 200
END IF
END IF
C
NPAIRS=NPAIRS +1
IF (ICAL.EQ.1) THEN
C...CALL SUBROUTINE HELGO FOR TIME-0.5 HOURS

CVLT= (HR + MIN/60.) -0.5
CALL HELGO (YR, MO, DAY, CVLT, ALONGD, ALATD, ALONST, ZONE, ALPHA, \&DELTA, EOT , OMEGA, R)
C
C... CALL SUBROUTINE IRRADIATION

CALL SUBI (OMEGA, ALATD, DELTA, BADPER, GSC, IFRST, R, HRZTOT, DIR, \& KT, TB)
ELSE
$\mathrm{KT}=\mathrm{KT} 1$
$\mathrm{TB}=\mathrm{TB} 1$
ENDIF
IF (ISHOW.EQ.0) GO TO 703
C. .***PLOT THIS DATUM USING 'CALL SYMBOL'
$\mathrm{K}=\mathrm{KT} / .2$
$\mathrm{T}=\mathrm{TB} / .2$
CALL SYMBOL (K, T, $0.035,19,0.0,-1)$
C. .PLACE DATA IN ARRAYS

703 KTARR (NPAIRS) $=\mathrm{KT}$
$\operatorname{TBARR}($ NPAIRS $)=T B$
IRVS (NPAIRS) $=$ NPAIRS
200 CONTINUE
WRITE $(6, *)$ 'NPAIRS $=1$, NPAIRS
C...CALL IMSL SORTING ROUTINES

END IF

```
    CALL VSRTP(KTARR,NPAIRS,IRVS)
    CALL VSRTU(TBARR,NPAIRS,NPAIRS,1,1,IRVS,WK)
    DO }300\mathrm{ IDA=1,NPAIRS
    KT=KTARR (IDA)
    TB=TBARR (IDA)
    IF( (KT.GT.XO(IB+1)).OR.(IDA.EQ.NPAIRS ) ) THEN
        IF(SUMXY.GT.O.0) THEN
            BETA (IB) = SUMXY/SUMXSQ
        ELSE
            BETA (IB) =0.0
        ENDIF
        YO=YO+BETA (IB)* (XO(IB+1)-XO(IB) )
        RSS (IB)=SUMYSQ-2.0*BETA (IB)*SUMXY+BETA (IB)*BETA (IB)*SUMXSQ
        NPTST=NPTST+NPTS
        IB=IB+1
    C....REINITIALIZE VARIABLES FOR NEXT BAND
        SUMX=SUMY=SUMXSQ=SUMYSQ=SUMXY=0.0
        NPTS=0
    C. . . BRANCH IF DȦTA IS EXHAUSTED
        ENDIF
    C....ANALYSIS OF BAND NO. IB CONTINUES
        XBND=KT-XO (IB)
        YBND=TB-YO.
        SUMT=SUMT+TB
        SUMTSQ=SUMTSQ+TB*TB
        SUMX=SUMX + XBND
        SUMY=SUMY+YBND
        SUMXSQ=SUMXSQ+XBND*XBND
        SUMYSQ=SUMYSQ+YBND*YBND
        SUMXY =SUMXY +XBND*YBND
        NPTS=NPTS+1
    C....THIS HOUR'S COMPUTATIONS COMPLETED
    C WRITE (6,988) NPTS,KT,TB, SUMXSQ, SUMXY
    C988 FORMAT (I7, 2F7.4, 2F10.3)
    C....ALL HOURLY COMPUTATIONS COMPLETED
    300 CONTINUE
    C...PLOT THE REGRESSION LINES
    C FOR THE SHENANDOAH AND R-W MODEL
        CALL CLRL (BETA,XO,ISYM,ISYMRW)
    C...COMPLETE THE PLOTTING JOB
        CALL PLOT (7.0,0.0,3)
        CALL PLOT (7.0,0.0,999)
    C...SUMMARY COMPUTATIONS
        TAVE=SUMT/FLOAT (NPTST)
        SYY=SUMTSQ-2.0*TAVE*SUMT+NPTST*TAVE*TAVE
        WRITE (6,*) BETA
        WRITE (6,*) RSS
        WRITE (6,*) SYY
C...REPEAT SUMMARY COMPUTATIONS
            RSST=0.0
```

$S Y Y=0.0$
$Y O=0.0$
$I B=1$
DO $600 \mathrm{JK}=1$,NPAIRS
$K T=K T A R R$ (JK)
TB=TBARR (JK)
IF (KT.GT. XO (IB+1)) THEN
$Y O=Y O+B E T A(I B) *(X O(I B+1)-X O(I B))$
$I B=I B+1$
ENDIF
YEST=YO+BETA (IB) * (KT-XO (IB))
RSST $=$ RSST $+(T B-Y E S T) * * 2$
$S Y Y=S Y Y+(T B-T A V E) * * 2$
600 CONTINUE
C...CALCULATE THE EXPLAINED VARIATION

SSREG=SYY-RSST
C. . CALCULATE THE COEFFICIENT OF CORRELATION
$A R=S Q R T$ (SSREG/SYY)
C...CALCULATE THE COEFFICIENT OF DETERMINATION
$A R 2=A R^{*} A R$
WRITE (6,*) SSREG, AR2
C...REPEAT CALCULATIONS FOR THE HYPOTHESIZED

C MODEL, ANNUAL MODEL OR THE RANDAL WHITSON MODEL
C...SCF $=$ SOLAR CONSTANT FACTOR, TO ACCOUNT FOR THE DIFFERENCE

C IN THE SOLAR CONSTANT VALUE BETWEEN OUR VALUE 1367.0
C AND THE VALUE USED FOR THE R-W MODEL ($1377 \mathrm{~W} / \mathrm{M} / \mathrm{M}$)
C IN ALL OTHER CASES $\mathrm{SCF}=1$
$S C F=1.0$
IF (IHYPO.EQ.1) THEN
HBETA (2) $=0$.
HBETA (3) $=0.01680610898376$
HBETA (4) $=0.2563727495389$
HBETA (5) $=0.856204541161$
$\operatorname{HBETA}(6)=1.351087178326$
$\operatorname{HBETA}(7)=1.80842889396$
$\operatorname{HBETA}(8)=2.017398031243$
$\operatorname{HBETA}(9)=1.447819544956$
END IF
IF (IHYPO.EQ. 2) THEN
$\operatorname{HBETA}(2)=0.0004458185646733$
HBETA (3) $=0.03166244709482$
$\operatorname{HBETA}(4)=0.2337467649286$
$\operatorname{HBETA}(5)=0.8796391441972$
$\operatorname{HBETA}(6)=1.347261835858$
$\operatorname{HBETA}(7)=1.331416536751$
$\operatorname{HBETA}(8)=2.121394821706$
$\operatorname{HBETA}(9)=2.266402906436$
END IF
IF (IHYPO.EQ.3) THEN
$\operatorname{HBETA}(2)=0.003190779476716$

```
    HBETA (3) =0.05111871536509
    HBETA(4)=0.2590704091887
    HBETA(5)=0.8850880372326
    HBETA (6) =1.643031036335
    HBETA (7) =1.525337244653
    HBETA (8) =2.352748816485
    HBETA (9) =1.333663078997
    END IF
    IF (IHYPO.EQ.4) THEN
    HBETA (2) =0.0
    HBETA (3) =0.03098476893561
    HBETA(4)=0.2879876505518
    HBETA (5) =1.071358223407
    HBETA (6) =1.560173112.096
    HBETA (7)=1.495866981226
    HBETA (8) =2.005941455909
    HBETA (9) =0.8438980215066
    END IF
    IF (IHYPO.EQ.5) THEN
    HBETA (2)=0.0
    HBETA (3) =0.03098057710589
    HBETA(4)=0.1733451088209
    HBETA (5) =1.174526276132
    HBETA (6) =1.511159104577
    HBETA(7)=1.639333183761
    HBETA (8) =1.932529200337
    HBETA (9)=0.0
    END IF
    IF (IHYPO.EQ.6) THEN
    HBETA (2) =0.0007178049038916
    HBETA (3) =0.02972517920018
    HBETA(4)=0.2490303701482
    HBETA (5)=0.9466134865964
    HBETA (6)=1.477191594315
    HBETA (7) =1.56801154
    HBETA (8) =2.077319493401
    HBETA(9)=1.377810138749
    END IF
    IF (IHYPO.EQ.7) THEN
    HBETA (2)=0.01
    HBETA (3) =0.06
    HBETA(4)=0.32
    HBETA (5) =0.82
    HBETA (6)=1.56
    HBETA(7) =1.69
    HBETA (8)=1.49
    HBETA (9) =0.27
C...ACCOUNT FOR THE SOLAR CONSTANT DIFFERENCE
    SCF=1367.0/1377.0
    END IF
```

```
C
    HRSST=0.0
    HSYY=0.0
    YO=0.0
    IB=1
C
    DO }601\textrm{JL=1,NPAIRS
        KT=KTARR (JL) *SCF
        TB=TBARR (JL)*SCF
        IF (KT.GT.XO(IB+1)) THEN
        YO=YO+HBETA (IB)*(XO (IB+1)-XO (IB))
        IB=IB+1
        END IF
        HYEST=YO+HBETA (IB)*(KT-XO(IB))
        HRSST=HRSST+ (TB-HYEST)**2
        HSYY=HSYY+(TB-TAVE)**2
    601 CONTINUE
C
C...CALCULATE THE F-STATISTIC
C HRSST=RESIDUAL VARIATION FOR THE HYPOTHESIZED MODELS
C (ANNUAL MODEL OR R-W)
C RSST=RESIDUAL VARIATION FOR THE ALTERNATIVE HYPOTHESIS
C (FIVE YEAR MODEL)
C DFH=DEGREES OF FREEDOM FOR HYPOTHESIZED MODEL, N
C DFA=DEGREES OF FREEDOM FOR THE ALTERNATIVE MODEL, N-P
C N=NUMBER OF DATA POINTS, }811
C P=NUMBER OF PARAMETERS, 8
C
    DFH=8112
    DFA=8112-8
    F=((HRSST-RSST)/(DFH-DFA))/(RSST/DFA)
C...CALCULATE CONFIDENCE AND ALPHA
N1=8
N2=8112-8
CALL MDFD(F,N1,N2,P,IER)
ALPHA=1.-P
C
WRITE (6,*) RSST,HRSST, F, P, ALPHA
WRITE (6,*) RSST,SYY
STOP
END
```

SUBROUTINE SUBI (OMEGA, ALATD, DELTA, BADPER, GSC, IFRST, R, HRZTOT, DIR, $\& K T, T B)$
C
C C. BALARAS 5-31-85

C
C...SUBROUTINE TO RECALCULATE THE KT AND TB AT THE MIDPOINT OF

C EACH PERIOD.
C INPUTS:
C OMEGA : HOUR ANGLE IN RADIANS (FROM HELGO)
C ALATD : LATITUDE OF LOCALITY IN DEGREES
C DELTA : DECLINATION IN RADIANS (FROM HELGO)
C BADPER : 15-MINUTE PERIOD MISSING
C GSC : SOLAR CONSTANT, $1367 \mathrm{~W} / \mathrm{m} / \mathrm{M}$
C IFRST : TO PREVENT REPETITION OF CALCULATIONS
C \quad R : EARTH-SUN DISTANCE IN AU (FROM HELGO)
C HRZTOT : HOURLY HORIZONTAL IRRADIATION
C DIR : DIRECT BEAM IRRADIATION
C OUTPUTS:
C KT : CLEARNESS INDEX AT THE MID-PERIOD
C TB : HOURLY BEAM TRANSMITTANCE AT THE MID-PERIOD
INTEGER BADPER
REAL KT, ION, IO, IO2, ION2
IF (IFRST.LT.1) GO TO 333
$\mathrm{PI}=4.0^{*} \mathrm{ATAN}(1.0)$
DRCONV=PI/ 180.0
ALAT=ALATD*DRCONV
F1=GSC*12.0*3600.0/PI/1000.0
FAI $=3.6^{*}$ GSC $^{*} 180.0 /$ PI $/ 15.0$
IFRST=0
333 CONTINUE
C...SUBROUTINE INITIALIZATIONS
$\mathrm{F} 2=\mathrm{F} 1 / \mathrm{R} * * 2$
FA2 $=$ FA1/R**2
$102=0.0$
ION2 $=0.0$
OMEG1A $=0.0$
OMEG2A $=0.0$
0 MEG3A $=0.0$
OMEG4A=0.0
C...CALCULATE THE HOUR ANGLES AT THE START END OF THE PERIOD

OMEGA1 $=0 \mathrm{MEGA}-15.0 / 2$. ${ }^{*}$ DRCONV
OMEGA2 $=0 \mathrm{MEGA}+15.0 / 2$. *DRCONV
C...CORRECT HOUR ANGLES FOR FIRST AND LAST PERIODS OF DAY

WSS $=\mathrm{ACOS}(-\operatorname{TAN}(\operatorname{ALAT})$ *TAN (DELTA))
IF (OMEGA2.GT.WSS) OMEGA2=WSS
IF (OMEGA1.LT.-WSS) OMEGA1=-WSS
C
C...DETERMINE MISSING PERIOD
$\operatorname{IPD}=\operatorname{IFIX}($ AMOD (FLOAT (BADPER) , 10.))

```
C...DETERMINE HOUR ANGLES
C IF FIRST PERIOD IS MISSING
        IF (IPD.EQ.1) OMEGA1=OMEGA1+15./4.* DRCONV
C IF LAST PERIOD IS MISSING
        IF (IPD.EQ.4) OMEGA2=OMEGA2-15./4. *DRCONV
C IF SECOND PERIOD IS MISSING
        IF (IPD.EQ.2) THEN
        OMEG1A=OMEGA1+15./4. *DRCONV
        OMEG2A=OMEG1A+15./4.*DRCONV
C CALCULATE THE EXTRATER. HORIZONTAL IRRADIATION
C FOR THE MISSING PERIOD
        IO2=F2*((COS (DELTA) *COS (ALAT)*(SIN (OMEG2A) -SIN (OMEG1A)))
        &+((OMEG2A-OMEG1A)*SIN(DELTA)*SIN (ALAT)))
C CALCULATE THE EXTRATTER. NORMAL IRRADIATION
C FOR THE MISSING PERIOD
        ION2=FA2* (OMEG2A-OMEG1A)
        END IF
C IF THIRD PERIOD IS MISSING
                IF (IPD.EQ.3) THEN
        OMEG3A=OMEGA1+15./2. *}\mathrm{ DRCONV
            OMEG4A=OMEG3A+15./4.*DRCONV
C CALCULATE THE EXTRATER. HORIZONTAL IRRADIATION
C FOR THE MISSING PERIOD
                IO2 =F2* ((COS (DELTA) *COS (ALAT)* (SIN (OMEG4A) -SIN (OMEG3A)))
        &+((OMEG4A-OMEG3A)*SIN (DELTA)*SIN (ALAT)))
C CALCULATE EXTRATTER. NORMAL IRRADIATION
        ION2=FA2* (OMEG4A-OMEG3A)
            END IF
C
C...CALCULATE EXTRATERRESTRIAL NORMAL RADIATION
        GON=GSC/R**2
C
C...CALCULATE EXTRATERRESTRIAL NORMAL IRRADIATION
        ION=FA2** (OMEGA2-OMEGA1)
    C...ACCOUNT FOR A MISSING PERIOD
        ION=ION-ION2
    C
C...CALCULATE EXTRATERRESTRIAL HORIZONTAL IRRADIATION
        IO=F2* ((COS (DELTA) *COS (ALAT)*(SIN (OMEGA2) -SIN (OMEGA1)))
    &+((OMEGA2-OMEGA1)*SIN (DELTA)*SIN (ALAT)))
C...ACCOUNT FOR A MISSING PERIOD
        IO=IO-IO2
C
C...CALCULATE CLEARNESS INDEX
        KT=HRZTOT/IO
    C
C...CALCULATE BEAM NORMAL TRANSMITTANCE
        TB=DIR / ION
        RETURN
        END
```

```
        SUBROUTINE CLRL(BETA,XO,ISYM,ISYMRW)
C
C C. BALARAS 5-31-85
C
C...SUBROUTINE TO PLOT THE REGRESSION LINES FOR THE
C SHENANDOAH AND R-W MODELS
C INPUTS:
C BETA : SLOPE COEFFICIENTS FOR EACH BAND
C XO : INITIAL KT VALUES AT THE BEGINNING OF
                                    EACH BAND
C
C ISYMRW : SYMBOL FOR THE REGRESSION LINE FOR
                                    THE R-W MODEL
    DIMENSION BETA (9), XO (10),X(9),Y(9), XRW (9), YRW (9),A(9), B (9)
    X(6)=0.0
        X(7)=0.2
        Y(6)=0.0
        Y(7)=0.2
        XRW (6) =0.0
        XRW (7) =0.2
        YRW (6) =0.0
        YRW (7) =0.2
C...INITIALIZE
        YO=0.0
C...RANDALL WHITSON SLOPES FOR SEPARATE BANDS
        A(2) =0.01
        B (2) =0.002
        A(3) =0.06
        B (3) =-0.006
        A(4) =0.32
        B(4)=-0.071
        A(5)=0.82
        B (5) =-0.246
        A(6)=1.56
        B (6) =-0.579
        A(7)=1.69
        B(7) =-0.651
        A(8)=1.49
        B(8)=-0.521
        A(9)=0.27
        B (9) =0.395
    C
        DO 700 J=2,9
        YO=(YO+(XO(J)-XO(J-1))*BETA (J-1))
        W=XO(J+1)-XO(J)
C
        DO }701\textrm{L}=1,
C...COORDINATES FOR THE SHENANDOAH MODEL
```

```
    X(L) = (XO (J) +W* (L-1)/4.0)
    Y(L) = (YO+ (X (L) -XO (J))*BETA (J))
C...COORDINATES FOR THE R-W MODEL
    XRW (L) = X (L)
    YRW (L) = B (J) +XRW (L) *A (J)
    XRW(L) = XRW (L) * (1377.0/1367.0)
    YRW (L) = YRW (L) * (1377.0/1367.0)
    7 0 1
    CONTINUE
C
C...PLOT CONNECTED LINEAR REGRESSION LINES
    CALL LINE (X,Y,5,1,1, ISYM)
C...PLOT RANDALL WHITSON MODEL
    CALL LINE(XRW, YRW, 5, 1, 1,ISYMRW)
C
    700 CONTINUE
        RETURN
        END
```

THE FOLLOWING SUBROUTINE MAY BE A PROPRIETARY PRODUCT AND HAS BEEN PURCHASED OR SUBSCRIBED TO BY GEORGIA TECH FOR OUR CONTROL DATA USERS. ANY REPRODUCTION OF THIS CODE, AS IN A THESIS OR DISSERTATION FOR DUPLICATION OF RESULTS, SHOULD INCLUDE THE FOLLOWING STATEMENTS:

THE LISTED CODE IS PART OF A PROPRIETARY PRODUCT BELONGING TO -----.

THE LISTINGS ARE REPRODUCED WITH THE PERMISSION OF -----.
THE LISTINGS MAY NOT BE EXTRACTED FOR OTHER PURPOSES, OR USED AS THE BASIS FOR ANY SOFTWARE DEVELOPMENT.

IMSL ROUTINE NAME - MDFD

COMPUTER - CDCFT5/SINGLE
LATEST REVISION - JUNE 1, 1981
PURPOSE - F PROBABILITY DISTRIBUTION FUNCTION
USAGE $\quad-\operatorname{CALL}$ MDFD ($\mathrm{F}, \mathrm{N} 1, \mathrm{~N} 2, \mathrm{P}, \mathrm{IER}$)
ARGUMENTS F - INPUT CONSTANT TO WHICH INTEGRATION IS PERFORMED. F MUST BE GREATER THAN OR EQUAL TO ZERO.
N1 - INPUT FIRST DEGREE OF FREEDOM. A POSITIVE INTEGER.
N2 - INPUT SECOND DEGREE OF FREEDOM, A POSITIVE INTEGER.
P - OUTPUT PROBABILITY THAT A RANDOM VARIABLE FOLLOWING THE F DISTRIBUTION WITH DEGREES OF FREEDOM N1 AND N2 WILL BE LESS THAN OR EQUAL TO INPUT F.
IER - ERROR PARAMETER. (OUTPUT) TERMINAL ERROR

IER $=129$ INDICATES EITHER N1 OR N2 IS LESS THAN ONE OR N1+N2 IS GREATER THAN 20,000. P IS SET TO POSITIVE MACHINE INFINITY.
IER $=130$ INDICATES F IS LESS THAN ZERO. P IS SET TO POSITIVE MACHINE INFINITY.

PRECISION/HARDWARE - SINGLE/ALL
REQD. IMSL ROUTINES - MERRC=ERFC,UERTST, UGETIO


```
IF (ABS (CBR1).GT.BIGE) GO TO 120
CBR1 = EXP(CBR1)
CBR2 = CBR1*CBR1
S = (CBR1* (1.0-F2)-1.0+F1)/SQRT (F1+CBR2*F2)
P=.70710678118655
P}=.\mp@subsup{5}{}{*}\operatorname{ERFC}(-\mp@subsup{P}{}{*}\textrm{S}
GO TO 95
C
    5 TEMP1 = 0.
        TEMP = . 5*F2*ALOG (X1)
        IF (N1.EQ. 2) GO TO 25
        I1 = N1-2
        XI = Fl
        DO 10 I2=2,I1,2
        L2 = I2
        XI = XI-2.
        VP = VP-2.
        DP = X2*VP/XI* (1. +DP)
        IF (DP.GT.ACONS) GO TO 15
    10 CONTINUE
    GO TO 25
    15 IF (L2.GE.I1) GO TO 25
        DPL = ALOG (DP)
        I2P = L2+2
        XI = F1-I2P
        DO 20 I2=I2P,I1,2
            VP = VP-2.
            DPL = DPL+ALOG (X2*VP/XI)
            XI = XI-2.
    20 CONTINUE
    TEMP = TEMP+DPL
    IF (ABS (TEMP). LE.BIGE) TEMP1 = EXP (TEMP)
    P = 1.-TEMP 1
    GO TO 95
    25 IF (ABS (TEMP). LE.BIGE) TEMP1 = EXP (TEMP)
    P}=1.0-TEMP1*(1.0+DP
    GO TO 95
C N2 IS EVEN AND LESS THAN 500
30 TEMP1 = 0.
    TEMP = . 5*F1*ALOG (X2)
    IF (N2.EQ.2) GO TO 50
    I1 = N2-2
    XI = F2
    DO 35 I2=2,I1,2
        L2 = I2
        XI = XI-2.
        VP = VP-2.
        DP = X1*VP/XI* (1.+DP)
        IF (DP.GT.ACONS) GO TO 40
35 CONTINUE
```

```
            GO TO 50
    4 0 ~ I F ~ ( L 2 . G E . I 1 ) ~ G O ~ T O ~ 5 0 ~
    DPL = ALOG(DP)
    I2P = L2+2
    XI = F2-I2P
    DO 45 I2=I2P,I1,2
            VP = VP-2.
            DPL = DPL+ALOG(XI*VP/XI)
            XI = XI-2.
    4 5 \text { CONTINUE}
    TEMP = TEMP+DPL
    IF (ABS (TEMP).LE.BIGE) TEMP1 = EXP(TEMP)
    P = TEMP1
    GO TO 95
    50 IF (ABS (TEMP).LE.BIGE) TEMP1 = EXP(TEMP)
    P = TEMP1* (1. +DP)
    GO TO 95
C
    55 DP = SQRT(F1F/F2)
    THETA = ATAN(DP)
    STS = F1F/F2P
    A = 0.0
    B = 0.0
    IF (N2.EQ.1) GO TO 70
    IF (N2.EQ.3) GO TO 65
    I1 = N2-3
    XI = F2
    DO 60 I2=2,I1,2
        XI = XI-2.
        A}=X1*(XI-1.0)/XI* (1.0+A)
6 0 ~ C O N T I N U E ~
65 A = X1*DP* (1.0+A)
70 A = A+THETA
    IF (N1.EQ.1) GO TO 90
    IF (N1.EQ.3) GO TO 80
    I1 = N1-3
    XI = F1
    DO 75 I2=2,I1,2
        XI = XI-2.
        VP = VP-2.
        B = STS*VP/XI* (1.0+B)
    7 5 \text { CONTINUE}
    80 B = DP*X1*(1.0+B)
    IF (N2.EQ.1) GO TO 90
    I2 = N2/2
    C=1.0
    DO }85\textrm{I}=1,\textrm{I}
        B = B* X1 *C/ (C-0.5)
        C = C+1.0
    85 CONTINUE
```

```
    90 P = R2DPI* (A-B)
    95 IF (P.LT.0.0) P = 0.0
        IF (P.GT.1.0) P = 1.0
        GO TO 9005
100 IER = 129
        GO TO 110
105 IER = 130
110 P = RINFP
    GO TO 9000
115 P = 0.0
    GO TO 9005
120 P = . 5
    GO TO 9005
9000 CONTINUE
    CALL UERTST (IER,'MDFD ')
9 0 0 5 ~ R E T U R N ~
    END
```

$$
\text { Syy }=S S_{R}+S S_{E}
$$

$$
\begin{aligned}
& \text { or } \begin{aligned}
& \sum_{1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{1}^{n}\left(y_{i}-\bar{y}\right)^{2}+\sum_{1}^{n}\left(y_{i}-\hat{y}_{i}\right) . \\
& \text { Note: } \sum_{1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{\sum_{i}}^{n}\left[\left(y_{i}-\hat{y}_{i}\right)-\left(\hat{y}_{i}-\bar{y}\right)\right]^{2} \\
&=\sum_{1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum_{i}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}-2 \sum_{1}^{n}\left(\hat{y}_{i}-\bar{y}\right) \quad\left(y_{i}-\hat{y}_{i}\right)
\end{aligned}
\end{aligned}
$$

One must show the last term $\sum\left(\hat{y}_{i}-\bar{y}\right) \cdot\left(y_{i}-\hat{y}_{i}\right)=0$, or

$$
\sum\left(\hat{y}_{i}-\bar{y}\right) \cdot\left(y_{i}-\hat{y}_{i}\right)=\sum y_{i} \cdot \hat{y}_{i}-\sum \bar{y} \cdot y_{i}-\sum y_{i}^{2}+\sum \bar{y} \hat{y}_{i} .
$$

$$
n \cdot \bar{Y}^{2}-n \cdot \bar{Y}^{2}-n \bar{Y}^{2}+n \cdot \bar{Y}^{2}+\left(S_{x y}^{2} / S x x\right)-\left(S_{x y}^{2} / S x x\right)=0
$$

This concludes the proof of the identity.

$$
\begin{aligned}
& \text { Term by term, } \\
& \sum y_{i} \cdot \hat{y}_{i}=\left\{\left[\hat{\alpha}^{\prime} \cdot y_{i}+\hat{b}\left(x_{i}-\bar{x}\right) \cdot y_{i}\right]=\hat{\alpha}^{\prime} n \bar{y}+\hat{b} \cdot S x y-\sum \bar{y} \cdot y_{i}\right. \\
& =-\bar{y} \sum_{y_{i}}=-n \cdot \bar{Y}^{2} . \\
& -\sum_{1}^{n} \hat{y}_{i}^{2}=-\sum_{1}^{n}\left[\hat{\alpha}^{\prime}+\hat{b} \cdot\left(x_{i}-\bar{x}\right)\right]^{2}=-\sum_{1}^{n}\left[\hat{\alpha}^{2}+2 \hat{\alpha}^{\prime} \hat{b} \cdot\left(x_{i}-\bar{x}\right)+\hat{\gamma}^{2}\left(x_{i}-\bar{x}\right)^{2}\right] \\
& =-n \hat{\alpha}^{\prime 2}-2 \cdot \hat{\alpha} \cdot \hat{b}^{(0)}-\hat{\gamma}^{2} \cdot S x x \\
& =-n \hat{\alpha}^{\prime 2} 2-\hat{\sigma}^{2} S x x . \\
& \sum_{1}^{n} y \cdot \hat{y}_{i}=\bar{y} \sum_{i}^{n} \hat{y}_{i}=\bar{y} \sum_{i}^{n}\left[\hat{\alpha}^{\prime}+\hat{b} \cdot\left(x_{i}-\bar{x}\right)\right]=\bar{y} \cdot n \cdot \hat{\alpha}^{\prime} . \\
& \text { Substituting } \hat{\alpha}^{\prime}=\bar{Y} \text {, and } \hat{\mathbb{B}}=S x y / S x x
\end{aligned}
$$

APPENDIX D

VERIF : Clearness Index vs. Beam Normal Fraction Verification of Model Development

PROGRAM VERIF (INPUT, OUTPUT, TAPE6=OUTPUT, TAPE5=INPUT)
C
C...THIS program Calculates the global radiation and beam
C NORMAL IRRADIATION, FOR EVERY 15 MINUTES (96 PERIODS)
C DURING EACH DAY OF THE YEAR, TO CREATE A DUMMY Q-FILE
C FOR TESTING PURPOSES.
C
C. . . DEFINITIONS
C ALAT : SOLAR LATITUDE IN RADIANS
C ALONG : LONGITUDE OF THE LOCALITY IN DEGREES
C ALPHAV : CORRESPONDING AVERAGE OF THE SOLAR ALTITUDE
C AMV : CORRESPONDING AVERAGE OF THE AIR MASS
C DAY : DAY OF THE MONTH
C DELTA : DECLINATION ANGLE, IN RADIANS
C DRCONV : CONVERSION FACTOR FROM DEGREES TO RADIANS
C EQOT : EQUATION OF TIME, IN MINUTES
C EXTC : ATMOSPHERIC EXTINCTION COEFFICIENT
C FACTOR : CONVERSION FACTOR FROM W TO KJ/15MIN
C GBNAV : AVERAGE EXTRATERRESTRIAL BEAM NORMAL RADIATION
C GLOBAL : GLOBAL RADIATION
C GON : EXTRATERRESTRIAL RADIATION MEASURED ON THE PLANE
C NORMAL TO THE RADIATION ON THE NTH DAY OF THE YEAR
C GSC : SOLAR CONSTANT (W/M/M)
C HANGSR : HOUR ANGLE AT SUNRISE (STANDARD TIME)
C HANGSS : HOUR ANGLE AT SUNSET (STANDARD TIME)
C HR : HOURS DURING THE DAY, STARTING AT MIDNIGHT OF THE
C PREVIOUS DAY OR AT 0 HOURS OF THE NEW DAY
C HRCONV : CONVERSION FACTOR FROM HRS TO RAD
C I : MONTH OF THE YEAR
C IbN : BEAM NORMAL IRRADIATION
C IO : EXTRATERRESTRIAL HORIZONTAL IRRADIATION
C ION : EXTRATERRESTRIAL NORMAL IRRADIATION
C KT : CLEARNESS INDEX
C MIN : MINUTES (15 MINUTE INTERVAL)
C MONLEN : THE NUMBER OF DAYS IN A MONTH
C N : DAY OF THE YEAR
C OMEGA1 : HOUR ANGLE CORRESPONDING TO THE LOWER INTEGRATION LIMIT
C OMEGA2 : HOUR ANGLE CORRESPONDING TO THE HIGHER INTEGRATION LIMIT
C OMEGAV : CORRESPONDING AVERAGE OF THE HOUR ANGLE-SOLAR TIME
C PHI : LATITUDE (DEGREES) OF THE LOCALITY
C SHANGL : HOUR ANGLE IN SOLAR TIME
C SRTIME : SUNRISE STANDARD TIME
C SSTIME : SUNSET STANDARD TIME
C STDTSN : STANDARD TIME OF SOLAR NOON
C STMER : STANDARD MERIDIAN
C T1 : STANDARD TIME AT WHICH EACH PERIOD STARTS
C T2 : STANDARD TIME at which each period ends
C TAU1 : INTEGRATION LOWER LIMIT FOR EVERY PERIOD (STD. TIME)

```
C TAU2 : INTEGRATION UPPER LIMIT FOR EVERY PERIOD (STD. TIME)
C TAUAV : INTEGRATION AVERAGE TIME (STD. TIME)
C THETAZ : ZENITH ANGLE OF THE SUN
C YR : YEAR OF INTEREST (1980)
C
C...VARIABLE DECLARATIONS
    INTEGER YR,HR,DAY
    REAL IBN,IO,ION,KT,OMEGA1,OMEGA2,OMEGAV,PHI,SHANGL
C
    DIMENSION MONLEN(12)
    DATA MONLEN/31,29,31,30,31,30,31,31,30,31,30,31/
C
C...INITIALIZE VARIABLES
    PI=4.0*ATAN (1.0)
    DRCONV=PI/180.0
    PHI=33.42
    ALAT=PHI* DRCONV
    FACTOR=3.6
    HRCONV = 15.0*
    ALONG=84.75
    STMER=75.0
    N=0
    YR=80
    DAY=0
C
C...PERFORM CALCULATIONS FOR EVERY DAY OF THE MONTH (I)
    DO 350 I=1,12
    L=MONLEN (I)
    DO 250 J=1, L
    N=N+1
    DAY=DAY+1
C
C...CALCULATE THE DECLINATION
    DELTA=23.45*SIN (2.0*PI* (284.0+N)/365.0)*DRCONV
C...CALCULATE THE SUNSET HOUR ANGLE
    HANGSS=ACOS (-TAN (SALT) *TAN (DELTA))
C...CALCULATE THE SUNRISE HOUR ANGLE
    HANGSR=-HANGSS
C
C...CALCULATE THE EQUATION OF TIME
    IF (N.GT.106) GO TO 100
    EQOT =-14.2*SIN ((N+7.0)*0.028303)
    GO TO 400
100 IF (N.GT.166) GO TO 200
    EQOT=4.0*SIN ((N-106.0)*0.053247)
    GO TO 400
200 IF (N.GT.246) GO TO 300
```



```
    GO TO 400
300 EQOT=16.4*SIN((N-247.0)*0.027802)
```

```
C
C...CALCULATE THE STANDARD TIME OF SOLAR NOON
    400 STDTSN=12.0-(EQOT/60.0)-(STMER-LONG)/15.0
C...CALCULATE THE SUNRISE STANDARD TIME
        SRTIME=STDTSN- (HANGSS/HRCONV)
C...CALCULATE THE SUNSET STANDARD TIME
        SSTIME=STDTSN + (HANGSS/HRCONV)
C...CALCULATE tHE EXTRATERRESTRIAL NORMAL RADIATION
        GSC=1353.0
        GON=GSC* (1.0+0.033*}\operatorname{COS}(2.0**PI*N/365.0)
C
C...CALCULATE THE INTEGRATION LIMITS TAU1,TAU2 FOR EACH
C 15 MINUTE INTERVAL, STARTING AT MIDNIGHT OF THE PREVIOUS
C DAY OR AT 0:00 HOURS OF THE NEW DAY
        T1=0.0
        T2=15.0/60.0
        GLOBAL=0.0
        IBN=0.0
        HR=0
        MIN=15
C
        WRITE (6,20) YR,N, I, DAY, HR,MIN,'000000000000'
        &'00000000000000000000 00000000000000000000000000000000'
    20 FORMAT (I2,1X, I3, 4 (1X,I2),1X,A12,A53)
        WRITE (6,21) '0','0','0','0','0',IBN, IBN,'0',GLOBAL,'0',
        &'0','0','0','0','0','0'
            FORMAT (2X, A1 , 4X , A1 , 3X, A1 , 4X, A1 , 6X, A1, F5.0, F5.0, 4X, A1, F5.0,
        &7(4X,A1))
C
        DO 10 K=2,96
        T1=T1+15./60.
        T2=T2+15./60.
C...CALCULATE TAU1
C......FOR PERIODS BEFORE SUNRISE
        IF (SRTIME.GT.T2) THEN
        GLOBAL=0.0
        IBN=0.
        GO TO 50
        ELSE
C......FOR THE PERIODS BETWEEN SUNRISE SUNSET
        IF (SRTIME.LE.T1) TAUl=T1
        IF (SRTIME.GT.T1) TAUI=SRTIME
        END IF
C...CALCULATE TAU2
C......FOR PERIODS AFTER SUNSET
        IF (SSTIME.LT.T1) THEN
        GLOBAL=0.
        IBN=0.
        GO TO 50
        ELSE
```

```
C......FOR PERIODS BETWEEN SUNRISE SUNSET
    IF (SSTIME.GE.T2) TAU2=T2
    IF (SSTIME.LT.T2) TAU2=SSTIME
    END IF
C
C...CALCULATE THE AVERAGE INTEGRATION LIMITS (STD. TIME)
    TAUAV=(TAU1+TAU2)/2.
C...CALCULATE THE CORRESPONDING AVERAGE OF THE
C......HOUR ANGLE
    OMEGAV = (TAUAV-STDTSN) *HRCONV
C.....SOLAR ALTITUDE
        THETAZ = (ACOS (COS (DELTA)* COS (SLAT)* COS (OMEGAV) +SIN (DELTA)*
        &SIN (SLAT)))*180.0/PI
        ALPHAV = (90.0-THETAZ)*DRCONV
C......AIR MASS
        AMV=1.0/SIN (ALPHAV)
C...CALCULATE THE AVERAGE BEAM NORMAL RADIATION
    EXTC=0.25
    GBNAV=GON**EXP (-EXTC**AMV)
C
C...CALCULATE THE HOUR ANGLE FOR THE LOWER INTEGRATION LIMIT
        OMEGA1= (TAU1-STDTSN) *}\textrm{HRCONV
C...CALCULATE THE HOUR ANGLE FOR THE HIGHER INTEGRATION LIMIT
    OMEGA2= (TAU2-STDTSN)*HRCONV
C
C...CALCULATE THE GLOBAL RADIATION BETWEEN SUNRISE SUNSET
        GLOBAL = (12.0/PI)*GBNAV
        &*(COS (DELTA)*COS (ALAT)* (SIN (OMEGA2)-SIN (OMEGA1)))
        &+(OMEGA2-OMEGA1)*SIN (DELTA)*SIN (ALAT))
            GLOBAL=GLOBAL*FACTOR
C...CALCULATE THE EXTRATERRESTRIAL HORIZONTAL IRRADIATION
        IO=(12.0/PI)*GON
        &* (COS (DELTA)* (COS (ALAT)*(SIN (OMEGA2)-SIN (OMEGA1)))
        &+(OMEGA2-OMEGA1)*SIN (DELTA) *SIN (ALAT))
        IO=IO*FACTOR
C...CALCULATE THE CLEARNESS INDEX
        KT=GLOBAL/IO
C...CALCULATE THE EXTRATERRESTRIAL NORMAL IRRADIATION
        ION=GON* (TAU2-TAU1)*FACTOR
C...CALCULATE THE BEAM NORMAL IRRADIATION
        Q=(1./2.)*KT
        IBN=Q*ION
    50 MIN=MIN+15
        IF (MIN.EQ.60) GO TO 5
        GO TO 500
5 HR=HR+1
    MIN=0
    IF (HR.EQ.24.AND.MIN.EQ.0) THEN
    HR=0
    MIN=0
```

```
        N=N+1
        DAY=DAY+1
        IF (DAY.EQ.L) DAY=1
        IF (DAY.EQ.1) I= I+1
        ELSE
        GO TO 500
        END IF
C
    500 WRITE (6,22) YR,N,I,DAY,HR,MIN ,'000000000000'
        &'00000000000000000000 00000000000000000000000000000000'
    22 FORMAT (I2, 1X, I3, 4 (1X, I2) , 1X, A12, A.53)
        WRITE (6,23) '0','0','0','0','0',IBN,IBN,'0',GLOBAL, '0',
        &'0','0','0','0','0','0'
        FORMAT (2X , A1 , 4X, A1 , 3X, A1 , 4X, A1 , 6X, A1, F5.0, F5.0, 4X, A1, F5.0,
        &7(4X,A1))
C
    10 CONTINUE
            N=N-1
            DAY=DAY-1
250 CONTINUE
350 CONTINUE
    END
```

BIBLIOGRAPHY

1. D. ". Hoyt, "A Model for the Calculation of Solar Global Insolation", Solar Energy, Vol 21, 1978.
2. M. A. Atwater and J. T. Ball, "A Numerical Solar Radiation Model Based on Standard Meteorological Observations", Solar Energy, Vol. 21, 1978.
3. J. A. Davies and D. C. McKay, "Estimating Solar Irradiance and Components", Solar Energy, Vo1 29, 1982.
4. J. E. Sherry and C. G. Justus, "A Simple Hourly All-Sky Solar Radiation Model Based on Meteorological Parameters", Solar Energy, Vol 32, 1984.
5. B. V. H. Liu and R. C. Jordan, "Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation", Solar Energy, Vol. 4, 1960.
6. D. G. Erbs, R. C. Stauter and J. A. Duffie, "The Basis and Effects of Inaccuracies in Diffuse Radiation Correlations", Proceedings of the 1980 AS/ISES Annual Meeting, Phoenix, Arizona, G. E. Franta and B. H. Glenn, editors, 1980.
7. J. F. Orgill and K. G. T. Hollands, "Correlation Equations for Hourly Diffuse Solar Radiation from Global Radiation", Solar Energy, Vol. 19, 1977.
8. R. Bruno, "A Correction Procedure for Separating Direct and Diffuse Insolation on a Horizontal Surface", Solar Energy, Vol 20, 1978.
9. D. G. Erbs, S. A. Klein, and J. A. Duffie, "Estimation of the Diffuse Radiation Fraction from the Hourly, Daily, and Monthly, Average Global Radiation", Solar Energy, Vol. 28, 1982.
10. J. N. Spencer, "A Comparison of Methods for Estimating Hourly

Diffuse Solar Radiation from Global Radiation", Solar Energy, Vol. 29, 1982.
11. W. A. Beckman, J. W. Bugler, et al., "Units and Symbols in Solar「r-~~"' Solar Energy, Vol. 21, 1978.
12. C. M. Randall and M. E. Whitson, "Hourly Insolation and Meteorological Data Bases Including Improved Direct Insolation Measurements", Aerospace Corporation, Final Report ATR-78(7592)-1 (1977).
13. E. C. Boes, "Fundamentals of Solar Radiation", in Solar Energy Handbook, J. F. Kreider and F. Kreith, editors, McGraw-Hill (1981).
14. U. S. Department of Commerce Report, SOLMET, User's Manual, 1 , (Tape Deck 9724), 1977.
15. W. D. Turner and A. M. Mujahid, "Determination of Direct Normal Solar Radiation from Measured Global Values - Comparison of Models", Journal of Solar Energy Engineering, Vol. 107, 1985.
16. F. Kreith and J. F. Kreider, "Principles of Solar Engineering", McGraw-Hill, Washington, 1978.
17. D. G. Dischinger, "Solar Beam Radiation Model Development", M.S. Thesis, School of Mechanical Engineering, Georgia Institute of Technology, June, 1984.
18. R. Stauter and S. A. Klein, presented in "Solar Engineering of Thermal Processes", by J. A. Duffie and W. A. Beckman, John Wiley and Sons (1980).
19. W. D. Turner and M. Salim, "Comparison of Two Diffuse Sky Radiation Models", Solar Energy, Vol. 32, No. 5, 1984.
20. J. W. Bugler, "The Determination of Hourly Insolation on an Inclined Plane Using a Diffuse Irradiance Model Based on Hourly Measured Global Horizontal Insolation", Solar Energy, Vol. 19, 1977.
21. A. Mujahid and W. D. Turner, "Solar Radiation Modeling and Comparisons with Current Solar Radiation Models", Proceedings of the

1980 AS/ISES Annual Meeting, Phoenix, Arizona, G. E. Franta and B. H. Glenn, editors, 1980.
22. C. N. Phan, "Procedures for Quality Control and Analysis of Data íom a Solar Meteorological Monitoring Station", M.S. Thesis, School of Mechanical Engineering, Georgia Institute of Technology, 1980.
23. S. M. Jeter and C. N. Phan, "Site Specific Clear Day Solar Irradiance Model from Long Term Irradiance Data", AIAA Journal of Energy, Vol. 6, p. 115, 1981.
24. M. Collares-Pereira and A. Rabl, "The Average Distribution of Solar Radiation-Correlations Between Diffuse and Hemispherical and Between Daily and Hourly Insolation Values", Solar Energy, Vol. 6, 1978.
25. L. S. Speigel, "Total Horizontal Solar Radiation Use in Determining Radiation Values on a Tilted Solar Collecting Surface", M.S. Thesis, School of Geophysical Sciences, Georgia Institute of Technology, 1981.
26. J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes", John Wiley and Sons, New York, 1980.
27. A. D. Watt, "On the Nature and Distribution of Solar Radiation", HCP/T2552-01, U.S. Department of Energy, Washington, D.C., U.S.G.P.O., 1978.
28. P. I. Cooper, "The Absorption of Radiation in Solar Stills", Solar Energy, Vol. 12, No. 3, 1969.
29. C. K. Roberts and A. Boksenberg, "The Astronomical Almanac" United States Naval Observatory, Washington, D.C., 1985.
30. D. McNally, "Positional Astronomy", John Wiley and Sons, New York, 1974.
31. R. L. Johnson, "Subroutine SPOS", McDonnell Douglas Corp., Private Communication, 1984.
32. "The Nautical Almanac for the Year 1983", United States Naval Observatory, Washington, D.C., 1982.
33. J. F. Kreider and F. Kreith, Solar Energy Handbook, McGraw Hill, New York, 1981.
34. R. A. Fisher, "Statistical Methods for Research Workers", Oliver and Boyd, London, 1936.
35. M. P. Thekaekara, "Solar Radiation Measurement: Techniques and Instrumentation", Solar Energy, Vol. 18, No 4, 1976.
36. "Subroutine RLONE", IMSL Library, International Mathematical and Statistical Libraries, Inc., Houston, Texas, 1977.
37. W.W. Hines and D. C. Montgomery, "Probability and Statistics in Engineering and Management Science", John Wiley and Sons, New York, 1980.
38. S. Weisberg, "Applied Linear Regression", John Wiley and Sons, 1980.
39. M. R. Spiegel, "Statistics", Schaum's Outline Series, McGraw Hill, New York, 1961.
40. Enrico Coffari, "The Sun and the Celestial Vault", in "Solar Energy Engineering", A.A.M. Sayigh, editor, Academic Press, New York, 1977.
41. E. W. Woolard and G. M. Clemence, "Sperical Astronomy", Academic Press, New York, 1966.
42. R. Ball, "A Treatise on Spherical Astronomy", Cambridge University Press, London, 1923.
43. M. A. Cane, "Oceanographic Events During El Nino", Science, Vol. 222, No 4629, 1983.
44. F. Vignola and D. K. McDaniels, "Effects of El Chichon on Global

Correlations", in Intersol 85 (Extended Abstracts), E. Bilgen and K.
G. T. Hollands, editors, 1984.
45. L. E. Doggett and P. E. Protacio, "Almanac for Computers", United States Naval Observatory, Washington, D.C., 1984.

