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The statements of progress, manuscripts and presentations described in 

this report represent the principal results obtained during 1983 through 

the support of the Department of Energy under Contract No. DE-AS05-77ER05489. 

Since the beginning of this project, our group has been involved in theoretical 

studies of surface phenomena and processes, aimed toward increasing our under-

standing of fundamental processes which govern the properties of material 

surfaces. Our studies cover a wide spectrum of surface phenomena: surface 

reactivity, surface crystallography, electronic and vibrational structure, 

dynamical processes, phase transformations and phase change, the properties of 

interfaces and investigations of material processing and novel materials pre-

paration techniques. In these investigations we develop and employ analytical 

and novel numerical, simulation, methods for the study of complex surface 

phenomena. Our recent surface molecular dynamics studies and simulations of 

laser annealing phenomena opened new avenues for the investigation of the 

microscopic dynamics and evolution of equilibrium and non-equilibrium processes 

at surfaces and interfaces. 

In addition to the scientific merits, the project serves educational pur-

poses through the training of graduate and postdoctoral students,collaborative 

work with scientists in government laboratories and abroad and via invited 

and contributed presentations in national and international meetings and the 

publication of research and review articles. The work of our group has been 

presented this year in 4 major conferences (3 talks at the March APS Meeting 

in Los Angeles, the 43rd Conference on Physical Electronics, Santa Fe, a 

Gordon Conference and the Europhysics School on "Chemisorption and Surface 

Reactions", Asper'isgarden, Sweden). In addition invited lectures have been 

delivered at universities and research laboratories in the U.S. and abroad. 
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In the following accounts the main accomplishments of our efforts, during 

the present period, are described under several categories, reflecting the 

breadth of our program. It is intended, that through the coordination of 

these studies we would achieve a coherent program enabling the theoretical 

investigations of fundamental processes underlying complex surface phenomena 

of coupled basic and technological interests. 
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A. MOLECULAR DYNAMICS STUDIES  

Main Achievements  

A.1 Laser Annealing  

1. Development of a molecular dynamics program for the simulation of laser 

annealing experiments. The unique features of our method are: The two-

dimensional periodic boundary conditions imposed on the system allow for 

dynamical evolution of the areal density; the incident beam, on the free 

side of the system is characterized by a realistic time profile of a short 

laser pulse. The coupling of the beam energy to the lattice modes is simulated 

via a time-stepwise scaling of particle velocities for the duration of the 

pulse using a realistic absorption profile; heat conduction to the underlying 

substrate is simulated according to Q(t) =AK(T)
[dT(t)

/dzi where K(T(t)) is a 

temperature dependent heat conductivity taken from,experimental data. 

. 2. Development of analysis and graphic routines for the laser annealing 

experiments l in particular spatial profiles of pertinent physical quantities 

such as temperature profiles, potential energy, spatial distribution of order-

parameters (orientational and translational),particle density, and diffusion 

profiles evaluated via velocity correlation functions. 

3. Using these newly developed programs we performed studies of laser annealing 

systems. These investigations represent the first theoretical studies of the 

dynamics of laser annealing processes on the atomic scale. Besides the scien-

tific findings, we demonstrated the unique value of molecular dynamics in 

studies of material processes of unusual nature. We have observed a diffuse 

interface, preceding the solidification front. This three-dimensional inter-

face is characterized by "liquid layering" in planes normal to the direction 

of solidification front propagation. Physical properties of the interface 
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(e.g., transport coefficients) differ from those of the solid of the melt. 

This structured interface plays an important role in the solidification 

dynamics and affects impurity segregation and transport. At the rates of 

crystallization which we have studied (% 5-10 m/sec) such an interface was 

always dynamically formed. It will be of great interest to investigate 

systems with larger rates of crystallization, thus attempting to investigate 

the formation of amorphous crystals. We conjecture that the degree of per- 

fection (in the sense of good crystals) obtained via laser annealing is related 

to the dynamics of formation of the "liquid-layered" interface. It is conceiv-

able that the amorphotization occurs when the rate of heat transport away from 

the crystallization front exceeds the rate of atomic transport processes which 

are responsible for the evolution of the diffuse interface. In addition, we 

have observed in our studies constitutional undercooling and are now investi-

gating the materials factors and experimental conditions which control segrega-

tion, solute trapping and cellular structure formation. 

Our results for a system in which a heavy, strong binding impurity is 

initially randomly distributed in the sample are summarized in the enclosed 

Physical Review Letters article (49, 790 (1982)). 

The L-J potential parameters for the above system where such that if A 

denotes the host and B the impurity a 	= 1.07, 	= 1.387 and 
BB/a 	 EBB/ cAA AA 

MB/ M = 2.098. In order to investigate the effects due to the mass and 
A 

 

potential of interaction strength we have extended our calculation to the 

case aBB /GAA = 1 ' E /E  BB' AA 

impurity with same atomic size as the host (i.e. aB=aA ). 

In Fig. 1 we show the impurity concentrations before (la) and after (lb) 

the annealing experiment. As seen from this figure and comparing to the results 

in Fig ld(i) and ld(f) in the PRL article, in the case of the light weakly 

binding impurity the final impurity distribution shows a depletion in the 

= 0.5 and MB/MA  = 0.5, i.e. a light weakly binding 



surface region since many of the impurities diffused to the solid-vacuum inter-

face and evaporated. 

The time developments of the density distribution in the system containing 

the light impurity (given at the selected indicated times) are given in Fig. 2 

and should be compared to those for the heavy impurity case, given in Fig. 3. 

The comparison of the density profiles at roughly the same times into the 

annealing experiment shows that melting propagated further into the solid 

for the light impurity system. However, the velocity of recrystallization is 

roughly the same in the two systems. Comparison of the plots of the 

solid-melt interface position versus time for the light impurity (Fig. 4) with 

that for the heavy impurity case (Fig. ld (v) in the PRL article) shows that 

in the former case the slowing down phenomena due to constitutional cooling 

resulting from an accumulation of the impurity at the solidification front 

which we observed in the heavy-impurity case, is now absent. This is due to 

the increased mobility and the tendency of the light weakly binding impurities 

to migrate to the surface. 

We are currently investigating the effect of the exposed crystal face on 

the dynamics of the annealing process. Theoretical calculations using the Cluster 

Variation Method by J. Cahn and R. Kikuchi indicate less tendency for "liquid 

layering" at the fcc (110) solid-liquid equilibrium interface while verifying 

our observations with regard to the (100) interface. Based on the above and 

certain arguments originating with roughning theories we anticipate a difference 

in the annealing mechanism for the (110) surface. If indeed the layering is 

reduced at this interface (for energetic or kinetic reasons) it may be possible 

to obtain a disordered or amorphous annealed surface. 

We have now transferred and implemented our annealing codes to the CRAY 

computer. While we find a significant improvement in the ability to perform 

large-scale calculations on the CRAY as compared to the Georgia Tech CDC-Cyber, 

we would like to emphasize the need for a larger CRAY-time allocation. 
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Molecular Dynamics of a Laser-Annealing Experiment 

Charles L. Cleveland, Uzi Landman, and R. N. Barnett 
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 3034 5 

(Received 12 July 1982) 

A study of a laser-annealing system using a new molecular dynamics method modified to 
faithfully simulate typical experimental conditions is presented. Following melting, the re-
crystallization interface is layer structured in the melt. Rapid recrystallization, impurity 
segregation and constitutional undercooling, and the dynamics of the processes are demon-
strated. 

PACS numbers: 61.50.Cj, 64.75.+g, 66.70.±f, 68.45.-v 

The processing of materials (semiconductors 
or metals) by using laser or electron beams, 
generically called "laser annealing," 1 ' 2  provides 
novel techniques of crystal growth, damage re-
covery, and preparation of alloys of nonthermo-
dynamic compositions. Aside from the varied 
important potential technological applications, 
the physical processes occurring in materials 
subject to intense radiation and the underlying 
mechanisms of ultrahigh-speed crystallization 
under conditions which could be far from equilib-
rium present an enormous theoretical challenge. 
The theoretical issues involve' (a) the nature of 
the coupling of radiation (photons, particles) to 
solids, (b) thermodynamics, in particular non-
equilibrium and stability analysis (metastability, 
morphological stability 4), (c) rapid solidification 
kinetics, and (d) dynamics. All theoretical ef- 
forts to date are based' on continuum phenomeno-
logical treatments of particle diffusion and heat 
flow (moving boundary problem), which while 
providing useful insight do not allow understand-
ing of the dynamics and the atomic-scale proc-
esses which govern the kinetics. In this note we 
present the first theoretical investigation which 
addresses, and reveals, certain of the atomistic 
processes which underlie fast solidification 
phenomena under "laser-annealing" conditions. 
Additionally, we demonstrate the unique value of 
molecular dynamics (MD) simulation analysis in 
studies of material processes of unusual nature. 

Prior to the presentation of results we outline 
certain of the pertinent features of the simulation. 
(i) The simulated system consists of a slab with 
thirty atomic planes (fifty atoms per plane, initial 
average layer spacing -2.7 A) forming an fcc 
crystal with the (100) face exposed. One side of 
the slab (starting at z =0) interacts with a static 
extension of the crystal and the other side is 
free in the z direction. Two-dimensional period-
ic boundary conditions are imposed on the planes 
with the as and g vectors defining the basis of the 

MD cell treated as dynamical variables,' thus 
allowing variations in both areal density and 
thickness. (ii) The incident beam, on the free 
side of the system, has a triangular intensity-
versus-time profile, 1.6 psec in duration and 
carrying a total energy of 6.3 X10 -5  J/cm2. The 
coupling of the beam energy to the lattice modes 
is simulated via a time-stepwise scaling of par-
ticle velocities for the duration of the pulse using 
an absorption profile given by exp[0.02z/(1 A)], 

where z in angstroms increases going out of the 
solid. (iii) The initial system consists of two 
species, 90 at.% of species a with species i3 sub-
stituted randomly, interacting via 6-12 Lennard-
Jones potentials 

B  )12 
V a iLl(r) = 4E ag [(— —(cia6, 

with cr,„ 8 =(cr,,,,+o 08)/2 and c at3=-(E act e 85) 112 . We 
choose 0,9 6/a,, c,= 1.07, E 8/E act  = 1.387, and mass 
ratio m g /m,= 2.098 [corresponding to argon (a) 
and krypton (0) parameters; a Ar = 3.4 A]. Re-
duced units are used: temperature T* = k g T/E„ 
and reduced length =L/cr. The system is initial-
ly equilibrated at T* = 0.4 (the melting tempera-
ture of pure bulk a is T,, , a * = 0.7). The integra-
tion time step is At= 0.0075G, where tc, =2.16 
psec for Ar. (iv) Heat conduction to the under-
lying substrate reservoir is simulated by scaling 
velocities in the bottom two layers according to 
e2(t) = AK( T (t)) dT(t)/dz, where A is the planar 
area and frc( T(t)) is a temperature-dependent 
heat conductivity taken from solid-Ar experi-
mental data.' The gradient dT(t)/dz is temporal-
ly determined by a linear extrapolation of the 
system temperature profile to a point in the sub-
strate, distant from the bottom of the slab by 
31.560, =107.5 A (different substrate material 
or temperature will yield different gradients). 

To facilitate the presentation of results we de-
fine for any property g, which depends on the 
phase-space point ( -1• 8 ,17,) of atom i located at z 

790 	 © 1982 The American Physical Society 
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a local density (per unit length) of that property 
at z by 

(z) =(2)T) -1ho. -1E,gi  expt--(z - z ) 2 /202 1, 

with a=0.126 of the average layer spacing. For 
particle number density (per length) profile (gi 

 = 1), 13 (z) p(z). In the following we present the 
per-particle property local densities pg (z)E.j.),(z)/ 
p(z). For the kinetic energy, KE, and potential 
energy, PE, g i =-Ini i v i2  and 1E, v( 	— F1), 
respectively. The kinetic temperature is given 
by two-thirds of the KE. An additional quantity 
of interest is the planar orientational order pa-
rameter" 04  for which 

gi  = Lt 1  E wi  • exp(i40 , 
jEnn(i) 

where WW  =E; ._ rin(i) wo , Wi,=exp(z; -2  )2/2a02,  

cro  0.5 layer spacing, and nn(i) denotes nearest 
neighbors to atom i. O i , is the angle that the 
"bond" between atoms i and j makes with the x 
axis. The absolute value of 0 4  attains a value 
close to unity on a (100) face of an fcc layer, 
and is close to zero for a liquid. 

In Figs. 1(a) and 1(b) the particle density, KE, 
PE, and 104 1 vs z are shown for the initial sys-
tem and immediately at the end of the 1.6-psec 
heat pulse. The minima in the PE profile occur 
at the location of atomic planes. It is seen [Fig. 
1(b)1 that while the kinetic energy is increased 
because of the pulse, disordering has just started 
to occur since not enough time has elapsed yet 
for thermal energy to be converted to potential 
energy. The initial random impurity distribution 
is shown in Fig. 1(d)(i). In Fig. 1(c) time-aver- 

FIG. 1. (a) — (c): Profiles of number density (p), KE, PE, and 1041 vs z *= z /7.89a 	for the initial system, at 
the termination of the pulse, and for an isolated equilibrium system, respectively. (d)(i), (d)(i), and (d)(eq): Im-
purity density profiles for the initial, final, and equilibrated systems, respectively. (d)(v): Position, z *, of the 
recrystalization interface vs time (in picoseconds). A straight-line fit yields a solidification velocity of 11 &sec. 
Detailed analysis indicated that a region characterized by 0 4 1< 0.4 lacks planar long- and short-range order. 

This criterion was adopted in the construction of Fig. (d)(v). 
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aged results are shown for a thermally isolated 
system (K =0), which has been subjected to an 
identical heat pulse and let develop for a very 
long time. In this case, an equilibrated system 
with solid-liquid coexistence has been produced 
(equilibrium temperature corresponds to KE of 
0.96). Note the sharp drop in 0 4  at about z* =1 
indicating loss of intralayer order while perma-
nent layering in the particle density profile is 
evident beyond that point into the liquid. The 
time-averaged impurity distribution in the equili-
brated system [Fig. 1(c)] shown in Fig. 1(d)(eq) 
reveals a feature which indicates a tendency of 
the impurity to avoid the interface. (This region 
is characterized by transport coefficients of a 
liquid.) The corresponding stabilization in these 
regions is indicated in the PE profile [Fig. 1(c)] 
by arrows. 

Next we turn in Fig. 2 to a sequence of profiles 
for a heat-conducting system taken at selected 
time steps during the evolution of the system after 
the termination of the pulse. Figure 2(a) de-
scribes the system at the final stages of melting. 

As seen in Fig. 2(b) recrystallization started while 
the kinetic temperature of the melt, Tl iquid, was 
still above the solid-liquid coexistence tempera-
ture, T.; see Fig. 1(c). The p and { 0,1 profiles 
at 73 psec show clear evidence of a layered melt-
ed region, also seen in the PE profile. The mov-
ing recrystallization front is characterized by a 
Structured three-dimensional interface, aniso-
tropic in density and properties. The anisotropic 
structured nature of the interface may play an 
important role in the recrystallization kinetics 
and in phenomena such as solute trapping. Once 
T liquid has dropped to T., the velocity of crystal-
lization accelerates. Later, however, at 203 
psec [Fig. 2(c)] the velocity of crystallization 
decreases sharply [Fig. 1(d)(v)] and interface 
layering temporarily becomes less evident. 
These changes are associated with an increase 
in impurity concentration at the interface result-
ing from the previous expulsion of the impurity 
into the liquid (and perhaps a tendency for cellu-
lar ordering). T liquid subsequently falls below T„, 
(a manifestation of constitutional supercooling), 

FIG. 2. (a) - (d): Profiles of number density (p), KE, PE, and 1 041 vs z* at time steps 25 (end of melting), 73, 
203, and 333 psec, respectively. 
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the velocity of crystallization recovers, and layer-
ing is reestablished [see Fig. 2(d) at 333 psec ]. 
At the end of the process (- 500 psec) the total 
number density profile is identical to that in Fig. 
1(a), and the impurity profile is shown in Fig. 
1(d)(f). A certain amount of impurity segrega-
tion to the free surface is evident. 

In this study we demonstrated the use of MD in 
an investigation of a complex nonequilibrium ma-
terial process. Of interest is the "liquid layering" 
which, as we observed, precedes the solidifica-
tion front, preparing the liquid for formation of 
perfect crystalline planes, and significantly af-
fects impurity segregation and transport (see 
also Wood, Ref. 3), while in turn being affected 
by interfacial conditions that it, in part, brings 
about. MD studies can be instrumental in ana-
lyzing the dynamic interrelationship between the 
structure and properties of the interface and the 
solidification process. Investigations continue 
in our laboratory on the relationship between the 
time scale of interface processes (such as layer-
ing) and the nature of the resulting solid (crystal-
line versus amorphous) under various solidifica-
tion rates, the effect of crystal face, crystalliza-
tion on amorphous substrates, the role of "liquid 
layering" in solute trapping or expulsion, and 
the dependence on host and impurity interaction 

potentials and mass ratios. 
This work was supported by U. S. Department 

of Energy Contract No. EG-S-05-5489. 
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A.2 Solid-Liquid Interface at Equilibrium  

A modification of the laser-annealing program (see A.1) in which heat 

conduction to the substrate was not allowed, permitted us to investigate 

the properties of a solid-melt coexistence (at equilibrium) system. The 

system was composed of two components (10% of impurities) interacting via 

Lennard-Jones potentials corresponding to Ar as host and Kr as an impurity. 

Studies of the equilibrium properties revealed: (a) a structured interface. 

(b) Features in the impurity particle distribution which indicate a tendency 

to avoid the interface. We are currently developing an analytical method 

based on Percus-Yevick and perturbation theory for the study of the properties 

of equilibrium solid-liquid interfaces of binary systems. 

The density of particle profiles for the combined system, p ie03  and for 

the impurity p B  are shown in Fig. 1 (left and right columns, respectively), 

along with the corresponding kinetic energies (KE), potential energies (PE) 

and order parameters (lANG 41). Comparison of the p ie03  and 1ANG 41 plots 

demonstrates the liquid layering phenomena. Furthermore, the impurity 

clustering effects in the liquid is evident in p B . 

In addition we have calculated diffusion constant profiles for this 

system. These have been calculated via the time integral of the velocity 

autocorrelation functions for the total system D
A
) and for the impurity alone 

(DB ) and are given in Fig. 2. 

At 
Di 1.= f dt (V iz (t) V 1z (0)) 

0 

1 At 
Di n  = --f  f dt (Vix(t) V ix (0) + V iy (t) V iy (0)) 

where z is normal to the (100) plane and x and y are parallel to the plane. 



We observe that the diffusion constant profiles change continuously from a 

value of zero in the solid part of the system to a typical liquid value. 

(D = 5.37 X 10-4  cm2/sec.) The region in between, whose width is about 

21 A, corresponds to the three-dimensional, diffuse, liquid-layered inter-

face. Comparison of D i land Didoes not indicate a pronounced anisotropy of 

the diffusion constant in this region. The above provides the first detailed 

characterization of transport properties for the equilibrium solid-liquid 

interface. We intend to perform similar equilibrium studies for the (110) 

surface-liquid interface in order to ascertain the crystal structure effect 

on the equilibrium properties. 
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A.3 SURFACE DIFFUSION: clusters and single particles  

Diffusion processes on or in the vicinity of surfaces are of importance 

in many surface controlled, or driven, physical and chemical phenomena. Such 

phenomena include crystal growth, surface phase transformations, annealing 

and recovery of damage, faceting, surface and interfacial (grain-boundary) 

segregation and chemical processes, heterogeneously catalyzed by surfaces. 

While several experimental techniques provide valuable information 

about surface diffusion (such as Field Emission Spectroscopy (flicker noise), 

photoemission monitoring as the light beam traverses across the surface, 

changes in contact potential and scanning Auger methods) the most direct 

observations are provided via Field Ion Microscopy (FIM) techniques (See 

Review by G. Ehrlich and Kaj Stolt, Ann. Rev. Phys. Chem. 31, 603 (1980)). FIM 

provides information on the atomic scale concerning the local structure of the 

system and configurations of the diffusing species which when analyzed properly 

provide information about the kinetics and energetics of surface diffusion 

processes. Of particular interest to us are observations of metal adatom 

clusters diffusing on metal surfaces since such systems are of great interest 

for a fundamental understanding of diffusion mechanism and in studies of many 

materials processes (See above mentioned review, and Review by Uzi Landman, 

Israel J. of Chem. 22, 339 (1982), Section V and references therein). 

The main objectives of our molecular dynamics studies of surface diffusion 

are to investigate the dynamics and energy pathways of surface diffusion, and 

to determine the structural, potential, species and temperature dependencies 

of the elementary diffusion events and their influence on diffusion rates. We 

have chosen to comparatively study self-diffusion and hetero-diffusion on these 

surfaces in order to elucidate the structural and potential factors governing 

the microscopic diffusion mechanisms. 
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Employing Lennard-Jones pair-potentials we have studied dimer and 

single particle self-diffusion on the above surfaces and that of Pb 

dimers and single particles on (100) and (110) Cu surfaces. 

Among our observations we note: 

a) A dependence of the diffusion mechanism and rate on crystallographic 

surface orientation. On the (100) two-dimensional diffusion is 

observed for both dimer and single particle cases, with dimer 

rotations being a most frequent occurrance. On the (110) "one-

dimensional", channelled migration occurs. At higher temperatures 

cross-channel diffusion sets in both for the single particle and 

dimer case. The in-channel dimers are relatively immobile up to 

their dissociation limit. 

b) We observe two temperature regimes for single particle diffusion. 

While regular migration occurs at low temperatures, at higher 

temperatures particle exchange with the substrate becomes an important 

contributing mechanism. The particle exchange occurs for self-

diffusion (Cu on Cu) at lower temperatures than for the Pb 

particle diffusion on Cu. Contributing to the probability of 

particle exchange are the potential parameters (well-depth and 

atomic radii) of the substrate, and those between the diffusants 

and the substrate. The thermal stability of the substrate plays 

an important role in both particle exchange and trapping. 

At intermediate temperatures regular diffusion and particle 

exchange are competing mechanism leading to a non-linear relation-

ship in a plot of log D versus T
-1 . (D is the diffusion constant 

which we determine via the velocity autocorrelation function or 

the positional variance of the diffusing species.) 



c) We have discovered a most interesting dynamical effect in the 

diffusion of Pb dimers on the Cu surfaces. We found that for 

Pb dimers on Cu (110) the mode of dimer vibrations which couples 

first to the substrate modes is a dimer rotational mode. This 

mode serves as a doorway to the jump event. Upon getting populated 

it couples to another mode (of non-rotational character) which serves 

as the migrational channel. It is found that the amount of energy 

which gets transferred from the substrate to the rotational mode 

of the dimer exceeds in most cases the static potential barrier 

for diffusion. Consequently, upon coupling to the migrational 

mode the hopping particle is rather energetic, resulting in 

multiple hops (non-nearest neighbor jumps). 

To demonstrate this phenomena we show in Figs. la - 1C ) a 

sequence of Pb dimer molecular dynamics trajectories, on a dynamic 

Cu (110) surface (Equilibrium lattice positions denoted by X's). 

In these figures the time step is At * = 0.0075 tCu  where tCu  = 2.3 X 10
-13 

sec. In these trajectories one observes both multiple-site and 

temporally correlated return (round-trip) jump events. A plot of 

the Pb-Pb bond length vs. time is shown in Fig. 2. A discontinuous 

rise or decrease in bond length corresponds to a hop event. 	The 

angle, (1), between the dimer axis and the x direction (parallel to 

the channels in the (110) surface is shown in Fig. 3, while the 

time development of the angle between the dimer axis and the normal 

to the surface (110 direction) is shown in Fig. 4 demonstrating that 

the dimer is remaining parallel to the surface. The potential 

energy 	in the Pb-Pb bond is shown in Fig. 5. 
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Next we concentrate on the dynamics of the system prior 

* 
to the hop-event which occurred around t = 250. Shown in Fig. 6 

is the time evolution of the inplane angle (I) exhibiting an envelope 
* 

with maximum amplitude at t = 232. (The large amplitudes at 

t % 250 are directly related to the hop event). The period of the 

amplitude oscillations of (I) is of the order of 1 X 10
-13 

sec. The 

rotational (kinetic) energy of the dimer is shown in Fig. 7, again 

* 
maximizing at t ',1,' 230 as is the kinetic energy and potential energy 

of the bond stretch shown in Fig. 8, and Fig. 9, respectively. 

Furthermore in Fig. 10 we show the quantity V lx  V2x  where V ix 

 (i = 1,2) is the component of the velocity of dimer particle i 

in the x direction. Itis seen that in the time interval around 

* 
t = 230,V 1x  V2x  < 0 while closer to the jump event V lx  V 2x  > 0. 

The negative value of V lx  V2x  indicates motions of particle 1 and 

2 in opposite directions (rotations) while V 1x
V2x  > 0 indicates a mode in which 

both particles are moving in the same direction. This demonstrates 

* 
that around t '1,  230 a rotational mode was excited. This excita- 

tion then got converted to energize another mode which served as 

the migrational mode. Inspection of the total energies and their 

comparison to the static diffusion barriers for these systems shows 

that the amount of energy transferred to the rotational (non-

migrational) mode, which served as a precursor to the jump event 

exceeds the barrier. 

Finally the velocity -velocity time correlations functions 

for a particle of the dimer,decomposed into the 3 cartesian components 

are shown in Figs. (11a) - (11c). It is seen that the velocity-velocity 
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correlation for the y component damps out fast and is rather 

erratic indicating strong coupling of the diffusant motion to the 

substrate in that direction (in plane normal to the channel axis). 

The x and z components exhibit oscillatory character with a 

larger period in the x-direction indicating less coupling (damping) 

for motion in that direction. 

These sample results demonstrate the power of our molecular 

dynamics studies in investigations of microscopic details of 

diffusion processes. Studies are now in progress of hetero and 

self diffusion on the low-index planes of an fcc material (Cu) 

at different temperatures. Additionally, analytical models based 

on multi-state random walk theory which we have developed in the 

past and stochastic dynamics (generalized Langevin equation) are 

being developed particularly towards a description of the doorway 

rotational mode mechanism of the dimer diffusion mechanism. 
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B. SURFACE DEFECTS, INTERIONIC INTERACTIONS AND SURFACE SEGREGATION  

Main Achievements  

B.1 Ionic Interactions Near Simple Metal Surfaces  

We have presented a model for semi-infinite simple metals which does not 

require crystalline order or a single species, and thus is applicable to 

problems of defect energetics near the surface and random-alloy surfaces 

as well as ideal metal surfaces. The formulation is based on the use of 

ionic pseudopotentials and linear-response theory. An expression for the 

total energy was obtained which depends explicitly on ionic species and 

position. This expression is decomposed into a density-dependent term and 

single-ion and ionic pair-interaction potential terms. The single-ion 

potentials oscillate about a constant bulk value, with the magnitude of the 

oscillation decreasing rapidly away from the surface. The interaction between 

pairs of ions near the surface was shown to be a noncentral force interaction 

which differs significantly from the central-force bulk pair potential. The 

effect of quantum interference in the response of the semi-infinite electron 

gas to the ions is seen in both the single-ion and the pair-interaction 

potentials. Results are presented for the simple metals sodium, potassium, 

and rubidium. 
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ties of solid materials such as crystallographic structure, 
dynamics, and defect energetics (formation and migration) 
require detailed knowledge of, and the ability to calculate, 
the total energy or 'total-energy differences for various 
configurations. The total energy of metals, simple metals 
in particular, contains contributions of different origins, 
e.g., terms in the electronic energy which are density 
dependent (independent of the location of atoms) and 
terms which depend on the spatial arrangement of the 
atoms. 1  It is important to recognize that the dominant 
factors underlying various physical properties may relate 
to terms in the total energy which are of different origins. 
Thus, for example, the determination of crystallographic 
structure requires a minimization of the total energy in-
cluding the contribution which is only density dependent 2 

 while the dominant contributions in studies of vibrations 
of bulk metals come from those terms which depend on 
the interatomic position vectors." Determination of the 
surface atomic arrangement (relaxation and reconstruc-
tion) may require, in addition, terms which depend on the 
positions of individual atoms relative to ideal (truncated 
bulk) crystal planes. 4  

Essential to the construction of theoretical treatments of 
the properties of perfect bulk crystals is the translational 
invariance of the lattice. The lack of translational symme-
try causes major difficulties in the exploration of proper-
ties of imperfect crystals. and theoretical formulations 
which can provide quantitative estimates of structure, en-
ergetics, and dynamics of real (imperfect) materials, while 
most desirable, are less abundant. Material surfaces in the 
idea! case possess two-dimensional translational symmetry 
parallel to the surface plane but lack transl•ticnal symme-
try along the surface normal. Consequently, theoretical 
treatments of surface properties are complex and require 
new formulations or adaptations of bulk methods with 
major modifications. Among the fonnalisrns which have 
greatly enhanced our understanding of surfaces are  

density-functional-based techniques, 5' 6  methods which em-
ploy real-space or mixed representations (recursion tech-
niques, 7  Green's functions). and surface band-structure • 
computations9  (slab and supercell techniques). 

While significant progress in the theory of the electronic 
structure of ideal metallic surfaces and with ordered ar-
rays 

 
 of adsorbates has been achieved, calculations which 

employ minimization of the total energy yielding surface 
structural information, 4' 1°-12  calculations of force con- ; 
stants for use in surface vibrational studies, and evaluation 
of interaction potentials for use in molecular-dynamics 
and Monte Carlo simulations are in their infancy. 14  The 
introduction of single or randomly arranged defects to the 
surface region compounds the complexity since the lack of 
translational invariance is exhibited by both components 
of the system. Thus traditional band-structure calcula-
tions are not applicable and application of the density-
functional 

 
 method becomes difficult, involving approxi-

mate perturbative (most often first-order 15 ) treatments, or 
it may entail a reduction in the dimensionality through 
averaging over the ionic potentials in layers. 

The purpose of this article is to develop a theoretical 
method for simple (sp bonded) metals which retains the 
three-dimensional character of the system, maintains the 
essential features of the electronic structure, and allows (a) 
systematic investigations of ionic potentials (effective pair 
potentials and single-ion potentials in the surface region), 
(b) studies of surface structure (relaxation and reconstruc-
tion), (c) analysis of the energetics of single and randomly 
distributed defects, and (d) studies of surface segregation 
phenomena l°  in alloys (layer concentration profiles) via 
minimization of the surface free energy. An application 
of the formulation developed here to the prediction of the 
relaxed surface structure of the low-index faces of Na and 
Al, yieidin& good quantitative agreement with available ex - 

perimental esults, has been reported." A detailed descrip-
tion of the surface relaxation calculation and a discussion 
of the results are given in the second paper of this 
senes. 18 ' Impurity and vacancy formation energies and 
surface segregation in alloys have been reported by us 

1 

I. INTRODUCTION 

i Fundamental investigations of certain physical proper- 



l and will be treated in forthcoming publications. 
To enable us to perform the studies listed above we need 

first to obtain an expression for the total energy of a , 
semi-infinite metal which depends explicitly on the atomic 1 
species and their positions. Pseudopotentials, often in 
conjunction with linear-response theory, have been instru- j 
mental in investigations of bulk metal systems) In partic-
ular, the application of local model pseudopotentials has 
yielded effective interaction potentials which have been 
well tested in studies of vibrations, I9-22  elastic properties 
-and vacancy formation energy and volume, 22-26  and in 
molecular-dynamics simulations.27-29  

In Sec. H of this paper we present the general formula-
tion and obtain an expression for the total energy of a 
semi-infinte simple metal. This total-energy expression is 
most general in that it does not require crystalline order or 
a single species. The formulation employs local model 
pseudopotentials embedded in a semi-infinite interacting 
electron gas. The response of the electron gas to an em-
bedded ion is obtained through the solution of a single 
one-dimensional integral equation and involves the use of 
a linear-response model applicable to the semi-infinte sys-
tem. A decomposition of the total energy into (a) a 
density-dependent term, (b) terms which depend on the 
coordinates of a single ion, and (c) terms which depend 
jointly on the coordinates of pairs of ions is accomplished. 
In Sec. HI we apply the theory to the calculation of 
single-ion and pair-interaction potentials in the surface re-
gion of simple metals. We find that near the surface the 
single-ion potentials oscillate about the (constant) bulk 
values and that the pair-interaction potentials are anisotro-
pic and differ significantly from the bulk interaction. 

II. TOTAL ENERGY OF SEMI-INFINITE 
SIMPLE METALS 

A. Total-energy expressions 

The metal surface system which we wish to study is 
conveniently represented by a semi-infinite interacting 
electron gas in the presence of a neutralizing positive 
background (jellium model), to which we add the ap-
propriate ionic potentials. The Hamiltonian for the elec-
trons is written as 

H=H° -1- 	 (1) 

H°  is the many-body Hamiltonian of the interacting 
electron jellium system, 

H°=T Ve, + V + , 	 (2) 

where T and V„ are the electron kinetic energy and 
electron-electron interaction operators, respectively, and 
V+ (f) is the potential due to the positive background. 
The potentials associated with individual ions, w i , are 
given by 

wr(n= Vp(fir; j  F-- Fr j )—N -1Z(A)V 4.(i7 	(3) 

where Vp(A;  F--Fi  j ) and Z 	) are the bare ionic pseu- 
dopotential and valence charge, respectively, of the ion of 
species /3, located at position r,, and N The 
second term in the right-hand side (rhs) of Eq. (1) sub- 

tracts the potential due to the jellium background and 
adds the potential due to an arrangement of ions 
represented by local model pseudopotentials. 

In this study we employ pseudopotentials of the simpli-
fied Heine-Abarenkov form, 

—Z(fl)e 2/r, r> r,(13) 
	

(4a) 

V,(f3;r)= —Z(13)tr,(()e 2/r,((), r <r,(13) 
	

(4b) 

where the core radius and level parameters, r,(,3) and 
it c (fi), are chosen to fit bulk properties (lattice constant 
and bulk modulus 25 ) of the pure species /3. 

The ground-state energy E0  and electron density ,o°(F) 
of the jellium system described by H °  [Eq. (2)] is given in 
a seminal study by Lang and Kohn. 3°  With the use of the 
coupling-constant integration method and assuming linear 
response, the total energy ET of the semi-infinite metal is 
given by 

ET=E°+ f d 3r p °(F)w,(F) 

± 	f d 3r pi(F)wi(T)+Em 	 (5) 

where OF) is the electron density induced by the potential 
wi (F), and EM  is the Madelung energy of the ionic system. 
The second term in Eq. (5) is a first-order correction due 
to the replacement of the positive background by discrete 
ions, and the third term is second order in tub  usually 
called the band-structure (BS) energy Ellis. 

B. Screening 

The major task in obtaining the total energy, Eq. (5), for 
an arbitrary arrangement of ions is to obtain a self-
consistent solution for the induced, or screening, electron 
density p i ( 1- ). We use linear-response theory, yielding a 
pair of coupled integral equations, 

On= f d 3r'ao(f,r)[wi(r)-1-15,(F')] , 	(6a) 

4)/(n= f d 3r'g( f,i")tic ( 	— I )pi(F') , 	(6b) 

where a0(F,f') is the random-phase-approximation (RPA) 
response function (polarizability). F) is the effective 
potential due to the electron density pi (?), which includes 
exchange and correlation effects via the function 
g(f,r). 1 —G(F,r), and tic ( F)=e 2 /r is the Coulomb 
interaction. G(', Y . ') is a local-field correction, related to 
the electron pair correlation function of the jellium sys-
tem, which takes into account short-range correlations 
arising from both Coulomb and exchange effects. 3I  

Translational invariance parallel to the surface requires 
that 

ao(f , f')=a0( I it-it' I ;z,z') 

and 

g(F,r)=g( it.  —it' 1;z,z') , 



with r=(R,z) (here and in the following, upper-case 
letters denote two-dimensional vector, parallel to the sur-
face). An evaluation of the response function requires 
knowledge of the single-particle wave functions and ener-
gy eigenvalues of the interacting electron-jellium system. 
These are of the form 

where 0 is the Heaviside unit step function. The surface 
barrier is located at z =0 and the jellium edge position, 
determined by charge neutrality, is z o =317181cr  (Ref. 38); 
the layers of an unrelaxed crystal will be -located at 
z„=z 0 +(n -+)D, where n =1 for the surface layer and D 
is the layer spacing. Substituting Eqs. (9) into Eq. (8a) 
gives the infinite barrier model response function 

r (n=n-1 /2elr .11 0„(z) , ,x 

E(11.,K)=ft2K2 /2m 	, 

(7) cto(Q;z,z 1 )=2f1 -2/3M..r(Q;K,K 1 )sin(icz )sin ( Ke) 

respectively, where CI=Nfi o  is the volume of the semi-. 
infinite metal (fi o  is the volume per electron). The 
response function (retarded polarizability is given in a 
mixed representation by 

ao(Q;z,f)=2f1 -2/3 N' ..r(Q;K,K 1 )4(z)0„:(z) 
IC,le 

X0,41,,(z 1 )0„(f) , 	 (8a) 

.2,(Q;Koc , ) ,. (1 _2/3m  f (11-47?/2,K)- f(R.+T5/2,te)  

E(11-(5/2,K)-E(k.  -1-(5/2,K1 ) 

where f (11,0 is the Fermi-Dirac distribution function, 
and .1"(Q;K,K 1 ) is the two-dimensional RPA response 
function. 32  

To obtain the response function, Eq. (8a), we must 
either numerically evaluate the single-particle wave func-
tions, tfr,,(z), or use an approximate analytical form. Our 
choice is to use the wave functions of a noninteracting 
electron gas confined to the half-space (z > 0) by an infin-
ite barrier. 32 -35  This choice is dictated primarily by 
analytical convenience. Other choices are possible 36; for 
instance, one could solve for the single-particle wave func-
tions resulting from the potential due to the Lana-Kohn 
electron density plus the positive background. However, 
the increased complexity of such choices results in formu-
lations which are impractical or impossible to use in a sys-
tematic study which retains the three-dimensional charac-
ter of the system. Lert and Weare 32  have used the infinite 
barrier response model to calculate the electron density at 
the Na(100) surface and report that comparison of their 
results with the self-consistent nonlinear results of Appel-
baum and Hamann37  indicates the joint validity of the 
linear approximation and the infinite barrier response 
model. The overconfinement of the electrons outside the 
jellium surface in this model might contribute to the sur-
face energy. However, we are interested primarily in 
total-energy differences resulting from a rearrangement of 
the ions or a change in species of some ions, and contribu-
tions due to overconfinement are expected to be of less sig-
nificance due to cancellation. In addition, the success of 
this response model in predicting the relaxed surface 
structure of simple metals 17 ' 18a lends some a posteriori 
validation to the approximation. 

The basis-set wave functions and energies associated 
with the infinite barrier response model are given by 

„(z)=sin(icz)e(z) , 	 i 	(9a) 

(9b) 

X sin(ez)sin(KT)0(z)0(e) 	(10) 

The analytical convenience of this response model is duel 
to the vanishing of ao(Q;z,z 1 ) if either z < 0 or z' < 0, or 
both; thus it is possible to symmetrize the problem by re-
flecting across the z =0 plane. We define symmetrized 
quantities pi (?), wi,(F), and 4;, (r), and their three-
dimensional Fourier transforms, by 

Pg( 1)=Pt(R, I z 	 (11a) 

pi,(4)= f d 3r e i(7.7pi.,(11 , 	 (11b) 

etc. Using these definitions, we obtain from Eq. (6a), after 
some manipulation, an equation in reciprocal space for the 
induced electron density in the symmetrized system (see 
Appendix A), 

pi,(4)=a0(q)[toi,(4)+41i,(4)] 

f thc.1"(Q;K-1-q, /2,ic -q z  /2 ) 

	

Xiwil(Q, 2K)+4is( 42, 210] • 
	(12) 

Here ao(q) is the three-dimensional Fourier transform of 
the polarizability of an infinite electron gas as given by 
Lindhard, 39  

ao(q)=7r-I f thc.1"(Q;K+q z /2,K-q,/2) . 	(13) 

Integrating Eq. (12) over qz  results in a useful sum rule, 

f dq zpi,(4)=0 , 	 (14) 

expressing the fact that the induced density is zero at 
z =0. 

The equation for the self-consistent effective potential, 
Eq. (6b), takes, in the symmetrized system, the form 

Oi.,(4)= f d 3r 	f d 3r 1g( ii.—ii.' ;z,z') 

xvc( ir—r- )pi.,(r) 

X[1-e(z)e( -z') 

-e( -z)e(zi)] . 	(1 5) 

In order to simplify Eq. (15), and to allow the solution of 
the coupled integral Eqs. (12) and (1 5) to be reduced to the 
solution of a single one-dimensional integral equation, we 
will assume that g( k ;z,z') can be adequately ap-
proximated by 

g( 	I ;z,z 1 ). 1 - G( F- r'; ) 

where G( F F' I) is the local-field correction evaluated 
for the bulk electron density. This approximation may be 

Ex = -K 2 
, 

2m 



justified for several reasons: (a) It introduces only , 
second-order errors, (b) G ') does not depend sensitive- I 
ly on the local density, and (c) experience with other sys-
tems indicates that anisotropic or inhomogeneous correc-
tions in condensed systems are usually small. 41 — 

Employing the above form of g (T, f'), Eq. (15) becomes 
(see Appendix B) 

C.,(14)=g(q)vc(q)pb( -4)±vc(q)ai(Q)+X;(4) , 	(16) 

where g(q) is the Fourier transform of g(r) evaluated for 
the bulk electron density. We use the analytical fit 

g(q)=1—A[1—exp(—Bq 2/k 2 )] 

i given by Singwi et al. 31  uc(q)=4ire 2 /q 2  is the Fourier- . , 
 /

transformed Coulomb potential. vc(q)cr i (Q) and X;(14) 
 are functions which subtract the interaction of the induced 

electron density with its image in the symmetrized system. 
The Coulomb interaction between the induced electron 
density and its image is cancelled by 

0.1 (Q). —(Q/2/r)f dqz [p1,,(4)/q 2 ] , 	 (17) 

which can be regarded as a fictitious surface electron den-
sity, and 

Xi (4)=— f d 3re ir1-7  f d 3r1g( I F—f' I )-1] 

X vc( T— T' I )pi.,(F') 

X[0(z)0(—z') 

-1-0(—z)0(z')] 	(18) 

subtracts the exchange-correlation potential due to the im-
age electron density. Since the local-field correlation func-
tion G(r)=1—g(r) is short ranged, and since the induced 
electron density pi,,(F') vanishes as z—+0, X; (74) can be 
neglected. A posteriori validation of this approximation is 
provided by the observation that the sum rule, Eq. (14) 
(which was derived with no approximation), is satisfied by 
our numerical results when X; (4) is neglected. 

The coupled integral equations, Eq. (12) and Eqs. 
(16)—(18), can be decoupled by setting 

pi.,(4)=a0(q)[wi,(4)-1-vc(q)a1(Q)]/E(q) 

-1-[u1 (4)-1-u,(4)cr i (Q)[/[g(q)vc(q)] , 	(19) 

where  

equations are solved numerically by successive iteration. 
Since a i (Q) is independent of qz , substituting Eq. (19) into 
Eq. (17) yields immediately an expression for a1 (Q) in 
terms of ui ( ) and u c (ii). 

Note that in Eq. (19) the first term on the rhs describes 
the bulk response to the potential [wi,(4)-1-tic(q)o .1 (Q)]. 
It is apparent that u 1 (4) and u 0(4) in the second term 
contain the effects of quantum interference associated 
with the semi-infinite bounded electron gas. These quan-
tum interference effects become small, as does cr i (Q0) 
(the nonvanishing contributions to the fictitious surface 
electron density due to w 1 ), as the ion position fi  moves 
further from the surface, and bulk screening is obtained 
for ions far from the surface. The semiclassical limit 
(h--03 with Mr = const) amounts to neglect of these quan-
tum interference terms. 33  However, in this limit the posi-
tion of the jellium edge is at z 0 =0 and, therefore, there is 
no response beyond the jellium edge. 

C. Total-energy decomposition 

The total energy, Eq. (5), can be decomposed into a 
term 1/ (13)(fl0) which depends only on the average electron 
density of the semi-infinite metal, terms 1./ 11)(fl 0;t3i ,zi  ) 
which depend on the species and the positions of individu-
al ions relative to the surface, and terms Ut 2) (110;f3i , 
ri;13'i,rj) which depend on the species and the coordinates 
of pairs of ions; thus the total-energy expression becomes 

ET= 0°)  ( no) +1 01)(4431,Z 

-E-÷MU (2)(no;01,F1;0j ,rj ) 
	

(22) 
1./ 

The purpose of this section is to show that this decompo-
sition is possible and to derive the expressions for the 
single-ion and pair-interaction potentials, U (1)  and U(2) . It 
should be noted that this decomposition is not particularly 
useful in performing most calculations since it is usually 
simpler to take advantage of the geometry specific to the 
problem and do the calculation in reciprocal space. How-
ever, we can gain some insight into how ionic interactions 
differ at the surface and in the bulk, and the decomposi-
tion may be useful in, for instance, molecular-dynamics 
and Monte Carlo simulations. 

We begin by separating wi (f) and Of) into ionic pseu-
dopotential, (Vi  and 15j, and positive background, Vp and 
p + , parts: 

e(q)=1—g(q)vc(q)a0(q) 
	

(20) 	wi (F)=Zi [fv-i ( f)—(110/f2)V+ ( F)] 
	

(23a) 

is the (bulk) electron dielectric function, and 04) and 
u,(4) are to be determined. Combining Eqs. (12), (16), 
and (19), and requiring that the coefficients of cr i (Q) can-
cel, results in a single one-dimensional integral equation 
for 1' 1 ( 4 ), 

111(4)= —[g(q)vc(q)/E(q)hr -1  

x fdfc S''(Q;K+4:/2,K— qz /2) 

X[111 (4')+ivis (ii')/6(q')] , 	(21) 

where if '.(Q,2K), and in a similar equation for 1' 0 (4) in 
which u./13 (4 ') is replaced by uc ( q') in the integral. These 

and 

Pi( 11=Zi[M(F) — (no/n)P+(i)l, 	 (23b) 

where for notational convenience we have defined 

671 (n=Zr I Vp (A; I F—r; I ) 

[see Eqs. (3) and (4)] and Zi  =Z(13i ). In defining the 
Fourier transforms of the symmetrized quantities 
and WI') we shift the ions to the origin in the x —y 
plane, 



	

f d 2R ei4 	J dz cos(q szhiii,( , 

etc. The reciprocal-space representations of the potentials 
w,(4) and V+,(4) are given by (see Appendix C) 

lei, ( = 2Zr 1  ( ; q lc os ( q z  z i  ) v ( q le (2zI , 	(25) 

where Vp (A;q) is the Fourier transform of Vp (f3r,r), and 

V+,,(4)=(27r) 2i10 2/38(Q)v +s(qx ) 	 (26a) 

where 

v +s (qz )= —2120 113vc(q z )(in5(qz )—sin(qzzo)/q z ] 

(26b) 

The induced electron densities PIA') and p l.,,(q,) are ob- 

	

tained as before using 	or v 4. 5(qz ) with Q=0, 
respectively, in place of w i,(4) in Eq. (12). Finally, we de- 

fine v i (Q) by using iii,(4) in place of pl,(4) in Eq. (17). 
With this definition, ai (Q) is given by 

cri (Q)=Z 1 Fii (Q)+(27) 2f1 -2/38(Q)] . 	 (27) 

It can be shown [see Eq. (B7)] that lim (2_06. i (Q). —1, in 
agreement with our numerical results. 

The total energy, Eq. (5), expressed in terms of the 
reciprocal-space functions w i,( 4) and p i.,(Zi ), is 

ET =E0 4-If d 3rp °(11wi (r) 

+i-M(27) -3  f d 3q p i,(4)wi,(4)+Em  . 	(28) 
1,f 

The factor of ÷ instead of i  in the third term (the band-
structure energy) is due to the symmetrization of the sys-
tem (in effect we have two noninteracting semi-infinite 
systems). Substitution of Eqs. (23)—(26) into Eq. (28) 
yields, after some algebra, 

(24). 

ET =Eo — f d 3rp°(F) V4.(11+÷ ( 1) /(112))213(27) -1  f dqzp+ s (qz)n+s(q,)+IZi f d 3r p °(fliai (r) 

—4-120-213IZi (2z) -1  f dqz [75i,(0,qz )v +,(qz )+p +,((h)iiii,(0,qz )] 

+4-MZ?(21r) -3f d 3q Pi,(4)14-54 (4)+ 14-I'ZiZj(210 -3f (29) 

where the primed sum Z i  omits the i =j terms. 
The only terms in Eq. (29) which depend on the coordinates of more than one ion are the last two terms. Thus we de-

fine the pair-interaction potential 0 2)  to be 

U(2)(floaii ,ii ;/3i,f)=ZiZi/ r,—r, +1z,;(27)-3f d39Uii,(4)itijs(4)+75js(4)(4,(4)je175.(li—li) • 	(30) 

Since the two-dimensional (2D) vectordoes not appear in the definition of f(4) or M.,(4), it is evident that the pair- 
interaction potential depends on -kJ  1, the magnitude of the distance between two ions parallel to the surface. 
However, this pair-interaction potential depends on the z coordinates of the two ions separately rather than just on 

I zi  —zj  I , i.e., 

u(2)(n,o;fli,Fi;fir i,)=0)(no; I Rr -KJ I ;13i ,z1; 131 ,zi )  • 

For this reason U(2)  is not a pair-potential in the usual sense but can be regarded as a three-body potential, where the 
third body is the electron-jellium system described by H °, Eq. (2). 

The single-ion potential is contained in the fourth, fifth, and sixth terms on the rhs of Eq. (29) since these terms de-
pend on the z coordinate of a single ion, 

U(1) (1/0;f3izi  )=Zi  f d 3r,(11rn i ( 11— 1fT-213Z1 (2/r) —I f dq z 	lv 	(q,)w`i*(Mx )] 

+ 421(2/0 -3 f d 3q pi,(4)17.1i,(4) . 	 (31) 

The physical origins of the three terms on the rhs of Eq. ! 
(31) are, respectively, (i) the interaction of the bare ion 
with the unperturbed electron density, (ii) the interaction 
of the ion and the (subtracted) positive background density 
through their screening electron densities, and (iii) the in-
teraction of the ion with its own screening electron densi-
ty. The terms (1) and (ii) taken separately are divergent 
since the system is semi-infinite, but the sum of the two is 
finite. • 

In order to evaluate Eq. (31) the direct interaction of the 
lion with the positive background is added to the first term 
and subtracted from the second. The expression for this  

ion-positive background interaction energy is 

— f d 3r P J(11Ziiiii (F) 

2n-2/3zi  (27) - 1 f dqz[PLcqz)v +,(9z)] 

= —0 -2/34(27) - lfclqz[PN:Wis(0,4z)] , 	(32) 

where PJ(F)=i10 1 0(z —z0 ) is the positive background 
(jellium) density, with symmetrized Fourier transform 

/3;1(4). (21r) 2i16-2/38(Q)g,f(q, 

and 



TABLE I. Parameters used in the calculations: r,=(30 0/4rr) in  is the electron density parameter, r, 
and 14 are the pseudopotential core radius and depth (Ref. 25) [see Eq. (4)], and A and B are the param-
eters in the local-field correction G (q) Ref. 30 [see Eq. (6)]. 

Metal r, re  u, A 

Na 3.931°0  2.076a 0  0.3079 0.9942 0.2631 
K 4.862a 0  3.033°0 0.5723 1.0119 0.2406 
Rb 5.197a0  3.551ao 0.7273 1.0161 0.2337 

Zig,(4)=vc(q) -12Vp (M;q)cos(qzzi) 

is the positive density which gives rise to the ionic pseudo-
potential [see Eq. (C5)]. With the use of Eq. (32) as dis-
cussed above, the expression for the single-ion potential 
becomes 

U" )(110;fli ,zi )=Es +EH +EL 
	

(33) 

where 

Es=÷4(22r) -3  f d 3q TILT ( 	 ) 

	

(34a) 

EH =Zi  f d 34"1—PJ(11Pis (r) , 	(34b) 

and 
Eon = ÷flf:72/3Z1(27r)-1 

X f dqz ag,(0,q,)-15 1,,,(0,q,)]v +,(qz ) 

+[44,)—p +,(11,)]Ceis (0,q,)1 . (34c) 

We remind the reader that p i, and p +, are induced elec-
tron densities corresponding to the potentials 6.)-1, and v +„ 
respectively [Eqs. (25) and (26)], which are in turn the po-
tentials due to the densities pf., and psi  which represent the 
ions and positive background, respectively. Having 
described in this section the physical model and derived 
the expressions needed for the evaluation of the total ener-
gy and its decomposition into density, single-ion, and 
pair-interaction potentials, we turn now to a discussion of 
results for the single-ion and pair-interaction potentials. 

RESULTS AND DISCUSSION 

In this section the theory developed in Sec. II is em-
ployed in a systematic study of the single-ion and ion 
pair-interaction potentials in the simple metals Na, K, and, 
Rb. The values of the bulk electron density parameter r„ 
the pseudopotential core radius and depth [Eq. (4)] r, and 
uc , 2' and the parameters A and B in the analytical fit to 
the local - field (exchange -correlation) correction G (q) (Ref. 
31) which were used in the calculations are given in Table 
I. 

In general, the practice of determining model pseudopo-
tential parameters is guided by the adequacy of the fit be-
tween calculated and measured material properties. When 
treating metal surfaces, and possible structural relaxations, 
it is essential to use a model which yields the correct bulk 
lattice constant arid reproduces the elastic properties of the 
bulk. In addition, if the model is to be applied to alloys 
(heats of formation, surface segregation, etc.) it is of ut-
most importance that the model also yield the correct total 
energy, and thus the cohesive energy, of the bulk pure 
species. The pseudopotential parameters, r c, and u c , which  

we employ were determined by Popovic et a1. 25  to repro-
duce the experimental values of the bulk modulus and 
equilibrium lattice constant. These authors used the pseu-
dopotentials, and the local-field correction of Singwi 
et a1. 31 , in calculations of vacancy formation energies and 
volumes for the alkali metals and Al, obtaining results in 
good agreement with experimental values. We have calcu-
lated the cohesive energy of Na, K, and Rb using the pseu-
dopotentials and find that the calculated and experimental 
values agree to within less than 0.3% in each case (experi-
mental values are summarized in Ref. 20). To our 
knowledge these pseudopotentials have not been used in 
lattice-dynamics calculations; nevertheless, the bulk pair-
potentials which we obtain are similar (in terms of loca- 

C 
a) 

FIG. 1. Electron densities Sl o p (z) for Na, K, and Rb The 
Lang-Kohn (Ref. 30) densities are shown as solid curves a id the 
dashed curves are the infinite barrier noninteracting electron 
density. The truncated bulk density is also shown as a solid line, 
and the (100) and (110) layer positions are indicated by arrows. 
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• 
tion, depth, and curvature-see dashed curves in Figs. 
3-7) to the M1 model pair potentials of Dagens et al., 4°  

• which do yield rather satisfactory agreement with experi-
mental dispersion curves. 

The Lang-Kohn3°  surface electron density p°(z) for the 
three metals is shown in Fig. 1. These densities were ob-
tained by Lagrange interpolation between the densities at 
the r, values given in Ref. 30. The positions of the (100) 
and (110) crystalline layers, also shown in Fig. 1, are given 
by 

zi=z 0 +(/-1)D , 	 (35) 

where z0 =37118kF  is the position of the jellium edge, and  

D = (2k F ) -  1 (677-2 ) 1/3 	for 	the 	(100) 	layers 	and 
D-,-(ifircF ) -1 (67r2 ) 1/3  for the (110) layers [the Fermi 
momentum kF  is related to r, by kF--=--(97/4) 1i3 /r3 ]. The 
Lang-Kohn electron density enters the calculation through 
the first-order correction to the total energy and .contri-
butes to the EH term in the single-ion potential, Eq. (34b). 
The surface electron density of the infinite barrier mode1 38 

 is also shown in Fig. 1. We have found that the use of 
this infinite barrier electron density in place of the Lang-
Kohn 

 
 density yields values of EH which are in close quan-

titative agreement with the results obtained using the 
Lang-Kohn density, particularly for large z. We use the 
infinite barrier density to extend p°(z) to values of z larger 
than those provided in the tables of Ref. 18(a). 

In performing the numerical integration over Q and q, 
to obtain the results presented in this section we have used 
a grid of points in Q,q, with spacing AQ =Aq,=0.04kF , 
and have truncated the integrals when convergence is ob-
tained (in most cases a maximum of q -=12kF  is suffi-
cient). The derivatives of the potentials U (1)(z) and 
U(21(R ;z 1 ,z2 ) which are presented in the tables were ob-
tained numerically in each case by evaluating the quanti-
ties at points z,z±0.01D and R,R±0.01D, where D is the 
(100) or (110) layer spacing. The units of energy and of 
length used in the tables are e 2kF  and kF I , respectively, to 
facilitate comparison of the results for the different met-
als. 

The single-ion-potential results are summarized in 
Tables H, III, and IV for Na, K, and Rb, respectively. 
The general behavior of U (I)  as a function of ion position , 

TABLE II. Single-ion potential for Na, U( "(z)=E,+ EH +4 and derivatives, evaluated at the (100) 
and (110) layer positions z =z0-1-(1 - + )D; D is the layer spacing. The units of energy and length are, 

respectively, e 2k F  and ki-1 , where k F =(9/r/4) 1i3 /r, and r, is given in Table I. 

1 • 2 3 4 5 

(100) layer 
E, -0.2739 -0.2697 -0.2660 -0.2648 -0.2643 
EH 0.0328 0.0356 0.0369 0.0359 0.0358 

0 Eb, 0.0085 0.0002 0.0000 -0.0005 0.0009 
Ulu -0.2326 -0.2338 -0.2290 -0.2294 -0.2276 

3E, /8z -0.0107 0.0039 0.0008 0.0004 0.0002 
34 /az 0.0316 -0.0039 -0.0004 0.0002 -0.0005 
3E: /az -0.0304 -0.0006 0.0026 -0.0015 0.0003 
awn/az -0.0095 -0.0006 0.0031 -0.0009 -0.0000 
82E,/8z2 0.032 -0.003 -0.000 -0.000 0.000 
324 /az 2  0.006 0.010 -0.002 0.000 0.000 
324 az2 -0.010 0.007 -0.001 0.003 -0.003 
a20)/az2 -0.027 0.013 -0.003 0.003 -0.002 

(110) layer 
E, -0.2760 -0.2668 -0.2648 -0.2642 
EH 0.0428 0.0365 0.0360 0.0355 

0  Ebs  -0.0013 -0.0015 -0.0009 -0.0002 
Ill"  -0.2346 - 0.2317 -0.2297 -0.2289 

8E, /3z -0.0008 0.0014 0.0003 0.0001 
aER /az 0.01 i9 0.0016 0.0002 -0.0000 

o aEb, /az -0.0128 0.0005 -o.oe13 -0.0014 
awn/az -0.0017 0.0035 -0.0008 -0.0013 
32E, /3z 2  0.017 -0.001 0.000 -0.000 
a2EH az 2  -0.059 -0.003 -0.000 0.001 
aa, /8z 2  0.051 0.005 0.003 0.000 
a Ut I  ) iaZ 2  0.009 0.001 0.003 0.001 



TABLE III. Single-ion potential for K, and derivatives. See the caption for Table IL 

1 2 3 4 5 

(100) layer 
E, -0.2674 -0.2633 -0.2596 -0.2585 -0.2580 
EH  0.0222 0.0167 0.0185 0.0174 0.0176 
EL 0.0059 0.0001 -0.0001 -0.0005 0.0007 
utli -0.2393 -0.2465 -0.2413 -0.2417 -0.2398 

aE, iaz -0.0119 0.0039 0.0008 0.0004 0.0002 
aEH /az 0.0134 -0.0034 -0.0003 0.0004 -0.0004 
an, az -0.0190 0.0001 0.0022 -0.0013 0.0002 
a um/az -0.0175 0.0006 0.0027 -0.0005 0.0001 
a2E, /az 2  0.034 -0.003 -0.000 -0.000 0.000 
a2Eff  iaz 2  0.018 0.012 -0.003 0.001 0.000 
a2E:T /az 2  -0.019 -0.007 -0.000 0.002 -0.003 
a2 U" ) /az 2  0.032 0.002 -0.003 0.003 -0.001 

(110) layer 
E, -0.2698 -0.2604 -0.2585 -0.2579 
ER 0.0277 0.0179 0.0175 0.0174 
Ebo, -0.0020 -0.0013 -0.0006 0.0000 
U>' >  -0.2441 -0.2438 -0.2417. -0.2404 

aE, az -0.0015 0.0013 0.0003 0.0001 
aER /az 0.0066 0.0020 0.0005 0.0000 
an, /az -0.0128 0.0002 -0.0011 -0.0012 
a umiaz -0.0077 0.0036 -0.0003 -0.0011 
32E,/az 2  0.019 -0.001 -0.000 -0.000 
a2ER/az 2  -0.049 -0.002 0.000 0.000 
a2EZ /aZ 2  0.047 0.004 0.003 0.000 
aUal/az 2  0.018 0.001 0.003 0.000 

TABLE IV. Single-ion potential for Rb, and derivatives. See the caption for Table II. 

E, 
ER 
4 
Um 

aE, az 
aEH/az 
aE2, /az 
ali(1) /az 
a2E, az 2  
a2ER /aZ 2  
a2E2, az 2  
a2 U(I)/az 2  

E, 
ER 

o Ei„ 
um 

aE, /az 
aEll  az 
aEit /az 
a U" )/az 
a2E, /az' 
a2E1, az ,  
ale. /aZ 2  

a2 U(I) /az 2  

1 2 3 4 5 

(100) layer 
-0.2677 -0.2633 -0.2597 -0.2586 -0.2581 

0.0203 0.0113 0.0128 0.0118 0.0120 
0.0046 -0.0002 -0.0000 -0.0005 0.0004 

-0.2427 -0.2523 -0.2469 -0.2473 -0.2456 
-0.0111 0.0039 0.0008 0.0004 0.0002 

0.0060 -0.0032 -0.0005 0.0004 -0.0000 
-0.0144 0.0006 0.0015 -0.0009 -0.0000 
-0.0196 0.0013 0.0019 -0.0000 0.0000 

0.034 -0.003 -0.001 0.000 0.000 
0.005 0.012 -0.002 0.000 0.000 

-0.007 -0.006 -0.000 0.002 0.000 
0.032 0.003 -0.003 0.002 0.000 

(110) layer 
-0.2701 -0.2605 -0.2586 -0.2580 

0.0229 0.0124 0.0119 0.0119 
-0.0015 -0.0009 -0.0005 -0.0000 
-0.2487 -0.2490 -0.2472 -0.2461 
-0.0007 0.0013 0.0003 0.0001 

0.0023 0.0017 0.0004 0.0001 
-0.0112 0.0003 -0.0007 -0.0008 
-0.0095 0.0033 0.0001 -0.0006 

0.019 -0.001 -0.000 0.000 
-0.032 -0.003 -0.000 0.000 

0.031 0.003 0.002 0.000 
0.017 -0.001 0.002 0.000 
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z is shown graphically in Fig. 2, which was drawn from 
the values of U(I)(z) and its derivatives at the (100) and I 
(110) layer positions for K. 

The largest contribution to the single-ion potential U (1) , 
Eq. (33), is the interaction of the ion with its own screen-
ing electron density E„. The second largest contribution is 
EH, which comes from the first-order energy and corre-
sponds to the direct interaction of the ionic pseudopoten-
tial with the difference, p°(z) —n o-  ie(z —z o ), between the 
Lang-Kohn electron density and a truncated bulk density. 
Both E, and EH oscillate about a constant bulk value as z 
increases, and the magnitude of the oscillations decreases 
as the distance from the surface increases. The third con-
tribution, E85, is much smaller in magnitude and oscil-
lates about a bulk value of zero, but the magnitude of the 
oscillation decreases more slowly as z increases. It is the 
oscillations in U" )  rather than the magnitude which are 
important in determining surface structure, since these os-
cillations give rise to forces on the ions normal to the sur-
face plane. Differences in the magnitude of UP I)  for dif-
ferent ionic species (evaluated for the same fl o) are impor-
tant in determining impurity formation energies and sur-

f face concentration profiles in alloys, but this is the subject 
of a planned future publication and will not be discussed 
here. 

i The derivative of the single-ion potential, a U (  1) /az. is 
I negative for ions in the surface layer of both the (100) and 
(110) surfaces of each of the metals considered, corre-
sponding to a force on the ions toward the bulk. There is 

a large amount of cancellation between the derivatives of 
the three terms E„ EH, and EL near the surface. EH and 
EL are related in that EH is a direct interaction while L?3s 

 is an interaction mediated by the screening electron densi-
ties, and the forces arising from these two interactions 
tend to cancel in the surface layer. The cancellation is al-
most complete for the higher electron density metal, Na. 
The single-ion forces on ions deeper than about the third 
(100) layer or second (110) layer are primarily due to oscil-
lations in 43s, which are in turn due to quantum interfer-
ence effects in the solution for the screening electron den-
sities. 

The results of calculations of the pair-interaction poten-
tial EP 2) (R,z 1 ,z 2 ) are summarized in Figs. 3-7 and Tables 
V—VIII. These interaction potentials are not two-body 
central-force potentials in the surface region since they de-
pend on the z coordinates of the two ions separately. 
However, U (2)  does depend on the magnitude of the ionic 
separation parallel to the surface, R, and we can get some 
feeling for how U (2)  differs from the bulk interaction by 
plotting U(2)(R,z 1 ,z 2 ) vs r = [R 2 +(zI _ ]1/2 as R is 
varied while keeping z i  and z 2  fixed. This is done in Figs. 
3-7, where z i  and z 2  are layer positions for (100) or (110) 
layers. The bulk pair potential is shown as the dashed 
curve in each figure. For ions near the surface the 
minimum in the pair-interaction potential may be signifi-
cantly deeper or shallower than the bulk pair-potential 
minimum and may be shifted to larger or smaller interion-
ic distance r depending on the z coordinates of the two 
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TABLE V. First derivative of the pair-interaction potential with respect to z l , 31.1 (2)(R ;z i ,r. 2 ) /az i , 
for K ions in the same layer, z i  --=z 2 =z0  4-(/, - i  )D, evaluated for second- and third- nearest-neighbors 

(nn) ions in the first five 1,100) layers, and for first-, second-, and third- nearest-neighbor ions in the first 
four (110) layers. The units of energy and length are, respectively, e 2k F  and kF 

1 2 3 	 4 5 Bulk 

(100) layer 11=12 
Second nn -0.001 36 -0.00013 0.000 04 	0.000 01 0.000 01 0.0 
Third nn - 0.000 13 - 0.000 02 0.00000 	0.000 02 0.000 01 0.0 

(110) layer 1 1 =12 

First nn -0.000 21 - 0.000 01 0.000 01 	0.00001 0.0 
Second nn 0.000 21 0.000 01 0.000 01 	0.000 01 0.0 
Third nn 0.000 09 0.000 03 0.000 02 	0.000 01 0.0 

ions. In addition, the magnitude of the Friedel oscillations 
in the interaction potential as r increases may be either in-
creased or decreased. It has been shown by Lau and 
Kohn42  that the oscillatory part of the interaction between 
point ions adsorbed on a substrate with a spherical Fermi 
surface is proportional to cos(2k FR)/R 5, in contrast to 
the R -3  dependence in the bulk. We have not attempted 
such an asymptotic analysis, and the inclusion of quantum 
interference effects may alter this behavior. However, as 
the distance of the two ions from the surface increases, the 
bulk behavior must result. The interaction between ions in 
the same layer (z 1 =z2 ) is essentially bulklike for ions 
deeper than the third (100) layer, but the effect of the sur-
face on the interaction between ions in different layers ex-
tends further, i.e., the interaction between ions in the third 
and fourth or third and fifth (100) layers still shows 
marked differences from the bulk interaction. The differ-
ences between (P2)  and the bulk pair potential are fairly 
uniform for the three metals, although there is a trend to-
ward larger differences in the higher electron density 
(smaller r,) metal Na. 

In order to examine the dependence of the pair-
' interaction potential on the z coordinates of the two ions 

we have calculated the first and second derivatives 
aU12) /az 1 , au( 2)/az 2 , a2u(2)/aRaz1,, a2u(2) / 0 2Z 1 , 2 , and 
a2u(2)/az- i az 2  for ions at lattice sites in the (100) and 

1 (110) layers, and compare these to the derivatives of the 
:bulk pair potential in Tables V-VIII (for K only). The 

units of energy and length used in these tables are 
again e 2kF and kf.-  I , respectively. 

The fact that the pair-interaction potential is not a 
central-force interaction is first clearly illustrated in Table 
V, which gives aU (2) /az 1 =aU(2) /az 2  for ions in the same 
layer (z 1 =z2 ). While in the bulk this derivative is zero, 
for ions in a layer near the surface it is not zero and for 
nearest and next-nearest neighbors it is about an order of 
magnitude smaller than the force due to the single-ion po-
tential. This amounts to an additional force normal to the 
surface on each ion in the layer since the potential energy 
due to interaction between ions in the layer can be de-
creased by moving the entire layer. Table VI gibes the 
derivatives au( 2 )/oz, and au( 2 )/az 2  for ions in different 
layers. In contrast to the bulk where 
aU(2) /az 1  = -aUt2) /az 2 , in the surface region the deriva-
tives with respect to z l  and z 2  are not equal in magnitude 
and may not be opposite in sign [e.g., second nearest 
neighbors in (100) layers 1 and 3]. 

Table VII and VIII give the second derivatives of U (2) 
 with respect to various combinations of z1 , z 2 , and R. 

Again we see that the derivatives of the pair-interaction 
potential for ions in the surface region are significantly 
different from the derivatives of the central-force bulk 

TABLE VI. First derivatives of the pair-interaction potential for K ions, 11 (2)(R;z 1 ,z 2 ), with respect 
to z 1  and z2 , evaluated for ions in different layers, z i  =z0 +(/ 1 - -OD and z2=zo+(12---+  )D, for first 

nearest neighbors (nn) in (100) layers and first and second nearest neighbors in (110) layers. The units of 
energy and length are, respectively, e 2k F  and k F71 . 

(1,2) 	 (2,3) 	 (3,4) 	 (4,5) 	Bulk 

First nn 	au( 21 /a, 	0.005 86 
au( 2 )/az2 	-0.003 59 

First nn 	31/ (2) /az i 	0.00707 

	

au• 21 /az 2 	-0.00744 

	

Second nn au(2)/az, 	-0.00073 

	

aU(2) /az ; 	0.00012 

(100) layers ( 1 1,12) 

	

0.005 13 	0.005 09 	0.005 20 	0.005 13 
- 0.005 33 	-0.005 09 	-0.005 10 	-0.005 13 

(110) layers (1 1 ,12) 

	

0.007 33 	0.007 32 	 0.007 26 
- 0.007 06 	-0.007 12 	 - 0.007 26 

	

-0.000 51 	-0.000 49 	 0.000 51 

	

0.00053 	0.00060 	 -0.00051 

	

Second nn au(2)/az, 	-0.00081 

	

aurn/az 2 	-0.000 70 

(100) layers (11,12) 

	

-0.00066 	-0.00077 

	

0.001 32 	0.000 50 
- 0.000 73 

0.00073 



TABLE VII. Second derivatives of the pair-interaction potential U 12)(R ;z 1 ,z 2 ) for K ions in the 
same layer, z 1 =z2 =z0 +(1- i )D, evaluated for second nearest neighbors (nn) in (100) layers and for 

, first and second nearest neighbors in (110) layers. The units of energy and length are, respectively, e 2k F  
and 

1 2 3 	4 5 Bulk 

Second nn a= u(2)/aR az, 0.002 11 - 0.000 02 
(100) layer 11=12 

- 0.000 01 	0.00000 0.000 01 0.0 
a2 u(2) /az i 0.002 15 0.000 13 0.000 21 0.00019 0.1300 21 0.000 19 
a2u(2)/az, az 2  0.003 62 -0.000 18 -0.000 21 -0.000 17 -0.000 20 -0.00019 

(110) layer 1 1 =12  
First nn a2u(2)/aR az, 0.00116 0.00001 -0.00001 0.00001 0.0 

aiumiazi -0.001 30 -0.002 63 -0.002 62 -0.002 61 -0.002 63 
a2 U(2) /az i az2  0.005 30 0.002 75 0.002 65 0.002 61 0.002 63 

Second nn a=v2)/aR az, 0.00047 0.00005 0.00000 0.00000 0.0 
a2u(2)/azi 0.001 02 0.00021 0.000 19 0.000 19 0.00019 
a2u(2)/az I az2  0.00112 -0.00012 -0.000 17 -0.000 19 -0.00019 

pair potential, and may have the opposite sign. 
The results presented in Tables V-VIII support the 

conclusions stated earlier in the discussion of the figures 
that (a) the pair - interaction potential in the surface region 
is significantly different from the bulk central-force pair 
potential, (b) the effect of the surface on the interaction 
between ions in different layers (different z coordinates) 
extends further than the effect on the interaction between 
ions in the same layer, and (c) in any case, the interaction 
between pairs of ions both of which are deeper than about 
the fourth (100) or third (110) layer positions is essentially 
bulk like. The major differences of U(2)  from the bulk 
pair potential are due to quantum interference effects in 
the solutions for the screening electron density, the terms 

I u 1 (74) and u o,(4) in Eq. (19). If these quantum interfer-
ence terms are simply set equal to zero only the interaction  

between pairs of ions very close to the surface (the (100) 
surface layer] deviate from the bulk interaction o 3  In IFie 
semiclassical limit (mentioned in Sec. H B) the quantum 
interference terms do not occur, but the position of the jel-
lium edge is z o  =0. so the effect of the surface on the 
pair-interaction potential in the semiclassical response 
model might extend somewhat further. However, the 
semiclassical response model restricts the choice of ionic 
pseudopotential since there is no response of the electron 
gas for z <0, and therefore the positive charge density 
which gives rise to the ionic pseudopotential must not ex-
tend past the jellium edge (see Appendix C). 

The single-ion and pair-interaction potentials derived in 
Sec. II C and discussed in this section are, in principle, 
sufficient to treat problems involving surface relaxation, 
defect energies, and surface segregation in alloys. Howev- 

TABLE VIII. Second derivatives of the pair-interaction potential U 2(R ;z 1 ,z 2 ), for K ions in adja-
cent layers, z1=z0+(1,-)D and z2 =zo  +(/2 - with 1 2 =11 +1, evaluated for first nearest neigh-
bors 

 
 (nn) in (100) layers and for first and second nearest neighbors in (110) layers. The units of energy 

and length are, respectively, e 2k F  and 

(1,2) (2,3) 	(3,4) (4,5) Bulk 

(100) layers (1 1 ,12 ) 
First nn a2u(2)/aR az, -0.017 06 -0.016 18 	-0.016 30 -0.016 38 -0.016 29 

a2u(2)/aR az 2  0.015 51 0.01654 	0.01622 0.01634 0.016 29 
a2 u(2),az i 0.008 86 0.009 02 	0.008 80 0.008 92 0.008 88 
a2u(2)/az, az, -0.010 22 -0.008 69 	-0.008 93 -0.008 92 -0.008 88 
a 2 u(2) /az i 0.008 85 0.009 18 	0.008 68 0.00900 0.008 88 

(110) layers 	(1 1 ,12) 
First nn a2u(2)/aR az, -0.01639 -0.01641 	-0.01635 -0.016 29 

a2u(2)/aR az 2  0.015 94 0.016 12 	0.016 23 0.016 29 
a= U(2) /azi 0.020 13 0.020 37 • 	0.02044 0.020 41 
a2 U(2) 1az i az 2  -0.020 69 - 0.020 54 	- 0.020 48 -0.020 41 
a2u(2)/az 0.018 29 0.020 01 	0.020 43 0.020 41 

Second nn a2u(2)/aR az, -0.00397 - 0.004 06 	- 0.004 05 -0.003 99 
a= u(2)/aR az 2  0.00387 0.003 86 	0.003 94 0.003 99 
a2 U(2) /azi 0.004 19 0.004 14 	0.004 17 0.004 18 
a2 U(2) /az,z2  -0.00420 - 0.004 23 	-0.004 22 -0.00418 
a2u(2)/azi 0.00314 0.003 86 	0.004 13 0.004 18 



er, due to the long-range nature of the pair interactions 
and the fact that in the surface region they are not two-
body central-force potentials, a real-space approach to 
such problems is cumbersome. Calculations using a 
reciprocal-space approach to minimize the total energy 
and determine the relaxed surface structure are reported 
elsewhere, 17' 18w  and surface segregation and defect ener-
getics will be treated in planned future publications. 

The model as developed here is not directly applicable 
to surface vibrations because the use of the jellium system 
as a starting point and the infinite barrier response model 
specifies the location and orientation of the surface plane 
with respect to the coordinate system; thus the dynamical 
matrix obtained from this model would not satisfy the 
condition of rotational invariance. It is clear, however, 
that two-body central-force potentials are not sufficient to 
describe the interionic interactions in the surface region 
and that the interaction of the ions with the inhomogene-
ous electron gas, which is the origin of the single-ion po-
tentials, must be included. It may be possible to impose 
rotational invariance and obtain and approximate dynami-
cal matrix." The single-ion and pair-interaction poten-
tials can be used in Monte Carlo or molecular-dynamics 

Sr; , 

solutions. Monte Carlo studies on liquid-metal surfaces 45 
 have shown that the inclusion of a single-ion potential 

leads to stable density oscillations at the surface. 
In summary, we have developed a formulation based on 

the use of ionic pseudopotentials and linear-response 
theory which is applicable to problems involving minimi-
zation of the surface energy of a simple metal with respect 
to ionic species and/or position. The formulation main-
tains the full three-dimensional nature of the system and 
does not require crystalline order; thus it is possible to 
treat defects near the surface and random alloys as well as 
ideal surfaces. We have decomposed the total-energy ex-
pression into a density-dependent term and real-space 
single-ion and pair-interaction potentials. An examination 
of these potentials shows that both the single-ion poten-
tials and the non-central-force nature of the pair-
interaction potentials are important in surface structure 
Jand energetics and in surface lattice virbations of simple 
!metals. 

This work was supported by the U. S. Department of 
Energy under Contract No. EG-S-05-5489. 

APPENDIX A 

In this appendix Eq. (12) for the Fourier transform of the symmetrized screening electron density is derived. Substitut- 
ing Eq. (6a) into Eq. (11b) and using the fact that a0( I it 	;z,z') vanishes for negative z' gives 

pi,(4)=2f d 2R e i4  .rt fo'dzcos( q,z)fd2R'f:dz'a o( 	;z,z')[w i (F')+0,(F')] . 	 (Al) 

When the integrals over ft and R' 	performed we obtain 

pi,(4)= 2 f:df[tv i (Q,z')-1-(k i (Q,z')] f:dz cos(q,z)ao(Q;z,z') . 	 (A2) 

The integral over z in Eq. (A2) is evaluated using Eq. (10) for ao(Q;z,z') and the integral representation of the Dirac 5 
function 

1-8(k)=1+ f dz cos(lcz) . 

The result is 

fo 1 
dz cos(q,z)ao(Q;z,z')= — f dK sin(Kz')f desin(K'z')S P(Q;K,e) 

X[8(q z -l-K-e)-1-3(q z -K+e)-5(q z +K-1-te)--8(q z -K-K')] • 	(A3) 

From the definition of the two-dimensional RPA response function, Eq. (8b), it is ciear that Y(Q;K,e) is invariant to 
transformations which interchange k and k' or change the sign of 'CO(' , or both: 

.2°  (Q ;K,K' )= ..Z(Q ;K — K')= Y(Q ;K%K) 

These symmetry properties are used together with the fact that K and le are to be integrated over both positive and nega-
tive values to obtain 

fo  dz cos(qzz)ao(Q ;z,z' )=Ir - I  f dK SP(Q;K+q z /2,K -qz /2)[cos(qzz')-cos(ba')] . 	 (A4) 

We now substitute Eq. (A4) back into Eq. (A2) and evaluate the integral over z'. The result is Eq. (12) of the text: 

Pis(4)=a0(q)[wk(ZI)+6;,(4)]-7r -1  f dK -F(Q;K-Eq z /2,K-q z /2)[wis (Q,2K)+O L,(Q,2K)] , 	 (A5) 

where 

ao(q)=Tr -1  f di; .2' (Q ;K 4-q z /2,K -q z  /2) 

is the RPA response function for an infinite system. 



APPENDIX B 

In this appendix we derive Eq. (16) for the Fourier transform of the self-consistent effective potential due to the screen-
ing electron density in the symmetrized system. From Eq. (6b) and the definition of the symmetrized system we have 

Ois (F)= f d 3r'g(F,F')u (I 1.--f'1)pi,(1")[1-e(z)e(-z')-e(-z)e(e)] , 	 - 	(131) 

where g (F,F')=1 -G 	') and G (F,F ') is the local-field correction discussed in the text. The Fourier transform of Eq. 
(B1) is 

4/i,(4)= nc(q)pi,(4)- d 3r 	f d'r'G(F,F')v c( F-r' I )pir (f ') 

- f d 3r 	f d 3r'vc ( F-F'I )pi,(F')[e(z)e(-z')+E( -z)e(e)] 

f d 3r 	.7  f d 3  r' G(F,F')vc( -r I )pif (F')[e(z)e( -z')+E( -z)e(z9] . 	 (I32) 

Owing to translational invariance in the x-y plane, G(F,F9=G ( 	;z,e); thus the remaining integrals over 
and R' in Eq. (B2) result in two-dimensional Fourier transforms of the functions G, VC , and pis . If, as discussed in the 
text, we make the assumption that G(F,F9=G (I F -F' I) the second term in the rhs of Eq. (B2) becomes 

- f d 3r e ir1.7f d 3r'G( I F-r' I )v c ( I F-r'  1 )pi,(F9= -G (q)vc(q)pi,(4) . 	 (B3) 

To evaluate the third term on the rhs of Eq. (B2) we use the identity 
.2 	.2 

vc(r)=- 	
d2K 

exp(-ik 	I z 1) 
r 2ir 	K 

and substitute the inverse Fourier transform of A s (k) for pis ( F') to get 

- f d 3r 	f d 3r'v c( I -F' I  )p i,(F')[e(z)e( -z9+e( -z)e(z' )] 

lire 2  
Q 

 lire 2  Q 

 lire 2  

Q 

,l 	f dz e kiz z  f dz'e -aze  [e(z)e( -z9+ 0( -z)03(z9je -Q 

f diczp,(Q,k,)[ fo  dz e z itq-Q)z r dz'exP(( -ik„ +Q)z']+ f „dz e 

- kz qz  + Q 2  
f dk zpi,(Q,k) 2 	 • 

+Q 2 )(q; +Q 2 ) 
(B4) ; 

o 	ciqz +Oz f '''dz'exp[( 

of positive charge (in units of the electron charge e) which 
gives rise to the potential, i.e., pa  (4 = 6)=0, since wi ( ) is 
a neutral perturbation due to the replacement of part of 
the jellium positive background by the ionic pseudopoten-
tial. 

The last term in Eq. (B2) is 

Since pi,(Q,kz)  is an even function of k2 , 

kz  
f diczp,,(Q,k 2 ) 	-0 

Id +Q 2  

and 

2/re 2  r 	 - kz qz  + Q 2  
_ 	j dkzpi,(Q,k) 	  

Q 	 (k1 +Q 2 )(qz2  +Q 2 ) 

. _ 4re2 1
(Q, pi  

f 	Q  .= 	clicz ,k) 
q 2  2/r 	 Q 2 -4-4 

t,c(q)cri (Q) ,1 \ 	 (B5) 

\,1 
X1 (4)= f d'r e i7.7  f d 3r'G (F,F')v c( F -F' 1 	) 

X(e(z)e( - z') +e( -z)e(z')] . 

(B8) 

where vc(q)=4rre 2/q 2  and 

oi(Q)= 	f dq Pis(4)  
2/r 	q 2  

It is also evident that 

lira cr i (Q)= urn --q- f dqz pi.,( .s7 )  
g -.13 2/r 

= - ipa (ci= 0) .  

I We do not attempt to evaluate this term here. It is not 
possible to reduce X1 (4) to a form similar to uc(q)ai (Q), 

(B6) i.e., the Coulomb potential multiplying some function 
which is independent of qz . Thus this term prevents the 
reduction of the problem of solving for Oil to the solu-
tion of a single-integral equation. However, X ; (4) is 
negligible because, as discussed in the text, G (F,F9 is very 
short ranged and because pL,(F) vanishes at z =0. 

APPENDIX C (B7) 

p;,(4=0) is the integrated screening electron density in-
, duced by the potential w ;,( i=) and is equal to the amount 

In this appendix we derive Eqs. (25) and (26) which give 
the Fourier transforms of the symmetrized potentials 



and V÷s (F). The definition of 	can be written 
as 

Cei,(F)=Z(i3r) -1 [ Vp(fli; I F — (Kbzdi )E(z) 

+ v„(Qi; I F-(R ; ,-z; ) I )e( -z)] , 

(Cl) 

where F; 	) is the ion position, Z((3; ) is the charge 
in units of e, 13, designates species, and Vp (Oi ;r) is the 
local-model pseudopotential for ionic species For no-
tational convenience in the following we will omit the 
specification of ionic species. 

From Eq. (24) we have 

Cub  ( ) =2Z f
L +20

o 	dz cos(q,z) f d2R 	vp( [R 2 +(z  _zdy,a ) 	 (C2) 

where L =12 1 /3  is the thickness of the semi-infinite metal (the limit L —+ co will be taken) and z o  is the distance of the jel-
lium edge from the z =0 plane. Substitution of the inverse Fourier transform of Vp (k) for Vp (r) yields 

Z 1 	 L +so 	_ik
z2 reisai)= —  f dk z e ikz zi  Vp (Q,k 2 ) r 	dz e 	2.cos(q,z) . 	 (C3) 

2rr 	 o 

The integral over z in Eq. (C3) is 

2 f 
L +so  

dzexp[ — ikz (z —z i  )]cos(q,z)— 	lexp[—ik z (L +z o —zd]exp[—iq,(L +z o )]—e
ikz 

 o   
k +qz  

+fexp[—ik z (L +z o —zd]exp[iq z (L +z o )]—e ikz zl  . 	 (C4) 

We will now express the ionic pseudopotential as 

4ire 2  Vp (q). 	(q) , 	 (C5) 
q 

where Zep I(q) is the Fourier transform of a spherically symmetric positive charge density which gives rise to the local 
pseudopotential. An obvious restriction is that fyi( I ri  I )=0 for z —z i  <0; or, in the case of the simplified Heine-
Abarenkov potential which we use, r, <z i , where r, is the core radius [see Eq. (4)]. 

Equations (C4) and (C5) are substituted into Eq. (C3) to obtain 

aiii(4)= —21r f 

	

dk [-4ire 2p1(Q,k,)] 2Q icx_g2 k z +iQ
—  1  	1 	1 1 

1  
X k,+q, 

lexp[ —ikz (L +z o —zi )]exp[—iq,(L +z o )]—e ikzzi ) 

k—q z  
1 	

[exp[ —ikz (L +z o —zi )]exp[iq,(L +z o )]—e
ik

z
zi 

I 
	

(C6) 

The integral over k in Eq. (C6) is done by contour integration, using contours which avoid the poles on the real axis at 
k=±qz  and which close around either the upper or lower half-planes as required by the exponents. The result of this in-
tegration is 

ri) 
	4ire 2 	 ire 2 

 i s  CCP — 	p I.  ( q ) 2 cos(q,z i )+ 
4-

9
pl(Q,iQ)e q 

 
	—Qx/ 

4ire 2 	192 	 (C7) + lim 	2  p l(Q,—iQ) —
Q

sin[qz (L +zo )]—cos[qz (L +zo)] exP[—Q(L +zo—z;)] . 
L —*co q 

p/(0=prii2 2 ±qz2 ) 1/2, ,  Now 	 j and thus pI(Q, -±1Q)=p 1(q 
=0) (a more rigorous proof of this identity is possible but 
will not be given here), and pl(q =0)= 1 since the ionic 
charge Ze is factored out of the definition, Eq. (C5). 

In the limit L co the last term in Eq. (C7) vanishes 
for Q0 due to the exponent. For Q =0 the only contri-
butions to an integral over q2  involving this term as part 
of the integrand are at q, =0 and at any poles due to other 
terms in the integrand. To evaluate such integrals, which 
occur in the single - ion potentials, it is useful to note the 
physical significance of the second and third terms of the  

rhs of Eq. (C7). In writing Eq. (C2) we have assumed an 
infinite periodic system with period 2(L +z 0 ) in the z 
direction, which is symmetric about both z =0 and 
z =L +z o . The second term on the rhs of Eq. (C7) 
represents the potential due to a two-dimensional density 
at z =0 which cancels the interaction between the negative 
and positive z parts of the periodic system, and the third 
term does the same at z =L +z o , so that tii, s ( F)=0; ( for 
0<z <L +zo . Thus, while these terms may contribute to 
the (Q .0,q,) integrals involved in the single-ion poten-
tials, their contribution is independent of the ionic posi- 



tion and is in fact canceled by similar terms arising from 
the subtraction of the positive background potential. 

The positive background potential V+ (F) is given by 

(n=i f d 3r 1 1.26-1 0(z' —zo )e 2 / I F— i'' I , 	(C8) 

where 12 0  is the volume per electron in the bulk of the 
semi-infinite system. The symmetrized Fourier transform 
can be obtained from the expression on the rhs of Eq. (C7) 

by replacing pPP(q) with 120 [the Fourier transform of 
110 1 5(?)] and integrating over the space occupied by the 
positive background density. The result of this operation 
is 

V+,( 4)= (2/0 2126-2/35(Q)v +,(qz ) , 	 (C9) 

where v +s (qz ) is given by 

v +,(g,)= — 

e 2  4ir 	/3 
2 12o[21-5(qz )— 2 sin(gzzo) /lizi 

qz 

• 

 Jim 	
_ /3 L 1— —sm[q z (L +zo)]—cos[9,(L +zo)] 	• 

Lim qz  

4ire 2 	I 
The part of Eq. (C10) which depends on the system size L does not contribute to the single-ion potentials [see the discus-
sion following Eq. (C7)]. 
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B. SURFACE DEFECTS, INTERIONIC INTERACTIONS AND SURFACE SEGREGATION  

Main Achievements  

B.1 Ionic Interactions Near Simple Metal Surfaces  

We have presented a model for semi-infinite simple metals which does not 

require crystalline order or a single species, and thus is applicable to 

problems of defect energetics near the surface and random-alloy surfaces 

as well as ideal metal surfaces. The formulation is based on the use of 

ionic pseudopotentials and linear-response theory. An expression for the 

total energy was obtained which depends explicitly on ionic species and 

position. This expression is decomposed into a density-dependent term and 

single-ion and ionic pair-interaction potential terms. The single-ion 

potentials oscillate about a constant bulk value, with the magnitude of the 

oscillation decreasing rapidly away from the surface. The interaction between 

pairs of ions near the surface was shown to be a noncentral force interaction 

which differs significantly from the central-force bulk pair potential. The 

effect of quantum interference in the response of the semi-infinite electron 

gas to the ions is seen in both the single-ion and the pair-interaction 

potentials. Results are presented for the simple metals sodium, potassium, 

and rubidium. 
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B.2 Surface Structure Studies  

Relaxation at simple metal surfaces was studied via minimization of the 

total energy of a semi-infinite crystal. The expression for the total energy 

depends explicitly on the ionic positions, and is based on the use of pseudo-

potential theory and linear response. Electron screening is treated self-

consistently including exchange and correlation effects. From a systematic 

investigation of the energetics underlying metal surface relaxation, for 

the low-index surfaces of Na(bcc) and At(fcc) we concluded that to achieve 

quantitative surface structural predictions requires the use of the full total 

energy expression for the semi-infinite solid. Such an expression must main-

tain the three-dimensional nature of the system and account properly for the 

inhomogeneous surface electron density and the self-consistent response of 

the electron system to the ionic positions (screening). Multilayer relaxa-

tion was shown by us to be essential for quantitative structural predictions 

and the origins of the phenomena are discussed in detail demonstrating the 

relative effects of electrostatic terms and band-structure contributions. 

The results exhibit damped oscillatory multilayer relaxations (the relaxation 

being particularly pronounced for the open faces) with a period equal to the 

bulk layer stacking period and agree well with available structural deter-

minations obtained via the analysis of experimental data. 

It should be noted that this work motivated a number of experimental 

groups to investigate in great detail multilayer relaxation in several 

metal surface systems. In particular we mention the At(110) work (at 

Aarhus, Denmark headed by Professor D. L. Adams and that of the ORNL group 

(Drs. H. L. Davis, J. Noonan, and Professor F. Jona) which yielded results 

in agreement with our theoretical predictions. 



B-3 

Most recently we have embarked upon investigations of the structure 

of high-index surfaces. Oscillatory multilayer relaxation of both inter-

layer spacing and registry at certain high index metal surfaces were 

predicted by us via minimization of a simple model for the total energy of 

a semi-infinite crystal. Results for the (210) and (211) surfaces of bcc 

and fcc simple metals indicate that the relaxation parallel to the surface 

plane moves the surface layers toward more symmetrical configurations with 

respect to adjacent layers. In this context it is of interest to note 

that the multi-layer registry shifts ((lx1)-reconstruction predicted by our 

model have recently been observed via a LEED analysis of data from Ft(211), 

by F. Jona, P. Marcus and their collaborators. 
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Relaxation at simple metal surfaces is studied via minimizaton of the total energy of a semi-
infinite crystal. Systematic analysis of the contributions to the total energy demonstrates the im-
portance of a proper, three-dimensional treatment of electronic response. Multilayer relaxation 
is shown to be essential for quantitative predictions. Results for the low-index faces of Na and 
for AI(110) are presented. Good agreement with detailed low-energy electron diffraction data 
for oscillatory multilayer relaxation in A1(110) is obtained. 

Metal surface structural information is essential for 
the understanding and elucidation of a large number 
of surface phenomena. Consequently, major efforts 
have been devoted in recent years to the develop-
ment of surface structure experimental probes and 
their analysis. Progress in the formulation and im-
plementation of theories of structurally predictive ca-
pability has been limited, hindered by the complexity 
of the problem. Such theories, however, are of great 
importance since they can provide structural input 
parameters to be employed in the analysis of data and 
reveal the nature of the forces (and their relative 
contributions) which govern the atomic arrangement 
and in particular structural modifications (relaxation 
and reconstruction) which are expected (and indeed 
observed) at the surface region of materials. These 
observations have led to the recent formulation' of a 
simple electrostatic model which predicted, semiquan-
titatively, multilayer surface relaxation in both 'fcc 
and bcc materials dependent upon surface crystallo-
graphic orientation and other material parameters. 
The existence of multilayer relaxation phenomena 
has since been verified by several careful examina-
tions of low-energy electron diffraction (LEED) for 
several systems [e.g., AI(110, 2  Cu(110), 2. 3  V(100), 4 

 Re(0101) (Ref. 4)1. In this Rapid Communication 
we report the first results of calculations based on 
total energy minimization which provide quantitative es-
timates of metal surface structural parameters, eluci-
date the nature of forces governing the structure, 
multilayer relaxation in particular, and improve upon 
previous theories in several ways. We illustrate the 
theory by applying it to the low-index surfaces of Na 
and to Al(110) and obtain good agreement with re-
cent experimental data. 

The total energy ET is expressed as the sum of the 
ground-state electron gas energy E0, the Madelung  

electrostatic energy EM of point ions in the presence 
of a semi-infinite negative neutralizing background, 
the interaction of point ions with the surface dipole 
layer EDL, and of the Hartree and band-structure 
contributions, EH and E85, respectively: 

ErIXJ—E0+EmIX.) +EDLIXJ+EH[XJ +EBsIX.) . 

(1) 
In our calculation we retain the explicit dependence 

of the total energy on the crystalline structure. In 
particular the last four terms depend on layer posi-
tions, z nk — (n +kod, n = 1, 2  where d is 
the layer spacing in the bulk and A nd is the deviation 
from the truncated bulk location of layer n. EM  and 
Eris depend in addition on intralayer structure and on 
interlayer registry [AK will denote the shift in origin 
of the two-dimensional (2D) lattice between adjacent 
layers, and is characteristic to the exposed face]. The 
total energy is minimized with respect to A,,, 
n 	1, 2 , 	 N,. 

In the evaluation of the Hartree and band-structure 
energies we use the local form of the Heine-
Abarenkov model pseudopotential, 

1  ZVc(R,z), R 2 +z 2 >  rc2 

—Ze 2 u,Irc , R 2+ z 2„...5. r2 

where 

Vc(R,z) = — e2(R 2+ z2)-1/2 

Z is the valence, and ire  and re  are the pseudopoten-
tial parameters (chosen s  to fit the bulk compressibili-
ty and lattice parameter and used to determine vacan-
cy formation energies). [For Na (r,= 3.931a0), 
re — 2.076a0 and ue = 0.3079; for Al (r, = 2.064a0), 
r,— 1.388a0 and ue = 0.3894.] 

The dipole-layer energy is given by 

Vp(R,z)— (2) 

Eot 	 Z 	f d 2R f dz [p e(z) —  p + ( z)1Vc(R,z — z,, k ) . 	 (3) 

where fi is a 2D vector in the surface plane. The Hartree contribution, 

27 	6534 	 ©1983 The American Physical Society 
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= I f d2R f dz p e(z)[Vp(R,z - z nA )- ZV e (R,z - z nA)1 , 	 (4) 

constitutes together with EDP the first-order correc-
tion to the electron-jellium system (E0) due to the 
replacement of the positive background by the ionic 
pseudopotentials. In Eqs. (3) and (4) the back- 
ground density is denoted by p +(z)= (3/ 47rr,3 )0(z), 
where 0(z) is the Heaviside step function, and the 
ground-state electron density in the presence of 
p +(z) is pe(z). In our calculations, we employ the 
Lang and Kohn 6  electron density. 

In the most primitive model (the PITB model) 
the system consists of point ions in the presence 
of a truncated bulk electron density, ET1Xn} 

E0+Em {X.}• The addition of the dipole-layer and 
Hartree contributions (the DLH model) significantly 
improves the physical picture and predictive value by 
including a more realistic description of the inhomo-
geneous surface conduction-electron density and its  

first-order interaction energy with the ions. 
However, the DLH model of surface relaxation 

(sometimes termed the "frozen profile model") 
which has been used previously to predict multilayer 
relaxation' does not include the response of the elec-
trons to the presence of the ions. Attempts to fur-
ther improve on this model have all been limited to 
single-layer relaxation 2-9  and in certian of these an 
approximate one-dimensional potential has been 
used. 9  As is demonstrated by our results and their 
comparison to experimental data both multilayer re-
laxation and the full three-dimensional nature of the 
ionic system must be included in a proper and quanti-
tative treatment of surface relaxation. 

The band-structure energy (second order in the 
pseudopotentials) can be written as 

Eas(x.}-4 	irexpoo•Aroin—fdz p,;(G;z)W,,I(G;z) , 
G Mtn 

where G is the 2D reciprocal lattice vector, and W„1(G;z ) is the 2D Fourier transform of 
rind 

W„);(R,z)-- Vp(R,z - z„),9 
N 

- — 
1  f d2R'  Int-i)ddz'P+(z')Vc()11 	- z') 
A 

(NA is the number of ions in a layer). The induced (screening) electron density is linearly related 

Pr■ W;z) --= f dz'ao(G;z,z')EW,;(G;z')+0,;(G;z')] 

¢4(G;z).= f dz'g(G;z,z')Vc(G;z -z')p,;(G;f) 

(5) 

(6) 

to 	through 

(7a) 

(7b) 

where ao is the random-phase approximation polari-
zability and correlation and exchange are included via 
the local field correction g. The solution of Eqs. (7) 
is facilitated by using the infinite barrier response 
mode1, 1° . 11  and by the ansatz g (G;z,z') 

g(G;iz -z')) (Ref. 12). 
Including only the G = 0 contribution to E Bs [Eq. 

(5)] is equivalent to a one-dimensional treatment of 
the electron response obtained by averaging the ionic 
potential over the layers (we denote this 1D electron 
response model of Er by DLHBSO, to contrast with 
the model, denoted by DLHBS, in which the com-
plete E85 is included). 

Results for the surface structures of the low-index 
faces of Na and of A1(110) obtained via minimization 
of the total energies corresponding to the various 
models and those obtained by other theories;, as well 
as values obtained from experimental analyses, are 
summarized in Table I. Percent changes, A —n,n+1, of 
the interlayer distance between layers n and n +1 
from the bulk value, for differing numbers N, of 
layers allowed to relax, are given. Inspection of the 
results shows that relaxation is more pronounced for 

the open faces, and that multilayer relaxation is 
essential in all the models and systems considered. 
Note, for example, the change in sign in L112 obtained 
via DLHBSO for Na(100) and Na(111) when allowing 
for multilayer relaxation. [Although for N, = 6 the 
relaxations did not yet converge for Na(111), calcula-
tions with N3 - 9 in the PITB and DLH models did 
not significantly change the values of Al2 through 
0 34. ] We find damped oscillatory relaxations with a 
period equal to the stacking period [three for 
Na(111) and two for the other surfaces]. Compar-
ison of the results of the DLH and PITB models il-
lustrates that the interaction of the ions with the in-
homogeneous surface electron density tends to de-
crease relaxations, resulting from a reduced deviation 
of the first layer from its position relative to the bulk. 
The importance of the full inclusion of the band-
structure contribution is vividly illustrated by compar-
ing the results of the DLHBS and DLHBSO models. 
Agreement with detailed experimental results 2  for 
A1(110) is dramatically improved by using the com-
plete band structure (DLHBS) and allowing mul-
tilayer relaxation. These results also demonstrate 
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TABLE I. Surface relaxations for the low-index faces of Na and for AI(110) expressed in percent changes A n.n+i  of the in-

terlayer distance between layers n and n + 1 from the bulk value. N, is the number of layers allowed to relax. The larger 

value of Ns  is the one for which convergence is obtained. Negative values of A i.. +1  indicate contraction of the interlayer 

spacing. Results for the various models (see text) are shown in order of increasing complexity. Note the effect of the mul-

tilayer relaxations and their oscillatory character. 

Model 

N, 
Na (100) 

Al2 	A23 A34 N, 

Na(110) 

Al2 	A23 A34 

PITB 1 -7.0 1 -0.69 
9 -10.8 4.0 -1.2 9 -0.72 	0.03 -0 

DLH 1 -1.3 1 0.29 
9 -1.9 0.7 -0.4 9 0.15 	0.12 0.01 

DLHBSO 1 1.2 1 1.0 
4 -0.4 1.2 0.4 3 0.09 	0.25 0.82 

DLHBS 1 -3.6 1 -0.08 
4 -2.7 0.7 -1.0 3 -0.16 	0.08 0.01 

Expt. =-- 0 
(Ref. 	13) 

Ref. 8 1 -2 1 0.0 

Ref. 9 1 +1 1 -5.0 

Na(111) AI(110) 

Model Ns A l2 	A23 A34 A45 A56 A67 Ns 	0 12 	A23 A34 

PITB 1 -34 1 	-11 
9 -67 	-10 53 -40 6 18 9 	-26 	16 -8 

DLH 1 -13 1 	-4 
9 +3 	-35 27 0 -15 11 9 	-12 	8 -4 

DLHBSO 1 -10 1 	-5 
6 4 	-32 24 0 -12 10 6 	-14 	9 -2 

DLHBS 1 -20 1 	-14 
6 -8 	-29 23 -2 -11 8 6 	-10 	4 -3 

Expt. -8.4 	4.9 -1.6 
±0.8 	± 1.0 ± 1.1 

(Ref. 2) 
Ref. 8 

Ref. 9 1 -12.5 Could not 
find minimum 

that the multilayer relaxation phenomena predicted 
by the simple electrostatic models' (PITB and DLH) 
do occur when electron response is included properly, 
and is necessary for quantitative theoretical structural 
predictions. These observations resolve questions 

raised by several authors related to this issue. 8 ' 9  Fi-
nally, we note the magnitude" and sequence of 
predicted relaxations for Na(111) which would pro- 

vide an interesting challenge for experimental en-
deavor. 
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Abstract  

Relaxation at simple metal surfaces is studied via minimization of the 

total energy of a semi-infinite crystal. The expression for the total energy 

depends explicitly on the ionic positions, and is based on the use of pseudo-

potential theory and linear response. Electron screening is treated self-

consistently including exchange and correlation effects. From a systematic 

investigation of the energetics underlying metal surface relaxation, for 

the low-index surfaces of Na(bcc) and A2(fcc) it is concluded that to achieve 

quantitative surface structural predictions requires the use of the full total 

energy expression for the semi-infinite solid. Such an expression must 

maintain the three-dimensional nature of the system and account properly for 

the inhomogeneous surface electron density and the self-consistent response 

of the electron system to the ionic positions (screening). Multilayer relaxa-

tion is shown to be essential for quantitative structural predictions and the 

origins of the phenomena are discussed in detail demonstrating the relative 

effects of electrostatic terms and band-structure contributions. The results 

exhibit damped oscillatory multilayer relaxations (the relaxation being 

particularly pronounced for the open faces) with a period equal to the bulk 

layer stacking period and agree well with available structural determinations 

obtained via the analysis of experimental data. 



-1- 

Introduction  

Knowledge of the surface crystallographic structure of metals, i.e. the 

location of atoms at the surface and in the near-surface region, is of fundamental 

importance for investigation and elucidation of various metal surface 

properties and surface phenomena. This problem is of particular interest 

since the surface structure of metals is expected, and indeed is observed
1-5 , 

to deviate (both relaxation and reconstruction) from the truncated bulk 

atomic arrangement due to changes in atomic coordination and electron distri-

bution in the surface region. Consequently, major efforts have been devoted 

in recent years to the development of experimental probes and associated 

theoretical analysis and data reduction methods for the determination of 

the structures of clean surfaces and in the presence of adsorbed species 

b 	 lc 
(e.g., LEE D %io n scattering , Surface Extended Absorption fine structure 6,7 , 

SEXAFS, Glancing angle x-ray scattering
8
, Stimulated Desorption Ion Angular 

Distributions SDIAD
9 

to name a few). However, the interpretation of these 

experiments involves analysis models which in addition to the structural 

variables contain a host of non-structural parameters (inner-potential, 

energy-dependent projectile mean-free-path, scattering phase-shifts, dynamical 

response functions, vibrational mean-square amplitudes, vibrational correla-

tions,etc.). The optimization of the fit between the data and the corres-

ponding analysis model requires variation of both the structural and non-

structural parameters (which may be interrelated). In addition the analysis 

is often complex and time consuming due to the wide range of possible values 

for the structural parameters, often hindering an exhaustive search except 

for certain simple systems. Thus, it is both timely and important to develop 

surface structure theories of predictive capability to guide data analysis. 
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Moreover, such theories (and their interplay with experiments) provide a 

fundamental understanding of the microscopic origins of the structure. 

The development of such structure predictive theories, however, is 

hindered by difficulties in carrying out a self-consistent energy minimization 

for the coupled system of ions and conduction electrons. Semi-empirical 

methods, based on lattice static calculations with pair potentials derived 

semiempirically or using bulk pseudopotential pairwise interactions, are 

known often to yield results which contradict experiments, and their 

inadequacy has been discussed elsewhere.
10 These observations have led 

recently
10 

to the development of a simple electrostatic model in which 

structural minimization of the total energy of a semi-infinite metal predicted, 

semiquantitatively, multilayer surface relaxation in both fcc and bcc materials, 

dependent upon surface crystallographic orientation and other material para-

meters. The existence of multilayer relaxation phenomena has since been 

verified by several careful examinations of low energy electron diffraction 

(LEED) and ion scattering experiments for several systems (e.g., Al(110)
2

, 

Cu(110) 3 , V(100) 4 , Re(0101) 5). Nevertheless, the electrostatic model 10  while 

containing certain essential ingredients (i.e., contributions to the force 

on ions in the surface layers due to the delocalized, inhomogeneous, valence 

electron distribution and due to the electrostatic interaction between ions) 

did not allow for self-consistency of the combined electrons-ions system. 

It is therefore a "frozen profile" model in which the electronic response to 

variations in ionic positions is not included. The objective of the present 

study is to alleviate this problem by formulating and implementing a theory 

which allows for a self-consistent structure determination
12

. In the course 

of development of the theory we also provide a systematic and critical analysis 
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of the various contributions to the energetics of surface relaxation. The 

theoretical model is described in Section II and draws upon, when necessary, 

the detailed discussion of the electron response model given in the preceeding 

paper
13 

(which will be referred to as Paper I). The relaxation algorithm is 

described in Section III. Analysis of various models and sample results for 

the low-index faces of fcc and bcc materials (Al and Na) and comparisons to 

other studies and to experimental results are discussed in Section IV. 
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II. Theoretical Model 

A prerequisite for a self-consistent energy minimization structure 

determination scheme is an expression for the total energy of the system 

which depends explicitly on the ionic positions. In this study we consider 

surface normal relaxation, i.e., changes in layer spacings (no reconstruction, 

i.e., lateral, intraplane structural modifications are considered). Thus the 

position vector of the i-th ion in layer n is given by 

-0. 	A 
rn,i E 	+ ARn

,z
n
) ( la) 

where 

z
n
A 
 = zo 

+ (n 	
1  + 

n
)d 	n = 1, 2, ... . 	 (lb) 

2  

R
i 

is a 2D vector in surface plane (R. = ti
a
l 
+ m,a2'  where a1  and a2 

are 

the primitive translation vector of the 2D mesh), and ARn 
specifies the 

origin of the 2D mesh of layer n, 

DR = mod (n) AR 
nR • 

where nR 
is the repeat period of the layer stacking sequence and AR is the 

registry shift between adjacent layers (see Table I). The bulk layer 

spacing is denoted by d and And is the deviation of the z-coordinate of the 

n-th layer from its truncated bulk position (the superscript A on z n
A   serves 

to emphasize this dependence on A n). The constant z o  specifies the position 

of the "jellium edge" (our choice of zo  = 37118kF , where tkF  is the Fermi 

momentum is dictated by notational convenience in discussing the electron 

response, see also Paper I). 

We begin by writing the Hamiltonian for the conduction electrons in the 

presence of the ions as 

(1c) 
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E
T
(A

l'
A
2' 

...) = E° /N
A 
+ f d2 R f dz p ° (z) 	wX(R,z) 

n>0 

1 f .2 
+ 	f 	dz 	pnX(R,z) 	wX(lit-it.+A -It 	1,z) 

n>0 	m>0 j 	j n-m  

	

1 r 	r 	r .4 	, 
+ 	L 	L 	L

' 
 [-Z

2 
 V 

c 
(

1 	
1 

n-mnm 
z - z - ) 

j  n>0 m>0 j 

where pn
A  
(R,z) is the induced (screening) electron density due to the potential 

A 
w
n(R,z). The last term in Eq. (6) is the Coulomb interaction energy between 

the ions (the primed sum over j omits the term with = 0 when n = m). The 

induced electron density, p n,is taken to be linearly related to the potential 

wn , as expressed by the coupled integral equations 

p
x
(R,z) = f d2R' f dz' a

o
(1R.--12'1;z,z') (wx (R',z 7 ) +

x
(R 7

' 
 z')] , 

n  

ci►n(R,z) = f d
2
R' f dz' 	 p

n
A  

	

(R',z') V
c
(1iLit'l,z-z'). 	(7) 

In our calculation we use the infinite-barrier response model developed in 

Paper I, i.e., ao  is the RPA response function for electrons confined to the 

half space z 0. Exchange and correlation contributions are included 

through the function g (see Paper I, Section II.B). 

Using, the expression for w
n
A  
 given in Eq. (3), we rewrite the total 

energy as, 

ET(A l ,X2 , ...) = [E°/NA  - Ao f dz p ° (z) f dz' p+(z') f d2R Vo (R,z-z')] 

( 

+ 1 I 1 I ' [-Z2 V(Iit -Ait 	IzA-z X)] + f dz 10+(z)/d2R ZV(R,z-z X) 
n>0 	m>0 j 	 c 2 	 c j n-m ' n m 	 n 

+ 	f dz [10 (3 (z) - 10 +(z)] 
n>0 

A R ZVo(R,z-zn) 

(6) 
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+ 	f dz p ° (z) f d
2
R [V (R,z-zn

X  
) - ZV

c
(R,z-z)] 

n>0 

lr rrr 	f + 
2 
 —L L L f  d

2
R j dz p

n
X  
(R,z) wi):1(1-1t-ml,

-m 
 I, z) 

3  n>0 m>0 j 

= Eo + Ell{a} + EDL{X} + EH {X} + EHs {X} . 	 (8) 

The term denoted as E' in the above equation, which does not depend on ionic 

positions, consists of the ground state energy of the jellium system
14

, from 

which the electrostatic energy of the interaction of the ground state electron 

density, p° , with the positive background, p
+
, has been subtracted. The 

second term, E {X}, is the Madelung energy, i.e., the electrostatic energy 

of positive point-ions in the presence of a neutralizing negative background. 

The third term, 
EDL{X}' 

 is the interaction of point-ions with the difference, 

p° (z) - p+(z), between the jellium ground state electron density and the step-

truncated uniform bulk density. This term will be called the "dipole layer" 

energy. The fourth term, EH{X}, is the Hartree contribution, i.e., the 

difference between the interactions of the jellium electron density, p ° , 

with ionic pseudo-potentials, V
P' 

and with point ions. The combined contri-

butions from E
DL 

and E
H 

constitute the first-order correction to the total 

energy due to the replacement of the positive background by a lattice of ions 

represented by pseudo-potentials. The second order correction to the total 

energy, EHs {X} is the last term in Eq. (8), and is referred to as the band-

structure energy. Note that while. E
DL 

and EH  depend only on the positions of 

individual layers with no dependence on intralayer structure, EM  and E
BS 

depend on the relative positions of layers and their registry and on intralayer 
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structure. In the band-structure energy, EBS , these dependencies are due to 

the interaction of the induced electron density associated with the pseudo-

potential at a given lattice site with the pseudo-potentials located at 

other sites. In addition E
BS 

contains contributions from the electron 

density associated with a given site interacting with the ionic pseudo-

potential located at that site. Due to the symmetry breaking in the surface 

normal direction, in the surface region these on-site interactions depend on 

the z-coordinate of the site, and approach a constant value away from the 

surface. In addition the inter-site contributions to E
BS 

depend separately 

on the z-coordinates of the ion-pairs. Thus, unlike in the bulk , EM + EBS 

cannot be written as a sum over pair-potentials depending only on the relative 

positions of pairs of ions (see Paper I). 

To find the equilibrium configuration the total energy,E T (A1 ,X2 , 	),is 

minimized with respect to the layer relaxation parameters {a 
 n
}. We assume 

that in the relaxed configuration bulk arrangement is maintained beyond a 

certain number of layers, n s  (i.e., A
n = 0 for n > n s

). The number of layers 

allowed to relax, n
s
, is determined via investigation of convergence of the 

results vs. n
s
. The minimization conditions are: 

F(2) = 0 
	

for 2. = 1, 2, ... , n
s 
	 (9a) 

and 

ns  

(1)( 2,,m) (SX
m 

> 0 
	

for t = 1, 2, . 	n
s 
	 (9b) 

where {SA 
m
}are small but otherwise arbitrary and the force F(2.) is obtained 

from ET (X1 ,X2 , 	) via 

DE 

DA
t

T 
F(t) = - 	FM(2.)  + FDL (2.)  + FH(t) + 1.BS (2) ' (9c) 
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and 

a2E  

4)(1 ' n1) 	as ax = (1)1.1(2.'m) 	 + yt,m) + 4,Bs (J,m) , 	(9d) 
L m 

where the subscripts on the F's and clos specify the contributions obtained 

from the corresponding terms in the total energy expression, Eq. (8). 

Prior to a discussion of the relaxation algorithm we discuss in the 

following the evaluation of the various terms in Eq. (8) and Eqs. (9). 

Those readers who are not interested in such details should skip to Sections 

III and IV. 

(a) Madelung Energy, EM  

Using the identities 

-KIzI 
e 
+ + 2 	2 - 1 /9 	1 	2 (R +z) 	= 	d

2K  e  
2w 	. 	K 

where K is a 2D reciprocal space vector, and 

ems.  I  - (2A7) 	
2 

/ 
i 	 o + 

where A
o 

is the 2D unit cell area and G is a 2D reciprocal lattice vector; 

= 1 + mg2 

where b
1 
 and b

2 
are the primitive translation vectors of the 2D reciprocal 

mesh, the Madelung energy, EM, can be written as 

E 	2 2w r' 1 r 	reiG•AR,n-m e  
M = (Ze) 	L 2 L Ao 	n,m>0 

-Klz A
n-zm

AI  

(Ze)2 1 f d2K  (27) 2 
6( it)  y 

2w 	Ao n,m>0 

zm 	-Klz A-z'l 
2 

d 
71 f

z
, e 

 z
_ 
m 

(10) 

_Giz x_z xl n m  
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- (Ze) 2  --L f d2K 	2 K-1  
2 n>0  

where the prime on the sum over -G.  omits -G.  = -13. . Using Eq. (12) in the 

(12) 

definitions (9c) and (9d) we obtain (for details see Reference 10) 

n
s 	 GdIt+At-n-Ani 

M 	
c'

]
t-n 

signa-n)
- 

F 	= (Ze)
2 

-
2I 

d -2A + 	(1-6
t n

) L [e 
A
o 	t n=1 	

, 
 

Gd(t+A
t
-n

s 4-  
- 	e

-n
R
Gd 	

n
R 3 -1 1 fe iG•AR 3 2-m-ns e-Gdm 

in=1 

2 2n 	 ÷ ÷ 	
Gde

-m-Aml 
-A--  [62,,m-1] /, [e iG.AR ] t-m  Gde-  

6 

Gd(t+A -n )n Gd 	
ni, 

+ 6to42  + 1 Gde 	s [1-e R  ]-1  I—  [e i-6.Ait ]  t-n s  -m e 	- Gdm n I  

	

-G. 	
m=1 

n
s 	 2,-11 	-Gdit+A t-n-An li 

(14) + 	y 	[1-6n,t ][e 	] 	Gde 
n=1 

(b) Dipole Layer Energy, E„,  
ILL-• 

Substituting the expression for E 	(third term in Eq. (8)) in the 

definitions (9c) and (9d) we obtain 

FDL 	= 2nZe
2
d f dz [ p° ( ) - p+ (z)] sign(z-z Ad, 	(15) 

and 

DL
(t,m) = 4nZe2d2 d

t,m 
[p ° (z A) - p+ (z A)]. 	 (16) 

(13) 

and 

M
(t

' 	
= (Ze 

where p° (z) is taken from the calculations of Lang and Kohn 14  (three point 

Lagrange interpolation is used to obtain p c)  for the appropriate value of rs) 



and the integration is performed numerically. 

(c) Hartree Energy, El  

Substituting Eqs. (4) and (5) for Ve  and VI)  in the fourth term in Eq. (8) 

and performing the d
2
R integration yields 

z
A
+r 

2 r 	
c dz po (z1 	Tr  2_ tz_zA ) 2 1  

EH  = 727rZe 	L I 	 rc41z-z A l , ( 17) ' 2r I  c 	n 
n>0 zA-r 

n c 

which when used in Eqs. (9c) and (9d) yields 
A 
z+r t c 

	

FH
(t) = 27rZe

2 e 	
r 

d 	dz p° (z) iti = (z-z A) - sign(z-z A) 	(18) 
z -r A 	 c 
	, 

R c 

. 	 A 	 A 
OH(t,m) = -27rZe

2
d
2 

d i m  2p
o 
 (z i) + (uc-1) [p

o 
 (zerc) + p

o 
 (z t- e)] 

A+r z 
u t c 

- re  fly 	
dz (30 (z) 	. 

c Z -r t c 

(19) 

(d) Band-structure Energy, E  
BS 

Evaluation of the band-structure energy requires a self-consistent 

solution for the induced electron density,p
A (see Eqs. (7)). In the 

response model developed in Paper I 

A 
p
n
(r,z) = 0 for z < 0 , 

thus we can specify symmetrized quantities 

A 	 A wns 	n (R,z) = wA(R,IzI) and p
A 
(R,z) = P( Oz1) ns 	n  

A 	 + + 
and their 3D Fourier transforms wns(Q,qz)  , p

ns
A 

(Q,q
z
) where q = (Q,q

z
) is a 

3D reciprocal space vector, and ii.  is a 2D vector in the surface plane. 

A 
p
ns

(Q,qz
) is obtained as a function of q z 

for specified Q, n, and Xn 
as the 

(20) 

(21) 



-12- 

solution of a single one-dimensional integral equation , as discussed in 

detail in Paper I. This symmetrization allows us to evaluate E
BS 

entirely 

in reciprocal space. We obtain 

E = 1  1 1 [e I:G. •.6dt
in
-m l 

I dq P
A 

(G q ) w
A 
 (G,q ) . (22) 

BS 4A
o n,m>0 ÷ 

G 
2nz ns ' z 	ms 	z 

Since the sums over layers converge slowly as In-ml increases, we define 

an unrelaxed sublattice potential 

ti 

WMS (G2CIZ )  = 	w -  (G ' cl  
n (m) 

ns 
m = 1, 2, ... , n

R 
(23a) 

and the corresponding induced electron density 

ti 

P
ms

(G,q
z
) = 	pns (G,qz) , 

n(m) 
m = 1, 2, ... (23b)  

ti 

where 	means summation over the sequence n = m, m+n R, m +2nR, ..., where 
n(m) 

n
R 

is the layer stacking sequence period. We denote wns(G,qz)  and p ns(G,q
z
) 

with X
n 

= 0 by w
ns  (G,qz

) and p 
ns 

 (G,q 
z
), respectively in Eqs. (23). We also 

define layer difference quantities 

and 

Aw
x 
s  (G,q ) = w

x  ( ,q z 	w s 
 ) - 	(G,q 

z
) , n 	z 	n 	 n  

Apns
x 

(G,q ) = p
ns
x 

(G,q ) - pns (G,qz) • z 

(24a) 

(24b)  

Since wns(G,qz)  does not involve the variable A
n

, Wms(G,qz)  can be evaluated 

analytically, and P 
ms

A
s 

 (G,q
z
) and Ap are obtained from W

ms 
 (G,q

z
) and Aw

ns n  

in the same manner that p "  isis obtained from w A  , by solving the integral 
ns 

equation. The expressions for wns(G,qz)  and  W
ms 

 (G,q
z
) are derived in 

Appendix A. 
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Finally, using the above definitions in Eq. (22) we write the band-structure 

energy as: 

n 	 n
s 

I s 	 1 
E

BS 
= E

BS
(0) 

 + 	AE
BS
(1) 

 (n
'

A
n
) + -

2 	
AE

(2)
(n X •rn X ) 	(25) 

' 	' 	' 	, 
n=1 	 nm=1 BS 

	n 	m 
,  

where 

n 
„(0) 	1 r r

1
11-Tfl

-
1 
 f dq W (G ,q ) P (G a - - L L 	Le 

	

z ms ' z 	ns ' *z , (26a) BS 
o n,m=1 

n 
(1) 	 1 	R 	iZ•Ait ln-m 1 f dq  [W (G ,q  - ) AP '  (G ,q  - 

) 
AEBS (n ' An) 	7ir

o m=1 
 Ee 	 2ir 	*z ms 	z 	• ns 	z 

+ Aw
x 
s 
 (G,q 

 z 
 ) P 

ms 
 (G,q 

z
)1, 

n  
(26b) 

AE
(2)

(n X •rn X ) - 
1 r 

L le 	
1

n-m 1 f 	

z 

dq [twA ms 	z 	ns 	z (G,q) Ap(G,q) 
BS 	' n 	m 	4A 

o 
; 	 2n 

Aw
ns

(G,q
z) APms ( G ,c1z)1  • 
	(26c) 

Using Eqs. (25) and (26) in Eqs. (9c) and (9d) we obtain 

ns 

	

9 	(1 	 a 

	

FBS (k) = ax 	AEBS
) (Z,A

k 
 ) - 1=1 ll-dn,k 3X 1 	AE

(2)
(Z,A

k 
 ;n,A 

n 
 ) 

R 	 n 	
BS 

 

1  a 	E (2) (20, z A - 9A - BS 	2 ." 

and 

A2 
(I)BS (k,m) = 	-91  AE (1) (Z,A ) 	 AE (2) (k,A •A ) k, 

2 	BS 	k 	2 	2 	BS 	'  
0A 2, 	 0A 2,  

3 
	 AE

)
(2. 	Am  • + [1-6

2.m
1 

3

2

X 9X 	BS 	
X 	

) 
Z m 

(27) 

(28) 
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Note that AE
(2)

(X X -X 
'
X ) is actually a function of only one variable, 

BS 	'  

namely X 

The derivatives of AE
B
() 

and AE
BS
(2) 

 are obtained numerically as follows: 
S 

(i) Evaluate these functions for judiciously chosen values of the X's, 

(ii) fit with cubic or bicubic spline functions, 

(iii) obtain F
BS 

and 
(1)BS by taking derivatives of the spline functions, 

(iv) relax the layers (by the algorithm described in Section III), 

(v) calculate the energies for additional values of X's around the relaxed 

positions obtained in step (iv) (as necessary to obtain an accurate 

spline fit near the X's determined in (iv)), 

(vi) repeat steps (ii) - (v) until convergence is obtained. 
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III. Relaxation Algorithm  

The conditions for total energy Minimization,.with respect to the 

structural parameters (layer spacings for the case of normal relaxation), 

are given in Eqs. (9). We define the force vector e(ti) E (F(1), 	, F(ns)) 

and the relaxation parameter vector AT = (X 	, X
n
). The matrix elements 

s 
 

of the energy second-derivative matrix, t(0, are given as (t(A)) 9,m  = W,m), 

where (1)(2,m) is defined in Eq. (9d). The relaxation algorithm consists of the 

following steps: 

(i) Evaluate F( d_  ) and (1)(A ) for a given value of ,A i . 

ti 
A, A 	A 

(ii) Find the direction of steepest descent in the relaxation parameter 

space according to 

= (1) 1
(A ) F(A ) 

ti 
Ad 	A, Ad (2 9) 

(iii) Minimize the total energy with respect to displacements in the relaxation 

	

parameter space along the vector ki  + 	Xi , where the scalar t > 0 is 

found from the requirement 

	

Xi
T 
k(A + 	X) 	=0 
	

(30) 

and s = sign [Xi
T 

k(Ai)]. This insures that the extremum is a minimum. 

(iv) Increment ft according to A
i+1 ry 

= A
i  + 
	Yi , and repeat (i) through ry  

(iii) until Xi  = Q, in Eq. (29). 
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IV. 	Models and Results  

A. Models  

In order to investigate systematically the energetics of surface relaxa-

tion and to facilitate comparison with other studies we distinguish several 

models which will be introduced in order of increasing complexity and realism. 

a) In the most primitive model the system consists of point ions in the 

presence of uniform truncated bulk electron density. This model will be 

referred to as the PITB model. The total energy (see Eq. 8) of this model 

is given by 

E
PITB

{X} = Eo + E
M 
 {X} . 	 (31) 

b) Replacing the uniform truncated bulk electron density by the ground 

state electron density of the jellium system, o ° (z),yields the DL model in 

which the total energy given in Eq. (31) is supplemented by the dipole-layer 

contribution
, 

E
DL' 

E
L

T 
{X} = E' + EM {X} + E {X} 

D 	 (32) 

c) Adding the Hartree energy, EH , to E
DL 

(Eq. 32) constitutes the DLH 

model, 

EDLH {X} = E' + E
M 
 {X}  + E

DL
{X} + E

H
IXI • 	 (33) 

In this model the total energy is computed to first-order in the ionic pseudo-

potentials. This model is the electrostatic model investigated previously,
10 

sometimes referred to as the "frozen profile" model, since it does not include 

the response of the electrons to the presence of the ions. 
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d) The next level of approximation is to include the G = 0 contribution 

to the band-structure energy, E BS  (see Eq. 22). This is equivalent to a one-

dimensional treatment of the electron response obtained by averaging the ionic 

potentials over the layers. We include results for this DLHBSO  model since 

this reduction in the dimensionality of the electron response has been employed 

in several previous studies.
16

'
17 The total energy of this model is given by 

DLHBSO 
E
T 	

{X} = E
DLH

{X} + E 	{X} . 
BS,G=0 

(34) 

e) Finally, the model in which all contributions to second-order in the 

ionic pseudo-potentials are included is the DLHBS  model. The total energy 

of this model is given by Eq. (8). This model retains the full three-dimensional 

nature of the system. 

B. Results  

Prior to a discussion of our results, we specify in Table I the material 

input parameters used in the calculations along with face-dependent crystallo-

graphic information. The parameters of the simplified Heine-Abarenkov pseudo-

potentials (Eq. 5) were taken after reference 15, where they have been chosen 

to fit the material lattice parameter and bulk modulus. We have verified that 

with this choice of pseudo-potential parameters the cohesive energy agrees to 

within 0.3% with experimental values. In addition they have been used
15 

in 

calculations of vacancy formation energies and volumes, yielding results in 

good agreement with experiments. Results for interlayer distance relaxation, 

=  Ak k+1 	(Xk+1 
-X

k
) x 100%, expressed in percent change of the interlayer 

,  

distance from the bulk layer spacing value, d, for the low index faces of 

Na(bcc) and A1(fcc) as obtained via the various models are given in Tables 

II - IV. Negative and positive values of 
Ak,k+1 

correspond respectively to 
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interlayer distance contraction and expansion. To demonstrate the effect of 

the number, n s , of layers which are allowed to relax on the equilibrium 

structure we include results for several n
s 
values. In Tables II and III 

the results corresponding to the larger n
s 
value are those for which con- 

vergence with respect to increasing n
s 
has been obtained, with the exception 

of the results for Na(111) which are given in detail in Table IV. Results 

of previous calculations 10,11,16,18,19 and those obtained via the analysis 

of experimental data are included in Tables II and III. In comparing to 

previous calculations it should be noted that with the exception of the 

electrostatic model,
10 

all others have considered single layer relaxation 

only. Also the inclusion of multilayer relaxation in the analysis of 

experimental data is a recent development.
2-6 

From the inspection of the 

results in Tables II and III we note the tendency for larger relaxations at 

the more open faces (fcc(110) and bcc(111)). The necessity of allowing 

multilayer relaxation in each system and for all the theoretical models 

considered is clearly demonstrated. The multilayer relaxation results exhibit 

damped oscillatory relaxations, the period of the oscillations is equal to the 

period of the layer stacking sequence
, 
n
R 

(see Table I). 

The principal origin of the multilayer oscillatory relaxation lies in 

the 3D crystallinity of the system; i.e., in the intralayer structure and the 

registry shift between layers, and in the relation between intralayer struc-

ture and interlayer spacing. Thus the less open surfaces show smaller 

relaxations because the ions are more densely packed within the layer, i.e., 

the resulting potential has less variation both parallel and perpendicular 

to the surface plane since the layers are neutrally charged (ions plus 

negative background slab), and because the layer spacing is larger. These 
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effects of crystallinity appear in the Madelung and bandstructure contri-

butions: the Madelung force between adjacent unrelaxed (100) and (110) 

layers (nR  = 2) is attractive while the force between next nearest neighbor 

layers is repulsive, for (111) surfaces (nR  = 3) the interlayer forces 

oscillate with a period of 3 layers. The Madelung contribution is larger; 

the bandstructure terms reduce (screen) the Madelung interactions, but since 

the electron response is affected by the presence of the surface, this 

screening is complicated and gives rise to forces which are not simply 

related to the interlayer distances. 

The dipole layer and Hartree energy terms also give rise to oscillatory 

forces on the layers. However, these forces come from single-ion potentials, 

i.e., potentials which depend on the position of an individual ion with 

respect to the bulk through the interaction with the jellium electron and 

positive background densities p° (z) and p
+
(z) (see also the discussion of 

single-ion potentials in Paper I). These forces, FDL  and FH , are significant 

only for the topmost layer and, although they do oscillate due to the Friedel 

oscillations in p ° (z), they approach zero rapidly as the z coordinate of the 

layer increases. The principle effect of the dipole layer and Hartree 

contributions is to limit the displacement of the first layer with respect 

to the bulk. 

To show the effect of incrementing n s  we choose the system of Na(111) 

which of all the systems studied exhibits the largest relaxations. We first 

note that in this system, even with n s  = 9, the layer spacings in the 

bottom of the surface region have not converged to the bulk value. However, 

increasing n s  from 6 to 9 does not substantially change the first three 

(n
R 
= 3) layer spacings. We conclude that if n

s 
is a multiple of nR, then 

the first n
s 

- n
R 
layer spacings so obtained are reasonably close to the 

equilibrium values even though ns  is not large enough to obtain convergence 

of the deeper layer spacings to the bulk value. For this reason, and because 
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the inclusion of the bandstructure energy is relatively costly in computer 

time, we have limited n s  to 6 in the DLHBSO and DLHBS model calculations 

for this, Na(111), system. In addition, it is improbable that analysis of 

experimental data will be able to accurately determine the layer spacings 

of such deep layers. 

Also included in Table IV are results for the DL model, which are not 

included in Tables II and III. Note that the results of the DL model, 

which is an electrostatic model describing a system of point ions embedded 

in the Lang-Kohn electron density p° (z), qualitatively resemble the PITB 

model results, while the DLH model results are qualitatively closer to the 

results of the DLHBS model. Thus it is evident that a model in which the ions 

are treated as point ions is a poor approximation, and that the second-order 

(bandstructure, E
BS

) effects are small compared to the first-order (Hartree, 

EH) effects. Nevertheless, as will be discussed below, it is necessary to 

include the full 3D electron response properly in order to enable quantitative 

surface structure predictions to be made. 

We turn now to a discussion of the results summarized in Tables II and III. 

Comparison of the results obtained via the PITB and DLH models shows that the 

inclusion of the dipole-layer and Hartree energies reduces overall the magni-

tude of relaxation. This reduction results from the interaction of the ions 

with the inhomogeneous surface electron density, which tends to fix the position 

of the first layer with respect to the bulk. In one case, A2,(111), the 

inclusion of the Hartree term results in an outward displacement of the first 

layer and an expansion of the first interlayer spacing. In all other cases 

the Hartree force on the (unrelaxed) first layer is toward the bulk, thus 

does not oppose the Madelung force until the first layer is displaced inward. 
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In this context we emphasize the cooperative nature of the multilayer 

relaxation, i.e., comparing results (Tables II - IV) obtained with increasing 

numbers, n s , of layers participating in the relaxation, it is observed that 

the near-surface spacings change in response to the movement of added deeper 

layers. Comparison of the results obtained through the use of the electro-

static type of models (PITB and DLH) with those obtained via models which 

include electron screening (DLHBSO and DLHBS) demonstrates that the multilayer 

relaxation phenomena predicted by the simple electrostatic models does indeed 

occur when electron response is included. This observation resolves questions 

• raised by several authors relating to multilayer relaxation. 16,18  

While certain qualitative features are revealed by the electrostatic 

model, 	from the comparison of the results obtained via the various models 

with values extracted from experimental data we conclude that quantitative  

structural predictions require a minimization of the complete total energy 

expression (Eq. 8) which retains the full 3D nature of the system, i.e., the 

DLHBS model. In particular, employment of the 1D electron response, DLHBSO, 

model, does not yield adequate results. 

Further support to our conclusions regarding the importance of multilayer 

relaxation at metal surfaces is provided in Table V by the relaxation energies 

calculated using the DLHBS model for single (in parenthesis) and multilayer 

relaxation. The results demonstrate that the magnitude of the energy gained 

by relaxation is increased dramatically upon allowing for multilayer relaxation. 

In summary, we have derived an expression for the total energy of a 

semi-infinite simple metal which depends explicitly on the ionic positions. 

Using an efficient relaxation algorithm and the different models described 

in Section IVA, we have systematically studied the energetics underlying metal 

surface relaxation. From these studies we conclude that quantitative surface 

structural predictions require the use of the full total energy expression 

which maintains the 3D nature of the system and accounts properly for the 

inhomogeneous surface electron density and the response of the electronic system 
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to the ionic positions (screening). Furthermore, the vital role of multi-

layer relaxation in achieving structural predictions in good agreement with 

experiment is clearly demonstrated by our results. 
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Appendix A 

In this appendix we derive expressions for w
ns 	 ms 

(G,q
z
) and W (G,q

z
). 

The potential w
X(R,z) can be expressed in the form 

w1X1 (R,z) = f d2R'f dz' 	 (Al) 

where e p X (R,z) is some charge density (a local model pseudopotential can 

always be expressed in this form). From the definition of the symmetrized 

potential, 

L • 
w ' (G

' 
 q ) = f d2R f dz pX (R,z) lim f dz' cos(q

z
z') 

ns 	z 
1,-*03 0 

We substitute 

2 
R'e 	v(IR 	- 

c 
 

(A2) 

Vc (R,z) - 	1  3  f dz e-ikzz f d2R e 	 [-4Tre
2
/(K

2
+k

2
)] 

(2 .0 

into Eq. (A2) to obtain 

w
X 
s 
(G,q  z ) = I d

2
R e 	

X 
n  

dz pn(R,z) l im I(L,z;G,q z) 

	

L403 
	 (A3) 

where 

1 1, -4Tre2  [  1  I(L,z;G,qz) = — 271- f d-z 2G 	k-iG 	k 
z 	z 

1t +q 
	le

-ik
z
(L-z) 	-iq

z 
- e 

L 	ik
z
z 

z z 

	

ikz (L-z) iq
z
L 	ik

z
z 

k 
1  

[e 	 - e 	. 	(A4) 
 q 
z z 

The integral over kz  in Eq. (A4) is done by contour integration to give 
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4ff
2 

I(L,z;G,qz) = - 
2e 

—1 {2c°s(qzz) 	
e-Gz} 

 
G +q 

2 
4ffe 

2 {(qz
/G) sin(qzL) - cos(q zL)} e

-G(L-z)
-(A5) 2 

G +qz 

The second term in Eq. (A5) clearly vanishes in the limit L-).co for all G # 0; 

with G = 0 this term is independent of z (and of R) and the density p n(R,z) 

integrated over all space is zero. Thus there is no contribution to w
ns 

from this second term of Eq. (A5) and Eq. (A3) becomes 

4. 4. 

wn s' - 
 in
'qz' 

1 
 - 	2 

47e2  
2 

f dz f d2R eiG.R p X
(R,z) [2cos(q

z
z) - e-Gz ] . (A6) 

G +qz  

The density p
x
(R,z) is given by 

Pn(R,z) = p(R,z-zn) - (NA )
-1 
 [8(z-z

o
-(n-1)d) - 8(z-z

o
-nd)] 	(A7) 

where p(R,z) is the density which gives rise to the ionic pseudopotential 

Vp , so that Vp (G,qz) = [-4ffe
2 
 /(G

2 
 +qz

2  
)] p(G,qz). The 3D Fourier transform 

of the pseudopotential used in our calculations, Eq. (5), is 

Vp (G,qz) = [-411e2  /(G
2 
 +gz

2 
 )]((l-uc) cos([G2 
	1 /2 
+gz ] 	re) 

2 	 2 + uc  sinUG2 
 +qz ]

1/2 
 rc)/([G.

2 
 +qz ]

1/2  rc). 

Substituting Eq. (A7) into Eq. (A6) yields finally the expression for 

w
X s 

(G,q z), 
n  

(A8) 

-Gz
X  

2 	2 2 
wns (G,qz) = Vp (G,qz) 2cos(qz  zn) + 	 (47Ze /(G +q z)] e 	n  (A9) 

+ da-6(4wZe 2 /q:) 2cos(q z (z0+(n-4)d]) sin(q z d/2)/(qz d/2). ,  

z 
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From the definition of W 
ms 

 (G,q 
z
) and Eq. (A9) we have 

/ 
W ins (G,qz) = lim [Vp (G,qz) + d-6 ,-(5(4TrZe

2 
 /q-Z) sin(qzd/2)/(qzd/2)] 

N461° 

N 
x 2 1 cos(q 

z 
 [z

o 
 + (2t n

R 
+ 2m - 3)d/2]) 

t=1 

N -G[z +(tR+m-3/2)d] 
+ (1 - 	4) [47rZe

2 
 /(G

2 
 +q z

2  
)] 2 1 e 	

o 	
(A10) 

G,0 	
t=1 

The sums over 9_, in Eq. (A10) can be done. We . use the identity 

sin(Nq
z
n

R
d) 

2ff 
lim - 	 (All) 

sin(q
z
n

R
d/2) 	n 6(q -g ) cos(gz

n
R  

z  Ii4°° 	 g 	R 

where gz  = m(2Tr/nRd), m = 0, + 1, + 2, ... , giving finally the expression for 

W rro (G,qz), 

W
sios

(G
'
q

z
) = [V 

p 
 (G,q 

 z 
 ) + dG,0 (47rZe

2 
 /qz

2  
) sin(q

z
d/2)/(q

z
d/2)] 

x 

( 	

Tr 
cos(q [z +(2m-n

R
- 	

2 
1)d/2]) ---- 1 d(qz-gz) cos(g 

z  nR 
 d/2) 

z o 	 n
Rd  g 

 

-■ 

]

- sin(qz [zo+(2m-nR-1)d/2) [sin(qznRd/2)] -1  

4712e
2 

2 -G[z+(2m-l)d/2] 	-Gn
R

d 
+ (1 - 	4  

	

G,02
) 	

o 	
/[1 - e 	] . (Al2) 

G +qz 

z 
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Table I 

Input parameters: rs 
is the electron density parameter, Z is the valence, 

r
c 
and u

c 
are the pseudopotential core radius and level parameters, a is the 

lattice constant; A
o 

and d are the 2D unit cell area and bulk interlayer 

distance.'  1 1  
; and b

2 
are the 2D reciprocal lattice primitive translation 

vectors; n
R 
 is the repeat period of the layer stacking sequence, and AR is the 

shift in the origin of the 2D lattice of adjacent layers. 

metal 
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o 	

13'
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)71 	2I a  

u
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r
s 

(111) 	
jia2 

4 
411.  — — 	411. (112) 	3 -- (121)  
3a 
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r
s 

= 3.931ao 	
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Table II 

Summary of the surface relaxation results for the low index surfaces 
of Na obtained using the PITH, DLH, DLHBSO, and DLHBS models (see text); 
available experimental results and the results of other calculations are 
given in the columns labeled Exp. and Other, respectively. The results 
are presented as the percent change from the bulk value, Az 241, of the 
spacing between the layers numbered 2, and 2, + 1. Negative ?positive) 
values of Az , 271.1 indicate contraction (expansion) of the layer spacing. 
ns  is the number of layers which were allowed to relax (the results of other 
calculations, in the last column, are all for single layer relaxation). 

model: PITH DLH DLHBSO 	DLHBS EXP Other 

ns [Na(100)] 

1 A
12 

- 7.0 -1.4 . 1.2 	-3.6 A
12 = -2 

4 A
12 

-10.8 -1.9 -.4 	-2.7 (ref. 	18) 

A23 
4.0 0.7 1.2 	0.7 

012 = +1  

A 34 
-1.2 -.3 0.4 	-1.0 (ref. 	16) 

L 45 
0.2 0.1 0.4 	.8 

ns [Na(110)] 

1 012 -.7 -.3 1.0 	-.1 012 = 0 

3 012 -.7 -.2 0.1 	-.2 A
12 = 0 

(ref. 	18) 

(ref. 21) A23 
0.0 -.1 0.2 	0.1 A

12 
= -5 

1 34 
-.0 -.0 0.8 	0.0 (ref. 	16) 

n  [Na(111)] 

1 0
12 

-34 -13 -10 	-20 012 = -12.5 

6 A
12 

-63 2 4 	-8 (ref. 	16) 

A
23 

-10 -32 -32 	-29 

1 34 
46 25 24 	23 

1 45 
-30 -1 0 	-2 

A
56 

5 -11 -12 	-11 

A67 3 6 10 	8 



Table III 

Summary of the surface relaxation results for the low index surfaces 

of AZ. See the caption of Table II. 

model: PITB DLH DLHBSO DLHBS Exp Other 

ns [AZ(100)] 

1 A12 
-2.1 0.3 1.0 -.7 0

12 
= -7.5 

3 012 
-2.4 0.4 1.0 0.0 A

12 
= 0 (ref. 	16) 

A
23 

0.3 0.0 0.7 -.0 (ref. 	la) 0
12 

= -4.6 

A
34 

-.0 -.0 -.1 -.0 (ref. 	11) 

[AZ(110)] 

1 A
12 

-11 -4 -5 -14 012 
< -15 

4 A
12 

-26 -12 -14 -10 A
12

=-8.4+.8, (ref. 	16) 

A
23 

15 8 9 4 A23=4.9±1., e12 = 2.0 

1 34 
-7 -4 -2 -3 1 34

=-1.6+1.1, (ref. 	19) 

1 45 
2 1 2 0 (ref. 2) A

12 
= -16 

(ref. 	11) 

ns [AL(111)] 

1 0
12 

-.4 0.8 1.9 1.8 A
12

=.9±.5 0
12 

= 1 

3 A12 -.4 0.9 0.7 1.6 (ref. 	20) (ref. 	16) 

A
23 

0.0 -.1 -.1 0.1 0
12

=2.5 0
12 

= -1.6 

A
34 -.0 0.0 0.1 0.0 (ref. 	la) (ref. 	11) 



Table IV 

The effect of incrementing the number of layers allowed to relax, n s , 

on the interlayer spacings for Na(111). See also the caption of Table II. 

model: PITB DL .DLH DLHBSO DIMS 

n
s  [Na(111) ] 

1 A12 -34 -42 -13 -10 -20 
2 A 12 -56 -57 -9 -5 -10 

A
23 15 10 -2 -5 -10 

3 A12 -49 -45 0 1 -8 

A23 -6 -32 -24 -27 -26 
a
34 15 30 13 20 17 

4 A12 -56 -58 -3 1 -10 

A23 -14 -42 -26 -29 -25 

A34 40 65 23 25 22 

A45 -17 -23 -7 -5 -7 
6 A12 -63 -63 2 4 -8 

A
23 -10 -42 -32 -32 -29 

A34 46 73 25 24 23 

A45 -30 -33 -1 0 -2 

A
56 5 -5 -11 -12 -11 

A
67 3 10 6 . 10 8 

9 A12 -67 -69 3 

A23 -10 -43 -35 

A34 53 84 27 

A45 -40 -46 -0 

A
56 6 -7 -15 

A
67 18 34 12 

A78 -18 -23 -1 

A89 6 4 -5 

A910 0 2 3 



Table V 

Change in surface energy, tESR 
(R

y
/2D unit cell), resulting from surface 

relaxation in the DLHBS model. The value in parenthesis is the result for 

single layer relaxation. 

Na 	 At 

(100) 	(110) 	(111) 	 (100) 	(110) 	(111) 

-2.7X10
-4 	

-1.3x10-6 -3.7x10-3 -3.4x10
-4 -3.4x10

-2 
-3.2x10

-3 

(-2.2x10
-4

) (-1.6x10
-7
) (-2.5x10

-3
) (-6.8x10-5) (-2.6x10-2) (-3.1x10-3) 
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Abstract 

Oscillatory multilayer relaxation of both interlayer spacing and 

registry at certain high index metal surfaces is predicted via minimization 

of a simple model for the total energy of a semi-infinite crystal. Results 

for the (210) and (211) surfaces of bcc and fcc simple metals indicate that 

the relaxation parallel to the surface plane moves the surface layers 

toward more symmetrical configurations with respect to adjacent layers. 

This work was supported by the U.S. DOE under Contract No. EG-S-04-5489. 
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Theoretical predictions
1

'
2

'
3 and recent analysis of DEED data 4 have 

revealed damped oscillatory relaxations of the interlayer distances for the 

low index surfaces of several materials. While quantitative agreement 

(see results for A/ (110) in reference 1,2) between the theoretical predictions 

based on minimization of total energy of the semi-infinite crystal required 

the inclusion of a realistic treatment of the electronic response to varia-

tions in the atomic positions, the qualitative features of the multi-layer 

relaxation phenomena were described already at the level of a "frozen 

profile" model
3 (see also ref. 1,2) where band-structure contributions to the 

total energy are neglected. Motivated by these results and by the interest 

which they have created we embarked upon investigations of the structure of 

more open (higher index) surfaces of fcc and bcc simple metals. The major 

prediction resulting from our studies is that these less symmetrical surfaces 

undergo multilayer oscillatory interlayer'registry relaxation (which may be 

termed (1X1) reconstruction) in addition to multilayer oscillatory relaxation 

of interlayer spacings. These results are obtained via minimization of the 

total energy expression which depends explicitly upon the atomic positions, 

with three-dimensional relaxations (with no change of the 2D unit cell) 

allowed. Following a brief description of the physical model we present 

results for the (211) and (210) surfaces of Na (bcc) and AZ (fec). 

To facilitate our discussion we specify the position of the ith ion in 

layer it by 

ri,t  = Ri  + ZA1 + 	+ a2,t12  + [zo  + 	- 2 + Add]z, 	(1) 

= 1, 2, ... 



where the capital letters are 2D vectors in the surface (x-y) plane, and z 

is a unit vector perpendicular to the surface plane and directed into the 

semi-infinitecrystal;R.describes the 2D lattice of a layer, R i  = 11A1 

 + i
2
A
2 
where i

1 
and i

2 
are integers, A

l 
and A2 

are the 2D primitive trans• 

.} 
lation vectors, AR is the shift in origin (registry shift) between the 2D 

lattices of adjacent layers, and d is the bulk layer spacing. The quantities 

Al , A2 , d, and AR are given in Table I for fcc and bcc (211) and (210) surfaces .
5 

The difference between the equilibrium and truncated bulk location of the ions 

in layer 2, is given by 

trQ = a 1 + a 	+ (12 . 1,2, 1 	2,2, L 

To find the equilibrium configuration of the semi-infinite metal is is necessary 

to minimize the total energy with respect to alx a2 and A z  for all 2, > 0. 

We assume that Ar = 0 for 2, > N
s 

and use the method of steepest descent 
 

to minimize the total energy in this configuration space. 

To obtain the results discussed in this paper we have used two models 

for the total energy of the system, both models neglect the response of the 

conduction electrons to changes in ionic positions and thus are electrostatic, 

or "frozen profile", models 34 ' 2  The simplest model is the PITB model  in which 

the ions are represented by point positive charges and the conduction 

electron density is simply a truncated uniform bulk density, i.e., 

e
(z) =

+ 	 3 
(z) = (3/4ffr s ) 0(z-zo ) where r ,  is the electron density parameter. 

The total energy in the PITB model is 

E
PTITB

({a 
1Z' 

{a 2Z' 
{XZ }) = F

TB 
 + F

M ({a1Z"  1  {a22'{ }) 
	(2) 
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where Eo
TB  is the energy of the conduction electrons in the presence of a 

neutralizing positive background density p (z), and EM  is the Madelung energy, 

i.e., the electrostatic energy of point ions in the presence of a neutralizing 

negative background (p
+
(Z)). 

In the second model, the DLH model, the conduction electron density, 

p
e
(z), is taken to be the Lang-Kohn 6 	jellium" system ground state density, 

and the interaction of the ions with this electron density is obtained using 

the local form of the Heine-Abarenkov model pseudopotential (pseudopotential 

parameters are given in ref. 1). The total energy in the DLH model is 

ET
DLH 

 ({41 1 d,{41 22, },{Ad) = Eo
LK 
 + EDL({Ad) + ER({Ad) + Emaa lz },{a a },{ } ) 

(3 ) 

where E
LK is the jellium system electronic ground state energy, E DL 

is the 

interaction of point ions with the "surface dipole layer", i.e., with 

(p
e
(z) - p

+
(z)), and EH  is the Hartree energy which together with E DL  consti- 

tutes the first-order correction to the jellium system energy, Eo
LK  , due to 

replacing the positive background with the ionic pseudopotentials.
1,2 

Results obtained from the DLH model relaxation-(1x1) reconstruction 

calculations for the (211) and (210) surfaces of Na and AZ are presented in 

Tables II and III, respectively. These results were obtained with the number 

of layers in the surface region, Ns ,equal to the layer stacking sequence 

period, NR. We find that, as in the relaxation results for low index surfaces,
1-3 

multi-layer oscillatory shifts in the ionic positions occur. Since calculations 

performed with several values of N
s
< N

R 
have shown a dependence of the relaxed 

configuration on N
s
, a multi-layer calculation is necessary to get reliable 

results. In general, the inter-layer registry relaxation brings the near 

surface layers into a more symmetric position with respect.to adjacent layers. 
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Although the relaxation-reconstruction parameters alb,   a21' 
 and X

I 
have not 

 

in all cases converged to zero near the bottom of the surface region 

.No,the near surface layer results are not significantly affected when 

N
s 

is decreased by one or two layers. 

In the PITB model the relaxed configuration is independent of material 

properties (density, ion valence Z, and pseudopotential parameters), and 

depends only on the crystal structure (fcc or bcc). Results obtained from 

the PITB model are not presented due to space limitations. In general, the 

relaxation in this model is much larger than the DLH model results but the 

qualitative nature of the relaxed configuration is the same. Thus it is 

shown that, as in the case of normal relaxation of low index surfaces,
1-3 

the Madelung energy term is primarily responsible for establishing the trends. 

The principal combined effect of the dipole-layer and Hartree terms is to 

reduce the magnitude of the (inward) displacement of the surface layer. 

Thus, through coupling between layers and between the surface normal 

and parallel displacements, all components of Ar t 
for each layer are reduced 

by the inclusion of the dipole-layer and Hartree terms. 

A further improvement of the model will consist of the inclusion of 

electron response contributions. However, in our previous systematic study 

of normal relaxations of low index surfaces
1

'
2 
we found that the neglect of 

electron response did not significantly effect the principal relaxation 

trends. Indeed, after the completion of the work reported here, we have 

been kindly provided with the results of a LEED analysis of the Fe (211) 

surface in which similar relaxation-reconstruction trends were found.
7 

We gratefully acknowledge H. L. Davis for suggesting the investigation 

of the open surfaces. 



Table Captions 

Table I. 	Surface structure parameters: Al  and A2 
are the 2D primitive 

translation vectors, d is the distance between adjacent layers, 

AR is the registry shift between consecutive layers, a is the cubic cell edge 

length, and NR  is the layer stacking sequence period. 

Table II. Relaxation/reconstruction results of the DLH model for Na (211) and 

(210) surfaces. The change in position of ions in layer 2 is given 

by drt 
	1,t 
=a 	

A1 	2 
+ a,

,t  A2 
 + X

t 
 d2 . The quantities Aa

1,2' 
Aa

2,2' 

and AX
t 

give the relative shift in the positions of ions in adjacent 

layers, defined by Acciot  = [a12,44  -a 19 ] X 100%, etc. In each 

case the number of layers included in the surface region and allowed 

to relax is equal to the layer stacking sequence period, i.e., 

N
s 

= N
R

. 

Table III. Relaxation/reconstruction results of the DLH model for At (211) 

and (210) surfaces. See the caption for Table II. 



TABLE I 

I1 

A2  

d 

AR 

N R  

bcc (211)  

a 

a/21-6-  

1 1-  + 1 
1 	3 2  

6 

1 + 1  
2 1+  3A 2 

6 

bcc ( 210 ) 
	 fcc (210)  

A
l  

A2  

d 

AR 

N R  

a X 

a/21.-5' 

1 + 	7 -t; 2 A + 1 

10 

a X 

,5 a ;►  y a x - 2 

a/21-5 

7 + 	2 +, 
10 Al +  A2 

10 



TABLE II 

layer(0 (112, a A z 	dal (%) 

Na (211) 

Aa (%) 

   

0 .009 .115 0 -10.8 -21.1 

0 -.100 -.096 0 1 1.9 16.0 

0 .019 .064 0 -5.6 -11.1 

0 -.037 -.047 0 4.6 7.6 

0 .009 .029 0 -2.2 -4.5 

0 -.013 -.016 0 1.3 1.6 

Na (210) 

0 .011 .513 0 -4.0 -41.1 

0 -.029 .102 0 .7 -65.4 

0 -.022 -.552 0 4.1 88.3 

0 .019 .331 0 -2.1 -31.2 

0 -.003 .019 0 -.3 -29.9 



TABLE III 

layer(t) 
2,2. 

At (211) 

1 -.017 .449 0 4.0 -57.7 

2 0 .023 -.128 0 -3.1 -15.6 

3 0 -.009 -.284 0 1.0 51.4 

4 0 .001 .230 0 0.9 -28.2 

5 0 .010 -.052 0 -1.5 -1.4 

6 0 -.004 -.065 0 .4 6.5 

Al (210) 

1 .021 .042 .232 -.5 -1.0 -27.7 

2 .016 .032 -.045 -2.0 -4.0 -10.2 

3 -.004 -.008 -.147 0.7 1.5 25.9 

4 .003 .006 .112 -.2 -.4 -12.8 

5 .001 .002 -.016 -.4 -.8 -2.4 
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B.3 Surface Segregation  

Surface segregation in simple metal random binary alloys was studied via 

an electronic theory based on local ionic psuedopotentials and a linear elec-

tron response model appropriate for semi-infinite systems. Segregation of 

the larger species ions to the surface layer and (in most cases) a non-monotonic 

layer concentration profile are predicted. The segregation of the larger 

species ions to the surface layer is driven by single-particle terms (Hartree 

energy terms) in the total energy expansion. These single-particle energy 

terms are independent of coordination number and relative positions of the ions 

but depend on the position of the surface layer relative to the inhomogenious 

zeroth-order electron density at the metal surface, thus giving rise to crystal 

face specificity. The concentration in deeper layers is determined primarily 

by effective interionic interactions. The electronic theory was compared with 

a nearest-neighbor pair-bond model, and it is concluded that the pair-bond model 

is not applicable to surface segregation in simple metal alloys. The alloys 

considered in this work are composed of the alkali metals K, Rb, and Cs. Con-

centration profiles as functions of temperature are presented for the (100) and 

(110) surfaces. 

In current studies the theory is extended to bon-homovalent alloys 

(At-Ca, Ak-Mg and Ak-Li) of technological interest. In addition local ordering 

and effects due to elastic lattice distortions are investigated using analytical 

and molecular dynamics methods. 
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ABSTRACT  

Surface segregation in simple metal random binary alloys is studied via 

an electronic theory based on local ionic psuedopotentials and a linear 

electron response model appropriate for semi-infinite systems. Segregation 

of the larger species ions to the surface layer and (in most cases) a non-

monotonic layer concentration profile are predicted. The segregation of 

the larger species ions to the surface layer is driven by single-particle 

terms (Hartree energy terms) in the total energy expansion. These single-

particle energy terms are independent of coordination number and relative 

positions of the ions but depend on the position of the surface layer 

relative to the inhomogenious zeroth-order electron density at the metal 

surface, thus giving rise to crystal face specificity. The concentration in 

deeper layers is determined primarily by effective interionic interactions. 

The electronic theory is compared with a nearest-neighbor pair-bond model, 

and it is concluded that the pair-bond model is not applicable to surface 

segregation in simple metal alloys. The alloys considered in this paper are 

composed of the alkali metals K, Rb, and Cs. Concentration profiles as 

functions of temperature are presented for the (100) and (110) surfaces. 
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I. Introduction 

Surface segregation is the enrichment of the concentration one component 

at the surface of an alloy. This phenomena is of great interest since the 

surface composition affects a number of properties such as oxidation and 

corrosion, catalysis, chemisorption, wear, and electrical and mechanical pro-

perties of thin films. Recent experiments, employing modern surface science 

techniques such as Auger electron spectroscopy, 1 
ultraviolet photoelectron 

spectroscopy,
2 

x-ray photoemission spectroscopy3 low energy ion scattering,4 

 and atom-probe field-ion microscopy5 
have provided a wealth of detailed 

information on surface segregation systems. These studies present evidence 

for a dependence of the surface composition on bulk composition, surface 

crystallography, and temperature. In some cases multilayer segregation and a 

non-monotonic concentration profile
5 

(i.e. oscillations in the composition as 

a function of depth) are indicated. 

The possibility of surface segregation was predicted first by Gibbs
6 

using 

thermodynamic arguments where the reduction of the surface energy serves as 

the driving force. More recent theories are of the pair-bond type 7  in which 

surface bond breaking provides the driving force, and some theories include 

strain energy due to a mismatch in the atomic sizes
8 

in which case minimi-

zation of the bulk strain energy provides an additional driving force. Recently 

there have also been several efforts to develop electronic theories of surface 

segregation in transition-metal alloys based on the tight-binding approximation
9  . 

A different approach is that of Muscat
10 
 in which a cluster of muffin-tin 

potentials is embedded at the surface or bulk of a free.-electron gas; it was 

found in this study that the presence of the surface potential, rather than 

the number, positions, or species of neighboring atoms, plays the dominant 

role in surface segregation. 



Theoretical treatment of alloy systems using band-structure or density 

functional methods, sometimes in conjunction with the coherent potential 

approximation and its variants, have in general been employed for calculation 

of the electronic densities of states of nonperiodic solids.
11 

The 

application of these methods to calculations of formation energies of bulk 

alloys is quite difficult.
12 

Furthermore the use of these methods in 

studies of surface properties of metal alloy systems is prohibitively com-

plex, particulary for disordered systems. Thus it is desirable to construct 

a theoretical formulation which would allow systematic studies of surface 

properties and the physical origins of segregation in such systems. In the 

case of simple metal (sp bonded) alloys, pseudo-potential theory in con-

junction with linear response, or second-order perturbation theory, has been 

applied with notable success in calculations of bulk alloy formation energies 

(heats. of mixing): 13  

The purpose of this paper is to present an electronic theory of 

surface segregation in simple, i.e. sp bonded, metals. Our theory is based on 

the use of local ionic psuedopotentials and a linear response model appropriate 

for a semi-infinite metal.
14 The formalism is given in section II, and in 

section III we present and discuss the results (layer composition v.s. temper-

ature for different bulk compositions) and compare the predictions of our 

theory with those of a simple pair-bound type theory. We find that the 

dominant factors which determine the composition of the surface layer are 

"single-particle" terms, i.e. terms in the total energy expansion which depend 

on the position and species of an individual atom with respect to the in-

homogenous electron gas density in the surface region. In this respect our 

results are similar to those of Muscat
13 mentioned above. However, the 

composition of succeeding layers is determined primarily by interionic 
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interactions, and in some cases we find a non-monotonic concentration profile. 

The larger species always segregates to the surface layer, segregation is 

greater for (100) than for (110) surfaces, and depends on temperature and bulk 

composition. The present study is limited to homovalent alloys consisting 

of the alkali metals K, Rb, and Cs. Work now in progress will deal with more 

technologically important (and more difficult to treat theoretically) simple 

metal alloys such as Al-Li, Al-Mg, etc. In addition, we do not consider 

effects due to elastic strain and/or surface relaxation. These issues as 

well as local ordering effects will be discussed elsewhere. 



II A. General formulation 

Consider a semi-infinite solid solution composed of A and B atoms. The 

average concentration of species A is FE, and the concentration in the nth 

crystalline layer parallel to the surface is x n=RfAxn . The total (ground state) 

energy of the system will depend on layer concentrations, E T= ET (R,{Axn }). The 

heat of mixing is defined to be the difference between the total energy of the 

solid solution and that of a mechanical mixture of the pure species, 15 

	

Hm (37,{Axn }) = ET (37,{Axn }) - x ET (R = 1) - (1 - 	ET (;! = 0). 	(1) 

The free energy of mixing can be approximated by 

	

Fm(T,R,{Axn}) = Hm(R,fAxil l) - TSm(R,fAxil l) 	 (2a) 

where T is the temperature, and 

Sm (R,{Axn }) = - kBn C (R+Axdln(R+Axn) + (1-R-Axi )ln(1-R-Axn)] 	(2b) 

is the ideal entropy of mixing of the solid solution. In writing Eqs. (2) 

we have neglected any excess vibrational energy and entropy and we have 

assumed that the arrangement of species A and B within a given layer is 

completely random. 

The equilibrium concentration profile is found by minimizing the free 

energy with respect to layer concentrations, subject to the constraint that 

the average concentration, R, does not change. We define a surface region 

consisting of Ns  layers, and require the concentration to be uniform outside 

this region, i.e. 



xn= x + Axn for 1 < n < Ns, — — s (4a) 	. 

	

x
n
= x + Axb  for N 

s 
 +1 < n N

L 	
L 	 (4b) 

where NL  is the total number of layers (the limit NL  co will be taken). The 

constraint is 

-1 N  Axb  = - (NLN ) Es  Ax 
 s 	n=1 n 

The N
s coupled differential equations which determine the equilibrium con-

figuration (layer concentration profile) are 

BF 	 aF 
(N Ns) 

 1  m  _ 0 ,  i< n < N 
BAx — — s L 	nxia 

(5) 

(6) 

n 



II B. Psuedopotential-linear response formulation 

The calculation of the surface concentration profile from Eq. (6) requires 

an expression for the total energy which depends explicitly on the atomic 

species and their concentration in the surface region layers and in the bulk. 

We have previously obtained an expression for the total energy of a semi-

infinite simple metal using local model ionic psuedopotentials and linear 

response theory.
14 

In this section we will outline the theory presented in 

ref. 14 and apply it to the surface segregation problem. 

The semi-infinite metal is represented by an interacting electron gas in 

the presence of a truncated neutralizing positive background (jellium model), 

to which we add a term'which replaces the jellium positive background by a 

lattice of discrete ions. The electronic Hamiltonian is written as 

• 

H = H
o 
+ E w. 
i 1 
	 (7) 

where H°  is the many-body Hamiltonian of the electron-jellium system; the 

o + 
ground state energy, E

o , and electron density, p (0, of the semi-infinite 

electron-jellium system are given in the seminal study by Lang and Kohn.
16 

The potentials associated with individual ions, w.(r), are given by 

N4 . 100= I/ 	 r 	ri  ) - N
-1 

Z (E.)V 
1 	VP  (s. ; 	 1 1 

, 	
1 + 
	 (8) 

wherer31 . is the species of the ion at position r 1
., V

P 
 (E,r) and Z(E) are the 

bare ionic psuedopotential and valence charge, respectively, of the ion of 

species E, N = E.Z(E.) is the total number of conduction electrons, and V +() 

is the potential due to the neutralizing positive background charge. Thus, 

w.1
(r) is a neutral perturbation which results from replacing a part 	the 

positive background with an individual ion at site r i
. 

• 



Using the coupling constant integration method and assuming linear 

response, the total energy of the semi-infinite metal is given by 14 

o 3 o E
T 
= E+ 

i 
 idrp (r)w(r) j 

+4E .fdrpAw.(;) + EM 
 i,j 	1 (9 ) 

4 
where p i (r) is the screening electron density induced by the potential w. (r), 

and Em  is the Madelung energy of the ions. The major task in evaluating E T 

 for an arbitrary arrangement of ions of different species is to obtain a 

self-consistent solution for the screening electron densities, p
i
(r). Linear 

response theory yields 14 
a pair of coupled integral equations 

cl i.(0=d3r'03o (r
4 

 .r
4 	

0 ')Pg.') + i
(p)], 

-> 	-> 
cP i (;) = 	d

3r'[1 - G(r,r')] pi(r') e
2 
 /1r-r l i 

(10a) 

(10b) 

where a
o
(r
->  
,r') is the RPA response function andSI  .0) is the self-consistent 

effective potential due to p.(r), which includes exchange-correlation effects 

through the local field correction G (r
+  ,
+
r').

17,14 In our calculations we use 

the infinite barrier response model developed in ref.14, i.e. a o  is the RPA 

response function for a free electron gas confined to the half-space z > 0 

4- 
 and the local field correction G (r,r
4  
') is approximated by G (114- '1). The 

details of this response model are dicussed in ref 14. This response model has 

also been used to predict the relaxed structure of the low index surfaces of 

Al and Na
18 , yielding good agreement with available experimental results 

including multilayer relaxation in Al(110). 

For notational convenience the layer positions are given by 



zn= 	(n-)d, n = 1,2, ... 

where z
o 

= 3ff/81c.1 , ,e,k7  is the . Fermi momentum, and d is the interlayer spacing. 

In this response model p
n 	= 0 for z < 0, thus we are able to define 

symmetrized quantities 

= wi (R,Izi) 	 (12a) 

and 

P is (r) = p i (R,(z1) 	 (12b) 

where r = (R,z), R is a 2D vector in the surface plane. Using these symmetrized. 

quantities, we are able to evaluate the second-order (bandstructure) energy 

term entirely in reciprocal space. Thus, the third term in Eq. (9) becomes 

E
BS 

= T(270-3 jid3q e 115i RJ p is
()w

js(74
) 
	

(13) 

. wherep is Wandw.(ti) are the 3D Fourier transforms of Pis(t.)  and wI  Is 	 s (r), 

 and q =
z
) is a 3D reciprocal space vector. The screening electron 

density, p
is

(q) is obtained as a function of q
z 
for a given IQI, layer, and 

atomic species by solving a single one-dimensional integral equation, as 

discussed in ref. 14. 

We will now use Eqs. (9) and (13) in the surface segregation problem. 

The theory described in the following is similar to that developed by 

Inglesfield
19 for application to disorded alloys, except that we will allow 

for variations in concentration in the z direction. For the purpose of the 

present study we consider only homovalent alloys, Z(A) = Z(B)=Z, and assume 



• 

and 

that the ion positions are lattice sites of a truncated bulk crystal (no 

lattice relaxation at the surface and no distortion around impurity ions), thus 

E
m
, the madelung energy, is independent of tAx

n
1. However, we do not assume 

Vegarad's law, i.e. we minimize the total energy of a homogenous bulk random 

alloy with respect to density to determine the lattice constant and (bulk) 

total energy for a particular concentration x. 

It is convenient to define average and difference potentials for layers, 

= Y Vp  (A,(R2-z121) k)+ (1-7E) V (B, R -zn
2  
) ) 

- N IZ V (z) 

	

(7.t 	
2 	2 	2 

= V A 	
-z ) V B 	

- 2A 

	

A wn  ) 	p ( ,(R 	n 	) p ( 	zn 	)• 

where z
n 

(Eq. 11) is the z coordinate of the n
th layer. Symmetrized reciprocal 

4. 	4. 
space potentials Tirs(q), A 

 wns(q)' and their corresponding screening electron 
4- -->4- 	 4.  

densities Tns (q) and Ap
ns

(q) are defined in analogy to Eqs. (12) (with R.=0). 

Using the definitions given above, the second term on the rhs of Eq. (9) 

(the first order, or "Hartree" energy) is 

Eld3rp ° 6)wi() = riii (n)+Axn.O.EH (n)] i (n) (1) 
	

(16) 

(14)  

(15)  

where 

= fd3rP ° (z) 1.7in  (;" ) 

4  A Ell (n) =fd 3rP ° (z)Awn (r), 

(17) 

(18) 



and where i(n) specifies a lattice site in layer n. 

The third term on the rhs of Eq. (9), i.e. the bandstructure energy, 

Eq. (13), depends on the distribution of the atomic species within the layers 

as well as on the layer concentrations. Every site in a given layer is 

equivalent, i.e. each site in the layer sees on the average the same distribu-

tion of A and B species around it regardless of whether that site is occupied 

by an A or B atom. Thus the bandstructure energy can be written 

1 1 4 
E = -- 3 jrd3  E 	L- (0+ Ax Ap ("Cj.)] 
bs 4(2) 	q  n,m Pns - 	n ns 

4 4 	4 

x 	(4)+Ax Aw (4)] E' 	eiQ.(Ri(n) -Rj(m) )  
ms 	m ms 	i(n) ,j (m) 

+ -1 (270  3 jrd3q E { (R + Axn  ) ns  (1)+(1-R) APns (1) 4 	 n  

	

4 	 4 
x [Vias (q)+ (1-T0Awns

(q)] 

+ (1--Axn)E7ns(q)-"6Pns(q)3 

	
(19) 

x 	 Awns (•)11 E 	
(1). E1). 

The primed sum omits the j(m) = i(n) terms, and the second integral in Eq. (19) 

results from the fact that the potential at a given site, and thus the "self 

i 4 4 
interactionenergy" ..7.(r), cannot be expressed in terms of the 

averaged quantities for a layer. 

For a Bravais lattice, 

4 4 	4 
iQ.(R 	-R. ,) 	 (27)

2 	
4-  ± 

i(n),j(m) 	 A 
e 	i(n) 3(m) 	N E - 	6(Q-G)(s -0

n-m  
4 
G 

	A o 
(20) 
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where N = 
i

(1) is the number of ions in a layer, A is the area per 
(n)  

0 

surface atom, 	is a two dimensional reciprocal lattice vector, and s6 = eiG.AR 

where AR is the registry shift between adjacent layers. Using Eq. (20) and 

rearranging terms in Eq. (19), the bandstructure energy can be written as 

-1 1 	1 NE= 	 E 	ijidq 	g7n
s
(G

'
q
z

)%77
Ms

(G,q
z

) A 	bs 	4A
o 

n,m 27: 	 z G 

+ Ax
n
Ap

ns
(G,q )wms  (G,q z) 

z  

+ Ax 	(G,q )Aw (C,q ) 
m ns 	z ms 	z 

+ AxnAxmApns(G,qz)Awms  (G,q 
z
)} 

(270 -3  f d3q(X  + Axn) (1-7-Axn)Apns  (CI) Awns  (q) . 	(21) 

Substituting Eqs. (16-18) and Eq. (21) into the total energy expression 

yields 

-1 	— 	 1 
N
A 

E
T 
= N

A
-1 
 ET 

+ E fn  Ax n  + 2 n 
 E ,m nm Ax Ax n 	 n m 

(22) 

where the terms on the rhs are defined and discussed below: 

(a)
T 

is the total energy of a uniform (Axn
EO) semi-infinite solid solution 

of concentration x, given by 

1 	 1 o 
E
T 

= N
A 
E + E 

H
(n) 

n  

+ 	E (21TA ) -1  E jidq 	q 	ci ) 
4 n,m 	o 	 z AlS 2  Z MS 2  Z 
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 4 n 
E (27)-3 
	

d1 ca-(1-:70 	ns  (q)Awns
(q). (23) 

(b) f
n is the change in the total energy of the uniform solid solution 

resulting from replacing an atom of species B in the n-tb layer with an atom 

of species A. It can be regarded as an "impurity" formation energy and is given 

by 

fn  = AEH (n) + Aq s (n) + (1-231) AEs (n) 	 (24) 

where 

AEL s (n) = 1 	(27A0)  -1 E (sG)
n-m 
 idqz 

[ Apus 6. ' cl z )7ms clz )+-P-ns (46 ' q z °wins 	q z )  

(25) 

and 

AEs (n) = 1 (27)-3  f d3 qApns(4)Awns(6- 	 (26) 

The second term, AEb s
(n), depends explicitely on the average concentration 7: 

(through the definitions of w and p, see Eq. (13)), while AEH (n) and AE s (n) 

depend on if only through the density parameter r s  which determines p ° (z) and 

the lattice parameter and which is obtained by minimizing YT  with respect to 

density for a given Y. These two terms, AEH (n) and AE s
(n), depend on the z 

coordinate of the layer but are otherwise independent of crystal structure. 

For sufficiently deep layers (large n) fn  is independent of layer number and 

is equal to the bulk value, (bulk' 
which can be calculated for an infinite 

solid solution. Since in the bulk case the calculation can be done entirely 

in reciprocal space and there are no sums over layers, this serves as a check 

on the accuracy of the calculations. 
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(c) 	serves to couple the concentrations in layers n and m, and is given 
nm 

by 

1 

	

= -4- (27rA0)
-1 
	(s_) 	fclq 	"G.  q

' z 	a ) n-m 	z 	ns
( 	

wins ' 'z 

Ap
ms

(G,c1
z
)pw
nsz))  

- 2 (5
n,m  AEs (n) 
	

(27) 

where AE
s (n) is defined in Eq. (26). The only dependence of $ on R" is nm 

through the density parameter r,0.nm becomes negligably small for large 

in-ml, and for sufficiently deep layers Onm  is equal to the bulk value, 

(1)bulk(In-m1)' which also can serve as a check on the accuracy of the calculation. 

We now returii to the minimization of the free energy, or equivalently 

the free energy of mixing given by Eq. (2), with respect to layer concentration 

to find the surface concentration profile. Substituting Eqs. (1-3) and 

Eq. (22) into Eq. (6) yields a set of non-linear coupled algebraic equations 

for the Ax
n

, 

Ns  

	

0 = E 	Ax + (f -f 	) 
vv.]. nm m 	n bulk 

+ y In [(x + Axn) (1-70 tK(1-iZ-Axii) ] , 	 (28) 

1 < n < N . — — s 

In writing Eq. (28) we have taken the limit of an infinite number of layers, 

NL co, so that Ax, (see Eqs. (5)) is negligable in the entropy term, 

N/(NITN
s
) = 1, and Ns 

is large enough so that f n 
= (bulk 

for n > N. 



(N
s 
must also be large enough so that Ax

n 
= Axb  for n > Ns , see Eqs. (4) and 

(5)). The free energy of segregation, i.e. the difference between the free 

energy of the equilibrium configuration and that of the uniform solid solution, 

is 

A F = F (rc,{Ax}) - FC2T,{Ax=0}) 
seg m 	n 	

m 	n  

Ns 	 1 Ns 
= E Ax {-(f -f 	) + 1  E Ax 	} 

n=1 n 	n bulk 	2 m=1 m nm 

N 
+ kBT ns1

{ (l7 + Axn)ln Cfc + Axn)- x In (R) 

+ (1-.K-Axn)ln(1-R-Axn)-(1--K)1n(1-x)} (29) 
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II C. Pair-bond model 

Before presenting our results in Section III we will discuss briefly a 

simple version of the pair-bond enthalpy formulation and contrast it with our 

psuedopotential-linear response formulation. In the pair-bond model the 

cohesive energy of the alloy is written as a sum over bonds, 

E _ 
c - 2 I,j 

The cohesive energy is related to the total energy, E T , by 

Ec (2",{Axn }) = ET (SE,{Axc}) + N ETA + (1-30 ETB ] 

where E
I
A 

and E
I
B 
are the ionization energies of the A and B atoms. The heat 

of mixing is thus 

Hm  = Ec (4{Axil }) - x Ec (SE = 1) - (1-5-0 Ec  (5E = 0). 	(32) 

For a bulk alloy, assuming nearest neighbor interactions only, the cohesive 

energy is given by 

1  E
c 	

C 
= 	[x

_2  
cAA  + (1-30

2
c
BB 

+ 2i(1-50e ]. AB (33) 

where C is the coordination number. If c AA 
 and C BB do not depend on 5i" then 

they can be obtained from the pure species cohesive energy (experimental, or 

from Eq. (31) using a calculated ET), 

(30)  

(31)  

AA 
= -7,- E c 	= 1) '  EBB 

= 	Ec (x = 0). - 2 (34) 



The interspecies bond strength is written as 

e = 1 AA + e
BB  ) + e . AB 	2 
	 (35) 

For an ideal solution e = 0, but if the heat of mixing is known (again either 

an experimental or calculated bulk value), then 

c (ff) = [NC Y(1-x)]
-1 
 Hm(x). 

_ 	
(36) 

The surface segregation problem can be cast in the form of Eq. (28). We 

define the layer coordination number C to be the number of nearest neighbors 
nm 

that an ion in layer n has in layer m (or vice versa). The formation energies 

are 
• 

f = 7 c [(1-z50 	+ 	Ce -e )] n 	m=1 nm 	 2 • AA BB ' 

and the layer coupling matrix elements are 

= - 2 C e 
ma 

For a Bravais lattice C = C (In-ml); the only non-zero C for bcc (100) nm 

layers is C(1) = 4, and for bcc (110) layers the non-zero C's are C (0) = 4 

and C (1) = 2. Thus, for bcc (100) and (110) surfaces only the surface layer 

has a formation energy different from the bulk, and there is no coupling 

beyond adjacent layers. In addition, the same•layer coupling term for (100) 

layers is zero. The pair-bond model can be extended to include interactions 

beyond nearest neighbors and to allow for different bond strengths near the 

(37) 

(38) 

surface, but it is difficult to uniquely determine the additional parameters. 



In any case the pair-bond model cannot account for terms which arise from the 

direct and indirect interaction of a single ion with the inhomogenous electron 

gas (see ref. 
14 ) 



III. Results and Discussion 

In this section the theory developed in section II is applied to the simple 

metal alloys Rh_K 1-x' x Ca_K 
 1-x' 

 and Cs-Rb 
1-x  __. The choice of ionic psuedopotentials x 	 x  

and properties of the bulk alloys are discussed in section III A. In section 

III B we discuss the various contributions to the formation energy, f n, and 

differences. 
fn -fbulk' 	 x 

using the Cs_K 
1-7e 

 system as an example. We also discuss •  

the layer coupling matrix elements, 4 , and differences between bulk and 

surface terms. The results of surface segregation calculations, in the form of 

layer concentration, xn, versus temperature curves, are presented. 

III A. Bulk properties 

In general, the choice of a model psuedopotential is guided by the 

adequacy of the fit between certain calculated and measured material properties. 

When treating metal surfaces it is essential that the model yields the correct 

bulk lattice constant at zero pressure and reproduces, as well as possible with 

a limited number of parameters, the elastic properties of the bulk metal. In 

addition, if the model is applied to alloys, it is of utmost importance that the 

model also yield the correct total energy, and thus the correct cohesive energy, 

of the pure species. 

The simplified Heine-Abarenkov
20 model psuedopotential has been used by a 

13 
number of authors 	to calculate properties (heat of mixing, phase diagrams, 

etc) of Alkali metal alloys. We will use this form, 

V
p
(e.,r) = - Z(R) e

2
/r, r >r — c 

(39) 

= - Z(R) 
e2 

uc (e.)/rc 0), r<  rc (R), 

where ZO) is the charge of the ion of species 3 in units of the electron 
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charge, e (Z(6) = 1 for the allkali metals), and r c (6) and uc (R) are the core 

radius and depth parameters. These parameters, r c and uc
, are chosen to 

reproduce the lattice constant and bulk modulus of the pure species 21 and are 

given in Table I. The model psuedopotentials were used in ref. 21 to cal-

culate vacancy formation energy and volume, and yielded results in good agree-

ment with experiment. We have verified that these potentials give the correct 

lattice constant by minimizing the total energy of the pure species with 

respect to the electron density parameter, r s ; the resulting values of r s and 

total energy per atom, N
-1

ET
, are also given in table I. The calculated 

total energy values agree with experiment
22 (see Eq.(31)) to within a fraction 

of 1% in each case. We have also verified that that these psuedopotentials predict 

a bcc structure by comparing the total energies with those obtained by assuming 

fcc and hcp structures. 

The results of minimizing the total energy of the random alloy systems 

with respect to r s  are summarized in table II where we give results for 

concentrations 7= .1, .5, and .9 (these are the bulk concentrations used in 

the surface segregation calculations). The deviations from Vegard's law for 

volumes, r s (E) = 	r
3
(1) + (1-ii)r

3
(0)]

1/3
, are small and negative. The 

calculated values of the heat of mixing are all positive, due to the structure- 

independent contributions
23

; the bandstructure contribution can be positive or nega-

tive and are about an order of magnitude smaller than the structure independent 

contribution in each case. The quantity N
1 II

m
TR(1-7) shown in table II is 

proportional to the alloy potential, e, of the pair-bond model (see Eq. (36)). 

This quantity is zero for an ideal solution and is constant for a regular 

solution pair-bond model. The qualitative behavior of H m (X)is in argreement with 

other calculations
24

'
25 and with liquid alloy experimental results 

26 
 regarding 

the assymmetry of . Hm (X) about -5E = 0.5. In particular, Hy (50/5i- (1-7) is 

approximately a linear function of 7, except for the Cs-K system, and H m (7)/7(1--ii) 

increases with increasing concentration of the larger species. Yokokawa and 

Kleppa
26 have obtained approximate values of Bm 

for the solid solutions 



Rb .7K .3 , Cs .5K 5,  and Cs .5Rb .5  by extrapolation from their liquid metal 

experimental results, and these values are compared to the results of several 

calculations24 in Table I of ref. 25. The calculated values reported there are 

all much greater than the experimental values, as are ours. We get values of H
m 

which are about 2, 3.5, and 11 times the extrapolated experimental values for 

Rb
.7
k
.3, 

Cs
.5
k
.5, 

and 
 Cs.5Rb.5 respectively. However, our values are generally 

lower than the other reported calculated values. The discrepancy between cal-

culated and experimental values may be due to the assumption that the heat and 

entropy of mixing are independent of temperature which is made in ref. 25 in 

extracting the solid solution H
m 

from liquid alloy measurements as well as in 

the calculations, and the neglect of short range order and lattice distortion 

in the calculations. The "disordering" temperature, TD  fix), below which the 

free energy of a mechanical mixture (clustered, or segregated) of the pure 

species is lower than that of the random solid solution of concentration x  is 

given by 

T 	= 	CAxn=01)/Sm(i n=01). 	 (40) 

Values of TD (x) for alloys studied in this paper are also given in Table II. 

The assumption that the alloy is a random solid solution is invalid near and 

below T=T
D
(R). A correct treatment of the bulk heat of mixing and of surface 

segregation would require the inclusion of short range order in both the energy 

and entropy terms,
27 which has only been accomplished in the context of simple 

pair-bond models
28 

limited to nearest neighbor bonds. Available phase diagrams
29 

indicate that each of the alloy systems considered here (with the possible 

exceptions of K-Cs 30) form continous solid solutions near room temperature, 

but information regarding the presence and degree of short range order is not 

available. Our results for 
RbxK1-x 

and  CsxRb1-x 
are consistent with these 



experimental phase diagrams. The results for Cs x K1-x are not necessarily 

inconsistent with experiment since we have assumed a totally random solid 

solution, the inclusion of short range order would certainly lower the pre-

dicted clustering (i.e. segregating) temperature. 
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III B. Formation energies and layer coupling matrix. 

In this section we discuss the formation energies, f n  (Eq.24), and layer 

coupling matrix, (1)nm  (Eq.27).. Table III lists the numerical values of the 

bulk formation energies, fbulk' for the alloy systems which are treated in 

this paper, along with the contributions AEH , AEs , and AE' bs  (Eqs. 18,25, and 

26 respectively). The Hartree (first order in the ionic psuedopotentials) 

contribution, AEH, is by far the largest in magnitude, and is larger in the 

Cs-K alloys where the difference in ionic size (psuedopotential core radius, 

or pure species volume/ion) is larger than in either the Rb-K or Cs-Rb alloys. 

Also note that AE
H 

is positive and decreases as the concentration of the 

larger species increases. (bulk 
is defined to be the change in energy of the 

A
x
B
1-x 

alloy when one of the smaller B ions is replaced by a larger A ion. 

Thus we see that more energy is required to substitute a large ion in an 

alloy consisting primarily of smaller ions than vice versa. This is what one 

would expect based on elastic strain arguments, however the mechanism involved 

is different here since the Hartree energy is independent of structure (relative 

positions of ions). The "self interaction difference", AE s
, is also structure 

independent and is relatively insensitive to concentration (when expressed in 

units of e
2kF). The last contribution, AE: S

, is essentially a sum over 
b 

effective ionic interactions. This term may be either positive or negative 

and decreases (or becomes more negative) as the concentration of the larger 

species increases. 

The formation energy difference, fn 
- fbulk' 

is the driving force which 

gives rise to surface segregation. The dependence of this quantity on layer 

number and on alloy composition is illustrated in Table IV, using the Cs-K 

(100) alloy surfaces as an example. The formation energy difference is always 

negative for the first layer, indicating that the larger species will segregate 



to the surface. The principal contribution to this first layer energy differ-

ence is again the Hartree energy term and results from the fact that the 

"zeroth order" electron density, p° (z), is smaller at the position of the 

first layer. In the second layer the Hartree and second-order (bandstructure) 

contributions tend to cancel, and past the second layer all contributions are 

essentially zero, so that only the first layer has a significant formation 

energy difference. This is similar to the simple nearest neighbor pair-bond 

model in which f
n 

- f
bulk = 0 for n > 1 at low index surfaces. However, we 

emphasize again that the mechanisms involved are not the same. In our 

psuedopotential - linear response model the surface layer formation energy 

difference is determined almost entirely by the Hartree energy contribution 

which is independent of coordination number and depends only on r s  and on 

the position of the layer with respect to the zeroth order electron density, 

p
c
(z). In Table V we give the first layer formation energy differences for 

all the alloy systems considered. Note that the magnitudes for the (110) 

surfaces are smaller than those for the (100) surfaces. This is due to the 

fact that the (110) layer spacing, d, is larger and thus the z coordinate of 

the first (110) layer, Eq.(11), is larger, and p ° (z) deviates less from the 

bulk value at this position (see fig. 1 of ref. 14). Again, the prediction, 

based on the magnitudes of the formation energy differences, that segregation 

will be more pronounced at the more open (100) surfaces is the same as that 

of the pair-bond model, but for a totally different reason. 

The nature of the layer coupling matrix, (1) 11m' is illustrated in Table VI, 

using the Cs 5K5  (100) and (110) alloy systems as examples. The qualitative 

features are the same for all other systems. We note first that the magnitude 

of I) decreases rapidly as in-ml increases, and the matrix elements coupling 
nm 

layers near the surface differ from the bulk layer coupling matrix elements. 

The qualitative features of the layer coupling matrix can be understood 



in terms of interaction potentials by including interactions out to at least 

the second nearest neighbor shell and taking the bond strengths from the 

calculated effective ionic interaction potentials (pair potentials). The 

bulk layer coupling matrix elements are given in terms of the pair potentials 

by 

(i) 
Cam) 

 AA 	- 
(r(i)) 	UBB 

(r  (j) - 2 UAB (r (J) )] , 	(41) 
=  

where superscript (j) specifies the j-th nearest neighbor shell, C 0) is the n,m 

number of j-th nearest neighbors which an ion in layer n has in layer m, and 

Ua0 (r (3) ) is the value of the bulk pair potential between ions of species 

a and 0 evaluated for the j-th neighbor distance, r (i) . The bulk pair 

potentials for the 
Cs_K1-5C 

 alloys are shown in fig. 1 (see ref. 14 for a 
 

discussion of interaction potentials in the surface region). We get, for 

example from Eq. (41) for (100) layers using the bulk Cs5K5 
pair potentials 

and first and second nearest neighbor interactions, 4 n,n
='.00158, n,n+3! 

and 
4n,+2 

 .„.00039, compared to the values .00192, .00361 and .00037 given in 
h  

table VI, which were obtained from Eq. (27). It is necessary to include 

Interactions out to at least the fifth nearest neighbor shell to get reasonably 

quantitative agreement with the exact calculation [i.e. Eq.(27)]. 

Since the formation energy difference, f n - (bulk' 
is very small in 

magnitude for n > 2, we may expect that the concentrations of these deeper 

layers will be determined primarily by the coupling between the layer con-

centrations. The matrix elements coupling adjacent layers are positive, thus 

the heat of mixing, Hm
(-Z,{1x

n
}), may be decreased if succeeding layers have 

alternately positive and negative Ax's, resulting in a non-monotonic concentration 

profile. In fact, we find that in some cases at very low temperatures, T<<T D, 

the "concentration layering" propagates into the bulk. This bulk layering 

phenomenon is an artifact of the model, resulting from the neglect of local 
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order within and between layers and the fact that fluctuations in concentra-

tion are allowed only between layers parallel to the surface plane. The 

model is not valid for T < T
D  in any case [see the discussion following eq. 

(41)]. 

In contrast to our psuedopotential-linear response model, the nearest 

neighbor pair-bond model described in section IIC will always give a mono-

tonically decreasing concentration profile if the bulk heat of mixing is 

positive [see Eqs.(36) and (38)]. It is possible to obtain a non-monotonic 

concentration profile from a nearest neighbor pair-bond model if the bond 

5 strengths in the surface region are adjusted, ,7  however, this practice may 

be misleading since ordering may be favored in the bulk even though H m  is 

positive. In other words, the classification of alloys as either ordering 

or segregating, which is inherent to the pair-bond model, is not valid for 

simple metals, and is probably not valid for noble or transition metals, 

simply because the cohesive energy cannot be expressed as a sum over pair—

bonds. 



III C. Segregation Results 

In this section we present and discuss the results obtained by 

minimizing the free energy with respect to layer concentrations. We have 

included twelve layers in the surface region in each case [N
s 
= 12, see Eq.(16)]. 

Figures 2, 3, and 4 show the (larger) A species concentration in the first 

five layers of A
x_ B 
	(100) and (110) alloy systems Rb5K 1-7, CsTc1(1... , and 

Cs_Rb1-Te respectively, with = .1, .5, and .9. Results of the simple nearest  

neighbor pair-bond model (section IIC.) are shown in fig. 5 for comparison, 

using the Rb_K 1-x _ systems as an example. The reader is reminded that the x  

results for temperatures near and below the "disordering temperature", T N  TD 

 [Eq.39, Table II], are probably not valid due to the neglect of local ordering 

within and between layers, as discussed in the previous sections. Concentration 

profiles are presented in figures 6 and 7 as histograms of species A con-

centration versus layer number at temperatures T = 250,200, and 150 °K for the 

Rb_K 
1-x 

 (100) alloy systems; fig. 6 gives the psuedopotential-linear response 
 

results, and fig. 7 is obtained from the pair-bond model. 

The general features of the xn  vs T curves are in agreement with our 

expectations based on the formation energy differences, f
n 

- 
(bulk' 

and the 

layer coupling matrix, (1) , as discussed in the previous section: 
nm 

(a) The larger, A, species always segregates to the surface layer. 

(b) Segregation is more pronounced at the more open (100) surfaces, and 

increases with decreasing temperature. 

(c) Segregation is more pronounced in the Cs_K 1-x 
 systems where the 

difference in ionic size is larger. 

(d) In most cases we observe a non-monotonic concentration profile - the 

concentration in the second layer is•usually lower than the bulk 

concentration due to the high concentration in the first layer and the 

coupling between layer concentrations. However, in some cases [higher 

bulk concentration and/or (110) layers] the concentration profile 



decreasesmonotonically away from the surface. 

(e) At very low temperatures, T<<TD  (where the model is not valid), one 

can see in some cases the onset of bulk "concentration layering". 

(f) The pair-bond model gives a monotonically decreasing concentration 

profile, over-estimates the concentration in the surface layer, and 

greatly over-estimates the change in free energy upon segregation. 
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IV. Conclusion 

We have developed an electronic theory of surface segregation in simple 

metal alloys which is based on the use of local ionic psuedopotentials and 

linear response, and have applied this theory to the binary simple metal 

(solid solution) alloys composed of K, Rb, and Cs. We conclude that the 

segregation of the larger species to the surface layer is driven by single 

particle terms in the total energy expansion, i.e. by the Hartree energy 

terms (1-st order in the psuedopotentials) which are independent of coordina-

tion number and relative positions of ions and which depend only on the 

position of the surface layer with respect to the inhomogenous zeroth order 

electron density in the surface region. The concentration in deeper layers 

is determined primarily by the coupling between layer concentrationswhich 

results from interionic interactions and which may give rise to a non-

monotonic concentration profile. By comparing our electronic theory with a 

simple nearest-neighbor pair-bond model, in which the bond strengths are 

obtained from bulk thermodynamic data, we conclude that the pair-bond model 

is not applicable to simple metal alloy systems; the reason being that the 

cohesive energy cannot be expressed as a sum over pair-bonds. We speculate 

that the pair-bond model may not be reliable for noble or transition metal 

alloy systems for the same reason; this is supported by the results of 

Muscat10 , and by the results of Connolly and Williams
31 regarding many-body 

interactions and the heat of mixing in transition metal alloys. Experimental 

data on surface segregation in the alkali metal systems considered in this 

3 2 
paper is not currently available; the theory can be adapted to other (non- 

homova].ent) simple metal systems such as At-Li, Al-Mg, etc., and the same 

mechanisms discussed here must certainly be involved. 

In the current version of the theory surface relaxation
18 , lattice 

distortion due to size mismatch, and effects due to local (short range) ordering 

have not been considered. The inclusion of surface relaxation/lattice distortion 



effects would probalby increase the surface layer concentration of the larger 

species due to the fact that there is a greater freedom to relax the lattice 

in the surface region
8 . Short range order can in principal be included using 

the cluster variation method
27'28 .  
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TABLE I. Parameters used in the calculations: r and u c 
are the psuedo-

potential core radius and depth 	(see Eq. (39)), r s 
and N

-1
E
T 

are the electrons 

density parameter and bulk total energy per particle. 

Metal rc 
u
c 

rs N
1
E 

K 3.033a
o 

.5723 4.861a
0 

-.3891Ry 

Rb 3.551ao 
.7273 5.196ao 

-.3687Ry 

Cs 4.112ao 
.8079 5.625ao 

-.3449Ry 
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TABLE II. Bulk alloy results: r
s 

is the electron density parameter, E
T 

is the 

total energy, Hm  is the heat of mixing and TD  is the calculated "disordering" 

temperature ;  (Eq. 39), and Tm  is the melting temperature. 

A-B 
x 1-x 

r N 1E N 1H [R-(1-ip TD 
Tm 

Rb
1
K
9 

Rb
5
K
5 

Rb
9
K
1 

Cs1K9  

Cs
5
K
5 

Cs
9
K
1 

Cs1Rb9  

Cs
5
Rb

5 

Cs
9
Rb

1 

4.896ao 

5.034 

5.165 

4.948 

5.267 

5.556 

5.242 

5.418 

5.584 

• 

-.3869Ry 

-.3785 

-.3706 

-.3839 

-.3652 

-.3487 

-.3662 

-.3563 

-3.471 

.0018Ry 

.0017 

.0016 

.0092 

.0072 

.0063 

.0020 

.0019 

.0017 

80°K  

95 

70 

400 

410 

270 

90 

105 

75 

3300K 

310 

310 

283 

283 

278 

300 

282 

293 



TABLE III 

(24-26)). 

given in 

. Bulk formation energy, 

The units of energy are 

Table II. 

(bulk = H 
AE_+(1-2TOAE s+AEbs

(see Eqs. (18) and 

e
2
kF where 1c

F  = (97r/4) 1/3 s 
and rs(X)  is 

AB 
x 1-x 

AEH 
AE s 

AEI bs fbulk 

Rb1
K
9 

Rb
5
K5 

Rb9
K1 

Cs1K9 

Cs
5
K
5 

Cs
9
K
1 

.0262(e
2
kr) 

.0248 

.0236 

.0673 

.0594 

.0534. 

.0371 

.0347 

.0327 

-.0018(e
2
kF ) 

-.0018 

-.0017 

-.0076 

-.0074 

-.0071 

-.0024 

-.0024 

-.0024 

.0029(e
2
kF) 

.0017 

.0006 

.0039 	' 

.0002 

-.0026 

-.0004 

-.0012 

-.0019 

.0277(e
2
kF) 

.0265 

.0255 

.0651 

.0596 

.0565 

.0347 

.0335 

.0327 

=.0217 Ry 

=.0202 Ry 

=.0190 Ry 

=.0505 Ry 

=.0435 Ry 

=.0390 Ry 

=.0254 Ry 

=.0238 Ry 

=.0224 Ry 

• 



TABLE IV. Contributions to the formation energy difference for Cs_x 
K
1-TL 

 alloys, 

(100) layers; [fn-fbulk] = A[AE H (n)] + (1-2) A[Aqs (n)] where A[AEH (n)] = 

AE
H

(n)] = AE
H
(n)- AE

H
(bulk), etc. (see Eqs. (18) and (24-26). The units of 

energy arc e
2
kE , where kF  = (97r/4)

1/3
/r

s 
and rs

(TO is given in Table II. 

x n A[AEH (n)] A[AE s (n)] A[AEL(n)] [f
n
-f
bulk

] 

.1 1 -.0122 .0007 +.0000 -.0116 

2 -.0012 .0000 -.0014 -.0001 

3 -.0000 ' -.0000 -.0001 -.0002 

4 -.0001 .0000 -.0000 -.0002 

5 .0002 .0000 -.0001 -.0000 

6 -.0000 -.0000 -.0001 -.0001 

.5 1 -.0098 .0006 +.0011 -.0087 

2 .0010 .0001 -.0013 -.0004 

3 .0001 -.0000 -.0001 +.0000 

4 -.0002 .0000 -.0000 -.0002 

5 .0001 .0000 -.0001 -.0000 

6 -.0000 -.0000 -.0000 -.0000 

.9 1 -.0080 .0005 +.0018 -.0068 

2 .0008 .0001 -.0012 -.0005 

3 .0002 -.0000 -.0002 +.0000 

4 -.0002 .0000 -.0000 -.0002 

5 .0001 .0000 +.0000 +.0001 

6 -.0000 -.0000 -.0000 -.0001 



TABLE V. First layer formation energy differences, (see Eqs. 24,28). 

Alloy: 
Rb1( 

1-'17 
Cs_1( — x 1 -x 

Cs_Rb _ 
x 1-x 

(100) 	"R: = .1 -.0038 Ry -.0090 -.0039 

surface .5 -.0033 -.0063 -.0033 

.9 -.0034 -.0047 -.0027 

(110) .1 -.0018 Ry -.0042 -.0017 

surface .5 -.0015 -.0027 -.0013 

.9 -.0012 -.0017 -.0010 



TABLE VI. Layer coupling matrix, cl) =¢
mn 

for Cs,K , (100) and (110) surfaces. 
5 

The energy unit is e 2kF . 

n 
1 2 3 4 5 bulk 

(100) surface 

0 0.00329 0.00180 0.00196 0.00194 0.00190 0.00192 

1 0.00388 0.00348 0.00367 0.00361 0.00364 0.00361 

2 0.00050 0.00033 0.00039 0.00036 0.00038 0.00037 

3 -0.00004 -0.00918 -0.00003 -0.00001 -0.00002 -0.00001 

4 -0.00006 -.0.0 -0.00004 -0.00001 -0.00003 -0.00002 

5 -0.00002 0.0 -0.00001 -0.00001 -0.00001 -0.00001 

(110) surface 

0 0.00611 0.00473 0.00465 0.00464 0.00465 0.00466 

1 0.00264 0.00267 0.00267 0.00267 0.00266 0.00266 

2 -0.00008 -0.00008 -0.00008 -0.00007 -0.00007 -0.00007 

3 -0.00001 -0.0 -0.0 -0.00001 -0.0001 -0.0 

4 -0.00002 -0.0 -0.0 -0.0 -0.0 -0.0 

5 -0.00001 -0.0 -0.0 -0.00001 -0.0 -.0.0 



FIGURE CAPTIONS  

1. Bulk pair potentials, U(R),.as functions of interionic distance, R, 

in the Cs_K 
1-5C 

 alloys for = 0.1, 0.5, and 0.9. Energy units are 
x  

10 3Ry. The distance, R, is in units of the bcc first nearest neighbor 

distance R (1)
; the ratios of the first five nearest neighbor distances 

to R (1) 
are: 1,447i = 1.15, Nms = 1.63,T115 = 1.91, and 1r12/3 -= 2, 

respectively. 

2. Layer concentration, x
n 
 (Eq.(4)], and change in free energy upon 

segregation, 
AFseg 

 (Eq.(29)], as functions of temperature for 

Kb5tKi.  alloys with bulk concentration 7) = 0.1, 0.5, and 0.9. The 

numbers 1 through 5 adjacent to the x
n 
versus T curves specify the 

layer numbers, n. These results are obtained from the psuedonotential-

linear response model explained in sections IIA and B, with N
s
=12 (the 

number of layers in the surface region). 

3. Layer concentration, xn
,.and change in free energy, AFseg' 

as functions 

of temperature for Csxalloys, see the caption of fig. 2: 

4. Layer concentration, x
n
, and change in free energy, AFseg' 

as functions 

of temperature for Cs_Rb1-3T  alloys, see the caption of fig. 2. x  

5. Layer concentration, xn
, and change in free energy, AFseg' 

as functions 

of temperature for Rb_K 
1-"K 

 alloys, obtained from the pair-bond model  
x  

explained in section IIC. In this pair-bond model the layer concentrations 

decrease monotonically with increasing layer number (the x n 
versus T 

curves are not labeled with layer number in this figure). See also the 

caption of fig. 2. 

6. Examples of layer concentration profiles obtained from the psuedopotential-

linear response model: the (100) surfaces of RbiC i_a_ alloys with bulk 

concentration TC= 0.1, 0.5, and 0.9 for temperatures T= 250, 200, 150 °K. 

7. Examples of layer concentration profiles obtained from the pair-bond model. 

See also the caption of fig. 6. 
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B.4 A Model for Atomic Hydrogen Physisorption  

A variational solution to a model problem of a hydrogen atom near a sharp 

planar surface of a semiinfinite substrate was studied. Results are presented 

for the ground and excited eigenstates and dipole moments of the hydrogen atom 

as a function of distance from the surface for two models: (a) a system in 

which the half-space occupied by the solid is represented by an infinite poten-

tial step, (b) a system in which the semi-infinite substrate is perfectly 

imaging subject to a boundary condition that excludes the atomic electron from 

the substrate. Model (b) is considered as an idealized model for physisorption, 

where the exclusion of the electron simulates the exchange repulsion originating 

from the overlap of the atomic and substrate electrons. Results for the 

physisorption holding potential as a function of distance from the plane are 

presented. 
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• Abstract  

A variational solution to a model problem of a hydrogen atom near 

a sharp planar surface of a semiinfinite substrate is studied. Results 

are presented for the ground and excited eigenstates and dipole moments 

of the hydrogen atom as a function of distance from the surface for two 

models: (a) a system in which the half-space occupied by the solid 

is represented by an infinite potential step, (b) a system in which 

the semi-infinite substrate is perfectly imaging subject to a boundary 

condition that excludes the atomic electron from the substrate. Model 

(b) is considered as an idealized model for physisorption, where the 

exclusion of the electron simulates the exchange repulsion originating 

from the overlap of the atomic and substrate electrons. Results for the 

physisorptiori holding potential as a function of distance from the plane 

are presented and discussed. 



Boundary conditions, as utilized in Quantum Mechanics, are 

usually dictated by the requirements of physical admissibility. For 

example, when considering bound states the requirement that the 

normalization integral converge leads to the consideration of only 

those solutions which are regular at the origin and are zero at in-

finity. For scattering states a wave function which tends to in- 

. finity as r goes to infinity corresponds to a state that has no 

physical meaning and must be discarded. More generally it is known 

that a partial differential equation possesses several arbitrary 

constants and it is the specification of the value of the solution, 

or it's normal derivative, on the boundary that yields the values of 

these constants. 

One of the first uses of a boundary perturbation, that is a 

change in the boundary conditions, to model a physical situation was 

a calculation of the energy levels of a compressed hydrogen atom. 1 ' 2  

In this calculation the effect of very high pressure on atomic 

hydrogen is taken into account by requiring that the wavefunction 

vanish - on a sphere at some finite distance from the proton. This 

type of calculation is, of course, only an approximate one for it 

only indicates the effect of repulsive forces at very high densities; 

but of course this is the main attraction of such an approximation 

in that it replaces the complicated set of interactions with only a 

change in the boundary conditions, which in this case is exactly 

solvable. 3 
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By changing the new boundary surface from the sphere of the 

previous example to an infinite plane surface, there results a situa- 

tion that has been used to model several physical systems. In particular, 

the requirement of a vanishing wavefunction on a plane has been used
4 

to 

represent the exchange repulsion of atomic hydrogen physically ad- 

sorbed onto a surface. 

Perhaps a more realistic use of this boundary condition' in the 

modelling of a physical problem arises in the effective mass theory 

of shallow donor impurities near the surface of a semiconductor or 

a semiconductor-oxide interface. Because the binding energy of a 

shallow donor is of the order of a few milli-electron volts and the 

height of the surface barrier is several electron volts, the surface 

is essentially an infinite potential barrier and the envelope function 

of the donor impurity must be required to vanish on the surface. This 

condition on shallow impurities near semiconductor surfaces was first 

pointed out by Levine5a  and Gadzuk5b . 

It is the last two examples of modelling a physical problem 

with the use of boundary conditions that will be addressed in this 

series. The boundary perturbation in each case involves a change 

in the shape of the boundary surface while still requiring that 

homogeneous Dirichlet conditions be satisfied. (Recall that the 

isolated hydrogen atom wavefunction is required to be zero on the 

sphere at infinity.) 
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When the surface on which the boundary conditions are to be 

specified is no longer a surface in a coordinate system in which 

the partial differential equation separates, the problem is non-

separable. This is due to the fact that even though it may be pos-

sible to separate the equation, there is no way to satisfy the 

boundary conditions on a surface which depends upon at least two 

independent variables. Because of this nonseparability, some type 

of approximation method must be used. 

One of the first approaches to the boundary perturbation prob-

lem was made by Brillouin.6 	By considering a displacement operator 

acting on the boundary he was able to construct a method that is 

formally similar to the standard perturbation series. However the 

expansion parameter in this case is the magnitude by which the 

boundary surface is displaced and this parameter is assumed to be 

small. This is clearly not satisfied by the problems we wish to 

solve. Other methods of treating boundary perturbations have been 

developed 7 ' 8  but they all have the same restriction. That is, 

they can only be used when the domain of the PDE is finite and the 

change in the boundaries is finite. In addition to these methods, 

a perturbation method using Green's functions has been developed 

by Feshbach 9  and also discussed by Morse and Feshbach. 1°  However, 

the method is mathematically complicated and for the problem of a 

change in the boundary shape while requiring homogeneous Dirichlet 

conditions to hold, the method cannot be used to find corrections 

to the energy beyond the second order. 
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These considerations lead to the conviction that the variational 

method will yield the beSt approximate solutions to this type of 

boundary perturbation problem. 

In paper I of this series a variational solution to the problem 

of a hydrogen atom in the presence of a planar infinite-potential wall 

is given. The effect of this boundary perturbation on the spectrum of 

the hydrogen atom is discussed. At a large distance from the plane, the 

isolated hydrogen atom levels are regained. When the proton lies on 

the boundary plane the problem is again exactly solvable 5  and these 

solutions are recovered by the variational solution. Between these 

two limits the energy levels vary smoothly and exhibit several in-

teresting level crossings. By using these methods, a model advanced 

by Bruch and Ruijgrok 4 
of the physisorption of atomic hydrogen is re-

visited and information with regard to excited states of the system 

is provided. 

In paper II of this series we address the problem of a shallow 

donor impurity near a semiconductor surface or interface. Modifications 

in the variational solution due to the effect of an anisotropic effective 

mass are presented. Energy levels of the ground and excited states of 

shallow donors near the surfaces of silicon and germanium are calculated. 

One of the results of this model is that the total interaction energy 

of a shallow donor with the semiconductor surface possesses a minimum 

and this suggests a possible clustering of these impurities near the 

surface. Finally, the binding energy of a shallow donor impurity 

associated with an n-type inversion layer of a metal-oxide-semiconductor 



-5- 

field effect transistor is calculated and compared with other recent 

theoretical treatments and experimental results. 

The variational method of solution is described in section 1 

where results for the spectrum of a hydrogen atom near an impenetrable 

wall are given. The introduction of images in a model of physisorption 

is described in section 2 and a detailed discussion of the eigenvalue 

spectrum and energetics of the system is given. 
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2. Variational Solution - Hydrogen near an Impenetrable Wall 

The variational method of solution is introduced by considering 

a hydrogen atom which is at some finite distance, say R, from an 

infinite plane surface upon which the potential is taken to be in-

finite. This infinite potential manifests itself by the requirement 

that 4,, the wavefunction of the electron, must vanish on the plane 

and in the half-space not containing the proton
11

. In our treatment 

of the model, the Born-Oppenheimer approximation shall be used, 

inasmuch as the proton will be taken as being located at a fixed 

distance from the plane, so that there is no coupling between the 

nuclear and electronic motions. 

The Hamiltonian of the problem is given by the usual hydrogen 

atom Hamiltonian 

H = 2m 	- 77-  

but now the boundary condition is that j, must be equal to zero on the 

plane z = R (see Fig. 1). This choice of orientation of the plane 

and coordinate system, which is centered on the proton, is made to 

simplify the following calculations. 

The variational principle for eigenvalues
12 
 is 

6[E] = 6[14)*4dV 1 =0 
qq,*10V J 

where H is an arbitrary Hermitian operator, and this leads to the 

eigenvalue equation 

(1.2) 

-h
2 

2 	e2  

14=4 	 (1.3) 



only when the function 4) in (1.2) obeys the same boundary conditions 

that are to be imposed upon the solutions of Eq. (1.3). In practical 

applications of the variational method, this'means that the trial 

functions must obey the correct boundary values, independent of the 

choice of values of whatever variational parameters the trial function 

may contain. When this condition is satisfied, the trial function is 

said to be admissible. 13 

This requirement usually poses no problems and its importance is 

not often emphasized. However, in the present case when the location 

of the boundary surface is to be varied, and more generally when the 

boundary surface and conditions will be considered to be input vari-

ables, the construction of admissible trial functions can become quite 

cumbersome. To avoid this complication in the construction of a set 

of trial functions for the linear variation problem one can form the 

combination 

IV(F) = G() 	An•n ( -6 + F61. 	 (1.4) 

Here the A
m 

are the linear variation parameters and the set 

tpn (r) is to satisfy the boundary conditions of the unperturbed problem. 

The n's are taken to stand for all the quantum numbers which charac-

terize the basis set of the system. The function G(r) is such that 

G(i":  on S)=0 where S denotes the boundary surface. The function FM 

istosatisfyq;ons)4pforDirichletconditions,or 3F  --(r on S) 
an 

2 (S) for Neumann conditions. In the present instance we are concerned 
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only with homogeneous Dirichlet conditions and therefore need only 

consider, taking into account the coordinate system of Fig. 1 and 

the fact that the additional boundary surface is a plane, the com-

bination 

T(r) = G(z)h An co n 	 (1.5) 

where G(R) = 0. 

When the boundary surfaces are changed, there arises one more 

modification of the variational principle of Eq. (1.2). The range of 

the integrations in Eq. (1.2) is over the domain of the Eq. (1.3) 

and that domain is defined as the inside of the closed boundary sur-

face on which the boundary conditions are to be satisfied. The fact 

that the surface is closed follows from the elliptic character of the 

time-independent Schrodinger equation. This means that the limits of 

integration in Eq. (1.2) will become dependent upon the position of 

the boundary surface. 

Taking into account all of these considerations and using the 

' trial function of Eq. (1.5) the energy of the system can be written as 

[G(z)z 	* 
[E] 	

A 
'n n 	[G(z)ri  An  (1) n ]dli 

[G(z) h  A n 	[G(z)h An 	cdVn 

(1.6) 

where the subscript T on the integrals indicates that the integration 

is over a truncated space and H is given by Eq. (1.1). The basis set 

used to expand the trial function will not in general be orthogonal, 

because of the factor G(z) and the integration is over a truncated 
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space, so that the variation of the linear parameters A n  will lead 

to a generalized matrix eigenvalue problem 

H A . = E pl A 	 (1.7) 

where there now appears the overlap matrix N. More specifically the 

matrix elements are given by 

(H) n i m  =4[G(z)(PrI SH[G(z)(P r ldV, 	 (1.8) 

and 

(N) n , n  = :/..r [G(2)(p n ,] * [G(z)(p n ]dV. 	 (1.9) 

Since both H and N are hermitian, the usual properties of hermitian 

matrices apply; except that the orthonormality of the vectors 

A is expressed as 14  

At 
	An. = 6 nni. 
	 (1.10) 

Before the choice of the set on  is presented, the specific form 

of G(Z) which is zero on the boundary surface will be given. The 

most convenient choice is simply to set 

G(Z) = R - z = R - rcoso . 	 (1.11) 

Then the development of the Laplacian of the Hamiltonian (1.1) is 



-1 0- 

- 
v
2
[(R-rcoso4 n 

= (R-rcose)v
2 
 n

-2k.v(1)
n 

since, on noting that k is the unit vector in the z-direction, 

v(R-rcose)= - k, 

and 

v2 (R-rcose)= 0. 

It is interesting to note that this choice yields an expression that 

is similar to the variational principle for unrestricted trial func-

tions (i.e. they do not obey the boundary conditions) given by Morse 

and Feshbacn10  . Both forms involve the derivative of
n 

that is 

normal to the boundary surface; however in the present instance the 

• integration is over the entire volume and not only over the new 

. 	boundary surface. 

The basis set O n (;), which must satisfy only the isolated hydro-

gen atom boundary conditions, i.e. p  -4- 0 as r -4. m, is chosen to be 

On  = Ons (i3O) = (20) 3/2A/g UN - z-1 )!/[(N -1-21!]3 ] 1/2  

x(20r) k  L
2k+1

1 
 (28r) e ---

Ar 
 Y 

m  04). 
n-k- 

(1.12) 

In Eq. (1.12) the YT are the usual spherical harmonics, the L P are 
the associated Laguerre polynomials and r is taken to be in units of 

Bohr radii, a (a
o 
 - 5

2
/me

2
). This corresponds to a scaling of the 

Hamiltonian (1.1) to 
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(-v2  - 	T = ET 

where E is given in units of Rydbergs (e2/2a0 ). 

The difference between the set of functions given by Eq. (1.12) 

and the isolated hydrogen atom eigenfunctions is the appearance of 

the combination 8r, where a is an additional variational parameter 
independent of any quantum number, rather than the combination r/n 

which depends upon the particular state under consideration. The 

advantages of this choice are twofold. First the isolated hydrogen 

atom orbitals do not form a complete set without the inclusion of the 

continuum states
15
. Use of the set given by (1.12) has been shown to 

include contributions from these states
16

. Second, the virial theorem 

is automatically satisfied for any quantum mechanical system whose 

potential is•a homogeneous function of the coordinates if a scale 

factor is introduced into the approximate wave function and varied so 

as to give the lowest energy 17,14.  The parameter 8 is such a scale 

factor and because its optimum value will be found, the properties 

of the states found with the approximate wave functions of Eq. (1.5) 

will be better than those which do not contain such a scaling. 

Since the boundary surface was chosen to be a plane perpendicular 

to the z-axis, there are no changes in the limits of integration over 

the variable 0. Consequently the m-quantum number remains good. This 

means that we can separate the problem according to the m-value of 

the particular level that we are interested in solving. Moreover, 

since the degeneracy of the two states [n,2.,±m] is not lifted we need 

consider only the positive m values. The original matrix equation 

given Eq. (1.7) then reduces to a set of matrix equations for which 

m = 	 . That is 
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H (m) A (m) = E N (m) A (in) • 	 (1.13) 

In the calculation of the matrix elements for these separate problems, 

the integration over the variable cp can now be replaced by multiplica- 

tion with the factor 271.6ml,m 

The calculation of the Hamiltonian matrix elements now proceeds 

as follows. 	Taking account of the truncation of the region of . integration 

along with the above considerations the matrix elements can be written as 

211 .1 I 11 (m)
,n 
 sinoder2dr + n' H (m), n  sineder2dr 

0 0 	 R cos '(R/r) 
n  

(1.14) 

It is here, in the lower limit of the e-integration of the second 

term, that the non-separability of the problem becomes apparent with 

the appearance of the term cos -1 (R/r). For future convenience we 

shall denote this integration as 

ji H (m), dV n n 	• 

The matrix elements of the Hamiltonian are now expressible as 

1-1 11,1 1, ,nz  = f (R-rcose) 4> n i z i m (it ,i3) (R-rcose) 
T 

}

x [-v2  - fj cp rz,m (;,0-2k.vcpram (1-,f3) dV, (1.15) 

which simplifies upon using the relations 
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2 2 iNramot,o) 	_ f32 2(n-1)  
r rnkm(it0)  (1.16) 

and 
nun 	sine 	nkm  . 

cose 3r 	r 	30 
(1.17) 

The expression for the overlap matrix is given simply by 

N ( 01) , 	(R) = 	(R-rcose) 2  (p rot , m (it ,o) (prum (rt,o) dV. i 	 (1.18) 

T 

The numerical solution of the matrix equation (1.13) is a two 

step process. Because of the complicated dependence of the matrices 

and the associated eigenvalues on the parameter a, it is impracti-

cal to develop the variational condition 3[E]/aa = 0. Therefore, at 

a specific distance a value of 0 must be assumed and then the 

linear problem of Eq. (1.13) can be solved, yielaing the eignevalues 

and eigenvectors. At this point the value of 5 can be varied, the 

matrix elements calculated, and the matrix equation (1.13) is again 

solved. In this way one can search for the value of 0 that gives 

the best upper bound on the eigenvalue. 

Before the above procedure can be applied, it must first be 

decided to what extent the basis set of Eq. (1.12) will be extended 

In the expansion of the trial function. This determines the order 

of the matrix equation to be solved. Since only the positive m 

Values, one at a time, need be considered the expansion of the trial 

function can be written as 
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N j-1 	f  
il m(;) = (R-rcos ) E 	E A °111  

j=1 k=o j+k
4) 
 m+j,m+k,m (it ' a)  

(1.19) 

. -* 
where m is fixed and 4)not.,m(r,$)  is the function given by Eq. (1.12). 

Once N is chosen the size of basis set, and of the matrices NM and 

(m) , is easily seen to be N(N+1)/2. Increasing N is analogous to 
ti 

increasing the value of the principal quantum number n that is included 

in the expansion of the trial function, but care has to be taken in 

this interpretation since the set of functions of Eq. (1.12) are not 

the isolated hydrogen atom wavefunctions. 

The procedure of the calculation is now given by the following. 

First, the value of the m quantum number, which is still a good quan-

tum number, is decided upon. Second, the eigenvalue's position in 

the ordered set E (m) (R) i = 1, 2, 3, ... is chosen. This is done 

because the optimum value of $ is dependent upon exactly which eigen- 

value is to be minimized. Now the value of N of Eq. (1.19) is set and 

the optimum value of s and the associated eigenvalue at that matrix 

size are calculated. Next the value of N is increased by 1, which 

increases the matrix size by N + 1, and again the eigenvalue is 

minimized with respect to s. This process is repeated until the 

values of the minimized energy at two successive matrix sizes agree to 

a certain number of significant figures. In this report most of the 

results presented are calculated to four significant figures, recall 

that the energy is in units of Rydbergs, and this was obtained by 

going to matrix sizes of (28 x 28). An example of convergence of the 

ground state for several distances is given in Table 1. 



-15- 

The results of the calculation for the first four states are 

given in Tables 2-5. 	There we have tabulated the optimum value of 

S and the energy for a range of distances of the proton from the 

plane. Also included are several properties of these states that shall 

be discussed later. In these tables we have labelled the states by 

their m-quantum number and their position in the spectrum of the 

reduced problem, that is the spectrum of levels having the same m-value. 

The results of the ground state energy can be compared to those 

obtained by Bruch and Ruijgrok 4. These authors were mainly in-

terested in the imaging system as a model of physical adsorption 

(see next section); however the results for a change of the boundary 

surface only are given for the ground state. Their  approach to the 

problem is a variational one that is similar in spirit to the present 

one. The difference is that the problem is cast in confocal elliptic 

coordinates with the foci at the proton and the image proton . . The 

trial function is then chosen as 

yexp(-1/2)sinh(A/2)k,k 	
,k k 
	

(1.20) 

In Eq. (1.20) E and n are the coordinates in the confocal elliptic 

system, a and 8 are non-linear variational parameters, and the set 

'CId 
constitutes the linear variational parameters. The important 

feature of the trial function (1.20) is that the boundary value of 

?Pt  = 0 on the plane is satisfied by the sinh(n/2) term. After con-

verting their results to Rydbergs, the two calculations agree to as 

many significant figures as are reported in that-paper. For example, 

at a distance of 1.2 Bohr radii from the plane both methods yield a 

ground state energy of -0.7144 Ry. 
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However results are given by Bruch and Ruijgrok only for the 

ground state so that there is no information on the manner in which 

the spectrum of a hydrogen atom changes as an infinite plane potential 

moves in from infinity. This information is easier to interpret when 

it is presented as a graph showing the energy as a function of the 

distance of the proton from the plane. These graphs are presented in 

Figures 2 and 3. 

It is evident from Figure 2 that when the proton is located 

four Bohr radii away from the plane there is very little change in 

the ground state energy. As the distance from the plane decreases the 

energy increases until, at R = 0, it is equal to -.25 Ry. This result 

is the expected one since when the proton is located on the plane 

the Hamiltonian is separable and the problem is exactly solvable. The 

solutions are the isolated hydrogen atom eigenfunctions restricted by 

the selection rule 

1L-m! = odd 	 (1.21) 

This result was first pointed out by Levine
5  , who noted its importance 

for the problem of a shallow donor impurity located at the surface of 

a semiconductor (see paper II in this series). 

The correct values at the R = 0 limit are also obtained for the 

excited states in Fig. 3. In that figure the states are labelled by their 

m value and their position in the matrix by the notation (m,p). There 

are several interesting features exhibited by the spectrum presented 
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in Figure 3. At R = =, there exist two states with n = 2 and m = 0, 

i.e. the 2s and 2p 0  states. However, at R=0 there exists only one 

state with n = 3 and m = 0 because of the selection rule (1.21) and 

that is the 3p0  state. Therefore one of the states with n = 2, m = 0 

at R = " must map onto a state with n = 4 at R = 0. At R = 5 a0 the 

state which does this is labelled by (0,3). As R decreases the energy 

Of state (0,3) increases until it crosses the state (0,4). These two 

states possess the same azimuthal quantum number m and are therefore 

eigenvalues of the same reduced matrix problem. This appears to be a true 

crossing for two reasons. First, the eigenvalues become equal,to 

four figure accuracy which is the limit of accuracy in the present 

calculations, at a distance from the plane of approximately 3.58 ao . 

Second, the properties derived from the wavefunctions of these two 

states have a consistent interpretation only if such a crossing takes 

place. That is, the dipole in the z-direction, the average kinetic 

energy and the average potential energy should be continuous functions 

of the distance from the plane and this would not be the case if such 

a crossing did not occur. As the distance to the plane is decreased 

even further another crossing occurs. However this crossing is for 

states of differing azimuthal symmetry so there is no reason to suspect 

another symmetry of the system at this distance. 

The ground state of an isolated hydrogen atom does not possess a 

net dipole moment. However when the charge distribution is changed 

by the presence of the boundary plane this is no longer true. Because 

of the azimuthal symmetry, the dipole•moment of the ground state will 

be in the z-direction and the dipole moment operator can be written as 4 
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p
z 	Z = rcose • 
	

(1.22) 

A positive dipole moment is directed away from the boundary plane. 

The convention used here is that the dipole points from the negative 

to the positive charge. 

The manner in which the average value of 	is calculates is modi- 

fied slightly due to the non-orthogonality previously discussed. 

First the matrix D (m)  is calculated, where 

(D (m) ) , n , ,n2, = nmrumdV  ' (1.23) 

and the optimized value of 8 is used. The expectation value of u for 

a state labelled by (m,k) is then given by 

A(m)  D(m)  A(m)  --(m) 	 k 	 (1.24) 
li k 	A(m)* m (m) A (m) 

k 

where A
(m) 

is the optimized k-th eignevector of Eq. (1.13) and N ( m) • is 

the overlap matrix. The dipole expectation values are given in Tables 

2-5. As expected the influence of the boundary plane is to push the 

electronic charge distribution away so that its 'center of gravity' lies 

behind the proton and yields negative v. 	Note also that the dipole 

moments fall off much less rapidly as a function of R for the excited 

states. This is due to the fact that the excited states, because of their 

greater spatial extent, 'feel' the presence of the plane for a further 

distance than does the ground state. 

The average kinetic and potential energies can be calculated in 

a manner similar to that for the dipole. But now it is not necessary 
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to calculate any additional matrices, for T (m)  and V (m)  are already 
0  

available from the calculation of H (m) . These expectation values 

have also been computed and are given in Tables 2-5. 

In examining the expectation values of the kinetic and potential 

energies of the electron given in these tables it is apparent that 

the relation 

2 	= - 	 (1.25) 

is no longer satisfied. Equation (1.25) is of course the statement 

of the virial theorem for an isolated system with a coulomb interac-

tion. When the system depends upon a parameter which is assumed to 

be fixed, which for example can be the internuclear coordinates of a 

diatomic molecule in the Born-Oppenheimer approximation or the distance 

to the plane in the present problem, the virial theorem must be modi-

fled from the form given in Eq. (1.25). This is due to the fact that 

the quantity known as the 'virial' 

-1/ 7: r  11 

must include an of the forces acting on the system. This means that 

since the proton is assumed to be in a fixed position some external 

force must be acting on it so that it remains stationary. When this 

external force . is taken into account the correct form Of the virial 

theorem is given by 
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2 T 	- 	 - 

R aR 
	

( 1.26) 

The force acting on the proton is therefore given by the quantity 

3E/aR. Note that in the present case the Hellman-Feynman theorem is 

no longer valid 4,18. That is 

aE/aHN 

because the region of integration of the matrix elements is dependent 

upon R. This points out the importance of the virial theorem, and 

the choice of the basis set, if the force on the proton is to be 

found. 

The results presented in.Table .  2 have been used, with the aid 

of Eq. (1.26), to calculate the force on the proton when'the atom is 

in its ground state, as a function of distance. This force is presented 

graphically in Figure 4. 	The interesting features of this force is - 

that it has a maximum at approximately 0.9 a o  and that it is nonzero 

at R = 0. At R = co the force is zero and at R = -co is must also be 

zero for then the electron and proton have been completely separated. 

Therefore a maximum must exist between these two limits. 
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2. Image Charges and a Model of Physisorption of Atomic Hydrogen  

When a gas adsorbs onto a solid surface, depending upon the magni-

tude of the binding energy, it is commonly said to be chemisorbed or 

physically adsorbed. The binding energy that is ascribed to chemical 

adsorption can be several electron volts while that of physisorption is 

of the order of a fraction of an electron-volt. The difference in binding 

energy magnitudes is a reflection of the different processes which are 

believed to occur in the two types of adsorption; in chemical adsorption 

a bond is formed between the adsorbed molecule or atom and the surface 

while in physical adsorption significant charge rearrangement associated 

with bond formation is absent. 

Physical adsorption is usually thought to be due to a potential 

that is made up of an attractive long-range Van der Waals (or dis-

persion) potential and a short-range repulsive potential due to the 

overlap of the electrons of the ad-atom with those of the meta]. 

The problem is a many electron one and has been the subject of much 

recent work.
19-22

'
4 

However, in the case of atomic hydrogen an idealized 

model can be constructed, as presented by Bruch and Ruijgrok,'
A  
 which 

reduces to a one electron problem. 

The model consists of replacing the metal by a perfectly imaging 

medium with instantaneous coulomb interactions. The effect of the 

exchange repulsion is modelled by the condition that the atomic electron 

is excluded from the metal and that its wavefunction vanish on the surface. 

The potential that the proton then experiences, called by Bruch and 

Ruijgrok the "holding potential", is given by the change in the ground 

state electronic energy plus the interaction of the proton with his 

image in the metal. 
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Solving the problem of the ground state electronic energy of this 

system is the first step in obtaining the 'holding potential' of the 

atomic hydrogen. Taking into account the possibility of a finite di-

electric constant for Region B of Fig. 1, the Hamiltonian for the 

electron can be written as 

-h
2 	

2 	e
2 

2m 

	

H = 	v - —r 

(E-1) 	 e
2 	 (E-1) 	e2 	(2.1) 

(E+1) [r2+4R
2
-4rRooso]1/2 	

4(0-1) 	CR--cEeTY  

Equation (1.3) must, of course, be solved subject to the boundary 

condition that ip = 0 on the surface z = R. The coordinate system of 

Eq. (2.1 ) is that indicated in Figure 1 and c denotes the static 

dielectric constant of region B. We shall be interested mainly in 

the 'metallic' limit, that is c 	... The last two terms in Eq. (2.1 ) 

are, respectively, the interaction of the electron with the image of 

the proton and the interaction of the electron with its own image, 

and hence the extra-factor of 1/2 (energy of assembly). 

The calculation of the energy eigenvalues and properties of these 

states proceeds exactly as previously outlined. Now, however, there 

are two additional matrix elements to be included in the matrix 

equations. The electron-image electron term is not hard to calculate 

analytically but this is not true of the electron-image proton inter-

action given by the third term of Eq. (2.1 ). Because of the law of 

cosines denominator and the restricted region of integration given by 

Eq. (1.14),it has not been possible to find a closed• form expression 

for that matrix element. 
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There are two ways of calculating the electron-image proton 

matrix element. One can either use a numerical approach or, by ex-

panding the denominator of the electron-image proton potential in the 

standard series of Legendre polynomials, integrate term by term. 

The former method was chosen because the expressions and summation 

of the latter method consumed a much greater amount of computer time 

.than a straightforward numerical integration of the matrix elements 

by the Gauss-Legendre and Gauss-Laguere methods. 

The results of this calculation are given in Tables 6 through 9 

for the first 5 states. (Recall that m # 0 states are doubly 

degenerate.) The ground state of this system is shown graphically 

in Figure 5 where the ground state of the non-imaging case has been 

repeated for.compariscn. As is apparent from this figure, and shown 

explicitly in Table 6 where all the energy contributions are tabu-

lated, the interaction of the electron with the image of the proton, 

which is repulsive, dominates the electron-image electron interaction 

which is attractive. In this instance also the R = 0 value is an ex-

pected one. When R = 0, and the system is perfectly imaging, the 

proton and image proton charges cancel each other (as far as the 

electron is concerned) and the problem is now that of an electron 

bound by its image, which is an exactly solvable23 ' 24  one-dimensional 

Coulomb problem, yielding a ground state energy of -0.0625 Ry. 

The first excited state of the isolated atom (principal quantum 

number n = 2) is 4-fold degenerate. In the presence of the metal this 

degeneracy is partially lifted, i.e., while the 2p, Imi = + I states are 

still degenerate (due to polar angle symmetry around the normal to the 

metal plane), the 2s and 2p, m = 0 states mix and their energy split. 
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The energy as a function of distance of the proton from the surface 

for the 2p, Imi.1 doubly degenerate state is given in Table 7, and 

those for the states originating from the 2s and 2p, m = 0 in Tables 

8 and 9 respectively. These results are in good agreement with those 

given in Table 3 of ref. 4 (to convert to the values of ref. 4 sub-

stract from our energies the proton-image proton interaction, - 1/2R, 

and divide the result by 2 to convert to atomic units). 

Having solved the electronic part of the problems it is possible 

to construct the 'holding potential' of the atomic hydrogen. The 

potential that the proton experiences has two contributions. First, 

still in the Born-Oppenheimer approximation, is the change in the 

electronic energy of the system as a function of distance. The second 

is the proton-image proton interaction which is attractive in nature. 

Calculating the "holding potential" for the ground state of the 

system (i.e. using the energy values in table 6, subtracting from them 

the ground state energy at infinite separation (-1.0 Ry) and adding the 

proton-image proton interaction energy (-1i(2R) 
 Ry) yields the potential 

curve shown in Fig. 6, which exhibits a potential well of depth 8.6 X 10 -3 

 Ry at R = 3.44a
o 

in agreement with ref. 4 (see in particular section 9.1). 

The various contributions to this 'holding potential' are shown in 

Fig. 7. The ground state expectation values of the kinetic energy and 

electron-proton interaction, from which the corresponding energies at 

R = ... have been subtracted are shown as curves C and A, respectively. The 

electron-image proton and electron-image electron interactions are 

denoted as curves B and D, respectively. The proton-image proton energy, 

given by -1/ (2R)  Ry, is denoted as curve E. The sum of the curves in 

Fig. 7 yields the "holding potential" curve given in Fig. 6. 
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Finally we comment on the dipole expectation values given in Tables 

6-9. As shown in Table 6 for the ground state the dipole moment is 

negative, i.e. directed inward, for locations of proton near and beyond 

the minimum in the holding potentials (same as found in reference 4), 

changing sign of the vicinity of R=4.1a
o
. The values of the dipole 

moment are much larger for the excited states and falls off slower as 

the atom is removed from the surface reflecting the larger spatial 

extent of the excited states wave functions. It is of interest to 

note that for the distances included in the tables the dipole of the 

25, m = 0 state remains negative and large even up to ,1,7.0 ao , while 

for the 2p, m = 0 it changes orientation between R = 5.0a 0  and 5.2a0  

and past that distance an oscillation in magnitude is observed. 

Similarly a reversal of sign occurs for the 2p,m=1 (doubly degenerate) 

state between R=6.4a
o 

and 6.6a
o
. It has been suggested19  that the 

quantitative balance between contributions which determine the 

orientation of dipoles of physiorbed atoms may differ in light and 

heavy atoms, and this may be a demonstration of such an effect.4 
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FIGURE CAPTIONS 

Fig. 1 The coordinate system of Eq. (1.1) centered at the proton 

and the boundary surface at z=R=rcose. 

Fig. 2. Ground state energy as a function of distance of the hydrogen/ 

impenetrable wall system. In this, and the following figures 

energy is in units of Rydbergs and distance is in units or Bohr 

radii. 

Fig. 3 The first 13 excited states of the hydrogen/impenetrable wall 

system. 

Fig. 4 Force on the proton when the electron is in its ground state. 

Fig. 5 Ground state energy as a function of proton distance from the 

plane for the perfectly imaging substrate (e 2 	co) system. 

Fig. 6 The 'holding potential' of Bruch and Ruijgiok in which the 

image electron-proton interaction has not been included. 

Fig. 7 The various contributions to the interaction potential. The 

curve A represents the change in the expectation value of the 

electron-proton interaction from its value for the isolated 

hydrogen atom. Curve B is the average value of the electron-

image proton interaction (Ve-imp). Curve C is the change in 

the electron's average kinetic energy. Curve D represents the 

average value of the electron-image electron interaction 

(Ve-ime). Curve E is the proton-image proton interaction (-1/2R). 



TABLE 

Convergence of the ground state energy for the hydrogen/impenetrable 

wall system at several distances. Distance is given in units of Bohr 

radii and energy is in units of Rydbergs. 

R 0.0 0.2 0.8 4.0 

3 x 3 -.2500 -.2448 -.4849 -.9888 

6 x 6 -.2500 -.2735 -.5012 • -.9955 

10 x 10 -;.2500 -.2786 -.5042 -.9969 

15 x 15 ... -.2800 -.5058 -.9972 

21 x 21 ... -.2801 -.5064 -.9973 

28 x 28 ... -.2802 -.5065 -.974 

Ma
tr

ix
  S

iz
e  



TABLE 2 

Ground state properties of the hydrogen/impenetrable wall system 

(m=0, p=1). Energies are in units of Rydbergs, the dipole values, 
ea, 

Vz  are given in units of 12- ( - 1.271 debye), and the distances are 
o - 	- 

given in terms of Bohr radii (a 0  = 0.529 A). T and V are the 

expectation values of the kinetic and potential energies, respectively. 

R a E
o TIZ T 

0.0 1.000 -0.2500 0.2500 -0.2500 

0.2 1.001 -0.2802 -6.383 0.3170 -0.5872 

0.4 1.077 -0.3272 -5.099 0.4458 -0.7730 

0.6 1.321 -0.4027 -3.735 0.6774 -1.0801 

0.8 1.537 -0.5065 -2.617 0.9527 -1.4592 

1.0 1.696 -0.6172 -1.877 1.1480 -1.7652 

1;2 1.795 -0.7144 -1.407 1.2375 -1.9519 

1.4 1.850 -0.7912 -1.092 1.2576 -2.0488 

1.6 1.872 -0.8488 -0.865 1.2429 -2.0917 

1.8 1.876 -0.8911 -0.693 1.2139 -2.1049 

2.0 1.870 -0.9217 -0.559 1.1811 -2.1028 

2.2 1.852 -0.9438 -0.451 1.1494 -2.0933 

2.4 1.822 -0.9598 -0.364 1.1211 -2.0809 

2.6 1.775 -0.9712 -0.292 1.0968 -2.0680 

2.8 1.719 -0.9794 -0.234 1.0765 -2.0558 

3.0 1.603 -0.9853 -0.186 1.0599 -2.0452 

3.2 1.554 -0.9896 -0.147 1.0465 -2.0360 

3.4 1.414 -0.9926 -0.116 1.0358 -2.0284 

3.6 1.290 -0.9947 -0.091 1.0274 -2.0221 

3.8 1.209 -0.9963 -0.071 1.0208 -2.0171 

4.0 1.183 -0.9974 -0.055 1.0157 -2.0131 

4.2 1.161 -0.9981 -0.042 1.0118 -2.0099 



TABLE 3 

Properties of the first excited state of the hydrogen/impenetrable 

wall system (m=0,p=2). Units as in Table 2. 

R 	 a 	E(0,2) 	iiZ 	T 	 V 

0.0 0.500 -0.1111 - 0.1111 -0.2222 

0.2 0.506 -0.1198 -17.171 0.1300 -0.2498 

0.4 0.636 -0.1321 -15.231 0.1623 -0.2944 

0.6 0.728 -0.1493 -13.148 0.2074 -0.3568 

0.8 0.793 -0.1687 -11.408 0.2436 -0.4123 

1.0 0.848 -0.1856 -10.172 0.2610 -0.4466 

1.2 0.855 -0.1988 - 9.353 0.2669 -0.4657 

1.4 0.865 -0.2087 - 8.761  0.2694 -0.4781 

1.6 0.866 -0.2164 - 8.320 0.2702 -0.4866 

1.8 0.868 -0.2224 - 7.974 0.2704 -0.4928 

2.0 0:869 -0.2272 - 7.695 0.2700 -0.4972 

2.2 0.866 -0.2311 - 7.465 0.2693 -0.5004 

2.4 0.863 -0.2342 - 7.271 0.2684 -0.5027 

2.6 0.858 -0.2369 - 7.106 0.2674 -0.5042 

2.8 0.853 -0.2390 - 6.964 0.2662 -0.5052 

3.0 0.849 -0.2408 - 6.840 0.2651 -0.5058 

3.2 0.843 -0.2423 - 6.732 0.2639 -0.5061 

3.4 0.840 -0.2435 - 6.638 0.2627 -0.5062 

3.6 0.835 -0.2446 - 6.555 0.2616 -0.5061 

3.8 0.829 -0.2454 - 6.482 0.2605 -0.5059 

4.0 0.823 -0.2462 - 6.417 0.2595 -0.5056 

4.2 0.819 -0.2468 - 6.361 0.2585 -0.5053 

4.4 0.813 -0.2473 - 6.310 0.2576 -0.5049 

4.6 0.808 -0.2477 - 6.266 0.2568 -0.5045 

4.8 0.800 -0.2481 - 6.227 0.2561 -0.5041 

5.0 0.793 -0.2484 - 6.193 0.2554 -0.5038 



TABLE 4 

Properties of the second excited state (m=1,p=1) of the hydrogen/ 

impenetrable wall system. Units as in Table 2. 

T 	V 

	

0.1111 	-0.2222 

	

0.1190 	-0.2340 

	

0.1282 	-0.2474 

	

0.1387 	-0.2626 

	

0.1507 	-0.2798 

	

0.1643 	-0.2991 

	

0.1794 	-0.3203 

	

0.1956 	-0.3431 

	

0.2121 	-0.3667 

	

0.2282 	-0.3900 

	

0.2430 	-0.4123 

	

0.2561 	-0.4327 

	

0.2671 	-0.4508 

	

0.2758 	-0.4663 

	

0.2824 	-0.4792 

	

0.2871 	-0.4898 

	

0.2901 	-0.4982 

	

0.2918 	-0.5047 

	

0.2923 	-0.5097 

	

0.2920 	-0.5133 

	

0.2911 	-0.5159 

	

0.2896 	-0.5175 

	

0.2878 	-0.5185 

	

0.2858 	-0.5189 

	

0.2837 	-0.5190 

	

0.2815 	-0.5187 

R 0 E(1,1) Tiz  

0.0 0.412 -0.1111 - 

0.2 0.449 -0.1150 -12.358 

0.4 0.486 -0.1192 -11.580 

0.6 0.519 -0.1239 -10.792 

0.8 0.559 -0.1291 - 9.999 

1.0 0.590 -0.1347 - 9.206 

1.2 0.625 -0.1409 - 8.425 

1.4 0.656 -0.1476 - 7.668 

1.6 0.687 -0.1545 - 6.948 

1.8 0.713 -0.1619 - 6.278 

2.0 0:738 -0.1693 - 5.663 

2.2 0.759 -0.1766 - 5.109 

2.4 0.779 -0.1837 - 4.613 

2.6 0.796 -0.1905 - 4.170 

2.8 0.811 -0.1968 - 3.777 

3.0 0.822 -0.2027 - 3.426 

3.2 0.831 -0.2081 - 3.113 

3.4 0.838 -0.2129 - 2.833 

3.6 0.845 -0.2173 - 2.581 

3.8 0.848 -0.2213 - 2.353 

4.0 0.851 -0.2248 - 2.147 

4.2 0.852 -0.2279 - 1.959 

4.4 0.853 -0.2307 - 1.788 

4.6 0.853 -0.2331 - 	1.631 

4.8 0.851 -0.2353 - 1.488 

5.0 0.849 -0.2372 - 1.356 



TABLE 5 

Properties of the third excited state (m=0,p=3) of the hydrogen/ 

impenetrable wall system. Note the discontinuity of the properties 

Tiz , T and V between the distances of 3.4a 0-3.6a0  which indicates a 

level crossing. 

R 0 E(0,3) z V 

0.0 0.268 -0.0625 0.0625 -0.1250 

0.2 0.311 -0.0661 -32.516 0.0701 -0.1362 

0.4 0.352 -0.0709 -30.202 0.0812 -0.1521 

0.6 0.398 -0.0772 -27.665 0.0949 -0.1720 

0.8 0.441 -0.0838 -25.323 0.1056 -0.1895 

1.0 0.472 -0.0895 -23.551 0.1110 -0.2005 

1.2 0.491 -0.0938 -22.314 0.1133 -0.2071 

1.4 0.502 -0.0970 -21.444 0.1143 -0.2113 

1.6 0.509 -0.0994 -20.804 0.1149 -0.2143 

1.8 0.513 -0.1013 -20.317 0.1152 -0.2164 

2.0 0.515 -0.1028 -19.932 0.1153 -0.2181 

2.2 0.515 -0.1040 -19.623 0.1153 -0.2193 

2.4 0.515 -0.1050 -19.365 0.1153 -0.2203 

2.6 0.514 -0.1059 -19.151 0.1152 -0.2211 

2.8 0.513 -0.1066 -18.968 0.1151 -0.2217 

3.0 0.515 -0.1072 -18.809 0.1150 -0.2221 

3.2 0.510 -0.1077 -18.676 0.1148 -0.2225 

3.4 0.508 -0.1081 -18.558 0.1146 -0.2227 

3.6 0.423 -0.1087 - 5.856 0.2206 -0.3294 

3.8 0.449 -0.1154 - 4.709 0.2494 -0.3648 

4.0 0.496 -0.1228 - 3.590 0.2791 -0.4019 

4.2 0.535 -0.1310 - 2.568 0.3071 -0.4381 

4.4 0.570 -0.1400 - 1.663 04314 -0.4710 

4.6 0.600 -0.1483 - 0.876 0.3507 -0.4990 



TABLE 5 

R 0 E(0,3) Tiz  T V 

4.8 0.626 -0.1571 -0.199 0.3646 -0.5217 

5.0 0.650 -0.1656 -0.383 0.3736 -0.5391 



TABLE 6 

Ground state properties of the hydrogen/perfectly imaging substrate 

system. V1 , V2  and V3  denote the average values of the last three 

interaction terms in the Hamiltonian of Eq. (1.36). T.  and V are the 

expectation values of the kinetic and potential energies, respectively. 

R 	B 	E(0.1) riz 	T 	V 1 	V2 	V3 
0.2 0.174 -0.0633 -11.408 0.0673 -0.1470 -0.1267 0.1440 

0.4 0.399 -0.0726 - 9.597 0.1055 -0.2995 -0.1450 0.2664 

0.6 0.753 -0.1039 - 6.482 0.2578 -0.5789 -0.2002 0.4174 

0.8 1.142 -0.1839 - 3.671 0.6107 -1.0821 -0.2841 0.5717 

1.0 1.439 -0.3049 - 2.237 0.9413 -1.5444 -0.3326 0.6308 

1.2 1.621 -0.4274 - 1.532 1.1139 -1.8209 -0.3409 0.6205 

1.4 1.725 -0.5309 - 	1.125 1.1758 -1.9612 -0.3295 0.5848 

1.6 1.780 -0.6123 - 0.856 1.1821 -2.0270 -0.3105 0.5430 

1.8 1.806 -0.6748 - 0.662 1.1641 -2.0518 -0.2893 0.5024 

2.0 1.813 -0.7224 - 0.514 1.1376 -2.0564 -0.2684 0.4648 

2.2 1.794 -0.7589 - 0.398 1.1098 -2.0511 -0.2486 0.4311 

2.4 1.751 -0.7870 - 0.305 1.0843 -2.0419 -0.2304 0.4009 

2.6 1.690 -0.8090 - 0.231 1.0623 -2.0316 -0.2139 0.3741 

2.8 1.616 -0.8265 - 0.172 1.0441 -2.0219 -0.1988 0.3502 

3.0 1.539 -0.8405 - 0.125 1.0296 -2.0135 -0.1853 0.3287 

3.2 1.466 -0.8519 - 0.088 1.0183 -2.007 -0.1731 0.3095 

3.4 1.398 -0.8614 - 0.059 1.0097 -2.001 -0.1621 0.2923 

3.6 1.336 -0.8695 - 0.037 1.0034 -1.9974 -0.1522 0.2766 

3.8 1.280 -0.8764 - 0.021 0.9989 -1.9946 -0.1433 0.2625 

4.0 1.228 -0.8825 - 0.009 0.9959 -1.9927 -0.1353 0.2497 

4.2 1.182 -0.8878 - 0.0004 0.9939 -1.9916 -0.1281 0.2380 

4.4 1.140 -0.8926 0.005 0.9928 -1.9911 -0.1216 0.2273 

4.6 1.100 -0.8969 0.009 0.9922 -1.991 -0.1156 0.2174 



TABLE 6 

R a E(0,1) Tlz T V 1  ■/
2 

4.8 1.065 -0.9009 0.012 0.9920 -1.9912 -0.1102 

5.0 1.033 -0.9046 0.013 0.9922 -1.9915 -0.1053 

5.2 1.003 -0.9079 0.013 0.9925 -1.9920 -0.1008 

5.4 0.977 -0.9111 0.013 0.9929 -1.9925 -0.0967 

5.6 0.951 -0.9140 0.012 0.9934 -1.9931 -0.0929 

5.8 0.931 -0.9168 0.012 0.9939 -1.9937 -0.0894 

6.0 0.912 -0.9193 0.011 0.9943 -1.9992 -0.0862 

V3 
0.2084 

0.2001 

0.1924 

0.1853 

0.1787 

0.1725 

0.1668 



TABLE 7 

Properties of the first excited state (m=1,p=1), the 2p,Im1=1 doubly 

degenerate state, of the hydrogen/perfectly imaging substrate system. 

R a 	E(1,1) 	uZ 	T 	V 1 	72 3 
0.2 0.149 -0.0602 -11.906 0.0606 -0.0506 -0.1207 0.0505 

0.4 0.150 -0.0604 -11.486 0.0609 -0.0530 -0.1210 0.0527 

0.6 0.152 -0.0605 -11.059 0.0614 -0.0565 -0.1213 0.0558 

0.8 0.156 -0.0608 -10.624 0.0621 -0.0620 -0.1217 0.0608 

1.0 0.162 -0.0611 -10.170 0.0636 -0.0717 -0.1223 0.0694 

1.2 0.177 -0.0617 - 9.676 0.0671 -0.0915 -0.1234 0.0860 

1.4 0.216 -0.0630 - 9.077 0.0759 -0.1287 -0.1253 0.1152 

1.6 0.286 -0.0656 - 8.299 0.0920 -0.1766 -0.1288 0.1478 

1.8 0.363 -0.0697 - 7.407 0.1133 -0.2234 -0.1335 0.1740 

2.0 0.434 -0.0752 - 6.503 0.1372 -0.2675 -0.1386 0.1936 

2.2 0.496 -0.081 - 5.656 0.1615 -0.3079 -0.1431 0.2070 

2.4 0.548 -0.089 - 4.902 0.1840 -0.3437 -0.1465 0.2167 

2.6 0.593 -0.0976 - 4.248 0.2036 -0.3744 -0.1486 0.2218 

2.8 0.630 -0.1058 - 3.688 0.2196 -0.3998 -0.1494 0.2238 

3.0 0.660 -0.1138 - 3.207 0.2322 -0.4205 -0.1490 0.2235 

3.2 0.685 -0.1215 - 2,792 0.2416 -0.4369 -0.1477 0.2215 

3.4 0.705 -0.1288 - 2.432 0.2484 -0.4499 -0.1457 0.2183 

3.6 0.722 -0.1356 - 	2.115 0.2531 -0.4599 -0.1431 0.2143 

3.8 0.735 -0.1419 - 1.836 0.2559 -0.4675 -0.1401 0.2098 

4.0 0.745 -0.1476 - 	1.587 0.2575 -0.4732 -0.1369 0.2050 

4.2 0.753 -0.1529 - 1.364 0.2580 -0.4774 -0.1334 0.2000 

4.4 0.757 -0.1576 - 	1.163 0.2578 -0.4804 -0.1299 0.1949 

4.6 0.760 -0.162 - 0.982 0.2570 -0.4825 -0.1263 0.1899 

4.8 0.760 -0.1659 - 0.818 0.2558 -0.4839 -0.1227 0.1848 

5.0 0.757 -0.1695 - 0.669 0.2544 -0.4847 -0.1191 0.1799 



TABLE 7 

E(1,1) uZ  T V 1 
 

V2 V3 

5.2 0.753 -0.1727 - 0.535 0.2528 -0.4852 -0.1155 0.1751 

5.4 0.747 -0.1757 - 0.413 0.2511 -0.4853 -0.112 0.1705 

5.6 0.739 -0.1783 - 0.303 0.2495 -0.4853 -0.1085 0.1660 

5.8 0.731 -0.1808 - 0.204 0.2479 -0.4851 -0.1051 0.1616 

6.0 0.722 -0.1830 - 	0.116 0.2463 -0.4848 -0.1019 0.1574 

6.2 0.711 -0.1850 - 0.036 0.2449 -0.4845 -0.0987 0.1533 

6.4 0.700 -0.1868 - 0.034: 0.2436 -0.4842 -0.0956 0.1494 

6.6 0.689 -0.1885 - 0.096 0.2424 -0.4839 -0.0925 0.1456 



TABLE 8 

Properties of the second excited state,originating from the 2s, m=0 

state, of the hydrogen/perfectly imaging substrate system. 

R 	0 	E(0,2) 	TIZ 	T V1 
	

V
2 	

V
3 

0.2 0.135 -0.0590 -12.162 0.0615 -0.0773 -0.1184 0.0756 

0.4 0.144 -0.0602 -11.526 0.0622 -0.0590 -0.1207 0.0573 

0.6 0.154 -0.0608 -11.052 0.0630 -0.0623 -0.1219 0.0604 

0.8 0.191 -0.0616 -10.669 0.0663 -0.0836 -0.1229 0.0786 

1.0 0.423 -0.0656 -10.648 0.0983 -0.2011 -0.1213 0.1586 

1.2 0.537 -0.0733 -10.036 0.1239 -0.2692 -0.1207 0.1927 

1.4 0.596 -0.0819 - 9.344 0.1430 -0.3128 -0.1207 0.2086 

1.6 0.635 -0.0906 - 8.736 0.1587 -0.3451 -0.1203 0.2161 

1.8 0.662 -0.0989 - 8.228 0.1716 -0.3700 -0.1193 0.2187 

2.0 0.681 -0.1068 - 7.806 0.3897 -0.3897 -0.1176 0.2183 

3.0 0.727 -0.1378 - 6.508 0.2119 -0.4430 -0.1045 0.1977 

4.0 0.720 -0.1580 - 5.885 0.2230 -0.4631 -0.0899 0.1720 

5.0 0.678 -0.1716 - 5.497 0.2291 -0.4730 -0.0779 0.1501 

6.0 0.609 -0.1818 - 4.762 0.2368 -0.4806 -0.0722 0.1343 

2.2 0.695 -0.1141 - 7.454 0.1909 -0.4053 -0.1155 0.2159 

2.4 0.707 -0.1208 - 7.157 0.1979 -0.4179 -0.1130 0.2122 

2.6 0.716 -0.127 - 6.907 0.2036 -0.4280 -0.1103 0.2078 

2.8 0.722 -0.1326 - 6.692 0.2082 -0.4363 -0.1070 0.2028 

3.0 0.727 -0.1378 - 6.508 0.2119 -0.4430 -0.1045 0.1977 

3.2 0.729 -0.1425 - 6.348 0.2150 -0.4485 -0.1015 0.1925 

3.4 0.729 -0.1469 - 6.209 0.2175 -0.4531 -0.0985 0.1872 

3.6 0.728 -0.1509 - 6.088 0.2197 -0.4570 -0.0956 G.1820 

3.8 0.726 -0.1546 - 5.980 0.2215 -0.4603 -0.0927 0.1770 

4.0 0.720 -0.158 - 5.885 0.2230 -0.4631 -0.0899 0.1720 

4.2 0.714 -0.1611 - 5.799 0.2244 -0.4655 -0.0873 0.1673 



TABLE 8 

R 	a 	E(0,2) 	uZ 	T 	V
1 	

V
2 	

V3 

4.4 .706 -0.1640 - 5.720 0.2257 -0.4677 -0.0847 0.1627 

4.6 .698 -0.1667 - 5.646 0.2264 -0.4696 -0.0823 0.1583 

4.8 .689 -0.1692 - 5.573 0.2280 -0.4714 -0.0800 0.1541 

5.0 .678 -0.1716 - 5.497 0.2291 -0.4730 -0.0779 0.1501 

5.2 .667 -0.1739 - 5.414 0.2303 -0.4745 -0.0760 0.1464 

5.4 .654 -0.1760 - 5.316 0.2315 -0.4760 -0.0744 0.1429 

5.6 .642 -0.1780 - 5.192 0.2329 -0.4870 -0.0731 0.1396 

5.8 .625 -0.1800 - 5.020 0.2346 -0.4789 -0.0723 0.1367 

6.0 .609 -0.1810 - 4.762 0.2368 -0.4806 -0.0722 0.1343 



TABLE 9 

Properties of the third excited state originating from the 2p, m=0 

state, of the hydrogen/perfectly imaging substrate system. 

E(0.3) Trz  T V1  V2  V3  

0.2 .119 - .0524 -14.060 .0553 - 	.0772 - 	.1058 .0753 

0.4 .125 - 	.0541 -13.102 .0581 - .0676 - 	.1092 .0646 

0.6 .131 - 	.0552 -12.395 .0594 - 	.0655 - 	.1112 .0621 

0.8 .141 - .0562 -11.746 .0615 - 	.0707 - 	.1131 .0659 

1.0 .159 - 	.0574 -11.163 .0645 - .0773 - 	.1144 .0698 

1.2 .176 - .0586 -10.495 .0656 - .0728 - 	.1162 .0648 

1.4 .182 - 	.0595 - 9.870 .0649 - 	.0665 - 	.1179 .0601 

1.6 .185 - .0600 - 9.354 .0645 - 	.0653 - 	.1189 .0596 

1.8 .189 - 	.0605 - 8.898 .0647 - 	.0669 - 	.1195 .0612 

2.0 .197 - .0609 - 8.469 .0654 - 	.0710 - 	.1198 .0645 

2.2 .209 - 	.0614 - 8.065 .0666 - .0772 - 	.1199 .0691 

2.4 .221 - 	.0619 - 7.684 .0682 - 	.0845 - 	.1198 .0742 

2.6 .238 - .0625 - 7.317 .0706 - .0938 - 	.1194 .0815 

2.8 .254 - 	.0632 - 6.952 .0737 - 	.1039 - 	.1190 .0860 

3.0 .270 - .0640 - 6.574 .0779 - 	.1153 - 	.1187 .0921 

3.2 .283 - 	.0651 - 6.158 .0840 - 	.1289 - 	.1187 .0985 

3.4 .299 - .0665 - 5.665 .0948 - 	.1489 - 	.1196 .1072 

3.6 .317 - .0686 - 5.027 .1165 - 	.1830 - 	.1229 .1207 

3.8 .342 - 	.0722 - 4.183 .1596 - 	.2432 - 	.1305 .1420 

4.0 .378 - 	.0781 - 3.197 .2198 - 	.3216 - 	.1419 .1657 

4.2 .427 - .0862 - 2.197 .2745 - 	.3907 - 	.1526 .1825 

4.4 .482 - 	.0957 - 	1.271 .3149 - 	.4424 - 	.1603 .1921 

4.6 .532 - 	.1059 - 0.466 .3421 - 	.4797 - 	.1651 .1969 

4.8 .576 - 	.1161 - 	0.211 .3589 - 	.5060 - 	.1675 .1985 



TABLE 9 

R B E(0,3) u Z  T V 1  V2 V, 

5.0 .610 - 	.1260 0.773 .3677 - 	.5238 - 	.1680 .1981 

5.2 .635 - .1354 1.236 .3705 - .5352 - 	.1670 .1963 

5.4 .652 .1441 1.611 .3690 - 	.5918 - 	.1648 .1935 

5.6 .663 - 	.1521 1.901 .3644 - .5448 - 	.1616 .1899 

5.8 .667 - 	.1593 2.097 .3576 - .5452 - 	.1575 .1858 

6.0 .669 - 	.1658 2.169 .3489 - 	.5435 - 	.1523 .1811 

6.2 .667 - 	.1715 2.047 .3384 - 	.5400 - 	.1455 .1756 

6.4 .667 - 	.1765 1.575 .3255 - 	.5346 - 	.1360 .1686 

6.6 .669 - 	.1808 0.455 .3083 - 	.5264 - 	.1215 .1588 



Figure 1 



-.25 

-.50 

-1.0 

1 4 3 2 
DISTANCE 



7 
	

2 	 3 
	

5 
D 'STANCE 

Figure 3 



2 
	

3 
DISTANCE 

Figure 4 



	 1--- 	 
1 	 2 	 3 

DISTANCE 
Figure 5 

0,0 

-.25 

-.50-- 

cD 

Lil 	 E
2 

1 

LLI 7 5 -- 

E2 = 10 

-7.0- 



- .01 	 
2 4 

DISTANCE 



2 	3 
DISTANCE 

5 

Figure 7 



B-6 

B.5 Shallow Donor Impurities Near Semi-conductor Vacuum and MOS Interfaces  

Variational solutions to the effective mass equations describing hydro-

genic donor impurities located near semiconductor-vacuum and semiconductor-

insulator interfaces were obtained. Results for the ground and excited 

eigenstate, binding energy, spectra as a function of the location of the impurity 

from the semiconductor-vacuum interface are presented for Si(001) and Ge(111) 

surfaces. The electronic binding-energy of a hydrogenic donor impurity as a 

function of its distance from the interface both into the insulator or into the 

semiconductor were studied in detail for the Si-Si0
2 case. The effect of an 

external electric field on the impurity binding energy was investigated and the 

results are compared with other recent theoretical calculations and experimental 

date. Our results show that to achieve better agreement with experimental 

data on MOSFET, (Si-S10
2 

system), it is necessary to locate the impurity in the 

oxide part of the interface. In addition the importance of proper choice of 

the variational basis set in the calculation is demonstrated. 

The method developed by us can be generalized with relative ease to treat 

shallow donor impurities in modulated structures. 
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Abstract  

Variational solutions to the effective mass equations describing 

hydrogenic donor impurities located near semiconductor-vacuum and 

semiconductor-insulator interfaces are presented and discussed. Results 

for the ground and excited eigenstate, binding energy, spectra as a 

function of the location of the impurity from the semiconductor-vacuum 

interface are presented for Si(001) and Ge(111) surfaces. The elec-

tronic binding-energy of a hydrogenic donor impurity as a fungtion of 

its distance from the interface both into the insulator or into the 

semiconductor is studied in detail for the Si-Si0
2 
case. The effect 

of an external electric field on the impurity binding energy is 

investigated and the results are compared with other recent theoretical 

calculations.and experimental data. 



The electrical and optical properties of bulk semiconductors and of 

semiconductor interfaces (either with vacuum of in metal-oxide-semiconductor, 

MOS, devices) are strongly affected by impurities.' In the case of a bulk 

semiconductor characterized by a dielectric constants and isotropic 

effective mass m the bound states associated with singly charged attractive 

Coulomb center impurities embedded in the semiconductor have (for a parabolic 

'band) a hydrogenic spectrum, E
n 

= -m
*
e
2
/2e

22
n
2
, n = 1, 2, ... with respect 

to the adjacent band edge. It was pointed out first by Levine, 2  that when the 

impurity is placed at the semiconductor surface the spectrum is modified. 

As argued by Levine, since the height of the surface barrier can be several 

electron-volts (and in the case . of Si-Si0
2 

about 3 eV
3
) and the binding 

energies of shallow donor impurities are of the order of mili-electron-volts 

the surface can be modeled as an infinite potential barrier requiring that 

the electron wavefunction vanish at the boundary (the effect of the infinite 

discontinuity approximation has been shown to be negligible
4
). In the 

context of the effective mass approximation,
5-7 

neglecting the image potential 

and band bending and assuming a spherical band one obtains again for an 

impurity located exactly at the surface a hydrogenic energy level spectrum 

subject to the selection rule that only states with It-mi = odd are allowed 

(i.e., s-states are excluded). 

Since that time there have been several investigations of the energies 

and properties of these states.
813 

Bell
8 
et al. used the selection rules 

of Levine and the bulk energies of silicon and germanium to calculate transi-

tion energies. Petukhov
9 

et al. included image charges in the effective 

mass Hamiltonian and performed a perturbation calculation on that system. 
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Karpushin i°  extended that perturbative treatment with the inclusion of 

linear band bending near the surface. In a later article Karpushin
11 

used 

a variational method to calculate the binding energies of donors on silicon 

and germanium surfaces. It is important to note that all of these authors 

constrained the impurity to lie exactly on the surface. 

Realistically the impurity will be distributed in the near-interface 

region, rather than being localized at the interface. The first'  omputation 

which considers such a situation is that of Godwin and Teff
14 

who employed 

a simple form of the trial wavefunctions for the ground and excited states 

in a variational calculation. A more complete basis set, and also including 

the effect of an external electric field (see Section 2) has been employed 

by Lipari. 15  

Armed with the variational method which we have described in detail in 

the preceeding paper 16  in this series, (which will be referred to as Paper I), 

we study in this paper
17 

the spectra of shallow donor impurities near semi-

conductor interfaces (vacuum and MOS interfaces, including the effect of 

electric fields) within the context of the effective mass approximation. 

In section 1 the case of a donor impurity near a semiconductor-vacuum inter-

face is considered. Results are given for Si(001) and G(111) surfaces. In 

section 2 a donor impurity near a semiconductor-insulator is investigated. The 

impurity is embedded in the semiconductor or in the insulator. Results are 

given for Si-Si0
2 

as a function of the location of the impurity and under 

13 15 the influence of an external electric field. Comparison to previous theories ' 

and experimental data is given. 
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1. A SHALLOW DONOR IMPURITY NEAR A SEMICONDUCTOR SURFACE 

We consider first a donor impurity embedded in the semiconductor 

near, but not necessarily at, the semiconductor-vacuum interface. 

In constructing the model Hamiltonian for this system several simpli-

fying assumptions shall be made. First because of the multiple minima 

of the conduction band in k-space, the crystallographic orientation 

of the surface becomes important. When considering the (001) plane 

of silicon or the (111) plane of germanium there exists 3  two kinds of 

constant energy ellipsoids; those with their major axis parallel to 

the surface and those with their major axis perpendicular. One of the 

results of Karpushin il  is that the ellipsoids with their major axes 

perpendicular give rise to a series of states which lie lower in 

energy than those with their major axis parallel to the surface. 

Consequently only these types of ellipsoids will be considered, because 

this allows a simplification in the requirements of the boundary 

condition p = 0 on the surface plane. In addition we shall assume 

that there is no change in the band structure near the surface, such 

as the formation of a space charge layer, so that there is no band 

bending near the surface. Finally, we shall be working in the one-

valley effective mass approximation18. 
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The preceding considerations lead to an effective mass equation 

given by 

n 
...2 	a 2 	a 2 

- t 

2 
a
2 	

e
2 

----*- 	 ) 	* 
2mt 	ax

2 	ay2 	2mt  az2 
	el l- 

	

(c 2 	cl) 	 e
2 

c l (c 1 	c2 )  [r2  + 4R2  - 4rR cosel1 /2  

-(c2-cl)e2 	

.1 

4e 1 (e l +e 2 )(R-rcose) ,
f F(r) = EF(7) . 	 (1.1) 

This equation must be solved subject to the boundary condition 

F(;) = 0 	when 	r cose = R . 	 (1.2) 

The impurity is located at a distance R from the planar interface. 

(See Fig. 1 of paper I.) Note that equation (1.1) follows from the 

choice of the (001) surface for silicon or the (111) surface for 

* 	* 
germanium. In Eq. (1.1) m

t 
and m

t 
are the transverse and longitudinal 

effective masses, e l  denotes the static dielectric constant of the 

region containing the impurity, and in this case that is the semiconductor. 

The static dielectric constant of region B (see Paper I, Fig. 1) is 

denoted by c 2 . This leaves open the option of solving for a semiconductor/ 

insulator interface or a semiconductor/vacuum interface. From Eqs. (1.1) 

and (I2.1) it is apparent that the methods described in Paper I are 

* 	* 
applicable when mt  = mt . The last two terms on the right hand side 

of Eq. (1.1) are the electron-image proton and the electron-image 

electron terms, respectively. 



In the following we shall be concerned with solving a scaled 

version of Eq. (1.1). All distances, including R, the distance of 

the impurity from the surface plane, are scaled to units of effective 

Bohr radii given by 

2 
* 	

fit 

	

 2 
c l 	 c l m  

a
o  - 
	- 0.529 (---)m , 

mt e 	 mt 

and the energy is in units of effective Rydbergs 

* 4 

* 

	

 RY 	mt 	2  e 2 	m 
- 13.6 (nit 	2 	eV 

"- El 	 cl 

The scaled version of Eq. (1.1) is then given by 

a 2 	a2 + 	+ y a 2 2 	2Q  

	

- ax2  ay2 	W 	r 4-  [r + 4R2  - 4rR cose] l/2  
{ 

Q  [2 R-rcosej 	F(;) = E 	. 

where Q is given by 

(c2 	El) 
Q 

(c2 	El) 

* * 
and y is the effective mass ratio defined as y = nit/m t. We note 

in passing that the effective mass equation has been scaled to the 

bulk semiconductor parameters rather than the surface units defined 

by Stern and Howard
3
. This scaling has been chosen for easier 

comparison to the bulk limit (R -+ large) and because this choice 

(1.3) 

(1.4) 

(1.5) 

(1 .6) 
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yields the factor (e2  - el )/(e 1 	e2). This factor always lies be- 

tween -1 and 1 whereas this is not the case for surface units. This-

feature is a practical one since large constants multiplying matrix 

elements are undesirable in the solution of the matrix equations. 

In the solution of Eq. (1.5) 	subject to the boundary condi- 

tions of Eq. (1.2) 	a strategy that is a combination of the methods 

of Paper I with a method presented by Faulkner19  is used. Since 

the change in the Hamiltonian of Eq. (1.5) from that of the previous 

i paper
16 
 is i n the z-dependence only, all the symmetry properties 

previously discussed are valid here. In particular, m remains a good 

quantum number while n and Z do not. The difference from the R co 

case in this situation is slightly different from that of the previous 

paper
16

. This is due to the symmetry properties of Eq. (1.5) 	with- 

out the boundary condition (1.2). 	The effective mass Hamiltonian 

is invariant under operations of parity and rotation about the z- , 

axis. This means that for the bulk impurity n and it are no longer 

good quantum numbers while m is; however states of even and odd it 

are not mixed, Therefor, the effect of the boundary condition 

in this situation is to mix states of differing parity, 

Since m remains a good quantum number the problem can again be 

reduced to the set of independent states characterized by their m 

values. Using this we can write 

F
m
(;') = G(z) 1 A 	x 	(;) 

n+t ntm 
nt 

(17a) 

where the choice of G(z) = R-rcosCis as before. Now the x nim 's are 



chosen as 

xn  
( )1/4  

x,y,z) = 	,trarri(x,y,N

. 1/2 

 z,a) (1.8) 

where y is the effective mass ratio and a is another non-linear vari-

ational parameter. The cpram (it,0's are given by Eq.(I1.12) and a 

is the variational parameter that is discussed in Paper I. 	The 

parameter a is a measure of the asymmetry induced in the wavefunction 

due to the asymmetric effective mass. The choice of the functions 

given by Eq. (1.8) was inspired by the success of the Kohn-Luttinger 5 ' 6 

 form for the ground state trial wavefunction; for upon setting p, = 1/a and 

a . = a2y/b2

'  reduces to their trial function. This basis set dif- 

fers.from,that used by Faulkner inasmuch as we use the combination 

8r rather than at-in in the radial function where n is the principal 

quantum number. 	Therefore, for the calculation presented here 

there are only two nonlinear variational parameters whereas Faulkner 

must use a set of such parameters the number of which depends upon 

the size of the basis set used in the expansion of the trial func-

tion. Of course, this means that we must calculate an overlap 

matrix, but as it has been shown this i .3 not a great handicap. 

As before, the substitution of Eq. (1.7) into Eq. (1.5) will 

lead to a generalized eigenvalue problem of the form of Eq.(I1.7). 

There is a transformation that facilitates the calculation of the 

Hamiltonian matrix elements. These matrix elements are given by 
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1
/2 	

1
/2 

<WV' H (m) Inz>  = 	
iY 
	( R-rcose) 	

a ,R- rcose) (1) n ,, m(x,y, 	z,a)
IYl 

a 2 	a  2 
x _ (-7  + - 2  + y 32  2 ) 12.  + 

[r2 
2 	p  

- 4rRcose 
( 

ax 	ay 	a z 	ir + 4R2 	 r2  

1/ 2  

(R-rcose) 
ram 

 (x,y,11 	z,6) dV . 
2(R-rcose) 

(1 .9 ) 

Making the substitution 

1/ 2  

i ya 
= Z 

yields 
1/ 2  

, <WO Mira 	
a 

> = f (R - 	 rcose) cp lyvni(x,y,z,a) 
T 

	

(D 2 	D2 	2
2

2 	[ 2 	/ 11/2 
2
2 + 	y a -- + ( 1-a) 

	

ax 	ay 	az
2 	

az 	x + y 2  + 	z a 

2Q 

[x
2 
+ y

2 
+ 
/
- z

2 
+ 4R

2 
- 4i1t1 1/2  rRcoei 1/2  

a 

Q  

2(R-(a1 1/2 rcose) 

1/ 2  

[(R-(11-1 	rcose)cprum(x'y'z'a)]  dV. 	(1.10) 
a 

  

The overlap matrix elements are given by 



<n't'Int> = (R -( 1) 
1 

1/ 2 	
* 

rcose) -  ¢n a 	

2 

m  (r,f3) 	¢ram  (1:,R) 	dV. (1.11) 

The subscript T and T' in Eqs. (1.9 - 1.11) indicate truncated regions 

of integration. The effect of the transformation is seen to be a 

simplification of the expansion functions at the expense of dealing 

with more complicated operators. 

The generalized matrix equation whose elements are given by 

Eqs. (1 .10) and (1.11) shall be solved numerically. The first step 

in this direction is the calculation of the quantities 

and 

/ 
/ _v 2  (R 	

a 1 

2 rcose) nim(1.:,f3) 

d
21/2  

(1 - a) 	[(R 	r cose) ¢ nitni Cr) ,(3)1 
dz 

(1.12) 

(1.13) 

The first of these expressions (Eq.(1.12)) has already been encountered 

by us before (see Paper I, Eqs. (I1.11) and (I1.16)). The second yields 

a somewhat complicated sum of terms involving the Legendre and Laguere 

functions of various orders and will not be repeated here. Most of 

these terms can be integrated in closed form. However, for the third 

and fourth terms in Eq. (1.10) this was not found to be the case. 

Consequently, these terms were numerically integrated as previously 

described. 

The general method of the numerical solution of the matrix 

equations is the same as described in the previous paper 16 . However, 

there is now an additional parameter, namely a, which must be varied 
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to yield an optimized energy. In practice the energy is a relatively 

slowly varying function of a near the optimum values of these quanti-

ties and this feature eases the problems associated with locating a 

minimum in the two parameter space.. 

Prior to discussing the results of this section, all of which 

are presented in effective units, the various physical constants of 

silicon and germanium that are relevant to this problem are presented 

in Table 1. The effective masses and corresponding y values for Si 

and Ge are taken from references 20 and 21, respectively. The static 

dielectric constants of silicon and germanium are taken after Faulkner
19 

who determined the low temperature values of these dielectric constants 

by requiring that the donor spectrum calculated in the effective 

mass approximation have an optimum fit to the experimentally de-

termined donor level spacing. Using these values the effective 

units for silicon are given by 

* 	-11  
 aoSi 	* 
cSi  

2 
- 31.7 A , 

mt. e .S1 

(1.14a) 

4 
n,* 	mtS e  

= 	
i 
2 2 	

- 1.99 X 10
-2 eV , 

2fi esi  
(1.14b) 



while those for germanium are 

0 	* 
a
oGe = 99.7 A ; RyGe = 4.70 X 10

-3 
eV. (1.15) 

Besides the introduction of an anisotropic effective mass, the 

major difference from the problem of the preceding paper is that 

the 'hydrogen atom' is now imbedded in a dielectric media and is 

near an interface with a media possessing a lower dielectric con-

stant. This means that the image charges possess the same sign 

(positive or negative) as the charges that induce them. This can be 

_seen from the form of the dielectric quotient given by (e2-e1 )/(c i +e2 ). 

This results in a repulsive electron-image electron interaction, 

while the electron-image proton interaction now becomes attractive. 

The results of the 'perfectly imaging' plane. show that, at 

least for the ground state, the absolute value of the expectation 

value of the electron-image proton interaction is greater than the 

expectation value of the electron-image electron interaction. Since 

the former of these quantities is negative, at a large enough dis-

tance frcm the surface the ground state electronic energy' is expected 
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to be lower than the R = op limit when there is no image charge con-

tribution. As the impurity is moved closer to the surface, the change 

in the energy due to the exclusion of the electron from the half-

space rcose 	R will begin to dominate and begin to raise (as a func- 

tion of the impurity distance from the surface) the ground state 

energy. Therefore, we expect to see the development of a minimum in 

the ground state electronic energy. 

The results presented in Tables 2 	through 4 	show that 

this is precisely what takes place. Table 2 presents the ground 

state energy of an impurity near a silicon surface for y = 1.0; that 

is, as if silicon possessed a spherical conduction band. The bulk 

. limit in this case is given by the hydrogenic -1.0 Ry*. Tables 

3 	and 4 	give the ground state properties of a donor impurity 

near the (001) silicon surface and the (111) germanium surface re-

spectively. The bulk values for these two systems, in effective 

Rydbergs, are given by 19  

E
Si

(R 	co) = -1.568 R Ysi 

E
Ge

(R 	co) = -2.087 R Ybe 

As a calculational check, the energies of these ground states were 
* 

 computed at a distance from the surface of 100 ao , yielding 

S 
E

i
o 

(R = 100 a
* 

) = -1.571 Ry
Si o

Si 
G 

E
e

o 
(R = 100 a

o
) = - 2.094 Ry

Ge Ge  

which is in agreement with the bulk values, to within 0.1%. 

(1.16a) 

(1.16b) 

(1.17a) 

(1.17b) 
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The ground state energies of the 'isotropic effective mass' 

silicon and the real silicon systems are presented graphically 

in Fig. 1, 	while the germanium system is given in 

Fig. 2. 	There are basically three regions of different behavior 

depicted in these graphs. At large R the impurity levels are approach-

ing their indicated bulk levels. Also there now exist minima which 

occur at approximately 2.6 	
' 

a*
o 
 1.0 a*  and 0.5 a *  for the .'isotropic' 

.silicon, real silicon and germanium systems respectively. Finally 

when the impurity is close to the surface there is a steep rise in 

the electronic energy. The main difference in the behavior of the 

energy as a function of the impurity distance from the surface be-

tween these three systems lies in the location and the depth of the 

energy minimum. This difference is due to the changing value of y, 

the effective mass ratio and can be explained in the following manner. 

In the bulk situation, the change in the wavefunction due to y< 1.0 

in Eq. (1.5) is to compress the wavefunction slightly in the 

z-direction 6  . Since the surface is perpendicular to the z-axis, 

this means that an impurity wavefunction for a specific value of the 

effective mass ratio will experience a lesser perturbation than the 

wavefunction corresponding to a large value of the effective mass 

ratio. Consequently, the minimum in energy will occur at smaller 

scaled distances from the surface as the value of the effective mass 

ratio is decreased. Note that this argument is true only for the 

scaled Hamiltonian, and that the minimum energy of a donor in 

germanium occurs at a larger distance than it does for a donor in 

silicon. 
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The excited state energies for a donor impurity near the (001) 

surface of silicon and the (111) surface of germanium are presented 	. 

in Figures 3 and 	4. The approach to the bulk values of the energy 

levels of the excited states takes place at a slower rate due to the 

larger 'spatial' extent of these states. Note that because the 

states labelled (0,3) and (1,1) (recall that the first label refers 

to the value of the m quantum number whilethe second give its posi-

tion in the spectrum of levels with the same m quantun number) 

possess different azimuthal quantum numbers, there is not, as it 

might appear, an avoided crossing between them. 

Finally we note that using the results for the ground-state 

electronic energy given in Tables 2-4 the impurity-surface "holding 

potentials",.consisting of the change in the electronic energy from its 

bulk value and the interaction of the positive impurity with its image, 

can be calculated (similar to the physisorption "holding potential" 

calculated in Section 2 of Paper I). The results suggest a tendency 

of the impurities to be concentrated near the semiconductor surface 

(at distances of 20-50 R from the interface). 
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2. A SHALLOW DONOR IMPURITY NEAR THE Si/Si02  INTERFACE OF A M.O.S. 

FIELD EFFECT TRANSISTOR 

The acronym MOSFET is derived from the combination Metal-Oxide-

Semiconductor-Field Effect Transistor. The metal gate is used to 

apply an electric field perpendicular to the surface of the semi-

conductor, from which it is insulated by an oxide layer. An n-type 

inversion layer can be produced in a p-type semiconductor at the 

surface if the energy bands near the surface are bent down enough so 

that the bottom of the conduction band lies near or below the Fermi 

level. Such a situation is referred to as an inversion layer since the 

majority carrier type in that region is the opposite of the bulk 

majority carrier. The band bending required to produce an inversion 

layer can be produced from the field applied by the metal gate. 

If the electric field is strong enough, electrons in the conduc-

tion band can become quantized in the direction perpendicular to the 

surface, while remaining in a continuum for motion parallel to the 

surface. One of these quantized states is known as an electric sub-

band and to a good first approximation these sub-band energies can 

be modelled as the eigenvalues of a one dimensional potential wel1. 3  

When the gate voltage is large enough, an essentially two dimension 

conductance can be observed between the electrodes marked source and 

drain. 

Recently, Hartstein and Fowler 22,23,1 have observed an effect in 

the conductance, as a function of gate voltage, in a MOSFET that can 

be attributed to the formation of an impurity band. Briefly, the 



experiment consisted of drifting Ne ions close to the Si-Si0
2 

interface 

and then measuring the conductance of the channel as a function of 

gate voltage. What is observed is the appearance of a peak in the 

conductance below the threshold for 2-dimensional metallic conduction." 

' By measuring the conductivity of the peak as a function of temperature, 

the binding energy of an electron to one of the impurities can be 

determined from the slope of a plot of the log of the conductivity 

versus the inverse of the temperature. We note here that the impurity 

is generally thought to be located several angstroms away from the 

interface into the oxide layer while the electron is in the semi-

conductor inversion layer. 

As in the previous section, , only the (001) surface of silicon 

shall be considered. Now, however, the dielectric constant of region 

B (see Fig. 1.1) will be taken to be that of Si0 2 , that is e 2  = 3.8. 

For the sake of comparison with other theoretical results,.in the 

following the dielectric constant of silicon shall be taken as 

c
1 
= 11.8. Since the discontinuity in energy as an electron passes 

from the silicon to the silicon dioxide is about 3 eV, 3 the boundary 

tondition * = 0 at the interface shall again be applied 3 . 

There are two modifications of the Hamiltonian of the last sec-

tion to make it applicable to the present problem. First, the posi-

tively charged impurity is located in the oxide layer which charges 

the constant factor in its interaction with the electron; and con-

nected with this, the image of the impurity is absent. Second, the 

change in the potential energy of the electron due to the presence 

of the electric field must be taken into account. The electric field 

can be a complicated function of the perpendicular distance to the 
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intrI face, however a reasonable first approximation is to employ a 

constant field 3 . 

Those considerations lead us to a Hamiltonian given by 

H 	_.62 ( 32 	32 	t2 	a2 
2 e

2 

,m*
t 	

3312 	
c.mx 

. ,m* az2 
	

(e l  + e 2 )r 

_ 	(e2 	e l )e2  
4e 1 (e 1  +.e2)(R:TEE-6) + eE(R-rcose) 

where e
1 

and e
2 
are the dielectric constants of silicon and silicon 

dioxide respectively and E is the local electric field. As before 

this Hamiltonian is scaled to bulk units yielding 

H .  - (-a
2 
 -- + 2 
	

a
2 	4e

1  

ax
2 	ay2) 	I az2 	(el + e2)r 

(e2 - el) 	+ 2 e- 
3  (12 

l m 
. 

2(e 1  + e 2 )(R-rcoseT 	 * mt 

(2 .1) 

(2.2) 

The Schrodinger equation with the Hamiltonian given in Eq. (2.2) is 

to be solved subject to the condition that T = 0 when R = rcose. 

All distances are in effective Bohr radii and all energies are in 

effective Rydbergs (Eq. 1.14)). Once the matrix elements involving 

the field term have been included in the Hamiltonian matrix, the 

energy levels are obtained in the manner previously discussed. 

The binding energy of the electron in the present case is not 

simply given as the absolute value of the ground state of Eq. (2.2). 

This is due to the fact that the electron is making a transition to 

the first electric sub-band and not to a bulk-like construction band. 

In the absence of the impurity potential the Hamiltonian (2.2) 

becomes 
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11 

 

a 	
(e2 	el ) 

' 	 
' 

az
2 	2(el + e2)z 

+ K E z 
 

(2.3) 

In Eq. (2.3) E is to be given in electrostatic units and therefore K 

has the value 

2 
( m 

K = 1.166 X 10
-7 
	el -v) 	• 

mt 

(2.4) 

Of course, the electron in this system also experiences the potential 

jump upon entering the silicon dioxide and the boundary condition 

*(o) = 0 must be applied. 

If the repulsive image term of Eq. (2.3) were absent the system 

would be the exactly solvable one of a triangular potential well where 

the eigenfunCtions are given by the Airy functions. When the image 

term is present a simple variational calculation yields very accurate 

values for the electric sub-band energy levels. A trial function of 

the form 

-az/2 N I A. z n+1 
*(z) 	e 

n=o 
(2.5) 

is chosen. Notice that this trial function satisfies the correct 

coundary conditions. As in the previous situations, the linear 

variational parameters An  lead to a matrix equation whose eiqenvalues 

are optimized by varying the parameter a. The binding energy of the 

electron is therefore given by 

Eb = E(H6 ) 	E(H) 	
(2.6) 
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and is dependent upon the electric field through Eqs. (2.2) and 

(2.3). 

This system has been considered by several different authors 

recently. Martin and Wallis 13  have used a simple variational form 

to calculate binding energies only when the impurity is located on 

the interface. Lipari
15 
 has utilized a basis set which is certainly 

correct when the impurity is on the interface but may not be so when 

the impurity is at a finite distance from the semiconductor/oxide 

interface. Hipolito and Campos
24 

have used the variational form of 

Martin and Wallis to calculate the effect of electrons in the electric 

sub-bands screening the impurity potential and thus changing the 

binding energy. This screening shall not be considered further in 

this report. 

The binding energy of an electron to a donor impurity located on 

the interface between the silicon and silicon dioxide as a function 

of electric field is presented in Fig. 5. The results of Martin and 

Wallis and those of Lipari, which are the same as in the present 

calculation are presented. Because of the simple variational form 

the results of Martin and Wallis are inferior, giving less binding than those 

of Lipari and of the present calculation. The binding energy given in 

Fig. 5 is larger than that found experimentally by Harstein and Fowler, 

but as shall be seen, when the impurity is moved off the interface and 

into the oxide layer the binding energy decreases. 

The binding energy of the electron at zero field is exhibited 

in Figs. 6 and 7 as a function of impurity distance from the 

interface. In the first of these figures the donor impurity is 

located in the silicon layer while the second locates the impurity 
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in the silicon dioxide layer. As can be readily seen there is a 

large discrepancy between the present calculation and the results 

of Lipari. This is most likely caused by Lipari's use of an 

inadmissible basis set. While noting the importance of a boundary 

condition * = 0 on the interface, Lipari chooses as a basis set 

* (1) = 	f-(r) Ym  (0 4) . 	2,. 	' 
where 

(2.7) 

fi (r) = 	Cu  e-aj r 	 (2.8) 

and the Cu  and ai  are the linear and non-linear variational param-

eters respectively. Later it is noted that only the 9. = odd terms 

contribute to the ground state in Eq. (2.7) (m=0). But this is 

only correct. when the impurity is located on the interface and this 

is illustrated by the coincidence of the results of Lipari and our 

calculations at R = 0.0. The point to note in this connection is that 

the binding energy of the electron decreases more rapidly as a function 

of impurity distance from the interface (when in the oxide layer) than 

has been calculated by Lipari. 

The electron binding energy to an impurity center located in the 

oxide layer for several electric field strengths has been calculated 

and these results are presented in Table 5 and Fig. 8. Also shown 

are the experimental results of Hartstein and Fowler who have found 

that for electric fields of 19.9 and 60.4 esu the binding energies 

are 18 and 25 meV, respectively.. These results differ from those 

of Lipari inasmuch as distance from the interface does not turn out 

to be the same for both field strengths. The binding energy of 18 meV 



for the field strength of 19.9 esu occurs for the impurity located 

at approximately 10 R, while the 25 meV binding energy at the 60.4 esu 
field strength occurs for the impurity at 1, 4 A into the oxide layer. 

These results demonstrate that agreement with experiment is improved 

if the impurity ions are located at small, but finite distances 

from the Si-Si0
2 

interface, into the insulator. In light of the 

approximations made in the formulation of the problem the above results 

should be regarded as the first step towards a theory in which effects 

due to screening of the impurity potential due to electrons in the 

inversion layer and inter-valley coupling could be quantitatively 

ascertained. 
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FIGURE CAPTIONS 

Fig. 1. Ground state energy of a shallow donor impurity near the (001) 

surface of silicon. Also included are the results for an 

isotropic effective mass. The bulk values are given by the 

lines under the B. Units are those of effective Rydbergs and 

effective Bohr radii as defined in text. 

Fig. 2 	Ground state energy of a shallow donor impurity near the (111) 

surface of germanium. Effective Ge units are used. 

Fig. 3 Excited states of a shallow donor impurity near the (001) surface 

of silicon. Effective Si units are used. 

Fig. 4 Excited states of a shallow donor impurity near the (111) surface 

of germanium. Effective Ge units are used. 

Binding energy of an electron to a donor impurity located on the 

interface between the silicon and silicon dioxide as a function of 

electric field. Energy is in units of effective Rydbergs while 

the electric field is given in electrostatic units (esu). 

Binding energy at zero field as a function of impurity distance 

into the silicon (semiconductor) layer. 

Binding energy at zero field as a function of impurity distance 

into the silicon dioxide layer. 

Binding energy at several field strengths as a function of impurity 

distance into the silicon dioxide layer. The experimental results 

of Harstein and Fowler are also included. The curve A is at 10 esu, 

B at 19.9 esu and C at 60.4 esu electric field strength. 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 



TABLE 1 

VALUES OF PHYSICAL CONSTANTS  

a
* 
0 

0 
Si 	.2079 	 11.4 	 31.7A 	19.9 meV 

Ge 	.05134 	 15.36 	 99.7A 	4.7 meV 



. TABLE 2 

Ground state properties of a shallow donor near the surface of 

a symmetric (y=1) silicon. All quantities are given in bulk units 

defined by Eqs. (1.3 ) and (1.4 )• Eo  denotes the ground state 

energy, T the average kinetic energy and V 1 , V 2 , V3  are the average 

values of the three potential terms in Eq. (1.5 ) respectively. 

R 	E
o 

 

• 
	il 	V2 	V

3 

0.2 -0.6064 0.6373 -0.8658 0.2380 -0.6159 

0.4 -0.6507 0.7670 -1.0594 0.2586 -0.6169 

0.6 -0.7221 0.9696 -1.3522 0.2841 -0.6237 

0.8 -0.8098 1.1662 -1.6626 0.3001 -0.6135 

1.0 -0.8945 1.2853 -1.8972 0.3000 -0.5825 

1.2 -0.9640 1.3268 -2.0379 0.2882 -0.5410 

1.4 -1.0158 1.3204 -2.1092 0.2708 -0.4978 

1.6 -1.q521 1.2912 -2.1381 0.2519 -0.4571 

1.8 -1.0767 1.2539 -2.1434 0.2332 -0.4204 

2.0 -1.0925 1.2160 -2.1364 0.2157 -0.3878 

3.0 -1.1086 1.0827 -2.0674 0.1498 -0.2736 

4.0 -1.0944 1.0302 -2.0273 0.1111 -0.2084 

5.0 -1.0794 1.0121 -2.0115 0.0875 -0.1674 

6.0 -1.0676 1.0057 -2.0056 0.0720 -0.1397 



TABLE 3 

Ground state properties of a shallow donor near the (001) sur-

face of silicon. (y = 0.2079, entries and units are as in Table 2.) 

R 	E • 	T 	V 1 	V2 	V
3 

0.2 -1.3601 1.3555 -2.0850 0.6374 -1.2679 

0.4 -1.5927 1.6827 -2.7632 0.6695 -1.1817 

0.6 -1.7496 1.8436 -3.1709 0.6084 -1.0307 

0.8 -1.8133 1.8267 -3.2815 0.5165 -0.8750 

1.0 -1.8278 1.7695 -3.2845 0.4345 -0.7472 

1.2 -1.8210 1.7255 -3.2681 0.3685 -0.6469 

1.4 -1.8061 1.6701 -3.2350 0.3167 -0.5670 

1.6 -1.7890 1.6466 -3.2085 0.2762 -0.5032 

1.8 -1.7722 1.6243 -3.1891 0.2441 -0.4515 

2.0 -1.7568 1.6094 -3.1755 0.2183 .-0.4089 

3.0 -1.7013 1.5796 -3.1469 0.1425 -0.2765 

4.0 -1.6597 1.5723 -3.1396 0.1060 -0.2084 

5.0 -1.6499 1.5698 -3.1372 0.0845 -0.1671 

•6.0 -1.6365 1.5688 -3.1361 0.0702 -0.1394 



TABLE 4 

Ground state properties of a shallow donor near the (111) sur- -

face of germanium. (y = 0.05134, entries and units are as in Table 

2. ) 

V1  V2 V3 

0.2 -2.3013 2.2373 -3.7971 1.2923 -2.0343 

0.4. -2.5389 2.4841 -4.4397 1.0238 -1.6071 

0.6 -2.5485 2.4160 -4.4679 0.7463 -1.2428 

0.8 -2.5035 2.2929 -4.3725 0.5673. -0.9912 

1.0 -2.4538 2.2164 -4.3039 0.4523 -0.8185 

1.2 -2.4104 2.1721 -4.2622 0.3747 -0.6951 

1.4 -2.3743 2.1460 -4.2369 0.3195 -0.6030 

1.6 -2.3447 2.1298 -4.2211 0.2785 -0.5320 

1.8 -2.3203 2.1194 -4.2108 -0.2469 -0.4757 

2.0 -2.2998 
. 

2.1124 -4.2038 0.2216 -0.4300 

3.0 -2.2343 2.0981 -4.1896 0.1470 -0.2898 

4.0 -2.1980 2.0943 -4.1848 0.1100 -0.2183 

5.0 -2.1785 2.0132 -4.1847 0.0879 -0.1749 



TABLE 5 

Binding energy as a function of impurity distance into the oxide 

layer for several values of the electric field strength. 

R E = 0.0 esu E = 10.0 esu E = 19.9 esu E = 60.4 esu 

0.0 0.9423 1.1949 1.2903 1.5062 

0.2 0.7327 0.9723 1.0566 1.2373 

0.4 0.6143 0.8437 0.9198 1.0762 

0.6 0.5347 0.7553 0.8298 0.9627 

0.8 0.4763 0.6891 0.7530 0.8762 

1.0 0.4311 0.6369 0.6960 0.807 

1.2 0.3949 0.5942 0.6492 0.7499 

1.4 ' 0.3650 0.5584 0.6097 0.7017 

1.6 0.3398 0.5277 0.5757 0.6602 

1.8 0.3183 0.5010 0.5461 0.6239 

2.0 0.2996 0.4775 0.5199 0.5920 

3.0 . 0.2336 0.3912 0.4234 0.4747 
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C. SURFACE REACTIONS  

C.1 Hinderance and Modulation of the Rotations of Adsorbed Molecules  

1. Continuation of our studies of the quantum mechanical properties 

(eigenvalue and eigenfunction spectra) of hindered three dimensional rotors, 

corresponding to diatomic molecules bound to a surface in a microcavity or 

surface trough. 

2. Further calculations of the hindered-to-free molecule transition probab-

ilities as functions of surface temperature, hinderance angle and rotational 

angular momentum of the free molecule. The model fascilitates identification 

of the special role played by the zero point kinetic energy associated with 

the spatial localization of the adsorbed molecule. The final state distri-

butions exhibit a highly non-equilibrium character. When plotted in the 

same manner as is customary in experimental studies [log P(2) vs. i(t+1)] 

to experimental data is obtained. In addition to the systems considered by 

us previously we have considered systems in which the symmetry of rotations 

around the axis normal to the surface is broken by a periodically modulating 

potential which possesses the local symmetry of the adsorption sites. 

Preliminary results indicate sensitivity of the free ejected molecule rota-

tional distributions to the adsorption site geometry. 

3. Generalization of the model described above to include center of mass 

motion. Calculation of branching ratios between rotational and translational 

energies in the final (free) molecule as a function of hinderance angle and 

characteristics of the adsorbed system. 

4. Detailed calculations of the eigenstate rotational spectra for molecules 

adsorbed in a configuration in which the internuclear axis is parallel to 

the surface plane and the motion of the molecule is modulated by a potential 
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periodic in the azimuthal angle. This potential represents the symmetry 

of the adsorption site. In addition to the case in which the motion of the 

molecule in the polar angle direction is hindered we have investigated 

weakly bound systems (no polar hinderance) under the influence of azimuthal 

modulations. The resulting spectra exhibit sensitivity to the strength 

of the modulating potential, and adsorption site local symmetry. These 

findings may become important in view of the current ability of high-resolution 

surface spectroscopies (electron loss and infra-red) to detect rotational 

modes of adsorbed molecules. 



C.2 Models of Surface Chemical Reactions: Desorption and Dissociation  

An outstanding problem in the theory of chemical reactions mediated 

by solid surfaces is that of formulating theories in which the physical 

mechanisms involved in a reaction can be investigated systematically. For 

example, if we consider a single molecule interacting with a solid surface, 

it is essential to understand the relationship between the probabilities 

of energy transfer among the translational, vibrational, and rotational 

degrees of freedom of the molecule and the properties of the potential energy 

surface determined by the interaction between the molecule and the solid; 

such understanding would yield insight into the mechanisms of reactive events 

such as dissociation of the molecule, migration and desorption. Multiple 

species of gas phase molecules reacting at a solid surface present a much 

more complicated problem. It is important to realize, however, that, even 

in this case, understanding the relationship between the analogous probabili-

ties and the potential energy of interaction is a prequisit to understanding 

the physics of the reaction. 

Even for the simple surface mediated reactions studied to date (we use 

the term "reaction" to describe such changes of the chemical state of the 

system as chemisorption, desorption, dissociation, etc.) the complications 

are such that theoretical calculations have involved simplifying assumptions 

whose validity is difficUlt to ascertain. For example, a molecule chemisorbed 

on a solid surface is in a state whose vibrational modes are characteristic 

of the molecule and solid system: in other words, the effects of resonant 

interaction between the vibrating solid and the molecule vibrating in its 

chemicorption well could be important. The probability of desorption, 

therefore, in principle, incorporates such effects. Theoretical calculations 
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of desorption probabilities, however have, to date, usually utilized the 

Born approximation in which such resonance effects are neglected. 

In what follows, we consider cases in which we have transitions between 

bound and propagating states of the molecule - solid system. Such cases 

comprise, for example, desorption and photodissociation through a quasi-

discrete intermediate state. Only the vibrational degree of freedom is 

considered in our present model. 

In order to be more specific, the potential energy of interaction in 

the Born-Oppenheimer approximation between a molecule and a solid, 

V(;s ,;111 ,z), is a function of the internal coordinates, or interatomic dis-

placements, of the solid and molecule ( -Ps  and 7, respectively) and the 

distance, z, between the centers of mass of the solid and molecule. Assuming 

small oscillations of the solid atoms about their equilibrium displacements, 

p
o 

, determined from 

@V 	-4- s 
S 

(p 0 pz) = 0 
ap i  

where pl is any Cartesian coordinate, we can make the expansion 

V(;s ,r,z) 	Vlic,'-os ,r,z) 

(1) 

2„,-4- s -411 
,z ) 1 	 @ vkp

0 
 ,p ,z) 	S 	S 	S 	S' 

(P i -P Oi )(P j -P Oj ) • 	( 2 ) + y X , 	.X. 	s 	S ' 
s ,s 	i,j ,,3 	a p 	@ 

	

. 	ri . 

	

1 	j 

The sum in Eq. (2) extends over all the atoms of the solid, denoted by S 

and s', as well as over all Cartesian coordinates. 

From Eq. (1), it is clear that the solid equilibrium displacement is 

modified by the presence of the molecule. In addition, the first term in 

Eq. (2) represents a potential energy of interaction in which the solid 

atoms are frozen in their equilibrium positions. The second term in Eq. (2), 
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on the other hand, corresponds to the potential energy of a system of coupled 

harmonic oscillators in which the force constants as well as the equilibrium 

positions are displaced relative to those of the isolated solid. For 

comparison purposes we have for the isolated systems, 

	

V.(P,pm) = V(;s 57,z4-) = V m(r) 	vs (P S ) 

a2v 

Vs( o)  V 
cp  \ o-s 2.,  v  (\ 1.1 v 	so'  

's" 	s' o' 	2 L 
s,s ' 

 .L. 	s s' 	\" 	of 	of  ' s,s 1,j 3p.4. 
1 	j 

where 	denotes the equilibrium positions of atoms in the isolated solid. 

The rate of desorption is given by 

-E.(3 
1 wdes 	h Z 	e 	I<Y.1 111 1 1(1)

f 
 >I

2
6(E.-e 

i,f 

(K
m 
 + K

s 
 + V - E

i
)1> = 0 , 

(Km 	Ks V^ Vstatic 	c f)1(Pe = 0  ' 

H'  = V - V 	Vstatic ' 

-SE. 
Z E 	e 	1  

where K denotes the kinetic energy, 
Vstatic 

represents the first term in 

Eq. (2), (3 = (k BT) -1 , k B  is Boltzmann's constant and T is the temperature. 

The basic point of Eqs. (4) is that if we expand V about the solid and 

molecule equilibrium displacements, the initial (exact) chemisorption 

state, ly, corresponds to an eigenstate of the system of coupled solid- 

(3a) 

(3h) 

(4a) 

(4b) 

(4c) 

(4d) 

(4e) 



molecule oscillators, while the final desorption state, kp f>, is a product 

of an eigenstate of the solid (corresponding to Eq. (3b)) and a state of 

the molecule propagating under the influence of V static' 
Evaluation of 

the transition matrix element in Eq. (4a), therefore, involves as a first 

step the calculation of the overlap between products of harmonic oscillator 

states of the normal modes of the combined system and products corresponding 

to the normal modes of the isolated solid. Previous treatments employed 

the Born approximation in which IT i > is replaced by kp i >, a bound state of 

Eq. (4c), i.e., in these treatments both the initial and final states corres-

pond to the same Hamiltonian. 

In an adiabatic treatment of molecular photodissociation (or photo-

stimulated desorption in the present context), the rate has a structure 

similar to that of Eqs. (4), where 1w 1 > corresponds to an intermediate quasi-

bound state of the system on the potential energy surface of an excited elec-

tronic state (within the Born-Oppenheimer approximation) and k f> represents 

the dissociative state as a product of states of the separated systems (but 

dependent on z through the force constants and equilibrium displacements, 

as in Eq. (2)) and an adiabatic state in z. In this case, also, we require 

overlaps between products of harmonic oscillator states corresponding to 

different normal modes (i.e., combined vs. separated systems). 

These points are most easily appreciated by treating an atom instead 

of a molecule. If, for example, we treat the case of desorption, and denote 

the normal modes of the chemisorption system and isolated solid by 

n 	
"o 

,1-1 
o
) and q

a
( -r-

o
s ), respectively, then the overlap between 

vibrational eigenstates of the two systems is proportional to 
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3N 	 3(N-1) 
f 	d3(N-1) p s  ( 

'1
11

1 	 j 
4) 	(Qa.))( 	

1 	Xjaj 
( q -)) m I(v1 ...V30  Al 	X3(N-1);Z) = 	V i 	1 =  

(5) 

where I represents the overlap, v and X are occupation numbers, we assume 

N + 1 atoms in the solid and have removed center of mass modes. The explicit 

calculation of the integral is cumbersome, which has hampered development 

along these lines. 

We have developed a recursion method for calculating these overlaps. 

The methodology involves first calculating the normal modes of the two 

systems, expanding Q a  in terms of q a , and applying simple harmonic oscillator 

algebra. The resulting recursion relation involves first order differential 

operators. For desorption of an atom from a one-dimensional solid, we have, 

in general for the ground state overlaps, 

-m M 

m I(0 ... 0 ; 0 ... 0;z) = C00 exP(  2h  T 
w(z_ z0) 2 )  (6)  

where m
0 

is the mass of the desorbing atom, M the total mass of the chain, 

MT  = m0  + M, the quantities W and z
0 

are complicated functions of the para-

meters of the problem, which we do not present here. The recursion relation 

has the dual form 

(I-  

	

71-17\7;,  I(V i  ...V z+ 1 	A 1 	... AN-1 ;z)  = 2-  Oz  I(V i 	X 1  ... AN-1;z) 

N-1 
+ 	(S VT-  i(v 

	

a=1 	
at a 	1 	vN ; X 1 	Aa-1 	AN-1 ;z)  

- s:, ,47T-  i(v i 	vN ; A l  ... 
Aa+l '" AN-1 ;z) 	' 	

(7a) 
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In Eqs. (7), the 0 and 0+  represent first order differential operators, 

and the S , and S
+ 

denote known transformation coefficients. It is well to 

empoasize that the form in Eq. (6) resulted from applying Eq. (7b) to the 

ground states of the system. All other coefficients are generated from 

the relations in Eq. (7) and the facility with which this procedure can be 

implemented results from the simplicity of relations (6) and (7). It is 

important to recognize that this method puts multi-phonon and single phonon 

states on the same footing, so that resonance effects can be examined readily 

Extension to the case of molecular desorption is straightforward and calcula-

tions are in progress for this case, which yields information regarding 

energy partitioning between the various degrees of freedom (translationa, 

vibrational and rotational) of the desorbing species. The calculations 

would also provide information concerning energy partitioning in the frag-

mentation of poly-atomic molecules. 

(7h) 
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I. INTRODUCTION 
The importance of surfaces and interfaces in a variety of 
chemical and physical processes has been long recog-
nized. The interest in these systems originates from 
coupled technological and fundamental reasons, since 
often the understanding and improvement of technologi-
cal applications requires knowledge on a basic level. Due 
to the wide range of applications and phenomena ranging 
from chemical catalysis, corrosion research, elec-
trochemistry and the application of surface-active agents 
(detergents, adhesives, etc.), to electronics and methods 
of crystal growth, this field of research is of an interdis-
ciplinary nature, referred to as surface and interface 
science. In fact, in most of these systems we investigate 
interphase phenomena, i.e., the structure and interactive 
processes at the interface between two phases of matter, 
solid-gas, liquid-gas, or solid-liquid. 

One of the major objectives of surface science is the 
understanding of the fundamental processes involved in 
chemical reactions catalyzed by solid surfaces. A cata-
lyzed surface reaction may conveniently be described by 
a sequence of elementary kinetic steps' such as adsorp-
tion (which may proceed via stages involving precursor 
states,' physisorption' etc.); diffusion° (on the surface and 
in certain cases through the bulk); reaction (dissociation, 
association, rearrangement etc.) and desorption. The 
traditional thermochemical analysis of reactions invol-
ving the balance of heats of the above distinct processes, 
such as heats of adsorption, desorption, dissociation and 
bond formation, provides criteria for the occurrence of 
certain reaction paths. However, such analysis, while 
determining the direction of the process in the 
reactants-products space, does not provide detailed in-
formation about the reaction rates and the fundamental 
microscopic processes which govern them. The employ-
ment of specific catalytic agents in a chemical reaction 
provides the means for modifying reaction paths and 
rates. In addition, through the use of the proper catalyst 
a particular reaction channel, selected from the manifold 
of thermodynamically allowed ones, may be enhanced. 
In order to enable one to choose specific catalysts with 
the objective of optimizing the yield of a desired reaction 
product it is necessary to develop an understanding of 
the microscopic interaction processes and to identify the 
physical parameters of the catalytic system (catalyst, 
reactants, and ambient conditions) which govern the 
outcome and rate of the reaction. 

The evolution of a chemical reaction is conveniently 
described by rate data, i.e., plots of the decay or growth 
in time of the concentrations of the reactants and pro-
ducts, respectively. When treated on a phenomenological 
level,' a reaction scheme is postulated and described by 
a set of simultaneous rate equations. In this class of 
studies the rate constants are regarded as parameters to  

be determined by fitting the solutions of the equations to 
the experimental data. The functional form of the solu-
tions to the kinetic decay and growth equations serves to 
catagorize reactions by their orders with respect to 
reactant concentrations (i.e., the exponents of the con-
centrations as they appear in the rate equations). How-
ever, it should be emphasized that since rate equations 
form the most contracted description of a chemical 
reaction there need not be a simple correspondence 
between the order and the physical mechanism of the 
reaction. 

Understanding of chemical reactions on a more funda-
mental level is provided by statistical mechanical ap-
proaches,'" in which rate constants are evaluated using 
partition functions, s• stochastic methods 15  or "phase-
space theories" and molecular dynamics's' (i.e., classical 
trajectory analysis). The latter methods describe the 
classical evolution of the system on its potential energy 
surface and provide information about collision 
dynamics,'" energy transfer and rates. While most popu-
lar in gas-phase kinetics, these powerful statistical 
methods have only recently been employed in the inves-
tigations of surface reactions. 

The most refined treatment of reaction kinetics is by 
microscopic models' in which the underlying physical 
processes, such as coupling, excitation and energy trans-
fer, are investigated. It is via investigations on this level 
that one may expect to unravel the correlations between 
catalytic reaction kinetics and characteristic parameters 
of the solid substrate (geometric structure, vibrational 
and electronic spectra), properties of the reactants (elec-
tronic, vibrational) and ambient conditions (pressure, 
temperature and external fields). 

In the past two decades there has been a rapid 
proliferation in the development and application of 
spectroscopies which probe the composition, crystallo-
graphical arrangement and electronic and vibrational 
structure of surfaces on the atomic scale."' At the same 
time theoretical formulations which allow the analysis of 
experimental observations and calculations of surface 
properties have been advanced. At this stage of develop-
ment emphasis was placed on the characterization of 
surface systems with less work directed at the dynamics 
of surface interactive processes. While static information 
such as (i) atomic arrangement at the top-most layers of 
the solid and that of adsorbed species (LEED, ion 
scattering, SEXAFS); (ii) surface electronic structure 
(UPS, AES, EELS, ILEED); and (iii) vibrational struc-
ture (EELS and IR), along with theoretical studies of the 
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above issues are most valuable to the understanding of 
surface phenomena, new methods and approaches are 
necessary in order to tackle successfully the dynamical 
aspects of surface interactions. The budding generation 
of new experiments (some of which are well known in 
gas-phase chemical dynamics' but novel in their employ-
ment to surface systems) such as laser-induced fluores-
cence studies of the rotational and vibrational-state 
distribution of molecules adsorbed,' scattered' and ther-
mally desorbed" from metallic surfaces, rotational and 
vibrational state distributions obtained from analysis of 
optical emission from electronically excited ejected 
molecules," measurements of angular distributions of 
desorbed particles,' investigations of diffusion rates and 
mechanisms' (FIM, FEM) provide the impetus and have 
profound implications on theoretical strategies for future 
modeling of the physical and chemical processes which 
underly the mechanisms and dynamics of elementary 
surface interactive and rate processes. 

At this junction the interphase nature of interactive 
surface systems should be noted. Unlike gas-phase in-
teractive systems, in the case of surface systems not all 
the reactants are in the same state of aggregation. The 
presence of a surface introduces time scales and spatial 
boundary conditions unique to condensed matter sys-
tems, which in turn dictate the energetics and dynamics 
of gas-solid interactions. Solid (and liquid) substrates 
possess a spectrum of electronic and vibrational excita-
tions of an extended (and collective) nature. The degree 
to which an extended picture of the substrate rather than 
a local (cluster or embedded cluster) description should 
be maintained in a proper formulation of dynamical 
processes at surfaces depends on the class of phenoniena 
under study. While in calculations of chemical bond 
formation a representation of the substrate by a finite 
(often small) cluster may be adequate," energy dissipa-
tion and redistribution mechanisms, particularly for low-
energy (thermal) processes, require an extended picture. 
In the latter case the validity of the Born-Oppenheimer 
approximation which is central to calculations of adiaba-
tic potential energy surfaces is seriously questioned due 
to the availability of easily excited conduction electrons 
in metal substrates. Moreover, since the substrate is 
characterized by a continuous spectrum of electron-hole 
pair excitations, a description of the gas-surface interac-
tion potential for metals in terms of a single adiabatic 
potential is incorrect and should be replaced by a con-
tinuous band of close-lying hypersurfaces. The strength 
of nonadiabatic coupling which causes transitions be-
tween these levels governs the degree of departure from 
the adiabatic description. The above discussion indicates 
the difficulties in constructing a proper potential hyper-
surface let alone a formulation of the evolution of the 
system.' 

Energy dissipation and redistribution via coupling to 
substrate phonons is likely a dominant process."'" -"." 
The substrate phonons provide a "momentum" and 
energy reservoir (although the energy transfer if only 
single-phonon processes are considered is limited to 
-.5_ 10' eV, we will return to this issue in Section III). 
The phonons in turn may dissipate energy via 
electron-phonon coupling. 

Of paramount importance for the understanding of 
reaction dynamics on a microscopic level are the 
mechanisms of coupling and energy exchange and redis-
tribution between the reactants." In the case of gas phase 
reactions certain general conclusions with regard to the 
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relative importance of translational, vibrational and rota-
tional energies in surmounting the reaction barrier have 
been drawn. For example, when the barrier is encoun-
tered early in the approach of the reactants translational 
energy is the key factor. While for reactions in which the 
potential energy barrier for reaction occurs when the 
reactants have come to close proximity, the vibrational 
and rotational energy content is dominant in dictating 
the probability of reaction. As indicated above the 
formulation and theoretical analysis of surface reactions 
are much more complex due to the heterogeneous nature 
of these systems. Consequently, at this stage of develop-
ment, progress may be made via model theories (employ-
ing, critically, simplifying assumptions) of coupling and 
excitation mechanisms of molecular species near surfaces 
and of the dynamical evolution leading to bond forma-
tion (sticking), bond rupture (desorption, dissociation), 
rearrangement and migration. The purpose of such 
theoretical models is to identify and elucidate the domin-
ant mechanisms and relevant characteristic parameters 
which govern the dynamical physical processes. It should 
be noted that even though in certain cases theories can 
be stated in most general terms, their implementation 
often requires input information which for the systems 
under study is not yet available (such as a complete 
surface phonon spectrum, accurate interaction potential 
hypersurfaces, localized state wave functions etc., al-
though progress in these directions is realized). 

In light of the above remarks we present the elements 
of theoretical models developed in our laboratory for the 
study of certain elementary reaction processes. In Sec-
tion II we derive an expression for the coupling between 
an adsorbed particle on a metal surface and fluctuations 
in the substrate. This coupling is then employed in 
Section III in a stochastic formulation of the temporal 
evolution of the system which yields results for desorp-
tion rates. In Section IV the rotational state distributions 
of diatomic molecules desorbing from a substrate are 
studied, using a simple quantum-mechanical model 
which emphasizes the role of the surface as a "localizing 
agent". We conclude in Section V, with a brief discussion 
of a stochastic theory of migration on surfaces and 
calculations of the rates of certain diffusion controlled 
reactions. 

II. MICROSCOPIC THEORY OF DESORPTION: 
HAMILTONIAN AND COUPLING 

(i) Hamiltonian 
The first step in our formulation is a statement of the 

Hamiltonian of the system. The total Hamiltonian of the 
adsorption system may be written as 

H=T  + TN + V(r, R) 	 (2.1) 

where T. and TN represent kinetic energies of electrons 
and nuclei of the system (molecule and substrate) and 
V (r, R), various contributions to the potential energy 
(r =  IT M , R = {R M , kb where r. and r, are the 
electronic coordinates of the adsorbed molecule and 
solid, respectively, and R M , R, the corresponding nuclear 
coordinates). In the adiabatic approximation" the total 
wavefunction is taken as 

(r, R)= .0(r, R)x„,(R). 	 (2.2) 

The electronic wavefunction satisfies the equation 

[T, + V (r, R)14 (r, R) = e,(R)0(r, R) 	(2.3) 

solved for fixed R, where the direct interaction between 
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nuclei is included in V(r,R). The equation for the 
nuclear motion can be found variationally' 

21 2m- 	V2 +1E.1/0+ V(R)1}X,4(R)- E N,y,(R) (2.4) 

where 

V'(R)= 2 f d'rd,* (- 1  v2) 	(2.5) 
2M„ 

and the summations are over all the nuclei. The effective 
potential (expression in square brackets in Eq. (2.4)) for 
the nuclear notion is dominated by the electronic energy 
E.(R) and the term V'(R) is small. To go beyond 
the adiabatic approximation requires the evaluation 
of the non-adiabatic couplings - (ft 2  / 14)(n aR  m)V„ 
and - (h 2/2M)(n where I n) and I m) are adiaba-
tic electronic states depending upon the nuclear coordi-
nates R. While it is possible to include non-adiabatic 
contributions using a generalized Green's function 
method," we do not include them in the following. 

At this stage the electronic energy E,(R ) may be 
modeled in the following manner. First one identifies in 
eb (R) those components which correspond to in-
tramolecular bonds and to binding between atoms of the 
molecule and a localized region in the solid. The elec-
tronic interactions for a fixed configuration of nuclear 
molecular coordinates, {R,J, and solid nuclear coordi-
nates, {R.}, determine the adsorption potential between 
the solid and the adsorbate. We separate the interaction 
into two parts: one in which the solid is kept stationary 
and the other where the solid is allowed to vibrate. It is 
via the latter contribution that an energy exchange 
between the molecule and solid (which may eventually 
yield desorption or dissociation) becomes possible. The 
first contribution to these "bond-potential-energies" may 
then be modeled by some analytical potential formulae 
such as a harmonic well, a Morse potential or other 
suggested potential formulae. The rest of e b (R), i.e., that 
part which can be identified with the solid coordinates 
may then be replaced by a certain model of the solid 
(remember that internuclear interactions were included 
in e b (R)). 

The corresponding nuclear motion equations (2.4) may 
then be solved with the above-mentioned model replace-
ment for eb (R), and their solutions provide the vibra-
tional spectrum for the modeled system. 

(ii) Coupling 
In this section we derive, under certain approxima-

tions, an expression for the coupling between a point 
charge (of charge + Z,te, where ZI is the effective 
charge of the ion) adsorbed at a distance z, from a metal 
surface and the fluctuating part of the metal substrate. 
As discussed previously, in the model which we develop 
the role of the electronic (including direct nuclear in-
teractions) energy is to establish a bounded 
molecule-solid system characterized by, for example, a 
Morse potential with an equilibrium distance d i  of the 
atomic constituents from the surface, with an associated 
manifold of vibrational levels. 

To make the calculation tractable and yet preserving 
the essential physical features we model the surface in 
the following manner. We consider an electron gas 
bounded by an infinite potential barrier (Fig. 1). The 
static ions are then placed within this potential and the 
first plane is positioned at a distance L - z o  with z o -- 0 

Z.0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 

Z=Z0 

0 0 0 0 0 Q 
z.L-Z0 	 Z=L+2 4  

Fig. 1. The model adsorption system. The electron gas is 
bounded in a slab of linear dimension L. The first plane of 
substrate ions is located at z = L — z o  with z o —> 0. The adsorbed 
ion is located at z = L +z,. 

from the potential barrier, where L is the linear dimen-
sion of the slab. 

We now relax the static ions and allow them to 
fluctuate by emitting phonons. Denoting such a density 
fluctuation of the ions as Sn b(r) and the electronic 
response to such a fluctuation as Sn b (r), the coupling 
may be written as 

v(r)= Sub(r)+ Sub (r), 	 (2.6) 

where Su b(r) and Su b (r) are the fluctuating ionic and 
electronic interaction potentials with the adsorbed 
charge ( + Zle) positioned at r, i.e., 

Sub(r)= Z:Zbe 2  r  dr'Snb(r') 
Ir -r'l 

Sub(r)= - ZtZ,e 2  r  dr'Snb(r') 
J I r - r' I 

with 	and Z, and atomic charges (possibly screened) of 
the adatom and metal ions, respectively. The position 
vector r of the point charge is set equal to z i + L in Eqs. 
(2.6) and (2.7), where L is the thickness of the sample 
(Fig. 1). We choose next a wave-vector q of the fluctuat-
ing ionic background and express the single Fourier 
component of the density fluctuation as 

Sn b(z, r1) = Snb(g2, (10 e (`' 	± c.c. 	(2.8) 

In the following we omit writing explicitly the parallel 
components r1 , q1  from Sn b  due to translational in-
variance in planes parallel to the surface, and denote 
Sn b(z) =- Sn b(z, ro and Sn,(q,)=----- Sn b(q,,q1). It is conve-
nient to define an extension of Sn b (z) by an even 
function Snb(z) such that for z in the range [ - L, 
Snb(z)= z). Treating the electrons semiclassically 
and solving the linearized static collisionless Boltzmann 
equation for the fluctuation in the electron Fermi-Dirac 
distribution driven by the self consistent field given by 
Eqs. (2.6) and (2.7) we obtain the following expression 
for the coupling v(z, + L)": 

v(z,+ 	v(z,)= ZIZ,e221rSnh(q0e-v, 
(qi+qi)D 

x[
1 	A IF  2  

Tr -Fq1+ ATF 

where A 7F  is the Thomas-Fermi screening length of the 
electrons and D is given by 

(2.7) 

(2.9) 
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A  D = 1 	 . 	(2.10) 2(q + A 4)1 + (q + A 1-F)1 

Within the context of the infinite surface barrier as a 
model for the static semi-infinite crystal the generaliza-
tion of Eq. (2.9) to include crystallinity of the substrate 
would involve simply treating Sn b (q i ,q1) in terms of the 
phonon crystal propagator. In the present calculation we, 
however, would use a continuum Debye model of the 
solid. 

In a continuum model of the solid the Fourier com-
ponents of the positive background number density 
fluctuations, Sn,,(q) see Eq. (2.8), are defined by the 
relation 

snb(r) = Emb(q) 
	

(2.11) 

and Sn b (r) is given as" 

Snb (r)= — Z,n,,V • D 
	

(2.12) 

where no  is the ionic number density of the solid and D is 
the displacement of the background from its equilibrium 
position. From Eqs. (2.11) and (2.12) it follows that 

qi) 
(2.13) 

= Z,n o 	 V2 A nhoil w, q (bq b18),  

where A is the atomic mass of a solid atom, fl is the 
volume of the solid and b, (b;) are the annihilation 
(creation) operators of a phonon of wave vector q and 
frequency tog . We now express the instantaneous position 
of the adsorbed atom z, as z i = d1  + Ili , where d, is the 
equilibrium distance of the atom from the surface, and 
expand the exponent, exp( — qi z,), in Eq. (2.9) to obtain 

v(z,)= v o(q;d 1 )+ Sv,(q;u 1 )+ Sv,(q ; u,)+ ••• , (2.14) 

Sv i (q;u 1 )= gVu,(b, + 	 (2.14a) 

Sv 2(q,u)= gVu;(b,, + 	 (2.14b) 

where Sv,(q;u,)is the potential corresponding to bilinear 
coupling between the vibrations of the atom and the 
phonons of the solid. Assuming for simplicity an acoustic 
continuum model for the solid, i.e., w q  = sq where s is 
the sound velocity, in Eq. (2.14) is given by 

a 

± 	A 
q  1/2 i  

g (,; )  = 	Fq2 	 (2.15a) 

AiF  X [1 + 
2(q1 + A 4)" 2[qi + (q; + A 4) 1 1 — A d e  

where 
hit°  \ I/2 

F = 277-Z,Z* 
A

e 2 	 
 (2M,DS 

Our results can be summarized by writing the Hamilto-
nian for our model system as 

H = 	In+ H', 	 (2.16a) 

H' = E 	 (2.16b) 

where 4 is the electronic energy (including direct 
nuclear—nuclear interactions) for equilibrium nuclear 
positions, H° is the zeroth-order vibrational Hamiltonian 
for the adsorption system, and the last term Eq. (2.16b) 
in Eq. (2.16a) contains couplings between the vibrations 

Israel Journal of Chemistry 22 1982 

of intramolecular and chemisorptive bonds and fluctua-
tions in the solid. 

(iii) Transition Rate 
The transition rate between vibration levels of the 

adsorbed system due to the coupling operator H' (Eqs. 
2.16) can be evaluated to lowest order in perturbation 
theory using the golden rule formula" 

	

" = 2 	p(n )f(v',n'g f H'Iv,n ‘dr 
„ 

'" 

	

 X 	+ e„;,— v„,), 	
(2.17) 

where we sum over phonon final states n„' and average 
over phonon initial states ng  using the probability dis-
tribution p(ng ). 

In order to evaluate Wo_0 . we need to specify the 
manner in which we model the vibrational spectrum of 
the adsorbed molecule. 

(i) In the crudest approximation the vibrations are 
modeled by harmonic oscillators, truncated at the ap-
propriate predissociation levels (see Section III). Keep-
ing only terms up to bilinear coupling (Sv,, see Eq. 2.14) 
allows only for single quantum transition (v —> v ± 1), 
accompanied by the absorption (emission) of a phonon. 
An expression for W;,k2„, was derived (see Ref. 20). 

(ii) As an improved model of the bond potential 
energy between an adsorbed atom and the surface we 
consider the Morse potential" 

v e (z — d,)= D.{[1— exp[ — (z — d 1 )]112 — D. (2.18) 

where De  is the dissociation energy referred to the 
minimum, d, is the equlibrium distance of the adsorbed 
atom from the surface, and the parameter f3 determines 
the width of the potential. One often defines the anhar-
monicity parameter x, = loo/4D, where w o  is the vibra-
tional frequency for infinitesimal amplitudes (x, is often 
determined empirically). Using previously derived ex-
pressions"' for the matrix elements of the deviation 
from equilibrium, u, the transition rates and 

can be derived." 

III. EVALUATION OF FIRST PASSAGE TIMES 
FOR THE TRUNCATED HARMONIC OSCILLATOR 

AND MORSE-POTENTIAL MODELS 
Having obtained explicit expressions for the couplings 

between the adsorbate and the substrate and for the rates 
of transitions between vibrational levels of the binding 
potential, induced by the couplings, we turn next to the 
temporal evolution of the excitations. Since for most 
systems of interest the allowed quanta of excitation, 
dictated by the characteristics of the phonon spectrum of 
the substrate, are much smaller than the barrier for bond 
rupture, an incoherent multiphonon mechanism is for-
mulated. This, however, is applicable to systems in which 
the spacings between vibrational levels of the potential 
associated with the reaction coordinate do not exceed the 
maximum phonon frequencies. When the above is not 
satisfied coupling may occur through a mode other than 
the bond-rupture reaction coordinate which serves as a 
"door-way" state. 

Consider an oscillator system with x" (t) the distribu-
tion describing the population of vibronic levels n at time 
t. The time evolution of this distribution is governed 
under certain approximations by a master equation' 

dx 
= 	W x 	W„„,x„„ n = 0, 1, - • , N (3.1) 

dt 	" 	(.1 

(2.15b) 
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where N is the predissociation level, and W„„, is the 
transition probability per unit time from in to n. In , the 
above equation second-order terms due to recombina-
tion are neglected. The initial distribution (t = 0) is 
normalized according to 

2 x„ (c)= 1, 	 (3.2) 
n =0 

and the x, (0)'s are given by a Boltzmann distribution at 
temperature T, i.e., 

e -13`. E 
/ 

For the calculation of the reaction rate we will be 
interested in the mean time for the system specified 
above, to pass the N-th level for the first time — i.e., the 
mean first passage time, t. The distribution of first 
passage times P(t) is given by' 

d ‘61,  
P(t)= 	2 x (t) 	 (3.4) 

dt 	" 

and t is the first moment of P(t), i.e., 

	

= I m  tP(t)dt. 	 (3.5) 

An expression for the mean first passage time for an 
initial population distribution x, (0) = 5, 0  for a truncated 
harmonic oscillator system and transitions between 
neighboring levels only, was first given by Montroll and 
Shuler.' This has been generalized by Kim" for the 
Boltzmann initial distribution (Eq. 3.3) for both a trun-
cated harmonic and Morse oscillators with nearest and 
next-nearest neighbor transitions. 

(i) For the truncated harmonic oscillator the result is" 

ph) = 
 WV .„,,(1 

(V 1)  

	

1 -1 ( 	— 1)(1 	e -)e) (3.6) 
,-1 

with 0 = halo  I lc'T, where wo  is the harmonic oscillator 
frequency. 

(ii) To obtain an expression for the mean first passage 
time out of a Morse potential well, t (m ) , with transitions 
between nearest and next-nearest levels, we adopt the 
methods developed by Kim. The generalization of Kim's 
result [Eqs. (6.15) and (6.16) of Ref. 62] amount to taking 
into account that in our case the exchange of excitation is 
with a solid characterized by thermal occupation num-
bers no., = [exp(hcodkT)- 1] - `. Consequently, contribu-
tions corresponding to transitions between the Morse 
potential levels must be weighted appropriately.' 

In the stochastic formulation of nonequilibrium kine-
tics which we have employed the reaction rate, R, is 
given by the inverse of the mean-first-passage time t (see 
also discussion in Section III.B). Results for the rates of 
desorption of potassium and xenon from a tungsten 
substrate are shown in Figs. 2-4. In Fig. 2 results for the 
two models of the binding potential (harmonic — solid 
line, and Morse — dashed line) using experimentally' 
suggested values for the desorption energy Dc  = 2640 
meV, equilibrium distance d, = 2.38 A and fractional 
charge Z it = 0.27 e are compared, along with the 
experimentally obtained" rate given by R = 
10'exp( - Dc/kT) (open circles). It is evident that the 
results for the Morse potential and truncated harmonic 
oscillator models yield both an Arrhenius-like straight 
line in the semilogarithmic plot of R vs. 1/T. The 
pre-exponential factors, however, differ markedly with 
the Morse potential in agreement with experiment. It 

Fig. 2. Semilogarithmic plots of desorption rates vs. inverse 
temperature for the system: potassium adsorbed on tungsten. 
The desorption energy D, was taken as 2.64 eV after Ref. 63. 
The parameters used in the calculation: fractional charge on the 
potassium ZI = 0.27 e and equilibrium distance of the adsor-
bate from the substrate, d, = 2.38 A, were chosen after Ref. 63; 
the Debye temperature of the substrate was taken as OD  = 220 
K, the electron number density of the substrate was n, 
38 x 1022  cm' and x, = 6.5 x 10 -4 ; the vibrational quantum in 
the harmonic well was taken as ludo  = 13.7 meV (after L. M. 
Kahn and S. C. Ying, Solid State Commun., 16, 799 (1975)). The 
experimental points (open circles) were taken after Ref. 63, 
R(T)= 10' exp( — DAT). Both the Morse potential (dashed) 
and truncated harmonic (solid) yield linear relationships in the 
plot of In R(T) vs. inverse temperature, parallel to one another 
(same activation energy for desorption) but with different 
intercepts (frequency factors). The results based on the Morse 
potential description of the chemisorptive bond are in better 
agreement with the experimentally deduced results than those 
derived from a truncated harmonic potential. 

should be noted that the differences between the two 
models are less pronounced than those which were 
exhibited in the transition rates.'" Similar results, with a 
somewhat less pronounced difference between the two 
models and in agreement with experiment," are shown 
for xenon desorption from tungsten (with the parameters 
given in the figure captions) in Figs. 3 and 4. In Fig. 4 the 
rather weak dependence of the results for the rate of 
desorption on the equilibrium distance parameter is 
exhibited. 

DISCUSSION 
From the results presented in Figs. 2-4 it is apparent 

that the model provides a rather adequate description of 
desorption for both weak (Xe/W) and strong (K/W) 
chemisorption systems. The principal merit of this model 
is that it exhibits explicitly the dependencies on various 
microscopic quantities characteristic to the substrate and 
adatom. Due to the complexity of the problem our model 
relies on a number of simplifying assumptions certain of 
which we enumerate below: (a) the substrate was mod-
eled as a continuum structureless solid, (b) surface 
phonons have been ignored, (c) the electron response to 

n =0 

e (3.3) 
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fluctuations of the ionic charge was calculated semi-
classically (quantum interference effects neglected) and 
with specular boundary conditions imposed, (d) elec-
tronic band-structure effects were ignored which implies 
weak electron—ion coupling in the substrate, (e) bilinear 

0 	2 	 4 	 6 	 10 	 12 

,000/2 CIO 

Fig. 3. Semilogarithmic plots of desorption rates R(T) vs. 
inverse temperature for the system: xenon adsorbed on tung-
sten. The characteristic parameters are: d, = 2.0 A, ho.),, = 3 
meV; = 0.04 e; the desorption energy, D om , was taken as 217 
meV after Ref. 64. The experimental points (open circles) were 
calculated from the rate expression given in the above refer-
ence: R(T) = 10 12 exp( — DAT). Results obtained by using 
Morse (triangles) and truncated harmonic potentials (dots) are 
shown. 
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Fig. 4. Semilogarithmic plots of desorption rates, R(T), vs. 
inverse temperature for xenon adsorbed on tungsten. Charac-
teristic parameters used: 13t= 300 meV; = 0.04 ei 4 ; &o0 = 
3.0 meV; x. = 1.25 x 10 s. The substrate parameters are those 
given in Fig. 2. Results are shown for both truncated harmonic 
(solid and open dots) and Morse (triangles and squares) poten-
tials. The apparent slight sensitivity of the rates to the equilib-
rium distance of the adsorbed atom from the surface is shown. 
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coupling between the nonstationary adatom and sub-
strate was used in the numerical examples and transition 
rates due to these couplings were calculated using the 
Fermi golden rule, (f) an immobile adsorbate was as-
sumed. The inclusion of adsorbate migration on the 
surface will add an extropy correction to the rate expres-
sion. While further improvements within this model are 
possible, the present study allows for a first evaluation of 
the sensitivity of desorption kinetics to the various 
microscopic parameters. 

The standard approaches to reaction kinetics, such as 
Absolute Rate Theory' (ART) and the various statistical 
methods' (e.g., RRKM), rely upon certain criteria of 
applicability. The main requirement of the above is that 
the initial and final (or transition complex) states are 
uncorrelated. 5  As discussed originally by Kramers" and 
further investigated recently' the applicability of ART 
is related to the strength of the fluctuating part of the 
coupling (friction in the nomenclature of the above 
studies) between the adsorbate and the adparticle. The 
analytical results obtained' in the limits of small and 
large coupling support the assertion that the applicability 
of ART is limited to an intermediate regime of the 
coupling strength. In this regime the coupling is strong 
enough as to replenish instantaneously the equilibrium 
Maxmellian tail of particle momenta, necessary for sur-
mounting the reaction barrier, and thus the rate becomes 
independent of the coupling. Outside this regime the 
Arrhenius behavior of the rate constant gets modified by 
multiplicative factors which vary with temperature. Our 
calculation of t in principle assumes the weak coupling 
regime since our transition rates W o_.„,, are treated to 
lowest order in perturbation theory. This assumption of 
weak coupling has internal consistency in that our low 
order treatment does yield good agreement with experi-
ment. While clearly the interplay between the tempera-
ture dependence of 14/0_,,,, and the usual statistical 
occupations (the sum over j in Eq. (3.6)) is a complicated 
one and cannot rigorously reduce to the Arrhenius-like 
form our numerical results give a measure for the weak 
deviation from such a behavior. This conclusion cannot 
be inferred directly from the evaluated transition rates 
alone but requires an analysis of the rates. In this context 
it is important, however, to notice the dependence of the 
results on the model potential used (truncated harmonic 
vs. Morse potentials), and that the difference in rates of 
desorption corresponding to the two model potentials is 
smaller than that exhibited in the associated level transi-
tion probabilities. 

The stochastic treatment of the time evolution of the 
vibration excitations leading to desorption which we 
have used, is a convenient formulation of non-
equilibrium kinetic processes. In the equilibrium theory 
the rate constant depends only upon transitions which 
couple bound vibrational levels directly to the dis-
sociated state" ON+I, and similar to the basic assump-
tion of ART there is no dependence on the details of the 
excitation mechanism. The first passage-time, t, calcu-
lated via the stochastic non-equilibrium formulation does 
not, in general, equal the reciprocal of the equilibrium 
rate constant." One limit in which the above equality 
holds is when the energy required for a transition is large 
compared to the available thermal energy. This condition 
was not obeyed in our cases. Thus, it was necessary to 
investigate the full stochastic behavior. 

The order of coupling in our model should also be 
commented on. While we have used bilinear coupling, 

,co 

l0 
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the generalizations to include higher order terms (i.e., 
multiphonon processes) are rather straightforward; simi-
larly, solutions to the master equation (3.1), where 
transitions between any two levels are retained, can be 
obtained numerically or in approximated form." In this 
context we could argue that by a proper transformation 
of the coordinates {R 5} and {R.) the bilinear coupling 
term could be removed and the frequencies of the 
substrate-adatom system renormalized accordingly. The 
coupling enters now through the new frequencies in 
these transformed canonical coordinates. It is now, in 
principle, possible to calculate desorption rates with the 
simple assumption of a Boltzmann occupation of these 
new levels, and with proper retransformation of our 
coordinates to define the stage of dissociation. Such a 
calculation is expected to yield similar results to ours 
(particularly in the weak coupling limit) but it is rather 
complex and has not as yet been carried out for the 
model systems discussed in this study. 

Before we turn to a discussion of the state selectivity of 
desorbed species we comment on the application of our 
model to adsorbed molecular species. These systems 
possess additional degrees of freedom certain of which 
are of bond-stretching character and others which de-
scribe bond-bending, wagging, and hindered rotations. 
While the energies typical to molecular bond-stretching 
modes might (and often do) exceed in magnitude those of 
single phonon excitation by the solid, the energies as-
sociated with the non-stretching modes are smaller. For 
example, the lowest vibrational level spacings in H-H, 
C-H, C-0, C=C and C-C stretches are 500, 360, 210, 200 
and 110 meV, respectively, while the level spacings in 
non-stretching modes are often 10-50 meV. Conse-
quently it is suggested that the latter modes through their 
coupling to the vibrations of the solid may be excited up 
to high levels via an incoherent multiphonon mechanism 
similar to that used in the present investigation and 
subsequently convert these excitations into translational 
kinetic energy or couple via anharmonicity to the high-
lying, densely spaced levels of the bond-stretching 
modes. Once these high-lying levels have been popu-
lated, the excitation may propagate further via direct 
coupling to the substrate, eventually leading to fragmen-
tation (see Fig. 5). In other words the non-stretching 
modes may serve as door-way states towards bond 
rupture via intramolecular energy redistribution. In addi-
tion localized high -frequency (in particular light im-
purities) modes (either intrinsic substrate impurities or 
induced by the adsorbed system) may participate actively 
in the excitation mechanism. 

Door-way state models have been instrumental in 
explaining certain types of nuclear reactions' and laser 
induced dissociation." The role of rotational (and trans-
lational) modes in vibration relaxation of impurity 
molecules in host crystalline matrices has been proposed 
and investigated.' In particular the participation of 
local modes in the relaxation mechanism has been em-
phasized.68•" These studies were motivated by the obser-
vation" which implied breakdown of a proposed energy 
gap law,"'" in the same spirit as we were motivated to 
introduce the door-way state model by the mismatch in 
the frequencies of bond-rupture modes and solid pho-
nons. 

Quantitative analysis of the proposed door-way state 
thermal desorption requires first calculation of initial 
state wave functions for the modes of the coupled 
admolecule (or adatom)-crystalline substrate system. In  

N+4 

p(w) 

E 0 
p(w) 

Fig. 5. Schematic picture of the door-way state model for 
thermal surface desorption or dissociation reaction mechanism. 
A characteristic Debye phonon density of states, p(Cu), is shown 
on the left and right. Excitation of a low-frequency, door-way, 
mode of vibration (typically a nonstretching mode) occurs via an 
incoherent multiphonon mechanism. Upon achieving the level 
E, the excitation is transferred to the high-lying levels of a 
stretching mode (or combination of such modes) via anharmonic 
coupling. Further excitation in the dense vibrational manifold 
corresponding to the bond-rupture coordinate can occur via 
direct incoherent multiphonon excitations induced by thermal 
coupling to the substrate. The predissociation level is denoted 
by E„„.,. Having achieved this level the reaction proceeds 
through coupling to possible final state channels, such as dissoci-
ation, desorption or migration. 

the resulting modes one may identify modes which are 
characterized as bond stretching (intra admolecule, ad-
molecule-surface and substrate vibrations), and those 
which are of rotational (or hindered rotational) charac-
ter. In addition, modes localized at the vicinity of the 
admolecule can be identified. The final state may corres-
pond to a number of possible desorption scenarios (e.g., 
molecular desorption, dissociative desorption). The po-
tential which causes transfer of excitations can now be 
written in terms of the actual distances of adatoms from 
the substrate: 

1=1 i-=1 

where n is the number of atoms in the admolecule, P 
goes over the substrate atoms interacting with the ad- 
molecule (dictated by the range of the potentials tk,) and 

R, are adatom and solid atom position vectors. 
Expansion of v,, around the equilibrium positions (n, 
RD yields an expression which consists of coupling terms 
such as (see Eq. 2.14) 

+ b:)(a„, + a:), a(b„ + b:)(b, + 	+a:) 

where k, b„' are creation and annihilation operators for 
phonon-like modes and ad , as for molecular-like modes 
(v and w include local modes). The rate of desorption to 
a specific final state can then be evaluated using the 
apppropriate final-state wave function using the golden 
rule expression, and averaging over the thermal popula-
tion in the initial state. 

Another approach to the door-way state (dual ladder) 
model is to consider the system as consisting of two 
manifolds, one consisting of the low-frequency modes 
(usually non-stretching) and the second consisting of 
stretching modes. The two are coupled through anhar-
monic terms when near degeneracy" (or accidental de-
generacy leading to Fermi resonances). The resulting 
modes are admixtures of the two manifolds. When such 
coupling occurs at energies where the resulting level 

E 7,  	
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spacings are within the range of phonon frequencies, 
direct excitation by the substrate becomes possible. In 
this scheme the excitation evolution may be evaluated 
using the stochastic formulation described in Section 
III.A. 

In both schemes of calculation the three-dimensional 
character of the system is essential. Besides allowing the 
description of desorption in strongly bonded systems 
(circumventing the use of low-probability coherent multi-
phonon excitations) the model suggests the possibility of 
angular distributions of the desorbed flux which reflect 
the symmetry of the admixed modes (dependent on 
bonding site geometry, force constants and mode-
coupling strength). 

IV. STATE SELECTIVITY 
A detailed investigation of reaction mechanisms re-

quires an analysis of the reaction products in the form of 
state selective measurements"•"' (filling in the elements 
of the S-matrix). Such data consists of product identifica-
tion, their center of mass translational energy, excitations 
of internal degrees of freedom and angular distributions. 
In this section we present first a simple quantum-
mechanical model for rotational state distributions of 
diatomic molecules thermally desorbed or ejected from a 
surface, followed by brief comments on final-state pro-
duct branching and angular distributions. 

IV.A. A SOLVABLE HINDERED ROTOR MODEL 
FOR ROTATIONAL DISTRIBUTIONS OF MOLECULES 

EJECTED FROM A SURFACE 
The role played by the rotational degrees of freedom 

of diatomic molecules which are dynamically coupled to 
solid surfaces has been the focus of several recent 
experiments.' Laser-induced-fluorescence (LIF) 
studies of the rotational-state distribution of NO 
molecules scattered," thermally desorbee or ejected 
from metallic surfaces suggest highly non-equilibrium" 
behavior in either event. Concurrently, rotational excita-
tion of H2, D2, and HD physisorbed" on Ag(111) and 
Cu(100) surfaces has been observed in electron-energy-
loss-spectroscopy (EELS), showing loss features very 
similar to those seen in free molecules, suggesting that at 
least on these particular surfaces the rotations are unhin-
dered." 

These experiments demonstrate the necessity for mod-
els beyond the usual one-dimensional ones involving 
only nuclear translations or vibrations normal to the 
surface. On purely theoretical grounds, it has already 
been suggested that the coupling of hindered rotations 
("door-way states") to the stretching vibrational modes 
associated with the chemical bond between the adsor-
bate and the surface serves as the energy flow pathway 
for substrate phonon pumping up the vibrational ladder 
towards dissociative (desorption) continuum states (see 
Section 111.B and Ref. 20), a mechanism also requiring a 
multi-dimensional microscopic picture. 

With the above in mind, at least two distinctly different 
theoretical approaches are suggested which can enhance 
our insights into the actual behavior. First, one can write 
and solve some relevant set of classical Langevin equa-
tions for the coupled motion in the manner pursued by 
Tully.' Certainly this has been a highly illuminating 
direction, as he has demonstrated. Nonetheless there are 
motivations for complimentary model studies on isolated 
and idealised components of the complex system, the 
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hope being that the dynamical behavior of the real 
systems can be simulated by judicious combinations of 
easily understood models. Such is the philosophy behind 
the work presented in this section." 

We present the main features and illustrative numeri-
cal consequences of a highly idealized but mathemati-
cally intriguing model for a hindered 3-dimensional 
rotor. The characteristic of our model is that free rota-
tions are possible only within a conical domain bounded 
at some critical polar angle /3 ir/2 by an infinitely 
repulsive wall, and as such the model is a spherical 
coordinate system analog of a textbook infinite-square 
well. It is to be stressed that this model was first put forth 
more because of its interesting analytical properties than 
because it is a realistic approximation to a currently 
identifiable lab system. Nonetheless its easily illustrated 
physics seem quite similar to the opaque physics involved 
in much more complex systems, hence its usefulness. 

Specifically the model facilitates identification of the 
special role played by the zero point kinetic energy 
associated with the spatial localization of the rotor, both 
on ground state properties and on the excitation spec-
trum. This can be contrasted with the harmonically 
constrained rotor in which the effects of localization are 
distributed between kinetic and potential energy."." 

The model will be outlined in Section (i) and the 
mathematical properties of the eigenstates presented in 
(ii). Section (iii) is devoted to the numerical conse-
quences. Eigenvalues are shown as a function of hinder-
ance angle and are correlated with free rotor states in the 

= ir/2 limit by means of a "surface-selection rule," for 
nodal wavefunctions." Sudden removal of the hindering 
potential' (constrained free rotor transition as might 
be experienced in thermal desorption) results in a non-
equilibrium population within the manifold of free rota-
tional states whose distribution is determined by rota-
tional Franck—Condon factors. Apparent free rotational 
temperatures, differing from the equilibrium tempera-
ture of the hindered state due to the conversion of zero 
point kinetic energy into free rotational energy, are 
investigated as a function of equilibrium temperature 
and hinderance angle. Oscillating and "plateau" struc-
tures in the state distribution due to Franck—Condon 
interferences' are found. Implications with regards to 
scattering and desorption experiments are discussed. An 
extension of the model to include center of mass motion 
is discussed in (iv). 

(i) Model 
We will be concerned with the two mathematically 

equivalent models displayed in Fig. 6, in which a rigid 
dumbell executes free rotations within the conical space 
defined by 0 <13, 0 < (1) 2r. In Fig. 6a the rotations are 
about an origin placed at the center of mass. This 
geometry could simulate a hindered rotor embedded 
within an anisotropic void or in an "atomic trough" on a 
surface. The rotor shown in Fig. 6b simulates an ad-
sorbed diatomic in which one end might be clamped to a 
surface via a chemical bond. For the present, vibrational 
motion along the rotor axis will be neglected. 

The model is characterized by the standard angular 
part of the Schrodinger equation: 

{

I  (sin°  1  a2  sin (90 00 sin ' 0 190' 

21 V(
0,46 ))1 41 - (0,0)= 0 

 (4.1) 
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Fig. 6. The hindered rotor in an infinite conical well: (a) and (b) 
are two possible realizations of the model. 

with I = 	m,r1. For the 1.-independent "infinite conical 
well," 

V(0,40= 
x, 0> 13  

so not only is the total rotational wavefunction separable 
as 

11/'(0, 0) = P(0)v(b) with v(4>) (277) -112exp(im0) 

but also P(0) = 0 for 6 > p.m With the above choice for 
V(0,0), it is a textbook exercise to reduce the 6 part of 
Eq. (4.1), in terms of the auxiliary variable x = cos 0, to 

	

(PP 	dP (21 m 2   ) 
2x 	+ 	 = 0 	(4.2) , P 

	

(1 x2) 
dx 2 	dx 	h 2  1— x -  

valid in the domain cos /3 x 	1. Equation (4.2) is 
exactly Legendre's equation when the eigenvalues are 
written in the form 

	

e = Bv(v +1); 
	

B = h 2 121. 	(4.3) 

(ii) Mathematical Consequences 
The eigenstates of the hindered rotor are solutions of 

at x = 1 and zero at x = cos /3. With the eigenvalue 
Eq. (4.2) with the boundary conditions that P(x) is finite 

written in the form v(v + 1) where v is a continuous 
(usually non-integer) positive "quantum number," the 
eigenfunctions are associated Legendre functions of ar-
bitrary order,' that is, 

___ P 1,7 1 (cos 0 )e""m, 1 	 
1/27r 

tliT,:,( 0, 0 ) = 

	

0, 	 13<0 Ir 

with m 2  < v(v + 1) and A,,,, a normalization constant. 
The eigenvalues are numerically determined by the 
condition 

/3 7(cos (3) = 0 	 (4.5) 

together with Eq. (4.3), and the normalization by 

I A I_  = 	dx I P 170)12  

	

 

2v + 1

m) 
 P,7_,(cos13)[

dP 
d
(cos 
	(4.6)  

Lastly, the overlap integral between an arbitrary func-
tion, conveniently expanded in a free space 

0, cb ) = 
A; 

 Pr (cos 0)e"" (1 = integer) 
\ 27r 

basis, and ti,„„, (0,0) is easily evaluated using the relation-
ship 

(5„,„, 	 v + m)
Pr(cosi3)P7_(cosp) tP„,. = 	 , 

v+1+1 lv— I 
(4.7) 

valid for v 1. 
An interesting limiting case occurs for /3 = 7r/2, that is, 

when the rotor is constrained to a half infinite space. The 
boundary condition, Eq. (4.5), requires that the eigen-
functions have nodes on the plane separating the half 
spaces. But solutions of Eqs. (4.2) and (4.5) are just the 
subset of usual 11,„,'s satisfying the "surface-selection 
rule" invoked in the nodal-hydrogenic wavefunction 
papers." 

That rule states that only K„,'s obeying the condition 

(/ m ) = odd (4.8) 

are permissible, Some important consequences follow 
from Eq. (4.8): 

(i) The /3 = 7r/2 confined rotor ground state is a 
non-degenerate p-state with l = v = 1, m = 0. 

(ii) The zero point energy associated with localization 
of the rotor to a half space is E„,(0 = 7r/2) = h 2 11. 

(iii) The l'th level is 1-fold degenerate rather than 
21 + 1 as in the unhindered rotor. 

(iv) The 13 < 7r/2-confined-rotor eigenstates are re-
lated to the half-space states via E,,,(13 < Ir/2)> h 211 and 
the 1-fold degeneracy, for different m states, is increas-
ingly lifted as v increases with decreasing /3 from the 
integer value it takes on at p= 7r/2. 
This exact analytic limit provides a useful numerical as 
well as intuitive check on our computer results reported 
in the next section. 

(iii) Results 
The lowest four eigenvalues of the hindered rotor, 

obtained by numerical solution of Eqs. (4.2), (4.3), and 
(4.5), are displayed in Fig. 7 in the form of v vs. 13 plots. 
These values apply to both models suggested in Fig. 6, 
though the moments of inertia differ, appearing only as a 
scale factor in the eigen-energy expression, Eq. (4.3). The 

40 
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a function of the cone angle, /3. 
Fig. 7. The four lowest restricted rotor quantum numbers, v, as 

(4.4) 
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/3 = 7r/2 values are those of the free rotor, subject to the 
constraints of the " + m = odd" rule. Each non-zero m 
state is 2-fold degenerate. Note, however, that the de-
generacies of various m states, for given v = 1, /3 = 7r/2, 
is lifted as the cone is closed up. This is due to 
the m -dependent reduction of the "0-repulsion" 
(m 2/(1  _ x 1 in Eq. (4.2)) relative to the "kinetic energy" 
term which depends upon wavefunction curvature, as the 
cone angle decreases and hence the curvature (kinetic 
energy) increases. 

The general form of the results shown in Fig. 7 are in 
accord with our intuition. As /3 decreases, the zero point 
kinetic energy associated with the increased localization 
increases dramatically, as does the scale of the excitation 
spectrum. To illustrate the significance of this effect, 
consider a rotor constrained to a cone with /3 = 10 0 , as a 
model for a diatomic molecule adsorbed in an upright 
configuration on a surface." Using established values for 
free space rotational constants (B, = h 2/2k1), with 13 N' = 
2.89 K and B"2 = 87.5 K, the zero point rotational 
energies are 0.025 and 1.0 eV, respectively, which in 
the case of H2 significantly influences possible chemis-
try." This, of course, is not surprising in view of the 
properties of the H Z  molecular solid" and explains why 
the nearly spherical H 2  molecule does not orient in the 
condensed phase. 

The stimulus for the LIF desorption" (and perhaps 
trapping regime of the scattering") studies is the hope 
that determination of the rotational state distribution of 
the free rotor (desorbed molecule) will provide informa-
tion pertaining to the dynamics of energy flow in the 
desorption process of the initially hindered rotor. Certain 
aspects of the hindered-to-free rotor transition which 
must occur in desorption are illuminatingly illustrated 
with the present model. Consider the following scenario 
for a desorption event. As a first approximation an 
upright molecule executes hindered rotations of the type 
shown in Fig. 6b which are taken to be decoupled from 
the rigid molecule vibrations associated with the chemi-
cal bond between the "pinned" atom and the surface. 
The rotational potential energy surface depends 
parametrically on the vibrational/translational quantum 
state of the molecule via a standard Born-Oppenheimer 
separation of slow (rotational) and fast (vibrational) 
degrees of freedom. Desorption occurs by climbing the 
vibrational ladder through a series of (assumed) impul-
sive kicks from the underlying substrate atoms. m • 
Focus on the final collision in which sufficient energy is 
transferred from the substrate to the molecule to induce 
a bound (adsorbed) to continuum (desorbed) transition. 
From the point of view of the rotor, this corresponds to a 
switching of rotational potential energy surfaces, from an 
initial one with the hindering potential to that of the free 
rotor. Within the sudden approximation,' which is not 
unreasonable due to the impulsive collisions, the proba-
bility for ending up in the l'th free rotor state is just a 
sum of rotational Franck-Condon factors between 11',,7 

and e✓4,°` , given by Eq. (4.4), weighted by appropriate 
thermal factors. In the case of desorption, however, not 
only is the hindering potential turned off but also 
the atom tied down to the surface (Fig. 6b) is 
released, thus permitting free translation of the molecu-
lar center of mass. Thus the kinetic energy of the 
hindered rotor would be partitioned between transla-
tional and rotational energy of the free particle and to a 
first approximation, both free translation and rotational 
energies would appear cooler than the background temp- 
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erature, in agreement with observations" (see subsection 
(iv)). 

For present purposes consider the more limited prob-
lem of the rotor in Fig. 6a, executing hindered rotations 
about the center of mass. Following the discussion of the 
previous paragraph, if the hindering potential is suddenly 
switched off, then free rotations are permitted, but with 
no rotational to translational transitions possible. The 
probability for excitation of the rth free rotor state is 
then 

P(1)= 
1 
 -:. 	exp - —

By 
kT (P +1)) 

x I(yr,«I (11„7) 
where T is the ambient temperature and Z„,„ the hin-
dered rotor partition function. The probability for ob-
serving the l'th state thus depends both upon the overlap 
of the v'th hindered state with the particular free state 
and also upon the probability that the v'th state is 
occupied. The overlap integrals are a measure of the 
kinetic energy distribution associated with the localiza-
tion. If B/kT >1, one would expect that the population 
of high I states results mainly from their overlap with 
low-lying v states, not from a one-to-one correspondence 
with thermally excited v states. In other words the final 
state rotational energy derives from the zero point 
energy, not from thermal excitation. Consequently the 
more narrow the cone, the "hotter" the final state 
distribution, independent of ambient temperature. 
Furthermore, as the cone narrows, "gaps" in the excita-
tion spectrum increase thus reducing the role of thermal 
excitation for the same reasons that the specific heats of 
ortho and para-hydrogen differ.•s•87  

The expectations just mentioned are borne out by our 
calculations. State distributions given by Eq. (4.9), using 
values of 1,  and the overlap integral determined from 
Eqs. (4.5)-(4.7), for a "typical" value of B/kT = 0.05 
(corresponding to say B, = 15 K, T = 300 K) and treating 
/3 parametrically are shown in Fig. 8. As anticipated, the 
smaller the hinderence angle, the greater the population 
of higher energy rotational states. 

Laser-induced-fluorescence data 4'_48  is often plotted in 
the form log(P(I))1(2I + 1) vs. 1(1 + 1), which yields a 
straight line with slope = - B/kT R  if the rotational dis-
tribution of the interrogated molecules corresponded to 

L 

Fig. 8. Rotational state distributions, P(1), for the suddenly 
unhindered rotor (Fig. 1), as a function of the free rotor 
rotational quantum number, I. 

(4.9) 
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an equilibrium state at some rotational temperature T R , 
In fact Kleyn et al." observe two regimes in rotational 
distributions of NO scattered from Ag. For 1 < 20, the 
distribution is Maxwellian over two orders of magnitude, 
showing a TR  which is basically independent of the 
surface temperature. For I 20, a plateau structure 
whose breadth depends upon the kinetic energy of the 
incident beam is observed. This structure has been 
attributed to a rotational rainbow. Cavanagh and King" 
also observed a linear distribution over an order of 
magnitude, for NO thermally desorbed from Ru, again 
with TR  apparently unrelated to the surface temperature 
from which the NO desorbed. 

Guided purely by the just-mentioned experimental 
convention for data presentation, we have plotted our 
state distributions, obtained from Eq. (4.9), semi-
logarithmically. The somewhat astonishing results are 
shown in Fig. 9 where each panel corresponds to a 
different hinderance angle and BlkT is treated paramet-
rically within a panel. Note that all the distributions show 
basically two distinctly different regimes. First, for low / 
( 20-30), a rather linear decrease occurs over 2 to 3 
orders of magnitude whose inverse slope could be rep-
resented by a free rotational temperature. As depicted in 
Fig. 9, for given hinderance angle /3, TR  appears to be 
independent of T (for /3 45°). Furthermore, as /3 
decreases (increasing zero point kinetic energy and exci-
tation energies) the inverse slope or apparent rotational 
temperature increases. Both of these characteristics sup-
port our conjecture that conversion of zero-point, rather 
than thermal kinetic energy into free rotational energy is 
the mechanism responsible for population of the free 
rotor excited states, at least within the context of our 
model problem; hence the apparent T-independence of 
the low-/ state distribution. For the model (Fig. 6a) 
treated here, TR  is always greater than 2B/k, the 
minimum possible zero point energy (for /3 = 7r/2). Thus 
the distribution appears "hot." As already mentioned, 
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Fig. 9. Rotational state distributions for the suddenly unhin-
dered rotor (Fig. 1), plotted in the form log(P(1)/(21 + 1)) vs. 
1(1+ 1), for several cone angles, p, and thermal rotational 
factors, BlkT. 

for a desorption event, center-of-mass motion is also 
possible, in which case the rotation zero point energy is 
split between translation and free rotations, which would 
have the effect of cooling our distribution." The remark-
able properties of this first regime of the state distribu-
tions are that they are linear over so many decades, thus 
permitting identification of a TR , and that the break from 
the linear form to a second regime occurs in the region 
I —20, where the population is down by 3 orders of 
magnitude, just as observed by Kleyn et al." 

The second (high I) region displays qualitatively differ-
ent behavior. At some critical 1 value, the state distribu-
tion drops precipitously from the linear form, then rises, 
and displays an oscillatory structure which is most pro-
nounced for low T. The origin of this structure is 
interference effects within the Franck-Condon factors 
which are certainly enhanced in the "infinite-conical-
well" model. The oscillations, which show a periodicity 
in I varying as 180°//3, are thermally washed out, though 
still leaving a plateau or smoothly varying distribution at 
high I which is quite different from the low I range. This 
is emphasized in Fig. 10, where again log(P(1)/(21 + 1)) is 
plotted vs. 1(1 + 1), but now on an expanded scale. 
Although it is unlikely that the oscillatory behavior 
would survive in a real laboratory system, the plateauing 
should. Already such an effect has been observed in 
beam experiments."• The fact that such data was inter-
pretable in terms of rotational rainbows" suggests that 
there could be an intimate connection between the 
physics responsible for rainbows and the physics im-
plicitly contained within our Franck-Condon factors. 
This possible connection is under investigation. 

(iv) Extension to Include Center of Mass Motion 
In the model presented above the center of rotation 

and the center of mass of the admolecule were assumed 
to coincide. In this section we present an extension in 
which this restriction is lifted. We present a brief outline 
of the model and sample results for rotational state 

I. IV 
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200 000 000 200 1000 
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Fig. 10. Same as Fig. 9, for several cone angles, p, for a range of 
0 1(/ + 1) < 1000. 
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1) (1, 	= 	Ni E  exp [ - .13,v(v + 1)1k 8 T,]  

xl(k, 1, m'l vn OW 

distribution for the case of desorption caused by incident 
radiation (photon, electron or atomic induced desorp-
tion). To facilitate our discussion we restrict our discus-
sion to a molecule AB bound to the surface in an infinite 
cone well potential with the nuclei A, B and the apex (0) 
of the cone collinear." This system can be regarded as a 
limiting case of a general triatomic molecule ABO with 
the force constant corresponding to bending (deviation 
from linearity) approaching an infinite value. Denoting 
the position vector to the center of mass of the molecule 
(with reference to the apex of the cone, which need not 
be located, in general, at the surface) by 12„, and 
assuming rigidity with respect to stretching (fixed bond 
length AB = a, and fixed center of mass distance to the 
apex, d), the initial state nuclear wave function may be 
written as 

I P, 	13) 	 (4.10a) 

d)3(1L -  i)8(r — a) 

and the nuclear final state as 

l k,/,m)=-- 

	

= N, e 	)1„,.( 0, rb  ), 

where N, and N, are normalization constants, k is the 
wave vector of the center of mass translation in the final 
state and the 44„,(0,0) are the restricted-rotor wave 
functions of the initially adsorbed molecule, discussed in 
the previous subsections. The delta functions in the 
wave-function should be regarded as symbolic (opera-
tionally they represent the limiting process mentioned 
above) in calculations of the required matrix elements, 
(k, 1, m'( vm ;13). These matrix elements enter the evalua-
tion of the required probability for the final state to be 
found in rotational state 1, P(1). To calculate the matrix 
element we use the expression of the plane wave 

. . 
e"r,„ = air E 2, (t)' ji , (kRr,,,)jr(kR,„,) 

x Ok) Yr. (0c. Oc.) (4.11) 

where (9k,4)4)  are the angles specifying the direction of 
the center of mass wave vector in the final state, with 
reference to the normal to the surface. In addition we 
employ the expansion of the restricted-rotor wave func-
tion C,„,"(0,(12) in terms of spherical harmonics 

07,:,( 0, ) = 	Um vm ; ) Y,„, (0, 0 ) 	(4.12) 

where the coefficients in the expansion are the overlap 
integrals entering the Franck-Condon factors discussed 
in the previous subsection. Using (4.11) and (4.12) and 
the relation (where the Wigner 3j symbols are used) 

f Yk,*,,(0) YE,„„(ii)dn 

[(21, + 1)(21_+ 1)(21,+ 1)1  ' 12 (1 1  12  /3 ) 
47r 	 0 0 0 	

(4.13) 
 

x 
\ 

11 	12 	13 	„, +„, 
(— 1 ) ' - m, 	n1 2 m3 

yields an expression for (k.,/,m't vm ; 0). 
Having obtained the overlap integral, expressions for 

final-state probabilities may be derived. 
(a) The probability for finding the free molecule with 

rotational state 1 and center-of-mass wave vector k is 
calculated using the golden rule, 
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x 8[D + B,v(v + 1) + hw — 13,1(1 + 1) 
h2k2 

] 
2m ' 

Br = h212I„ 	131= h 2121,; 	(4.14) 

N, contains numerical normalization factors and an 
averaged magnitude squared matrix element of the in-
teraction due to the radiation evaluated between the 
initial and final Born-Oppenheimer electronic states. 
The delta function expresses the conservation of energy, 
with D the desorption energy. We define now the 
threshold incident radiation energy, ha,„ as the amount 
of excitation energy which will result in an 1 = k = 0 
desorbed molecule, at low surface temperature when the 
only state of the hindered rotor populated is v g , i.e., 

tito, = — D - B, v g (v g  + 1). 	(4.15) 

We may now define A as the incident radiation energy 
above the threshold, 

= h (a) - wc ). 	 (4.16) 
In terms of A the 5-conservation may be written as 

5{B r [u(v + 1)- vg (vg + 1)1+ - B r1(1 +1) - 11'k 2 /2m}. 

Thus we study the final state probabilities as functions of 
A. 

(b) The probability for final state (1, k), integrated 
over directions,* is 

P,,(1,k)= N2  f 	 (4.17) 

Finally 
(c) The probability for final state (1) regardless of 

direction and translational energy is given by 

1),,(1)= N, V2 13,(l, k)dk. 	(4.18) 

In Figs. 1 la and llb we present sample results for 
P,(/), Eq. (4.18), for a value of Bdk u T = 0.9 (for exam-
ple H2, and T = 100 °K) and d 0.5 h/(mk,,T). Results 
are shown for hinderance angles /3 = 30°, 60° and 90° and 
several values of A/k.T. In Fig. lla we show P,(1)/ P,(0) 
vs. / and in Fig. 11b, log[PJ1)/(2/ + 1)P,(0)] vs. 1(1 +1). 
From the results in Fig. lla it is seen that upon increasing 
,1 (the incident energy above the desorption threshold) 
the peak in the distribution of rotational states of the 
desorbed molecule shifts to higher 1-values, for all 
hinderance angles. It is also seen that in general the 
probabilities for the higher angles are larger. The results 
in Fig. 1 lb exhibit an overall non-Boltzmann behaviour. 
Nevertheless, venturing straight line fits to judiciously 
chosen regions on the curves shown in Fig. llb results in 

* The expression for the absolute square of the overlap 
matrix element integrated over the solid angle R. is given by 
(see U. Landman, C. L. Cleveland, R. N. Barnett and J. W. 
Gadzuk, to be published) 

c111, j(rcfm; 	;OW 

=4.7)-N .;-=N;d'a 2(11 +1) E (21'+ 1)ji(kd) 
= 

(1' 1 nil' 1 1V 1' 	1 1"\( 1' 	I V") 
ko 0 WO 0 Oi\m—m' m' mi\m—m' m' mi• 

(4.10b) 

E E Yr.. kie:„:)( ,,;;; Yi-,)[(21"+1)(21"'+ 
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increasing rotational temperatures for higher incident 
excitation (higher A). These effective rotational tempera-
tures are not necessarily higher than the temperature of 
the substrate with which the initial hindered molecule is 
in equilibrium. 

In Table 1 we present ratios of the average rotational 
energies of the free (desorbed) and hindered molecule, 
(ERoT)/(ERoT), and of the average rotational energy of 
the free molecule to its center-of-mass translational 
energy, (PRo-r)/(E17,6). These ratios are given for /3 = 
30°, 60° and 90° and various values of A for the system 
described in Fig. 11. Comparing results for different 
angles /3 it is seen that for small hinderance angles a 
higher excitation energy, A, is needed in order to in- 
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crease the rotational energy content in the final state 
over that of the adsorbed molecule. 

The branching ratios of rotational to center-of-mass 
translation energy in the final state demonstrate that 
overall more of the excitation energy is converted into 
the center-of-mass translation than into rotational 
energy. However, note the difference in trend as a 
function of A, for different angles, /3. While the ratio 
peaks at an intermediate value of A for /3 = 30° and 60°, it 
decreases monotonically for = 90°. For a strongly 
hindered adsorbed molecule, (small 0) and at low excita-
tion energy, A, above the desorption threshold, coupling 
to the center-of-mass translational degree of freedom is 
dominant. As the hinderance cone angle increases the 

a 

L 	I ) 

Fig. 11. (a) Plots of P,(1)1Pj0) vs. / for the hindered rotor desorption with center-of-mass motion for hindrance angles /3 = 30°, 60° 
and 90° for values of A (energy above the excitation threshold in units of k 5 T), 1, 40, 80, 160 and 240. (b) Plots of 
log[P,(1)[(21 + 1)P„(0)] vs. 1(1 + 1) for hindrance angles /3 = 30°, 60° and 90° and various values of A. 

Table 1 

= 30° 	 /3 = 60° 	 = 900  

Afic.T 1 40 80 160 240 1 40 80 160 240 1 40 80 160 
(EROT)/(E ROT) 9.5 x 10-8  0.82 1.47 2.74 3.97 3.9 x 10-2  2.75 5.34 10.52 15.66 0.23 5.01 9.90 19.67 
(ERoT)1(E r.) 1.2 x 10-6  0.36 0.31 0.28 0.27 0.14 0.27 0.263 0.258 0.255 0.60 0.26 0.256 0.254 
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transfer of excitation energy to the rotational degree of 
freedom becomes increasingly efficient. 

IV.B. COMMENTS ON PRODUCT BRANCH RATIOS 
AND ANGULAR DISTRIBUTIONS 

We have already remarked on the possible scenarios of 
a desorption event which may include molecular or 
dissociative desorption with the products possibly in 
excited vibrational, rotational or electronic (through 
curve crossing) excited states, or surface bound products 
corresponding to recapture or surface diffusional states. 
The final-state product branching ratios may be calcu-
lated using a formalism similar to that used in studies of 
autoionization,' and predissociation' phenomena and 
applied also in the study of radiationless transitions in 
molecules" and photodissociation."' Employing such 
formalisms we have treated, phenomenologically, the 
configurational mixing of the ON, state of the initial 
vibrational ladder with several final state manifolds and 
have derived" expressions for the time dependence of 
final-state probabilities, decay rates and product branch-
ing ratios. 

Measurements of the angular and energy distributions 
of desorbed species, and particularly joint measure-
ments, may reveal useful information concerning the 
dynamical mechanism of the desorption processes and 
provide a test for theoretical models. Experimental 
measurements of angular distributions have been per-
formed using (a) molecular beams,"°" 01  (b) permeation 
experiments' and (c) flash desorption.'" The results 
show deviations of the angular distributions, N(8), from 
Knudsen's cosine law, an enhancement in (E(0)) above 
the 2k.'L value (expected for an equilibrated desorbed 
gas with a surface at temperature TO in the normal to the 
surface direction, and a decrease in (E(6)) for angles 0 
which approach 7r/2. 

Features in the angular and energy distributions of 
desorbed molecules may be attributed to different pro-
cesses characteristic to the adsorption system and reflect-
ing the desorption mechanism. We have already com-
mented in the context of our proposed door-way state 
model of desorption on the possibility that the admixture 
of different modes of the adsorbed species in the proces-
ses of excitation (ladder climbing) would yield an angular 
distribution characteristic of the shape of the potential 
surface, and coupling constants in the initial state. Such a 
situation is most likely to occur for a chemisorbed species 
whose desorption does not involve precursor states. On 
the other hand, for certain desorption systems where 
desorption may involve passage through an intermediate 
weakly bound state (which may allow mobility parallel to 
the surface and thus energy equi-partitioning) we expect 
that the angular distribution will reflect less characteris-
tics of the symmetries of motions in the initially bound 
state and will be influenced more by kinematics of 
passage through the potential field normal to the sur-
face. 11" .1 "s  

V. STOCHASTIC THEORIES OF SURFACE DIFFUSION 
AND CERTAIN DIFFUSION CONTROLLED REACTIONS 

Diffusion processes on or in the vicinity of surfaces are 
of importance in many surface s  controlled, or driven, 
physical and chemical phenomena. Such phenomena 
include crystal growth, surface phase transformations, 
annealing and recovery of damage, surface and inter-
facial segregation and chemical processes, heterogene-
ously catalyzed by surfaces. 
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The advent, development and application of experi-
mental techniques such as Field Ion Microscopy (FIM)" 
and Field Emission Microscopy (FEM)" provide quan-
titative information about the microscopic nature of 
surface diffusion processes and serve as the impetus for 
refined theoretical studies, and methods of analysis." 
The objective of these studies is to understand on a 
microscopic level the mechanism, kinetics, dynamics and 
energetics (all of which are related) of surface diffusion. 
It is convenient to classify the theoretical approaches as: 
(a) stochastic processes, (b) dynamical simulations, and 
(c) energetics. Our discussion will focus on several 
selected topics (mainly within the context of a stochastic 
approach) chosen to illustrate certain of the issues which 
are encountered in this field. 

Stochastic Theory of Diffusion and Reactions — Multi-
state Random Walks 

The degree of microscopic detail with which we study a 
physical system is dictated by characteristics of the 
system (relaxation times, correlation lengths, etc.) and by 
experimental resolution. While single particle diffusion 
on a perfect lattice is commonly described in terms of a 
random walk process, generalizations of the formalism 
are needed in order to describe complex diffusion 
mechanisms and diffusion on defective lattices." A 
stochastic description of diffusion processes which incor-
porates a detailed set of states (and corresponding transi-
tion rates), through which the system evolves, allows the 
investigation of atomistic mechanism of diffusion in 
complex systems. When applied to the analysis of experi-
ments of sufficient resolution the method provides a 
means of determining the "spectroscopy of internal 
states". The internal states may correspond to the 
energetics of the motion (i.e., they may represent 
selected points on the energy surface), spatial configura-
tions (as in the description of cluster diffusion) or other 
characteristic internal states which may participate in the 
migration mechanism. We have shown" that for a 
number of varied transport systems the set of allowable 
states can be mapped onto lattices, possibly with multiple 
sites in each unit cell. The stochastic time development of 
these systems, which may be semi-Markovian or non-
Markovian, can be treated as a continuous-time random 
walk (CTRW) process on these lattices. In the following 
we outline the method and demonstrate it for the study 
of dimer channeled diffusion and certain unimolecular 
and bimolecular diffusion controlled reactions on sur-
faces. 

The diffusive motion of adatoms and clusters of 
adatoms on surfaces has been dramatically revealed by 
Field Ion Microscope studies. Field Ion 
Microscopy which was conceived and developed by 
E. W. Muller in the early 1950's was used first for the 
investigation of adatom migration on surfaces by Ehrlich 
and Hudda"' in 1966. Later studies revealed that 
adatoms on metal surfaces can become correlated to 
move as a single cluster." 2- ' 21  One example we will 
analyze in detail is the motion of rhenium dimers on a 
W(2 II) surface."' 

The FIM is, under certain conditions, able to give 
images from which one can determine the distance 
traveled by an adatom in a time t at a temperature T. For 
example, the motion of a single tungsten adatom on a 
W(211) surface is seen to occur"' (away from boundaries) 
as a one-dimensional random walk with symmetric 
nearest-neighbor hopping. Standard random walk theory 
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gives for the mean squared displacement, a-2(t), after a 
time t, 

0.2( t ) 	AL2t 	 (5.1) 

where A is the hopping transition rate, L is the lattice 
spacing, and crz(t) can be obtained from FIM pictures. 
The transition rate A is seen to be in the Arrhenius form 

A = v exp( — ElkT) 	 (5.2) 

since a semilogarithmic plot of o 2(t)L 2 t vs. 1/ kT 
yields a straight line of slope — E and ordinate intercept 
log v. Thus, an analysis of the FIM pictures can yield the 
activation energy, E, for diffusion, as well as the fre-
quency factor v. We will now discuss how the maximum 
amount of information can be extracted from FIM data 
when the motion of a cluster occurs and several transi-
tion rates are involved. This will lead us to the study of 
random walks with several internal states. 

The nature of the motion of a cluster on a surface 
depends on the substrate composition and morphology 
as well as on the type and number of atoms in the cluster. 
For example, rhenium dimers'" are seen to undergo 
one-dimensional motion on W(211) by alternating be-
tween straight and staggered configurations, as shown in 
Fig. 12. If only one staggered position is allowed, the 
center of mass motion of the dimer can be mapped onto a 
perfect lattice with two states per unit cell (Fig. 12b), and 

I-D DIMER 
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11111•Ell 

I-D 3 STATE DIMER 

L 

t...•■•■••01.■• ■V.)•■■■■••0 
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I- D 2 STATE DIMER 

I-0 3 STATE DIMER 

Fig. 12. One-dimensional dimer migration. (a) Three possible 
spatial configurations of a dimer (filled circles connected by 
heavy line) moving along the x direction (the allowed equivalent 
inrror-image configurations are not included): if only states 1 
and 2 are allowed, a 2-state dimer; if all states are allowed, a 
3-state dimer. The location of the dimer centroid is marked x 
(b) Random-walk lattice describing the motion of the centroid 
of a 2-state dimer in (a). States in the unit cell are denoted by 
numbered circles. Lettered arrows indicate transitions to and 
from states. Note the transition rates connecting states can be 
different for transitions to the left or right (i.e., a X a, bx (3). (c) 
Random-walk lattice for the 3-state dimer shown in (a). Note 
that the centroid location is the same for states 1 and 3; 
however, they are distinguished by different transition rates. 

the motion is characterized by the transition rates, a, a, 
b, and 0. If there is no bias caused by, say, an external 
electric field then a = a and b = /3. We express the rates 
in activated form: 

a = v, exp[(— E„ + V)/ kT], 

a = v, exp — E, — VAT], etc. . 
(5.3) 

As seen, a and a are not independent quantities even in 
the presence of a biasing electric potential V. Thus the 
dimer motion in Fig. 12b is characterized by only two 
transition rates. If a third more extended (non-
dissociated) state is allowed then the center of mass 
motion can be mapped onto a lattice with three states per 
unit cell (two of which overlap) as shown in Fig. 12c. The 
motion is then characterized by the four transition rates 
a, b, c, and d. If the dimer can move in two dimensions 
then the center of mass motion can be mapped onto a 
two-dimensional lattice, as shown in Fig. 13, character-
ized by four transition rates, i.e., four activation energies 
and four frequency factors. 

Mathematical Formalism of Random Walks with Internal 
States 

We will now develop the mathematical formulation of 
random walks on these lattices with internal states and 
show how to relate the unknown transition rates in terms 
of the known FIM observables, such as diffusion dis-
tances and equilibrium occupation probabilities of the 
different internal states. Our generating (Green's) func-
tion analysis will be based on the semi-Markov continu-
ous time random walk of Montroll and Weiss' and its 
generalizations."-"" In addition this approach has been 
shown to be equivalent to a generalized master ap-
proach.' 

In the course of our study many probabilistic quan-
tities will be introduced in order to calculate the values of 
FIM observables. Let us first introduce R u (r,t Ito) which 
is the probability density for reaching site / in internal 
state i, (11, i), exactly at time t given that (ram was 
attained at t = 0. This quantity satisfies the following 
recursion relation,' and identifies R as a Green's func-
tion propagator: 

R,,(r,tiro)=EEI 	— r',T)R„,,(r,t - I ro)dt 

+ 8 	(0,  (5.4) 

where 11.1,„, (l', t) is the probability density that at time t a 

2-D 3 STATE DIMER 

Fig. 13. Two-dimensional dimer migration: (a) spatial configu-
rations; (b) random-walk lattice. 
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single jump occurs from (0.m) to (1,i) given that the 
state (0, m) was attained at t = 0. It there are s internal 
states then R and W are s x s matrices and in matrix 
notation Eq. (5.4) becomes 

	

R(l, u I  i) - 	W(1- 1 ', u)R(l ', u i)=  Si i„1 (5.5) 
1' 

where we have Laplace-transformed over time (t-*  u). 
To proceed further one must examine the waiting time 
density matrix'P. We write 

'P1( 1, t)=Pq( 1 );(t) 	 (5.6) 

where f; (t) is the probability density that a transition 
occurs at time t from an internal state j which was 
attained at time t = 0. To keep a matrix notation we treat 
Vr;  as the jj element of a diagonal matrix. The probability 
that this jump goes into an internal state i is given by 
p;;  (11). The waiting time distribution function is a most 
basic element of the CTRW formalism. This function 
may represent the on-site stochastic process governed by 
characteristics of the site binding potential and the 
dynamics of the hopping mechanism, or it may be used to 
simulate randomness in transition rates between sites. 
Such is the case for diffusion in a disordered media where 
jump distances and/or activation barriers may be ran-
domly distributed. i23  Using Eq. (5.5) in Eq. (5.6) and 
Fourier transforming (1 -* k) over all lattice sites 1 we 
arrive at the matrix relation 

R(k, u 1 0) = [1-p(k)^ (u)] - 'exp(+ik • 1a ). (5.7) 

In our notation, functions of u have always been 
Laplace-transformed over time, and functions of k have 
been Fourier-transformed over the lattice space. 

The probability for being at (l, i) at time t, P;  (l, t j lo), 
when the stochastic process began at (1,,, j) is related to 
R;;  (1, t 1 0) by 

P, (1, t J i)= j Rq  (l, t - T J lo) [ J  V+ (T ')dr' ] dT 

(5.8) r 

J t  R;;  (1, t- T 11 0)x;  (T)dT 
0 

	

where the factor 	takes into account that the system 
may have reached (1, i) at an earlier time t - T, and no 
transition out of (1, i) occurs in the remaining time T. 

All the quantities one wishes to calculate are derivable 
from P;  (1, t 1 10) which in turn only depends on  
as can be seen from Eqs. (5.7) and (5.8). We choose '1! to 
be normalizable, i.e., 

>>Pe( 1 )= 1 , 

	

^ r 
	 a 

^ , (T)dr = 1. 	(5.9) 

We now show how to calculate positional moments 
and equilibrium occupation probabilities from a know-
ledge of •'I'. 

The positional moments of the probability distribution 
are given by 

( 1 :(t))= 	(P;( 1,t I 0)f 
	

(5.10) 
i 

where f,  is the probability that an internal state j is 
occupied initially. Since from Eq. (5.8) 

P(k,t)= -'(u - '[1-iJ(u)] ^ e'k iR(i,,u)7 (5.11) 
f 

where - ' is the inverse transformation and r = x, y, or 
z, we see that Eq. (5.10) can be rewritten as 
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(1,(t)) = 	 (5.12) 

where R(k, u I0) is given in terms of W in Eq. (5.7). 
Note that the matrix R is the inverse of the matrix 

[1 -p(k')ii(u)] (see Eq. 5.7). Performing the matrix in-
version we write R as 

R(k, u)= M(k, u)^- '(k, u) 	(5.13) 

where 0 is the determinant of the cofactors in M. All the 
physical quantities in which we will be interested are in 
the t — x limit and will only involve R and its derivatives 
in the limit of both k and u going to zero. In this limit'' 
the elements of M will approach constants, while X will 
diverge as u - '. Thus 9 2R/8k 2  in Eq. (5.12) (which enters 
the calculation of the variance Q 2 (t)) will diverge as u 
causing the mean-squared displacement of the random 
walker to grow linearly with time, as was given in Eq. 
(5.1). This is the standard diffusion limit (t -> x) result. It 
can be shown 127  that in the diffusion limit Eq. (5.12) for 
o 2 (t) reduces to 

u2(t) = ( 12(t)) — ( 1 (t))2  
z 	z 

= lim lim u 
a 

^ t 
^0  k 0 X12 ak 2  

Thus one only needs to calculate 0 and one does not 
have to perform the tedious matrix inversion to calculate 
M. 

Another quantity of interest, which can be obtained 
from FIM data on cluster motion by simply counting the 
number of micrographs in which the cluster is found in 
the various spatial configurations, is the equilibrium 
probability of occupying an internal state j, F. This 
quantity is defined as 

P.w=limPtI 0)f• 
	(5.15) 

, 	r 
The rhs can be written in Laplace space as 

q =1 Pp (1,u10)f. 
. 	r 

Since lim t 0  Pn  (k, u j 0) = Ei  P;  (1, u I0), we can express 
P 

P q =limlim 	R,,(k,u 0)[1- 
u-.o k-.o 

Except in extreme cases where the mean time to make a 
transition between states is infinite, R ;;  will not depend 
on the initial state i, so 

P ^q =lim urn R1,(k',uJ0)[1-iJr,(u)]. 	(5.16) 
u-O k-.0 

Dimer Diffusion in ID 
The set of transition rates {a} connecting the different 

internal states of a cluster are assumed to be in an 
activated form, a = v exp (- E o  /kT). 

To find all the individual activation energies and 
frequency factors characterizing the diffusion we need to 
consider a random walk with internal states. 

Consider first the two-state dimer in Fig. 12. The effect 
of a bias can be incorporated by choosing ai a, b /3. 
The total rate of leaving state 1 is A = a + a, and the 
probability that the transition is to the right is a/A, and 
the probability that the transition is to the left is a/A. We 

(5.14) 



355 

choose a = a, b = g. The waiting time density matrix is 
then given by 

(5.17) 

0 	 iB exp( — Bt)(5 1 ,o + Su )) 
zA exp( — At)(51.0+ 51.-0 	0 

where, if the transition is within the unit cell, I does not 
change value, and it changes by + L depending on 
whether the transition moves the dimer centroid to the 
unit cell on the right or the left. We will measure lengths 
in units of the unit cell size L. Constructing the matrix R 
(Eq. (5.7)), we obtain, in the diffusion limit (t —*x.) using 
Eq. (5.14), 

(7 2(0 = IL' 
AB 	ab  

A + B 
t = L2 

a + b
t. 	(5.18) 

 

From the knowledge of lif, detailed balance relations, 
Eq. (5.16) can be calculated to give 

1211g= 12 = R u(T). 	 (5.19) 
P2.„ a 

Equations (5.18) and (5.19) allow us to solve for the 
individual rates. i.e., 

exp( — 	IkT)= a =L 2 t 'o- 2 (t)[1 + R u(T)], (5.20) 

v,, exp( — Eb /kT)= b = L -2 t 1 0- 2(t)[1+ RAT)]. (5.21) 

Experimentally (r 2(t) and Pi .„(T)=1— P2,(T) are 
measurable and L e t is known. Thus, a semilogarithmic 
plot of the rhs of Eq. (5.20) vs. 1/kT would yield a 
straight line of slope — E., and ordinate intercept log 
Similarly, the same plot for Eq. (5.21) would yield E. and 
vb . Note that for this case, merely plotting log u 2 (t) vs. 
1/kT (where (r 2 (t) is the variance of the dimer centroid 
position) does not allow the determination of Ea , v„, E, 
and vb . Such a plot would in fact yield a "curved" 
Arrhenius line, as can be seen by substituting activated 
forms for a and b in Eq. (5.18) for u 2(t). However, in a 
limited temperature range a plot of log u 2(t) vs. IlkT may 
appear to be a straight line, but its slope and intercept 
will not characterize the individual transition rates of the 
dimer motion. We emphasize that full use of all the FIM 
data, such as both /7 2 (t) and detailed balance relations 
R u(T), must be employed to calculate the individual 
dimer transition rates. Reed and Ehrlich"' have also 
obtained Eq. (5.18) for the positional variance using 
Kolmogorov birth and death equations for the study of 
dimer motion. In a later paper pertaining to the motion 
of rhenium dimers on W(211) Graham, Stott and Ehr-
lich" 2  find E„ = 17.5 ± 0.4 kcal/mol, while Eb  = 18.2 ± 0.3 
kcal/mol, where as by just plotting log /00 for the dimer 
centroid vs. lIkT yields a "straight line" with slope 
18.0 ± 0.3 kcal/mol. This demonstrates the spectroscopic 
kinetic information available from such studies. We note 
that our matrix continuous-time random walk approach 
can be applied to a system with any number of states per 
unit cell, even if different states of the cluster have the 
same center of mass. This point was an obstacle to 
extending the approach of Reed and Ehrlich. 

Diffusion Controlled Reactions on Surfaces 
(i) Unimolecular Reactions: What is a Reaction 

Rate? The evolution of many physical systems can be 
viewed as unimolecular, bimolecular, or pseudo-
unimolecular (if from two reactive species one species is 
vastly more abundant than the other) reactions. Unim-
olecular decay reactions involve the irreversible loss of  

independent reactants. McQuarrie'" has reviewed the 
master equation approach to unimolecular and 
bimolecular reactions. This stochastic approach allows 
the calculation of fluctuations, which deterministic equa-
tions do not. McQuarrie's solutions are in terms of rate 
constants, but he does not discuss how to calculate these 
rate constants from first principles. In this section, we 
show that the rate constants are conditional first passage 
(coincidence) probability densities and we relate them to 
the probability that the lifetime of a reactant is greater 
than a time I. 

The master equation governing unimolecular decay is 

dP(N, t)/ dt = K (t)[P(N + 1, t)— NP(N, t)], (5.22) 

where N is a random variable representing the number 
of reactants which have not yet reacted (decayed). The 
solution of Eq. (5.22) for the mean is 

(N(t)) = No exp [ — KWH 	(5.23a) 
J 

where 	is the initial number of reactants, and N(t) 
satisfies the equation 

d(N(t))Idt = — K(t)(N(t)). 	(5.23b) 

The major task involved with Eq. (5.22) is to calculate 
the reaction rate K(t) which contains all the physics of 
the reaction under study. 

The quantity K(t) is the conditional probability of a 
reaction occurring, of a particular reactant, in the inter-
val (t,t + dt), given that no reaction occurred in the 
interval (0, t). We assume the stochastic process began at 
t = 0. The quantity K(t)dt says that the stochastic pro-
cess began at t = 0 and that at time t one has the 
information that the particular reactant of interest has 
not yet decayed, and then asks with what probability will 
the decay occur at time t + dt. Thus, K(t) is a prediction 
at time t of what will happen at time t + dt, given the 
information that the re.r:ant did not decay in (0, t). The 
conditional first passage density K(t) can be related to 
the unconditional first passage density F(t). The quantity 
F(t)dt says that the stochastic process began at time 
t = tt and then asks for the probability that the decay 
takes place in the interval (41 + dt). So F(t) is a predic-
tion at time t = 0 of what will happen at time t + dt. 

To calculate K(t), we first define P(L > t) to be the 
probability that the lifetime of a particle is greater than t, 
i.e., that the decay takes place in the interval (1, x): 

P(L > t) = f F(r)dr. 	(5.24) 

Now, P(L > t + dt) can be written in terms of a condi-
tional probability 

P(L >1+ dt) = P[L > t + di I no decay in (0, 1)] 

x P(L > t), 	
(5.25)  

where the last factor on the rhs is the probability that 
no decay has occurred in the interval (0,1). Dividing 
both sides of Eq. (5.25) by P(L > t) and expanding 
P(L > t + dt) in a Taylor series about t, we find 

P[L > t + dt I no decay in (0, t)] 

= 1 + dt(d/dt)log P(L > 1)+ 0(dt)2. 	
(5.26) 

Now, 

K(t)dt = P[L t + dt no decay in (0, 1)] 

= 1— P[L > t + dt I no decay in (0, t)] 
	(5.27a) 

Landman / Dynamical Processes at Surfaces 
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or 

K(t)= — (d/dt)log P(L > t) 

= F(t)/ F(T)dr. 
	(5.27b) 

Using Eq. (5.27a) in (5.23a) yields the intuitive result 

(N(t))1N o = exp [ — K(r)dr] = .1"  F(r)dr (5.28) 
0 

and shows the connection between the unconditional and 
conditional first passage distributions. 

We see that if P(L > t) exp ( — At) as 1 —> cc, then 
K(t)—* A, a constant. This is the reason why constant 
reaction rates can often be used in Eq. (5.22). Note that 

K(t)= — (d/dt)log((N(t))1N0), (5.29) 

which is similar in structure to Eq. (5.27b). In Eq. (5.29), 
one used experimental results to find K(t), while in Eq. 
(5.27), one uses assigned microscopic parameters to 
predict K(t). Together, Eqs. (5.27) and (5.29) allow 
a determination of the microscopic parameters gov-
erning K(t). 

(ii) Calculation of a Diffusion Controlled Unimolecular 
Reaction Rate. Consider now the situation where Eq. 
(5.22) represents No  reactants per active site at t = 0, and 
where there is one active site per V lattice sites. A 
reaction occurs at the instant when a reactant reaches an 
active site on our periodic lattice. We divide our system 
into identical unit cells each initially with No  reactants 
and an active site at the origin of a unit cell with V sites. 
Periodic boundary conditions are used in each unit cell, 
so the study of one cell will yield the kinetics of the 
concentration of the reactants C(t) = N(t)/V. We could 
endow our reactants with internal states (energetic, 
configurational, spin, etc.) and the lattice with various 
types of defects (promoters or inhibitors of diffusion) 
using our matrix renormalized propagator." However, 
we will choose for simplicity a single particle on a perfect 
2D square lattice governed by nearest neighbor jumps 
and !i(t) = A exp ( — At). This model is then similar to 
Montroll's'" and Lakatos-Lindenberg, Heminger and 
Pearlstein'st10  studies of exciton trapping. 

Given Ilr( /, t) = tP(t)p (1) we now calculate the uncon-
ditional first passage time F(t) for a reactant initially ak 
non-active site. The probability density f (0, tl l o), for 
reaching the active site I = 0 at time t for the reactant 
starting at 1 0, enters the following equation: 

E R (0, t 1r0)g (lo) = 
rro 

, 	 (5.30) 
L f (0, t - ro)g(rom (0, T I 0)dT 
100 0 

where we have averaged over the initial probability of 
occupying 10, and the rhs takes into account that for the 
reactant to reach the origin at time t it could have 
reached there at an earlier time t — T and returned to the 
origin (any number of times) in the remaining time T. 
Here we are treating the origin as a normal site 
and calculate the first passage into r = 0. Equation (5.30) 
may be solved by Fourier and Laplace transforms to 
yield an expression' for 

F(t)= ( V —1 )-  Etat I to. 
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Montroll has analyzed the behavior of the random-walk 
Green's function for return to the origin, R(1 = 0, u 10) 
in the long-time (small Laplace variable u) limit. Using 
Montroll's results we obtain in 2D 

F(u)— 1— SV[1— (u)] + 0[1— tif(u)J' (5.31) 

where S = S, log V + S, + S,/ V + S./ V2  + • • and the val-
ues of S I , • S. are of the order of 0.1 to 1.0 and differ for 
hexagonal, square, and triangular lattices. In our exam-
ple 1— tk(u)— u(t) where (t) =- .1-0̀° nli(t)dt is the mean 
time between jumps. In the long time limit F(t) and &(g. ) 
will have the same form, and 

tF(t)dt = SVf nif(t)dt. 
0 

(5.32) 

Hence, approximately SV steps are taken before the 
reaction occurs. Thus we arrive at the equation for the 
concentration of reactants C(t) in the long time limit 

CV) _ 	A  
c(o) - exP 	sv t) - 

For shorter times the reaction rate (K(t) = A /SV) will 
be time-dependent. The structure of the substrate enters 
the rate through the quantity S. Using Montroll's values 
for S I , S2 , • • • , it can be shown that the rates order as 

Km > Kh.„ which is the same ordering as the 
coordination numbers. The structural effect is more 
pronounced for large V (low active site concentrations). 
For V = 10, K.. and K., are 23% and 29% larger, 
respectively, than 

(iii) Diffusion Controlled Bimolecular Reactions. 
Bimolecular reactions on a surface can be treated in a 
similar fashion as unimolecular reactions, but they are 
inherently more difficult."' First, the bimolecular master 
equation (Eq. (5.34)) is more complicated than the simple 
unimolecular one. Secondly, the calculation of K(t) 
involves conditional first pair coincidences rather than 
first passage times. Thirdly, a single reactant upon reach-
ing a reactive site will leave if the second reactant (which 
is necessary for the reaction) does not arrive in sufficient 
time. It is likely that the transition rate for a single 
particle to leave the reactive site is different than for it to 
leave a non-reactive site. In this case single particles will 
migrate on a defective lattice in the bimolecular reaction 
due to the nature of the reactive site, but not in the 
unimolecular reaction where they immediately react at 
the reactive (defective) site. 

The bimolecular reaction master equation for identical 
particles A + A —> 2A is' 

dP(N,t) = K(0171•1
2 
 +2) 

P(N + 2, t)— (
2

)P(N,t)] L\ dt  
(5.34) 

where N is the number of reactants which have not 
decayed at time t. We assume N is initially even, and 
changed by two after a reaction. For two different species 
A + B —>C a similar master equation can be written. 

Equation (5.34) can be solved by generating function 
techniques' to yield 

No  

(N(t)) = E AN exp [ — 2- 'N(N —1) 1 K(T)dd (5.35) 

where 

(5.33) 
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r(No  + (N°  — 2N 1) 
2 

AN

- 1-
2N 

 —  
!" 

F(No — N + 1)1 
(No  + N +1) 

and N is even. Here K(t)dt is the conditional probability 
distribution that a reaction takes place between two 
particular reactants in the interval (t, t + dt) given that 
the reaction did not occur before in (0, t). As before we 
will be interested in diffusion controlled reactions at 
reactive sites which we take to be the origins of the defect 
superlattice cells of volume V with periodic boundary 
conditions. In analogy to Eq. (5.30), to find the probabil-
ity density for a first coincidence at the reactive site 1 = 
at time t, f(0, t ( 1 1 ,12) of two reactants which were at 1, 
and 1 2  at t = 0, we first need to calculate the probability 
density of any coincidence C(0,t 11,, 1 2) of two particles 
which initially were situated at sites 1, and 1 2  and 
coincide at the origin of their unit cell at time t: 

C(t)= E E C(0,t 1T,, T,)g(I,)g(r2) 	 (5.36) 
f, 

-EE  f (0, t — TIr„rogcrog( TOC(0, 10, 0)dr 
'2  1, 	0  

where we have averaged over all initial positions of the 
two particular reactants, except for both being at the 
origin initially.'" The above equation can be solved for 
the first coincidence density f to give 

E 	PO, 	12)g( -1.1)g(T2) 
r, 

= -T-I lC(u)1 C(0, u 10,0)]. 

To proceed further we need to specify the allowable 
states of the reactants and the probability distributions 
governing transitions. We will treat the simplest case 
where all reactants are of the same type and have the 
waiting time density 40 = A exp( — At) for hopping, 
and only nearest neighbor jumps occur. We also consider 
that the release rate from the reactive site is unchanged 
from that of the normal site when only one reactant is 
there at the origin. A reaction will occur at time t if one 
reactant already resides on the reactive site (having 
arrived there earlier) and a second reactant arrives there 
at exactly time t, or vice versa. Remembering that R is 
the probability density for just arriving at a site, and P is 
the probability for being at a site, we have 

C(t) = V( V — 1) 	
P(0, t roRatiro. (5.38) 

Thus for large V we have 

F(t) = 
y_1 (P(Z = 0, u 10)R (k = 0, ul0))  . (5.39)  

\P(1 =0,u10)R(r =0,u 10)i 

Again using Montroll's asymptotic (u —00) results for 
the terms in the denominator we find for the rate 
constant in Eq. (5.35) 

lim K(t) = A I2SV 
	

(5.40) 

where S is given in Eq. (5.31). Note that this rate is one 
half of the unimolecular reaction rate. For reaction 
between two species whose transition rates are character-
ized by rates A and B we find for large t the rate 

K(t)= (A + B)/(SV[2+ A/B + BIA]). 	(5.41)  

Note again the structure dependence of the rates through 
the parameter S. 
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The rotational quantum mechanics of a new analytic model for a hindered rotor is pre-
sented, and rotational-state distributions of the hindered rotor are given in terms of un-
hindered rotor states. 
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The role played by the rotational degrees of 
freedom of diatomic molecules which are dynam-
ically coupled to solid surfaces has been the focus 
of several recent experiments in which the ob-
served rotational-state distributions of diatomic  

molecules scattered,' desorbed, 2  and sputtered 3 
 from surfaces bear no obvious relationship to 

equilibrium state distributions inferred from sur-
face temperatures. In this communication we 
present the main features and illustrative numer- 
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FIG. 1. The four lowest rotational quantum numbers 
as a function of the cone angle. The azimuthal quantum 
numbers are labeled on the left. Inset: Infinite conical- 
well model treated here. The left and right models are 
referred to as 1(a) and 1(b), respectively. 
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ical consequences of a model for a hindered three-
dimensional rotor, which provides considerable 
insight into possible mechanisms responsible for 
the reported state distributions. The model in 
which a rigid dumbbell executes free rotations 
within a conical domain bounded at some critical 
polar angle a g/2 by an infinitely repulsive wall, 
and as such is a spherical-coordinate-system 
analog of a textbook infinite square well, is dis-
played in the inset of Fig. 1. In Fig. 1(a) the ro-
tations are about an origin placed at the center of 
mass. This geometry could simulate a hindered 
rotor embedded within an anisotropic void or in 
an "atomic trough" on a surface. The rotor 
shown in Fig. 1(b) simulates an adsorbed diatomic 
molecule in which one end might be clamped to a 
surface via a chemical bond. As will become ap-
parent, the model facilitates identification of the 
special role played by the zero-point kinetic en-
ergy associated with the spatial localization of 
the rotor, both on ground-state properties and on the excitation spectrum. This can be contrasted with 

the harmonically constrained rotor in which the effects of localization are distributed between kinetic 
and potential energy." 

The model is characterized by the standard angular part of the Schrodinger equation: 

a 
(sine-9+ 1 

 sine 20 	8 	sin'e 
2 	2/ 

acp2 F [€ - Vklyyp }zprot (1) 

with / =Ei  m i r i 2. For the cp -independent "infinite 
conical well," we have 

V(0,Q)= i..  0 , 8  --.5.13, 0--.Lp ...c 27r,  

o, e>p; 

so not only is the total rotational wave function 
separable as 

O r°`(0 ,49 )=P( 19 )v(50  ) with v(c9)=(270 -1/2 exp(inwp) 

but also P(0)= 0 for 0 >13 . With the above choice 
for V(8 ,cp), it is a textbook exercise to reduce 
the 0 part of Eq. (1), in terms of the auxiliary 
variable x =cos0, to 

d 2P 	dP I 21E 	ri, 2 	n  
( 1 - x 2  )d—Tx  - 

2X  CbC ÷ 0 — 1x 2r
D 

 --' y  

valid in the domain cost `x 1. Equation (2) is 
exactly Legendre's equation when the eigenvalues 
are written in the form 

E =B 	+1) 	 (3) 

with B F-112/21 and v a continuous (usually nonin- 
teger) positive "quantum number." For the free 
rotor in which cosi3=— 1, the quantum numbers 
v take on integer values only and the eigenfunc- 
tions rot are the familiar spherical harmonics 
Y, 	The eigenstates of the hindered rotor, so- 
lutions of Eq. (2) with the boundary conditions 
that P (x) is finite at x =1 and zero at x = cosP , 
are associated Legendre functions of arbitrary 
order,6  that is 

(2) 

,,,,,(21r) - "P y rmr (cose)exp(im(p), 
4 	rot ,, ,,m (9,(p ) = { 2 10, [3,,6 

 with M 2  <1)(11+ 1) and A m °  a normalization constant 
the condition 

P,m(cosP)= 

together with Eq. (3), and the normalization by  

0 < 0 <13, 	
(4) 

. The eigenvalues are numerically determined by 

(5) 

IA „j" 2  = f 	itx.p1,1m1 — (v in)  
P _ im(cosP) [ dP  v  m(

v
cosp)] 

d 	
(6) 

(2v -E 1) 
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Lastly, the overlap integral between a free space 

Y,,,,(0,0=[A,„:/(277) 1/2 1/), m(cose)e'' (l=integer) 

and 	is easily evaluated with the relationship 

o
m . m 	

,A„
m m

v+rn 
P 

.
(cosov _ ,m 

v + 1 + 1 

	

	 (cosi3)- 
v-1) (7) 

valid for Li* / . Derivations and detailed discus-
sion of the mathematics leading to Eqs. (3)-(7) 
will be presented in a much expanded article. 

An interesting limiting case occurs for 0 =71/2, 

that is, when the rotor is constrained to a half-
infinite space. The boundary condition, Eq. (5), 
requires that the eigenfunctions have nodes on the 
plane separating the two half spaces. But solu-
tions of Eqs. (2) and (4) are just the subset of usu-
al Y im 's satisfying the "surface-selection rule"' 

1+ m =odd 

which has as some consequences the following: 
(i) The g = n/2 confined-rotor ground state is a 

nondegenerate p state with 1= v =1, m= 0. 
(ii) The zero-point energy associated with lo-

calization of the rotor to a half space is .E. 1, 
= 7r/ 2) = /i 2// 

(iii) The lth level is /-fold degenerate rather 
than (2l + 1)-fold as in the unhindered rotor. 

The lowest four eigenvalues of the hindered 
rotor, obtained by numerical solution of Eqs. 
(2), (3), and (5), are displayed in Fig. 1 in the 
form of v versus 0 plots. These results are in 
accord with our intuition. As L decreases, the 
zero-point kinetic energy associated with the in- 
creased localization increases dramatically, as , 

P (1) = 1 E 	exp[-Bv(v+1)/kT]l (Y,„,, free 
bin v 	m ' 

where T is the ambient temperature and Z h ,„ the 
hindered-rotor partition function. If B AT »1, 
one would expect that the population of high-/ 
states results mainly from their overlap with low-
lying v states, not from a one-to-one correspon-
dence with thermally excited v states. In other 
words the final-state rotational energy derives 
from the zero-point energy, not from thermal 
excitation. Consequently the more narrow the 
cone, the "hotter" the final-state distribution, 
independent of ambient temperature. State dis-
tributions given by Eq. (8), with values of v and 
the overlap integral determined from Eqs. (5)-
(7), for a "typical" value of B /kT = 0.05 (cor-
responding to say 6, 15 K, T = 300 K) and treat-
ing S  parametrically are shown in Fig. 2. As 

does the scale of the excitation spectrum. To il-
lustrate the significance of this effect, consider 
a rotor constrained to a cone with g =10` , as a 
model for a diatomic molecule adsorbed in an up-
right configuration on a surface. With established 
values for free space rotational constants of N 2 

 and H2 , the zero-point rotational energies are 
-0.025 and 1.0 eV, respectively, which in the 
case of 11 2  significantly influences possible chem-
istry. 5  Moreover, even for N 2  the lowest excita-
tion energy -0.04 eV 500 K, which suggests 
that most properties of the hindered N 2  will ap-
pear temperature independent if the ambient tem-
perature is less than -500 K. 

Now consider a model dynamics problem in 
which the hindering potential in Fig. 1(a) is sud-
denly switched off s  (constrained -free rotor 
transition as might be experienced in thermal 
desorption), resulting in a nonequilibrium popu-
lation of free rotational states due to the conver-
sion of initial zero-point kinetic energy into free 
rotational energy about the rotor center of mass. 
The probability for ending up in the lth free rotor 
state is just a sum of rotational Franck-Condon 
factors between Y,„, ,  Fr" and  4,1"  mrot , given by 
Eq. (4) weighted by appropriate thermal factors 8 ; 
that is, 

FIG. 2. Rotational-state distributions for the sudden-
ly unhindered rotor of Fig. 1(a), as a function of the 
free-rotor rotational quantum number. 

428 



B/kT=10-2  

10-2 

10" 

10 -6  

10-8  - 

10-10  

10" 2 

 104 

 10"6  

V 
104  p- 20° 	V, 

BAT 
„ , 	1_1 	1 

Lo
g  

(P
(L

)/
(2

L
+  

1
))

  

5 x 10' 

1 

io .3  

10'6 

 10'9 

 10'12  

BAT=Sx10.2 

4000 

BAT= 1.0 

BAT= 10
-1 

l!= 30° 

0 	1000 	2000 	3000 

L(L + 1) 

VOLUME 49, NUMBER 7 	 PHYSICAL REVIEW LETTERS 
	

16 Atipusr 1982 

anticipated, the smaller the hindrance angle, the 
greater the population of higher-energy rotation-
al states. 

Laser-induced-fluorescence data' are often 
plotted in the form log[P (I)/(V +1)] vs 1(1 + 1), 
which yields a straight line with slope= -B/kT r  
if the rotational distribution of the interogated 
molecules corresponded to an equilibrium state 
at some rotational temperature T r  . In fact Kleyn, 
Luntz, and Auerbach' observe two regimes in 
rotational distributions of NO scattered from Ag. 
For 1 5. 20, the distribution is Maxwell-Boltzmann, 
over two orders of magnitude, showing a T 
which is basically independent of the surface tem-
perature. For l2 20, a plateau structure whose 
breadth depends upon the kinetic energy of the 
incident beam is observed. This structure has 
been attributed to a rotational rainbow. 9  Cava-
nagh and King2  also observed a linear distribu-
tion over an order of magnitude, for NO thermal-
ly desorbed from Ru, again with T r  apparently 
unrelated to the surface temperature from which 
the NO desorbed. Efstathiou and Thomas' ob-
served distributions similar to those of Kleyn, 
Luntz, and Auerbach for sputtered N 2  from Si. 

Guided purely by the just-mentioned experi-
mental convention for data presentation, we have 
plotted our state distributions, obtained from Eq. 
(8), semilogarithmically. The somewhat aston-
ishing results are shown in Fig. 3 where each 
panel corresponds to a different hindrance angle 
and B /kT is treated parametrically within a 
panel. Note that all the distributions show basic-
ally two distinctly different regimes. First, for 
low 1 	20-30), a rather linear decrease occurs 
over 2 to 3 orders of magnitude whose inverse 
slope could be represented by a free rotational 
temperature, as observed.' As depicted in 
Fig. 3, for given hindrance angle (3, T r  appears 
to be independent of T (for [3 451. Furthermore, 
as 13 decreases the inverse slope or apparent ro-
tational temperature increases. Both of these 
characteristics support our conjecture that con-
version of zero-point rather than thermal kinetic 
energy into free rotational energy is the mecha-
nism responsible for population of the free-rotor 
excited states, at least within the context of our 
model problem; hence the apparent T independ-
ence of the low-/ state distribution. For model 
1(a) treated here (see Fig. 1), T r  is always greater 
than 2B/k, the minimum possible zero-point en-
ergy (for 	/2). Thus the distribution appears 
"hot." In the case of desorption, huwever, not 
only is the hindering potential turned off but also 

FIG. 3. Rotational-state distributions for the sudden-
ly unhindered rotor of Fig. 1(a), plotted in the form 
log [P(1)/(2/ + 1)1 vs / (1 +1). 

the atom tied down to the surface is released, 
thus permitting free translation of the molecular 
center of mass. The addition of this "new" degree 
of freedom in the final state requires that the ro-
tational zero-point energy is split between trans-
lations and free rotations, which would have the 
effect of cooling our distributions. In fact a sim-
ple classical sudden approximation (removal of 
hindrance and release of tied down atom) on 
homonuclear model 1(b), with only the consequenc-
es of energy and angular momentum conserva-
tion, yields the result that T r  =I /2, as observed 
by Cavanagh and King. 2  

The second (high /) region displays qualitatively 
different behavior. At some critical / value, the 
state distribution drops precipitously from the 
linear form, then rises, and displays an oscil-
latory structure which is most pronounced for 
large B /kT . The oscillations, which show a 
periodicity in l varying as 180VP, are diminished 
as R/kT decreases, though still leaving a plateau 
or smoothly varying distribution at high / which 
is quite different from the low-/ range. Already 
such an effect has been observed in beam' and 
sputtering experiments. 3  The fact that the beam 
data were interpretable in terms of rotational 
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rainbows suggests that there could be an intimate 
connection between the physics responsible for 
rainbows and the physics implicitly contained 
within our Franck-Condon factors. 

In summary we have presented a model for a 
hindered diatomic-molecule rotor, worked out 
its quantum mechanics, and applied the results 
to a model dynamics problem involving a sudden 
release of the hindering potential. Conversion of 
zero-point kinetic energy into free rotational en-
ergy results in highly nonequilibrium final ro-
tational-state distributions which have a striking 
resemblance to state distributions observed in 
several recent experiments involving different, 
but related, dynamic surface processes. 
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ABSTRACT 

An analytic model for the hindered rotational states of a diatomic molecule 
adsorbed upright on a solid surface is discussed. Various model dynamics 
situations, within the sudden approximation, designed to simulate desorption are 
presented and rotational state distributions are calculated including both 
rotational and translational degrees of freedom. Criteria are established for 
observing rotationally cool desorbed molecules. 

INTRODUCTION 

Stimulated by several recent experimental studies in which the rotational 

state distributions of diatomic molecules scattered or desorbed from metallic 

surfaces have been measured (refs. 1), we have constructed a simple, analytic 

model for a quantum mechanical hindered rotor, (ref. 2) designed to simulate the 

rotational states of a diatomic molecule hindered by a solid state or surface 

environment. Consideration of both the energy levels and dynamics associated 

with this model should lead to insights useful for the understanding of the 

reported experiments. The single most striking feature of the model study was 

the recognition of the role played by the zero-point kinetic energy resulting 

from the spatial localization of the rotor. If the hindered rotor is subjected 

to a dynamical situation in which the hindering potential is switched off, such 

as occurs in desorption, the ultimate disposal or redistribution of the zero-

point energy can strongly influence the characteristics of observed rotational 

state distributions, as will be shown. 

In this paper, various aspects and extensions of our previous work are 

described. The model is presented in the next section followed by some 

illustrative numerical consequences. Next, a simple classical analysis of the 

partitioning of available energy between rotational and translational degrees 

of freedom in desorbed molecules is given. Finally, drawing upon analogies with 

gas phase photodissociation of polyatomic molecules, some preliminary resultsfor 

0368-2048/83/0000-0000/$03.00 © 1983 Elsevier Scientific Publishing Company 
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electron and photon stimulated desorption are presented. 

MODEL 

In order to describe the quantum mechanics of a hindered rotor in a reasonably 

tractable manner we have adopted a philosophy inspired by papers on two topics, 

one being nodal hydrogenic surface impurity wavefunctions (refs. 3) and the 

other the quantum mechanics of gears (ref. 4). In both of these works, simple 

and elegant results have been obtained for the quantum mechanical properties of 

familiar systems in which not-so-familiar boundary conditions are imposed, in 

the first case a plane surface on the spherical Coulomb problem and in the 

second, the constraints of mutually compatible rotational states (dictated by 

wheel radii, gear teeth ratio, chatter, etc.) of two free rotators. 

The related characteristics of the present model are displayed in the inset 

of Fig. 1. Free rotations of a rigid dumbell (diatomic molecule) are allowed 

about some point on the molecular axis (Left: about center of mass; Right: 

about one end) provided the polar angle lies within the domain 0<e<13. In other 

words, the angle-dependent hindering potential is an infinite-conical well, the 

spherical coordinate analog of a Cartesian coordinate infinite-square well. The 

special features of this potential stem from the fact that the angular part of 

the Schrodinger equation is identical with that of the free rotor, the distinc-

tion lying solely in the boundary conditions. The polar eigenvalue equation is 

just Legendre's equation (with x = cos 0) 

	

2 d 7 
2
P 	dP 	

m2 

	

(1-x ) -- 	- 2x 	+ (v(v+1) - 	2 ) P = 0 	 (1) 

	

dx 	x 	 1-x 

subject to the unusual boundary condition P(x=cos a) = 0, that is the wave-

function must vanish at the infinitely repulsive cone wall. The resulting 

rotational eigenfunctions are 

A 	(27) -1/2  P m I(cose) exp 	 0<e< 4,v rot (0,0) 	l ovm 
<e<7 

(2) 

and the energy eigenvalues 

= Bv(v+1) 
	

(3) 

with B = in
2
/2I, I the moment of inertia, and AvM a normalization constant. If 

f3=7, then Ipvm
rot 

are just the familiar YZm's  and v takes on integer values only. 

If f3=7r/2, the eigenfunctions are still the Y zm 's but now only those states 

satisfying t+m = odd are allowed as this condition picks out those states with 

nodes on the boundary (refs. 3). For B<7/2, although the quantum numbers v are 

generally non-integers, P v I m  remains an associated Legendre function (of 
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arbitrary order) (ref. 5). 

The lowest four quantum numbers numerically obtained from Eq. 1 are shown 

in Fig. 1 as a function of the cone angle. These intuitively appealing results 

show that as s decreases, not only does the zero-point kinetic energy 

associated with the increased localization increase dramatically, but also so do 

the excitation energies. For instance, with 3 = 10' (an upright adsorbed 

diatomic) the zero point energy = 180 B and the lowest lying excitation energy is 

'1,  160 times that of the equivalent free rotor. 

Fig. 1. The four lowest rotation-
al quantum numbers as a function 
of the cone angle. The 
azimuthal quantum numbers are 
labeled on the left. Inset. 
Infinite conical well model 
treated here. 

      

20 	40 	60 
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SUDDEN UNHINDRANCE: ROTATIONAL HEATING 

A model dynamics problem can be envisioned in which the hindering potential 

is suddenly switched off, as might occur when a molecule is ejected from the 

solid state environment responsible for the hindrance. Under these circumstances, 

the zero-point kinetic energy of the hindered rotor must influence the dynamics 

and/or final state energy distributions. In fact for hindered rotations about 

the center of the mass (left side in Fig. 1 inset), sudden release of the 

hindering potential will result in purely hindered to free rotational transitions 

(no center of mass translational energy), producing a final free rotational state 

distribution which appears "hot" due to conversion of zero point to free 

rotational energy. Within the sudden limit (refs. 6), the rotational state 

distribution is given by a sum of rotational Franck-Condon factors between 
km free and y

v m 
rot

, weighted by appropriate thermal factors, that is 
' 	 , 

free 	rot No  . I ozm . 	kp vm 	,1
2 	

(4) 

Zhin 	v>l,m,m' 

where T is the ambient temperature and Z hin  the hindered-rotor partition 

function. The Franck-Condon factors have been calculated analytically for the 
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infinite conical well and these results will be reported separately (refs. 2,7). 

We note that if By 
9 
(y 

 9 
+1)/k

b
T » 1 (vg  is the ground state quantum number), 

the expected heating effect will be due to conversion of zero-point energy, not 

thermal excitation. Consequently, the more narrow the cone, the "hotter" the 

real-temperature-independent free rotor distribution. State distributions 

obtained from Eq. 4, for a "typical" value of B/k bT = 0.05 (e rot = 5/k b=  5 
K, 

T = 100 K say) are shown in Fig. 2. As expected, the smaller the hindrance 

angle, the greater the population of high t states 

Fig. 2. Rotational-state distribution 
for the suddenly unhindered rotor on 
the left in Fig. 1, as a function of 
the free-rotor rotational quantum 
number. 

Fig. 3. Rotational-state distributions 
for the suddenly unhindered (left) 
rotor, plotted in the form 
log[P(t)/(2t+1)] vs. t(i+1). 

It is also enlightening to plot the distributions in the form log[P(z)/(2t+1)] 

vs. t(t+1), as has been done in Fig. 3. Two distinctly different regimes appear. 

For t < 20-30, a linear behavior is seen in which T r , an effective "rotational 

temperature", can be identified by equating the slope of the curves to -B/k bTr . 

For the rather narrow cones characterized by large quantum numbers, T r  is 

fairly independent of T, the actual ambient temperature. Furthermore as 6 

decreases, the inverse slope or apparent rotational temperature increases. Both 

of these characteristics support our conjecture that conversion of zero-point 

rather than thermal kinetic energy into free rotational energy is the mechanism 

responsible for population of the free-rotor excited states within our model 

problem. We will not comment here on the high 	behavior other than to note 

that the periodicity in t, varying as 180°/13, is related to the commensurability 
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between free and hindered rotations (ref. 2). 

CLASSICAL ROTATIONAL COOLING 

As appealing as the ideas of the last section are, they deal with only half 

of the relevant physics pertaining to desorption of a hindered diatomic molecule, 

for not only is the hindering potential switched off but also the bond which 

"clamps" one end of the molecule to the surface is broken. Thus in addition to 

free rotation, free center-of-mass translation is also permitted in the final 

state. For the example already discussed (left model in Fig. 1), the only 

possibility is hindered-to-free rotational energy flow since the center-of-mass 

is always at rest. For desorption (right model in Fig. 1), the hindered 

rotational energy divides between rotational and translational due to the 

addition of the extra degree of freedom in the final state. This is not easy to 

work with within a clean quantum mechanical model due to algebraic complications 

arising from a space-fixed vs. body-fixed axis description of the hindered and 

free rotor (refs. 8). 

Nonetheless a simple classical model, again in the sudden limit, demonstrates 

the essential features. Consider the 3 steps in "desorption" shown in Fig. 4. 

Fig. 4. Classical model for sudden 
unhindrance and release of right 
rotor in Fig. I. Time sequences 
are: a) Just before release, b) 
Just after release, c) Finite time 
after release. 

Originally at time t=0, the loose end of the rotor is moving in the cone with a 

velocity v due to the zero point energy as shown in Fig. 4a. For a homonuclear 

molecule, the center-of-mass is also moving with velocity v/2. Thus the initial 

energy is 

hin _ 1 	2 _ 	1  Bv(v+l)exp(,,(,),1), y ), Bv g (v g +1). 
r•ot 	f my 	z

hin 
v,m 

At time t=0, the potential is switched off and the bound atom released, as in 

Fig. 4b. Sometime later (t-O), the situation is as shown in Fig. 4c, where not 

only is the center-of-mass translating, but also the molecule is rotating about 

the center-of-mass. The total energy is 

free 	1 	 1 	 2 

	

c free = cm 	arot = 	(m 1 +  m2) v2  4 	+ 2 (m 1 + m 2 ))   vr 

(5 ) 
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with m l  = m2  and E
hin 

 = E free (a consequence of the sudden approximation), 

yielding vr  = v/2 or c
rot
free = 

E
rot

hin 
/2. Consequently, if 

Bvg (s) (vg (O + 1) < 2 k bT, 	 (6) 

the molecules will emerge, rotationally cooler than if they were in equilibrium 

with the substrate. For example, if 13 = 10°, then with B/k b  = 3 K(approximately 

N 2  or NO), By g (vg + 1)/k b  = 500 K, which is much less than 2T - 1000 K, as in the 

Cavanagh-King thermal desorption experiment.
1 

Under these conditions, Eq. 6 is 

well satisfied, so we would anticipate the rotationally cool desorbed molecules 

observed experimentally (ref. 1). 

PHOTODISSOCIATION/STIMULATED DESORPTION 

The final topic focuses on the formal similarities which exist between the 

photodissociation of a triatomic molecule, due to electronic excitation (ref. 9), 

and photo (or electron) stimulated desorption (ref. 10) in the limit in whichthe 

fragment 'atom" is taken to be infinitely massive (the substrate). In either 

case, emphasis is placed on total system Franck-Condon factors associated with 

the switch from an initial to final state potential surface dictated by the 

implicit electronic transition. The Franck-Condon factors order the importance 

of various allowed final channels via the partitioning of available energybetween 

vibrational, rotational, and translational (VTR) degrees of freedom. Within 

Golden Rule perturbation theory, the transition rate induced by radiation of 

energy w to some final state is 

27 	 VT 
Pw (fin)=TT- 1 .4 fin

VTR 
 (Q) Vu (Q) tp in

R 
 Mail

2
6(Ere.rhw) (7 ) 

r,VTR in\ 4, V. TR (n) dg1 2 6(E,
r  fri 	wfin`vi in  

with 

Vw (q)=<f(x;g)1V,().S)i 	.i(x0;))% x =Ci. 

In Eq. 7,
VTR describes nuclear motion states in terms of abstract coordinates 

Q,q(x;Q) are Born-Oppenheimer electronic states, V u (x) is the interaction due to 

the radiation, and V is assumed constant with Q over the range spanned by the 

integrand. 

To apply Eq. 7 to desorption, consider the limit in which both the diatomic 

as well as chemical bond are taken to be rigid (no explicit vibrational motion) 
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so that the initial and final state wavefunctions may be written as 

4,iT n(Q) 	 . Ni 
	m 
,rot (0  ,f) d(Rcm- R/2) d(Rcm  - r) 	 (8a,b) 

and 

ik•R TR 	 cm 
03 4) 4, fi n (Q) -' 115, 2.01'>= 	N f  e 

where N i  and N
f 
are normalization constants, k is the wave vector of the 

center of - mass translation in the final state, R cm  is the position vector of the 

center-of-mass, and y)
rot 

are given by Eq. 2. If we define '503
c 

as the threshold 
vm 

radiation to produce an 9. = k = 0 desorbed molecule from the hindered rotor 

ground state and A = fi(w -wc ) as the excess radiation energy above threshold, 

then the probability for desorption into a free rotational state k. with center-

of-mass wavevector k, thermally averaged over initial states, is given by 

Pp,k) = 
2 E  

,,m,m' 

exP(-Bhinv( v+1)/kbT) 

Z hin 

<1(0.,m'Iv,m;5>1
2 (0) 

x6[B hin (v(v+1)-v
9 
 (v

9 
 +1) + A-Bfree9(0-1)  - fl

2
k
2
/2M] 

and the probability for final state 9,, regardless of direction or translational 

energy by 

13 (t) = NI Pw (z,k) d 3 k. 
	 (1 0) 

Explicit calculation of the Franck-Condon factors is a formidable job which has 

been detailed elsewhere (refs. 7,11). Using these reported results,some examples 

P
A 
 (k) are shown in Fig. 5, plotted in the normalized form 1og ■ P

A 
 (9.)/((2Z+1) 

P,, (0)] vs. 2(Q+1) for a value of B
free

/k
b
T = 0.9 (for example H

2 
and T = 100 K), 

hindrance angles 3 = 30', 60', and 90', and several values of A/k bT.Although the 

results in Fig. 5 exhibit an overall non-Boltzmann behavior, if we venture 

straight line fits to judiciously chosen regions, we could identify increasing 

rotational temperatures for higher incident excitation (large a), which are not 

necessarily higher than the temperature of the substrate. Furthermore, for fixed 

(large) 2 and a, smaller 3 (more zero point energy) yields distributions somewhat 

more populated at large e than does the larger H initial state. Two simple 

generalizations can be made from these observations. First, the greater the 

excitation energy, the hotter the rotational temperature and secondly, the larger 

is the initial zero point energy, the hotter is the final state. Work is in 

progress to extend these preliminary studies to the point where more useful 
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intuitive guidelines can be uncovered. 
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