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PREFACE 

 

During my years in the Aerospace Systems Design Laboratory (ASDL) of the Georgia 

Institute of Technology, I have been very lucky to engage in some of the most exciting 

aerospace projects of the time. Some of these revolutionary systems included a 100 

passenger commercial blended-wing-body aircraft that burns 20% less fuel than the 

state-of-art commercial transports; personal air vehicles (PAVs) with vertical takeoff and 

landing (VTOL) capabilities; compound helicopters cruising up to 300 knots; unmanned 

aerial vehicles (UAV) with inflatable wings that are launched from the Navy vessels; and 

a 5-inch wingspan micro-air-vehicles for a world competition. I was also involved in a 

next generation sizing and synthesis project in which advanced ways of designing 

revolutionary types of aircraft was investigated under sponsorship from NASA Langley 

Research Center. Yet, it is an irony that the I found my thesis topic from a more of an 

evolutionary way of designing new aircraft. 

It was actually during the US Air Force CSAR-X project that I started to become 

curious about designing aircraft while accounting for future evolution. In 2006, the Air 

Force issued a request for proposal to acquire more than 250 helicopters to replace the 

aging HH-60 Black Hawk fleet, whose primary mission has been performing search-and-

rescue for downed pilots. In this program, the vehicle selection among the candidates 

was subjected to a series of block requirements, given as Block 0, Block 10, and Block 10 

plus. The fundamental difference between each of these three blocks’ requirements was 

cruise speed. This requirement became progressively more demanding, increasing from 

130 knots to 215, and finally to 250+ knots. Eventually, Boeing’s proposal to provide a 

derivative version of the CH-47 Chinook won the contract, primarily because of its 
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growth potential to meet Block 10 and 10 plus requirements with minimal cost. The 

CSAR-X was one of the largest early-21st century U.S. acquisition programs, and its 

progressive requirements represent a larger trend in aerospace design.  

My experience with this program influenced me greatly, and I began to ask how 

aircraft designers could predict and prepare for future growth. The ability to anticipate 

evolving requirements is especially important during the very early stage of the aircraft 

development process, when design freedom and potential for cost reduction are greatest, 

knowledge about the aircraft is the smallest, and thus program uncertainty is the 

greatest. I quickly realized that we confront similar problems in our daily lives. Buying a 

car or choosing a house to live in could fall into this category of decision-making where 

goals and needs vary in time. This is especially the case if one is expecting some sort of 

family growth. Even buying a pair of shoes for my two-year-old son and three-month-old 

daughter (at the moment of writing this thesis) involved a balanced decision making. On 

the one hand, there were the fitness and comfort the little ones would feel; on the other 

hand, there was the frequency with which a lazy father would have to prepare for new 

shoes, based on the forecasted rate of growth of children’s feet.  

It was this curiosity that led me on this long journey. 
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SUMMARY 

 

Modern aerospace systems rely heavily on legacy platforms and their derivatives. Several 

successful aircraft designs that were introduced a half decade ago are still in operation. 

Historical examples show that after a vehicle design is frozen and delivered to a 

customer, successive upgrades are often made to fulfill changing requirements. Given the 

long life of aerospace systems and the continual change of military, economic, and 

political conditions, an aircraft designer must seek optimum solutions subject to evolving 

requirements. Current practices of adapting to emerging needs with derivative designs, 

retrofits, and upgrades are often reactive and ad-hoc, resulting in performance and cost 

penalties. Recent DoD acquisition policies have addressed this problem by establishing a 

general paradigm for design for lifelong evolution. However, there is a need for a unified, 

practical design approach that considers the lifetime evolution of an aircraft concept by 

incorporating future requirements and technologies.  

This research proposes a systematic approach with which the decision makers can 

evaluate the value and risk of a new aircraft development program, including potential 

derivative development opportunities. The proposed Evaluation of Lifelong Vehicle 

Evolution (EvoLVE) method is a two- or multi-stage representation of the aircraft 

design process that accommodates initial development phases as well as follow-on phases. 

One of the key elements of this method is the Stochastic Programming with Recourse 

(SPR) technique, which accounts for uncertainties associated with future requirements. 

The remedial approach of SPR in its two distinctive problem-solving steps is well suited 

to aircraft design problems where derivatives, retrofits, and upgrades have been used to 

fix designs that were once but no longer optimal. The solution approach of SPR is 
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complemented by the Risk-Averse Strategy Selection (RASS) technique to gauge risk 

associated with vehicle evolution options. In the absence of a full description of the 

random space, a scenario-based approach captures the randomness with a few probable 

scenarios and reveals implications of different future events. Last, an interactive 

framework for decision-making support allows simultaneous navigation of the current 

and future design space with a greater degree of freedom. A cantilevered beam design 

problem was set up and solved using the SPR technique to showcase its application to 

an engineering design setting. The full EvoLVE method was conducted on a notional 

multi-role fighter based on the F/A-18 Hornet.  

With the proposed framework for decision making under evolving requirements and 

technologies, the decision makers would be able to systematically evaluate the 

advantages and disadvantages of various growth options for a given vehicle. 

Consequently, design decisions offering a long-term benefit could be achieved even in an 

ever-changing operational and/or technological development environment. 
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CHAPTER I 

 

INTRODUCTION 

 

Today’s needs for aerospace systems—whether they fall in the military, commercial, or 

space sector—rely heavily on legacy platforms and their derivatives. Some of the more 

successful aircraft designs that were introduced a half decade ago are still in operation. 

The best example is the B-52 strategic bomber, which was first conceived at the end of 

World War II and produced between 1952 and 1962. It is projected to be operational 

well into the mid-21 century [1]. Also, many of Boeing’s CH-47 Chinook medium-lift 

tandem helicopters, which were first produced in 1961, are still in operation and are 

planned to be operational at least until the 2030s, although many modifications and 

upgrades have been made to the original configuration over the past four decades. 

Manned space missions are still largely dependent on NASA’s space shuttle, which is a 

1970s legacy design with upgraded avionics. Historical precedents have shown that once 

a vehicle design is frozen and delivered to the customer, successive upgrades are often 

made to the original concept, whether such modifications were planned from its 

inception or not. Indeed, a large portion of the U.S. aircraft procurement programs are 

devoted to evolving existing designs rather than initiating new creations [2]. 

Considering the gradual lengthening of aircraft life cycles, it is expected that future 

aerospace systems will operate for a longer time, thus they are more likely to be under 

operational and technological environments that are far from the ones that are initially 

conceived. Because of tightening budgets and time constraints, increasingly competitive 

markets, and lengthening of aircraft operational life, retrofit and/or derivative 
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developments would be more common. In this context, it would be relevant to 

investigate the issues and challenges behind designing aerospace systems considering 

their lifetime evolvement and to formally structure a way to address such issues.  

1.1 Organization of the Document 

Throughout the study, the author has made efforts to adhere to the formal scientific 

method to define the problem, perform a literature search, and formulate and implement 

a new solution approach. Using this formalism, a series of Observations, Research 

Questions, and Hypotheses are presented whenever appropriate. An Observation is a 

formalized insight learned from experience, interview, or literature. Observations induce 

Research Questions that are formal inquires on what should be studied and answered. A 

Hypothesis proposes a solution to the problems defined by research questions. 

Hypotheses are proved or disproved through a series of experiments that are carefully 

planned and executed. The process is iterative, in which knowledge gained through the 

process requires revisiting the formulated research questions and hypotheses until they 

converge. 

1.2 Motivation 

1.2.1 Catalyst for Aircraft Upgrade/Retrofit/Derivatives 

Aircraft design can be characterized as the process of finding an optimal combination of 

vehicle concepts and technologies to meet or exceed all imposed requirements. Defining 

or eliciting such requirements is often considered the beginning of the design process and 

is followed by exploring the concept and technology spaces in an attempt to converge 

towards a single design solution. After the solution is finally selected and frozen, the 
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external environment in which the vehicle system is to be utilized constantly changes 

over the course of its operational life. Enemy threats advance at fast rates as a result of 

adopting new technologies or combining existing ones in new ways. The commercial 

sector is subject to unexpected, disruptive events, such as the outbreak of Severe Acute 

Respiratory Syndrome (SARS) and the 9/11 terrorist attacks. Changes in the political 

climate also affect the doctrine of a nation, which is inexorably linked with its strategic 

approach to future weapon systems procurement. This can be seen in the effect on the 

West of the collapse of the Soviet Union. 

Accordingly, customer requirements continually evolve in response to such 

variations in enemy threats, market conditions, and politics. Evolution in customer 

requirements, in turn, renders existing aerospace systems uncompetitive or even 

infeasible. Uncompetitiveness and infeasibility can be resolved by retrofitting existing 

productions, introducing derivative models, or designing another new system. Figure 1 

illustrates the gradual and constant evolution of threat, market, and technology and also 

illustrates two different options to respond to the changing need. Figure 1 (a) shows an 

option to acquire another new system as a solution to requirement change. Another 

approach, shown in Figure 1 (b), is improving existing systems through smaller multiple 

capability improvements. The first approach is not always desirable due to time and 

budget constraints. The automobile industry follows this block improvement strategy. 

Automakers come up with minor updates on existing models every year and make major 

modifications every four years. Automakers’ practice of making minor/major 

modifications in a one/four-year time span is certainly a balanced strategy considering 
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competition, speed of technology advancement,  customer need, cost associated with 

model changes, etc.  

In summary, the two main drivers for upgrading an existing aerospace system are: 

(a) to adapt to evolving customer requirements; and (b) to maintain competitiveness by 

keeping pace with technological advancements. These observations are formally stated as 

follows: 

 

Observation 1: Aircraft designs evolve throughout their lives in order to meet constantly 

changing customer requirements and to keep competence through integration of 

new technologies.  

 

1.2.2 Trends in New Aerospace Systems Development  

Since the first successful powered flight of the Wright brothers’ Flyer I in 1903, aviation 

technology has advanced at a remarkable speed, expanding the capabilities of aerospace 

systems to an extent that was only possible in dreams a century ago. In the meantime, 

the complexity of such aerospace systems has been extraordinarily increased along with 

the development time and cost. A typical modern military aircraft development program 
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(a) New-New Strategy                                    (b) Block Improvement Strategy 

Figure 1: Evolution Capability and Threat over Time (adapted from [3]) 
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involves multiple stakeholders, and thus multiple missions, multiple manufacturers, and 

even multiple countries.  

With the growing complexity of aerospace systems, development time of a new 

aircraft has revealed a gradual increase from the early 1970s to the late 1990s. For 

example, Figure 2 shows the average acquisition time of the U.S. armed forces from 1969 

to 1997. The figure shows a gradual increase in acquisition time in the case of the Navy 

and Air Force. In the 1990s, the U.S. Air Force and Navy acquisition programs took 

more than 100 months on average from project approval to initial operation capability 

(IOC). Specifically, in the case of the F-22 Raptor, it took more than two decades from 

the inception of the modern fighter jet to IOC [4].   

Not surprisingly, such prolonged development time directly resulted in excessively 

higher-than-expected RDT&E and procurement cost. Empirical relationships between 

development cost and development time constructed from the Lean Aerospace Initiatives 
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Figure 2: Average Acquisition Cycle Times [5]  
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(LAI) of MIT surveying 154 Air Force development programs shows in Eq (1) that 

development cost increases proportional to development time to the fourth power [5].  

 
4(1.36+0.03 )

RDTE
$RDTE T≈  (1) 

where $RDTE is the cost of RDT&E in million dollars and TRDTE is time spent for 

RDT&E in months. 

Such expanded development time and cost imposes high risk in the development of a 

new aircraft. The risk of program being canceled would increase due to unstable 

government funding or a lengthy period of time being necessary to reach the break-even 

point. Moreover, a long lead-in time to the IOC runs the risk of outdating most 

technologies embedded in the system, hampering technological competitiveness of newly 

fielded system. 

Due to the ever-increasing time, cost, and risk of starting a new aircraft 

development program, modern aircraft systems are expected to be operational for a 

longer time, further aggravating the mismatch between the current operational, threat, 

market, and political environments and those defined when the program was first 

initiated. In order to close the gap between the actual and predicted requirements, 

modifying existing designs would become more common to not only aerospace systems 

but also any complex systems requiring a large amount of development time.    

1.3 Background: Aircraft Design for Growth Potential 

Modern aircraft designers are practicing provisions for growth potential within the 

setting of traditional aircraft design, consisting of conceptual, preliminary, and detail 

design phases. An illustration of conventional aircraft design processes that are 
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commonly found in publications such as Raymer [6], Roskam [7], Fielding [8], and 

Toreenbeek [9] are presented in Figure 3 along with the main design activities and the 

approaches to provide growth potential.  

First of all, growth provisions, if any, can be allowed by permitting design margins 

in the sizing and synthesis process during the conceptual design. The allocation and 

appointment of the so-called margins are often based on expert opinion, engineering 

intuition, and historical precedents rather than analytical and rational methods. 

Additionally, modular design approaches and the use of standard components and 

common interfaces are practiced during the subsystem and component design phases [6]. 

However, more emphasis should be placed on the early phases of the design where 

design freedom is the largest and implication of the design decision is the greatest 

throughout the life of the system. Once a poor decision is made early on, the 

compensating effort by fine-tuning and optimizing at the sub-system level in later phases 

 

Figure 3: Traditional Aircraft Design Approach for Growth Potential  
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would be only marginal. This section examines the implication of design decisions during 

the aircraft sizing and synthesis process under evolving requirements.   

The aircraft design process is about making a series of decisions to define vehicle 

attributes, which minimizes its objective function while satisfying all imposed 

constraints. In order to further discuss the concept of aircraft growth potential, consider 

the aircraft design process in numerical optimization terms 

 
) 

s.t. ( ) 0

min (

( 1,..., )
i

f

i lg =≤
x

x

x
 (2) 

where f is the objective function, which embodies a quantity that is desired to be 

minimized or maximized, such as takeoff gross weight, life cycle cost, mission 

effectiveness, etc.; 
n∈x � is the design vector in n-dimensional space, parametrically 

representing the design decisions that influence the physical construct of the aircraft, 

such as wing area, aspect ratio, engine thrust, inclusion of specific technologies, etc.; and 

lastly, gi (i = 1,…,l) is the constraints that contain target metrics the final design needs 

to satisfy or exceed*. Here, the constraint functions could be formulated to include point-

performance requirements, such as turn rate, acceleration, and takeoff field length; 

mission requirements, such as payload, range, and loiter time; and military specifications 

and/or commercial regulations on safety, noise, emissions, etc. 

One aspect of solving the optimization problem is notionally illustrated in Figure 4. 

This figure shows an aircraft design space bounded by two dominant design variables—

wing loading and thrust to weight ratio—and constrained by three representative point-

                                                                                       

*Bold face differentiates vector properties from scalar properties throughout the document. 
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performance requirements: turn rate, takeoff field length, and landing field length. Any 

point design lying within the shaded region is declared to satisfy all prescribed 

constraints. Within this feasible space, a designer has the freedom to further optimize 

the aircraft in the direction of improving a given objective function’s value. The feasible 

optimum is typically located on the edges of the feasible space; as shown by the red dot 

in Figure 4(a). Sometime after the design is frozen, however, the gap between the 

designed-in requirements and the actual requirements begins to be manifest as variable 

constraint lines. It is safe to presume that the requirements will likely evolve in the 

direction of increased capability (heavier payloads, extra weapons, longer range, etc.), 

shrinking the feasible space until design infeasibility occurs as illustrated in Figure 4(b). 

As far as the infeasibility problem is concerned, two different solution approaches 

can be considered. One approach, shown in Figure 5(a), is to anticipate future changes in 

the design requirements and plan accordingly. By building in some margin for growth, 

the designer is trading current sub-optimality with future feasibility. Figure 5(b) shows 

an alternative strategy that does not incorporate any provisions for the future. Instead, 
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an optimum design is first sought for the present requirements (Design A). Should the 

infeasibility problem occur later in the future, it is attempted to be addressed by 

creating a new vehicle (Design A’) that can represent any one of the following cases: a 

retrofit of Design A, a derivative of Design A, or an entirely new design. 

The strategy of designing-in growth margins from the beginning would result in an 

aircraft with an extended operational life. Without having to recourse to later upgrades, 

such a system could offer production cost savings in the long run. Nevertheless, this type 

of design-for-margin approach inevitably introduces conservatism and redundancy to the 

system, resulting in compromised vehicle performance and/or high operation and support 

(O&S) cost. In contrast, the build-now-and-upgrade-later strategy would yield a superior 

optimal solution—in terms of simplicity, compactness, and O&S cost—according to the 

present requirements. 

An analogous case of embedding growth margins to an aerospace system is the 

design of a family of aircraft and a multi-role aircraft. It is not rare in a commercial 

aircraft design that a family of aircraft that are based on a common platform and 
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standard parts is considered from the beginning to maximize the market capture with 

minimum cost. Often, the use of common features across the platform inevitably brings 

about some level of performance sacrifice.  

Figure 6 shows the impact of commonality—that is, sharing an airframe 

configuration—on the performance of a military fighter designed for multiple customers’ 

requirements. The measure of performance shown here is the relative maximum range of 

the multi-service fighter compared to that of an Air Force only version. It can be seen 

that the desire to make a single vehicle platform satisfy multi-service requirements 

stemming from different branches of the US armed services results in a notable reduction 

in the aircraft’s maximum range.  

Alternatively, if all four fighters were to possess the same maximum range, then the 

operating cost per flight hour of the multi-service versions would be higher. A case in 

point, the US Air Force rejected the N-102 proposal submitted by the then Northrop 

Corporation in 1953, citing that the proposed lightweight fighter’s airframe would not be 

optimal for any particular engine [3]. This was a clear example of how the decision to 

 

Figure 6: Impact of Commonality on Multi-Service Fighter Range [10] 
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commit to an overly conservative design backfired—Northrop engineers had made the 

mistake of intending the N-102 airframe to be compatible even under the most 

speculative engine growth scenarios. 

In contrast, the build-now-and-upgrade-later strategy would yield a superior optimal 

solution in terms of simplicity, compactness, and O&S cost. Because this approach also 

allows the identification of the best possible design from a mission-performance 

perspective, it was the preferred strategy of the U.S. government during the Cold War 

era when aircraft development operated under the paradigm of achieving the best 

possible performance. However, post-Cold War policies as well as the increasing 

competition in the global market imposed strict budgetary and scheduling constraints, 

making “the best performing aircraft strategy” obsolete.  

The best modern strategy would thus likely fall somewhere between these two polar 

opposites, where the penalty of design modifications and the cost of over-design are 

balanced. In other words, some provisions for growth would have to be designed-in from 

the early development phases, while the very real possibility of having to also make 

upgrades to the original aircraft is concurrently acknowledged. From the standpoint of 

decision makers (e.g., policymakers, customers, manufacturers, designers, vendors, etc.), 

the heart of the matter is knowing what and how much growth provisions are necessary 

to hedge both the competitiveness and feasibility of the system against evolving 

requirements. 

1.4 Research Objectives and Chapter Overview 

Motivated by the need to consider the lifetime evolvement of an aircraft concept from its 

inception, the objective of this dissertation is to present a structured decision-making 
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framework that facilitates the systematic evaluation of either: (a) the advantages and 

disadvantages of various evolution options; or (b) a new production as a response to the 

evolution of potential requirements and/or technology advancement scenarios.  

In the remainder of the study, some of the challenges a design engineer may face 

when conceptualizing an aircraft according to not only the present requirements but also 

its potential evolutionary growth are outlined. The case for a new approach that can 

account for such growth potential is presented throughout CHAPTERs II-IV by 

highlighting the limitations of state-of-the-art design practices and potential elements to 

overcome those limitations. The idiosyncrasies of the proposed approach, which is 

envisioned to have the greatest value in the conceptual aircraft design phase, are detailed 

in CHAPTER V. After some preliminary results and findings from a simplified proof-of-

concept implementation of the proposed method are discussed in CHAPTER VI, a full 

implementation of the proposed method on an aircraft system design is presented in 

CHAPTER VII. Lastly, the conclusion and the roadmap for future research is presented 

in CHAPTER VIII. 
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CHAPTER II 

 

MODERN SYSTEM DESIGN METHODS INCORPORATING 

VEHICLE EVOLUTION  

 

The quest for a structured decision-making framework incorporating a lifelong aircraft 

evolution motivated in CHAPTER I begins with surveying established methods, 

processes, and philosophies that address the same or similar issues and goals in 

developing not only aerospace but also complex systems in general. The inquiry that is 

attempted to be answered in this chapter is formally stated as: 

 

Research Question 1: For a complex system development, how do decision makers 

intelligently and systematically prepare for and implement lifelong product 

evolution? Are there formal methods or strategies that incorporate future 

requirements and technologies in the initial design? (Observation 1) 

 

Not surprisingly, similar questions were asked in the past. For example Biery and 

Lorell [3] wrote, “In what ways, and to what extent, can designers adequately preplan 

for future system upgrades?” As such, a number of high-level strategies have been 

proposed and adopted over the years in the US military sector for acquisitioning new 

war fighting capabilities. These high-level strategies are henceforth referred to as 

participative or heuristic methods in this paper, due to their usefulness as guidance.  

To answer the research question and formulate a new or improved approach later, a 

basic understanding of engineering design process is necessary. Thus, formal engineering 
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design methods in a broad sense are reviewed to provide a foundation for the proposition 

of a new design approach in the later chapters of the thesis. On a related note, an 

emergent trend in the aerospace domain has been the continual publication of advanced 

design methods. All of these formal strategies share the common goal of eliciting 

increased disciplinary and/or system-level knowledge earlier, rather than later, during 

product development to facilitate more informed decisions. A number of these existing 

methods were interpreted to be relevant for the issues of evolving aircraft requirements, 

technologies, and capabilities. The intricacies of the surveyed design methods are 

summarized under the heading of normative or rational methods, referring to their 

nature as formalisms for solution, rather than guidance. 

2.1 Participative and Heuristic Methods 

Three different but similar management strategies that attempt to address problems 

associated with the development of a complex system under evolving requirement and 

technology are identified and summarized here. They are pre-planned product 

improvement (P3I), evolutionary acquisition (EA), and spiral development (SD). History, 

objectives, and applications of these methods are briefly discussed and compared. 

2.1.1 Pre-Planned Product Improvement (P3I) 

A consensus was formed within the US government in the 1970s that, at the time, 

military procurement programs were too inefficient in terms of cycle-time and overall 

expense. For instance, prolonged development times directly led to excessively higher-

than-expected RDT&E cost. Similarly, long lead-in times to IOC run the risk of 

outdating most embedded technologies as both customer needs and threat environments 

are likely to be different from those defined when the program was first initiated [11]. In 
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order to address such issues, a government acquisition strategy known as the pre-planned 

product improvement (P3I) was introduced in the late 1970s. The key idea behind P3I is 

the “design of a system from its origins to incorporate future performance enhancements 

[3].” Mackey also comments about P3I, stating: “P3I differs from past modification efforts 

in that it stresses preplanning for improvements while the system is still in the initial 

design stages [12].” 

In April of 1980, the American Defense Preparedness Association (ADPA) sponsored 

a three-day seminar to discuss P3I. In 1981, the Rand Corporation published a 

comprehensive report on its assessment of P3I as an alternative strategy for aircraft 

acquisition [3]. As the Rand report pointed out, P3I is based on the premise that a 

designer can anticipate needed improvements or possible changes in requirements well in 

the future. This assumption overlooked the uncertain nature of requirement and 

technology evolution and severely limited the usefulness of P3I. Rand report mentioned 

the difficulties of forecasting the future, concluding that “preplanning very far into the 

future is an unworkable concept.” Rand also recommended that the Air Force “adopt a 

P3I strategy only for circumstances where subsystems are already in development but not 

mature enough to be incorporated in the initial version of the aircraft.”  

A few past attempts to incorporate the P3I strategy into aircraft design were 

identified and reported as part of the case studies in §3.2. Those successful P3I 

implementations were limited to the subsystem level technology integration and were 

planned for only short term.  
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2.1.2 Evolutionary Acquisition (EA) 

A year after P3I had been officially recognized by the ADPA, the Armed Forces 

Communications and Electronic Association (AFCEA) formed a task force to study a 

new acquisition strategy that appeared similar to P3I for command and control (C2) 

systems [12]. Termed Evolutionary Acquisition (EA) by AFCEA, the strategy 

emphasizes the time-phased nature of system requirements and the notion of 

incrementally supporting technology maturation to reduce development cost, risk, and 

time [13]. Figure 7 graphically accentuates the differences between the traditional 

acquisition and EA procedures. In a traditional acquisition setting, the desired 

capability—defined to be bounded by the threshold and objective capabilities—is the 

only capability endeavored to be acquired. The EA strategy, however, advocates the 

initial acquisition of a core, baseline capability; preplanned and non-preplanned 

capabilities are subsequently added to the baseline capability on a needed basis. 
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Figure 7: Traditional Acquisition vs. Evolutionary Acquisition [5] 
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EA was adopted as a preferred Department of Defense (DoD) strategy in 2000 for 

rapid acquisition of mature technology [14]. The US Air Force subsequently mandated 

the use of EA that leverages upon the Spiral Development (SD) process as the 

acquisition strategy for the C2 systems as a means of “quickly [adapting] to evolving 

requirements and ever-shortening technology life-cycles [15].” In December of 2004, the 

new National Security Space Acquisition Policy (NSSAP) 03-01 also mandated EA as 

the preferred acquisition approach to DoD space programs [16]. According to the Air 

Force instruction, EA is  

an acquisition strategy whereby a basic capability is fielded with the intent to 

develop and field additional capabilities as requirements are refined. The key 

concept is to rapidly develop and field useful increments of capability … and to 

leverage user feedback in refining required capabilities for additional increments. 

DoD defines SD as 

a method or process for developing a defined set of capabilities within one 

increment, providing opportunity for interaction between the user, tester, and 

developer communities to refine the requirements, provide continuous feedback and 

provide the best possible capability within the increment. 

EA strategy relying on SD process is illustrated in Figure 8 from the DoD instruction 

5000.1. The full capability is achieved by the baseline capability and three increments. In 

this process, the end-stage requirements are not known at the program initiation. As the 

spiral loops in the figure represent, requirements are refined through demonstration and 

risk management, and each increment provides the best possible capability to the user.  
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Figure 8: DoD’s Evolutionary Acquisition and Spiral Development 

2.1.3 Spiral Development (SD) 

Although both EA and SD were adopted as DoD acquisition strategies, the concepts 

were developed independently. SD was developed by Barry Boehm [17] as a risk-driven 

management process for developing complex systems. SD originated from the software 

development community but has been successfully applied to complex or system-of-

systems challenges in other domains, which include satellite constellation, unmanned 

aerial vehicles systems, space launch vehicles, unmanned ground vehicles, and the F/A-

18E/F [18-23]. 

Being represented by the diagram originally proposed by Barry Boehm shown in 

Figure 9, spiral development calls for a “building block” approach to develop a complex 

system while capability is incrementally added through iterations with the users. The 

goal of this process is to reduce technological and budgetary risks associated with 

product development and to deliver the initial capability faster to the customer. The 
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end-state of the product is, thus, not defined from the initial stage of the product 

development but gets refined depending on user feedback and technology maturation.  

2.1.4 P3I versus EA and Challenges 

Since the DoD embraced EA and SD, there has been some confusion as to the correct 

meanings behind the acronyms and the ways EA differs from P3I. For clarity, the Under 

Secretary of Defense issued a memorandum [19] defining EA, SD, and P3I on April 12, 

2000. According to the memorandum,  

Evolutionary acquisition and spiral development are similar to pre-planned product 

improvement but are focused on providing the warfighter with an initial capability 

which may be less than the full requirement as a trade-off for earlier delivery, 

agility, affordability, and risk reduction. 

In addition, the Air Force instruction also differentiates EA and P3I as follows:  

 
 

Figure 9: Original Spiral Development Diagram [18] 
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Evolutionary acquisition differs from a Pre-Planned Product Improvement (P3I) 

acquisition strategy in that future increments are not definitively planned and 

baselined until the current increment is about to be executed. 

In summary, P3I and EA are similar in that both strategies acquire capability 

incrementally, but the difference is that P3I is more about preplanning for the upgrades 

on top of the initial, one hundred percent capability, whereas EA defines threshold and 

the full capability and achieves the full capability through multiple increments after the 

threshold is fielded. Moreover, these increments may or may not be pre-planned in the 

beginning of the program. Because of the uncertain nature of the evolution of threats 

and user needs, incremental capability is refined over time as the random variables are 

realized. This fundamental difference makes EA more relevant to situations in which 

unknown requirements and technologies are desired to be integrated. The Rand study on 

P3I also pointed out its limitations of dealing with various sources of uncertainty, such as 

those originating from future requirements, funding, and technology.  

Thus far, the conditions for implementing EA on a real aircraft development 

program have proved to be far from ideal [20]. A successful implementation of this 

recently adopted policy would require significant structural and attitudinal changes 

within organizations that include: the Congress, who funds the program; industry, who 

delivers the product; and the respective military departments, who deploy and operate 

the aircraft. The hot-button issue here is how, in the absence of steps to avert the risk of 

following a new paradigm, aircraft manufacturers can recognize the value of developing 

an aircraft in accordance with the EA philosophy? 
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2.2 Normative and Rational Methods 

Although the new DoD’s policy calls for a new paradigm of “design for system 

evolution” and also provides guidance to aircraft system managers and engineers, its 

usefulness is still limited as an acquisition strategy. This section of the chapter seeks 

formalized design methods the design engineers can use effectively to comply with the 

new acquisition policy. Although traditional aircraft design process was briefly 

introduced in §1.3, it is necessary to review the theoretical and procedural aspects of 

design in this study. Then, advanced, modern design methods with some of the relevant 

elements to this topic are reviewed.  

2.2.1 Engineering Design Process 

For many years, design has been in the realm of art rather than science. It was a more of 

a “trial-and-error” or an “ad-hoc” type of way to find a solution(s), which meets the 

need. A systematic work of design method or process was proposed by Morris Asimow 

[21] in 1962. Asimow’s the morphology of design is a comprehensive process with seven 

phases from finding the need to plan, to creating the detailed sketch of the product, and 

planning for manufacture, sales, use, and disposal.  

While Asimow’s method provides a general guideline by which all engineering design 

problems at any hierarchical level can be attempted, the successful application of such 

method in a real world application requires various challenges to be hurdled. Especially, 

when the designed products are complex systems such as modern aircraft, where more 

than one customer expect multiple functions and the system is essentially the 

complicated interaction of subsystems, it could become extremely complicated to 

proficiently perform the tasks in the design methods.  
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 Dieter [22] for example, adopts and modernizes the Asimow’s method in an attempt 

to provide specific tools to facilitate the activities in the design phases. Especially, Dieter 

integrates some of the system engineering techniques into the early phases of the design 

process as shown in Figure 10. Among the elements in Dieter’s design process, Quality 

Functional Deployment (QFD) under the step of “Define Problem” and Morphological 

chart under “Concept Generation” are introduced in more detail herein.   

Quality function deployment is a tool that enables design engineers to analyze the 

wants and needs of a customer, prioritize them, and choose design characteristics and 

specifications in order to find a solution that meets these customer needs. This focus 

towards customer satisfaction is a way of ensuring that quality is built into the product. 

QFD was first developed in Japan in the early 1970s and was rapidly adopted by many 
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U.S. companies, including IBM, Texas Instruments, Chrysler, General Motors, Rockwell 

International, Hughes Aircraft, etc. [22-24]. The techniques have been proven in the 

domain of aerospace systems development as well. The DoD Joint Strike Fighter 

Program also employed QFD under the activity named Strategy-to-Task Technology 

QFD II Analysis [23] in the Integrated Product and Process Development (IPPD) 

framework that is introduced in the next section.  

QFD is a graphical method that uses a QFD diagram also known as the house of 

quality because of its shape. The example QFD diagram shown in Figure 11 was created 

by the Georgia Tech graduate team for the 2002-2003 American Institute of Aeronautics 

and Astronautics (AIAA) aircraft design competition [24]. In the figure, the customer 

needs are placed on the left side. For each of the items that the customer wants, or the 

so-called “voice of customers”, the customer importance ratings are quantified and 

placed in the diagram. Armacost [25] used Analytic Hierarchy Process with QFD to 

prioritize the customer needs. Analytic Hierarchy Process (AHP) is a multi-criteria 

decision-making technique that was developed by Saaty [26, 27] in the 1970s. Then, the 

design characteristics that can be controlled to meet customer requirements are placed 

under the roof of the house and mapped to the customer needs. Outcome of the QFD 

exercise is the list of engineering characteristics and their relative importance and target 

values, which can be used to construct evaluation criteria, constraint thresholds, and 

design objectives for the evaluation of design concepts. More interested readers are 

referred to [28, 29] for examples. 
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Figure 11: The House of Quality [24] 
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A morphological analysis (MA) is a method that arranges the system functions and 

sub-functions in a logical order to enable the synthesis of numerous alternatives or 

configurations. Morphological analysis was invented by Zwicky in 1948 [30, 31] and has 

been used in a number of applications of policy making [32, 33], generation of scenarios 

and strategies for risk analysis  [34], evaluation of military strategies [35], and synthesis 

of aircraft configurations [24]. The method is graphical and utilizes a matrix, often called 

a morphological matrix.  

An example morphological matrix from [24] is presented in Table 1. As shown in the 

matrix, the system is broken down into different subcomponents and parameters 

necessary to the design solution. These subcomponents and parameters are listed 

vertically, and possible solutions to these different subcomponents and parameters are 

Table 1: A Morphological Matrix [24] 
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listed horizontally. Once this matrix is created, the designers can create various design 

concepts by combining different solutions to the subcomponents and parameters. The 

purpose of this method is to develop as many combinations of ideas as possible. By so 

doing, concepts that might not be considered ordinarily are generated. 

While Asimow and Dieter focused on the steps and tasks of the design process, some 

presented philosophical aspects of design. Hill [36] compared the design method to the 

scientific method that was described briefly in the beginning of this thesis. The difference 

would be that the scientific method is to discover knowledge where as design method is 

to create a new product which advances the state-of-the-art of the field in some ways. 

Each step of the scientific method is matched to a step in the design method. For 

example, the synthesis of concept or alternative in the design process is the counterpart 

of generation of hypothesis. Vanderplaats [37] compared design to analysis, stating 

“analysis is the process of determining the response of a specified system to its 

environment… Design, on the other hand, is used to mean the actual process of defining 

the system… Clearly, analysis is a sub-problem in the design process because this is how 

we evaluate the adequacy of the design.” 

Suh [38] proposes the four distinct phases of the design process: the problem 

definition phase in which vague customer needs are embodied into a set of coherent 

requirements; the solution synthesis phase in which the functional requirements are 

decomposed and solutions are sought in the physical domain; an analytical phase in 

which quantitative evaluation of the generated solutions are made in terms of the 

requirements; and the feasibility check phase where conformance of the design to the 

requirements is evaluated. The process is graphically represented in Figure 12. While 
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using different terminology, essentially identical three or four step models are also found 

in other literature. For instance, Jones’s model of the design process [39] has the three 

steps of analysis, synthesis, and evaluation; Cross [40] proposed a model of exploration, 

generation, evaluation, and communication, the fourth step stressing the importance of 

effective delivery of the end product needs to the next process, such as production. It is 

very important to note that the design process is highly iterative within the phases and 

between the phases such that the designer often needs to go back to the previous stages 

to make changes and redo the following steps. 

What is also important to consider in design process is to understand the 

hierarchical nature of design. Suh [38] philosophizes the hierarchical aspect in the 

functional domain and physical domain of problems as follows: 

There are two very important facts about design and the design process, which 

should be recognized by all designers: FRs and DPs have hierarchies, and they can 

be decomposed; FRs at the ith level cannot be decomposed into the next level of 

the FR hierarchy without first going over to the physical domain and developing a 

solution that satisfies the ith level FRs with all the corresponding DPs [in the 

physical domain] … In the design of complicated systems, the hierarchical 

approach simplifies the design process a great deal 

Therefore, it is important to consider in which hierarchy the designer should define 

problem and in which hierarchy the designer should compose solutions at a certain phase 

of the design process.  

Need
Problem 

Definition
Synthesis Analysis

Feasibility 

Check
Solution

 
Figure 12: Four-Step Design Process Adopting Suh [38] 
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2.2.2 Aircraft Sizing 

The traditional aircraft design process, consisting of conceptual, preliminary, and detail 

design phases, was briefly introduced in §1.3 to discuss the issue of planning for future 

vehicle upgrades in the traditional design process setting. This section further discusses 

the aerospace systems’ specific design issues referred to as “aircraft sizing”. While 

aerospace systems design can be conducted following the design processes introduced in 

this section, the systems intended to be operated in air require special attention to the 

vehicle’s weight. Aircraft sizing, conducted as a sub-process of conceptual design, is 

defined by Ramer [6] as “the process of determining the takeoff gross weight and fuel 

weight required for an aircraft concept to perform its design mission.” In addition, 

DeLaurentis [94] describes aircraft sizing as “a mathematical algorithm that determines 

the size and weight of an aircraft based on a specified mission and contributing 

disciplinary analyses.” Anderson [41] lays outs seven intellectual pivot points for 

conceptual design as shown in Figure 13. While the process starts from the requirements 

and ends by down selecting the best design that meets all requirements, the iterative 

steps from 2-6 can be viewed as an aircraft specific sub-process of aircraft sizing. The 

traditional aircraft sizing process begins with estimating the weight of the airplane, 

which affects all downstream analyses resulting in calculated aircraft gross weight, 

including the structure, fuel, and payload. The process is repeated until the estimated 

weight and calculated weight converge.  

Recently, Nam [42] suggested a more generalized and modern definition of aircraft 

sizing as the process of balancing available thrust, fuel (or energy), and volume with the 

required thrust, fuel (or energy), and volume determined by the point performance and 
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mission performance requirements. Borer [43] formulated a method of sizing an aircraft 

for multiple missions that is particularly relevant in the design of military fighters. The 

sub-processes of the aircraft sizing are constraint analysis, mission analysis, and weight 

estimation, formally suggested by Mattingly [44] and Nam. A detailed review of 

conventional and modern aircraft design process is found in Nam [45] and Borer [46]. 

2.2.3 Modern System Design Methods 

Various methods and processes to maximize system affordability were developed since 

the 1990s in the aerospace systems design community. Mavris and DeLaurentis [47] 

defined system affordability as “value to the customer, including a balance between 

benefits, costs, availability, and risks.” The ideals and objectives of the design methods 

that were developed under the paradigm of “design for affordability” are in line with the 

 
Figure 13: Seven Intellectual Pivot Points for Conceptual Design [41] 
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goals of P3I, EA, and SD in that better ways to reduce life cycle cost and development 

time and to improve customer satisfaction are sought.   

Integrated Product and Process Development (IPPD) was a design process that was 

formally identified in the NCAT [48] as “a management methodology that incorporates a 

systematic approach to the early integration and concurrent application of all the 

disciplines that play a part throughout a system’s life cycle.” In order to improve 

product quality and reduce design time and life cycle cost, IPPD takes into account the 

product’s entire life cycle during the early design phase. The IPPD process is enabled by 

the integrated product team (IPT) of all disciplines, such as design, production planning, 

manufacturing, maintenance, etc., to integrate not only the product development but 

also the process development for manufacturing and support [49]. 

Schrage [50] proposed a comprehensive IPPD formulation to help the U.S. Navy’s 

acquisition reform effort and engineering education and training. The Generic IPPD 

methodology, as illustrated in Figure 14, consists of four key elements: quality 

engineering methods, computer-integrated environment, top-down design decision 

support process, and systems engineering methods. These elements are shown in the top 

portion of the figure. In the middle of the figure is the design process from identification 

of the need to decision making, which is essentially identical to the design processes 

reviewed in the previous section. The left and right elements of the design process are 

the key enablers or techniques. The system engineering methods on the right side of the 

figure are product design driven and are the key enablers in decomposing the problem. 

The other side of the flow contains the quality engineering methods that are process 

driven and recompose the solutions. 
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Figure 14: The Generic IPPD Methodology by Schrage [50] 

Robust Design Simulation (RDS) by Mavris, one of the elements in the Generic 

IPPD method, is a systematic framework that identifies the design that not only 

performs well in the well-defined initial operational environment but also in a changing 

operational environment. RDS adopts the concept of quality and robustness from 

Taguchi methods and Six Sigma and creates a method that is tailored to aerospace 

systems design. RDS also incorporates uncertainty in aircraft operational environment.  

In Taguchi methods, the change in operational environment is captured by the noise 

variables, and then the best setting of the control variables minimizes the signal-to-noise 

ratio (S/N). In RDS, for a baseline aircraft configuration, the control variables and noise 

variables are identified. Alternative designs are created by using the Design of 

Experiment (DoE) techniques, and the variability due to noise variables are quantified 

using Monte Carlo analysis. The robust solution is found through maximization of the 

probability of an overall figure of merit achieving or exceeding a specified target. 
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Figure 15: Flowchart of Robust Design Simulation [51] 
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Technology Identification, Evaluation, and Selection (TIES) by Kirby [52] prescribes 

a method to investigate, evaluate, and determine which technologies can be infused at 

the systems design stage. The key elements of TIES methods is the identification of 

potential technologies, their impact on the system being studied, compatibility with 

other technologies, and costs and risks associated with the further development of the 

interested technologies. The TIES methods have been successfully applied to the design 

of a high speed civil transport [53], a short haul civil tiltrotor [54], and an uninhabited 

combat aerial vehicle [55]. 

Mavris et al. suggested the Unified Tradeoff Environment (UTE) in which the 

combined effects of mission requirements, vehicle attributes, and technologies into one 

environment are assessed [56]. The UTE treats the requirements and technologies the 

same as vehicle design variables. Thus, impact of requirements, vehicle attributes, and 

technologies on the baseline vehicle is simultaneously studied. The UTE has been applied 

to the U.S. Army’s Future Transport Rotorcraft, NASA’s Short Haul Civil Tilt Rotor, 

and the development of the F/A-18E/F [56-60], to list a few. 

Behind the advanced design methodologies introduced in this section are techniques 

that enable eliciting increased disciplinary and system-level knowledge earlier, for 

instance, surrogate modeling techniques such as Response Surface Methodology (RSM) 

[61] and Artificial Neural Network (ANN). The RSM approximates the complicated 

physical behavior of the model into 2nd order polynomials as known as Response Surface 

Equations (RSEs), which allow an instantaneous evaluation of aircraft performance 

characteristics. ANN based surrogate models are inspired by the structure of the human 

brain and are constructed by complex connections between the neurons. These ANN 
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based models’ origin can be traced back to a 1943 article by neurophysiologist Warren 

McCulloch and mathematician Walter Pitts entitled “A Logical Calculus of Ideas 

Immanent in Nervous Activity” [62]. While many resources exist on the theory and 

application of neural networks to a wide range of problems, the DARPA Neural 

Networks Study by MIT’s Lincoln Laboratory [63] is a comprehensive reference to the 

use of neural networks. 

Surrogate modeling is further facilitated by systematically creating samples using 

Design-of-Experiment (DOE) techniques. Many types of DOE have been invented and 

applied to various engineering problems successfully. Among them, Box-Behnken designs 

by [64] and Central Composite Design (CCD) have been widely adopted in the domain 

of aerospace design along with RSM [65]. ANNs is known to work better with space-

filling sampling techniques, such as Latin-Hypercube Sampling (LHS), developed by the 

Sandia Laboratory in 1981 [66].  

One of the goals in the development of modern design methods was effective 

communication between the designers and the decision makers. As a means to facilitate 

more informed decision, visualization of the design space became important. As a result, 

visualization tools, such as prediction profilers, contour plots, and multivariate profilers, 

and surface profilers were introduced and used in aerospace systems design. Enabled by 

surrogate models in the background, these tools allow instantaneous design space 

exploration, involving the decision makers in the loop. For example, prediction profilers 

as shown in Figure 16 graphically represent the mapping between the system attributes 

and design requirement—range, speed, and payload. The slopes of the lines in each of 

the boxes are partial derivatives of the aircraft attributes with respect to the design 
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requirement evaluated for a particular design point, which the designer can change by 

moving the red vertical lines.  
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Figure 16: An Example Prediction Profiler [67] 
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2.3 Chapter Conclusion and Objective 

The three strategies discussed in the section 2.1 can be viewed as system development 

strategies which can be adopted as managerial level design guidelines in dealing with 

problems of time-phased requirement change, technology maturation, and various source 

of uncertainties. Although EA and SD provide guidance to aircraft system designers, 

their usefulness is still limited as acquisition strategies or processes.  

Historically design has been belonged to the realm of art rather than science. Recent 

efforts in brining the scientific process to design have been surveyed and reviewed in this 

chapter. Emerging methods in the aerospace systems design community are an effort to 

bring more knowledge into the early design process and to provide better traceability of 

design and customer satisfaction. Advanced methods, such as RDS, TIES, and UTE, 

provide for the means to incorporate technologies, requirements, and/or uncertainty into 

the sizing and synthesis process of an aircraft. However, those methods were developed 

to focus on finding a single design solution for the currently defined problem. The 

implementation of evolutionary aircraft development requires a design method that 

provides time-phased design solutions for a set of time-phased requirements and 

technology options.  

In summary, 

 

Observation 2: While acquisition policies such as P3I, EA, and SD have established the 

paradigm of design for lifelong evolution and have been useful as design 

guidelines, a formalized method as to how contemporary aircraft designers can 

incorporate the theory into the aircraft design practice has been elusive. 
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Conventional and modern design processes set up a single-stage design 

formulation with which the decision must be made here and now.  

 

For aircraft designers to be able to capture future requirements and technologies in 

the current design, a fundamentally different design problem formulation is required. 

Such a new problem setup considering lifetime evolution of a complex system is 

formulated in the subsequent chapters. 
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CHAPTER III 

 

CASE STUDIES ON AIRCRAFT EVOLUTION 

 

As discussed in CHAPTER II, the paradigm for military system development has shifted 

from a single step approach to an evolutionary approach. Although much literature 

provides the needs and guidelines for such development philosophy, a design 

methodology as to how a system is designed in accordance with this philosophy has been 

missing.  

From the perspective of aircraft design, a logical question that arises in preparing 

for such evolutionary development of a system is, “How can design engineers devise 

effective solutions incorporating evolving requirements and technologies?” A tie-in 

question that must also be addressed is, “What are the issues and challenges in 

preparing and implementing the provisional steps for the uncertain future?” These 

questions are formally stated as: 

 

Research Question 2: How can the traditional, single-stage design formulation be 

expanded to enable integration future design states and time-phased decision 

making? How can potential vehicle evolutionary paths be planned and 

quantitatively evaluated from the origin of the design? (Observation 2) 

 

Research Question 3: What would be the barriers and challenges in implementing the 

preplanning strategy in aircraft design? What would be the elements needed to 
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improve the current process to respond to the new policy of evolutionary 

acquisition? (Observation 2) 

 

As one of the attempts to answer above questions, a three-part case study was 

performed to gain further insights into the implementation aspect of the pre-planning 

type strategies outlined in the previous section. The focus of such an exercise was to gain 

insights to which key aspects are missing or overlooked from the traditional aircraft 

sizing and synthesis process but are essential to the successful implementation of the pre-

planning strategy. What follows is a brief summary of the key lessons learned from 

surveying the literature. The following questions were kept in mind when reviewing the 

past cases: What initiated the modification programs? To what extent have the vehicles 

been expanded over time? How were the modifications implemented? What constrained 

the growth of the vehicle? What attributed to the program’s failure or success? 

3.1 Part I: Aircraft Evolution Trends 

The first part focuses on general trends associated with modification programs. This part 

quantitatively tracks the evolution history of some selected aircraft in the following 

categories: military fighter, military bomber, military rotorcraft, and commercial 

transport. The focus of this part of the case study is to answer a series of questions, such 

as: What initiated the modification programs? To what extent have the vehicles have 

been expanded over time? How were the modifications implemented? What constrained 

growth? Depending on the category an aircraft fell into, some common issues and pitfalls 

were identified. 
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3.1.1 Military Fighters: Northrop F-5, Lockheed Martin F-16, and Boeing F/A-

18 

For many military fighter jets, their evolution was driven by the need or desire to 

improve lethality and survivability. These objectives were endeavored to be achieved by a 

number of subsystem upgrades, such as a larger weapons payload, avionics enhancement, 

and more powerful propulsion systems. Consequently, the evolution trends of U.S. 

fighters show a gradual increase in both vehicle weight and available thrust. External 

pods to hold additional armament and fuel became unavoidable, which in turn increased 

both aircraft weight and drag. This inevitable degradation in vehicle performance was 

attempted to be offset by installing more powerful derivative engines whose gravimetric 

and volumetric characteristics did not change much. All the while, the airframe’s 

geometry remained relatively fixed. The original wing shape and area were not modified 

as often, resulting in a continual increase in wing loading values. It would thus appear 

that whatever penalty a sub-optimal wing imparted on the vehicle’s performance, it did 

not justify the cost of re-designing the wing. 

3.1.1.1 Northrop F-5 

Increase in weight over time is typical of most of aircraft as the customer established the 

need for more equipment and capability. F-5 was no exception to the trend. Figure 17 

shows the evolution of weight and thrust of Northrop F-5. The takeoff gross weight more 

than doubled over its twenty-year evolutionary path from the T-38A to the F-5E. 

Engine thrust also increased in the order of 3350 lb (T-38A), 4080 lb (F-5A), 4300 lb 

(CF-5A), and 5000 lb (F-5E). The F-5G, which was the third generation F-5, weighed 
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26,290 lb with one F404-GE-100 engine rated at 17,000 lb (F-5G’s immediate predecessor 

was a twin-engine design).  

Northrop designed F-5 to be a low-cost, light-weight, multi-mission fighter, having 

foreign allies in mind. To appeal to diverse range customers other than the U.S. 

government, the design team stressed the flexibility and growth potential of the airframe. 

One example of design flexibility is the nose room of 40 cubic feet to accommodate 

various kinds of equipment according to the customer preference. Performance upgrade 

was facilitated by the advancements in engine technology. The maximum thrust of the 

GE-J85 engine used in the F-5 series increased from 1,150 lb for J85-5 to 8,160 lb for 

J85-13 to 10,000 lb for J85-21 with relatively small increase in engine weight and 

geometry. This allowed for upgrading of the F-5 propulsion system with minor 

modification to the airframe [3].  

It is interesting to watch how wing area and wing loading has evolved in comparison. 

As evident from Figure 18, the wing was enlarged only one time. The wing area 

increased from 170 ft2 to 186 ft2 when the CF-5A was upgraded to F-5E. As a result of 

adding weight without updating the wing, wing loading gradually increased from its 

 
Figure 17: Northrop F-5 Weight and Thrust Growth [68] 
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originally designed wing loading of about 60 lb/ft2 to 70 lb/ft2. Wing loading is one of 

the most important design parameters and it seems that the penalty of having a wing at 

an off-design point did not offset the cost saving of keeping the wing design unmodified. 

3.1.1.2 Lockheed Martin F-16 Fighting Falcon 

Lockheed Martin’s F-16 Fighting Falcon is one of the best-selling military aircraft in the 

world. Since the first production model was delivered to the U.S. Air Force in 1979, 

more than 4,000 F-16s have been produced, according to Lockheed Martin 

(www.lockheedmartin.com). The F-16 was originally designed as a lightweight, daytime, 

air-to-air fighter, but it has evolved into a multi-role, all-weather aircraft over the past 

twenty years. Having more than 110 different versions, the designation is tracked by 

block numbers. The evolution history of the F-16 is well documented by Hehs [69]. 

Starting from Block numbers 1 and 5, new block numbers were added whenever major 

upgrades were implemented. Almost every upgrade was accompanied by upgrades in 

avionics, weapon systems, and engines. 

 
Figure 18: Northrop F-5 Wing Loading Growth [68] 
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Expanding its realm from air superiority to include ground-attack and all-weather 

capability, more equipment and payload were added, leading to an inevitable increase in 

vehicle weight. For example, the empty weight of the Block 50 is 19,200 lb, which is 

about 24 percent heavier than the 15,600 lb Block 10. The wing area has undergone a 7 

percent increase, growing from 260 ft2 to 300 ft2, representing the maximum possible 

growth before having to modify the fuselage. Both the horizontal and vertical tail areas 

also were enlarged by approximately 15 percent. 

The evolution of the F-16 took advantage of the electronic revolution and advances 

in jet engine technology. The performance loss due to additional weight and drag (due to 

external attachments) was offset by the increase in the engine thrust from 23,000 lb on 

the YF-16 to 30,000 lb on the Block 50. Although the capabilities of radars, computers, 

and data links have been upgraded vastly, such electronic systems could be enclosed 

within the originally designed body thanks to the rapid advancements in electronic 

technology.  

3.1.1.3 Boeing F/A-18 Hornet 

The case study of the F/A-18 Hornet was conducted in two parts: the first part tracked 

the evolution history, focusing on the growth of the vehicle itself, and the second part 

focused on the historical background behind the birth of the F/A-18E/F program.  

3.1.1.3.1 Evolution History of F/A-18 Hornet  

The F/A-18 Hornet is a twin engine, mid-wing tactical fighter for the U.S. Navy. It is 

the first strike fighter of the United States designed to perform both air-to-air and air-to-

ground missions. F/A-18 Hornet was derived from Northrop’s YF-17, one of the 

contenders for the USAF’s Light Weight Fighter Prototype program that was initiated 
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in April, 1972, along with the General Dynamics YF-16 [70]. Later in the 1970s, the U.S. 

Navy launched a program called the Navy Air Combat Fighter (NACF) program to 

procure a carrier-borne, multi-role fighter to replace both the A-7 and the F-4 and to 

complement the F-14 Tomcat. In May, 1975, McDonnell Douglas and Northrop as a 

subcontractor won the NACF to produce the F/A-18s [71].  

Since the YF-17 was designed for the U.S. Air Force as a light weight fighter, a 

series of changes were made to the YF-17 to suit the needs of the Navy and to fulfill 

both fighter and attack missions when the F/A-18A was developed. Those changes 

included “catapult provisions, all-weather avionics, increased wing area, strengthened 

fuselage, strengthened landing gear, special arresting provisions for carrier operations, 

more internal fuel, a little more engine thrust, and a Sparrow missile capability [72].” 

The first generation of F-18s, designated as F-18A/B, went into operation in 1983. An 

upgraded version with updated missions and jamming devices, designated as C/D, 

became operational in 1993. Except for the early production models, the C/D versions 

were powered by F404-GE-402 enhanced performance engines. 

In the 1990s, the need for a more capable Navy strike fighter was emerged, which 

called for another round of the F/A-18 upgrade program, designated as the F/A-18E/F 

program. F/A-18E/F, powered by upgraded F414-GE-400 engines, is significantly larger 

and more capable than the C/D versions while inheriting the traits of the previous 

versions. Jane’s All the World Aircraft 2006-2007 summarizes the changes from the C/D 

to E/F version as follows: 

F/A-18E/F is a stretched version of C/D; landing weight increased by 10,000 lb; 2 

ft 10 in fuselage plug; wing photographically increased by 100 ft2; larger horizontal 

tail surfaces; LEX increased to 75.3 ft2 from 56 ft2 of C/D; additional 3,600 lb of 
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internal fuel and 3,100 lb of external fuel; two more weapons hardpoints; air 

intakes redesigned to increase mass flow and reduce radar cross-section; F414-GE-

400 engines; reduced observable measures by saw-toothed doors and panels, 

realigned joints and edges and angles antennas. 

Figure 19 shows the geometrical characteristics and relative growth from YF-17 to 

F/A-18A and F/A-18E. F/A-18C, missing in the figure, is geometrically identical to the 

A version. F/A-18B, D, and F versions are two seat models of A, C, and E. They are 

identical except that the two seat versions have about 400 lb less internal fuel volume to 

accommodate another pilot [73]. While the geometric similarity between the versions is 

evident from the figure, wing area increased from 350 ft2 to 500 ft2; engine thrust 

increased from 15,000 lb to 22,000 lb per engine; empty weight even increased from 

17,000 lb to 30,564 lb. The degree of growth from the C/D to E/F version was so 

dramatic that some government officials wanted to call the F/A-18E/F program a new 

aircraft program rather than an aircraft upgrade program*. Some of the major milestones 

and specifications of F/A-18 derivatives are summarized in Table 2.  

                                                                                       

*There was a disagreement between the government officials on the classification of the Super Hornet 

program as a major modification. A CRS report [74] to the Congress stated that “some observers describe 

the F/A-18E/F as an upgraded and larger version of the F/A-18C/D, with increased range and payload 

capacity and more space and weight observers assert that the differences between the baseline Hornet 

aircraft and the E/F model are so great that they would describe the Super Hornet as an entirely new 

aircraft.” In 1994, as per the official request by Senator William V. Roth Jr., GAO investigated the matter. 

For more details on the issue, refer to the GAO report [75]. 
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Figure 19: Evolution of F/A-18 [76] 

 

Table 2: F/A-18 Hornet Missions, Specifications, and Milestones [70, 74, 76-79] 

 YF-17 F/A-18A/B F/A-18C/D F/A-18E/F 

Service US Air Force US Navy and 

Marines 

US Navy and 

Marines 

US Navy and 

Marines 

Type Prototype Strike fighter Strike fighter Strike fighter 

Mission 

capabilities 

Day time air 

superiority 

Escort and carrier-

based interdiction 

+Night attack +Long-range, all 

weather 

Manufacturer Northrop McDonnell Douglas McDonnell Douglas Boeing 

Engine J-101 Turbojet F404-400 F404-402 F414-400 

Thrust (SLS) 15,000 lb 16,000 lb 17,754 lb 22,000 

Wing area 350 ft2 400 ft2 400 ft2 500 ft2 

LEX area 46 ft2 54 ft2 54 ft2 75.3 ft2 

Wing span 35.0 ft 37.6 ft 37.6 ft 42.9 ft 

Empty 

weight 

17,000 lb 21,830 lb 24,372 lb 30,564 lb 

Internal fuel   10,860 lb 10,860 lb 14,700 lb 

External fuel   6700 lb 6700 lb 9800 lb 

First flight June 9, 1974 November 18, 1978 September 3, 1987 December 1995 

First Delivery N/A May 1980 1991 1999 
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3.1.1.3.2 Background of the F/A-18E/F Program 

In the late 1980s, the U.S. Navy was facing a situation where they had to find some way 

to replace the aging F-14 in its air-to-air fighter role and the A-6E in its air-to-surface 

attack role. The U.S. Navy considered combinations of following options [80, 81]: 

• SLEPs on A-6 and then buy JSFs to replace A-6  

• Continued use of F/A-18C/D 

• Upgrade F/A-18C/D to E/Fs (1,000 new productions) 

• Upgrade F-14 to add attack capability, F/A-14D (600 new productions and 400 

retrofits) 

• Advanced Tactical Aircraft (ATA), later A-12 Avenger II 

• Navy variant of F/A-22 (NATF) 

• Carrier-capable version of F-117 

The Advanced Tactical Aircraft (ATA) program began in 1983 as a long range, low 

observable, high payload medium-attack aircraft to replace the A-6, IOC in the mid-

1990s. In January 1988, it was designated as the A-12. The program was terminated in 

January 1991, after disclosure of severe cost and schedule overruns and technical 

problems [82]. Procurement of Navy variant F/A-22 (NATF) was planned to start in 

1999, when the F-14 would begin to retire in large quantities, based on the service life of 

27 years. The consideration for NATF was dropped in 1991 [82]. The series of program 

cancellations was largely affected by the unexpected collapse of the Soviet Union. Since 

the carrier version of the F-117 was never endorsed by the Navy leadership, the only 

surviving options to modernize the U.S. Navy fleet by the early 1990s were the F-14D 

and the F/A-18E/F [74]. 

Evidence exist that the requirement for the F/A-18E/F—formalized in the ORD in 

1991 and revised in 1997—was affected by the outcome of the F-14D program. In 1992, 

the House Armed Services Committee held a hearing on the Defense Acquisition Board 
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(DAB) review of the F/A-18E/F development program. In the hearing, various 

combinations of the F/A-18C/D, F/A-18E/F, F-14D, and STC-21 (a super Tomcat) 

were reviewed in terms of the procurement cost, operation and support cost, and 

capabilities. The conclusion from the hearing was that “F-14D [is] not as survivable in 

strike role, more expensive to procure, more expensive to operate and support, less 

capable in strike role [83].”  

In addition, Bolkcom [81] reports in support of the E/F program that  

… the F-14’s long-range air defense mission, known as the outer air battle, will be 

less important in the post-Cold War era, when naval aircraft are expected to be 

used at shorter ranges in littoral (off-shore) operations in Third-World scenarios… 

Navy officials emphasized in 1991-92 that affordability and inventory requirements 

were the driving factors in their support of the F/A-18E/F over the F-14D, whose 

higher-performance air-to-air radar and greater range and payload capabilities they 

considered less essential for fleet defense with the demise of a Soviet threat.  

The F-14D program was truncated significantly, and a total of 37 new aircraft were 

constructed. Eighteen F-14As were remanufactured to D variants. The F-14D was first 

delivered in 1991 and completed its retirement from U.S. Naval service on March 10, 

2006 [84]. 

On the other hand, the E/F program officially received Milestone IV/II approval in 

May, 1992, to start engineering & manufacturing development (EMD) [4]. Later, the 

production quantity of F/A-18E/F was also reduced several times from 1,000 in 1993 to 

548 in 1997 and to 462 in 2003. The F/A-18E/F would be the only modern Navy 

Attack/Fighter aircraft until the procurement of JSF begins after 2010.  

In conclusion, the evolution of the F/A-18 was largely affected by the unexpected 

change in the operational environment brought by the demise of Soviet Union. The 

requirement for F/A-18E/Fs formalized in the ORD in 1992 was affected by the outcome 
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of other U.S. Navy programs, especially the F-14D program. An interesting point is that 

while the unexpected collapse of the Soviet Union completely changed the needed 

capability of the U.S. Navy Air Wing in the 1990s and beyond and resulted in a series of 

program cancellations, the requirement for the F/A-18 still grew. An important lesson 

from this history is that the capability of a vehicle system should evolve in a way that it 

can offer more, not less, even in a situation where overall needed capability of the fleet 

decreases. 

3.1.2 Military Helicopter: Boeing CH-47 Chinook 

The Boeing CH-47 Chinook is a tandem, medium-lift helicopter for the U.S. Army and 

international customers. Since the first fully equipped CH-47A entered service in 1962, 

upgraded CH-47B and CH-49C went into production in the mid-1960s. In the mid-1970s, 

the need for the modernization of the U.S. Army’s medium-lift helicopter was established. 

The U.S. Army decided to improve the existing CH-47 A, B, and C fleet instead of 

initiating a new development program to minimize cost and technological risk. Biery and 

Lorell [3] stated that “the Army estimated that a new development program would have 

cost from three to five times more in R&D funds than modification of the CH-47 without 

providing a commensurate improvement in capabilities.”  A total of 441 CH-47 A, B, 

and Cs were stripped and reassembled with the upgrades on seven subsystems as listed 

in Table 3. To extend the life of the CH-47 beyond 2030, Boeing subsequently upgraded 

CH-47Ds to CH-47Fs. Total 394 existing CH-47Ds are planned to be modified to CH-

47Fs integrating the upgrades listed in Table 3 starting in 2003. 
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Table 3: CH-47 Major Modification Programs [11, 85] 

Program Upgraded Subsystems 

A, B, and C 

to D 

Composite rotor blades 

Improved Lycoming T55-L-712 engines 

Higher capacity transmission 

Upgraded electronics 

A multipoint suspension system for sling loads 

Advanced flight control system 

Improved APU with generator and hydraulic pump 

D to F Improved airframe structure to reduce vibration 

Structural enhancements  

Integrated cockpit control system 

Improved avionics with digital advanced flight control system 

More powerful engine with digital fuel controls (T-550L714 at 4900 SHP) 

Modularized hydraulics and triple cargo hooks 

 

Some of the key specifications of CH-47 are summarized in Table 4. The evolution of 

the CH-47 clearly shows how growth can be manifest in both capability and weight. 

From the CH-46A to the MH-47E, the engine’s horsepower increased from 2,650 hp to 

4,867 hp while vehicle gross weight increased from 21,400 lb to 54,000 lb. Again, the 

basics of the airframe were relatively untouched. The rotor design also remained fixed 

except for the CH-47A, which had a slightly shorter rotor. It is thus not difficult to 

realize that modern CH-47s are operated at a disc loading that is 64% higher than that 

of the original design point. This is a testament to the ingenuity of Boeing engineers, as 

it represents doubling the load-carrying capability of the vehicle without significantly 

altering the rotor system. Nevertheless, it is questionable whether the newer, heavier 

versions can retain the same level of handling qualities, maneuverability, and agility. 
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Table 4: CH-47 Evolution [86-88] 

Models CH-47A CH-47B CH-47C CH-47D MH-47E 

First delivery 1962 1967 1968 1982 1991 

Empty weight 18,112 19,555 20,547 23,093 26,918 

Gross weight (lb) 33,000 40,000 46,000 50,000 54,000 

Payload weight (lb) 13,400 18,600 23,450 22,686 27,082 

Ferry range (nm) 835 1,086 1,233 1,255 1,260 

Power rating (hp) 2,650 2,850 3,750 4,500 4,867 

Fuel capacity 621 621 1,129 1,068 2,068 

Rotor diameter (ft) 59.1 60 60 60 60 

 

3.1.3 Commercial Transport: The Boeing 737 Series 

Although the case study has been conducted mostly focusing on military systems, a 

commercial transport was added to the study for comparison purposes. Boeing’s 737 is 

the most successful commercial jet in history. Since its first delivery in 1967, more than 

5000 B737s have been delivered to customers and more than 6,866 units have been 

ordered through the end of March 2006, according to the Boeing Company [89]. More 

than 10 different versions of the 737 have been introduced up to date, starting from the 

737-100 of the 1960s to the most recent 737-900ER.  

Table 5 summarizes major milestones of the 737 family, including first order, first 

flight, first delivery dates, etc. In accordance with the first order dates, the 737 series can 

be grouped together into three different groups. The first generation of the 737 includes 

737-100 and 737-200, followed by the second generation from 300 to 500, and the third 

generation from 600 to 900 (or the Next Generation according to Boeing.) Different 

versions within each generation usually share the common design with either shortened 

or lengthened fuselage. For example, 737-400 and 737-500 are shortened and stretched 
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versions of 737-300. In addition, 737-600, 800, 900, and 900ER are shortened or 

stretched-body versions of 737-700.  

General specifications for the 737 family were collected from various sources as 

shown in Table 6. The 737 family showed gradual increase in size, weight, and engine 

power. The 737-900ER is almost twice as heavy as the 737-100 and is powered by 

187,700 lb maximum thrust General Electric CFM56-7 engine, compared to the 14,000 lb 

JT9D-9 installed in the 737-100. Not only the size and weight of the vehicle grew over 

time, but also the number of seats and range. Depending on the models, third generation 

models carry roughly twice the number of passengers a thousand more nautical miles 

than the first generation models.  

It seems that Boeing took an approach of designing a family of aircraft rather than a 

single version. Major milestones of some derivative models show some hint of concurrent 

development. 737-400 and 737-500 are stretched and shortened-body versions of 737-300 

and were introduced four and five years after the 737-300 was introduced respectively. 

Table 5: Boeing 737 Series Introduction Dates [89] 

Model First Order Rollout First Flight Certification First Delivery 

737-100 2/15/65 1/17/67 4/9/67 12/15/67 12/28/67 

737-200 4/5/65 6/29/67 8/8/67 12/21/67 12/29/67 

737-200C 2/15/66 8/12/68 9/18/68 10/1/68 10/30/68 

737-200 Adv 7/16/70 3/26/71 4/15/71 5/3/71 5/20/71 

737-300 3/5/81 1/17/84 2/24/84 11/14/84 11/28/84 

737-400 6/4/86 1/26/88 2/19/88 9/2/88 9/15/88 

737-500 5/20/87 6/3/89 6/30/89 2/12/90 2/28/90 

737-600 3/15/95 12/8/97 1/22/98 7/1/98 9/19/98 

737-700 11/17/93 12/8/96 2/9/97 11/7/97 12/17/97 

737-800 9/5/94 6/30/97 7/31/97 3/13/98 4/22/98 

737-900 11/10/97 7/23/00 9/1/00 3/1/01 5/16/01 

737-900ER 7/18/05         
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Moreover, the 747-600, 800, and 900 are based on the 737-700, having the same wings 

and empennage, but with different fuselage lengths and engine scales.  

Figure 20 illustrates the evolution of the general arrangements from the 737-600 to 

the 737-900ER, which are significantly different in fuselage length. The 737-900ER is 36 

ft longer than the 737-600. Comparing the body of a 737-600 to that of a 736-900ER, it 

is surprising that they have the same-sized wings (although the 900ER has winglets) as 

well as horizontal and vertical tails. It is thus likely that the wing design is not 

optimized for a specific version, but rather represents Boeing’s strategy of saving 

manufacturing costs through platform sharing.   

Designing a family of aircraft would entail a significantly different approach than 

designing for a single aircraft, balancing multiple missions and markets, cost, and design 

efficiency. A strategy or design methodology for an aircraft family development is a very 

interesting subject warranting further investigation, and is further discussed in §8.2.2 as 

part of the future research opportunities. 

Table 6: Boeing 737 Series Specifications [79, 89, 90] 

Model TOGW (lb) Range (nm) Pax Max Thrust (lb) Wing Span Length # of Orders* 

737-100 97,000 2,240 80/101 14,000 93ft 0 in 94 ft 30 

737-200 107,000 2,400 88/113 14,500 93ft 0 in 100 ft 1,114 

737-300 138,500 3,400 128/149 22,000 94ft 9in 109 ft 7 in 1,113 

737-400 150,000 3,200 146/170 23,500 94ft 9in 119 ft 7 in 486 

737-500 133,500 2,420 108/132 20,000 94ft 9in 101 ft 9 in 389 

737-600 145,500 3,050 110/132 22,700 112 ft 7 in 102 ft 6 in 86 

737-700 154,500 3,365 126/149 26,300 112 ft 7 in 110 ft 4 in 776 

737-800 174,200 3,060 162/189 27,300 112 ft 7 in 129 ft 6 in 772 

737-900ER 187,700 3,200 180/215 27,000 112 ft 7 in 138 ft 2 in 46 

*as of 1 January 2001 
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737-600

737-700
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737-900ER

 

Figure 20: Boeing 737 Series General Arrangement [91] 

3.2 Part II: Preplanned Aircraft Upgrades 

The second part of the case study was devoted to identifying the attributes that acted as 

major contributors in determining the success or failure in upgrading/retrofitting existing 

aircraft. The study first collected cases in which growth provisions were pre-planned, 

regardless of whether they were actually implemented or not.  

The Grumman F-14 evolved from the Navy’s VFX program, which was supported 

by the Navy Fighter Study (NFS) in 1967. According to a Rand report [3]: 

The NFS placed great emphasis on growth potential in the new design so that 

when they became available advanced technology engines and avionics could be 

incorporated with little or no airframe modification. … An important criterion 

determining the choice had been the growth potential exhibited by the Grumman 

design. 
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Grumman’s proposal for the VFX design showed two major growth provisions. 

According to Mackey [12],  

The F-14 was designed from the start to incorporate an advanced engine, the F-

401, the Navy’s version of the Air Force’s F-100 engine which was then in 

development. The aircraft was also designed to accommodate various avionics and 

armaments improvements, specifically in infra-red detection and targeting. Theses 

variants were subsequently designated the F-14B and the F-14C. 

Incidentally, the F-14 development is considered to be one of the most successful P3I 

case.  

Another very successful example of pre-panning is the design of the B-1B Lancer. A 

contract was awarded to the Rockwell International Corporation to develop the B-1B in 

1982 when P3I was a popular movement within the aerospace community. The aircraft 

was designed “on the assumption that it would need to have a long and effective service 

life, and that its environment would be in constant change [92].” Therefore, the design 

team made a concerted effort to produce an airframe that was flexible and adaptable. 

For example, the wing was designed to sweep between 15 and 67.5 degrees in order to be 

effective in a wide range of mission profiles. A standard weapons interface, as per MIL-

TSTD 1760, was adopted to allow the seamless integration of future war fighting 

capabilities. Reprogrammable avionics were adopted instead of, at the time, the more 

common hard-wired system. Lastly, an oversized engine was selected as a hedge against 

future thrust requirements. The F101-GE-102 engine, at the time, was under a separate 

P3I program anyway, representing the then-popularity of pre-planning.  

EA was also reportedly successful in the development of the avionics system for the 

F/A-18E/F. Recognizing the tremendous difference in the rate of obsolescence between 

the electronics and airframe industries, the design team chose to inherit more than 90% 
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of the E/F version’s electronics from the previous C/D system for the initial batch of 

production. Subsequently, pre-planned upgrades were made on an incremental basis that 

included [4] 

…improved cockpit instrumentation, a new and improved forward-looking infrared 

(FLIR), and an electronically scanned array for the radar. Other improvements 

have been added to the program during the past several years, including a 

reconnaissance pod, a helmet-mounted cuing system, and some integrated 

electronic defensive countermeasures. 

The EA approach is thus considered instrumental to the successful development of the 

F/A-18E/F under time and budget constraints. 

From the start, both multi-mission flexibility and growth possibilities were 

emphasized on the design of Northrop’s F-5, because the company envisioned having 

international customers. Two distinctive growth provisions were integrated to the 

airframe, one of which was the inlet design. In the development of the F-5G, the inlets 

were shaped such that future, upgraded versions of the F404 engines could be installed. 

The shaping of the nose was also controlled to possess sufficient internal volume to cater 

to different customer requirements. 

Similar to how the development of the F-5 designed-in growth provisions to the 

airframe, measures to ensure the production of stretched variants were conceived from 

the inception stages of the Boeing 727 [93]: 

From 1959 we had growth potential constantly in mind, and one of the limitations 

to growth potential is wing fuel capacity. In addition, we wanted to have an 

airplane that could be sold to the U.S. military, and we knew this would require 

longer range. Thus, we bent the front spar to allow the center section to have an 

increased fuel capacity (it is very thick as well). 
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Boeing engineers also decided to mount the engines under the wings, because such a 

configuration would allow for a wider center of gravity margin, should the fuselage be 

stretched later. 

3.3 Part III: Challenges in Designing for Future  

The last part mainly focuses on challenges in planning and executing modification 

programs. Both pre-planned and ad-hoc upgrade programs are studied. This part of the 

case study asks—what attributed to the program’s failure or success? Special attention 

was paid to whether growth provisions were planned from the initial design or not and 

whether they are implemented and why. 

One of the most challenging aspects of designing for growth potential is the fact that 

the future cannot be predicted with certainty. Uncertainties exist in forecasting the 

market dynamics, funding, customer requirements, technology availability, etc. From the 

aircraft manufacturers’ standpoint, the biggest uncertainty would be what customers 

want in the future. Once the answer is figured out, the next question then is what they 

can offer in a response to the future need. The answer(s) to this question involves 

complex combinations of finance, competition, collaboration, and technological 

opportunities. Uncertainties from these sources imply that there is the inherent risk of 

wasted investment in preparing for growth in a prior manner.  

Biery and Lorell [3] stated that one of the reasons for the N-102’s rejection was the 

presence of technological risk: “reflecting on the pace of advances in air vehicle 

technology in the previous decade (1943-1953) the Air Force doubted anyone could 

adequately anticipate the direction of future technology.” In their recommendations to 

the Air Force, the authors commented, “pre-planning very far into the future is [an] 
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unworkable concept,” preferring instead to support pre-planning on a more restricted 

scope. That is, the risk of forecasting could be somewhat mitigated by limiting the 

provision for growth to specific sub-systems (e.g., engine, avionics, etc.) when they are 

still under development but not mature enough yet to be implemented on the initial 

production aircraft*. Many of the successful upgrade programs were indeed found to have 

planned for short-term, sub-system specific scenarios. The integration of newer 

technologies also did not occur until their readiness was close to maturation. 

Besides the issue of uncertainty, there were cases when technology insertions failed 

to deliver the promised performance enhancement, regardless of whether such upgrades 

were pre-planned or not. Numerous modification programs suffered from unexpected, 

expensive design changes, schedule slippage, and cost over-runs, because physical 

constraints such as volume availability, maneuverability, and handling qualities were 

either overlooked or not analyzed with sufficient modeling and simulation.  

The cases of the A-4 Sky Hawk and F-4/M Phantom from the Rand report [3] are 

good examples. In the case of the A-4 Sky Hawk upgrade program, a camel’s hump-like 

structure was added behind the cockpit to compensate for the lack of volume to 

incorporate the new avionics system. The re-engining of the F-4K/M Phantom for the 

Royal Navy required entire redesign of aft-fuselage, inlets, and ducts of the vehicle, 

eventually costing more than developing a new aircraft. The case of the T-45 

modification for aircraft carrier operation is a notorious example of an upgrade program 

gone wrong. Insufficient modeling and simulation work in the early design phases 

                                                                                       

*In the conceptual design phase, integration of technologies with technology readiness level 6 or higher is 

typically considered for a new aircraft, according to Mark Alber, Section Chief of Advanced Concept at 

Sikorsky Aircraft, Stratford, Connecticut [Interviewed on October 10, 2007, by the author]. 
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prevented the deficiencies in aircraft handling characteristics from being identified until 

the operational testing phase, leading to extensive re-designs and tests. Due to this 

belatedly discovered problem, the original schedule had to slip several times, until the 

operational test was finally completed 10 years after full scale development had started 

[13]. 

The findings and lessons from the case studies on past aircraft modification 

programs are consolidated in the following observations. The observations then induce 

two research questions: 

 

Observation 3: Uncertainties associated with future requirements, market, government 

funding, and technology maturation made pre-planning into the far future difficult 

and risky. (Research Question 3) 

 

Observation 4: Insufficient understanding of the key physical constraints through 

sufficient modeling and simulation early on often caused project delays, cost over-

run, less-than-expected performance, and even infeasible design. (Research 

Question 3) 

 

Research Question 4: How can a practical aircraft conceptual design methodology by 

which the lifetime evolvement of an aircraft is incorporated into the initial design 

under the presence of uncertainty be formulated? How can a decision-maker find 

a balanced design under the presence of uncertainty? (Observation 3) 
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Research Question 5: How can the possibility of having unexpected technical difficulties 

in upgrading existing designs be reduced? (Observation 4) 

 

3.4 Chapter Summary and Scope of the Research 

This chapter reviewed the trends and issues of aircraft design evolution and long-term 

planning for such design modifications. Besides the technical barriers identified and 

summarized in the observations, social, political, environmental, and economic aspects 

related to a development program also played key roles during the decision-making 

process. In the case of commercial transport, market fluctuation and competition are the 

most important factors in planning for the development of a derivative aircraft. Thus, 

systematic market forecasting through system-of-systems (SoS) approach and game 

theoretic approaches would be relevant. However, to limit the scope of the problem, this 

study intends to focus on the technical challenges associated with designing aircraft for 

growth at the vehicle systems level. Since uncertainty in future requirements was 

identified as the key challenge when someone tries to incorporate future properties into a 

present physical entity, the goal of the study is solidified as the development of a new 

design methodology capable of quantitative evaluation of the evolution paths of a vehicle 

while incorporating requirement uncertainties at the vehicle systems level. 



 62 

CHAPTER IV 

 

DECISION MAKING UNDER UNCERTAINTY 

 

People make decisions in their everyday lives, the consequences of which are governed by 

uncertainties. The decision-making process is often implicitly based on the anticipated 

probabilities of the future outcomes and associated consequences. People often predict 

the future by extrapolating their experiences. Other factors, such as irrational 

predilection, tolerance to loss, and fear also play roles during the process. Whether they 

are conscious of the decision they make or not, people have some internal logic to come 

up with a decision handling an uncertain future.  

Historically, the senior leadership of organizations needed a more structured way to 

populate possible outcomes of uncertainty, i.e. scenarios, playing games with the 

conceivable scenarios, and making decisions, namely, scenario planning or scenario 

analysis. Mathematicians also developed a field of study named stochastic programming 

to address the issues of optimization under the presence of random variables. As an 

attempt to answer Research Question 4, these two distinctive areas of research related to 

decision making under uncertainty are reviewed in this chapter.  

4.1 Stochastic Programming with Recourse 

Stochastic programming (SP) is a sub-field of mathematical optimization that is 

concerned with making decisions under uncertainty. Here, the term “stochastic” means 

that the decision-making problem involves one or more modeled uncertainties in the 

form of random parameters, whereas the term “programming” is equivalent to 
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“optimizing” in the language of mathematics, and essentially refers to the process of 

converging at a decision. An underlying assumption in this field of study is that a 

decision maker either knows or is in the position to estimate the probability distribution 

of a random parameter and [94].  

4.1.1 Formulation  

Among the multitude of SP models, Dantzig [95] and Beale [96] formally introduced a 

multi-stage model in 1955 that would come to be known as stochastic programming with 

recourse (SPR). This branch of study deals with situations in which some corrective or 

“recourse” actions are allowed once the random parameters are realized, although the 

cost of such a posteriori recourse is not free. Shapiro and Philpott describe the two-stage 

recourse program as follows [97]: 

Here the decision maker takes some action in the first stage, after which a random 

event occurs affecting the outcome of the first-stage decision. A recourse decision 

can then be made in the second stage that compensates for any bad effects that 

might have been experienced as a result of the first-stage decision. The optimal 

policy from such a model is a single first-stage policy and a collection of recourse 

decisions defining which second-stage action should be taken in response to each 

random outcome. 

Depending on the type of the objective function to be minimized, two-stage 

stochastic programming with recourse is further classified as stochastic linear 

programming and stochastic non-linear programming [98]. As a sub-field of stochastic 

linear programming, stochastic integer programming deals with discrete decision 

variables. Also, as the number of stages is expanded to more than two, the method falls 

into stochastic dynamic programming, the term coined by Bellman [99].  
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Since most engineering design problems deal with non-linear objective functions and 

constraints, the mathematical formulation is given in the most appropriate form to deal 

with non-linear functions: 
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where 1n∈ ℜx  and 2n∈ ℜy  represent the first and second-stage decisions in n1 and n2 

dimensional space, respectively; ∈ω Ω  is a random vector from a probability space 

( , , )PΩ F  with set k⊆ ℜΩ , a σ-algebra ⊆ΩF , and a measure P on ( , )Ω F  such that 

( ) 1P =Ω ; ,( )Q x ω , called the second-stage value function, is the optimal value of the 

second-stage problem, given a first stage decision x and random parameter realization.  

As evident from Eq. (3), the ultimate goal is to find the optimal first stage decision 

that minimizes the total expected cost, which is formulated as the summation of the first 

stage objective f(x) and the expected penalty of correcting this first stage decision. It is 

important to realize that the optimal first stage decision is not an ideal solution under 

all possible outcomes of the random variable(s), but rather a decision that is well hedged 

against the risk of excessive corrections.  

In most real-world engineering problems, analytical integration of the optimal value 

of the second-stage function ( , )Q x ω is impossible. In such a case, the expectation must be 

estimated through numerical integration. Numerical integration by assessing all possible 
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combinations of the random variable can be prohibitive, since the number of 

combinations exponentially grows as the dimension increases. Continuous random 

variables (N) can take an infinite number of combinations and even with discretization 

(d) with reasonable accuracy still produces dN combinations.  

The Monte Carlo Simulation (MCS) method relieves the issue of dimensionality by 

using random numbers. Essentially, MCS is about numerical integration with random 

numbers. Some more advanced Monte Carlo methods were introduced in the past, such 

as Quasi-Monte Carlo methods [100] and Sample Average Approximation (SAA) [97, 

101]. These methods are known to improve the convergence rate under certain conditions.  

In addition, two random sampling techniques—Latin Hypercube Sampling (LHS) 

and Simple Random Sampling (SRS)—are widely adopted, and their convergence 

properties have been studied in the past. According to the U.S. Environmental 

Protection Agency (EPA)’s Guiding Principle for Monte Carlo Analysis [102],  

Latin hypercube sampling may be viewed as a stratified sampling scheme designed 

to ensure that the upper or lower ends of the distributions used in the analysis are 

well represented. Latin hypercube sampling is considered to be more efficient than 

simple random sampling, that is, it requires fewer simulations to produce the same 

level of precision. Latin hypercube sampling is generally recommended over simple 

random sampling when the model is complex or when time and resource 

constraints are an issue. 

Some other literature [103, 104] also supports that LHS converges faster than SRS in 

general. However, as past studies indicate, the performance of specific sampling methods 

depends on the problem at hand. The convergence rate depends on the type of random 

variables and the characteristics of the output. LHS is known to have advantage over 

SRS when the random variables are uniform and the output is an additive interaction 

between the inputs rather than multiplicative interactions. [105, 106] Therefore, the EPA 
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guide recommends the risk assessor investigate the stability and repeatability through 

repeated experiments before using Monte Carlo methods. 

4.1.2 Value of Perfect Information and Stochastic Solution 

In the setting of two-stage stochastic programming, two interesting quantities can be 

calculated to answer: 

1. How much would one be willing to pay for the perfect forecast on the random 

variables? 

2. How much is it worth to solve a stochastic problem rather than a deterministic 

problem?  

 

4.1.2.1 Value of Perfect Information 

The first question is answered by calculating the expected value of perfect information 

(EVPI), originally developed by Raiffa and Schlaifer [107]. Birge and Louveaux [94] state 

that, “the expected value of perfect information measures the maximum amount a 

decision maker would be ready to pay in return for complete (and accurate) information 

about the future.” In the context of aircraft design, this value can be interpreted as the 

amount of money an aircraft manufacturer would be willing to pay to obtain the 

concrete future requirement by, for example, acquiring a future contract in advance.  

To calculate EVPI, it is assumed that one can always predict the value of the 

random variable with certainty. For all possible realizations of the random variable—i.e. 

scenarios—the total cost of the two-stage problem is calculated. The average of the total 

cost is the expected value of the optimal solution or the wait-and-see solution (WS) 

coined by Mandansky [108].  
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The wait-and-see solution is compared to the so-called here-and-now (HN) solution. The 

here-and-now solution is the expected value of the stochastic solution x* that is obtained 

by solving Eq. (3)  

 * *( ) ( , )HN f Q∈
 = +   x x

ω Ω
ωE  (6) 

Finally, EVPI is calculated as 

 EVPI HN WS= −  (7) 

4.1.2.2 Value of Stochastic Solution 

As discussed in the previous section, solving a stochastic problem is very expensive and 

time consuming. Thus, one might be interested in how much it is worth to pursue a 

stochastic problem rather than a deterministic problem.  

One of the attempting ways to solve a stochastic problem easily is to transform it 

into a deterministic problem by replacing the random variables with their expected 

values. This is called the expected value (EV) problem [94] that is reduced from Eq. (3).  

 { }min )( ) ( ,EV f Q+=
x

x x ω  (8) 

where ω is the expectation of .ω  

For the optimal first stage decision *x� of the EV problem, the second-stage problem 

given in Eq. (4) is solved for all possible scenarios. This solution is called the expected 

result of using the EV solution, defined as 

 * *( ) ( , , )EEV f Q∈
 = +   x x

ω Ω
ω ωE� �  (9) 

Finally, the value of stochastic solution (VSS) is defined as 

 VSS EEV HN= −  (10)  
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4.1.3 Adopting Stochastic Programming with Recourse to Aerospace Systems 

Design 

The recourse-based model makes a decision based on present first-stage and 

expected second-stage costs, i.e., based on the assumption that the decision-maker 

is risk-neutral.       

Nikolaos V. Sahinidis [109] 

 

The recourse-based stochastic approach has been widely used in the fields of finance 

[110, 111], logistics and inventory planning [112], scheduling [113], transportation 

planning in a disaster such as an earthquake [114], in which decisions must be made 

“here-and-now” under uncertainties but corrective actions can also be taken to 

compensate for any unfavorable effects caused by randomness. In the context of aircraft 

design, unsatisfactory performance, sub-optimality due to technology obsolescence, 

violation of physical constraints, etc. are just a few examples of such unfavorable 

consequences. The underlying philosophy of SPR appears to be intrinsically compatible 

with the time-phased nature of engineering design. Observation 5 formalizes this finding 

and immediately induces Research Question 6.  

 

Observation 5: The underlying philosophy of SPR is intrinsically compatible to the time-

phased decision making process of aircraft design. 

 

Research Question 6: Can the SPR formulation be seamlessly adopted to aircraft design? 

What are the limitations of SPR in the context of aerospace systems design? 

What are the technical and non-technical challenges?  
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Since its inception in 1955, stochastic programming has been extensively studied and 

the solution approach has been well established as found in Shapiro [97], Linderoth [115], 

and Kall and Wallace [116]. However, while engineering design often involves non-linear, 

relatively small-scale problems with highly time-consuming analyses, the main focus of a 

technical approach in the field of stochastic programming is to solve large-scale, Linear 

Programming (LP) problems. The application of the SPR formulation to solve 

engineering design problems in a time-phased decision-making framework has been 

elusive.  

As an attempt to address the concerns raised by Research Question 6, a two-stage 

cantilevered beam design problem was formulated and solved successfully in 2006, as 

presented in CHAPTER VI. The simple proof-of-concept study demonstrated the 

applicability of SPR in a two-stage engineering design problem setting. In 2008, Choi 

[117] applied SPR to a fuel cell based aircraft propulsion system design, considering the 

fact that the maturity of fuel cell technology far outpaces the aerospace systems 

development cycle, which, if implemented, renders the performance of the propulsion 

system highly uncertain. Choi showcased the applicability of the two-stage decision 

making setting of SPR by designing a propulsion system based on the currently known 

fuel cell performance at the first stage and redesigning it at the later phase of the aircraft 

development cycle, when more knowledge is gained about the particular technology.  

Both of these examples demonstrated the applicability of SPR in engineering design 

problems, but besides the technical challenges, the explicit assumptions behind SPR also 

raised concerns. As an attempt to answer Research Question 6, a list of concerns 

pertinent to aerospace systems design was complied in Observation 6 based on the 
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lessons from the case studies, the author’s experience, and comments and feedback from 

engineers, scholars, practitioners, and mangers from industry and government after 

presenting the idea of adopting SPR into aerospace systems design that was first 

published by Lim [118] in 2006. 

 

Observation 6: The following characteristics of aerospace systems design seem 

incompatible to the assumptions and limitations of stochastic programming with 

recourse: 

• While SPR assumes risk-neutral decision makers, those in the aerospace industry 

are often risk-averse. 

• While SPR finds the optimum solution that is best on average, in aerospace 

development the stakes are very high that a single failure can cause irreversible 

consequences.  

• While SPR requires a good definition of the random variables, the complex nature 

of aerospace development programs makes accurate predictions of the random 

variables (RV) very difficult. Even if the RVs can be predicted with accuracy, 

they could be wide in range and be highly correlated to each other, making 

integration of such RVs impractical. 

• SPR is inflexible in handling multi-objectives, while complex systems design 

problems are often solved based on multi-criteria decisions.  

• While SRP does not allow soft-constraints, non-optimal or even infeasible 

solutions are often permitted in aerospace programs for the sake of cost and 

schedule. 

• Solving stochastic optimization problems with both continuous and discrete design 

variables is very difficult, which makes it hard to evaluate the future design and 

future technology combinations concurrently. 
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First, the mathematical formulations of SPR, given in Eqs. (3) and (4), explicitly 

assume a risk-neutral decision maker. The optimum solution sought by solving the 

equations is not the ideal solution under every scenario. Rather, it is the best solution on 

average, which means that the optimum solution would incur the least amount of gross 

cost when the game is repeated many times under the same rules. It could be worse than 

some other decisions for a particular realization of random variables. Thus, if the stake 

of the game is so high and the participant can be eliminated from the game—for 

example, by filing bankruptcy or by being merged and acquired by the competitor—after 

playing the first game and losing too much, pursuing different strategies to avoid such 

an event would be necessary.    

In addition, the optimum solution found by solving the stochastic equations is only 

optimum when the PDFs are correct. Assumptions in defining random variables 

inevitably introduce biases. Therefore, being able to come up with a reasonable definition 

of the random variable is important and difficult. Often the random variables are 

correlated to each other and variation of one affects the other. The complex structure of 

the random variables may render solving stochastic problems impractical.  

SPR minimizes the sum of the first stage objective function and the penalty of 

making a corrective decision in the second stage, which requires that the objective 

function and the penalty be in a same unit, such as cost. The restriction on objective 

function in SPR may limit the extent of aerospace design problems, since most of them 

involve multi-attribute decision-making processes. 

SPR finds the optimum solution within the feasible design space. All the constraints 

are viewed as hard constraints, violations of which are not permitted. In reality, 
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aerospace systems design problems often accept less than satisfactory performance for 

the sake of cost and/or schedule savings.   

Finally, the use of SPR in aerospace design makes it very difficult to evaluate 

combinations of technologies. The exploration of a technology combinatorial space along 

with the optimization of continuous design variables is a very challenging problem in the 

realm of optimization and particularly difficult when random variables are involved. 

While stochastic integer programming formally deals with optimization with discrete 

variables, its application to a realistic aerospace systems design seems infeasible.  

These issues concerning the implementation of SPR to aerospace design problems 

induced the following research questions.  

 

Research Question 7: How can the aerospace systems design process incorporate the 

concept of risk into the design loop? How can aerospace systems be optimized 

taking risk-averse decision makers into consideration? 

 

Research Question 8: How can one integrate uncertainties into the decision-making 

process in the absence of accurate probability distributions? How can one draw 

meaningful observations when the random space is very large and complex? 

 

Research Question 9: How can one explore options of aircraft design evolution without 

restrictions imposed by pursuing the optimization track? 

 

As an attempt to answer Research Question 7 and Research Question 8, two fields of 

study are introduced in the subsequent sections.  
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4.2 Decision Making Under Risk 

To answer Research Question 7, the concept of risk and optimization strategies 

incorporating risk are reviewed in this section. The concept of risk aversion was first 

formulated by Daniel Bernoulli in 1738 in Specimen theoriae novae de mensura sorti*, in 

which he introduced and solved St. Petersburg’s dilemma. The dilemma is about a man 

offered a game, the expected profit of which is infinite. When a choice was given to play 

the game or not, many people rejected it regardless of the infinite expectation because of 

the fear of losing money. A risk-averse decision maker may act irrationally and often 

choose the option with lower expected profit because he or she cannot tolerate the 

negative consequence of the other, supposedly more profitable option.  

The most intuitive way to avoid a risky decision would be to choose a decision with 

the minimum loss under the worst-case scenario. This classical min-max approach can be 

readily used with the scenario-based analysis that is introduced in the next section. For 

example, one can solve the optimization with all scenarios and choose the strategy that 

shows the minimum cost when the worst scenario is realized.  

In 1944, John Von Neumann and Oskar Morgenstern co-authored The Theory of 

Games and Economic Behavior [120], developing the expected utility theory to quantify 

risk in the setting of classical economic theory. Based on the assumption of a rational 

decision maker that maximizes their utility, the theory requires the creation of the utility 

function capturing risk. However, since a practical formulation of the decision maker’s 

utility function is almost impossible, the theory was not widely used in the domain of 

numerical optimization. 
                                                                                       

*Originally published in 1738; translated by Dr. Lousie Sommer in January, 1954 [119] 
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More recently, two classes of formulations have been investigated to address risk 

under the study of stochastic programming. One approach is to introduce risk as an 

additional constraint: 

 

max

( , )

s.

min

Probt. Z z

Z

α

∈
   
 ≥ ≤  

x
x

ω Ω
ωE

 (11) 

where Z is a measurable function, a smaller value of which is better; zmax is the limit or 

threshold value that Z should not exceed; [0,1]α∈  is the threshold probability that is 

determined by the decision maker. This class of approach falls into the realm of Chance-

Constraint Programming (CCP), which largely deals with optimization problems with 

probabilistic constraints. This branch of stochastic programming was conceived by 

Charnes and Cooper [121] in 1959 and has been widely adopted in engineering [122] and 

finance [123, 124]. The method is also known as Reliability Based Design Optimization 

(RBDO) in the structural engineering community and has been applied to structural 

optimization problems with probabilistic constraints [122, 125-128]. Recently, Nam [45, 

129] incorporated and implemented the method to aerospace systems design applications. 

The other class of formulations under the umbrella of stochastic programming 

combines the risk measure with the objective function so that the optimal decision 

minimizes the sum of objective function and the risk measure. Various risk measures 

have been investigated by several researchers. The classical risk measure proposed by 

Markowitz [130] in 1952 minimizes the sum  

 [ ] Var Zi ]mn [Z λ+ ⋅E�  (12) 
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This mean-variance approach, also called robust stochastic programming, balances the 

minimum cost on average and its variability at the same time. The applications of 

robust stochastic programming are found in various engineering problems, such as power 

systems capacity expansion [131], chemical process planning [132], and 

telecommunications network design [133]. The use of variance as a dispersion measure 

has shortcomings, such as the mean and variance measure being realized in different 

units; variance penalizing the positive and negative deviation from the mean equally, and 

not preserving convexity of Z [101]. Various other forms of variability measures that are 

coherent, first-order stochastic dominance and convexity preserving have been proposed 

to overcome the shortcomings [134, 135].  

Another type of approach minimizes the threshold value. by which cost function 

violates this value with a predetermined probability [0,1]α∈  

 [ ] Va ]i Rn [m Z Z
α

λ+ ⋅E�  (13) 

where VaR [ ] min{ : {Prob[ ] }Z Z
α

γ γ α≡ ≤ ≥  is called value-at-risk (VaR). The VaR 

approach and its variations have been one of the standard methods of evaluating risks in 

the financial industry for portfolio optimization [136, 137] and derivative evaluation [138] 

and in the insurance industry for credit risk evaluation [111, 139, 140]. Rigorous 

mathematical backgrounds and discussions of various risk measures are found in [134]. 

4.3 Scenario Planning 

Scenario planning, also known as scenario analysis, is one of the cornerstone methods in 

strategic decision-making along with sensitivity studies, contingency planning, time-series 

analysis, and so on. Scenario planning is widely used amongst high-level policy makers in 
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military, business, and government sectors rather than academia in order to facilitate 

decision making under uncertainty. While some literature provides formal step-by-step 

processes in how to create scenarios [141, 142] and when to use and how to use them 

[143], it has been in the realm of art rather than science. Although it might lack rigorous 

scientific evidence, it has proven its usefulness in variety of cases, such as the success of 

Dutch-shell company [144], which used scenario planning since the 1970s to evaluate its 

strategic options. Also, the Swedish Defense Agency [145] uses a formalized scenario 

analysis to establish its long-term military strategies. Management-consulting firm A.T. 

Kearney utilizes the method under the name of Global Radar Scenario Planning [146, 

147]. Another management consulting company, the Futures Strategy Group, LLC., is 

one of the most active practitioners of scenario planning for a wide range of problems in 

the private and public sector [148, 149]. The Joint Planning and Development Office 

(JPDO) used scenario planning to predict future demand for air travel and to plan for 

the Next Generation Air Transportation System [150, 151].  

In its essence, scenario analysis captures a handful of combinations of the random 

variables among the infinite combinations. Then, the alternative decisions, or strategies, 

are evaluated under these possible outcomes, called scenarios. Therefore, scenario 

analysis samples k outcomes from the scenarios space Ω, then solves k deterministic 

problems. The sampling of finite scenarios might include the extreme cases and average 

case. For example, the decision maker would want to evaluate the most extreme cases 

even though the probability of such an event is very low. Those possible outcomes, called 

scenarios, are the most plausible and/or meaningful representation of the entire 

probability space. 
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For example, consider an optimization problem with one random variable. The 

random variable is continuous and can take any value between the lower and upper 

limits. Within the ranges of the possible outcomes, one might consider only three—the 

minimum, average, and maximum values—and name them as worst, modest, and best 

cases scenarios. An optimization problem is then solved repeatedly to yield optimum 

solutions for the corresponding scenarios. Finally, patterns are observed within the 

optimum solutions and interpretations are made. The outcome of the scenario planning 

is a robust strategy(s) that will work across a range of plausible future outcomes.  

This rather simple process is claimed to be advantageous over other strategic 

decision making methods, such as contingency planning and sensitivity study [141]. 

Contingency planning is a “what if” study tool where a decision maker investigates 

exceptional cases from the baseline by varying one uncertainty at a time. A sensitivity 

study perturbates one random variable at a time by a small degree such that the 

perturbation does not affect the state of the other variables. Therefore, sensitivity 

analysis is useful to see the influence of the random variables to the response near 

equilibrium points, but it is invalid on a large scale. However, scenario analysis is useful 

in exploring wide ranges of uncertainty collectively. It captures correlations between the 

random variables, thus the variation is made to all random variables at the same time in 

the most plausible ways. Thus, scenario analysis allows the policy makers to be exposed 

to a wide range of extreme events without overwhelming them by providing too much 

information.  

The success of scenario planning largely depends on the creation of the scenarios. 

Many existing methods and techniques can be employed depending on the purpose of the 
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study and resource availability. The first questions that should be addressed are what is 

the scenario timeframe and what is the scenario scope [141]. Schoemaker [141] suggested 

a scenario creation method in ten steps as follows: 

1. Define the Scope 

2. Identify the Major Stakeholders 

3. Identify Basic Trends 

4. Identify Key Uncertainties 

5. Construct Initial Scenario Themes 

6. Check for Consistency and Plausibility 

7. Develop Learning Scenarios 

8. Identify Research Needs 

9. Develop Quantitative Models 

10. Evolve towards Decision Scenarios 

Detailed descriptions and case studies are referred to [141]. Schwartz also presents the 

six steps of scenario creation checklist [142], which are, largely, similar to Schoemaker’s. 

The methods of Schoemaker and Schwartz are intuitive and logical and have been 

successfully used in various business cases, but the methods lack the specific techniques 

to fulfill each of the steps.  

Essentially, all the system engineering tools that are useful in engineering design 

process reviewed in §2.2.1 are applicable in identifying the source of uncertainty, random 

variables, and scenarios. For example, the system engineering tools, such as QFD, 

brainstorming, expert polls, Pareto analysis, AHP, and MA can be utilized. In addition, 

a statistical approach of collecting and analyzing past information can be useful as in the 

case of the calculation of the volatility of stock prices or oil prices in option pricing. 

Recently, Eriksson and Ritchey [145] used MA to generate operational and tactical 

scenarios for the Swedish Military using a computer tool that automatically generates 
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scenarios. Thomas [152] used MA for scenario generation in the application of risk 

assessment associated with a commercial air transport development.  

4.4 Summary of the Chapter 

A scenario-based approach can provide useful insights to the stakeholders and is 

especially useful when it is very difficult to assume the distribution of the random 

variables. If one can reasonably assume the distributions of the random variables, the 

formulation of stochastic programming with recourse can provide not only the optimum 

decision that is made now under the presence of uncertainty but also the collection of 

optimal recourse actions after the realization of uncertainty. The philosophy of stochastic 

programming with recourse is intrinsically compatible with a multi-stage process of 

developing a baseline aircraft and then retrofitting or newly manufacturing a derivative 

aircraft later. To address the issue of risk-averse decision makers, the traditional 

stochastic programming formulation can be complemented with some sort of risk 

measure.  
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CHAPTER V 

 

PROPOSED SOLUTION 

 

To be able to evaluate various growth options of an aircraft under potential market, 

threat, and technology evolution scenarios, a new aircraft design approach is warranted. 

The key elements of the new approach and the underlying philosophy behind the 

formulation are encapsulated in the hypotheses. Then, this chapter incorporates the 

identified elements into an evolutionary aircraft design approach considering the lifetime 

evolvement of an aircraft concept from its inception.  

5.1 Hypotheses 

5.1.1 Two-Stage Aircraft Design (TAD) Optimization 

Hypothesis 1: An expansion of the conventional, single-stage design process into a two or 

multiple stage process facilitates the quantitative and simultaneous exploration of 

future requirement, technology, and design evolution. (Research Question 2) 

 

The current, single-stage formulation of aircraft design problem solves,  

 
) 

s.t. ( ) 0

min (

( 1,..., )
i

f

i lg =≤
x

x

x
 (14) 

where f is the objective function; n∈ ℜx is the design vector in n-dimensional space; and 

gi (i = 1,…,l) is constraints.  
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Hypothesis 1 proposes that the expansion of the current, single-stage problem 

setting into a two-stage problem setting would allow for the integration of the future 

problem into the current problem. Hypothesis 1 is mathematically represented as follows: 

 1
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1 1 1
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where 
1

( )Q x  is the optimal value of the second-stage problem defined as 
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Here, 1

1

n∈ ℜx  and 2

2

n∈ ℜx  represent the first- and second-stage decisions in n1 and n2 

dimensional space, respectively; f1 is the first-stage objective function and f2 is the 

second-stage objective function; g1i, 1
1, ,i l= …  is the ith constraint of the first-stage 

problem and g2i, 2
1, ,i l= …  is the ith constraint of the second-stage problem. 

1
( )Q x , 

called the second-stage value function, is the optimal value of the second-stage problem, 

given a first-stage decision 
1

x . To differentiate vectors from scalars, bold face was used 

on the vectors.  

In the context of aircraft design, the so-called first stage covers the time period of a 

new aircraft development program, while the subsequent stages encompass the follow-on 

derivative, upgrade, or retrofit programs. For the derivative design (second-stage) 

problem, the best modification strategy is sought by solving Eq. (6) in order to minimize 

the second-stage objective function (f2) for a given set of first-stage decision variables 

and second-stage design requirements. The second-stage value function is intended to 

capture the cost of future design modifications and is constructed based on the degree of 
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technical difficulty and the difference between the decision variable settings of the first 

stage and the second stage.  

The mathematical formulation proposed here enables Two-stage Aircraft Design 

(TAD) optimization and becomes the cornerstone of stochastic optimization, scenario-

based analysis, and the creation of a framework for decision-making support that is 

proposed in the subsequent sections.  

5.1.2 Adoption of Stochastic Programming with Recourse to TAD 

Hypothesis 2: When the probability density functions of future requirements are available, 

the best aircraft design that responds to future uncertainties and the set of 

aircraft modification schemes can be found by adopting stochastic programming 

with recourse formulation. (Research Question 4)   

 

The new formulation proposed in Hypothesis 1 lacks the means to account for 

uncertainty, which exists in dealing with future problems unless a firm contract between 

the two parties is committed from the beginning. Hypothesis 2 attempts to adopt the 

philosophy and mathematical formulations of the stochastic programming with recourse 

introduced in §4.1 as a means to incorporate uncertainty. Hypothesis 2 is mathematically 

represented as follows: 
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1
,( )Q x ω  is the optimal value of the second-stage problem defined as 
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where 1

1

n∈ ℜx  and 2

2

n∈ ℜx  represent the first and second-stage decisions in n1 and n2 

dimensional space, respectively; ∈ω Ω  is a random vector from a probability space 

( , , )PΩ F  with set k⊆ ℜΩ , a σ-algebra ⊆ΩF , and a measure P on ( , )Ω F  such that 

( ) 1P Ω = ; 
1
,( )Q x ω , called the second-stage value function, is the optimal value of the 

second-stage problem, given a first-stage decision 1
x  and random parameter realization 

ω . 

The inherent uncertainties in the requirements for the aircraft modification 

programs are modeled within the random parameter vector ∈ω Ω . Due to this presence 

of uncertainty, the design of a derivative is performed in a probabilistic manner, and the 

expected outcome is fed into the first-stage problem. 

5.1.3 Risk-Averse Strategy Selection 

Hypothesis 3: The quantification of risk associated with the random variables using 

Value-at-Risk for the evolution options would provide a risk-averse decision maker 

the option to choose a strategy with the lowest probability to exceed the cost limit. 

(Research Question 7) 

 

As mentioned in Observation 6, the conventional SPR formulation lacks the ability to 

account for risk-averse decision makers. As a remedy to this deficiency, Hypothesis 3 

proposes a means to quantify and mitigate the risk associated with the evolution 

strategies by adopting Risk-Averse Stochastic Programming introduced in §4.2. Detailed 

discussion on creation of evolution paths or strategies are found in §5.4.3. 
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While various risk measures were proposed by many researchers as reviewed in §4.2, 

the author proposes a formulation that uses the probability of the cost function Z 

exceeding a certain threshold τ  as a risk measure.  

 Prob{ }Z τ>  (19) 

This formation falls into the category of the Value-at-Risk approach and seems suitable 

to the acquisition of military systems, where it is often crucial to keep the cost under a 

certain limit. When risk measure is evaluated for all the first stage optimum solutions of 

the evolution strategies, the least-risky evolution strategy can be found by solving:   
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This idea, named Risk-Averse Strategy Selection (RASS), finds the best strategy p 

among all the strategies. It should be noted that the first-stage optimal solutions 

*
1

( ) , 1, ,p

n
p p=x …

 
are still found by following the conventional SPR formulations.  

5.1.4 Deterministic Scenario-Based TAD Optimization 

Hypothesis 4: Scenario-based analysis along with two-stage aircraft design optimization 

would allow the decision makers to investigate a wide spectrum of uncertainties 

deterministically to gain insight while avoiding the biases from inaccurate 

probability distributions.  (Research Question 8) 
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In the cases where an accurate and reliable prediction of the random variable is 

infeasible or a large number of random variables with high volatility and complicated 

correlation structure make the nature of random space very complex, pursing the 

stochastic two-stage aircraft design approach as proposed by Hypothesis 2 and 

Hypothesis 3 is not only difficult but also impractical.  

Even though the issue of acquiring reasonable definition of the random variable is 

put aside for a moment, the idea of investigating and incorporating all the random space 

as in the stochastic programming approach can be too time-consuming and can 

overwhelm the decision makers with too much information. For instance, while the 

stochastic approach yields the first-stage optimum solution as a point-solution, it also 

yields myriads of second-stage design upgrade schemes. A large number of second-stage 

solutions, when they are produced by randomly sampled scenarios, can be very difficult 

for a human decision maker to interpret and can be meaningless. Instead, scenario 

analysis with only a handful of well-organized scenarios can provide much more insight 

with less computational effort.  

In order to achieve the goal, first, the set of scenarios , 1, ,
u n
u u=ω … are identified. 

With each of the scenarios, the deterministic, two-stage aircraft design optimization are 

solved repeatedly.  
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where 
1
,( )Q x ω  is the optimal value of the second-stage problem defined as 
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Then, un first-stage optimum solutions are gained for each corresponding prediction 

scenario, *

1
( ) , 1, ,u

n
u u=x … . Then, on top of these un Here-and-Now (HN) solutions, the 

second-stage optimization is solved again for each of the realized scenarios. 
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where ˆ , 1, ,
s n
s s=ω … is the realized scenario. The result is un × sn Wait-and-See (WS) 

solutions, *

2
ˆ( ) , 1, , , 1, ...,u

s n n
u u s s= =x … . If 5

n n
u s= = for example, five first-stage 

solutions and twenty-five second-stage solutions are obtained. Along with these 5 HN 

designs and 25 WS designs, the aircraft attribute, such as performance or cost, evaluated 

at the optimum points, i.e. 
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Making comparisons with this set of designs and vehicle attributes often reveals 

important inequalities and equalities among the designs and vehicle attributes. The 

design can be visualized in the form of bar graphs to reveal the patterns without 

overwhelming the decision maker. 
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5.1.5 Framework for Two-Stage Design Space Exploration 

Hypothesis 5: A flexible and interactive tool built on the two-stage aircraft design 

formulation would allow the decision makers to effectively and concurrently 

explore the two-stage design space, evaluate evolution strategies, change 

assumptions, simulate scenarios, and thus make strategic decisions with a greater 

degree of freedom. (Research Question 9) 

 

The formulations proposed in Hypothesis 2, Hypothesis 3, and Hypothesis 4 involve 

optimization loops. When the optimum solutions could be the most valuable information 

to the decision makers and engineers, they are simply point solutions that are only 

optimal under strict assumptions and scenarios. In the case in which uncertainty cannot 

be predicted reasonably, those point solutions can become meaningless when unexpected 

events occur. Another drawback of optimization is that all the constraints are treated as 

hard constraints and are strictly enforced. In reality, aerospace systems design problems 

often accept less than satisfactory performance for the sake of cost and/or schedule 

savings. More importantly, stochastic and deterministic optimizations solve a single 

objective rather than multiple objectives, lacking the capability of accounting for the 

possibility of conflicting interests between multiple stakeholders and entities. Finally, 

treating technology integration as a design variable can make optimization very difficult 

since technology combinations are inevitably discrete.  

To quantitatively evaluate the vehicle growth options free from the restrictions 

listed above, a non-optimization approach is warranted. The goal becomes the creation 

of tools with which stakeholders can change the assumptions, apply the scenarios, and 

trade-off various requirements and figures of merit. It is envisioned that this goal will be 
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achieved by the use of an interactive, visual framework built based on the TAD 

environment. The framework(s) should be interactive—allowing almost instantaneous 

feedback to the decision-maker—and adequately visual for high-level decision makers to 

navigate various evolution scenarios and make strategic decisions. The framework should 

also allow every variable beyond the design variable x to be treated as an independent 

variable.  

5.2 Synthesis of a New Method 

Implementation of the proposed tasks into an actual aircraft design exercise requires 

recasting the aircraft design problem into the (f, g, x, ω) formulations. A comprehensive 

design methodology was formulated by adopting the elements that are found in the 

conventional engineering design process. The method, Evaluation of Lifelong Vehicle 

Evolution (EvoLVE), was initially constructed as a five-step process [118] in 2007 and 

has evolved into its current form. The EvoLVE method illustrated in Figure 21 consists 

of nine major steps. While the specifics of these steps are presented in the subsequent 

sections, they can be viewed as an expansion of the four-step engineering design process 

reviewed in §2.2.1. The first two steps are a two-stage problem definition, followed by a 

synthesis of solutions in the third and fourth steps. The fifth and sixth steps are 

modeling and simulation. The last three steps offer three different ways to explore the 

two-stage design space and make a decision. Steps 1, 3, and 5 are essentially identical to 

the first three steps of the conventional engineering design process by Suh and others in 

Figure 12. These three steps are shown in green outline to differentiate them from other 

steps created by the author.  
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Figure 21: Overview of the EvoLVE Method 

5.3 Present and Future Requirements: Steps 1-2  

The important thing [for a designer] to learn is that the ability to define the 

problem is the most important and difficult task in engineering.  

Nam P. Suh in Principle of Design [38] 

 

The goal of the first two steps of the method is to identify what the customer wants now 

and in the future. These two steps define the set of requirements that are further 

arranged as objective functions, constraints, and risk measures for both the first- and 

second-stage design optimization. The definition of these elements in the future time 

frame inevitably introduces uncertainty. Therefore, future requirements take the form of 

random variables, probability measures, and scenarios.  
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5.3.1 The First-Stage Requirement 

The first step of EvoLVE identifies the requirement for the current development 

program, or the first-stage requirement. The first-stage requirement defines what 

capability has to be built into the baseline system. The need for a new aircraft can be 

solicited in the form of a request for proposal (RFP) and made concrete in an 

operational requirement document (ORD). The requirements are often given as measures 

of effectiveness (MoE) and key performance parameters (KPPs), along with the mission 

profiles. Key performance parameters are defined below:  

Key performance parameters are capabilities or characteristics that the Joint 

Requirements Oversight Council designates as so significant that failure to meet 

the threshold value can cause the concept or system selected to be reevaluated or 

the program to be reassessed or terminated [153]. 

The KPPs constitute the first-stage constraint vector, g1 by definition.  

MoEs provide a set of comprehensive goodness measures to evaluate a military 

system in terms of performance, cost, and program schedule. For a military system 

acquisition, MoEs are defined before the Milestone I review in order to provide 

justification to pursue a new military system. The Department of Defense defines MoEs 

as “a qualitative or quantitative measure of a system’s performance or a characteristic 

that indicates the degree to which it performs the task or meets a requirement under 

specified conditions [154].” To give an example, the F/A-18E/F program’s MoEs 

included: survivability/vulnerability, unit cost, strike mission radius, carrier suitability, 

fighter performance (such as turn rate, climb rate, and excess power), weapons system 

features, and armament flexibility [83]. Since the KPPs of the F/A-18E/F program 

included mission radius, carrier suitability, and fighter performance, the MoEs largely 

overlap with KPPs but are broader in scope.  
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In the absence of a concrete problem definition from the customer, the present or 

short-term need is identified by using system engineering methods, such as market 

analysis, QFD, operational analysis, etc. The QFD analysis introduced in §2.2.1 includes 

a proven method to translate the “voice of customers” to the “voice of engineers”, which 

includes the aircraft system level requirements and relative importance rating.  

Another question that must be answered in this step is “what does the customer 

want to avoid?” While customers have a clear goal to achieve, such as maximizing the 

net present value, maximizing the mission effectiveness, etc., they also have guidelines on 

what must be avoided in the worst-case scenario. The answer to this question would 

define the risk measure of the customer.  

The outcome of Step 1 constructs objective f1, constraints g1, and the risk measures 

that are used in later steps.  

5.3.2 Evolution of the First-Stage Requirement 

Step 2 solicits the long-term customer needs and translates them into the second-stage 

requirement. This step begins by taking the first-stage requirement and projecting it into 

the future time frame. It is important to define the scope in terms of time frame and 

degree of evolution of the requirement before such projection is made.  

5.3.2.1 Emerging Needs and Time Frame 

The time frame should be determined by asking when the variant or the derivative of 

the baseline aircraft is needed. For an acquisition program that follows the EA process, 

the customer is supposed to provide the timeline of the capability increments. Otherwise, 

the need for an upgrade is initiated by the events that affect what and how the baseline 

system should perform. For example, a new legislation requires 20% reduction of the 
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greenhouse gases by 2020. The a fighter/attack aircraft is expected to extend its mission 

spectrum in 2015 to cover the Close-Air-Support (CAS) role after the scheduled 

retirement of the aircraft or rotorcraft that currently performs the mission. These two 

scenarios would give a clear timeline as to when the baseline has to be upgraded either 

to maintain its competitiveness or to expand its market share. The time frame can be as 

far as the customer wants to consider, but about twenty years down the road would be 

the furthest future in a practical sense. On the other hand, the time frame can be as near 

as zero years if the second-stage program is concurrent to the first-stage program as in 

the case of the development of the Marine and the Navy variants of the F-35.  

The scope of the problem is also bounded by determining what new capability, role, 

regulation, etc. are introduced on top of the first-stage requirement. For example, it is 

common that a military aircraft developed originally for an air-to-air role expands its 

capability to include air-to-ground, electronic warfare, etc., as the history of the F/A-18, 

F-16, and F-15 show. Commercial air transports are often customized as an extended-

range version, a special cargo version, an executive or Presidential version, etc. When 

such capability expansion is considered in this step, it is important to bind the problem 

to only include “evolutionary” upgrades and avoid “disruptive” changes. For example, 

converting a subsonic air transport into a supersonic air transport is not practical. A 

supersonic fighter is not likely to be upgraded to have the VTOL capability unless such 

provision was embedded from the beginning. 

Introduction of new missions brings in new elements to the baseline requirement set. 

For example, if a fighter developed for the Air Force is modified to have aircraft carrier 

capability, a series of carrier suitability requirements are added to form the new 
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requirement set. It is likely that the commercial jets in the future will be subject to 

stringent noise and emission regulations.  

5.3.2.2 Random Variables and Probability Measures 

Among the elements of the second-stage requirement, those that are likely to grow and 

those that are likely to remain constant at the current level are divided. Examination of 

the aircraft evolution trends of the class similar to the ones in CHAPTER III can 

provide insight into this process. For example, requirements on payload, range, and 

avionics weight are likely to increase. Especially, the modern trend is to constantly 

improve the electronic warfare suite, which in turn demands higher cooling and electrical 

power generation capacity. On the other hand, physical constraints, such as take-off field 

length, approach speed, and load factor are among the constraints that are not likely to 

change over time. Recent trends in fighter aircraft also show that the importance of 

stealthiness and radar power are increasing, while point performance requirements that 

were important during dog fighting decades ago, such as speed, turn rate, and excess 

power are becoming less critical to mission success.  

Among the requirements that are likely to change over time, only those judged to be 

important and hard to predict with certainty are identified as random variables. 

Importance is judged by the sensitivity of the system level vehicle attributes to the 

change of the requirement. In general, if a new requirement can be fulfilled without 

affecting the vehicles’ weight or drag, its impact to the system-level vehicle attribute 

would be minimal and thus unimportant.  

The second criterion is the predictability of the requirement growth. The designer 

knows the future requirement with certainty if the customer specifies the growth of a 
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requirement from the beginning. For example, the customer places an order of 100 

aircraft flying 1,000 nm at the cruise speed of Mach 0.8 carrying 200 passengers with a 

commitment of another 50 aircraft flying 1,200 nm at Mach 0.8 carrying 230 passengers, 

as an extended range variant. In another case, the same aircraft manufacturer gets an 

order of 100 aircraft flying 1,000 nm at Mach 0.8 with 200 passengers. This time the 

manufacturer does not have any other orders from other airlines, but it plans stretched 

version(s) in order to increase market capture. All three elements—range, speed, and 

number of passengers—significantly affect the attributes of the aircraft and are thus 

important. However, it is anticipated that the cruise speed would not increase, as the 

historical trend of commercial jets reveals. Then, the two remaining requirements—range 

and number of passengers—are random variables.  

As the next step, the identified random variables have their values defined in the 

form of probability density functions (PDFs) or probability mass functions (PMFs). The 

full definition of the future requirement in probability space can be obtained by soliciting 

the potential customers, e.g. airlines. Conducting a market analysis of the past years and 

projecting it to the future would also identify the need for a particular class of airplanes. 

The Boeing Company’s annual Current Market Outlook [155] forecasts the global 

commercial transport market up to 20 years from their study. Airbus also publishes 

Global Market Forecast [156] covering a 20-year time span. Alternatively, air vehicle 

level requirements may come from a System-of-Systems (SoS) level study involving all 

major aircraft manufacturers and airliners. A Monte Carlo study at the SoS level would 

provide probability distributions of air vehicle level attributes.  
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5.3.2.3 Scenario Development 

The final task of Step 2 is to capture the requirement uncertainty in the form of discrete 

scenarios. In the case where probability distributions are not available or the cost of 

pursuing a stochastic solution is prohibitive, the option of scenario-based analysis (Step 

7) can be selected. This option requires at least two or more scenarios that capture the 

probability space. The scenario generation starts from the higher hierarchical levels than 

the level the design exercise is played in. At the higher hierarchical level, the source of 

uncertainty is identified first. In the case of military aircraft, uncertainty comes from 

changes in threat, theater, competition, politics, technology, regulation/deregulation, and 

so forth. For each of the uncertainty sources, you may ask the relevant questions that 

affect the current aircraft development most within the interested time frame. For 

example,  

• Will the third world countries acquire air power that poses a threat to U.S. air 

power?  

• Will Lockheed Martin win the second phase contract? 

• Will the next administration cancel or truncate the program? 

• Will the Royal Navy buy the aircraft? How many?  

• If the Marine’s new attack helicopter program is approved, will they purchase 300 

units of the Marine variant of the attack aircraft as promised? 

• Will the current fighter program pass Milestone III and move on to FSD? 

• Will the economic growth of the U.S. and the defense budget be maintained? 

• Will a robot replace human pilots? 

• Will the delivery of the Navy variant of JSF be delayed? 

Each of the questions constitutes a macro-level scenario. Then, the scenarios are mapped 

into the set of aircraft system level parameters. For example, the question regarding the 

Royal Navy purchase will affect the production quantity, weapons payload, the WOD 

requirement, the bring back capability, etc. At the same time, the delay of JSF can 
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affect the production quantity as well as the mission coverage, which subsequently 

affects mission radius, radar range, etc. The scenario of emergent threats may require a 

Navy fighter with a better stand-off, which means a more powerful active radar, the 

Phoenix missile capability, etc. The mapping process can be done by a team of subject-

matter experts using techniques such as QFD, expert polls, and brainstorming.   

It is important to iterate the scenario generation process and only leave the 

important and meaningful ones. While no scientific rule prescribes how many scenarios 

are selected, at least three scenarios are recommended, for example, most probable, worst 

case, and best case. For example, the Joint Planning and Development Office (JPDO) 

studied the next generation air transportation system under three scenarios: the baseline 

air traffic demand scenario by FAA, the FAA scenario plus two times the growth rate, 

and the scenario of a shift to smaller aircraft and smaller airports [157]. 

The outcome of Step 2 is the random variable vector ω  and its definitions in the 

form of either or both the PDFs and the scenarios. 

5.4 Baseline Platform, Technologies and Evolution 

Strategies: Steps 3-4 

Once the current and future problems are defined in Steps 1 and 2, the candidate 

solutions to respond to the needs are synthesized in Steps 3 and 4. Step 3 down-selects a 

baseline platform(s) that has the greatest potential to meet the first and second-stage 

requirements. Step 4 synthesizes the possible ways to respond to the evolving 

requirements. This step identifies the list of potential upgrade elements including 
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addition of new subsystems, features, and technologies. Another task in this step is to 

plan for the long-term development options or the evolution strategies.  

5.4.1 The Baseline Platform 

Step 3 synthesizes a large number of solution candidates and down-selects a baseline 

platform(s) with the greatest potential to meet the current and future requirements with 

the least cost for further evaluation. While engineering judgment is important to trim 

the alternative concept space and down select one or a few platforms as a baseline(s), the 

modern system engineering tools presented in §2.2.1 can be of use in this step. A 

particularly useful tool here is the morphological analysis [30], in which the required 

functions are decomposed, the alternative options for each said function are listed in the 

physical domain, and innovative concepts are identified through the recomposition 

process. Candidates for near-term technology substitution are also identified in this step.  

The identified fusion of concept and technology can be qualitatively and 

quantitatively assessed using decision-making tools, such as the Pugh matrix [22] and 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [158]. Also, 

recently formulated qualitative tools, such as the Interactive Reconfigurable Matrix of 

Alternatives (IRMA) [159] or Qualitative Interactive Evaluation Tool (QuIET) [160], 

could prove to be useful in this step, as both are comprehensive tools containing 

elements of QFD, Morphological Analysis, TOPSIS, TRL, etc. The evaluation criteria 

for the assessment are available from Step 1.  

The outcome of Step 3 is the baseline platform, design space, and the near-term 

technology. The design space is defined by the vector of the first-stage design variables 

x1, along with the lower limit 1

lx , and the upper limit 1

ux . The design space should be 
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large enough to enclose designs that meet both the first- and second-stage requirements 

and should be refined at later steps as the modeling and simulation environment is 

created.  

5.4.2 Upgrade Options and Long-Term Technology 

For the given baseline platform identified in Step 3, Step 4 synthesizes all the possible 

strategies brought about to effectively respond to the situations requirement evolution. 

Contemplation of the long-term solution would start by answering following two 

questions: what needs to be changed from the baseline aircraft and how can such a 

change be implemented? The first question is to identify the list of technical means to 

meet the second-stage requirement. The second question is to come up with managerial 

plans to implement capability upgrades, for example, either by retrofitting existing 

aircraft, producing variants, designing new airplanes, etc. The managerial alternatives in 

capability upgrade are called evolution strategies in this document and are further 

discussed in the next section.  

An answer to the first question would identify the specific elements of upgrade, 

including the addition of new subsystems, features, and technologies. For example, based 

on the first-stage design, one can increase wing area, insert fuselage plugs, install 

external fuel tanks, enlarge vertical or horizontal tails, upgrade high-lift-device, increase 

engine thrust, increase engine efficiency, etc. Here, long-term technology candidates 

depending on the given time frame, technology maturity, and risk tolerance are 

identified as well. NASA’s TRL is a technology maturity measure with a 1 to 9 scale 
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[161]. While Step 3 only considers the technologies with high TRLs * , Step 4 might 

include the technologies with lower TRLs.  

Mathematically, the outcome of Step 4 is the new design variable vector x2. 

Sometimes, insertion of new technology cannot be modeled by continuous perturbation 

of the design variables. In such a case, it is necessary to add discrete variables to the 

second-stage design variable set x2. A mix of both continuous and discrete variables 

makes design space exploration and optimization very difficult.  

5.4.3 Evolution Strategies 

Another important task of Step 4 is the managerial plan to effectively respond to the 

situations brought about by requirement evolution. Contemplation of the long-term 

strategy as to how design evolution will be implemented would start by answering 

following questions: 

1. Do I upgrade the first-stage design or start from scratch? 

2. (If upgrade,) Do I preplan for the future design from the beginning or solely 

focus on the first-stage requirement? 

3. (If preplan,) Do I integrate future requirements deterministically or 

stochastically? 

4. (If deterministically preplan,) Under which scenario do I preplan?  

Answering the first question divides the second-stage program into either a new 

aircraft development program or a derivative aircraft development program. Once the 

                                                                                       

*In the conceptual design phase, integration of technologies with technology readiness level 6 or higher is 

typically considered for a new aircraft, according to Mark Alber, Section Chief of Advanced Concept at 

Sikorsky Aircraft, Stratford, Connecticut. [Interviewed on April 26, 2007, by the author] 
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path of modifying the existing design is chosen, the path is further divided depending on 

whether such an upgrade is considered from the beginning of the first stage or not. Then, 

the option of preplanning future improvements from the beginning can be done either 

deterministically or stochastically, depending on how uncertainty is modeled and 

incorporated. Finally, since the path of deterministic preplanning requires selection of 

one particular scenario in the beginning, the maximum number of possible options is 

equal to the number of scenarios generated in Step 2. For example, in the case of the 200 

passenger commercial transport example, up to three deterministic preplanning options 

can be generated by assigning the scenarios S1, S2, and S3 to each of the options. Figure 

22 shows a taxonomy of the vehicle evolution paths one can consider at the second stage, 

along with the criteria dividing the paths.   

For the strategies falling under the derivative aircraft development track, the vehicle 

platform for the second stage should be held constant with the first stage since it is 

unreasonable to perceive a cross-platform jump as an evolutionary progression. However, 

Under which scenario?

How to incorporate 
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Preplan such upgrade?

Upgrade current design?

Present problem Baseline 
Design

New Design
Derivative 

Design

Ad-hoc 
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Preplan 
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Preplan

Deterministic 
Preplan

Optimistic Moderate Pessimistic …

Requirement change renders
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Figure 22: Taxonomy of Evolution Path 
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the new aircraft design option is free from this restriction, and any other platforms to 

serve the second-stage requirements best can be considered. Along with the evolution 

paths, the set of technologies that are applicable to the baseline platform is identified in 

this step. The subsequent sections discuss the options in detail along with corresponding 

design structure matrices (DSMs) and mathematical representations.  

5.4.3.1 The New-Design Strategy 

The first path of developing a new aircraft in the second stage, named as the New-

Design (ND) strategy, sets up the first and second-stage problems completely 

independent to each other. In the first stage, an optimal design x1
* is sought by 

minimizing f1. 
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Then, later when changes in requirement call for a new design, a new optimization 

problem is solved.  
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Since the second-stage design is independent to the first-stage design, x1 does not affect 

the second stage. An example of pursuing this strategy would be using the F/A-18 for 

the first stage, then later purchasing the F-14, F-35, etc, instead of upgrading it. 

Figure 23 is the DSM of the ND strategy. The boxes labeled “Stage 1” and “Stage 

2” represent the contributing analyses that calculate f and g based on x for each 

strategy. Each stage is linked to an optimizer. The arrows between the boxes indicate 
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the direction of data flow. No arrows between the first- and second-stage problem shows 

that no data is exchanged between the two problems.  

In order to assess the computational cost of pursuing the ND strategy, assume that 

the number of function calls in solving the stage 1 and stage 2 are n1 and n2 respectively. 

Then, the total number of function evaluations solving the entire problem is simply n1 

plus n2. This number is compared to the computational cost of other strategies later. 

Inclusion of the ND strategy in the study provides a comparison point against which one 

of the worst derivative design strategies is compared to see to what extent introducing a 

derivative model would be cheaper than starting from scratch. 

5.4.3.2 The Ad-hoc Upgrade Strategy 

The option of introducing a derivative design in the second stage without preplanning 

was named the Ad-Hoc (AH) Strategy. As with the ND strategy, in the first stage, the 

design practice is to ensure the best design for the current, first-stage requirements by 

solving Eq. (25) with the AH strategy. No growth provision is considered or incorporated 

to the first-stage design x1. Compared to the ND strategy, however, after the second-

stage requirement is concretely defined, the AH strategy seeks the most effective way to 
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Figure 23: The New-Design Strategy 
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modify the first-stage design to meet the new requirement rather than starting from 

scratch in the second stage by solving:
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The objective function of the second-stage problem, f2, either implicitly or explicitly 

includes the cost of modifying the design from the original state with other cost 

measures. In the case of aircraft acquisition, the cost of modifying an existing design is 

implicitly included in the RDT&E cost.  

Figure 24 shows the difference of the AH strategy from the ND strategy, having a 

feed-forward loop from the stage 1 to stage 2 problem. Since the second-stage 

optimization is solved after the second-stage problem is defined, the total number of 

function evaluation is still in the order of n1 plus n2.  

5.4.3.3 Deterministic Preplanning Strategy 

Moving on to preplanning strategies, growth provisions are now considered in the first-

stage design in order to reduce the cost of design modification in the second stage. 

Therefore the preplanning strategies must deal with the uncertain future requirements 

from the beginning. Depending on the way uncertainty is modeled and incorporated, the 
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Figure 24: The Ad-Hoc Upgrade Strategy 
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preplanning strategies are classified into the Deterministic Preplanning (DetPP) strategy 

and the Stochastic Preplanning (StoPP) strategy. A DetPP solves a deterministic 

problem by selecting a future scenario among the discrete scenarios identified in Step 2. 

With a selected scenario 
u
ω , a DetPP performs the “what-if” study by solving a 

deterministic optimization given as 
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where 
1

( ),
u

Q x ω  is the optimal value of the second-stage problem defined as 
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The difference from the non-preplanning strategies, i.e. ND and AH, is that the first-

stage optimization includes the cost function of the second stage so that it balances the 

cost of over-designing and upgrading. One important note is that since the second-stage 

optimization given in Eq (29) is based on the predicted second-stage requirement 
u
ω , 

after the actual second-stage requirement is revealed, the optimization must be resolved 

by solving:  
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where ˆ
s
ω is the realized scenario.  

The DSM of DetPP in Figure 25 has a feedback loop from the second stage to the 

first stage, making the two problems interdependent. The feedback loop informs the 
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minimum second-stage cost f2
* for a given first-stage design x1, and thus considerably 

increases the number of function evaluations to roughly in the order of n1 times n2. 

The two-level optimization structure apparent from the DSM suggests the potential 

of utilizing some of the bi- or multi-level multidisciplinary design optimization (MDO) 

techniques in order to improve the efficiency of the optimization process. The MDO 

techniques, such as All-At-Once (AAO), Bi-Level Integrated System Synthesis (BLISS) 

[162], and Collaborative Optimization (CO) [163, 164] have been introduced and used in 

the community of MDO recently and proved their usefulness in aerospace design [165-

168]. It seems that the problem structure of a deterministic preplanning strategy is 

compatible to all these methods. Therefore, it would be worth investigating such 

techniques in order to reduce the computational cost while maintaining efficiency.  

 

Hypothesis 6: Some bi-level MDO techniques are compatible to two-stage aircraft design 

optimization and potentially reduce the computational cost.  

 

5.4.3.4 Stochastic Preplanning Strategy 

The StoPP deals with uncertainty by considering all combinations of the random 

variable realization, rather than just one combination as the deterministic counterpart 
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Figure 25: The Deterministic Preplanning Strategy 
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does. With all possible outcomes, the second-stage optimization problem is solved, and 

the average second-stage cost or the expectation is added to the first-stage objective 

function.   
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where 
1
,( )Q x ω  is the optimal value of the second-stage problem defined as 
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Again, for the given first-stage optimal solution *

1
x  the second-stage problem is resolved 

after the realization of the random variables by solving 
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where ω̂  is the realized scenario.  
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Figure 26: The Stochastic Preplanning Strategy 
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Comparison between the DSMs of deterministic and stochastic approaches (Figure 

26) shows that the only difference between the two approaches is whether the first-stage 

optimization minimizes f1 plus f2
* or f1 plus the expectation of f2

*. This seemingly simple 

change inflicts enormous computational burden. Indeed, the expectation operation 

increases the number of second-stage function evaluations exponentially, making the 

StoPP very expensive to pursue. For example, if the number of random variables is d 

and each of them takes K number of scenarios (assuming finite outcomes), the total 

number of scenarios is Kd. The total number of function evaluations required to solve 

Eqs. (10) and (11) significantly depends on which solution technique is used and the 

desired accuracy of the integration or expectation operation, but it is roughly in the 

order of n1 times n2 times K
d.  

5.5 Modeling and Simulation: Steps 5 and 6 

Modeling and simulation is a process to develop a computer model that repeatedly 

quantifies the objective f and constraints g as a function of the design parameters x. 

EvoLVE establishes the modeling and simulation in two following separate steps.  

5.5.1 Conventional Modeling and Simulation 

Step 5 is not different from the M&S process of conventional single-stage design 

processes. Therefore, this step involves collection, creation, and validation of physical 

relationships or analysis codes, by which the identified requirements are quantified in 

terms of the design variables and design parameters. The end product of Step 5 is a 

validated computer model that evaluates f1 and g1 for any design points in the design 

space 
1 1

[ , ]l ux x .  
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 1 1 1
Model andf→ →x g  (34) 

Since such a model is required to pursue the conventional single-stage design, the 

organization might have a model already in hand. Then, Step 5 can be skipped.    

5.5.2 Scaling Laws and Upgrade Cost 

While the model of the baseline vehicle established in Step 5 should be adequate for a 

conventional single-stage design, expansion of the problem into two stages in EvoLVE 

also requires expansion of the model accordingly. Step 6 prepares a model that maps the 

second-stage design variables to objectives and constraints. 

 1 2 2 2
 and Model' andf→ →x x g  (35) 

If the second-stage requirement calls for a new platform different from the first-stage 

vehicle, a new model is developed and validated as it was done in Step 5. Otherwise, the 

model developed in Step 5 can be reused in Step 6 with modifications.  

First of all, to be able to provide feasible solutions after incorporation of the second-

stage requirement, the first-stage design space 
1 1

[ , ]l ux x  needs to be expanded in terms of 

the number of design variables and the ranges of each design variable. This is not a 

trivial task because the functional relationship from x to g and f that was defined in Step 

5 may not be valid anymore. Incorporation of the second-stage requirement to the first-

stage problem may require inclusion of some more design variables. Consider, for 

instance, the original requirement for a bomber that specifies a subsonic cruise speed and 

then the second-stage requirement demands a cruise speed in a high transonic regime. 

The change in the cruise speed requirement would add the consideration of wave drag in 
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the second stage. Then, the feedback loop from the second stage to the first stage makes 

it necessary to include the new design variables to calculate and reduce wave drag.  

In traditional design practice, the design space is relatively small. Activities during 

design space exploration, such as sensitivity studies, trade-off studies, etc. involve a 

small perturbation of the design variables from the baseline within the range where the 

validated model remains valid. However, as the range of design change is much larger in 

EvoLVE than in a single-stage design practice, using the model validated at the baseline 

point can lead to erroneous results. Therefore, in Step 6, the scaling laws that capture 

the physical growth of the vehicle are developed and validated.  

Another central task of Step 6 is to develop a model that quantifies the cost of 

design modifications from one stage to the next. The cost of engine replacements, rating-

up transmissions, integrating new avionics suites, etc. must be available in the same 

currency as the first-stage objective. The cost model should include the cost of 

integrating the technologies identified in Step 4. 

5.5.3 Creation of a Two-Stage Aircraft Design Environment 

Once the first-stage model is expanded to cover second-stage designs, and the second-

stage model including the cost to change the first-stage design to the second-stage design 

is created and validated, the models are linked together to enable automatic execution. 

While the software architecture such an integrated M&S is built upon should not matter, 

it is required that the created M&S environment be also amenable to automatic 

execution and surrogate modeling, as the following steps are expected to require a 

significant computational overhead. The integrated modeling and simulation tool is 

named as the Two-stage Aircraft Design (TAD) environment in this text.  
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and TAD , , , andf f→ →x x g g  (36) 

5.5.4 Surrogate Modeling and Challenges 

To facilitate rapid evaluation of a plethora of design alternatives the creation of 

surrogate models is often necessary. To what level and with which modeling method 

depend on the problem in hand. With a given problem, one must consider the balance 

between the level of accuracy and the computational time available. For example, if one 

chooses to pursue the stochastic preplanning strategy, one should pre-estimate the 

computational cost of pursuing such strategy before attempting to solve it. As shown in 

Figure 26, solving SPR requires second-stage optimization whenever the global optimizer 

calls the second stage. Moreover, each second-stage function call requires a Monte Carlo 

simulation within the second stage. Assuming each second-stage optimization takes one 

minute to get f2
*, ten thousand MCS runs are performed to calculate expectation *

2
( )fE , 

and a first-stage optimization requires one hundred second-stage function evaluations, 

then the total second-stage function call requires 107 minutes or about nineteen years. In 

such a case, it would be practical to fit a surrogate model of f2
*.  

Once the extent to which surrogate models would replace actual models is known, a 

proper sampling technique(s) and surrogate modeling technique(s) are selected. 

Surrogate modeling methods, such as response surface methods (RSM) and Artificial 

Neural Networks (ANNs) have already been successfully applied to many engineering 

problems, including aerospace systems designs [56, 169, 170]. In addition, depending on 

the behavior of the model and surrogate modeling technique selected, a proper sampling 

technique and sample size should be determined.  
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EvoLVE is anticipated to render challenges in creating surrogate models. Since 

EvoLVE considers the future growth of a design and its requirements in the first stage, 

the design space that is explored is generally larger than the one in which the future 

growth is ignored. Fitting surrogate models covering a large design space can be difficult 

for two reasons: analysis codes often crash when an infeasible design point is evaluated, 

and the behavior of design space may become highly non-linear. In addition, since the 

second-stage problem is a function of the first-stage design, the number of design 

variables that must be included in the second stage is quite large. For example, if the 

number of design variables is ten for the first stage, the number for design variables in 

the second stage can be twenty, at least. In general, the number of sampling points for 

surrogate modeling increases rapidly as the number of independent variables increases, 

causing high computational cost.  

5.5.5 Avoiding Pitfalls  

As identified through case studies and encapsulated in Observation 4, past aircraft 

modification programs often suffered unexpected technical problems, resulting in cost 

and schedule overrun. In order to avoid the pitfalls of underestimating technical 

difficulty of modifying design, a special emphasis should be placed on modeling key 

physical constraints that are of particular importance to the future modification of the 

given baseline platform. If readily available, the deliberations of an integrated product 

team (IPT) can be utilized to further qualify the importance of the design constraints.  

The sources for the most constraining factors of the derivative aircraft are different 

from one aircraft category to another—commercial/military, fixed wing/rotary wing, 

subsonic/supersonic, attacker/bomber/transport, etc. Therefore, case studies of similar 
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aircraft types would provide valuable insights as to which constraints are likely to be the 

most restrictive. For example, inadequate sonic boom mitigation has made the 

widespread emergence of commercial supersonic transport infeasible [53]. Supersonic 

fighters have very tight internal arrangements that do not allow much room for growth. 

Handling quality specifications is expected to be critical for the certification of derivative 

aircraft designs, if significant growth in vehicle weight, compared to that of the original, 

is forecasted. The issue of handling quality and safety degradation is further discussed in 

§8.2.7 as part of the future research opportunities. 

5.6 Design Space Exploration: Steps 7-9 

Once the environment for two-stage aircraft design (TAD) is established, the tool can be 

utilized in various ways. EvoLVE offers three distinctive options of using TAD in Steps 

7-9 to explore the two-stage design space simultaneously. Steps 7 and 8 seek optimum 

designs for each of the strategies defined in Step 4 under the scenarios defined in Step 2 

by solving two-stage optimization problems either deterministically or stochastically. The 

non-optimization track of Step 9 allows exploration of the design space with a greater 

degree of freedom. While these options do not have to be exercised in the given order 

due to the iterative nature of the design process, it is recommended to follow the steps as 

given to minimize the need for rework.  

5.6.1 A Deterministic Scenario-Based Approach to Two-Stage Aircraft Design 

Optimization 

Step 7 explores the design space with all the non-stochastic strategies that are defined in 

Step 4. The ND and AH strategies seek the optimum solution by solving Eqs. (25)-(27), 
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and the DetPPs solve Eqs. (28) and (30). Optimizations are conducted in two phases: 

before, and after the uncertainty is realized. First, under the presence of uncertainty, the 

optimal first-stage solutions for each of the strategies, *

1
( )px  and *

2
( )px , are found, where 

1, ,
n

p p= …  is the strategy number. Then, on top of these here-and-now (HN) solutions, 

all the discrete scenarios , 1, ,
s n
s s= …ω defined in Step 4 are applied to see how well each 

strategy responds to the unexpected future requirement in a posteriori manner. For all 

the combinations of strategies and realized scenarios, the second-stage optimization 

problems are solved to yield the set of wait-and-see (WS) solutions *

2
ˆ( ) , 1, ,p

s n
s s= …x  and 

1, ,
n

p p= … . The hat symbol ⋅̂  indicates that ⋅  is the state determined after the 

realization of the random variables.  

For the 200-passenger commercial transport example, five deterministic strategies 

and three discrete scenarios were defined. The scenario-based approach applies all three 

scenarios to the five strategies to see which strategies works better under which 

circumstances. For example, DetPP(S2) predicts that scenario 2 would specify the 

second-stage requirements and preplan accordingly, yielding the first- and second-stage 

optimum strategies 2DetPP(S )*

1 2
( )

u=x  and 2DetPP(S )*

2 2
( )

u=x  where u is predicted scenario number. 

Then, after applying all three scenarios, a set of solutions 2DetPP(S )*

2
ˆ( ) , 1, , 3

s
s =x …  are 

found.  

The scenario-based approach provides a manageable number of optimal designs, i.e. 

*

1
( )px , *

2
( )px , and *

2
ˆ( )p

s
x , along with cost *

1
f , *

2
( )pf , and *

2
ˆ( )p

s
f , and constraints *

1
( )pg , 

*

2
( )pg , and *

2
ˆ( )p

s
g  for 1, ,

n
s s= … and 1, ,

n
p p= … . These states are compared in various 

different ways to yield meaningful observations and patterns. The patterns can provide 

general guidance and insights as to which strategies would outperform or underperform 



 114

in which situations. For example, comparisons between the first- and second-stage design 

can reveal how much growth potential is placed in what subsystem under what 

circumstances. The comparison between the design variables, e.g. wing area, engine 

thrust, landing gear, etc. can reveal which subsystem is more or less affected by which 

scenario. In addition, comparisons made between the constraints at the optimum points 

indicate the degree of growth potential imbedded in the optimal first-stage designs.  

For an efficient communication, two terms are coined as follows: 

A PfD (Perfect fit Design) is defined as an optimal first-stage design that is 

intended to minimize only first-stage cost function. Thus, it is the solution of the 

optimization problem, 

 1

1 11

1 1

s.t. ( ) 0

min ( )

( 1,..., )
i

g

f

i l=≤

x
x

x
 (37) 

A PfD, is the least expensive aircraft—and often smallest and lightest aircraft—among 

*

1
( )px  and is obtained by applying non-preplanning strategies. However, the preplanning 

strategies may find the PfD the best design, even considering second-stage requirements, 

if embedding growth potential in the original design does not provide any long-term 

benefit.  

A PoD (Perfect over-Design) is defined as an optimal first-stage design of a 

preplanning strategy that meets the predicted second-stage requirements without design 

modification. Since a PoD is over-designed from the beginning to meet the second-stage 

requirement, it does not have to be modified in the second stage if the actual scenario 

turns out be the predicted one. Therefore, * *

1 2
ˆ( ) ( )p p

u s
=x x  if u s=  where u is the 

anticipated scenario number and s is the realized scenario number. A PoD is the 
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opposite case of a PfD and is found when design change penalty dominates the cost of 

over-designing.  

5.6.2 A Stochastic Approach to Two-Stage Aircraft Design Optimization 

This step mainly focuses on pursuing the stochastic strategy defined in Step 4. The 

StoPP seeks an optimum first-stage design by solving Eqs. (31) and (32) using the 

continuous probability density functions of the random variables defined in Step 2. 

Before the stochastic optimization is attempted, it is required that a technique to 

evaluate *
2

( )fE , along with a proper sampling method and sample size be determined 

among the methods introduced in §4.1.1. In general, a minimum accuracy of 10-4 of the 

approximated *

2
( )fE  is required in order to use the approximation in numerical 

optimization [97]. For a given approximation and sampling technique, the accuracy of 

approximation generally increases as the sample size increases at the cost of 

computational time. Since the convergence rate is largely affected by the matching of 

sampling techniques, the types of PDFs, and the relationship between the approximated 

functions and input, EvoLVE recommends the risk assessor investigate the stability and 

repeatability of the selected method through repeated experiments before moving to the 

next task.  

After a proper approximation technique and sample size is selected, StoPP is solved 

in two phases: before, and after realization of the random variables. The first phase—

under the presence of uncertainty—searches for the optimal first-stage decision 

* StoPP

1
( )x

ω
that minimizes not only the first-stage objective but also the expected cost of 

corrective actions. The optimum solution under the stochastic strategy is compared to 

the optimum solutions of the deterministic strategies found in Step 7.  
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In the second phase, realizations of all the combinations of random variables are 

simulated on top of the already found * StoPP

1
( )x

ω
. This is done by running a Monte Carlo 

simulation on Eq. (33) with the observed scenarios ˆ ∈ω Ω . The result of MCS is the 

collection of the optimal second-stage designs * StoPP * StoPP
ˆ2 2

( ) ( )∈x X
ω Ω

, where * StoPP

2
( )X

Ω
 is the 

entire design set obtained from MCS. This process is repeated with all the optimal first-

stage designs of other strategies to yield * *

2 2
( ) ( ) , 1, , .p p

n
p p∈ =x X

ω Ω
…   

The second-stage designs can be visualized using both PDFs and CDFs. 

Juxtaposition of the PDFs and CDFs of all the strategies can enable comparisons 

between the strategies on the entire spectrum of the random variable space. For 

example, a complementary CDF (CCDF) of the total and second-stage cost can visualize 

how much a strategy is susceptible to risk. A CCDF is the probability a random variable 

X assumes a value greater than or equal to some value x. A true CCDF of a real-valued 

random variable X is calculated for every real number x as: 

 ( ) Prob( ) 1 ( )
x

C
F X X x f t dt

−∞
= > = − ∫  (38) 

where ( )f t  is a PDF of the random variable X. Since analytical integration of ( )f t  is 

impractical, an approximation of CCDF ( )
C

F X�  is obtained by numerical integration.  

Joint probability distribution or multivariate probability distribution visualizes more 

than one random variable simultaneously. An example bivariate distribution of both 

development cost and time is illustrated in Figure 27. The figure compares the 

probability distributions of two different strategies. Here, by imposing limits on cost and 

time, one can quantify which strategy has higher chance to meet both or either the cost 

and schedule limits.  
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*

1
(( ) , )pCost x ω

Feasible Space

*

1
(( ) , )pSchedule x ω

Cost limit

Time limit

 
Figure 27: Risk Assessment using Joint Probability Distribution  

The set of corrective actions for each of the strategies *

2
( ) , 1, ,p

n
p p=X

Ω
… is further 

processed by solving Eqs. (20) and (21) for a spending limit [0, ]τ ∈ +∞ . Then, the 

strategies are ranked in terms of the probability to exceed the spending limit, yielding 

the ranking function : ( , ) [1,..., ]
n

RN p r pτ → ∈ , where r is the ranking, and pn is the 

total number of strategies. Depending on how risk is perceived by the decision makers, 

the ranking function can be obtained using other risk-measures, such as the probability 

of exceeding the second-stage spending limit, the amount of loss when the project is 

canceled, the opportunity cost of losing potential foreign customers, or the variability of 

the second-stage cost.  

In conclusion, the stochastic approach helps to identify the most risk-tolerant 

configuration against the modeled uncertainties, e.g., future changes in customer 

requirements, as a function of the decision-maker’s own perception of risk. 
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5.6.3 Framework for Interactive Decision Making Support 

The final step of the EvoLVE process is to create the framework for interactive decision-

making support. In Step 9, all the restrictions applied to pursue optimization—a single 

objective, hard constraints, continuity of the design variables, restriction on the number 

of design variables and random variables, etc.—are removed, and a framework for 

decision-making support is created as per Hypothesis 5. While interactive, visual 

representation of the design space can take many different forms. Two-stage contour 

plots and two-stage multivariate profilers are proposed in this study.  

Contour plots visualize the multi-dimensional design space in two-dimensions. One 

should select two design variables for each dimension, and then all the design constraints 

and system attributes are plotted in the space defined by the two design variables. The 

constraint analysis plot shown in Figure 4 is also a type of contour plot.  

A sample two-stage contour plot is depicted in Figure 28. The plot was prepared 

using the commercial statistical software package JMP®. The left side of the figure 

depicts the first-stage design space and the right side shows the second-stage design 

space. Each plot has three parts. The top portion lists the design variables, two of which 

are selected to assume the axes of the contour plot in the bottom. The middle section is 

devoted to the list of system attributes, such as performance and cost, along with slide 

bars and an option for setting threshold values. For each attribute, lower or upper 

threshold values can be set up to create a constraint. The contour plot in the bottom 

displays the contour lines of all the system attributes. The current design point is 

indicated by the intersection point of the vertical and horizontal lines, and one can 

readily move the design point. When the design point changes, the values of all system 
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attributes are updated instantly. If constraints are set up, the constraint lines are drawn, 

dividing the design space into regions. The subset of design space is defined as feasible 

space if a design point within the region meets all constraints. The sample plot selects 

wing area and engine thrust as two interesting independent variables. The first-stage 

design space shown on the left has a narrow band of feasible space in white around wing 

area of 400 ft2 and engine thrust of 18000 lb. The second-stage design space shows the 

feasible region around 500 ft2 of wing area and 22000 lb of engine thrust.  

Stage 1 

Constraint 

Analysis

Stage 2 

Constraint 

Analysis

Future Design 

(Upgrades/Variants)

Future PerformanceBaseline Performance 

Baseline

Design 

 
Figure 28: A Sample Two-Stage Contour Plot 
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While the first-stage constraint analysis alone allows various what-if studies for the 

current design problem, the second-stage constraint analysis expands the scope of 

investigation beyond the time frame of the first-stage problem. The two-stage constraint 

analysis tool allows various aircraft evolution studies including:  

• What is constraining the design and where is growth potential? 

• How does a change in future requirements affect aircraft performance? 

• How does infusion of new technology open up the design space, and how 

much will it cost? 

• How does the relaxation of less important constraints enable cost- and time-

saving design alternatives? 

Another potentially useful tool in this step is a multivariate profiler (MVP). A MVP 

gives the relationship between multiple variables shown at a time. Therefore, it allows 

simultaneous consideration of design variables and system attributes in all developing 

stages. While contour profilers display only two dimensions of multi-dimensional design 

space at a time, the multivariate plot presents the entire view of the design space 

interaction.   

Figure 29 depicts an example MVP that was created using JMP® for a notional 

fighter. In a MVP, all the variable names are listed in the diagonal boxes of the plot. 

Each of the boxes shows interactions between the two variables comprising the 

intersection. A point in a box is one particular design, which is linked to the database 

created through repetition of design analysis. The data samples can be generated in 

various different ways: i.e. any combinations of parametric variations of the first-stage 

design, requirements, technologies, and the second-stage design.  
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Figure 29 was created based on the optimum first-stage designs under five aircraft 

evolution strategies. Random variation on the requirement is applied on the five baseline 

designs to see how these five optimum designs react to the future requirement evolution. 

Here, the design itself remains unchanged in the second stage, but aircraft performance 

changes due to either a more stringent requirement or the introduction of new 

technology. The highlighted points indicate the original performance of the aircraft. All 

other points are the future deviations from the original points. The color code shown in 

the far right column differentiates the five strategies. In the lower left corner of Figure 

29 is a scenario filter, which filters the designs that do not meet a particular requirement 

scenario. For instance, one can impose a cost limit on the second stage and relax the 

turn rate constraint to see how more emphasis on affordability than fighter performance 

changes the fighter design.  

As a final note, once the all steps of EvoLVE are executed, it is necessary to revisit 

the previous steps as more information about the problem at hand is gained.  
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Figure 29: An Example Multivariate Profiler and Scenario Filter 
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CHAPTER VI 

 

PROOF OF CONCEPT: A CANTILEVERED BEAM DESIGN 

 

As a proof-of-concept study to the new approach proposed in the previous chapter, a 

two-stage cantilevered beam design problem is formulated and solved in this chapter. 

Since the main purpose of this study is to test the applicability of SPR on an engineering 

design problem consisting of two development stages, some of the steps of EvoLVE are 

either skipped or combined with other steps. A five segment cantilevered beam under a 

point transverse load is adopted from a problem presented by Vanderplaats [37]. The 

problem is then expanded to a two-stage design problem by imposing an uncertain 

second-stage requirement. The objective of the optimization is to minimize the total 

program cost, including RDT&E, production, operation, and design modification. Four 

design evolution strategies—ad-hoc upgrade, deterministic preplanning, stochastic 

preplanning, and new-design strategy—are defined and compared under various scenarios. 

Once the problem is set up, three experiments are designed and executed to test 

Hypotheses 1, 2, and 4.  

6.1 Problem Setup 

6.1.1 The Original Beam Design Problem 

A cantilevered beam shown in Figure 30 consists of five segments. A point transverse 

load P is applied at the end of the beam structure. Design variables are the widths of 

each beam section bi, i = 1,…,5. The goal of design is to find the minimum volume 

structure satisfying both of the two types of constraints, deflection and stress. The 
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deflection of the right end of each segment is constrained to be lower than a prescribed 

value. The deflection yi at section i is calculated as follows: 
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where  
i

y ′   deflection of segment i 

 
i

y ′    derivative of y with respect to x 

 li    length of segment i 

 E   Young’s modulus (same for all segments) 

 P   applied load 

 Ii   moment of inertia of segment i 

 hi  height of segment i (twenty times the width of the segment) 

 

 

Cross section

1
2

3 4 5

l1

x

y

l2
l3

l4
l5

bi

hi

P

P = 50,000 N
E = 2.0x107 N/cm2

li = 100cm
= 14,000 N/cm2

= 2.5 cm
σ
y

 
Figure 30: A Five-Segment Cantilevered Beam [37] 
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In addition, the bending stress, which is largest at the left end of each segment, is 

also constrained. The bending stress (
i
σ ) at section i is calculated as: 

 
2

i i
i

i

M h

I
σ =  (40) 

where 
1

i

i i j
j

M P L l l
=

 
 = + − 
 

∑  is the bending moment at the left end of segment i; L is 

total length of the beam (500 cm); P is the applied load (50,000 N).  

The original beam design problem is formally formulated as a constrained 

optimization problem as follows: 
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where σ is the maximum allowable stress (14,000 N/cm2) and y is the maximum 

allowable deflection (2.5 cm).  

6.1.2 Expansion of the Problem 

The beam problem described in the previous section is adapted and redefined here. First, 

the beam design problem is expanded to a two-stage beam design problem, in which a 

beam is designed for the present applied load (P1) and modified later to meet the future 

applied load (P2) as illustrated in Figure 31. It is assumed that the future requirement is 

more demanding than the current one, thus the beam structure should become stronger 

to increase its load-carrying capability. The first-stage problem is the same as the 

original problem, i.e. same requirements and constraints, except for that the 

optimization routine minimizes overall program cost instead of the beam volume. The 
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overall program cost is the sum of the cost of the new beam development program (stage 

1) and the beam modification program (stage 2). The objective of the optimization is to 

find the best beam design for stage 1, which minimizes the overall program cost.  

In stage 2, the objective function to minimize is the program cost of beam 

modification program, including the penalty of design modification. The requirement of 

stage 2, i.e. the applied load, is a random variable ω . Because of the uncertainty 

associated with the applied load in the stage 2, the stage 2 cost cannot be evaluated 

deterministically but probabilistically. Thus, the expectation of stage 2 cost is calculated 

for all realizations of the random variable. The mathematical representation of the 

problem is now expressed as follows: 

In stage 1, 
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where  b1   stage1 beam width vector 

 f1   stage 1 objective 

 r   risk-free discount rate 

 t12   time span between stage 1 and 2 
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Figure 31: Illustration of the Two-stage Cantilevered Beam Design Problem 
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 [*]E   expectation of * 

 Q   stage 2 objective 

 ω   random variable 

 g1i   stage 1 deflection and stress constraints  

  

In the second stage, for a given b1 and a realization of the random variable following 

optimization problem is solved as  

 

2
1 2 2 1 2

2 2

( , ) min ( , ) ( , , )

s.t. ( , ) 0, ( 1,...,10)
i

Q f H

g i

ω ω ω

ω

 = +  

< =

b
b b b b

b
 (43) 

where  b2   stage 2 beam width vector  

 f2   stage 2 cost  

 H   design modification penalty 

 g2i   stage 2 deflection and stress constraints 

 

In this experiment, the first-stage applied load P1 is fixed at 50,000 lb. The stage 2 

applied load P2 is identified as a random variable. For simplicity, it was assumed that 

the random variable takes a finite number of outcomes, and a probability mass function 

(PMF) was assigned to the random variable as follows: 

 ( ) ( ) ( )PMF( ) 75, 000,  0.2 ,  100, 000,  0.5 ,  150, 000,  0.3ω =  (44) 

where the first values in the parentheses are the applied load P2, and the second values 

are the probabilities associated with them. These three possible outcomes of ω  

constitute three scenarios that are defined as Scenario 1, 2, and 3, under which P2 is 

75,000, 100,000, and 150,000 respectively. 
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6.1.3 Evolution Strategies 

Four different beam development strategies are formulated. They are new-design, ad-hoc 

upgrade, deterministic preplanning, and stochastic preplanning strategies. The new-

design and ad-hoc upgrade strategies are non-preplanning strategies. In the new-design 

strategy, a new beam design is introduced in stage 1. Then, another new design is 

prepared in the second stage as necessary. Thus, the stage 1 and stage 2 designs are 

completely independent each other. The new-design strategy is later compared to one of 

the best new-derivative strategies to see to what extent introducing a derivative model 

would be more beneficial than starting from scratch. With the ad-hoc upgrade strategy, 

no provision for the future is made. In the first stage, the design practice is to ensure the 

best design for only the current, given requirement. No growth provision is incorporated. 

Then, after the second-stage requirement is concretely defined, a derivative version of 

the stage 1 design is sought to meet the new requirement with minimal cost. The cost in 

the second-stage problem includes the cost of modifying the design from the original 

design as well as the cost of producing and operating the derivative.  

With the deterministic preplanning strategy, the second-stage requirement is known 

or predicted to take a certain value. Growth provisions are planned in the first-stage 

design in order to reduce the cost of design modification. Thus, the objective function of 

the first-stage problem is expanded from f1 to Q. A feedback from stage 2 to stage 1 

makes the stage 1 and 2 interdependent. Mathematically, the deterministic preplanning 

solves Eqs. (42) and (43) with the absence of uncertainties. Thus, a random variable 

becomes a deterministic variable, and the second-stage objective Q is evaluated 
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deterministically. Finally, the stochastic preplanning strategy solves Eqs. (42) and (43) 

with the random variable defined in Eq. (44).  

6.1.4 Cost Modeling 

A hypothetical cost model was created as a final step of problem set up. The elements of 

the stage 1 and 2 program cost (f1 and f2) are research, development, test, and evaluation 

(RDT&E) cost, production cost, and operation and support (O&S) cost. The cost of 

changing the design in stage 2 is captured separately in P2. The RDT&E cost was 

assumed to be $70,000 for stage 1 and zero for stage 2. It was assumed that the stage 2 

RDT&E cost was included in the penalty function.  

Production and O&S cost for stage 1 and 2 are calculated based on the weight of 

the beam segment. Production cost at stage Θ ($ProductionΘ ) is simply ten times the 

total weight of the beam of the stage. The O&S cost ( $OSΘ ) is the sum of segment 

weight multiplied by a coefficient , 1, ,5.
i
iαΘ = …  Finally, design modification penalty is 

calculated based on the difference between the stage 1 and stage 2 design. For this 

problem, only the quadratic relationship between the differences of the design variable 

values to the cost was modeled. 
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where  [1,2]Θ∈ is index for stage, 1, , 5i = … is index for beam segment, $RDTE1 and 

$RDTE2 were fixed at $70,000 and $0, respectively, and ρ =0.00785 kg/cm3 is material 

density.  

The values for the coefficients α and β are determined by the following rules. For 

each of the beam segments, subjective ratings for O&S cost and design modification 

penalty are assigned as presented in Table 7. The rating scale is low, mid, or high. For 

example, the contribution of beam segment 1 to the O&S cost is assumed to be medium, 

where it is assumed to incur high penalty if its design is modified in the second stage. A 

rationale behind this is that beam segment 1 and 5 interface with the outer environment, 

so their modification would cause compatibility issues and thus incur high cost. For 

example, the first beam segment or B1 is clamped to the supporting wall, and redesigning 

the first beam segment is subject to additional constraints, such as interface and 

regulations. According to the rating, the numerical values of the O&S and penalty cost 

coefficients are assigned in Table 8 presented below.  

Table 7: The O&S and Penalty Cost Coefficient Schedule  

Beam Segment  O&S  Penalty  

1 mid High 

2 high Low 

3 mid Mid 

4 low Low 

5 high High 

 

Table 8: The Values of the O&S and Penalty Cost Coefficients 

Scale  
i

αΘ (O&S)  
i
β (Penalty) 

Low 20 5,000 

Mid 80 10,000 

High 150 40,000 
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6.2 Experiment I: Comparison of the Four Strategies 

Once a hypothetical two-stage cantilevered beam problem is formulated, the problem is 

solved for the four development strategies. The new-design and ad-hoc upgrade strategies 

solve the first-stage problem independent to the second-stage problem. Then, the second-

stage problem is solved for after the second-stage requirement is known. The 

deterministic preplanning strategy predicts the second-stage applied load to be at 

100,000 lb and examines the possibility of having growth potential in the original design. 

The stochastic strategy sees all three scenarios and the probability of having such a 

scenario and seeks an optimum first-stage design that is supposed to work best on 

average. Once the optimum first-stage beam designs for each of the strategies are 

obtained, they are tested with the three scenarios by solving the second-stage 

optimization in a posteriori manner to see how well each strategy responds to each 

scenario.  

6.2.1 Total Program Cost Comparison 

Table 9 provides the total program cost of the four strategies under three different 

scenarios. Figure 32 graphically compares how much each strategy costs under a specific 

scenario. A comparison from the scenario point of view reveals that no strategy is best 

for the all scenarios. When the actual realization of the second-stage requirement turned 

out to be 75,000 lb (Scenario 1), ad-hoc strategy met the requirement with the smallest 

cost. For Scenario 2 and 3, however, both of the preplanning strategies cost less than the 

two non-planning strategies. Deterministic preplanning strategy cost the least under 

Scenario 2. The stochastic preplanning cost the least under Scenario 3.  
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It is easily seen from the figure that for the ad-hoc upgrade strategy, the total cost 

increases rapidly as the second-stage applied load increases. The ad-hoc strategy was the 

best under Scenario 1 but the worst under Scenario 3. The deterministic preplanning 

strategy, on the other hand, was the best among all four strategies when the predicted 

P2 was equal to the actual P2, as expected. The stochastic preplanning strategy 

performed the best under scenario 3, but more importantly, it cost the least on average 

as compared in the bottom row of the table.  

Table 9: Total Program Cost of the Four Strategies under the Three Scenarios 

Scenario Applied Load New-Design Ad-Hoc Det. Planning Stoc. Planning 

1 75,000 N 206,962 154,532 155,794 159,212 

2 100,000 N 215,772 181,245 166,345 167,101 

3 150,000 N 231,540 249,184 208,618 201,031 

Average n/a 218,740 196,284 176,917 175,702 
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Figure 32: Total Program Cost Comparison  
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6.2.2 Optimum Design Results under Different Strategies 

This section compares how each of the beam segments at each stage was sized under the 

four strategies. The second-stage design is only finalized after the actual second-stage 

requirement becomes realized. The study was conducted with the realized second-stage 

requirement P2 to be 100,000 lb; that is, Scenario 2 was realized. The results were non-

dimensionalized by dividing the value by the design value of the new-design strategy. 

Symbol 
i

bΘ represents the beam width of the i
th segement in stage under strategy p. 

Figure 33 shows the optimized values of b11 and b21 of the four strategies. Both the 

new-design and ad-hoc strategies sized the beam segment 1 to meet the given first-stage 

applied load and then increase the beam width in the second stage by about 20%. 

However, two preplanning strategies over-sized b11 to such an extent that it is close to 

b21. The oversizing tendency of b11 is attributed to the fact that the cost of changing b11 is 

very high and the cost incurred by oversizing it is relatively small. Thus, both 

deterministic and stochastic preplanning strategies identified that sizing b11 to meet the 
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Figure 33: Optimum Widths of the Beam Segment 1  
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second-stage requirement from the beginning was cheaper in the end.  

Figure 34 compares the widths of the beam segment 2. In contrast to the results of 

the beam segment 1, none of the four strategies overdesigned the beam segment 2 in the 

first stage. The result can be interpreted as the cost of overdesigning segment 2 

outweighs the cost of upgrading it later. 

Finally, the optimum widths of the tip section b15 and b25 are compared in Figure 35. 

Again, the non-preplanning strategies sized the beam segment to meet the given first-

stage applied load requirement. Then, the preplanning strategies oversized b15 but not as 

much as they oversized b11. The stochastic preplanning oversized more than the 

deterministic strategy because it accounted for the fact that there is a 30% probability of 

P2 being 150,000 lb. 

The comparison of the optimum solution from the design point of view reveals that 

the preplanning strategies allocate growth margin on each of the beam segments in a 

very different way. Beam segment 1 was overdesigned and segment 2 was not 
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Figure 34: Optimum Widths of the Beam Segment 2 
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overdesigned at all under the both the deterministic and stochastic preplanning 

strategies. The result shows that the new method can quantify the allocation of growth 

potential on the subsystems in a way that balances the cost of overdesigning and the 

cost of modifying the existing design later.  

6.3 Experiment II: Growth Limit 

The previous section showed that the new-design strategy cost more than other 

strategies cost, at least when P2 is between 75,000 and 150,000 lb. However, this may not 

be the case if P2 increases further. The question is when would it be beneficial to start 

from scratch rather than modify the existing design? What would be the absolute growth 

limit to a design? The query is answered by comparing the new-design strategy to the 

best derivative development strategy. The best derivative design strategy is the 

deterministic preplanning strategy with the complete knowledge of the second-stage 
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Figure 35: Optimum Widths of the Beam Segment 5 
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requirement from the beginning. The total problem costs of these two strategies were 

calculated for the increasing second-stage beam load and were compared in Figure 36.  

The total cost under the derivative development strategy based on the perfect 

prediction was less than the developing a new product strategy when the P2 was less 

than 32,500 lb. Then, because of a sharp increase in the modification cost, the rate of 

change of the total cost under the derivative development case was higher, making it 

more expensive than the new-design strategy when P2 was larger than 32,500 lb. This 

experiment shows that for this beam design problem, the absolute growth limit of the 

first-stage design is 32,500 lb. If P2 grows larger than 32,500 lb, no cost benefit exists in 

upgrading the existing design. Rather, it is cheaper to start from scratch. 
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6.4 Experiment III: Value of Perfect Information and 

Stochastic Solution 

In this experiment, two quantities that are valuable in the domain of stochastic 

programming with recourse—namely, value of perfect information (EVPI) and value of 

stochastic solution (VSS)—are calculated.  

6.4.1 Value of Perfect Information 

To calculate EVPI, it is assumed that one can always predicted the value of the random 

variable with certainty. For all possible realization of the random variable—i.e. 

scenarios—the total cost of the two-stage problem is calculated. Then, the average of the 

total cost is the expected value of the optimal solution or the wait-and-see solution (WS) 

as: 

 12
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where Q2 is as given in Eq. (43). Since ω takes only three outcomes, Eq. (46) is solved by 

transforming it to three deterministic equivalents, and the results are summarized in 

Table 10. Each column of the table is the optimum solution and the total cost for each 

scenario. 

Table 10: The Wait-and-See Solution for Each Scenario 

Scenario P2 (N) Total Cost ($) 

1 75,000 154,872 

2 100,000 166,345 

3 150,000 193,404 
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Then, the expected cost is calculated as 

 ( ) ( )($) 0.2(154, 872) 0.5 166, 345 0.3 193, 404 172,168WS = + + =  (47) 

The wait-and-see solution is compared to the so-called here-and-now (HN) solution. The 

HN is the expected value of the stochastic solution b* calculated as: 
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where *

1
b  is the optimum first-stage beam design obtained in the previous section. HN is 

readily obtained using the results in Table 9 as  

 ( ) ( )($) 0.2(159,212) 0.5 167,101 0.3 201, 031 175, 702HN = + + =  (49) 

Finally, ($) 175, 702 172,168 3,534.EVPI HN WS= − = − =   

6.4.2 Value of Stochastic Solution 

Solving a stochastic programming problem is generally very expensive and time 

consuming. So, it is possible that one can ask himself if pursuing a stochastic approach is 

really worthy of the time and effort. One of the attempts to solve a stochastic problem 

easily is by simplifying it by replacing the random variables to their expected values. 

This is called the expected value (EV) problem [94]. In the beam example, this greatly 

simplifies Eq. (42) to 

 121
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where ( ) 0.2(75, 000) 0.5(100, 000) 0.3(150, 000) 24, 500 [N]Eω ω= = + + = .  
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For the optimal first-stage design *

1
b�  of the EV problem, the second-stage problem 

given in Eq. (43) is solved for all possible scenarios. This solution is called the expected 

result of using the EV solution (EVV), defined as 
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Again, Eq. (29) is solved by converting it to its deterministic equivalent. The 

optimization results for each scenario are in Table 11. 

Table 11: Result of Using the Expected Value Solution 

Scenario P2 (N) Total Cost ($) 

1 75,000 159,014 

2 100,000 167,323 

3 150,000 201,364 

 

Then, the expected value is calculated as 

 ($) 0.2(159, 014) 0.5(167, 323) 0.3(201, 364) 175, 874EVV = + + =  (52) 

Since HN is $175,702 from the previous section, ) 175, 874 175, 702($ 172.VSS = − =  

6.5 Hypothesis Test 

Hypotheses 1, 2, and 4 were proved though three experiments with a two-stage 

cantilevered beam design problem. Experiment I, II, and III showed that by expanding a 

classical, one-stage design problem to a two-stage problem incorporating future 

requirements: (a) cost associated with the four beam design evolution options was 

evaluated with three requirement evolution scenarios; (b) the right amount of growth 

provisions to minimize the overall cost were quantified for each of the beam segments; 

and (c) the growth limit of a given design was identified. These three evidences 
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collectively prove Hypotheses 1 and 4. Presence of uncertainty imposes risk in designing 

for the future. Hypothesis 2 claims that the risk can be mitigated by assigning 

probabilities to the random variables and minimizing the expected cost. In experiment I, 

although the deterministic preplanning strategy found the optimal stage 1 and stage 2 

design solutions with minimal cost when the predicted and actual future requirements 

were close, the stochastic approach cost the least on average, which supports Hypothesis 

2. In addition, EVPI calculated in experiment III provided the value of knowing the 

accurate future requirement in advance, which provides the decision makers very 

valuable knowledge they can exploit through trading managerial options. 
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CHAPTER VII 

 

APPLICATION TO A NOTIONAL MULTI-ROLE FIGHTER 

DESIGN 

 

EvoLVE was implemented on a notional multi-role fighter design based on F/A-18 

Hornet and Super Hornet. Based on the evolution history of F/A-18, a hypothetical 

requirement was created in order to test the efficacy of EvoLVE in aerospace systems 

design and prove the hypotheses. A scalable computer model of F/A-18 Hornet was 

created and validated using public domain data of the A, C, E versions. The modeling 

and validation process is extensively documented in §7.6 and §7.7.  

The study is not intended to recreate the evolution of F/A-18 but utilizes the 

historical example, especially the upgrade program from the C/D to E/F versions, in 

order to validate the computer models and create a test case as realistic as possible. 

Therefore, the study is based on a hypothetical time frame, background, and 

requirement, and thus the optimized vehicles at the end of the study are not new 

versions of the F/A-18 but are notional fighters that perform very similar missions. 

Although this study was primarily conducted in 2008, the clock was rewound by 

twenty years as if the notional multi-role fighter program started in 1988. This is when 

the F/A-18C/D was being developed and a plan for the E/F version was being 

formulated by McDonnell Douglas and the U.S. Navy [171]. This time frame has a 

significant meaning because it was when the Cold War between the Western World and 

the Soviet Union was at its culmination and the sudden collapse of the Soviet Union in 

1991 was not anticipated.  
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This chapter starts with the rationale behind the selection of the test case as a 

notional multi-role fighter based on the F/A-18C among many other options. Then, the 

EvoLVE process Steps 1 to 9 are presented. Some of the finding are discusses at the end 

of the chapter.  

7.1 Selection of the Baseline Aircraft and Time frame 

First, military aircraft were preferred to commercial aircraft. Military aircraft design is 

driven by rather complicated, yet solid requirements. Design usually starts from well-

defined needs, the documentation of which is often available to the public. In opposition 

to common sense, requirements and aircraft performance data for military aircraft are 

easier to obtain from public sources than those of commercial aircraft, because military 

airplanes are funded by taxpayers. As a downside, modeling military aircraft is generally 

more challenging because they are usually designed to perform more than one mission. 

Each of the missions is associated with a mission profile(s) and internal/external storage 

configurations. The mission profiles may cover both super-sonic and sub-sonic regimes. 

Commercial transports fly rather simple missions. The key performance parameters are 

range and payload (or the number of passengers), and the design is mostly driven by one 

factor, economics. However, it is harder to obtain accurate and comprehensive data on 

commercial aircraft, for they are proprietary. 

Another criterion for model selection was time frame and availability of adequate 

evolution history. A modern time frame was preferred to enable a game-play in the 

context of modern doctrine. The ways fighters were operated in the battlefields in the 

early Cold War era and after the Cold War era were very different from each other. 

Time frame dictates the external environment that determines design requirements. 
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Time frame is also related to the richness of evolution history and data availability. 

While first and second generation jet fighters, such as F-86, F-4, and F-5 have 

interesting evolution histories, their design specifications are not well-documented 

digitally. The fourth generation fighters, such as F-22 and F-35 not only lack the 

evolution history but they are also classified. Performance and cost data of the fighters 

that were developed in the 1970s and 1980s are well-documented and less sensitive than 

the modern fighters, such as F-22 or F-35, and many of them have more than one 

derivative. 

Among many fighters, the F/A-18 and the F-16 met the above criteria, and the 

decision was made to pursue the F/A-18. The F/A-18 had a unique history that made it 

a perfect candidate for the validation of EvoLVE. As summarized in §3.1.1.3, the F/A-

18, as the first multi-role fighter in history, took two evolution steps: from the original 

version of A/B to C/D, and then from C/D to E/F. The C/D versions were retrofits of 

A/B, keeping most of the subsystem unchanged except the engines and avionics. 

However, the E/F versions were “resized” or photographically scaled up from C/D to 

provide for significantly more capability. Although the DoD designated the upgrade from 

C/D to E/F as a “major modification”, the E/F version has only 10% in common with 

the C/D version.  

This major capability upgrade provides for a very good example case, against which 

a scalable aircraft model can be validated. EvoLVE requires a vehicle model at the 

baseline requirement and a series of scaling laws to be able to quantitatively capture the 

impact of requirement growth in the future. Such scaling laws are calibrated using both 

physics and actual vehicle evolution data. Those scaling laws are considered more valid 
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within the range of the initial and a derivative aircraft design points, and extrapolation 

beyond the actual data might introduce the danger of not capturing important physics. 

While many other derivative aircraft possibly provide such data points, the F/A-18’s 

wide expansion of both vehicle geometry and capability through an evolutionary upgrade 

minimizes the need for extrapolation.  

In conclusion, the two derivative versions of the F/A-18 provide two vital and rare 

aircraft growth examples, which can be benchmarked to generate plausible growth 

strategies and scenarios.   

7.2 The First-Stage Requirement: Step 1  

The first-stage requirement is either given from the customer or formulated by the 

aircraft manufacturer using the conventional system engineering tools, such as market 

analysis, brainstorming, QFD, etc. In this application, it is assumed that the 

hypothetical first-stage requirement is given from the US Navy in the form of ORD 

issued in FY1988. ORD defines a specification of a fighter aircraft in terms of the KPPs 

with associated mission profiles. A summary of the hypothetical ORD is given as*: 

A new fighter aircraft performing both fleet air defense and attack role 

for the US Navy is being developed to replace F-4 on fighter missions and 

A-7 on attack missions. The vehicle shall reach IOC in 7 years (FY 

1995), and the goal is to minimize the acquisition cost while meeting or 

exceeding all imposed key performance parameters (KPPs). The KPPs 

shall be evaluated with the two given mission profiles. Production 

quantity of the vehicle is 627 units for the US Navy.  

                                                                                       

*The hypothetical mission and requirement is very close to those of F/A-18C/D and E/F that are 

summarized in APPENDIX B. 
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The KPPs and their thresholds are defined in Table 12. The conditions for the 

KPPs are the mission profiles given in the following section. These requirements and 

KPPs constitute the first-stage objective (f1) and constraints (g1).  

7.2.1 Mission Profiles 

The interdiction (hi-lo-lo-hi) and fighter escort with medium altitude combat are 

depicted in Figure 37 and Figure 38. The figures are attached with the tables of fuel 

usage, range, speed, altitude, and throttle setting conditions for each of the mission 

segments. These mission profiles are the standard mission profiles found in MIL-STD-

3031 [172].  

Interdiction mission profile includes fuel to warm-up, take-off, accelerate to climb 

speed, military power climb, cruise at best cruise altitude and Mach number, 50 nm 

penetration at 2000 ft before expending the air-to-ground bombs, cruise back, descent 

without distance credit, and reserve of 3500 lb of fuel.  

The fighter escort mission includes fuel to warm-up, take-off, accelerate to climb 

speed, military power climb, cruise at best cruise altitude and Mach number, combat at 

15000 ft expending half the missiles and ammunitions, return to the base, and reserve. 

The reserve mission includes 20 minute sea level loiter at best endurance speed, plus 5 

percent of the initial fuel.  These two mission profiles, interdiction and fighter escort, are 

used as the design missions of the notional fighter with the following external store 

conditions: 

Attack configuration: two AIM-9s, FLIR, NAVFLIR, four MK-83 bombs, and 

three external fuel tanks (see Figure 51 for the allocation of the hard points) 

Fighter configuration: two AIM-9s at the wing tips and two AIM-7s at the two 

fuselage stations (see Figure 52 for the allocation of the hard points) 
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 Segment Fuel Time Distance Speed Altitude Thrust Setting 

A Warm-up, 

Takeoff  

20 min @ ground idle + 30 sec @takeoff/maximum A/B + fuel to accelerate from obstacle clearance to climb 

speed @ IRT 

B Climb       Minimum time 

climb schedule 

Takeoff to optimum 

cruise 

Intermediate 

C Cruise      Optimum cruise Optimum cruise   

D Descent None None No credit   End cruise to 2000 ft 

press alt. 

  

E Penetration     50 nm 0.8 Mach 2000 ft press alt.   

F Combat One 2000ft energy exchange  

+ one 180 deg turn at Virt - 50 ktas, expend air-to-ground stores 

Max A/B 

G Withdrawal     50 nm 

including accel 

0.8 Mach 2000 ft press alt.   

H Climb       Minimum time 

climb schedule 

2000 ft press alt. 

to optimum cruise 

Intermediate 

I Cruise       Optimum cruise Optimum cruise   

J Descent None None No credit   End cruise to landing   

K Reserves 4000 lbs of fixed fuel        

Figure 37: Interdiction Mission Profile (Hi-Lo-Lo-Hi) 
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  Segment Fuel Time Distance Speed Altitude Thrust 

Setting 

A Warm-up, 

Takeoff 

20 min @ ground idle + 30 sec @takeoff/maximum A/B + fuel to accelerate from obstacle clearance to 

climb speed @ IRT 

B Climb       Minimum time 

climb schedule 

Takeoff to optimum cruise Intermediate 

C Cruise       Optimum cruise Optimum cruise   

D Descent None None No credit   End cruise to 15,000 ft 

press alt. 

  

E Combat One 360 deg turn @Mach 1.2 (max A/B)  

+ two 180 deg turn @ Mach 0.9 (max A/B), expend half of ammo and missiles. 

Max A/B 

F Climb       Minimum time 

climb schedule 

15,000 ft press alt. 

to optimum cruise 

Intermediate 

G Cruise       Optimum cruise Optimum cruise   

H Descent None None No credit   End cruise to landing   

I Reserves 20 min + 5% of 

initial fuel 

  No credit Maximum 

endurance 

Sea level   

Figure 38: Fighter Escort Mission Profile (Medium Altitude Fighter Sweep) 
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7.2.1.1 Key Performance Parameters 

The key performance parameters and their threshold values are listed in Table 12. The 

KPPs are classified in three categories: mission performance, carrier suitability, and 

fighter performance. Mission performance measures the one-way unrefueled range for the 

two design missions. For the fighter escort mission, mission radius is measured using 

internal fuel only without external fuel tanks. The aircraft will fly the fighter escort 

mission profile in Figure 38 with two AIM-9s and two AIM-7s. The interdiction radius is 

measured by flying the mission profile in Figure 37 in attack configuration, i.e. three 

external fuel tanks. The size of the external fuel tanks is a design variable and will be 

determined later. The carrier suitability is measured by four parameters: recovery 

payload, launch wind over deck (LWOD), recovery wind over deck (RWOD), and 

approach speed. The definitions, calculation procedures, and equations of these 

parameters are provided in §7.6.5.  

To measure the fighter’s point-performance, five parameters—combat ceiling, 

specific excess power, acceleration, turn rate, and usable load factor—are used. All these 

metrics shall be measured in the combat configuration: two AIM-9s, two AIM-7s, and 

60% of total internal fuel. In addition, all the fighter performance parameters are 

measured at maximum power with afterburners on. Specific excess power is measured 

during one-g level flight at Mach 0.9 at 10,000 ft. Acceleration from Mach 0.8 to 1.2 is 

conducted at 35,000 ft. Sustained turn rate is measured at 15,000 ft. Detailed definitions 

and calculation procedures are provided in §7.6.6.1. 
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Table 12: The Key Performance Parameters of the First Stage 

Category Key Performance Parameters Threshold Unit 

Mission 

Performance 

Fighter escort mission radius > 350 nm 

Interdiction mission radius > 360 nm 

Carrier 

Suitability 

Recovery payload > 6000 lb 

Launch wind over deck  < 30 knot 

Recovery wind over deck  < 15 knot 

Approach speed  < 150 knot 

Fighter 

Performance 

Combat ceiling > 50,000 ft 

Specific excess power at 0.9M/10,000 ft > 600 hp 

Acceleration from 0.8M to 1.2M at 35,000 ft  < 70 sec 

Turn rate at 15,000 ft > 11.5 rad/sec 

Usable load factor > 7.5 g 

 

7.3 Evolution of the Requirement—Random Variables and 

Scenarios: Step 2 

The main distinction between EvoLVE and conventional single-stage aircraft design 

processes is that EvoLVE expands the problem beyond the current (single-stage) 

problem in order to incorporate the future into the current design from the origin. 

Expansion of the conventional single-stage design process to the two-stage design process 

starts with identifying evolution paths of the requirements. 

In order to predict what will happen to the vehicle-level requirement in the future, it 

is natural to start from the operational environment where the vehicle is being utilized. 

This system-of-systems type study would be based on projections of both enemy and 

friendly force capability under plausible SoS level scenarios, such as theater-level conflict 

scenarios, and can provide the future requirement of the baseline vehicle in a 

deterministic or probabilistic manner. 
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The Congressional Budget Office (CBO) conducted a SoS level study involving F/A-

18 in 1987. The results plan Navy aircraft force projections into the 1990s and are 

introduced in §A.1. The study was conducted at the US Navy Air Wings level including 

F/A-18 in the European theater under the influence of Soviet Union bombers and 

fighters. The CBO study suggested how the requirements of F/A-18 should evolve 

towards the 1990s. 

While not available to the public, a system specific System Threat Assessment 

Report (STAR) of the F/A-18 was created by the Naval Maritime Intelligence Center 

(NAVMIC), including a detailed description of threat projections. Although such 

information was not completely available to the author, it is not difficult to reason that 

such studies led to the ORD of the F/A-18E/F, part of which is introduced in 

APPENDIX B.  

It is envisaged that such independent SoS level studies by CBO and NAVMIC could 

more systematically identify the random variables and the probability functions at the 

vehicle system level. The potential of concurrently applying EvoLVE at two different 

hierarchical levels is proposed in §8.2.4 as part of the future research opportunities.  

In the current study however, the random variables along with the associated 

Probabilities Density Functions (PDFs) were defined trying to follow the actual 

evolution of the F/A-18’s requirements as closely as possible. Among the requirements 

that changed from the F/A-18C/D to E/F, the most significant four parameters—fighter 

escort radius, interdiction mission radius, recovery payload, and avionics weight—were 

identified as the random variables. Then, triangular PDFs were assumed for all random 
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variables. Triangular PDFs are determined by three parameters: minimum (a), most-

likely (m), and maximum values (b) as follows: 
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The list of random variables and their assumed probabilities are in Table 13. The 

minimum and maximum values of the random variables are slightly higher than the 

F/A-18C/D’s and E/F’s requirements, respectively, so that most of the requirement 

space defined by the random variables is covered by the actual evolution history of the 

F/A-18C/D and E/F. The most likely values of the random variables are the average of 

the minimum and maximum values. Finally, it was also assumed that the random 

variables are independent of each other. The triangular PDFs of the four random 

variables are illustrated in Figure 39. 

 Table 13: Random Variables and Probability Density Functions 

 Stage 1 Stage 2   

 Baseline Min Most Likely Max Function Type Unit 

Fighter escort radius 350 350 420 490 PDF/Triangular nm 

Interdiction radius 410 410 460 510 PDF/Triangular nm 

Recovery payload 4,500 7,000 8,400 9,800 PDF/Triangular lb 

Avionics weight 1,289 1,300 1,400 1,500 PDF/Triangular lb 
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Figure 39: Triangular Probability Density Functions of the Random Variables 

Combinations of the realization of the random variables constitute scenarios, and 

those continuous random variables ∈ω Ω  in a probability space ( , , )F PΩ  with 4⊆ ℜΩ  

as defined in Table 13 can generate an infinite number of scenarios. In this section, 

however, only five scenarios , 1 , 5
s
s =ω …  were selected from the infinite set in Ω  and 

are provided in Table 14. The five scenarios were numbered in a way that each of the 

requirements gets more demanding as s increases, i.e. 1 2 3 4 5v v v v v
ω ω ω ω ω< < < <  where 

sv
ω is the vth element of the sth scenario vector 

s
ω defined as: 
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The first and last scenarios 1 5
 and ω ω  are the minimum and maximum bounds of 

the PDFs of ω  as defined in Step 2. The third scenario 3
ω  is the expected values of the 

PDFs, i.e. 
3

( )= ≡ω ω ωE . Two other scenarios are based on either the F/A-18E/F’s 
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requirements or actual performance. The forth scenario 4
ω , named Block 10 plus 

scenario, is very close to the actual F/A-18E/F’s performance. The second scenario 2
ω , 

named Block 10 requirement, is based on the F/A-18E/F’s threshold requirement given 

in Table 62. 

Table 14: The Five Discrete Scenarios for the Deterministic Study 

Scenario Number 

Scenario Name 
1
ω  

Minimum 

2
ω  

Block 10 

3
ω  

Average 

4
ω  

Block 10p 

5
ω  

Maximum 

Fighter escort radius, 1s
ω  350 410 420 475 490 

Interdiction radius, 2s
ω  410 430 460 504 510 

Recovery payload, 3s
ω  7,000 8,000 8,400 9,700 9,800 

Avionics weight, 4s
ω  1,300 1,350 1,400 1,411 1,500 

 

7.4 Baseline Design: Step 3 

Once the current requirement and its evolution paths in the future are defined, the next 

step is to find out how those requirements would be met. In this step, the candidate 

solutions to the corresponding functional requirements are synthesized in the physical 

domain and a baseline platform(s) is down-selected based on both qualitative and 

quantitative evaluations.  

In this study, since the baseline platform was selected as a notional multi-role 

fighter based on the F/A-18C, the geometrical characteristics of the F/A-18 are 

introduced first and a subset of the F/A-18’s geometric parameters are selected as design 

variables. All four variants of the Hornet (A, B, C, and D) are geometrically identical. 

The geometrical traits of the F/A-18 family, including the latest E/F versions, contain: a 

fixed oblique shock inlet; a moderate swept, low aspect ratio wing with NACA 65A 

airfoil and variable camber; area-ruled wing/body integration; large, highly-swept leading 
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edge extensions (LEXs); two low-bypass ratio, afterburning turbofans; and a twin tail. 

Dimensional data of the F/A-18 were obtained from NASA Technical Memorandum 

107601 [173] and summarized in Table 15. 
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Table 15: F/A-18 Hornet Dimensional Data [173]  

Total Airplane   Leading Edge Extension   

Net Wetted Area 2028 ft2 Planform Area 56 ft2 

Overall Length 56 ft Wetted Area 210 ft2 

Overall Height 15.3 ft Leading Edge Sweep 43 deg 

Fuselage   Incidence 6 deg 

Length 53 ft Horizontal Tails   

Maximum Width 7.6 ft Exposed Area 88.1 ft2 

Wetted Area 890 ft2 Wetted Area 176 ft2 

Wing   Aspect Ratio 2.4 

Area 400 ft2 Taper Ratio 0.46 

Wetted Area 562 ft2 Leading Edge Sweep 47.2 deg 

Span 37.42 ft c/4 Sweep 42.8 deg 

Aspect Ratio 3.5 Dihedral -2 deg 

Root Chord 15.86 ft Span 14.67 ft 

Tip Chord 5.52 ft Root Chord 8.23 ft 

Mean Aerodynamic Chord 11.52 ft Tip Chord 3.79 ft 

Leading Edge Sweep 26.7 deg Mean Aerodynamic Chord 6.28 ft 

c/4 Sweep 20 deg Airfoil NACA 65A 

Taper Ratio 0.35 Thickness at Root 6 % chord 

Dihedral -3 deg Thickness at Tip 2 % chord 

Twist 4 deg Vertical tails   

Incidence 0 deg Area 52 ft2 each 

Airfoil NACA 65A Wetted Area 104 ft2 each 

Thickness at   Aspect Ratio 1.2 

Wing Station 56.876 5 % chord Taper Ratio 0.4 

Wing Station 145.39 3.5 % chord Leading Edge Sweep 41.3 deg 

Tip Chord 3.5 % chord c/4 Sweep 35 

Leading Edge Flaps   Root Chord 9.42 ft 

Type Plain Tip Chord 3.75 ft 

Area 48.4 ft2 Mean Aerodynamic Chord 6.99 ft 

Span 13.8 ft Airfoil NACA 65A 

Trailing Edge Flaps   Thickness at Root 5 % chord 

Type Single Slotted Thickness at Tip 3 % chord 

Area 61.9 ft2 Rudders   

Span 8.72 Area 7.72 ft2 each 

Ailerons   Span 5.21 ft 

Type Single Percent Chord   

Area 24.4 ft2   

Span 5.68 ft   

Percent Wing Span 68.9 – 100 %   
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While almost all the geometrical parameters in the above table are used in Step 5 to 

create a F/A-18 model, only a small subset of such parameters are identified as design 

variables. The design parameters are fixed throughout the study at the value of the F/A-

18C while the design variables are varied to resize the vehicle photographically: the 

geometric traits of the F/A-18 family are preserved, and the size of subsystems, such as 

wing, tails, fuselage, engines, etc. are varied.  

The set of twelve design variables were finalized as listed in Table 16 after much 

iteration between Steps 4-6. The design variables are the minimum variables to 

sufficiently scale the vehicle and calculate g1 and f1. The first five variables (from x1 to x5) 

define the shape of the wing. Engine thrust, x6, is the maximum sea level static thrust of 

one engine, and the number of engines was fixed at two.  

Reference weight for design load factor (DLF), x7, is the reference gross weight by 

which the structural design of the vehicle is determined. Design load factor was fixed at 

7.5 g’s, which gives the ultimate load factor of 11.25 g’s after the typical 1.5 times 

margin. Therefore, the vehicle is design to withstand up to 11.25 g’s at x7. This weight 

should be equal to or greater than the actual combat weight, which is the gross weight in 

combat configuration with 60% of the internal fuel. 

Operational landing weight, x8, is the reference gross weight by which landing gears 

are designed. Therefore, x8 must be equal to or greater than the actual aircraft landing 

weight for safe landing. Landing weight also affects several carrier-suitability 

requirements, such as approach speed, bring back weight, and wind-over-deck speeds, 

which are calculated in §7.6.5.  
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Internal and external fuel weights, x9 and x10, are usable fuel weights that are carried 

internally or externally. JP-5 fuel at 6.8 US gallon/pound was assumed. Reference thrust 

for aft-body sizing, x10, is the reference engine thrust to size the aft-fuselage section 

where two turbofan engines and related subsystems including inlets and nozzles are 

mounted internally. The value of x10 should be equal to or greater than the engine thrust, 

x6. Finally, fuselage length, x12, was used to scale the forward and mid fuselage where 

avionics and equipments are placed. 

While the baseline values of the variables are not very meaningful, they are listed in 

the table defining the baseline aircraft x0. Note that the baseline design is slightly 

different from the F/A-18C. Justifications for the selection of the design variables and 

more detailed descriptions are provided in Steps 5 and 6 when appropriate.  

Table 16: Design Variables and the Baseline Notional Fighter  

Symbol Name Baseline Unit 

x1 Wing area 400 ft2 

x2 Wing aspect ratio 3.5 n/a 

x3 Wing taper ratio 0.35 n/a 

x4 Wing t/c 0.042 n/a 

x5 Wing sweep angle 20 deg 

x6 Engine thrust 17,754 lb 

x7 Reference weight for DLF 32,000 lb 

x8 Operational landing weight 33,000 lb 

x9 Internal fuel weight 10,810 lb 

x10 External fuel weight 6,720 lb 

x11 Reference thrust for aft-body sizing 17,920 lb 

x12 Fuselage length  53 ft 
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7.5 Evolution Strategies: Step 4 

Step 4 identifies the alternatives to meet the future requirements defined in Step 2. 

While the baseline platform selected in Step 3 was to respond to the first-stage 

requirement identified in Step 1, Step 4 formulates the possible ways or strategies to 

meet the evolving (growing) requirement. In addition, the set of candidate technologies 

that will be considered in the second-stage design are also identified.  

7.5.1 Aircraft Evolution Strategies 

Six aircraft evolution strategies were defined, including a New-design (ND), the Ad-hoc 

(AH) upgrade strategy, three Deterministic preplanning strategies (DetPPs), and the 

Stochastic preplanning strategy (StoPP).  

The question, “what would be the best way to meet the long-term requirement?”, 

would be ideally answered by considering not only the new requirement but also the 

projection of the friendly force structure at the Navy Air Wing fleet level, such as a 

retirement schedule of the existing fleet and other planned naval aircraft development 

programs. The study expanded to the SoS level would identify multiple ND strategies. 

For example, the option of upgrading F/A-18C/D can be compared against purchasing 

F-14D, F-35, ATA, NATF, AFX etc. as the US government did (see §3.1.1.3) by 

assigning them to each of the ND strategies. However, inclusion of multiple platforms 

requires modeling and simulation of all included platforms, and thus is avoided. In this 

study, all the alternatives were limited to a version of the F-18-like notional fighter to 

bind the problem. Therefore, the ND strategy considered here is assumed as another 
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notional fighter design based on F-18 and is developed in isolation from the first-stage 

design so that no cost savings utilizing commonality from its predecessor is allowed.  

The DetPP requires that the designer choose only one particular realization of the 

random variables or a scenario. Typically, the designer chooses a handful of scenarios, 

such as the worst case, most likely, and the best case to cover the random space and 

compare the results. In this study, a scenario-based study was performed by selecting 

three scenarios 2 3 4
,  , and ω ω ω and assigning them to three DetPP strategies. These 

three DetPP strategies were named DetPP(Block10), DetPP(Average), and 

DetPP(Block10p), following the scenarios names assigned to them.  

Finally, the StoPP is solely determined by preplanning for the future, incorporating 

all possible scenarios in the probability space ( , , )PΩ F  defined in Table 13. Table 17 

summarizes the six strategies evaluated in this study.  

Table 17: The Vehicle Evolution Strategies 

Strategies 

 

New 

Design 

Ad-Hoc 

Upgrade 

Moderate 

Det. Upgrade 

Average 

Det. Upgrade 

Aggressive 

Det. Upgrade 

Stochastic 

Upgrade 

Number 1 2 3 4 5 6 

Predicted scenario - - 
2
ω  3

ω  4
ω  ∈ω Ω 
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7.5.2 Technological Opportunities 

Technological development over time often provides options to open up the design space 

or improve the existing system. A potential technology candidate that can be applied to 

the second-stage design is identified in this Step 4. In order to retain the similarity to 

the actual F/A-18 evolution history, the following four technologies were considered: 

• LEX upgrade for higher CLmax  

• Low RCS capability 

• Conformal fuel tank  

• New engine core 

All of these technologies were either applied or considered when the F/A-18C/D was 

upgraded to the E/F. The F/A-18E/F’s LEX was not only enlarged from that of the 

C/D but also redesigned to increase the maximum lift capability of the vehicle, which 

favorably impacted the vehicle’s takeoff, landing, and approach performance. Details of 

CLmax increase are found in §7.6.2.2. 

Another important upgrade from the C/D to the E/F versions was the reduction of 

the RCS to reduce observability and thus, increase survivability. The reduction of radar 

cross section (RCS) was not achieved by redesigning the fuselage, wings, and tails, but 

was accomplished by realigning the surface edges, filling the gaps between the panels and 

openings, and coating the navigation lights, canopy, and wind shields with metalized 

paint [174]. Figure 40 illustrates the RCS reduction treatments applied to the F/A-

18E/F. 
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Figure 40: RCS Reduction of the F/A-18E/F [175] 

Conformal fuel tank is a technology by which the fuel capacity of an aircraft can be 

augmented without severely degrading the aerodynamic efficiency of the vehicle. 

Compared to the conventional external fuel tanks that are mounted under the fuselage 

or wings using pylons, conformal fuel tanks add significantly less drag, which enables a 

better range increase per gallon of fuel added. However, they cannot be jettisoned during 

flight, unlike conventional external fuel tanks.  

The conformal fuel tank is a matured technology as it is found under the wing roots 

of the F-15 Strike Eagle as shown in Figure 41 or behind the cockpit of the F-16. The 

technology was also considered to improve the range capability of the F/A-18C/D by 

McDonnell Douglas [76] but has not been implemented so far. Despite the dismissal of 

the technology in the Super Hornet program, it was included in this work because the 

technology was necessary to create and calibrate the cost model. More details about all 

the listed technologies and the modeling process are provided in Step 6.  
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Figure 41: Conformal Fuel Tanks of the F-15 Strike Eagle [176] 

7.6 Modeling and Simulation I: Step 5 

In Step 5, a modeling and simulation environment of the baseline vehicle, defined in Step 

3, is created and validated. A computer simulation model of the F/A-18C was developed 

by the author to conduct this study. The model was validated using public domain data 

as exhaustively as possible. The modeling and simulation process was largely based on 

NASA's Flight Optimization System (FLOPS) [177]. However, computer codes were 

written to calculate some of the aircraft performance that FLOPS does not calculate. In 

the subsequent sections, the process of geometry, aerodynamics, weight, and propulsion 

modeling and validation are described. Then, an entire aircraft system is synthesized and 

validated against the actual F/A-18 data collected in APPENDIX B using various 

mission profiles. It is important to note that the F/A-18 model was created as a scalable 

model. Therefore, system weight, drag polar, and engine performance were not hard 

coded but calculated as a function of design parameters.  
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7.6.1 Limitation of the Model  

The entire modeling process was done using strictly publicly available information only. 

No classified or proprietary data were consulted or utilized during the modeling and 

calibration process. A complete data set of a specific F/A-18 version was not available. 

Instead, the public domain information was available piecewise. For example, the weight 

breakdown of the C version with a 404-GE-402 engine was available, whereas the F/A-18 

performance manual was available with the 404-GE-400 engines and the 414-GE-400 

engines only. Drag polars at some altitudes and Mach numbers were available on the 

A/B/C/D variants. Mission profiles that the fighters actually flew were not identified 

completely, thus those conditions had to be assumed to follow the standard military 

mission profile given in the MIL-STD-3031 [172]. 

7.6.2 Aerodynamics Modeling 

Aerodynamics modeling was conducted in three parts. The first part briefly introduces 

the aerodynamic characteristics that are unique to the F/A-18 family in relation to its 

geometric traits. Then, drag polar of the clean configuration is generated and calibrated. 

The second part discusses aerodynamics at a high angle-of-attack (AOA). The third part 

models drag increment due to external stores.  

7.6.2.1 Aerodynamic Characteristics and Drag Polar in Clean Configuration 

All of the F-18 Hornet family, from the YF-17 to the F/A-18E/F Super Hornet, uses the 

NACA 65A airfoil [173, 178]. The NACA 65A airfoil is an uncambered high-speed 

laminar flow airfoil with a maximum thickness of 50% [179]. The most distinctive 

geometric and aerodynamic feature of the F/A-18 is its variable camber wing and 

leading edge extension (LEX) [70].  The wing’s leading edge (LE) flaps and trailing edge 
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(TE) flaps are automatically deflected according to the Mach number and AOA to 

improve maneuverability by reducing drag-due-to-lift. Both leading and trailing edge flap 

deflection schedules are provided in Figure 42. LEX produces high-energy vortices, which 

increase the maximum lift and control system effectiveness at a high angle of attack [78]. 

When used with a variable cambered wing, the F/A-18’s highly cambered LEX 

synergistically increases subsonic maximum lift, reduces both subsonic and supersonic 

drag-due-to-lift, and improves lateral control effectiveness.  

The effect of variable camber and LEX on the F-18 was studied by Patierno [70]. 

Figure 43 compares drag-due-to-lift at Mach 0.8 of the basic F-18 wing, the basic wing 

with LEX, and the variable camber wing with LEX. The figure clearly shows that the 

synergistic effect of variable camber and LEX in solid line creates significantly less drag-

due-to-lift at all angles of attack tested than the same wings without variable camber or 

LEX. 

 

Figure 42: F/A-18 Flap Deflection Schedules [180] 
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The F/A-18’s drag polar was generated using the internal aerodynamics module of 

FLOPS. The aero module in FLOPS uses the Delta method, an empirical drag 

correlation technique developed from nineteen subsonic and supersonic military aircraft 

and fifteen advanced or supercritical airfoil configurations, according to NASA CR 

151971 [181]. Regarding the applicability and limitation of the method, NASA CR 

151971 states that: 

[t]he Delta Method may be used for estimating the clean wing drag polar for cruise 

and maneuver conditions up to buffet onset, and to approximately Mach 2.0. … 

The method is applicable to wind tunnel models as well as to full-scale 

configurations. … Results obtained using this method to predict known aircraft 

characteristics are good and agreement can be obtained within a degree of 

accuracy judged to be sufficient for the initial processes of preliminary design. 

Since the method lacks the capability to model those sophisticated effects of LEX 

and wing camber scheduling, the aero model created in FLOPS was calibrated using 

actual drag polar of the F/A-18. F/A-18 drag polar data were collected from several 

public domain sources. Among them are NASA TM 3414 [182], which shows F/A-18 

drag polar at Mach 0.9 in Figure 44 and zero-lift-drag coefficients (CDo) and maximum 

lift-to-drag-ratio (L/Dmax) at Mach 0.6, 0.9, and 1.3 in Figure 45.  Moreover, Siewert 

[180] provides trimmed lift coefficient versus drag-due-to-lift curves at Mach 0.6, 0.8, and 

 
Figure 43: Effect of LEX and Variable Camber [70] 
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0.9 with various LE and TE flap scheduling as shown in Figure 46, Figure 47, and 

Figure 48. The effect of optimal LE and TE flap deflection is to significantly reduce the 

lift-related drag in Mach 0.6 and 0.8 as observed in the figures. The external store 

configurations were not stated in the references, so it was assumed that the data are for 

the clean configuration—no external stores but the two AIM-9s at the tips.  

 
Figure 44: F/A-18 Drag Polar at Mach 0.9 [182] 
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Figure 45: F/A-18 Zero Lift Drag Coefficient and Maximum L/D [182] 
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Figure 46: F-18 Trimmed Drag-Due-to-Lift at Mach 0.6 [180] 

 

 

 
Figure 47: F-18 Trimmed Drag-Due-to-Lift at Mach 0.8 [180] 
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Figure 48: F-18 Trimmed Drag-Due-to-Lift at Mach 0.9 [180] 

FLOPS calculates zero-lift-drag based on wetted areas, form factors, and skin 

friction drag coefficients for each body part and sums them up. The skin friction drag 

coefficient is a function of Reynolds number, and thus varies with altitude. Zero-lift-drag 

data used for calibration was assumed to be at 36,000 ft, which is approximately the best 

cruise Mach number of the F/A-18 [183].  Wetted areas were calculated rather than hard 

coded so that parametric variation of the vehicle geometry updates the wetted area and 

zero-lift-drag.  To calculate the drag-due-to-lift of the F/A-18 while accounting for the 

effects of LEX and variable camber, a very low value of the induced drag correction 

factor in FLOPS was used to match the minimum drag envelopes in Figure 46, Figure 47, 

and Figure 48. The baseline drag polar generated using FLOPS is plotted in Figure 49 at 

Mach numbers from 0.2 to 1.8 in 0.3 increments. The general trend is that as the Mach 

number increases at low subsonic speed, CDo decreases slightly and starts to increase 

from Mach 0.6 to Mach 0.9. Then, CDo increases dramatically in the transonic regime and 

then decreases again. Also, the drag-due-to-lift coefficient (CDi) is constant through the 
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subsonic regime and decreases in the supersonic regime. These trends agree with the 

general trend of drag polars found in other fighters, such as the F-15 Eagle [184]. In 

addition, the drag polar matches the actual F/A-18’s drag polar at Mach 0.6, 0.8, and 

0.9. In the supersonic regime, zero-lift-drag at Mach 1.3 matches the actual data. 
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                    *36,000ft; No external stores but one AIM-9s at each wing tip 

Figure 49: F/A-18 Drag Polar Generated in FLOPS  
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7.6.2.2 High Angle of Attack Aerodynamics during Maneuver and Landing 

To check conformance to some of the point performance requirements, such as approach 

speed and maximum instantaneous turn rate, accurate estimation of high angle of attack 

aerodynamic coefficients are essential. The F/A-18 boasted unprecedented high angle-of-

attack flight capability enabled by high-energy vortex systems generated by the forebody 

and LEX. Due to the interaction of this vortex system with the vehicle body, 

aerodynamics at high angles of attack are highly unsteady and non-linear and, thus, very 

difficult to estimate [185]. 

Highly sophisticated computational fluid dynamics (CFD) techniques are often used 

to simulate such physical phenomenon, complemented by wind tunnel tests during and 

after preliminary design stages. At least four independent wind tunnel tests were 

conducted with four different scaled models (0.03-, 0.06-, and 0.16-scale) and a full-scale 

production model of the F/A-18. References [185-190] report some of the wind tunnel 

test data at a high angle of attack with/without various attachments, such as a nose 

boom and LEX fences. In particular, Hall [185] compared the three different F/A-18 

wind tunnel test data sets for the maximum lift coefficient CLmax at the maneuver 

configuration of the leading edge (LE) flap deflection at a maximum value of 

approximately 34° and the trailing edge (TE) flap deflection angle at 0° as shown in 

Figure 50. Hall stated that “the values for the numerical maximum of CL and the 

respective alpha at which it occurs are 1.79 at alpha = 38° for the (NASA Langley) 30- 

by 60-Foot Tunnel, 1.81 at alpha = 40° for the (NASA Langley) 7- by 10-Foot High 

Speed Tunnel, and 1.82 at alpha = 40° for the (NASA Ames) 80- by 120-Foot Wind 
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Tunnel.” In the modeling of the F/A-18, a CLmax of 1.82 was used for instantaneous turn 

rate calculation.  

7.6.2.3 Drag Increment Due to External Stores 

The external stores a military combat aircraft are required to carry may increase the 

drag of the vehicle and thus degrade the vehicle’s mission and point performance. 

Therefore, it is essential to accurately model the drag increment due to various external 

store combinations at all operating speeds.  

External store drag was obtained for the two primary missions—interdiction and 

fighter escort available from the F/A-18 NATOPS Flight Manual [183]. Figure 51 and 

Figure 52 show the external stores for the interdiction and the fighter escort mission. 

The figures also show the drag contribution of each store item. In addition to the drag of 

each item, depending on the relative locations of such items, interference drag is added. 

 
            *LE Flaps at 34° and TE Flaps at 0° 

 

Figure 50: F/A-18 Lift Coefficient from Three Wind Tunnel Tests [185] 
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Interference drag increases with Mach number, and a comprehensive interference drag 

schedule is provided in the flight manual.  

 
Figure 51: External Stores for the Interdiction Mission [183] 

 

AIM-9 AIM-9

0.00.0

AIM-7AIM-7

4.04.0

 
Figure 52: External Stores for the Fighter Escort Mission [183] 
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Total store drag for the interdiction and fighter escort configurations is given in 

Table 18. The total store drag of the interdiction mission is about 150 counts and 

increases with Mach number. The fighter escort mission has only 8 counts of additional 

drag due to two AIM-7’s. During combat, the attack mission requires expending all four 

MK-83 bombs, and the fighter mission requires expending half the missiles and ammo. 

Two AIM-9 sidewinders are attached, one at each wing tip, as a default, and the absence 

of one reduces drag by 2.3 counts.  

Table 18: F/A-18 Store Drag in Counts 

Mission Interdiction Fighter Escort  

Mach before combat after combat before combat after combat 

0.6 142.5 128.5 8 1.7 

0.7 146.5 131.5 8 1.7 

0.8 152.5 136.5 8 1.7 

0.85 168.5 146.5 8 1.7 

 

7.6.3 Weight 

Empty and gross weights of the F/A-18 family are available in many sources with large 

discrepancies. Since the gross weight of the vehicle would depend on external stores, such 

as external fuel tanks, missiles, bombs, etc., it would be meaningless to compare gross 

weight without knowing the exact configuration. However, even operating empty weight 

differs as much as 2,000 lbs depending on the source, largely because of the fact that 

even within the same version an aircraft may come with different engines and 

equipments. In addition, non-unique definitions of “empty weight” seem to be used. In 

this document, all terms and definitions related to aircraft weight abide by MIL-STD-

3013 [172] as follows: 
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Weight Empty: Weight empty is defined as the weight of the air vehicle, complete 

by model design definitions, dry, clean, and empty, except for fluids in closed 

systems, such as the hydraulic system. Weight empty includes total structure 

group, propulsion group, flight controls group, avionics group, auxiliary power 

plant group, electrical group, etc. 

Basic Weight: Basic weight is defined as the weight empty adjusted for standard 

operational items, such as unusable fuel, engine oil, oxygen, and all fixed 

armament. 

Operating Weight: Operating weight is defined as the sum of basic weight plus 

such factors as crew, crew baggage, steward equipment, emergency equipment, 

special mission fixed equipment, pylons, racks, and other nonexpendable items not 

in basic weight. It is equivalent to takeoff gross weight less usable fuel, payload, 

and any items to be expended in flight. 

Payload: Payload is defined as any item which is being transported and is directly 

related to the purpose of the mission, as opposed to items necessary for the mission. 

Payload can include—but is not limited to—passengers, cargo, passenger baggage, 

ammunition, internal and external stores, and fuel which is to be delivered to 

another air vehicle or site. Payload may or may not be expended.  

Takeoff Gross Weight: Takeoff gross weight is defined as the sum of the operating 

weight, usable fuel weight, payload items required to perform a particular defined 

mission, and other items to be expended during flight.  

Following the definitions provided above, the weight breakdown of the F/A-18C was 

constructed based on published data. Table 19 shows a detailed breakdown of the F/A-

18C weight empty (We), operating weight, payload, fuel, and takeoff gross weight 

(TOGW) for both fighter escort mission and interdiction mission. While the F/A-18C’s 

weight empty could have increases over time, one fixed representative weight was used 

in this study due to lack of information on such continuous weight evolution. The F/A-

18C’s weight empty of 24,372 lb, found in a Government Accounting Office (GAO) 

document [191], is the weight of the LOT XVIII production model but is used here to 

represent all F/A-18Cs. The F/A-18C crew, unusable fuel, engine fluid, gun, ammo, and 
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chaff weight data are also from the same reference. Weights related to external stores, 

including missiles, pylons, launchers, pods, fuel tanks, and both internal and external 

usable fuel are from the NATOPS Flight Manual for the F/A-18A/B/C/D [183]. 

External stores condition and weight depend on whether the aircraft is in attack or 

fighter configuration. Among external store items, those that are not expendable during 

the mission were classified as operating weight. The F/A-18 in fighter configuration 

carries internal fuel of only 10,810 lb, while attack configuration carries 10,810 lb of 

internal and 6,720 lb of external fuel when all three 330-gallon tanks are attached. The 

fuel weight used throughout the study is based on JP-5 at a standard day density of 6.8 

lb per gallon. The sum of operating weight, payload, and usable fuel gives the takeoff 

gross weight of 34,966/47,783 lb (fighter/attack) for the F/A-18A and 37,508/50,325 lb 

(fighter/attack) for the F/A-18C.  
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Table 19: F/A-18C Weight Breakdown 

  Weight 

per Unit 

# in 

Attack 

# in 

Fighter 

Attack 

Weight 

Fighter 

Weight 

Weight Empty     24,372 24,372 

       

Crew     180 180 

Crew Equipment     59 59 

Unusable Fuel     207 207 

Engine Fluid     114 114 

Gun     204 204 

400 Rounds Ammo     100 100 

Chaff     52 52 

SUU-63 Wing Pylon 310 4 0 1,240 0 

SUU-62 Centerline Pylon 139 1 0 139 0 

ASS-38 Target FLIR 353 1 0 353 0 

ASQ-173 Laser Detector 165 1 0 165 0 

BRU-33/A Vertical Ejector 

Rack 

175 2 0 350 0 

Operating Weight     27,535 25,288 

       

FPU-8/A External Fuel Tank 290 3 0 870 0 

MK-83 1000 lb Bomb 1,000 4 0 4,000 0 

AIM-9 Sidewinder 195 2 2 390 390 

AIM-7 Sparrow 510 0 2 0 1,020 

Payload     5,260 1,410 

       

Internal Fuel     10,810 10,810 

External Fuel   2,240 3 0 6,720 0 

Usable Fuel     17,530 10,810 

       

Takeoff Gross Weight     50,325 37,508 
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Figure 53: F/A-18A/B/C/D Acceleration Limitations [183] 

FLOPS calculates aircraft weight based on designed structural limit and aircraft 

weight at the limit. Structural limit is defined by two criteria: how many g’s an aircraft 

can pull in symmetric maneuvers at specific loading and weight conditions; and speed 

limit. Figure 53 shows the F/A-18A/B/C/D’s structural limits during symmetrical 

maneuvers in both clean and fighter configurations. The F/A-18 initially had a design 

load factor (DLF) of 7.5 g’s with up to 32,000 lb of gross weight.  

The F/A-18E/F was designed for the same load factor, but the weight was increased 

to 42,097 lb as shown in Figure 54 [175]. This reference weight was used as a design 

variable, named Design weight for DLF. Comparison of this variable to the combat 

weight can be a measure of a vehicle’s growth potential in terms of structural strength. 

For example, if Design weight for DLF is 45,000 lb while actual combat weight is 42,000 

lb, the vehicle’s combat weight can increase further (up to 3,000 lb) without 

compromising its maneuver capability. Speed limits for all F/A-18 models in basic 
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configuration were Mach 2.0 at or above 35,000 ft. Speed limits are reduced if the 

altitude is lower than 35,000 ft or if configuration changes on flaps, landing gear, 

external stores, etc. are made.  

FLOPS calculates landing gear weight based on the maximum landing weight and 

aircraft type, i.e., carrier based or land based. Carrier maximum landing weight for the 

F/A-18A/B/C/D was 33,000 lb until 1994 and was then raised to 34,000 lb [191]. To be 

able to clear for a 34,000 lb landing, restrictions are applied to arresting gear, 

asymmetric loading conditions, and recovery wind over deck [183]. The F/A-18E/F was 

designed to land at up to 44,000 lb. While landing gear weight is determined by the 

maximum landing weight, it can be inferred from the history that the original F/A-18’s 

landing gear was designed with some level of safety margin. In sizing landing gear, a 

safety margin of 5 percent was added to the maximum operational landing weight.  

As a final note, it was necessary to calculate the weight of the F/A-18A and the 

F/A-18E. The F/A-18A’s weight empty of 21,830 lb was found from Young [76]. Then, 

 
Figure 54: F/A-18E/F Acceleration Limitations [175] 
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it was assumed that only weight empty is different from the C version and all other 

weight elements are the same. A detailed discussion and weight breakdown of the F/A-

18E is provided in §7.7.4 and in Table 31. 

7.6.4 Propulsion System Modeling and Calibration 

F/A-18s are powered by two General Electric F404 or F414 turbofan engines, depending 

on the version. F/A-18A/Bs and early productions of C/Ds are powered by F404-GE-400 

engines, and more recent C/D versions are powered by the enhanced performance 

derivative of F404-GE-400, designated as F404-GE-402. F/A-18E/Fs are powered by two 

F414-GE-400 engines. F404-GE-400 is a derivative of the General Electric YJ101 

turbojet engine, developed to power the US Air Force’s YF-17 aircraft [192]. The F404 

turbofan engine is a two-shaft augmented low bypass ratio turbofan with three-stage 

axial fans, seven-stage axial HP compressors, a single piece annular combustion chamber, 

and a single-stage axial HP turbine. F404-GE-402 engines provide performance 

improvements made possible by applying the latest technology and materials to the 

turbine and afterburner sections of the engine [193]. According to the engine 

manufacturer, General Electric [194],  

The F404-GE-402 Enhanced Performance Engine (EPE) provides higher power, 

improved fuel efficiency and increased mission capability for the F/A-18C/D 

Hornet. The enhanced engine retains the proven design characteristics of the 

baseline F404, while achieving increased performance through improved 

thermodynamic cycle and increased temperature. 

The F414-GE-400 is “an evolutionary engine based on the F404 [4].” The F414 used 

the F412 core, a non-afterburning derivative of the F404 that was partially developed for 

the A-12 program [82]. The F414 provides about 20% thrust increase over the F404 
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while keeping the engine size the same. Basic configurations and performance metrics of 

the F404 and F414 are summarized in Table 20. 

Table 20: General Specifications for the F404-GE-400 [175, 183, 192, 194-196] 

 F404-GE-400 F404-GE-402 F414-GE-400 

Fan Three-stage axial Three-stage axial Three-stage axial 

Bypass Ratio 0.32* 0.29* 0.29 

Airflow (lb/sec) 142 142 not listed 

HP Compressor Seven-stage axial Seven-stage axial Seven-stage axial 

OPR 26* 26 27.2 

Turbine Inlet Temp. (°F)  2,459 2,534 2,757 

Combustion Chamber Single-piece annular Single-piece annular Single-piece annular 

HP Turbine Single-stage axial Single-stage axial Single-stage axial 

LP Turbine Single-stage axial Single-stage axial Single-stage axial 

Nozzle Convergent-divergent Convergent-divergent Convergent-divergent 

Length (in) 154* 154 154 

Max Diameter (in) 35 35 35 

Weight, dry (lb) 2,195* 2,282 2,445 

Military Thrust (lbf) 10,700 10,800 14,327 

Max Thrust (lbf) 16,000 17,754 22,000 

SFC, Mil Thrust (lb/lbf.h) 0.81 0.81 0.84 

SFC, Max A/B (lb/lbf.h) 1.85 1.74 not listed 

Application F/A-18A/B/C/D F/A-18C/D F/A-18E/F 

Low Rate Production 1979  1996 

Unit Cost ($K) not listed  not listed 3564 

(*found in multiple sources and discrepancies exist, manufactures’ official websites took priority) 

 

The F404-GE-400 was modeled with QNEP [197], an engine cycle and performance 

analysis program developed for the US Navy. QNEP is an upgraded version of 

NEPCOMP [198] and is now part of NASA Langley’s FLOPS for engine cycle analysis. 

With given engine architecture and parameters, QNEP performs both on-design and off-

design point engine cycle analysis and writes an engine deck, which gives installed thrust 

and fuel flow in various combinations of altitudes, Mach numbers, and engine throttle 

settings. 
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The F404-GE-400 was modeled with the known engine parameters, and its 

performance was compared to the published data. Engine performance data is extremely 

proprietary and is published only under very limited conditions. However, actual 

maximum sea level installed thrust at five different Mach numbers were found in one of 

the GAO reports [191] and duplicated in Table 21. Installed thrust calculated by QNEP 

was calibrated to match the actual data at the sea level condition.  

Table 21: F404-GE-400 Maximum Installed Thrust at Sea Level 

Mach Number Altitude Maximum Installed Thrust (lbf) 

0.8 Sea Level 17,182 

0.9 Sea Level 16,927 

1 Sea Level 16,488 

1.1 Sea Level 15,487 

1.2 Sea Level 14,500 

 

Calculated maximum thrust at various Mach numbers and altitudes by QNEP is 

plotted in Figure 55. The maximum thrust at sea level matches the published data. As 

altitude increases, thrust decreases. The variation trend with Mach number and altitude 

is similar to the trends found on the Rolls-Royce RB211-535E4 [199] turbofan and a 

30,000-lb notional turbofan engine in [6]. Validation of the maximum installed thrust at 

above sea level was achieved indirectly by comparing the actual and calculated F/A-18 

point performance data in §7.6.6. 



 183

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

M
a
x
 T

h
ru

s
t 
(l

b
f)

Mach Number

Sea Level

5000 ft

10000 ft

15000 ft

20000 ft

25000 ft

30000 ft

35000 ft

40000 ft

45000 ft

50000 ft

55000 ft

 
Figure 55: F404-GE-400 Maximum Installed Thrust Calculated from QNEP 

Although the specific fuel consumption (SFC), a direct measure of the engine 

efficiency, of F404 was not available, fuel flow of the F/A-18 at various combinations of 

vehicle gross weight, altitude, Mach number, and store drag conditions is available from 

the NATOPS flight manual [183]. Engine efficiency of the F404 QNEP model was 

calibrated using these data. Table 22 shows comparisons of the calculated and actual fuel 

flow at various combinations of flight conditions that cover most of the flight envelope 

that are described by the interdiction and fighter escort mission profiles as given in 

Figure 37 and Figure 38. The comparison shows that the errors are reasonably small in 

both supersonic and subsonic flight regimes. 
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Table 22: Comparison of Calculated and Actual Fuel Flow of the F404-GE-400  

 

Drag Index 

(count) 

 

Weight 

(lb) 

 

Altitude 

(ft) 

 

Speed 

(Mach) 

Calculated 

Fuel Flow 

(lb/hr) 

Actual 

Fuel Flow 

(lb/hr) 

 

Error 

(%) 

DI=150 

  

  

  

  

  

  

  

  

  

  

  

  

42000 0 0.8 17172 17351 -1.03 

42000 5000 0.8 14334 14444 -0.76 

38000 10000 0.8 11821 11740 0.69 

38000 15000 0.8 9557 9547 0.11 

38000 20000 0.8 7963 7927 0.45 

38000 25000 0.8 6697 6689 0.12 

42000 30000 0.8 5873 5968 -1.60 

46000 30000 0.8 6235 6237 -0.03 

50000 30000 0.8 6933 6594 1.37 

38000 35000 0.8 5033 5014 0.38 

42000 35000 0.8 5505 5364 2.63 

30000 40000 0.8 4011 4025 -0.36 

34000 40000 0.8 4490 4391 2.25 

DI=0 

  

  

  

  

34000 35000 0.85 3479 3577 -2.75 

38000 35000 0.85 3787 3829 -1.09 

30000 40000 0.85 3037 3085 -1.57 

34000 40000 0.85 3416 3390 0.76 

38000 40000 0.85 3861 3779 2.17 

DI=8 

  

34000 35000 1.5 33988 34596 -1.76 

34000 15000 1.15 49680 49683 -0.01 
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7.6.5 Carrier Suitability  

Key performance parameters for carrier suitability are approach speed, launch and 

recovery wind over deck (WOD), and carrier recovery payload. These metrics are 

calculated for the F/A-18 in attack configuration. The minimum WOD required is the 

minimum ship speed required to ensure safe launch and recovery of carrier-based air 

vehicles. Thus, a small minimum WOD requirement is desired to allow for flexible ship 

operation.  

7.6.5.1 Approach Speed 

Historically, different organizations have used different methods to estimate approach 

speed, often basing estimates on the stall speed multiplied by a safety factor Sf.  

 
,app f stall landing

V S V= ⋅  (55) 

where Vstall,landing is the stall speed of an aircraft at landing configuration.  

 ,

max,

2
landing

stall landing

L landing

W
V

S Cρ

⋅
=

⋅ ⋅
 (56) 

where Wlanding is aircraft gross weight at landing, S is wing area, ρ is air density, and 

CLmax,landing is the maximum lift coefficient of the aircraft at landing configuration. 

Since 1953, for a military aircraft, a safety factor of 1.2 was required by MIL-A-8629 

[200] based on the power-off stall speed for landing, but industries started using a 

criteria based on power-on stall speed for landing. [201] Updated modern military 

standards provides more complicated means to estimate approach speed, as in MIL-STD-

3013 [172], considering not only aerodynamic capability but also longitudinal 

acceleration, pilot field of view (FOV), stability and control requirements per MIL-
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HDBK-1797 [202], and control system limits. Safety margin based on the stall speed is 

defined as follows [172]: 

For land-based aircraft: a speed that corresponds to 120-percent (120%) of the out-

of-ground effect power-off stall speed in the approach configuration, gear down 

For carrier-based aircraft (with the air vehicle in the landing configuration and on 

a 4º glide slope on a 89.8ºF day, zero wind): one-hundred-ten-percent (110%) of 

the power-on stall speed using the thrust (power) required for level flight (Vspa) at 

115-percent (115%) of Vsl, the power-off stall speed  

It is not clear whether the F/A-18’s specification was prepared following MIL-STD-

3013. Even if it were, the coupling of thrust and lift would have made parametric 

estimation of the F/A-18’s approach speed, which updates as vehicle parameters change, 

quite difficult. Therefore, a rather simple, fixed safety factor multiplication method as in 

Eqs. (55) and (56) was used to obtain such factors from actual F/A-18 stall and 

approach speed data.  

Table 23: F/A-18 Stall and Approach Speeds 

  A/B C/D E/F Units 

Stall Speed 112 114 114 knots 

Approach Speed 139 141 140 knots 

Wing Area 400 400 500 ft2 

Landing Weight 33,000 34,000 44,000 lb 

CLmax,landing 2.058 2.046 2.119  

Safety factor (Sf) 1.241 1.237 1.228  

*values in italics are estimations 

 

Actual stall and approach speeds of all three versions of the F/A-18 were found 

from [201] as summarized in Table 23. Using the tropical day air density of 0.00224 

slugs/ft3, CLmax,landing and the safety factors for each of the versions were calculated. It is 

important to note that CLmax,landing is different from CLmax discussed in §7.6.2.2. During 

approach for landing, all landing gear is lowered and LE and TE flaps are deflected fully 
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at 34° and 45° respectively, while CLmax was calculated with LE flaps at 34° and TE flaps 

at 0°. Estimated CLmax,landing and Sf are different from version to version. Apparently, the 

F/A-18E/F shows higher CLmax,landing than other versions due to its improved LEX design. 

7.6.5.2 Launch Wind Over Deck 

According to MIL-STD-3013, minimum launch wind over deck (VLWOD,min) is defined as 

catapult minimum end airspeed (Vc) minus catapult endspeed (VA). Operational launch 

WOD (VLWOD,op) uses catapult operational end airspeed (Vop), which is VA plus 15 knots 

as a safety margin.  

 
,

,

=
LWOD min c A

LWOD op op A

V V V

V V V

−

= −
 (57) 

where Vop = Vc + 15 knots. 

Catapult end speed (VA) is the speed to which a vehicle can accelerate with the aid 

of a catapult and its own thrust and is determined by catapult performance, vehicle 

weight, thrust, and drag. VA can be calculated using the following equation: 
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where 

Sc  = catapult power stroke, ft (302 ft for C13-2 catapult) 

Fn  = net thrust, lb 

D   = aerodynamic drag, lb 

W  = air vehicle weight, lb 

CEW  = catapult equivalent weight, lb (6680 lb for C13-2 catapult) 

Wsys  = system weight, lb = W + CEW 

VDL  = deadload velocity, knots (Catapult endspeed without thrust) 
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In addition, thrust and drag are to be evaluated at 0.7 VDL; primary mission is used 

for drag calculation, and minimum engine is used for thrust calculation. Deadload 

velocity (VDL) is solely determined by the catapult performance and the weight that is 

accelerated by the catapult. The relationship between VDL and aircraft gross weight for 

three types of catapults—C7, C11-1, and C13—is shown in Figure 56.  For the C13 

catapult, the limit on weight is 100,000 lb and the absolute speed limit is 150 knots.  

Catapult minimum end airspeed (Vc) is the minimum air speed required at the end 

of the catapult at which a vehicle can safely fly away and is primarily a function of the 

vehicle’s maximum lift capability and wing loading. For conceptual design of a carrier-

based aircraft, Vc is estimated based on “the speed represented by 90-percent of the 

maximum lift coefficient, power-off, out-of-ground effect,” according to MIL-STD-3013 

[172]. 

Using the equations presented above, F/A-18’s launch wind over deck (LWOD) was 

calculated. Launch configuration was assumed to be the attack configuration as 

 
Figure 56: Effect of Takeoff Weight on Catapult End Speed [7] 
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illustrated in Figure 51 with all landing gear down and LE and TE flaps approximately 

half deflected. The drag increment due to external stores, landing gear, and high lift 

devices was assumed to be 300 counts from the clean configuration. According to NASA 

TM-107601 [173], F/A-18 LE and TE flaps are deflected by 12 and 30 degrees during 

launch and 34 and 45 degrees during landing. The maximum lift coefficient during 

maneuvering with only LE flaps fully defected at 34 deg is 1.82 as described in §7.6.2.2, 

and CLmax,landing is 2.05 as estimated in §7.6.5.1. Here, the maximum takeoff lift coefficient 

(CLmax,takeoff) of 1.9 is assumed, considering that it should be larger than 1.82 and smaller 

than 2.05. Finally, the maximum afterburner thrust of one engine was used for thrust 

calculation. The F/A-18E/F is launched and recovered using a C13-2 catapult and MK7-

Mod3 arresting gear [203], and launching and recovery performance calculations for all 

F/A-18 versions were based on these systems. 

Table 24: F/A-18 Launch WOD Calculation 

  A/B C/D E/F Units 

Gross Weight 47,783 50,375 63,331 lb 

Wing Area 400 400 500 ft2 

Sc 302 302 302 ft 

Fn 16,000 17,754 22,000 lbf 

CDo at takeoff 0.055 0.055 0.055   

 ρ (tropical day) 0.00224 0.00224 0.002244 slug/ft3 

VDL 143.6 141.9 134.3 knot 

Wsys 54,463 57,055 70,011 lb 

VA 147.0 145.6 138.2 knot 

CLmax,takeoff (assumed) 1.9 1.9 1.9   

Vc 147.8 151.8 256.9 knot 

Vop 162.8 166.8 152.2 knot 

Launch WOD, op 15.9 21.2 29.0 knot 
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Based on the assumptions listed above, the F/A-18’s LWOD was calculated on a sea 

level tropical day. For validation purposes, calculated WOD was compared against the 

actual F/A-18 data, which was only known for E/F. As shown in Table 24, the 

calculated operational LWOD of E/F is 29 knots when the maximum takeoff lift 

coefficient of 1.9 is assumed, which is close to the actual value of 28 knots. 

Figure 57 illustrates the relationship between aircraft weight and various launch 

related speeds for the F/A-18A/B/C/D. Minimum launch WOD, determined by the 

difference between catapult operational end airspeed (Vop) and catapult endspeed (VA), is 

zero when the aircraft gross weight is about 41,000 lb and increases to 30 knots when the 

aircraft gross weight reaches 54,300 lb.  
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Figure 57: The F/A-18A/B Launch Airspeed/Catapult End Speed Envelope 
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7.6.5.3 Recovery Wind Over Deck 

Speeds related to approach and recovery of the US Navy aircraft are defined by MIL-

STD-3013 [172] as follows:  

• Recovery Wind Over Deck (RWOD): Recovery wind-over-deck is defined as the 

difference between touchdown speed and shipboard engaging speed. 

• Touchdown Speed (Vtd): For design purposes, touchdown speed is defined as that 

speed equal to 105-percent (105%) of carrier approach speed (Vpa). For 

operational air vehicles, touchdown speed will be determined using fleet survey 

data. 

• Shipboard Engaging Speed (Ve): The shipboard engaging speed is defined as the 

arresting gear engaging speed measured relative to the ship. 

 

In other words, 

 
1.05

RWOD td e

td pa

V V V

V V

= −

=
 (59) 

These relationships are also graphically presented in Figure 58. As shown in the 

figure, while an aircraft is approaching a carrier, the carrier itself moves away from the 

aircraft. The touchdown speed is the true airspeed experienced by the aircraft, while the 

speed of the aircraft relative to the ship (shipboard engaging speed) is less by the 

amount of WOD. Therefore, minimum RWOD is determined by the maximum speed 

limit of the arresting gear and minimum safe airspeed of the aircraft. Low minimum 

RWOD and LWOD requirements are preferred, since high values limits the way the ship 

is operated.   
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Figure 58: Carrier Aircraft Recovery Speed Relationships [201] 

Shipboard engaging speed is determined by the arresting gear maximum 

performance. MK7-Mod3 arresting gear performance from NAEC-MISC-06900 [204] is 

depicted in Figure 59. The arresting gear has the speed limit of 145 knots regardless of 

aircraft weight and has the cylinder pressure limit of 10,000 Pascal. Due to the cylinder 

pressure limit, the maximum engage speed is lowered from 145 knots when the aircraft is 

more than 40,000 lb.  

 
Figure 59: MK 7 Mod 3 Arresting Gear Performance [204] 
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Since approach speeds for F/A-18s are already calculated in §7.6.5.1, recovery WOD 

is readily calculated using Eq. (59). Table 25 shows the calculated recovery WOD of the 

F/A-18. With a MK7-Mod3 arresting gear, required WOD was calculated to be less than 

10 knots for all versions. Calculated E/F WOD matched the actual WOD of 8 knots as 

in Table 62. 

Table 25: F/A-18 Recovery Wind Over Deck 

   A/B    C/D   E/F Units 

Landing Weight 33,000 34,000 44,000 lb 

Wing Area 400 400 500 ft2 

Approach Speed 139 141 140 knots 

Touchdown Speed 146 148 147 knots 

Engaging Speed 145 145 139 knots 

Recovery WOD 1 3 8 knots 

 

7.6.5.4 Carrier Recovery Payload 

MIL-STD-3013 [172] defines the carrier recovery payload (CRP), or bring back 

capability, of a carrier-based air vehicle as  

… the maximum combination of fuel and expendable payload an air vehicle can 

land with, and not exceed its maximum landing weight. This is the maximum 

carrier/arrested landing weight less the operating weight. 

The maximum carrier/arrested landing weight for the F/A-18A/B/C/D was 33,000 

lb until 1994 when it was raised to 34,000 lb with restrictions [191]. The F/A-18A’s 

carrier recovery payload with an operating weight of 24,993 lb was 8,007 lb initially. 

However, as the F/A-18 gained weight over time, the bring back weight decreased 

accordingly. The 27,535 lb operating weight of the F/A-18C allowed only 5,465 lb of fuel 

and payload to be brought back upon carrier landing. That was a serious concern to the 

Navy, especially when training missions were forced to expend expensive, unused 
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weapons in order not to exceed the maximum landing weight. Raising the maximum 

carrier landing weight from 33,000 lb to 34,000 lb in 1994 did not solve the problem and 

further increasing maximum carrier landing weight would have required strengthening of 

landing gear and airframe and the addition of a larger wing to keep the approach speed 

at the same level. This poor bring back capability of the F/A-18C/D was one of the 

main reasons why the US Navy had to pursue a new aircraft, the F/A-18E/F. For the 

F/A-18E/F design, a bring back weight of 9,000 lb was required, while the maximum 

landing weight was set at 44,000 lb [191]. The F/A-18E/F’s operating weight of 34,481* 

lb provides the bring back capability of 9,519 lb, exceeding the requirement. This 

calculated value is very close to the published value of 9,500 lb as in Table 62. 

7.6.6 Synthesis and Validation of the F/A-18 Model 

Geometry, aerodynamics, weight, and propulsion models of the F/A-18 have been 

developed in the previous sections. In addition, the KPPs related to carrier suitability 

were calculated and compared to the published data. In this section, those previously 

developed elements are synthesized, forming a complete aircraft model to calculate both 

the fighter’s mission and point performance. To confirm the validity of the F/A-18 

model, the calculated point and mission performance are compared to the published 

data. Fighter performance depends in part on the difference between thrust available and 

thrust required. Therefore, accurate fighter performance calculation requires an accurate 

engine model and drag model. Correct estimation of the mission radius is only achievable 

                                                                                       

*The definition of operating weight is different in the context of carrier recovery payload. Here, operating 

weight is landing weight less fuel and expendable payload such as missiles and bombs. See Table 31 for the 

F/A-18E weight breakdown. 
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when aerodynamics, engine efficiency, weight, external stores weight and drag, and, most 

importantly, the mission itself are all accurate. All the procedures, methods, and 

assumptions are documented to provide traceability of the work, and calculated vehicle 

performance is compared to the actual F/A-18 performance when such data are available. 

7.6.6.1 Fighter Performance 

Fighter performance metrics of interest are combat ceiling, specific excess power, 

acceleration, and turn rate. All of these metrics are calculated for the standard fighter 

configuration (two AIM-9s and two AIM-7s only) with 60 percent internal fuel, unless 

otherwise noted. These point performance metrics are essentially a function of engine 

thrust available and engine thrust required, which is equal to drag. For the F/A-18C, 

the engines are two F404-GE-402s at maximum afterburner thrust.  

Combat ceiling is defined as “the altitude at which the maximum steady-state rate-

of-climb potential is 500 ft per minute for a specified configuration, weight, speed, and 

thrust (power) setting”, in MIL-STD-3013. The F/A-18A/B combat ceiling is about 

53,600 ft, according to the NATOPS Flight Manual, and the calculation using FLOPS 

was 53,374 ft for the A version and 53,141 ft for the C version. 

MIL-STD-3013 also defines specific excess power (Ps) as  

… the time rate of change of specific energy and is a measure of the capability of 

the air vehicle to change energy levels for a specified configuration, altitude, speed, 

and thrust (power) setting. Specific excess power is usually expressed in feet per 

second, and is defined as follows: 

 
( )

1.6878 n tas

s

F D V
P

W

−
=  (60) 

where Fn is net thrust in pounds; D is aerodynamic drag in pounds; Vtas is true airspeed 

in knots; and W is air vehicle weight in pounds. 
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NAVAIR reports in a GAO document [191] some of the F/A-18C’s point 

performance measured at the combat weight of 33,325 lb with maximum afterburner 

thrust of two F404-GE-402 engines: Ps is 699 ft/sec at Mach 0.9, 10,000 ft; acceleration 

capability is to take 55.8 seconds from Mach 0.8 to 1.2 at 35,000 ft; and turn rate is 12.3 

degrees/sec at 15,000 ft.  

The FLOPS model calculated these three fighter performance measures at the same 

condition: Ps was 686.7 ft/sec; the acceleration time was 66.54 seconds; and the turn rate 

was 12.393 degrees/second. While calculations of the two measures were close to the 

actual values, the acceleration time was noticeably higher. It seems that the 

aerodynamics model overestimates the wave drag at around Mach 1.  

7.6.6.2 Mission Performance 

To confirm the validity of the F/A-18 computer model, the calculated mission 

performance is compared to the published mission performance. Mission performance was 

compared in terms of the mission radius rather than the fuel quantify burned to fly a 

designed range. Correct estimation of the mission radius is only achievable when 

aerodynamics, engine efficiency, weight, external stores weight and drag, and most 

importantly the mission itself are all correct.  

The F/A-18A/B/C/D NATOPS Flight Manual [183] provides the amount of fuel 

required for each of the mission segments, such as engine start, warm-up, takeoff, 

acceleration to climb speed, climb, cruise, and reserve, based on a series of flight tests in 

various combinations of flight conditions, such as weight, external stores, etc.  For 

example, the combinations of best cruise Mach number and altitude and climb speed 

schedule for minimum time-to-climb are databased under different weight and drag 
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conditions. All the mission segments that comprise the fighter and attack mission profiles 

were modeled in the F/A-18 FLOPS model and validated against the NATOPS Flight 

Manual. The segment-by-segment comparison of the fuel consumption confirmed 

accuracy of the FLOPS model. 

Then, as the next step, the F/A-18 model was flown for five different mission 

profiles. They are hi-lo-lo-hi interdiction as in Figure 37, hi-hi-hi interdiction, fighter 

escort as in Figure 38, ferry, and combat ferry missions. The standard hi-hi-hi 

interdiction mission profile from MIL-STD-3013 is shown in Figure 60. It is identical to 

the hi-lo-lo-hi interdiction described in §7.2.1 except that the 50 nm penetration and 

withdrawal is conducted at a fixed altitude, which is the end altitude of the cruise out 

segment. The ferry/combat ferry mission profile is depicted in Figure 61. A (combat) 

ferry mission is defined as “a range mission conducted without payload to depict the 

maximum range capability of the air vehicle [172].” The combat ferry mission is 

performed with internal fuel only while the ferry mission uses all external fuel tanks. For 

complete mission descriptions of these missions, see MIL-STD-3013.  

 
Figure 60: Interdiction (Hi-Hi-Hi) 
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Figure 61: Ferry Mission 

Mission analyses were performed for the five mission profiles for both the F/A-18A 

and C with various external store and reserve fuel conditions. For the fighter and ferry 

missions, land-based reserve mission fuel of 20 minutes loiter plus 5 percent of initial fuel 

was assumed among other standard reserve conditions. For the interdiction missions, 

either the land-based reserve fuel, fixed fuel between 3,500 lb to 4,000 lb, or 100 nm 

BINGO was assumed appropriately. Assumptions on external stores also had to be made 

for some cases, but the error in fuel consumption caused by an incorrect external store is 

insignificant as long as the number of external fuel tanks used is correct. 

Mission radius (range for the ferry missions) calculated from the mission analyses 

are compared to the actual data as shown in Table 26. For each comparison, actual or 

assumed external store conditions and reserve conditions are listed. The shaded entries in 

the table are assumptions. The calculated and actual mission radius match very closely 

for all ten different cases analyzed with the F/A-18C model, which approves the validity 

of the vehicle model created in this study. On the other hand, the calculated radius for 

the interdiction and ferry mission are significantly lower than the published numbers in 

the case of the F/A-18A model. Calculated ferry range was 1,763 nm and calculated 

interdiction (hi-lo-lo-hi) was about 500 nm, which are about 10% lower than the 

published 1,800+ or 2,000+ nm and 550 or 575 nm.  

This rather large difference seems to be attributed to two reasons: First, the 

published performance is based on the F/A-18A empty weight lower than the 21,830 lb 
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that was used in the analyses. The published mission radius could have been based on 

the weight of the very early production version of the F/A-18A or even the prototype 

version. The second explanation is that the published data are estimation rather than 

actual flight test data. This argument is supported by the fact that the 550 nm 

interdiction radius was initially mentioned by Lenox in 1976 [77], which was four years 

before the first delivery in 1980 and two years before the first test flight occurred on 

November 18, 1978. Thus, the author claims that the 10% difference between the 

published and calculated mission radius with the F/A-18A model does not undermine 

the validity of the vehicle models created in the study. 
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Table 26: Comparison of Calculated and Published Mission Performance 

Mission Type Version Published Calculation Fuel Tanks Stores Source/Year Reserve Type Reserve Condition Mission Profile 

Interdiction A 550 496 (3) 330 gallon Note 1. Lenox 1976/ Janes 81 Land-based 20 min + 5% of initial fuel 

As in Figure 37 

(Hi-Lo-Lo-Hi) C 290 294 (2) 330 gallon Note 1. Janes 1992-93 Carrier-based 4000 lb of fixed fuel 

  C 304 305 (2) 330 gallon Note 2. DoD 1996 Carrier-based 3800 lb of fixed fuel 

  C 325 320 (2) 330 gallon Note 1. Hornet 2000 Study1988 Carrier-based 3500 lb of fixed fuel 

  C 369 372 (3) 330 gallon Note 2. DoD 1996 Carrier-based 4000 lb of fixed fuel 

  C 415 412 (3) 330 gallon Note 1. CRS 2007 Carrier-based 3500 lb fixed 

Interdiction C 395 395 (2) 330 gallon Note 2. DoD 1996 Carrier-based 3800 lb of fixed fuel 
As in Figure 38 

(Hi-Hi-Hi) C 470 462 (3) 330 gallon Note 2. DoD 1996 Carrier-based 4000 lb of fixed fuel 

Fighter Escort A 400+ 401 None Note 3. Lenox 1976/ Jane80-87 Land-based 20 min + 5% of initial fuel 
As in Figure 60 

  C 366 360 None Note 3. CRS 2007 Land-based 20 min + 5% of initial fuel 

Ferry A 2000+ 1763 (3) 330 gallon (2) AIM-9 Janes 1980-91 Land-based 20 min + 5% of initial fuel 

As in Figure 61*   A 1800+ 1763 (3) 330 gallon (2) AIM-9 Janes 1992-3 Land-based 20 min + 5% of initial fuel 

  C 1546 1564 (3) 330 gallon (2) AIM-9 Navy 2008 Land-based 20 min + 5% of initial fuel 

Combat Ferry C 1089 1106 None (2) AIM-9 Navy 2008 Land-based 20 min + 5% of initial fuel As in Figure 61 

Note 1. (2) AIM-9, FLIR, Laser Spot Tracker Pod, (4) MK-83  

Note 2. (2) AIM-9, FLIR, NAVFLIR, (4) MK-83LDGP  

Note 3. (2) AIM-9, (2) AIM-7  

*2500 lb of combat fuel was assumed for the combat segment following Jane’s All the World Aircraft 1987-1988 
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7.6.7 Summary of Modeling and Simulation I 

In Step 5, a computer model of the F/A-18C was constructed using FLOPS. The 

validity of the model was confirmed by comparing the calculated aircraft performance to 

the published data at both the subsystems level and the systems level. As a summary, 

the mission performance, carrier suitability, and fighter performance as in the KPPs 

defined in Step 1 are compared in Table 27. The review of the actual F/A-18C data is 

provided in APPENDIX B. 

Table 27: F/A-18C Performance Comparison 

Category Key Performance Parameters Published Calculated Units 

Mission 

Performance 

Fighter escort radius 366 360.35 nm 

Interdiction mission radius 369 371.9 nm 

Carrier 

Suitability 

Recovery payload 5,623 5,465 lb 

Launch wind over deck  not listed 21.23 knots 

Recovery wind over deck  not listed 3 knots 

Approach speed  141 141 knots 

Fighter 

Performance 

Combat ceiling 53,141 52,339 ft 

Specific excess power at 0.9M/10,000 ft 699 686.7 ft/sec 

Acceleration from 0.8M to 1.2M at 35,000 ft  55.8 66.54 sec 

Turn rate at 15000K 12.3 12.039 deg/sec 

 

7.7 Modeling and Simulation II: Step 6 

As the future requirements are expected to grow in the future, the baseline vehicle is also 

expected to grow to meet or exceed the evolving requirements. To model physical growth 

of the vehicle, a set of scaling laws are established and validated in this step.  

FLOPS has the capability to capture the effects of parametric variations of vehicle 

characteristics to some degree. For example, FLOPS has some logics to evaluate changes 

in weight, aerodynamics, engine performance, etc. FLOPS was used as a primary means 
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to model the upgrades whenever possible. However, FLOPS is limited in handling the 

issue of volume requirement and availability of a fighter aircraft. Thus, a computer code 

to volumetrically size the F/A-18 baseline was written. In addition, scaling laws for aft-

body size, tail size, weight change, and external stores weight and drag changes were 

developed and calibrated. The scaling laws were validated by applying them to the F/A-

18C model created in Step 5 to model the F/A-18E and by comparing the performance 

of the F/A-18E model to published data.  

In addition to ensuring physical scalability of the model, it is essential to create a 

model to capture the cost of vehicle upgrade. The cost model of the notional fighter was 

created primarily through the use of Military Aircraft Life Cycle Cost Analysis 

(MALCCA) [205], a FORTRAN code developed by the Aerospace Systems Design 

Laboratory at Georgia Tech. The software was developed to work with FLOPS 

seamlessly and automatically reads the vehicle definitions from the FLOPS input file. 

Moreover, since MALCCA was developed based on supersonic fighters such as the F-18 

and the F-16, the code is quite suitable to model a notional fighter based on the F-18. 

While MALCCA has the functionality to model the cost of developing a derivative 

aircraft as well as a new aircraft, it requires a pre-process to provide the necessary inputs 

to calculate aircraft upgrade cost. A set of logics was established and written as a 

computer code to prepare inputs to MALCCA.   

7.7.1 Volumetric Sizing 

One of the aspects of aircraft sizing is balancing aircraft internal volume available and 

required. During the sizing process, those volumes available within the wings and 
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fuselage are calculated and the fuselage is sized to make sure that available volume is 

larger than required volume. This imposes a constraint in aircraft sizing as follows: 

 Internal volume required Internal volume available 0− ≤  (61) 

It is customary in aircraft design to allow some margin or growth potential in 

volume to allow for redesign or repackaging in the case of requirement growth and/or 

error in estimating either the volume required or available. However, for fighter aircraft 

that are required to fly supersonically, cross-sectional areas are minimized to reduce 

wave drag by packaging the internal area as tight as possible. Cases studies in Chapter 3 

showed that for fighter aircraft limited volume available inside the airframe had posed 

great challenges in modifying existing available versus the volume required is very likely 

an active constraint and, therefore, must be accounted for. This section discusses volume 

issues of the F/A-18 and how to calculate both required and available volume when 

design changes are made. 

7.7.1.1 Actual F/A-18 Internal Volume Available and Required 

The F/A-18 was originally designed with room for growth in terms of the volume, 

although the exact magnitude is unknown. Wood’s [206] indication of the F-18 A being 

designed with 15-20 years of growth potential gives a rough idea, but the allocation of 

such growth potential had to be assumed. Over time, a series of upgrade programs added 

more avionics, leaving very little room for growth eventually. By the time when the need 

for the E/F was established, the F/A-18C/D was expected to have only 0.2 ft3 of usable 

volume remaining when all the planned avionics upgrades had been executed through the 

mid-1990s [191]. The fact the C/D version would reach its growth potential in terms of 
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the volume availability was one of the major reasons why the E/F program was 

initiated. 

In the design of the F/A-18E/F, additional internal volume was needed over C/D’s 

internal volume to accommodate 573 gallons of additional internal fuel. In addition to 

the extra internal fuel, 17 ft3 extra room was required to provide volume for P3I avionics 

upgrades from the F/A-18C/D’s FY 1998 avionics package [191]. The required internal 

volume was appropriated from both the wings and the fuselage. The F/A-18E/F’s 25 

percent larger wing provided a 244 gallon fuel tank in each wing, which is a 187 percent 

increase from the 85 gallon fuel tank of the F/A-18A/B/C/D. In addition to a larger 

wing, a 34 inch fuselage plug was added to acquire more volume for fuel and equipment. 

Figure 62, taken from the F/A-18A/B/C/D and E/F NATOPS Flight Manuals [175, 

183], shows the internal fuel tanks of the F/A-18A/C (one seat version) at the top and 

the F/A-18E/F (both one seat and two seat versions) at the bottom. The bottom figure 

shows that the difference between the E and F versions is that the F version has a 

shorter fuselage tank (tank 1) with 138 gallons less capacity in order to accommodate 

the second pilot. It is clearly seen from the figure that E has larger wing fuel tanks and 

longer fuselage tanks. The fuel capacity of each tank is summarized in Table 28.  
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Figure 62: The F/A-18A/C (Top) and the E/F (Bottom) Fuel Tanks [175, 183] 
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Table 28: F/A-18 Internal Usable Fuel Volume in US Gallon [175, 183]  

Tank Number F/A-18A/C F/A-18E 

Tank 1 418 350 

Tank 2 263 383 

Tank 3 206 385 

Tank 4 532 555 

Total Fuselage 1,419 1,673 

Internal Wings 170 489 

Total Internal 1,589 2,162 

 

7.7.1.2 Calculation of Extra Internal Volume Available and Required 

Based on the F/A-18’s volumetric information, collected and summarized in the previous 

section, a set of rules to calculate volume required and available are developed in this 

section. The point of interest here is not the total volume available and required but the 

change of those volumes due to the change in the need for internal fuel capacity and 

avionics. As in the case of the F/A-18E/F, the extra volume needed is acquired by 

stretching the fuselage and/or enlarging the wing.  

First, extra volume available by stretching the fuselage (∆VA,fuse) was calculated as 

follows: 

 
, 4A fuse f

V Cd h l
κ

∆ = ⋅ ⋅ ⋅∆⋅  (62) 

where d is fuselage maximum width; h is fuselage maximum height; ∆l is length of the 

fuselage plug; κ is sectional shape factor, e.g. π for a circle or an ellipse, 4 for a square; Cf 

is the fraction of usable volume out of total internal volume. 

It was assumed that for this particular fighter application, additional fuel and 

avionics were located using following rules: 

• Additional internal fuel is stored in the wing if any volume is available 
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• The rest of the additional fuel, if any, is stored in the fuselage  

• Avionics are only placed in the fuselage 

Then, volume available within the wing (Wfuel,wing) by increasing the wing area is all 

reserved for extra fuel and is calculated using a formulation in FLOPS. 

 
,fuel wing f f

W R P S∆ = + ⋅∆  (63) 

where Rf is reference fuel capacity in pounds (1,156 lb for F/A-18A/B/C/D); Pf is a 

factor to convert wing volume available to fuel capacity in pounds (21.692 for F/A-18); 

and ∆S is wing area change in ft2 (100 ft2 for F/A-18). 

All the additional avionics and required fuel less the extra fuel that went to the 

wing are placed in the fuselage. The fuselage volume required (VR,fuse) to house these 

items is calculated by 

 
, ,

1.05 ( )
R fuse fuel fuel fuel wing eq eq

V W W Wρ ρ∆ = ∆ −∆ +  (64) 

where ∆Wfuel is additional internal fuel capacity required in pounds; ρfuel is fuel density; 

∆Wequip is additional equipment in pounds; ρequip is average density of additional 

equipment. 

In order to apply the proposed formulations on the baseline F/A-18, the extra 

volume available using the fuselage plug was estimated first. Figure 63 shows the F/A-18 

Hornet’s planform view and cross-sectional geometry at various fuselage stations (FS). 

The fuselage starts with a circular cross-section at the nose (FS 68) and is stretched 

longitudinally to form an ellipse before the cockpit is attached. As it passes the cockpit, 

the shape becomes close to square. The cross-section at FS 357 covers a larger area than 

an ellipse but a smaller area than a square. In general, fuselage plugs are inserted in the 

middle of the vehicle section to minimize the longitudinal variation of the center of 
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gravity. Considering the CG location of the F/A-18 marked in the figure, it was assumed 

that the 34-inch fuselage plug that was inserted in the mid fuselage section uniformly 

follows the cross-sectional shape of the FS 357. The 34-inch fuselage plugq using FS 357 

sectional geometry, gives 55.257 ft3 of volume under the skin. Subtracting 5 percent of 

assumed unusable volume, 52.49 ft3 of usable fuselage volume was obtained.  

As for calculating required volume, it was assumed that all the fuel goes to the wing 

volume first and any remainder goes to the fuselage. Knowing the fuel weight that 

should go to the fuselage, the volume for fuel is calculated assuming JP-5 jet fuel at 

standard temperature density of 6.8 lb per gallon. In addition, the volumes required for 

avionics and equipment are calculated based on the weight of the system multiplied by 

 
Figure 63: F/A-18A/B/C/D Planform and Cross-Sectional Geometry [207] 
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the average density. The average density of avionics and equipment was assumed at 25 

lb per cubic foot, which is approximately the density of the F404-GE-400 engines.  

Finally, volume growth potential is calculated by subtracting required volume from 

available volume. Table 29 shows the calculated growth potential of the F/A-18A, C, 

and E with C avionics and E with its upgraded avionics. The avionics weights of the C 

and E versions are from [4]. The avionics weight of the F/A-18A was not available, and 

thus an assumption had to be made. With 1,089 lb of assumed avionics weight, it can be 

said that the F/A-18A was designed with 8.2 ft3 of volume growth potential. As avionics 

weight increased over time, the F/A-18C reached a point where remaining volume 

available was only 0.2 ft3. The F/A-18E’s growth potential—when equipped with the 

F/A-18C’s avionics package—was calculated to be 17.1 ft3, which is close to the 

published value of 17 ft3. Finally, the current F/A-18E growth potential after the P3I 

avionics upgrade was calculated to be 12.2 ft3. 

Table 29: F/A-18 Volume Growth Potential Calculation 

Version A C E  

(w/C avionics) 

E  Unit 

Wing area 400 400 500 500 ft2 

Wing fuel capacity 1,156 1,156 3,325 3,325 lb 

Fuselage plug length 0 0 2.83 2.83 ft 

Fuselage fuel capacity 1,419 1,419 1,673 1,673 lb 

Avionics weight 1,089* 1,289 1,289 1,411 lb 

Growth potential 8.2 0.2 17.1 12.2 ft3 

       *F/A-18A avionics weight was assumed.  

7.7.2 Aft-Body Sizing 

For a fighter aircraft with air breathing propulsion systems integrated into the airframe, 

the sizing of the structure that houses the engines, induces air flow into the engines, and 

discharges the air from the engine exit is one of the most important aspects of aircraft 
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sizing. History has shown that it is very likely that the engine thrust of a given aircraft 

would grow over time. Engine manufacturers usually provide a series of upgraded 

derivative engines by increasing the mass flow while keeping the core of the baseline 

engine. Engine upgrade might be easier if the engines are mounted in nacelles that are 

outside of the wing or fuselage, which are common cases for the commercial transports. 

However, upgrading propulsion systems could cause huge challenges if they start to 

interfere with other components. As shown in the case studies in §3.3, re-engining of the 

F-4K/M phantom for the Royal Navy required the entire redesign of aft-fuselage, inlets, 

and ducts. 

Considering the very high possibility of upgrading the engines later on, it is a 

common engineering practice to provide some extra room for growth provisions as 

Northrop did on the F-5G as introduced in §3.1.1.1. For the F/A-18, the original inlet 

and nacelle design seems to have some level of growth potential, considering the fact 

that engine enhancement from F404-GE-400 to F404-GE-402 was done without 

modifying airframe structures, while thrust increased by approximately 11 percent. Then, 

during the next round of upgrade program (the E/F program), nacelle length, measured 

from the tip of the inlet to the end of the nozzle, increased from 25.65 ft to 30.48 ft, 

while engine thrust increased from 17,754 lb to 22,000 lb.  

To properly size the aft-body structure related to engine mount and operation, it is 

necessary to define a way to scale those structures and measure their growth potentials. 

In this study, the entire structure including engine compartment, inlets, ducts, and 

nozzles are viewed as a nacelle assembly and sized together. The aft-body of the FA-18 is 

two nacelle assemblies attached side-by-side.  
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The dimension of nacelle assembly is represented by its diameter (dn) and length (ln). 

A scaling law to size a nacelle assembly is proposed and validated based on the F/A-18 

data. A nacelle assembly is scaled based on the engine thrust following the formulation: 

 
,

,

( / )

( / )

k

n n ref ref

k

n n ref ref

l l T T

d d T T

= ⋅

= ⋅
 (65) 

where ln and dn,ref are the length and diameter of the baseline nacelle assembly; T is 

engine thrust; Tref is baseline engine thrust; and k is the exponential factor to scale 

nacelle size. For the value of k, 0.5 is selected, considering that engine thrust is 

proportional to the mass flow rate if the core is the same and mass flow rate is 

proportional to the engine cross-sectional area, which is proportional to the engine 

diameter squared.  

To identify reference nacelle size and engine thrust, it was assumed that growth 

potential of 12 and 15 percent were embedded in the design of the F/A-18A/B’s and 

E/F’s aft-body, respectively. Finally, since actual F/A-18’s nacelle diameter was hard to 

measure, 48-inch diameter was assumed to give room for structure, installation, and 

maintenance of 36-inch diameter F404-GE-400/402 engines. Based on these assumptions, 

nacelle length and diameter were calculated as shown in Table 30 Calculated nacelle 

lengths matched actual nacelle assembly lengths of all F/A-18 versions.  

In summary, the notional fighter’s aft-body is scaled using two parameters, engine 

thrust and nacelle assembly growth potential. As those two parameters change, nacelle 

assembly length and diameter are calculated and inputted to FLOPS. Then, FLOPS 

estimate the weight and drag effect of the new aft-body size.  
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Table 30: F/A-18 Nacelle Assembly Size  

  A/B C/D E/F Unit 

Engine thrust 16,000 17,754 22,000 lb 

Ref. thrust for aft-body sizing 17,920 17,920 25,300 lb 

Nacelle growth potential 12 0.94 15 % 

Actual nacelle length 25.65 25.65 30.48 ft 

Calculated nacelle length 25.65 25.65 30.48 ft 

Calculated nacelle diameter 48 48 57 in 

      Note: Values in italics are assumptions. 

 

7.7.3 Horizontal and Vertical Tails 

Horizontal and vertical tail areas are determined considering stability and control 

aspects of the aircraft at all expected flight conditions. During conceptual design of 

aircraft, however, it is conventional to estimate required tail surface areas based on 

historical trend. By understanding that the function of horizontal and vertical tails is to 

counteract the movement about the center of gravity of the aircraft, mainly produced by 

the wing, a consistent trend between the wing geometry and required tail areas is 

observed. This trend is formulated into two non-dimensional parameters called tail 

volume coefficients [6]. 

In FLOPS, tail areas are either hard-coded or calculated based on the tail volume 

coefficients, wing area, aspect ratio, and fuselage length. Knowing those geometric 

variables of the F/A-18A/B/C/D (as in Table 15) and the F/A-18E/F including 

horizontal and vertical tail areas*, tail volume coefficients were calculated and inputted 

into FLOPS to model the C/D version. Then, the tail areas of a notional aircraft are 

calculated by FLOPS as wing area and other geometry varies. The volume coefficients 

                                                                                       

*“The E/F …  have a 25-percent larger wing, a 35-percent larger horizontal tail, a 15-percent larger vertical 

tail, and a 34-ince fuselage extension [75].” 



 213

were linearly interpolated with respect to the wing area from the settings of the C/D and 

E/F versions.  

7.7.4 Weight 

F/A-18E weight breakdown is also constructed as shown in Table 31. The empty weight 

of 30,564 lb from reference [153] was used, since the performance metrics listed in Table 

35 are based on that production model. Crew, unusable fuel, gun, chaff, etc. were 

assumed equal to those of the F/A-18C. External stores and usable fuel weight is from 

the F/A-18E/F NATOPS Flight Manual [175].  

Using the F/A-18C FLOPS model, the weight of the F/A-18E was calculated by 

setting the design parameters at the E’s values as listed in Table 34. Subsystem weight 

scaling factors that were used to calibrate the F/A-18C model remained unchanged. 

Table 32 compares the calculated and actual weights of the F/A-18E in attack 

configuration. Using the same calibration factors, FLOPS estimated the weight empty 

with less than one percent of error.  
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Table 31: F/A-18E Weight Breakdown 

  Weight 

per Unit 

# in 

Attack 

# in 

Fighter 

Attack 

Weight 

Fighter 

Weight 

       

Weight Empty     30,564 30,564 

       

Crew     180 180 

Crew Equipment     59 59 

Unusable Fuel     207 207 

Engine Fluid     114 114 

Gun     204 204 

400 Rounds Ammo     100 100 

Chaff     52 52 

SUU-80 w/BRU-32 LD Pylon 181 2 0 362 0 

SUU-80 w/ADU-773 LD Pylon 123 2 0 246 0 

SUU-79/A w/BRU-32 STD Pylon 310 2 0 620 0 

ARR-55 Nav. FLIR pod 214 1 0 214 0 

AAS-46 Target FLIR 370 1 0 370 0 

SUU-78/A w/BRU-32 Centerline Pylon 139 1 0 139 0 

Operating Weight     33,431 31,480 

       

480 GAL. Tank Wing Tank 350 2 0 700 0 

480 GAL. Tank Centerline Tank 350 1 0 350 0 

MK-83 1000 lb Bomb 1005 4 0 4,020 0 

AIM-9 Sidewinder 195 2 2 390 390 

AIM-120 AMRAAM 345 0 2 0 690 

Payload     5,460 1,080 

       

Internal Fuel     14,700 14,700 

External Fuel Wing Tank 3260 2 0 6,520 0 

 Centerline Tank 3220 1 0 3,220 0 

Usable Fuel     24,440 14,700 

       

       

Takeoff Gross Weight     63,331 47,260 
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Table 32: F/A-18E/F Weight in Attack Configuration 

 Actual Calculated 

Weight Empty 30,564 30,832 

Payload 7,411 7,411 

Usable Fuel 24,440 24,440 

Takeoff Gross Weight 63,331 63,599 

 

7.7.5 Weight and Drag of External Stores 

Geometric growth of a vehicle affects both weight and aerodynamic properties of the 

vehicle. For the major subsystems, FLOPS updates weight and aerodynamics 

parametrically as design changes. However, the weight and drag changes due to external 

stores must be pre-calculated and inputted to FLOPS.  

In the case of the F/A-18, externally carried payloads are missiles, bombs, pods, and 

fuel tanks. Drag contribution of pods is relatively small, since they are attached at the 

fuselage stations without pylons. Drag increment due to missiles and bombs and 

associated pylons can be calculated using the data in the flight manual. For example, 

drag contribution of two AIM-7s and two AIM-9s is 8 counts and increases to 24.8 

counts if two AIM-120s are installed instead of two AIM-7s.   

Among the externally carried items, drag contribution is dominated by external fuel 

tanks, and the contribution from bombs and missiles is relatively small. Drag 

contribution from an external fuel tank is significant enough to affect aircraft 

performance in a very meaningful way. Table 33 lists the drag and weight of fuel tanks 

and pylons for both the F/A-18C/D and E/F. As fuel capacity per tank increases from 

330 gallons to 480 gallons, drag increases more than a hundred percent. When all three 

external fuel tanks are carried, storage drag due to fuel tanks and pylons is 86.8 counts 
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for the 480-gallon tanks and 39.5 counts for the 330-gallon tanks. Total weight increases 

from 870 lb. to 1,050 lb. Using these actual C/D and E/F fuel tank data, weight and 

drag for a rubberized fuel tank were interpolated according to its fuel capacity and 

inputted to FLOPS for mission analysis.  

Table 33: Weight and Drag of F/A-18 External Fuel Tanks and Pylons  

Version Item Name Weight 

(lb) 

Drag 

(count) 

C/D 330 GAL Tank External Fuel Tank 290 10.5*/14.5† 

 SUU-63 Wing Pylon 310 7.5 

 SUU-62 Centerline Pylon 139 3 

E/F 480 GAL. Tank External Fuel Tank 350 25*/30.9† 

 SUU-79/A w/BRU-32 STD Pylon 310 9.4 

 SUU-78/A w/BRU-32 Centerline Pylon 139 1 

* When attached to the centerline pylon 

† When attached to the wing pylon 

 

7.7.6 Performance Validation 

The set of scaling laws presented in the sections above were written in a computer code 

and integrated with FLOPS. The integrated aircraft performance analysis tool was 

specifically prepared for a notional carrier-based multi-role fighter based on the F/A-18 

Hornet. To check the validity of the computer model’s scalability, an F/A-18E model 

was created by scaling up the C model developed in Step 5 and then compared against 

actual weight and performance data.  

Table 34 lists the design changes from F/A-18C to the E version in accordance with 

the design variables that were defined in Step 3. All the values for the vehicle system 

level design variables increased noticeably. It is important to note that the E model was 

not created independent to the C model, but it was a scaled-up version of the C model 

following the set of scaling laws proposed in this chapter.  
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Table 34: F/A-18 Changes from the C to E Versions 

Design Variables F/A-18C F/A-18E Units 

Wing area 400 500 ft2 

Thrust 17,754 22,000 lb 

Ref. weight for DLF of 7.5 g 32,000 42,097 lb 

Operational landing weight 33,000 44,000 lb 

Internal fuel capacity 10,810 14,700 lb 

External fuel capacity 6,720 9,740 lb 

Fuselage length  53 55.83 ft 

Avionics weight 1,289 1,411 lb 

 

The validity of the scaling laws is confirmed by comparing the performance analysis 

results of the created F/A-18E model and actual data. Actual F/A-18E performance 

data are based on the flight tests conducted by the US Navy in 1998 and are from 

references [153, 208]. Two important assumptions were made on the reserve conditions. 

For the fighter mission, reserve fuel for 20 minute loiter at sea level, plus 5% of initial 

fuel was assumed. For the attack mission, the fixed 3,500 lb of reserve fuel was assumed. 

Table 35 shows both actual and calculated mission and point performance of the F/A-

18E. Both fighter escort radius and interdiction mission radius with three 480-gallon fuel 

tanks using the hi-lo-lo-hi profile matched very closely. All other performance parameters 

were very close to the actual values. 
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Table 35: F/A-18E Key Performance Parameters  

Category Key Performance Parameters Actual Calculated Units 

Mission 

Performance 

Fighter escort radius 462 468.45 nm 

Interdiction mission radius 498 499.20 nm 

Carrier 

Suitability 

Recovery payload 9,125 9,251 lb 

Launch wind over deck  29.9 29.51 knot 

Recovery wind over deck  9 9.56 knot 

Approach speed  142 141.48 knot 

Fighter 

Performance 

Combat ceiling 52,300 52,992 ft 

Specific excess power at 0.9M/10,000 ft 648 674.80 ft/sec 

Acceleration from 0.8M to 1.2M at 35,000 ft  64.85 64.62 min 

Turn rate at 15,000K 11.6 11.90 deg/sec 

Others Volume growth potential 12.21 12.21 ft3 

 Usable load factor 7.5 7.52 g 

 

7.7.7 Development of the Cost Model 

The F/A-18 cost model was created using FLOPS, Military Aircraft Life Cycle Cost 

Analysis (MALCCA), and a code written by the author. MALCCA [205] is a weight- 

and process-based military cost analysis code with a capability to model derivative 

aircraft by specifying detailed input of design ancestors. To construct and validate the 

cost model, numerous public domain sources were consulted. Although the sources for 

the numbers used in this study are mentioned in the following sections as necessary, 

some of the sources found to be useful in studying military cost in general are introduced 

in §C.2 for future reference. Some of the definitions of military cost terms such as 

program acquisition cost, procurement cost, operation and support (O&S) cost, and life-

cycle cost are also referred to §C.1. The test and evaluation programs of the F/A-

18A/B/C/D and E/F are summarized in §C.4. 
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7.7.7.1 RDT&E Cost and Duration 

The focus of the cost model was accurate calculation of RDT&E and production cost. 

Since this study excluded retrofitting of existing aircraft, the production cost model is for 

new manufactures. Therefore, RDT&E cost is the only factor that differentiates a new 

design and a derivative design, and particular effort was made to develop an activity- 

and process-based RDT&E model.  

7.7.7.2 Flight Test and Wind Tunnel Test 

RDT&E cost is calculated utilizing MALCCA. MALCCA is integrated into FLOPS and 

reads the vehicle properties automatically. The research and development (R&D) cost is 

mainly calculated based on the engineering hours. Engineering hours are estimated for 

major aircraft subsystems based on weight-based empirical relationships and are summed 

up. Engineering hour estimation for a subsystem is strongly related to its own weight 

and to key design parameters that define such a subsystem. If the aircraft development 

is a follow-on program, a certain portion of the required engineering hours is saved, 

depending on the amount of design commonality to its predecessor.  

Then, test and evaluation (T&E) cost is mainly decided by the number of test 

vehicles, flight test hours, types of ground test, and wind tunnel test hours, which are all 

inputs to MALCCA. To determine these parameters, all the potential design change 

options are mapped to the list of test activities using a flight test matrix (FTM), a wind 

tunnel test matrix (WTM), and a ground test matrix (GTM). 

While the EvoLVE process identifies the aircraft design upgrade options and 

technologies in Step 4, this study compiled the list of the design change options by 

benchmarking the Hornet 2000 study introduced in §C.3 and the F/A-18E/F program. 
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The cost data from these sources are used to validate the RDT&E cost model later.  The 

list of the design changes are: 

1. Wing photographic scaling 

2. Wing design change 

3. LEX design change 

4. Engine upgrade 

5. Wing structural stiffening 

6. Design landing weight 

7. Inlet/nacelle (aft-body) 

8. External fuel tank redesign 

9. Fuselage plug 

10. Avionics upgrade 

11. New armament 

12. Conformal fuel tank 

13. Internal fuel capacity 

The review of the F/A-18A/B and E/F test programs is provided in §C.4. The F/A-

18A/B flight test program used eleven test articles logging 305 aircraft months. The 

C/D program used two flight test vehicles and the E/F program used seven flight test 

and three ground test articles [71, 209]. Figure 109 in §C.4 provides the list of test 

activities and the schedule of the F/A-18A/B’s full-scale development flight test program 

for each of the eleven flight test articles. These flight test activities or tasks were used to 

construct a FTM. 

Table 36 is the FTM created for the notional fighter. The flight test activities of the 

F/A-18A/B program are listed in the left column, and all the design change options are 

listed in the header row. Then, each cell of the matrix maps the degree of effort needed 

to perform the flight test activity for a specific design change.  The amount of effort 

required is measure in flight year for the FTM. The goal here is to calculate the total 



 221

flight year, which is obtained by activating the columns associated with the design 

changes and summing up all flight years that are in the active columns. For example, if 

engine and avionics upgrades are made, the fourth and tenth columns become active. If 

the new engine grows more than the capacity of aircraft aft-body assembly that houses 

the engine, the aft-body needs to be redesigned and the seventh column is activated, too. 

Then, all the elements in the active three columns are added to get the total flight year.  

The relationship between the flight test activities and design changes would be 

ideally mapped by the team of experienced experts from related disciplines. An 

integrated product team (IPT) consisting of test pilots, test engineers, managers, and 

design engineers would be able to estimate the types of tests required in order to 

upgrade a specific aircraft subsystem, such as avionics, external fuel tanks, landing gears, 

etc. In this study, however, the author’s own judgment was used to fill the FTM using 

the following rationales.  

When aircraft wing and/or LEX change, all the flight tests evaluating aerodynamic 

characteristics of the vehicle are triggered. The degree or intensity of test required varies 

if the change is a new LEX design, wing scaling, or a completely new wing design. 

Design landing weight is related to landing gears and the fuselage frame that landing 

gears are mounted to. A change in landing weight will require more capable landing 

gear, and the airframe structure needs to be changed too; the landing gear door size and 

structural strength should be increased. Thus, it will require carrier suitability, 

structural tests, and MEI. A performance flight test is required when the vehicle 

aerodynamics and/or engine/inlet changes. Weight increase does not require a 

performance flight test. So, any external geometry change would require a performance 
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test. Drag increase due to a new type of external stores also requires some level of 

performance test. Raising fuselage dorsal does not affect aircraft structure, as its impact 

is mostly on lift independent drag. Thus, it would not require high AOA tests or carrier 

suitability tests.   

The calculated flight test year is then converted into aircraft months by multiplying 

by twelve. Then, total aircraft months are used as the basis to calculate total flight test 

hours, the number of flight test vehicles required, and the flight test duration. In 

practice, how much time and how many aircraft a flight test program would need is 

estimated based on experience with aircraft of the class.  
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Table 36: The Flight Test/Wind Tunnel Test Matrix (FTM/WTM) 

Flight Test Name 

1  

Wing  

Scaling 

 

2  

Wing 

redesign 

 

3  

LEX 

redesign 

  

4  

Engine 

upgrade 

 

5  

Wing 

structural 

stiffening 

6  

Design 

landing 

weight 

7  

Inlet/ 

nacelle  

 

8  

External 

fuel tank 

redesign 

9  

Fuselage 

plug 

 

10  

Avionics 

upgrade 

 

11  

New 

armament 

 

12 

Conformal 

fuel tank 

 

Flying qualities, flutter 0.6 0.8 0.2     0.2    0.7 

Propulsion, performance    0.5   0.5      

Carrier suitability, ECS 0.6 0.7 0.2   0.1       

Structural 0.7 0.7   0.5 0.15   0.15    

Avionics          1   

High AOA 0.6 0.8 0.2          

Armament, systems           1  

Armament, avionics          1   

Performance, systems 0.5 0.5 0.2    0.2 0.15 0.15   0.7 

Engine accel. service test    1         

MEI/EMC      0.2 0.3  0.1 0.4   

Wind tunnel test required yes yes yes no no no yes yes yes no yes yes 

Wind tunnel test level 0.3 1 0.5 0 0 0 0.3 0.2 0.3 0 0.3 0.3 
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The key flight test program attributes—flight test aircraft required, total flight test 

hours, and FT duration—of a notional fighter are calculated using the statistics of the 

E/F test program data as given in §C.4. Total aircraft month, ACM, calculated from 

FTM is converted to total flight hours (tf), assuming 18.9 available test hours per month, 

which was the case of the F/A-18E/F flight test program.  
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The number of aircraft required (Nfv) is calculated as: 
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where the ratio between total aircraft month to the number of total aircraft is average 

aircraft month flown by a flight test aircraft, which is 30.5 for the F/A-18E/F program.  

Finally, the DT duration in month (tDT) is calculated as: 

 

,

DT

ref

DT ref

ACM
t

ACM

t

=
     

 (68) 

The total DT duration from the first flight to the end of DT was 40 months for the F/A-

18A/B program and 40 months for the F/A-18E/F program, excluding the operational 

evaluation (OPEVAL) periods.  

A required wind tunnel test hour is calculated using the WTM, constructed as a 

sub-matrix of the FTM in Table 36. In constructing WTM, the relative or absolute level 

of wind tunnel test required is measured for each category of design change by a team of 
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experts. In the case of the WTM of a notional fighter, the level of wind tunnel test 

required to upgrade the wing design was set to one, and the relative effort of upgrading 

LEX, fuselage, etc. was assessed accordingly. For example, photographic scaling of the 

wing was assumed to take only 30 percent of the wind tunnel test effort compared to the 

effort the entirely new wing design would require. Some aircraft upgrades, such as wing 

structural stiffening, do not affect external geometry and thus do not require any wind 

tunnel test. The total effort is converted into wind tunnel test hours using the fact that 

the F/A-18E/F wind tunnel test program logged 4,500 hours [210].  

7.7.7.3 Ground Test 

MALCCA calculates the cost of ground tests based on the types of test defined by the 

user. A list of conventional ground test activities is shown in the left column of the 

ground test matrix (GTM), and the header row is the types of design change activities. 

The test requirements are mapped by filling out the matrix. This task would be done by 

an IPT of experienced engineers, technicians, and managers, who are knowledgeable 

about aircraft modifications. However, for this study, a GTM for the notional multi-role 

fighter shown in Table 37 was created by the author. The types of ground tests listed in 

the first column are actual inputs to MALCCA. A set of planned design changes 

activates the corresponding columns. Then, for each of the rows, all the numbers in the 

active cells are added. The total value for a row is fed into MALCCA for cost calculation.   
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Table 37: Ground Test Matrix (GTM) for the Notional Multi-role Fighter 

Ground Test Name 

1  

Wing  

Scaling 

 

2 

Wing 

design 

change 

3 

LEX 

design 

change 

4 

Engine 

upgrade 

 

5 

Wing 

structural 

stiffening 

6 

Design 

landing 

weight 

7 

Inlet/n

acelle 

  

8 

External 

fuel tank 

redesign 

9  

Fuselage 

plug 

 

10 

Avionics 

upgrade 

 

11  

New 

armament 

 

12 

Conformal 

fuel tanks 

 

13  

Internal 

fuel 

capacity 

Static Test Articles  0.7 1 0.2 0 0.1 0 0 0 0 0 0 0 0 

Fatigue Test Articles  0.7 1 0.2 0 0.1 0 0 0 0 0 0 0 0 

Iron Bird Test Articles  1 1 0 0 0 0 0 0 0 0 0 0 0 

Propulsion Test Articles  0 0 0 0.8 0 0 0.2 0 0 0 0 0 0 

LG Test Articles  0 0 0 0 0 1 0 0 0 0 0 0 0 

Fuel Rig Articles  0 0 0 0 0 0 0 0.5 0 0 0 0.5 0.5 

Armament Test Rigs 0 0 0 0 0 0 0 0 0 0 1 0 0 

Hardware/Software 

Integration Rigs 0 0 0 0 0 0 0 0 0 1 0 0 0 

Subsystem Test Rigs 0.2 0.2 0 0.2 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
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7.7.7.4 Design Commonality  

In order to calculate the RDT&E cost of developing a derivative aircraft using 

MALCCA, the degree of design commonality of the derivative aircraft to its predecessor 

must be defined. MALCCA calculates the engineering hours during RDT&E for the 

subsystems using its weight-based, historical database. To account for savings in 

engineering hours by adopting previous designs, MALCCA subtracts the portion of the 

engineering hours already spent in the past development from the current engineering 

hours required. If a specific subsystem design is equal to an existing design, the 

engineering time in the development can be waived by utilizing the previous effort.  

Therefore, it is necessary to predetermine how much the current subsystems—for 

example wing, engine, avionics, etc.—are common to the previous subsystems. The 

degree of commonality is defined by using design commonality factors (DCFs). A DCF is 

a non-dimensional parameter that is equal to or less than one. DCF determines the 

percentage of engineering hours spent in the past that can be used to save the 

engineering hours of the current program.  

 ( ) ( ) ( )2 2 1eng eng dc engdev new new
= − ⋅t t f t  (69) 

where (teng2)dev is a 1-by-m vector of engineering hours required for a derivative aircraft in 

stage 2; (teng2)new is the engineering hours required if it were a new aircraft program; fdc is 

the m-by-1 vector of DCFs; and (teng1)new is the engineering hours required of the new 

aircraft in the first stage.  

A DCF of one means that the design is the same as its ancestor, and zero means it 

is a completely new design. DCF was allowed to go below zero in order to simulate 
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instances in which the historical database is not able to capture factors such as new 

technology development. A negative DCF means that additional engineering hours or 

cost are needed to develop such subsystems. A DCF value of one does not always imply 

that the number of required engineering hours for the subsystem is zero: it could be still 

greater than zero if the second-stage subsystem is heavier than the first-stage subsystem. 

The rules to define DCFs that were created for the twelve subsystems are listed in 

Table 38. The degree of design commonality is determined by the difference between 

design variable settings of the first and second design stages. For example, fuselage 

design commonality decreases when design changes are made on design landing weight 

(landing gears), reference engine thrust for aft-body sizing, fuselage length, design load 

factor, and the reference weight for design load factor. The relationship between design 

commonality factors and design change is mapped using following equation:    

 
11 12
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 (70) 

where fdc is an 11-by-1 vector of DCFs as defined in Table 38; J12×11 is a 11-by-12 unity 

matrix; 2 1
∆ = −x x x is the difference between the first-stage and second-stage design 

parameters as defined in Table 16; T3 is a switch for the use of new LEX technology is 
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one if the new LEX is used and zero if not; and ∆wav is avionics weight increase from the 

first to the second stage.  

Table 38: List of Subsystems  

Number Subsystem 

1 Wing 

2 Empennage 

3 Fuselage 

4 Landing gear 

5 Nacelle 

6 Engine 

7 Engine accessories 

8 Fuel system 

9 Control surfaces 

10 Hydraulics 

11 Avionics 

12 Armament 

 

7.7.7.5 RDT&E Duration 

The F/A-18E/F program was managed following the older versions of DoDI 5000.2. The 

process shown in Figure 64 is different from the current DoD’s acquisition process 

presented in Figure 108. The older process clearly divided the RDT&E phase into three 

sub-phases of concept exploration, demonstration and validation (Dem/Val), and the 

engineering and manufacturing development (EMD), which is different from current 

classification. While the first two sub-phases, concept exploration and Dem/Val, can be 

stretched to years of effort, the goal of RDT&E duration modeling was limited to only 

the EMD period.  

Figure 65 from Fox [13] shows both EMD durations of various US military aircraft 

programs. The black portion of the bars represents the time from the beginning of EMD 

to the start of DT/OT. The grey areas are from the start of DT/OT to the end of EMD. 
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It was assumed that the first period in EMD is roughly devoted to R&D and the second 

period to T&E. In the case of the F/A-18E/F, total EMD duration was 7 years, or 84 

months, from June 1992 to April 1999, excluding the OPEVAL from May 1999 to 

November 1999. The duration of DT/OT was 41 months and R&D was 43 months. 

Although the F/A-18E/F was a derivative aircraft, developing it took slightly more time 

than developing its ancestor, the F/A-18A/B.  

 
Figure 64: Old Version of DoD Acquisition Process [4] 

 

 
     * Program in progress as of the time of publication 

Figure 65: EMD Duration of US Military Aircraft [13] 
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MALCCA calculates engineering hours required based on the vehicle characteristics.  

The engineering hours calculated from MALCCA are converted to the R&D duration in 

months by assuming availability of the work forces. The availability of 6,000 workers on 

average and 1,920 average working hours per worker for a year were assumed. Then, the 

T&E duration calculated using Eq. (68) is added. Finally, a fixed OPEVAL duration of 

7 months was assumed and added.  

7.7.7.6 Synthesis and Validation of the Cost Model 

A computer code was prepared to calculate the key cost inputs to MALCCA. Then, the 

computer program was integrated into FLOPS/MALCCA. Since the second-stage 

RDT&E cost is dependent on the first-stage vehicle characteristics, first-stage aircraft 

performance analysis is a prerequisite of the second-stage analysis.  

Production cost was calculated using FLOPS/MALCCA. Production cost is largely 

dependent on the production quantity, learning curves, labor rate, etc., besides aircraft 

characteristics. A total of 1,479 F/A-18A/B/C/Ds were produced from 1980 to 1997, 

including 852 A/Bs  produced from 1979 to 1991 in 7 lots and 627 C/Ds produced from 

1986 to 1997 in 6 lots [88]. Since the F/A-18C/D is the basis of the first-stage notional 

fighter, the production quantity was set at 627 aircraft for the first-stage program. The 

total planned production quantity of the E/F version has been changed a couple of times 

from its initial plan of 1,000 aircraft to 493 as of December 2007, according to the SARs 

as summarized in Table 66. However, since the published production cost data that are 

used here for validation purposes are based on the assumption of 1,000 units, this study 

also assumed the production of 1,000 aircraft. In addition, since MALCCA can only 

handle up to 4 lots. It was assumed that all the units are produced in a single lot. Then, 



 232

annul production rate of 36 aircraft per year was assumed for all configurations. For the 

labor rates and learning curves, the default settings for MALCCA were used because no 

other information was available.  

Material composition of the airframe is also an important input determining 

production cost. Actual F/A-18A/B, C/D, and E/F are collected from Murden [73] and 

Younossi [211] as given in Table 39. The A/B versions used 55.4 percent of aluminum, 

8.4 percent of titanium, 10.3 percent of composites, and 14.1 percent of steel. The 

composition of aluminum decreased in the C/D and E/F versions. The C/D version used 

more titanium, and E/F used apparently more titanium and composites. For the F/A-

18A, C, and E cost calculated, the actual material composition as in Table 39 was 

modeled in FLOPS/MALCCA. For the cost calculations of the Hornet 2000 

configurations, the C/D’s material distribution was assumed.  

Table 39: F/A-18 Hornet Material Composition in Percentage of Structural Weight 

Materials/Version A/B C/D E/F 

Aluminum 55.4 49 31 

Titanium 8.4 13 21 

Composites 10.3 10 19 

Steel 14.1 15 14 

Other 11.8 13 15 

 

The fiscal year (FY) 1996 was selected as the base dollar year during all cost 

modeling processes. The inflation rate was determined using the US Navy inflation index 

[212]. The US Navy inflation index is available as a calculator that converts the dollar 

value between two different years for a selected cost category such as RDT&E, aircraft 

acquisition, operation and support, etc. FLOPS/MALCCA is based on 1988 economics 

and requires a fixed interest rate input. The average inflation rate of 3.32 percent 
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between 1988 and 1996 based on the Navy index on aircraft acquisition category was 

used. Actual F/A-18 cost data were also converted to 1996 dollar value using the 

appropriate rate category, i.e. RDT&E, production, etc.  

Validation of the cost model was conducted by modeling six different F/A-18 

variants including four configurations from the Hornet 2000 study, the F/A-18C, and the 

F/A-18E. §C.3 introduced the Hornet 2000 study in detail. Among seven configurations 

proposed in the Hornet 2000 study, Configuration I, II, IIIB, and IIIC were selected for 

the study. These four configurations are progressive upgrades to the F/A-18C. 

Configuration I is the F/A-18C with new armaments. Configuration II is Configuration I 

plus wing stiffening, F414 engines, upgraded avionics, and conformal fuel tanks by 

raising the dorsal. Configuration IIIB is Configuration II with a 500 ft2 wing. 

Configuration IIIC uses a fuselage plug to increase internal fuel capacity instead of a 

conformal fuel tank. This configuration became the basis for the F/A-18E. In modeling 

these four configurations, the values for the design variables were set based on actual 

F/A-18C or E values unless they were specified in the Hornet 2000 study. The major 

inputs and assumptions including vehicle definitions, technologies used, and test 

requirements are listed in Table 40.  
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Table 40: Inputs/Assumptions for the RDT&E and Production Cost 

 Configuration F/A-18E IIIC IIIB II I F-18C 

Design Wing area 500 500 500 400 400 400 

Variables Wing aspect ratio 3.5 3.5 3.5 3.5 3.5 3.5 

  Wing taper ratio 0.35 0.35 0.35 0.35 0.35 0.35 

  Wing t/c 0.042 0.039 0.039 0.039 0.039 0.039 

  Wing sweep angle 20 20 20 20 20 20 

  Thrust 22000 22000 22000 22000 17754 17754 

  Ref. weight for DLF 42097 42097 42097 38000 32000 32000 

  Operational landing weight 46200 46200 46200 44100 34650 34650 

  Ref. thrust for aft-body 25300 25300 25300 25300 17920 17920 

  Internal fuel capacity 14700 13510 14510 13510 10810 10810 

  External fuel capacity 9740 6720 6720 6720 6720 6720 

  Fuselage length  55.833 55.292 53 53 53 53 

  Avionics weight 1411 1411 1411 1411 1289 1289 

  External stores weight 6361 6361 6361 6361 6361 6637 

Technologies LEX upgrade (CLmax factor) 1.0296 1 1 1 1 1 

 Conformal fuel tank 0 0 1 1 0 0 

 RCS reduction 1 0 0 0 0 0 

 New engine core 1 1 1 1 0 0 

RDT&E Number of flight test vehicles 7.99 6.74 7.58 5.79 2.79 2.42 

Inputs Wind tunnel test hours 4500 2250 2250 1688 563 0 

  Flight test hours 5797 4901 5511 4215 2029 1763 

  DT/OT duration (months) 40.8 34.5 38.8 29.7 14.3 12.4 

  Engine newness 0.51 0.51 0.51 0.51 0.055 0.055 

 Software newness 0.86 0.86 0.86 0.86 0.53 0.53 

 Percent Aluminum 31 55.4 55.4 55.4 55.4 49 

 Percent Titanium 14 8.3 8.3 8.3 8.3 13 

 Percent Composite 19 10.3 10.3 10.3 10.3 10 

 Static test articles  1.2 0.7 0.7 0.2 0 0 

 Fatigue test articles  1.2 0.7 0.7 0.1 0 0 

 Iron bird test articles  1 1 1 0 0 0 

 Propulsion test articles  1.0 1.0 1.0 1.0 0.4 0.4 

 LG test articles  1 1 1 1 0 0 

 Fuel rig articles  1 0.5 1 1 0 0 

 Armament test rigs 0.5 0.5 0.5 0.5 0.5 0 

 Hardware/Software Int. Rigs 1 1 1 1 1 1 

 Subsystem Test Rigs 1.1 1.0 1.0 0.8 0.3 0.2 
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The RDT&E and unit production costs of the six models—F/A-18C, F/A-18E, and 

four Hornet 2000 configurations—were created using the code developed in the sections 

from §7.7.7.1 to §7.7.7.5 and FLOPS/MALCCA. Calculated costs of the six F/A-18 

variants are compared to the published numbers. The process of collecting and selecting 

a set of F/A-18 cost data is presented in §C.2. The comparisons between the published 

and calculated costs are shown in radargrams in Figure 66. The blue lines represent 

published data, and the calculated values are shown in red lines. The radargram on the 

left represents the production cost, and each of the six vertices are labeled with the 

corresponding vehicle. Production cost calculated for the six variants fell within 3.6% of 

error. The radargram for RDT&E cost on the right compared only five variants, since 

RDT&E cost of the F/A-18C was not available. The error of RDT&E cost calculation 

also fell under 1.6%. Actual data in 1996 million dollars are provided in Table 41. 
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Figure 66: Radargrams of Production Cost (Left) and RDT&E Cost (Right) 
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Table 41: The RDT&E and Unit Production Cost Comparison 

  F/A-18E IIIC IIIB II I F-18C 

Published 

Data 

Unit Production 48.7 1.39 1.4 1.3 1.14 27.2 

(See §C.3 and 

§C.4) 

RDT&E  5783 2.78 2.89 2.22 1 unknown 

Calculation Unit Production ($M) 49.8 33.8 34.3 31.8 27.5 28.2 

 ND Unit Production 2.06 1.398 1.418 1.268 1.140  

 RDT&E ($M) 5972.7 3932.6 4097.9 3252.7 1425.4 1224.2 

 ND RDT&E 4.19 2.76 2.87 2.28 1  

 

7.7.8 Creation of the Two-Stage Aircraft Design Environment 

The models developed in Step 6 were written as a computer code and linked to the 

performance and cost models created using FLOPS/MALCCA. It was also necessary to 

link the first-stage and second-stage designs, since the RDT&E cost calculation at the 

second stage requires first-stage vehicle characteristics, such as design parameters and 

subsystem weights. This step was a prerequisite of two-stage aircraft performance and 

cost analysis and design, and actually had been done before the performance model 

validation presented in §7.7.6 and the cost model validation presented in §7.7.7.6.  

The integration process was facilitated by using commercial software Model Center® 

of Phoenix Integration™. Figure 67 is the screen shot of the integrated two-stage aircraft 

design (TAD) environment within the Model Center® framework. The left hand of the 

figure shows input and output variables and their values. The main window of the 

programs shows DSM-like view of the boxes and lines. The boxes are contributing 

analyses that are either computer codes written by the author or the FLOPS/MALCCA 

suite. The links between the boxes indicates interdependencies between the contributing 

analyses. Each stage consists of an optimizer, a pre-processing module, an attack aircraft 
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performance module, a fighter performance module, a cost module, and a post-processing 

module. The pre-processing module contains the scaling-laws and prepares the inputs to 

the following modules. FLOPS is run twice for performance calculations with attack 

mission and fighter mission. Then, MALCCA is run for the cost calculation. The post-

processing modules collect the outputs from FLOPS/MALCCA and calculates some of 

the KPPs.  
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Figure 67: The Integrated Two-stage Aircraft Design (TAD) Environment 
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7.8 A Deterministic Scenario-Based Approach to Two-Stage 

Aircraft Design Optimization: Step 7 

Once the environment for two-stage aircraft design (TSAD) is setup, the environment 

can be used in three different ways in the Steps 7-9. In Step 7, two-stage aircraft design 

optimization is performed in the context of scenario-based study. Fundamentally, it is 

assumed that the random vector ω  can take only a finite number of outcomes, i.e. 

Θ ⊂ Ω  is a finite set, and , 1, ,
s

s k∈ Θ =ω … . Optimization is repeated for each of the 

scenarios 
s
ω . Here, all the non-stochastic strategies—ND, AH, and DetPPs—defined in 

Step 4 are evaluated. 

7.8.1 Optimization Problem Set-up 

Optimization problem settings, such as design variables and constraints, are defined first. 

Some of the design variables that were considered in Step 3 were treated as design 

parameters in order to limit the dimension of the design space to a manageable size. In 

order to keep the problem as realistic as possible those parameters that were hard coded 

were set to reflect the actual F/A-18 case. The first-stage design vector x1 and second-

stage design vector are defined as follows, and the meaning of each symbol is listed in 

Table 42. 

The objective function was acquisition cost for each stage. Acquisition cost is 

sensitive to production quantity. While production quantity could have been one of the 

biggest uncertainty sources, it was fixed at 492 for the first stage and 627 for the second 

stage, which are actual production quantities of the F/A-18C/D and E/F as of 

December 2007 according to SARs. Otherwise, inclusion of production quantity as a 
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random variable made it difficult to compare a design over a design optimized for 

different production quantity assumptions. In addition, since the optimum solution is 

sensitive to production quantity, it made the design space complicated and the creation 

of a surrogate model of optimum solutions very difficult. While the production quantities 

were fixed in the study, to investigate the extreme case of zero production quantities, 

EvoLVE Steps 7 and 8 were repeated with RDT&E cost as objective function in 

APPENDIX D.  
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Table 42: Design Variable Vectors (x1 and x2) 

Symbol Name Unit 

x11 and x21 Wing area ft2 

x12 and x22 Engine thrust lb 

x13 and x23 Ref. weight for DLF lb 

x14 and x24 Operational landing weight lb 

x15 and x25 Internal fuel weight lb 

x16 and x26 External fuel weight lb 

x17 and x27 Ref. thrust for aft-body sizing lb 

x18 and x28 Fuselage length  ft3 

 

Some other assumptions were made. For the second-stage problem, in order to make 

the deigns closest to F/A-18E, fixed amount of growth potentials on the aft fuselage and 

forward-mid fuselage were embedded in the designs. Therefore, design thrust nacelle x27 

sizes the aft fuselage based on the engine size and 15% of engine growth potential. 

Fuselage length is determined by x28 after balancing the vehicle’s internal volume 
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required and available and then by adding 12.2 ft3 of additional volume for growth 

potential.  

Combinations of technology options were not investigated through optimization 

study, since they introduce discrete variables to the optimization loop, which require 

more time-consuming optimization algorithms to solve. Rather, among the technologies 

identified in Step 4, low RCS, new LEX design, and new engine core were used on all 

second-stage designs. The assumptions are summarized in Table 43. 

Table 43: Second-Stage Design Assumptions 

Technologies or Requirements Value 

Aft fuselage growth potential 15% 

Internal volume growth potential 12.2 ft3 

Low RCS yes 

Conformal fuel tank no 

New LEX design for higher CLmax yes 

New engine core 

Production quantity 

yes 

429 

 

The key performance parameters identified in Step 1 as in Table 12 constitute the 

constraint vectors g1 and g2 during optimization except for the combat ceiling. The 

thresholds for the constraints were redefined in this step. Thresholds for the 

constraints—fighter escort radius, interdiction mission radius, and recovery payload—are 

from the requirements for the first stage and are random variables 
1 2 3
, , and ω ω ω in the 

second stage. All other constraint thresholds were setup as the calculated performance of 

the F/A-18E model as presented in Table 44. 
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Table 44: Constraint Vectors (g1 and g2) 

Symbol Constraint Name Stage 1/2 Type Unit 

g11 Fighter escort radius 350/ 1
ω  lower nm 

g12 Interdiction mission radius 410/ 2
ω  lower nm 

g13 Recovery payload 4,500/ 3
ω  lower lb 

g14 Launch wind over deck 28.657 upper knots 

15 Recovery wind over deck 9.5567 upper knots 

g16 Approach speed 141.48 upper knots 

g17 Specific excess power at 0.9M/10,00- ft 682.9 lower ft/sec 

g18 Acceleration from 0.8M to 1.2M at 35,000 ft 63.6 upper min 

g19 Turn rate at 15,000 12.044 lower deg/sec 

g110 Usable load factor 7.6089 lower g 

 

7.8.2 MDO Techniques and Optimization Algorithms 

As the DSM shows Figure 25, solving the two-stage problem involves optimization loops 

at two levels; it seems naturally suitable for the multidisciplinary design optimization 

(MDO) techniques. Among them, the All-At-Once (AAO) method was utilized in this 

study to test the efficacy of MDO techniques as proposed in Hypothesis 6. The entire 

optimization structure was transformed using AAO. In the two-stage aircraft design 

formulation as in Eqs. (28) and (29), optimization is solved in two hierarchical levels. 

The use of AAO transforms the two-level optimization problem into a single-level 

problem. 
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 (71) 

The performance of AAO was compared to the original formulations in Eqs. (28) 

and (29), and the computational time to converge was reduced by the order of 
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magnitude from hours to about tens of minutes. Although the benefit of MDO versus 

traditional solution techniques to two-stage aircraft design was not thoroughly 

investigated, the limited comparisons demonstrated the compatibility and efficacy of 

AAO to two-stage aircraft design, and thus proved Hypothesis 6. 

Optimization in Step 7 was performed without using surrogate models, but the 

models created in Steps 5 and 6 were directly utilized. To confirm the global convergence, 

optimizations were attempted from multiple initial points, and the solution with lowest 

objective function value was chosen.  

As for the optimization algorithm, Sequential Quadratic Programming (SQP) and 

Method of Feasible Direction (MoFD) were used along with the central finite different 

method for gradient calculation. The relative constraint violation criteria was one 

thousandth of the constraint value so that designs with any constraint values 0.1 % 

larger than the threshold would be considered as infeasible designs. In general, SQP 

converged much faster than MoFD and was used as the primary algorithm. MoFD was 

used as an auxiliary algorithm when SQP failed to find optimum solutions. SQP makes 

second order approximation of the objective function and first order approximations of 

the constraints, and sometimes it fails to capture the valley around the optimum point. 

MoFD more directly deals with constraints, and makes first order approximation of the 

objective function. Since it is cheaper to create first order approximations than second 

order approximations, MoFD tends to update the model more often. SQP builds the 

Hessian matrix gradually as it gains more knowledge about the objective function. 

Therefore, if the starting point is close to the optimum point, SQP makes a large first 

step and goes out of the valley, because of the incompletely constructed Hessian matrix.  
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7.8.3 Under Presence of Uncertainty: The Here-and-Now Solutions 

The results of TSAD optimizations are the optimal first-stage decision vector for each 

strategy *

1
( )px , where 1, ,5p = …  is the strategy number, and a set of second-stage 

decision vectors *

2
( ) ,  1, ,5 and 1, ,5p

s
s p= =x … … . The first-stage optimization results are 

summarized in Table 45. The table includes the first-stage optimal design *

1
( )px , 

constraints *

1
( )pg , and the objective function *

1
( ) , 1, , 5pf p = … . Also, aircraft empty 

weights and gross weights in both fighter and attack configurations were included. 

Among the five strategies, the first two—Ad-hoc and New design—are non-preplanning 

strategies, and those two columns were shaded to differentiate them from the other three 

preplanning strategies. 

Several interesting observations are made from the first-stage optimum results. First 

of all, the two non-preplanning strategies (Ad-hoc and New-design) yielded the same 

design such that * 1 * 2

1 1
( ) ( )=x x  since both of them minimize only f1 in the first-stage 

optimization, which is the acquisition cost. This design is the optimal solution meeting 

all currently imposed constraints if the goal is to minimize the first-stage acquisition cost. 

Therefore these designs are Perfect-fit Designs (PfDs).  When compared to New-design 

and Ad-hoc, all DetPP strategies show larger design variable settings in general. Among 

DetPPs the Block10p yielded the largest, heaviest, and most expensive aircraft, followed 

by Block10. All first-stage designs under DetPPs are Perfect over-Design (PoDs) as 

discussed in the subsequent sections along with second-stage optimization results.  
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Table 45: Optimization Results for the Five Deterministic Strategies 

 Strategies New 

Design 

Ad-Hoc DetPP 

(Block10) 

DetPP 

(Avg.) 

DetPP 

(Block10p) 

Unit 

x11 Wing area 396.6 396.6 449.4 464.0 498.5 ft2 

x12 Thrust 18355 18355 20441 20855 21947 lb 

x13 Ref. weight for DLF 34131 34131 38251 39170 41816 lb 

x14 Landing weight 33248 33248 39539 40830 43839 lb 

x15 Internal fuel 10827 10827 12777 13190 14692 lb 

x16 External fuel 6724 6724 6691 7920 9608 lb 

x17 Ref. thrust for aft-body 18355 18355 23508 23982 25238 lb 

x18 Fuselage length 53.08 53.08 54.68 54.79 55.60 ft 

g11 Fighter escort radius 350.1 350.1 409.6 423.5 478.8 nm 

g12 Interdiction mission radius 410.9 410.9 431.4 461.4 505.8 nm 

g13 Recovery payload 4508 4508 7910 8547 9846 lb 

g14 Launch wind over deck 22.06 22.06 22.29 24.47 28.14 knots 

g15 Recovery wind over deck  -0.01 -0.01 3.55 4.80 9.27 knots 

g16 Approach speed  138.1 138.1 141.5 141.5 141.4 knots 

g17 Specific excess power 708.7 708.7 699.2 696.2 685.9 ft/sec 

g18 Accel. from 0.8 to 1.2M 63.66 63.66 63.60 63.54 63.42 sec 

g19 Turn rate 12.042 12.042 12.066 12.112 12.093 deg/sec 

g110 Usable load factor 7.609 7.609 7.609 7.610 7.609 g 

R 

E 

S 

U 

L 

T 

S 

OEW 25738 25738 28628 29282 30992 lb 

Attack TOGW 50520 50520 55325 57699 62697 lb 

Fighter TOGW 37975 37975 42815 43882 47095 lb 

RDTE 4639 4639 4904 4963 5116 $m 

RDTE year 8.58 8.58 8.82 8.87 9.01 year 

Production 20172 20172 21595 21897 22701 $m 

f1 24811 24811 26499 26859 27817 $m 

 

It is interesting to see how each strategy places growth potential to the first-stage 

designs. Growth potential is essentially the difference between what is required and what 

is available. Growth potential can be measured from two different perspectives: degree of 

over-design and margins on the constraints. Figure 68 compares the growth potential in 

terms of degree of over-design beyond the Perfect-fit Design (PfD). Among the DetPP 
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strategies, the DetPP(Block10) strategy placed the most growth potential. Wing area 

was 498.5 ft2, more than 100 ft2 larger than PfD value of 396.6 ft2, and the empty weight 

was about 30,992 lb., about 5,000 lb heavier than the PfD. It has the largest values on 

all design parameters, followed by DetPP(Block10) and DetPP(Average) such that 

 * 5 * 4 * 3 * 1 * 2

1 1 1 1 1
( ) ( ) ( ) ( ) ( )> > > =x x x x x  (72) 

The inequality holds for the weight and cost metrics, too. An exception was external fuel 

capacity x16, which is discussed in detail in the next section. The cause of this pattern is 

discussed again in the next section when the second-stage results are presented. 

An important observation from the above results is not the fact that 

DetPP(Block10p) over-designed the most among other strategies, but the fact that all 

design variables followed the pattern as in Eq. (72) with only one exception. This 

observation has a significant meaning because it can be induced that if a designer wants 
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Figure 68: Growth Potential Measured by Margins on the Design Variables 
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to embed growth potential on a subsystem such as wing or engine, he or she has to 

oversize all other subsystems. The nature of aerospace systems is that the performance 

and cost are very sensitive to weight. Therefore, it is impossible to improve one 

dimension of the design without affecting other dimensions, because the impact of weight 

increase propagates throughout the system. If the baseline design was optimal and thus 

was close to or on the constraints, the design becomes quickly infeasible if one variable 

deviates from the baseline value. Thus, if overdesigning of a subsystem such as engines 

or wings is desired, all the variables must move together to make the design feasible.  

 

Observation 7: For aerospace systems of which subsystems are tightly coupled, one 

variable cannot deviate from a feasible and optimal solution without hurting the 

feasibility and optimality. Therefore, overdesigning effort must be coordinated in 

such a way that all design variables move together towards a new feasible and 

optimal solution. 

 

The vehicles’ growth potential is discussed by comparing how far the performance of 

first-stage aircraft is from the threshold performance. Since * 1

1
( )x and * 2

1
( )x

 
inherently do 

not account for future events, they have little or no growth potential, so that 

* 1 * 2

1 1
( ) ( )= ≈g g 0 . Growth margin on aircraft performance is compared among the DetPP 

strategies in Figure 69. The bar graphs shown in Figure 69 exhibit different patterns 

from the patterns observed in Figure 68. The first observation is that growth potential 

was not equally allocated to the performance parameters for a given evolution strategy. 

All three DetPPs placed large margins on the carrier suitability performance metrics (g13-
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g15), moderated degree of margins on the mission performance parameters (g11 and g12), 

and virtually no growth potential on the fighter point performance measures (g17-g110).  

A more interesting observation is the inconsistency in the degree of growth potential 

among the DetPPs. The color patterns of the bar graphs show that DetPP(Block10p) in 

red placed the largest growth potential in the first three performance measures (g11-g13) 

followed by the DetPP(Average) and DetPP(Block10). This order is completely reversed 

for the fourth and fifth constraints so that the DetPP(Block10) in blue shows the largest 

growth potential on these constraints. Especially, the bar graph patterns of the recovery 

payload (g13) and RWOD (g16) requirements are distinctively contrasted, revealing a 

strong negative correlation between the two. The large growth margin on the recovery 

payload degraded the RWOD performance. These observations are formalized as follows: 

 

5 4 3 1 2

13 13 13 13 13

3 4 5 1 2

14 14 14 14 14

3 4 5 1 2

15 15 15 15 15

( ) ( ) ( ) ( ) ( )  for recovery payload

( ) ( ) ( ) ( ) ( )  for LWOD

( ) ( ) ( ) ( ) ( )  for RWOD

g g g g g

g g g g g

g g g g g

> > > =

> > > =

> > > =

 (73) 

 

Observation 8: The scenario-based study revealed the correlations between the growth 

potential in terms of margins on performance parameters. The negative 

correlations showed that growth potential in one performance parameter could 

inadvertently hurt the performance in other dimensions. System level integration 

of growth margins would prevent the performance degradation results in design 

infeasibilities.  
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Figure 69: Growth Potential Measured by Margins on the Constraints 

7.8.4 After Realization of Randomness: The Wait-and-See Solutions 

Finally, the optimal second-stage strategies after the realization of the randomness are 

studied. The five deterministic strategies respond in the second stage after the 

randomness is revealed in such a way that it minimizes the second-stage cost function f2 

by solving: 
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Since only five scenarios were assumed to exist and apply to the five deterministic 

strategies, a total of twenty-five optimization problems were solved, yielding twenty-five 

WS solutions *

2
ˆ( ) , 1, , 5, 1, , 5p

s
s p= =x … … . The optimization results are provided from 
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Table 46 to Table 50 in the following pages. Each of the tables includes the first-stage 

optimal solutions in the shaded column for easy comparison purposes. The results are 

analyzed from cost and design point-of-views in the subsequent sections. 

Table 46: TAD Optimization Results for the New-Design Strategy 

 Stage 1 2  

 Requirement/Scenarios Block 0 S1 S2 S3 S4 S5 Unit 

x21 Wing area 396.6 426.5 453.0 465.0 500.0 530.1 ft2 

x22 Thrust 18355 19691 20551 20920 22064 22933 lb 

x23 Ref. weight for DLF 34131 36345 38533 39416 42138 43876.8 lb 

x24 Landing weight 33248 37522 39865 40921 43990 45367.7 lb 

x25 Internal fuel 10827 11485 12846 13193 14731 15453.6 lb 

x26 External fuel 6723 7096 6669 7997 9692 10288 lb 

x27 Ref. thrust for aft-body 18355 22645 23634 24058 25374 26373 lb 

x28 Fuselage length 53.08 53.81 54.80 55.00 55.87 56.09 ft2 

g21 Fighter escort radius 349.7 350.2 410.1 420.0 475.9 493.9 nm 

g22 Interdiction mission radius 410.3 410.0 430.1 460.2 504.2 510.0 nm 

g23 Recovery payload 6489 6999 8000 8400 9698 9800 lb 

g24 Launch wind over deck 22.70 22.36 22.22 24.91 28.65 28.65 knots 

g25 Recovery wind over deck  3.55 3.54 3.56 4.94 9.52 9.56 knots 

g26 Approach speed  141.5 141.5 141.5 141.5 141.5 139.5 knots 

g27 Specific excess power 709.4 709.1 697.7 694.3 684.7 682.9 ft/sec 

g28 Acceleration from 0.8M to 1.2M 63.48 63.60 63.60 63.54 63.24 62.88 sec 

g29 Turn rate 12.049 12.122 12.063 12.069 12.047 12.176 deg/sec 

g210 Usable load factor 7.609 7.609 7.609 7.610 7.608 7.609 g 

 

R 

E 

S 

U 

L 

T 

S 

OEW 25738 27522 28864 29520 31290 32567 lb 

Attack TOGW 50520 53358 55607 58021 63122 65749 lb 

Fighter TOGW 37975 40417 43120 44123 47432 49430 lb 

RDTE 4639 6490 6635 6704 6887 7023 $m 

RDTE year 8.58 9.35 9.49 9.55 9.72 9.85 year 

Production 20172 27594 29238 29973 32126 33860 $m 

f1/f2 24811 34084 35874 36677 39012 40883 $m 

Total cost - 58894 60684 61488 63823 65693 $m 
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Table 47: TAD Optimization Results for the Ad-Hoc Strategy 

 Stage 1 2  

 Requirement/Scenarios Block 0 S1 S2 S3 S4 S5 Unit 

x21 Wing area 396.6 426.5 453.4 465.0 499.8 530.1 ft2 

x22 Thrust 18355 19699 20569 20920 21998 22933 lb 

x23 Ref. weight for DLF 34131 36348 38594 39416 42082 43877 lb 

x24 Landing weight 33248 37527 39899 40921 43955 45368 lb 

x25 Internal fuel 10827 11488 12851 13193 14708 15454 lb 

x26 External fuel 6724 7097 6694 7997 9610 10288 lb 

x27 Ref. thrust for aft-body 18355 22654 23655 24058 25298 26373 lb 

x28 Fuselage length 53.08 53.81 54.80 55.00 55.85 56.09 ft2 

g21 Fighter escort radius 350.1 350.2 410.0 420.0 475.7 493.9 nm 

g22 Interdiction mission radius 410.9 410.1 430.5 460.2 503.2 510.0 nm 

g23 Recovery payload 4508 7001 8009 8400 9703 9800 lb 

g24 Launch wind over deck 22.06 22.37 22.26 24.91 28.43 28.65 knots 

g25 Recovery wind over deck  -0.01 3.55 3.55 4.94 9.44 9.56 knots 

g26 Approach speed  138.1 141.5 141.5 141.5 141.4 139.5 knots 

g27 Specific excess power 708.7 709.4 697.8 694.3 683.1 682.9 ft/sec 

g28 Acceleration from 0.8M to 1.2M 63.66 63.60 63.60 63.54 63.60 62.88 sec 

g29 Turn rate 12.042 12.123 12.065 12.069 12.044 12.176 deg/sec 

g210 Usable load factor 7.609 7.609 7.615 7.610 7.608 7.609 g 
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S 

OEW 25738 27525 28890 29520 31251 32567 lb 

Attack TOGW 50520 53365 55664 58021 62973 65749 lb 

Fighter TOGW 37975 40423 43151 44123 47368 49430 lb 

RDTE 4639 2830 3724 4018 4609 5101 $m 

RDTE year 8.58 4.87 6.36 6.75 7.32 7.79 year 

Production 20172 27099 28768 29499 31738 33597 $m 

f1/ f2 24811 29929 32492 33517 36347 38697 $m 

Total cost - 54744 57306 58332 61161 63512 $m 
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Table 48: TAD Optimization Results for the DetPP(Block10) Strategy 

 Stage 1 2  

 Requirement/Scenarios Block 0 S1 S2 S3 S4 S5 Unit 

x21 Wing area 449.4 426.4 453.5 465.0 499.8 530.1 ft2 

x22 Thrust 20441 19694 20569 20923 21998 22933 lb 

x23 Ref. weight for DLF 38251 36341 38594 39423 42082 43877 lb 

x24 Landing weight 39539 37522 39899 40920 43955 45368 lb 

x25 Internal fuel 12777 11487 12851 13199 14708 15454 lb 

x26 External fuel 6691 7094 6694 7987 9610 10288 lb 

x27 Ref. thrust for aft-body 23508 22648 23655 24061 25298 26373 lb 

x28 Fuselage length 54.68 53.82 54.80 55.01 55.85 56.09 ft2 

g21 Fighter escort radius 409.6 350.3 410.0 420.3 475.7 493.9 nm 

g22 Interdiction mission radius 431.4 410.0 430.5 460.2 503.2 510.0 nm 

g23 Recovery payload 7910 6999 8009 8397 9703 9800 lb 

g24 Launch wind over deck 22.29 22.37 22.26 24.91 28.43 28.65 knots 

g25 Recovery wind over deck  3.55 3.55 3.55 4.93 9.44 9.56 knots 

g26 Approach speed  141.5 141.5 141.5 141.5 141.4 139.5 knots 

g27 Specific excess power 699.2 709.2 697.8 694.2 683.1 682.9 ft/sec 

g28 Acceleration from 0.8M to 1.2M 63.60 63.60 63.60 63.54 63.60 62.88 sec 

g29 Turn rate 12.066 12.122 12.065 12.067 12.044 12.176 deg/sec 

g210 Usable load factor 7.609 7.608 7.615 7.610 7.608 7.609 g 

 

R 

E 

S 

U 

L 

T 

S 

OEW 28628 27521 28890 29522 31251 32567 lb 

Attack TOGW 55325 53358 55664 58019 62973 65750 lb 

Fighter TOGW 42815 40419 43151 44131 47368 49431 lb 

RDTE 4904 2273 1341 2961 3583 4041 $m 

RDTE year 8.82 4.37 2.26 5.67 6.35 6.77 year 

Production 21595 26934 28820 29151 31354 33201 $m 

f1/ f2 26499 29206 30161 32112 34936 37242 $m 

Total cost - 55705 56660 58611 61435 63740 $m 
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Table 49: TAD Optimization Results for the DetPP(Average) Strategy 

 Stage 1 2  

 Requirement/Scenarios Block 0 S1 S2 S3 S4 S5 Unit 

x21 Wing area 464.0 426.6 461.1 465.0 499.8 530.1 ft2 

x22 Thrust 20855 19703 20814 20920 21998 22933 lb 

x23 Ref. weight for DLF 39170 36365 39189 39416 42082 43877 lb 

x24 Landing weight 40830 37532 40572 40921 43955 45368 lb 

x25 Internal fuel 13190 11491 13168 13193 14708 15454 lb 

x26 External fuel 7920 7093 7901 7997 9610 10288 lb 

x27 Ref. thrust for aft-body 23982 22659 23936 24058 25298 26373 lb 

x28 Fuselage length 54.79 53.82 54.97 55.00 55.85 56.09 ft2 

g21 Fighter escort radius 423.5 350.3 421.6 420.0 475.7 493.9 nm 

g22 Interdiction mission radius 461.4 410.0 460.7 460.2 503.2 510.0 nm 

g23 Recovery payload 8547 7000 8264 8400 9703 9800 lb 

g24 Launch wind over deck 24.47 22.36 24.92 24.91 28.43 28.65 knots 

g25 Recovery wind over deck  4.80 3.55 4.41 4.94 9.44 9.56 knots 

g26 Approach speed  141.5 141.5 141.5 141.5 141.4 139.5 knots 

g27 Specific excess power 696.2 709.4 695.0 694.3 683.1 682.9 ft/sec 

g28 Acceleration from 0.8M to 1.2M 63.54 63.54 63.60 63.54 63.60 62.88 sec 

g29 Turn rate 12.112 12.123 12.053 12.069 12.044 12.176 deg/sec 

g210 Usable load factor 7.610 7.611 7.611 7.610 7.608 7.609 g 

 

R 

E 

S 

U 

L 

T 

S 

OEW 29282 27531 29306 29520 31251 32567 lb 

Attack TOGW 57699 53370 57681 58021 62973 65750 lb 

Fighter TOGW 43882 40432 43885 44123 47368 49431 lb 

RDTE 4963 2300 1306 1355 3401 3854 $m 

RDTE year 8.87 4.40 2.23 2.27 6.18 6.59 year 

Production 21897 26964 29256 29511 31285 33131 $m 

f1/ f2 26859 29265 30562 30866 34686 36986 $m 

Total cost - 56124 57421 57725 61546 63845 $m 
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Table 50: TAD Optimization Results for the DetPP(Block10p) Strategy 

 Stage 1 2  

 Requirement/Scenarios Block 0 S1 S2 S3 S4 S5 Unit 

x21 Wing area 498.5 426.5 453.1 465.0 499.8 530.1 ft2 

x22 Thrust 21947 19699 20557 20920 21998 22933 lb 

x23 Ref. weight for DLF 41816 36348 38535 39416 42082 43877 lb 

x24 Landing weight 43839 37526 39867 40921 43955 45368 lb 

x25 Internal fuel 14692 11488 12847 13193 14708 15454 lb 

x26 External fuel 9608 7092 6665 7997 9610 10288 lb 

x27 Ref. thrust for aft-body 25238 22654 23641 24058 25298 26373 lb 

x28 Fuselage length 55.60 53.82 54.80 55.00 55.85 56.09 ft 

g21 Fighter escort radius 478.8 350.2 410.1 420.0 475.7 493.9 nm 

g22 Interdiction mission radius 505.8 409.9 430.0 460.2 503.2 510.0 nm 

g23 Recovery payload 9846 7000 8000 8400 9703 9800 lb 

g24 Launch wind over deck 28.14 22.36 22.21 24.91 28.43 28.65 knots 

g25 Recovery wind over deck  9.27 3.55 3.55 4.94 9.44 9.56 knots 

g26 Approach speed  141.4 141.5 141.5 141.5 141.4 139.5 knots 

g27 Specific excess power 685.9 709.4 697.9 694.3 683.1 682.9 ft/sec 

g28 Acceleration from 0.8M to 1.2M 63.42 63.54 63.60 63.54 63.60 62.88 sec 

g29 Turn rate 12.093 12.123 12.064 12.069 12.044 12.176 deg/sec 

g210 Usable load factor 7.609 7.609 7.609 7.610 7.608 7.609 g 

 

R 

E 

S 

U 

L 

T 

S 

OEW 30992 27525 28866 29520 31251 32567 lb 

Attack TOGW 62697 53360 55606 58021 62973 65750 lb 

Fighter TOGW 47095 40423 43124 44123 47368 49431 lb 

RDTE 5116 2381 2863 2899 1389 3303 $m 

RDTE year 9.01 4.49 5.71 5.74 2.30 5.98 year 

Production 22701 27009 28426 29113 31593 32970 $m 

f1/ f2 27817 29390 31289 32012 32983 36273 $m 

Total cost - 57206 59105 59829 60799 64090 $m 
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7.8.4.1 Discussions from the Cost Point of View 

Figure 70 shows the total program cost, i.e. the sum of first-stage acquisition cost 

($Acq1) and second-stage acquisition cost ($Acq2), in 1996 billion dollars. Five different 

colors represent the five scenarios. The general trend is that the New-design strategy 

costs the most regardless of scenarios but the difference is not very large. The difference 

is mainly due to the savings in RDT&E cost in the second stage when modifications to 

existing design are pursued rather than a completely new design. Within each strategy, 

cost increases as the scenario number increases—and thus the second-stage requirement 

gets more challenging—regardless of the strategies. However, it is not clear to see which 

strategy cost the least in general or for a specific scenario in this figure.  

To facilitate further observations, the same bar graph was plotted with respect to 

the scenarios instead of the strategies as shown in Figure 71. Now, the total costs are 

grouped with respect to the scenarios, and five colors represent the five strategies. 
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Figure 70: Total Program Cost Comparison w.r.t. the Strategies 
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Obviously again, the New-design strategy incurred the largest cost regardless of the 

scenarios. For the scenarios 2, 3, and 4, the best strategies were DetPP(Block10), 

DetPP(Average), and DetPP(Block10p) respectively. This result implies that a 

deterministic preplanning strategy works the best when the predicted scenario 
u
ω  

matches the realized scenario ˆ
s
ω . On the other hand, when the predicted scenario was 

different from the actual scenario, Ad-hoc strategy was the best. For scenarios 1 and 5, 

Ad-hoc strategy incurred the least cost among five strategies because no DetPP 

predicted those scenarios, and for scenarios 2, 3, and 4, it was the second best choice. 

These patterns are expresses with the following inequalities: 

 

* * * * * *

1 2 1 2 1 2

* * * * * *

1 2 1 2 1 2

ˆ , ( ) ( ) ( )

ˆ , ( ) ( ) ( )

DetPP Ad hoc ND

u s s s s

Ad hoc DetPP ND

u s s s s

if f f f f f f

if f f f f f f

−

−

= + < + < +

≠ + < + < +

ω ω

ω ω
 (75) 
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Figure 71: Total Program Cost Comparison w.r.t. the Scenarios 

In reality, it is almost impossible to predict the future requirement with certainty 

unless it is determined from the beginning. Thus, this study suggests that under the 
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presence of uncertain future requirements, it is the best strategy to pursue the Ad-hoc 

strategy, and thus the first-stage design is a PfD. However, if the second-stage 

requirement is known, it is best to incorporate that from the beginning. The conclusion 

about how much growth potential would be necessary is discussed later. This pattern is 

true and might be only true when the objective function is acquisition cost and all 

second-stage aircraft are new manufactures. Therefore, hasty generalizations should be 

avoided. The conclusion is formally stated as follows: 

 

Observation 9: When acquisition cost is the objective function, incorporating growth 

potential into the first-stage design was not beneficial unless one could predict the 

future requirement with certainty or unless the future requirement was given from 

the beginning. Under presence of uncertainty, the least costly way to meet both 

the first and second requirements is to design only for the current requirement in 

the first stage, and then modify the design later after the second-stage requirement 

is revealed.  

 

To provide more explanations to the above observation, the first- and second-stage 

cost were plotted separately as shown in Figure 72. The wide, gray bar is $Acq1, and 

narrow bars are $Acq2 for the corresponding scenarios. Gray bars show that DetPPs 

incurred more cost than New-design and Ad-hoc in the first stage. Among the DetPPs, 

the Block10p spent the most, followed by the Average. In the second stage, the New-

design cost the most as expected, and DetPPs cost less than New-design and Ad-hoc. By 

comparing the DetPPs, one can conclude that the pattern in Eq. (75) was achieved 

because the saving on $RDTE2 was greater than the penalty of over-designing when the 
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growth potential was adequately embedded in the original design. For example, the 

Block10p spent more than any other strategies in the first stage, but it cost the least in 

the second stage as well as overall under Scenario 4.  

7.8.4.2 Discussions from the Design Point of View 

In order to gain insight as to how different strategies decided the optimal first and 

second designs, the patterns among the design variables are investigated here. All the 

bar graphs in this section separately show the first-stage design in wide, grey bars, and 

the second-stage design in narrow bars of five different colors. The definition of color 

codes are provided in the legends of the graphs.  

Figure 73 compares the wing area in the first stage *

11
( )p

s
x  and the second stage 

*

21
ˆ( )p

s
x , where 1, , 5s = …  is the scenario number and 1, , 5p = …  is the strategy number. 

The New-design and Ad-hoc strategies had the same wing areas for a same scenario such 

that * 1 * 2

11 11
( ) ( )

s s
x x=  and * 1 * 2

21 21
ˆ ˆ( ) ( )

s s
x x=  for s∀ . The three DetPPs overdesigned the wing 
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Figure 72: Stage 1 and Stage 2 Acquisition Cost Comparison 
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in the first stage to the extent that they match the second-stage wing area under the 

predicted scenarios 
u
ω .  

 { } { }* *

11 21
ˆif , ( ) ( ) for 2, 3, 4 , 2, 3, 4DetPP DetPP

u s
u s x x u s= = ∀ ∈ ∀ ∈  (76) 

where u is the predicted scenario number and s represents the realized scenario number. 

Eq. (76) implies that the DetPPs overdesigned the wing area to meet the second-stage 

requirement so that it did not have to be resized in the second stage. Figure 74 compares 

engine thrust in the first and second stage and is qualitatively identical to the wing area 

graphs. Essentially, when the same types of bar graphs as in Figure 74 are generated 

with other design variables, all the graphs are qualitatively identical to those in Figure 

74 with the exception of external fuel tank capacity. Indeed, Eq. (76) holds for all design 

variables and is generalized as: 

 
{ } { }* *

1 2

for 3, ,5 if ,

ˆthen ( ) ( ) for 2, 3, 4 , 2, 3, 4p p

u s

p u s

u s

= … =

= ∀ ∈ ∀ ∈x x
 (77) 

Eq. (77) implies that all three first-stage designs under DetPP can meet the second-stage 

requirement without modification, and therefore they are PoDs.  

Between the second-stage wing areas in Figure 73, a common inequality is that the 

wing area monotonously increases as the scenario number increases under a certain 

strategy.  

 * * * * *

21 1 21 2 21 3 21 4 21 5
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )p p p p px x x x x< < < <  (78) 
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Figure 73: Wing Area Comparison 
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Figure 74: Engine Thrust Comparison 
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More importantly, all strategies had the same wing areas for a given scenario except for 

only * 4

21 2
ˆ( )x . The wing area for DetPP(Average) under scenario 2 was equal to all wing 

areas under scenario 3. These patterns are true for all other design variables and are 

generalized as 

 
* 1 * 2 * 3 * 4 * 5

2 2 2 2 2

for a given 1,..., 5

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
s s s s s

s =

= = = =x x x x x
 (79) 

with an exception of, 

 * 1 * 2 * 3 * 5 * 4 *

2 2 2 2 2 2 2 2 2 2 21 3
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) , 1,..., 5p p= = = ≠ = =x x x x x x  (80) 

reminding that the second-stage optimization problem is the same for all strategies 

except that they might have different starting points *

1
( )px . The result shows that, if 

only one exception is excluded, the optimizer decided to have the same *

2
( )p

s
x  regardless 

of the previous design *

1
( )px  for a given scenario.  

Essentially, if the second-stage requirement is more stringent than the one predicted 

initially or u s< , the design is inevitably infeasible without modification. Thus, it is no 

option to keep the first-stage design unchanged. However, in the opposite situation 

where u s> , *

1
( )p

u
x  could be still feasible in the second-stage. Therefore, *

1
( )p

u
x  can either 

be retained to save RDT&E cost or be reduced to save production cost. It is the role of 

the optimizer to find the balanced solution which minimizes the sum of RDT&E and 

production cost. Out of the six cases where u s> , five cases decided to change *

1
( )p

u
x  

despite the RDT&E cost, because savings from production cost was larger. Only the 

DetPP(Average) decided to keep the first-stage design unchanged under scenario 2 such 

that * 4 * 4

1 2 2
( ) ( ) , 1, , 5

u
u= =x x … .  
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Figure 75 was prepared for the external fuel capacity *

26
ˆ( )p

s
x . A clear difference from 

previous graphs is that the smallest value occurs under Scenario 2 not Scenario 1, thus it 

does not follow the inequality as in Eq. (78). Intuitively, this result looks erroneous since 

Scenario 2 demands more attack radius than Scenario 1 does. Indeed, Scenario 2 required 

19,545 lb of total fuel while Scenario 1 required 18,585 lb. This somewhat confusing 

result was caused by the fact that total fuel requirement is divided into internal and 

external fuel tanks under the following rules. External fuel tank capacity is determined 

by the total fuel required under the attack mission less the internal fuel capacity. 

Internal fuel capacity is mainly determined by the fighter mission radius, simultaneously 

considering wing area, fuselage length, and avionics weight. This unexpected result 

demonstrates the difficulty of intuitively preparing growth provisions even in a 

qualitative manner for a complex system such as a fighter aircraft. 

Strategies

E
x
te

rn
a
l 
F

u
e
l 
(l
b
)

 

 

New Design Ad-hoc DetPP(Block10) DetPP(Avg) DetPP(Block10p)

7000

8000

9000

10000

11000

12000

stage1  (Block0)

scn1     (Minimum)

scn2     (Block10)

scn3     (Average)

scn4     (Block10p)

scn5     (Maximum)

 
Figure 75: External Fuel Amount Comparison 
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Finally, aircraft empty weight (OEW) and takeoff gross weight (TOGW) in attack 

configurations were compared in Figure 76 and Figure 77, respectively. These two charts 

also are qualitatively identical to those plotted with the design variables. Therefore, all 

the equalities and inequalities identified in Eqs. (76)-(80) are valid for these weights. 

This result indicates strong, positive correlations not only between the input variables 

but also between input and output variables.  

 

Observation 10: The patterns among the optimal designs under various strategies and 

scenarios revealed that the second-stage design mostly dictated the realized 

scenario such that most first-stage design was modified to meet the second-stage 

requirement best, because the production cost reduction was larger than the 

RDT&E cost incurred.  
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Figure 76: Empty Weight Comparison 
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Figure 77: Takeoff Gross Weight Comparison 

7.9 A Stochastic Approach Two-Stage Aircraft Design 

Optimization: Step 8 

Step 8 incorporates the uncertainty in the second-stage requirement by directly solving 

two-stage aircraft design optimization for the random variables defined as PDFs. The 

stochastic preplanning strategy is solved to find the HN solution before realization of 

uncertainty. Since the StoPP minimizes *

1 2
( )f f+ E , and evaluation of true *

2
( )fE� is 

impractical, estimation is made through the use of both surrogate models and numerical 

integration using the Monte Carlo technique. Once the approximation process is 

established with reasonable accuracy, the two-stage stochastic optimization is solved and 

discussed. Then, the WS solutions are sought for not only the StoPP but also all other 

strategies solved in the previous step. 
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7.9.1 Surrogate Modeling 

Two Artificial Neural Network (ANN) models were created—the optimum second-stage 

objective f2
* under derivative aircraft strategies and New-design strategy. Under 

derivative strategies, the second-stage objective function f2 is dependent on the first-stage 

design x1 and the random variables ω . Table 51 lists parameters and their ranges within 

which the ANNs are created. The bounds were carefully set through iterations to ensure 

they are large enough to include the design space necessary and they are not too large 

unnecessarily. The bounds for the random variables are the minimum and maximum 

limits of the PDFs. The lower bound of x1 is slightly smaller than the smallest optimal 

first-stage design * 1

1
( )x , and the upper bound is slightly larger than the largest optimal 

first-stage design * 5

1
( )x . When, the New-design strategy is pursued, the second-stage 

objective function f2 is independent to the first-stage design x1. Therefore, only the 

random variables were used in creating the ANN of f2
*. 

Table 51: List of Parameters and Bounds for Surrogate Modeling 

Parameters Lower Bound Upper Bound 

x11 390 510 

x12 18300 22200 

x13 34000 42500 

x14 33000 44500 

x15 10000 15000 

x16 6600 10000 

x17 18250 25750 

x18 53 56 

1
ω  360 490 

2
ω  410 510 

3
ω  7000 9800 

4
ω  1300 1500 
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For the sampling techniques, the LHS technique was used. Two separate sets of LHS 

samples were created to combine 1,000 sampling points. The first set of 750 samples was 

used to train the model, and the remaining 250 samples were used to validate the model.  

For each of the sampling points, the second-stage optimization problem as defined in 

Eq. (32) was solved for a given sample of x1 and ω . To ensure local optimality, 

optimization results were automatically checked to see whether they satisfied all 

convergence, constraint, and side constraint violation criteria.  For each of the sampling 

points, the optimization problem was solved from two different initial points, and the 

better answer was selected to increase the change of finding the global optimum.  

ANN models were trained with various training options, and the best models were 

selected. As far as the architecture of the ANN is concerned, the single-layer ANN was 

used for both cases. The training algorithm was the Levenberg-Marquardt with Bayesian 

Regularization algorithm. The number of hidden nodes determines the complexity of the 

NN architecture. In general, more complicated functions require more hidden nodes. 

Final training results are summarized in Table 52, including basic statistics such as R-

squares and the mean and standard deviation of model fit error (MFE) and model 

representation error (MRE). The numbers of hidden nodes were eight and five for each 

of the models, respectively.  

The statistics are graphically represented in Figure 78 and Figure 79, showing 

histograms of error distributions, actual by predicted, and residual by predicted plots. 

The histograms are close to normal distribution with reasonably small mean and 

standard deviation values. The actual by predicted plots show tight fit around the 

perfect fit line without any sign of patterned behavior. The residual by predicted plots 
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shows random scatter of residuals without noticeable patterns. All the residuals fall 

below 2% of the actual response value.  

Table 52: Neural Network Training Statistics of f2
*  

Second-Stage Development Type Derivative 

Design 

New 

Design 

Number of hidden nodes 8 5 

R-square of Training Set 0.980528  

R-square of Validation Set 0.970675  

Model Fit Error (Mean) 0.003758  

Model Fit Error (Standard Deviation) 0.607262  

Model Representation Error (Mean) 0.016637  

Model Representation Error (Standard Deviation) 0.746351  

 

 
Figure 78: Neural Network of f2

* for the Derivative Design Strategies 
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Figure 79: Neural Network of f2

* for the New-Design Strategy 

7.9.2 Monte Carlo Simulation 

Since the random variables are continuous, the number of possible combinations are 

infinite. The expectation of the optimum second-stage cost *

2
( )fE�  is approximated using 

the Monte Carlo (MC) technique. Two sampling techniques—Latin Hypercube Sampling 

(LHS) and Simple Random Sampling (SRS)—were compared with various sample sizes 

in order to investigate their convergence properties. The commercial software package 

Crystal Ball® was utilized as the framework for MCS and sampling methods. Random 

samples of the four random variables—fighter escort radius, interdiction radius, recovery 

payload, and avionics weight—were generated using LHS and SRS following the PDFs 

defined in Step 2.  
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For the experiment, the first-stage design was fixed at * 1

1
( )x . Then, Monte Carlo 

simulation was repeatedly performed to calculate *

2
( )fE�  with the sample size increasing 

from 1,000 to 500,000 using LHS and SRS. Since true value of *

2
( )fE�  is not known, it 

was assumed that the estimated *

2
( )fE�  would be closest to the true value when the 

sample size is the largest. Then, error was defined as the difference from the *

2
( )fE� , 

calculated using 500,000 samples.  

Experiment results are provided in Table 53. It was concluded that *

2
( )fE�  converged 

faster with the LHS technique than it did with SRS. With only 1,000 samples, the error 

with LHS was less than 10-5, and it was close to 10-6 with 5,000 samples. SRS showed 

considerably larger errors than LHS with the equal number of samples or converged to a 

similar degree of errors with considerably larger samples than LHS did. This study is 

limited to only a point in the first-stage design space, however it was concluded that 

LHS would work better than SRS in terms of approximating *

2
( )fE� , and the sample size 

of 5,000 was used in solving stochastic optimizations in the next step. 

Table 53: *

2
( )fE�  Convergence Comparison with LHS and SRS Sampling Methods  

 LHS SRS 

N �(f2
*) Error �(f2

*) Error 

1,000 32,516.29 0.0000504 32,596.81 0.002522 

5,000 32,514.23 -0.0000128 32,529.98 0.000466 

10,000 32,513.70 -0.0000291 32,530.60 0.000485 

100,000 32,515.30 0.0000199 32,517.41 0.000080 

500,000 32,514.65 not applicable 32,514.82 not applicable 

 

Finally, the PDF of f2
* was plotted with both 5,000 and 100,000 scenarios for 

comparison. PDF with 100,000 samples as shown in the bottom of Figure 80 is a quite 

smooth distribution that is close to a normal distribution slightly skewed to the left. It 
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does not show any irregularity from normal distribution except for the skewness, and 

even both tails are well represented. On the other hand, the PDF created using only 

5,000 samples in the top of the figure is not smooth, while the overall trend agrees to the 

higher fidelity counterpart. Especially, if the point of interest were at the tails of the 

distribution, the PDF with 5,000 samples would be a poor representation of the true 

behavior. Comparison of these two PDFs shows that although 5,000 samples would be 

sufficient in estimating the average of the distribution, it does not guarantee the same 

level of accuracy with other types of statistics, and further investigation is warranted if 

the point of interest is something other than the average value. 

 
Figure 80: PDFs of f2

* using 5,000 (Top) and 100,000 Scenarios (Bottom) 
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7.9.3 Before Realization of the Random Variables: The Here-and-Now Solutions 

The results of SPR are a single first-stage optimal solution and a group of second-

stage recourse decisions that match a specific realization of random variables. The first-

stage optimal decision under StoPP 
* 6

1
( )x  constraints and some of the design outputs 

evaluated at 
* 6

1
( )x  are presented in Table 54. Deterministic optimization results that are 

in Table 45 are repeated in the shaded columns for easier comparison. It is observed that 

under stochastic strategy, the optimizer decided to overdesign more than the Ad-hoc and 

New-design strategies did, but not as much as any DetPPs did. Eq. (72) is expended to 

 * 1 * 2 * 6 * 3 * 4 * 5

1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) ( )= < < < <x x x x x x  (81) 

with an exception of external fuel capacity. This inequality also holds for the weight and 

cost outputs.  



 271

 

 

Table 54: First-Stage Optimum Design under the Stochastic Strategy 

 Strategies Stochastic ND Ad-hoc Block10 EV Block10p Unit 

x11 Wing area 413.4 396.6 396.6 449.4 449.4 498.5 ft2 

x12 Thrust 19230 18355 18355 20441 20441 21947 lb 

x13 Ref. weight for DLF 35566 34131 34131.3 38251 38251 41816 lb 

x14 Landing weight 36375 33248 33247.7 39539 39539 43839 lb 

x15 Internal fuel 11270 10827 10826.5 12777 12777 14692 lb 

x16 External fuel 6951 6724 6723 6691 6691 9608 lb 

x17 Ref. thrust for aft-body 21384 18355 18355 23508 23508 25238 lb 

x18 Fuselage length 53.50 53.08 53.08 54.68 54.68 55.60 ft 

g11 Fighter escort radius 349.7 350.1 350.1 409.6 409.6 478.8 nm 

g12 Interdiction mission radius 410.3 410.9 410.9 431.4 431.4 505.8 nm 

g13 Recovery payload 6489 4508 4508 7910 7910 9846 lb 

g14 Launch wind over deck 22.70 22.06 22.06 22.29 22.29 28.14 knots 

g15 Recovery wind over deck  3.55 -0.01 -0.01 3.55 3.55 9.27 knots 

g16 Approach speed  141.5 138.1 138.1 141.5 141.5 141.4 knots 

g17 Specific excess power 709.4 708.7 708.7 699.2 699.2 685.9 ft/sec 

g18 Accel. from 0.8 to 1.2M 63.48 63.66 63.66 63.60 63.60 63.42 sec 

g19 Turn rate 12.049 12.042 12.042 12.066 12.066 12.093 deg/sec 

g110 Usable load factor 7.609 7.609 7.609 7.609 7.609 7.609 g 

R 

E 

S 

U 

L 

T 

OEW 26885 25738 25738 28628 28628 30992 lb 

Attack TOGW 52353 50520 50520 55325 55325 62697 lb 

Fighter TOGW 39566 37975 37975 42815 42815 47095 lb 

RDTE 4744 4639 4639 4904 4904 5116 $m 

RDTE year 8.68 8.58 8.58 8.82 8.82 9.01 year 

Production 20728 20172 20172 21595 21595 22701 $m 

f1 25472 24811 24811 26499 26499 27817 $m 
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7.9.4 The Wait-and-See Solutions and Evaluation of the Strategies from the 

Risk Point-of-View  

When the random variables are defined as PDFs, an infinite number of optimal second 

stages exist for every corresponding realization of random variables. Here, realizations of 

all the combinations of random variables are simulated on top of the already found 

optimal first-stage decisions *

1
( ) , 1, , 6p p =x

ω
… . The realization of random variables were 

approximated by running Monte Carlo simulation with 5,000 randomly sampled 

scenarios. Due to a large volume of information, PDFs and CDFs are used for 

visualization and interpretation rather than for the bar graphs. In addition, statistics of 

the distributions, such as mean and variance are discussed here. With the CDFs and the 

statistics, the strategies can be ranked in terms of various criteria that the decision 

maker would choose as a risk-measure. In this study, the strategies were ranked with the 

following risk-measures: probability to exceed total cost limit, the probability to exceed 

second-stage cost limit, average total cost, and average second-stage cost.  

7.9.4.1 Probability of Exceeding Total Spending Limit 

The PDFs of total program cost under the six different strategies are prepared in Figure 

81. The PDFs are histograms of the total program costs after the realization of all 5,000 

scenarios that were generated using the LHS technique. The figure shows the location of 

the peak points from the right, namely, the ND strategy followed by the 

DetPP(Block10p), DetPP(Average), DetPP(Block10), AH, and StoPP strategies. The 

location of the peak point suggests that the StoPP strategy costs least in general under 

the realization of all future scenarios. The shapes of the PDFs are different. In terms of 

the degree dispersion, The Ad-hoc shows a wider distribution than any other does, 
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indicating the largest variability. These observations are discussed again later with the 

statistics.  

By numerically integrating the PDFs in Figure 81, the complimentary CDFs of total 

program cost were obtained as shown in Figure 82. Superimposed with a spending limit, 

the CDFs can show the probability of exceeding the cost limit. For example, the 

probability of spending more than 59 billion dollars for the acquisition of the notional 

fighter can be read by superimposing a vertical line through the $59 on the horizontal 

axis then reading the values on the vertical axis where the line intersects with the CDFs. 

Then, the probabilities are 31.42% with StoPP, 36.78% with AH, 40.4% with 

DetPP(Block10), 46.04% with DetPP(Average), 72.48% with DetPP(Block10p), and 

100% with ND. In general, all five strategies except for the New-design spent more than 

$56 billion and less than $62 billion with 100% probability. The total spending of New-

design strategy fell between about $60 and $64 billion.  
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Figure 81: PDFs of Total Program Cost 
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Figure 82: CDFs of Total Program Cost   

If the probability of exceeding the spending limit is repeated with varying spending 

limits from $56 to $64 billion, one can see that the StoPP strategy in the purple line has 

the lowest probability of exceeding the spending limit than any other strategy in most of 

the region. In fact, a closer look at the CDFs reveals that the Ad-hoc could be the best 

in specific ranges, and the top three ranked strategies are provided in Table 55. When 

the cost limit is less than 55.9 or more than 62 billion dollars, all strategies violate or 

meet the constraint with one hundred percent probabilities. Then, when the spending 

limit is lower than 55.7 billion, the Ad-hoc strategy is safer than any other. For a limit 

of more than 55.7 billion dollars, the Stochastic can be selected as the best strategy.  

Then, if the decision-maker is risk-averse and spending more than a certain amount 

is perceived as risky, then the provided rankings can give the decision-makers a handle 

to evaluate and select the best strategy among six of them accounting for risk. As the 

rankings show, it could be the StoPP strategy or the AH strategy or any other strategy, 

depending on the spending limit.  
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Another notable observation from Table 55 is that the rank of the Ad-hoc strategy 

gradually goes down as the spending limit increases. It is easier to see the trend in the 

graphical representation of the rankings as given in Figure 83. The ranking of the Ad-

hoc strategy in the blue line steps down as the total cost limit increases from left to 

right. On the other hand, the DetPPs follow the opposite trend. These trends imply that 

if the spending limit is high, it is better to pursue a strategy that overdesigns the first-

stage vehicle, and if the spending limit is low, it is safer not to overdesign in the first 

stage.  

 

Observation 11: The graphical representation of strategy rankings with respect to the 

probability of exceeding the total program cost limit revealed that no preplanning 

for growth was better when the cost limit was low, and more growth potential was 

better as cost limit increased.  

 

Table 55: Top Three Picks 

 Ranking 

Spending Limit 1st  2nd  3rd  

Less than 55.9 All equal   

55.9 - 55.7 Ad-hoc Stochastic All equal 

55.7 - 59.7 Stochastic Ad-hoc Block10 

59.7 - 60.7 Stochastic Block10 Ad-hoc 

60.7 - 61.9 Stochastic Block10 Average 

More than 62 All equal   
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Figure 83: Rankings by the Probability of Exceeding Total Cost Limit 

7.9.4.2 Probability of Exceeding the Second-Stage Spending Limit 

The ranking criteria or the risk-measure can be different from organization to 

organization, and now the study in the previous section is repeated with the definition of 

risk being the probability of incurring more than a certain amount in the second stage. 

The premise behind this risk-measure is that the first-stage cost is under control and the 

decision maker is solely concerned about the second-stage cost. This scenario would be 

plausible when a manufacture has a firm first-stage contract already from an entity, and 

it is seeking to maximize its profit by selling the derivative versions to other agencies. 

Alternatively, the manufacturer is competing for the first-stage contract and trying to 

win it at a loss in hopes of recovering the loss at the second stage. While the situation 

involving competitors would further complicate the decision-making process, a game 

theoretic approach would help in making better decisions. The value of EvoLVE is to 

provide quantitative information to support such decision-making processes.  
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The outcome of the Monte Carlo simulation is now investigated focusing on the 

second-stage cost. Figure 84 is the PDFs of the second-stage acquisition cost of the six 

different strategies. One can observe general properties of the distributions, such as 

location of the peak, dispersion, tails etc. In general, the New-design strategy costs the 

most, but the dispersion was the smallest. DetPPs cost less than both StoPP and AH, 

because of larger second-stage RDT&E cost savings. In addition, among the derivative 

strategies, DetPP(Block10p) showed the greatest possibility to cost the least with the 

smallest dispersion. The Ad-hoc strategy was the opposite and cost the most with the 

least variability.  

The CDFs in Figure 85 can be used to evaluate the probability of exceeding a 

certain second-stage cost limit. As an example, for the spending limit of 33 billion 

dollars, the probability with DetPP(Block10p) is 4.48%; with DetPP(Average) is 15.18%; 

with DetPP(Block10) is 21.86%; with StoPP is 51.92 %, with Ad-hoc is 78.94%; and 

with New-design is 100%.  
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Figure 84: PDFs (Top) and CDFs (Bottom) of the Second-Stage Acquisition Cost 



 278

Finally, the strategies are ranked in terms of the probability of exceeding the 

second-stage cost limit and the best strategy is found with the lowest probability. 

Formally, this concept is derived from the Risk-Averse Strategy Selection formulations in 

Eqs. (20) and (21), and they are reduced to 

 *
1

Prob{ (( ) }m ,in p

p
Q τ>x ω)  (82) 

where *

1
(( ) ,pQ x ω) is the optimal value of the second-stage problem or the given first-stage 

optimal solution *

1
( )px  under strategy 1,..., 6p =  defined as 

 2

* *

1 2 1

*

2

2

1 2 2

(( ) ) ( ,( ) )

s.t. ( ,

, min ,

, ) 0 (( 1,... )) ,

p p

p

j
j l

Q f

g

=

≤ =

x
x x

x

x

x

ω ω

ω
 (83) 

The solutions of these equations are sought using Monte Carlo simulation and are 

graphically represented in Figure 86. The ranking is quite different from the ones done 

by the total cost. When the cost limit was lower than 30 billion dollars, all strategies 
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Figure 85: CDFs of the Second-Stage Acquisition Cost 
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violated it with 100% probability. Then, all strategies could meet the cost limit of 39.5 

billion dollars under all scenarios. The DetPP(Block10p) was ranked on the top 

regardless of the cost limit. However, some other strategies were as good as 

DetPP(Block10p) in some areas. If the strategies are sorted by the rankings, the order 

exactly coincides with the order by the degree of overdesign as in Eq. (81) , which 

implies that the larger the first-stage aircraft, the smaller the probability of over-

spending the second-stage cost limit. 

 

Observation 12: When the risk is measured by the probability of the second-stage program 

costing more than a certain limit, the strategy ranking corresponds with the first-

stage aircraft size. Therefore, the larger the growth potential in the first-stage 

design, the smaller the expected risk in the second stage. 
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Figure 86: Rankings by the Probability of Exceeding the Second-Stage Cost Limit 
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7.9.4.3 Strategy Selection by Robustness 

The statistics of the distributions of the total cost and second-stage cost are provided in 

Table 56. The strategies were also ranked in terms of either low mean or variance values. 

The Stochastic strategy was the best in terms of the mean total cost. However, when 

only the second-stage cost was considered, DetPP(Block10p) showed the lowest mean. 

The variability of the distribution has been used as a measure of risk in the 

community of stochastic programming. However, the engineering design community 

regards the variability due to uncertainty is as a measure of robustness. When the 

strategies are ranked by the their robustness to future requirement growth, 

DetPP(Block10p) is the best, followed by DetPP(Average), DetPP(Block10), StoPP, and 

Ad-hoc. Interestingly, this order also matches the order by level of overdesign in Eq (81) 

and the probability of overspending the second-stage cost limit.  

 

Observation 13: The Stochastic Strategy is the best on average. However, either Ad-hoc 

or DetPP can be better under certain circumstances. Depending on the risk-

measure the best strategy changes. Risk-averse DMs can choose other strategies in 

order to mitigate risk. 

 

Table 56: Rankings by Mean and Variance 

Criteria Total Cost (f1+f2) Second-Stage Cost (f2) 

Strategy Mean Rank Variance Rank Mean Rank Variance Rank 

New-design 61803 6 550390 - 36993 6 550390 - 

Ad-hoc 58860 2 1044700 5 34049 5 1044700 5 

DetPP(Block10) 59011 3 756640 3 32512 3 756640 3 

DetPP(Average) 59162 4 713290 2 32303 2 713290 2 

DetPP(Block10p) 59681 5 583880 1 31864 1 583880 1 

Stochastic PP 58751 1 889690 4 33279 4 889690 4 
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7.10 Framework for Interactive Decision Making Support: 

Step 9 

While the outcomes of EvoLVE Steps 7 and 8 were the series of optimum solutions 

under various conditions, it is often more valuable to have a way to explore the design 

space in two time-phased stages simultaneously to investigate the options with greater 

flexibilities than the two approaches Steps 7 and 8 had offered. The ultimate goal of the 

final step of EvoLVE is to provide tools with which stakeholders can change the 

assumptions, apply the scenarios, and trade-off various requirements and figures of 

merits. While interactive, visual representation of the design space can take many 

different forms, two-stage contour plots and two-stage multivariate profilers among 

many are proposed in this study. The benefit of this environment compared to the Steps 

7 and 8 is that it is interactive, giving instantaneous feedback to the user. The use is 

able to perform “what if” studies for a wide range of scenarios beyond the scenarios used 

for the optimization.  

7.10.1 Two-Stage Constraint Analysis  

While the contour profilers can be generated in many different ways and can be used in 

many different ways, this document demonstrates the historical example of the upgrade 

of the F/A-18C/D to the E/F, the history of which was briefly introduced in §3.1.1.3, 

and the requirements of the two versions are summarized in APPENDIX B. Two-stage 

constraint analysis of the F-18 was performed using the contour profilers generated using 

JMP®. Using the environment for TSAD created in Steps 5 and 6, the data for the 

demonstration were generated by sampling the design points in the first- and second-
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stage design space, assuming uniform PDFs. With the data set, response surface 

equations (RSEs) were fitted in the JMP, and contour profilers were created.  

The demonstration starts from Figure 87, which shows the list of design variables in 

the current and future stages at the top, the list of performance and cost measures in the 

middle, and a contour profiler plotted with engine thrust and wing area at the bottom of 

the figure. The plot was set at the F/A-18C/D’s design along with the assumed 

performance limits. Since the actual F/A-18C/D’s performance thresholds were not 

known, some of them were set at its actual performance less some margin, and some 

others were set at actual F/A-18E/F’s thresholds. For identification purposes, the 

baseline design along with the setting is designated as Notional Fighter A. 

Figure 87 shows that the design is highly constrained. Since the baseline vehicle’s 

performance is very close to the limits, changing either wing area or engine thrust would 

cause infeasibilities. For example, if the wing area is reduced or wing loading increases, 

then the turn rate requirement is violated. Engine thrust cannot be reduced without 

violating the acceleration requirement. However, Notional Fighter A still has some room 

for growth on carrier operability metrics, such as launch WOD, recovery WOD, and 

approach speed, as is easily observed from the relative locations of the red diamonds and 

shaded area next to the list of each of the requirements. This suggests that the wing area 

could be reduced or wing loading could be increased if relaxation on the turn rate 

requirement was allowed.  

 



 283

 
Figure 87: Contour Plot of the Notional Fighter A 

The key improvements that the U.S. Navy wanted make on the F/A-18C/D were to 

bring back capability and interdiction mission radius. The bring back weight became 

more important in the late 1980s as highly advanced bombs were fielded, and the cost of 

jettisoning those weapons sharply increased. The Navy also wanted at least 430 nm of 

interdiction mission radius flying the Hi-Lo-Lo-Hi mission profile with three external fuel 
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tanks as the mission spectrum of the Hornet was extended to complement and eventually 

replace the aging A-7.  

To investigate the possibility of these two improvements to the Notional Fighter A, 

the attack radius is increased from 410 nm to 430 nm, which gives rise to infeasibilities 

as shown in the left of Figure 88. Then, in order to increase the mission range, external 

fuel tank capacity is increased from 6,720 lb to 8,000 lb, which opens up the feasible 

space back as shown in the right side of Figure 88. Thus, the requirement growth is 

fulfilled by upgrading external fuel tanks without modifying the aircraft itself.*  

Notional Fighter B is then challenged by increasing its recovery payload capability 

from about 4,800 lb to 9,000 lb, which is from the F/A-18E/F OSD. Recovery payload is 

solely determined by the landing weight. The landing weight of the F/A-18 Hornet was 

33,000 lb initially, and then increased to 34,000 lb with restriction. The U.S. Senate 

                                                                                       

*Fuel tank upgrade on F/A-18C/D was suggested by the U.S. Congress. However, the DoD opposed the idea, 

arguing that the use of 480 gallon tanks instead of 330 gallon tanks would cause physical interference and 

thus require substantial modification to the airframe itself. [191] 

 
Figure 88: Fighter A with 430 nm Attack Radius (Left) and Fighter B (Right) 
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suggested increasing the landing weight further by strengthening landing gears to 

improve the recovery payload capacity of the Hornet. To investigate such a possibility, 

the landing weight of Notional Fighter B is increased to 39,000 lb. The updated contour 

plot is presented in Figure 89, on the left. 

Upgrading landing gears caused unfavorable side effects; due to the increase in 

aircraft empty weight, turn rate and acceleration constraints were not met; higher 

landing weight also constrained the lift capability of the wing, and approach speed 

constraint is violated. To quickly resolve the issues, engine thrust was increased to 

19,000 lb and wing area was increased to 440 ft2 as shown in Figure 89, on the right. 

However, increase in engine thrust advertently degraded mission performance, and 

fighter mission radius was violated. In addition, further increase in empty weight due to 

a larger wing and engines caused violation of the load factor constraint.  

As a remedy, a series of design modifications were applied. Since fighter mission 

profile does not use external fuel tanks, fighter mission range increased by increasing 

internal fuel capacity to 11,500 lb. The load factor issue was directly addressed by 

 
Figure 89: Fighter B with 38,000 lb Landing Weight (Left) Fighter B’ (Right) 



 286

increasing design gross weight. Higher design gross weight was achieved by augmenting 

the structural strength of the airframe so that the aircraft could pull the required 

maximum gravitational force with a heavier body. Strengthening the airframe gave rise 

to unfavorable side effects because it increased the empty weight. Therefore, to resolve 

newly introduced infeasibilities, some other design parameters were changed but then 

caused additional infeasibilities in some other dimensions. Eventually, this spiral effect 

converged to feasible solutions near the design of F/A-18E/F. 

However, easier and lower cost solutions were also possible if some of the less 

important requirements were relaxed. For example, reducing the maximum load factor to 

7 g’s from the current 7.5 g’s and increasing the design gross weight to 33,000 lb reopens 

up the design space as shown in Figure 90. The new feasible design is designated as 

Notional Fighter D. Notional Fighter D is somewhere in between the F/A-18C/D and 

E/F and meets most of the F/A-18E/F’s requirement. Therefore, Notional Fighter D can 

be viewed as a de-rated, lower cost alternative of the F/A-18E/F.  

Finally, the contour profiler of the Super Hornet is created as presented in Figure 

91. The Super Hornet was designed to carry heavier avionics, to pull the maximum load 

factor of 7.5 g’s, and to reduce RCS. It also features improved LEX with higher CLmax 

and uses a new engine core with a higher thrust to engine weight ratio than F404-GE-

402. The contour plot of the F/A-18E/F indicates that it had growth margins on carrier 

suitability metrics but might lack some fighter performance, such as acceleration, turn 

rate, and excess power in the future, if weight growth is realized.  

The series of demonstration in this section showed that the F/A-18E/F’s 

requirement could not be fulfiled by retrofitting existing F/A-18C/D’s with better 
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landing gears and larger external fuel tanks as suggested by the U.S. Congress. Rather, 

completely resizing the vehicle at the system level was necessary because upgrading at a 

subsystem level causes infeasibilities in some other dimensions. However, if some of the 

non-critical requirements of the F/A-18E/F were relaxed, possibility of extending the life 

of the F/A-18C/D by fixing some of the most critical capability defficiencies.  

 

Observation 14: The mission performance, fighter performance, and carrier suitability 

requirements are highly conflicting each other, limiting the feasible design space. 

Since it is very difficult to improve performance in one dimension without 

sacrificing the others, a system-level resizing would be necessary to upgrade a 

vehicle, rather than retrofitting at the subsystem level. On the other hand, 

relaxation of non-critical requirements can open up the design space and offer less 

capable and less expensive alternatives. 
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Figure 90: Contour Profiler of Notional Fighter D 
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Figure 91: Contour Profiler of the F/A-18E/F Super Hornet 
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7.10.2 Multi-Dimensional, Multi-Stage Design Tradeoff  

Another useful tool to interactively investigate the evolution paths of a system 

simultaneously is a multivariate profiler (MVP). A multivariate plot is a relationship 

between multiple variables shown at a time. Therefore, it allows simultaneous 

consideration of desing variables and system attributes in all developing stages. In 

contrast to the contour profilers shown in the previous sections, where only two 

dimensions of multi-dimensional design space can be visualized at a time, the 

multivariate plot shows a designer the view of entire design space interaction 

simultaneously.   

For the notional fighter study, three different types of MV plots were created. The 

first two types, called MVPI and MVPII respectively, are created based on the optimal 

first-stage solutions of the five evolution strategies. The third type, called MVPIII, does 

not start from a specific baseline design but freely investigates the first- and second-stage 

design space. The benefit of this environment is that it is interactive and gives 

instantaneous feedback to the user. “What if” studies can be performed using a wide 

range of scenarios beyond the scenarios used for the optimization. All MVPs were 

created and analyzed using the multivariate analysis feature of the JMP® software 

package. 

7.10.2.1 Optimum First-stage Strategies and Future Design Alternatives 

The New-Design strategy was identical to Ad-hoc strategy in terms of the first-stage 

design and was excluded. On top of the five optimal first-stage decisions, *

1
( ) ,px  

2,..., 6,p =  the potential derivative aircraft designs are applied by running MCS with 

the 1,000 second-stage designs for each of the optimal first-stage designs. The 1000 
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samples were obtained by LHS techniques, assuming uniform distributions on the 

second-stage design variables. The outcome is 5,000 derivative aircraft options that are 

presented in Figure 92. The MVPs are symmetrical along the diagonal. Variable names 

appear in the diagonal starting from design variables, aircraft performance, and RDT&E 

cost.  Since the figure is hard to read, subsets of Figure 92 are presented in following 

figures. 
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Figure 92: Entire View of Multivariate Profiler Type I 
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One observation from the MVP is the correlation between any two variables. The 

scatter patterns of the design points in a box reveal either positive, negative, or no 

correlation between the two variables. The variables with no correlation show randomly 

scattered points. A more accurate way of examining the correlation is through the 

correlation map. The correlation map of MVPI is presented in Figure 93. The right side 

of the figure is the correlation color scale from -1 to +1. Negative one in the scale in blue 

is complete negative correlation, and positive one in the scale in red is complete positive 

correlation. Some of the noteworthy correlations are highlighted with yellow-outlined 

boxes. External fuel has a very strong positive correlation with attack radius but no 

correlation with fighter radius. Approach speed performance and Recovery Wind-Over-

Deck (RWOD) is highly correlated. In addition, engine thrust shows strong correlation 

with excess power and acceleration. Fighter performance metrics are closely correlated 

with each other. RDTE cost and duration are very strongly correlated to each other.   

Figure 94 is the subset of MVPI that only shows the design variables. The plot 

shows both the first-stage designs of the five strategies and the second-stage designs. The 

locations of the first-stage and second-stage designs illustrate relative and absolute size of 

the aircraft. For example, the first-stage design under the Ad-hoc strategy * Ad-Hoc
1

( )x , 

shown by a blue dot, appears at the low left corner, indicating the smallest aircraft in 

the design space. On the other hand, the first-stage design under the DetPP(Block10p), 

* Ad-Hoc
1

( )x , shown by an orange cross, is at the top right corner of the design space, 

indicating that it is even larger than most of the second-stage designs shown in grey dots.  
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Figure 93: The Correlation Map of Multivariate Profiler I 
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Figure 94: The Design Variables of Multivariate Profiler I 
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Once the future aircraft states are populated for each of the five optimum strategies, 

the next step is to apply future requirement scenarios to see which strategy offers 

feasibly design modification options under a specific scenario. MVPI was tested with the 

scenario of more emphasis on air-to-air combat. In this hypothetical scenario, a need for 

a dedicated air-to-air combat fighter has established by an international Air Force. The 

capability specifies the minimum fighter radius of 430 nm, minimum of 12.5 degrees per 

second turn rate, and minimum usable load factor of 7.5 g’s in combat weight. The 

RDT&E cost to acquire such capability is limited to $2,500, which will be paid by the 

customer. The scenario is applied on MVPI via the use of scenario filter. Figure 95 shows 

the performance and cost before the filter is applied, and Figure 96 is the same plot after 

the filter is applied. Figure 96 shows that only a few design upgrade options survived, 

and most of them are based on the first-stage design under the DetPP(Block10p) 

strategy in orange dots. One blue dot is the upgrade option from the DetPP(Average) 

design, and none of the upgrade options by the Ad-hoc, DetPP(Block10), and Stochastic 

strategies met the new requirement.  
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Figure 95: The Notional Fighter Upgrade Options 

350

400

450

410

440

480

5000

7000

9000

11.5

11.9

12.3

7.3

7.5

7.8

1000

2000

3000

4000

1

2

3

4

350 420 410 470 5000 9000 11.5 12.2 7.3 7.6 7.9 1000 4000 1 2 3 4

Ad-hoc

× DetPP(Block10)

x DetPP(Average)

x DetPP(Block10p)

StoPP

Fighter 

radius

Recovery 

payload

Turn rate

Attack 

radius

Load 

factor

RDTE cost

Strategy

First stage 

optimal designs

 
Figure 96: The Notional Fighter Upgrade Options with Scenario Filter 
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7.10.2.2 Robustness of Optimum First-Stage Strategies on Future 

Requirement and Technology Evolution 

The second type of MVP, or MVPII, is also built on the optimum first-stage designs 

from the five strategies as the MPVI is. Random variation on the requirement is applied 

on the five baseline designs to see how they react to the future requirement evolution. 

Here the design itself remains unchanged in the second stage. Aircraft performance, 

however, changes due to either more stringent requirements or the introduction of new 

technology. The random variables were fighter payload, attack payload, avionics weight, 

and technology factor on CLmax. One thousand random requirement evolution scenarios 

were sampled using LHS following the uniform distributions.  

Figure 97 is the subset of the created MVPII, showing the four random variables. 

The highlighted points are the original values of the four variables in the first stage. All 

other points are the future deviations from the original point simulating the evolution of 

the requirement and technology. Since the random variables were assumed independent 
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Figure 97: Uniform Variations of Requirement and Technology  
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of each other and the sampling takes uniform distribution, no correlation is observed 

from the figure. The color code shown in the far right column is to differentiate the five 

strategies. 

Here, a hypothetical mid-ocean air-to-air scenario was applied. In this scenario, 

enemy threat has advanced to a degree that the Navy fleet is under potential attack in 

the mid-ocean. It is desired that the enemy aircraft is intercepted at a distance, and a 

need for a carrier-based aircraft with long stand-off capability has risen. The notional 

fighter, originally designed to perform light air-to-air fighter missions, is reconfigured to 

add Phoenix missile capability and long-range active radar. The retrofit increased 

avionics weight to 1,400 lb and air-to-air missile weight to 1,500 lb excluding pylons. The 

scenario also requires the minimum fighter radius of 410 nm, minimum turn rate of 12 

degrees per second, and the usable load factor of 7.5 g’s. Again, the scenario is applied 

using a scenario filter. Figure 102 compares the performance variation of the five 

optimum designs under the five strategies before the filter is applied. Then, Figure 103 is 

the same MVP after the mid-ocean combat scenario is applied. By comparing the two 

figures, one can identify which strategy meets such new capability requirements, which 

does not, and what the impact of the scenario on other performance metrics such as 

carrier suitability is. No initial design under the Ad-hoc and StoPP strategies could meet 

the new requirement, while all three DetPPs showed potential to meet it. One can also 

trade-off some less important requirement, such as attack radius and recovery payload 

for example, to see how such constraint relaxation opens up new opportunities. 



 298

 

 

 

340

380

420

460

370

410

450

4000

6000

8000

21

25

29

128

132

136

140

680

700

720

11.8

12

12.2

7.5

7.6

7.7

1

2

3

4

340 410 370 440 4000 8000 21 25 29 128 135 680 710 11.8 12.2 7.5 7.7 1 2 3 4

Fighter 

radius

Recovery 

payload

LWOD

Attack 

radius

Approach 

speed

Excess 

power

Strategy

Turn 

rate

Load 

factor

Performance 

Comparison

The Initial Performance    

Ad-hoc

+ DetPP(Block10)

x DetPP(Average)

DetPP(Block10p)

StoPP

 
Figure 98: Feasible Designs after Applying Limits on $RDTE and Time to IOC 
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Figure 99: Feasible Designs after Applying Limits on $RDTE and Time to IOC 
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7.10.2.3 Simultaneous Exploration of Current and Future Design Space 

The third type of multivariate profiler or MVPIII was created by running Monte Carlo 

simulation with 15,000 design samples. The samples were generated using LHS, assuming 

uniform distributions on both the first-stage and second-stage design variables. The 

requirement was unchanged in this case, and they are applied as scenarios after MVPIII 

is created. Compared to MVPI and II, MVPIII allows larger degrees of freedom in the 

first-stage design and enables a reverse way of defining the baseline aircraft, working 

back from the future to the current time frame.  

Because of the increased degrees of freedom, the size of the matrix is very large and 

it is hard to display the entire view of MVPIII in a document. Figure 100 is the snapshot 

of the entire MVPIII that was created for the notional fighter study. The plot includes 

both first- and second-stage design variables, performance metrics, cost, and weight. It 

also includes the new requirement and technology that are applied in the second stage. 

The 15,000 data points were classified into three groups. The criteria were whether the 

designs meet the Block0 and Block10p requirements. The first group, in blue points, 

meets both the Block0 and Block10p requirements. The second group, in green points, 

only meets the Block0 requirement. The last group, in red dots, fails to meet either 

requirement.  
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Figure 100: Entire View of Multivariate Profiler Type III 

An example usage of MVPIII is to impose only cost and schedule limits on the 

future programs and then see what is available in the present stage design pool. Here, 

the RDT&E cost limit of $2500 million and RDT&E period less than 4 years is applied. 

After applying these two restrictions, the trends in the designs that met these two 

conditions are observed in Figure 101. 

An observation from the thrust and wing area diagram is that only those 

combinations of high engine thrust and large wing area from the beginning survived the 



 302

RDT&E cost and duration constraints imposed in the second stage. The combinations of 

small wing and engine did not qualify. The cost of changing wing and engine was too 

expensive so that the aircraft designed with small wing and engine were not viable 

options in the future. Another observation is made on the avionics system in the second 

stage. The avionics system weight in the first stage was fixed at 1,289 lb as in the F/A-

18C/D, and the second-stage avionics system weight was varied from 1,411 lb as in the 

F/A-18E/F. While viable designs are found all across the avionics weight values, more 

data points are clustered around the low avionics weight region. The correlation between 

the second-stage avionics and the first-stage design shows that keeping the exisiting 

avionics suite of the baseline aircraft in the second stage brings many first-stage designs 

viable in the future development programs. The U.S. Navy followed the spiral 

development strategy in the development of the F/A-18E/F. The F/A-18E/F’s avionics 

system is 90% common to the C/D’s avionics initially, and then it was upgraded later.  

 

Observation 15: The density plots reveal that a combination of high thrust and large wing 

ensures better probability of responding to requirement evolution with less time 

and cost. When a derivative aircraft development is under tight budget and 

schedule constraints, keeping the avionics suite of the baseline aircraft and 

upgrading it later opens up the solution space. 
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Figure 101: The MVPII after the RDT&E Cost and Duration Filter 
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7.11 Lessons Learned from the Notional Fighter Design 

Study 

These findings are obtained as the result of the study. The author hopes that these 

findings will help in guiding future implementations of EvoLVE both qualitatively and 

quantitatively; improving the EvoLVE process itself; and simply guiding the engineers 

and decision makers to provide better products for a longer future.  

7.11.1 The Issue of Objective Function 

As observed during the experiments in Step 4 of the EvoLVE process, the optimum 

solution is sensitive to the objective function that the user wants to optimize for. Two 

different objective functions—RDTE cost and acquisition cost—were tested in this study, 

and they yielded quite different results. It is very important and sometimes difficult to 

determine what would be the most important objective. The paradigm of design for 

lifecycle cost (LCC) would place emphasis on the entire LCC of a product rather than 

RDT&E or acquisition cost. The largest portion of LCC is O&S cost, and it is further 

broken down to personnel, maintenance, fuel, etc. While not documented, optimization 

including O&S was attempted in this study. The conclusion was that O&S cost is not 

sensitive to aircraft definition when the design parameters vary at a sizing level. Which 

means, aircraft using a common platform do not have very distinguishable O&S cost 

because one has a 400 ft2 wing and the other has a 410 ft2 wing, because they may not 

differ in terms of personnel cost and maintenance cost. Fuel cost might be different, but 

it is only a small portion of O&S cost. In conclusion, the author hypothesizes that 
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inclusion of O&S cost as part of objective function in aircraft design optimization would 

not provide much insight.  

7.11.2 Technical Challenges Experienced  

Considering aircraft design in two stages required more than twice the effort of a single-

stage design approach. Creation of modeling and simulation environment encompassing a 

very large design space required much rigorous modeling and validation processes. In 

addition, development and validation of the cost model was especially demanding. 

Fitting surrogate model was difficult because of the two reasons: wide design space and 

unsmooth behavior of the second-stage RDT&E cost. The use of ANNs instead of 

polynomial-based surrogate models could handle more complex, non-linear behaviors. 

The surrogate modeling process had to be repeated many times to adjust the range of 

the input parameters. When the bounds were too broad, many sampled cases crashed in 

FLOPS because they could not perform the given mission. Optimization in the setting of 

two-stage aircraft design was very demanding. Considering optimization at two different 

design stages simultaneously meant double the number of design variables.  Too many 

design variables not only exponentially increase the computational time, but also the 

possibilities of human errors since the problem gets too big to grasp by a human decision 

maker.  
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CHAPTER VIII 

 

CONCLUSION AND FUTURE WORK 

 

In an attempt to provide a more cohesive study and follow a scientific research process, 

this document encapsulated important findings, research objectives, contributions, tasks, 

and lessons-learned. This is shown in the form of Observations, Research Questions, and 

Hypotheses. The final chapter of the manuscript revisits these formal statements to draw 

conclusions. Finally, future research opportunities in the context of design for lifelong 

vehicle evolution are proposed. 

8.1 Contribution to Aerospace Systems Design 

This long journey started by observing the trend in the aerospace community for many 

successful aircraft designs to survive a lot longer than was expected when the design was 

originally created.  Extended design life has made it necessary to change the design over 

time as the operational environment, and thus the customer requirements, changes as 

noted in Observation 1. The modern trend in aircraft development raised Question 1: 

Can existing aerospace design methods address the issues of requirement and design 

evolution throughout the lifecycle of a product? Not surprisingly, review of current 

acquisition policies and design methods found that the same issue has been discussed 

amongst the government officials in acquiring major weapon systems since the early 

1980s. The culmination of such questions was formalized as acquisition policies, namely 

Evolutionary Acquisition (EA) and Spiral Development (SD). These became official DoD 

policy to develop future weapon systems in 2000. While the review on the traditional 



 307

and modern design methods identified some of the potentially useful elements, a formal 

method to incorporate future requirements, design, and technologies into the current 

system following the philosophy of EA and SD has been missing. This finding was stated 

in Observation 2, citing the need for a new design method that considers the vehicle’s 

long-term growth.  

Questions 2 and 3 asked How can the traditional, single-stage design setting be 

expanded to allow integration of future designs? and What are the barriers and key 

enablers? Case studies solicited on past aircraft modifications in the areas of military 

aircraft, commercial aircraft, and military rotorcraft demonstrated some common issues 

and vehicle-type specific issues summarized in Observations 3 and 4. Past successes and 

failures were affected by many technical and non-technical factors, such as competition, 

international collaboration, and politics. However, uncertainty in future requirements 

was identified as the key challenge when one tries to incorporate future properties into a 

present physical entity. The goal of the study was then solidified and bound as the 

development of a new design methodology, capable of quantitative evaluation of the 

evolution paths of a vehicle while incorporating requirement uncertainties at the vehicle 

systems level. 

Question 4 asked How can an aircraft designer plan for design evolution under the 

presence of requirement uncertainty? The issue of uncertainty, inevitable when one 

makes a decision involving properties of a future timeframe, historically has been studied 

by other fields. A review of this topic identified two areas of research that seemed 

particularly relevant to the problem at hand: stochastic programming with recourse 

(SPR) and scenario planning. In particular, the remedial approach of SPR in its two 
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distinctive problem solving steps seemed intrinsically compatible to aircraft design 

problems. This occurred where derivatives, retrofits, and upgrades have been the 

“remedial” ways to fix the once optimal but later infeasible and incompetent original 

design stated in Observation 5.  

As a backbone of the new design methodology, Hypothesis 1 proposed a Two-stage 

Aircraft Design (TAD) formulation by expanding the traditional, single-stage design 

optimization setting. Then, Hypothesis 2 indicated that the adoption of SPR to TAD 

would find the optimum aircraft design that would best respond to the uncertain future 

on average. While SPR and TAD seemed a promising solution, the intrinsic assumptions 

behind SPR and its limitations in numerical optimization, in general, imposed 

restrictions in pursuing the path of SPR as summarized in Observation 6. The series of 

questions induced from the observation asked: What if the decision-maker is risk-avert? 

What if the random space is too complicated to model or it is too time-consuming to 

solve stochastic optimization? What if the decision-maker is willing to accept infeasible 

designs?   

To address the issue of non-risk-neutral decision makers, Hypothesis 3 proposed a 

Risk-Averse Strategy Selection (RASS), adopting the formulation of risk-averse 

stochastic programming and providing a means to preemptively identify and mitigate 

risk associated with aircraft development. Hypothesis 4 proposed a deterministic, 

scenario-based approach of capturing the full spectrum of possibilities with a few 

scenarios and with less computational overhead, yet providing a clear perspective of the 

future. Lastly, Hypothesis 5 proposed a flexible, interactive framework for decision-
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making support that allows concurrent exploration of two-stage design space free from 

the restrictions imposed on objective function, constraints, and design variables. 

Implementation of the proposed tasks in Hypotheses 1-6 into an actual aircraft 

design exercise required recasting of all the abstract elements of the mathematical 

formulations into tangible ones. A nine-step process of Evaluation of Lifelong Vehicle 

Evolution (EvoLVE) identifies and defines the current and future problems in steps 1 

and 2 and synthesizes the short-term and long-term solutions and strategies in steps 3 

and 4. EvoLVE also creates and validates a modeling and simulation in steps 5 and 6 

that evaluates candidate solutions in terms of the imposed requirement. The last three 

steps, 7-9, offer a two-stage design space exploration in three different perspectives as per 

Hypotheses 2-6.  

The proposed methodology was demonstrated with two engineering problems. The 

two-stage beam design problem was a simple proof-of-concept of compatibility and 

efficacy of SPR in the context of the engineering design problem proving Hypotheses 1, 2, 

and 4. Then, EvoLVE was implemented in its full range to a notional multi-role fighter 

based on the F/A-18C Hornet, selected for its unique evolution history and abundance in 

public data. A hypothetical requirement called for a new carrier-borne, multi-role fighter 

for the U.S. Navy. EvoLVE steps 1 and 2 created a set of requirements based on F/A-

18C and F/A-18E performance characteristics. Evolution of the requirements was 

defined following the transformation of F/A-18C to F/A-18E resulting in random 

variables in PDFs and five scenarios. EvoLVE steps 3 and 4 defined the baseline 

platform, the design space, six aircraft evolution strategies, and a set of technologies. 
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Steps 5 and 6 created computer models and an integrated TAD environment, which were 

validated against F/A-18 Hornet and Super Hornet data. 

Based on the TAD platform, steps 7-9 performed a series of experiments and tested 

hypotheses. The use of AAO reduced the convergence time from hours and minutes, 

proving Hypothesis 6, by converting the optimization problem of two hierarchical levels 

into a single hierarchical level. The deterministic, scenario-based study in step 7 made it 

possible to observe structured patterns in aircraft attributes, which solidified as 

inequalities. An important lesson learned was that in a system for which all the major 

subsystems are highly coupled, a design change in one dimension propagates throughout 

the entire system. Therefore, a lack of coordinated effort results in infeasibilities in other 

dimensions. The study showed that overdesigning landing gear systems to obtain growth 

potential in carrier suitability inadvertently hurt fighter performance. More importantly, 

preplanning for the future was beneficial in terms of total acquisition cost only if the 

future requirement is known from the beginning. Otherwise, not having a growth 

provision in the first-stage design or pursuit of the Perfect-fit Designs (PfDs) was the 

best strategy among others. The scenario-based study was repeated with RDT&E cost as 

the objective function. This complementary study, provided in APPENDIX D, showed 

how much design and long-term strategy is affected by the stakeholder’s interest. The 

findings from the scenario-based study, summarized in Observations 7-10 and 16, 

collectively supported Hypothesis 4.  

Exposition of the optimum designs using six strategies to explore the entire random 

space through Monte Carlo Simulation yielded the clouds of optimal recourse decisions.  

These decisions were then represented using PDFs and CDFs revealing the frequency 
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and severity of the strategies’ performance in the randomly evolving future. This holistic 

approach also enabled quantifications of risk, yielding ranking functions in terms of low 

risk using three different measures supporting Hypothesis 3. The low-risk-rankings varied 

significantly depending on how risk was defined, suggesting that the difficulty in 

decision-making with multiple stakeholders had different risk perceptions and conflicting 

goals. Lastly, the stochastic preplanning strategy was the best among others in terms of 

the average total cost, proving Hypothesis 2.  

The final step of EvoLVE created the proposed Decision Making Framework (DMF) 

in two different formats: two-stage contour plots and multivariate profilers. The two-

stage plot built based on the F-18C proved its efficacy by reproducing the F-18C’s 

evolution history to the F-18E. The step-by-step demonstration examined some of the 

background stories behind the development of the F-18E and other F-18C upgrade 

options considered by the U.S. Congress. The study showed that the retrofitting of the 

F-18C, as suggested by the U.S. Congress, was not a feasible option to meet the F-18E’s 

requirement. However, relaxation on some of the fighter performance parameters could 

have lead to cost and time saving solutions, avoiding the development of the F-18E. The 

multivariate plot based on TAD enabled simultaneous exploration of the first and second 

design space in one view. The inverse design approach demonstrated with the 

multivariate plot showed that the combination of high thrust with large wings from the 

beginning ensures higher probability of responding to requirement growth with less time 

and cost. These two demonstrations proved Hypothesis 5.  

Above all, the experiments performed in EvoLVE steps 7-9 were possible because of 

the expansion of the traditional, single-stage design process to a two-stage design process 
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proposed in Hypothesis 1.   This is approved by all the derivative hypotheses proven to 

be true. Table 57 is the summary of how each of the observations induced research 

questions, tasks, observations, and lead to more observations or hypotheses. Also, the 

tasks are documented and the specific page numbers of the observations, research 

questions, and hypotheses are given in the table. Finally, Table 58 summarizes the 

solutions each of the hypotheses proposed in an attempt to improve the identified 

deficiencies and how each solution was tested. The test of Hypotheses 7 and 8 are 

proposed as future research.  

Table 57: Mapping of Observations, Research Questions, and Hypotheses 

Observation Research 

Question 

Tasks Performed Where Outcome 

Obs1 Rq1 Literature review on design 

methods for aircraft evolution 

Ch2 Obs2 

Obs2 Rq2-3 Case study on past aircraft 

upgrade programs 

Ch3 Obs3-4, 

Hyp1 

Obs3 Rq4 Literature review on decision 

making under uncertainty 

Ch4 Obs5, Hyp2 

Obs4 Rq5 Future work Ch8 Hyp7-8 

Obs5 Rq6 Case studies/interview of 

engineers, military officials 

Ch4 Obs6 

Obs6 Rq7 Literature review on decision 

making under risk 

Ch4 Hyp3 

 Rq8 Literature review on strategic 

planning 

Ch4 Hyp4 

 Rq9 Literature review on modern 

design methods 

Ch2 Hyp5 
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Table 58: Summary of Hypothesis Test 

Hypothesis Proposed Solution Tasks Performed Outcome Proved? 

Hypothesis 1 TAD EvoLVE Steps 1-9 Obs7-16 yes 

Hypothesis 2 SPR + TAD EvoLVE Step 8 Obs13  yes 

Hypothesis 3 RASS EvoLVE Step 8 Obs11-12 yes 

Hypothesis 4 Scenario Planning + TAD EvoLVE Step 7 Obs7-10, 16 yes 

Hypothesis 5 DMF + TAD EvoLVE Step 9 Obs14-15 yes 

Hypothesis 6 MDO + TAD EvoLVE Step 7 - yes 

Hypothesis 7 EvoLVE in SoS Level Future work - n/a 

Hypothesis 8 Minefield Mapping of HQ Future work - n/a 

 

8.2 Future Research Opportunities 

This thesis is not a completion to the quest for a design method for lifelong aircraft 

evolution. Rather, it is the beginning of the research in the sense that it has brought up 

more questions than answers. Also, some of the research questions were left unanswered. 

This section identifies several areas of possible improvements to the current study, 

proposes the use of EvoLVE in different perspectives, and opens up new research 

opportunities in the context of design for lifelong evolution.  

8.2.1 Consideration of Retrofitting Existing Airframe 

One of the limitations of this study was that the option of retrofitting existing airframes 

was not considered due to the lack of the cost model of retrofitting. Inclusion of such 

cases would make the study more realistic and valuable. Furthermore, consideration of 

combinations of both newly manufactured and retrofit aircraft, e.g. 350 retrofits and 400 

new manufactures, can be studied within the EvoLVE framework and is identified as a 

future research opportunity.  
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8.2.2 Family of Aircraft Design 

It is a common practice of a military aircraft or engine manufacturer to develop a new 

product for the U.S. government and then sell the variants to other countries after the 

export license is cleared. Some of the foreign orders can be firm from the beginning if 

such development is supported by an international alliance as in the case of the Joint 

Strike Fighter. It is very common in commercial aircraft development that multiple 

variants are planned from the beginning to maximize the market capture as the case 

study on the Boeing 737 series in §3.1.3 exhibited. A typical case in commercial 

transport is to offer variants by the use of fuselage plugs, different engines, and 

equipments. For example, most of the Boeing aircraft can be configured as passenger 

transport, cargo aircraft, an executive jet, etc.  

While the current implementation of EvoLVE considered only one design solution 

for each stage, it can handle more than one first and/or second-stage design. For 

instance, the TAD optimization can be set up in a way that the first-stage design is the 

baseline aircraft and the second-stage problem prepares for multiple variants of the 

baseline. The time gap between the first and second-stage development can be set at 

zero if all the versions are developed in the same timeframe. The design of family of 

aircraft would be a trade-off between the degree of design commonality among the family 

members, the cost of development, and profit. These metrics from the manufacturer’s 

viewpoint are determined by market, competition, and essentially customer satisfaction. 

8.2.3 Weight and Balance Issue Affecting Stability and Control 

The F/A-18E/F was designed from the beginning for growth potential. The ORD 

specifically required internal volume growth potential of 17 ft3 to accommodate future 
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avionics. While the most critical physical constraint is the availability of the volume, 

provisions for the avionics upgrade must be coordinated with other systems and 

subsystems aspects. For example, adding more avionics creates more electrical power 

consumption and a need for additional cooling capacity. Growth provisions on those two 

subsystems must be planned from the beginning to ensure a successful avionics upgrade.  

Another important matter that should not be neglected is the issue of weight and 

balance. The 17-ft3 of room is most likely appropriated from the forward fuselage section. 

When the once empty room is filled with additional equipment, the weight increase in 

the forward part of aircraft will shift the center of gravity (CG) point forward. The 

relative location of the CG point to the neutral point (NP) of the aircraft, defined as 

static margin (SM), determines the vehicle’s longitudinal static stability and 

controllability. Since fighter aircraft are designed with very tight or negative static 

margin to increase agility, even a slight shift in SM can lead to less than desired 

performance. The issue raised here was not included in this study, but it warrants 

further investigation to avoid unexpected project failures and delays as in the case of the 

T-45 introduced in §3.3. To address the issue of the mass property change due to 

upgrade, it is further discussed in §0 along with a proposed solution.  

8.2.4 Systems-of-Systems Research to Identify the Uncertainties at Vehicle 

Systems Level 

In the notional fighter study, the random variables were defined by the author based on 

the actual evolution history of the F/A-18. However, implementation of EvoLVE on a 

real-world problem would require a different way to come up with the random future 

requirements. Considering the fact that the functional requirements are from higher 
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hierarchical levels than the level in which design solutions are synthesized, expanding 

EvoLVE to the SoS level would enable a more systematic and quantitative approach to 

define aircraft design requirements both deterministically and probabilistically. 

Figure 102 shows an example of a hierarchical structure involving a U.S. Navy 

fighter such as the F/A-18 Hornet. At higher levels, there are U.S. Navy Air Wings 

below which are Navy Combat Aircraft Fleets, consisting of fighter aircraft such as the 

F-14 Tomcat, F/A-18 Hornet, and A-7. Finally, the F-18 is at the vehicle systems level. 

The requirements for the F/A-18E/F as summarized in APPENDIX B were defined 

deterministically as threshold and objective values for each performance parameter. 

Although such behind-the-scene information is not available publicly, it is not hard to 

imagine that some higher level studies (for example the CBO study in 0) led to the 

definition of the F/A-18E/F’s requirements.  

The author hypothesizes that if such campaign level studies that defined E/F’s 

requirements had been conducted in a probabilistic manner by running a Monte Carlo 

Simulation with respect to probabilistically defined conflict scenarios, it would have been 

possible to provide the KPPs in the form of PDFs. This idea is formally stated as:  

 

Hypothesis 7: Observing the fact that the requirements at a certain hierarchical level in 

engineering design come from higher level problems, Monte Carlo Simulation at a 

System-of-Systems level would enable quantification of the probability density 

functions of the random variables at the air-vehicle systems level. (Research 

Question 6) 
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…

US Navy Air 
Wing

Navy Combat 
Aircraft Fleet

Fighter        
(e.g.F-18 Hornet)

Subsystem …

 
Figure 102: The Hierarchy of the Naval Fighter Design Problem 

8.2.5 Risk-Averse Stochastic Programming 

While systematic integration of risk associated with uncertainty, proposed by Hypothesis 

3, had proved its usefulness, the degrees of freedom were limited to which strategy the 

decision makers could choose among the finite number of strategies. A more rigorous 

treatment of risk would require the use of the risk measure as part of an objective 

function.  
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This formulation is particularly compatible with the situation where a fixed contract 

stipulation is amended by monetary penalty on the occurrence of schedule slippage and 
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cost overrun. Once the model of such penalty is developed, the equations can be readily 

applied to the notional fighter example.  

8.2.6 MDO Techniques for Deterministic Two-Stage Aircraft Design  

The use of AAO to solve the deterministic two stage aircraft design optimization 

problems in §7.8.2 demonstrated the order-of-magnitude reduction in time to converge; 

the application of an MDO technique was only limited to AAO. A more comprehensive 

study is proposed to compare the performance of widely accepted MDO techniques, such 

as CO and BLISS. Since a comparative study of MDO techniques requires solving the 

same problem with various different methods at numerous optimization settings, such as 

convergence criteria, optimization algorithm, finite difference methods, and finite 

difference step sizes, this study would be ideally conducted with a simpler problem than 

aircraft design, such as the two-stage beam problem.  

8.2.7 Design for Lifelong Vehicle Evolution Ensuring Satisfactory Handling 

Qualities  

Finally, a completely different approach than the current EvoLVE process is proposed 

herein. A current design practice in the helicopter industry is that the high-level design 

parameters are determined during conceptual design considering high-level design 

metrics such as performance.  Then, some of the lower level constraints, such as handling 

qualities, are analyzed, and control gains are fine tuned at later phases. If it turns out 

that Level-1 Handling Qualities (HQ) cannot be achieved within the current design 

setting, the design is changed at the higher level until it reaches a convergence. This 

traditional approach is essentially serial rather than parallel in that HQs are fall-outs 

rather than designed-in from the beginning of the design process. This ad-hoc or trial-
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and-error type of approach might take longer than a parallel process but might be 

inevitable because a lack of vehicle definition, lack of disciplinary analysis, test data, etc. 

at an early phase of design renders HQ analysis very difficult or meaningless. This 

traditional approach has proved to be practical as past successful rotorcraft 

developments have shown.  

However, modern trends in helicopter development include that the helicopters are 

operated longer than initially planned, and they are often reconfigured as the customer’s 

needs evolve over time. In most instances, the vehicle is not operated at the point where 

it was originally designed. The evolution of rotorcraft has been that the derivatives are 

heavier and carrying more payloads and fuel than the original version did. This weight 

increase often compromised agility, HQ, safety, and survivability. 

For instance, assume that the random variable under investigation is the gross 

weight of the vehicle including airframe, crews, payload, and fuel weight. When it is 

likely that the gross weight of the vehicle will increase in the future by as much as one 

hundred percent as shown in the case of the CH-47 in §3.1.2, it will not change 

aerodynamic properties of the vehicle or engine characteristics much. However, in the 

case of military aircraft, degraded agility and/or handling qualities due to sluggish 

response of the body can cause mission failure and loss of life. A research question that 

can be asked is: how can a design evolution path(s) be identified, with which future 

design changes or operational mission changes are safely implemented without 

compromising safety? Is there a systematic and efficient way to prevent poor HQ in 

derivative rotorcraft? 
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A solution is proposed by creating a map of design space showing the probability of 

design infeasibilities, for example having poor HQ. The idea is named “mine-field 

mapping” to indicate that the goal is not to find an optimum solution but to avoid bad 

designs. It would be possible to create such a mapping of the design space using an 

inverse design technique along with a Monte Carlo Simulation in a two-stage design 

setting. The use of a classification neural network can divide the design space into the 

regions of Level-1, Level-2, and Level-3 HQ. With the map, the designer can identify not 

only the original design point with Level-1 HQ, but also the potential evolution paths 

with high probability of Level-1 HQ. 

 

Hypothesis 8: Early identification and integration of the key physical constraints into the 

aircraft sizing and synthesis loop would reduce the possibility of technical 

infeasibility being identified during later stages. (Research Question 5) 

Sub-Hypothesis 8-1: Expansion of the traditional single-stage design process to a time 

phased design process along with the inverse design technique and classification 

neural network technique would enable identification of the design space mapping 

with which the designer can find safer design evolution paths and reduce the 

probability of unexpected system failure. 

 

8.3 Concluding Remarks 

While our lives are full of decisions made under growing, uncertain needs, the author 

would like to claim that this thesis is the first solidified, analytic effort to address the 

paradigm shift to design for lifelong system evolution in the aerospace systems design 
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domain. While the work presented here is not complete, let alone perfect, the author 

hopes that it will make a small stepping-stone that researchers in the future will find 

helpful in their quest for better design methodology or processes incorporating lifelong 

system evolution.   
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APPENDIX A 

 

SYSTEM-OF-SYTEMS STUDY EXAMPLES 

 

Example SoS level studies that can be potentially used in identifying aircraft system 

level requirements are introduced here. A U.S. Navy Air Wings level study involving the 

F/A-18 conducted by the Congressional Budget Office (CBO) in 1987 is introduced first. 

The Cost and Operational Effectiveness Analysis (COEA) required by the DoD in major 

DoD acquisition programs and the system specific System Threat Assessment Report 

(STAR) prepared by the Defense Intelligence Agency (DIA) are also examples of SoS 

level studies involving the friendly force structure and enemy capability projection in the 

future.  

A.1 A CBO Study on US Naval Combat Aircraft  

In 1987, the Congressional Budget Office (CBO) [80] conducted a study at the U.S. 

Navy Air Wings level, encompassing the U.S. Navy fighter aircraft fleet including the 

F/A-18. The goal of the study was to formulate and evaluate the modernization 

strategies of the U.S. Navy combat aircraft into the 1990s in terms of aircraft types and 

mission roles they would perform, production quantity, and the time frame they would 

be needed. The study started by projecting enemy threat into the future and simulating 

conflict scenarios. Figure 103 is the mission radii of various Soviet Union bombers and 

fighters launched from Kola Peninsula, covering most of Europe including the United 

Kingdom. The geographical region was the main theater they considered to identify the 

needed capability of the U.S. Naval combat aircraft fleet beyond the 1990s.  
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After the evolution of the threat was evaluated, the means to counter the increasing 

threat was sought. The alternatives were sought by projecting the friendly force 

structure at the Navy Air Wing fleet level. Table 59 from [80] lists the spectrum of 

missions performed by naval aircraft in the late 1980s. For example, the feet air defense 

and strike warfare missions were conducted by the F-14, F/A-4, F/A-18A/B/C/D, A-6, 

and AV-8. The CBO study examined the retirement/procurement schedule and the 

performance of the existing fleet, and then offered the options to fill the projected 

deficiency. For details on the alternatives and comparisons, refer to [80].  

 
Figure 103: Mission Radii of Unrefueled Soviet Union Bombers and Fighters [80] 
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Table 59: Naval Aircraft and Their Primary Missions [80] 

Fleet Air 

Defense 

Strike 

Warfare 

Anti-submarine 

Warfare 

Electronic 

Warfare 

Amphibious 

Assault 

F-14 F/A-18 P-3 E-2 CH-46 

F-4 A-6 S-3 EA-6 CH-53 

F/A-18 AV-8 SH-2 ES-3 V-22 

 F-4 SH-3  AH-1 

 A-4 SH-60B/F   

 

A.2 Cost and Operational Effectiveness Analysis (COEA) 

DoD’s system acquisition process requires a cost and operational effectiveness analysis 

(COEA) to be conducted for the Milestone I review as a means to determine whether a 

new acquisition program is warranted [14, 213]. The goal of COEA is to compare 

performance, cost, and schedule of alternatives under various operational and threat 

scenarios. Scenarios are generated to reflect the wide spectrum of possible operations. 

Alternatives are candidate systems and mixes of candidate systems that can fulfill the 

anticipated missions. The candidate systems include both the new system under 

consideration and the existing systems. The threat is developed by the entity conducting 

COEA and approved by the Defense Intelligence Agency (DIA). In particular, a system 

specific System Threat Assessment Report (STAR), produced during Phase 0, can be 

used as the basis for the threat in the COEA. Drivers of performance, cost, and schedule 

are identified as Measure of Effectiveness (MoE). Then, parametric variations of the 

threats are studied to see the impact on the effectiveness. The COEA that was prepared 

for the acquisition of the U.S. Marine Co.’s Medium Lift Replacement (MLR) concept is 

provided as an example case in Table 60. 
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A STAR was created by the Naval Maritime Intelligence Center (NAVMIC) for the 

F/A-18E/F program*. However, the formal COEA was waived since it entered the EMD 

(Phase II) directly. Although a formal COEA was waived, the Navy conducted extensive 

analysis to compare cost and benefit alternatives as provided in [83]. The study 

evaluated combinations of F-14 variants and F/A-18E/F to compare performance, cost, 

and program schedule. The MoEs for the F/A-18E/F COEA were [83]:  

• Survivability (measured by RCS)/Vulnerability (vulnerable area) 

• Unit cost 

• Strike mission radius 

• Carrier suitability (recovery and launch wind-over-deck) 

• Fighter performance (such as turn rate, climb rate, and excess power) 

• Weapons system features 

• Armament flexibility  

 

 

 

                                                                                       

*F/A-18E/F STAR, NAVMIC TA#037-92 is not available publicly.  
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Table 60: COEA Study for the USMC Medium Lift Replacement Program [214]  

Scenarios For Amphibious Assault  

• Ship ranges of 50, 75, and 100 nm  

• Operation Size of Marine Expeditionary Force (MEF) and 

Marin Expeditionary Brigade (MEB) 

For Marine Expeditionary Unit (MEU) Missions 

• Ship ranges of 25, 200, and 400 nm. 

Threat Use MLR STAR and following documents 

• Strike/Surface/Air Warfare Intelligence Compendium, 

NAVMIC Compendium #2-92 

• F/A-18E/F STAR, NAVMIC TA#037-92 

• Advanced Interdiction Weapon System STAR, NAVMIC 

TA#031-92 

Alternatives  

(Mix of CH-53E and) 

 

• Upgrade of existing helicopters 

• Major modifications of existing helicopters 

• New helicopter developments 

• V-22 

• V-22 and helicopter alternatives 

Measures of 

Effectiveness 

 

For MEB/MEF Vertical Assault Elements:  

• Combat power delivered over time 

• Correlation of forces/means (COF/M) 

For MEU Operations:  

• Time in/time out with objective met 

Cost Analysis RDT&E, procurement, military construction, and operation and 

support assuming a 20-year lifecycle 
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APPENDIX B 

 

F/A-18 DESIGN REQUIREMENT 

 

Military combat aircraft design requirements are prepared in terms of both mission 

performance and point performance requirements [215]. The point performance 

requirement decides the aerodynamic characteristics and the two important design 

parameters, thrust to weight ratio (T/W) and wing loading (W/S). The mission 

performance requirement sizes the air vehicle by matching fuel required and available. 

The mission requirement determines how much fuel an air vehicle needs to carry.  

The F/A-18 Hornet, conceived as a multi-role strike fighter to replace both the F-4 

and the A-7, was designed and sized by two different mission profiles. Those “primary” 

or “design missions” are fighter escort mission as a fighter aircraft and carrier-based 

interdiction mission using the hi-lo-lo-hi profile as an attack aircraft. These two missions 

dictated the design of the F/A-18 and its fuel requirement. Lenox [77] stated about the 

design missions of the F/A-18A/B in 1976 as follows:  

The basic design of the airplane comes out of an operational requirement, which, in 

its call for an airplane to replace the F-4 and the A-7, identified a fighter escort 

mission and an interdiction mission—with certain store requirements, certain range 

requirements, certain fuel reserve requirements, etc. So, it’s those two missions 

which determined the basic airplane design and internal fuel requirements. 

For the interdiction and fighter escort missions, the following external store conditions 

were specified:  

 

 



 328

F/A-18A/B/C/D [183] 

Attack configuration: two AIM-9s, FLIR, LTD, four MK-83 bombs, and three 

330-gallon fuel tanks 

Fighter configuration: two AIM-9s and two AIM-7s 

 

F/A-18E/F [175] 

Attack configuration: two AIM-9s, FLIR, NAVFLIR, four MK-83 bombs, and 

three 480-gallon fuel tanks 

Fighter configuration: two AIM-9s and two AIM-120s 

 

The F/A-18 A, C, and E versions’ mission performance data were collected from 

various sources and summarized in Table 61*. The sources include a paper by Lenox in 

1976 [77], a paper by Young in 1998 [76], a CRS report in 2007 [74], the DoD data found 

in the appendix of a GAO report in 1996 [191], another GAO report in 2000 [208], the 

Navy Fact File [216], and the annual Jane’s All the World Aircraft published from 1981 

to 1993. The table shows mission radius, external store conditions, and reserve condition 

for four different missions: the hi-lo-lo-hi interdiction, the hi-hi-hi interdiction, the fighter 

escort, the ferry, and the combat ferry missions. Data for the F/A-18A was most difficult 

to obtain, while C and E data were relatively abundant.  

   

                                                                                       

*all mission radius in nautical miles, range for the ferry missions 

Note 1.  (2) AIM-9, FLIR, Laser Spot Tracker Pod, (4) MK-83 

Note 1-1. includes but may not be limited to (2) AIM-9, (4) MK-83 

Note 1-3. includes but may not be limited to FLIR and Laser Tracker 

Note 2.  (2) AIM-9, FLIR, NAVFLIR, (4) MK-83LDGP 

Note 3.  (2) AIM-9, (2) AIM-7 

Note 4.  (2) AIM-9, (2) AIM-120 
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Table 61: Published F-18 Mission and Range  

Mission Type Version Radius Fuel Tanks Stores Source and Year Reserve Type Reserve Condition Other 

Interdiction A 550/575(3) 330 gallon Note 1 Lenox 1976/Janes 80-87 not listed not listed Includes sea-level dash 

(Hi-Lo-Lo-Hi) C 290(2) 330 gallon not listed Janes 1992-93 not listed not listed   

  C 304(2) 330 gallon Note 2 DoD 1996 Carrier-based fixed fuel not listed Standard profile 

  C 325(2) 330 gallon Note 1-1 Young 1998 Carrier-based fixed fuel not listed   

  C 369(3) 330 gallon Note 2 DoD 1996 Carrier-based fixed fuel not listed Standard profile 

  C 415(3) 330 gallon not listed CRS 2007 not listed not listed   

  E 468(2) 480 gallon Note 2 DoD 1996 Land-based 1900~2200 lb of fuel Standard profile 

  E 524(3) 480 gallon Note 2 DoD 1996 Land-based 1900~2200 lb of fuel Standard profile 

  E 490(3) 480 gallon not listed CRS 2007 not listed not listed   

  E 444(2) 480 gallon not listed GAO 2000 not listed not listed   

  E 496(3) 480 gallon not listed GAO 2000 not listed not listed   

Interdiction C 395(2) 330 gallon Note 2 DoD 1996 Carrier-based fixed fuel not listed Standard profile 

(Hi-Hi-Hi) C 470(3) 330 gallon Note 2 DoD 1996 Carrier-based fixed fuel not listed Standard profile 

  E 597(2) 480 gallon Note 2 DoD 1996 Land-based 1900~2200 lb of fuel Standard profile 

  E 666(3) 480 gallon Note 2 DoD 1996 Land-based 1900~2200 lb of fuel Standard profile 

Attack A 575not listed Note 1-3 Janes 1980-87 not listed not listed   

Fighter Escort A 400+None Note 3 Lenox 1976 Land-based 20 min+5% of initial fuel 2500 lb of combat fuel 

  C 366None not listed CRS 2007 not listed not listed   

  E 420None not listed CRS 2007 not listed not listed   

  E 462None not listed GAO 2000 not listed not listed Standard profile 

Ferry A 1800+not listed not listed Janes 1992-3 not listed not listed   

  A 2000+not listed not listed Janes 1980-91 not listed not listed   

  C 1546(3) 330 gallon (2) AIM-9 Navy 2008 not listed not listed   

  E 1660(3) 480 gallon (2) AIM-9 Navy 2008 not listed not listed   

Combat Ferry C 1089None (2) AIM-9 Navy 2008 not listed not listed   

  E 1275None (2) AIM-9 Navy 2008 not listed not listed   

    See the previous page for Note 1, Note 1-1, Note 1-2, Note 2, Note 3, and Note 4  
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As shown in Table 61, mission radii for the same version of the F/A-18 flying the 

same mission varies noticeably from source to source. The F/A-18 C’s mission radii for 

the hi-lo-lo-hi interdiction with two 330-gallon external tanks are reported as 290, 304, 

and 325 nm from three different sources. With three 330-gallon tanks, the discrepancy is 

even larger, ranging from 415 to 468 nm. Jane’s All the World Aircraft has been 

publishing F/A-18 performance data every year since 1980, and F/A-18 A ferry range 

has been listed as “2,000+ nm” from 1980 to 1991 and reduced to “1,800+ nm” after 

1992. The book also listed the attack radius of the F/A-18 A to be 575 nm from its 1980 

to 1987 issues, except for the 1981 issue at 550 nm. 

Possible sources of discrepancies include the difference in aircraft empty weight 

within the version, published data being based on estimation rather than flight test, and 

different reserve conditions being used. Aircraft empty weight varies (usually increases) 

production lot after lot, and it is not certain which mission radius is based on a vehicle 

from which lot. For a vehicle in development phases, its performance data is based on 

estimation and optimistic performance estimation is very common. Some of the F/A-

18A’s and the F/A-18E’s performance data published while the concepts were still in 

development seems to be based on estimation. This issue is discussed in more detailed in 

§7.6.6.2. 

The most critical source of the mission radius variations from data source to data 

source seems to be attributed to the inconsistent use of reserve types and conditions. 

While it is standard to have reserve fuel for 20 minute loiter at sea level, plus 5% of 

initial fuel for a land-based aircraft, a carrier-based aircraft is typically required a more 

stringent reserve mission profile in order to ensure adequate fuel to an alternate airport 
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during mid-ocean operations. According to MIL-STD-3031 [172], a reserve profile  for a 

carrier-based aircraft should choose from following three types: 

1. Any number of visual flight rules (VFR) and/or instrument flight rules (IFR) 

passes in the landing configuration (flaps and gears down; speed break at 

final turn and approach) 

2. 100 nm BINGO fuel (the minimum fuel required to divert to an alternate landing 

site using an emergency flight profile) 

3. A specified quantity of fuel (typically 3000 to 4000 lb) 

Most published mission performance did not specify what the reserve type was, but 

the inconsistent use of reserve type in the DoD’s documents was identified. The DoD 

compared F/A-18 C’s and E’s mission performance to illustrate the performance 

deficiency of the C version and to justify the Super Hornet program. Such comparison, 

appearing in Appendix III of the 1996 GAO report [191] and provided in Figure 104, 

shows that the F/A-18E’s promises 42 to 54 percent mission radius increase over the C 

version. The DoD stated the that standardized mission profiles were used for the 

comparison “in order to get an apples to apples valid comparison with other platforms.” 

However, it seems that the DoD used the less stringent land-based reserve type for the 

F/A-18E’s performance estimation, while they used the carrier-based reserve type for the 

F/A-18C’s performance. The land-based reserve only requires about 1,900 to 2,200 lb of 

fuel, while the carrier-based reserve requires about 3,500 to 5,000 lb of fuel. The GAO 

report [191] caught this discrepancy, stating that 

 According to NAVAIR data, in the E/F Early Operation Assessment, the E/F’s 

first pass fuel level for determining combat range varies from approximately 1,900 

pounds to about 2,200 pounds, depending on the mission profile. If the higher 

5,000-pound reserve fuel DoD stated is needed for carrier recovery payload were 

used for range calculations, the range would be lower than reported.     
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Figure 104: F/A-18C and E Mission Range Comparison by the DoD [191] 

What is more interesting is that the DoD used the stringent carrier-based reserve fuel 

weight in order to justify the improvement of the F/A-18 Hornet’s bring back capability. 

The DoD stated in the GAO report that “Air Wings consistently set operating 

procedures for first pass fuel at 4,000 lbs. day/5,000 lbs. night during early work ups. As 

the experience base increases, first pass fuel is brought down to 3,500 lbs. day/4,500 lbs. 

night.” 

On March 22, 2000, the honorable Colye [217], Director of Operational Test and 

Evaluation, testified before the Senate Armed Services Committee about the issue:  

… the ORD-defined specification missions using a 2000-lb. reserve fuel… 

Associated with these KPP range requirements, as established by the ORD, are 

specific flight profiles. These are the Fighter Escort Mission and Interdiction 

Mission flight profiles established by the F/A-18E/F Specification. These profiles 

are well defined in the system specification and are documented in the F/A-18E/F 
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TEMP. All computations of ORD profile ranges were conducted to include the 100 

nautical mile divert leg to arrive overhead at the divert location with 2000 lbs. of 

fuel. In contrast, the CNO/operational missions did not have a reserve fuel 

specified, and as such the threshold values were interpreted relative to current 

F/A-18C/D practices. For these missions, the peacetime training reserve fuel of 

4000 lbs. was used. 

The difference in reserve fuel amount directly affected mission radius. Considering 

the fact that specific range of the F/A-18 in attack configuration is about 0.1 nautical 

miles per pound of fuel at best cruise altitude and Mach number [183], the aircraft gains 

roughly 50 nm in mission radius if the reserve fuel requirement is reduced by 1,000 lb.  

The key performance parameters (KPPs) are the most critical performance measures 

of a given system. The KPPs are often defined as objective and failure to meet the 

threshold value can cause the program to be terminated [153]. The list of KPPs of the 

F/A-18E/F Super Hornet was obtained along with the threshold, objective, and 

demonstrated values. All the values related to F/A-18E/F are either from a GAO report 

in 2000 [208] or from a DoD report in 1999 [153]. In addition, the F/A-18 C’s 

performance data were collected from [74, 175, 183, 191, 201, 218]. The actual 

performance values of both F/A-18C and E are provided in Table 62. The F/A-18 C’s 

performance is for the LOT XIX production model with the F404-GE-402 engines, 

except for the combat ceiling. The combat ceiling data was from the F/A-18A/B/C/D 

NATOPS Flight Manual with the F404-GE-400 engines [183].  
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Table 62: F/A-18C and E Performance Requirements 

 F/A-18E F/A-18C  

Constraint \ Data Type Objective Threshold Actual Actual Units 

Fighter escort radius* >425 >410 462 366 nm 

Interdiction mission radius† >450 >430 496 369 nm 

Combat ceiling >50,000 >50,000 52,300 53,141 ft 

Recovery payload >9000 >9000 9,125 5,623 lb 

Launch wind over deck  < 25 < 30 28 not listed knots 

Recovery wind over deck  <10 < 15 8 not listed knots 

Approach speed  <140 < 150 142 141 knots 

Specific excess power‡ at 0.9/10,000 ft > 650 > 600 648 699 ft/sec 

Acceleration from 0.8M to 1.2M at 35,000 ft  < 60 < 70 65 55.8 sec 

Turn rate at 15,000 ft not listed not listed 11.6 12.3 deg/sec 

 

                                                                                       

*One way unrefueled range using internal fuel and no external fuel tanks 

†One way unrefueled range using external fuel tanks (3-480 gallon for E and 3-330 gallon for A and C) 

‡1 g level flight in fighter configuration, maximum thrust, 60% total fuel remaining; 2 AIM-9 and 2 AIM-120 

for E and 2 AIM-9 and 2 AIM-7 for C; 33,325 lbs of combat weight for C 
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APPENDIX C 

 

F/A-18 COST DATA 

 

APPENDIX C.1 provides some military cost definitions and some useful data sources for 

military cost analysis in general. To construct and validate the cost model of the F/A-18, 

numerous public domain sources were consulted. The F/A-18 specific cost data are 

collected and reviewed in APPENDIX C.2. Validation of the cost model was conducted 

by modeling the four aircraft configurations proposed in the Hornet 2000 study that is 

introduced in APPENDIX C.3. Finally, APPENDIX C.4 reviews the F/A-18A/B/C/D 

and E/F test and evaluation programs. 

C.1 Military Cost Definitions and Data Sources 

US Code, Title-10, Chapter 44 on major defense acquisition programs [219] presents cost 

definitions with respect to a major defense acquisition program: 

Program acquisition (unit) cost: the total cost for development and procurement of, 

and system-specific military construction for, the acquisition program, (divided by 

the number of fully-configured end items to be produced for the acquisition 

program.)  

Procurement (unit) cost: the total of all funds programmed to be available for 

obligation for procurement for the program, (divided by the number of fully-

configured end items to be procured.) 

Full life-cycle cost: all costs of development, procurement, military construction, 

and operations and support, without regard to funding source or management 

control.  

Congressional Budget Office (CBO) [220] defines O&S costs as  
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The total of the operation and maintenance accounts, the military personnel 

accounts, and the portion of the family housing accounts aimed at short-term 

maintenance of DoD family housing. 

Operation and maintenance includes: fuel, spare parts, supplies to run and maintain the 

equipments, transportation, logistics, training, education, recruiting, medical, 

administration, salaries for civilian personnel, etc. Operation and maintenance cost and 

military personnel cost account for 99 percent of the total O&S cost [220].  

The Selected Acquisition Reports (SARs) are quarterly status reports from the 

Department of Defense to the Congress on major defense acquisition programs in 

accordance with Title 10, US Code 2432 [219]. SARs present “each system program 

manager’s current best estimate of key performance, schedule, and cost goals from the 

total program [221].” SARs are focused on program total acquisition cost and do not 

provide data for O&S. 

SAR summary tables from 1969 to the present are available through the DoD’s 

Acquisition Resources and Analysis website, and it provides the total program 

acquisition cost and production quantity for the F/A-18. An issue with using the SAR 

summary table for this study is that it does not differentiate A/B and C/D programs, 

because the C/D program was a minor upgrade that was done through several 

engineering modification proposals. Also, SAR summary tables only provides the total 

program cost and do not break it down to RDT&E, procurement, and military 

construction.  

RDT&E Descriptive Summary (RDDS) is the budget report on the DoD’s RDT&E 

programs. The report is issued annually and is a very good source of studying the 

RDT&E cost of aircraft upgrade programs. For example, the F/A-18C/D radar upgrade 
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program RDT&E cost and F/A-18C/D aircraft upgrade RDT&E cost were reported in 

FY 1998 RDT&E, N Budget Item Justification Sheet. The F/A-18A/B/C/D 

improvement programs were conducted until 2005, well after the production of the last 

F/A-18C/D [222]. 

A good source of O&S cost data is the Navy Visibility and Management of Operating 

and Support Costs (VAMOSC) that has been established since the mid-1970s. The 

VAMOSC is an on-line based information management system that “collects and 

reports U.S. Navy and U.S. Marine Corps historical weapon system operating and 

support (O&S) costs. VAMOSC provides the direct O&S costs of weapon systems, 

some linked indirect costs (e.g., ship depot overhead), and related non-cost 

information, such as flying hour metrics, steaming hours, age of aircraft, etc [223, 

224].” The database is accessed via www.navyvamosc.com.  

The Department of the Navy reports its budget estimates annually or biennially to 

the Congress. These unclassified documents provide detailed RDT&E and procurement 

cost estimates to justify the Navy’s budget request for the following fiscal year. These 

reports are particularly useful in studying aircraft modification cost at the sub-systems 

level. Procurement of upgrades to existing aircraft are done in installation kits. For 

example, 219 F/A-18A/B and 464 C/D were retrofitted with GPS using installation kits 

between 1994 and 2000 [224].  

C.2 Collection of the F/A-18 Cost Data 

This section introduces the F/A-18 cost data that were collected from various public 

domain sources. While collecting cost data, a wide range of literature was consulted from 

as early as 1975 to 2006, encompassing the lifecycle cost of all F/A-18 variants.  

In 1975, F/A-18A/B’s unit flyaway and unit acquisition costs were projected to be 

5.9 and 9.97 million dollars according to [225], based on production of 800 units. In 1982, 
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CBO [221] studied modernization strategies for the U.S. Navy Air Wings and compared 

the cost for various Navy aircraft. The report listed the procurement, operation and 

support, and lifecycle cost estimations of the Navy aircraft of interest including the F/A-

18, A-7E, A-6E, F-14, E-2C, S-3A, and others. The estimation of F/A-18’s average unit 

procurement cost was 20 million assuming the production of 1,366 units, and 17.2 million 

for the last 665 aircraft, in 1983 dollars. The CBO report is also a good source for 

operation and support cost modeling, since it listed the number of officers and enlisted 

required for each aircraft type, the number of aircraft required for one squadron, and the 

number of squadrons for one carrier air wings, and so forth. For example, Table 63 

summarizes the operation costs of various U.S. Navy aircraft for one carrier air wing per 

year in 1983 dollars. The readers are referred to [221] for assumptions and details.  

Table 63: Operation Costs for One Carrier Air Wing per Year   

Aircraft # of A/C per  

Air Wing 

Personnel Operation and  

Maintenance 

Total 

F/A-18 24 4 40 44 

F-14 24 6 51 57 

E-2C 4 4 8 12 

EA-6B 4 4 12 16 

S-3A 10 6 21 27 

SH-60 6 4 19 23 

 

The F/A-18 Hornet program was included in SAR from 1976 until December 1994. 

The final F/A-18 Hornet program cost when the program was ended in 1994 was 

36,783.4 billion in 1994 dollars [226]. The program cost includes the RDT&E and 

procurement of 1,026 aircraft in total [226]. The F/A-18A/B and C/D programs were 

not reported separately in the Navy’s and DoD’s budget reports. While the RDT&E cost 

of the F/A-18A/B was not separately available from the SARs, a Rand report [227] 
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qualitatively compared the total RDT&E engineering hours of the F/A-18A/B and the 

E/F programs as shown in Figure 105.  

On June 30, 1992, the House of Armed Services Committee held a hearing to handle 

the Defense Acquisition Board review of the F/A-18E/F program [83]. The hearing 

discussed various U.S. Navy fleet options after the mid-1990s, including 40 F-14D carrier 

air wings (CVWs); 20 F-14D and 20 F/A-18E/F CVWs; 40 F/A-18E/F CVWs; 20 F/A-

18C/D; and 20 STC-21 CVWs. The comparison included lifecycle cost of pursuing each 

option. Table 64 shows the cost of acquiring and operating the F/A-18E/F, F/A-18C/D, 

and F-14D in 1990 million dollars, assuming 20 years of service life. The F/A-18C/D 

E&MD cost of 500 million dollars was the only number the author could come across 

that separately reports the F/A-18C/D program development cost and used in cost 

modeling process. 

Table 64: Cost Comparison of F/A-18C/D, E/F and F-14D 

 E/F F-14D C/D 

Aircraft quantity 962 1,084 481 

E&MD 4,880 330 500 

Total procurement 43,480 47,150 16,550 

Operations and support 23,540 31,840 11,340 

Total  71,900 79,320 28,390 

 
Figure 105: Comparison of F/A-22 and F/A-18 EMD Engineering Hours [227] 
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Figure 106: F/A-22 and F/A-18E/F EMD Program Cost Drivers [4] 

The 4,880 million dollars spent on the F/A-18E/F EMD program is broken down 

into cost spent on airframe, propulsion, avionics, system test and evaluation (ST&E), 

and others as shown in Figure 106 along with the F-22 EMD cost. It is important to 

note that the portion of EMD cost spent on the F/A-18E/F’s avionics is not only 

absolutely but also relatively small compared to the avionics cost of the F-22. The cost 

saving is attributed to the fact that the F/A-18E/F used 90 percent of the C/D’s 

avionics in the beginning, followed by P3I upgrades. 

A Master’s Thesis by Duma [228] from the Naval Postgraduate School developed a 

model that estimates aviation depot level repair (AVDLR) cost based on the F/A-18. In 

addition, a MBA professional report [229] also from the Naval Postgraduate School 

includes operation cost comparison of the F/A-18A/B and the F-5 E/F based on the 

VAMOSC data. The study broke down the operation cost into fuel, maintenance, and 

AVDLR costs per flight hour. These reports did not cover entire O&S cost but focused 

on major subsets of O&S cost elements.  
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In 1996, GAO [191] investigated the E/F program for the U.S. Congress and 

published a reliable cost breakdown of the F/A-18E/F program as provided in Table 65. 

It also listed the average recurring flyaway cost of 36 C/D’s built in 1994 as $26.175 in 

1994 million dollars. The data set in the table was used as the main source for the F/A-

18E/F cost model calibration. 

Table 65: F/A-18E/F Unit Cost Estimation in 1996 million dollars 

  E/F 

RDT&E 5.783 

Recurring Flyaway 43.6 

Total Flyaway 48.7 

Initial Spares and Support 8.61 

Procurement 57.31 

Total Program 63.093 

Number of Aircraft Assumed 1,000 

 

The F/A-18E/F program has been included in SAR since December 1991. Table 66 

summarizes important changes to the program classification, program cost estimation, 

and the production quantify found in the SARs from 1992 to 2007. The Super Hornet 

program was classified as a PE program from December 1991 to March 1992, then as a 

DE program as the EMD phase started from June 1992 to December 1997, and then as 

PDE after the conclusion of the EMD phase. Total production of 1,000 E/F was initially 

planned but reduced to 548 in December 1997. The total number of aircraft changes 

several times afterwards, and as of December 2007 the total planned production is 493 

aircraft.  
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Table 66: F/A-18E/F Program Cost and Production Quantity Projections 

 Dec-91 Jun-92 Dec-97 Sep-00 Dec-01 Dec-03 Dec-07 

 PE PE/DE DE DE/PDE PDE PDE PDE 

RDTE (BY1992) 1,738.6        

RDTE (TY) 5,109.9        

Program (BY1990)  53,959.6 34,292.9 43,489.6    

Program (TY)  94,583.0 46,064.1 46,825.7    

Program (BY2000)     45,289.7 41,665.3 43,257.6 

Program (TY)     48,791.1 43,845.2 46,344.8 

Aircraft Quantity  1,000 548 548 548 462 493 

    *in million Base-Year(BY) or Then-Year(TY) 

 

C.3 The Hornet 2000 Study 

In 1987, McDonnell Douglas studied the options to upgrade the F/A-18A/B under a 

contract to the US DoD [171]. Figure 107 from [76] shows the seven different 

configurations investigated as the upgrades options. By taking the 1988 version of 

Hornet as the baseline, a series of upgrades, such as improved avionics, new cockpits, 

more internal fuel volume, and higher thrust engines were considered. Table 67 lists the 

changes planned for each of the configurations. Configuration I was essentially the F/A-

18C/D and Configuration IIIC became the basis for the F/A-18E/F. All other 

configurations were discarded.  

The Hornet 2000 study compared both recurring and nonrecurring cost for the seven 

options. While the original document was not available to the author, the non-

dimensionalized numbers were published by Young [76]. By combining some of the cost 

data found in §C.2 and the non-dimensional cost from Hornet 2000 study, dimensional 

cost for F/A-18 upgrade was constructed. These cost data set were used in calibrating 

the RDT&E and production cost model of the notional multi-role fighter in §7.7.  
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Figure 107: F/A-18 Upgrade Options from Hornet 2000 Study [76]  
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Table 67: F/A-18 Upgrade Cost from Hornet 2000 Study [76, 171] 

Configuration I II III IIIA IIIB IIIC IV 

Major 

upgrades 

FY88 plus, 

- Avionics 

upgrades 

- Weapon system 

upgrades 

- F404-GE-402 

engines 

I plus, 

- Increase fuel capacity 

- F414-GE-400 engines 

- Active array radar* 

- INEWS 

Configuration 

 changes 

Retrofit of new 

equipments and 

engines without 

modification to 

airframe 

Raised 

dorsal 

Stiffened 

wing 

Raised 

dorsal 

25% Larger 

wing 

(increased 

chord) 

Larger tails 

2'3.5'' 

Fuselage 

plugs 

25% Larger 

wing 

(increased 

chord) 

Larger tails 

Raised dorsal 

25% Larger 

wing 

(increased 

chord and 

span) 

Larger tails 

2'3.5" 

Fuselage 

plug 

25% Larger 

wing 

(increased 

chord and 

span) 

Larger tails 

Fuselage 

plugs 

Cranked 

arrow wing 

with 

canards 

New V tails 

Additional  

Internal Fuel 

zero 2700 lb 3700 lb 2700 lb 3700 lb 2700 lb 3197 lb 

$Recurring 1.14 1.3 1.37 1.36 1.4 1.39 1.46 

$Non-

Recurring 

1 2.22 2.88 2.77 2.89 2.78 3.44 

 

C.4 Overview of the F/A-18A/B and E/F Test Programs 

For military acquisition programs, conformation to the specified requirements defined by 

the ORD is supported through a series of test and evaluation programs that are prepared 

in accordance with DoD Instruction 5000.2 [230]. Figure 108 from DoDI 5000.2 shows 

military acquisition process and testing activities at each milestone and phase. Before 

milestones B and C, a test and evaluation master plan (TEMP) is prepared by the 

program manager and approved by the Director of Testing and Evaluation (DOT&E).  

                                                                                       

*F/A-18C/D and E/F Radar upgrade to active array radar was done as one of the F/A-18 radar 

P3I programs starting in 1999 [224]. Budget for RDT&E and procurement costs for these radars 

were prepared separately from the F/A-18C/D and E/F programs. Thus, the F/A-18 cost model 

in this study also excluded cost related to the radar upgrade.  
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The testing and evaluation process for a major acquisition program can be divided 

into developmental testing and evaluation (DT&E) and operational testing and 

evaluation (OT&E). DT&E is usually conducted by the contractors to prove that the 

system functions as intended and is usually completed before the approval of low rate 

initial production (LRIP) at Milestone C. Military Handbook 881 [231] provides work 

breakdown structure (WBS) for T&E programs. A typical fighter DT&E program 

includes but not limited to: M&S, wind-tunnel tests, static article and test, fatigue 

article and test, drop article and test, subsystem ground tests, avionics integration tests, 

armament and weapon delivery integration tests, flight tests, etc. DT&E is typically 

conducted using the prototype or EMD vehicle. OT&E, also called operational 

evaluation (OPEVAL) by the US Navy, is performed by the user of the product using 

 
Figure 108: Testing and the Defense Acquisition Process in DODI 5000.2 
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the some of the LRIP vehicles and takes much less time than DT&E. Successful 

evaluation will give the approval for the full-rate production (FRP).  

In the case of the F/A-18A/B program, eleven test aircraft were used for its flight 

test program, while the C/D program used two test vehicles and the E/F program used 

7 flight test articles and 3 ground test articles [71, 209]. The F/A-18A/B full-scale 

development flight test program tasks and schedule is shown in Figure 109. The figure 

shows what tests each of the test vehicles performed and how long it was scheduled to 

take. The radar test was conducted with a T-39.  

In 1997, the Applied Physics Laboratory at Johns Hopkins published the list of the 

F/A-18E/F flight test categories and number of required flights based on the F/A-18E/F 
                                                                                       

*ECS: Environmental Control System 

 MEI: Maintenance Engineering Inspection 

 EMC: Electromagnetic Compatibility 

 NPE: Navy Preliminary Evaluation 

 NPA Navy Preliminary Assessment 

 IOT&E: Initial Operational Test and Evaluation 

 BIS: Board of Inspection and Survey 

 
Figure 109: F/A-18A/B Flight Test Program Schedule* [71] 
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TEMP as shown in Table 68 [232]. The TEMP for the F/A-18E/F flight test program 

was prepared by an integrated Navy/contractor test team based on the F/A-18A/B 

flight test experience and the F/A-18E/F flight test requirements. According to the 

TEMP, 1,839 test flights in 13 categories were required to fulfill the demonstration and 

test objectives for the F/A-18E/F aircraft. 

Table 68: F/A-18E/F Flight Test Program Projection [232] 

Flight test category No. of required flights  

Flying qualities  265 

Performance  125 

Propulsion  130 

High angle of attack  250 

Flutter  255 

Empennage buffet  25 

Noise/vibration 30 

Flight loads  195 

Dynamic store release 40 

Carrier suitability/ground loads 173 

Mission systems 74 

Weapons separation  267 

New technology  10 

 

The required number of sorties for the E/F program was more than doubled over 

time from the number of sorties originally planned in the TEMP. A Rand study 

performed in 2004 on test and evaluation cost of military aircraft [13] provides a good 

summary of the F/A-18E/F flight test program. The study summarized the flight test 

program conducted from November 1995 to April 1999. According to the study, from the 

first flight in November 1995 to April 1999, “eight aircraft made 3,141 flights, logging 

4,620 flying hours, for a total of 244 aircraft months.” Then, the OPEVAL program 

followed from May to November 1999 using seven aircraft and consisting of over 1,200 
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flight hours in 850 plus sorties [233]. Total flight test hours reached almost 6,000 hours. 

The actual F/A-18E/F flight test program from the first flight to the end of OPEVAL is 

summarized by Fox [13] and duplicated in Table 69. 

Table 69: Actual F/A-18E/F Flight Test Program Summary 

  Test aircraft (no.) Sorties (no.) Flight hours 

Avionics   600 

Flying qualities, flutter   1,890 

Propulsion, performance   195 

Aircraft systems   275 

Armament   310 

Structures   1,126 

Carrier suitability   189 

Other   35 

Total EMD/FSD flight test 8 3,141 4,620 

OPEVAL 7 850 1,200 

Total flight test 8 3,991 5,820 

 

F/A-18A/B and E/F test program statistics are summarized in Table 70. Most data are 

from Fox [13]. In the case of the F/A-18A/B and E/F test programs, 305 and 244 

aircraft months were flown by 11 and 8 aircraft, respectively. Each test aircraft flew 16.1 

and 18.9 hours per month on average. Also, each of the test aircraft was used for 27.7 

and 30.5 months on average. Test duration measured from the first flight to the end of 

DT, was 40 months for the F/A-18A/B program and 40 months for the F/A-18E/F 

program, excluding the OPEVAL periods.  

NASA Langley Research Center [96] summarized the F/A-18E/F wind tunnel test 

programs as follows:  

The vehicle's performance at subsonic and transonic speeds was validated in a 

series of wind tunnel tests at NASA Ames (11-Foot Transonic Tunnel, 1991-94). 

During approximately 3,000 hours of tunnel occupancy, data were obtained on four 



 349

different scale models to determine performance and stability and control 

characteristics. The tests included aerodynamic measurements to evaluate a series 

of aircraft design options, such as engine inlet studies. Stability and control 

characteristics at high-angle-of-attack flight conditions were evaluated in numerous 

wind tunnel tests at Langley (approx. 1,500 occupancy hrs in 30- by 60-Foot Full 

Scale Tunnel, 1993-4). 

Fox [13] describes the ground test program of the F/A-18E/F as follows: 

“… three ground test articles—static, drop, and fatigue—were built, and seven 

flight test vehicles were built and flight tested in EMD… During DT-IIA 

(November 1995 to November 1996), the static test article was used for initial 

wing-bending tests; the drop-test article was used for a series of landing-gear tests 

at increasing sink rates …”  

Fatigue testing was completed in July 1998 before flight testing was completed in April 

1999.  

Table 70:  F/A-18A/B and E/F Flight Test Programs 

  F/A-18A/B F/A-18E/F Units 

Total aircraft month 305 244 month 

Total flight hours 4,922 4,620 hrs 

Number of vehicles 11 8 ea 

Average flight hours per aircraft month 16.1 18.9 hrs/month 

aircraft month per vehicle 27.7 30.5 month/aircraft 

DT duration 40 41 month 
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APPENDIX D 

 

OPTIMIZATION WITH RDT&E COST AS OBJECTIVE 

 

This complementary study is a repetition of Step 7 of the EvoLVE process with the 

objective function as RDT&E cost instead of acquisition cost. A large portion of 

acquisition cost is production cost, which acts as a deterrent or penalty of overdesigning 

in the first stage. Therefore, the study with RDT&E cost as objective function examines 

an extreme case in which the cost of changing the design dominates the game. The study 

was conducted deterministically only. The optimization results are provides in Tables 

from 71 to 76. The bar graphs are also provided from Figures 110 to 118 for comparison.  

General equalities and inequalities are also observed that are fundamentally different 

from those found in §7.8. In terms of the cost, the graphs show similar trends that were 

found with the optimization results conduced with the acquisition cost as the objective 

function. The major difference is that the second-stage cost is significantly saved by 

pursuing the DetPP strategies. In addition, the difference between New-design and Ad-

hoc is also amplified. From the perspective of designs, a clear difference from the results 

with acquisition cost is that all DetPPs overdesigned x1 to meet the predicted 

requirement 
u
ω  and retained it in all cases in which the second-stage requirement was 

less rigorous than the predicted one.  

 
s

* *
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 Observation 16: The TAD optimization with RDT&E cost as an objective function 

showed that if the realized scenario is less demanding than the predicted scenario, 

the first-stage design is retained in the second stage. 

 

Table 71: First-Stage TAD Optimization Results 

 Strategies New 

Design 

Ad-hoc DetPP 

(Block10) 

DetPP 

(Avg.) 

DetPP 

(Block10p) 

Unit 

x11 Wing area 396.6 396.6 449.4 464.0 498.5 ft2 

x12 Thrust 18355 18355 20441 20855 21947 lb 

x13 Ref. weight for DLF 34131 34131 38251 39170 41816 lb 

x14 Landing weight 33248 33248 39539 40830 43839 lb 

x15 Internal fuel 10827 10827 12777 13190 14692 lb 

x16 External fuel 6724 6724 6691 7920 9608 lb 

x17 Ref. thrust for aft-body 18355 18355 23508 23982 25238 lb 

x18 Fuselage length 53.08 53.08 54.68 54.79 55.60 ft 

g11 Fighter escort radius 350.1 350.1 409.6 423.5 478.8 nm 

g12 Interdiction mission radius 410.9 410.9 431.4 461.4 505.8 nm 

g13 Recovery payload 4508 4508 7910 8547 9846 lb 

g14 Launch wind over deck 22.06 22.06 22.29 24.47 28.14 knots 

g15 Recovery wind over deck  -0.01 -0.01 3.55 4.80 9.27 knots 

g16 Approach speed  138.1 138.1 141.5 141.5 141.4 knots 

g17 Specific excess power 708.7 708.7 699.2 696.2 685.9 ft/sec 

g18 Accel. from 0.8 to 1.2M 63.66 63.66 63.60 63.54 63.42 sec 

g19 Turn rate 12.042 12.042 12.066 12.112 12.093 deg/sec 

g110 Usable load factor 7.609 7.609 7.609 7.610 7.609 g 

R 

E 

S 

U 

L 

T 

S 

OEW 25738 25738 28628 29282 30992 lb 

Attack TOGW 50520 50520 55325 57699 62697 lb 

Fighter TOGW 37975 37975 42815 43882 47095 lb 

RDTE 4639 4639 4904 4963 5116 $m 

RDTE year 8.58 8.58 8.82 8.87 9.01 year 

Production 20172 20172 21595 21897 22701 $m 

f1 24811 24811 26499 26859 27817 $m 
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Table 72: Second-Stage Optimization Results under the New-Design Strategy 

 Stage 1 2  

 Requirement/Scenarios Block 0 S1 S2 S3 S4 S5 Unit 

x21 Wing area 396.8 426.6 453.1 465.0 502.6 529.9 ft2 

x22 Thrust 18366 19703 20558 20910 22068 22927 lb 

x23 Ref. weight for DLF 34138 36359 38563 39401 42194 43865.6 lb 

x24 Landing weight 33246 37532 39877 40916 44046 45360.5 lb 

x25 Internal fuel 10827 11495 12854 13189 14729 15447.1 lb 

x26 External fuel 6707 7091 6664 7991 9851 10288 lb 

x27 Ref. thrust for aft-body 18366 22658 23642 24046 25378 26366 lb 

x28 Fuselage length 53.08 53.82 54.81 55.00 55.80 56.08 ft 

g21 Fighter escort radius 350.0 350.5 410.4 420.0 475.5 493.7 nm 

g22 Interdiction mission radius 410.3 410.1 430.1 460.1 504.5 509.9 nm 

g23 Recovery payload 4501 7000 8001 8403 9701 9800 lb 

g24 Launch wind over deck 22.00 22.35 22.23 24.89 28.65 28.65 knots 

g25 Recovery wind over deck  -0.05 3.53 3.56 4.93 9.32 9.56 knots 

g26 Approach speed  138.1 141.5 141.5 141.5 141.2 139.5 knots 

g27 Specific excess power 709.1 709.3 697.7 694.0 683.4 682.9 ft/sec 

g28 Acceleration from 0.8M to 1.2M 63.60 63.60 63.60 63.60 63.54 62.88 sec 

g29 Turn rate 12.046 12.123 12.061 12.068 12.069 12.175 deg/sec 

g210 Usable load factor 7.609 7.609 7.612 7.609 7.609 7.609 g 

 

R 

E 

S 

U 

L 

T 

S 

OEW 25743 27531 28874 29513 31344 32560 lb 

Attack TOGW 50507 53373 55619 58004 63341 65735 lb 

Fighter TOGW 37980 40436 43139 44112 47483 49417 lb 

RDTE 4640 6491 6636 6703 6892 7022 $m 

RDTE year 8.59 9.35 9.49 9.55 9.73 9.85 year 

Production 20175 27605 29249 29967 32213 33850 $m 

f1/ f2 4640 6491 6636 6703 6892 7022 $m 

Total cost - 11439 11585 11651 11841 11970 $m 
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Table 73: Second-Stage Optimization Results under the Ad-hoc Strategy 

 Stage 1 2  

 Requirement/Scenarios Block 0 S1 S2 S3 S4 S5 Unit 

x21 Wing area 396.8 426.6 453.0 465.0 502.6 532.4 ft2 

x22 Thrust 18366 19698 20551 20920 22068 23011 lb 

x23 Ref. weight for DLF 34138 36363 38533 39416 42194 44033 lb 

x24 Landing weight 33246 37534 39865 40921 44046 45467 lb 

x25 Internal fuel 10827 11506 12846 13193 14729 15544 lb 

x26 External fuel 6707 7084 6669 7997 9851 10249 lb 

x27 Ref. thrust for aft-body 18366 22653 23634 24058 25378 26463 lb 

x28 Fuselage length 53.08 53.83 54.80 55.00 55.80 56.13 ft 

g21 Fighter escort radius 350.0 351.2 410.1 420.0 475.5 496.9 nm 

g22 Interdiction mission radius 410.3 410.3 430.1 460.2 504.5 510.7 nm 

g23 Recovery payload 4501 7001 8000 8400 9701 9802 lb 

g24 Launch wind over deck 22.00 22.37 22.22 24.91 28.65 28.56 knots 

g25 Recovery wind over deck  -0.05 3.54 3.55 4.94 9.32 9.55 knots 

g26 Approach speed  138.1 141.5 141.5 141.5 141.2 139.4 knots 

g27 Specific excess power 709.1 708.9 697.7 694.3 683.4 682.9 ft/sec 

g28 Acceleration from 0.8M to 1.2M 63.60 63.60 63.60 63.54 63.54 62.82 sec 

g29 Turn rate 12.046 12.119 12.063 12.069 12.069 12.181 deg/sec 

g210 Usable load factor 7.609 7.608 7.609 7.610 7.609 7.609 g 

 

R 

E 

S 

U 

L 

T 

S 

OEW 25743 27532 28864 29520 31344 32664 lb 

Attack TOGW 50507 53376 55607 58021 63342 65896 lb 

Fighter TOGW 37980 40448 43120 44123 47484 49618 lb 

RDTE 4640 2832 3716 4018 4640 5137 $m 

RDTE year 8.59 4.87 6.35 6.75 7.35 7.83 year 

Production 20175 27109 28739 29499 31866 33743 $m 

f1/ f2 4640 2832 3716 4018 4640 5137 $m 

Total cost - 7472 8355 8658 9280 9777 $m 
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Table 74: Second-Stage Optimization Results under the DetPP(Block10) Strategy 

 Stage 1 2  

 Requirement/Scenarios Block 0 S1 S2 S3 S4 S5 Unit 

x21 Wing area 453.7 453.7 453.7 465.0 502.6 529.9 ft2 

x22 Thrust 20564 20564 20564 20917 22068 22927 lb 

x23 Ref. weight for DLF 38576 38576 38576 39413 42194 43866 lb 

x24 Landing weight 39887 39887 39887 40920 44046 45361 lb 

x25 Internal fuel 12853 12853 12853 13193 14729 15447 lb 

x26 External fuel 6672 6672 6672 7990 9851 10288 lb 

x27 Ref. thrust for aft-body 23649 23649 23649 24055 25378 26366 lb 

x28 Fuselage length 54.66 54.69 54.79 55.00 55.80 56.09 ft 

g21 Fighter escort radius 411.4 411.2 410.2 420.1 475.5 493.7 nm 

g22 Interdiction mission radius 431.0 430.8 430.1 460.1 504.5 509.9 nm 

g23 Recovery payload 8082 8067 8000 8401 9701 9800 lb 

g24 Launch wind over deck 22.00 22.03 22.17 24.89 28.65 28.65 knots 

g25 Recovery wind over deck  3.48 3.48 3.48 4.93 9.32 9.56 knots 

g26 Approach speed  141.4 141.4 141.4 141.5 141.2 139.5 knots 

g27 Specific excess power 699.2 698.9 697.6 694.2 683.4 682.9 ft/sec 

g28 Acceleration from 0.8M to 1.2M 63.54 63.54 63.66 63.60 63.54 62.88 sec 

g29 Turn rate 12.096 12.091 12.069 12.068 12.069 12.175 deg/sec 

g210 Usable load factor 7.629 7.626 7.612 7.610 7.609 7.609 g 
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S 

U 

L 

T 

S 

OEW 28804 28819 28886 29518 31344 32560 lb 

Attack TOGW 55557 55572 55639 58012 63341 65735 lb 

Fighter TOGW 43067 43082 43149 44121 47483 49417 lb 

RDTE 4920 650 1291 2910 3560 3985 $m 

RDTE year 8.83 0.83 2.21 5.63 6.33 6.71 year 

Production 21683 28988 28813 29127 31461 33170 $m 

f1/ f2 4920 650 1291 2910 3560 3985 $m 

Total cost - 5570 6211 7830 8480 8905 $m 
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Table 75: Second-Stage Optimization Results the DetPP(Average) Strategy 

 Stage 1 2  

 Requirement/Scenarios Block 0 S1 S2 S3 S4 S5 Unit 

x21 Wing area 465.0 465.0 465.0 465.0 500.7 530.3 ft2 

x22 Thrust 20920 20920 20920 20920 22029 22940 lb 

x23 Ref. weight for DLF 39416 39416 39416 39416 42127 43889 lb 

x24 Landing weight 40921 40921 40921 40921 43990 45376 lb 

x25 Internal fuel 13193 13193 13193 13193 14710 15461 lb 

x26 External fuel 7997 7997 7997 7997 9748 10289 lb 

x27 Ref. thrust for aft-body 24058 24058 24058 24058 25333 26381 lb 

x28 Fuselage length 54.77 54.79 54.90 55.22 55.83 56.09 ft 

g21 Fighter escort radius 422.2 422.0 421.0 418.1 475.2 494.1 nm 

g22 Interdiction mission radius 461.8 461.7 460.9 458.7 504.0 510.1 nm 

g23 Recovery payload 8550 8535 8468 8265 9702 9800 lb 

g24 Launch wind over deck 24.62 24.65 24.78 25.17 28.62 28.65 knots 

g25 Recovery wind over deck  4.94 4.94 4.94 4.94 9.42 9.56 knots 

g26 Approach speed  141.5 141.5 141.5 141.5 141.4 139.5 knots 

g27 Specific excess power 697.1 696.8 695.5 691.7 683.4 682.9 ft/sec 

g28 Acceleration from 0.8M to 1.2M 63.36 63.42 63.48 63.72 63.54 62.88 sec 

g29 Turn rate 12.117 12.112 12.090 12.026 12.053 12.176 deg/sec 

g210 Usable load factor 7.640 7.637 7.623 7.584 7.609 7.609 g 
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E 

S 

U 

L 

T 

S 

OEW 29370 29385 29452 29655 31287 32575 lb 

Attack TOGW 57871 57886 57953 58156 63157 65765 lb 

Fighter TOGW 43973 43988 44055 44258 47407 49446 lb 

RDTE 4971 654 1300 1399 3390 3835 $m 

RDTE year 8.88 0.84 2.22 2.30 6.17 6.58 year 

Production 21941 29609 29427 29669 31321 33134 $m 

f1/ f2 4971 654 1300 1399 3390 3835 $m 

Total cost - 5625 6271 6370 8361 8806 $m 
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Table 76: Second-Stage Optimization Results under the DetPP(Block10p) Strategy 

 Stage 1 2  

 Requirement/Scenarios Block 0 S1 S2 S3 S4 S5 Unit 

x21 Wing area 502.6 502.6 502.6 502.6 502.6 530.7 ft2 

x22 Thrust 22070 22070 22070 22070 22070 22961 lb 

x23 Ref. weight for DLF 42191 42191 42191 42191 42191 43919 lb 

x24 Landing weight 44102 44102 44102 44102 44102 45397 lb 

x25 Internal fuel 14732 14732 14732 14732 14732 15474 lb 

x26 External fuel 9850 9850 9850 9850 9850 10290 lb 

x27 Ref. thrust for aft-body 25381 25381 25381 25381 25381 26405 lb 

x28 Fuselage length 55.54 55.56 55.67 55.78 55.80 56.09 ft 

g21 Fighter escort radius 478.0 477.8 476.8 475.8 475.5 494.4 nm 

g22 Interdiction mission radius 506.3 506.2 505.5 504.7 504.5 510.1 nm 

g23 Recovery payload 9919 9904 9836 9768 9753 9801 lb 

g24 Launch wind over deck 28.36 28.39 28.51 28.63 28.66 28.64 knots 

g25 Recovery wind over deck  9.50 9.50 9.50 9.50 9.50 9.56 knots 

g26 Approach speed  141.3 141.3 141.3 141.3 141.3 139.5 knots 

g27 Specific excess power 686.2 685.9 684.8 683.6 683.3 683.1 ft/sec 

g28 Acceleration from 0.8M to 1.2M 63.36 63.36 63.42 63.54 63.54 62.82 sec 

g29 Turn rate 12.118 12.113 12.093 12.073 12.068 12.180 deg/sec 

g210 Usable load factor 7.637 7.635 7.622 7.610 7.607 7.609 g 
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S 

U 

L 

T 

S 

OEW 31183 31197 31265 31333 31348 32595 lb 

Attack TOGW 63182 63197 63264 63332 63347 65799 lb 

Fighter TOGW 47325 47339 47407 47475 47490 49479 lb 

RDTE 5133 667 1329 1363 1370 3266 $m 

RDTE year 9.02 0.85 2.25 2.28 2.28 5.95 year 

Production 22792 31814 31611 31692 31710 32992 $m 

f1/ f2 5133 667 1329 1363 1370 3266 $m 

Total cost - 5799 6462 6496 6503 8399 $m 
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Figure 110: Total Program Cost Comparison w.r.t. Strategies 
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Figure 111: Total Program Cost Comparison w.r.t. Scenarios 
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Figure 112: RDT&E Cost Comparison 
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Figure 113: RDT&E Year Comparison 
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Figure 114: Wing Area Comparison 
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Figure 115: Engine Thrust Comparison 
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Figure 116: External Fuel Comparison 
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Figure 117: Empty Weight Comparison 
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Figure 118: Takeoff Gross Weight in Attack Configuration 
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