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SUMMARY

A new one-dimensional Extended High order Sandwich Panel Theory (EHSAPT) for

curved panels is presented. The theory accounts for the sandwich core compressibility in

the radial direction as well as the core circumferential rigidity. Two distinct core displace-

ment fields are proposed and investigated. One is a logarithmic (it includes terms that are

linear, inverse, and logarithmic functions of the radial coordinate). The other is a polyno-

mial (it consists of second and third order polynomials of the radial coordinate) and it is

an extension of the corresponding field for the flat panel. In both formulations the two thin

curved face sheets are assumed to be perfectly bonded to the core and follow the classical

Euler-Bernoulli beam assumptions. The new theory is formulated by Principle of Mini-

mum Total Potential Energy for static and Hamilton’s principle for free vibration analysis.

Then, the linear elasticity displacement formulation and solutions for a generally asym-

metric simply support sandwich curved beam/panel consisting of orthotropic core and face

sheets are presented. Closed-form analytical solutions are derived for the curved sandwich

subjected to a top face distributed static transverse loading; and the method of Frobenius

series is applied in free vibration analysis. Next, due to the curvature, the first order shear

deformation (FOSD) theory for curved sandwich panels is not a direct extension of the

corresponding one for flat panels and thus, it is formulated accordingly, and its unique fea-

tures, such as the reference curve, are discussed. Three versions of the FOSD theory are

formulated: the one based on direct variational formulation based on the assumed through-

thickness displacement field (termed “basic”), one based on the definition of an equivalent

shear modulus for the section (termed “Geq”) and one based on derivation of a shear cor-

rection factor, which is considered in conjunction with the equivalent shear modulus. In

addition, the classical theory for curved sandwich panels which does not include trans-

verse shear is also presented. The results from following: the new proposed EHSAPT, the

existing high order sandwich panel theory HSAPT (from literature), three variants FOSD

xi



theory, and Classical theory are compared with Elasticity which serves as a benchmark

in assessing the accuracy of the various sandwich panel theories. The case examined are

transverse static loads and free vibration of simply supported curved sandwich panels, for

which a closed form elasticity solution is formulated. It is shown that the new EHSAPT is

the most accurate among other presented theories with the logarithmic formulation is more

accurate than the polynomial.

xii



CHAPTER 1

INTRODUCTION

In aerospace or naval construction, structural shapes are often not flat (e.g. ship hulls or

airplane fuselages). Thus, although the majority of the structural theories are formulated

and studied on flat panels, there is a definite need to formulate such theories for the ge-

ometry of curved panels and properly address the effect of curvature. When it comes to

sandwich structures, which consist of two thin high-stiffness face sheets, usually metallic

or laminated composites, bonded to a core made of low-density and low-stiffness materials

such as honeycomb, polymer foam or balsa wood, most of the research has been done on

flat panels, see book by Carlsson and Kardomateas (2011) [1].

The majority of the research on this topic has been done for flat panels. For static

problems involving laminated composite or sandwich flat panels, a few closed form elas-

ticity solutions exist, namely by Vlasov (1957) [2] for isotropic plates, by Pagano [3]

(1969,1970),[4] for a beam and plate configuration respectively, both under restrictive as-

sumptions, extended by Kardomateas (2009) [5] and Kardomateas and Phan (2011) [6] for

general sandwich plates and beams, respectively. Regarding the dynamic case, an elastic-

ity solution for the free vibration of homogeneous and laminated plates was presented by

Srinivas et al [7] (1970) and an elasto-dynamic solution for a sandwich beam/wide plate

under blast loading was developed by Kardomateas et al (1992) [8]. The latter was later

extended to a sandwich plate of arbitrary aspect ratio by Kardomateas et al (2015) [9].

In sandwich panels the core is supposed to provide the shear resistance/stiffness and

including transverse shear has been long recognized as a necessary characteristic of sand-

wich analysis [1] . Thus, the simplest sandwich structural theories assume that the core

is incompressible in the transverse direction and with negligible in-plane rigidity in the

longitudinal direction. The most popular theory that includes the transverse shear effect is
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the First Order Shear Deformation Theory that replaces the layered panel with an equiv-

alent single layer and assumes that the core is incompressible, see for example the books

by Allen (1969) [10] or Carlsson and Kardomateas (2011) [1]. However, the first order

shear alone does not account for parabolic shear stress distribution unless augmentation

of shear correction factor. Reddy (1984) [11] the simple high order shear theory accounts

for parabolic distribution and zero shear stress on surfaces while retain the same number

of unknown displacement functions as in the first order theory; thus, the theory is cate-

gorized as equivalent single layer. Numerous refined theories for sandwich panel analyis

were reported [12], [13]. According to Carrera and Brischetto (2009) [12], Such theories

were classified into: equivalent single layered model, layerwise model base on layered de-

pendency of unknown variables and these consequently were characterized into classical,

first order, higher order, zigzag, layer wise, and mixed theories. Carrera (2003) [14] his-

torically summarized theories for multilayered structures that include zigzag effect which

describing a through thickness piecewise displacement field and fulfill interlaminar traction

conditions.

Experimental studies of sandwich foam cores subject to impact blast loading reported

large core compressive deformations and core cracking failures [15], [16], [17], [18], [19],

[20]. Recent advanced approach that include core compressibilty effect is based on high-

order models, see for Frostig et al (1992) [21], and Hohe and Librescu (2003) [22]. Despite

both are describing thickness wise 2nd and 3rd order of sandwich core transverse and tan-

gential displacement respectively, the expressions are difference. Frostig et al (1992) [21]

core displacement field is derived from the elasticity equations in a closed-form by assum-

ing no in-plane core rigidity which is very accurate for very flexible foam core. In suchs

model, the overall response is a combination of the responses of the face sheets and the

core through equilibrium and compatibility.

The most recent advanced high order theory is the Extended High Order Sandwich

Panel Theory which includes the effect of the in-plane core rigidity. The theory hereditarily
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derive from Frostig et al (1992) [21]; and has been formulated for flat beams/wide panels,

Phan et al (2012) [23] for the static, Phan et al (2013) [24] for the dynamic case, and

Siddiqui (2015) [25] for plates. This theory was shown to be very close to the elasticity

prediction in both the static and the dynamic cases. In addition, Phan et al (2012) [26]

applied the theory to study instabilities of honeycomb sandwich panels, the results shown

to be in a good agreement with the experiments. Finite element method based on the theory

was also formulated, see Yuan et al (2015) [27], to study geometric nonlinearity effects, see

Yuan et al (2016) [28].

The literature is rather limited when it comes to sandwich curved panels. Unlike the flat

plate geometry, the curvature introduces strains that are not a linear function of the distance

from the reference axis, but have a dependence on this distance in the denominator, as will

be seen in the analysis section. Noor et al (1996, 1997) [29],[30] outlined models that as-

sume that the core is incompressible following the First-Order Shear Deformable (FOSD)

Theory and Vaswani et el. (1988) [31] studied the vibration and damping analysis of curved

sandwich beams by using the Flugge shell theory while assuming that the face sheets are

membranes only and the core is incompressible. Yin-Jiang (1989) [32] studied the stability

of shallow cylindrical sandwich panels with orthotropic layers by use of the FOSD theory

but with membrane and flexural rigidities of the face sheets. Furthermore, Di Sciuva(1987)

[33] developed a model that takes into account the shear deformation but assumes that the

core is incompressible and linear. The use of the FOSD in the literature has been mostly

done by neglecting the distance from reference axis, which is valid for very thin curved

panels. For example, Qatu (1993) [34] made this assumption in the study of natural fre-

quencies for laminated composite curved beams. Another consequence of non-linearity of

the strains due to the curvature, is that the reference axis definition is not, in general, at the

middle of the section, and needs to be defined accordingly Timoshenko (1940) [35]. Again,

the use of the FOSD in the literature has been mostly done by considering the reference

axis to be at mid-thickness. For example, Tseng et al (2000) [36] made this assumption,
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along with the assumption of a parabolic distribution of shear, by direct extension of the

one from flat panels. The study was done for laminated composites and this assumption

also led to the calculation of a shear correcting function, which, again, is the one from the

homogeneous flat panel analysis. In this report, FOSD will be formulated with inclusion

of reference axis and the proper shear correction factor will be derived for curved panels

geometry.

The compressibility of the core was included in the High Order Sandwich Panel Theory

introduced by Frostig et al (1992) [21] and was adopted for the curved sandwich panel con-

figuration by Frostig (1999) [37] for the linear and Bozhevolnaya and Frostig (1997) [38]

for the nonlinear case. In addition, Bozhevolnaya and Frostig (2001) [39] studied the free

vibration and Frostig and Thomsen (2009) [40] the thermal effects that induce deformation

as well as degradation of properties in curved sandwich panels. As already mentioned, the

effect of the in-plane core rigidity has been included in the extended high order sandwich

panel theory (EHSAPT), already formulated for flat panels in Phan et al (2012) [23]. The

formulation is extended to the configuration of a curved sandwich panel. The theory will

be developed based on the following assumptions: The face sheets have in-plane (circum-

ferential) and bending rigidities with negligible shear deformations, see Brush and Almroth

(1975) [24] and Simitses (1976) [29]. The core is considered as a 2D linear elastic contin-

uum obeying small deformation kinematic relations and where the core height may change

(compressible core) and the section plane does not remain plane after deformation. The

core is assumed to possess shear, radial normal and circumferential stiffness; full bonding

between the face sheets and the core is assumed and the interfacial layers can resist shear

as well as radial normal stresses. Two variant core displacement field base on logarithmic

function whose essence from Frostig (1999) [37] and high order polynomial whose directly

extend from straight flat case Phan et al (2012) [23] will be studied.

Elasticity closed-form static solutions for curved panels (or beams) have been derived

based on a stress function approach in Timoshenko and Goodier (1970) [41] for the case of
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an isotropic curved bar under pure bending or a curved bar loaded by a force at the end. In

both cases the displacement field included a log r term. The case of an anisotropic curved

bar, again under pure bending or loaded by a force at the end, was studied again by the

stress function approach in Lekhnitskii (1981) [42]. The same approach was used by Ren

(1987) [43] to extend Lekhnitskii’s solution to the case of laminated cylindrical shells. In

this report, the closed-form elasticity solution shall be derived for a sandwich curved panel

under distributed load on the top bounding surface and a different approach shall be fol-

lowed, i.e. a displacement-based rather than a stress function-based approach. The problem

under consideration has full dependence on r (the radial coordinate) and θ (the circumfer-

ential coordinate). It should be noted that for the much simpler axisymmetric problem of a

cylindrical shell (only dependence on r) rather than the curved panel configuration, Kardo-

mateas (2001) [44] used Lekhnitskii’s approach to derive a closed form elasticity solution

for the axisymmetric problem of a sandwich cylindrical shell under external pressure, in-

ternal pressure and axial load.

Three dimensional elasto-dynamics of cylinders and cylindrical shells were reviewed

in Soldatos (1994) [45]. Numerous free vibration studies reported in Soldatos (1994) [45]

revealed that solving isotropic material problems often in the scope of well known Bessel

functions. The complexities arise when considering orthotropic material because addi-

tional elastic constants are introduced [46], [47]. A more general solution method namely,

the method of Frobenius series are generally applied; and solving the ordinary differential

equations using the method is very detail. Moreover, the series convergence and com-

putational resource becomes an issue in order to obtain higher frequency range. Mirsky

(1964) [46] derived a closed form solution for axisymmetric of orthotropic cylinder using

a method of Frobenius series with restrictive solution forms. Ding and Chen (1993) [48]

studied the same problem and spherical shells, they solved the problems in a matrix form

and carefully included various expressions of solution; however, no numerical results were

produced. A full three dimensional flexural waves in anisotropic bars (solid cylindrical
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shape) was studied by Ohnabe and Nowinski (1971) [49]; solutions were approximate and

limited to trasnverly isotropic flexural waves. And orthotropic cylinders was studied in

Chou et al (1972) [47]; numerical results were produced for infinitely long solid cylinders.

Armenakas and Reitz (1973) [50] studied free vibration cylindrical hollow shell, various

solution expressions were addressed; and simplified cases, for instance, axisymmtric non-

torsional, torsional results were numerically generated. Most mentioned studies were con-

sidered cylindrical geometry, thus, complete circular ring. Curved panels (incomplete ring

full dependence on r and θ) were studied in Sharma (2001) [51] for transversely isotropic;

potential functions whose derivatives are displacement were applied to help facilitate solu-

tion and obtained as modified Bessel functions. Sandwich curved panels are predominantly

made from orthotropic material; thus, the Frobenius method will be applied to solve the free

vibration problem and various associated solution forms will be derived.

A focus on this thesis is to develop effective tools to analyze curved sandwich beams

and wide panels, in particular, they are subjected to static loads and free vibration analysis.

Firstly, the new Extended high order theory will be developed for curved sandwich panel as

it had been proven in flat sandwich beams and plates [23], [24], and [25]. Next, elasticity

closed form analytical solutions will be derived for curved sandwich panels with simply

supported on both ends; the purpose is to serve as an accuracy benchmark against other

theories. Lastly, the concept of equivalent shear modulus will be incorporated to the First

order shear deformation theory, unifying layerwise properties to an equivalent single layer;

and appropriate shear correction factor derivation for curved sandwich configuration will

be shown. In addition, classical theory was formulated as a self contain; and the high order

theory [37] numerical results will be included to compare.
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CHAPTER 2

CURVED SANDWICH COMPOSITES BEAMS/WIDE PANELS THEORIES

In the following, we consider a curved sandwich panel of a unit width, and consisting of

two thin top/bottom face sheets of thickness ft and fb, respectively, separated by a thick

core of thickness 2c. Both face sheets and core have cylindrical orthotropy materials. The

panel is bounded in the plane by two concentric circles of radii R1 and R2 and two radial

segments forming an arbitrary angle α (figure 2.1). The mean radii for the top face, core

and bottom face are denoted by Rt, Rc and Rb, respectively. In addition, we denote by rtc

= Rc + c, the radius at the top face/core interface and by rbc = Rc − c, the corresponding

radius at the bottom face/core interface. A polar coordinate system (r, θ) is used to describe

the sandwich geometry and kinematics. The polar angle θ is measured from the left end.

Furthermore, local normal-tangential coordinate systems are defined at mid top/bottom face

sheets and mid core to help simplify the formulation; which are (zt, θ),(zc, θ) and (zb, θ).

Radial and circumferential displacements are represented by w and u respectively, and the

superscripts t, b, c denote top face sheet, bottom face sheet, and core.

2.1 Extended High Order Theory for Curved Sandwich Beams/Panels

A new one-dimensional high order sandwich panel theory for curved panels is presented.

The theory accounts for the sandwich core compressibility in the radial direction as well

as the core circumferential rigidity. Two distinct core displacement fields are proposed and

investigated. One is a logarithmic (it includes terms that are linear, inverse, and logarithmic

functions of the radial coordinate). The other is a polynomial (it consists of second and third

order polynomials of the radial coordinate) and it is an extension of the corresponding field

for the flat panel. In both formulations the two thin curved face sheets are assumed to be

perfectly bonded to the core and follow the classical Euler-Bernoulli beam assumptions.
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Figure 2.1: Geometry of a curved sandwich panel

2.1.1 Kinematic descriptions

The two face sheets are assumed to follow the assumptions of the Euler-Bernoulli beam

theory. Therefore, the displacement field for the top face sheet, −ft/2 ≤ zt ≤ ft/2, is:

wt(zt, θ) = wt0(θ) ; ut(zt, θ) = ut0(θ) +

[
ut0(θ)− wt ′0 (θ)

]
zt
Rt

, (2.1a)

and for the bottom face sheet, −fb/2 ≤ zb ≤ fb/2, is:

wb(zb, θ) = wb0(θ) ; ub(zb, θ) = ub0(θ) +

[
ub0(θ)− wb ′0 (θ)

]
zb
Rb

. (2.1b)

The only non-zero corresponding linear strain is:

εt,bθθ = εt,bθθ0 + zt,bκ
t,b
θθ0 , (2.1c)
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where

εt,bθθ0(θ) =
1

Rt,b

[
ut,b ′0 (θ) + wt,b0 (θ)

]
; κt,bθθ0(θ) =

1

Rt,b

[
ut,b ′0 (θ) + wt,b0 (θ)

]
. (2.1d)

The Extended High Order Sandwich Panel Theory allows for core compressibility and

circumferential rigidity effects. Two distinct presumed core displacement fields are pro-

posed.

One is a closed form displacement function involving a logarithmic term. The rational

for adopting this displacement profile is as follows: In general, the core in sandwich struc-

tures has axial rigidity significantly less than that of the faces. Accordingly, if we neglect

the core circumferential stress, i.e. we assume that σθθ = 0, then the elasticity equilibrium

equations become:

∂σrr
∂r

+
1

r

∂τrθ
∂θ

+
σrr
r

= 0 ;
∂τrθ
∂r

+
2τrθ
r

= 0 . (2.2a)

These can be re-written as:

∂(rσrr)

∂r
+
∂τrθ
∂θ

= 0 ;
∂(r2τrθ)

∂r
= 0 . (2.2b)

Integrating the second of (2.2b) for τrθ and then substituting in the first of (2.2b) and inte-

grating for σrr, results in:

τrθ =
f1(θ)

r2
; σrr =

f ′1(θ)

r2
+
f2(θ)

r
. (2.2c)

Using the constitutive and strain-displacement relations gives:

σrr = Ecεrr = Ec
∂w

∂r
=
f ′1(θ)

r2
+
f2(θ)

r
, (2.2d)
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which would integrate to

w(r, θ) =
1

Ec

[
f2(θ) ln r − f ′1(θ)

r
+ f3(θ)

]
. (2.2e)

Similarly, the shear stress relation becomes:

τrθ = Gc

(
1

r

∂w

∂θ
+
∂u

∂r
− u

r

)
= Gcr

[
1

r

∂w

∂θ
+

∂

∂r

(u
r

)]
=
f1(θ)

r2
. (2.2f)

Substituting w from (2.2e) and integrating gives:

u(r, θ) = −f1(θ)
2Gcr

− 1

Ec

[
f ′2(θ)(1 + ln r) + f ′3 −

f ′′1
2r

]
+ rf4(θ) . (2.2g)

Therefore, it can be seen that in this case the displacements would contain terms ln r, r

and 1/r.

Although our high order theory includes the axial rigidity of the core, it is reasonable

to assume, based on the above discussion, that the curvature of the panel would induce

a logarithmic dependence, thus the first displacement profile, termed “logarithmic”, is as

follows:

uc(r, θ) = uc0(θ) + ruc1(θ) +
uc2(θ)

r
+ uc3(θ) ln(r) , (2.3a)

wc(r, θ) = wc0(θ) +
wc1(θ)

r
+ wc2(θ) ln(r) . (2.3b)

Assuming perfect bonding of the two face sheets with the core, displacement continuity

is imposed at the two interfaces resulting in four compatibility equations:

wt(zt = −ft
2
, θ) = wc(r = rtc, θ) ; ut(zt = −ft

2
, θ) = uc(r = rtc, θ) , (2.4a)
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wb(zb = +
fb
2
, θ) = wc(r = rbc, θ) ; ub(zb = +

fb
2
, θ) = uc(r = rbc, θ) . (2.4b)

The four compatibility equations are then solved for the four dependent variables uc2(θ),

uc3(θ), wc1(θ), and wc2(θ). These are obtained in terms of

D = rtc ln rtc − rbc ln rbc , (2.5a)

as follows:

uc2(θ) =
rtcrbc
D

{
ub0(θ) ln rtc−ut0(θ) ln rbc+u

c
0(θ)(ln rbc−ln rtc)+u

c
1(θ)(rtc ln rbc−rbc ln rtc)+

+
(fb/2) ln rtc

rb
[ub0(θ)− wb ′0 (θ)] +

(ft/2) ln rbc
rt

[ut0(θ)− wt ′0 (θ)]

}
, (2.5b)

uc3(θ) =
1

D

[
rtcu

t
0(θ)− rbcub0(θ) + (rbc − rtc)uc0(θ) + (r2bc − r2tc)uc1(θ)−

− (fb/2)rbc
rb

[
ub0(θ)− wb ′0 (θ)

]
− (ft/2)rtc

rt

[
ut0(θ)− wt ′0 (θ)

] ]
, (2.5c)

wc1(θ) =
rtcrbc
D

[
wb0(θ) ln rtc − wt0(θ) ln rbc + wc0(θ) ln

rbc
rtc

]
, (2.5d)

wc2(θ) =
1

D

[
rtcw

t
0(θ)− rbcwb0(θ) + (rbc − rtc)wc0(θ)

]
, (2.5e)

The corresponding linear strains in polar coordinates are:

εcrr(r, θ) =
∂wc(r, θ)

∂r
, (2.6a)

εcθθ(r, θ) =
1

r

∂uc(r, θ)

∂θ
+
wc(r, θ)

r
, (2.6b)
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γcrθ(r, θ) =
∂uc(r, θ)

∂r
+

1

r

∂wc(r, θ)

∂θ
− uc(r, θ)

r
. (2.6c)

The other presumed core displacement field takes the form of a high-order polynomial

and it is a direct extension of the displacement field for sandwich flat panels [23]. The

polynomial core kinematics description is simple when expressed in the local coordinate

(zc, θ) as follows:

uc(zc, θ) =

(
1− z2c

c2

)
uc0(θ) + zc

(
1− z2c

c2

)
uc1(θ) +

[(fb/2) +Rb]z
2
c

2c2Rb

(
1− zc

c

)
ub0(θ)+

+
[(−ft/2) +Rt]z

2
c

2c2Rt

(
1 +

zc
c

)
ut0(θ) +

fbz
2
c

4c2Rb

(
− 1 +

zc
c

)
wb ′0 (θ)+

ftz
2
c

4c2Rt

(
1 +

zc
c

)
wt ′0 (θ) , (2.7a)

wc(zc, θ) =

(
−zc
2c

+
z2c
2c2

)
wb0(θ) +

(
1− z2c

2c2

)
wc0(θ) +

(
zc
2c

+
z2c
2c2

)
wt0(θ) . (2.7b)

The polynomial displacement field in (2.7) has been defined in such a way that satisfies

the four interfacial displacement compatibility conditions, (2.4). Thus, in contrast with

(2.3), the polynomial functions do not contain uc2(θ), uc3(θ), wc1(θ) ,and wc2(θ) that need to

be determined through interfacial compatibilities.

The corresponding linear-strain in the local coordinate (zc, φ) are the same as in eqs

(2.6), with interchanging variable, r = zc +Rc

Thus, the extended high order theory formulation for sandwich curved panels is in terms

of seven dependent variables as a function of θ: two for the top face sheet, wt0, u
t
0, two for

the bottom face sheet, wb0, ub0, and three for the core, wc0, u
c
0,and uc1.
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2.1.2 Constitutive relations

In the following, ct,b,cij denote the orthotropic material stiffness constants where i, j = 1, 3, 5

and 1 ≡ θ, 3 ≡ r, and 5 ≡ rθ. The orthotropic stress-strain relations for the core read:


σcθθ

σcrr

τ crθ

 =


cc11 cc13 0

cc13 cc33 0

0 0 cc55



εcθθ

εcrr

γcrθ

 , (2.8a)

The stiffness matrix coefficient ccij are derived from an inverse of following cylindrical

orthotropic compliance matrix :

A =


1
E1

−ν31
E3

0

−ν13
E1

1
E3

0

0 0 1
G

 , (2.8b)

hence, core stiffness coefficients are :

cc11 =
Ec

1

1− νc13νc31
; cc33 =

Ec
3

1− νc13νc31
; cc13 =

Ec
1ν

c
31

1− νc13νc31
; cc55 = Gc . (2.8c)

For the face sheets, from the kinematic assumptions (2.1), the only non-zero strain is

the εθθ, and as a consequence,

the associated non-zero resulting stress are:

σt,bθθ = ct,b11ε
t,b
θθ ; where , ct,b11 = Et,b

1 (2.8d)
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2.1.3 Principle of Minimum Total Potential Energy

Governing equations and associated boundary conditions are derived from the Principle of

Minimum Total Potential energy:

δ(U + V ) = 0 . (2.9a)

where U is the strain energy of the sandwich panel and V is the external potential due to

the applied loads.

The first variation of the strain energy of the sandwich beam is:

δU =

α∫
0

[ fb/2∫
−fb/2

σbθθδε
b
θθRbdzb+

rtc∫
rbc

(σcrrδε
c
rr+σ

c
θθδε

c
θθ+τ

c
rθδγ

c
rθ)rdr+

ft/2∫
−ft/2

σtθθδε
t
θθRtdzt

]
bdθ .

(2.9b)

Recall that, in this paper, two distinct core displacement fields are presented: one is de-

scribed in polar coordinates (r, θ), the other is described in the local tangential coordinates

(zc, θ). In eqn(2.9b), the core strain-energy integral, denoted by the superscript c, is in the

polar coordinates. If the core strain-energy is expressed in the local tangential coordinates

(zc, θ), the integral can be easily converted to the local coordinate as r = zc+Rc, dr = dzc,

and the integration limits is changed from
rtc∫
rbc

to
c∫
−c

. Also, please notice that due to the small

thickness of the faces, in the first integral in (2.9b) we carry the integration with Rbdzb

instead of (Rb + zb)dzb; same with the last integral in (2.9b).

The sandwich panel is subjected to various loadings (see figure 2.2) on both face sheets,

and the first variation of the external potential is:

δV = −
α∫

0

{
[ntθθ(θ)δu

t
0(θ) + qt(θ)δwt0(θ) +mt(θ)δβt(θ)]Rt

+ [nbθθ(θ)δu
b
0(θ) + qb(θ)δwb0(θ) +mb(θ)δβb(θ)]Rb

}
dθ

−Ntδu
t
0(θe)− Ptδwt0(θe) +Mtδβ

t(θe)−Nbδu
b
0(θe)− Pbδwb0(θe) +Mbδβ

b(θe) . (2.9c)
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Figure 2.2: External forces and moments subject to a curve sandwich panel

where, face sheet rotation is βt,b = ut,b−wt,b′(θ)/Rt,b, and qt,b(θ) is the distributed nor-

mal force (along the radius), nt,b(θ) is the distributed tangential force (along θ) and mt,b(θ)

is the distributed moment on the top and bottom face sheets, respectively. In addition, Pt,b is

the concentrated normal (along the radius) force, Nt,b is the concentrated tangential (along

θ) force and Mt,b is the concentrated moment applied at the end θe on the top and bottom

face sheets, respectively.

In the foregoing equation we denote by θe the boundary points, commonly θe = 0

or θe = α. The procedure below will make this assumption. If concentrated external

forces/moments are applied at a θe between 0 and α, then the boundary conditions can be

treated in separate ranges i.e. 0 ≤ θ ≤ θe and θe ≤ θ ≤ α, with continuity conditions

applied at θ = θe.
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Then the governing equations are obtained by substituting the stress-strain relations,

(2.8), into the strain energy, (2.9b); this way the expressions are in terms of strains. Next,

by substituting the strain-displacement relations, (2.6), into the strain energy(2.9b), the

expression are written in terms of displacements. Once all the terms in the variational

expressions are in terms of displacements, integration by parts is carried in order to obtain

the governing differential equations and the associated boundary conditions. As a result,

we obtain seven linear ordinary differential equations in terms of the seven generalized

coordinates: wt0, u
t
0, wb0, u

b
0, wc0, u

c
0 and φc0.

The resulting governing equations for 0 ≤ θ ≤ α and associated boundary conditions

are as follows:

2.1.4 Governing differential equations and associated boundary conditions

Corresponding seven differential equations are as follows:

Top Face Sheet

δwt0 :

[
Ac3+

ct11bft
Rt

+(Aa3−Ab7+Ac9)
∂2

∂θ2
+(Aa9+

ct11bf
3
t

12R3
t

)
∂4

∂θ4

]
wt0+

[
Ac1+(Aa1−Ab5+Ac8)

∂2

∂φ2
+Aa8

∂4

∂θ4

]
wb0

+

[
Ac2 + (Aa2 − Ab6)

∂2

∂θ2

]
wc0 +

[
(Ac6 − Ab3 +

ct11bdt
Rt

)
∂

∂θ
+ (Aa6 +

ct11bd
3
t

12R3
t

)
∂3

∂θ3

]
ut0

+

[
(Ac4−Ab1)

∂

∂θ
+Aa4

∂3

∂θ3

]
ub0+

[
(Ac5−Ab2)

∂

∂θ
+Aa5

∂3

∂θ3

]
uc0+

[
(Ac7−Ab4)

∂

∂θ
+Aa7

∂3

∂θ3

]
uc1

= Rtqt +
∂

∂θ
mt , (2.10a)

δut0 :

[
(Dc

7 −Db
3 −

ct11bdt
Rt

)
∂

∂θ
+ (

ct11bd
3
t

12R3
t

−Db
9)
∂3

∂θ3

]
wt0 +

[
(Dc

5 −Db
1)
∂

∂θ
−Db

8

∂3

∂θ3

]
wb0

+ (Dc
6 −Db

2)
∂

∂θ
wc0 +

[
Dc

3 − (Db
6 +

ct11bdt
Rt

+
ct11bd

3
t

12R3
t

)
∂2

∂θ2

]
ut0
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+ (Dc
1 −Db

4

∂2

∂θ2
)ub0 + (Dc

2 −Db
5

∂2

∂θ2
)uc0 + (Dc

4 −Db
7

∂2

∂θ2
)uc1 = Rtn

t
θθ +mt . (2.10b)

Bottom Face Sheet

δwb0 :

[
Bc

3+(Ba
3−Bb

7+B
c
9)
∂2

∂θ2
+Ba

9

∂4

∂θ4

]
wt0+

[
Bc

1+
cb11bdb
Rb

+(Ba
1−Bb

5+B
c
8)
∂2

∂θ2
+(Ba

8+
cb11bd

3
b

12R3
b

)
∂4

∂θ4

]
wb0

+

[
Bc

2 + (Ba
2 −Bb

6)
∂2

∂θ2

]
wc0 +

[
(Bc

6 −Bb
3)
∂

∂θ
+Ba

6

∂3

∂θ3

]
ut0

+

[
(Bc

4 −Bb
1 +

cb11bdb
Rb

)
∂

∂θ
+ (Ba

4 −
cb11bd

3
b

12R3
b

)
∂3

∂θ3

]
ub0 +

[
(−Bb

2 +Bc
5)
∂

∂θ
+Ba

5

∂3

∂θ3

]
uc0

+

[
(−Bb

4 +Bc
7)
∂

∂θ
+Ba

7

∂3

∂θ3

]
uc1 = −Rbqb −

∂

∂θ
mb , (2.10c)

δub0 :

[
(Ec

7 − Eb
3)
∂

∂θ
− Eb

9

∂3

∂θ3

]
wt0 +

[
(Ec

5 − Eb
1 −

cb11bdb
Rb

)
∂

∂θ
+ (

cb11bd
3
b

12R3
b

− Eb
8)
∂3

∂θ3

]
wb0

+ (Ec
6 − Eb

2)
∂

∂θ
wc0 + (Ec

3 − Eb
6

∂2

∂θ2
)ut0 +

[
Ec

1 − (Eb
4 +

cb11bdb
Rb

+
cb11bd

3
b

12R3
b

)
∂2

∂θ2

]
ub0

+ (Ec
2 − Eb

5

∂2

∂θ2
)uc0 + (Ec

4 − Eb
7

∂2

∂θ2
)uc1 = −Rbnss,b −mb . (2.10d)

Core

δwc0 :

[
Cc

3 + (Cc
9 − Cb

7)
∂2

∂θ2

]
wt0 +

[
Cc

1 + (Cc
8 − Cb

5)
∂2

∂θ2

]
wb0 +

(
Cc

2 − Cb
6

∂2

∂θ2

)
wc0

+ (Cc
6 − Cb

3)
∂

∂θ
ut0 + (Cc

4 − Cb
1)
∂

∂θ
ub0 + (Cc

5 − Cb
2)
∂

∂θ
uc0 + (Cc

7 − Cb
4)
∂

∂θ
uc1 = 0 ,

(2.10e)

δuc0 :
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[
(F c

7 − F b
3 )
∂

∂θ
− F b

9

∂3

∂θ3

]
wt0 +

[
(F c

5 − F b
1 )
∂

∂θ
− F b

8

∂3

∂θ3

]
wb0 + (F c

6 − F b
2 )
∂

∂θ
wc0

+ (F c
3 − F b

6

∂2

∂θ2
)ut0 + (F c

1 − F b
4

∂2

∂θ2
)ub0 + (F c

2 − F b
5

∂2

∂θ2
)uc0 + (F c

4 − F b
7

∂2

∂θ2
)uc1 = 0 ,

(2.10f)

δuc1 :

[
(Gc

7 −Gb
3)
∂

∂θ
−Gb

9

∂3

∂θ3

]
wt0 +

[
(Gc

5 −Gb
1)
∂

∂θ
−Gb

8

∂3

∂θ3

]
wb0 + (Gc

6 −Gb
2)
∂

∂θ
wc0

+ (Gc
3 −Gb

6

∂2

∂θ2
)ut0 + (Gc

1 −Gb
4

∂2

∂θ2
)ub0 + (Gc

2 −Gb
5

∂2

∂θ2
)uc0 + (Gc

4 −Gb
7

∂2

∂θ2
)uc1 = 0 .

(2.10g)

The corresponding boundary conditions are at θ = 0 and θ = α, read as follows (at each

end there are nine boundary conditions, three for each of the two face sheets and three for

the core):

Top Face Sheet

Either δwt0 = 0 or,

[
(Ab7−Aa3)

∂

∂θ
−(Aa9 +

ct11bf
3
t

12R3
t

)
∂3

∂θ3

]
wt0+

[
(Ab5−Aa1)

∂

∂θ
−Aa8

∂3

∂θ3

]
wb0+(Ab6−Aa2)

∂

∂θ
wc0

+

[
Ab3+(

ct11bf
3
t

12R3
t

−Aa6)
∂2

∂θ2

]
ut0+

(
Ab1−Aa4

∂2

∂θ2

)
ub0+

(
Ab2−Aa5

∂2

∂θ2

)
uc0+

(
Ab4−Aa7

∂2

∂θ2

)
uc1

= Pt −mt , (2.11a)

Either δwt ′0 = 0 or,

[
Aa3 + (Aa9 +

ct11bf
3
t

12R3
t

)
∂2

∂θ2

]
wt0 +

(
Aa1 +Aa8

∂2

∂θ2

)
wb0 +Aa2w

c
0 +

[
Aa6

∂

∂θ
− ct11bf

3
t

12R3
t

∂3

∂θ3

]
ut0

+ Aa4
∂

∂θ
ub0 + Aa5

∂

∂θ
uc0 + Aa7

∂

∂θ
uc1 = −Mt

Rt

, (2.11b)
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Either δut0 = 0 or,

[
Db

3 +
ct11bft
Rt

+ (Db
9 −

ct11bf
3
t

12R3
t

)
∂2

∂θ2

]
wt0 +

(
Db

1 +Db
8

∂2

∂θ2

)
wb0 +Db

2w
c
0

+

[
Db

6 +
ct11bf

3
t

12R3
t

+
ct11bft
Rt

]
∂

∂θ
ut0 +Db

4

∂

∂θ
ub0 +Db

5

∂

∂θ
uc0 +Db

7

∂

∂θ
uc1 = Nt +

Mt

Rt

,

(2.11c)

Bottom Face Sheet

Either δwb0 = 0 or,

[
(Bb

7−Ba
3)
∂

∂θ
−Ba

9

∂3

∂θ3

]
wt0+

[
(Bb

5−Ba
1)
∂

∂θ
−(

cb11bf
3
b

12R3
b

+Ba
8)
∂3

∂θ3

]
wb0+(Bb

6−Ba
2)
∂

∂θ
wc0

+

(
Bb

3−Ba
6

∂2

∂θ2

)
ut0+

[
Bb

1+(
cb11bf

3
b

12R3
b

−Ba
4)
∂2

∂θ2

]
ub0+

(
Bb

2−Ba
5

∂2

∂θ2

)
uc0+

(
Bb

4−Ba
7

∂2

∂θ2

)
uc1

= Pt +mb , (2.11d)

Either δwb ′0 = 0 or,

(
Ba

3 +Ba
9

∂2

∂θ2

)
wt0 +

[
Ba

1 + (Ba
8 +

cb11bf
3
b

12R3
b

)
∂2

∂θ2

]
wb0 +Ba

2w
c
0 +Ba

4

∂

∂θ
ut0

+

(
Ba

4

∂

∂θ
− cb11bf

3
b

12R3
b

∂3

∂θ3

)
ub0 +Ba

5

∂

∂θ
uc0 +Ba

7

∂

∂θ
uc1 = −Mb

Rb

, (2.11e)

Either δub0 = 0 or,

(
Eb

3 + Eb
9

∂2

∂θ2

)
wt0 +

(
Eb

1 +
cb11bfb
Rb

+ (Eb
8 −

cb11bf
3
b

12R3
b

)
∂2

∂θ2

)
wb0 + Eb

2w
c
0 + Eb

5

∂

∂θ
ut0(

Eb
4 +

cb11bf
3
b

12R3
b

+
cb11bfb
Rb

)
∂

∂θ
ub0 + Eb

5

∂

∂θ
uc0 + Eb

7

∂

∂θ
uc1 = Nb +

Mb

Rb

, (2.11f)

Core

Either δwc0 = 0 or,
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Cb
7

∂

∂θ
wt0 + Cb

5

∂

∂θ
wb0 + Cb

6

∂

∂θ
wc0 + Cb

3u
c
t + Cb

1u
b
0 + Cb

2u
c
0 + Cb

4u
c
1 = 0 , (2.11g)

Either δuc0 = 0 or,

(
F b
3+F b

9

∂2

∂θ2

)
wt0+

(
F b
1+F b

8

∂2

∂θ2

)
wb0+F

b
2w

c
0+F

b
6

∂

∂θ
ut0+F

b
4

∂

∂θ
ub0+F

b
5

∂

∂θ
uc0+F

b
7

∂

∂θ
uc1 = 0 ,

(2.11h)

Either δuc1 = 0 or,

(
Gb

3+G
b
9

∂2

∂θ2

)
wt0+

(
Gb

1+G
b
8

∂2

∂θ2

)
wb0+G

b
2w

c
0+G

b
6

∂

∂θ
ut0+G

b
4

∂

∂θ
ub0+G

b
5

∂

∂θ
uc0+G

b
7

∂

∂θ
uc1 = 0 ,

(2.11i)

where Aa,b,ci , Ba,b,c
i , Cb,c

i , Db,c
i , Eb,c

i , F b,c
i , Gb,c

i are constants which include both geometric

and material properties and are defined in Appendix A and Appendix B for logarithmic and

polynomial variant, respectively.

The governing equations and boundary conditions shown above are expressed in terms

of displacement functions. Alternatively, logarithmic variant i.e. (2.3), defining axial stress

resultants as following:

N t
ss =

ft/2∫
−ft/2

σtθθbdzt ; N b
ss =

fb/2∫
−fb/2

σbθθbdzb ,

N c
ss =

rtc∫
rbc

σcθθbdr , (2.12a)

and moment stress resultants:

M t
ss =

ft/2∫
−ft/2

σtθθztbdzt ; M b
ss =

fb/2∫
−fb/2

σbθθzbbdzb ,
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M c
ss =

rtc∫
rbc

σcθθrbdr , (2.12b)

and shear stress resultants:

V c
rs =

rtc∫
rbc

τ crθbdr , (2.12c)

lastly, associated high-order stress resultants, these are non physical quantities:

Qc
ss1 =

rtc∫
rbc

1

r
σcθθbdr; Qc

ss2 =

rtc∫
rbc

σcθθ ln rbdr , (2.12d)

Qc
sr1 =

rtc∫
rbc

1

r
τ crθbdr; Qc

sr2 =

rtc∫
rbc

τ crθ ln rbdr , (2.12e)

Qc
rr1 =

rtc∫
rbc

1

r
σcrrbdr; N c

rr1 =

rtc∫
rbc

σcrrbdr . (2.12f)

Using the definition of stress resultants, substituting into the first variation of beam

(2.9b), then performing integration by parts, governing equations and associated boundary

conditions can also be written in stress resultants instead of displacement functions, see

Appendix C. Note that the stress resultants and the corresponding governing equations are

EHSAPT logarithmic version while EHSAPT polynomial version is not shown here.

2.1.5 Solution Procedure

In the following, we outline the solution procedure for a simply supported curved panel

subjected to a distributed load on the top face sheet qt(θ), which can be expressed as a

Fourier series:

qt(θ) =
∞∑
n=1

qn sin(
nπθ

α
) . (2.13a)
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The solution that satisfies the simply supported boundary conditions is:

wt,b,c0 (θ) =
∞∑
n=1

W t,b,c
0n sin(

nπθ

α
) ; ut,b,c0 (θ) =

∞∑
n=1

U t,b,c
0n cos(

nπθ

α
) , (2.13b)

uc1(θ) =
∞∑
n=1

U c
1n cos(

nπθ

α
) . (2.13c)

Substituting the foregoing equations (2.13) into the governing differential equations

(2.10) results for each n in a system of linear algebraic equations, [Kn]{Xn} = {Fn},

where [Kn] is a 7 × 7 stiffness matrix, {Fn} is a 1 × 7 force matrix, and {Xn} is a 1 × 7

unknown displacement matrix, namely: {W t
0,n,W

b
0,n,W

c
0,n, U

t
0,n, U

b
0,n, U

c
0,n, U

c
1,n}. Each

individual n linear algebraic equations system can be easily solved obtaining {Xn}, then

the analytical solution is obtained from the series (2.13b,2.13c). In equations (2.13),
∞∑
n=1

is replaced by
N∑
n=1

where N is the total number of terms included in the Fourier series

equation (2.13a) and corresponding solutions equations (2.13b,2.13c); the no of terms, N ,

is determined from a study of the series convergence.

2.2 Elasticity Solution for Curved Sandwich Beams/Panels

The linear elasticity problem formulation and solution for a generally asymmetric sandwich

curved beam/panel consisting of orthotropic core and face sheets, which is subjected to a

top face distributed transverse loading is presented. The displacement approach is used

and the panel is assumed to be simply supported at the ends. Closed form solutions for the

displacements and stresses are derived.

q(θ) = q0 sin kθ ; k =
nπ

α
. (2.14)

We denote by ct,b,cij the stiffness constants in each layer, where the superscript t is for
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the top face, b is for the bottom face, and c is for the core. In the following, we outline the

derivation within each layer and thus, for convenience, we drop the superscript.

Both face sheets and the core are assumed to be orthotropic and the constitutive relations

are:


σθθ

σrr

τrθ

 =


c11 c13 0

c13 c33 0

0 0 c55



εθθ

εrr

γrθ

 , (2.15)

Similar to previous section, stiffness coefficients are derived from the inverse of com-

pliance matrix (2.8b), they are the same as equation (2.8c) but valid for all t, b, c.

The three components of strain are expressed in terms of w and u, the two components

of the displacement field (radial and circumferential, respectively):

εθθ =
1

r

∂u

∂θ
+
w

r
; εrr =

∂w

∂r
; γrθ =

1

r

∂w

∂θ
+
∂u

∂r
− u

r
. (2.16)

The two equilibrium equations, to be satisfied, are as follows:

∂σrr
∂r

+
1

r

∂τrθ
∂θ

+
σrr − σθθ

r
= 0 , (2.17a)

1

r

∂σθθ
∂θ

+
∂τrθ
∂r

+
2τrθ
r

= 0 . (2.17b)

We are seeking displacements in the form:

w = f(r) sin kθ , (2.18a)

u = g(r) cos kθ . (2.18b)

By using (2.15), (2.16), and (2.18) and substituting into (2.17), the following two ordinary
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differential equations in r are obtained:

c33f
′′ + c33

f ′

r
− (c11 + c55k

2)
f

r2
− (c13 + c55)k

g′

r
+ (c11 + c55)k

g

r2
= 0 , (2.19a)

c55g
′′ + c55

g′

r
− (c55 + c11k

2)
g

r2
+ (c13 + c55)k

f ′

r
+ (c11 + c55)k

f

r2
= 0 . (2.19b)

These are, indeed, two set of Cauchy-Euler equation where the assumed trial solution are:

f(r) = Arλ ; g(r) = Brλ , (2.20)

the system (2.19) results in the following system of homogeneous algebraic equations

A
(
c33λ

2 − c55k2 − c11
)

+Bk [c11 + c55 − λ(c13 + c55)] = 0 , (2.21a)

Ak [c11 + c55 + λ(c13 + c55)] +B
[
c55(λ

2 − 1)− c11k2
]

= 0 . (2.21b)

Thus, λ is determined by setting the determinant of the coefficients of (2.21) to zero.

This results in the fourth order polynomial characteristic equation:

c33c55λ
4 +
[
k2(c213 + 2c13c55 − c33c11)− c55(c33 + c11)

]
λ2 +c11c55(k

2−1)2 = 0 . (2.22)

Setting,

µ = λ2 , (2.23a)
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results in a quadratic equation, which can be solved in closed form, i.e.,

aµ2 + bµ+ c = 0 , (2.23b)

where

a = c33c55 ; b = k2(c213 + 2c13c55 − c33c11)− c55(c33 + c11) , (2.23c)

c = c11c55(k
2 − 1)2 . (2.23d)

In general, the two roots µ1,2 in (2.23b) are distinct; then, λ1,2,3,4 are distinct as well.

And the displacement field in each layer j, j = t, c, b is in the form:

for b2 − 4ac 6= 0

w(j) = sin kθ
∑

i=1,2,3,4

Aijr
λij , (2.24a)

u(j) = cos kθ
∑

i=1,2,3,4

Bijr
λij . (2.24b)

In this, most common case, these 8 unknowns are the Aij , Bij , i = 1, 2, 3, 4. There

are three layers, the top face, the core, and the bottom face, j = t, c, b for a total of 24

unknowns. These unknowns are not all independent, though. Of the 24 constants, only

12 are independent. By substituting into the equilibrium equations, the following relations

exist:

Bij = −Aijfij ; i = 1, 2, 3, 4 ; j = t, c, b (2.25a)

where

fij =

[
c
(j)
33 λ

2
ij − c

(j)
55 k

2 − c(j)11

]
k
[
c
(j)
11 + c

(j)
55 − λij(c

(j)
13 + c

(j)
55 )
] . (2.25b)
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Notice that the λi’s can be real or be in complex conjugate pairs, thus the numerical

calculations have to carried out in complex numbers.

A special case, the two roots in (2.23b) are repeated when the discriminant of the

quadratic equation is zero, i.e., when b2 − 4ac = 0. For an isotropic material layer, such a

case is not possible. For an orthotropic material, however, such repeated roots could exist

for certain combinations of c33, c13, c11, c55, and k. In this case, µ1=µ2=−b/(2a); hence,

λ1 = λ3, and λ2 = λ4, and the corresponding displacement field is:

for b2 − 4ac = 0

w(j) = sin kθ

(∑
i=1,2

Aijr
λij +

∑
i=3,4

Aijr
λij ln r

)
, (2.26a)

u(j) = cos kθ

(∑
i=1,2

Bijr
λij +

∑
i=3,4

Bijr
λij ln r

)
, (2.26b)

where the Bij are in terms of the Aij from (2.25) where the λ1j , λ2j , λ3j = λ1j and

λ4j = λ2j are substituted for each layer j.

Therefore in both cases there are 8 unknowns for each layer j. We outline in the fol-

lowing the solution for the case of distinct roots, i.e. displacement field given by (2.24).

In this, most common, case, these 4 unknowns are the Aij , i = 1, 2, 3, 4. Notice that the

Bij are not independent but are related to the Aij through relations (2.25). There are three

layers, the top face, the core, and the bottom face, j = t, c, b for a total of 12 unknowns.

Then the strains are from (2.16)

εrr = sin kθ
∑

i=1,2,3,4

Aijλijr
λij−1 ; εθθ = sin kθ

∑
i=1,2,3,4

Aij (kfij + 1) rλij−1 , (2.27a)

γrθ = cos kθ
∑

i=1,2,3,4

Aij [k + fij(1− λij)] rλij−1 , (2.27b)
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and the corresponding stresses at each layer j = t, c, b, are from (2.15):

σrr = sin kθ
∑

i=1,2,3,4

Aij

[
c
(j)
33 λij + c

(j)
13 (kfij + 1)

]
rλij−1 , (2.28)

σθθ = sin kθ
∑

i=1,2,3,4

Aij

[
c
(j)
13 λij + c

(j)
11 (kfij + 1)

]
rλij−1 , (2.29)

τrθ = cos kθ
∑

i=1,2,3,4

Aijc
(j)
55 [k + fij(1− λij)] rλij−1 . (2.30)

The 12 constants Aij that are in the stress expressions (2.28)-(2.30) can be found from

the displacement and traction continuity face/core interfaces conditions, the traction-free

lower bounding surface, r = R1, and the traction loading at the upper bounding surface,

r = R2.

There are two traction conditions at the bottom face-sheet/core interface, r = R1 + fb.

σ(c)
rr = σ(b)

rr ; τ
(c)
rθ = τ

(b)
rθ . (2.31a)

There are two displacement continuity conditions at the bottom face-sheet/core inter-

face:

w(c) = w(b) ; u(c) = u(b) . (2.31b)

Similarly, there are two traction conditions at the top face-sheet/core interface, r =

R2 − ft:

σ(c)
rr = σ(t)

rr ; τ
(c)
rθ = τ

(t)
rθ . (2.31c)
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There are two displacement continuity conditions at the top face-sheet/core interface:

w(t) = w(c) ; u(t) = u(c) . (2.31d)

There are two traction-free conditions at the bottom bounding surface, r = R1:

σ(b)
rr = 0 ; τ

(b)
rθ = 0 . (2.31e)

Finally, there are two traction conditions at the top bounding surface, r = R2, that

represent the loading of the top face:

σ(t)
rr = q(θ) ; τ

(t)
rθ = 0 . (2.31f)

Substituting displacement solution form (2.24), corresponding strains (2.27), and stresses

(2.28) into twelve boundary conditions (2.31a)-(2.31f); consequently, sin kθ and cos kθ are

cancelled out in these twelve equations. Results are twelve linear algebraic equations which

can be solved for the twelve unknown constants: Aij , i = 1, 2, 3, 4, j = t, b, c.

2.3 First Order Shear Deformation Theory for Curved Sandwich Beams/Panels

Due to the curvature, the first order shear deformation (FOSD) theory for curved sandwich

panels is not a direct extension of the corresponding one for flat panels and thus, it is

formulated accordingly, and its unique features, such as the reference curve, are discussed.

Three versions of the FOSD theory are formulated: the one based on direct variational

formulation based on the assumed through-thickness displacement field (termed “basic”),

one based on the definition of an equivalent shear modulus for the section (termed “Geq”)

and one based on derivation of a shear correction factor, which is considered in conjunction

with the equivalent shear modulus.
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2.3.1 “Basic Version” Formulation

In the following, the First Order Shear Deformation Theory (FOSD) will be applied to the

sandwich panel configuration. It should be noted the curvature introduces complications,

to be discussed in the following, and therefore, this is not a straightforward application of

the corresponding theory for flat plates. As will be seen in the following, several unique

features exist when it comes to curved panels, among them the fact that the shear strain

is not constant and that the reference line is a function of the curvature. In the Euler

Bernoulli theory, the panel cross-section remains perpendicular to the normal line and its

rotation is given as [u0(θ) − w′0(θ)]/R, where R is the reference curvature, resulting in

zero shear strain. The FOSD theory, also known as the Timoshenko theory, allows for an

independent plane rotation, denoted as ψ(θ), consequently resulting in a non-zero shear

strain and corresponding non-zero shear stress.

The displacement field is given in terms of the radial distance z defined from a radius

R, to be determined,

w(z, θ) = w0(θ) ; u(z, θ) = u0(θ) + zψ(θ) . (2.32)

Since r = R + z, the strains from (2.16) are:

εrr(z, θ) = 0 , (2.33a)

εθθ(z, θ) =
1

R + z
[w0(θ) + u′0(θ) + zψ′(θ)] , (2.33b)

γrθ(z, θ) = ψ(θ) +
1

R + z
[w′0(θ)− u0(θ)− zψ(θ)] . (2.33c)

Notice that unlike flat plates, in which the shear strain in the FOSD is constant through

the thickness, the curvature introduces a shear strain that has a variation with z, see eqn
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(2.33c). The curvature also introduces the z coordinate in the denominator of all strains,

unlike the flat plates case. Thus, the theory needs to be applied with new area integral

definitions.

The corresponding stresses are:

σθθ(z, θ) = cj11εθθ ; τrθ(z, θ) = cj55γrθ; j = t, b, c (2.33d)

where, cj11 = Ej
1 and cj55 = Gj

Governing equations and associated boundary conditions are derived from the Principle

of Minimum Total Potential energy:

δ(U + V ) = 0 . (2.34a)

where U is the strain energy of the sandwich panel and V is the external potential due to

the applied loads.

The first variation of the strain energy of the sandwich beam involves stresses multiplied

by variations of strains and since the radial strain εrr is zero, the radial stress σrr term will

not appear. In the following, we assume unit width. The variation of the internal potential

is:

δU =

α∫
0

∫
A

(σθθδεθθ + τrθδγrθ) (R + z)dAdθ , (2.34b)

and the external potential is:

δV = −
α∫

0

qt(θ)δw0(θ)R2dθ − (Hδu0) |α0 −(Nδw0) |α0 −(Mδψ) |α0 , (2.34c)

where N0,α are the radial, H0,α are the tangential (along θ) forces at the ends θe = 0, α,

respectively, and M0,α are the moments at theses ends.

Next we discuss the reference curve. From the stress eqn (2.33d), the moment at any
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section is:

M =

∫
A

σθθzdA = (u′0 + w0 + zψ′)

∫
A

c11z

R + z
dA . (2.35)

Since in the FOSDT the moment is the derivative of the ψ, the above eqn implies that

the reference curve should be defined not by the static moment, as in flat plates, but by the

the “extensional static moment modified by the radius” [35], i.e., by:

∫
A

ci11z

R + z
dA = 0 . (2.36)

Accordingly, the equation for the moment involves not the moment of inertia, but the

“extensional moment of inertia modified by the radius”, IE1, defined as:

IE1 =

∫
A

ci11z
2

R + z
dA . (2.37)

In this case, by using (2.36) and (2.37), the moment is

M =

(∫
A

c11z
2

R + z
dA

)
ψ′ = IE1ψ

′ , (2.38)

in accordance with the FOSD postulates.

Let’s determine now the reference radius, R, from (2.36). Let’s denote by e the distance

from the mid-plane of the core, thus z = zc−e, in which caseR =Rc+e. Thus,R is defined

at a radial distance e from the mid-curve of the core, given by

e

∫
A

ci11
Rc + zc

dzc =

∫
A

ci11zc
Rc + zc

dzc , (2.39a)

i.e., e is found from:

e

[
ct11 ln

Rc + c+ ft
Rc + c

+ cc11 ln
Rc + c

Rc − c
+ cb11 ln

Rc − c
Rc − c− fb

]
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= ct11

(
ft −Rc ln

Rc + c+ ft
Rc + c

)
+cc11

(
2c−Rc ln

Rc + c

Rc − c

)
+cb11

(
fb −Rc ln

Rc − c
Rc − c− fb

)
.

(2.39b)

The connection can be made for the traditional reference plane definition for flat plates

as follows: The right-hand-side of (2.39b) can be written as

ct11

[
ft −Rc ln

(
1 +

ft
Rc + c

)]
+ cc11

[
2c−Rc ln

(
1 +

2c

Rc − c

)]
+ cb11

[
fb −Rc ln

(
1 +

fb
Rc − c− fb

)]
. (2.40a)

Applying the Taylor series expansion

ln(1 + x) ' x− x2

2
, (2.40b)

to the first term in (2.40a) leads to:

ct11

[
ft −Rc

(
ft

Rc + c
− f 2

t

2(Rc + c)2

)]
= ct11

{
ft − [(Rc + c)− c]

(
ft

Rc + c
− f 2

t

2(Rc + c)2

)}
=

(
c+

ft
2

)
ct11ft
Rc + c

− ct11f
2
t c

2(Rc + c)2
. (2.40c)

Similarly, the second term in (2.40a) leads to:

cc11

[
2c−Rc

(
2c

Rc − c
− (2c)2

2(Rc − c)2

)]
= cc11

{
2c− [(Rc − c) + c]

(
2c

Rc − c
− (2c)2

2(Rc − c)2

)}
= cc11

2c3

(Rc − c)2
. (2.40d)

and the third term leads to:
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cb11

[
fb −Rc

(
fb

Rc − c− fb
− f 2

b

2(Rc − c− fb)2

)]
= cb11

{
fb − [(Rc − c− fb) + (c+ fb)]

(
fb

Rc − c− fb
− f 2

b

2(Rc − c− fb)2

)}
= −

(
c+

fb
2

)
cb11fb

Rc − c− fb
+

cb11f
2
b (c+ fb)

2(Rc − c− fb)2
. (2.40e)

Ignoring the higher order terms, the right-hand-side of eqn (2.39b) becomes

ct11

(
c+

ft
2

)
ft

Rc + c
− cb11

(
c+

fb
2

)
fb

Rc − c− fb
. (2.40f)

Applying the Taylor series expansion to the left-hand-side of (2.39b) and ignoring

higher order terms would lead to:

e

[
ct11

ft
Rc + c

+ cc11
(2c)

Rc − c
+ cb11

fb
Rc − c− fb

]
. (2.40g)

Thus, from (2.40g) and (2.40f), if we further assume that ft, c, fb are all << Rc, the

definition for e would be the same as in the flat plate case [17]. Moreover, under these

assumptions, for symmetric construction, e = 0.

For the sandwich construction in figure 2.1, the “extensional moment of inertia modified

by the radius”, IE1, defined in eqn (2.37), is found to be:

IE1 = ct11

[
ft

(
R− e+ c+

ft
2

)
− 2Rft +R2 ln

R− e+ c+ ft
R− e+ c

]
− cc11

[
2c(R + e)−R2 ln

R− e+ c

R− e− c

]
+ cb11

[
fb

(
R− e− c− fb

2

)
− 2Rfb +R2 ln

R− e− c
R− e− c− fb

]
. (2.41a)

We also define
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the “extensional area modified by the radius”, AE1, defined as:

AE1 =

∫
A

ci11
R + z

dA = ct11 ln
R− e+ c+ ft
R− e+ c

+ cc11 ln
R− e+ c

R− e− c
+ cb11 ln

R− e− c
R− e− c− fb

,

(2.41b)

In performing the integration (2.34b), we also need the following area quantities asso-

ciated with shear:

the “shear area”, AG0,

AG0 =

∫
A

ci55dA = ct55ft + cc55(2c) + cb55fb , (2.42a)

the “shear static moment”, SG0,

SG0 =

∫
A

ci55zdA = ct55ft

(
c− e+

ft
2

)
− cc552ce− cb55fb

(
c+ e+

fb
2

)
. (2.42b)

Furthermore, due to the curvature, additional quantities are needed as follows:

the “shear area modified by the radius”, AG1

AG1 =

∫
A

ci55
R + z

dA = ct55 ln
R2

R− e+ c
+ cc55 ln

R− e+ c

R− e− c
+ cb55 ln

R− e− c
R1

, (2.42c)

the “shear static moment modified by the radius”, SG1,

SG1 =

∫
A

ci55z

R + z
dA = ct55

(
ft −R ln

R− e+ c+ ft
R− e+ c

)
+ cc55

(
2c−R ln

R− e+ c

R− e− c

)
+ cb55

(
fb −R ln

R− e− c
R− e− c− fb

)
, (2.42d)

and

the “shear moment of inertia modified by the radius”, IG1

IG1 =

∫
A

ci55z
2

R + z
dA = ct55

[
ft

(
R− e+ c+

ft
2

)
− 2Rft +R2 ln

R− e+ c+ ft
R− e+ c

]
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− cc55
[
2c(R + e)−R2 ln

R− e+ c

R− e− c

]
+ cb55

[
fb

(
R− e− c− fb

2

)
− 2Rfb +R2 ln

R− e− c
R− e− c− fb

]
, (2.42e)

Performing the integrations in (2.34b) results in the following three governing equations

for the FOSDT (for 0 ≤ θ ≤ α):

δw0 :

−[AG1(w0,θ − u0) + (AG0 − SG1)ψ],θ + AE1(w0 + u0,θ) = R2qt , (2.43a)

δu0 :

−[AE1(w0 + u0,θ)],θ − AG1(w0,θ − u0) + (SG1 − AG0)ψ = 0 , (2.43b)

and

δψ :

−(IE1ψ,θ),θ + (AG0R + IG1 − SG0)ψ + (AG0 − SG1)(w0,θ − u0) = 0 , (2.43c)

Associated boundary conditions (three at each end, θe = 0, α) for the FOSDT are;

Either δw0 = 0 or,

AG1 (w0,θ − u0) + (AG0 − SG1)ψ = Ne , (2.44a)

Either δu0 = 0 or,

AE1 (u0,θ + w0) = He , (2.44b)

and
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Either δψ = 0 or,

IE1ψ,θ = Me , (2.44c)

For a curved beam/panel is simply-supported, as shown in figure 2.1, and is loaded by

a sinusoidal distributed load of the form:

q(θ) = q0 sin kθ ; k =
nπ

α
, (2.45)

analytical solutions are sought in the form:

w0(θ) = W0 sin kθ ; u0(θ) = U0 cos kθ ; ψ(θ) = Ψ cos kθ ; k =
nπ

α
. (2.46)

The displacement field (2.46) satisfies the simply-supported boundary conditions, (w0

being zero at the ends and no moment, i.e., ψ,θ=0 at the ends).

Assuming constant properties (i.e., independent of θ) and substituting into the govern-

ing equations (2.43) leads to:

(AG1k
2 + AE1)W0 − (AG1 + AE1)kU0 + (AG0 − SG1)kΨ = R2q0 ,

(2.47a)

−(AE1 + AG1)kW0 + (AE1k
2 + AG1)U0 + (SG1 − AG0)Ψ = 0 , (2.47b)

(AG0 − SG1)kW0 − (AG0 − SG1)U0 + (IE1k
2 + AG0R + IG1 − SG0)Ψ = 0 . (2.47c)

This system of three algebraic equations can be solved for W0, U0, and Ψ.
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2.3.2 First Order Shear Deformation Theory with an Equivalent Shear Modulus

It is well known that, when it comes to the extensional properties, i.e. the c11, the different

layers in a multi-layered section can be considered as “springs in series” but when it comes

to the shear properties, i.e. the c55, the layers should be considered as “springs in parallel”

[52]. In this case, an equivalent shear modulus, c̄55 for the entire section is defined as

h

c̄55
=

ft
ct55

+
2c

cc55
+
fb
cb55

. (2.48a)

Instead of (2.33d), where the shear stress is defined in the faces and core with the

different shear modulus of the corresponding layer, now the shear stress over the entire

section will be based on a single shear modulus, the c̄55:

τrθ(z, θ) = c̄55γrθ . (2.48b)

The variational principle will lead again to the system of governing differential equa-

tions (2.43) and associated boundary conditions (2.44) but in this case, the shear area prop-

erties will be defined as: the “shear area”, AG0,

AG0 = c̄55

∫
A

dA = c̄55h , (2.49a)

the “shear static moment”, SG0,

SG0 = c̄55

∫
A

zdA = c̄55

∫ −e+c+ft
−e−c−fb

zdz = c̄55 (ft − fb − 2e)

(
c+

ft + fb
2

)
, (2.49b)

the “shear area modified by the radius”, AG1

AG1 = c̄55

∫
A

dA

R + z
= c̄55 ln

R− e+ c+ ft
R− e− c− fb

, (2.49c)
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the “shear static moment modified by the radius”, SG1,

SG1 = c̄55

∫
A

z

R + z
dA = c̄55

(
h−R ln

R− e+ c+ ft
R− e− c− fb

)
, (2.49d)

and

the “shear moment of inertia modified by the radius”, IG1

IG1 = c̄55

∫
A

z2

R + z
dA = c̄55

[
h

(
R− e+

ft − fb
2

)
− 2Rh+R2 ln

R− e+ c+ ft
R− e− c− fb

]
,

(2.49e)

The extensional area properties can stay the same as before, i.e., the reference curve

will again be defined from (2.39b), the “extensional area modified by the radius”, AE1, will

be as in (2.41b) and the “extensional moment of inertia modified by the radius”, IE1, will

be as in (2.41a).

In this version, the differential equations of the FOSD (2.43)-(2.47) can be applied with

the area properties defined as above (in terms of c̄55).

Shear stiffness in thin face sheets of sandwich beam are generally neglected, while thick

sandwich core is solely responsible for the shear deformations [53]. The equivalent shear

modulus, Geq ,(2.48a), also reflects shear stiffness face sheets exclusion; because ft,b << c

and ct,b55 >> cc55, ft,b/c
t,b
55 are very small and can be neglected i.e.

c̄55 ≈ cc55 (2.50)

Adopting the assumption that the shear stiffness contribution solely depends on sandwich

core, this could implies the Geq is redundant. Its merits; however, are general and extended

beyond the scope of sandwich configuration.

Considering a generic 3 layered isotropic curved beam of equivalent thickness of 10

mm (total thickness h = 30mm). The beam has an angular span of α = 0.3178 rad; and it

38



Table 2.1: Comparisons of radial displacement ,w, at θ = α/2 with elasticity in percentage
difference

Classical “Basic version” Geq βGeq

r = Ro 16.41% 13.03 % 6.89 % 0.23 %
r = (Ro +Ri)/2 16.72% 13.32 % 7.20 % 0.10 %

r = Ri 16.37% 12.96 % 6.82 % 0.32 %

is bounded by outermost and innermost radii, Ro = 818 mm and Ri = Ro−h, respectively

.The outermost and innermost layer are made of, Eo,i = 61.9 GPa, νo,i = 0.3; while middle

layer, denotes by m, is made of an artificial isotropic whose Em = 1/10Eo,i, νm = νo,i.

The curved beam has simply supported on both ends and subjected to a half sine distributed

load as depicts in figure 2.4.

Table 2.1 shows comparisons of mid-span (maximum, θ = α/2) radial displacement ,w,

at different through thickness locations: top/bottom surface, and mid-thickness. The results

are presented in terms of absolute percentage error comparing against elasticity benchmark

presented in 2.2. The “basic version” FOSD shows a little improvement from classical

theory, while, the equivalent shear modulus FOSD shows a significant improvement. In-

troducing shear correction factor β, see next section, the deflection is extremely accurate,

below 1% difference from elasticity. Figure 2.3 presents through thickness normalized

shear stress distribution at θ = 0. The “basics version” shear distribution shows misleading

results as in middle layer; it predicts very little stress when elasticity indicates maximum.

However, the “equivalent shear modulus”, Geq unifies the cross sectional properties and

predicts acceptable shear stress.

2.3.3 Shear Correction Factor with Geq

The shear correction factor is a concept that attempts to correct the accuracy of the FOSD

theory. It is based on employing equilibrium to calculate the shear stresses and the corre-

sponding shear resultant and them comparing with the one from the FOSD theory.
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Figure 2.3: Through thickness shear stress distributions ,τrθ, at θ = 0

The two equilibrium equations in polar coordinates are:

∂σrr
∂r

+
1

r

∂τrθ
∂θ

+
σrr − σθθ

r
= 0 , (2.51a)

1

r

∂σθθ
∂θ

+
∂τrθ
∂r

+
2τrθ
r

= 0 . (2.51b)

The second equilibrium equation (2.51b), together with the assumed from the FOSD

theory normal stress σθθ from (2.33b) and (2.33d) and substituting z = r −R gives:

1

r2
∂

∂r
(r2τrθ) = −c11

r2
[w0,θ + u0,θθ + (r −R)ψ,θθ] , (2.52a)

from which we obtain the shear stress in the face sheets and core in terms of a function
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Ck(θ), k = t, c, b:

τ
(k)
rθ = −c

k
11

r
(w0,θ + u0,θθ −Rψ,θθ)−

ck11
2
ψ,θθ +

Ck(θ)

r2
; k = t, b, c (2.52b)

Imposing the outer boundary condition τ (t)rθ = 0 at r = R2 gives:

Ct(θ) = ct11R2

[
w0,θ + u0,θθ +

(
R2

2
−R

)
ψ,θθ

]
. (2.52c)

Next, imposing the inner boundary condition τ (b)rθ = 0 at r = R1, gives:

Cb(θ) = cb11R1

[
w0,θ + u0,θθ +

(
R1

2
−R

)
ψ,θθ

]
. (2.52d)

The traction conditions at the bottom face/core interface, τ (b)rθ = τ
(c)
rθ at r = R1 + fb

gives:

Cc(θ) = Cb(θ) +
(
cc11 − cb11

)
(R1 + fb)

[
w0,θ + u0,θθ +

(
R1 + fb

2
−R

)
ψ,θθ

]
. (2.52e)

whereas the traction condition at the top face/core interface, τ (t)rθ = τ (c)rθ at r = R2 − ft,

gives the relation:

−
[
ct11ft

(
R2 −

ft
2
−R

)
+ cb11fb

(
R1 +

fb
2
−R

)
+ cc112c (R1 + fb + c−R)

]
ψ,θθ

=
[
ct11ft + cb11fb + cc11(2c)

]
(w0,θ + u0,θθ) . (2.52f)

Thus, if we define

D =
ct11ft

(
R2 − ft

2
−R

)
+ cb11fb

(
R1 + fb

2
−R

)
+ cc112c (R1 + fb + c−R)

ct11ft + cb11fb + cc11(2c)
, (2.52g)
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substituting (2.52c) into (2.52b) gives the shear stresses as:

τ trθ = ct11

[
−1

2
+
B

r
+
R2

r2

(
R2

2
−B

)]
ψ,θθ , (2.53a)

τ brθ = cb11

[
−1

2
+
B

r
+
R1

r2

(
R1

2
−B

)]
ψ,θθ , (2.53b)

τ crθ = cc11

[
−1

2
+
B

r
+
cc11(R1 + fb)− cb11fb

cc11r
2

(
R1 +

fb
2
−B

)
− R1(R1 + fb)

2r2

]
ψ,θθ .

(2.53c)

where

B = D +R . (2.53d)

Integrating over the cross section the shear force is:

V =

∫ R1+fb

R1

τ brθdr +

∫ R1+fb+2c

R1+fb

τ crθdr +

∫ R2

R1+fb+2c

τ trθdr = Eψ,θθ , (2.54a)

where

E = cb11

[
−fb

2
+B ln

(
1 +

fb
R1

)
+

(
R1

2
−B

)
fb

R1 + fb

]
+cc11

{
−c+B ln

(
1 +

2c

R1 + fb

)
+

[(
cc11 − cb11

fb
R1 + fb

)(
R1 +

fb
2
−B

)
− cc11

R1

2

]
2c

R1 + fb + 2c

}
+ ct11

[
−ft

2
+B ln

(
1 +

ft
R1 + fb + 2c

)
+

(
R2

2
−B

)
ft

R1 + fb + 2c

]
. (2.54b)

Then we can write the shear stresses in each layer as:

τ krθ =
V

E
ck11

(
−1

2
+
B

r
+
dk
r2

)
; k = b, c, t (2.55a)
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where

dt = R2

(
R2

2
−B

)
; db = R1

(
R1

2
−B

)
, (2.55b)

dc =

[
cc11(R1 + fb)− cb11fb

]
cc11

(
R1 +

fb
2
−B

)
− R1(R1 + fb)

2
. (2.55c)

The corresponding strain energy is

UEQ =

∫ R1+fb

R1

τ b2rθ
2cb55

dr +

∫ R1+fb+2c

R1+fb

τ c2rθ
2cc55

dr +

∫ R2

R2−ft

τ t2rθ
2ct55

dr . (2.55d)

Let us define the radius at the inner and outer boundaries of each layer by rki and rko

and the radius at the mid-surface of each layer by rkm; also the thickness of each layer by

hk where k = b, c, t. In particular, for the bottom face,

rbi = R1 ; rbo = R1 + fb ; rbm = R1 +
fb
2

; hb = fb . (2.56a)

For the core

rci = R1 + fb ; rco = R1 + fb + 2c ; rcm = R1 + fb + c ; hc = 2c , (2.56b)

and for the top face

rti = R2 − ft ; rto = R2 ; rtm = R2 −
ft
2

; ht = ft . (2.56c)

Then

UEQ =
V 2

2E2

∑
k=b,c,t

ck211
ck55

[
hk
4
−B ln

(
1 +

hk
rki

)
+

(B2 − dk)hk
rkirko

+ 2Bdk
hkrkm
r2kir

2
ko

+ d2k
(r3ko − r3ki)

3r3kir
3
ko

]
. (2.57)
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Now the FOSD shear stress from (2.33c) and (2.48b) is

τrθ =
c̄55
r

(w0,θ − u0 +Rψ) . (2.58a)

Integrating over the cross-section gives

V =

∫
τrθdr = c̄55 (w0,θ − u0 +Rψ) ln

R2

R1

. (2.58b)

Thus the shear force from the FOSDT can be expressed as

τrθ =
V

r ln(R2/R1)
, (2.58c)

and the corresponding energy is

UFOSD =

∫ R2

R1

τ 2rθ
2c̄55

dr =
V 2

2c̄55[ln(R2/R1)]2

(
1

R1

− 1

R2

)
, (2.59)

resulting in a shear correction factor β = UFOSD/UEQ:

1

β
=
c̄55[ln(R2/R1)]

2R1R2

E2(R2 −R1)

∑
k=b,c,t

ck211
ck55

[
hk
4
−B ln

(
1 +

hk
rki

)
+

(B2 − dk)hk
rkirko

+ 2Bdk
hkrkm
r2kir

2
ko

+ d2k
(r3ko − r3ki)

3r3kir
3
ko

]
. (2.60)

Thus, the differential equations of the FOSD (2.43)-(2.47) can be applied with the area

properties defined as in the Geq version (previous section) and with βc̄55 in place of c̄55.

A connection of curved beam shear correction factor ,β, and Timoshenko beam theory

(flat) which, normally, the shear correction factor is κ = 5/6 for a rectangular cross section

[53].

Considering a single material curved beam whose thickness is h and bounded by outer

radius R2 and inner radius R1 , similar to 2.1. Using (2.52) and two traction free surface
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conditions: τrθ = 0 at r = R1 and r = R2, gives

τrθ = −c11(r −R2)(r −R1)ψθθ
2r2

. (2.61a)

Integrating over the cross section to get shear force V , then the shear stress can be

written in term of shear force as

τrθ =
(r −R1)(r −R2)V

r2(2R2 − 2R1 + (R1 +R2) ln R1

R2
)
. (2.61b)

Corresponding strain energy is

UEQ =

∫ R2

R1

τ 2rθ
2c55

dr =
V 2

2c55

(
2(R2 −R1) + (R1 +R2) ln R1

R2

)2A, (2.61c)

where,

A = (R2 −R1)− 2(R1 +R2) ln
R2

R1

+
(
(R1 +R2)

2 + 2R1R2

)( 1

R1

− 1

R2

)
+R1R2(R1 +R2)

(
1

R2
2

− 1

R2
1

)
+
R2

1R
2
2

3

(
1

R3
1

− 1

R3
2

)
. (2.61d)

Now the FOSD shear stress and corresponding strain energy are as previously shown

in (2.58), and (2.59).

The outer radius R2 = R1 + h, substituting the relation into (2.61c), then the shear

correction factor is

β = UFOSD/UEQ =

(
2h+ (h+ 2R1) ln R1

R1+h

)2
AR1(1 + R1

h
) ln2 R1+h

R1

(2.62a)

where,

A =
h3

3R1(R1 + h)
+ 4h− 2(h+ 2R1) ln

R1 + h

R1

. (2.62b)
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Let us define,

α =
h

R1

, (2.62c)

and divide both numerator and denominator of (2.62a) by R2
1 becomes:

β =
(2α− (α + 2) ln(1 + α))2(

α2

3
+ 4(1 + α)− 2(3 + α + 2

α
) ln(1 + α)

)
ln2(1 + α)

. (2.62d)

To make a connection with flat beam, taking limit the inner radius R1 to infinity i.e.

α << 1. Using the Taylor series expansion

ln(1 + α) = α− α2

2
+
α3

3
− α4

4
+
α5

5
+O(α6) , (2.62e)

and substituting into (2.62d), and keeping all terms up to O(α6), resulting in:

β =
α6/36 +O(α7)

α6/30 +O(α7)
= 5/6 , (2.62f)

i.e., the shear correction factor of the Timoshenko beam has been recovered.

2.3.4 Classical Theory Formulation for Curved Sandwich Panels

In the classical theory, the displacement field is in the form:

w(z, θ) = w0(θ) ; u(z, θ) = u0(θ) +
z

R
[u0(θ)− w′0(θ)] . (2.63)

where z is the distance from the reference radius R, as defined in the previous section.

Accordingly, the strains, since r = R + z, are from (2.33):

εθθ(z, θ) =
1

R + z

{
w0(θ) + u′0(θ) +

z

R
[u′0(θ)− w′′0(θ)]

}
. (2.64a)
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εrr(z, θ) = 0 ; γrθ(z, θ) = 0 . (2.64b)

i.e., there is only one non-zero strain, the εθθ.

Governing equations and associated boundary conditions are again derived from the

Principle of Minimum Total Potential energy, eqn (2.34a), where now

δU =

α∫
0

∫
A

σθθδεθθ(R + z)dAdθ , (2.65)

and δV is given by (2.34c).

In this theory we need two additional area quantities: the “extensional area”, AE0,

AE0 =

∫
A

ci11dA = ct11ft + cc11(2c) + cb11fb , (2.66a)

and the “extensional static moment”, SE0,

SE0 =

∫
A

ci11zdA = ct11ft

(
ft
2

+ c− e
)
− 2cc11ce− cb11fb

(
fb
2

+ c+ e

)
, (2.66b)

Performing the integration by parts, results in the following three governing equations

for the classical theory (for 0 ≤ θ ≤ α):

δw0 : (
IE1

R2
w0,θθ −

SE0

R2
u0,θ

)
,θθ

+
AE0

R
u0,θ + AE1w0 = bqt . (2.67a)

δu0 : [(
AE0

R
+
SE0

R2

)
u0,θ +

AE0

R
w0 −

SE0

R2
w0,θθ

]
,θ

= 0 . (2.67b)

Associated boundary conditions (three at each end, θe = 0, α) for the Classical theory

are;
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Either δw0 = 0 or,

−
(
IE1

R2
w0,θθ −

SE0

R2
u0,θ

)
,θ

= Ne , (2.68a)

Either δw0,θ = 0 or,
IE1

R2
w0,θθ −

SE0

R2
u0,θ = Me , (2.68b)

Either δu0 = 0 or,

(
AE0

R
+
SE0

R2

)
u0,θ +

AE0

R
w0 −

SE0

R2
w0,θθ = He , (2.68c)

Again, assuming constant properties and using the form (2.32) for the displacements

w0 and u0 leads to:

(
IE1

R2
k4 + AE1

)
W0 − k

(
SE0

R2
k2 +

AE0

R

)
U0 = R2q0 , (2.69a)

(
SE0

R2
k2 +

AE0

R

)
W0 − k

(
SE0

R2
+
AE0

R

)
U0 = 0 . (2.69b)

from which U0 and W0 can be directly determined.

2.4 Results

Simply supported curved sandwich panels subjected to a half sine distributed load (figure

2.4),

qt(θ) = q0 sin
πθ

α
, (2.70)

are studied.

The solutions from three different theories and their variants in previous chapter are

presented. They are: two versions of the Extended High Order Sandwich Panel The-

ory(EHSAPT) with logarithmic and polynomial core displacement functions, Theory of
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Figure 2.4: Simply supported curved sandwich panels subjected to a half sine distributed
load

Elasticity(ELST), the First Order Shear Deformation Theory (FOSDT) basic variant, equiv-

alent shear modulus variant, and shear correction factor variant, and Classical Theory

(CLSS). In addition, solutions from high order sandwich panel theory HSAPT, which as-

sumes a compressible core [21],[37] are also presented. The Elasticity solution serves as

the benchmark to assess the accuracy of all theories, whereas the First Order Shear Defor-

mation Theory is widely used in the sandwich structures community due to its simplicity.

Solutions correspond to these different theories are then compared for various sandwich

geometries and core materials in order to validate and assess the relative merits of the two

versions of the EHSAPTs and other accuracy of all structural theories.

Various geometries of the sandwich curved beam/panel in figure 2.1 are analyzed. In

particular, we consider a symmetric construction with thin faces of thickness ft,b = 1 mm,

made out of isotropic aluminium (2024-T3) with modulus Et,b = 69.13 GPa and a thick

core of thickness 2c = 25 mm. In addition, the (out-of-plane) width is b = 30 mm.

Cases 1 and 2 consist of a curved beam of angular span α = 3π/4 and a radius of the top

face mid-line Rt = 813 mm. Case 1 has a core made out of the relatively stiffer Balsawood
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(Gurit Balsaflex) with Ec = 5199 MPa, Gc = 206 MPa and and νc = 0.30 whereas case

2 has a core made out of the relatively flexible foam Divinycell H35, with Ec = 40 MPa,

Gc = 12 MPa and νc = 0.30.

Cases 3 of a curved beam of, again, angular span is α = 3π/4 but with a (relatively

small) radius of the top face mid-line Rt = 40.65 mm and a core made out of the soft foam

Divinycell H35 (properties given in the previous paragraph).

Case 4 consists of a curved beam of a relatively small angular span, α = π/8 rad,

and a radius of the top face mid-line Rt = 81.3 mm and a core made out of the soft foam

Divinycell H35 (with Ec = 40 MPa, Gc = 12 MPa and νc = 0.30).

In the following we shall normalize the stresses with |q0|, and the transverse displace-

ment with the quantities that scale the maximum transverse displacement of a flat plate of

length Rtα and bending rigidity EI = 2Etftc
2 under distributed load q0, i.e., the

wnorm =
q0R

4
tα

4

2Etftc2
; w̃(r, θ) =

w(r, θ)

wnorm
, (2.71)

and the circumferential (hoop) displacement with the quantities that scale the shortening

of a flat plate of length Rtα and bending rigidity EI = 2Etftc
2 under distributed load q0,

i.e., the

unorm =
q20R

7
tα

7

[2Etftc2]2
; ũ(r, θ) =

u(r, θ)

unorm
. (2.72)

Radial through-thickness and angular span-wise coordinates are presented in the di-

mensionless quantities:

r̃ =
r −R1

R2 −R1

; θ̃ =
θ

α
, (2.73)

i.e., the sandwich top panel surface is at r̃ = 1 and bottom surface is at r̃ = 0.

Figures 2.5 and 2.6 show the radial (transverse) normal stress, σrr, through the thick-

ness and at mid-span (θ = α/2), from the elasticity, logarithmic EHSAPT, polynomial

50



Figure 2.5: The radial normal stress distribution, σrr for case 1

EHSAPT, and the HSAPT, for case 1 and 2. Notice that neither the FOSD nor the clas-

sical theory can provide σrr, because they are incompressible theories. However, the two

EHSAPT variants and HSAPT, which are compressible core theory, can provide the radial

normal stress. Figure 2.5, stiff core case 1, show clearly that the logarithmic EHSAPT

(2.3) has a superior accuracy over the polynomial EHSAPT (2.7) and HSAPT. When the

core is very flexible, figure 2.6, the difference between the two EHSPATs and HSAPT is

negligible (case 2). Accurate determination of the radial stresses is needed because signifi-

cant compressive stresses can develop within the core, for example, under impact loading,

which can result in core crushing failure modes [16]-[20]. It should also be noted that the

core σrr is significant in value and, in both cases, the logarithmic EHSAPT can capture the

stress very as predicted by elasticity .

Figures 2.7 and 2.8 show the shear stress distribution, τrθ, through the thickness and
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Figure 2.6: The radial normal stress distribution, σrr for case 2
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Figure 2.7: The shear stress distribution, τrθ for case 1

at θ = 0, from elasticity, the FOSD theory with an equivalent shear modulus, and the

high order HSAPT for cases 1 (stiffer balsa wood core) and 2 (softer Divinycell H35),

respectively. First thing can be noticed the distribution is that highly nonlinear for the

stiffer core case but rather flat for the softer core; moreover, neither the FOSD theory nor the

HSPAT can capture the nonlinear profile in the stiffer core case. Secondly, Both EHSAPT

variants accurately capture the shear distribution for both cases; while, the prediction by

either the equivalent shear modulus FOSD theory or the HSPAT is, in general, of the same

order of magnitude as elasticity and the “basic” FOSD theory largely underestimate shear

stress. Also, notice that the classical theory would predict no shear.

The hoop normal stress, σθθ is of most interest in the face sheets where it is of signifi-

cant magnitude. Figure 2.9 show the distribution of the σθθ at mid-span (θ = α/2) in the

bottom and top faces, respectively for case 3 (soft core). Both the FOSD theory and the
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Figure 2.8: The shear stress distribution, τrθ for case 2
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Figure 2.9: The circumferential (hoop) stress distribution for bottom face (left) and top face
(right), σss for case 3

Classical theory are rather flat unlike the elasticity which shows a line with a rather signif-

icant gradient; thus, the FOSD theory and the Classical theory cannot capture the extreme

values of the σθθ and this can have significant implications for the prediction of failure.

The two EHSAPT are; however, very close to the elasticity, and, shows a gradient similar

to elasticity.

Figures 2.10 and 2.11 present the transverse displacement distribution (spanwise and

through the thickness, respectively) for case 4. From Figures 2.10, it can be seen that both

the EHSAPT-logarithmic and the EHSAPT-polynomial are in very close agreement with

the elasticity while HSAPT slightly overestimate. The equivalent shear modulus FOSD

theory underestimate the displacement; however, with shear correction factor, the theory

shows an improvement in accuracy. The basic FOSD and classical theory seems to be very

inaccurate and they are not in the same order of magnitude. From figure 2.11, it can be

seen that the through-thickness profile of the transverse displacement is nonlinear and the

EHSAPT is capable of accurately capturing this nonlinear profile, unlike the FOSD theory

or the Classical theory.

Finally, figure 2.12 and 2.13 present the circumferencial (hoop) displacement distribu-

tion (spanwise and through the thickness, respectively) for case 4. Again both versions
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Figure 2.10: The top face transverse displacement distribution through the span of the
curved panel, w for case 4
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Figure 2.11: The transverse displacement distribution through the thickness of the curved
panel, w, at θ = α/2, for case 4
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Figure 2.12: The top face circumferential displacement distribution through the span of the
curved panel, u, for case 4

of EHSAPT precisely predict circumferential displacement and its through thickness non-

linear profile. And similar other conclusions can be drawn except for through thickness

displacement of HSAPT in figure 2.13, which excessively estimate the displacement pro-

file while the equivalent shear modulus FOSD with shear correction factor seems to better

predict the average values.

The results shown above, demonstrate clearly excellent performance of EHSAPTs, in

particular, logarithmic-EHSAPT; and, the limitations of the FOSD theory, which can be

significant, even with shear correction factors included. In this regard, advanced higher

order compressible theories, i.e. EHSAPT can make up for the shortcomings of the FOSD

theory.
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Figure 2.13: The transverse displacement distribution through the thickness of the curved
panel, u, at θ = 0, for case 4
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2.5 Conclusion

In summary, simply support curved sandwich panels subjected to a distributed load act-

ing on the top face are studied and closed form analytical solution and its procedure are

outlined for following theories. Firstly, two variants of the Extended High order Sand-

wich Panel Theory (EHSAPT) are formulated. One is based on a logarithmic displacement

field for the core, while the other is based on polynomial functions of the thickness-wise

coordinate. The system of governing differential equations and the associated boundary

conditions are derived via the Principle of Minimum Total Potential Energy. Secondly,

the displacement approach for Theory of Elasticity was used to derive a closed-form elas-

ticity solution for a simply-supported curved sandwich beam/panel with orthotropic faces

and orthotropic core. Certain cases of the orthotropic material constants result in differ-

ent mathematical functions describing the displacement and stresses, which can include

logarithmic functions or combinations or powers of the radial coordinate and logarithmic

functions. Thirdly, three variants of the first order shear deformation (FOSD) theory for

curved sandwich panels are formulated. The three variants are: the “basic”, in which the

theory is derived by direct application of the variational principles on the assumed displace-

ment field (similar to the derivation of the Timoshenko beam theory); the “Geq”, in which

an equivalent shear modulus for the section is defined and the “shear correction factor”, in

which a shear correction factor is derived and used on the “Geq” version. Notice that due to

the curvature, the FOSD theory for curved sandwich panels is not a direct extension of the

corresponding one for flat panels and has several unique features, such as a reference curve

which needs to be defined accordingly. The classical theory for curved panels (which does

not include transverse shear) is also derived.

Results from various geometries and core materials are compared to Theory of Elastic-

ity which regard as an accuracy benchmark. Elasticity results give radial the normal stress,

σrr, which cannot be predicted by the incompressible core theories, the shear stress, τrθ,
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which has a highly nonlinear profile and is not constant for moderately stiff cores, as well

as the hoop normal stress, σθθ in the faces; and circumferential and transverse displacement

which may have a nonlinear distribution through the thickness. Both EHSAPTs capture all

these three stress components: σrr, τrθ, σθθ in sandwich core and show exceptional accu-

racy (unlike other theories) but the logarithmic EHSAPT has an edge over the polynomial

EHSAPT especially with regard to the radial normal stresses σrr and for configurations

involving stiffer cores. HSAPT ([21],[37]) also show certain level of accuracy but not as

good as EHSAPT. On the other hand, FOSD can not predict the, rather significant, radial

normal stress, σrr (since they are all incompressible theories) and the FOSD theory ab-

solutely needs to be used with an equivalent shear modulus, Geq, as the “basic” version

offers little, if any, improvement over the classical theory. Further improved accuracy can

be achieved by embedding a shear correction factor.
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CHAPTER 3

FREE VIBRATION ANALYSIS OF CURVED SANDWICH COMPOSITES

BEAM/WIDE PANEL

In this chapter, we consider the same curved sandwich configuration as previously seen in

chapter 2, figure 2.1. Free vibration analysis of the Extended High order Sandwich The-

ory(EHSAPT), the First Order Shear Theory (FOSD), and Classical Theory are formulated

using Hamilton Principle; and dynamic Elasticity solution for simply supported boundary

conditions are derived using the method of Frobenius series.

3.1 Extended High order Sandwich Panel Theory dynamic formulation

In the following, free vibration dynamic formulations will be presented with logarithmic

(2.3) and polynomial core displacements (2.7) under the same assumptions as presented in

section 2.1 static EHSAPT formulation. Kinematic descriptions of top/bottom face sheets

and core, strain displacement relationships and constitutive laws are also derived with the

same procedure (2.1)-(2.8) with addition independent variable t i.e. the dynamic seven

dependent variables are a function of (θ, t): two for the top face sheet; wt0(θ, t), ut0(θ, t),

two for the bottom face sheet; wb0(θ, t), ub0(θ, t), and three for the core; wc0(θ, t), uc0(θ, t),

and uc1(θ, t).

3.1.1 Governing differential equations and associated boundary conditions

Governing equations and associated boundary conditions are derived from Hamilton’s Prin-

ciple, the principle states a dynamic equilibrium.

δ

∫
t

(K − U + V ) dt = 0 . (3.1a)
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where K is kinetic energy, U is strain energy of the sandwich panel, and V is the external

potential due to applied loads which is none, V = 0, because the problem is free vibration

analysis.

The first variation of the kinetic energy is:

δK =

α∫
0

[ fb/2∫
−fb/2

ρb
(
ẇbδẇb + u̇bδu̇b

)
Rbdzb

+

rtc∫
rbc

ρc (ẇcδẇc + u̇cδu̇c) rdr +

ft/2∫
−ft/2

ρt
(
ẇtδẇt + u̇tδu̇t

)
Rtdzt

]
bdθ , (3.1b)

where ˙and¨denote d/dt and d2/dt2 respectively.

The first variation of the strain energy was written in (2.9b).

Substituting (3.1b) and (2.9b) into (3.1a), and applying integration by part on δK re-

spect to dt removing time derivative of displacement’s variation, then the first variation of

the kinetic energy becomes:

δK = −
α∫

0

[ fb/2∫
−fb/2

ρb
(
ẅbδwb + übδub

)
Rbdzb

+

rtc∫
rbc

ρc (ẅcδwc + ücδuc) rdr +

ft/2∫
−ft/2

ρt
(
ẅtδwt + ütδut

)
Rtdzt

]
bdθ , (3.1c)

Hamilton’s principle states that the integral (3.1a) must vanishes for all arbitrary choice

of displacement’s variation, they are: δwt,b,c0 , δut,b,c0 and δuc1. Then, the statement yields:

(δK + δU) = 0 (3.1d)

Subsequently, the same procedure of deriving governing equations and associated bound-

ary conditions that was carried out in Chapter 2 static EHSAPT is followed here. Indeed,
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Left-Hand-Side terms of (2.10)-(2.11) which contributed from δU remain identical. And

all contribution from δK will be presented in Right-Hand-Side terms. Corresponding seven

partial differential equations are as follows:

Top Face Sheet

δwt0 :

[
Ac3+

ct11bft
Rt

+(Aa3−Ab7+Ac9)
∂2

∂θ2
+(Aa9+

ct11bf
3
t

12R3
t

)
∂4

∂θ4

]
wt0+

[
Ac1+(Aa1−Ab5+Ac8)

∂2

∂φ2
+Aa8

∂4

∂θ4

]
wb0

+

[
Ac2 + (Aa2 − Ab6)

∂2

∂θ2

]
wc0 +

[
(Ac6 − Ab3 +

ct11bdt
Rt

)
∂

∂θ
+ (Aa6 +

ct11bd
3
t

12R3
t

)
∂3

∂θ3

]
ut0

+

[
(Ac4−Ab1)

∂

∂θ
+Aa4

∂3

∂θ3

]
ub0+

[
(Ac5−Ab2)

∂

∂θ
+Aa5

∂3

∂θ3

]
uc0+

[
(Ac7−Ab4)

∂

∂θ
+Aa7

∂3

∂θ3

]
uc1

=

(
(Am7 − ρtbftRt)

∂2

∂t2
−
(
Am6 −

ρtbf
3
t

12Rt

)
∂4

∂θ2∂t2

)
wt0

+

(
Am8

∂2

∂t2
− Am5

∂4

∂θ2∂t2

)
wb0 + Am9

∂2

∂t2
wc0 −

(
Am1 +

ρtbf
3
t

12Rt

)
∂3

∂θ∂t2
ut0

− Am2
∂3

∂θ∂t2
ub0 − Am3

∂3

∂θ∂t2
uc0 − Am4

∂3

∂θ∂t2
uc1 , (3.2a)

δut0 :

[
(Dc

7 −Db
3 −

ct11bdt
Rt

)
∂

∂θ
+ (

ct11bd
3
t

12R3
t

−Db
9)
∂3

∂θ3

]
wt0 +

[
(Dc

5 −Db
1)
∂

∂θ
−Db

8

∂3

∂θ3

]
wb0

+ (Dc
6 −Db

2)
∂

∂θ
wc0 +

[
Dc

3 − (Db
6 +

ct11bdt
Rt

+
ct11bd

3
t

12R3
t

)
∂2

∂θ2

]
ut0

+ (Dc
1 −Db

4

∂2

∂θ2
)ub0 + (Dc

2 −Db
5

∂2

∂θ2
)uc0 + (Dc

4 −Db
7

∂2

∂θ2
)uc1

=

(
Dm

6 +
ρtbf

3
t

12Rt

)
∂3

∂θ∂t2
wt0 +Dm

5

∂3

∂θ∂t2
wb0 +

(
Dm

1 − ρtbftRt −
ρtbf

3
t

12Rt

)
∂2

∂t2
ut0

+Dm
2

∂2

∂t2
ub0 +Dm

3

∂2

∂t2
uc0 +Dm

4

∂2

∂t2
uc1 . (3.2b)

Bottom Face Sheet
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δwb0 :

[
Bc

3+(Ba
3−Bb

7+B
c
9)
∂2

∂θ2
+Ba

9

∂4

∂θ4

]
wt0+

[
Bc

1+
cb11bdb
Rb

+(Ba
1−Bb

5+B
c
8)
∂2

∂θ2
+(Ba

8+
cb11bd

3
b

12R3
b

)
∂4

∂θ4

]
wb0

+

[
Bc

2 + (Ba
2 −Bb

6)
∂2

∂θ2

]
wc0 +

[
(Bc

6 −Bb
3)
∂

∂θ
+Ba

6

∂3

∂θ3

]
ut0

+

[
(Bc

4 −Bb
1 +

cb11bdb
Rb

)
∂

∂θ
+ (Ba

4 −
cb11bd

3
b

12R3
b

)
∂3

∂θ3

]
ub0 +

[
(−Bb

2 +Bc
5)
∂

∂θ
+Ba

5

∂3

∂θ3

]
uc0

+

[
(−Bb

4 +Bc
7)
∂

∂θ
+Ba

7

∂3

∂θ3

]
uc1 =

(
Bm

7

∂2

∂t2
−Bm

6

∂4

∂θ2∂t2

)
wt0

+

(
(Bm

8 − ρbbfbRb)
∂2

∂t2
−
(
Bm

5 −
ρbbf

3
b

12Rb

)
∂4

∂θ2∂t2

)
wb0 +Bm

9

∂2

∂t2
wc0

−Bm
1

∂3

∂θ∂t2
ut0 −

(
Bm

2 +
ρbbf

3
b

12Rb

)
∂3

∂θ∂t2
ub0 −Bm

3

∂3

∂θ∂t2
uc0 −Bm

4

∂3

∂θ∂t2
uc1 , (3.2c)

δub0 :

[
(Ec

7 − Eb
3)
∂

∂θ
− Eb

9

∂3

∂θ3

]
wt0 +

[
(Ec

5 − Eb
1 −

cb11bdb
Rb

)
∂

∂θ
+ (

cb11bd
3
b

12R3
b

− Eb
8)
∂3

∂θ3

]
wb0

+ (Ec
6 − Eb

2)
∂

∂θ
wc0 + (Ec

3 − Eb
6

∂2

∂θ2
)ut0 +

[
Ec

1 − (Eb
4 +

cb11bdb
Rb

+
cb11bd

3
b

12R3
b

)
∂2

∂θ2

]
ub0

+ (Ec
2 − Eb

5

∂2

∂θ2
)uc0 + (Ec

4 − Eb
7

∂2

∂θ2
)uc1

= Em
6

∂3

∂θ∂t2
wt0 +

(
Em

5 +
ρbbf

3
b

12Rb

)
∂3

∂θ∂t2
wb0 + Em

1

∂2

∂t2
ut0

+

(
Em

2 − ρbbfbRb −
ρbbf

3
b

12Rb

)
∂2

∂t2
ub0 + Em

3

∂2

∂t2
uc0 + Em

4

∂2

∂t2
uc1 . (3.2d)

Core

δwc0 :

[
Cc

3 + (Cc
9 − Cb

7)
∂2

∂θ2

]
wt0 +

[
Cc

1 + (Cc
8 − Cb

5)
∂2

∂θ2

]
wb0 +

(
Cc

2 − Cb
6

∂2

∂θ2

)
wc0

+ (Cc
6 − Cb

3)
∂

∂θ
ut0 + (Cc

4 − Cb
1)
∂

∂θ
ub0 + (Cc

5 − Cb
2)
∂

∂θ
uc0 + (Cc

7 − Cb
4)
∂

∂θ
uc1

= Cm
7

∂2

∂t2
wt0 + Cm

8

∂2

∂t2
wb0 + Cm

9

∂2

∂t2
wc0 , (3.2e)
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δuc0 :

[
(F c

7 − F b
3 )
∂

∂θ
− F b

9

∂3

∂θ3

]
wt0 +

[
(F c

5 − F b
1 )
∂

∂θ
− F b

8

∂3

∂θ3

]
wb0 + (F c

6 − F b
2 )
∂

∂θ
wc0

+ (F c
3 − F b

6

∂2

∂θ2
)ut0 + (F c

1 − F b
4

∂2

∂θ2
)ub0 + (F c

2 − F b
5

∂2

∂θ2
)uc0 + (F c

4 − F b
7

∂2

∂θ2
)uc1

= Fm
6

∂3

∂θ∂t2
wt0 + Fm

5

∂3

∂θ∂t2
wb0 + Fm

1

∂2

∂t2
ut0 + Fm

2

∂2

∂t2
ub0 + Fm

3

∂2

∂t2
uc0 + Fm

4

∂2

∂t2
uc1 ,

(3.2f)

δuc1 :

[
(Gc

7 −Gb
3)
∂

∂θ
−Gb

9

∂3

∂θ3

]
wt0 +

[
(Gc

5 −Gb
1)
∂

∂θ
−Gb

8

∂3

∂θ3

]
wb0 + (Gc

6 −Gb
2)
∂

∂θ
wc0

+ (Gc
3 −Gb

6

∂2

∂θ2
)ut0 + (Gc

1 −Gb
4

∂2

∂θ2
)ub0 + (Gc

2 −Gb
5

∂2

∂θ2
)uc0 + (Gc

4 −Gb
7

∂2

∂θ2
)uc1

= Gm
6

∂3

∂θ∂t2
wt0 +Gm

5

∂3

∂θ∂t2
wb0 +Gm

1

∂2

∂t2
ut0 +Gm

2

∂2

∂t2
ub0 +Gm

3

∂2

∂t2
uc0 +Gm

4

∂2

∂t2
uc1 .

(3.2g)

The corresponding boundary conditions are at θ = 0 and θ = α, read as follows (at each

end there are nine boundary conditions, three for each of the two face sheets and three for

the core):

Top Face Sheet

Either δwt0 = 0 or,

[
(Ab7−Aa3)

∂

∂θ
−(Aa9 +

ct11bf
3
t

12R3
t

)
∂3

∂θ3

]
wt0+

[
(Ab5−Aa1)

∂

∂θ
−Aa8

∂3

∂θ3

]
wb0+(Ab6−Aa2)

∂

∂θ
wc0

+

(
Ab3−Aa6+

ct11bf
3
t

12R3
t

)
∂2

∂θ2
ut0+

(
Ab1−Aa4

∂2

∂θ2

)
ub0+

(
Ab2−Aa5

∂2

∂θ2

)
uc0+

(
Ab4−Aa7

∂2

∂θ2

)
uc1

=

(
Am6 −

ρtbf
3
t

12Rt

)
∂3

∂θ∂t2
wt0 + Am5

∂3

∂θ∂t2
wb0 +

(
Am1 +

ρtbf
3
t

12Rt

)
∂2

∂t2
ut0

+ Am2
∂2

∂t2
ub0 + Am3

∂2

∂t2
uc0 + Am4

∂2

∂t2
uc1 , (3.3a)
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Either δwt ′0 = 0 or,

[
Aa3 + (Aa9 +

ct11bf
3
t

12R3
t

)
∂2

∂θ2

]
wt0 +

(
Aa1 + Aa8

∂2

∂θ2

)
wb0 + Aa2w

c
0

+

[
Aa6

∂

∂θ
− ct11bf

3
t

12R3
t

∂3

∂θ3

]
ut0 + Aa4

∂

∂θ
ub0 + Aa5

∂

∂θ
uc0 + Aa7

∂

∂θ
uc1 = 0 , (3.3b)

Either δut0 = 0 or,

[
Db

3 +
ct11bft
Rt

+ (Db
9 −

ct11bf
3
t

12R3
t

)
∂2

∂θ2

]
wt0 +

(
Db

1 +Db
8

∂2

∂θ2

)
wb0 +Db

2w
c
0

+

[
Db

6 +
ct11bf

3
t

12R3
t

+
ct11bft
Rt

]
∂

∂θ
ut0 +Db

4

∂

∂θ
ub0 +Db

5

∂

∂θ
uc0 +Db

7

∂

∂θ
uc1 = 0 , (3.3c)

Bottom Face Sheet

Either δwb0 = 0 or,

[
(Bb

7−Ba
3)
∂

∂θ
−Ba

9

∂3

∂θ3

]
wt0+

[
(Bb

5−Ba
1)
∂

∂θ
−(

cb11bf
3
b

12R3
b

+Ba
8)
∂3

∂θ3

]
wb0+(Bb

6−Ba
2)
∂

∂θ
wc0

+

(
Bb

3−Ba
6

∂2

∂θ2

)
ut0+

[
Bb

1+(
cb11bf

3
b

12R3
b

−Ba
4)
∂2

∂θ2

]
ub0+

(
Bb

2−Ba
5

∂2

∂θ2

)
uc0+

(
Bb

4−Ba
7

∂2

∂θ2

)
uc1

= Bm
6

∂3

∂θ∂t2
wt0 +

(
Bm

5 +
ρtbf

3
t

12Rt

)
∂3

∂θ∂t2
wb0 +Bm

1

∂2

∂t2
ut0

+

(
Bm

2 +
ρtbf

3
t

12Rt

)
∂2

∂t2
ub0 +Bm

3

∂2

∂t2
uc0 +Bm

4

∂2

∂t2
uc1 , (3.3d)

Either δwb ′0 = 0 or,

(
Ba

3 +Ba
9

∂2

∂θ2

)
wt0 +

[
Ba

1 + (Ba
8 +

cb11bf
3
b

12R3
b

)
∂2

∂θ2

]
wb0 +Ba

2w
c
0 +Ba

4

∂

∂θ
ut0

+

(
Ba

4

∂

∂θ
− cb11bf

3
b

12R3
b

∂3

∂θ3

)
ub0 +Ba

5

∂

∂θ
uc0 +Ba

7

∂

∂θ
uc1

= 0 , (3.3e)
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Either δub0 = 0 or,

(
Eb

3 + Eb
9

∂2

∂θ2

)
wt0 +

(
Eb

1 +
cb11bfb
Rb

+ (Eb
8 −

cb11bf
3
b

12R3
b

)
∂2

∂θ2

)
wb0 + Eb

2w
c
0 + Eb

5

∂

∂θ
ut0(

Eb
4 +

cb11bf
3
b

12R3
b

+
cb11bfb
Rb

)
∂

∂θ
ub0 + Eb

5

∂

∂θ
uc0 + Eb

7

∂

∂θ
uc1 = 0 , (3.3f)

Core

Either δwc0 = 0 or,

Cb
7

∂

∂θ
wt0 + Cb

5

∂

∂θ
wb0 + Cb

6

∂

∂θ
wc0 + Cb

3u
c
t + Cb

1u
b
0 + Cb

2u
c
0 + Cb

4u
c
1 = 0 , (3.3g)

Either δuc0 = 0 or,

(
F b
3+F b

9

∂2

∂θ2

)
wt0+

(
F b
1+F b

8

∂2

∂θ2

)
wb0+F

b
2w

c
0+F

b
6

∂

∂θ
ut0+F

b
4

∂

∂θ
ub0+F

b
5

∂

∂θ
uc0+F

b
7

∂

∂θ
uc1 = 0 ,

(3.3h)

Either δuc1 = 0 or,

(
Gb

3+G
b
9

∂2

∂θ2

)
wt0+

(
Gb

1+G
b
8

∂2

∂θ2

)
wb0+G

b
2w

c
0+G

b
6

∂

∂θ
ut0+G

b
4

∂

∂θ
ub0+G

b
5

∂

∂θ
uc0+G

b
7

∂

∂θ
uc1 = 0 ,

(3.3i)

where Aa,b,c,mi , Ba,b,c,m
i , Cb,c,m

i , Db,c,m
i , Eb,c,m

i , F b,c,m
i , Gb,c,m

i are constants which in-

clude both geometric and material properties and are defined in Appendix A and Appendix

B for logarithmic and polynomial variant, respectively.
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3.1.2 Solution Procedure

In the following, free vibration solution procedure for a simply supported curved panel is

outlined.

wt,b,c0 (θ) = W t,b,c
0 eiωt sin(

nπθ

α
) ; ut,b,c0 (θ) = U t,b,c

0 eiωt cos(
nπθ

α
) , (3.4a)

uc1(θ) = U c
1e

iωt cos(
nπθ

α
) . (3.4b)

where n is wave number and ω is frequency.

Substituting the solution form (3.4) into the dynamic governing differential equations

(3.2) results in a system of eigenvalue problems can be written in following form:

(−ω2[Mn] + [Kn]){Xn} = 0; (3.5a)

where elements of 7 × 7 [Kn] represents Left-Hand-Side terms from (3.2), 7 × 7 [Mn]

represents Right-Hand-Side terms and {Xn} is a 1 × 7 unknown displacement matrix,

namely: {W t
0,n,W

b
0,n,W

c
0,n, U

t
0,n, U

b
0,n, U

c
0,n, U

c
1,n}.

For nontrivial solutions, the determinant of (3.5a) is equate to zero:

∣∣∣∣− ω2[Mn] + [Kn]

∣∣∣∣ = 0; (3.5b)

Given wave number i.e. n is specified by any positive integer, results are seven natural

frequencies, ωi, corresponding to seven modes of radial vibrations, {Xn}i.

3.2 Free vibration using Elasticity for Curved Sandwich composite Panel

The linear dynamic elasticity problem formulation and solution for a generally asymmetric

sandwich curved beam/panel consisting of orthotropic core and face sheets. The displace-
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ment approach is used and the panel is assumed to be simply supported at the ends. Closed

form solutions for the displacements and stresses are derived using method of Frobenius

series.

In each individual sandwich’s layer, dynamic equilibrium equations in polar coordinates

are:

∂σrr
∂r

+
1

r

∂τrθ
∂θ

+
σrr − σθθ

r
= ρ

∂2w

∂t2
, (3.6a)

1

r

∂σθθ
∂θ

+
∂τrθ
∂r

+
2τrθ
r

= ρ
∂2u

∂t2
. (3.6b)

Cylindrical orthotropic constitutive law and strain-displacement relations are as previ-

ously stated in (2.15), and (2.16)

Considering a curved sandwich panel with simply supported on both ends, solutions

are:

w(r, θ, t) = W (r)eiωt sin(kθ) , (3.7a)

u(r, θ, t) = U(r)eiωt cos(kθ) , (3.7b)

where k = nπ/α, n is wave number ,(n = 1, 2, 3, . . . ); and ω is natural frequency which

later will be determined.

Using (2.15),(2.16),and (3.7) substituting into (3.6), following two linear second-order

ordinary differential equations in r are obtained:

r2c33W
′′ + rc33W

′ − (c11 + c55k
2)W + r2ρω2W − r(c13 + c55)kU

′ + (c11 + c55)kU = 0 ,

(3.8a)

r2c55U
′′+rc55U

′−(c55+c11k
2)+r2ρω2U+r(c13+c55)kW

′+(c11+c55)kW = 0 . (3.8b)
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Multiplying r2 to (3.8a) and (3.8b), consequently, the equations can be written in matrix

form as:

r2[M ]{X ′′}+ r[C]{X ′}+ ([K] + r2ρω2[I]){X} = 0 , (3.8c)

where ,

{X} =

W (r)

U(r)

 , [M ] =

c33 0

0 c55

 , [C] =

 c33 −(c12 + c55)k

(c13 + c55)k c55

 ,

(3.8d)

[K] =

−(c11 + c55k
2) (c11 + c55)k

(c11 + c55)k −(c55 + c11k
2)

 , [I] =

1 0

0 1

 . (3.8e)

Unlike having a system of Cauchy Euler equations (2.19) as in static elasticity where so-

lution form is simple single term (2.20), the presence of dynamic quantities, time-derivative

terms, in (3.6) induces complexities to the solution procedure. The dynamic elasticity dis-

placement formulations (3.8a) and (3.8b) are presented in matrix form (3.8c). The method

of Frobenius series are then applied to solve the equations. The solution has the following

form:

{X} =
∞∑
n=0

{Xn}rs+n , (3.9a)

The first and second derivative respect to r of (3.9) are:

{X}′ =
∞∑
n=0

(s+ n){Xn}rs+n−1 , (3.9b)

{X}′′ =
∞∑
n=0

(s+ n)(s+ n− 1){Xn}rs+n−2 , (3.9c)

Substituting solution forms (3.9a)- (3.9c) into the displacement formulation (3.8c), re-

sults are:
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(s(s− 1)[M ] + s[C] + [K])rs{X0}

+
(
(s+ 1)s[M ] + (s+ 1)[C] + [K]

)
rs+1{X1}

+
∞∑
n=2

((
(s+n)(s+n− 1)[M ] + (s+n)[C] + [K]

)
{Xn}+ ρω2[I]{Xn−2}

)
rs+n = 0 ,

(3.10)

Then using method of comparing coefficients:

rs (n = 0);

(s(s− 1)[M ] + s[C] + [K]){X0} = 0 , (3.11a)

rs+1 (n = 1),

((s+ 1)(s)[M ] + (s+ 1)[C] + [K]){X1} = 0 , (3.11b)

rs+2(n = 2),

((s+ 2)(s+ 1)[M ] + (s+ 2)[C] + [K]){X2}+ ρω2[I]{X0} = 0 , (3.11c)

...

rs+n,

((s+ n)(s+ n− 1)[M ] + (s+ n)[C] + [K]){Xn}+ ρω2[I]{Xn−2} = 0 . (3.11d)

3.2.1 Indicial equation

Considering the very first coefficient term rs (3.11a), for nontrivial solution i.e. {X0} 6= 0,

the determinant is equate to zero:

∣∣∣∣s(s− 1)[M ] + s[C] + [K]

∣∣∣∣ = 0 , (3.12a)

72



Then, the result is the “indicial equation”:

c33c55s
4 + (k2(c213 + 2c13c55− c11c33)− c55(c11 + c33))s

2 + c11c55(k
2− 1)2 = 0 , (3.12b)

It is also note that the indicial equation, indeed, is the characteristic equation in static

elasticity formulation (2.22).

Applying similar approach, the 4th order indicial equation (3.12b) can be reduce to

quadratic equation by let s2 = µ; and solving (3.12b) 4 indicial roots. As a result,

s1st,2nd,3rd,4th are obtained. Substituting 4 roots into (3.11a) and solving for {X0}:

{X0}i =

{
− (c11 + c55) k + (c13 + c55) ks

i

−c11 − c55k2 + c33si + c33(−1 + si)si
, 1

}T
, (3.12c)

where i = 1st, 2nd, 3rd, 4th

Next, considering the second term rs + 1 (3.11b) with s1st,2nd,3rd,4th substitution, the

determinant is non-zero; hence, (3.11b) is only true when {X1} = 0

3.2.2 Recurrence relations

Let us consider even number n = 2, 4, . . . coefficient matrices of rs+n ; (3.11c) is coeffi-

cient matrices corresponding to n = 2, rs+2. Solving the equation gives:

{X2} = −ρω2
[
(s+ 2)(s+ 1)[M ] + (s+ 2)[C] + [K]

]−1{X0} . (3.13a)

Similarly, the next even n terms (3.11d) gives {Xn=2,4,...}. This repetitive process is

recurrence relations:

{Xn} = −ρω2[Rn]−1{Xn−2} ; for n = 2, 4, 6, . . . (3.13b)

where,

[Rn] =
(
(s+ n)(s+ n− 1)[M ] + (s+ n)[C] + [K]

)
. (3.13c)
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And the inverse of [Rn] is:

[Rn]−1 =
1∣∣[Rn]
∣∣
 −c11k2 + c55(n+ s− 1)(n+ s+ 1) −(c11 + c55)k + (c13 + c55)(n+ s)k

−k (c11 + c13 (n+ s) + c55 (1 + n+ s)) −
(
c11 + c55k

2 − c33 (n+ s)2
)

 ,

(3.13d)

where,

∣∣[Rn]
∣∣ = (n+ s)2

(
(c13 (c13 + 2c55) k

2 + c33c55 (n+ s− 1) (n+ s+ 1)
)

+ c11
(
−c33k2(n+ s)2 + c55

(
k2 − 1− n− s

) (
k2 − 1 + n+ s

))
. (3.13e)

Alternatively, (3.13b) implies that any {Xn=even} can be determined from,

{Xn} = [Qn]{X0} ; for n = 2, 4, 6, . . . (3.14a)

where,

[Qn] = (−1)n/2ρn/2ωn[Rn]−1[Rn−2]
−1[Rn−4]

−1 . . . [R4]
−1[R2]

−1 . (3.14b)

In similar manner, {X3,5,7,...}, these odd number terms are solved by coefficient matri-

ces of rs+3,5,7,...:

{Xn} = [Qn]{X1} ; for n = 3, 5, 7, . . . (3.14c)

As previously determine, however, {X1} = 0; therefore,

{Xn} = 0 ; for n = 1, 3, 5, 7, . . . (3.14d)

3.2.3 General series solution

At this point, s and {Xn} are determined. For orthotropic material in general, s1st,2nd,3rd,4th

are four distinct roots or 2 pairs of complex conjugates. Considering following cases:
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First case, 4 distinct roots and a following condition is satisfied,

si − sj 6= 2m ; i 6= j , (3.15a)

where i, j = 1st, 2nd, 3rd, 4th; and m is any positive integer m = 1, 2, 3, . . . . A general

series solution then has the form,

{W (r), U(r)}T =
4∑
j=1

∞∑
n=0,2,4,...

Aj{Xn}jrsj+n , (3.15b)

where Aj are constants need to be determined.

Second case, the indicial roots are two pairs of complex conjugate,

s1st,3rd = a1st ± ib1st ; s2nd,4th = a2nd ± ib2nd . (3.16a)

Considering the first pair of complex conjugates in (3.16a), a partial general solution is:

{W (r), U(r)}T = A1st

∞∑
n=0,2,4,...

{Xn}1str(a1st+ib1st+n) + A3rd

∞∑
n=0,2,4,...

{Xn}2ndra1st−ib1st+n,

(3.16b)

corresponding Xn from (3.13b) are also complex conjugate,

{X}1st,3rdn = {Y }1stn ± i{Z}1stn , for n = 0, 2, 4, 6, . . . . (3.16c)

And note that Euler’s formula is:

ri(±bj) = ei(±bj ln r) = cos(±bj ln r) + i sin(±bj ln r). (3.16d)

Applying Euler’s formula (3.16d) to the complex conjugate pair of (3.16b) and (3.16c);

and applying the same approach for the second pair in (3.16a), the general solution (3.16b)
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is then rewritten as,

{X} =
2∑
j=1

∞∑
n=0,2,4,...

[
Bj({Yn}j cos(bj ln r)− {Zn}j sin(bj ln r))

+ Cj({Zn}j cos(bj ln r) + {Yn}j sin(bj ln r))

]
. (3.16e)

where Bj and Cj are four constants need to be determined.

Third case: in addition, an isotropic sandwich layer result in a special case. 4 distinct

roots are obtained but the pair is differed by 2 (m=1) i.e. (3.15a) is not satisfied. Here, we

derive solution for any even,

s1st − s2nd =2m , s1st > s2nd

s3rd − s4th =2m , s3rd > s4th , m = 0, 1, 2, 3, . . . (3.17)

The condition in (3.17) implies that terms nth + 2m of the series (3.9a) correspond to

s2nd are linearly dependent with nth term of the series correspond to s1st. While {X}1st

and {X}3rd are identical to those presented in (3.15b), {X}2nd and {X}4th are modified.

Consequently, the series solution correspond to s2nd is:

{Y }2nd = ck

(
∞∑
n=0

{Xn}1strs1st+n
)

ln r +
∞∑
n=0

{Yn}2ndrs2nd+n , (3.18)

where ck is an unknown constant which might be 0 unless m = 0. Substituting (3.18) into

(3.8c) and realizing that s1st = s2nd + 2m, results are:

∞∑
j=0

(
ck(s1st + j)[M ] + [C]

)
{Xj}1strs1st+j
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+
∞∑
n=0

(
(s2nd + n)(s2nd + n− 1)[M ] + (s2nd + n)[C] + [K]

)
{Yn}2ndrs2nd+n

+
∞∑
n=0

ρω2[I]{Yn}2ndrs2nd+n+2 = 0 (3.19)

Then using method of comparing coefficient to (3.19). For 0 ≥ n > 2m, there is no

contribution from {X}1st solution; hence, similar solution process from (3.11)-(3.13) is

applied and results are as follow:

For 0 ≥ n > 2m,

{Y0}2nd =

{
− (c11 + c55) k + (c13 + c55) ks2nd

−c11 − c55k2 + c33s2nd + c33(−1 + s2nd)s2nd
, 1

}T
, (3.20a)

{Yn}2nd = [Rn]2nd{Yn−2}2nd ; for n = 2, 4, . . . , n− 2m (3.20b)

where, [Rn]2nd is as defined in (3.13c)

For n = 2m and j = 0,

ck

(
s1st[M ]+[C]

)
{X0}1st+

(
(s2nd+2m)(s2nd+2m−1)[M ]+(s2nd+2m)[C]+[K]

)
{Yn}2nd

+ [Ω]{Y2m−2}2nd = 0 . (3.21a)

Indeed, the determinant matrices coefficient of {Y2m}2nd is identical to equation (3.11a)

where s = s1st which has zero determinant. If we choose,

{Y2m}2nd =
{
X1st

0 (1), dk
}T

, (3.21b)

where X1st
0 (1) is the first element of (3.12c) and dk is another unknown constant. Then,

both ck and dk are determined by solving (3.21a).

For n > 2m and j > 0,
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The recurrence relations are revised as follow:

{Yn}2nd = −([Rn]2nd)−1(ck[Pn−2]
1st + ρω2[I]){Yn−2}2nd , (3.21c)

where,

[Pn]1st = (s1st + n− 2m)[M ] + [C] . (3.21d)

And the series solution correspond to s4th is:

{Y }4th = ck

(
∞∑
n=0

{Xn}3rdrs3rd+n
)

ln r +
∞∑
n=0

{Yn}4thrs4th+n , (3.22)

where ck and {Yn}4th are determined by similar procedure as in (3.20)-(3.21).

Therefore, a general series solution has the form,

{W (r), U(r)}T = A1st{X}1st + A2nd{Y }2nd + A3rd{X}3rd + A4th{Y }4th . (3.23)

3.2.4 Boundary Conditions

With simply supported displacement solution form (3.7), stresses are explicitly written as:

σrr =

[
c13

(
−kU(r)

r
+
W (r)

r

)
+ c33W

′(r)

]
sin(kθ)eiωt , (3.24a)

τrθ =

[
c55

(
−U(r)

r
+ k

W (r)

r
+ U ′(r)

)]
cos(kθ)eiωt . (3.24b)

We shall introduce superscript notations t, c, b corresponding to each sandwich layer,

namely: top face, core, and bottom face respectively. Hence, we have: ct,b,cij , st,b,c1st,2nd,3rd,4th

and {W (r), U(r)}t,b,c.

In this curved sandwich panel configuration, there are 12 unknowns constants: At,b,c1st ,

At,b,c2nd , At,b,c3rd , At,b,c4th , and additional 1 unknown frequency ω; hence, there are total 13 un-

knowns. There are 12 homogeneous facial boundary conditions; four are traction free
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surface of top and bottom face sheet, another four are upper/lower inter-facial continuity of

displacements, and remaining four are inter-facial traction conditions.

Two traction free at top face, r = R2 , are:

σtrr = 0 ; τ trs = 0 . (3.25a)

Two traction free at bottom face, r = R1 , are:

σbrr = 0 ; τ brs = 0 . (3.25b)

Four upper face/core displacement and stress continuities, r = rtc , are:

wt = wc ; ut = uc , (3.25c)

σtrr = σcrr ; τ trs = τ crs . (3.25d)

Four lower face/core displacement and stress continuities, r = rbc , are:

wb = wc ; ub = uc , (3.25e)

σbrr = σcrr ; τ brs = τ crs . (3.25f)

In (3.25a)-(3.25f), eiωt, sin(kθ), and cos(kθ) are canceled out resulting in a system of

12 equations and is then written in matrix form,

[
Ξ(ω)

]{
A

}
= 0 , (3.26)

where, {A} = {At1st, At2nd, At3rd, At4th, Ac1st, Ac2nd, Ac3rd, Ac4th, Ab1st, Ab2nd, Ab3rd, Ab4th}T .
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For nontrivial solution, ∣∣∣∣[Ξ(ω)]

∣∣∣∣ = 0 , (3.27)

The determinant of (3.27) gives a polynomial equation of ω which is solved by numer-

ical method i.e. Root-finding. The order of the polynomial equations depend on number of

terms included in a partial summation of (3.9a). To determine higher frequencies, higher

number of terms is needed for solution convergence and computational resource could be-

come an issue.

The behavior of series convergence is studied by comparing nth and nth − 2 terms in

(3.9a),

{Xn}rn = −ρω2[Rn]−1{Xn−2}rn−2r2 . (3.28a)

Right hand side terms {Xn−2}rn−2 is indeed the nth − 2, and the coefficient matrix is

−ρω2[Rn]−1r2. Applying Taylor series’s expansion,

−ρω2[Rn]−1r2 = −ρω
2r2

n2

 1
c33
− 2s

c33n
+O(1/n2) k(c13+c55)

c33c55n
+O(1/n2)

−k(c13+c55)
c33c55n

+O(1/n2) 1
c55
− 2s

c55n
+O(1/n2)

 (3.28b)

Taking limit limn→∞ (3.28b) ,the result is a zero; hence, the series is converged. The

quantity ω2/n2 indicates that as ω increase, n has to proportionally increase. Numerical

convergence analysis is discussed later in results section.

3.3 First Order Shear Deformation Theory

In Chapter 2, three variants of static FOSD theory were presented: basic, equivalent shear

modulus, shear correction factor. The latter two are modification of shear modulus and

corresponding correction factor which improve accuracy. In the following, free vibration

dynamic formulations of First Order Shear Deformation Theory will be presented. Kine-

matic description, strain displacement relationships and constitutive laws follow (2.32)-

(2.33) with addition independent variable t i.e. the dynamic three dependent variables are
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a function of (θ, t) : w0(θ, t), u0(θ, t), and Ψ0(θ, t)

Governing equations and associated boundary conditions are derived from Hamilton’s

Principle, the principle states a dynamic equilibrium:

δ

∫
t

(K − U + V ) = 0 , (3.29a)

where K is kinetic energy, U is strain energy of the sandwich panel, and V is the external

potential due to applied loads which is none, V = 0, because the problem is free vibration

analysis.

The first variation of the kinetic energy is:

δK =

α∫
0

∫
A

ρ (ẇδẇ + u̇δu̇) dAdθ, (3.29b)

where ˙and ,̈ denote d/dt and d2/dt2 respectively. Substituting (3.29b) into (3.29a) and per-

forming integration by part respect to time dt, the first variation of kinetic energy becomes:

δK = −
α∫

0

∫
A

ρ (ẅδw + üδu) dAdθ, (3.29c)

The first variation of strain energy, δU , is as stated in (2.34b). Let us define following

quantities:

M0 =

∫
A

ρ(R+z)dz =
1

2
ρtft(2c−2e+ft+2R)+2c(R−e)ρc−

1

2
ρbfb(2c+2e+fb−2R) ,

(3.30a)

M1 =

∫
A

ρ(R+z)zdz =
1

6
ρtft

(
6c2 + 6c(−2e+ ft +R) + 6e2 − 6e(ft +R) + ft(2ft + 3R)

)
+

2

3
cρc
(
c2 + 3e(e−R)

)
+

1

6
fb
(
−3R(2(c+ e) + fb) + 6fb(c+ e) + 6(c+ e)2 + 2f 2

b

)
,

(3.30b)
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M2 =

∫
A

ρ(R+z)z2dz =
1

12
ρtft

(
4R
(
3ft(c− e) + 3(c− e)2 + f 2

t

)
+ 3(2c− 2e+ ft)

(
2ft(c− e) + 2(c− e)2 + f 2

t

))
+

2

3
ρcc
(
c2(R− 3e) + 3e2(R− e)

)
+

1

12
ρbfb

(
4R
(
3fb(c+ e) + 3(c+ e)2 + f 2

b

)
− 3(2(c+ e) + fb)

(
2fb(c+ e) + 2(c+ e)2 + f 2

b

))
.

(3.30c)

Performing integration by parts in (3.29a) respect to θ; results are dynamic governing equa-

tions and associated boundary condition (for 0 ≤ θ ≤ α):

δw0 :

−[AG1(w0,θ − u0) + (AG0 − SG1)ψ],θ + AE1(w0 + u0,θ) +M0w0,tt = 0 , (3.31a)

δu0 :

−[AE1(w0 +u0,θ)],θ−AG1(w0,θ−u0)+(SG1−AG0)ψ+M0u0,tt+M1ψ0,tt = 0 , (3.31b)

and

δψ :

−(IE1ψ,θ),θ + (AG0R+ IG1−SG0)ψ+ (AG0−SG1)(w0,θ− u0) +M1u0,tt +M2ψ0,tt = 0 ,

(3.31c)

Associated boundary conditions (three at each end, θe = 0, α) for the dynamic FOSD

are:

Either δw0 = 0 or,

AG1 (w0,θ − u0) + (AG0 − SG1)ψ = 0 , (3.32a)
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Either δu0 = 0 or,

AE1 (u0,θ + w0) = 0 , (3.32b)

and Either δψ = 0 or,

IE1ψ,θ = 0 , (3.32c)

Other sectional properties, AG1, AE1, SG1 etc. are previously defined in section 2.3. Note

that the two variants, ”equivalent shear modulus” and shear correction factor can be applied

via modification of shear modulus G→ Geq (2.48) and G→ βGeq (2.60).

For a curved beam/panel is simply-supported, as shown in figure 2.1, analytical solu-

tions are sought in the form:

w0(θ, t) = W0e
iωt sin kθ ; u0(θ, t) = U0e

iωt cos kθ ,

ψ(θ, t) = Ψeiωt cos kθ ; k =
nπ

α
, (3.33)

where n is a wave number which is any positive integers. The displacement field (3.33)

satisfies the simply-supported boundary conditions, (w0 being zero at the ends and no mo-

ment, i.e., ψ,θ=0 at the ends) and substituting into the governing equations (3.31) leads

to:


AG1k

2 + AE1 −M0ω
2 −(AG1 + AE1)k . . .

−(AE1 + AG1)k AE1k
2 + AG1 −M0ω

2 . . .

(AG0 − SG1)k −AG0 + SG1 −M1ω
2 . . .

(AG0 − SG1)k

SG1 − AG0 −M1ω
2

(IE1k
2 + AG0R + IG1 − SG0)−M2ω

2



W0

U0

Ψ0

 =


0

0

0

 (3.34)
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For nontrivial solution, the determinant of (3.34) is a zero; result is 6th order polynomial

equation which reduces to cubic equation by setting µ = ω2 ,

aµ3 + bµ2 + cµ+ d = 0 , (3.35a)

where,

a =M0

(
M2

1 −M0M2

)
, (3.35b)

b =AE1k
2M0M2 + AE1M0M2 − AE1M

2
1 + AG0M

2
0R + 2AG0M0M1

+ AG1k
2M0M2 − AG1k

2M2
1 + AG1M0M2 + IE1k

2M2
0 + IG1M

2
0

−M2
0SG0 − 2M0M1SG1 , (3.35c)

c =AG0

(
−AE1

(
k2 + 1

)
M0R + 2AE1

(
k2 − 1

)
M1 −

(
k2 + 1

)
M0(AG1R + 2SG1)

)
− AE1

(
k2
(
AG1

(
k2 − 2

)
M2 −M0SG0 + 2M1SG1

)
+ AG1M2

+ IE1

(
k2 + 1

)
k2M0 + IG1

(
k2 + 1

)
M0 −M0SG0 − 2M1SG1

)
+ A2

G0

(
k2 + 1

)
M0 −

(
k2 + 1

)
M0

(
AG1

(
IE1k

2 + IG1 − SG0

)
− S2

G1

)
, (3.35d)

d =AE1(k
2 − 1)2(−A2

G0 + AG1(IG1 + IE1k
2 − SG0)− S2

G1

+ AG0(AG1R + 2SG1)) . (3.35e)

Given a positive integer wave number, for instance n = 1, the cubic equation (3.35a) is then

solved and results in three roots µ1,2,3. Next, three frequencies are obtained by calculating

positive square roots of:

ωi = +
√
µi ; where i = 1, 2, 3 . (3.36)

Choosing any two out of three algebraic equations in (3.34) and letting one out of three

unknowns W0, U0, and Ψ0 becomes a constant. In this case, the first two equations are
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chosen, and W0 = 1. Corresponding three mode shapes are:


W0

U0

Ψ0


i

=


1

AE1(k2−1)(AG0−SG1)−AE1µiM1+µi(M0(AG0+µiM1−SG1)−AG1k
2M1)

AE1k(k2−1)(AG0−SG1)−kµi(M1(AE1+AG1)+AG0M0−M0SG1)

(k2+1)µiM0(AE1+AG1)−AE1AG1(k2−1)
2
−µ2iM2

0

AE1k(k2−1)(AG0−SG1)−kµi(M1(AE1+AG1)+AG0M0−M0SG1)

 . (3.37)

3.4 Classical Theory Formulation

In the following, free vibration dynamic formulations of Classical Theory will be pre-

sented. Kinematic description, strain displacement relationships and constitutive laws are

following (2.63)-(2.64) with addition independent variable t i.e. the dynamic two depen-

dent variables are a function of (θ, t): w0(θ, t), and u0(θ, t).

Governing equations and associated boundary conditions are derived from Hamilton’s

Principle (3.29). The first variation of strain energy δU is previously stated in (2.65), the

first variation of external potential energy is δV = 0 for free vibration analysis. The first

variation of kinetic energy is:

δK = −
α∫

0

∫
A

ρ (ẅδw + üδu) dAdθ, (3.38)

Substituting displacement field (2.63) into (3.38) and performing integration (3.29a) with

classical displacement field respect to θ; results are dynamic governing equations and as-

sociated boundary condition (for 0 ≤ θ ≤ α):

δw0 :

(
IE1

R2
w0,θθ −

SE0

R2
u0,θ

)
,θθ

+
AE0

R
u0,θ + AE1w0 −

(
M2

R2
w0,θtt

)
,θ

+M0w0,tt +

[(
M1

R
+
M2

R2

)
u0,tt

]
,θ

= 0 . (3.39a)
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δu0 :

−
[(

AE0

R
+
SE0

R2

)
u0,θ +

AE0

R
w0 −

SE0

R2
w0,θθ

]
,θ

+

(
M0 +

2M1

R
+
M2

R2

)
u0,tt −

(
M1

R
+
M2

R

)
w0,θtt = 0 . (3.39b)

Associated boundary conditions (three at each end, θe = 0, α) for the Classical theory

are;

Either δw0 = 0 or,

−
(
IE1

R2
w0,θθ −

SE0

R2
u0,θ

)
,θ

−
(
M1

R
+
M2

R2

)
u0,tt +

M2

R2
w0,θtt = 0 , (3.40a)

Either δw0,θ = 0 or,
IE1

R2
w0,θθ −

SE0

R2
u0,θ = 0 , (3.40b)

Either δu0 = 0 or,

(
AE0

R
+
SE0

R2

)
u0,θ +

AE0

R
w0 −

SE0

R2
w0,θθ = 0 , (3.40c)

Again, assuming constant properties and using the form (3.33) for the displacements

w0 and u0 leads to:

 ( IE1

R2 k
4 + AE1

)
− ω2

(
M0 + k2M2

R2

)
. . .

−k
(
SE0

R2 k
2 + AE0

R

)
+ ω2k

(
M1

R
+ M2

R2

)
. . .

−k
(
SE0

R2 k
2 + AE0

R

)
+ kω2

(
M1

R
+ M2

R2

)
k2
(
SE0

R2 + AE0

R

)
− ω2

(
M0 + 2M1

R
+ M2

R2

)

W0

U0

 =

0

0

 (3.41)
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For nontrivial solution, the determinant of (3.41) is a zero; result is 4th order polynomial

equation which reduces to quadratic equation by setting µ = ω2 ,

aµ2 + bµ+ c = 0 , (3.42a)

where,

a =
k2

R2

(
M0M2 −M2

1

)
+M0(R(M0R + 2M1) +M2) , (3.42b)

b =
1

R4

(
− IE1k

4(R(M0R + 2M1) +M2)

−R
(
AE0k

2
((
k2 − 2

)
M2 +M0R

2 − 2M1R
)

+ AE1R
(
M0R

2 + 2M1R +M2

))
+ k2SE0

(
k2(2M1R +M2)−M0R

2
) )

, (3.42c)

c =
k2

R4
− A2

E0R
2 + AE0R

(
AE1R

2 + IE1k
4 − 2k2SE0

)
+ SE0

(
AE1R

2 + k4(IE1 − SE0)
)
. (3.42d)

Given a wave number i.e n is specified, the quadratic equation (3.35a) is then solved result

in two roots µ1,2. Next, two frequencies are obtained by calculating positive square roots

of:

ωi = +
√
µi ; where i = 1, 2 . (3.43)

Choosing one of the two algebraic equations in (3.41) and letting one of the two unknowns,

W0 and U0, becomes a constant. In this case, the first equation is selected, and W0 = 1.

Corresponding two mode shapes are:

W0

U0


i

=

 1

AE1R
2+IE1k

4−k2µiM2−µiM0R2

k(AE0R+k2SE0−µiM1R−µiM2)

 . (3.44)
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3.5 Results

A free vibration numerical case is studied. Solutions from two versions of the Extended

High Order Sandwich Panel Theory(EHSAPT) with logarithmic and polynomial core dis-

placement functions, Theory of elasticity(ELST), the equivalent shear modulus First Order

Shear Deformation Theory (FOSD) with shear correction factor. In addition, solutions

from the High Order Sandwich Panel Theory (HSAPT), which assumes a compressible

core [39], is presented. The dynamic elasticity solution serves as a benchmark to assess the

accuracy of all theories.

A simply supported sandwich beam/panel configuration in figure 2.1 is studied. The

sandwich consists of two thin top and bottom face sheet of equivalent thickness ft,b = 1

mm; separates by a thick sandwich core 2c = 25 mm. Both face sheets and core have cylin-

drical orthotropic material. The two face sheets are made out of uni-direction high modulus

carbon fiber epoxy resin whose properties are : elastic modulus Et,b
1 = 175 GPa, Et,b

3 = 8

GPa, poisson’s ratio vt,b13 = 0.3, shear modulus Gt,b = 5 GPa, and density ρt,b = 1, 600

kg/m3. The sandwich core are made out of Divinycell foam core H160 whose properties

are : Ec
1 = Ec

3 = 170 MPa, vc13 = 0.3, Gc = 66 MPa, and ρc = 170 kg/m3. The curved

beam has angular span α = 0.317815 rad, a radius of the top face mid-line Rt = 813 mm,

and a width (out-of-plane) 30 mm.

Considering the first wave number case i.e. n = 1, displacements are in the form:

w(r, θ, t) = W (r)sin(
θπ

α
)eiωt ,

u(r, θ, t) = U(r)sin(
θπ

α
)eiωt . (3.45)

The two EHSAPTs results in 7 frequencies. The HSAPT [39] provides 4 frequencies, the

equivalent shear modulus FOSDT with shear correction factor results 3 frequencies, the

Classical theory gives 2 frequencies. And the elasticity while results in infinite frequen-

cies, 6 of them are presented. Frequencies comparisons are shown in table 3.1-3.2.Again,
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Table 3.1: Natural frequencies (Hz) 1st to 4th mode for wave number n = 1

1st 2nd 3rd 4th

Elasticity 866.01 10,043.28 12,735.03 17,390.04
EHSAPT-log 866.13 10,075.61 12,845.43 17,430.49

EHSAPT-poly 866.43 10,084.59 12,846.10 17,451.52
HSAPT 864.73 12,160.49 13,538.85 18,870.97

FOSDT-Geq,β 866.37 13,620.81 19,010.10 N/A
Classical 2120.98 13,623.05 N/A N/A

Table 3.2: Natural frequencies (Hz) 5th to 7th mode for wave number n = 1

5th 6th 7th

Elasticity 22,425.59 28,329.23 29,865.35
EHSAPT-log 23,412.76 29,142.82 31,608.84

EHSAPT-poly 23,441.83 29,145.50 31,613.69
HSAPT N/A N/A N/A

FOSDT-Geq,β N/A N/A N/A
Classical N/A N/A N/A

as state in static analysis, both EHSAPTs are shown to be the most accurate with logarith-

mic variant always slightly closer to elasticity. HSAPT also show good predictions but not

as much as EHSAPT, it underestimates the first frequency while overestimates the rest. In

this particular numerical case, the equivalent shear modulus FOSD theory with shear cor-

rection factor surprisingly accurate finding first frequency (better than EHSAPT-poly but

worse than EHSAPT-log). While Classical theory significantly inaccurate in first frequency

prediction, almost 3 times off, the second frequency is acceptable.

Figure 3.1 shows through thickness radial(transverse) displacements, w, at α/2 for the

first mode. In order to present the displacement distributions within the same plot frame,

their magnitudes are needed to be in the same order because mode shapes, hence displace-

ments, can have arbitrary magnitude. Each theory is then normalized by each artificial

constant such that wα/2 = 1 at r = Rt and these particular artificial constants are carried

along to normalize circumferential displacements in figure 3.2. Due to the normalization,

the plot shall be interpret as only distribution profile for each individual theory; and it
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Figure 3.1: Through-thickness distribution of radial displacement, w, at α/2 1st mode and
wave number n = 1

cannot regard as accuracy comparison among theories. To some extent, however, figure 3.2

presents through thickness circumferential displacement, u, at α = 0; it is observed that the

distributions (both w and u) from EHSAPTs capture the elasticity profile perfectly unlike

others.

The same normalization procedure is followed to present stresses corresponding to first

mode. New artificial constants are applied such that circumferential stress σθθ = 1 at

r = Rt and these new set of constants are applied to shear,τrθ, and radial normal stress,

σrr. Figure 3.3 shows through thickness distribution of σθθ at α/2 within bottom face sheet

(left-figure) and top face sheet (right-figure). Transverse normal stress, σrr, at α/2 core

distributions are shown in figure 3.4; notice an absence of FOSDT and Classical as they are

incompressible theory. Lastly, shear stress, τrθ, core distributions at α = 0 are presented in

figure 3.5; note that classical theory excludes shear deformation.

Figure 3.6 and 3.7 present curved beam deformations(right-most column in the figure)

and through thickness displacements plot from EHSAPT logarithmic (red-solid line) and

polynomial (blue-dashed line) version correspond to all seven modes for the given wave
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Figure 3.2: Through-thickness distribution of circumferential displacement, u at α = 0 1st
mode and wave number n = 1

Figure 3.3: Face sheet through-thickness distribution of circumferential stress, σθθ, at α/2,
1st mode and wave number n = 1
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Figure 3.4: Core through-thickness distribution of radial normal stress, σrr, at α/2 1st
mode and wave number n = 1

Figure 3.5: Core through-thickness distribution of shear stress, τrs, at α = 0 1st mode and
wave number n = 1
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number, n = 1. The beam deformation plots are not in true scale, they are exaggerated to

enhanced visualization; and displacement plot are normalized as previously done. It can

be seen that free vibration modes can be categorized into radial dominance, and circum-

ferential dominance. 1st, 3rd and 6th mode are radial dominance because w component is

significantly larger than u. And 2nd, 4th, 5th, and 7th mode are circumferential dominance

due to the same inverse reasoning. It is also noticed that 5th, 6th, and 7th mode are core

dominant vibration as large mid-core w shown in left-most column in the figure.

Solution procedures for the other structural theories are straight forward; however, elas-

ticity’s solution procedure is rather complicated and poses numerical issues. It shall be

further discussed here.

With the numerical case, top/bottom face sheets, the indicial roots (3.12b) are st,b1,2 =

±7.8473 and st,b3,4 = ±57.6421; sandwich core, the roots are sc1,2 = ±9.2164 and sc3,4 =

±10.4936. These indicial roots are distinct and satisfying (3.15a). Therefore, a general

series solution takes the form of (3.15b). The infinite Frobenius series (3.9a) is replaced by

a partial summation to produce numerical results,

˜{X}
j

N =
N∑

n=0,2,4,...

{Xn}jrsj+n ,where j = 1st, 2nd, 3rd, 4th . (3.46)

As frequency ω increase, two major numerical issues are raised. Firstly, higher number of

terms are needed to include in the partial summation (3.46) for convergence; in this report,

N = 500 is used to produce results. Figure 3.8 shows a semi Log-Scale plot of a vector

magnitude of absolute error %error versus number of term N using face sheet material and

evaluating at r = Rt,

%i
error =

∣∣∣∣∣
∣∣∣∣∣ ˜{X}

j

N − ˜{X}
j

N=1000

˜{X}
j

N=1000

× 100%

∣∣∣∣∣
∣∣∣∣∣ . (3.47)

Minimum limit on y-axis, %error, is at 10−20 and if this is set as tolerance criteria. Figure
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Figure 3.6: EHSAPT-log(red-solid line), poly(blue-dashed line) displacements(w-left, u-
middle) of 1st to 4th mode for wave number n = 1. And mode deformation(right); de-
formed (blue shaded area), and undeformed (light blue dashed line) configuration
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Figure 3.7: EHSAPT-log(red-solid line), poly(blue-dashed line) displacements(w-left, u-
middle)of 5th to 7th mode for wave number n = 1. And mode deformation(right); de-
formed (blue shaded area), and undeformed (light blue dashed line) configuration
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Figure 3.8: Semi-log plot free vibration elasticity solution convergence, face sheet at r =
Rt

3.8-left shows that lower frequency ω = 30, 000 rad/s, N = 40 would be sufficiently

enough; while, figure-3.8 right indicates that for higher frequency ω = 300, 000 rad/s, N =

250 are needed. In addition, figure 3.8-right shows that, initially, %error is increasing as N

increase; this strange behavior is explained by the term ω2/n2 in the recurrence relation

(3.28b) as n is not substantial to overcome contribution from ω.

The second issue is truncation error. The numerical value becomes very large, specif-

ically, when the determinant (3.27) is being evaluated. Increase digits precision would

reduce the error; 100 digits are kept to produce the elasticity results.

As shown in static result, the free vibration results underline again the remarkable per-

formance of EHSAPTs, in particular logarithmic-EHSAPT, among other theories. In addi-

tion, considering elasticity solution complexity, specifically the Frobenius series solution;

EHSAPTs are rather simple and straight forward.

3.6 Conclusion

To conclude, free vibration analysis of a curved sandwich beam with simply supported

condition on both ends is studied. Dynamic governing equations and associated boundary

conditions are derived using Hamilton’s Principle for following theories: the new Extended

High order Sandwich Panel Theory (EHSAPT), the First Order Shear Deformation theory

(FOSD), and Classical theory; and closed form analytical solution are obtained. Then, free
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vibration elasticity closed form analytical solutions for simply supported condition are de-

rived using the method of Frobenius series; common solution characteristics of orthotropic

material are addressed. Subsequently, the elasticity serves as a benchmark to assess accu-

racy of all theories. In addition, results from the High order Sandwich Panel Theory [39]

are produced to compare.

A numerical case of a curved sandwich beam vibrates in the first wave number is pre-

sented. Corresponding natural frequencies and mode shapes are determined and compared.

Through thickness displacements and stresses distribution are presented for the first mode

for all theories. It has shown that EHSAPTs frequencies are the most accurate, especially

the logarithmic variants slightly outperform as previously shown in static analysis. HSAPT

is under performed when comparing with EHSAPTs. The equivalent shear modulus FOSD

with shear correction factor also shows accurate the first natural frequency. Elasticity the-

oretically provides infinite number of natural frequencies but associated numerical issues

limit the performance. Meanwhile EHSAPTs provide very accurate and up to seven natu-

ral frequencies for each wave number more than the other theories. Deformations of seven

EHSAPTs mode shapes are shown capturing unique sandwich beam vibration type: ra-

dial/circumferential dominance, and face sheets/core dominance. Again in free vibration

analysis, logarithmic EHSAPT is proved to have superior performance.
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APPENDIX A

LOGARITHMIC EHSAPT CONSTANTS

Aai = k0
ftrtc
4Rt

(Hd
1i −Ha

1irbc ln rbc) , (I.1a)

Abi = k0
cc55rtc
4RbR2

t

[ftH
b
3i − (ft − 2Rt)H

c
3i + 2Ha

3i(ft −Rt)rbc ln rbc] , (I.1b)

Aci = k0
rtc
2

(Hb
2i +Hd

1i +Ha
2i −Ha

1i)rbc ln rbc , (I.1c)

Ba
i = k0

fbrbc
4Rb

(Hd
1i −Ha

1irtc ln rtc) , (I.2a)

Bb
i = k0

cc55rbc
4R2

bRt

[fbH
b
3i − (fb + 2Rb)H

c
3i + 2Ha

3i(fb +Rb)rtc ln rtc] , (I.2b)

Bc
i = −k0

rbc
2

[Hb
2i +Hd

1i + (Ha
2i −Ha

1i)rtc ln rtc] , (I.2c)

Cb
i = k0

cc55
2RbRt

[Hc
3i(rbc − rtc) +Ha

3irbcrtc ln
rbc
rtc

+Hb
3i(−rbc ln rbc + rtc ln rtc)] , (I.3a)
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Cc
i = k0

1

2

[
(Hb

2i+Hd
1i)(rbc− rtc)−Hb

1irbc ln rbc+ (Ha
1i−Ha

2i)rbcrtc ln
rbc
rtc

+Hb
1irtc ln rtc

]
,

(I.3b)

Db
i = k0

(ft − 2Rt)rtc
4Rt

(−Hd
1i +Ha

1irbc ln rbc) , (I.4a)

Dc
i = −k0

cc55(ft − 2Rt)rtc
4RbR2

t

(Hb
3i −Hc

3i + 2Ha
3irbc ln rbc) , (I.4b)

Eb
i = k0

(fb + 2Rb)rbc
4Rb

(−Hd
1i +Ha

1irtc ln rtc) , (I.5a)

Ec
i = −k0

cc55(fb + 2Rb)rbc
4R2

bRt

(Hb
3i −Hc

3i + 2Ha
3irtc ln rtc) , (I.5b)

F b
i = k0

1

2

(
Hd

1i(rbc − rtc) +Ha
1irbcrtc ln

rbc
rtc

+Hb
1i(−rbc ln rbc + rtc ln rtc)

)
, (I.6a)

F c
i = k0

cc55
2RbRt

(
(Hb

3i +Hc
3i)(rbc− rtc) +Hb

3irbc ln rbc−Hb
3irtc ln rtc + 2Ha

3irbcrtc ln
rtc
rbc

)
,

(I.6b)

Gb
i = k0

1

2

(
Hd

1i(rbc−rtc)(rbc+rtc)+rbc(−Hc
1i+Ha

1ir
2
tc) ln rbc+(Hc

1i−Ha
1ir

2
bc)rtc ln rtc

)
,

(I.7a)
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Gc
i = k0

cc55
2RbRt

((Hb
3i −Hc

3i)(rbc − rtc)(rbc + rtc) + 2Ha
3irbcrtc(−rtc ln rbc + rbc ln rtc)) ,

(I.7b)

where

k0 =
b

(rbc ln(rbc)− rtc ln(rtc))2
, (I.8)

Ha
11 =

1

rbcrtc

[
2rbc (cc11 + cc13) (rbc − rtc)− 2rbcrtcc

c
11 ln (rbc)

+ ln (rtc)
(
r2bc (cc11 + cc13) + r2tc (cc11 − cc13)

) ]
, (I.9a)

Ha
12 =

(cc11 + cc13) (rbc − rtc)
rbcrtc

[
(rbc + rtc) ln

(
rbc
rtc

)
− 2rbc + 2rtc

]
, (I.9b)

Ha
13 =

1

rbcrtc

[
− 2rtc (cc11 + cc13) (rbc − rtc)− 2rbcrtcc

c
11 ln (rtc)

+ ln (rbc)
(
r2bc (cc11 − cc13) + r2tc (cc11 + cc13)

) ]
, (I.9c)

Ha
14 =

cc11 (fb + 2Rb)

2Rbrbcrtc

[
2rbc (−rtc ln (rbc) + rbc − rtc) +

(
r2bc + r2tc

)
ln (rtc)

]
, (I.9d)

Ha
15 =

cc11(rbc − rtc)
rbcrtc

[
(rbc + rtc) ln

(
rbc
rtc

)
− 2rbc + 2rtc

]
, (I.9e)

Ha
16 =

cc11(ft − 2Rt)

2Rtrbcrtc

[
− 2rtc (rbc (− ln (rtc))− rbc + rtc)−

(
r2bc + r2tc

)
ln (rbc)

]
, (I.9f)
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Ha
17 =

cc11
rbcrtc

[
2rbcrtc ln

(
rbc
rtc

)
(rbc ln (rbc)− rtc ln (rtc))

− (rbc − rtc) (rbc + rtc) (rbc (ln (rtc) + 2)− rtc (ln (rbc) + 2))

]
, (I.9g)

Ha
18 =

cc11fb
2Rbrbcrtc

[
2rbc (rtc ln (rbc)− rbc + rtc)−

(
r2bc + r2tc

)
ln (rtc)

]
, (I.9h)

Ha
19 =

cc11ft
2Rtrbcrtc

[
2rtc (rbc (− ln (rtc))− rbc + rtc) +

(
r2bc + r2tc

)
ln (rbc)

]
, (I.9i)

Hb
11 = cc11

(
rbc
(
ln (rbc)

2 − ln (rtc) (ln (rtc) + 2)
)

+ 2rtc ln (rtc)
)

+2cc13 (rbc ln (rbc)− rtc ln (rtc)) , (I.10a)

Hb
12 = cc11 ln

(
rbc
rtc

)[
(rbc + rtc) ln

(
rbc
rtc

)
− 2rbc + 2rtc

]
, (I.10b)

Hb
13 = cc11

(
rtc
(
ln (rtc)

2 − ln (rbc) (ln (rbc) + 2)
)

+ 2rbc ln (rbc)
)

+2cc13 (rtc ln (rtc)− rbc ln (rbc)) , (I.10c)

Hb
14 =

cc11(fb + 2Rb)

2Rb

[
rbc
(
ln (rbc)

2 − ln (rtc) (ln (rtc) + 2)
)

+ 2rtc ln (rtc)

]
, (I.10d)

Hb
15 = cc11 ln

(
rbc
rtc

)[
(rbc + rtc) ln

(
rbc
rtc

)
− 2rbc + 2rtc

]
, (I.10e)
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Hb
16 =

cc11(ft − 2Rt)

2Rt

[
rtc
(
ln (rbc) (ln (rbc) + 2)− ln (rtc)

2
)
− 2rbc ln (rbc)

]
, (I.10f)

Hb
17 = cc11 (rbc − rtc) (− ln (rbcrtc))

[
(rbc + rtc) ln

(
rbc
rtc

)
− 2rbc + 2rtc

]
, (I.10g)

Hb
18 =

cc11fb
2Rb

[
ln (rtc) (rbc (ln (rtc) + 2)− 2rtc)− rbc ln (rbc)

2

]
, (I.10h)

Hb
19 =

cc11ft
2Rt

[
rtc ln (rtc)

2 − ln (rbc) (rtc (ln (rbc) + 2)− 2rbc)

]
, (I.10i)

Hc
11 =

1

2Rb

[
−(cc11−cc13)(rbc−rtc)+cc11rbc ln(rbc)+rtc ln(rtc)(−cc11+(cc11−cc13) ln

(
rtc
rbc

)
)

]
,

(I.11a)

Hc
12 = 2(cc11 − cc13)

[
(rbc − rtc)2 − rbcrtc ln

(
rbc
rtc

)2]
, (I.11b)

Hc
13 =

1

2Rt

[
(cc11−cc13)(rbc−rtc)+cc11rtc ln(rtc)−rbc ln(rbc)(c

c
11 +(cc11−cc13) ln

(
rtc
rbc

)
)

]
,

(I.11c)

Hc
14 =

cc11rbc(fb + 2Rb)

Rb

[
− rbc + rtc + rbc ln(rbc) + rtc ln(rtc)(−1− ln(rbc) + ln(rtc)))

]
,

(I.11d)
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Hc
15 = 2cc11

[
(rbc − rtc)2 − rbcrtc ln

(
rbc
rtc

)2]
, (I.11e)

Hc
16 =

cc11rtc(ft − 2Rt)

Rt

[
− rbc + rtc + rbc ln(rbc)− rtc ln(rtc)(−1− ln(rbc) + ln(rtc)))

]
,

(I.11f)

Hc
17 = cc11

[
2rbcrtc ln

(
rbc
rtc

)
(rbc ln (rtc)− rtc ln (rbc))

− (rbc − rtc) (rbc + rtc) (rbc (ln (rbc)− 2)− rtc (ln (rtc)− 2))

]
, (I.11g)

Hc
18 = −c

c
11fbrbc
Rb

[
− rbc + rtc + rbc ln(rbc) + rtc ln(rtc)(−1− ln(rbc) + ln(rtc))

]
, (I.11h)

Hc
19 =

cc11ftrtc
Rt

[
rbc − rtc + rtc ln(rtc) + rbc ln(rbc)(−1 + ln(rbc)− ln(rtc))

]
, (I.11i)

Hd
11 = −2

3
rbcc

c
11 ln (rtc)

3 + rbc (cc13 − 2cc11) ln (rtc)
2

+2 (cc13 − cc11) ln (rtc) (−rtc ln (rbc) + rbc − rtc) +
1

3
rbc ln (rbc)

2 (2cc11 ln (rbc) + 3cc13) ,

(I.12a)

Hd
12 =

1

3
ln

(
rbc
rtc

)[
− 6 (cc11 − cc13) (rbc − rtc) + cc11 (rbc + 2rtc) ln (rbc)

2

+cc11 ln (rbc) ((rbc − rtc) ln (rtc) + 6rtc)− cc11 ln (rtc) ((2rbc + rtc) ln (rtc) + 6rbc)
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+3cc13 (rbc + rtc) ln

(
rtc
rbc

)]
, (I.12b)

Hd
13 = −2

3
rtcc

c
11 ln (rbc)

3 + rtc (cc13 − 2cc11) ln (rbc)
2

+2 (cc11 − cc13) ln (rbc) (rbc ln (rtc) + rbc − rtc) +
1

3
rtc ln (rtc)

2 (2cc11 ln (rtc) + 3cc13) ,

(I.12c)

Hd
14 =

cc11(fb + 2Rb)

3Rb

[
3rtc ln (rbc) ln (rtc)− ln (rtc)

(
3 (rbc − rtc)

+rbc ln (rtc) (ln (rtc) + 3)
)

+ rbc ln (rbc)
3

]
, (I.12d)

Hd
15 =

1

3
cc11 ln

(
rbc
rtc

)[
(rbc + 2rtc) ln (rbc)

2 + ln (rbc) ((rbc − rtc) ln (rtc) + 6rtc)

− ln (rtc) ((2rbc + rtc) ln (rtc) + 6rbc)− 6rbc + 6rtc

]
, (I.12e)

Hd
16 =

cc11(ft − 2Rt)

3Rt

[
rtc ln (rbc)

3+3rtc ln (rbc)
2−3 ln (rbc) (rbc ln (rtc) + rbc − rtc)−rtc ln (rtc)

3

]
,

(I.12f)

Hd
17 =

2

3
cc11

[ (
r2tc − r2bc

)
ln (rbc)

3+3
(
r2bc + r2tc

)
ln (rbc)

2−3 ln (rbc)
(
4rbcrtc ln (rtc) + r2bc − r2tc

)

+ ln (rtc)
(
r2bc
(
ln (rtc)

2 + 3 ln (rtc) + 3
)
− r2tc

(
ln (rtc)

2 − 3 ln (rtc) + 3
)) ]

, (I.12g)
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Hd
18 =

cc11fb
3Rb

[
rbc
(
ln (rtc)

3 − ln (rbc)
3
)

+3 ln (rtc) (rbc ln (rtc)− rtc ln (rbc) + rbc − rtc)
]
,

(I.12h)

Hd
19 =

cc11ft
3Rt

[
3rbc ln (rbc) ln (rtc)−ln (rbc) (rtc ln (rbc) (ln (rbc) + 3)− 3rbc + 3rtc)+rtc ln (rtc)

3

]
,

(I.12i)

Ha
21 =

1

rbcrtc

[
2rbc (cc13 + cc33) (rbc − rtc)− 2rbcrtcc

c
13 ln (rbc)

+ ln (rtc)
(
r2bc (cc13 + cc33) + r2tc (cc13 − cc33)

) ]
, (I.13a)

Ha
22 =

(cc13 + cc33)(rbc − rtc)
rbcrtc

[
(rbc + rtc) ln

(
rbc
rtc

)
− 2rbc + 2rtc

]
, (I.13b)

Ha
23 =

1

rbcrtc

[
− 2rtc (cc13 + cc33) (rbc − rtc)− 2rbcrtcc

c
13 ln (rtc)

+ ln (rbc)
(
r2bc (cc13 − cc33) + r2tc (cc13 + cc33)

) ]
, (I.13c)

Ha
24 =

cc13(fb + 2Rb)

2Rbrbcrtc

[
2rbc (−rtc ln (rbc) + rbc − rtc) +

(
r2bc + r2tc

)
ln (rtc)

]
, (I.13d)

Ha
25 =

cc13(rbc − rtc)
rbcrtc

[
(rbc + rtc) ln

(
rbc
rtc

)
− 2rbc + 2rtc

]
, (I.13e)
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Ha
26 = −c

c
13(ft − 2Rt)

2Rtrbcrtc

[
2rtc (rbc (− ln (rtc))− rbc + rtc)+

(
r2bc + r2tc

)
ln (rbc)

]
, (I.13f)

Ha
27 =

cc13
rbcrtc

[
− 2 (rbc + rtc) (rbc − rtc) 2 + rtc ln (rbc)

(
2r2bc ln

(
rbc
rtc

)
+ r2bc − r2tc

)

−rbc ln (rtc)

(
2r2tc ln

(
rbc
rtc

)
+ r2bc − r2tc

)]
, (I.13g)

Ha
28 =

cc13fb
2Rbrbcrtc

[
2rbc (rtc ln (rbc)− rbc + rtc)−

(
r2bc + r2tc

)
ln (rtc)

]
, (I.13h)

Ha
29 =

cc13ft
2Rtrbcrtc

[
2rtc (rbc (− ln (rtc))− rbc + rtc) +

(
r2bc + r2tc

)
ln (rbc)

]
, (I.13i)

Hb
21 = − ln (rtc) (rbcc

c
13 (ln (rtc) + 2) + 2rtc (cc33 − cc13))+rbccc13 ln (rbc)

2+2rbcc
c
33 ln (rbc) ,

(I.14a)

Hb
22 = cc13 ln

(
rbc
rtc

)[
(rbc + rtc) ln

(
rbc
rtc

)
− 2rbc + 2rtc

]
, (I.14b)

Hb
23 = − ln (rbc) (rtcc

c
13 (ln (rbc) + 2)− 2rbc (cc13 − cc33))+rtccc13 ln (rtc)

2+2rtcc
c
33 ln (rtc) ,

(I.14c)
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Hb
24 =

cc13(fb + 2Rb)

2Rb

[
rbc ln (rbc)

2 − ln (rtc) (rbc ln (rtc) + 2rbc − 2rtc)

]
, (I.14d)

Hb
25 = cc13 ln

(
rbc
rtc

)[
(rbc + rtc) ln

(
rbc
rtc

)
− 2rbc + 2rtc

]
, (I.14e)

Hb
26 =

cc13(ft − 2Rt)

2Rt

[
rtc ln (rbc)

2 + 2 (rtc − rbc) ln (rbc)− rtc ln (rtc)
2

]
, (I.14f)

Hb
27 = cc13 (rbc − rtc) (− ln (rbcrtc))

[
(rbc + rtc) ln

(
rbc
rtc

)
− 2rbc + 2rtc

]
, (I.14g)

Hb
29 =

cc13fb
2Rb

[
ln (rtc) (rbc ln (rtc) + 2rbc − 2rtc)− rbc ln (rbc)

2

]
, (I.14h)

Hb
29 =

cc13ft
2Rt

[
rtc ln (rtc)

2 − ln (rbc) (rtc ln (rbc)− 2rbc + 2rtc)

]
, (I.14i)

Ha
31 =

1

rbc
Rt (fb + 2Rb) (rbc ln (rbc)− rtc ln (rtc)) ; Ha

32 = 0 , (I.15a)

Ha
33 =

1

rtc
Rb (ft − 2Rt) (rbc ln (rbc)− rtc ln (rtc)) ; Ha

34 = 0 , (I.15b)

Ha
35 =

Rt

rbcrtc

[
−rbcrtc (fb + 2Rb) ln (rbc)+ln (rtc)

(
Rbr

2
bc + r2tc (fb +Rb)

)
+2Rbrbc (rbc − rtc)

]
,

(I.15c)
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Ha
36 =

RbRt(rbc − rtc)
rbcrtc

[
(rbc + rtc) ln

(
rbc
rtc

)
− 2rbc + 2rtc

]
, (I.15d)

Ha
37 =

Rb

rbcrtc

[
rbcrtc (ft − 2Rt) ln (rtc)+ln (rbc)

(
Rt

(
r2bc + r2tc

)
− r2bcft

)
+2Rtrtc (rtc − rbc)

]
,

(I.15e)

Hb
31 = rbcRt (fb + 2Rb)

[
1

2
ln (rtc)

(
−4rtc
rbc

+ ln (rtc) + 2

)
− 1

2
ln (rbc)

2 + ln (rbc)

]
,

(I.16a)

Hb
32 = RbRt ln

(
rbc
rtc

)[
2 (rbc − rtc) + (rbc + rtc) ln

(
rtc
rbc

)]
, (I.16b)

Hb
33 =

1

2
Rb (ft − 2Rt)

[
− rtc ln (rbc)

2 + rtc
(
ln (rtc)

2 − 2 ln (rbcrtc)
)

+ 4rbc ln (rbc)

]
,

(I.16c)

Hb
34 = RbRt (rbc − rtc) (− ln (rbcrtc))

[
2 (rbc − rtc) + (rbc + rtc) ln

(
rtc
rbc

)]
, (I.16d)

Hb
35 =

1

2
Rt

[
− ln (rtc) (rbc (fb + 2Rb) ln (rtc) + 2rbc (fb + 2Rb)− 4rtc (fb +Rb))

+rbc (fb + 2Rb) ln (rbc)
2 − 2fbrbc ln (rbc)

]
, (I.16e)
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Hb
36 = RbRt ln

(
rbc
rtc

)[
(rbc + rtc) ln

(
rbc
rtc

)
− 2rbc + 2rtc

]
, (I.16f)

Hb
37 =

1

2
Rb

[
ln (rbc) (2ft (rtc − 2rbc) + rtc ln (rbc) (ft − 2Rt) + 4Rt (rbc − rtc))

+rtc (− (ft − 2Rt)) ln (rtc)
2 + 2ftrtc ln (rtc)

]
, (I.16g)

Hc
31 =

1

6
Rt (fb + 2Rb)

[
2rbc ln (rtc)

3+9rbc ln (rtc)
2+12 ln (rtc) (−rtc ln (rbc) + rbc − rtc)

+rbc (3− 2 ln (rbc)) ln (rbc)
2

]
, (I.17a)

Hc
32 =

1

3
RbRt ln

(
rbc
rtc

)[
12 (rbc − rtc) + (2rbc + rtc) ln (rtc)

2 + ln (rtc)
(
3 (3rbc + rtc)

+ (rtc − rbc) ln (rbc)
)
− ln (rbc) (3 (rbc + 3rtc) + (rbc + 2rtc) ln (rbc))

]
, (I.17b)

Hc
33 =

1

6
Rb (ft − 2Rt)

[
−2rtc ln (rbc)

3−9rtc ln (rbc)
2+12 ln (rbc) (rbc ln (rtc) + rbc − rtc)

+rtc ln (rtc)
2 (2 ln (rtc)− 3)

]
, (I.17c)

Hc
34 = −1

3
RbRt

[
2
(
r2tc − r2bc

)
ln (rbc)

3 + 3
(
r2bc + 3r2tc

)
ln (rbc)

2

+12rtc ln (rbc) (−2rbc ln (rtc)− rbc + rtc)+ln (rtc)
(
12rbc (rbc − rtc)+2 (rbc − rtc) (rbc + rtc) ln (rtc)

2
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+3
(
3r2bc + r2tc

)
ln (rtc)

)]
, (I.17d)

Hc
35 =

1

6
Rt

[
− 2rbc (fb + 2Rb) ln (rtc)

3 − 3rbc (3fb + 4Rb) ln (rtc)
2

−12 (fb +Rb) ln (rtc) (−rtc ln (rbc) + rbc − rtc)+rbc ln (rbc)
2 (2 (fb + 2Rb) ln (rbc)− 3fb)

]
,

(I.17e)

Hc
36 =

1

3
RbRt ln

(
rbc
rtc

)[
(rbc + 2rtc) ln (rbc)

2 + ln (rbc) ((rbc − rtc) ln (rtc) + 6rtc)

− ln (rtc) ((2rbc + rtc) ln (rtc) + 6rbc)− 6rbc + 6rtc

]
, (I.17f)

Hc
37 =

1

6
Rb

[
2rtc ln (rbc)

3 (ft − 2Rt) + 3rtc ln (rbc)
2 (3ft − 4Rt)

−12 ln (rbc) (ft −Rt) (rbc ln (rtc) + rbc − rtc)+rtc ln (rtc)
2 (3ft − 2 (ft − 2Rt) ln (rtc))

]
,

(I.17g)

Dynamic - Logarithmic EHSAPT

k1 = ρc ∗ k0 , (I.18)

Am1 = k1
ftr

2
tc

16R2
t

(ft − 2Rt)

(
2r2bc log2 (rbc) (2 log (rtc) + 3)

− 2rbc log (rbc) (3rbc − 4rtc + 4rtc log (rtc))− r2bc − 4r2bc log3 (rbc)

+ r2tc + 2r2tc (log (rtc)− 1) log (rtc)

)
, (I.19a)
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Am2 = k1
rbcftrtc

16RbRt

(fb + 2Rb)

(
2rbc log2 (rbc) (rbc − 2rtc log (rtc))

− 2rbc log (rbc)
(
rbc − 2rtc − 2rtc log2 (rtc)

)
+ 2rtc log (rtc) (−2rbc + rtc − rtc log (rtc))

− r2bc + r2tc

)
, (I.19b)

Am3 = −k1
ftrtc

8Rt

(
4r2bcrtc log3 (rbc)− 2r2bcrtc log2 (rbc) (4 log (rtc) + 1)

+ rbc log (rbc) (2rtc log (rtc) (2rbc log (rtc) + rbc + rtc)− (3rbc − 7rtc) (rbc − rtc))

− (rbc − rtc + rtc log (rtc))
(
2rbcrtc log (rtc) + r2bc − r2tc

))
, (I.19c)

Am4 = k1
ftrtc

72Rt

(
9
(
r2bc − r2tc

)
2 − 36r2bcr

2
tc log3 (rbc)

− 12r2bc log2 (rbc)
(
−3rtc (rbc + rtc) log (rtc) + r2bc − 3r2tc

)
+2rbc log (rbc)

(
−18r2bcrtc − 27rbcr

2
tc − 18r2bcrtc log2 (rtc)− 3rtc

(
r2bc + 7r2tc

)
log (rtc) + 11r3bc + 34r3tc

)
+ 6

(
3r2bcr

2
tc + r4tc

)
log2 (rtc)− 2rtc

(
9r2bcrtc − 16r3bc + 7r3tc

)
log (rtc)

)
, (I.19d)

Am5 = −k1
fbrbcftrtc

16RbRt

(
2rbc log2 (rbc) (rbc − 2rtc log (rtc))−2rbc log (rbc)

(
rbc − 2rtc − 2rtc log2 (rtc)

)
+ 2rtc log (rtc) (−2rbc + rtc − rtc log (rtc))− r2bc + r2tc

)
, (I.19e)
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Am6 = −k1
f 2
t r

2
tc

16R2
t

(
2r2bc log2 (rbc) (2 log (rtc) + 3)−2rbc log (rbc) (3rbc − 4rtc + 4rtc log (rtc))

− r2bc − 4r2bc log3 (rbc) + r2tc + 2r2tc (log (rtc)− 1) log (rtc)

)
, (I.19f)

Am7 = −k1
r2tc
4

(
2r2bc log2 (rbc) (2 log (rtc) + 3)−2rbc log (rbc) (3rbc − 4rtc + 4rtc log (rtc))

− r2bc − 4r2bc log3 (rbc) + r2tc + 2r2tc (log (rtc)− 1) log (rtc)

)
, (I.19g)

Am8 = −k1
1

4
rbcrtc

(
(rbc − rtc) (rbc + rtc)− 2rbc log2 (rbc) (rbc − 2rtc log (rtc))

+ 2rbc log (rbc)
(
rbc − 2rtc − 2rtc log2 (rtc)

)
+ 2rtc log (rtc) (2rbc − rtc + rtc log (rtc))

)
,

(I.19h)

Am9 = −k1
rtc

4

(
4r2bcrtc log3 (rbc)− 2r2bcrtc log2 (rbc) (4 log (rtc) + 1)

+ rbc log (rbc) (2rtc log (rtc) (2rbc log (rtc) + rbc + rtc)− (3rbc − 7rtc) (rbc − rtc))

− (rbc − rtc + rtc log (rtc))
(
2rbcrtc log (rtc) + r2bc − r2tc

))
, (I.19i)

Bm
1 = k1

fbrbcrtc

16RbRt

(ft − 2Rt)

(
2rbc log2 (rbc) (rbc − 2rtc log (rtc))

−2rbc log (rbc)
(
rbc − 2rtc − 2rtc log2 (rtc)

)
+2rtc log (rtc) (−2rbc + rtc − rtc log (rtc))−r2bc+r

2
tc

)
,

(I.20a)
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Bm
2 = k1

fbr
2
bc

16R2
b

(fb + 2Rb)

(
− 2r2tc (2 log (rbc) + 3) log2 (rtc)

+2rtc log (rtc) (−4rbc + 4rbc log (rbc) + 3rtc)−r2bc−2r2bc (log (rbc)− 1) log (rbc)+r
2
tc+4r2tc log3 (rtc)

)
,

(I.20b)

Bm
3 = −k1

fbrbc

8Rb

(
− (rbc − rtc)

2 (rbc + rtc)− 2rbcrtc log2 (rbc) (rbc − 2rtc log (rtc))

+ rbc log (rbc) ((rbc − rtc) (rbc + 3rtc) + 2rtc log (rtc) (rbc + rtc − 4rtc log (rtc)))

+ rtc log (rtc) (2rbcrtc log (rtc) (2 log (rtc)− 1)− (7rbc − 3rtc) (rbc − rtc))

)
, (I.20c)

Bm
4 = −k1

fbrbc

72Rb

(
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2
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)
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− 6rbc log2 (rbc)
(
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2
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)
+2rbc log (rbc)

(
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2
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(
7r2bcrtc + r3tc

)
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)
+
(
36rbcr

3
tc + 54r2bcr

2
tc − 68r3bcrtc − 22r4tc

)
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)
, (I.20d)
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f 2
b r

2
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b

(
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)
, (I.20e)
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(
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)
+ 2rtc log (rtc) (−2rbc + rtc − rtc log (rtc))− r2bc + r2tc

)
, (I.20f)
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7 = −k1

1

4
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(
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+ 2rbc log (rbc)
(
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)
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)
,
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(
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)
, (I.20i)
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4

(
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(
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, (I.21a)
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+ rtc log (rtc) ((rbc − rtc) (7rbc − 3rtc) + 2rbcrtc log (rtc) (1− 2 log (rtc)))
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rbc
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,
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16R2

t
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2

(
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2
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)
,
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(fb + 2Rb) (ft − 2Rt)

(
2rbc log2 (rbc) (rbc − 2rtc log (rtc))

−2rbc log (rbc)
(
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2
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)
,

(I.22b)
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3 = −k1
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(
− 4r2bcrtc log3 (rbc) + 2r2bcrtc log2 (rbc) (4 log (rtc) + 1)
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+ (rbc − rtc + rtc log (rtc))
(
2rbcrtc log (rtc) + r2bc − r2tc
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, (I.22c)
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9
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)
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(
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(
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)
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(
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(
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(
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,

(I.22d)

Dm
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16RbRt
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(
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)
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,
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(
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2
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,
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Em
2 = −k1
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16R2
b
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2
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2
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,

(I.23b)

Em
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(
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+ rbc log (rbc) ((rbc − rtc) (rbc + 3rtc) + 2rtc log (rtc) (rbc + rtc − 4rtc log (rtc)))

+ rtc log (rtc) (2rbcrtc log (rtc) (2 log (rtc)− 1)− (7rbc − 3rtc) (rbc − rtc))

)
, (I.23c)

Em
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(
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)
2+36r2bcr

2
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r2tc − 3r2bc

)
log2 (rtc)

− 6rbc log2 (rbc)
(
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2
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)
+2rbc log (rbc)

(
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2
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(
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)
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36rbcr

3
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2
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)
, (I.23d)

Em
5 = k1

fbr
2
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16R2
b

(fb+2Rb)

(
−2r2tc (2 log (rbc) + 3) log2 (rtc)+2rtc log (rtc) (−4rbc + 4rbc log (rbc) + 3rtc)

− r2bc − 2r2bc (log (rbc)− 1) log (rbc) + r2tc + 4r2tc log3 (rtc)

)
, (I.23e)
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(
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+ 2rbc log (rbc)
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rbc − 2rtc − 2rtc log2 (rtc)
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+ 2rtc log (rtc) (2rbc − rtc + rtc log (rtc))
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,

(I.23f)
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, (I.24a)
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+ rbc log (rbc) ((rbc − rtc) (rbc + 3rtc) + 2rtc log (rtc) (rbc + rtc − 4rtc log (rtc)))

+ rtc log (rtc) (2rbcrtc log (rtc) (2 log (rtc)− 1)− (7rbc − 3rtc) (rbc − rtc))

)
, (I.24b)
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(
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)))
,

(I.24c)
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1
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2
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)
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+ 5r4bc + 59r4tc

]
+ rtc (rbc − rtc)

2
(
32rbcrtc + 59r2bc + 5r2tc

)
log (rtc)

}
, (I.24d)
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5 = −k1

fbrbc
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(
− (rbc − rtc)

2 (rbc + rtc)− 2rbcrtc log2 (rbc) (rbc − 2rtc log (rtc))

+ rbc log (rbc) ((rbc − rtc) (rbc + 3rtc) + 2rtc log (rtc) (rbc + rtc − 4rtc log (rtc)))

+ rtc log (rtc) (2rbcrtc log (rtc) (2 log (rtc)− 1)− (7rbc − 3rtc) (rbc − rtc))
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, (I.24e)
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)
−2rtc log (rtc)

(
9r2bcrtc + 3rbc log (rbc)

(
−6rbc (rbc + rtc) log (rbc) + r2bc + 7r2tc
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(
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)
− (rbc − rtc)

(
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(
9rbcr

2
tc + 3rtc log (rtc)
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APPENDIX B

POLYNOMIAL EHSAPT CONSTANTS

Aai =
bft

8c5Rt

(
(c−Rc)

(
Rc

(
RcH

b
1i −Ha

1i

)
+Hc

1i

)
+Hd

1i

)
, (II.1a)

Abi =
bcc55

16c6RbR2
t

(
ft
(
−R2

c

(
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3i

)
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b
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b
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)
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)
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c2 −R2

c

)
ln

(
Rc − c
Rc + c

)
+ cRc

)
, (II.9e)
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Hb
16 =

cc11 (ft − 2Rt)

3cRt

(ft − 2Rt)

(
3

2
(c−Rc)R

2
c ln

(
Rc + c

Rc − c

)

−c
(
c2 − 3cRc + 3R2

c

))
, (II.9f)

Hb
17 =

4

3
cc11

(
2c3 +

3

2
Rc

(
c2 −R2

c

)
ln

(
Rc + c

Rc − c

)
− 3cR2

c

)
, (II.9g)

Hb
18 =

fbc
c
11

3cRb

(
c
(
c2 + 3cRc + 3R2

c

)
+

3

2
(Rc + c)R2

c ln

(
Rc + c

Rc − c

))
, (II.9h)

Hb
19 =

ftc
c
11

3cRt

(
c
(
c2 − 3cRc + 3R2

c

)
+

3

2
(c−Rc)R

2
c ln

(
Rc − c
Rc + c

))
, (II.9i)

Hc
11 = −2

3
c3 ((c− 2Rc) c

c
13 + ccc11) ; Hc

12 = −8

3
c3Rcc

c
13 , (II.10a)

Hc
13 =

2

3
c3 ((2Rc + c) cc13 + ccc11) ; Hc

14 = −c
4cc11 (fb + 2Rb)

5Rb

, (II.10b)

Hc
15 = 0 ; Hc

16 = −c
4cc11 (ft − 2Rt)

5Rt

; Hc
17 =

8

15
c5cc11 , (II.10c)

Hc
18 =

c4fbc
c
11

5Rb

; Hc
19 =

c4ftc
c
11

5Rt

, (II.10d)

Hd
11 =

2

15
c4 ((6c− 5Rc) c

c
13 + 3ccc11) , (II.11a)
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Hd
12 =

8

15
c5 (cc11 − 3cc13) , (II.11b)

Hd
13 =

2

15
c4 ((5Rc + 6c) cc13 + 3ccc11) , (II.11c)

Hd
14 =

c5cc11 (fb + 2Rb)

5Rb

; Hd
15 =

8

15
c5cc11 , (II.11d)

Hd
16 = −c

5cc11 (ft − 2Rt)

5Rt

; Hd
17 = 0 , (II.11e)

Hd
18 = −c

5fbc
c
11

5Rb

; Hd
19 =

c5ftc
c
11

5Rt

, (II.11f)

Ha
21 =

4

3
((2c− 3Rc) c

c
33 + ccc13) ; Ha

22 =
16

3
c (cc13 − cc33) , (II.12a)

Ha
23 =

4

3
((3Rc + 2c) cc33 + ccc13) ; Ha

24 =
2ccc13 (fb + 2Rb)

3Rb

, (II.12b)

Ha
25 =

16

3
ccc13 ; Ha

26 = −2ccc13 (ft − 2Rt)

3Rt

, (II.12c)

Ha
27 = 0 ; Ha

28 = −2cfbc
c
13

3Rb

; Ha
29 =

2cftc
c
13

3Rt

, (II.12d)

Hb
21 = −4

3
c ((c− 2Rc) c

c
33 + ccc13) ; Hb

22 = −16

3
cRcc

c
33 , (II.13a)

Hb
23 =

4

3
c ((2Rc + c) cc33 + ccc13) ; Hb

24 = −2c2cc13 (fb + 2Rb)

5Rb

, (II.13b)
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Hb
25 = 0 ; Hb

26 = −2c2cc13 (ft − 2Rt)

5Rt

; Hb
27 =

16

15
c3cc13 , (II.13c)

Hb
28 =

2c2fbc
c
13

5Rb

; Hb
29 =

2c2ftc
c
13

5Rt

, (II.13d)

Ha
31 =

2

3
c3 (c− 3Rc)Rt (fb + 2Rb) ; Ha

32 = −32

3
c4RbRt , (II.14a)

Ha
33 = −2

3
c3Rb (3Rc + c) (ft − 2Rt) ; Ha

34 = 0 , (II.14b)

Ha
35 = −2

3
c3Rt (fb (c− 3Rc)− 2cRb) ; Ha

36 =
16

3
c4RbRt , (II.14c)

Ha
37 =

2

3
c3Rb ((3Rc + c) ft + 2cRt) , (II.14g)

Hb
31 = Rt (fb + 2Rb)

(
−4c3

3
+ 2c2Rc + 2cR2

c +R2
c (Rc + c) ln

(
Rc + c

Rc − c

))
, (II.15a)

Hb
32 = −4cRbRt

(
2cRc + (c−Rc) (Rc + c) ln

(
Rc − c
Rc + c

))
, (II.15b)

Hb
33 = −2

3
Rb

(
c
(
2c2 + 3cRc − 3R2

c

)
+

3

2
(Rc − c)R2

c ln

(
Rc − c
Rc + c

))
(ft − 2Rt) ,

(II.15c)
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Hb
34 = −8

3
cRbRt

(
2c3 +

3

2
Rc

(
c2 −R2

c

)
ln

(
Rc + c

Rc − c

)
− 3cR2

c

)
, (II.15d)

Hb
35 =

1

3
Rt

(
4c3 (fb − 3Rb)− 6c2Rc (fb + 2Rb)− 6cfbR

2
c

+3Rc (Rc + c) ln

(
Rc − c
Rc + c

)
(fbRc + 2cRb)

)
, (II.15e)

Hb
36 = 8cRbRt

(
1

2

(
c2 −R2

c

)
ln

(
Rc − c
Rc + c

)
+ cRc

)
, (II.15f)

Hb
37 =

2

3
Rb

(
c
((

2c2 + 3cRc − 3R2
c

)
ft + 6c (c−Rc)Rt

)
+

3

2
(c−Rc)Rc ln

(
Rc + c

Rc − c

)
(Rcft + 2cRt)

)
, (II.15g)

Hc
31 = − 4

15
c4 (3c− 5Rc)Rt (fb + 2Rb) ; Hc

32 = −16

3
c4RbRcRt , (II.16a)

Hc
33 = − 4

15
c4Rb (5Rc + 3c) (ft − 2Rt) ; Hc

34 = −16

5
c6RbRt , (II.16b)

Hc
35 =

4

15
c4Rt (fb (3c− 5Rc)− 5cRb) ; Hc

36 = 0 , (II.16c)

Hc
37 =

4

15
c4Rb ((5Rc + 3c) ft + 5cRt) , (II.16g)
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Hd
31 =

2

5
c5 (c− 3Rc)Rt (fb + 2Rb) ; Hd

32 = −64

15
c6RbRt , (II.17a)

Hd
33 = −2

5
c5Rb (3Rc + c) (ft − 2Rt) ; Hd

34 = −32

15
c6RbRcRt , (II.17b)

Hd
35 = −2

5
c5Rt (fb (c− 3Rc)− 2cRb) ; Hd

36 =
16

15
c6RbRt , (II.17c)

Hd
37 =

2

5
c5Rb ((3Rc + c) ft + 2cRt) , (II.17d)

Dynamic - Polynomial EHSAPT

Am1 =
bcρc (6Rc + 5c) ft (ft − 2Rt)

140R2
t

; Am2 = bρc

(
− cfbRcft

140RbRt

− cRcft
70Rt

)
, (II.18a)

Am3 = bρc

(
− c2ft

35Rt

− cRcft
15Rt

)
; Am4 = −bc

2ρc (Rc + c) ft
35Rt

, (II.18b)

Am5 =
bcfbρcRcft
140RbRt

; Am6 = bρc

(
− c

2f 2
t

28R2
t

− 3cRcf
2
t

70R2
t

)
, (II.18c)

Am7 = bρc

(
−c

2

5
− 4cRc

15

)
; Am8 =

1

15
bcρcRc , (II.18d)

Am9 =
1

15
(−2)bcρc (Rc + c) , (II.18e)
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Bm
1 = bρc

(
cfbRc

70Rb

− cfbRcft
140RbRt

)
; Bm

2 = −bcfbρc (5c− 6Rc) (fb + 2Rb)

140R2
b

, (II.19a)

Bm
3 = bρc

(
cfbRc

15Rb

− c2fb
35Rb

)
; Bm

4 = bρc

(
c3fb
35Rb

− c2fbRc

35Rb

)
, (II.19b)

Bm
5 = bρc

(
c2f 2

b

28R2
b

− 3cf 2
bRc

70R2
b

)
; Bm

6 =
bcfbρcRcft
140RbRt

, (II.19c)

Bm
7 =

1

15
bcρcRc ; Bm

8 = bρc

(
c2

5
− 4cRc

15

)
, (II.19d)

Bm
9 = bρc

(
2c2

15
− 2cRc

15

)
, (II.19e)

Cm
7 =

1

15
(−2)bcρc (Rc + c) ; Cm

8 = bρc

(
2c2

15
− 2cRc

15

)
, (II.20a)

Cm
9 =

1

15
(−16)bcρcRc , (II.20b)

Dm
1 = −bcρc (6Rc + 5c) (ft − 2Rt)

2

140R2
t

; Dm
2 =

bcρcRc (fb + 2Rb) (ft − 2Rt)

140RbRt

, (II.21a)

Dm
3 =

bcρc (7Rc + 3c) (ft − 2Rt)

105Rt

; Dm
4 =

bc2ρc (Rc + c) (ft − 2Rt)

35Rt

, (II.21b)
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Dm
5 = bρc

(
cfbRc

70Rb

− cfbRcft
140RbRt

)
; Dm

6 =
bcρc (6Rc + 5c) ft (ft − 2Rt)

140R2
t

, (II.21c)

Em
1 =

bcρcRc (fb + 2Rb) (ft − 2Rt)

140RbRt

; Em
2 = −bcρc (6Rc − 5c) (fb + 2Rb)

2

140R2
b

, (II.22a)

Em
3 = −bcρc (7Rc − 3c) (fb + 2Rb)

105Rb

; Em
4 = −bc

2ρc (c−Rc) (fb + 2Rb)

35Rb

, (II.22b)

Em
5 = −bcfbρc (5c− 6Rc) (fb + 2Rb)

140R2
b

; Em
6 = bρc

(
− cfbRcft

140RbRt

− cRcft
70Rt

)
, (II.22c)

Fm
1 =

bcρc (7Rc + 3c) (ft − 2Rt)

105Rt

; Fm
2 = −bcρc (7Rc − 3c) (fb + 2Rb)

105Rb

, (II.23a)

Fm
3 =

1

15
(−16)bcρcRc ; Fm

4 =
1

105
(−16)bc3ρc , (II.23b)

Fm
5 = bρc

(
cfbRc

15Rb

− c2fb
35Rb

)
; Fm

6 = bρc

(
− c2ft

35Rt

− cRcft
15Rt

)
, (II.23c)

Gm
1 =

bc2ρc (Rc + c) (ft − 2Rt)

35Rt

; Gm
2 = −bc

2ρc (c−Rc) (fb + 2Rb)

35Rb

, (II.24a)
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Gm
3 =

1

105
(−16)bc3ρc ; Gm

4 =
1

105
(−16)bc3ρcRc , (II.24b)

Gm
5 = bρc

(
c3fb
35Rb

− c2fbRc

35Rb

)
; Gm

6 = −bc
2ρc (Rc + c) ft

35Rt

, (II.24c)
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APPENDIX C

LOGARITHMIC EHSAPT WITH STRESS RESULTANTS

Let us define,

k2 =
1

rtc ln rtc − rbc ln rbc
, (III.1)

logarithmic EHSAPT governing equations for 0 < θ < α are:

Top Face Sheet

δwt0:

− k2rbcftrtc ln (rbc) (Qc
rs1)
′ (θ)

Rt

− k2rbcftrtc ln (rbc) (Qc
ss2)
′′ (θ)

2Rt

+ k2rbcrtc ln (rbc) (Qc
rs1)
′ (θ) +

k2ftrtc (Qc
rs2)
′ (θ)

2Rt

+
k2ftrtc (Qc

ss2)
′′ (θ)

2Rt

− k2ftrtc (V c
rs)
′ (θ)

2Rt

− k2rtc (Qc
rs2)
′ (θ)− (M t

ss)
′′

(θ)

Rt

+ k2rbcrtc ln (rbc)Q
c
rr1(θ)

− k2rbcrtc ln (rbc)Q
c
ss2(θ) + k2rtcQ

c
ss2(θ) + k2rtcN

c
ss(θ) +N t

ss(θ)

= −m′t(θ)−Rtqt(θ) , (III.2a)

δut0:

− k2rbcftrtc ln (rbc) (Qc
ss2)
′ (θ)

2Rt

+ k2rbcrtc ln (rbc) (Qc
ss2)
′ (θ) +

k2ftrtc (Qc
ss2)
′ (θ)

2Rt

− k2rtc (Qc
ss2)
′ (θ)− (M t

ss)
′
(θ)

Rt

−
(
N t

ss

)′
(θ)− k2rbcftrtc ln (rbc)Q

c
rs1(θ)

Rt

+ 2k2rbcrtc ln (rbc)Q
c
rs1(θ) +

k2ftrtcQ
c
rs2(θ)

2Rt

− k2ftrtcV
c

rs(θ)

2Rt

− k2rtcQ
c
rs2(θ) + k2rtcV

c
rs(θ)

= −mt(θ)−Rtnt(θ) , (III.2b)

Bottom Face Sheet
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δwb0:

− k2fbrbcrtc ln (rtc) (Qc
rs1)
′ (θ)

Rb

+
k2fbrbc (Qc

rs2)
′ (θ)

2Rb

+
k2fbrbc (Qc

ss2)
′′ (θ)

2Rb

− k2fbrbcrtc ln (rtc) (Qc
ss2)
′′ (θ)

2Rb

− k2fbrbc (V c
rs)
′ (θ)

2Rb

−
(
M b

ss

)′′
(θ)

Rb

− k2rbcrtc ln (rtc) (Qc
rs1)
′ (θ) + k2rbc (Qc

rs2)
′ (θ) +N b

ss(θ)

+ k2rbcrtc (− ln (rtc))Q
c
rr1(θ)− k2rbcQ

c
ss2(θ) + k2rbcrtc ln (rtc)Q

c
ss2(θ)− k2rbcN

c
ss(θ)

= Rbqb(θ) +m′b(θ) , (III.2c)

δub0:

k2fbrbc (Qc
ss2)
′ (θ)

2Rb

− k2fbrbcrtc ln (rtc) (Qc
ss2)
′ (θ)

2Rb

−
(
M b

ss

)′
(θ)

Rb

−
(
N b

ss

)′
(θ) + k2rbc (Qc

ss2)
′ (θ)− k2rbcrtc ln (rtc) (Qc

ss2)
′ (θ)− k2fbrbcrtc ln (rtc)Q

c
rs1(θ)

Rb

+
k2fbrbcQ

c
rs2(θ)

2Rb

− k2fbrbcV
c

rs(θ)

2Rb

− 2k2rbcrtc ln (rtc)Q
c
rs1(θ) + k2rbcQ

c
rs2(θ)− k2rbcV

c
rs(θ)

= Rbnb(θ) +mb(θ) , (III.2d)

Core

δwc0:

− k2rbcrtc ln (rbc) (Qc
rs1)
′ (θ) + k2rbcrtc ln (rtc) (Qc

rs1)
′ (θ)− k2rbc (Qc

rs2)
′ (θ)

+ k2rtc (Qc
rs2)
′ (θ)− (V c

rs)
′ (θ) + k2rbcrtc (− ln (rbc))Q

c
rr1(θ) + k2rbcrtc ln (rtc)Q

c
rr1(θ)

+ k2rbcQ
c
ss2(θ) + k2rbcrtc ln (rbc)Q

c
ss2(θ)− k2rbcrtc ln (rtc)Q

c
ss2(θ) + k2rbcN

c
ss(θ)

− k2rtcQ
c
ss2(θ)− k2rtcN

c
ss(θ) +N c

ss(θ)

= 0 , (III.2e)
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δuc0:

− k2rbc (Qc
ss2)
′ (θ)− k2rbcrtc ln (rbc) (Qc

ss2)
′ (θ) + k2rbcrtc ln (rtc) (Qc

ss2)
′ (θ)

+ k2rtc (Qc
ss2)
′ (θ)− (N c

ss)
′ (θ)− 2k2rbcrtc ln (rbc)Q

c
rs1(θ) + 2k2rbcrtc ln (rtc)Q

c
rs1(θ)

− k2rbcQ
c
rs2(θ) + k2rbcV

c
rs(θ) + k2rtcQ

c
rs2(θ)− k2rtcV

c
rs(θ)− V c

rs(θ)

= 0 , (III.2f)

δuc1:

− k2r2bc (Qc
ss2)
′ (θ) + k2r

2
bcrtc ln (rtc) (Qc

ss2)
′ (θ)− k2rbcr

2
tc ln (rbc) (Qc

ss2)
′ (θ)

+ k2r
2
tc (Qc

ss2)
′ (θ)− (M c

ss)
′ (θ) + 2k2r

2
bcrtc ln (rtc)Q

c
rs1(θ)

− 2k2rbcr
2
tc ln (rbc)Q

c
rs1(θ)− k2r2bcQ

c
rs2(θ) + k2r

2
bcV

c
rs(θ) + k2r

2
tcQ

c
rs2(θ)− k2r2tcV c

rs(θ)

= 0 . (III.2g)

Boundary conditions are at θ = 0 and θ = α, read as follows (at each end there are nine

boundary conditions, three for each of the two face sheets and three for the core):

Top Face Sheet

Either δwt0 = 0 or,

k2rbcftrtc log (rbc) (Qc
ss2)
′ (θ)

2Rt

−k2ftrtc (Qc
ss2)
′ (θ)

2Rt

+
(M t

ss)
′
(θ)

Rt

+
k2rbcftrtc log (rbc)Q

c
rs1(θ)

Rt

+ k2rbcrtc (− log (rbc))Q
c
rs1(θ)−

k2ftrtcQ
c
rs2(θ)

2Rt

+
k2ftrtcV

c
rs(θ)

2Rt

+ k2rtcQ
c
rs2(θ)

= mt(θ)− Pt , (III.3a)

Either δwt ′0 = 0 or ,

−k2rbcftrtc log (rbc)Q
c
ss2(θ)

2Rt

+
k2ftrtcQ

c
ss2(θ)

2Rt

− M t
ss(θ)

Rt

= −Mt

Rt

, (III.3b)
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Either δut0 = 0 or,

k2rbcftrtc log (rbc)Q
c
ss2(θ)

2Rt

− k2rbcrtc log (rbc)Q
c
ss2(θ)−

k2ftrtcQ
c
ss2(θ)

2Rt

+ k2rtcQ
c
ss2(θ) +

M t
ss(θ)

Rt

+N t
ss(θ) =

Mt

Rt

−Nt , (III.3c)

Bottom Face Sheet

Either δwb0 = 0 or,

− k2fbrbc (Qc
ss2)
′ (θ)

2Rb

+
k2fbrbcrtc log (rtc) (Qc

ss2)
′ (θ)

2Rb

+

(
M b

ss

)′
(θ)

Rb

+
k2fbrbcrtc log (rtc)Q

c
rs1(θ)

Rb

− k2fbrbcQ
c
rs2(θ)

2Rb

+
k2fbrbcV

c
rs(θ)

2Rb

+ k2rbcrtc log (rtc)Q
c
rs1(θ)− k2rbcQ

c
rs2(θ) = −mb(θ)− Pb , (III.3d)

Either δwb ′0 = 0 or,

k2fbrbcQ
c
ss2(θ)

2Rb

− k2fbrbcrtc log (rtc)Q
c
ss2(θ)

2Rb

− M b
ss(θ)

Rb

= −Mb

Rb

, (III.3e)

Either δub0 = 0 or,

− k2fbrbcQ
c
ss2(θ)

2Rb

+
k2fbrbcrtc log (rtc)Q

c
ss2(θ)

2Rb

+
M b

ss(θ)

Rb

+N b
ss(θ)

− k2rbcQ
c
ss2(θ) + k2rbcrtc log (rtc)Q

c
ss2(θ) =

Mb

Rb

−Nb , (III.3f)

Core

Either δwc0 = 0 or,

k2rbcrtc log (rbc)Q
c
rs1(θ)− k2rbcrtc log (rtc)Q

c
rs1(θ) + k2rbcQ

c
rs2(θ)

− k2rtcQ
c
rs2(θ) + V c

rs(θ) = 0 , (III.3g)
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Either δuc0 = 0 or,

k2rbcQ
c
ss2(θ) + k2rbcrtc log (rbc)Q

c
ss2(θ)− k2rbcrtc log (rtc)Q

c
ss2(θ)

− k2rtcQ
c
ss2(θ) +N c

ss(θ) = 0 , (III.3h)

Either δuc1 = 0 or,

k2r
2
bcQ

c
ss2(θ)− k2r2bcrtc log (rtc)Q

c
ss2(θ) + k2rbcr

2
tc log (rbc)Q

c
ss2(θ)

− k2r2tcQc
ss2(θ) +M c

ss(θ) = 0 , (III.3i)
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