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SUMMARY

A construction is given for which the Hausdorff measure and dimension of an arbi-

trary abstract compact metric space (X, d) can be encoded in a spectral triple. By intro-

ducing the concept of resolving sequence of open covers, conditions are given under which

the topology, metric, and Hausdorff measure can be recovered from a spectral triple de-

pendent on such a sequence. The construction holds for arbitrary compact metric spaces,

generalizing previous results for fractals, as well as the original setting of manifolds, and

also holds when Hausdorff and box dimensions differ—in particular, it does not depend on

any self-similarity or regularity conditions on the space. The only restriction on the space is

that it have positive s0-dimensional Hausdorff measure, where s0 is the Hausdorff dimension

of the space, assumed to be finite. Also, X does not need to be embedded in another space,

such as Rn.

vii



CHAPTER I

INTRODUCTION

In the present work, a method is given for encoding the data of a compact metric space

(X, d) in a spectral triple (A,H, D), allowing X to be viewed as a Riemannian manifold,

with Hausdorff measure and dimension serving as the volume form and dimension of X.

The construction is completely general, extending previous partial results known for fractal

spaces, as well as agreeing with the original setting of (commutative) Riemannian geometry.

In particular, the construction holds on spaces for which the Hausdorff and box dimensions

are not equal. The only condition on the space is that it have positive Hausdorff measure

in the dimension of the space, which is necessary to ensure a nontrivial integration theory,

and that the dimension is finite and positive.

Main Theorem. If (X, d) is a compact metric space, there exists a family of spectral

triples (A,H, Dτ ) from which (X, d) can be recovered, as well as the Hausdorff measure and

dimension of X when these are finite and positive.

The principle innovation of this work is the concept of resolving sequences of open

covers (Definition 4.1.1). These are fairly intuitive objects and are sufficiently general to

encode the space as a topological space (up to homeomorphism—see Theorem 5.1.8). In

addition, the choice functions of [51] are adapted to the current, more general setting, giving

a family of choices for each resolving sequence. A spectral triple is defined for each choice;

the integration theory (trace functional) is independent of the choice, depending only on

the resolving sequence (Theorem 5.3.4) so the properties of the resolving sequence govern

the integration theory of the triple (Theorem 5.3.4). However, for an arbitrary compact

metric space, the original metric can only be recovered by considering a family of choices

(Proposition 5.2.2).

Previously, there have been several constructions of spectral triples for fractals [6, 7, 10,

12, 15, 25, 33, 34, 35, 44, 45, 51] as well as conditions for spectral triples to encode the
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metric data of a compact metric space [6, 14, 15, 49, 59] or the full data of a Riemannian

manifold [17, 18, 55]. In fact, analysis of self-similar spaces often relies on a specific resolving

sequence determined by the self-similiarity, and a benefit of the more general approach is

that it demonstrates the limitations of these individual constructions in cases where they do

not recover the complete Hausdorff characteristics (measure and dimension) of the space.

By establishing an operator-theoretic integration theory within the framework of non-

commutative geometry, these results provide a conceptual bridge between classical, commu-

tative geometry and geometric topology and fully noncommutative geometry and topology.

By encoding metric data in a spectral triple, it is shown that general constructions defined

in terms of a Dirac operator in the noncommutative setting correctly generalize the struc-

ture of a Riemannian manifold to arbitrary compact metric spaces. In addition, in [51] the

Dirac operator of a similar spectral triple determines a Laplace-Beltrami operator on an

ultrametric Cantor set, and by a theorem of Fukushima [28], the associated Dirichlet form

determines a Markov semigroup on the space giving a notion of Brownian motion on the

Cantor set. The goal of the current work is to to provide a framework that would enable

such diffusion processes to be defined for arbitrary compact metric spaces.
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CHAPTER II

NONCOMMUTATIVE GEOMETRY

Noncommutative geometry provides a framework to study spaces which are “badly-behaved

as point sets” [16], and are thus better understood from an algebra that encodes the data

of a suitable abstraction of the space. Thus, a space X might be seen as a measure space,

a topological space, or a smooth manifold, with the von Neuman algebra L∞ (X), the

C*-algebra C(X) of complex-valued continuous functions, or its dense subalgebra C∞ (X) of

smooth functions, respectively, providing the algebraic context. This allows the viewpoint of

classical Riemannian geometry to be extended both to point-based spaces lacking a smooth

structure but possessing a commutative algebra of functions as well as “implied” spaces

studied solely from the properties of a noncommutative algebra. The approach of swapping

spaces for algebras has its modern origin in the work of Murray and von Neumann on

measure spaces and W*-algebras as well as the 1943 paper of Gelfand and Naimark [30],

which established the duality between locally compact Hausdorff topological spaces and

commutative C*-algebras. The origins of Connes’ program to extend this duality to the

more refined structures of Riemannian geometry lie in Atiyah’s work on K-theory and the

subsequent Atiyah-Singer Index Theorem [2].

2.1 C*-algebras & Topology: The Gelfand-Naimark Theorems

Gelfand and Naimark [30] established the properties of C*-algebras and the centrality of

these algebras in operator theory.

Definition 2.1.1 (C*-algebra). A Banach algebra is a pair (A, ‖·‖), where A is an asso-

ciative algebra over C, ‖·‖ is a norm on this algebra, and A is a complete metric space in

the norm topology determined by ‖·‖. A map ∗ : A → S is an involution if ∗2 = 1. A

Banach algebra is a C*-algebra if it is equipped with an isometric involution ∗ that satisfies

3



the C*-condtion

‖a∗a‖ = ‖a‖2 for all a ∈ A

There are two primary examples of C*-algebras. The first is the commutative algebra

C0(X) of complex-valued continuous functions on a locally compact Hausdorff space X with

the supremum (uniform convergence) norm and involution given by complex-conjugation.

If X is compact, then C(X) is a unital algebra (it possesses a multiplicative unit, the

constant function 1). A state on a C*-algebra A is a positive linear functional of norm

one. For simplicity, assume A = C(X) for some compact Hausdorff space X (in which

case the states represent probability measures on X). The set of all states on C(X) is a

closed convex subset of the unit sphere in the dual space of C(X), which is compact by

Alaoglu’s Theorem. The extreme points of the state space are the pure states. A character

χ on a C*-algebra A is a multiplicative linear functional on A (i.e. χ (φ · ψ) = χ (φ) · χ (ψ)

for all φ, ψ ∈ A), and a point x ∈ X determines a character x̂ on C(X) by evaluation:

x̂ (f) := f(x). Also, x determines a maximal ideal mx := {f ∈ C(X) | f(x) = 0} of C(X):

those functions vanishing at x. Thus, each point x ∈ X corresponds to a maximal ideal in

C(X) and a pure state on C(X). The first Gelfand-Naimark theorem establishes that all of

the pure states on any commutative C*-algebra A are characters of the form x̂, where the

points x are elements of the maximal ideal space spec (A) of A, given the weak-∗ topology

of the state space.

Theorem 2.1.2 (Commutative Gelfand-Naimark Theorem). Given any commutative C*-

algebra A there is a locally compact Hausdorff space spec (A) (unique up to homeomor-

phism), such that A ' C(spec (A)). A is unital if and only if spec (A) is compact.

The second, noncommutative, example of a C*-algebra is B(H), the bounded operators

on a Hilbert space H with the operator norm and involution given by taking adjoints. Any

subalgebra of B(H) which is closed in the strong operator topology is also a C*-algebra.

Theorem 2.1.3 (Noncommutative Gelfand-Naimark Theorem). Any C*-algebra is isomet-

rically ∗-isomorphic to a C*-algebra of bounded operators on a Hilbert Space.
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The content of the Gelfand-Naimark Theorems is that the two examples given above

exhaust all possible C*-algebras. The commutative theorem establishes a categorical equiv-

alence between locally compact Hausdorff spaces and commutative C*-algebras. It orig-

inally occurred as a lemma in the proof of the noncommutative theorem, which Gelfand

and Naimark considered the more important result. The noncommutative theorem ensures

that faithful (one-to-one) Hilbert space representations of C*-algebras always exist. The

construction was discovered independently by Segal[61], who also established the formal

definitions of C*-algebras and their states. For more details, see [19, 63, 1, 60, 21, 52, 39].

Given the relationships between topological spaces, algebras of bounded operators on a

Hilbert space, and C*-algebras established by the Gelfand-Naimark Theorems, Gelfand was

led to the possibility of a topological basis for the index of an elliptic differential operator

[29]. This was resolved by the work of Atiyah and Singer [2], expressing the index of such

an operator on a compact manifold in terms of the K-theory of the manifold, establishing

the dependence of this index on the topology alone. This led to a theory of abstract

elliptic operators, extended by Connes to the concept of a Fredholm module. This laid the

groundwork for Connes to show how a Riemannian metric is encoded by a specific elliptic

operator (the Dirac operator) on a Riemannian spin manifold.

2.2 Noncommutative Riemannian Geometry

As a motivation for developing an algebraic context for the Riemannian geometry of compact

metric spaces, consider the algebras associated with the following two spaces.

2.2.1 The circle S1

Let S1 = R/Z and consider the C*-algebra A := C(S1) and the dense subalgebra of smooth

functions C∞ (X). Let H := L2
(
S1, µ

)
, where µ is Lebesque measure, and let π : A → H be

the (faithful) representation of left multiplication: for any f ∈ C(S1), ψ(t) 7→ f(t) ·ψ(t) for

all ψ ∈ H. Define the unbounded operator D := −i ddt on the dense subalgabra of smooth

functions. On this algebra the identity

[D,π (f)] = −iπ
(
df

dt

)
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shows that commutation with D represents differentiation. Furthermore,

‖[D,π(f)]‖B(H) = sup
‖ψ‖H=1

{∥∥∥∥π(dfdt
)
ψ

∥∥∥∥
H

}
=

∥∥∥∥dfdt
∥∥∥∥
∞

= Lip(f)

where Lip(f) is the Lipschitz constant for f :

Lip(f) := sup
x,y∈X

{
f(x)− f(y)

x− y

∣∣∣∣ x 6= y

}
As a result, the (Euclidean) metric on S1 can be recovered via

ρ (s, t) := sup
f∈C∞(X)

{
|f(s)− f(t)|

∣∣∣ ∥∥f ′∥∥∞ ≤ 1
}

since the condition ‖f ′‖∞ ≤ 1 is equivalent to selecting functions f such that Lip(f) ≤ 1.

2.2.2 Spin Manifolds

Consider a compact Riemannian spin manifold M , with C∞ (M) ⊂ C(M) =: A. Let

H = L2 (M,S) be the L2-sections of the spinor bundle S with inner product

〈ψ, φ〉 :=

∫
M
φ · ψ dvol

(· represents Clifford multiplication). Let A act on H by left multiplication, and let D be

the Dirac operator determined by the spin structure (for further details, see[46]). For all

ψ ∈ H, (
[D,π(f)]ψ

)
(x) = (∇f)x · ψ(x)

so again, commutation with D represents differentiation. Also, as in the previous example,

ρ (x, y) := sup
f∈C∞(M)

{
|f(x)− f(y)|

∣∣∣ ‖[D,π(f)]‖B(H) ≤ 1
}

recovers the original Riemannian metric on M . See [14, 15, 31] for further details.

2.2.3 Spectral Triples

Both of the previous examples feature a faithful representation π of a commutative C*-

algebra A on a Hilbert space H, as well as a differential operator D such that [D,π(f)]

defines a bounded operator for all f in a dense subalgebra of A. Furthermore, D is an elliptic

operator, which implies that it has compact resolvent. From the knowledge of the objects
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(A,H, D) (together with the representation π) it was possible to recover the Riemannian

metric on the original spaces. These properties led Connes to the following axiomatization

of this procedure.

Definition 2.2.1 (Spectral Triple [15]). A spectral triple (A,H, D) consists of the data

of a C*-algebra A, a faithful ∗-representation π of A on a Hilbert space H, and a densely

defined self-adjoint operator D on H with compact resolvent such that [D,π(a)] ∈ B(H) for

all a in a dense subalgebra of A.

The two cases above give examples of spectral triples, but the definition makes no

assumption on the commutativity of A or the nature of the dense subalgebra. Further

conditions can be placed on (A,H, D) to ensure that A is the algebra of smooth functions

on a compact oriented manifold (under further additional conditions it can be shown that

A is the algebra of smooth functions for a compact oriented spinc manifold) [18]. The

investigation of the Riemannian geometry of a compact metric space is thus an intermediate

question: A will be commutative (hence with a dense subalgebra of Lipschitz functions) but

no further restrictions will be imposed ab initio. However, recovery of the metric, and the

validity of the formula for ρ above, is a subtle question in more general contexts.

2.3 Connes Metric

When (A,H, D) is the spectral triple representing a spin manifold as above, the geodesic

metric induced by the Riemannian structure on M is fully recoverable by considering the

interaction of the Dirac operator and the smooth Lipschitz functions. This construction

generalizes to the setting of an arbitrary spectral triple, but may not give a well-defined

metric.

Definition 2.3.1 (Connes Metric). Let (A,H, D) be a spectral triple, and let S(A) denote

the state space of A. For φ, ψ ∈ S(A), the Connes metric is

ρ(φ, ψ) := sup
a∈A

{
|φ(a)− ψ(a)|

∣∣∣ ‖[D,π(a)]‖B(H) ≤ 1
}

It remains to consider the conditions required for ρ to define a “good” metric on the

state space. When A is commutative, the pure states are identified with spec (A), which
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should give a metric space when considered with the restriction of ρ to the pure states.

More generally, to be “good”, a metric should be a positive-definite symmetric function

S(A)×S(A)→ [0,∞), and the metric topology should coincide with the weak-∗ topology.

The conditions for a spectral triple to yield such a metric have been investigated by Pavlović

[49] and Rieffel[56, 57, 58, 59], motivating the following definition (proposed by Bellissard

[3]).

Definition 2.3.2 (Regular Spectral Triple). A spectral triple (A,H, D) is regular if

1. A′ :=
{
a ∈ A

∣∣ [D,π(a)] = 0
}

= C1, and

2. B1 :=
{
a ∈ A

∣∣∣ ‖[D,π(a)]‖B(H) ≤ 1
}

is precompact in A/A′

(If A is not unital, then A′ must be {0}.) The set B1 is called the Lipschitz ball of A.

Theorem 2.3.3 (Pavlović, 1998). A spectral triple (A,H, D) is regular if and only if ρ is a

metric on the state space of A and the metric topology coincides with the weak-∗ topology.

In the commutative setting there are several examples [6, 34, 58, 50, 51] of spectral

triples with the property ‖[D,π(f)]‖B(H) = Lip(f) for all f ∈ A. In the case of a compact

metric space X, under this condition the Connes metric coincides with the Kantorovič

(Wasserstein) metric, defined on the probability measures on X [42, 43]):

ρ(x̂, ŷ) := sup
{
|x̂(f)− ŷ(f)|

∣∣∣ Lip(f) ≤ 1
}

Rieffel extends this construction by noting that the map a 7→ ‖[D,π(a)]‖B(H) is a semi-

norm on the algebra A. If L is a seminorm on A, let ρL be the metric on the state space

S(A) of A derived by replacing ‖[D,π(a)]‖B(H) by L(a) in the definition of ρ:

ρL(φ, ψ) = sup
a∈A

{
|φ(a)− ψ(a)|

∣∣∣ L(a) ≤ 1
}

A seminorm L is called a Lip-norm, and the pair (A, L) a compact quantum metric space,

if ρL induces the weak-∗ topology on S(A) and vanishes precisely on C1. Rieffel provides

necessary and sufficient conditions for a seminorm to be a lipnorm

Theorem 2.3.4 ([58, Theorem 2.1]). If L is a seminorm on A such that L(1) = 0, then
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1. S(A) has finite diameter under ρL if and only if the image of B1 in the quotient A/C1

is bounded, and

2. ρL induces the weak-∗ topology on S(A) if and only if the image of B1 in A/C1 is

totally bounded.

In fact, all such lip-norms arise in a manner analagous to the Connes metric: as a

commutator with a Dirac operator [58]. Reiffel has subsequently generalized the Gromov-

Hausdorff distance introduced by Gromov [32] to a quantum Gromov-Hausdorff distance

between compact quantum metric spaces [59].

2.4 Noncommutative Integration and the Dixmier Trace

Given an algebra A and a theory of noncommutative differential forms implemented by the

Dirac operator (see [15]), a trace functional is required in order to compute with them (that

is, to provide a theory of cocycles).

As the closure of the space of finite rank operators, the ideal of compact operators

provides the “infinitesimals” of noncommutative geometry. For a compact operator T , let

{µn(T )}n∈N denote the set of singular values of T (the eigenvalues of the positive operator

|T |), in decreasing order. A magnitude, or dimension, of such an inifinitesimal is given

by the asymptotic behavior of µn(T ). Thus, T is of order s if µn(T ) = O(ns). Given a

Dirac operator on a Riemannian manifold, the classical length element ds is replaced by the

order-1 infinitesimal |D|−1 derived from the Riemannian metric. More generally, given a

spectral triple (A,H, D), the order of the compact operator |D|−s, being the infimum over

s ≥ 0 such that Tr (|D|−s) <∞, corresponds to the dimension of the space.

Definition 2.4.1 (Spectral Dimension). Let (A,H, D) be a spectral triple.

1. (A,H, D) is p-summable if |D|−p is trace-class (Tr (|D|−p) < ∞) for some p > 0. In

general no such p need exist.

2. If (A,H, D) is p-summable, then the zeta-function of D is the complex function

ζD(s) := Tr
(
|D|−s

)
=
∞∑
k=1

µsk

9



3. The spectral dimension of (A,H, D) is the (possibly infinite) abscissa of convergence

s0 of ζD(s):

s0 := inf
s≥0
{ζD(s) <∞}

Thus, ζD(s) is holomorphic on a half-plane {z ∈ C | <(z) > s0} with a singularity at s0.

In the spin manifold example above, that s0 is equal to the dimension of the manifold is a

result of Weyl.

Interpreting the assignment

f 7→
∫
X
f dµ

as a trace on C(X), it becomes clear that in order to develop an integration theory for a

spectral triple a trace on a strictly wider class of operators than the trace class operators

L1(F ) is required; if the singular values of |D|−1 obey µn(T ) = O(n−1), then it follows that

Tr
(
|D|−1

)
=∞. The solution to this problem was provided by Dixmier [20]:

Definition 2.4.2 (Dixmier Trace). Given a compact operator T , the limit

TrDix(T ) := lim
N→∞

1

logN

N∑
n=1

µn(T ) (2.4.1)

need not exist. For operators such that this limit does exist, the map

T 7→ TrDix(T )

is a trace and T is called measurable. The measurable operators form an ideal in B(H),

which contains the ideal L1(H) of trace-class operators (since the Dixmier trace vanishes

for such operators). Any trace that vanishes on L1(H) is called a singular trace.

For measurable operators, the Hardy-Littlewood Tauberian Theorem [36, Theorem 98]

provides the relationship between the Dixmier trace and the classical (normal) trace (see

[15, 31] for further details):

TrDix

(
|D|−1π(a)

)
= Res

s=s0
Tr
(
|D|−sπ(a)

)
In general, the limit (2.4.1) need not exist, and a family of singular traces Trω indexed

by a limiting process ω can be defined. The question of which operators admit such a trace
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in general is somewhat involved [8, 9, 34], and it is possible to avoid some of these questions

by considering a related construction which does not depend on the order of the pole of ζD

at s0. For any s > s0,

a 7→ 1

ζD(s)
Tr
(
|D|−sπ(a)

)
is a state on A—by Alaoglu’s Theorem the state space S(A) is weak-∗ compact, so there

exist limiting states

ωD(a) = lim
s→s0

1

ζD(s)
Tr
(
|D|−sπ(a)

)
Definition 2.4.3. A spectral triple (A,H, D) is spectrally regular if the limit ωD is unique.

In the case of the compact spin manifold above, (A,H, D) is spectrally regular and ωD

is the (normalized) volume form.

2.5 Noncommutative Fractal Geometry

The immediate predecessor to the current work is the PhD thesis of Pearson ([50]). Mo-

tivated by an attempt to understand the properties of metrics on the transversal of the

hull of a tiling space, a family of spectral triples was constructed which allowed recovery

of an ultrametric on a Cantor set, and, under mild conditions on the space, the upper box

dimension. This construction was unique in that it did not rely on an embedding in Rn

to encode the metric data. In addition, in some cases the construction allowed for the

definition of a probability measure and a specialized Laplace-Beltrami operator uniquely

suited to the context of Cantor sets, where all continuous functions are harmonic. Two

important insights of this work are the need to look at “choice functions”, which provide

an analogue of tangent vectors, and the need to look at a family of spectral triples indexed

by these choice functions—as discussed by Buyalo [6] and Rieffel [59], compactness of the

resolvent for the Dirac operator prohibits a single spectral triple from encoding the metric

for a completely general compact metric space.

There have been several other attempts to use the framework of noncommutative geom-

etry to obtain results in fractal analysis. Connes initiated this approach by showing how to

recover some information for a spectral triple for the triadic Cantor set embedded in R, as

well as a Julia set [15].
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Guido and Isola have constructed a spectral triple for a limit fractal that recovers the

metric and the Minkowski dimension and measure (up to a constant), but the construction

depends on self-similarity properties of the limit fractal rather than fine topological or

algebraic properties [34]. It also requires the fractal to be embedded in R with the induced

metric from R (extended to Rn in [35]). Similarly, Falconer and Samuel give an analagous

construction for multifractals [25]. In these constructions, the spaces are sufficiently regular

to allow a construction with a unique Dixmier trace (independent of the limit functional)

implementing the Minkowski measure. Furthermore, the Minkowski dimensions and the

Hausdorff dimension coincide, as do the respective measures.

Detailed surveys of the interplay between noncommutative geometry and fractals are

found in [44, 45], and careful consideration of which conditions must be sacrificed to recover

the metric vs. the dimension and summability properties (particularly for fractals) are

found in various papers by Christensen and Ivan and collaborators [11, 13]. Metrics can be

approximated arbitrarily well while also recovering the upper box dimension [6, 11]; as will

be shown, when these constructions impose a lower bound condition on the open covers in a

resolving sequence [11] it is then impossible to recover anything below the box dimensions.

Buyalo [6] gives a criterion which is sufficient to ensure that a spectral triple can recover a

the metric for an arbitrary compact space with an intrinsic metric.

2.6 Spectral Triples for Compact Metric Spaces

The task remains to build a spectral triple (A,H, D) for a compact metric space (X, d) such

that the order s0 of |D|−1 is equal to the Hausdorff dimension of X, the Hausdorff measure

Hs0 is represented by a functional of the form

f 7→ lim
s→s0

1

ζD(s)

(
|D|−s0π(f)

)
and the metric d is equal to the Connes metric ρ induced by (A,H, D). The triple (A,H, D)

will necessarily have the property that when X is a Riemannian manifold and d is the

geodesic metric, these are recovered from (A,H, D). (For a detailed discussion of how

spectral triples encode the dimension, metric and volume form (as well as the Yang-Mills

functional and DeRham cohomology) of a compact Riemannian spin manifold see [15, VI.1].
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For results on the necessary conditions on a spectral triple to recover the full data of such

a manifold, see [18].)

Attempts to build spectral triples for general (non-fractal) compact metric spaces have

been made by Buyalo [6] and Christensen and Ivan [11]. Buyalo’s construction is quite

general, and conditions are given on the regularity of a space (or q-quasihomogeneity), sat-

isfied by self-similar fractals and Riemannian manifolds, for which the Hausdorff dimension

and measure can be recovered. The Minkowski and Hausdorff dimensions coincide for such

spaces, and Buyalo shows that in general the upper Minkowki dimension is a lower bound

for the spectral dimension in his construction. Christensen and Ivan show that in general it

is possible to define different spectral triples for the same space, and both their algorithm

and Buyalo’s fail to characterize compact metric spaces in general.

It is not the goal of the present work to provide such a characterization. As the work

of Connes has showed in the case of smooth manifolds [18], characterizing the conditions

on a spectral triple to ensure that it encodes the full data of a manifold is quite involved.

Rather, a method is demonstrated to be sufficient for recovering the Hausdorff dimension

and measure, as well as the original metric, for (almost) all compact metric spaces, including

those for which the Hausdorff and Minkowski dimensions differ. To do this, the construction

necessarily does not depend on any regularity or homogeneity properties of the space—no

assumptions are made other than the existence of a metric for which the metric topology

is compact.
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CHAPTER III

BACKGROUND

Let (X, d) be a compact metric space, topologized with the metric topology. For any subset

E ⊆ X, let E denote the closure of E, EC = X\E its complement in X, and let χE denote

the characteristic function of E: that function taking the value 1 on E and 0 elsewhere. A

ball in X is any open set taking the form B(x, r) := {x′ ∈ X | d(x, x′) < r} for some x ∈ X

and some r > 0; a ball in C centered at z ∈ C is a disk D(z, r) =
{
w ∈ C

∣∣ |z − w| < r
}

.

The balls in X generate the topology on X.

3.1 Open Covers

Given a subset E ⊆ X, a cover U of E is any collection E = {Eα}α∈A of sets Eα ⊆ X such

that E ⊆
⋃
α∈AEα; in this case, the collection E covers E. Let |E| denote the cardinality

of the cover E . The diameter of a nonempty set E ⊆ X is the nonnegative number

diam(E) := sup {d(x, y) | x, y ∈ E}

and the diameter of a cover E of E is the supremum of the diameters of its members:

diam(E) := sup {diam(E) | U ∈ E}. A cover is finite if |E| ∈ N, minimal if every proper

subcollection of E fails to cover E, and metric if it consists of (open) metric balls. Finally,

a cover U is open if it consists only of open sets U ⊆ X. Henceforth, all covers will be

assumed to be open and at most countable; the family of all countable open covers U of E

is denoted Γ(E), and for any δ > 0, let

Γδ(E) :=
{
U ∈ Γ(E)

∣∣∣ diam(U) ≤ δ
}

Remark. If X is completely disconnected, then a partition of X into clopen sets is also

an open cover (cf. [50]). More generally, a partition of X into collections of connected

components is an open cover. Such a partition of X is the only possible cover of X into

disjoint sets.
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Definition 3.1.1 (Refinement). A cover U is refined by a cover U ′, written U 4 U ′, if for

all U ′ ∈ U ′, there exists some U ∈ U such that U ′ ⊆ U . Refinement is a reflexive, transitive

relation on Γ(X). The refinement is proper, written U ≺ U ′, if for all U ′ ∈ U ′ there exists

some U ∈ U such that U ′ ⊆ U .

For U ,U ′ ∈ Γ(X) the join of U and U ′ is the cover

U ∨ U ′ :=
{
U ∩ U ′

∣∣ U ∈ U , U ′ ∈ U ′}
The join of two covers U ,U ′ is the least common refinement of U and U ′, in the sense that

if U ′′ refines both U and U ′, then U ′′ also refines U ∨ U ′: given a cover U ′′ that refines

both U and U ′, then any U ′′ ∈ U ′′ is contained in some U ∈ U and some U ′ ∈ U ′, so

U ′′ ⊂ U ∩ U ′ ∈ U ∨ U ′. Because the join U ∨ U ′ refines both U and U ′, (Γ(X),4) is a

directed set.

3.2 Hausdorff Dimension and Measure

The following is standard and can be found in books on fractal geometry, such as [24] or

more generally, geometric measure theory, such as [26].

The δ-box number of a subset E ⊆ X is the real number

Nδ(E) := inf
{
|U|

∣∣∣ U ∈ Γδ(E)
}

i.e. the minimum number of sets of diameter not greater than δ required to cover E. When

E is compact, Nδ(E) is finite for all δ > 0.

Definition 3.2.1 (Box Dimension). The upper box dimension (also called upper Minkowski

dimension) dimB(E) of E is defined in terms of the exponential growth rate of Nδ(E) (with

respect to 1
δ ) as δ ↓ 0:

dimB(E) := lim sup
δ→0

log Nδ(E)

− log δ

The lower box dimension (also the lower Minkowski dimension) dimB(E) of E is defined

analogously:

dimB(E) := lim inf
δ→0

log Nδ(E)

− log δ
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For any s ≥ 0 and δ > 0, let

Hsδ(E) := inf

{∑
U∈U

diam(U)s

∣∣∣∣∣ U ∈ Γδ(E)

}

Definition 3.2.2 (Hausdorff Measure). The s-dimensional Hausdorff measure of E, is

given by

Hs(E) := lim
δ→0
Hsδ(E)

Definition 3.2.3 (Hausdorff Dimension). The Hausdorff dimension of E, is

dimH(E) := inf {s > 0 | Hs(E) = 0} = sup {s > 0 | Hs(E) =∞}

Remark. In some definitions of Hsδ(E) the infimum is taken over all countable covers by

any sets, not just open sets. While this can result in lower values of Hsδ(E), Hs(E) is

unchanged [26, §2.10]. On the other hand, restricting to metric balls would change Hs(E),

but not the Hausdorff or box dimensions [53]. Though Γδ(E) is defined as a collection of

countable open covers of E, the quantity Hsδ(E) is unchanged if Γδ(E) is assumed to consist

of finite covers of E.

Remark. An important feature of these constructions is the fact that as δ ↓ 0, Hsδ(E)

increases monotonically; since Nδ(E) = H0
δ(E), this is true of Nδ(E) as well.

In many cases, all of the above-mentioned dimensions coincide. In Rn, they are all equal

to n, and n-dimensional Hausdorff measure is equal to Lebesgue measure. In general, the

Hausdorff dimension need not be integral, and all of the dimensions are different. To see

how the Hausdorff and box dimensions differ, it is useful to pass to a construction of greater

generality.

3.3 Caratheodory Structures

In [53], Pesin gives an elegent presentation of Hausdorff and box dimensions in the context

of generalized Caratheodory structures [54], which are a generalization of Caratheodory’s

original method to derive a well-behaved measure from a more arbitrary estimation on

the “size” of a set (such as its diameter). A benefit of this approach is that it makes the

relationship between Hausdorff dimension and upper and lower box dimensions quite clear.
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Definition 3.3.1 (Caratheodory Structure). Let F be a collection of subsets of a space

X, let (ξ, η, ψ) be a triple of nonnegative set functions on F , and for each positive δ, let

Fδ := {E ∈ F | ψ(E) ≤ δ}. Then F and (ξ, η, ψ) together define a C-structure on X if

C1 ∅ ∈ F and η(∅) = ψ(∅) = 0, and for all nonempty E ∈ F , η(E), ψ(E) > 0,

C2 for all ε > 0 there exists δ > 0 such that η(E) < ε whenever E ∈ Fδ, and

C3 ∀δ > 0 there is an at most countable subcollection G ⊆ Fδ covering E.

For any such C-structure on X, a one-parameter family of subadditive set functions

m( · , α), α ∈ R can be defined via

m(E,α) = lim
δ→0

inf
G⊆Fδ

∑
E∈G

ξ(E)η(E)α

(where G always denotes an at most countable cover of E). The limit is well-defined since

the terms are necessarily increasing in δ as δ ↓ 0. Furthermore, for each α > 0, m( · , α) is

an outer measure on X [53, p. 13, Proposition 1.1].

Proposition 3.3.2. If for some α0,

1. m(E,α0) =∞, then m(E,α) =∞ for all α < α0, and, if

2. m(E,α0) <∞, then m(E,α) = 0 for all α > α0.

Proof. For all ε > 0 there exists δ(ε) > 0 such that sup
{
η(E)

∣∣ E ∈ Fδ(ε)} < ε by condition

C2; therefore, if α > α0,

m(E,α) = lim
ε→0

inf
G⊆Fδ(ε)

∑
E∈G

ξ(E)η(E)α

≤ lim
ε→0

inf
G⊆Fδ(ε)

[(
εα−α0

)∑
E∈G

ξ(E)η(E)α0

]
= 0
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if m(E,α0) <∞. Similarly, if α < α0 and m(E,α0) =∞, then

m(E,α0) = lim
ε→0

inf
G⊆Fδ(ε)

∑
E∈G

ξ(E)η(E)α0

≤ lim
ε→0

inf
G⊆Fδ(ε)

[(
εα0−α)∑

E∈G
ξ(E)η(E)α

]

The Caratheodory dimension dimC(E) of E is the unique value α0 such that m(E,α) =

∞ for all α < α0 and m(E,α) = 0 for all α > α0.

Finally, if F∗δ := {E ∈ F | ψ(E) = δ} condition C3 can be replaced by the more strict

condition

C3* ∀δ > 0 there is an at most countable subcollection G ⊆ F∗δ covering X.

In this case,

inf
G⊆F∗δ

∑
E∈G

ξ(E)η(E)α

is no longer monotone as δ ↓ 0, and the limit may not exist. Thus for each α > 0 there are

two nonnegative quantities

r(E,α) := lim sup
δ→0

inf
G⊆F∗δ

∑
E∈G

ξ(E)η(E)α

r(E,α) := lim inf
δ→0

inf
G⊆F∗δ

∑
E∈G

ξ(E)η(E)α

and the upper and lower Caratheodory capacities, respectively, are the real numbers

Cap(E) := inf
α>0

{
α
∣∣∣ r(E,α) = 0

}
= sup

α>0

{
α
∣∣∣ r(E,α) =∞

}
Cap(E) := inf

α>0

{
α
∣∣∣ r(E,α) = 0

}
= sup

α>0

{
α
∣∣∣ r(E,α) =∞

}

It follows from the definitions that

dimC(E) ≤ Cap(E) ≤ Cap(E)
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For δ > 0 and E ⊆ X, let

Ξδ(E) := inf
G∈F∗δ

∑
E∈G

ξ(E)

If the C-structure satisfies the additional condition

C4 for all E1, E2 ∈ F , if ψ(E1) = ψ(E2), then η(E1) = η(E2).

define η̃(δ) = η(E) for any E ∈ F such that ψ(E) = δ. The final result required is the

following

Theorem 3.3.3 ([53, p. 18, Theorem 2.2]). Assuming condition C4 is satisfied, for any

E ⊆ X

Cap(E) = lim sup
δ→0

log Ξδ(E)

− log η̃(δ)

Cap(E) = lim inf
δ→0

log Ξδ(E)

− log η̃(δ)

Remark. Since condition C4 implies that

inf
G⊆F∗δ

∑
E∈G

ξ(E)η(E)α = inf
G⊆F∗δ

∑
E∈G

ξ(E)η̃(δ)α

the case for the upper capacity is actually a variation of the Hardy-Riesz Formula below

(Theorem 3.4.2).

It is now possible to obtain results for the case of Hausdorff dimension and measure.

Let (X, d) be a compact metric space, and define a C-structure on X by letting F be the

collection of open sets in X, and ξ(U) = 1, η(U) = ψ(U) = diam(U) for all U ∈ F . Then

m(E, s) = Hs(E), dimH(E) = dimC(E), and the upper and lower box dimensions are equal

to the upper and lower Caratheodory capacities, respectively. Theorem 3.3.3 then gives the

result

dimH(E) ≤ dimB(E) ≤ dimB(E)

Also, Ξδ(E) is the box number Nδ(E) of E and there are two equivalent definitions for the

upper and lower box dimensions: for instance, the upper box dimension dimB(E) of E ⊆ X
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can be defined in a manner directly analogous to the Hausdorff dimension, but with the cov-

ers restricted to sets of a fixed diameter. Since Γ∗δ(E) := {U ∈ Γ(E) | diam(U) = δ ∀U ∈ U},

then

dimB(E) = inf
s>0

{
s

∣∣∣∣∣ lim sup
δ→0

(
inf

U∈Γ∗δ(E)

∑
U∈U

diam(U)s

)}
Hsδ and Hs define outer measures on X. Since for any open subsets U,U ′ ⊆ X

Hsδ
(
U ∪ U ′

)
≥ Hsδ(U) +Hsδ(U ′) whenever dH(E,E′) > δ

(where dH is Hausdorff distance), it follows that Hs is a finite (hence regular) Borel measure

on X (see [24, §1.2] or [26, §2.10] for complete proofs).

Given δ > 0, a cover U ∈ Γδ, and 0 < s′ < s, the following standard inequality will

prove useful—it is the trick from the proof of Proposition 3.3.2 specialized to the current

context: ∑
U∈U

diam(U)s ≤ δs−s′
∑
U∈U

diam(U)s
′

(3.3.1)

The definition of dimension (Caratheodory or Hausdorff) does not require that Hs0(E) be

strictly positive when s0 = dimH(E); however, making this assumption will be essential for

the construction of spectral triples that recover the Hausdorff measure, and of course to

have a nontrivial integration theory on X.

3.4 Dirichlet Series and Tauberian Theory

Noncommutative integration theory depends on the asymptotic properties of compact op-

erators (or more accurately, the asymptotic properties of their sequences of singular values).

Spectral dimension is determined by the convergence properties of associated Dirichlet se-

ries, requiring Tauberian theorems for proof of convergence.

Definition 3.4.1 (Dirichlet Series and Abscissa of Convergence). For s ∈ C, a Dirichlet

series is a series of the form
∑∞

k=1 ake
−sλk , where {ak}∞k=1 is any sequence of complex

numbers and {λk}∞k=1 is any sequence of real numbers with the property limk→∞ λk = ∞.

The abscissa of convergence (a.o.c.) of a Dirichlet series is the (extended) real number

s0 := inf

{
σ ∈ R

∣∣∣∣∣ <(s) > σ =⇒
∞∑
k=1

∣∣∣ake−sλk ∣∣∣ <∞
}
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The following theorem is an important initial result in the theory of Dirichlet series (see

[37, p. 6] for a proof).

Theorem 3.4.2 (Hardy-Riesz Formula). If s0 > 0 is the a.o.c. of the Dirichlet series∑∞
k=1 ake

−sλk , then

s0 = lim sup
K→∞

1

λK
log

∣∣∣∣∣
K∑
k=1

ak

∣∣∣∣∣
The following lemma is trivial but will be referred to frequently.

Lemma 3.4.3. Given any two sequences {ak}∞k=1 , {bk}
∞
k=1, such that limk→∞ ak = a and

limk→∞ bk = b 6= 0, then

lim
K→∞

∑K
k=1 ak∑K
k=1 bk

=
a

b

Given two Dirichlet series
∑∞

k=1 ake
−sλk ,

∑∞
k=1 bke

−sµk with the same abscissa of conver-

gence s0 (assumed to finite), for any K ∈ N

lim
σ→0

∑∞
k=1 ake

−(s0+σ)λk∑∞
k=1 bke

−(s0+σ)µk
= lim

σ→0

∑∞
k=K ake

−(s0+σ)λk∑∞
k=K bke

−(s0+σ)µk

(i.e. the limit of the ratio is independent of the starting index).

Proof. If limk→∞ ak = a, then the Cesaro means 1
K

∑K
k=1 ak converge to the same limit and

lim
K→∞

∑K
k=1 ak∑K
k=1 bk

= lim
K→∞

1
K

∑K
k=1 ak

1
K

∑K
k=1 bk

=
a

b

proving the first claim.

The second claim is trivial because
∑

k<K ake
−s0 is finite for any K. Thus

lim
σ→0

∑∞
k=1 ake

−(s0+σ)λk∑∞
k=1 bke

−(s0+σ)µk
= lim

σ→0

∑
k<K ake

−(s0+σ) +
∑∞

k=K ake
−(s0+σ)λk∑

k<K bke
−(s0+σ) +

∑∞
k=K bke

−(s0+σ)µk

= lim
σ→0

∑
k<K ake

−(s0+σ)∑∞
k=K bke

−(s0+σ)µk
+

∑∞
k=K ake

−(s0+σ)λk∑∞
k=K bke

−(s0+σ)µk∑
k<K bke

−(s0+σ)∑∞
k=K bke

−(s0+σ)µk
+ 1

=
0 + limσ→0

∑∞
k=K ake

−(s0+σ)λk∑∞
k=K bke

−(s0+σ)µk

0 + 1
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3.5 Noncommutative Integration Theory

Noncommutative integration theory is the theory of weights, traces and states on von Neu-

mann algebras, which yields the classical measure theory for a commutative algebra. Let

A+ be the positive cone of a von-Neumann algebra A: those elements of the form a∗a for

some a ∈ A. A weight is a linear map ω : A → C such that ω(A+) ⊆ [0,∞), and a state is a

normalized weight (ω(1) = 1). For a commutative unital C*-algebra A, a state is a positive

linear functional of norm one, and thus corresponds to a probability measure on spec (A).

A trace is a weight such that ω(a∗a) = ω(aa∗) for all a ∈ A.

For p ∈ [1,∞), let

Lp(H) :=

{
T ∈ K(H)

∣∣∣∣∣
∞∑
n=0

µn(T )p <∞

}

be the p-th Schatten-von Neumann ideal of compact operators; those operators whose se-

quence of singular values is p-summable. (That Lp(H) is a two-sided ideal follows from that

fact that µn(ST ), µn(TS) ≤ ‖S‖B(H) µn(T ) for all T ∈ Lp(H) and S ∈ B(H).) L1(H) is the

ideal of trace-class operators; those compact operators which have a finite (normal) trace

(any normal trace is a scalar multiple of the standard one [22]). A “trace-norm” can be

defined on Lp(H) for each p ∈ [1,∞):

‖|T |‖p := Tr(T p) =
∞∑
n=0

µn(T )p

Each ideal Lp(H) is the closure in the corresponding trace-norm of the finite rank operators.

Definition 3.5.1 (Interpolation Ideals). For p ∈ [1,∞), let

L(p,∞)(H) :=

{
T ∈ K(H)

∣∣∣∣∣
N∑
n=1

µn(T )p = O(logN)

}

and if σN (T ) :=
∑N

n=1 µn(T ), define a norm on this ideal by

‖T‖p,∞ := sup
N>1

1

logN
σN (T p)

For a positive operator T in the Dixmier ideal L(1,∞)(H), the map

T 7→ lim
N→∞

σN (T )

logN
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would define a trace on L(1,∞)(H) that vanishes on the trace-class operators (i.e. L1(H)),

assuming it is both linear and convergent. Linearity follows from convergence, but, in

general the sequence 1
logN σN (T ) is merely bounded. As a result, in order to define a trace

on L(1,∞)(H) it is in general necessary to fix a functional ω on `∞(N) so that

Trω(T ) := ω

(
σN (T )

logN

)
is a well-defined trace, provided ω is positive, scale-invariant, and, when the limit exists,

yields limN→∞
1

logN σN (T ) [15]; by linearity there is a unique extension from such positive

operators to a trace on all of L(1,∞)(H).

In general,

lim inf
N→∞

σN (T )

logN
≤ ω

(
σN (T )

logN

)
≤ lim sup

N→∞

σN (T )

logN

and the spectral dimension of (A,H, D) is

d(A,H, D) := inf
{
s ≥ 0

∣∣∣ |D|−s ∈ L(1,∞)(H)
}

= sup
{
s ≥ 0

∣∣∣ |D|−s /∈ L(1,∞)(H)
}

It is useful to know when the limit limN→∞
σN (T )
logN exists; a useful criterion is a di-

rect consequence of the Littlewood-Hardy Tauberian Theorem. For any positive operator

T ∈ L(1,∞)(H) and s ∈ C with <(s) > 1 it is always possible to define T s. Then, on the

half-plane {z ∈ C | <(z) > 1}, ζT (s) := Tr(T s) =
∑∞

n=1 µn(T )s is a holomorphic function

and T s ∈ L1(H).

Theorem 3.5.2 (Hardy-Littlewood Tauberian Theorem [36, Theorem 98]). For T ≥ 0

such that T ∈ L(1,∞)(H), if one of the following limits exists, then the other one does and

the two limits are equal:

1) lim
s→1+

(s− 1)ζT (s) = L

2) lim
N→∞

σN (T )

logN
= L

For operators T such that Trω(T ) is independent of ω it is customary to refer to Trω as

the Dixmier trace; the theorem states that this independence occurs if ζT (s) has a simple

pole at s = 1, and in this case TrDix(T ) := Trω(T ) = Ress=1 ζT (s).
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Definition 3.5.3 (Measurable operator). An operator T is measurable if Trω(T ) is inde-

pendent of ω. In this case, TrDix := Trω is called the Dixmier trace.

The Cesaro mean of the function f : (1,∞) → R+, which is defined piecewise by

f(u) := 1
logN σN (T ) for all u ∈ (N − 1, N ], is given by

M(λ) =
1

log λ

∫ λ

1
f(u)

du

u

Proposition 3.5.4 ([15]). For T ≥ 0 such that T ∈ L(1,∞)(H), Trω(T ) is independent of

ω if and only if the Cesaro means M(λ) of the sequence 1
logN

∑N
n=1 µn(T ) are convergent

for λ → ∞. In this case, the family of T such that Trω(T ) is independent of ω is a closed

subspace of L(1,∞)(H) invariant by conjugation by invertible operators on H.

As stated in [15], the proposition is a direct consequence of the Hardy-Littlewood Taube-

rian Theorem. Measurability of an operator T thus depends on the regularity of its zeta-

function, and the residue of the zeta-function at the abscissa of convergence is equal to the

Dixmier trace. The subject of the next chapter is the construction of resolving sequences and

families of spectral triples (A,H, Dτ ) related to them. The Dirac operators of these triples

are not constructed to be measurable—it is possible that their zeta-functions have poles of

higher order, and it is possible to give constructions with arbitrary residue. Nevertheless,

unique limiting states are obtainable, and in Chapter 5 it will be shown that resolving

sequences exist such that the unique limiting state is equal to the Hausdorff probability

measure (normalized Hausdorff measure).
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CHAPTER IV

SEQUENCES OF COVERS AND SPECTRAL TRIPLES

A common feature of the various constructions of spectral triples for compact metric spaces,

and a natural one in fractal geometry, is some sort of sequence or filtration of successively

finer finite approximations of the space. As will be seen, recovering the Hausdorff mea-

sure and dimension when they are not equal to the Minkowski measure and dimensions

necessitates greater care in this construction.

There have been several constructions of spectral triples for compact metric spaces in

which sequences of sets of points with desirable properties are chosen in order for the Dirac

operator, for instance, to be summable (more specifically, for its sequence of eigenvalues

to have the right asymptotic behaviour) [6]. Here, the concept of a “resolving sequence”

of open covers is introduced. This has the dual purpose of retaining the topology on X

as well as giving some control on the asymptotics for the spectral triples described later.

Furthermore, by dealing with covers first, and point sets second (via choice functions subject

to the resolving sequence), it is possible to construct a triple from which the Hausdorff

dimension and measure can be recovered when the Hausdorff and box dimensions differ.

By focusing on open covers, as opposed to all covers or metric covers, the construction

is both general enough to be flexible and specific enough to encode sufficient data about

the space. Even though the metric balls generate the topology on X, choosing covers by

metric balls, implicit in many previous constructions of spectral triples on fractals, prohibits

recovery of the Hausdorff measure. On the other hand, covers by arbitrary sets would be

insufficient to encode the topology on X (at least, without the additional knowledge of the

metric).
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4.1 Resolving Sequences

Definition 4.1.1 (Resolving Sequence). A sequence ξ = {Un}∞n=0 of (at most countable

open) covers of E ⊆ X is resolving if limn→∞ diam(Un) = 0. If in addition

diam(Un) < inf
U∈Un−1

{diam(U)} (4.1.1)

for each n ∈ N, the resolving sequence is strict.

By convention, U0 = {U} for some open set U ⊇ E. In cases when there is no ambiguity

about which resolving sequence is being referred to, for each n, the symbols ∆n := diam(Un)

and Qn(s) :=
∑

U∈Un diam(U)s will be used.

The open sets of a cover can be (not necessarily uniquely) ordered by their diameters.

For any resolving sequence ξ = {Un}∞n=0, the collection
∐∞
n=0 Un of all open sets of the

covers in ξ can also be ordered by their diameters. If {Uk}∞k=1 is such an ordering, the

ordering induces a partition of N.

Definition 4.1.2 (Index Set for a Resolving Sequence). Let In = {k ∈ N | Uk ∈ Un} for

each n = 0, . . . ,∞, (so that Un = {Uk}k∈In). The set In is the index set for Un with respect

to the ordering {Uk}∞k=1.

If a resolving sequence ξ is strict and consists only of finite covers, then the ordering

on the open sets of the individual covers can be extended to an ordering {Uk}∞k=1 so that

diam(Uk) ≤ diam(Uk−1) for all k ∈ N in such a way that if Uk ∈ Un and Uk′ ∈ Un′ , then

k < k′ ⇒ n ≤ n′. Such an ordering is said to respect the resolving sequence ξ.

4.2 Hausdorff Resolving Sequences

A resolving sequence contains a basis for the topology on X (Proposition 5.1.1). The condi-

tion that ensures that a resolving sequence encode the topology of X is that diam(Un)→∞

as n→∞. For the covers of a resolving sequence to encode Hausdorff dimension and mea-

sure, it is necessary to choose them in an optimal way. This is done by placing additional

conditions on the sequence.
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Given a resolving sequence ξ for a subset E ⊆ X, its zeta-function is the Dirichlet series

ζξ(s) =

∞∑
n=0

∑
U∈Un

diam(U)s =

∞∑
n=0

Qn(s)

The following is an immediate corollary of Theorem 3.4.2.

Corollary. If a resolving sequence ξ is strict and {Uk}∞k=1 is an ordering of the open sets

that respects ξ (necessitating finiteness of all covers in ξ), then its a.o.c. sξ is given by

sξ = lim sup
k→∞

k

− log diam(Uk)
(4.2.1)

Remark. Formula 4.2.1 holds for more general resolving sequences of finite covers, but

requiring strictness is sufficient for the current situation.

Restricting the families of open covers by placing a lower bound on the diameters in

advance restricts the dimension data that can be recovered from a resolving sequence.

Proposition 4.2.1. Let ξ = {Un}∞n=0 be a resolving sequence for E ⊆ X with the property

that there exists β > 0 such that for each cover Un, diam(U) ≥ β∆n for each U ∈ Un. Then

dimB(E) ≤ sξ, where sξ is the a.o.c. of ζξ.

Proof. For δ > 0 and any cover U ∈ Γ∗δ(E),∑
U∈U

diam(U)s = |U| diam(U)s = |U| δs

Since

β

∞∑
n=0

|Un|∆s
n ≤ ζξ(s) ≤

∞∑
n=0

|Un|∆s
n

it suffices to assume that diam(U) = ∆n for all U ∈ Un and the problem reduces to

considering a resolving sequence of covers Un ∈ Γ∗(E) (covers of constant diameter). The

a.o.c.of the zeta-function
∑∞

n=0 |Un|∆s
n is

sξ = lim sup
N→∞

log
∑N

n=0 |Un|
− log ∆N

Clearly for any s > 0 such that dimB(E) =∞, it follows that

lim inf
δ→0

inf
U∈Γ∗δ(E)

∑
U∈U

diam(U)s = lim inf
δ→0

inf
U∈Γ∗δ(E)

|U| δs = lim inf
δ→0

δsNδ(E)

so it is impossible that ζξ(s) =
∑∞

n=0 |Un|∆s
n < ∞, since |Un|∆s

n → ∞ in the first case

(dimB(E) =∞) and in the second case ζξ(s) <∞ necessitates that |Un|∆s
n → 0.
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Remark. It follows that in the case where the Hausdorff and box dimensions differ, to

recover the Hausdorff dimension from a resolving sequence there must be no lower bound

on the diameters of the open sets of a cover.

Theorem 4.2.2. If ξ is any resolving sequence for E ⊆ X and sξ is the a.o.c. of its zeta-

function, then dimH(E) ≤ sξ. Furthermore, for any compact metric space (X, d), there

exists a resolving sequence ξ such that sξ = dimH(X).

Proof. Since ξ is resolving, it follows that limn→∞∆n = 0 (where ∆n = diam(Un)). If

ζξ(s) =
∑∞

n=0Qn(s) converges for some s, it follows that limn→∞Qn(s) = 0. Since

Hs∆n
(E) = inf

{∑
U∈U diam(U)s

∣∣ U ∈ Γ∆n(E)
}
< Qn(s), due to the monotonicity ofHsδ(E)

in δ, it follows that

Hs(E) = lim
δ→0
Hsδ(E) = lim

n→∞
Hs∆n

(E) = 0

and thus dimH(E) ≤ s. Conversely, for s < dimH(E), since limδ→0Hsδ(E) = ∞ it follows

that for all M > 0 there exists δ′ > 0 such that infU∈Γδ Qs(U) > M whenever δ < δ′. Thus∑∞
n=0Qn(s) must diverge and the first statement is proved.

If dimH(E) =∞, there is nothing left to show—any resolving sequence would necessarily

satisfy sξ = dimH(E). Suppose that dimH(E) <∞.

For η > 0, let s > dimH(X) + η. Necessarily Hs(X) = 0, so Hs
δ (X) = 0 for all δ. For

any C > 0, p > 1, and for n = 1, . . . ,∞, choose εn ∈
(
0, 1

np

]
such that

∑∞
n=1 εn < C. Then

for each εn there exists δn and a cover Un ∈ Γδn(X) such that Qn(s) < εn and δn <
1
n . As

a result, ξ′ := {Un}∞n=0 (U0 = {X}) is a resolving sequence such that ζξ′(s) < C. Since

convergence at s implies convergence for all real numbers greater than s, for any η > 0 there

is a resolving sequence with abscissa of convergence less than or equal to dimH(X) + η.

The result now follows by a diagonal argument. By the previous construction, for

each m = 1, . . . ,∞ there is a resolving sequence ξm = {Umn}∞n=0 with the property that

ζξm(s) <∞ for all s > dimH(X) + 1
m . Let ξ be the diagonal sequence

{
Um+1

m

}∞
m=0

. Then

for each s > dimH(X) there is a unique integer Ns such that

1

Ns + 1
≤ s− dimH(X) <

1

Ns
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and thus ∑
U∈Um+1

m

diam(U) < εm+1
m ≤ 1

(m+ 1)p
for all m > Ns

As a result,

ζξ(s) =

Ns∑
m=0

Qs(Um+1
m ) +

∞∑
m=Ns+1

Qs(Um+1
m ) <∞

since the first sum has a finite number of terms and the second converges.

Definition 4.2.3 (Hausdorff Resolving Sequence). Let ξ be a resolving sequence with

abscissa of convergence sξ, and let s0 := dimH(E). In light of Theorem 4.2.2, ξ is called

Hausdorff if

1. sξ = s0, and

2. limn→∞Qn(s0) = Hs0(E).

Let Ξ(E) denote the collection of all strict Hausdorff resolving sequences of finite open

covers for a subset E ⊆ X.

Proposition 4.2.4. For any subset E ⊆ X, Ξ(E) is nonempty.

Proof. The proof amounts to an alternative construction of a Hausdorff resolving sequence.

Let s0 = dimH(E) and fix two decreasing sequences of real numbers {δn}∞n=0, {εn}∞n=0 such

that limn→∞ εn = 0 and the Dirichlet series
∑∞

n=0 δ
s
n has a.o.c. sδ = 0 (for example, the

sequence δn = e−n satisfies this condition). Let U0 = {U} for some open set U ⊇ E and for

each n ∈ N, choose a finite open cover Un of X so that

1. ∆n := diam(Un) < min {δn, inf {diam(U) | U ∈ Un−1}}

2. Qn(s0) < Hs0
∆n

(E) + εn

Since Un−1 is finite, inf {diam(U) | U ∈ Un−1} is necessarily positive, so it is always possible

to fulfill condition (1), and (2) is always possible by the definition of Hs0
∆n

(E). By inequality

3.3.1 and the monotonicity of Hsδ with respect to δ it follows that for σ > 0,

Qn(s0 + σ) ≤ ∆σ
nQn(s0) ≤ ∆σ

n (Hs0(X) + εn)
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and thus

∞∑
n=0

Qn(s0 + σ) ≤
∞∑
n=0

∆σ
n (Hs0(X) + εn) ≤

(
Hs0(X) + sup

n∈N
{εn}

) ∞∑
n=0

δσn <∞

As a result, the sequence ξ := {Un}∞n=0 is resolving (since δn → 0 as n→∞ necessarily), and

Hausdorff; since its a.o.c. sξ is not greater than s0 = dimH(E), by Theorem 4.2.2 it follows

that s0 = sξ. By construction, the sequence ξ is strict and limn→∞Qn(s0) = Hs0(E), so

ξ ∈ Ξ(E) and Ξ(E) is nonempty.

In fact, this construction can be extended to create a system {ξα}α∈A of decreasing

Hausdorff resolving sequences for a finite or countably infinite partition {Fα}α∈A of X into

Borel sets.

Lemma 4.2.5. Let {Fα}α∈A , A ⊆ N be an at most countable partition of X into Borel

sets such that Hs0(Fα) > 0 for all α ∈ A (where s0 = dimH(X)). Then there exist strict

Hausdorff resolving sequences ξα = {Uαn}∞n=0 for each Fα that together yield a Hausdorff

resolving sequence ξ̂ for X given by Ûn :=
∐
α∈A Uαn , and for each α ∈ A,

lim
N→∞

∑N
n=0Q

α
n(s0)∑N

n=0 Q̂n(s0)
=
Hs0(Fα)

Hs0(X)

If A is finite, then ξ can be assumed to be strict as well, but if A is infinite, this cannot

occur.

Proof. Suppose that {Fα}α∈A is a partition of X into Borel sets of positive measure (i.e.

Hs0(Fα) > 0 for all α ∈ A). Fix a decreasing sequence of positive real numbers {δn}∞n=0

such that the Dirichlet series
∑∞

0=n δn has a.o.c. sδ = 0. Fix a seqence of positive real

numbers {εn}∞n=0 such that limn→∞ εn = 0. For each α ∈ A, let Uα0 = {Uα}, where Uα is

an open set in X containing Fα, and for each n ∈ N choose a finite open cover Uαn so that

if ∆α
n := sup {diam(U) | U ∈ Uαn },

∆α
n < min

{
δn, inf

U∈Uαn−1

{diam(U)}
}

and

Qαn(s0) < Hs0∆α
n
(Fα) + εnHs0(Fα) < Hs0(Fα)(1 + εn) (4.2.2)
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For σ > 0,

Qαn(s0 + σ) ≤ (∆α
n)σ Qαn(s0) ≤ (∆α

n)σHs0(Fα)(1 + εn)

and thus

∞∑
n=0

Qαn(s0 + σ) ≤
∞∑
n=0

(∆α
n)σHs0(Fα)(1 + εn) ≤ Hs0(Fα)

(
1 + sup

n∈N
{εn}

) ∞∑
n=0

(∆α
n)σ

Since
∞∑
n=0

(∆α
n)σ ≤

∞∑
n=0

δσn <∞

for each α ∈ A, the resolving sequence ξα := {Uαn}∞n=0 is strict by construction, has a.o.c.

sα = s0, and limn→∞Q
α
n(s0) = Hs0(Fα).

Let ξ̂ =
{
Ûn
}∞
n=0

be the resolving sequence given by Û0 = {X} and Ûn :=
∐
α∈A Uαn for

all n ∈ N. The covers in ξ̂ are no longer finite if the partition {Fα}α∈A is infinite. However,

Q̂n(s0) :=
∑
α∈A

Qαn(s0) ≤
∑
α∈A
Hs0(Fα)(1 + εn) ≤ Hs0(X)(1 + εn)

so Q̂n(s0) is finite for n = 0, . . . ,∞ and limn→∞ Q̂n(s0) = Hs0(X).

For σ > 0

∞∑
n=0

Q̂n(s0 + σ) =

∞∑
n=0

∑
α∈A

Qαn(s0 + σ)

≤
∞∑
n=0

∑
α∈A

(∆α
n)σHs0(Fα)(1 + εn)

≤
∞∑
n=0

δσn
∑
α∈A
Hs0(Fα)(1 + εn)

≤ Hs0(X)

(
1 + sup

n∈N
{εn}

) ∞∑
n=0

δσn <∞

so ξ̂ is a Hausdorff resolving sequence for X.

Since limn→∞Q
α
n(s0) = Hs0(Fα) 6= 0 for all α ∈ A, it follows at once that for any two

sets Fα, Fα′ ,

lim
N→∞

∑N
n=0Q

α
n(s0)∑N

n=0Q
α′
n (s0)

=
Hs0(Fα)

Hs0(Fα′)

If the partition {Fα}α∈A is not finite, the resolving sequence cannot be strict. If the

covers Ûn are infinite, it is possible that inf
{

diam(U)
∣∣∣ U ∈ Ûn} = 0 for some n. In fact,
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this must occur for each n ∈ N, since Q̂n(s0) <∞. However, if the partition is finite, it is

possible to adjust the construction so that ξ̂ is strict by forcing the condition

∆α
n < min

{
δn, inf

{
diam(U)

∣∣∣ U ∈ Uα′n−1

}}
for all α′ ∈ A

Definition 4.2.6. In light of Lemma 4.2.5, if F is a partition of X into Borel sets of positive

measure and ξ = {Un}∞n=0 is a Hausdorff resolving sequence for X such that Un =
∐
F∈F UFn

for Hausdorff resolving sequences ξF =
{
UF n

}∞
n=0

for each F ∈ F , then ξ respects the

partition F .

Remark. While the construction in Proposition 4.2.4 holds for any subset E ⊆ X (in

particular, a subset E with dimH(E) � dimH(X)), Lemma 4.2.5 places two restrictions

on the subsets Fα: that they have the same Hausdorff dimension as the total space X,

and furthermore that their Hausdorff measure is positive in this dimension. The second

condition necessitates the first.

4.3 Spectral Triples from Resolving Sequences

In the following, the construction for spectral triples on ultrametric Cantor sets in [51] is

adapted to the current setting of a general compact metric space (X, d). Each cover Un of

a resolving sequence is assumed finite and treated as a finite set with elements U . The only

restrictions placed on the metric space (X, d) are

1. X is compact (in the metric topology),

2. X contains an infinite set of points, none of which are isolated,

3. X has finite Hausdorff dimension (s0 := dimH(X) <∞), and

4. X has positive s0-dimensional Hausdorff measure (Hs0(X) > 0)

—henceforth these conditions will be assumed without further comment. Condition 1 and

2 imply that s0 > 0 (since H0 is counting measure).
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4.3.1 Choice Functions and Representations

Definition 4.3.1 (Choice Functions). Given any resolving sequence ξ = {Un}∞n=0 for X,

let Υ(ξ) denote the space of choice functions compatible with ξ: those functions

τ :
∞∐
n=0

Un → X ×X

such that

1. if τ(U) = (τ+(U), τ−(U)), then τ±(U) ∈ U and,

2. if U ∈ Un for n ≥ 1, then

diam(U) ≥ d (τ+(U), τ−(U)) ≥ diam(U)

1 + diam(U)
(∗)

whenever U ∈ Un.

Remark. The choice functions of [51], a setting in which all open sets are also closed,

have the property d (τ+(U), τ−(U)) = diam(U); in the current setting, where open sets are

in general not also closed, this is in general impossible—it is possible that no such choice

exists.

Lemma 4.3.2. For any resolving sequence ξ and any τ ∈ Υ(ξ), the set of points

{τ±(U) | U ∈ Un, n = 0, . . . ,∞}

is dense in X.

Proof. This follows automatically from the fact that ξ is resolving: for any open set U ,

there is an n ∈ N and U ′ ∈ Un such that U ′ ⊆ U . It then follows that τ±(U ′) ∈ U , so every

open set in X contains a point x such that either τ+(U) = x or τ−(U) = x.

Let C(X) denote the C∗-algebra of complex-valued continuous functions on X, and

CLip(X) the dense subalgebra of Lipschitz continuous functions. Let A := CLip(X) and,

letting l2(ξ) :=
⊕∞

n=0 l
2(Un), let H := l2(ξ) ⊗ C2. Given any resolving sequence ξ, any
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choice τ ∈ Υ(ξ), and any (not necessarily continuous) function f : X → C, define a linear

transformation πτ (f) : H → H by

f 7→

ψ(U) 7→

f (τ+(U)) 0

0 f (τ−(U))

ψ(U)


Since ‖π(f)‖B(H) ≤ ‖f‖∞, it follows that πτ (f) is a bounded operator on H whenever f is

a bounded function on X.

Proposition 4.3.3. For f ∈ C(X), the assignment f 7→ πτ (f) is a faithful ∗-representation

of C(X) in B(H).

Proof. That πτ is a ∗-representation is straightforward. If πτ (f) = πτ (g), then for every

U ∈ Un, n = 0, . . . ,∞, f (τ±(U)) = g (τ±(U)). Since {Un}∞n=0 is a resolving sequence, by

Lemma 4.3.2 the continuous functions f and g are equal on a dense set in X, and are thus

equal.

4.3.2 Dirac Operator

If σ1 := [ 0 1
1 0 ] is the first Pauli matrix, for any τ ∈ Υ(ξ), let Dτ be the operator on H defined

by

Dτψ(U) =
1

d (τ+(U), τ−(U))
σ1ψ(U) (4.3.1)

Theorem 4.3.4. For any choice τ , the operator Dτ is self-adjoint with compact resolvent

and [Dτ , πτ (f)] is a bounded operator for any Lipschitz continuous function f ∈ A: i.e.

(A,H, Dτ , πτ ) is a spectral triple.

Proof. The proof follows the proof of [51].

Dτ is self-adjoint :

Because Dτ is defined on any ψ ∈ H with finite support, it is densely defined. Let ψ,ψ′ be

elements of the domain of Dτ . Then

〈Dτψ,ψ
′〉H =

∞∑
n=0

∑
U∈Un

1

d (τ+(U), τ−(U))
〈σ1ψ(U), ψ′(U)〉C2 = 〈ψ,Dτψ

′〉H

Since Dτ is defined on a dense subset of H, it is a symmetric operator; if the range of Dτ

is H, then it is also self adjoint. Given any ψ ∈ H, let ψ′(U) := d (τ+(U), τ−(U))σ1ψ(U).
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Since ∥∥ψ′∥∥2

H =

∞∑
n=0

∑
U∈Un

d (τ+(U), τ−(U))2 ‖ψ(U)‖C2 ≤ diam(X)2 ‖ψ‖2H

it follows that ψ′ ∈ H, and since Dτψ
′ = ψ, the range of Dτ is H and Dτ is self-adjoint.

[Dτ , πτ (f)] ∈ B(H):

For any f ∈ A, let Lip(f) := sup
{
|f(x)−f(y)|
d(x,y)

∣∣∣ x, y ∈ X} be the Lipschitz constant of f .

Then

[Dτ , πτ (f)]ψ(U) =

1

d (τ+(U), τ−(U))

[
σ1,

f (τ+(U)) 0

0 f (τ−(U))

]ψ(U) =

f (τ+(U))− f (τ−(U))

d (τ+(U), τ−(U))

0 −1

1 0

ψ(U)

so

‖[Dτ , πτ (f)]‖B(H) = sup
U∈Un
n≥0

{
|f (τ+(U))− f (τ−(U)) |

d (τ+(U), τ−(U))

}
≤ Lip(f) (4.3.2)

(
1 +D2

τ

)−1
is compact :

Since
(
1 +D2

τ

)−1
ψ(U) = d(τ+(U),τ−(U))2

1+d(τ+(U),τ−(U))2
ψ(U), let

Tmψ(U) :=


d(τ+(U),τ−(U))2

1+d(τ+(U),τ−(U))2
ψ(U) U ∈ Un, n ≤ m

0 otherwise

The covers Un are finite, so the operators Tm are finite rank. Since

[
Tm −

(
1 +D2

τ

)−1
]
ψ(U) =

∑
U∈Un
n>m

d (τ+(U), τ−(U))2

1 + d (τ+(U), τ−(U))2ψ(U)

and sup {d (τ+(U), τ−(U)) | U ∈ Un, n > m} → 0 as m → ∞, the sequence of finite rank

operators {Tm}∞m=0 converges to
(
1 +D2

τ

)−1
in the topology of B(H).

4.4 Trace Functionals

By the Riesz Representation Theorem, the Hausdorff measure, being a positive Radon

measure on X, is represented by a positive linear functional on the algebra of continuous
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functions on X. A state on C(X) can be defined via the evaluation of a trace on |Dτ |−1,

where Dτ is the Dirac operator determined by a choice in Υ(ξ). Connes showed (Theorem

3.5.2) that the Dixmier trace of a measurable operator is given by the residue formula

TrDix(T ) = lim
s→1+

(s− 1)ζT (s)

A similar approach is followed, but the construction is modified to give a probability mea-

sure:

µ(f) = lim
σ→0

Tr
(
|D|−(s0+σ)π(f)

)
Tr
(
|D|−(s0+σ)

)
The ratio of traces defines a state for each σ > 0, so existence of limits is guaranteed by

Alaoglu’s Theorem. Uniqueness of this limit is much more involved and will be addressed

in the next chapter.

Let ξ be a strict Hausdorff resolving sequence of finite covers for X and fix an ordering

{Uk}∞k=1 of the open sets of ξ that respects ξ. For a given τ ∈ Υ(ξ), for each k ∈ N

let xk := τ+(Uk), yk := τ−(Uk), and δk := d(xk, yk). For any (not necessarily continuous)

function f : X → C, let ak := 1
2 (f(xk) + f(yk)), and let

ζτ (s, f) :=
1

2
Tr
(
|Dτ |−sπ(f)

)
=
∞∑
k=1

akδ
s
k

be the spectral zeta-function corresponding to f . For any subset E ⊆ X, let χE denote its

characteristic function, and let

ζτ (s, E) := ζτ (s, χE) ζτ (s) := Tr
(
|Dτ |−s

)
= 2ζτ (s,X)

with corresponding abscissae of convergence sE and sτ , respectively, where it follows that

sτ = lim supK→∞
K

− log δK
. It follows at once from condition (∗) in Definition 4.3.1 that

sτ = sξ, and, when ξ is Hausdorff, that sτ = sξ = s0 = dimH(X). (Note: even though

the sequence {Uk}∞k=1 has been ordered by diameter, the sequence {δk}∞k=1 may not be

monotonic—the diameters are ordered, but the choices need not satisfy δk < δk−1 for all

k ∈ N. This does not effect the abscissa of convergence.)

Remark. In general, it is possible that a Dirichlet series converge at its abscissa of conver-

gence, which would pose problems in the definition of the spectral zeta-function. However,

36



this is avoided because the Hausdorff measure of X is assumed to be positive. For any

F ⊆ X such that Hs0(F ) > 0, if ξ is a strict Hausdorff resolving sequence for F , then

necessarily limn→∞Qn(X) = Hs0(F ), so that
∑∞

n=0Qn(s0) =∞.

Proposition 4.4.1. For any τ ∈ Υ(ξ) and σ > 0, if

µτ,σ(f) :=
Tr
(
|Dτ |−(s0+σ)π(f)

)
Tr
(
|Dτ |−(s0+σ)

) =
ζτ (s0 + σ, f)

ζτ (s0 + σ)

µτ,σ is a state on C(X).

Proof. For any continuous f ≥ 0, since ak ≥ 0 for all k ∈ N,

ζτ (s0 + σ, f)

ζτ (s0 + σ)
=

∑∞
k=1 akδ

s0+σ
k∑∞

k=1 δ
s0+σ
k

> 0

for all σ > 0. Given α ∈ C and g ∈ C(X), if bk := 1
2 (g(xk) + g(yk)), then clearly

µτ,σ(αf + g) =

∑∞
k=1(αak + bk)δ

s0+σ
k∑∞

k=1 δ
s0+σ
k

= α

∑∞
k=1 akδ

s0+σ
k∑∞

k=1 δ
s0+σ
k

+

∑∞
k=1 bkδ

s0+σ
k∑∞

k=1 δ
s0+σ
k

= αµτ (f) + µτ (g)

Finally, if ‖f‖∞ ≤ 1, then |ak| ≤ 1 for all k ∈ N, so for all σ > 0,

limK→∞
∑K

k=1 |ak|δ
s0+σ
k

limK→∞
∑K

k=1 δ
s0+σ
k

≤
limK→∞

∑K
k=1 δ

s0+σ
k

limK→∞
∑K

k=1 δ
s0+σ
k

= 1

so that ‖µτ,σ‖ ≤ 1. Since ‖χX‖∞ = 1, it follows that ‖µτ,σ‖ ≥ |µτ,σ(χX)| = 1.

It follows from the proposition and Alaoglu’s Theorem that the closure of the set

{µτ,σ(f) | σ ≥ 0} is weak-∗ compact. Thus, limiting states as σ → 0 are guaranteed to

exist, and it remains to construct a resolving sequence for which there is a unique limit

(and then to show that this limit is the Hausdorff measure). The limit will also be inde-

pendent of the choice τ ∈ Υ(ξ).
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CHAPTER V

RESULTS

Assume throughout that (X, d) is a compact metric space without isolated points and that

s0 := dimH(X) satisfies s0 <∞ and Hs0(X) > 0. This implies also that s0 > 0.

At this point, it is possible to show that any resolving sequence encodes the topology

on X, and that by taking the suprememum over the Connes metrics on the spectral triples

(A,H, Dτ ) the metric can be recovered as well. If the resolving sequence is Hausdorff, its

a.o.c. is equal to the Hausdorff dimension of X, and it will be shown that this is also equal

to the spectral dimension of the triple (A,H, Dτ ) for any τ ∈ Υ(ξ). The Hausdorff measure

can also be recovered, but a specific Hausdorff resolving sequence will be considered to

ensure uniqueness of the limit limσ→0 µτ,σ.

5.1 Recovering the Space

From the data of a resolving sequence it is possible to recover the space, not only as a point

set but also with the original topology—this follows from the fact that the open sets of the

covers of a resolving sequence for a space X comprise a countable basis for the topology

on X. Though the topology on X is induced by the metric d, the data of the space as a

point set with a topology does not depend on d, so it is no surprise that this information is

recovered without reference to any spectral triple—in fact, as will be seen in section 5.1.4,

the construction is sufficiently general to hold for any compact Hausdorff space and has an

immediate category-theoreic generalization.

Proposition 5.1.1. If {Un}∞n=0 is a resolving sequence for a subset X, for any open set

U ⊂ X there is a cover Um such that U ′ ⊆ U for some U ′ ∈ Um—i.e. the open sets of the

covers in any resolving sequence for X also form a basis for the topology on X.

Proof. For any x ∈ X and any open set U 3 x, let

ε := d
(
x, UC

)
= sup {d(x, y) | y /∈ U}
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Then B(x, ε′) ⊆ U for all ε′ < ε. Since ∆n → 0 there exists n′ ∈ N such that ∆m < ε′

2 for

all m > n′. For each such m, Um is a cover of X, so there exists U ′ ∈ Um containing x, and

necessarily x ∈ U ′ ⊆ B(x, ε′) ⊆ U .

Thus, a resolving sequence contains all of the information of the topology on X.

5.1.1 Refining Sequences

For any Hausdorff space, the set of points can be identified with its “neighborhood filter”.

More precisely, given a point x in an arbitrary Hausdorff space, the intersection of all open

sets containing x is the singleton set {x}. It is possible to make this more precise, using

the “sequence of joins” generated by a resolving sequence. In particular, it is possible

to compute the Čech cohomology Ĥ(X) of X from the resolving sequence via the more

restrictive notion of a refining sequence.

Definition 5.1.2 (Refining Sequence). A resolving sequence of covers {Un}∞n=0 of X is a

refining sequence for X if U0 = {X} and Un−1 4 Un for every n ∈ N. The sequence {Un}∞n=0

is properly refining if Un−1 ≺ Un for every n ∈ N (see Definition 3.1.1)

Given any resolving sequence ξ = {Un}∞n=0 it is always possible to derive a refining

sequence from it by taking its sequence of joins

Ûn :=
n∨
i=0

Ui

Moreover, Proposition 5.1.1 gives an equivalent condition for a sequence of covers {Un}∞n=0

with the refining property Un−1 4 Un to be a resolving sequence:

Proposition 5.1.3. If {Un}∞n=0 is a sequence of finite minimal covers of X such that

Un−1 4 Un for each n ∈ N, the following are equivalent

1. {Un}∞n=0 is a resolving sequence

2. for any open set U ⊂ X there is a cover Um such that U ′ ⊆ U for some U ′ ∈ Um

Proof. Since the first condition implies the second by Proposition 5.1.1, the content of the

proposition is that for a refining sequence the second condition implies that diam(Un)→ 0
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as n → 0, giving an equivalent characterization of refining sequences for compact metric

spaces.

Any refining sequence {Un}∞n=0, necessarily satisfies diam(Un) ≤ diam(Un+1). (If the

sequence {Un}∞n=0 is strictly refining, the inequality is strict.) Suppose that there exists

α > 0 such that limn→∞ diam(Un) = α. Then for n = 0, . . . ,∞ there is at least one

open set Un ∈ Un such that diam(Un) ≥ α; furthermore, Un and can be chosen so that

Un ⊂ Un−1 for all n ∈ N. Since each cover is minimal, in each open set U of any cover Un

there exists at least one point xU that is not contained in any other set of Un. Let x be such

a point, chosen so that x = xUn for all n = 0, . . . ,∞ (if xU is not contained in any other set

U ′ ∈ Un, then it cannot be contained in any subset U ′′ ⊆ U ′ for U ′′ ∈ Un′ , n′ > n). Then

for any neighborhood U of x there is a cover Um such that x ∈ Um ⊆ U . By construction,

Um′ ⊆ Um ⊆ U for all m′ > m; since U can be chosen to be arbitrarily small, if diam(U) < α,

this contradicts the property diam(Un) ≥ α.

For questions of topology, the refining sequence is a more natural construct. Given

any resolving sequence ξ = {Un}∞n=0, each x ∈ X corresponds in a non-unique way to

a sequence {Un}∞n=0, where Un ∈ Un for n = 0, . . . ,∞, via {x} =
⋂∞
n=0 Un. As will be

seen, this viewpoint is more natural in the context or refining sequences, which yield the

additional property Un ⊆ Un−1 for all n ∈ N (even though the sequence of neighborhoods

is still not unique in general).

For considerations other than topology, the resolving sequence is more appropriate since

the covers do not need to form a refining sequence for the quantities Qn(s) to approximate

the Hausdorff measure. The need to choose optimal covers to construct Hausdorff resolving

sequences could conflict with choices of covers that refine a previously chosen cover—at any

rate, satisfying both a refining property and an optimal Hausdorff property would be both

unnecessary and unnecessarily complicated.

5.1.2 The Graph of a Refining Sequence

Following [4], a directed graph G is an ordered pair of sets (V, E) for which the non-empty

countable set V denotes the set of vertices of G, and E ⊂ V × V denotes the set of edges.
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Let s, t : E → V be the projections on the first and second components respectively: for

e = (v1, v2) ∈ E , the source of e is s(e) = v1, and the target of e is t(e) = v2. A path is a

sequence of edges {ei}ni=1 with the property t(ei) = s(ei+1) for i = 1, . . . , n− 1. Graphs will

be assumed to be simple: there is no edge e for which s(e) = t(e) and for any v1 6= v2 ∈ V,

there is at most one edge e with s(e) = vi and t(e) = vj for (i, j) = (1, 2) or (2, 1). As a

result, any path {ei}ni=1 can be represented by a sequence of vertices {s(e1), t(e1), . . . , t(en)},

where s(e1) is the beginning and t(en) is the end of the path. A vertex x is an ancestor of

a vertex y, and y is a descendant of x, if there is a path beginning at x and ending at y.

Henceforth, assume that U0 = {X} for any refining sequence {Un}∞n=0. Let G be the

directed graph with vertex set V =
∐∞
n=0 Un and edge set E consisting of precisely one edge

(U,U ′) whenever U ⊃ U ′ for some U ∈ Un, U ′ ∈ Un+1. It follows from the definition that G

is a simple graph, so any path is determined by a sequence of vertices (Un)m
′

n=m such that

(Un, Un+1) ∈ E for n = m, . . . ,m′ − 1. Let ∂G denote the set of infinite paths and assume

that all paths start at X (s(e1) = X ∈ U0).

Proposition 5.1.4. The set ∂G consists of sequences (Un) such that
⋂∞
n=0 Un contains at

most one point of X. If {Un}∞n=0 is properly refining, then
⋂∞
n=0 Un contains precisely one

point.

Proof. The proposition is essentially a rephrasing of the characterization of Hausdorff spaces

as those spaces that have well-defined limits (see [5] for details). Since {Un}∞n=0 is refining,

for no element of ∂G can
⋂∞
n=0 Un contain more than one point, since any two points x, y

of X are separated by Um for some m, in the sense that there are sets U,U ′ ∈ Um such that

U ∩ U ′ = ∅ and x ∈ U, y ∈ U ′.

If {Un}∞n=0 is properly refining, then for each n ∈ N Un ⊆ Un−1, so it follows that⋂∞
n=1 Un ⊆

⋂∞
n=0 Un. Since X is Hausdorff,

⋂∞
n=1 Un cannot be empty.

The product U∞ :=
∏∞
n=0 Un of the finite discrete, hence compact, sets Un is compact

in the product topology. An elementary cylinder of U∞ is a subset [Um] consisting of all

paths whose m-th term is Um; and a cylinder is a finite intersection of elementary cylinders.

For any n = 0, . . . ,∞, the disjoint union
∐
U∈Un [U ] gives a finite partition of U∞ into open,
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hence clopen, sets and the collection of these partitions over n = 0, . . . ,∞ is a basis for the

product topology on U∞, making it a completely disconnected space.

Lemma 5.1.5. ∂G is a closed subspace of the completely disconnected space U∞, and hence

completely disconnected itself. Furthermore, since X has no isolated points, neither does

∂G, giving it the topology of a Cantor set.

Proof. The path space ∂G inherits the subspace topology from U∞. Given a sequence

(Un) ∈ U∞\∂G, there is an m for which Um does not contain Um+1. The intersection

[Um]
⋂

[Um+1] is an open neighborhood of (Un) disjoint from ∂G. Each element of the

complement of ∂G in U∞ has an open neighborhood disjoint from ∂G, so ∂G is a closed

subspace of the completely disconnected space U∞.

Since X has no isolated points by assumption, any open set U ⊆ X contains more

than one point (in fact, since dimH(X) > 0, the set X is uncountable, as is any open set

of X). Since the elementary cylinders generate the topology on ∂G, it suffices to show

that any cylinder contains at least two paths (Un) , (U ′n). Because {Un}∞n=0 is refining, for

any cylinder [Un], two points x, x′ ∈ Un each have disjoint, thus nonequal, neighborhoods

U 3 x, U ′ 3 x′ contained in Un, with U ∈ Um, U ′ ∈ Um′ . The cylinders [U ] and [U ′] are

disjoint nonempty subsets of [Un], so [Un] contains more than one element.

Remark. All cylinders of ∂G are of the form [Un]; for any Un ∈ Un and Um ∈ Um with

m ≥ n, either [Un]
⋂

[Um] = ∅ (there is no path beginning at Un and ending at Um) or

[Un]
⋂

[Um] = [Um] (there is such a path, and thus Um ⊂ Un).

Let X̃ = {(Un) ∈ ∂G |
⋂∞
n=0 Un 6= ∅}. For (Un) ∈ X̃, let Φ: X̃ → X be the map

(Un) 7→ x, where {x} =
⋂∞
n=0 Un. This map is well-defined by Proposition 5.1.4.

Lemma 5.1.6. The map Φ is a surjective, continuous, open mapping X̃ → X.

Proof. For each x ∈ X, choose any countable collection of open sets Uk ⊂ X such that⋂
k∈N Uk = {x} (because X is Hausdorff this can always be done). Because {Un}∞n=0 is

refining, there exists m1 ∈ N and Um1 ∈ Um1 such that Um1 ⊆ U1; this allows a choice

of the first (m1 + 1) elements of a path (Un) ∈ X̃. For each k > 1, continuing with the
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neighborhood Uk
⋂
Umk−1

gives a neighborhood for which there there is a cover Umk and

Umk ∈ Umk with Umk ⊂ Uk
⋂
Umk−1

. The sets Umk , k = 1, . . . ,∞ therefore allow the

selection of an infinite path (Un) such that Umk = Un ⊆ Un−1 ⊆ · · · ⊆ Umk−1
whenever

mk = n, and Φ (Un) = x. Since x was an arbitrary point of X, Φ is surjective.

For any open set U ⊂ X, let (Un) ∈ Φ−1(U). Because Φ (Un) = x for some x ∈ U , there

is some Um ∈ (Un) for which Um ⊂ U . Any path through Um is contained in Φ−1(U), so the

cylinder [Um] is a neighborhood of (Un) contained in Φ−1(U). Since every point of Φ−1(U)

has a neighborhood contained in Φ−1(U), it is an open set of ∂G and Φ is continuous.

Furthermore, the image of any cylinder set [Um] is the set Um; for any x ∈ Um, the

proof above that Φ is surjective can be modified so that (Un) = Φ−1 {x} goes through Um.

Because the open sets in the covers of a refining sequence form a basis for the topology on

X and the corresponding cylinder sets form a basis on ∂G, Φ is an open map.

5.1.3 The Path Space

Define a relation ∼ on X̃ by

(Un) ∼
(
U ′n
)
⇐⇒ Un

⋂
U ′n 6= ∅, for n = 0, . . . ,∞

Lemma 5.1.7. The relation ∼ is a closed equivalence relation and (Un) ∼ (U ′n) if and only

if Φ (Un) = Φ (U ′n).

Proof. That∼ is a reflexive and symmetric relation follows from the definition. If Φ (Un) = x

and Φ (U ′n) = x′ 6= x, then there are disjoint neighborhoods U 3 x and U ′ 3 x′. For some

m there are open sets Um ⊂ U and U ′m ⊂ U ′, so Um and U ′m are disjoint and (Un) � (U ′n).

Conversely, if Φ (Un) = x = Φ (U ′n), then x ∈ Un
⋂
U ′n for all n, so (Un) ∼ (U ′n). Since

(Un) ∼ (U ′n) if and only if Φ (Un) = Φ (U ′n), it follows that ∼ is also transitive, and thus an

equivalence relation.

For (Un) � (U ′n) there is some m for which Um
⋂
U ′m = Φ [Um]

⋂
Φ [U ′m] is empty. As a

result, every path in [Um] and every path in [U ′m] have the property that Um
⋂
U ′m = ∅, so

[Um] × [U ′m] is an open neighborhood of ((Un) , (U ′n)) ∈ X̃ × X̃ disjoint from the graph of

∼, and the relation is closed.
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Corollary. The equivalence classes of ∼ in X̃ are the sets Φ−1 {x} for x ∈ X.

Let X∞ = X̃/∼, and let q : X̃ → X∞ be the quotient map, endowing X∞ with the

quotient topology.

Theorem 5.1.8. The quotient space X∞ is homeomorphic to X.

Proof. Since Φ is a class function, it descends to a map Φ̃: X∞ → X such that Φ = Φ̃ ◦ q;

since Φ and q are open, continuous, and surjective (Lemma 5.1.6), so must Φ̃ be. Since Φ̃

is injective by Lemma 5.1.7, it is a homeomorphism between X∞ and X.

5.1.4 Čech Cohomology

The following is a (very) brief summary of Čech cohomology (see [38, 23, 47] for details).

The key observation is that every compact Hausdorff space is the inverse limit of simplicial

complexes. The recovery of X from a refining sequence in the previous section is in fact

a reflection of this general property of compact Hausdorff spaces (no reference was made

to the metric). A refining sequence is nothing more than a specification of an inverse limit

sequence.

Let Γ0(X) denote the collection of finite, minimal open covers of X. To each cover

U ∈ Γ0(X) is assigned its nerve N(U) (a simplicial complex encoding its intersection data)

and for Uα,Uβ ∈ Γ0(X), whenever Uα 4 Uβ the inclusion maps on the sets of Uβ induce

simplicial maps iβα : N(Uβ) → N(Uα). As a result, the refinement relation also gives the

family of nerves {N(U) | U ∈ Γ0(X)} the structure of a directed system. The inverse limit

of this directed system is a topological space homeomorphic to X [23, Theorem 10.1, p.

284].

Furthermore, to each simplicial complex N(U) is associated its simplicial cohomology

group H∆ (N(U)), and each simplicial map iβα induces a map (iβα)∗ on cohomology. The

Čech cohomology Ȟ(X) of X is the direct limit of the simplicial cohomologies of the nerves

with respect to these induced maps. Also, to compute Ȟ(X) it is sufficient to restrict to

any cofinal subcollection of Γ0(X).

A refining sequence ξ of finite minimal open covers is cofinal in U0(X), so an inverse

limit sequence derived from such a refining sequence is sufficient to find Ȟ(X). Given a
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refining sequence for X, for each n ∈ N there are (not necessarily unique) inclusion maps

in : Un → Un−1 sending each element U ∈ Un onto some U ′ ∈ Un−1 containg U . The

inclusion maps in extend to maps on the nerves N(Un), which induce maps (in)∗ on the

simplicial cohomologies H∆(N(Un)). Then

Ȟ(X) := lim←− (H∗∆ (N(Un)) , (in)∗)

Finally, a refining sequence can always be obtained from a resolving sequence by taking

its sequence of joins, which in turn can be reduced to minimal covers, so beginning with a

resolving sequence of X it is always possible to recover the Čech cohomology of X.

Since homology groups are not well behaved under inverse limits, computation of ho-

moogy groups for X is more subtle and not addressed here. If the coefficient group is, for

example, a field or a compact group, then Čech homology is dual to Čech cohomology and

given by the inverse limit of the simplicial homologies with respect to the induced maps

(in)∗. In general, Čech homology satisfies all of the Eileberg-Steenrod axioms except ex-

actness [23]. The related theory of Steenrod homology ([62, 48, 27]), was introduced by

Steenrod to address the failure of Čech’s theory in the category of compact metric spaces.

Steenrod homology agrees with Čech homology in the previously mentioned cases (coeffi-

cient groups for which exactness holds) and satisfies the exactness axioms (as well as a pair

of addition axioms—see [48]). Because it is suited to “bad” compact metric spaces, Steen-

rod homology is the appropriate homology theory for operator theoretic considerations on

compact metric spaces of interest to noncommutative geometery [40, 41].

5.2 Recovering the Metric

For any resolving sequence ξ and any choice τ ∈ Υ(ξ), let

ρτ (x, y) := sup
f∈A

{
|f(x)− f(y)|

∣∣∣ ‖[Dτ , πτ (f)]‖B(H) ≤ 1
}

be the Connes metric for the spectral triple (A,H, Dτ , πτ ).

Proposition 5.2.1. The Connes metric ρτ dominates the original metric d on X: for

any x, y ∈ X, ρτ (x, y) ≥ d(x, y). Also, for each n = 0, . . . ,∞ and each U ∈ Un,

d (τ+(U), τ−(U)) = ρτ (τ+(U), τ−(U)).
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Proof. The argument is now standard: for x ∈ X, let dx : X → X be the map y 7→ d(x, y).

By the triangle inequality, for any y, y′ ∈ X, |dx(y)−dx(y′)| < d(y, y′), so Lip(dx) < 1. Due

to inequality (4.3.2) above it follows that ‖[Dτ , dx]‖B(H) ≤ 1, and thus

d(x, y) = |dx(x)− dx(y)| ≤ ρτ (x, y)

For any points x, y ∈ X, there exists f ∈ C(X) such that f(x) − f(y) = d(x, y) and

Lip(f) = 1. Therefore for each cover Un and each U ∈ Un there is a function fn,U such that

fn,U (τ+(U))− fn,U (τ−(U)) = d (τ+(U), τ−(U)) and ‖[Dτ , fn,U ]‖B(H) ≤ 1.

While in general it is not always possible to recover the metric completely from a single

spectral triple (cf. [6, 58]), Pearson [50] introduced an approach that does allow recovery

of the metric—considering all choices (hence multiple spectral triples): let

ρξ(x, y) := sup
f∈A

{
|f(x)− f(y)|

∣∣∣ sup
τ∈Υ(ξ)

‖[Dτ , πτ (f)]‖B(H) ≤ 1

}
Proposition 5.2.2. For any resolving sequence ξ, for all x, y ∈ X,

ρξ(x, y) = d(x, y)

Proof. For any x, y ∈ X, x 6= y, there exists a choice τ ∈ Υ(ξ) such that if U0 = {U},

then τ(U) = (x, y). It then follows from the previous proposition (Proposition 5.2.1) that

d(x, y) = ρτ (x, y) = ρξ(x, y).

Remark. The lower bound condition (∗) in the definition of choice functions places no

restriction on the choices for U when U0 = {U}, but its effect is essential for the integration

properties of the triple (A,H, Dτ , πτ ) as n → ∞, where the choices become successively

more and more restricted. The factor of 1
1+diam(U) could be replaced by any factor that

increases to 1 as diam(U) → 0—it is even possible in some cases to choose a bound that

is strictly positive when n = 0, though the value of such a bound would depend on the

regularity properties of the space (see [6]).

5.3 Recovering Hausdorff Measure

The principle difficulty in showing that the Hausdorff measure can be recovered from the

limit limσ→0 µτ,σ lies in ensuring that the limit as σ → 0 is unique and independent of the
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choice τ ∈ Υ(ξ). Uniqueness is forced by ensuring that the resolving sequence respects a

countable family of Borel partitions F . This will simultaneously yield the result that the

unique limit is in fact the Hausdorff measure.

5.3.1 Independence of Choice

Uniqueness of the limit relies on the independence of the choice τ ∈ Υ(ξ) of any limiting

state. Thus, any limiting state depends only on the resolving sequence.

Lemma 5.3.1. Let µ be a limit point of {µτ,σ(f) | σ → 0}, so that there exists a sequence

{σj}∞j=1 such that limj→∞ σj = 0 and µ = limj→∞ µτ,σj . Then µ is also a state,

µ(f) = lim
j→∞

∑∞
k=1 akdiam(Uk)

s0+σj∑∞
k=1 diam(Uk)s0+σj

(5.3.1)

for all f ∈ C(X), and µ is independent of the choice τ ∈ Υ(ξ).

Proof. That µτ is a state is immediate, being the limit of states. For any ε > 0, there is an

integer K such that diam(Uk) < ε whenever k ≥ K, and

diam(Uk)

1 + ε
<

diam(Uk)

1 + diam(Uk)
< diam(Uk)

Therefore,(
1

1 + ε

)s0
lim
j→∞

∑∞
k=K akdiam(Uk)

s0+σj∑∞
k=K diam(Uk)s0+σj

≤ lim
j→∞

∑∞
k=K ak

(
diam(Uk)

1+diam(Uk)

)s0+σj∑∞
k=K diam(Uk)s0+σj

≤ lim
j→∞

∑∞
k=K akδ

s0+σj
k∑∞

k=K δ
s0+σj
k

≤ lim
j→∞

∑∞
k=K akdiam(Uk)

s0+σj∑∞
k=K

(
diam(Uk)

1+diam(Uk)

)s0+σj

≤ (1 + ε)s0 lim
j→∞

∑∞
k=K akdiam(Uk)

s0+σj∑∞
k=K diam(Uk)s0+σj

establishing 5.3.1 (since the Dirichlet series in the numerator and the denominator have the

same a.o.c., the limit is independent of the starting index by Lemma 3.4.3).

Independence of the choice for continuous functions follows from the fact the the image

of a choice function is a dense set in X. Since the Lipschitz functions are dense in C(X), if
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µ is independent of the choice for all Lipschitz functions, it is independent for all continuous

functions. For f ∈ CLip(X) and any choice functions τ, τ ′ ∈ Υ(ξ), where τ(Uk) = (xk, yk),

τ ′(Uk) = (x′k, y
′
k) and ak = 1

2 (f(xk) + f(yk)) , a
′
k = 1

2 (f(x′k) + f(y′k)) for each k ∈ N, it

follows that ak − a′k ≤ Lip(f)1
2 (d(xk, x

′
k) + d(yk, y

′
k)). Therefore

lim
j→∞

(
µτ,σj (f)− µτ ′,σj (f)

)
= lim

j→∞

∑∞
k=1 (ak − a′k) diam(Uk)

s0+σj∑∞
k=1 diam(Uk)s0+σj

≤ Lip(f) lim
j→∞

∑∞
k=1

1
2 (d(xk, x

′
k) + d(yk, y

′
k)) diam(Uk)

s0+σj∑∞
k=1 diam(Uk)s0+σj

≤ Lip(f) lim
j→∞

∑∞
k=1 diam(Uk)

s0+σj+1∑∞
k=1 diam(Uk)s0+σj

= 0

The case for general continuous functions now follows by a standard ε
3 argument.

Remark. As previously mentioned, the lower bound condition (∗) in the definition of choice

functions can be made to be more or less flexible—the important feature to ensure that the

proposition holds is that as k →∞, 1
δk

diam(Uk)→ 1.

Corollary. If sf is strictly less than s0, then µτ (f) = 0.

Proof. If sf < s0, then
∑∞

k=1 akδ
s0
k is finite; since

∑∞
k=1 δ

s0+σ
k → ∞ as σ → 0 (because

sτ = sξ = s0), the result follows.

5.3.2 Uniqueness of the Limit

For the limiting state µ to be unique (independent of the sequence {σj}∞j=1), it remains to

construct a resolving sequence ξ so that

µ(f) =

∫
X
f dHs0 (5.3.2)

for all Borel functions f on X. The construction depends on a diagonal argument; first it is

shown that if f is a step function, then (5.3.2) holds for a specific resolving sequence related

to the function. More precisely when f is a linear combination of characteristic functions

for the sets of a finite partition of X into Borel sets of positive measure, then a Hausdorff

resolving sequence satisfies the desired condition. Then a sequence of partitions will be

constructed so that a diagonal resolving sequence related to the partitions will give the
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desired result for any Borel partition, and thus (5.3.2) will hold for all measurable functions

on X.

Lemma 5.3.2. Given a partition F of X into Borel sets of positive measure, if ξ is any

strict Hausdorff resolving sequence that respects F , then for any τ ∈ Υ(ξ) and any simple

function φ of the form φ =
∑

F∈F ϕFχF with ϕF ∈ C for each F ∈ F ,

µ(φ) := lim
σ→0

Tr
(
|Dτ |−(s0+σ)π(φ)

)
Tr
(
|Dτ |−(s0+σ)

) =

∫
X
φ dHs0

Proof. Since µ is linear, µ(φ) =
∑

F∈F ϕFµ(χF ), so it suffices to consider the case where

φ is the characteristic function of a Borel set F with Hs0(F ) > 0, and the partition F is{
F, FC

}
. In this case, (5.3.1) in Lemma 5.3.1 gives

µ(χF ) = lim
j→∞

ζτ (s0 + σj , χF )

ζτ (s0 + σj)

= lim
j→∞

∑∞
k=K akdiam(Uk)

s0+σj∑∞
k=K diam(Uk)s0+σj

for any K ∈ N (by Lemma 3.4.3).

Since ξ = {Un}∞n=0 is a resolving sequence that respects the partition F =
{
F, FC

}
,

there are resolving sequences ξF =
{
UF n

}∞
n=0

for F and ξC =
{
UCn

}∞
n=0

for FC such that

Un = UFn
∐
UCn for n = 0, . . . ,∞. Since ξ is strict,

µ(χF ) = lim
j→∞

∑∞
n=N

(∑
k∈In akdiam(Uk)

s0+σj
)∑∞

n=N Qn(s0 + σj)

= lim
j→∞

∑∞
n=N

(∑
k∈IFn akdiam(Uk)

s0+σj +
∑

k∈ICn akdiam(Uk)
s0+σj

)
∑∞

n=N Qn(s0 + σj)

for any N ∈ N, where
{
IFn
}∞
n=0

and
{
ICn
}∞
n=0

are the index sets for the resolving sequences

ξF and ξC , respectively (see Definition 4.1.2). The expression for µ(χF ) depends on the

choice via the ak; to recover the Hausdorff measure of F , it is sufficient that ak = 1 for

k ∈ IFn and ak = 0 for k ∈ ICn . In general, this need not occur because the choice selects

points in an element of a cover of F , and these points need not be contained in F . By
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Lemma 5.3.1, it is possible to fix a choice that only selects points contained in F , showing

that the points chosen by any τ ∈ Υ(ξF ) that lie outside of F are negligible with respect to

the asymptotics of the zeta-function.

Given the lower bound condition (∗) on the choices, it is possible that no choice exists

that selects two points in F for every open set of ever cover of ξF . This requires the

additional assumption on ξF that each open set of each cover UFn be chosen so that

sup
x∈FC

d(x, F ) <
diam(U)2

1 + diam(U)

—because this leaves the diameters of the open sets U either unchanged or smaller, this does

not have an effect on the other properties of the resolving sequence ξF (i.e. it can only reduce

the quantities Qn(s0), bringing them closer to Hs0δ (F )). With this assumption, it is possible

to fix a choice that only selects points in F , and thus, letting QFn (s) :=
∑

k∈IFn diam(Uk)
s,

µ(χF ) = lim
j→∞

∑∞
n=N Q

F
n (s0 + σj)∑∞

n=N Qn(s0 + σj)
=
Hs0(F )

Hs0(X)

In addition, χF + χFC = χX , so µ(χF ) + µ(χFC ) = 1, and µ(χFC ) = Hs0 (FC)
Hs0 (X) as well.

Thus far, a limiting state µ = limj→∞ µτ,σj is independent of the limiting process only

on characteristic functions of the sets of a partition respected by the resolving sequence ξ.

Thus it remains to construct a resolving sequence that respects an (almost) arbitrary Borel

partition. In fact, it is sufficient that µ(χB) give the Hausdorff measure of any ball B in a

countable family of balls that generate the topology on X.

Given a Borel partition F of X, a resolving sequence ξ = {Un}∞n=0 respects the partition

if there are resolving sequences ξF =
{
UF n

}∞
n=0

for each F ∈ F (Definition 4.2.6). It follows

that if F = F1
∐
F2 for Borel sets F1, F2 ∈ F , then limn→∞Qn(s0, F ) = Hs0(F ), where

Qn(s0, F ) = QF1
n (s0) + QF2

n (s0). Henceforth, this notation will be used whenever F is a

union of sets Fi in a partition F : F occurs as a superscript on QFn to indicate that the

set F is an element of a partition, while Qn(s0, F ) indicates that F is a union of sets of a

partition (respected by ξ).

Since X is a compact metric space, it is separable, so it is possible to extract a countable

dense subset Ŝ ⊂ X. Let B :=
{
B(x, q)

∣∣∣ x ∈ Ŝ, q ∈ Q}.
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Proposition 5.3.3. The cover B is a countable basis for the topology on X.

Proof. The proof is standard. That B is countable is automatic, as the balls in B are indexed

by (a subset of) the countable product
{

(x, q)
∣∣∣ x ∈ Ŝ, q ∈ Q}. Because the topology on X

is generated by metric balls, for any open set U ⊆ X and x ∈ U , there is a ball B(x′, r) such

that x ∈ B(x′, r) ⊆ U . Since Ŝ is dense there is a point x0 ∈ Ŝ contained in the open set

B(x′, r) and for any rational number q in the interval (d(x0, x), r), the ball B(x0, q) contains

x and is contained in B(x, r) ⊆ U .

Theorem 5.3.4. There exists a Hausdorff resolving sequence ξ for X such that the limit

µ = limσ→0 µτ,σ exists and is independent of τ ∈ Υ(ξ), and

µ(f) =

∫
X
f

dHs0
Hs0(X)

for all Borel functions f .

Proof. Choose a sequence {rk}∞k=1 of rational numbers strictly decreasing to 0. Let S1 be a

finite subset of Ŝ such that B1 := {B(x, r1) | x ∈ S1} is a minimal open cover of X. Fix an

ordering x1, . . . , x|S1| of the elements of S1. For each k ∈ N, proceed inductively as follows:

1. Whenever {B(x, rk+1) | x ∈ Sk} covers X, remove rk+1 from the sequence and reindex.

2. Let Sk+1 be a finite subset of Ŝ such that Bk+1 := {B(x, rk+1) | x ∈ Sk+1} is a minimal

cover of X, with Sk+1 ⊃ Sk.

3. Fix an ordering x|Sk|+1, . . . , x|Sk+1| of the elements of Sk+1\Sk.

Let S =
⋃∞
k=1 Sk. Since limk→∞ rk = 0, the sequence of minimal covers {Bn}∞n=0 is neces-

sarily a resolving sequence for X (where B0 = {X}).

Let Fk be the finest partition generated by Bk: for i = 1, . . . , |Sk|, if

F ik =

{⋂
B∈α

B

∣∣∣∣ α ⊆ Bk, |α| = i

}
consists of i-fold intersections of elements of Bk, then

Fk :=

|Sk|∐
i=1

F∖
⋃
j>i

⋃
F ′∈Fjk

F ′

 ∣∣∣∣∣ F ∈ F ik
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is a partition of X into minimal intersections. Let Pk :=
∨k
i=1Fi = Fk ∨ Fk−1.

For each k ∈ N, let ξk be the strict Hausdorff resolving sequence that respects the

partition Pk given by Un =
∐
P∈Pk U

F
n , where ξF =

{
UF n

}∞
n=0

is a strict Hausdorff resolving

sequence for F .

For k ∈ N, let ξk =
{
Ukn

}∞
n=0

be a resolving sequence of X that respects the partition

Pk. This determines a bisequence
{
Ukn
}∞
n=0,k=1

of covers of X. Let ξ be the diagonal

resolving sequence given by Un := Unn for n = 0, . . . ,∞. Each cover Un can therefore be

decomposed as a union of covers UFn of each set F ∈ Pn (since Un ∈ ξn and ξn respects Pn):

Un = Unn =
∐
F∈Pn

UFn

Since Pk+1 refines Pk for each k ∈ N, given F ∈ Pk for some fixed k, for all n ≥ k there

is a subset PFn ⊆ Pn such that ∐
F ′∈PFn

F ′ = F

Let Qn(s, F ) =
∑

F ′∈PFn Q
F ′
n (s). Since QFn (s0) < Hs0(F ) (1 + εn) by construction (inequal-

ity (4.2.2)),

lim
n→∞

QFn (s0) = Hs0(F )

In fact this holds for any F that is a disjoint union of elements of the various Pk. This

includes B(x, rk) for any x ∈ S and k ∈ N. Since the {Bn}∞n=0 is a resolving sequence, the

balls B(x, rk) form a basis for the topology on X, and thus any Borel set F is measured by

µ and µ(F ) = Hs0(F ).

Remark. As opposed to the analogous construction in [51], the existence of µ does not

depend on the properties of a specific zeta-function derived from X (and hence does not

depend on X), but rather the resolving sequence is chosen so that the construction always

yields the desired property. Essentially, rather than selecting spaces for which a canonical

resolving sequence gives the desired result, resolving sequences are now determined in a

non-canonical (and non-unique) way so that no limitations on the space X are made.
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CHAPTER VI

CONCLUDING REMARKS

In [51], a family of spectral triples (A,H, Dτ ) are constructed based on choice functions for

an ultrametric Cantor set. The construction relies on the Michon graph of the Cantor set,

which is equivalent to a resolving sequence of covers by clopen sets. As opposed to (∗), the

choice functions of this construction satisfy the more strict condition

d (τ+(U), τ−(U)) = diam(U)

This condition is possible in the setting of Cantor sets because all of the open sets are

also closed—asymptotically, this condition is equivalent to the condition (∗). However, the

upper box dimension is a lower bound for the spectral dimension, so the resolving sequence

determined by the Michon graph is not Hausdorff. The metric is recovered precisely if and

only if the metric on the Cantor set is an ultrametric.

Also in [51], by defining a measure ν over the space of choice functions Υ(ξ), a closable

sesquilinear form (in fact, a one-parameter family of such forms) on H is constructed,

determining an analogue of the Laplace-Beltrami operator on a compact manifold:

Qs (f, g) :=

∫
τ(ξ)

Tr
(
|D|−s [Dτ , π(f)]∗ [Dτ , π(g)]

)
dν(τ)

This operator generates a semigroup of operators on H, which determines a diffusion pro-

cess on the Cantor set C. On Cantor sets, the topology is generated by clopen sets and

all continuous functions are in effect harmonic. It is expected that in spaces with con-

nected components of positive measure there will be non-harmonic continuous functions

and QD (·, ·) will take a slightly different form.

For any Hilbert space H, if T is an operator on H, then

QT (ψ, φ) := 〈ψ, Tφ〉H

is a bilinear form on H, and for every bilinear form there is a corresponding operator T
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satisfying this condition. Moreover, if the bilinear form is symmetric nonpositive-definite,

then T is a self-adjoint nonpositive operator.

Let (X,µ) be a locally compact separable Radon space such that µ is positive and

supp(µ) = X. Let QD (·, ·) be a symmetric nonnegative-definite bilinear form on L2 (X,µ).

For any measurable function f : X → R, let

f̂ =



0 f(x) ≤ 0

f(x) f(x) ∈ [0, 1]

1 f(x) ≥ 1

Definition 6.0.5 (Dirichlet Form). If the symmetric form QD (·, ·) on L2 (X,µ) satisfies

the Markovian condition

QD

(
f̂ , f̂

)
≤ QD (f, f) ∀ measurable f : X → R

then QD (·, ·) is a Dirichlet form on L2 (X,µ).

Definition 6.0.6 (Generator). An infinitesimal generator of a (one-parameter) semigroup

{Φt | t ≥ 0} of operators on a Hilbert space H is an operator A such that the limit:

A := lim
t→0

1

t
(Φt(f)− f)

exists for all f ∈ H. A semigroup
{
et∆

∣∣ t ≥ 0
}

is strongly continuous if the assignment

t 7→ Φt

is continuous in the strong operator topology on B(H)

If ∆Q is the operator corresponding to a Dirichlet form QD (·, ·), it generates a strongly

continuous symmetric Markov contraction semigroup [28].

Theorem 6.0.7 (Fukushima, 1971). A contraction semigroup on a Hilbert space H is a

Markov semigroup if and only if its generator is defined by a Dirichlet form.

As a result, defining a diffusion process on the Radon space (X,µ) amounts to defining

a Dirichlet form QD (·, ·) on L2 (X,µ). Motivated by [51], it should be possible to construct
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an analagous Dirichlet form for the resolving seqeunce of Theorem 5.3.4. Bellissard [3] has

outlined a general procedure to define a Laplace-Beltrami operator for spectral triples that

are both regular and spectrally regular, such as the spectral triples (A,H, Dτ , πτ ) from the

previous chapter.
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