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Limited Authority Adaptive Flight Control
for Reusable Launch Vehicles

Eric N. Johnson¤ and Anthony J. Calise†

Georgia Institute of Technology, Atlanta, Georgia 30332-0150

In the application of adaptive � ight control, signi� cant issues arise due to limitations in the plant inputs, such as
actuator displacement limits, actuator rate limits, linear input dynamics, and time delay. A method is introduced
that allows an adaptive law to be designed for the system without these input characteristics and then to be applied
to the system with these characteristics, without affecting adaptation. This includes allowing correct adaptation
while the plant input is saturated and allows the adaptation law to function when not actually in control of the
plant. To apply the method, estimates of actuator positions must be found. However, the adaptation law can
correct for errors in these estimates. Proof of boundedness of system signals is provided for a single hidden-layer
perceptron neural network adaptive law. Simulation results utilizing the methods introduced for neural network
adaptive control of a reusable launch vehicle are presented for nominal � ight and under failure cases that require
considerable adaptation.

Nomenclature
A = derivative of tracking error time derivative with

respect to tracking error
a = sigmoidal activation potential
B = derivative of tracking error time derivative with

respect to pseudocontrol
e = tracking error
f .¢/ = plant dynamics
g.¢/ = actuator dynamics or actuator static map
I = identity matrix
K p , Kd = diagonal gain matrices: proportional

and derivative on model tracking error
Kr = diagonal robustifying term gain matrix
L = Lyapunov function
m = number of plant inputs, that is, number of actuators
n = number of plant degrees of freedom and number

of neural network outputs
n1, n2 = number of neural network inputs and number of

neural network hidden-layer neurons, respectively
P, Q = positive de� nite matrices, reference model

tracking Lyapunov equation
r = weighted sum of tracking error
W , V , Z = neural network input and output weights
x = plant con� guration variables
xc = external con� guration variable command
xin = neural network inputs
xrm = reference model con� guration variables
Nx = neural network inputs augmented with a bias
0w , 0v = diagonal matrices containing neural network

learning rates
¢.¢/ = model error function
O±, ±, ±cmd = actuator position estimates, actuator positions, and

actuator commands, respectively
" = model error neural network reconstructionerror
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· = e-modi� cation parameter
¸.¢/ = eigenvalue
º = total pseudocontrol
ºad = output of neural network
ºcrm = reference model pseudocontrol
ºh = hedge signal
ºpd = proportional–derivative pseudocontrol
ºr = robustifyingpseudocontrol signal
¾.¢/, ¾ 0.¢/ = neuron sigmoidal function, gradient of sigmoidal

function

I. Introduction

T HE application of adaptive � ight control to reusable launch
vehicles (RLVs), as well as other vehicles, is motivated by the

potential for cost and safety improvements. However, this applica-
tion brings about several design integration issues, including those
related to limited control authority and � ight certi� cation.

Adaptive Flight Control for Reusable Launch Vehicles
Reducing the cost of placing payloads into Earth orbit has been

a driving force in space research for several decades. To achieve
the cost bene� ts of airplanelike operations, the amount of analysis
and testing required per mission needs to be reduced over that cur-
rently performed. Airplanelike operations imply that payload/fuel
parameters (weight and balance) and route selection are the only
parameters related to � ight control that are required to be updated
for any � ight. This is a goal for future RLV � ight control, where
the � ight control system is designed and tested to operate within a
prescribed envelope of possible choices. It has been estimated that
this level of improvement could save three man-years of labor per
RLV mission.

Launch vehicle � ight control is conventionallycarried out by lin-
earizing the system at a series of operating points and gain schedul-
ing. Gain schedulinghas a distinctdrawback for the RLV: The num-
ber of requiredgains to be scheduledbecomesvery large. If one also
requires that these gains allow for a range of possiblemissions,pay-
loads, and anticipatedfailuremodes, then this approachcan become
prohibitive. Several approaches are also being pursued as alterna-
tives to gain tables for RLV application.1 This includes nontradi-
tional approaches such as sliding mode control, where issues such
as actuator saturation are also being addressed.2;3

In recent years, several theoretical developments have given rise
to the use of arti� cial neural networks (NNs) that learn online for
adaptivecontrolof nonlinearsystems.These developmentsare sum-
marized in Refs. 4 and 5. The use of NN adaptive � ight control has
been demonstrated in piloted hardware-in-the-loopsimulation and
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� ight test on the X-36 aircraft.6;7 This approach has also been uti-
lized to enable a single controller to handle multiple versions of
guided munitions.8 The fact that this architecture enables adapta-
tion to a nonlinearand nonaf� ne-in-controlplant in real time makes
it an attractive candidate to replace RLV gain tables. This approach
has the additionalbene� t that recovery from a class of vehicle com-
ponent failures has been demonstrated.This latter property is being
exploited in developmentof fault-tolerant� ight control systems for
civilian transport aircraft9 and in design of high-bandwidth con-
trollers for unmanned helicopters10; it is expected to have a similar
potential for the RLV.11 These fault-toleranceproperties also invite
a comparison with other approaches to recon� gurable control.12

Design Integration Problems in Adaptive Control
Adaptivecontrol theoryusuallyconsidersonly full authoritycon-

trollers and avoids issues related to input dynamics, saturation, and
othersysteminput characteristicsby assumption.This con� icts with
the fact that real systems have these characteristics.

Input Saturation and Nonadaptive Controllers
Input saturation is a problem for both adaptive and nonadap-

tive control.13 Considerable work has been done for nonadaptive
systems in the presence of input saturation, particularly those in
which the plant is otherwise linear.14 An important class of meth-
ods for dealing with the in� uence of saturation on integral action
is antiwindup bumpless transfer (AWBT) theory.15 Beyond windup
protection, the control system designer must address the issue of
maximizing the domain of attraction of nonadaptive systems sub-
ject to input saturation.16;17 Also, there are nonlinearoptimal control
results developed that can be utilized to produce control histories
that meet input constraints,18 which is an important way to deal
with saturation for nominal responses. However, simply allowing
only suf� ciently conservative commands can be effective, which is
the approach taken for space shuttle attitude control.19 Other meth-
ods inherently design-in the actuator limits in nonlinear feedback
laws.20

Input Saturation and Adaptive Controllers
Input saturation and input rate saturation present a signi� cant

problem for adaptive control, perhaps even more so than for non-
adaptive control. Saturation violates any af� ne in control assump-
tion, which is common in the literature. It also violates the assump-
tion that the sign of the effect of the control is known and nonzero
becausethe effect of additionalcontrol input is effectivelyzero once
saturation is encountered.These effects can dramaticallyreduce the
domain of attraction. However, unlike a linear controller designed
for a speci� ed linear response, it is theoretically possible for the
adaptation function,of certain types of adaptivecontrollers, to con-
tinue to function properly during any input saturation.

One approach used is to avoid saturation altogether by command
(or sometimes feedback signal) adjustment. This has been demon-
strated in an adaptive control setting.21 At least one method is able
to determine exactly how much the command signal needs to be
modi� ed to prevent a speci� c adaptive controller from exceeding
saturation limits, potentially removing conservatism.22 A second
category involves slowing or halting adaptation as saturation is en-
tered.A commonadhocapproachformost adaptivecontrolmethods
is to simply stop adaptation when any input saturates. In the cate-
gory of slowing adaptation, there are many results that bound the
feedback control by some form of a squashing function, such as
in Ref. 23, where the absolute upper bound on plant input is ap-
proached only asymptotically.Another approach to the problem of
adaptive control with input displacement saturation is augmenting
the tracking error signal in a model reference adaptive control set-
ting, with an early result given in Ref. 24 without a stability proof.
Several approaches have been developed in this category.21;25¡27

For adaptive control using NNs trained online, there is very little
in the literature that relates to input saturation. Current approaches
to input position saturation include reducingadaptationrate, as sug-
gested by the theory, to the point of stopping completely once an
input is saturated.

The method introduced in this paper (Sec. II) is most closely
related to augmented error signal approaches21;24¡27 in that it also
relies on removing input characteristics from the error signal used
for adaptation.However, the modi� cation is to the reference model
itself (insteadof theerror signaldirectly).As a result, it is not limited
to displacement saturation, linear plants, or linear reference models
and may also be applied to quantized or bang–zero–bang control.
A consequence is that the reference model becomes dynamically
coupled with the plant and the adaptive law during the saturation
intervals. The method is fundamentally different than command
adjustment, discussed earlier, in the sense that it does not avoid or
even prevent saturation.The method introducedhere is also related
to AWBT theory for nonadaptivecontrollers,speci� cally, the Hanus
et al. conditioning technique,28 which, like this work, includes the
concept of a mismatch between the commanded and actual plant
input, although in this work the mismatch is computed in terms of
pseudocontrol.

Linear Input Dynamics
The NN adaptive� ightcontrolarchitectureutilizedheregenerally

requires that input dynamics, that is, actuator dynamics, are known
or negligible. Improved robustness to unknown input dynamics uti-
lizing more general adaptivecontrol techniques(dynamic nonlinear
damping) has been shown.29 Linear input dynamics present an im-
portant issue in this form of NN adaptive control because, although
they may often be considered known dynamics, it is not advisable
to attempt to cancel them. In the case of a physical actuator, this
will lead to excessive driving of the actuator. When a notch � lter is
introduced to prevent exciting an aeroelastic mode (for example),
the control system designer does not want it to be canceled by the
adaptationaction of the controller.Unfortunately,to regard these in-
put dynamics as unknown or to include them in a dynamic inversion
element would result in attempted cancellation in either case. Ide-
ally, the control system designer would like to prevent the adaptive
element from attempting to cancel selected linear input dynamics.

Quantized Control
When the input is highly quantized,or simply bang–zero–bang in

the extreme example, adaptive control theory is challengedin many
of the same ways it is challenged in the input saturation case. For
reentry, RLVs often use a combination of continuous aerodynamic
controls and bang–zero–bang reaction control system thrusters.28

Adaptive control methods are also challenged by discrete control.
Af� nity and knowledgeof the sign of control (as a partialderivative)
are both violated as with saturation.

Flight Certi� cation
Flight certi� cation requirementsrelating to � ight controlvary be-

tween military aircraft, civilian aircraft, and spacecraft. In addition,
these requirements are evolving to changes in the technologybeing
applied. However, three important issues for adaptive controllers
that relate to the work presented here are as follows:

1) Is it possible for the adaptive controller to cause harm to the
vehicle? This is a dif� cult issue for an adaptive controller because
it is inherently dif� cult to show that the controllerwill not learn in-
correctly under reasonable assumptions. Relaxing the assumptions
related in input authority is an important step.

2) Can the adaptive element recover from a failure in adaptation?
If, for any reason, the adaptive element has learned incorrectly to
an extreme level, the adaptive controller should be able to recover.
An extreme level of incorrect learning might be characterized by
commanding full control de� ections when only small de� ections
are needed. Correct adaptation during input saturation can enable
this kind of recovery.

3) Is there a way to verify the adaptation function (in � ight test)
without risk to the vehicle? This is an important issue for � ight
certi� cation of adaptive controllers in a research setting. For NN
� ight control of the X-36 discussed earlier, the � rst attempt at in-
� ight adaptation occurred with the adaptive element in the � ight
control loop. Correct adaptation during arbitrary assignment of the
actuator signal enables this type of test to be performed.



908 JOHNSON AND CALISE

Outline
This work extends NN adaptive control laws4;5;7¡9;29;30 to allow

the control law designerto prevent adaptationto selectedplant input
characteristics.InSec. II, themethodis described.Simulationresults
utilizing the methods introduced for NN adaptive � ight control of
the X-33, representative of future RLVs, are presented in Sec. III.
These results include nominal � ight and failure cases that require
considerable adaptation. Conclusions are given in Sec. IV, and a
proof for the main theorem is given in the Appendix.

II. Pseudocontrol Hedging
The method introduced here is termed pseudocontrol hedging

(PCH). The purposeof the method is to prevent the adaptiveelement
of an adaptive control system from attempting to adapt to selected
plant input characteristics.The adaptive law is preventedfrom “see-
ing” these system characteristicsas reference model tracking error
bya speci� c modi� cationof the referencemodeldynamics.The case
of PCH applied to an adaptive control architecture that includes an
approximate dynamic inversion is shown in Fig. 1. Here, a NN cor-
rects for errors in the approximatedynamic inversion.Consider the
case in which the plant dynamics are of the form

Rx D f.x; Px; ±/ (1)

where x; Px 2 <n and ± 2 <m with m ¸ n. Assume that an approxi-
mate dynamicinversionandcontrolallocationsystemhas developed
to determine actuator commands of the form

±cmd D Of¡1.x; Px; º/ (2)

where º is the pseudocontrol signal and represents a desired Rx that
is expected to be approximately achieved by ±cmd. That is, this dy-
namic inversion element was designed without considerationof the
actuator model. Then, ±cmd 6D ± due to the asymptoticallystable ac-
tuators,

P± D g.±; x; Px; ±cmd/ (3)

To get the PCH signal ºh , an estimated actuator position O± is
determined based on a model or a measurement. This estimate is
then used to get the difference between commanded pseudocontrol
and the achieved pseudocontrol,

ºh D Of .x; Px; ±cmd/ ¡ Of.x; Px; O±/

D º ¡ Oº (4)

With the addition of PCH, the reference model shown in
Fig. 1 has a new input, ºh . If the reference model without PCH

Fig. 1 Model reference adaptivecontrol includingan approximatedy-
namic inversion with PCH compensation.

was of the form

Rxrm D º crm.xrm; Pxrm; xc; Pxc/ (5)

where fxc; Pxcg is an external command signal, then the reference
model update with PCH is

Rxrm D ºcrm.xrm; Pxrm; xc; Pxc/ ¡ º h (6)

This particular choice of reference model modi� cation will remove
the actuatorcharacteristicfrom referencemodel trackingerror (e, to
bediscussed)and from theadaptivelaw. The instantaneousoutputof
the reference model in the feedforward path (Fig. 1) is not changed
by the use of PCH and remains º crm.

Reference Model Tracking Error Dynamics
The complete pseudocontrol signal for the system introduced in

Fig. 1 with º crm as already described is

º D ºcrm C ºpd ¡ º ad C ºr (7)

where º ad and ºr are adaptive and robustifying terms to be de� ned
later and ºpd is the output of a proportional–derivative compensator
acting on reference model tracking error:

ºpd D K p.xrm ¡ x/ C Kd.Pxrm ¡ Px/ (8)

When combined into a single vector, reference model tracking
error is

eT D
£
.xrm ¡ x/T .Pxrm ¡ Px/T

¤
(9)

The reference model tracking error dynamics are now found by
differentiatingEq. (9):

Pe D Ae C B[ºad.x; Px; O±/ ¡ ºr ¡ f.x; Px; ±/ C Of .x; Px; O±/] (10)

where

A D
µ

0 I

¡K p ¡Kd

¶
; B D

µ
0

I

¶
(11)

and I the appropriatelydimensioned identity matrix.
Remark 1: When one assumes that ± is exactly known ( O± D ±/,

and ºr is dropped temporarily for clarity, it follows from Eq. (10)
that

Pe D Ae C B[º ad.x; Px; ±/ ¡ ¢.x; Px; ±/] (12)

where ¢.x; Px; ±/ is model error to be approximately canceled by
ºad ,

¢.x; Px; ±/ D f .x; Px; ±/ ¡ Of.x; Px; ±/ (13)

and is discussed further later. Equation (12) is of the same form as
the model tracking error dynamics seen in previous work4;5;7¡9;29;30

regardless of the actuator. That is, ± appears rather than ±cmd .
Remark 2: When one makes the less restrictive assumption that

one can express actuator position as a static function of actuator
model position and plant state, ± D ±.x; Px; O±/ (e.g., input saturation
occurs earlier than re� ected in the model of the actuator), it follows
from Eq. (10) that

Pe D Ae C B[º ad.x; Px; O±/ ¡ ¢.x; Px; O±/] (14)

where

¢.x; Px; O±/ D f[x; Px; ±.x; Px; O±/] ¡ Of .x; Px; O±/ (15)

appears as model error to the adaptive law, which the NN can and
does correct for.

Remark 3: When the actuator model contains dynamics and has
errors, this will appear as unmodeled input dynamics to the adaptive
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law, and alternativemethodsare appropriateto robustifytheadaptive
process.29;30

Remark 4: It is throughselectionof the referencemodeldynamics
used in Eq. (6),º crm, that the control systemdesignershould address
the effects of the actuator on stability and tracking performance.
This is done utilizing methods from nonadaptive control, starting
with Eqs. (1–3), (6), and (7) and taking

Rxrm D º¤
ad C Of.xrm; Pxrm; ±/ (16)

P± D g.±; xrm; Pxrm; ±cmd/ (17)

±cmd D Of ¡1
¡
xrm; Pxrm; º crm ¡ º¤

ad

¢
(18)

where º¤
ad is an ideal postadaptationoutput of the adaptive element

(preciselyde� ned subsequently)and referencemodel trackingerror
is taken as zero. Taken together, these are the zero dynamics of
the complete system analyzed herein. When the adaptationmethod
chosen is capable of exactly correcting for model error, Eqs. (16)
and (18) become

Rxrm D f.xrm; Pxrm; ±/ (19)

±cmd D f¡1.xrm; Pxrm; ºcrm/ (20)

respectively, as the nonadaptive design synthesis problem for ºcrm

in simpler form. In the examples given in this paper, the reference
model dynamics are chosen as

ºcrm D K p.xc ¡ xrm/ C Kd.Pxc ¡ Pxrm/ (21)

where K p and Kd are � xed gains, which will achieve desirable
responses for permissible plant and actuator dynamics. When the
actuator is perfect, ± D ±cmd, it will correspond to a linear response.

NN as the Adaptive Element
Single hidden-layer perceptron NNs are universal approxima-

tors31 in that they can approximate any smooth nonlinear function
to within arbitrary accuracy, given a suf� cient number of hidden-
layerneuronsand input information.Here, a singlehidden-layerNN
is trained online to cancel model errorwith feedback,as in Refs. 29,
30, 32, and 33. Figure 2 shows the structureof a single hidden-layer
NN. The following de� nitions are convenient for further analysis.34

The input–output map can be expressed as

ºadk D bwµw;k C
n2X

j D 1

w j;k¾ j

Á
bv µv; j C

n1X

i D 1

vi; j xini

!
(22)

where k D 1; : : : ; 3. Here n1 , n2, and n are the number of inputs,
hidden-layer neurons, and outputs, respectively, and xini ; i D 1;
2; : : : ; n1 C 1 contains the NN inputs. The scalar function ¾ j is a
sigmoidal activation function, for example,

¾ j .z/ D 1=.1 C e¡a j z/ (23)

The constant a j is a distinct value for each hidden-layer neuron,
j D 1; 2; : : : ; n2 . The maximum of ja j j, for j D 1; 2; : : : ; n2, is Na.

Fig. 2 Single hidden-layer perceptron NN.

For convenience, de� ne the two weight matrices

V D

2

6664

µv;1 ¢ ¢ ¢ µv;n2

v1;1 ¢ ¢ ¢ v1;n2

:::
: : :

:::
vn1 ;1 ¢ ¢ ¢ vn1;n2

3

7775; W D

2

6664

µw;1 ¢ ¢ ¢ µw;n

w1;1 ¢ ¢ ¢ w1;n

:::
: : :

:::
wn2;1 ¢ ¢ ¢ wn2 ;n

3

7775 (24)

and de� ne a sigmoid vector as

¾T .z/ D
£
bw ¾ .z1/ ¾.z2/ ¢ ¢ ¢ ¾

¡
zn2

¢¤
(25)

where bw > 0 allowsfor the thresholdµw to be includedin the weight
matrix W ,

z D V T Nx (26)

NxT D
£
bv xT

in

¤
(27)

where bv > 0 is an input bias that allows for the threshold µv to be
included in the weight matrix V .

With the precedingde� nitions, the input–outputmap of the single
hidden-layerNN can be written in a matrix form as

ºad.W; V ; Nx/ D W T ¾.V T Nx/ (28)

For further convenience, a single matrix containing all tunable NN
parameters is de� ned as

Z D
µ

V 0

0 W

¶
(29)

Also, a matrix containingderivativesof the sigmoidvector is chosen
as

¾0.z/ D

2

66666664

0 ¢ ¢ ¢ 0
@¾ .z1/

@z1
0

: : :

0
@¾

¡
zn2

¢

@zn2

3

77777775

(30)

Consider a single hidden-layer perceptron approximation of the
nonlinear function ¢.¢/, introduced in Eq. (14), over a compact set
D of Nx. There exists a set of ideal weights fW ¤; V ¤g that brings the
output of the NN to within an " neighborhood of function recon-
struction error as long as Nx contains suf� cient inputs to reconstruct
1. This " neighborhood is bounded by N", de� ned by

N" D sup
Nx

kW T ¾.V T Nx/ ¡ ¢.Nx/k (31)

where the NN inputs xin are chosen to obtain dependency on
fx; Px; O±g. The universal approximation theorem implies that N" can
be made arbitrarily small given a suf� cient number of hidden-layer
neurons n2. The matrices W ¤ and V ¤ can be de� ned as the values
that minimize N" over D. These values are not necessarily unique.
We can also de� ne º¤

ad D W ¤T ¾.V ¤T Nx/ as the correspondingoutput
of the NN.

Finally, de� ne the vector

rT D eT PB (32)

where P is the positive de� nite solution to the Lyapunov equation
AT P C PA C Q D 0. The positive de� nite choice for Q used here
is35

Q D

"
Kd K p 0

0 Kd K 2
p

#
1

1
4
n2 C b2

w

(33)
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The robustifying signal is chosen to be

ºr D ¡Kr .kZkF C NZ/.kek=krk/r (34)

with Kr > 0; 2 <n £ n .
Assumption 1: The true actuator position ± is related to the es-

timated value O± by a continuous static map, ± D ±.x; Px; O±/, corre-
sponding to remark 2.

Assumption 2: The norm of the ideal NN weights is bounded by
a known positive value

kZ ¤kF · NZ (35)

where k²kF refers to the Frobenius norm
Assumption 3: External commands are bounded:

®®£
xT

c PxT
c

¤®® · Nxc (36)

Assumption 4: The design process described in remark 4 has re-
sulted in an asymptotically stable nonadaptive subsystem or zero
dynamics, and reference model signals remain bounded for permis-
sible plant and actuator dynamics,

®®£
xT

rm PxT
rm

¤®® · Nxrm (37)

Assumption 5: A � xed point solution exists for the equation
ºad D ¢. This assumption is introduced to ensure that the desired
condition implied by Eq. (15) is attainable with some error, which
under ideal conditions can be made arbitrarily small by a suitably
chosen adaptation law. To guarantee existence and uniqueness of a
solution, it is suf� cient to require that the map ºad 7! ¢.x; Px; º ad/ is
a contraction,ork@¢=@ºadk < 1. This is equivalentto the following
condition on the approximate plant model Of :
®®®®

@¢

@±

@ Of¡1

@º

@º

@ºad

®®®® D
®®®®

³
@f
@±

¡ @ Of
@±

´
@ Of ¡1

@º

®®®® D
®®®®

@f
@±

@ Of ¡1

@º
¡ I

®®®® < 1

(38)

where for the single input/single output case this condition is
satis� ed by knowing the sign of control effectiveness (with-
out regard to any actuator limitations), .@f=@±/.@ Of=@±/ > 0, and
meeting a lower bound for the estimate of control effectiveness,
j@ Of=@±j > j@f=@±j=2 (Ref. 36).

Theorem: Consider the system given by Eqs. (1), (3), and the
adaptive controller given by Eqs. (2), (4), (6–9), (21), (27), (28),
and (32–34) with assumptions1–5, then the weight adaptation laws

PW D ¡[.¾ ¡ ¾ 0V T Nx/rT C ·kekW ]0
w (39)

PV D ¡0º [NxrT W T ¾ 0 C ·kekV ] (40)

with restrictions on 0w; 0v; · , and ¸min.Q/ [Eq. (A12) in the
Appendix], guarantees that reference model tracking error and NN
weights are uniformly ultimately bounded.

Proof: See the Appendix.
Corollary: All plant states fx; Pxg are uniformly ultimately

bounded.
Proof: From uniform ultimate boundedness of reference model

trackingerror (theorem) and referencemodel states (assumption4),
uniformultimate boundednessof plant states is immediate from the
de� nition of reference model tracking error given in Eq. (9).

III. Designs and Results for the X-33
A � ight control architecture was tested in MAVERIC,37 which

has been the primary guidance and control simulation tool for the
X-33 RLV technology demonstrator program. This work has in-
cluded � ight control design from launch to the beginning of the
terminal area energy management phase. Missions include vertical
launch and peak Mach numbers of approximately 8 and altitudes
of 180,000 ft (55,000 m). During ascent, vehicle mass drops by ap-
proximately a factor of three and vehicle inertia by a factor of two.
A more exhaustive evaluation of this design is also available.35

Ascent Flight Control
The � ight control architecture shown in Fig. 1 was utilized for

ascent � ight control. Nominal inversion consisted of multiplying
desired angular acceleration by an estimate of vehicle inertia. A
� xed-gain control allocation matrix was selected based on the ex-
isting baseline X-33 control allocation system.38 For ascent, six
aerodynamiccontrols and four aerospike throttles are used. NN in-
puts were angleof attack, side-slipangle,bankangle, sensedvehicle
angularrate, and estimatedpseudocontrol Oº. Four middle-layerneu-
rons were used, learning rates 0w on W were unity for all axes, and
learning rates 0v on V were 20 for all inputs. K p and Kd were cho-
sen based on a natural frequency of 1.0, 1.5, and 1.5 rad/s2 for the
roll, pitch, and yaw body axes, respectively, and a damping ratio
of 0.7. The e-modi� cation parameter · was chosen to be 0.01. The
aerodynamic surface actuator position and rate limits are included
in the PCH, as are the position and rate limits of the main engine
thrust vectoring. The architecture is shown in Fig. 3.

The resulting � ight control system design has no scheduledgains
and does not require knowledge of the aerodynamic model of the
vehicle. Because aerodynamic moments were neglected when se-
lecting the approximatedynamic inversion, these must be corrected
by NN adaptation.This design represents the extreme case of rely-
ing on adaptation.Design freedom exists to use scheduled gains or
a more accurate approximate dynamic inversion.

Attitude error angles for a nominal ascent phase are shown in
Fig. 4. This error is between the guidance command and the vehicle
state. Ascent phase ends at main engine cutoff (212 s). Guidance
commandsare open loop in this case, so that accurate trackingof the
command is important.Considerablerate saturationin the aerospike
throttles occurs during the initial part of this nominal ascent; there-
fore, accounting for saturation is essential to the adaptive process
even under normal operational conditions.

To illustrate properties of this implementation, a failure case is
chosen where it is temporarily not possible to maintain reference
model tracking.Near-maximum dynamic pressure,half of the aero-
dynamic surfacesgo hard-over (right rudder full trailing-edgeright,
right elevons down, right body � ap down), resulting in signi� cant
model error (Eq. 13). Insuf� cient controlpower remains to maintain
the command until dynamic pressure drops. The vehicle does three
slow rolls to the left before this happens,shownin Fig. 5. The control
system had no direct knowledge of these failures; this includes the
control allocation, the PCH computation, and the NN. The model
error [¢, Eq. (13)] and NN output [ºad, Eq. (28)] for the roll degree

Fig. 3 Determination of pseudocontrol hedge signal, ascent.

Fig. 4 Attitude error angles for nominal ascent.
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Fig. 5 Multiple actuator hard-overs at 60 s, attitude error angles.

Fig. 6 Multiple actuator hard-overs at 60 s, roll-axis adaptation
performance.

of freedom are shown in Fig. 6 and represent roll angular accelera-
tion. During portionsof this trajectory,the remainingactuatorsare at
absolute limits; in other portions, they are experiencingaxis priority
limits. Thus, even thoughthe equilibriumis null controllable,proper
tracking is not maintained, and many of the actuators are saturated,
adaptation is correct.This correct adaptationenables a rapid recov-
ery once control authority is regained, as shown in Fig. 5. Without
PCH both the adaptive controller and the nominal-gain scheduled
controller result in an unrecoverabledeparture.

Entry Flight Control
At thebeginningof the entryphase,allNN parameters,inputs,and

weight matrices are maintained from the ascent phase. However, a
slower linear response was speci� ed to correspond to a reduction in
available control power. K p and Kd were chosen based on a natural
frequencyof 0.5, 0.8, and 0.7 rad/s2 for stability-axisroll, pitch, and
stability-axisyaw axes, respectively,and a damping ratio of 0.7 for
pitch and yaw, and 1.0 for roll. The e-modi� cation parameter· was
chosen to be 0.01 as earlier.

The formulationof theguidancecommanddiffers,beinganangle-
of-attack and angle-of-bankcommand, rather than an attitude com-
mand. This was converted into an attitude command by � nding the
attitude that corresponds to the speci� ed guidance command, as-
suming vehicle velocity with respect to the air mass was � xed, that
is, regarded as a slow state. Nominal inversion consisted of multi-
plying desired angular accelerationby an estimate of vehicle inertia
andutilizinga � xed-gaincontrolallocationsystem.Reactioncontrol
system jet selection was done by selecting a jet � ring combination
that correspondedclosest to the moment de� cit due to aerodynamic
actuator limits, with an added penalty on fuel usage. The aerody-
namic surface actuator displacement and rate limits were included
in the PCH signal, as was reaction control system quantization.The
resulting � ight control system has no scheduled gains or trim set-
tings and represents an adaptive bang–zero–bang control solution
with respect to the reaction control system.

a)

b)

Fig. 7 Command and actual a) angle of attack and b) bank angle for
nominal entry.

a)

b)

Fig. 8 Command and actual a) angle of attack and b) bank for com-
plete reaction control system failure at 60 s.
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Angle of attack and bank angle for nominal transition and en-
try are shown in Fig. 7. Performance is satisfactory without gain
scheduling in the presence of occasional rate saturation of aerody-
namic effectors.

Angle of attack and bank angle are shown in Fig. 8 for a complete
reaction control system failure occurring 60 s after the beginning
of the entry phase. That is, no thrusters are operational after the
failure. The � ight control system was given no direct knowledge of
the failure and so appears as model error. The reduction in avail-
able control power has the greatest impact on bank because it has
the lowest axis priority in aerodynamic effector control allocation.
Although the system is stable, a more conservative guidance com-
mand is needed due to the loss of control authority.

IV. Conclusions
The theoretical results presented here are critical in enabling an

adaptive � ight control system to be used for RLV � ight control,
where control authority limitations, including the quantized nature
of reaction control system control, are routinely encountered even
in the absenceof failures. The design that was developedand tested
achieved desired performance without scheduled gains, trim set-
tings, or knowledge of vehicle aerodynamics, suggesting that little
effort would be required to transition to a different vehicle or mis-
sion. Adaptation to failure cases was rapid, was effective, and did
not require direct knowledge of the failure. Prospects for � ight cer-
ti� cation of this form of adaptive � ight control in general are also
improved.Because adaptationis correct during input saturation, the
control system is able to recover even if it is temporarily tricked.
Also, the adaptive law can be exercised in � ight test while not in
actual control of the vehicle.

Appendix: Proof of Theorem
Equation (10) can be expressed as

Pe D Ae C B[ºad C ºr ¡ ¢] (A1)

De� ne " D º¤
ad ¡¢, where º¤

ad is the network outputusing the ideal
weights, then Eq. (A1) can be expressed as

Pe D Ae C B[W T ¾.V T Nx/ ¡ W ¤T ¾.V ¤T Nx/ C " C ºr ] (A2)

where " is the instantaneous residual network approximation error
corresponding to the ideal weights. The difference between the ac-
tual and ideal weights is given by QW D W ¡ W ¤ and QV D V ¡ V ¤.
When elements of a Taylor series expansion of the sigmoids with
respect to W and V are added and subtracted, Eq. (A2) can be
rewritten as

Pe D Ae C B
© QW T [¾.V T Nx/ ¡ ¾ 0.V T Nx/V T Nx]

C W T ¾ 0.V T Nx/ QV T Nx C w C ºr

ª
(A3)

where

w D " ¡ W ¤T [¾ .V ¤T Nx/ ¡ ¾.V T Nx/ C ¾ 0.V T Nx/ QV T Nx]

C QW T ¾ 0.V T Nx/V ¤T Nx (A4)

When maximum and minimum values of the sigmoid functions are
considered, an upper bound on the norm of w can be written as7

kwk · c0 C c1k QZkF C c2kekk QZkF C c3k QZk2
F (A5)

where c0, c1 , c2, and c3, are known constants and the de� nition of
QZ follows from the de� nition given in Eq. (29).

A Lyapunov function candidate is

L.e; QW ; QV / D 1
2

£
eT Pe C tr

¡
QW0¡1

w
QW T

¢
C tr

¡
QV T 0¡1

v
QV
¢¤

(A6)

When the weight adaptation laws in Eqs. (39) and (40) are used, the
time derivative of L along trajectories can be expressed as

PL D ¡ 1
2 eT Qe C rT .w C ºr / ¡ ·kektr. QZ T Z/ (A7)

whichby¡tr. QZ T Z/ D tr. QZ T Z ¤/ ¡ tr. QZ T QZ / · k QZkF kZ ¤kF ¡ k QZk2
F

(Ref. 34) and including the de� nition of ºr in Eq. (34), results in
the inequality

PL · ¡ 1
2 eT Qe C krkkwk ¡ rT Kr r.kek=krk/.kZkF C NZ/

¡ ·kekk QZk2
F C ·kekk QZkF

NZ (A8)

When the bound on w is used and it is required that

¸min.Kr / ¸ c2; · > kPBkc3 (A9)

PL can be further bounded as

PL · ¡ 1
2 ¸min.Q/kek2 ¡ .· ¡ kPBkc3/kekk QZk2

F

C a0kek C a1kekk QZkF (A10)

where

a0 D .N" C 2 NZ.bw C n2//kPBk

a1 D 2 NZ Na.bw C n2/.1 C bw C n2/.bv C Nxc C Nxrm C NZ /kPBk C · NZ
(A11)

By selection of ¸min.Q/, · , and learning rates 0w and 0v , PL · 0
everywhere outside a compact set that is entirely within the largest
level set of L that itself lies entirely within D (Ref. 35). Throwing
out the trivial kek D 0 case where PL · 0 by Eq. (A10), then PL · 0
when

k QZkF ¸ Zm D
a1 C

p
a2

1 C 4a0.· ¡ kPBkc3/

· ¡ kPBkc3

or

kek ¸
a0 C a1 Zm

1
2 ¸min.Q/

(A12)

givingan upperboundon the size of the compact set, and so increas-
ing ¸min.Q/ and · can be used to decrease the size of this compact
set. Increasinglearningrateswill expandthe level set in the direction
of NN weight errors as seen in Eq. (A6) and vice versa, resulting
in an upper and lower bound for learning rates for a given network
size n2, ¸min.Q/, and · . Therefore, for initial conditions within D,
error e and QZ are uniformly ultimatelybounded,39 with the ultimate
bound on referencemodel trackingerror given by Eq. (A12) treated
as an equality.
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