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NOMENCLATURE
F a function of ¢ defined in equation (3-19)
F' aF/ sy
g gravitational acceleration, cm/sec2
h grid step size in x-direction, cm
H half-distance between the two parallel membranes, cm
I positive integer in x-direction
J positive integer in y-direction
k 1. grid step size in y-direction, cm.

2. square root of ultimate viscosity coefficient,

1
{gm/cm-sec)

K k/pUOZ, dimensionless viscosity coefficient
L Tength of the flow channel, cm

p pressure of fluid, dyne/cm2

Ps pressure factor defined in equation (A-6), dyne/cm3
P dimensionless pressure

Pf dimensionless pressure factor

Qo entrance volumetric flow rate, cmafsec

Rx entrance Reynolds number, 4U0Hp/k?

Ry wall Reynolds number, voHo/lé3

13 step size ratio, h/k

T0 dimensionless yield stress of fluid

Tyx’Txx’Tyy dimensioniess stress components




To

Tyx [ TxxaTyy
]

1

¢
Subscript

X

X3

entrance average velocity, cm/sec

velocity component in x-direction, cm/sec
velocity compenent in y-direction, cm/sec

wall suction velocity, cm/sec

dimensionless wall suction velocity
dimensioniess velocity component in x-direction
dimensiqn1ess velocity component in y-direction
width of the flow channel, cm

distance in x-direction, cm

dimensionless distance in x-direction

distance in y-direction, cm

dimensionless distance in y-direction
relaxation factor in stream-function eguation
relaxation factor in shear-stress equation
shear-stress correlation factor defined in equation (2-35)
Newtonian viscosity coefficient, g/cm-sec

fluid density, gm/cm’

shear stress'tensor, dyne/cm2

yield stress of fluid, dyne/cm?

stress components, dyne/cm?

dimensionless stresm function

conventional stream function defined in equation (4-1)

components in x-direction
components in y-direction
positive integer, denotes a grid point at x= IAx

positive integer, denotes a grid point at y= Jday
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SUMMARY

Ultrafiltration of blood between two parallel membranes was
studied in this work. The blood was considered as a non-Newtonian
fluid with rheological properties that follow the Casson eqﬁation.
Creeping flow, constant physical properties and constant wall suction
rates were assumed.

* The system was studied as a two~dimensional Cassonian flow.

The well known Casson equation for one-dimensional flow was expanded
into multi-dimensional flow form as a function of the second invariant
of A, the symmetrical rate of deformation tensor., The flow equations
were first reduced to dimensionless form. A dimensionless stream func~
tion and dimensionless shear stresses were defined and the flow equa-
tions were reduced to two equations in terms of these variables. Rela-
tions between the shear stress components were deveiloped to reduce the
four shear stresses to one shear stress.

The stream function equation and the shear stress equation were
then rewritten with finite difference approximations for the derivative
terms. A successive relaxation procedure was used to obtain numerical
values of the stream function énd the shear stress. The stream function
equation had to be solved iteratively within each relaxation cycle.

Since there was no similar study or experimental data for com-
parison, the accuracy of the numerical technique used was checked in
limiting cases with the results obtained from analytical solutions.

The agreement of the jterative results with the analytical results were

excellent.
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The half distances between membranes were set at 0.005, 0.01
and 0.05 cm. The blood yield stress was taken to be the normal aver-
age value of 0.04 dyne/cm2 in most cases but other values were also
used to study the effect this yield stress term had on the flow. The
entrance Reynolds number covered a range from 0.25 to 25. The wall
Reynolds number covered a range from zero to 0.025.

It was found that increasing yield stress values caused an
increase in shear stress and pressure drop. With wall suction, the
shear stress of the fluid and the pressure drop became smaller than
those without wall suction. Larger suction rates resulted in smaller
shear stress and less pressure drop.

Some relationships between the variables studied were developed

to help predict the flow behavior at other flow conditions from the

results of known flow conditions.
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CHAPTER I

INTRODUCTION

Artificial Kidneys and the Significance of this Study

It has been reported [1] that about 20% of the up to 50,000
people who die each year from kidney disease are suited to artificial
kidney treatment or kidney transplantation. The artificial kidney is
capable of postponing death from irreversible kidney failure for a few
years of even indefinitely in some cases. The artificial kidney is
also used routinely to sustain a patient who is waiting for a suitable
donor kidney to become available for transpiantation,

Ever since Xolff's [2] pioneering treatment in 1943 of the first
uremic patient by means of hemodialysis, use of the artificial kidney
has increased steadily for the correction of biochemical abnormalities
associated with endogenous or exogenous intoxication. Scribner [3] in
1960 demonstrated a permanent cannulation technique which allowed rela-
tively easy access to the blood stream for connection to the artificial
kidney on a regular basis. In the following years, the attention of
researchers turned to the task of optimizing and simplifying the equip-
ment to increase its reliability and to reduce capital and operating
costs. Especially notable were the engineering improvement efforts of
Babb and Grimsrud [4], Esmond [5], Stewart [6] and 0ja [7].

Although significant improvements have been made by the above-

mentioned investigators, the basic means of mass transfer of all the




present day clinical units is still dialysis, which requires a large
quantity of specially formulated dialysate and a precise delivery sys-
tem to carefully control the flow condition of the dialysate. Regard-
less of how small and efficient the blood-dialysis fluid transfer unit
is made, there still remains the cumbersome delivery system requireménts
of pumping, conductivity control, heat exchange, pressure control,
precise stream mixing and safety. Therefore, the patients are liter-
ally immobilized for treatment two or three times a week. A portable
or wearable treatment unit which can be moved along by the patient is
much desired. The only way to achieve this kind of portability is to
eliminate the handling of the large quantity of dialysate. This requires
a different concept of an artificial kidney. One such concept is the
selective ultrafiltration and returning of water and perhaps some neces-
sary electrolytes back to the blood stream while leaving behind the
toxic substances such as urea, creatinine, etc. This process would

be more analogous to the function of the 1iving kidney than the dialysis

process, Preliminary work toward the development of a blood ultrafil-
tration unit has been done by a few investigators [8-16] but the
recovery of water has not yet been attempted.

Because of the many advantages of the ultrafiltration artificial
kidney, it is believed that ultrafiltration will ultimately replace
dialysis in artificial kidneys.

Very few theoretical studies can be found in the literature on
blood ultrafiltration because it has only recently gained importance.
The fact that blood is a non-Newtonian fluid and that blood ultrafil-
tration processes involve two dimensional flow make the mathematical

study of this problem very complicated.




It is the object of this work to pioneer into the task of solv-
ing such a blood ultrafiltration problem to obtain the flow patterns
and velocity-pressure relations which will assist the design of an
ultrafiltration artificial kidney and the prediction of its perform-

ance,

Rheology of Blood

It has been mentioned previously that blood is a non-Newtontan
fluid. Normal human biood possesses a distinctive yield stress, When
the yield stress is exceeded, the same blood has a shear-stress shear-
rate function closely following Casson's model, which implies reversible
aggregation of red cells in rouleaux and flow dominated by movement of
rouleaux [16]. Casson's equation [17]) was first developed for pigment-
oil suspensions and relates the rheological properties of a suspension
composed of particles which are capable of aggregating into rodlike

clusters.
AL (e (1-1)

Because of the formation of rouleaux by red blood cells [18],
good correlation has been found between the rheological data taken on
human blood with the Casson equation [19,20,21,22}. For banked-type
0 blood (containing ethylene-diamine tetraacetic acid as anticoagulant)

the following empirical relations have been proposed (23]:

Tolﬁ = {H - 0.017)%(1.55 Cp + 0.76) (1-2)
H b
k= [—2s=] (1-3)

(1 - g4




where Ty ~ yield stress, dyne/cm2
= hematocrit (volume percent of red cells in whole biood)
CF = fibrinogen concentration, g/100 ml

viscosity of the suspending plasma, centipoise

1=
I

a dimensionless constant of the order of unity,

s
1]

varying with the concentrations of the other plasma
proteins.
For normal human blood at a hematocrit of 40, the average value
of L is 0.04 dyne/cm2 and the average value of k is 0.18 (g/sec-cm)%

[22,24].

Two-Dimensional Biood Flow

It has been pointed out that blood ultrafiltration involves two-
dimensional flow of a non-Newtonian fluid. Becauselof the complexities
involved, most analytical studies of blood flow have been greatly sim-
plified. Blood flow in dialysis artificial kidneys has been treated
as one-dimensional Newtonian flow in many papers [25,26,27]. Merrili
[24], Arcesty [28], Kosijman [29], Shay {30] and Oka [34] used Casson's
model in their biood flow analysis but their studies were limited to_
one-dimensional flow. Although there are many papers on the ultrafil-
tration of Newtonian flow between parallel plates and cylindrical pipes
[31,32,33] no article on the ultrafiltration of non-Newtonian flow
could be found in the literature.

The scope of this work will be confined to the simplest case

of two-dimensional Cassonian flow, namely the ultrafiltration of biood

between two parallel membranes with constant wall suction.




CHAPTER II

MATHEMATICAL DESCRIPTION OF THE PROBLEM

Statement of the Problem

The system under consideration, Figure 1, consists of a
Cassonian fluid flowing downward between two paraliel walls. At a
certain point in the channel the walls become permeable. The flow
is laminar and fully developed before the fluid contacts the walls
that are permeable, and the dimensions of the channel are such that
it can be considered semi-infinite.

Additional assumptions are:

(1) The fluid is Cassonian with constant physical properties.

(2} The flow is steady, isothermal and two-dimensional

with velocity components in the x- and y-directions
only.

(3) The wall suction rate is uniform and constant at each

wall.

{4) There is no wall slip.

{5) The flow is symmetrical about the middle plane between

the walls.

The purpose of this study is to establish for such a sysfem
velocity and pressure profiles at varjous mass flowrates, wall suc-

tion rates and yield stresses.
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Development of Casson's Model for Two-Dimensional Flow

For multidimensional, incompressible flow, Newton's law of

viscosity is
T = -pA (2-1)

where A is the symmetrical rate of deformation tensor with cartesian
components éij = (8v1/3xj) + (avj/axi). The coefficient of viscosity
u is independent of t or A for a Newtonian fluid.

For a non-Newtonian fluid, the relation between t and A is
T = =nh (2-2)

where the non-Newtonian viscosity n is a scalar function of dor .
Consequently n must depend only on the invariants of A, The three

invariants of A& are

I, = (8:8) =z Ay, (2-3)
I2 = (A:4) = E zjﬂijﬂji ' {2-4)
Iy = detd = 255764 5p81482503k - (2-5)

From the equation of continuity it can be shown that I1 is always

zero for incompressible fluids




Iy = L4y

= — + ——
2y ) * )

t

Zi 2(@)

2 (a-v)

But (A-v) = 0 for incompressible fluids, therefore

—
[
n
o

For many simple flows, the third invariant 13 either vanishes iden-
tically or can be assumed not very important. Therefore it is custom-
ary to assume [35,36,37] that n can be taken to be a function of the
second invariant 12.

The Casson equation for one-dimensional flow has been intro-

duced in Chapter I;

B _ % ¥y -
Tyx To + k( dx ) (2 6)
Squaring the above equation:
dv_ % dv
. % VY e P Y -
Tx = Tt 27, k(- 525 + K- D) (2-7)

According to Hohenemser [35], the above equation can be written in

the following tensor form for multidimensional flow:




A %
T = -[To + 210% k| %—(Q:A)|
+ k2[ /—;— (a:a)]] — (2-8)

Y % (a:8)]

For two dimensional flow in the x- and y-directions:

ov 2

+(By )]"‘{Bx +_§)T-] (2-9)

1 avx
> (a:a) = [(W
Since this quantity will always be positive, substituting (2-9) into

{2-8) gives

v, 2 v, 2
= - (2057 + (5D ) (2-10)

av v -
Sy X 2
{ax +3y]) + k1A

w2 3V 2
= - X _Y _X -
Tyx {10(2[(8}( )+ (ay )1+ [“a';('y“" 5y 1) (2-11)
y avx 2 sz 2 ?E.Z avx 2 -k

+ ZTO k(2[(ﬁ—) + (By )1+ [Bx + F] )

2 BVX
k(2 557)
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v, 2 Eil 2 EEX. Bv_ 2 -1
1‘yy = —{10(2[(—53-<—) + (By )1+ [Bx + a—y”] ) {2-12)
v, 2 . 2 oV v, 2 -k
Y . A Xy X
t 21t kQ2UEE) 550 T T )
v
+ K1 (2 5
av._ 2 ov. 2 IV av. 2 =k
= - . X —F Y 4 _X -
‘l‘xy Tyx {10(2[(ax + (ay )1+ [ax + 2y 1) _(2 13}

V. 2 V. 2 oV 3V, 2 =Y
b _X _y _ Y 4 X
* 21, k(2[(ax )+ (By )1+ Erval y 1)

2 BVX ov
+ k% ("é‘j"‘ + ‘3*);'!')

Fiuid Flow Equations and Boundary Conditions

The system to be studied is represented in Figure 1. A
Cassonian fluid with density o, yield stress T, and Casson viscosity
k? is flowing downward between two parallel walls which change from
non-permeable to permeable at a certain point down the stream. The
rectangular coordinate system is used with x measured from the initial
end of the permeable walls down along the direction of the fiow, and y
measured from the medium plane between the two parallel walls out
toward the wall on the right. The distance between the two walls is
2H and the width is W. The initial volumetric flowrate is QO and the
initial pressure is Py-

The governing equations for a multidimensional Cassonian flow

are




n

Equation of Cohtinuity

(v-v) = 0 (2-14)
Equation of Motion
o) D..V— = - VP - [Vv'r] + ' (2"15)
Bt Pg
2v Fk
. T T
I e e =+ k) A (2-16)

| ) g ]

For steady two-dimensional Cassonian flow in the system described, the
governing equations reduce to

Equation of Continuity

av av
X Yy 17
Fra + 3y 0 {2-17)
Equations of Motion
av v 9T aT
X —Xy. _ 3P _ XX ¥X -
olv, 55+ Vy By ) TR 5y )+ g, (2-18)
v v 9T at
Y Yy=_ 8P _ (X, WY -
oy 5 vy 5 = - - g e ) v eg (2-19)

where as derived in {2-11)}, (2-12) and (2-13)
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ov_ 2 v 2 Vv BV 2 =k
= A
x 7 (2L + P T 5+ )
1 av, 2 av 2 Ry
+ 27 * k{25~ ( )1+ [*—x-+ **—J )
av
2 X
+ k7 {2 3;-)
a av v, 2 %
Ty = " {z, (2[( ) (3 ) 1+ 5374 )
V v, 2 -k
% k2l + (»l) ]+ [—l+-§y_"1 )
ov
2
+ k) (2 350
BV 2 BV, 2 v v 2 -k
Ty T Ty = 7 (2L (5D A5 )
% (2 _._.)L __JL
27, k(2[(ax + (575 ] gt —~—] )

v v
2y (X Y
t Kk (ay e

Boundary Conditions

at y =20, y=20
% e
ay
and Tyx = Txy =0
at y = tH, vy = 2V {constant)
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vx = 0
and LI .0
at x = 0, P =P,
H
and ZH-IO v, dy = Q,
H X
at x = x, 2 L v, dy = Q - ZH‘L v, dx

Dimensionless Fluid Flow Equation and Boundary Conditions

To rewrite the flow equations and boundary conditions in dimen-
sionless quantities, the average initial velocity U0 = QOIZNH and the
half distance H between the two parallel walls were chosen as reference

quantities. The dimensionless variables are defined as follows

T =< /ol K = k/(oU,H)? EENR
X = x/H Y = y/H
Txx = Txx/pUS Tyy = Tyy/pué
Txy B Tx_y/pug Tyx - Tyxfpug

P=[p - elgx + 9 ¥/l

Substituting the above dimensionless variables into the previous
equations and boundary conditions gives the following dimensionless flow

equations and boundary conditions:




14

Equation of Continuity

oV Y
Xy Y- -
5 + 5y 0 (2-20}
Equation of Motion
ay ay aT o1
Mxpy o8P Pxx, Oy ]
Veax PV X - ex ) (2-21)
ay a3V aT aT
_y Y. 3 Xy, _yy : -
Ve T Yy A 57~ e Ty (2-22)
where
av._ 2 V. 2 v av 2 -k
z . X _Yy _X -
y aV av 2 =k
+ 2T, K(2[( )+(Y)]+[ + =21 )
aV
+ K*) (2 5
BVX 2 aV 2 Vx aV 2 =%
Ty = {7, G5 ( Y1+ g™+ o %1 ) (2-24)
V. 2 3V 2 Y} aV. 2 -4
¢ X Y X . _Y
+ 2T0 K(2[(ax + (aY ) 1+ [aY + ¥ 1)

oV
+ Kz} (2 “5-\;'!)
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v, 2 aV oV
T, =T, == (Tl + D ], [—-—+—11 ) (2-25)

V. 2 oV 2 oV BV 2 -k
’ _X _y X
+ ZTO K(z[(ax ) + (BY ) ] + [3Y ax ] )

oV av
R Gy D)

Boundary Conditions

Y=0, Vv = 0
at 0 y
ay
X _
| v -0
i =T..=0
and Tyx =Ty ©
at Y = 1, : Vy = xVO,
Vx =0
and Txx =0
at xX=20, p= PO
1
and [ vdYy = 1
X
0
1 X

at X = X, JovdYy=1-/f vdX
0 * 0 °
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quat1ons in Terms of a Modified Dimensionless Stream
Function and Stresses

Differentiating (2-21) with respect to Y, differentiating (2-22)
with respect to X and combining the two resuiting equations to elimi-
nate the pressure terms gives

5 av av

8 X Xy - o L _X -
v Yy ) et Yy ) (2-26)

=§_(3TX+BT)-3_(“_+ )
ok X 3Y aY ' aX a¥

Now assume a modified dimensionless stream function ¢ which is defined

by the following relations:

With the above definition, Vx and Vy automatically satisfy the equation

of continuity (2-20).

Introducing the stream function 3 into (2-26) gives

2
(%) {—(—JE— —%)1 - 3 Y v2 + 28] (2-27)

aT 5T
- 9 _ X _ 3 (XX
=5 o TV ey hx Y )

The left side of (2-26) can be written in a more conventional form

T aT aT a7
a(p. %) _ 3 (Oxy, Dlvyy L3 2lxx x
T e el I Tl e o (2-28)

where
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) 3 dy
a(v,v7y) _ 3X oY
ax,Y !
J 2 ] 2
35 (Vv) 37 (V0)
- 2 Py, 8
and R
X aY

2 2 2 2 2 -k

- A 3y _ Y _
TXX {T0[4(3XBY) * (BYz BXZ) ] (2 29)
2 32y 2"
o1 K[“(am) Y-y
Y aX
+ K } (2 BXBY)
R T
fyy == 4 [4(3X3Y) ¥ (3Y2 - ;;2) ! (2-30)
1 2 2 2.y
+ 2T K£4(3X3Y) (- 2
K (-2 aXaY)
T = - _Jk 2’yy? 7 -
Tox = Ty {7 [4(3X3Y) +( v ) ] (2-31)

b 2T 2 K[4(ax8y) + (—Y% Jﬂ) »
d

+ k%) (—-ﬂ -%§)
BY 3x
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By (2-29) and (2-30)

Txx = -Tyy (2-32)

This relation can also be proved with stress equations (2-23), (2-24),
and the equation of continuity (2-20} in terms of velocity components.

Substituting (2-32} into (2-28) gives

2 2
2 3T aT a T
a(y,vy) _ 7 yx YX 4 g XX (2-33)

a(X,Y) aYz sz aXaY

The assumption of creeping flow greatly simplifies the above egquation
without seriously restricting the utility of the results [38]. By
assuming créeping flow, the Teft side of (2-33) may be neglected. After

rearranging
2 2 2
s T " T 3°T
Zoyx DK, XK o g (2-34)
Sy2 a2 akaY

Dividing {2-29) by (2-30) gives

2

3y
Txx - 2 3%a¥
yx 2%y _ 3%y
av?  ax?
2
=2_£-l=2-‘(
D™y

where




2
= (2w -
Tex (Dzw )Tyx ZYTyx

Substituting (2-35) into (2-34) gives
2 2
2F (YTyx) + D Tyx =0
where

z 2. -
To = = (T I(F%)" + (0%)"172

+ 21 % KIa(F%)” + (D%9)%1 7%

+ K’} (0%y)
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(2-35)

(2-36)

(2-37)

Equations {2-36) and {(2-37) are to be solved with the following

boundary conditions:

at Y=20, v =0,
LI
aY?
and Tyx =
at Yy=1, P = i - VOX .
R0
and T.., =

Flodly .,




at xX=20,

7<Nl-<

and

where P

ST PR
+T (1= )}

Tox = Pl
8T (- T )T

20

(2-38)

(2-39)

(2-40)

Der1vat10ns of equations (2-38), (2-39) and (2-40) are pre-

sented in Appendix A.
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CHAPTER III
NUMERICAL TECHNIQUE

It is often very difficult or even impossibie to obtain analyti-
cal solutions for fluid flow problems that involve complicated partial
differential equations such as those developed in this study. How-
ever, the numerical approximation method coupled with the high-speed
electronic computer can in many cases give numerical solutions at pre-
determined points in the domain of interest which are sufficient for
engineering design and analysis. The numerical techniques used in this
study are “finite difference approximations," "the relaxation method,"
"Newton-Raphson ijteration" and “the method of false position" [39,40,
41,42].

Mathematical Derivation of Finite Difference
Differentiation and Graphical Interpretations

Finite difference approximation converts differential equations
into algebraic equations which correlate the functional values of the
neighboring points. In doing this, each differential term in the differ-
ential equation is replaced with a corresponding finite difference
approximation. Such finite difference approximations can be obtained
from Taylor's serijes. |

Referring to Figure 2, y=f(x) is a function represented by the

curve ABC whose first derivative we wish to approximate. Dividing the

x coordinate into equal increments of Ax
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X Iax ,

I

fI = f(xl) f{Iax} and
flag = f(xI+]) = f(lax + AX)

From Taylor's series expansion

2 2 3,3 4 4
df ax® d°f ax” d°f ax d f
f- =f _ﬂx—._. -]--mi'——a—--—-—-— - T + T T e e (3-1)
I-1 1 dx 1 z. dx2 . 3 dx3 : 4! dx® I
fooa=f o+ ax 3 48X d°fy b & ¢ 82 d f| Fooaen (3-2)
[
I+1 I dx i 2 dxz[ 3! dx3 dx .

As long as ax is sufficiently small, terms of the order of ax? and

higher may be neglected. Then from equation {3-1}, we get the following

approximation

g{-l = fl—égjl:l-+ 0(ax) (3-3)
or from equation (3-2)

ar - f”ix—_fl + 0(2x) (3-4)

If equation (3-2) is subtracted from equation {3-1) and neglect-

3

ing the Ax™ and higher order terms, we get a better approximation

because we do not have to neglect the Ax? terms
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Y i
e
f1
fii
| .
X1-1 X1 X141 X

Figure 2. Graphical Interpretation of Finite
Difference Differentiation.
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frq - f
df, _ 11 7 14
&, 7 + 0(ax ) (3-5)

where O(Axn) is the truncation error involved in neglecting the terms

n+l and higher. 0{sx") can usually be neglected

of the order of Ax
when ax is sufficiently small.

The approximations in equations (3-3), (3-4) and (3-5) can also
be obtained graphically {Figure 2). By definition, df/dx]I is the
slope of the tangent Tine LM. This slope can be approximated by the
siope of line AB or line BC and best by the slope of tine AC. When AX
becomes smalier, these slopes approach the true slope of the tangent

line LM. These slopes are

fo- f
df, . 17 '1-1 3
for AB a;-I = ¥ (3-3A)
f - f
df, _'1+1 7 "] )
for BC -a—)? . = AX (3 4A)
fraq - F
dfy _ I+ I-1 _
for AC '&Yll = ——'-*—Z—KX—'-— (3 5!'-\)

Equations {3-3A), (3-4A) and (3-5A) are equivalent to equations {3-3),
(3-4) and (3-5) with the truncation terms O(Ax") neglected.
Adding equations (3-1) and (3-2) and neglecting ax’ and higher

order terms we get

2 S 2f 4 f |
d fl - I+] 21 1-1 + 0(&)(2) (3—6)

dx I AX
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Graphically this approximation can also be derived from the slopes.

_ df' f

d’f _f -
g v M V-
I

1-1/2
I AX (3-7)

where fi+]/2 and fi-1/2 are the slopes of the curve at X141/2 and
X1-172 which can be approximated by the slopes of BC and AB,

-F = _q.f— = __._fI+.l —-—-* fI (3'8)
I+1/2 dx|1+]/2 AX

f! - _.(..ii = _._.m_._.__f}: - fI-] (3_9)
1-1/2 7 dxl )y X

get

¢, _ 'In 17 "1 (3-6A)

Again (3-6A) is equivalent to (3-6) with the truncation term
0(ax”) neglected.

The derivation procedure used in equations (3-7), (3-8), (3-9)
and (3-6A) will be used in deriving approximations to partial deriva-

tives with respect to two independent variables in the next section.

System of Grid Points and Two-Dimensional Partial Derivatives

Consider a function f{X,Y) which depends on both X and Y. Cover

the X-Y plane with a rectangular grid system as shown inp Figure 3 so
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Tt dat T,Jd4 1 T4), 440
I-4,d I,J I+
I-t,J=1 Z,4=4 Qs 4=}

Figure 3. System of Grid Points.




27

that the grid point (1,J) is equivalent to the space point (IaX, JaY)
and the value of the variable f(X,Y} on this grid point is fI,J =
f(1aX,JAY). The neighboring grid points are labeled (I+1,J), (I-1,J),
(1,941}, (1,3-1), {I+1,9+1), (I-1,d-1}, (I+1,J-1} and (I-1,J41) as
shown in Figure 3.

Letting AX = k, AY = h and k = sh, the partial derivatives can

be approximated according to (3-5A) and (3-6A) as

f f f

af - 1,0 - f1au0 . I+, " 'I-1,d (3-7)
3 13 75k
1,J
of, . o - Troa (3-8)
O 7h
2%, T, T %ot fiay (3-9)
ale K
1,J
I S Tl W
s%h?
T P Al O I IS (3-10)
aY? h?
1,d

The derivative 32f/3XaY can be approximated by a procedure similar to

the steps taken in deriving (3-6A)
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axavl ) %Y (%é)‘
1,d 1,0
of,  _af
USRERLER
Zsh
R IR 5 PO Mgl GO P S TS 2 PO X Ml S IO E
2sh Zh 2h
2 f 1 |
°f I s f - f - f (3-11)
g0 s BICT ) B IE R S IR R &

Finite Difference Flow Equations

From equations (3-7), (3-8), (3-9), (3-10) and (3-11) we can

write

2
_ 3
FOm g = 37 0D (3-12)

:
4sh?

(M g gn + 0T

'(YT)1+1,J-1 B (YT)1-1,J-11

where T =T

¥X
DT, , = (ﬁi— - EE—) T (3-13)
1,d 3Y2 sz I,J
o re2 2
"2 (5T guq * Ty,go1) - 207 - DTy

“Tre1,0 7 T,

Substituting {3-12} and (3-13} into (2-36)
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sL0M e, on * UM 00 - 0T g0 (3-14)
2
= Oy gl #5710 g0 * Ty )

- 2(st - Ty - T T =0

I+1,3 = '1-1,J
Equation (3-14) can be rewritten in the following form

sUvpan, 060 T gm ) * Oy ) (T ) (3-15)

= G001 9a1) - Orpey ) (Tpoq o)

+ s%(T ) - 2(s? - )T

1ov1 V71,04 1,J
T, T1a1,0°0
where
2
C By Y
LR Bl ey
> D%y 1,9 (D ¢)I’J
and
1
(F2), 4 = —— (v Uy g
SR L I D R S
S ¥141,0-1 " Y1-1,041)
2 _ 1 2 . 2
(D w)I,J = szlh-.a [s (QJI,J'H + lpI,J-'l) 2(s ])1|'JI’J

b147,0 " ¥1o1,40!
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Rearranging equation (3-15), we get
= o2 2
Tre,a = STy g * Ty 90 - 208" - DT 4 (3-16)

- T, - sy 00 T aey)

P rpa,e) U0 - Ui 00!

MR RN RIREEY

or
’ = 2 _
14,0 = Tra1,0 * 008700 g0 * Ty o) (3-17)

T

t

2
2(s° ~ ])TI,J -

T41,0 = T1-1,0

- stvpe g0 T gn)

+

(pa1,0-17 10y, 9000 = Oy 00T 900!
SO IRISP ISP

where o is a relaxation factor, found by trial, for faster conver-

gence.

Now rewrite equation (2-37) in the finite difference form
- 2 2 2 2y~%
TI,J =T [(T0[4(F w)l’d + (D ¢)I,J } (3']8)
5 2 2 2 2<%
+ 212 KIa(F2)p o+ (0%)p 57

+ K23 (0%);
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where again

1

4sh?

2
(Fw)p (pay 991 * ¥121,0-1 7 Y1e1,0-1 7 Y1a1 041!

2 1 2 2
(0%)1,0 = 727 1570y * ¥p,90) - 2087 - Dhvp

I

- V14,9 T ¥1-1,d]

Equation (3-18) cannot be expressed explicitly for Y1410 Iteration
methods have to be used.

Newton-Raphson Iteration

-4
Let Flbpey,g) = (ToI4(F20) ] 3° + (0%0)g 4] (3-19)
A 2 2 2 2.4
+ 2T KIA(F )y 3 + (0% 4]

+ K23 (Dzw)l,J + 1)

then
aF (v )
. ) 141,J i
Frlopn o) * BWis g (3-20)
2 -L’
= {T0[4[F2¢)I’J + (Dzw)lsdzl 2
+ 2T % KIA(FP), & + (%), J217%
o vl v
+ K% (- 55)
s h
2 -
s (T_T4(F); )2+ (D) 51702
X ’ ’ (0%9), .-
1 -5/4
+ T2 KI(Fe)y %+ (0% P17

s h
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The value of F(¢I+1 J) approaches zero when ¥1., , approaches a value
that satisfies equation (3-18). To find this value of Ve g @ first

estimation ¢?+] J is made, then the next improved estimation is
]

Y141, where
0
1 = 0 - F(WI‘I"] ,J) (3_2])
wI"‘] oJ i\!‘l]:"'.l Y F.( 0 )
Y141,4
Repeating this process
FOoT.q )
ml  _ m I+1,J
wI"’],J = ¢'I+'| ,J = F'( m ) (3“‘22)
Y141,4
m=0,1,2,3. ...
1 m+1 m
unti 101,90 = g0l <

Where ¢ s a arbitrarily chosen small value. This process is illus-
trated in Figure 4. While Newton-Raphson iteration usually converges
quite fast, it is unstable in some cases as shown in Figure 5.

The Method of False Position

This method is illustrated in Figure 6. The algorithm is con-
tained in the following sequence of steps:
Step 1. Choose two approximations ¢?+] J and ¢}+] J such that

GRMIGRIEL

Step 2. Find a next approximation from the formula

' o 1 1 0
2 B )P0 g) - g )P OV )

V14,0 (3-23)

1 0
o, g0 - Fla o)
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Figure 4, Newton-Raphson Iteration.
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Figure 5. Newton-Raphson Iteration
Fails to Converge.
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Figure 6. The Method of False Position.
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Step 3. If (0], 5 - g glce or if el g - wQg ol <

for a prescribed ¢, ¢§+1 J is accepted as the answer.
If not, go to Step 4.
2 1 2
Step 4. If F(¢I+1,J)F(w?+1,d) < 0, replace Y1414 by V147,00

leave w?+1,J unchanged and compute the next approxi-
mation from equation (3-23). Otherwise replace
¢?+]’J by ¢I+1,J’ Teave ¢I+1,J unchanged and compute
the next approximation from (3-23).

Aithough this method usually does not converge as fast as the
Newton-Raphson method, it is more stable and always converges to the
solution value if the function changes sign around this value.

If a solution to equation (3-18) is found to be w?+l,J’ then it
will be used in the following equation to carry out the relaxation

process

1 _ 0 * 0
brer,0 T V1en,0 tBULg gt Vg ) (3-24)

where B is the relaxation factor., A successive relaxation method
(39,42] will be used to calculate the values of TI+1,J and ¢I+1,J from

equations (3-17) and (3-24).

Computational Procedures

Most of the calculations were carried out with a Univac-1108
electronic digital computer. The computer programs involved are pre-
sented in Appendix B. The following logic steps were taken in computing

the desired quantity:




(1)

(2)

(3)

{4)

(5)

(6)

(7)
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Calculate initial values of ¢ and T with equations (2-38)
and (2-39). These are the stream functions and shear
stresses of a one-dimensional Cassonian flow between two
parallel plates with nonpermeable walls. Mathematical
operations in obtaining equations (2-38) and {2-39) are
presented in Appendix A.

The stream function y and the shear stress T on the cen-
tral plane, which is the lower boundary of the flow field
to be studied, are set equal to zero.

The stream function on the upper permeable wall, which is
the upper boundary of the flow field to be étudied, is cal-
culated according to the boundary condition ¢ = 1 - VOX on
the permeable wall.

In order to reduce the number of iterations needed, a first

estimation of Y13 is made by the following relation

¥
I, Wa]]) "

¢ Yo, wall 059

New values of ¢ on the first line are calculated with iter-
ation equations (3-22} and (3-24) until the difference in
the values of y between two successive iterative steps is
less than € (input data) at each interior point on the
first line.

New values of ¢ in the downstream flow field are calculated
by iteration eguations (3-23) and (3-24).

lew values of T are calculated by egquation (3-17).
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CHAPTER 1V
RESULTS AND DISCUSSION

The present chapter is devoted to the presentation and discus-
sion of numerical experiments on the ultrafiitration of a Cassonian
fluid between two parallel membranes. The greatest portion of the
numerical calculations was carried out with the aid of a Univac-i]OS
electronic digital computer at the Georgia Institute of Technology Rich
Electronic Computer Center. A small portion of the calculations was
made on the CDC CYBER 74 electronic digital computer after the Com-
puter Center made the change from Univac to CDC.

Various rectanguiar grid steps were used to test the accuracy
of the calculations. It was found that 100 grid points in the X-direc-
tion and 25 grid points in the Y-direction were sufficiently small to

give excellent results. The X to Y grid step ratio, s, used in the

calculations was 25, which was close to the maximum value that wouid
not affect the convergence of the iteration process.

The results were piotted with a Calcomp plotter and are presented
graphically. Five different types of plots are presented for the easy
visualization of the effect of the different variables on the flow. The
five types of plots are: (1) streamlines and shear-stress contours in
the XY plane, (2) stream function and shear stress in steps of X vs Y,

(3) V, in steps of X vs Y, {4) pressure on the central plane vs X,

{5) Vy in steps of X vs Y.
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The streamline and shear-stress contours were plotted with the
aid of the GPCP {General Purpose Contouring Program) program by |
California Computer Products [43].

The half distances between the parallel membranes are 0.005 cm,
.01 cm and 0.05 cm. The entrance Reynolds number RX (4U0Hp/k2)
covers the range from 0.25 to 25. The wall Reynolds number Ry (VOlekz)
covers the range from zero to 0.025 (Tables 1, 2).

Results are presented and discussed in four sections: (1) Com-
parison of iterative and analytical results in limiting cases.

(2) Effect of wall suction rate on the flow. (3) Effect of finite
yield stress on the flow. (4) Some mutually related variables.

Comparison of Iterative and Analytical Results
in Limiting Cases

It is difficult to make a truly comparative evaluation of this
study because no experimental or other numerical work could be found
on two-dimensional Cassonian flow. However, the logic and validity of
the computational procedures can be checked out in two ways.

(1} By setting the finite shear stress T to zero in the input
data, the problem is reduced to a two-dimensional Newtonian flow whose

analytical solution can be obtained as the following equation:
= L3 y3 -
v =7 {3 - Y)(1 - VOX) (3-25)

A comparison of the values calculated with the equation above
and the values obtained with the iterative procedure at selected grid

points is presented in Table 3. It can be seen that the agreement is

excellent. Only the last two digits differ from the analytical values
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Table 1. Values of Variables Studied in Cassonian Flow

0 X A
0.01 0.0400 1.00 0.00000
0.01 0.0400 1.00 0.00025
0.01 0.0400 1.00 0.00050
0.01 0.0400 1.00 0.00075
0.01 0.0400 1.00 0.00100
0.0 0.0400 1.00 0.00150
0.01 0.0400 1.00 0.00200
0.01 0.0000 1.00 0.00100
0.01 0.0100 1.00 0.00100
0.01 0.0400 1.00 0.00100
0.01 0.0800 1.00 0.00100
0.01 0.2000 1.00 0.00100
0.01 1.0000 25.00 0.02500
0.01 0.0100 0.25 0.00025
0.05 0.0016 1.00 0.00100
0.005 0.1600 1.00 0.00100
0.05 0.0400 25.00 0.02500
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Table 2. VYalues of Yariables Studied in Newtonian Flow

H Rx Ry
0.01 1.00 0.00000
0.0} 1.00 0.00050
0.01 1.00 0.00100
0.01 1.00 0.00200
0.01 25,00 0.02500
0.01 0.25 0.00025
0.05 1.00 0.00100

(=]

0.005 1.00 .00100
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at but a few grid points in the worst cases.
(2) By setting the wall flux velocity Vo equal to zero (Ry= 0)
in the input data, the probiem is reduced to a one-dimensional

Cassonian flow whose analytical solution is derived in Appendix A

as:
v = ;\2‘ LEXIINRS IS A RN I S Ee (3-26)
$T(1- D)
where Pe= 2T 24 (K - 2T ) (3-27)

A comparison of the values calculated with the equation above
and the values obtained with the iterative procedure at selected grid
points is presented in Table 4. The analytical value is a function of
Y only since there is no wall flux. The iterative value did change
between X=0 and X=20 but stabilized with greater X values. The lar-
gest deviation of the iterative value from the analytical value is
somewhat larger than in the Case 1 comparison but is still less than
0.05% from the analytical value. The agreement can still be considered
excellent.

The excelient results of the two comparisons made above indi-
cate that the logic and iterative procedures developed in this study

are valid and sound.

Effect of Finite Yield Stress (ro)

The finite yield stress L is a characteristic term in the Casson

equation (1-1). The average value of T, is 0.04 dyne/cm2 for normal
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human blood, To study the effect of this variable on the flow, four
other values of T, Were assumed. They are 0, 0.01, 0.08 and 0.2. All
other variables were kept the same so that the effect of T, could be
isolated. The half distance between the two membranes was 0.01 cm.

The entrance Reynolds number (Rx) was 1.0 and the wall Reynolds number
was 0.001. The results are presented in the following groups of plots:

(1) The contours of stream function {y) and shear stress (Tyx)
in the XY plane are presented in Figures 7 through 11. In Figure 7, Ty
takes the value of zero and hence the yield stress term no Jonger exists.
This reduces the flow to a Newtonian flow and this plot is essentially
identical to the plot in Figure 7a which was made from the analytical
solution of a two-dimensional creeping Newtonian flow. As the value of
L increases from zero to 0.2, the changes in stream line contours are
too small to be observed in these plots while the shear-stress contours
move in from the wall appreciably indicating an increase in shear stress
when the value of the finite stress term T, increases.

{2) The stream fungtion {y) and shear stress (Tyx) at selected
vaiues of X are plotted against Y in Figures 12 through 16. It can be
observed that both the stream function (¢} and the shear stress (Tyx)
decrease with increasing values of X down the stream. The plot in
Figure 12 is again reduced to that of a Newtonian flow with o set equal
to zero. This plot is essentially the same as the plot in Figure 36
which was plotted from the analytical solution of a two-dimensional

Newtonian flow. It can be seen in Figures 12 through 16 that the shear

stress increases with increasing values of o
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Figure 12. Stream Function (¢} and Shear Stress (Tyx) vs Y
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Figure 13. Stream Function (y) and Shear Stress (Tyx) vs Y
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Figure 14. Stream Function {¢) and Shear Stress (Tyx) vs Y.
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{3) The velocity component in the X direction (Vx) is plotted
against Y in Figures 17 through 21. It can be seen that the plug flow
close to the center plane becomes more prominent as the value of the
finite yield stress term LA increases. When Ty is set equal to zero in
Figure 17, the flow becomes Newtonian and there is no plug flow. The
maximum dimensionless velocity (Vx)max’ which is (Vx)maxfuo’ equals 1.5
as predicted for Newtonian flow,

(4) The pressure on the central plane is plotted against X in

Figure 22. 1t can be seen that the existence of a finite yield stress

causes greater pressure drop.

Effect of Wall Suction Rate (Ry)

The effect of wall suction on the flow was studied by changing
the value of the wall Reynolds number RY while holding the other varia-
bles constant. The half distance between the two parallel membranes
was again 0.01 cm. The entrance Reynolds number (Rx) was 1.0 and the
yield stress T, Was 0.04 dyne/cm®. The wall Reynolds numbers were O,
0.00025, 0.0005, 0.00075, 0.001, 0.0015 and 0.002. The results are
presented in the following groups of piots:

(1) The contours of the stream function (y) and the shear stress
are presented in Figures 23 through 29. When Ry is zero, the flow is
reduced to one-dimensional. The stream function (y) and shear stress
(Tyx) are independent of the value of X and the contours of both the
stream function (¢) and the shear stress go straight through the channel.

When there is a suction on the wall, both the stream function and the
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shear stress decrease with increasing X and the contours start to end
into the walls., The larger the wall suction, the faster the stream
function and shear stress decrease with increasing X and the greater
the number of contours that end into the wallis. This agrees with what
would have been logically expected.

(2) The stream function (y) and shear stress (Tyx) vs Y at
four suction rates (Ry = 0, 0.0005, 0.001 and 0.002} are presented in
Figures 30 through 33. Plots of Newtonian fiow for the same Rx and Ry
values are presented in Figures 34 through 37 for comparison. In Figure
30 when there is no wall suction (Ry = 0), the stream functions at dif-
ferent values of X fall on the same curve and so do the shear stress
values., When there is wall suction, the stream function and shear
stress have different values at different X values. The larger the suc-
tion rate, the wider the curves separate from each other because of the
decrease in stream function values and shear stress values. The effect
of suction rate are similar in Cassonian and Newtonian flow. The only
difference is that the Cassonian flow has larger shear stress values than
the Newtonian flow with the same Rx and Ry values.

(3) The velocity profiles of vV, at X = 0, 20, 40, 60, 80, 100
were calculated from the stream function vaiues and the resu]ts are pre-
sented in Figures 38 through 41. Vx decreases with increasing X and
the rate of decrease is greater with greater wall suction,

{4) The velocity profiles of Vy at X = 0, 20, 40, 60, 80, 100

were calculated from the stream function values and the results are

presented in Fiqures 42 through 45. The Y-component of velocity, Vy,
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Figure 30. Stream Function (¢) and Shear.Stress (Tyy) vs Y.
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Figqure 31. Stream Function (¢) and Shear Stress (Tyx) vs Y.

Cassonian: H = 0,01 T Q.04

0
0.0005

Rx= 1.0 Ry
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Figure 32. Stream Function (y) and Shear Stress (Tyx) vs Y.
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Figure 33. Stream Function (y¢) and Shear Stress'(Tyx) vs Y,

Cassonian: H = 0.01 To = (.04
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Figure 35. Stream Function (¢) and Shear Stress (Tyx) vs Y,
Newtonian: H = 0.01

Rx= 1.0
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Figure 36. Stream Function (¢} and Shear Stress (Tyx) vs Y,
Newtonian: H = 0.01
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Figure 37. Stream Function (y) and Shear Stress (Tyx) vs Y.
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arises as a result of wall suction. When there is no wall suction,
Vy = 0 and Ry = 0 and there is no velocity profile of Vy. Therefore
there is no curve shown in the plot where Ry = (0 and this plot is omitted.
With constant wall suction, the velocity profiles of Vy are essentially
the same at different X values and the computer plotter traced the
same curves six times in each plot.

(5) The pressure drop on the central plane is plotted in Figure
45, The pressure drop follows a straight line with no wall suction
(Ry = 0). The pressure drop becomes smaller and follows a curved line
when there is a wall suction. Pressure drops of Newtonian flow with the
same Rx and Ry are plotted as dotted lines in Figures 46. Cassonian

flow (solid Tines) has larger pressure drops than Newtonian flow.

Some Mutually Related Variables

Newtonian Flow:

For Newtonian flow:

vop3y L1y % .
l|') —[_2H~2(H)](VOX“M) (4 1)
- 8y’ - oy
where Ve © - 337_ vy %
=l‘—.‘l(lo_0_vx) (4-2)
Tyx H3 2 W 0

lLet X = x/H, Y=y/H, v =-¢ W/QO, U0 = QO/ZNH

2
RX = 4U0Hp/u, Ry = vOHp/u, Tyx = Tyx/DUO

then the above equations can be written in the dimensionless form
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= Sy . Ly -25&)() (4-3)
vEg ey R,
L=y (4-4)
yx o R Ry

From equations (4-3) and (4-4) it can be seen that as long as we keep
the ratio of Ry,/Rx the same, the dimensionless stream function () will
always stay the same and the dimensionless shear stress will change
inversely with Rx‘ The distance between the membranes has no effect
either on the dimensionless stream function (y) or on the dimensioniess
shear stress (Tyx)' This has been tested numerically and the results are
plotted in Figures 47 through 53.

Use Figure 47 as the base case with H = 0.01, RX = 1.0 and
Ry = 0.007T. H was changed to 0.05 in Figure 48 and to 0.005 in Fiqure
49. The plots remain unchanged, proving that the value of H has no
effect on y or Tyx' In Figure 50, RX and Ry are changed to 25 and 0,025
respectively. The resulting plots have the same y values but the Tyx
values become much smaller. If these Tyx values are multiplied by Rx
as shown in Figure 51, the plot becomes the same as that in Figure 47
again. In Figure 52, Rx and Ry are changed to 0.25 and 0.00025 respec-
tively. The resulting plot again has the same y values but the Tyx
values become much greater. If these Tyx values are multiplied by Rx

as in Figure 53, the plot again becomes the same as that in Figure 47.

Cassonian Flow:

The flow equations for a Cassonian flow can be written as:




92

1.0

15

Figure 47. Stream Function (y) and Shear Stress (Tyx) vs Y.
Newtonian: H = 0.0]
Rx= 1.0
R =.001
Y
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Figure 48. Stream Function (y) and Shear Stress (Tyx] vs Y
Newtonian: H =0.05
R =1.0
X

= 0.001
Y
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Figure 49. Stream Function (v) and Shear Stress (Tyx) vs Y.
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Figure 50. Stream Function {yp) and Shear Stress (Tyx) vs Y
Newtonian: H = 0.0}
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Figure 52. Stream Function (y) and Shear Stress (Tyx) vs Y,
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Figure 53. Stream Function (y) and Shear Stress (Tyx)(Rx) vs Y.

Newtonian: H = 0.01
R =0.25
X
R =10.00025
y 0.00
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2 2 _
2F (vTy,) + D5 T = 0 (4-4)
where
To= - Aoy )2 4 (024 (4-5)
X k X
1’2 T lﬁ 2 2 1
e Do H 0 ra(r?y)? + (079)717F
k X
+ 11 (0%y)
at Y =0, p = 0, Tyx =0
at Y =1, p=1- VOX

H
-—
1

From the above equations and boundary conditions it can be
observed that if Rx and Ry are kept constant and if the resultant value
of the group (szTofku) remains the same, equations (4-4) and (4-5)
should always have the same solution. If (Ry/Rx) and (TOXRX) are kept
the same with (pHZ/k”) remaining constant, the value of Tyx will change
inversely with Rx' These observations are proved numerically and the

results are presented in Figures 54 through 59. In Figure 32, Figure

54 and Figure 55 only H and Tq have been changed and (H2T0)= 0.000004
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Figure 54. Stream Function (y) and Shear Stress (Tyx) vs Y.
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Figure 55, Stream Function (¢} and Shear Stress (Tyx) vs Y,

Cassonian: H = 0.005 T 0.16

¢
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Figure 56. Stream Function (y) and Shear Stress (Tyx) vs Y.
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Figure 57. Stream Function (y) and Shear Stress (Tyx)(Rx) vs Y.
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Figure 58. Stream Function (y) and Shear Stress (Tyx) vs Y.

Cassonian: H = 0.01 Ty = (.01

u

R, = 0.25 R 0.00025

y
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Figure 59. Stream Function (y) and Shear Stress (Tyx)(Rx) vs Y.
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in all three cases. The plots turn out to be exactly the same. Now
compare Figure 32 and Fiqure 56. The values that are different are
> R, and Ry. However the values of the ratio (Ry/Rx) and (TO/RX)
remain the same at 0.001 and 40 respectively. The resulting plots
have the same stream function values but Tyx has much smaller values
in Figure 56 than in Figure 32. After multiplying Tyx in Figure 57 by
Rx as shown in Figure 57, the plot becomes the same as that in Figure
32. In Figure 58, the values of the ratio of (Ry/Rx) and (TOIRX)
still remain the same but the values of L Rx and Ry are all much
smaller than before resulting in large T X values. After multiplying

y

Tyx by Rx as shown in Figure 59, the plot in Figure 59 again becomes

the same as that in Figure 32.

The relations derived above can be used to predict the flow

behavior at other conditions from the results of a known condition.
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

A new method has been developed in this study to soive the two-
dimensional Cassonian flow prob]em between two paraliel permeable mem-
branes. The méthod consists of reducing the four stress components to
one stress compoﬁent and then introducing a stream function in the
simplified equation. The results of the numerical solution are (1) the
existence of a finite yield stress in the ffuid increases the internal
stresses and also increases the pressure drop, (2} the increase in wall
suction deéreases the internal stress and the pressure drop in the x-direc-
tion significantly while producing only a slight increase in the pressure
drop in the y-direction which is approximately 1/1000 of the magnitude of
the pressure drop in the x-direction, (3} the dimensionless stream func-
tion ¢ and shear stress Ty* remain constant with respect to X when there
is no wall flux, and decrease with increasing X values when there is a
wall suction.

The method developed here is not limited to rectangular coordi-
nates. It can also be applied to cylindrical and spherical coordinates.
The correlations between different stress terms can be deri#ed from the
equations of continuity. This technique can also be app]fed to solve
two-dimensional flow prob1ems of other non;Newtonian fluids such as |
Bingham fluids, Ostwald de Waele fluids, etc.

Recommendations for the extension of this study afe:

1. Change the constant wall suction rate to variable wall suc-

tion rates.
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2. Change the geometry from rectangular to cylindrical to
simulate blood ultrafiitration in hollow-fiber membranes.
3. Take into consideration the change in fluid rheological

properties with the removal of the ultrafiltrate.




APPENDICES
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APPENDIX A

CASSONIAN FLOW BETWEEN TWO PARALLEL
NON-PERMEABLE PLATES

For steady laminar flow of any fluid between two parallel plates,

the shear stress equation is

P = P
T = ()Y (1)

For a Cassonian fluid, the shear stress — shear rate relationship is

1 dvx L

'[yx = 1 + k(- a}-"‘) (A-2)
Taking the square root of equation (A-1) gives
o Po T PR oy

e (D) y (A-3)

Since the flow is symmetrical across the central plane, only
the half of the flow field when y is positive is considered, There-

fore the negative root has been dropped because 1 will always be

¥X
positive when y is positive. Combining equations (A-2) and (A-3}

gives
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Rearranging

dy, Pp = P Py - :
-1 g0 Ly, _ 0 L 5
-H}—,——kzi( 3 ly - 2( )T0y+1]
Integrating
p P 2 P P 3
Ve T iE [ : L L) 2 g ( > L L) T02 ¥ f2+TOY] + e
At y = H, vy = 0 Ve = 0
Po- P .oy2 417 p Pk 5,
C=-~I;l§[(—"“**‘“0LL)H§“‘ D (2t WY (A-4)
+ TOH]
2 p_-P
S P T % -4
Vx‘kz{z( L )“'(H)] (A)
L .3/2
47 * p. -
o 0 L yy3/2
A
+ TOH (1 H)}
H
QO = 2W v, dy (A-5)
0
3/2
= g...w_H [ﬁ (po - pl-) - 4T02 i (po ” pL)l + T H]
K2 2 L 5 L
55 3!2
o Yo B T
2 2 Pr 5P T2
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where
p. - P
_ 0 L
pf L (A'6)
Solving equation (A-5) for Pes wWe get:
5 30k® 3t %
6 ,'0,° ‘0 0
pe = ¢ () + ( - ) (A-7)
f 5 ‘H oWH > 50 H

Equations (A-5) and {A-7) can be

FN

written in dimensionless variables as

3/2

-1l 2y A sk _ _
Vx = 2 [2 Pf(i Y°) 3 TO Pe (1-Y"'") + To(l Y)] (A-8)
where
=8 1% 2 31y :
Pe = % TO2 + (3K" - 5D TO)2 (A-9)
_ H
p.F_p.F(Uz)
*“o
2 k2
K- = pUOH
Defining
vx aY ? vy oX
y o= [V dY +C
2
I Yy 4wk, 23/
AT AL AL R AL AU

+T (0 -DI+cC
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At Y =0, ‘ p =0
C=0
Y .1 Y3, 4% .k 2 ,3/2

Equation (A-1) can alsc be written in terms of dimensionless variables

ds

Tyx = PfY (A-11)
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APPENDIX B
COMPUTER PROGRAMS

The computer programs used in this study are presented here
together with a simple logic flow diagram of the main program and defi-
nitions of some of the more important symbols used. All programs are

written in Fortran IV extended language.

Program Symbol Definition

AN, N Number of interior grid points in the Y direction.
ALPHA, BETA Relaxation factors « and g.

AK Square root of ultimate viscosity coefficient

k in Casson equation.

DUMMY Temporary print out storage,
DY Step size in Y direction, AY.
z 2
D2 D%y, (24 - &4
3Y aX
F Function used in Newton iteration.
e oF
MW141,d
2
2 g
F2 o, aXsY
2,02
2
GROUP 4(F)° + (D%)".
H Half distance between the two parallel membranes.

[,J Grid point subscripts in X- and Y-directions.




LOOPHM

MXORLP

MXSTEP

p
PS1
PSIMAX
Qo
RENX
RENY
RHO

RY

SIMAX

TAU
TAUO
TAUP
TAUMAX
U0

Vo

VX

vy
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Number of grids in X-direction.

Maximum number of ¢,t iteration loops allowed
before terminating the run.

Maximum number of loops allowed for the iteration
of the first line.

Maximum number of Newton iteration steps

allowed.

Fluid pressure factor, Pf.

Stream function, ¢.

Convergence criterion for the stream function.
Initial volumetric flowrate, QO.

Entrance Reynolds number, Rx.

Wall Reynolds number, Ry.

Fluid density, p.

Dimensionless ultimate viscosity coefficient, K.
Grid step size ratio, AX/AY.

Convergence criterion for Newton iteration and
False Position iteration.

Shear stress, Tyx'
Yield stress of the fluid, T,

Temporarily stored shear stress.
Convergence criterion for the shear stress.
Average entrance velocity, Uo‘

Wall suction velocity, VO.

Velocity component in the X-direction.

Velocity component in the Y-direction.




Read in options
and limits

L

Read in
Problem data

\

Calculate
initial values
and boundary

conditions

Make a first
estimate of

Y10

]

Make a first
estimate of

1,9

Calculate P19

on the first {ine
with Newton
Iteration

Reset ¢I J
to new values

the change

NG in wI’J«:SIMAX
?
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1

Calculate all
vy g with (3-23)

jteration process

|

Calculate all1 T
with (3-17)

the change
in y; ;< PSIMAX

and
< TAUMAX

I

|

Set wI J

and T

1,4
to new values

?

f

Make a
correction

YES

of T on
| thelad1

Calculate

Vx, Vy and P

|

Plot results
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TWO-DIMENSTOMAL CASSONIAN FLOW PROGRAM
Ne WEL (JULYe 1975)

DOUBLE PRECTISION PSI, TAU, TAUI, F2¢ N2, PSINZy PSIN4, PSIPy
PSITMP, GPNUP, F, Py PSINNZ, PSINH4: PSLl,
D21y GROUP1: FPSI1e PST2, D22¢ GROUP2) FPSI2y
PST3s FPST2r FPSIs GAMMA, TAUP, UO» PF
DIMENSION OSI(10ur3%)s TAU{IDG,33), FOU104¢33)r TAU3I(33)»
MAME (25) GAMMA (10433 D2(104r33)
YR{33)r XR{100), ™STP{L1OUe33)r TAUP(104¢33}),
PSIMNZ(104), PSINM4{104), DOUMMY{33}

(RN

ol By =

*xak*](00xx READ INPUT IHFOKMATIONS #¥kxkk
*xxkexPEAD IN pROBLEM IDENTIFIFATION CARD skxx%

RE~D {5,u4Cgl) IEnD, (NAME(L)r 1Z1,25)

IF (IEMD «57, ) GO TO 103

WRITD (18ryfda)

WRITE (68222

YHLITE (6+4%G02)

WRITE (R+%QL3)

URITE (61 %05n)

G0 10 9999

*¥2gx READ IN OPTIONS ¥x%ikyg

READ (5,4006) 1fTAPEs IFSTEP, ISTEPs INCOLM, IMCLIN

wkkyx READ IN COHTROL LIMITS sda*x

READ (5,4006) SIMAX* MXSTEp, MXORLP, PSIMAXs TAUMAX, LQOPM
akxxax READ IN FROALEM DATA #¥yx»

READ (5.4006) RHor TAUO, AKrs He RENMX/RENY,Me L, S¢ ALPHAY ecTa,
1 LOOpPP, LOCPT, ALpHA1, BETAL

shexx PRINT PROGRAM NAME, pRrOSLEM NAME, AND INPUT DATA *¥xix
CARITE (6+%007)

WRITE (624002} ]

SRITE (68000 (NAMELI)» Iz=1025)

Q0 = RENX¥AK%AK/ (2, *RHO)

VO = RENY*AK*AK/ (HyRHO)

Ud = Cos(2.%4H)y

wiRlTE (&r%¢09y IFTAPE, IFSTEP, ISTEP, IMCOLM, IMCLIN,

] SIMAX: YYSTEPe MXORLPe PSINAY, TAUMAX, LOOPM,
wRITE (6¢%01C) RHO, TAUQr AK» He @O, vO. REMXs RENY» N, Le S0
1 ALPHA: EBETA, LOOPP, LOOPT, ALPHAL, BETAL

ok en2002% CALCULATE DIMEMSIONLESS VARIABLES *x%%xx

TAUD = TAUD/ (rHO»UQ*UO)

2V = Ak /SART(RAOxUD*H)

vO = Vosul '

PF = 1,2+«SQRT(TAPD) + SORT(3exRVSRV = ,06xTAUO)
WRITE (6+%0%5) TAUG® RVe Vos PFr U0
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C
C *k24x300%% CALCULATE THITIAL VALUES ¥yexs
c

Ll =L -1

Nl = H 4+ 1

2z + 2

N3 = M + 3

N = N + 4

AN = N

3Y = 1., /7(AN + 14y

DO 216 J = 2, My

Ad = J - 2

Y = DYsAJ

YR{JY = ¥

PSI(Ied) = Yol .54¢PR*PFH{1, = Y&Y/%,) = 4,+SORT(TAUO)+PF*

1 (1, = (a*x¥x*1,5)y73, + TAYIx (1, - %Y}/ (RVRV)

TAUT(J) % PFLPFeY

31 CONTIMUE

PSI(3+1) = = P51¢3,3)
c
< exkexligGes MAKE A FIRST ESTIMATION OF PSI(IsJ) #xexs
c

DO 410 I = 1, L

Al =1 - 3

X = SkDY=A]

XRE1) = X

PSI({I/N3) =1, = vo*x

30 410 J = 1,

PS5l {Ieyg) = PSI(S JJ*‘SI{IlN3’/PqI(3pN3)
410 CONTINUE

k% 590%% MARKE A rIRST ESTIMATION OF TAU(I ) xx%es

(SN

20 810 I = 2, Ly

F2(I,M3) = (PgIC(I+{+MN4} + pSE(I=1,N2) = PSI(I+1.,N2)
1 - PSTCI=YsMg) ) /(8 #3530 Y4DY)

D20 p%3) = 1S4SeqPsl{Trojy + PST(TrM2)) = 2.3(5x5=1,)*pSI(I N3]
i - PST{1+1eM3) o PgIiIal,3))/(S%xS%LY2DY)

’QOUD = GaaF20Larp3yF%2 ¥ N2{I,N3)yx2

IF {(5RouP LT, 1,E=29) GROU° = 1,E.2p

TAUCI»N3) = = (TAUD/SART(GROUPY + 2, *SQRT(TAUO)*RV/GROUP*t.?b
1 + Ry*WWYxD2(1rN3)

0O 5180 J = 2, N3

TAL{TI»Jd)Y = TAUI(YITAUCT P 13) 7 TAI(NG)

5S40 CONTIMUE
PSINZ = PSIlu,N2)
PSINg = PSIly,NYg)

C
C reeypabn0ex CALCULATE (PSI) ON THE FIRST LLINE *gskk
C

SJORL = 0

I = 4

6r2 MAn = 0
30 /10 J = 3. N2

JUsT = 9
WNSTEP = 0
MOVZ = )
SHiLiFT = 1+

PSIP(4,J) = PSI(4rJ)




c
c
c
C
C
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6py PSITALP = PSlR(n,y)
F2i3,J) = (PS1(4,J+1) + PSI(2,U-1} = PSI(isdml)

1 = PSIf2,J41) )/ (Y, *¥5x2Y0Y)
D2(3,J) = (S*xsx(pSI{3sdtl} + PSI{Zrg=1)) = 2.%7GkGu=] ) xPSI(3¢J)
1 - PgIP (4, J) = PSI(2,JY}/(5xGxDY%0Y)

GROLUP = d4+%xF2(3sg)+*2 + D2(30 )%

F = (TalO/SGRTIGROUP) + 2,4SnT{TAUD) xRY/GROUP % 25

1 + RVERVY 02¢3,9) + TAg(I,d)
FP = (TAUD/CPAUPxx1D + SQuT(TAU0)#V/GROUP*x1,25) +
1 D203, ex2/(5*Se0Yx0y) « (TAUN/SenT(GROUP)Y
2 + 2ex503T{TAV) #RV/GROUP*2 425 + RV*RV} /7 {52S+DY+0Y)

IF (LRS(F) L. 15.) B0 To &59
IF {JUST .8C, 03 50 TO 6D
GRITE (6eB8031y) 4y JORL, MoVE, IiSTEPr PSIP(N.J}y F
605 PSL (M, J) = PSlTaP - F/FP
IF (A35(PSiP{qrdy -P3ITPY LLT. SIMAX) GO TO 609
IF (NSTEP 6T, MxstEP) 60 7O 606
HSTEP = MSTEP 4+ 4
30 TO 604
6g6 IF (MOVE «6T, 2¢) ©0 To 697
MOwE = MOVE + )
FM = MOVE/2
SHLIFT = =~ SHIFT
PSLIP(Y,d) = ] PSl(Ued) + SHIFT*eg7xFN&(PSI{30J} = pSI(u,J))
HSI1TP = 6
50 TO ocH
607 IF (JUST 5T, 0) 20 TO 6938
JUST = JUST + 1
PSIP(4,d) = PSlUrd)
4hg =1
SHiFT
HSicp

1
0
50 TO 65% :
608 JRLTE (6+%012) I, J* JORLs PSI{GrJ)y F
30 To 101 :
hagy IF (J2ill 5T, LOOP) HeTA = rETA1 .
PSP (4ed) = Palded) + BETA%IPSIP{n,d) - PSI(y,J))
IF (A3SIPSiPiyed) = PST(trg}) BT SIMAX) MARK = MARK + 1
510 CONTIMUE
IF (“ARK +EG@, ) ~0 TO 623
IF (JORrt. LT, MXorRi P} 60O TO 612
«RITE (60%013)  J072ks MARK
30 10 141
12 JO~L = JORL + 1
20 mpd3 4 = 3, Np
PSityerdl = PSIPlney)
bzy CONTIIYE
GO 10 602
bpi D0 625 J = 3 H2
PSlturyy = PSIPlgea)
&mh COILTINUE
PSi{uey) = = PSI(4,3)
PSiturMt) = PEINyanSI(8,N2) /PgIN2

ekt paw k¥ ENTER I[9:TO BICG LOOP skgkgkgrkh

xx*4x706+* RELAXATION OF (pSI) awxwy
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LOup = 3
Tel PSIT = 9

TAUT = ¢

DO 711 I = 4, L1

It =1 +1

pPSing2(I11)

PSanM4(1])

PSI (11#H2)
PST (11t}

ool

20 710 = 3¢ N2

JUST = ¢

NSIEP = 1

MOuE = g

PSLB(11+J) = Ps:lT1+0)

7911 PSI1 = PSIP(T ey
F{I,J) = (P51{i+l.d41) 4 psSI{I=l,d=l) = PSI(I+1,J=1}
i = PEI(I-1sd¥1)) 0% x5*nY DY)
D2:i = (SxSx(Pgf(T,.0+1) + PFI(Iplull) = 2.%(S45 = 1, )xPsI{I, )

1 - PSI1 ~ PSI(I=-1+U}) /(54S+Dy*pY)
GRUUPL = 4,%F2(5, 01552 + D21%42
IF (GRouPt LT, l_:-JJ) GRIVPY = 1,.E-20

FP511 = (fALO/SoRT(5ROUPL) + ?.*SGRT{TﬁUOI*RV/GROUPl** 25
1 +oRveRVY 2L Y TAYLL, W

1F (AHS[FPSIl) .7, 1,E-063 @0 To 7lp

PSi2 = p.

7p2 D22 = (S*Sx{Pgl(1s+1) + PgIiflTrd=1)) = 2,x(5%S = 1,)¥Psi(1,9}

1 = PSIZ = pgrilal,d) )/ {gxSxnTany)

BRUUP2 = 4, #F2(I, 0% &2 + Do2ke2

IF (GROUPZ2 «LT. 1.7=203) GROUP2 = 1,E.20

FPS12 = (Talin, San(b?CUP°) + 2, *SGDT(TAUO)*RV/GROUPa*to25
i h Ripehy)w 22 + TAY(I,Jd

IF (FPSI1¥FPSI2 L1e Do) g9 7O 703

IF {(voye 67, @) 50 TO 7921

PSI3 = psip
FP513 z FP312
P5i2 = 1,
HOVE =

30 10 702

7921 FTesT = FPSI3.FPgIs = FPSYIaxFpSI2

IF (FTEST ,6T, 3,) 50 TO 703

PS.i2 = pPSIES

FPslp = FPsI3
703 PSIP(I1,d)z PgI2 - FPSIpx{pSla-PSy1)/(FPSI2-FPSIL)

U2ETed) = (S+5x(pS7i(HJ+l) + PST(Try=~1)) = 2,%(5%xS - 1,)*psil1,N)

1 = PSIn(:1sd} - psI(T+] d))/(SﬁhtoY*DY)

GRUUP = UeaF2(1p ) x*2 + B2(Ir e

1F (GROUP LT, 1,E-23) GRoUP = 1 ,Ea?9

FPsi = TAUUI"ORT! RIUP) + 2exSn RTlTAUO)th/GRcup** 25

1 + RVanv)«d - (Ted) + TAR(Tey)

IF (JUST «EG, 0y =0 T0 Toy

WRITS (604011) 11400 LOOPWNSTEPY PSIP(TI1:Jd)¢ FPSI
Tow IF (A3S{PSIP(I1+y) -PSI2) LT, SIMAx) GO TO 709

IF (aRrg(PSIP(TLyy) =PS11) LT, SIwAy) 60 TO 79

IF (FPSI*#FPS5I2 ..T. 0.} Go To 705

IF (FPgI+FPSTY AT, 3,) 65 Tp 705

PSig = pSsinliged)

FPSIz = FPsl

20 TO 706
Tgs PSI1 = psl2

FPSI1 = FPsI2

PSiz = pSIpliired

FPsIp = FPsI




Too IF (NSTIP BT, MxSTEP) 6o TO 707
HSTEZP = NSTEP + '
GO 10 703
707 IF (QUST «6T. G) &0 1O 708
JULT = JUST + )
PSIp¢Iged) = pPs1fltery)
MOVE = g
Nsitp = 1
30 To 7011
HRITE (6eB012)  11,Je LOOP, PeIn(ti.J}, FpPSI
50 10 101
P51T = PSIT + ABg(pSIP(IL, ) - PsT(t1.0))
COMT ITMUF,
COLTINYE
SPu1 = p,
PO 718 I = Sy L
SPSI = SPSE + ANGPSI(IeN3)
COnNTIME
PSiT = PSIT/SpSI
20 730 I = 4, Ly
11 =1 + 1%
PSiP(l1e2) = g,
PSIP(I1+N3) = PSI(11enNS)
P31P(T11r1) 5 « PgIpl(Ile3)
PSP (I1sN%) = PSINNUY(IX)I*PSIP{I1sN2)/PSINN2(LL)
CoO.THIVE

¥¥¥xx900%% RELAXATION OF (1AU) wkpky

L2 = ’
00 710 2, Ly
20 913 2, M3
F2t1,9 (PST(I+t,J+1} + pSI(I~1,J=1) = PSI(X+1sJd=1)
t = ST (L-1rdH1)) 206 x520TY DY)
D2(1sd) = (Se5xinpsriIrdsl)  + PSI(I,J-1)) = 2.5({5k5=1.)2P51C(1,J)
1 = pSI(L+eled) = pSI(I=1,0)) /7 (S*SDY*DY)
IF tangqD2¢1,0)) 0 T. 1,E~zp) ©2¢(1,J) = = 1,E=20
GAAMACT ) = FR1r02/D2(1) 1)
5 COnTIMyuE
N0 920 T = 3, L2
i1 =14+1
S0 915 J F 3. N2
(A2s(D2(I+teds13) LLE, 1,E-23) 69 TO 913
(22g5(D2(I-1,Jd-1y? ,LE. 1.E=22) 60 70 913
(ABS(D2(1+1ru=1y) JLE, 1,E-25) 52 TO 913
(rs(D2(Te)rdsty) Lits 1.,E-20) 60 TO 913
TALP(I1sdlz SuSx(TAUIT g4y + TAUCL,Je1}) = 2.3(5xS-1)xTAU(T ' ))
- TAY(TI=1sJ) wgu(GAYMA(T+],J 15 TALCI+L,J+1)
+ GAWMA(T@l, Jeq 1 TAU(T=1rJm1) = GAMMA{TI+1ra~1)%
TAUGTI#17J=1) o GAMMAII=1rJ0+1)%TAU(I=10J+1))
50 TO o914
TAUP(T1.,J) = (Taupll,Jd+1) + TAU(I1.u-1)372,
TALT = TAUT + Adg(rAup(Il.,)) - Tad(IL, 0} )
5 COWTINUE
TALUD(T1,2) T g
TALS (T1.,N3) = TAUCILl.N3)
COrTIMyE
STAlL = 0.
V0 az0 T = 4, Ly
STall = gTAY + ANTAULI+N3)




e Xl e

[eXa Xy

930

XY

935

940

310

=113

Yu5

950

960

970

S
TAulTsp)} = 0,

122

CONTINUE JeTh

TACT = TAUT/STAU

F IPSI; .IT. PSIMAX AND, TAUT LT, TAUMAX) GO TO 982
IF (Loor LT, LOgPM) GO To 931

WRITE (6.0014)  LODPA

GO TH 191

IF (L00P «gT, LOOPT) ALPHA = ALPHAL

IF (1.00P +6T, LOAP>)Y BETA = RETAg

D3 943 I = n, Ly

I1 = I + 1} .

20 935 J = 3, N2

PSItI1,J) = PgI{11,J) + RETA*(PSIP(T1,4) = PSI(11+4))
TAu(TIedy = Tay(l,d) + ALPHAR{TAUP(I, )y = TAU(I,d})
CONTINUE :
PS1(11,1) = P5I(11,)) + BETA*(PSIp(T1,1) - PSI(I1r1))
PSLLI1,N%) = PSI(I1'NY) + 3ETA*(PGIPITLING) = PSI1(I1,Ny4))
CONTINUE

x4 xBo0e¥ MAXE p FIRST CORRECTION OF (TAU) ON WALL #¥gk*
DO 19 I =24, Ly

F2ir,43) = (PgIf1+1oN4) + PSI(I-1,N2) ~ PSI(I+1,N2) = pPSI(I~-1,N8))
/(4n*5‘~)r*0'{,

1
D2(1,N3) = (S*S*(PQI(I"'IQ) + 5101 st12)) = 2.%{5x5=1,3%pSI{IN3)
i = POTLTHLAME) o PI(ILl,NE) )/ (S*SEpY0Y)

SROUP = aeaf2(Tond)**2 + Na{I, N3)gxa
IF (3RouP LT, 1,0-20) GRoUP = )\ _E-2p

TAUCTIIN3) = = (TaUS/SORTIGROUP) + 2,%GANT({TAUO)+RV
A /GR™UPx*,25 + RVaRy)xN2({1yN3)

COnNTIMNUE
*reexppex END OF VALL (Taw) CORRECTION sssxkgksis

LAST = ¢

IF (IFSTEP +Ee ¢) GO TO 93l

IF (1s1eEP*(LOOP/ISTEP) JNE, LoOP) GO TO 981
WRITE (6:%029) LoOn

00 s J = 2, M3

PS1P(3,J) = Pgiliz. )

TAUD (3,0} = TAU(3, )

COMTINUE

PSR4, N3 S pST 4 ,M3)

NS = Mi/ZINGOLM + 1

O ¢c3 J = 1,MNS

JS =z 2 # (g=~1)=xINCOLM

oUMMY () = YR (JS)

COnTIHYE

WRITE (6.%015) (DuMMY(U), J=1,1'S)
00 980 I = 3, L, INCOLM

Al =1 - 3

XR{I) = S*DY#Al

JO 00 J = 1, Mg

JS = 2+ (y=1)yxINCeLM

DUy () = PSIP(1+u5)

CONTINYE

NIUTE (608017 xR(I)y (DUMMY({J)e J=1,NS)
D0 @7C J = 1,NS

JS = 2 + (y=1y*xInCoLM

UYLy = TayP(1eJS)

CONTINUE
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WRITE (604080 (DUMIY (g Jo1,NG)
COGTINUE

IF (IFTAPE +Fs, 1) GO TC o0t

WRATE (LGru311) 3. B Se DY T2UOs Ry, RENX
WRITE (10r43Ca) ¢ A¥ELT), 151000D)
WRITE (1074u22)  (YR(J)y J=2en3)

DO ggd I = 2, L

XRIIY = S*DY=AT

#RITE (10°4321) xR¢I)

WRITE 100484y (Pl (I,J), J=2,N3)
WRITE (1074322} (T-U (I,J}, J=2,N3)
COLTINUE

IF (LAST +6T, Gy 0 TO 10y

a1 LOOP = LOOP + 1
50 T 701
982 LAST = 99
HRITE (6:4019)
50 TC 941l
xagnkpekk FORQMAT LIST sbkngaFpsks
4001 FORMAT (11, 4xe 1543, 10A3)
wdn2 FOIAT (LAg//
4903 SO0RKAT (1HGe ;aa £ D oF PRrodLEMSe TEAR OFF THIS PAGE, 600D LUCK. )}
40gy FOr4aT (1H1) _
4006 FORrAT ()
4307 FORMAT (1d1r 110H TWO DIMENSIONAL CASSONIAN Flow PROGRAM (11}
L July, 1975 NAN WET
408 FOraT (1H ¢ 1543 10Ad)
009 FOiuAY (1igr +INpUT DATA (1=YES» 0=NO)*/
1 v WRITe RESIILTS ON TAPE = ¢+ 11/
2 v LOOP STeP PRINT OuT = *» It/
3 v INCREMENTS IN LOOp STEP PRINT oUT = 1, 13/
@ v ColuwN M-REMENTS IM PRINT OuT = *»13/
© v LINE INeR-MINTSs In PRINY OOT = ¢ 13/
7 v MAX, PSt T POINT ITERATIONS = *» 1PEL12,.6/
& v MaX, ITer- TIOW STePRS = ¥, 13/
9 + MAX, PST "ELAXATInM STEPg oN FIRST LINE = ¢, 13/
1 v A%, PST TOLERAMCE = 'y 1PEL2,8/
2 1 Maxn, TAy rCLERaNCE = t» 1PE12.6/
3 + MAX, PST=1AU RELAXATIOM QTEPS = v, IH) 2
4010 FORMAT(Y RHD = v, 1PEZ12,6/r TAUN = v tPEL2.6/1 AK = % 1PEL2,6/
L v H S v (PFL2,67 ¢ B0 = ey IPEL2,6/7 VO = %, 1PEY2,6/
2 v aCNx = te 10E12.6/t SENY = ', 1PEL2.6/' M T 1, 12/
2 v L= ve 13/
3 v S (x,Y R0 RATIO) = 'e aPFA,us% ALPHA = ¢y OPF6,3/
“ v JETA = 1ty OPFO,3/¢ LOOPP = t, T4ys¢ LOORPT = *r I4/
5 v ALPHAL = vr 0PF6E,37% 34TAL = 1y QPF63)
BOpL FORVAT (1 ¢ 2013, 4X)r S5(1PE12.6, 2X))
4dyz FORIAT (1rd3r v wikxx POINT ITTRATTOn FATLED TO CONVERGE '»
i A3, 4¥ys 2(1PZ12 6¢ 3V} .
4014 FOxuAT (1497 RELAATION OF Psl FAILED TO CONVERGE AFTER ')
1 15,* LOOPS ON THE FIRGT LINE AT 'y I3 ¢ POINTS, ')
4014 FOR 1T (1t)e oPST=rAl CUCCESSIVT RELAXATION FAILED 70O CONVERGE *»

1
415

tARTEQ ¢, T4 ' LOOPS,")
FORMAT (1ryr exsexsx Y{J) wxa%x?/ g{3Xs1PE12.6))




FORMAT (1H9*r thxprsr PSSl wxgpak X = ', {PE12.6/ 8(3%, 1PE12.6))
FORMAT (11Gr rxwske TAU sppe¥ry/ B{3vs 1PF12.6))
FORMLT (1ML///r 10xr t¥a¥upet, FINAL RESULTS *akkxps?)
FORMAT {1417/, 1 LolP = v, 1My
FORMAT (1H » PE(2,56)
FORMAT (1d » 3(2%, 1PE12,.5))
FORMAT (1H - (2%, 1PD20.14))
FORMAT (LHQr +DIMEMNSIONLESS OyanTITIEG Y2
YTRUQ = 0, 1PZ12.60 RV S Y, 1pR12,6/Y VO = v ,1pEL2,.67
t PF = *» 1PE12.8/70 UD = ', 1PE12,6)

C
E ¥ rkkrphnRprrgk TN OF FORYAT LIST ¥ ckkerekikgekk

9397 CONTINUE
EMD

STREAM FUNCTION CHECK OUT PROGRAM
Ne. WEI (APRIL 29+ 1975)

nouaLE PRECISION PStT«FPSI«TPSI» Q
DIMENSTON PSI{104r64)s TAUCLOUs64) s TAUP(104e65) s NAME(25) e

’ Y(s%4)s P(la4,33)

c
c x¥¥e100%* READ IN DATp CARDS *++2#
c

101 READ (S»1001) IENDe (HameE(Ide I = 1» 25}

iF (IEHD .GT. 0) GO TO 102

wRITE (6+ 1002)

WRITE (6¢ 1002)

WRITE (&¢ 1003)

WRITE (&+ 100Y4%)

G0 TO 999 .
102 READ (Ss 1007) ISTYPF. IFREAL* RENX: HrRENYrAr TAUQr AK,RHO? S» Do

1 t.* N+ INCPRT: IPRT1. IFPLOT

wRITE (6 1005}

WRITE (60 1002)

WRITE (6 1006) (NAMF{ (1), I = 1.,25)

1 = RENX*AK*AK/(2.%Ry))

VO = REMY*AK*AK / {H*XRHO)

IF (IPRT1 .Eq. 0) GO Ta 301

WRITE (60 1008) ISTYpE, IFREALr G8r RENX: Hr VO» RENY: A, TAUO»

AKr RAD» S¢ Dr L N» INCPRT» IPRT1e IFPLOT

C
C s*x*4:x300%% CALCULATE AND PRINT PSI #¥x5x
C

N + 4

N+ 3

a/{2.*H)
AK/SQRT(RHO*UO*y )}
N

301 nNU
N3
Lo
RV
AN
DY H/(AN+1,}

00 310 J = 2¢ N4
AJM = g = 2

ylJ} = DY*AUM
CONTIMIE

no 330 1 = 20 L
Al =1 -3

X = S*nYEprAl

nmuiwupyn

wl




320

330

340

341

350

353

360

> CONTINUE
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no 320 J = 2¢ N%

AY = Y(J)
TPST = FPSI{X* AY?QrnruDrArTAUO:AK»S+ISTYPE)
TTAIN = FTAUIXPAY e QoH Vo Ar TAUO+AK» ISTYPE)

PSI(Ird) = TPSI*xZ2./0

TAU{Ir2) = TTAU/CRHOxUA*UQ)

IF {ISTYPE 0. 2} &0 TO 320

PlIsJ) = (VOR{X%A = AY®AY) = Q#X}*}1.S5*¥AK*pAK/ (H**3*RHO*Uo*U0)
CONTINUE

PSI{Ir1) = = PSI{I3)

CONTINUE

t1 =L -1

cY = Dy/H

TAUD = TAUD/ (RHO*UD*)0)

no 340 I = 2+ L1

N0 340 J = 2» NS

F2 = (pST(TI+1vJeld) + PeIll=1eJ=1} = PSI(I41rd~=1) = PSI{I=10¢Jé¢1))

1 UG xGECYHCY)
N2 = (S*S*{PSI{I+J+1] + PSI{I*J=11) = 2.%1$45~1.)*PSI{I,J)
1 = PSI{I+1¢d) = pPST(I=1rJ) )/ (SxS*CYECY)

GROUP = B.xF2¥F2 + Do¥n2
IF (GROUP LT+ 1+E=2pn) GROUP = 1,E=-20
TAUR(L,J} = = (TAUO/SQRTI(GROUP) + 2.*SART(TAUQ) #+RV/GROUP*%,25

1 + rV¥Ry)xD2
CONTINUE

YD = H

PD = 1},

™ = %,

IF (IFREAL +€Q. D) 0O TO 34%
YD = 1,

PD > Q/2.

TD = RHO*UO*U0

NS = iy + 1)/IMCPRT + 4
NO 345 J = 1MS

JS = 2 + {JU=1)*1nCPRT
v(Jy = v{Js)/YD

no 350 I = 2r L

PO 350 J = f» NS

JS = 2 + (J=1)*INCPRT
PSItIry) = PSICIvJS)aPn
TAUCIrd) = TAV(IAJS) =T
TAUR{I,»J) = TAUP(I,Jg)aTD
Pll,sal = P(I,JS)

CONTINUE

WwRITE (6¢ 1009) LFREAL. (y{die J = 1iNS)
no 360 I = 2¢ |

Al = I - 3

X = S*DY*D*AL
IF (IFREAL +EQ. L} O TO 353

X = X/H

WRITE (621010} Xr (PSI{I+J)} » J = 19 NS)
WRITE (6r1011) (TaUC(TI«d) ¢ J = 1¢ NS)
wRITE (6r1012) {(plled)s J = 19 NS)
wRITE (5+1013) (TaUp(IeJdls O = 1» NS)
CONTINUE

IF (IFPLOT +EQ. U) @O TO 101

WRITE (9¢4011) W3+ L+ Sr DYr TAUO» RVe RENX
WRITE (9,4008) (NAvE(I)s [=1,25)

WRITE €9:4022)  (Y(J}r J=1iNS)
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wRITE (10.4011) N3» L+ S» OYr TAUOs RVr RENX

wRITE (10.4008) (NAME(I)r 1=1,25)

WRITE (10,4022} {Y(J)r J=1,NS}

no 990 I = 2¢

Al =1 - 3

X = S*OY*D*AI/H

wRITE {9,4021) X

WRITE (9,4022) (plted)r J=19NS)

wRITE (10.,4021) X

WRITE (10-,.4044) (PSI (TeJ)s J=19NS)

WwRITE (10,4022} (TAU C(1rJ)e JS1,NS)
990 CONTINUE

*EksER e r ek EE FORMAT | IST #kdkpkkaxdstsn

OO0

1001 FORMAT (I2+ 3Xe 1543, 10A3)
1002 FORWAT (1HO//)
1003 FORVAT (1HO+ 'END OF PROBLEMS: TEAR OFF THIS PAGEs GOOD LUCK,*)
1004 FOR#AT (1H1)
1006 FORWAT {(1HO» 15A3¢ LloAz)
1007 FOR4AT (¢ )
1008 FORMAT (1HO+ *INPUT DATA (1=YES+ 0O=nNO}'/
TYPE OF CALCULATION = 'v Il
DIMENSTOMAL PSI = "¢ IL/
G = 'r IPE12.67 ' RENX = *r 1PE12.6/
H = *r 1PE12.6/ ¢ VO = ' 1PEL12+6/
RENY = ', 1PEl2+6/ A S v IPE12.6/7
TAUD = ', 1PE12,6/' AK = *+1PE12.6/' RHO = *»1PE12,6/
S = % 10E12,6/ - *' D = '» 1PELZ2.6/
L= *r I3/ = e T2/ v INCPRT = '+ 11/
t IPRTY = v 11/ * IFPLOT = *, 1)
1009 FORMAT (1HO/Z+¥#x FINAL RESULYS #*x (*» Iler}t//
1x» *SELECTFD GRID POINT VALUS Y(Jyev//
8(3x, 1PE12.a8))
1010 FORWAT (1HOr *#% STRFAv FUNCTION *%+'» 5X, *X = '» 1PEL12.6/
1 B(3Xe 1Pul2.q))
1011 FOR-AAT (1HOr "*a2 TAU *+x'/3(3%, 1PE12.6))
1012 FORGAT (1HOr "2%% P *x+xV/8(3X» 1PEL12:5))
1013 FORAAT (LHOr*** TAUP *xV/8(3X» 1PE12+6))
40086 FORAT (1H ¢ 1543 1pA3)
4011 FORYAT (1H » 2(I3r 4x), S(IPE12.6s 3X}}
4021 FORVAT (1H ¢ 1PEL2.6)
4022 FORWAT (1H » B(2x¢ 1PE12.6})
a0ut FORVAT (1H « 4(2xr 1pD2o0.14))
C sk akx END OF FORMAT LIST *¥k¥ky
GO TO 101
999 CONTINUE
END

NIPRAPRPAVE -
- W W oW = wow

g -

FUNCTION FPSI(X Y rQrHrvOsAsTAUQLAK S ISTYPE)
nouUaLE PRECISION FPsI, @

xxkxx200%% DECIpE TYPE OF CALCULATION **sx%

GO TO (201, 202} ISTYPE
*x% 1o NEWTONIAN FLUID WITH CONSTANT WALL FLUX *%¥
201 FPSI S (eS5¥U = yOrX) {3, « (Y/H)**2)xY/(2,4H)
60 TO 99

0O OO0
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C *x% 2, CASSOUNIAN FLUID WwITH NO WALL FLUX *%%
202 PF = 1.2#%SCGRT(TAUO/H) + SORT(1.5*QuAK**2/K*%3 = .06*TAUO/H)
IF (Y «LT. 00) ¥ = Do

FPST S OAYZARYE2) 2 (WSEPF X% (1, ~ (Y/H}2%2/3, ) #Hx32
' = 1+333333+SART(TAUD) sH*%1 +S*PFx{ls = Q.4%{Y/H)x%]l,5)
? + TAUO‘H*(QQ— «S¥Y/H))
99 RETURH

END

FUNCTION FTAUIX Y eGrHevDeArTAUQAK» ISTYPE)
bouatE PRECISION @

c
¢ sxxex400*+ DECIDE TYPE OF CALCULATION *#¥x#
c
G0 TO (401s 402)» ISTYPE
C wxk 1o NEWTONIANs CONSTANT WALL FLUX *®%%
401 FTAD = (@72 = YOEX I3, ¥V HAK £ X2 /HE%]
G0 10 99
C xx¥ 2. CASSONUAN: NO WALL FLUX *%x*
402 PF = 1,2%SORT(TAVO/H) + SORT(1+S*Q*AK**2/%x3 = 06%TAUQ/H)
FTAI} = PFxPFxY
99 RETURH
END
c
c kvt sxxgxe VELOCITY = PRESSURKE PROGRAM sxessrikyx
C

3003LE PRECISION sI )
AIMENSTION PST(1a% 33)» TA(108,33), TAUX{(104:33), yx(104,33),
1 PlLow, 30 MAME (253, YR(33), XR(104)
RER {g,ndzly 1A € _
1 RE«D {16s4311,EHN0=.9) 83,y Lr Se OY, TAUO. RVs RENX
IF 43 LLT, 1y 49 T2 99
REW (10604968 (M YE(i)e =1,23)
RELD (13583221 (¥ () JzoeNE)
D¢ 10 I = 2, L
REaD (16+4921) xR. 1)
REnT (10r9Gh8y  (P-TLI2U)y J=2.413)
PSI(Ts1) = = 25I¢1 3)
REHD ‘10'4022) (T U{Tled}s \j=2l:"3}
16 COnTIMUYE

Ll = -
N2 = N3 -}
HL = M2 -

20 2 1T = 3, LA
Do 192 J4 = 2, N3
J = 2 4+ N3 ~ d
F2 = (pSIf{I+1,J+q) + PSI(I=try=1) = PSI{I+ird=1} ~ PSI(I~1,J*1)}

1 FAUTEES £ 0) i
D2 = {GxS*{PGI(T,U,1) = PSTUT,J=1)) = 2,2(5*S=1,)*pSI{1r)
1 - PSI{T4leg) = PSICIaLlr g) )/ (S4SaDYRDY)
GRUUP = GexF24F2 &+ D2xD2
IF (cRoup LT, 1,£_.20) GRouP = 1,E-2¢ .
TAUY(L.d) = = (TAU-/SARTIGROUPY + 2, %S5nRT{TAUO)+RV/GROUP*x,25
1 + oV RV)I*2,xp2

IF ((TAUutT, Jies2 + TAUX(T,3)%s2Y LT, TANI0xTAUO) GO To 18
YXUT,d) = (PSE(I,J.1) = PSIti,J=1)) /(2 +DY) .
60 1O 19
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14 VRLTeS) = VXITedsd,
19 CONTINUE
20 COLTIMNVE

DO 3¢ I = 3r L1
VXLT, N3} = 0,
TAULEe1) = =~ AT 3)

TAvy (Ly1} = TaUX (I 3)
S TALY (T ,N3) = .
2y COTINUE
D0 ug o =
Prls,) = 0,
40 CONMTINUE

2y M3

20 he I = by L}
D0 50 U = 2e N2
Plisg) = P(l=qedy (TAUX(IrJdy = TAMDX(I=1,J))

i (TaUlpy +1) = TAUCGT»U=1} + TAU(I=1rg+1) = TAL(I=1ry=-1))
) ¥5/4,
£0 CONTIMUE
TAULL P MR} = TaU( = PH2) = 2,3 {TAU(LZ2,M2) =~ TAUIL=-1,N2))
S0 R 1 = 4. L
POLyM3Y = PUL, KL, (TAUCT+trM2)=TANLT=1+M2)) /S
1 + {TRUX(-*N3) « TAUX(TrN1Y)
aU CCLTIMLE
YRITE (eelf3) N MELIY, 1=1,2R)
WPATE (getiCPay Y L) Jzp el
W 7¢I F 2 L
WRITE (6:4075) Xt ) (¥X{1.dys Jz2,N3)
WRITE (6:%026) (Plredy, J=2,N3)
7¢ COLTIMUE ) :
IF (1Tept fO, ¢y GO Tp 1
¥FATE (8e1pC01) M3T L Sy DYr TRUpD Ry, RENX
ARITFE (8elpC3a2) ( FAMELI), 1=1.,25)
wHaTE (2elpCo3) { R{J)r J=2rn3})
no pa 1 = 3 LY
wRITE (8e10024) X (I)
WRLTE (R lelCa) L YT}, JUR2ND)

ARITE tarligplgnl PUTrOY s U=peli3y
Ay COMTIMUE
0 10 2 '
C EXE ARk KT F k¥ O MAT LIGT Farskpdgpkar etk ®gRgn

LOpy FOrvRT ()
Liane FOL AT (1%, 15A3, 0A3)
bygty FO-2T (101X, 2(13, X}» S(1pEl2.6¢ 3¥))
021 FOR:AT (1X, 1pElp,.)
Luzg2 FDr=aT (1X, A(2X, -FEL12,6))
4y FORGAT (1Xe B2y, -PDR0,14)y)
4023 FORMAT (tH1r 15A35, 10A3)
L FOCAAT (L3 vmxsk, YIJ) sies®ye?/8(2%, 1PF12,8))
4925 FORMAT (1HQ0r stxgpe, VX wkxsw X o= te IPFL2.6/78(2X, 1PE12,6))
Gdro FOAVAT (1HGr sxxgex. P *enxgr/a(2X, 10812,5))
19001 FOuvAT (1H ’ Q(I}r QXI' 5(19E12.60 3X])
1002 FORMAT (14 ¢ 3503, 10A3)
10003 FORMAT (1H » al2y, 1PEI2,6))
1Gdgw FORWAT (1t » 1PEL2 6)
c wknpakpredx¥ags Eh OF FORMAT LIST wkedrsnxksbanss
99 COuTINUYE
ENU
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PROGRAM MAINCINPUT,OUTRUT,CARY .V21,TAPES=INAUT »TAPEG=0UTRUT,
i TAPELD=CARY, TACES=YDY)

ssreavssex YOLOCITY - PRESSURE PROGRAM *esveveswe

DINMEMSION PEIC104+33) TAULLO04s 3D, TAUXC10Ua23) s VX(104033),

1 2010445 33)y NAME(25), YR(33), XR(104}, VY UL104,33)
READ (5, ®* 1 ITAPE
1 READ (1G,4011) N3s Ly S» BY, TAUG, RV, RENMNX

IF (K3 JLT. 1} GO TO 99
RELD (10.4002) (NAME(TI) s I=1+25)
RF20 (10,4022) (YR{JY, J=2,N3)}
00 19 I = 2, L
REZD (10.,4021) XRID)
REAC (10,4044) {PSI(IsJd) s J=2sN3)
PSICI+1) = = PSI(I,3)
READ (10,4022) (TAUCI+J}s J=24N3)
10 CONTIANUE
Lt = L -1
N2 =2 NI = 1
HL = N2 = 2
po 20 [ = 3, L1
CO 19 JJ = 2+ N3
J =2 % NI = JJ
VY (T,J0) = (PST{I-1,J) = PSI{E+1i,J)})1/(2,.%S*0Y)
£2 = {(OSI(I+1,J+1) ¢ PSI{I-1sJ=1) = OSItI#1,4~1) =~ PSI{I-1.,J4+1))

1 Z{L.*S*0Y*0Y)
£2 = (S*S*(PSI(Is+J#1) =~ PSI(IeJd=1)} = 24%{S*S~-1,1*PSI(IsJ)
i = PSI{I+1,J) = PSI{I=~1,4J))/7{S*S¥QY*DY)

GROUF = L.*F2¥F2 + D2+02

IF {GROU® LT+ L.E-20)} GROUP = 1.E-20

TAUX(I,Jd) = = {TAUO/SORTI(GROUPY + Z2.*SQRTITAUOD)*RY/GROUP*%,25
1 + RYERY)$2,¥F2

IF ((TAULT,,J)*¥*2 + TAUX(I,J)**2) .LT. TAUO*TAUQ) GO TO 18

VX {TIsd) = (PSI{I,Jd+1) =~ PSI{I+J-1})/{2,.%D¥)

GO TC 19

12 VXA(IyJ) = VXI(I.J#1)

1¢ COKTINUE

20 COKRTIMUE
Do 30 T = 3, L1
VX (IN3) = 0.
TAGLIL1) = =~ FAU(IH3)
TAUXTI,1) = TAUX(I,3}
TARUX(I,N3) = 0.

20 CONTINUE
Do 40
P33, ) =

49 COMTINUE
oo 50
Do st 2s K2
P{I,J) FlI=1od) = {(TAUX(Iyd} = TAUX{I-1.J})

b = {(TALCTaJ#1) = TAUCISJI=1) + TAU(I=-1,J41) « TAU{I=-1,J-1}}
2 ¥S/4a :

S0 COMTINUE
TAL(LyA2) = TAULL=2,N2) = 2.*{TAU{L~-24K2) = TAUIL=1,N2))}

DO g9 I = &, L1 '
PIILN3) = OUT4NLY = (TAUCTI#1,N2}Y=-TAUCI-L1,N2))/S
1 + (TAUXC(ILN3) = TAUXCLI.N1))
61 CONTINUE

2+ k3

o

e L1

nwou

LI S o]



TAUXCI.N1

70

an

4009
5011
4321
4072
Wity
ghz?
w024
gnze
LO2¢E
Lnz7

109001

1

goo2

13007
19004

[N elg)

990

130

HARTITE (6,4022) (NAME(I) s I21,25)

WRITE (R.4024) (YR{J)s J=2,N3}

Do 720 I = 3+ L2 : :

HRITE (6+4025) XR{Its tVXL{I,J)y J=2,43)

WRITE {6,ufll2?) (VY {Ivdls J=2,N1)

HRITE (6.47286) (P{Isddy J=2,N3)
CoOrTINUE

IF (ITAZE LEC. 0) GO TO 1

WRITE {(3,10001y N3y Le Ss DY, TAUC, RV, RENX
WRITE (3,10002) {NAMELIY , I=1,425)

WRITE (3,10003) {YRUJ)Yy J=24NI}

Do &3 I = 3, L1

WRITE (8,10004) XR{I)

WRITE 19,10003) (vX (I, A=2,N3)

WRITE {A,1000%) (VY ({T.Jd)y J=24N3)

WRITE (8,10003) (P(I:J) s J=2.N3)

CO*TIMNUJE .

GO TO 1

EREXREASERFREREE CAIMAT LIST S*2EEFEEER4FSISRREET
FOPMAT (1x, 15A3, 10A43)

FOFRMAT {1Xy 2013, 4X¥y SU1PE13.6, 3IN))

FaRMAT f1Xe 1PEL3,6)

FORMAT (1%, AL2X, 1PEL13.6)}

FORMAT (1X, L{Z2X, 1PF21.14)})

FORvAT (1H1, 1543, 10A3) .
FORMAT (1HD, ™*»®rxs y(J) v®¥¥ex™/p{2x, 1PE12.63}
FORMAT [1HN, "*resr yy #r¥rs¥ X o= ", {ieg1l.67012%, 1PC13.6))
FORMAT (4iHO, "*rr*rs D wxrax"/g(2X, 1PELI.6})
FORMAT (1H], *"wx¥»x ¢y 33xx¥"/a(2), 1PF13.€))
FO=MAT (1H , 2413, 4X}, S{1PF13.6, 3IX))

FORMOT (1H 4 1543, 1043)

FOPMAT (1H , 8f2Xs 1PEL13.ED)

FORMAT [1H , 17E13.6)

RSP XRENEFY ENO OF FORMAY LIST #33533 333335343
COKTINUE

END

sxkedgpnksn  GPCP CONTOUR PROGRAM (1) *xsxsdsdis

DOURLF PRECISIOM PSI

DIMENSION NAMEZ(25), YR(3I3), PSI(I10U+33)s TAUL104+33)r XR({104)
READ{1N+Y01LY, END=Z99) N3r L, S+ DY? TAUO: RV

IF (N3 «LTs 1) GO TO 99

CY = 1./(43=2)

Ne = n3 = 1

READC1G+4008) (NAME (L) » T121¢25)

READ{1IN4n22) (YR{J)r J=2N3)

DO 99n I = 2» L

READ(10s4021) XRUI)

READ{InsU4nGY) (PSI(ird), UT2:N3)
READ(10,4022) (TAU(LeJ), a=2/N3)
CONTI::uE

WRITE (6ru001)  (XR(I)r IZ341)
WRITE (Beu001) (CYRUUYr U=2:M3)
WRITE (11,20099)

WRITE (11,10n01) (NAMc(I), T=1:25)
WRITE (11,10008)

wRITE (11,10002) DY
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WRITE (11,10003)
WRITE (11,10014%)
L1 I |

DG 10 J = 2+ N3
WRITE (11,10004%)

N2

-
=

(PSI(Isdyr I=3,L1)

in
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
DY = =
LEVT
TLEV
DO 20
YR{J)
20
WRITE
WRITE
WRITE
WRITE
WRITE
Do 30
WRITE
30
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
GO TO
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
10001 FORMAT
L0002 FORMAT
1
10003 FORMAT
100 FORMAT
10004 FORMATY
10006 FORMAT

4n0?
“00A

4011
4p21
4g22
404y

N

10007 FORMAT

N

13008 FORMAT
10009 FORMATY
1

1001n FORMAY
1

10011 FORMAT
1

CONTInUE

(11,10p0%)
(11,10006)
{11,10007)
(11,10020)
(11,10021)
(11,10n09)
DY
TANC3 s N3Y/B,.
LEVT
J = 2s N3
- YR(JD

CONTInUE

(11,10n23)
(11.,10n08)
{11.,10n24)
(11,10003)
(11,10p14}
J = 29 N3
(1i.10G04)

Oy
N2

(TAp(IeJdy» I=3eL1)

CONTInUE

(11,10005)
{11,10025)
(11,10020)
t11,10021)
(11,10n100
{11.10026}
{11,10011)
{11,10012)
{11,310027}
1

{110
(1lx»

(1lxs
(lxr

TLEVr TLFV, TLEV» TLEV

(NAMEST)» T=1010)

15A3¢ 10A3)
213, 4X), BlLpE12.6, 3X))
1PE124+6)
{1xr 8i{2X+ 1PEL12:6))
(1xs 4(2Xr 1PD2U-1U})
('JOB'oZXr12A3v10A3o2v:*15.0':1Xr'00')
('SIZE"lxr'12.30't'O.SOO't'Z.OGO't'loOOﬂ‘aSX"O-OOO"
11,000 ¢SXr?10uU0"+5ye?*0,000%s F5.2 rS%r'1.000%)
(PARAY +1X+ 10,000 0. 070 0 uX 2 54X0t2%54Xe¥0")
(*ARAY'» 1X/OPE1%+5raPF1U+SrOPELIU S OPEL1H .5 0PEL%W5)
(*aENnT)
('LEVS'sZXt'0.00'rlx-'0.00‘:1x:'0.50'r1Xr'0o07"
2y r 0% 12X 00 r2X 040t +2Xe Q.0 )0l sl
ety X t2tpt 0,100, 0,100 P UX, 6 s UXFLS)
(M EVST2Xr 10,50  rlx e 10,55 11X 050" r1Xe 007"
2xe'Ne0t 22X 200t eaX 002X 040" r4Xe? L2 U,
Yt ruX e T2 0. US0" ' NL0B0 P X, TOF XYL}
CYANGL #1Xr 0,000 90,00}
('LINF"SX"1'0'Ooﬂnﬂ'r'1.000'!'100-0"'10000'v'0-30°’!
Y007 0,005 3% t20)
(P*LINEY*SXr?1%,'0,0007r'~1.00,%10040%¢*=1,00%,'0.800",
10,070 r 0,008 3%, ta20)
(PCYMR*PSXe 010, =10,0%r'0.450,790.,00% ¢1Xr'0.18"etiX»
txvp15XetPSIt)
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10012 FORMAT ('QYMR*sSXs*1t,"=10,0?1*'=0455%,90,00" ¢1Xr "0, 14" eli)?
1 131 15X, 'TAUT)

10014 FORMAT ("ARAY"oSXetL",2Xet 1010 4Xe 1 ,3%Xs12)

10020 FORMAT (*PLOTY)

10021 FORMAT {(*aROR?')

10023 FORMAT (*aASY)

10024 FORMAT ('QIZF'oiXet12,90%¢ 10,500 ¢22,000'¢"1e000%+5SX,20.000"

1 Y1.000%e5X2"100+0"+5%2%0.000% FS.2 #5xe?*=1,00%)
1C025 FORMAT (TLEVS Y s 1Xe2FS, 201X, %050, 10,07
1 2he 002X 002X, 0.0 22X 0,0 rlXe 1 rtsxy
2 Y uXet2Y ) 2FSe2e By r 115 U tLY)
10026 FORMAT('SYMB Y eSXs'1%r 210,00 ¢"=1,50"+'90,00% 21x0*0.21"%¢
1 3xe*30'215%r10A3)

16027 FORMAT (*eEnNDe)
10099 FORMAT('RXQGY GT*GPCP,GPCPt)}
99 CONTIMUE

END
C
C kxkakpkkeeriniex PLOT (PSI)=(TAU) AT CONSTANT X sxssksssdssfgxkes
c

DoUBLF PRECISION pPSI

DIMENSTON NAME{25)¢ XRU10u4), YR(33)r PSI(104:33)s TAUCLO04,33)»
1 IRUF(Lun0)

CALL pLOTgUtIRUF(1Y,1080022+30.00}

CALL oL OTux(300,0)

CALL pPLOT(2:0¢5:59=3)

1 READ {(8¢4011,EMND=999) N3» Ls Sr DYr TAUO» RV RENX
IF (N3 LT, 1) GO TO 999 :
READ (Be4n03) (NAMEL{T)» I=1,12)
READ (R+4n22) (YRIJ) ¢y J=2,N3}
L1 =1 =1
Do 10 I = 2» L
READ (Ar4021} XR{1}

READ (Ar4n44) (PSICIsJg)e J=2,N3}
READ (Brl8n22) (TAU(I glr Jz2,N3)
1 CONTINUE
TAUQO = TAUG + S*DY#RVx0.
CALL 2LOT(0+«0r 2.5,3) '
CALL PLOTI{Ge0r=2:5:2)
CALL pLOT(Se0r=2:5:2)
CALL PLOT(S«0r 2¢5,2)
CALL pLOT(O+0r 2.5,2)
CALL PLOT{1+0¢=2.5,3)
CALL PLOT(L+0e=2.4:2)
CALL PLOT({2:07=2.:5+3)
CALL pPLOT(2:0¢=2,04,2)
CALL PLOT{3«0¢r=2:5¢3}
CALL PLOT(3s0r—2.4s2)
CALL PLOT(4+0r=2:+5¢3)
CALL PLOT (U enr=2+4%¢2)
CALL pPLOT(5+0¢r 0.0,3)
CALL PLOT(4+9r (.0:2)
CALL PLOT{4sD» 2.5 3)
CALL PLOT(4«0r 244:2)
CALL 9LOT{3+Qr 2.5 3)
CALL pLOT(3:¢0r 2+48:+2)
CALL PLOT(2+:0r 2451 3)
CALL PLOT(2+0r 2+%:22)
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CALL pLOT(1e0r 2:5¢3)
CALL pPLOT{1le0r 2:402)
CALL SYMBOL(2e2r 2:9¢0+14r3HPSLr 0.0 3)
CALL <YMBOL(2+2¢=3,1¢0+24r3HTAU2040+3)
CALL sYMBOL =eBs=0.1v0e14r2H ¥ +0+002)
CALL sYMBDL(Da0r=440¢0+21¢NAVEF0.0,30)
DO 15 J = 2, N3
YRUJ) = Yr(J) *2.5

15 CONTInUE

DO 40 I = 3+ L1l 20
DO 20 J = 2, N3
PSItI.J g} = PSI{TIsJ)*S,

20 CONTIMUE

CALL PLOT(0.0¢0.0#3)

DO 30 J = 3, N3

51 = psItig.d)

CALL PLOT( S1 r YR(JY, 2}
3p CONTINUE
40 CONTINUE

DO 50 J = 2 N3

YR{J) = = YR{J)
50 CONTImUE
po 80 I 3r L1 20

DO 60 J = 2+ N3
TAULT.J} ={TAUCTI»J)/3,.) *RENX
60 CONTINUE
CALL PLOT(0+0r0.003}
DO 70 J = 3» N3
CaLL pLOT(TAULI ), YR{J)r 2)
IF {TauyllsJd) «GE. 541 GO TO A0
70 CONTINUE :
80 CONTIMUE
CALL pLOT{(1%.0+0.,0+=3)
GO0 TO 1
¢ kedakpa¥kakkhk® FORMAT LIST #xkFabxXxdpdFartsdeseks
4n08 FORMAT {1lxr 1246}
4olt FORMAT {1x» 2013, 4X)» S0(1pE12.6¢ 3X))
saz21 FORMAT {(1xs 1PE12.56)
4g22 FORMAT (1lx» 802Xy 1PE12.46))
4044 FORMAT (ixs 402X 1PD20U.1%))

c xx¥krbgpedngrkaxkx END OF FORMAT LIST *eresxsekkskssx
999 CONTINUE
END
o
c xerksapkaok®rsx PLOT VELOCTTY PROFILES #xkdrksxkerFxkx \éx
c

DIMENGION NAVEL2S5)e YR{33)» yXC(104e33)r PU1O4:33)» IRUF{LIYu00},
1 Ve l66)s fPLoB):r XR(104)

CALL pLOTS(IRUF(1),14002,2230,,50)

CALL o 0Tax{(300.0)

CALL PLOT(1+0r6,00=3)
1 READ {Ar4u15,EHD=999) N3r L. S¢ DY+ TAUDe RV:s RENX

IF (N LT, 1) GO TO 999

READ (ar4008) (NAME{1)» Iz1,12}

READ (Rs4#n22) (YRUJ}s J=2,N3)

Li1 =1 =

Do 10 I = 3, L1

READ (As4021} XRID)

READ (Asun22) (VXL{Isgde J=2,N3)
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READ (Arltn22} (P{Isglr Jz2,N3)
1n CONTIMUE
Nl = n3 = 2
N4 = N3 + )
M2 = M1 o+ N3
TAUO = TAD + S*DY»RVx0.
CALL pLOT(D+0r 2.0,3)
CALL PLOTI(O+0r=2.0¢2)
CALL 2LO0T{6e0r=2.0+2)
CALL pPLOT(GsD?r 2.0:2)
CALL PLOT(O«0r 2.0:2)
CALL PLOT(O«0¢ 00+ 3)
CALL »LOT(Ds12 0.,0.,2)
CALL PLOT{(2+s02+2:0,:3)
CALL PLOT(2+:0¢~1:9:2)
CALL PLOT(U4s0e=2.0,3)
CALL PLOT(Genr=1.9:2)
CALL PLOT(6-0r 040,3)
CALL pLOT(5+9r D.0:2)
CALL PLOT (4.0 200!3’
CALL b OT(a4+0r 19,2}
CALL pLOT(2:0¢ 2.0:3)
CALL 1 0T (2:0r 14922)
calkL QYMBOL(218’-2080001""?H“XID.0'2’
CALL oYMBOL =29r=0.1r0el8rpH Ye0,0:,2)
CALL SYMBOL(Q+2+=4.5+021NAVErD.0:30)
DO S0 I = 3» L1r 20
D0 20 J = 2¢ N3
JU 22 % N3 - J
VPIJ) = Vx(1leJJY*y,
YPlJ) = = YR(JJI*¥2,.
20 CONTIMUE
00 30 J = Nyr M2
JJb = ) = nil
vrid) = vxil,JdJl=y,
YREJ) = YrJUI*2,.
30 CONTINUE
CALL PLOT(VP(2)»YP(2),3)}
Do 40 J = 3, M2
CALL DLOT(VP(JleYP(JIpZI
4n CONTIMUE
50 CONTINUE
CALL pPLOT(14.0¢0,0:=3)
GO TO 1
AkREH Xk p kR k® FORMAT LIST ssxdxrsrxseksbixietsss
4n0a FORMAT (1%: 12A6)
4011 FORMAT (ixe 2{I3r 44X}y SlLpE12+6¢ 3X))
4021 FORMAT (1xs IPE12+0)
4027 FORMAT (ixr 8(2Xe 1PE12:6))
EEERE L p ¥R kA k¥ END OF FORMAT LIST #ksxasrxkidnss
999 CONTINUE
END

FRAOGRAF HAINCINPUT yOUTFUT s YP 1, TAPES=INFUT TAPZIL=0LTAUT, TAPES=YFL)
¥EFRFEFAFRBEINE £ CT VY PRUFILES #5¥%15443505358

UGLATHSTION NEME(22)y YREZEDs VXLLGHp 330y F(1?4133lr IBUFC14u0)
1 YELARE )y YPL3E) sy XROLC &)y VY (124+33)

CALL FLOTSI(IEUF.51242,0)
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CALL FLOTMXL131L,?

Chchk PLOTH1.54E40,y=3) .
FEmy (B4 4011) M3y Ls 5y DY, TAUOs RV, RENX
IF 3 «LTe 1) GC 10 9%9 - _

READ (Byufg2) (RAFZ (I8, I=1,12)

RiAG (B4 L0Z2) {YRIJY,y J=2.,N3)

L1 = L - 1

{0 1§ I = 3, L1

KA (Eeuudll XRLI)

REAU {Eyhde) (VX Iy ude J=2.N3)

DELAD (By4Cc2) CVY (Lo )y J=2 N3}

RELE LEyLD22) (PLl,Jdly Jd=240N3)

CunhTINUE

'11=NE"2
hy = A2 + 1
M2 = NI ¢+ NI

TAUC = TAUD + S*0Y¥Ry* g,

CALL FLOTI(Geds 2+043)

LAt FLIT(. aue=24)22)

Cali FLOTHLE:de=2404+2)

Cait FLOTHL{E.Jds 2.04+2)

GhaLl FLOTlusase 240,2)

CﬂLq. FLO' (ch' 3.5.3,

CALL FLOT(Os3y G4942)

CALL FrhOT(24)9~24i4+3)

ChLl FLOT (2ede=1:942)

Chrnh FLOT(q:09=2.1,3)

LALL FLOUT(L.Cy=1,9,213

CALL FLEOTU(Eabe 120430

Cﬂl.l-. FLGT(S."‘:! Jo’:ilz’

CaLy PLOT(O3s 247430

ChuL FLOI "'1.:" 1.9!2'

CALL FLITIZ24)s 247,30

CALL FLOTU(CZ sy 14992}

CALL SYMOCL(2:B89=248sC41432HVYs0:042)
Cht, STABCLI=+Cy =DeigballbyH Yol o022}
CALL SYHECLAuar=ba5e(e21 s BAME (L. 0,302
ou 58 I = 3, L1, 20

L0 2L J = 2+ NI

Jd = 2 ¢ N3 = J

VPty) = VY LT +JJI*L0T0.

2(Jd) = = Yriadd) *2.

CONTINLE

D3 3¢ J = Kue M2

JJ = J = N1

VP(J) = VY(I,JJr*1000,
YPIJ) = YRGJJI®2,
CONTINLE

CAdte FLATIVF L2, YPL2),2)

DO 4% J = 3, M2

CALL FLOT (WFIJY s YPLJ},2)

CONTINLE

CyiiTliils

LALL PLOT(14.0,0404=3)

GO Ty

IE R L EEE R EEREE Y] FcRMﬁT LIST LRI E XIS IR TR FERY Y 33
FORMAT (1x, 1240}

FOPMALT (1xy 2013, 4X)s SUIPE13:6+ 3X)1)

FOPMALT d1Xs ALEX, 1Pc1l.61)

LEE E XS REEREERESREX Y] ENG OF FUI‘(HﬁT LIS‘ EF3FIFERRLLIBELS
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599 COMTLKLE
CALL FLdT(i440,C4+2,999)
END

sxxkxxakrxeesix PLOT PRESSUPT NROP a¥xrdkrksbdadh s P (X))

aon

DIMEMSION  TBUF(1400)s MAME (25}, XR{LOBYPYRI3S) e VXLL1U4r33)e
1 PiLNg.33)r PPLLOWHY
READ (Ss8001)  NCLle NC2e NML1, MNN?
CALL PLOTS(TBUF(1)+1400.,2,:30,00)
CALL PLOTHXI6D,0)
CAaLl PLOT(1.0¢%,0,~3}
CALL PLOT(Q.0¢=5.0¢2)
catl PLOT(8,0¢=5.0¢2)
Call. PLOTtE,.0r 0,022}
CALL PLOT(0.0r 0.,0Ge2)
CALL PLOT(Q.0r~1,ur3)
CALL PLOTID.1lr=1.022)
CaLL PLOT{Q.0r=2.013)
CALL PLOT{0s1r=2.0¢2)
CALL PLOT(0.0r=3.ur3)
CALL PLOT(Q.Le=3,0¢2)
caLl PLOTI(O.0e=8,023)
CALL PLOTUIQ.Lr=t,Ur2)
Calk PLOT{1,6r=5.L73)}
Call PLOT(1.60=0,9¢2}
callL Pl.OTI5.2l“5-U'3'
CALL PLOT(3.2,~8,9¢2}
Catl PLOY (4, ,Br=t,922})
CALL PLOT‘DU"'"S.O'S)
CJ\LL Pl_Ole.'-I-r-ll.‘J'Z!
CALL PLOT(8.0r=0,0?r3)
Ccall PLOT17.9e=4.0r2)
ratl FLOTI3,0s=3.Ur3)
CALL PLOT{7.9¢=3,Ur2)
CALL PLOT(&UO"’2.U'3’
CALL PLOT(7.9,=2.0¢2)
CALL PLOTtH,00=1,003)
CaLl PLOT(7.9r=1,022)
CALL PLOT{b.4r 0,Le3)
CaLl PLOT{G.Ue~0,102)
CaLk PLOT(4.8¢ 0.0 3)
anL PLOT[‘-I-.B!“O-132)
Calk PLOT(boZ? 0.0'3'
CALL PLOT(3.,2¢=0,1r2)
CALL FLOT(1.6¢ 0,0#3})
CaLL PLOT(1.60=D0lr2}
CAaLL SYMRAL (=0, Rr=2,6¢0,14420PF 0,00 2)
CALL SYM”.".‘L(3.'7p'boBoUo1“!3""’0""!“;0!‘} .
CALL SYMROL (1,n,=7e5+0,210200 AXTAL PRESSURE UROP 0,020}
IF INC1 Fu. Ny o0 TO 26
Do 25 K = MCLl, M.2
READ (Bs8n11.EHD=Y99) N3y L, S» DYy TAUO: RV, RENX
IF (N3 .7, 1) 60 TO 999
READ Byunr0n) (MAMELT Yy I=1,12)
RCALD (83022} {YR{D) e J=2,H7%)




L1 =L -

Do 10 I = 3, L1

PEAD (A.8021) XRLI)

READ (8,4n22) (VALT»Jl e Jz=2.N3)
READ (B,4n22} ir{Iedly J=2,N3)
CONTINUE

CALL PLOT(0.0s0,0¢3}

Do 20 1 = #, L1

PRI} = PrLy2V7300.

XRe(I}Y = Xo(1) /212,59

CALL FLOTIXUL)»PHIT) 2}
CONTINVE

¥y = PP{LY)

CALL SYM3AL(10.s Y5 vr0.07eNA £+0,0,30)
CONTINUE

IF (NNt LEA. nY GO TO 299

Ny B0 K = HNL, M2

REAL t914011,E*MD=999) M3, L, S, OY: TAUO, RV, RENX
IF (NS LT, 1} 6O TOo 999

PEAD 194009  (MAME(LY, [21.12)
PEAD 19840221} (YD) J=24H73)
Ll = L =1

ny 30 T = 2,

READ (9,8021) XR(I) ’
READ (Qsl4n22y {PII )y J=2,N%)
COMTINUE

CALL PLOT(G.0s0,0¢3)

DASH = 1.

nog 40 1 = 4, L}

PRL1Y = PiLe217300.

iR l} XPr{13/12.5

DASH = = PaASH

IF iDASH .6T. N.) GO TO 39

CALL PLOT(XR(1}y ¢P(I)e2)

GO TO 40

CALL PLOTIXROE)+PPI(T} e 3)

CONTINUE

Y5 = PPiLY)

CALL SYMAN (1S.9e ¥YS 30.07/NAVErN,0,30)

CoNTINUE

wxkxkeeneanhke FURMAT LIST  #dsesyprdpedseririsses
FORMAT ¢ )

FORMAT (1X, 12A6}

FORMAT (1¥, 2(13¢ UX}e SOIPFI2,6r 3X})

FORMAT (1Y, 1PF12,0) '

FUORMAT (1Y, B(2Xe LPF12,6))

arkhkkpuxsexwkxx LD OF FORMAT LIST ®kkxedeksrnsikek
CONTINUE

EHD

FROGASF MAINC(INPLT QUTFUT 4 VP 1, TAPEL=INFUT,TAPEG=UUTPUT, TAPEB=VPL)

L EE RS ELEREESEY N FLCT FLY} HKUFILES I JE ISR SRR SN Y S

EIMIKSION NAMEL25), YR{Z3Z)s WA{1G4s33), PEL1G4»33), L1OUFILLIC)
1 VFlcot, YPIich),y XRCEi24L)y VY LL04,33)

CALL FLOTSUIBUF B81¢,2,0)

CALL FLOTHX(300. M

CALL FLOTLL1,UsEelyw3)
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2

39

AH
L =]

4wju b
4511
4c21
4hge

999

REALU (Esulll) H3s Le S5¢ DYoo TAUD, RV, RENX
IF (N2 LT, 1) GG TQ 999

EZAD (E+440G04) (MAME(T}s I=1,12)

PZHL (Eequlg) EYR(JIYy J=c N3}

L1 = L - 1

Lo ic I = 3, L1

FLBD (&.4021) XR{D

RIulD (E,4022) (VXiIsdds J=24N3D

FEAD (&.ul2C) (VY (L1, J)r J=2¢ N3}

CEAD (€yalE2) (P{I,J)s J=24N3}
COLTIKLE

hi = N2 - 2

Wise = NI + 1

M2 = h1l + NI

TAUG = TAUD + 3*0Y*RV*0.

CALL FLOTIU(L.Ly, 242:3)

Cale FLOTI e Pe=24M42)

CALL FLuTiba2s~240,2)

ChAul FLOTHEL Iy 240,20

Lk FLOTLuede 24542)

CALL FPLOTULI<Cr 30T 30

ALl FLOT (L sty D420

CAve PLOTIZ ur=2+393)

CabL FLOT{Z+20=1eD492)

caul FLOT(44»=2.04+3)

Chli rLuTil.ds=14+9.2}

CALL rLuT(ELly 40532

CALL FLOT(E49s 0+0342)

CAvlh PLOTLL, Gy 24043}

CAaLl FLUTE4L .Uy 1.9-23

CALL FLOTH(Z24+2s 240:3)

ChLe FLOTH{Zsus 1492}

Ciabli STHEGCL(2.484m248330416452H Fruel,42)
CALL SYMUCL(~+Qy=islvQslbs2H YoO.042)
CALL SYMSCLIC 21 =850 20 NAMELO 4 U,3D)
DO 53 I = %, L1,y 20

Q0 27 J = 2, N3

Jd = ¢ + K3 - )

VP IS ==PLl. 0)Y*4.7108208,

YertJdi = = ¥YR{AJI) *2

CCATINKLE

BO 37 J = Nu, M2

JJ = g = Ni

VP L4) ==P(lydJ)*4es/1ull

YELJ) = YR{JLIYZ,

CUNTINLE

CAl. FLOTHIVPI{Z2).YPIZ2} )

09 49 J = 3, M2

CALL FLOT (VP (Y 2 YP D) 2 2

CONTINGE

ConTahLE

CALL FLOT(14.040404=3)

GC 7o 1

sesrrrrrnrvrenn s FORMAT LIST P95 S 10 assusssssngss
FORMAT LoXys 12461

FURIMAT {Li1Xy <139 «X)y S{iFE1I.64 3X})
FurMALY (1x, 1PL12.€)

FORART (1%, B(2Xs 1PL13,.0))
FEERFFXELLSVIFLSE Er"g OF FORHAT LIST LT IR ET TR S Y Y ¥
CONFTINLE
CAaLlL FLOT (14sus042,999)
END
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