
CONTEXT AWARE ADAPTIVE POLICY SELECTION

A Dissertation
Presented to

The Academic Faculty

By

Anthony Liu

In Partial Fulfillment
of the Requirements for the Degree

Bachelor of Science in the
College of Computing

Georgia Institute of Technology

May 2020

Copyright c© Anthony Liu 2020

CONTEXT AWARE ADAPTIVE POLICY SELECTION

Approved by:

Dr. Byron Boots
Paul G. Allen School of Computer
Science and Engineering
University of Washington

Dr. Mark Riedl
College of Computing
Georgia Institute of Technology

Date Approved: April 30, 2020

ACKNOWLEDGEMENTS

I would like to thank my mentor Dr. Byron Boots for his continuous support and pro-

fessional guidance throughout my time in his lab. He has been an incredible source of

knowledge in the classroom and in my research, and he has provided me with many oppor-

tunities to grow as a researcher. I am also grateful the guidance of Nolan Wagner, who has

provided numerous keen insights and constructive suggestions with this work.

Additionally, I would like to thank my research partner Hemanth Sarabu for his invalu-

able contributions in helping with the formulation of our approach in this document, as

well as with the collection of preliminary results. Specifically, the results presented in this

work with respect to the Mars Rover simulations is derived from Hemanth’s work during

his internship with JPL, and Hemanth has provided remarkable guidance and helpful con-

tributions in extending our research to future work with MPC and Autorally. Regarding

the Mars Rover simulations, I would also like to acknowledge Shreyansh Daftry’s and Dr.

Masahiro Ono’s help as they provided noteworthy guidance over the work done with the

rover.

Furthermore, I would like to thank all of my lab mates in the Robot Learning Lab and

the students in the Georgia Tech AI community for being and inspiring group of colleagues

and peers. I have grown a lot during my time here, and will always remember the great

times that I have had.

Last but not the least, I would like to thank my family for supporting me throughout my

undergraduate career.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . viii

List of Figures . ix

Abstract . x

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Overview of thesis . 3

Chapter 2: Literature Review . 4

2.1 Adaptive Computation in Machine Learning 4

2.1.1 Prediction Cascades . 4

2.1.2 Anytime Neural Networks . 7

2.2 Adaptive Computation in Robotics . 7

Chapter 3: Context-Aware Policy Selector Formulation 9

3.1 Reinforcement Learning Preliminaries . 9

3.1.1 Markov Decision Processes . 10

vi

3.1.2 Value-Based Reinforcement Learning 11

3.1.3 Policy Gradient Algorithms . 11

3.1.4 Evolutionary Algorithms . 13

3.2 Context Aware Policy Selection . 14

3.3 Experiment Set Up . 15

Chapter 4: Preliminary Mars Rover Experiments 16

4.1 Preface . 16

4.2 On-board Optimization-based Kinematic Settling (OBKS) 16

4.3 Mars Rover Path Planning . 18

Chapter 5: Context-Aware Adaptive Policy Selection 20

5.1 Training a policy set . 20

5.2 Results . 21

5.3 Discussion . 22

Chapter 6: Conclusion . 24

6.1 Conclusion . 24

6.2 Future Work . 24

Appendix A: Implementation Details . 27

A.1 Algorithm . 29

Appendix B: Results . 31

References . 37

vii

LIST OF TABLES

5.1 Pybullet Environment Descriptions . 20

A.1 Hyperparameters for policy baseline training. 27

A.2 Hyperparameters for CEM training. 27

A.3 Links to implementation code . 28

B.1 Baseline Policy results . 31

B.2 CAAPS Policy results . 32

viii

LIST OF FIGURES

2.1 Adaptive Network Selection Policy proposed by Bolukbasi et al. [15] 5

2.2 Classification cascade using RL exiting proposed by Guan et al. [17] 6

3.1 The Agent-Environment interaction in a Markov decision process from Re-
inforcement Learning: An Introduction [12] 9

4.1 Monte-Carlo estimates of ACE and OBKS performance on random placement 17

4.2 Monte-Carlo estimates of ACE and OBKS performance on rover traversal. . 17

4.3 Performance of CAAPS planner for Mars Rover 18

5.1 Performance of pybullet baseline agents of varying complexity. 21

5.2 Performance of pybullet CAAPS policies trained with different w. 22

ix

ABSTRACT

In of optimal control and reinforcement learning, the difference in the performance of

a state-of-the-art policy and a mediocre one is minuscule in comparison to their difference

in amortized computational cost. Further, in certain situations the mediocre policy will be

able to perform as well as the state-of-the-art policy, and it will all the while have used sig-

nificantly less computational resources to do so. This phenomenon is a consequence of the

necessity for additional compute to solve difficult scenarios; however, while sparsely oc-

curring, these scenarios can be catastrophic for most planning tasks. In this work, we focus

on addressing this imbalance between performance and computational cost in the context

of planning. We combine ideas that have been prevalent in other machine learning prob-

lems and in Hierarchical Reinforcement Learning, and propose a Context-Aware Adaptive

Policy Selector (CAAPS). We utilize our selector to create a meta-policy which can mini-

mize these catastrophic states (thus maximizing the policy’s ultimate performance), while

also minimizing the computational cost necessary to run the policy. Our meta-policy ac-

complishes this by adaptively selecting from a set of pre-trained candidate policies which

vary in performance and complexity, and we show that in certain environments we are able

to plan trajectories at near-optimal performance while minimizing the amortized computa-

tional cost.

x

CHAPTER 1

INTRODUCTION

In this work, we investigate the trade-off between computational complexity and perfor-

mance in control problems, and we propose techniques to adaptively maximize a con-

troller’s performance while minimizing its computational cost.

1.1 Motivation

Many complex tasks can be formalized under the form of optimal control problems with

discrete-time dynamics and transitional costs. These control problems can vary from a

wide range of areas including optimally playing difficult games with massive state spaces

such as Go [1, 2] to routing network packets [3] to controlling autonomous vehicles [4, 5,

6, 7, 8, 9, 10, 11]. Within these problems, various techniques have attracted significant

attention from researchers, and two key subjects that have risen here are deep reinforce-

ment learning (Deep RL) and model predictive control (MPC). Between these, Deep RL

methods infer closed-loop policies for stochastic optimal control problems using sample

trajectories gathered from simulations or real systems [12], while MPC methods exploit an

explicit formulation of the environment and solves for optimal trajectories in an open-loop,

receding horizon manner [13]. While the research surrounding MPC has primarily been

dedicated towards stabilizing complex control problems, much of the emphasis in RL re-

search has been in the scalability and efficiency of the learning process. Yet, a topic that has

seen little recent work in both areas is the concept of balancing complexity and difficulty

with adaptive computation in real world systems.

In optimal control problems, there is often a large variance in the difficulty of calcu-

lating the optimal trajectory for a given state [14]. For example, in the instance of an

autonomous vehicle, it would be considerably easier to keep the vehicle in the bounds of a

1

road than it would be to avoid obstacles such as trees or debris. For controllers that attempt

to solve such problems, there is an order of magnitude difference between the complex-

ity and computational cost of a policy that reasonably handles these tasks versus a policy

performing on state-of-the-art benchmarks [15, 14]. Because of the varying degrees of dif-

ficulty in examples, most techniques in general struggle to solve harder examples without

exponentially increasing their complexity. In other problem spaces such as image recog-

nition, we have seen various techniques to create prediction models that use the minimum

necessary complexity per input in order to achieve an accurate prediction [15, 16, 17, 18,

19]. Since many physical robotics environments are constrained on both compute resources

and energy capacity, the benefits of such techniques in optimal control is abundantly clear;

however, there is little previous work in applying this idea to controllers in physical sys-

tems.

1.2 Contributions

In this thesis, we will propose a simple Context-Aware Adaptive Policy Selection (CAAPS)

algorithm which learns a policy selector that samples from a pool of pre-trained policies

in order to produce an adaptive meta-policy. Our technique exploits the fact that complex

controllers are only required for difficult states, while simple controllers will be sufficient

for most situations, thus our meta-policy outputs optimal trajectories at reduced amortized

computational cost. Because of this, we can achieve faster control decisions while still

designing for the worst-case and free up limited compute resources for auxiliary tasks or

improved battery life.

We will demonstrate the feasibility of CAAPS by training a policy selector on two

state-of-the-art path planners on the JPL ground rover simulator [20, 21]. Notably, our

meta-policy is able to match the performance of the best policy in the set, while spending

roughly the same amount of computational time as the cheaper policy.

Finally, we will apply CAAPS to complex RL tasks in several OpenAI Gym environ-

2

ments [22], and we will demonstrate that by varying the parameterization of the algorithm

we can yield varying meta-policies that optimize the amortized computational cost to vari-

ous degrees, while minimizing the reduction in performance. Additionally, we highlight the

limitations that come into play with regards to the characteristics of the candidate policies,

and we show their effects on the performance of our meta-policy.

1.3 Overview of thesis

In Chapter 2, we will introduce past research on adaptively balancing the trade-off between

performance and computational cost in the context of other Machine Learning domains. In

Chapter 3, we will present the necessary technical background for the rest of the paper, as

well as describe our approach for designing our policy selection algorithm in the context of

various environments. In Chapter 4, we will outline our initial experiments with learning a

meta-policy selector. Then, in Chapter 5, we present our final results with a general meta-

policy selector, as outline our measures to validate these results. Finally in Chapter 6, we

summarize our findings and contributions, and describe future work on this subject.

3

CHAPTER 2

LITERATURE REVIEW

2.1 Adaptive Computation in Machine Learning

Adaptive computation refers to the ability for an algorithm to dynamically adapt to its envi-

ronment and provide different results depending on the context of its input. In the context of

this work, we refer to adaptive computation techniques as methods to dynamically change

the complexity of a function in order to minimize the computational work needed to output

a desired result. In traditional machine learning problems, a fair amount of progress has

been made in this regard, and the most significant contributions fit into either prediction

cascades or anytime predictions.

2.1.1 Prediction Cascades

Prediction cascades were largely popularized by Viola and Jones [23], who constructed a

cascade of increasingly complex image classifiers to iteratively reduce the possible false

positive predictions for an input image. While Viola and Jones are credited for coining the

term cascades, earlier work by Rowley et. al. [16] implement cascading neural networks by

having a network arbitrate and merge the output of a set of filter networks that run on dif-

ferent windows of an input image. Unlike these two classic approaches which specifically

target the classification task of face detection, later work has explored utilizing prediction

cascades with deep neural networks for general multi-class classification problems. Impor-

tantly, the majority of these later works focus on using cascades to reduce the amortized

computational time for classifying new examples.

The first work worth noting is the work with network selection and evaluation by Boluk-

basi et al. [15]. Here, they propose two different schemes of an adaptive cascades. Their

4

Figure 2.1: Example adaptive network selection topology proposed by Bolukbasi et al.
[15] with Alexnet(A), GoogLeNet(G), and Resnet(R). Green γ blocks denote the selection
policy. γ1 evaluates Alexnet, and decides to jump directly to Resnet or send the input to a

GoogLeNet→Resnet cascade that performs a similar evaluation with γ2.

first contribution adds an evaluation early exit step between the components of a deep net-

work. If an input is correctly classified from just the early layers of the system, the result

is exited and they avoid the computation associated with the full evaluation of the network.

Second, they propose a method for creating a directed acyclic graph of different networks,

in increasing order of complexity, and extend their first contribution to create an adaptive

network selection policy that determines which networks to pass new examples through

(See Figure 2.1).

Next, Streeter [18] proposes a greedy algorithm to form a cascade from a pool of candi-

date networks. This proposed algorithm not only automates the construction of the cascade,

but provides guarantees that the cascade will be as accurate as a reference target network.

The base algorithm that Streeter proposes attaches an auxiliary classifier to predict the ac-

curacy from features of network output (e.g. entropy) for classification tasks and exit at an

arbitrary threshold.

5

Figure 2.2: Classification cascade using an RL Agent to determine exiting strategy
proposed by Guan et al. [17]. Each agent takes the label probability of a classifier’s top

layer and decides whether to stop or continue.

Guan et al. [17] propose a useful formulation for training a network selection policy

using the REINFORCE algorithm (See Section 3.1.3 on Policy Gradient algorithms). Here,

they train the network selection policies jointly with the classifiers with the objective to

minimize the expected loss, with the energy cost constrained by a desired budget. As

shown in Figure 2.2, a separate policy is appended to the end of each classifier, and the

policy maps the classifier’s output label probability to the decision to exit the cascade or

continue. The policies are trained with the following reward function:

Rk(x, y, ŷ) = −L(ŷ, y)− α
k−1∑
t−1

Ft (2.1)

Where Ft is energy cost for classifier t and the kth policy is rewarded with the negative

loss minus the total accumulated energy cost from the first step to that policy. It is also

worth noting that they explored the case of using pre-trained classifiers in the cascade, and

the reported benefits of end-to-end training over the pre-trained scenario were not substan-

tial. Finally, Wang et al. [19] create a similar cascade topology to Guan et al., but they use a

differentiable entropy based cost objective which allows for direct cost based optimization

6

instead of reinforcement learning.

2.1.2 Anytime Neural Networks

Anytime predictors serve as a different form of adaptive computation than prediction cas-

cades. Instead of minimizing average test-time computational cost while minimizing sacri-

fice in accuracy, anytime predictors produces a fast and crude initial prediction and contin-

ues to refine and improve it as the computational budget allows. Typically these predictors

train auxiliary exit policies attached to various intermediate points along the model. Al-

though not mentioned in their paper, the adaptive early-exit cascade in Bolukbasi et al.’s

work [15] mentioned previously can loosly be considered an example of one such Anytime

Network. While early work with anytime predictors was in the context of classical machine

learning predictors [24, 25], recent work by Huang et al. [26] used clever architecture to

derive an anytime image classification predictor. Additionally, Hu et al. [27] derived an

adaptive weight scheme for training losses to create generalized anytime neural networks.

In the context of reinforcement learning, there have been various work over the past

several decades on applying anytime prediction to classical reinforcement learning (not

deep RL) [28, 29, 30]. While orthogonal to our work, anytime learning is worth mentioning

due to their organic nature of iteratively improving on an action.

2.2 Adaptive Computation in Robotics

Our implementation of our policy selection algorithm fits closely with the formulation of

Hierarchical Reinforcement Learning, in which the work for a task is distributed between

a hierarchy of sub-policies and meta-policies. However, the majority of recent research

in this subject has been with solving complex long-horizon problems with sparse and de-

layed rewards [31, 32, 33, 34, 35]. The appeal of Hierarchical Reinforcement Learning is

that it focuses on decomposing tasks into small hierarchical skills, and training different

sub-policies and meta-policies to distribute the work. Generally, this allows for methods

7

to significantly improved sample efficiency [33, 36], increase robustness [34, 37, 36] or

allow for the parellization of training process[37]. Yet, there is little work to be found on

designing HRL architectures for adaptive computation.

8

CHAPTER 3

CONTEXT-AWARE POLICY SELECTOR FORMULATION

3.1 Reinforcement Learning Preliminaries

Reinforcement learning is the process of approximating optimal decision-making in phys-

ical and artificial environments. In the past, Reinforcement Learning has been used to beat

top-ranked Go champions [2], route network packets [3], form stock trading strategies [38],

and play complex multiplayer games competitively [32, 39, 40].

Most tasks in reinforcement learning and optimal control can be formalized as a time-

discrete sequential decision process. The decision-maker, known as the agent, interacts

with its surrounding environment. In this interaction, an agent at time t ∈ T will make

some observation about the state of its environment, st ∈ S, and perform some action

at ∈ A upon the environment. In response, the environment will output a reward rt+1 ∈ R

for the action at. This interaction loop is shown below in Figure 3.1.

Figure 3.1: The Agent-Environment interaction in a Markov decision process from
Reinforcement Learning: An Introduction [12]

Note that notation may vary between reinforcement learning and optimal control tasks.

Reiterating from above, for reinforcement learning we model our environment with an

agent making a state observation st ∈ S, performing an action at ∈ A, and receiving a

reward rt+1 ∈ R. However for optimal control tasks, we typically describe the task by a

9

controller at state xt ∈ X outputting a control ut ∈ U and incurring a control cost ct+1 ∈ R.

In particular, the distinction between reward and cost is important, as the goal of learning

an optimal policy involves maximizing our accumulated reward for reinforcement learning

and minimizing our accumulated cost for optimal control.

3.1.1 Markov Decision Processes

The Markov decision process (MDP) is a useful abstraction for modeling stochastic en-

vironments. Here, each observation st is a Markov state if it summarizes all previous

observations, so all the necessary information for decision making is retained. If the MDP

is fully observable, every state st is a markov state and the Markov property holds. This

means that the future states and rewards depend only on the current state, and are indepen-

dent of the previous states and actions that we experience. In this work we will only be

dealing with fully observable MDPs, so for the remainder of this thesis we can assume that

this property is true.

When we model an environment as an MDP, we define it as a 4-tuple consisting of

(S,A, P,R), where

1. S is the set of all valid states.

2. A is the set of all valid actions.

3. P (st, at, st+1) is the probability that we arrive in state st+1 after taking action at in
state st.

4. R(st, at, st+1) is the associated immediate reward for arriving in state st+1 after tak-
ing action at in state st.

In tasks which have a finite horizon T , there is a terminal state in which our task

ends. For these tasks, we define the sequence of experiences from t = 1 to t = T as

an episode. Then, within an episode, we can define the total episode return from time t as

Rt =
∑T

k=t rk. However, when trying to maximize Rt, we can observe that this formu-

lation makes no distinction between if our agent picks up a reward immediately or if our

agent decides to sit and wait until the end [12]. Therefore, we define our return using a

10

time-discounted reward Rt =
∑T

k=t γ
krk where 0 < γ ≤ 1 is our discounting factor [12].

Lastly, we define the behavior of an agent by a policy π(s) = a which is a function that

maps state to an action.

3.1.2 Value-Based Reinforcement Learning

In Reinforcement Learning, we define a Value function V π(s) as the expected return when

following our policy π from a state s,

V π(s) = Eπ[Rt | st = s] (3.1)

= Eπ

[
T∑
k=t

γkrk | st = s

]
(3.2)

Likewise, we define a action-value function Qπ(s, a) as the expected return when fol-

lowing our policy π after taking action a from state s,

Qπ(s, a) = Eπ[Rt | st = s] (3.3)

= Eπ

[
T∑
k=t

γkrk | st = s

]
(3.4)

Since our goal in reinforcement learning is to maximize our award in an episode, we

generally want to find the optimal value and action-value functions V ∗(s) = maxπ V
π(s),

Q∗(s, a) = maxπQ
π(s, a) for every action and state, and thus our reinforcement learning

objective is typically to try to estimate V ∗(s) orQ∗(s, a)). From this, we can get the optimal

policy π∗(s, a) = argmaxπ(Qπ(s, a)).

3.1.3 Policy Gradient Algorithms

Policy gradient methods are some of the most versatile methods for reinforcement learning

due to their fast training speed and flexibility with discrete and continuous spaces. Their

objective is to optimize the parameters θ of the policy πθ in order to maximize the expected

discounted reward of running the policy. Since the work in this thesis revolves around

episodic environments, we can define our objective with the value function from the agent’s

11

initial state, s0.

J(θ) = V π(s0) (3.5)

= E

[
T∑
t=0

γtr(st, πθ(st))

]
(3.6)

We can use the action-value function definition in equation 3.4 to expand and simplify,

J(θ) = E

[
r(st, π(st)) + γ

T∑
k=t+1

γkrk

]
(3.7)

= E [r(st, π(st)) + γQπ(st+1, at+1)] (3.8)

Then, we optimize our policy by taking steps in the direction of the policy gradient∇θJ(θ)

[41]. If we solve for∇θJ(θ) we get,

∇θJ(θ) = Et [∇θ log πθ(at | st)Qπ(st, at)] (3.9)

From here, we have the framework to dive into any policy gradient algorithm. The policy

gradient theorem has given rise to many of these algorithms, which differ in how Qπ is

estimated [41]. For example, we could set Qπ(st, at) =
∑T

k=t γ
kr(sk, πθ(sk, ak)) = V (st),

and we would have the definition of the REINFORCE algorithm [42]. More specifi-

cally with REINFORCE, after every episode, we would go back through each experience

(st, at, rt+1, st+1) and apply the policy update

θ ← θ + α∇θ log πθ(st, at)V
π(st) (3.10)

Where α is the update size for each time step.

Another more advanced policy gradient approach is Advantage Actor-Critic imple-

mentations, which not only perform well in parallelized environments [43] but also sig-

nificantly reduce the variance in the gradient estimates by using an advantage function

12

Aπ(xt, ut) = Qπ(xt, ut) − V π(xt) for their gradient updates [44]. The value function V π

is approximated by a function approximator (the critic), while an actor approximates the

policy πθ, and the policy gradient becomes:

∇θJ(θ) = Et [∇θ log πθ(ut | xt)Aπ(xt, ut)] (3.11)

Among these actor-critic algorithms, Proximal Policy Optimization (PPO) is a commonly

used due to its simplicity in comparison to other state-of-the-art policy optimization algo-

rithms, while being incredibly sample efficient. [45].

3.1.4 Evolutionary Algorithms

One of the significant drawbacks to standard Reinforcement Learning techniques is the

slow training speed due to requiring small gradient updates [46]. Additionally, the stochas-

tic nature of needing to create a Monte-Carlo estimate of the policy gradient can introduce

instability in the training process [47]. This becomes an issue in our case of training a

policy selection algorithm, as the transition between different policies in our selection set

can easily destabilize training with traditional RL algorithms.

Evolutionary algorithms, such as Cross Entropy Method, do not have this issue since

they do not rely on stochastic gradient updates, and they have the additional benefit of being

very efficient in parameter search with the provision that the parameter search space is not

significantly large [46].

The Cross Entropy Method (CEM) is a commonly used evolutionary algorithm due to

its quick convergence and easy implementation [48]. The standard algorithm searches for

parameters by randomly sampling a batch of parameters from a random distribution (typ-

ically a gaussian distribution) parameterized by an initial set of means µ and variances Σ.

Then, it evaluates the fitness of each sample based on a user-defined optimization objective,

and updates the µ and Σ using the top performing set of samples in the sampled set [48].

13

This technique can be easily applied to a MDP for policy optimization by using a variant

of argmaxπ V
π(s0) as the optimization objective [46, 48].

3.2 Context Aware Policy Selection

To allow for adaptive computing with our policies, we must formulate a meta-policy which

utilizes a policy selector that selects the optimal policy from a set of candidate policies,

π∗ = argmax
π

E[
∞∑
t=0

γtr(st, π(at))]. (3.12)

In particular, we are selecting the parameterization

θ∗ = argmax
θ

E[
∞∑
t=0

γtr(st, πθ(st))] (3.13)

Since we are focusing on the case where a set of optimal parameters for various pa-

rameterizations (models) of the policy π have been learned to reasonable extents and are

available to deploy, we call this set of optimal parameters Θ. Owing to the type of model

used, each parameterization θ∗ ∈ Θ has an associated cost to query during run time and this

project aims to learn a stochastic policy selector that regularizes the computational expense

associated with the usage of a parameterization at a given time and state. We drop * from θ∗

in regards to our candidate policies for the remainder of this document since we provided

optimal θs for each parameterization. To this end, we incorporate the expense of using a

policy with a certain parameterization p(θ) into the original cost expression. Ignoring the

slight abuse of notation, the reward function is augmented as:

r̃ = r(st, πθ)− wp(θ) (3.14)

Here, p(.) is used to weigh the computational cost of using a parameterization θ, and w is

scaling factor on p(θ) that is used to trade computational costs with task costs. We now try

14

to obtain a state-adaptive meta-policy Π with θt ∼ Π(xt), (in effect, a policy over policies)

at time t using the mapping Π dependent on the current state. Now to select an optimal

policy at each state that is also aware of the resources it is using, the optimization problem

requires solving the following:

max E[
∞∑
t=0

γtr̃] (3.15)

and then we find the optimal meta-policy Π∗:

Π∗ = argmax
Π

E[
∞∑
t=0

γtr(st, πΠ(st)(st))− γtwp(Π(st))] (3.16)

Note that for this formulation, the parameterizations in Θ and r̃ vary between environ-

ment, as different environments have different relationships between reward and complex-

ity.

3.3 Experiment Set Up

In order to demonstrate that we can achieve the optimal meta-policy with a more directed

approach, we ran preliminary feasibility studies using the Mars Rover simulator with a

policy set Θ of two path planners (See Chapter 4). For simplicity, we created a 4 layer con-

volutional network policy selection model. We then trained it using a supervised learning

approach using data collected from other experiments.

With verification that it is possible to beat cost-reward performance of individual poli-

cies, we implement a reinforcement learning method for training a generalizable meta-

policy and run the experiments on several OpenAI Gym Environments (See Chapter 5)

15

CHAPTER 4

PRELIMINARY MARS ROVER EXPERIMENTS

4.1 Preface

For this section, I would like to acknowledge and thank Hemanth Sarabu for his work in

conducting these experiments and collecting the results.

4.2 On-board Optimization-based Kinematic Settling (OBKS)

For path planning with the Mars Rover [20], use of approximate clearance techniques un-

surprisingly introduces varying levels of conservatism into pose prediction and clearance

evaluation algorithms [49]. When used in path planning for collision-checking, algorithms

such as Approximate Clearance Evaluation (ACE) is seen to perform better than the state-

of-the-art algorithm GESTALT [50, 49] that rejects all paths, including feasible ones that

allow the rover to straddle small obstacles and traverse over undulating terrain. By deter-

mining a tighter interval on possible states that the rover can occupy, ACE is able reduce

this conservatism. It is important to note that the conservatism manifests as false-rejections

of candidate paths when used in a motion-primitive path planner. In order to reduce the rate

of false-rejections, a more sophisticated algorithm is necessary such that the confidence in-

terval may be further reduced.

High-Performance Spaceflight Computing (HPSC) opens up a variety of avenues to

explore owing to the availability of increased computational capabilities. We developed an

iterative algorithm for on-board computation that is very much in the vein of those used

in ground rover simulation software at JPL [20, 21]. The algorithm named Optimization-

Based Kinematic Settling (OBKS) solves a local optimization problem to minimize contact

between terrain and rover wheels. It is modelled as a least-squares problem subject to pose

16

constraints on joint angles as determined by rover design limits. As the solution yielded by

OBKS is expected to be close to the exact pose of the rover for a given location in a height

map, the interval of uncertainty is smaller hence, reducing the intrinsic conservatism of the

path planner in comparison with ACE.

Figure 4.1: Monte Carlo estimates of success rates (left) and query time (right) of ACE and
OBKS for random placement on height maps of varying rock abundance (% CFA). A random

placement is considered a success if the collision-checking algorithm returns that the location in
the map is safe for traversal.

Although the time per query of ACE is lower than that of OBKS (seen in Figure 4.1),

the increase in success rate during random placement (seen in Figure 4.1) allows the time

taken to generate a path for a 20m traversal to be significantly lower for OBKS in relatively

complex terrain (Cumulative Fractional Area greater than 7%). As a consequence of lower

conservatism, the OBKS planner is also able to generate paths with lower path inefficiency

(seen in Figure 4.2). This algorithm has been implemented on an Nvidia Jetson TX2 board

using Ceres solver [51] for Athena Rover and runs with a mean query time of 13.7 ms.

Figure 4.2: Monte Carlo estimates of success rates (left), path generation times (middle), and path
inefficiency (right) for an ACE-based planner and an OBKS-based planner for 20m traversals on

height maps of varying CFA. A traversal is considered a success if the planner is able to generate a
path from the start location to the goal location in the map.

17

4.3 Mars Rover Path Planning

In this section, we conduct a feasibility study for the formulation of our meta-policy and

study this only in the context of computation. Development of OBKS (See section 4.2)

for on-board computation on future rover missions provided insight into the algorithm’s

strengths and weaknesses upon utilization on terrains of varying complexity. While in

CFAs greater than 7% the arc-primitive path planner using OBKS outperformed the same

planner using ACE for collision-checking, the latter demonstrated an advantage in path

generation time with no detriment to path inefficiencies for lower CFAs.

Thus, we developed a supervised learning based meta-policy to select the optimal plan-

ner for a given state of the JPL Mars rover and its environment. The learned policy is

required to select a planner such the path generation time for planner is minimized with a

controlled trade-off in probability of success.

We instantiated the meta-policy selector as a 4 layer convolutional neural network

which operates on Depth Elevation Maps (DEM) maps as inputs. The model was trained

using a supervised learning approach on over 7000 DEM maps spanning 30m x 30m and

varying CFAs (1%, 3%, 5%, 7%, 10%, 12%, 15%, and 20%) to achieve mean test ac cura-

cies of 81% and 92% on success prediction and path time generation respectively.

Figure 4.3: Comparison of path inefficiency (left) and path generation time (right) for planner
using OBKS, ACE and meta-policy selector that greedily switches between the two.

Preliminary results (summarized in Figure 4.3) indicate that the policy selector is indeed

18

able to select the optimal planner to minimize path generation time (and as a result, path

inefficiency due to strong correlation between the two quantities).

19

CHAPTER 5

CONTEXT-AWARE ADAPTIVE POLICY SELECTION

5.1 Training a policy set

Before we are able to train our policy selector for our Gym benchmarks, we need to pre-

train a set of policy networks of varying costs and performance. To achieve this, we imple-

mented an optimized version of PPO2 [45] and trained a batch of baseline policies ranging

from linear policies to multi-layer perceptron policies of height 64 and depth 3 on a set of

candidate environments. The hyperparameters for training are shown in Table A.1.

Among the results, we observed that for the environments listed in Table 5.1, we were

able to see a distinct correlation between each policy’s shape and its reward.

Environment Description Max episode Reward
steps Threshold

HumanoidBulletEnv-v0 Make a three-dimensional bipedal 1000 N/A
robot walk forward as fast as
possible, without falling over.

HalfCheetahBulletEnv-v0 Make a two-dimensional cheetah 1000 3000
robot robot run as fast as
possible.

HopperBulletEnv-v0 Make a two-dimensional one-legged 1000 2500
robot hop forward as fast as
possible.

Table 5.1: Pybullet Environment Descriptions

In Figure 5.1, we illustrate the energy cost (measured in floating operations per model

forward pass) with relation to the average episode return for running the policy. With this,

can can create a useful visual measure for evaluating the performance-cost margins of a

learned meta-policy in comparison to our baselines. See table B.1 for the precise values of

each of the baseline policies.

20

Figure 5.1: Top: Plots of average episode reward versus computational cost (number of FLOPs
per forward pass). Bottom: Plots of logarithmic linear regression of reward vs. cost points with

bounded regions for superior policies (blue) and sub-optimal policies (red).

5.2 Results

Because training the policy selector using a policy gradient method leads to unstable results,

we opted to train the policy using Cross Entropy Method, and since this planner does not

actually need to decide the action to run, we are able to keep the parameter space small and

converge very quickly. The implementation of our CAAPS algorithm is shown in Section

A.3.

The policy selectors that we train all have a single layer of depth num policies×4, and

a head which outputs the score of each policy. For policy selection, we take the one-hot

max value of the selector output. The results of our experiments are shown below in Figure

5.2, and the numerical values are shown in Table B.2.

21

Figure 5.2: Plots CAAPS meta-policy performance versus energy cost, plotted over bounded
evaluation regions for superior policy (blue) and sub-optimal policy

5.3 Discussion

In Figure 5.2, we plot three CAAPS policies trained with varying cost scaling factors w

for each test environment. Here, we can observe that the w parameter provides us with the

freedom of tuning the amortized energy usage, as scaling the cost to be larger discourages

the planner from selecting expensive policies.

Additionally, we observe that each of the the Half-Cheetah and Hopper meta-policies

performed worse than the baselines they were derived from. We hypothesize that this neg-

ative performance can occur from having non-robust candidate policies, or from having

candidate policies which disagree on the optimal action. With the former, we argue that if

the individual policies do not generalize to the possible states in the environment, and if the

state space which each policy generalizes to has significant variation, then the individual

candidate policies may plan trajectories that end in particular states that will lead to catas-

trophic results for other policies. Alternatively, we argue that a similar catastrophic failure

can occur by learning a meta-policy that oscillates between different candidate policies that

disagree on the optimal trajectories. In such situation, the process of oscillating between

the two competing trajectories will invalidate each of their intended results.

However, regarding the final Humanoid environment, we can say with confidence that

we were able to learn a set of parameters to form a meta-policy which was at the minimum

able to reproduce the cost-performance margins of our baselines. Notably, we see here

that we are even able to learn a set of parameters which resulted in higher than baseline

22

performance with respect to their energy cost. We believe that the positive results shown

here illustrate potential for the methodology outlined in our work.

23

CHAPTER 6

CONCLUSION

6.1 Conclusion

In Machine Learning, we can quickly observe how the trade-off between a model’s perfor-

mance and its computational complexity is significant. However, many other research areas

have found adaptive computational methods to mitigate this trade off by reducing the com-

putational complexity of a model for easy inputs. Meanwhile, little prior work exists for

performing such reductions in optimal control, despite the benefits of freeing up compute

power in resource constrained physical systems. Our work here proposes a novel method

for reducing the computational power used by optimal control policies, and we show that

in certain cases with stochastic policies that we can both reduce the computational load

while generally maintaining the optimal performance of our policy. Importantly, in our

experiments we highlight the importance of learning a policy-selector which selects from

a set of candidate policies which are both, robust and similar. With our preliminary results,

we pave the way for further work in adaptive computation for robotics and optimal control.

6.2 Future Work

First, as we have shown with the results in the Hopper and Half-Cheetah environments,

there is much work to be done in improving the performance of our methodology. We

previously mentioned the potential failure points which can lead to a meta-policy outputting

sub-optimal trajectories, which include policy dissimilarity and policy oscillation, and it

will be worthwhile to explore these failure points in further detail. Specifically, work should

be done in regards to:

1. Developing metrics for describing the similarity between a set of policies in order to

24

illustrate potential issues with oscillating between sets of policies.

2. Modifying our test environment with random state initializations to learn policies

which generalize to a broader subset of the state space.

3. Alternatively to 2., implement various robust adversarial training methods in order to

create sets of policies which generalize to a broader subset of the state-space.

4. Increasing the complexity of the policy selector in order to describe the likelihood of

success for each candidate policy to a more accurate degree.

5. Enforcing similarity of our candidate policy set by training cheap policies using im-

itation learning methods on a single complex policy, as opposed to training each

policy separately.

6. Using a form of Long-Short Term Memory Network [52] for our meta-policy, and

inducing an artificial cost on switching policies in order to minimize oscillating be-

haviors.

Additionally, as indicted by our results with learning a policy selector for the Humanoid

environment, we have shown that there potential for adaptive policy selection. From here, it

will be worth exploring more complex implementations of the policy selection architecture.

With this, further experiments can include:

7. Forming the meta-policy into a cascading structure, similar to the structures dis-

cussed in Section 2.1.1.

8. Including a desired amortized computation budget as an input to the policy selector

and learning adaptive meta-policies constrained to the inputted budget as opposed to

learning a single meta-policy constrained by our cost function scaled by w.

9. Exploring methods for training our policy selector that are alternative to evolutionary

algorithms, such as hybrid evolutionary policy gradients. [53]

25

Appendices

26

APPENDIX A

IMPLEMENTATION DETAILS

Parameter Pybullet Environments

discounting factor 0.99

entropy coefficient 0.0

learning rate 3× 10−4

value coefficient 0.5

max gradient norm 0.5

lambda 0.95

policy cliprange 0.2

value cliprange 0.2

num optimization epochs 10

frames per update 32000

num minibatches per update 32

total updates 600

Table A.1: PPO Hyperparameters used to train HalfCheetahBulletEnv-v0,
HopperBulletEnv-v0, and HumanoidBulletEnv-v0 policies

Parameter Pybullet Environments

num samples 1000

num elite 20

num rollouts per sample 10

num optimization epochs 100

initial parameter variance 10

initial parameter mean 0

Table A.2: CrossEntropyMethod Hyperparameters used to train
HalfCheetahBulletEnv-v0, HopperBulletEnv-v0, and HumanoidBulletEnv-v0 policy

selectors. See Section A.1 for CrossEntropyMethod implementation.

27

Implementation Repo
PPO Policy https://github.com/ajliu/torchrl
Implementations

CAAPS https://github.com/ajliu/caaps

Table A.3: Links to implementation code

28

https://github.com/ajliu/torchrl
https://github.com/ajliu/caaps

A.1 Algorithm

Algorithm 1: Initializing cost function p(∗)
Data: Θ
Result: p(∗)
for θ ∈ Θ do

c[θ]← [ln(FLOPS(θ))]
end
c← c/max(c)
Function p(θ) : float is

return c[θ];
end
return p(∗);

As we see in 5.1, the relation ship between cost and reward is exponential. Therefore,

when defining our cost function we linearize this relationship by taking the log of the cost.

Algorithm 2: Train policy selector using CEM
Data: Π, p(∗), w, n
Result: Π∗

µ← 0;
Σ← 1;
for i:=1 to n do

fitness← []
θΠs← [];
for j:=1 to 100 do

θΠ = SAMPLE(µ,Σ);
fitness [j]← E[

∑∞
t=0 γ

tr(st, πΠθΠ (st)(st))− γtwp(ΠθΠ(st))]

θΠs [j]← θ;
end
elite← θs [ArgSort(fitness)]
µ← Mean(elite);
Σ← Var(elite);

end
return Πµ

Here, we implement a basic Cross Entropy optimizer which samples rollouts of the en-

vironment to calculate 3.16. We found that training using standard reinforcement learning

algorithms quickly failed due to the instability of the policy selector while switching be-

29

tween different actions. See Table A.2 for hyperparameters used for CrossEntropyMethod

runs.

30

APPENDIX B

RESULTS

HalfCheetahBulletEnv-v0
Policy Reward Num FLOPS Shape

Linear 1706 312 []
Small 2264 4096 [64]
Medium 2614 12288 [64, 64]
Large 2982 20480 [64, 64, 64]

HopperBulletEnv-v0
Policy Reward Num FLOPS Shape

Linear 569 90 []
Small 1394 2304 [64]
Medium 2150 10496 [64, 64]
Large 2541 18688 [64, 64, 64]

HumanoidBulletEnv-v0
Policy Reward Num FLOPS Shape

Small 370 7808 [64]
Medium 1398 16000 [64, 64]
Large 1941 24192 [64, 64, 64]

Table B.1: Baseline Policy results

31

HumanoidBulletEnv-v0
Policy Reward Num FLOPS Selector Flops

CAAPS(w=5) 941 8512.51 1128
CAAPS(w=3) 1678 14892.288 1128
CAAPS(w=1) 1955 21570.56 1128

HalfCheetahBulletEnv-v0
Policy Reward Num FLOPS Selector Flops

CAAPS(w=4) 877 841.76 960
CAAPS(w=1) 754 7589.68 960
CAAPS(w=0.5) 914 14090.24 960

HopperBulletEnv-v0
Policy Reward Num FLOPS Selector Flops

CAAPS(w=3) 1051 1735.02 608
CAAPS(w=2) 1895 9410.01 608
CAAPS(w=1) 1988 13918.93 608

Table B.2: CAAPS Policy results

32

REFERENCES

[1] “Mastering the game of Go with deep neural networks and tree search,” Nature,
vol. 529, no. 7587, pp. 484–489, 2016.

[2] “A general reinforcement learning algorithm that masters chess, shogi, and Go through
self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[3] X. You, X. Li, Y. Xu, H. Feng, J. Zhao, and H. Yan, “Toward Packet Routing with
Fully-distributed Multi-agent Deep Reinforcement Learning,” ArXiv, vol. abs/1905.0,
2019. arXiv: 1905.03494.

[4] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to
End Learning for Self-Driving Cars,” ArXiv, vol. abs/1604.0, 2016. arXiv: 1604.
07316.

[5] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L. Jackel, and U.
Muller, “Explaining How a Deep Neural Network Trained with End-to-End Learn-
ing Steers a Car,” ArXiv, vol. abs/1704.0, 2017. arXiv: 1704.07911.

[6] H. M. Eraqi, M. N. Moustafa, and J. Honer, “End-to-End Deep Learning for Steering
Autonomous Vehicles Considering Temporal Dependencies,” ArXiv, vol. abs/1710.0,
2017. arXiv: 1710.03804.

[7] Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp, “Off-road obstacle avoidance
through end-to-end learning,” Advances in Neural Information Processing Systems,
vol. 18, pp. 739–746, 2005.

[8] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and B. Boots, “Agile
Autonomous Driving using End-to-End Deep Imitation Learning,” Robotics: Sci-
ence and Systems, 2018. arXiv: 1709.07174.

[9] V. Rausch, A. Hansen, E. Solowjow, C. Liu, E. Kreuzer, and J. K. Hedrick, “Learn-
ing a deep neural net policy for end-to-end control of autonomous vehicles,” in Pro-
ceedings of the American Control Conference, Institute of Electrical and Electronics
Engineers Inc., 2017, pp. 4914–4919, ISBN: 9781509059928.

[10] S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of imitation learning and
structured prediction to no-regret online learning,” Journal of Machine Learning
Research, vol. 15, pp. 627–635, 2011. arXiv: 1011.0686.

33

https://arxiv.org/abs/1905.03494
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1704.07911
https://arxiv.org/abs/1710.03804
https://arxiv.org/abs/1709.07174
https://arxiv.org/abs/1011.0686

[11] J. Zhang and K. Cho, “Query-Efficient Imitation Learning for End-to-End Autonomous
Driving,” Proceedings of the 31st AAAI Conference on Arificial Intelligence (AAAI-
17), pp. 2891 –2897, 2016. arXiv: 1605.06450.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, Second Edi.
1998, ISBN: 978-0262193986.

[13] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–
814, 2000.

[14] C. Richter, “Autonomous navigation in unknown environments using machine learn-
ing,” PhD thesis, Massachusetts Institute of Technology, 2017, pp. 5450–5455, ISBN:
9781728148786.

[15] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive neural networks for
efficient inference,” in 34th International Conference on Machine Learning, ICML
2017, vol. 2, 2017, pp. 812–821, ISBN: 9781510855144. arXiv: 1702.07811.

[16] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 1,
pp. 23–38, 1998.

[17] J. Guan, Y. Liu, Q. Liu, and J. Peng, “Energy-efficient amortized inference with
cascaded deep classifiers,” in IJCAI International Joint Conference on Artificial
Intelligence, vol. 2018-July, 2018, pp. 2184–2190, ISBN: 9780999241127. arXiv:
1710.03368.

[18] M. Streeter, “Approximation algorithms for cascading prediction models,” in 35th
International Conference on Machine Learning, ICML 2018, vol. 11, 2018, pp. 7569–
7577, ISBN: 9781510867963. arXiv: 1802.07697.

[19] X. Wang, Y. Luo, D. Crankshaw, A. Tumanov, F. Yu, and J. E. Gonzalez, “IDK
Cascades: Fast deep learning by learning not to Overthink,” 34th Conference on
Uncertainty in Artificial Intelligence 2018, UAI 2018, vol. 2, pp. 580–590, 2018.
arXiv: 1706.00885.

[20] A. Jain, J Guineau, C. Lim, W Lincoln, M. Pomerantz, G. Sohl, and R Steele,
“Roams: Planetary Surface Rover Simulation Environment,” International Sympo-
sium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS 2003),
2003.

[21] A. Jain, J. Balaram, J. Cameron, J. Guineau, C. Lim, M. Pomerantz, and G. Sohl,
“Recent developments in the ROAMS planetary rover simulation Environment,” in
IEEE Aerospace Conference Proceedings, vol. 2, 2004, pp. 861–876, ISBN: 0780381556.

34

https://arxiv.org/abs/1605.06450
https://arxiv.org/abs/1702.07811
https://arxiv.org/abs/1710.03368
https://arxiv.org/abs/1802.07697
https://arxiv.org/abs/1706.00885

[22] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W.
Zaremba, OpenAI Gym, 2016. arXiv: 1606.01540.

[23] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple
features,” in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 1, 2001, pp. I–511–I–518, ISBN: 0-7695-1272-
0. arXiv: arXiv:1011.1669v3.

[24] Z. Xu, M. J. Kusner, G. Huang, and K. Q. Weinberger, “Anytime representation
learning,” in 30th International Conference on Machine Learning, ICML 2013, 2013,
pp. 2113–2121.

[25] Z. Xu, K. Q. Weinberger, and O. Chapelle, “The Greedy Miser: Learning under
test-time budgets,” in Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, vol. 2, 2012, pp. 1175–1182, ISBN: 9781450312851. arXiv:
1206.6451.

[26] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q. Weinberger, “Multi-
Scale Dense Networks for Resource Efficient Image Classification,” 6th Interna-
tional Conference on Learning Representations, ICLR 2018 - Conference Track Pro-
ceedings, 2017. arXiv: 1703.09844.

[27] H. Hu, D. Dey, M. Hebert, and J. A. Bagnell, “Learning Anytime Predictions in Neu-
ral Networks via Adaptive Loss Balancing,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 3812–3821, 2019. arXiv: 1708.06832.

[28] A. Bonarini, “Anytime learning and adaptation of structured fuzzy behaviors,” Adap-
tive Behavior, vol. 5, no. 3-4, pp. 281–315, 1997.

[29] L. Breitsameter, “Anytime Learning - The next Step in Organic Computing?” ArXiv,
vol. abs/1808.0, pp. 1 –7, 2018. arXiv: arXiv:1808.07590v1.

[30] J. J. Grefenstette and C. L. Ramsey, “An Approach to Anytime Learning,” in Ma-
chine Learning Proceedings 1992, Elsevier, 1992, pp. 189–195.

[31] S. Li, R. Wang, M. Tang, and C. Zhang, “Hierarchical Reinforcement Learning with
Advantage-Based Auxiliary Rewards,” in Advances in Neural Information Process-
ing Systems 32, 2019. arXiv: 1910.04450.

[32] Z.-J. Pang, R.-Z. Liu, Z.-Y. Meng, Y. Zhang, Y. Yu, and T. Lu, “On Reinforcement
Learning for Full-Length Game of StarCraft,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, pp. 4691–4698, 2019. arXiv: 1809.09095.

[33] O. Nachum, H. Lee, S. Gu, and S. Levine, “Data-efficient hierarchical reinforce-
ment learning,” in Advances in Neural Information Processing Systems, vol. 2018-

35

https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/1206.6451
https://arxiv.org/abs/1703.09844
https://arxiv.org/abs/1708.06832
https://arxiv.org/abs/arXiv:1808.07590v1
https://arxiv.org/abs/1910.04450
https://arxiv.org/abs/1809.09095

Decem, Neural information processing systems foundation, 2018, pp. 3303–3313.
arXiv: 1805.08296.

[34] C. Florensa, Y. Duan, and P. Abbeel, “Stochastic neural networks for hierarchical
reinforcement learning,” in 5th International Conference on Learning Representa-
tions, ICLR 2017 - Conference Track Proceedings, 2019. arXiv: 1704.03012.

[35] J. Ackermann, Hierarchical Deep Reinforcement Learning for Multi-Agent Robotic
Systems, 2018.

[36] A. Li, C. Florensa, I. Clavera, and P. Abbeel, “Sub-policy adaptation for hierarchical
reinforcement learning,” in International Conference on Learning Representations,
2020.

[37] R. Nogueira, J. Bulian, and M. Ciaramita, “Learning to Coordinate Multiple Rein-
forcement Learning Agents for Diverse Query Reformulation,” 2018. arXiv: 1809.
10658.

[38] Z. Xiong, X.-Y. Liu, S. Zhong, H. Yang, and A. Walid, “Practical Deep Reinforce-
ment Learning Approach for Stock Trading,” ArXiv, vol. abs/1811.0, 2018. arXiv:
1811.07522.

[39] OpenAI, OpenAI Five Defeats Dota 2 World Champions, https://openai.
com/blog/openai-five-defeats-dota-2-world-champions/,
2019.

[40] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. Czarnecki, A.
Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds, D. Horgan, M. Kroiss, I. Dani-
helka, J. Agapiou, J. Oh, V. Dalibard, D. Choi, L. Sifre, Y. Sulsky, S. Vezhnevets,
J. Molloy, T. Cai, D. Budden, T. Paine, C. Gulcehre, Z. Wang, T. Pfaff, T. Pohlen,
D. Yogatama, J. Cohen, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, C. Apps,
K. Kavukcuoglu, D. Hassabis, and D. Silver, AlphaStar: Mastering the Real-Time
Strategy Game StarCraft II, https://deepmind.com/blog/alphastar-
mastering-real-time-strategy-game-starcraft-ii/, 2019.

[41] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for
reinforcement learning with function approximation,” in Advances in Neural Infor-
mation Processing Systems, 2000, pp. 1057–1063, ISBN: 0262194503.

[42] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[43] V. Mnih, A. P. Badia, L. Mirza, A. Graves, T. Harley, T. P. Lillicrap, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in 33rd
International Conference on Machine Learning, ICML 2016, vol. 4, International

36

https://arxiv.org/abs/1805.08296
https://arxiv.org/abs/1704.03012
https://arxiv.org/abs/1809.10658
https://arxiv.org/abs/1809.10658
https://arxiv.org/abs/1811.07522
https://openai.com/blog/openai-five-defeats-dota-2-world-champions/
https://openai.com/blog/openai-five-defeats-dota-2-world-champions/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Machine Learning Society (IMLS), 2016, pp. 2850–2869, ISBN: 9781510829008.
arXiv: 1602.01783.

[44] T. Degris, P. M. Pilarski, and R. S. Sutton, “Model-Free reinforcement learning with
continuous action in practice,” in Proceedings of the American Control Conference,
2012, pp. 2177–2182, ISBN: 9781457710957.

[45] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy
Optimization Algorithms,” ArXiv, vol. abs/1707.0, 2017. arXiv: 1707.06347.

[46] S. Mannor, R. Rubinstein, and Y. Gat, “The Cross Entropy method for Fast Policy
Search,” in Proceedings, Twentieth International Conference on Machine Learning,
vol. 2, 2003, pp. 512–519, ISBN: 1577351894.

[47] D. J. Mankowitz, N. Levine, R. Jeong, Y. Shi, J. Kay, A. Abdolmaleki, J. T. Sprin-
genberg, T. Mann, T. Hester, and M. Riedmiller, “Robust Reinforcement Learning
for Continuous Control with Model Misspecification,” International Conference on
Learning Representations, 2020. arXiv: 1906.07516.

[48] P. T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial on the
cross-entropy method,” Annals of Operations Research, vol. 134, no. 1, pp. 19–67,
2005.

[49] K. Otsu, G. Matheron, S. Ghosh, O. Toupet, and M. Ono, “Fast Approximate Clear-
ance Evaluation for Rovers with Articulated Suspension Systems,” Journal of Field
Robotics, 2018. arXiv: 1808.00031.

[50] S. B. Goldberg, M. W. Maimone, and L. Matthies, “Stereo vision and rover navi-
gation software for planetary exploration,” in IEEE Aerospace Conference Proceed-
ings, vol. 5, 2002, pp. 2025–2036, ISBN: 078037231X.

[51] S. Agarwal, K. Mierle, and Others, Ceres Solver, \url{http://ceres-solver.org}.

[52] M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman, D. Pfau, T. Schaul,
B. Shillingford, and N. De Freitas, “Learning to learn by gradient descent by gradient
descent,” in Advances in Neural Information Processing Systems, 2016, pp. 3988–
3996. arXiv: 1606.04474.

[53] S. Khadka and K. Tumer, “Evolution-guided policy gradient in reinforcement learn-
ing,” in Advances in Neural Information Processing Systems, vol. 2018-Decem,
2018, pp. 1188–1200. arXiv: 1805.07917.

37

https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1906.07516
https://arxiv.org/abs/1808.00031
https://arxiv.org/abs/1606.04474
https://arxiv.org/abs/1805.07917

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Motivation
	Contributions
	Overview of thesis

	Literature Review
	Adaptive Computation in Machine Learning
	Prediction Cascades
	Anytime Neural Networks

	Adaptive Computation in Robotics

	Context-Aware Policy Selector Formulation
	Reinforcement Learning Preliminaries
	Markov Decision Processes
	Value-Based Reinforcement Learning
	Policy Gradient Algorithms
	Evolutionary Algorithms

	Context Aware Policy Selection
	Experiment Set Up

	Preliminary Mars Rover Experiments
	Preface
	On-board Optimization-based Kinematic Settling (OBKS)
	Mars Rover Path Planning

	Context-Aware Adaptive Policy Selection
	Training a policy set
	Results
	Discussion

	Conclusion
	Conclusion
	Future Work

	Implementation Details
	Algorithm

	Results
	References

