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ABSTRACT

In of optimal control and reinforcement learning, the difference in the performance of
a state-of-the-art policy and a mediocre one is minuscule in comparison to their difference
in amortized computational cost. Further, in certain situations the mediocre policy will be
able to perform as well as the state-of-the-art policy, and it will all the while have used sig-
nificantly less computational resources to do so. This phenomenon is a consequence of the
necessity for additional compute to solve difficult scenarios; however, while sparsely oc-
curring, these scenarios can be catastrophic for most planning tasks. In this work, we focus
on addressing this imbalance between performance and computational cost in the context
of planning. We combine ideas that have been prevalent in other machine learning prob-
lems and in Hierarchical Reinforcement Learning, and propose a Context-Aware Adaptive
Policy Selector (CAAPS). We utilize our selector to create a meta-policy which can mini-
mize these catastrophic states (thus maximizing the policy’s ultimate performance), while
also minimizing the computational cost necessary to run the policy. Our meta-policy ac-
complishes this by adaptively selecting from a set of pre-trained candidate policies which
vary in performance and complexity, and we show that in certain environments we are able
to plan trajectories at near-optimal performance while minimizing the amortized computa-

tional cost.



CHAPTER 1
INTRODUCTION

In this work, we investigate the trade-off between computational complexity and perfor-
mance in control problems, and we propose techniques to adaptively maximize a con-

troller’s performance while minimizing its computational cost.

1.1 Motivation

Many complex tasks can be formalized under the form of optimal control problems with
discrete-time dynamics and transitional costs. These control problems can vary from a
wide range of areas including optimally playing difficult games with massive state spaces
such as Go [1, 2] to routing network packets [3] to controlling autonomous vehicles [4, 5,
6, 7, 8,9, 10, 11]. Within these problems, various techniques have attracted significant
attention from researchers, and two key subjects that have risen here are deep reinforce-
ment learning (Deep RL) and model predictive control (MPC). Between these, Deep RL
methods infer closed-loop policies for stochastic optimal control problems using sample
trajectories gathered from simulations or real systems [12], while MPC methods exploit an
explicit formulation of the environment and solves for optimal trajectories in an open-loop,
receding horizon manner [13]. While the research surrounding MPC has primarily been
dedicated towards stabilizing complex control problems, much of the emphasis in RL re-
search has been in the scalability and efficiency of the learning process. Yet, a topic that has
seen little recent work in both areas is the concept of balancing complexity and difficulty
with adaptive computation in real world systems.

In optimal control problems, there is often a large variance in the difficulty of calcu-
lating the optimal trajectory for a given state [14]. For example, in the instance of an

autonomous vehicle, it would be considerably easier to keep the vehicle in the bounds of a



road than it would be to avoid obstacles such as trees or debris. For controllers that attempt
to solve such problems, there is an order of magnitude difference between the complex-
ity and computational cost of a policy that reasonably handles these tasks versus a policy
performing on state-of-the-art benchmarks [15, 14]. Because of the varying degrees of dif-
ficulty in examples, most techniques in general struggle to solve harder examples without
exponentially increasing their complexity. In other problem spaces such as image recog-
nition, we have seen various techniques to create prediction models that use the minimum
necessary complexity per input in order to achieve an accurate prediction [15, 16, 17, 18,
19]. Since many physical robotics environments are constrained on both compute resources
and energy capacity, the benefits of such techniques in optimal control is abundantly clear;
however, there is little previous work in applying this idea to controllers in physical sys-

tems.

1.2 Contributions

In this thesis, we will propose a simple Context-Aware Adaptive Policy Selection (CAAPS)
algorithm which learns a policy selector that samples from a pool of pre-trained policies
in order to produce an adaptive meta-policy. Our technique exploits the fact that complex
controllers are only required for difficult states, while simple controllers will be sufficient
for most situations, thus our meta-policy outputs optimal trajectories at reduced amortized
computational cost. Because of this, we can achieve faster control decisions while still
designing for the worst-case and free up limited compute resources for auxiliary tasks or
improved battery life.

We will demonstrate the feasibility of CAAPS by training a policy selector on two
state-of-the-art path planners on the JPL ground rover simulator [20, 21]. Notably, our
meta-policy is able to match the performance of the best policy in the set, while spending
roughly the same amount of computational time as the cheaper policy.

Finally, we will apply CAAPS to complex RL tasks in several OpenAl Gym environ-



ments [22], and we will demonstrate that by varying the parameterization of the algorithm
we can yield varying meta-policies that optimize the amortized computational cost to vari-
ous degrees, while minimizing the reduction in performance. Additionally, we highlight the
limitations that come into play with regards to the characteristics of the candidate policies,

and we show their effects on the performance of our meta-policy.

1.3 Overview of thesis

In Chapter 2, we will introduce past research on adaptively balancing the trade-off between
performance and computational cost in the context of other Machine Learning domains. In
Chapter 3, we will present the necessary technical background for the rest of the paper, as
well as describe our approach for designing our policy selection algorithm in the context of
various environments. In Chapter 4, we will outline our initial experiments with learning a
meta-policy selector. Then, in Chapter 5, we present our final results with a general meta-
policy selector, as outline our measures to validate these results. Finally in Chapter 6, we

summarize our findings and contributions, and describe future work on this subject.



CHAPTER 2
LITERATURE REVIEW

2.1 Adaptive Computation in Machine Learning

Adaptive computation refers to the ability for an algorithm to dynamically adapt to its envi-
ronment and provide different results depending on the context of its input. In the context of
this work, we refer to adaptive computation techniques as methods to dynamically change
the complexity of a function in order to minimize the computational work needed to output
a desired result. In traditional machine learning problems, a fair amount of progress has
been made in this regard, and the most significant contributions fit into either prediction

cascades or anytime predictions.

2.1.1 Prediction Cascades

Prediction cascades were largely popularized by Viola and Jones [23], who constructed a
cascade of increasingly complex image classifiers to iteratively reduce the possible false
positive predictions for an input image. While Viola and Jones are credited for coining the
term cascades, earlier work by Rowley et. al. [16] implement cascading neural networks by
having a network arbitrate and merge the output of a set of filter networks that run on dif-
ferent windows of an input image. Unlike these two classic approaches which specifically
target the classification task of face detection, later work has explored utilizing prediction
cascades with deep neural networks for general multi-class classification problems. Impor-
tantly, the majority of these later works focus on using cascades to reduce the amortized
computational time for classifying new examples.

The first work worth noting is the work with network selection and evaluation by Boluk-

basi et al. [15]. Here, they propose two different schemes of an adaptive cascades. Their
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Figure 2.1: Example adaptive network selection topology proposed by Bolukbasi et al.
[15] with Alexnet(A), GoogleNet(G), and Resnet(R). Green ~ blocks denote the selection
policy. ~; evaluates Alexnet, and decides to jump directly to Resnet or send the input to a
GoogleNet—Resnet cascade that performs a similar evaluation with v,.

first contribution adds an evaluation early exit step between the components of a deep net-
work. If an input is correctly classified from just the early layers of the system, the result
is exited and they avoid the computation associated with the full evaluation of the network.
Second, they propose a method for creating a directed acyclic graph of different networks,
in increasing order of complexity, and extend their first contribution to create an adaptive
network selection policy that determines which networks to pass new examples through
(See Figure 2.1).

Next, Streeter [18] proposes a greedy algorithm to form a cascade from a pool of candi-
date networks. This proposed algorithm not only automates the construction of the cascade,
but provides guarantees that the cascade will be as accurate as a reference target network.
The base algorithm that Streeter proposes attaches an auxiliary classifier to predict the ac-
curacy from features of network output (e.g. entropy) for classification tasks and exit at an

arbitrary threshold.
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Figure 2.2: Classification cascade using an RL Agent to determine exiting strategy
proposed by Guan et al. [17]. Each agent takes the label probability of a classifier’s top
layer and decides whether to stop or continue.

Guan et al. [17] propose a useful formulation for training a network selection policy
using the REINFORCE algorithm (See Section 3.1.3 on Policy Gradient algorithms). Here,
they train the network selection policies jointly with the classifiers with the objective to
minimize the expected loss, with the energy cost constrained by a desired budget. As
shown in Figure 2.2, a separate policy is appended to the end of each classifier, and the
policy maps the classifier’s output label probability to the decision to exit the cascade or

continue. The policies are trained with the following reward function:

Ri(z,y,9) = —L(§,y) —a > _Fi 2.1)

Where F; is energy cost for classifier ¢ and the k" policy is rewarded with the negative
loss minus the total accumulated energy cost from the first step to that policy. It is also
worth noting that they explored the case of using pre-trained classifiers in the cascade, and
the reported benefits of end-to-end training over the pre-trained scenario were not substan-
tial. Finally, Wang et al. [19] create a similar cascade topology to Guan et al., but they use a

differentiable entropy based cost objective which allows for direct cost based optimization



instead of reinforcement learning.

2.1.2  Anytime Neural Networks

Anytime predictors serve as a different form of adaptive computation than prediction cas-
cades. Instead of minimizing average test-time computational cost while minimizing sacri-
fice in accuracy, anytime predictors produces a fast and crude initial prediction and contin-
ues to refine and improve it as the computational budget allows. Typically these predictors
train auxiliary exit policies attached to various intermediate points along the model. Al-
though not mentioned in their paper, the adaptive early-exit cascade in Bolukbasi et al.’s
work [15] mentioned previously can loosly be considered an example of one such Anytime
Network. While early work with anytime predictors was in the context of classical machine
learning predictors [24, 25], recent work by Huang et al. [26] used clever architecture to
derive an anytime image classification predictor. Additionally, Hu et al. [27] derived an
adaptive weight scheme for training losses to create generalized anytime neural networks.
In the context of reinforcement learning, there have been various work over the past
several decades on applying anytime prediction to classical reinforcement learning (not
deep RL) [28, 29, 30]. While orthogonal to our work, anytime learning is worth mentioning

due to their organic nature of iteratively improving on an action.

2.2 Adaptive Computation in Robotics

Our implementation of our policy selection algorithm fits closely with the formulation of
Hierarchical Reinforcement Learning, in which the work for a task is distributed between
a hierarchy of sub-policies and meta-policies. However, the majority of recent research
in this subject has been with solving complex long-horizon problems with sparse and de-
layed rewards [31, 32, 33, 34, 35]. The appeal of Hierarchical Reinforcement Learning is
that it focuses on decomposing tasks into small hierarchical skills, and training different

sub-policies and meta-policies to distribute the work. Generally, this allows for methods



to significantly improved sample efficiency [33, 36], increase robustness [34, 37, 36] or
allow for the parellization of training process[37]. Yet, there is little work to be found on

designing HRL architectures for adaptive computation.



CHAPTER 3
CONTEXT-AWARE POLICY SELECTOR FORMULATION

3.1 Reinforcement Learning Preliminaries

Reinforcement learning is the process of approximating optimal decision-making in phys-
ical and artificial environments. In the past, Reinforcement Learning has been used to beat
top-ranked Go champions [2], route network packets [3], form stock trading strategies [38],
and play complex multiplayer games competitively [32, 39, 40].

Most tasks in reinforcement learning and optimal control can be formalized as a time-
discrete sequential decision process. The decision-maker, known as the agent, interacts
with its surrounding environment. In this interaction, an agent at time ¢ € 7" will make
some observation about the state of its environment, s; € S, and perform some action
a; € A upon the environment. In response, the environment will output a reward ;.1 € R

for the action a;. This interaction loop is shown below in Figure 3.1.

’J Agent ll

state reward

action
5, R, A,
S R!‘il (
S Environment ]4——

Figure 3.1: The Agent-Environment interaction in a Markov decision process from
Reinforcement Learning: An Introduction [12]

Note that notation may vary between reinforcement learning and optimal control tasks.
Reiterating from above, for reinforcement learning we model our environment with an
agent making a state observation s; € S, performing an action a; € A, and receiving a

reward 7,11 € R. However for optimal control tasks, we typically describe the task by a
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controller at state z; € X outputting a control u; € U and incurring a control cost ¢; ;1 € R.
In particular, the distinction between reward and cost is important, as the goal of learning
an optimal policy involves maximizing our accumulated reward for reinforcement learning

and minimizing our accumulated cost for optimal control.

3.1.1 Markov Decision Processes

The Markov decision process (MDP) is a useful abstraction for modeling stochastic en-
vironments. Here, each observation s; is a Markov state if it summarizes all previous
observations, so all the necessary information for decision making is retained. If the MDP
is fully observable, every state s, is a markov state and the Markov property holds. This
means that the future states and rewards depend only on the current state, and are indepen-
dent of the previous states and actions that we experience. In this work we will only be
dealing with fully observable MDPs, so for the remainder of this thesis we can assume that
this property is true.

When we model an environment as an MDP, we define it as a 4-tuple consisting of
(S, A, P, R), where

1. S is the set of all valid states.

2. Ais the set of all valid actions.

3. P(st, a4, 8411) is the probability that we arrive in state s, after taking action a; in
state s;.

4. R(sy,ay, 8411) is the associated immediate reward for arriving in state s, after tak-
ing action a, in state s;.

In tasks which have a finite horizon 7', there is a terminal state in which our task
ends. For these tasks, we define the sequence of experiences fromt = 1tot = T as
an episode. Then, within an episode, we can define the total episode return from time ¢ as
Ry = Zfzt ri. However, when trying to maximize R?;, we can observe that this formu-
lation makes no distinction between if our agent picks up a reward immediately or if our

agent decides to sit and wait until the end [12]. Therefore, we define our return using a

10



time-discounted reward R; = Zfzt v*r, where 0 < v < 1 is our discounting factor [12].
Lastly, we define the behavior of an agent by a policy w(s) = a which is a function that

maps state to an action.

3.1.2  Value-Based Reinforcement Learning

In Reinforcement Learning, we define a Value function V™ (s) as the expected return when

following our policy 7 from a state s,

V7(s) = Ex[Ry: | 5¢ = 5] (3.1)

T
Zykrk | s¢ = 5] (3.2)
k=t

Likewise, we define a action-value function Q™ (s, a) as the expected return when fol-

:]ET['

lowing our policy 7 after taking action a from state s,

Q" (s,a) = Ex[R; | ¢ = 5] 3.3)

T
Zykrk | s = s] (3.4)
k=t

Since our goal in reinforcement learning is to maximize our award in an episode, we

:]E’]T

generally want to find the optimal value and action-value functions V*(s) = max, V7 (s),
Q*(s,a) = max, Q" (s, a) for every action and state, and thus our reinforcement learning

objective is typically to try to estimate V*(s) or Q*(s, a)). From this, we can get the optimal

policy 7*(s,a) = argmax,(Q7 (s, a)).

3.1.3  Policy Gradient Algorithms

Policy gradient methods are some of the most versatile methods for reinforcement learning
due to their fast training speed and flexibility with discrete and continuous spaces. Their
objective is to optimize the parameters 6 of the policy 7y in order to maximize the expected
discounted reward of running the policy. Since the work in this thesis revolves around

episodic environments, we can define our objective with the value function from the agent’s

11



initial state, sg.

J(0) = V™ (s0) (3.5)

=K

thr(st, 7T9<St>>] (3.6)

We can use the action-value function definition in equation 3.4 to expand and simplify,

J(0) =E

T
r(sem(s)) +7 Y Vkrk] 3.7)

k=t+1

= E[r(si, m(se)) +7Q" (St51, 1)) 3.8)

Then, we optimize our policy by taking steps in the direction of the policy gradient V,.J(0)

[41]. If we solve for Vy.J(0) we get,
Vo (0) = E;[Vologmg(a; | s¢)Q™ (54, ar)] (3.9)

From here, we have the framework to dive into any policy gradient algorithm. The policy
gradient theorem has given rise to many of these algorithms, which differ in how Q™ is
estimated [41]. For example, we could set Q™ (s, a;) = Zfzt VEr (g, mo(sk, ax)) = V(st),
and we would have the definition of the REINFORCE algorithm [42]. More specifi-
cally with REINFORCE, after every episode, we would go back through each experience

(8¢, as, Te11, St1) and apply the policy update
0 < 0+ aVylogme(se, ar)V7(st) (3.10)

Where « is the update size for each time step.
Another more advanced policy gradient approach is Advantage Actor-Critic imple-
mentations, which not only perform well in parallelized environments [43] but also sig-

nificantly reduce the variance in the gradient estimates by using an advantage function

12



A™ (x4, up) = Q™ (x4, uy) — V™ (zy) for their gradient updates [44]. The value function V7™
is approximated by a function approximator (the critic), while an actor approximates the

policy 7y, and the policy gradient becomes:

Vo J(0) = E, [Volog mo(uy | x) A (4, uy)] (3.11)

Among these actor-critic algorithms, Proximal Policy Optimization (PPO) is a commonly
used due to its simplicity in comparison to other state-of-the-art policy optimization algo-

rithms, while being incredibly sample efficient. [45].

3.1.4 Evolutionary Algorithms

One of the significant drawbacks to standard Reinforcement Learning techniques is the
slow training speed due to requiring small gradient updates [46]. Additionally, the stochas-
tic nature of needing to create a Monte-Carlo estimate of the policy gradient can introduce
instability in the training process [47]. This becomes an issue in our case of training a
policy selection algorithm, as the transition between different policies in our selection set
can easily destabilize training with traditional RL algorithms.

Evolutionary algorithms, such as Cross Entropy Method, do not have this issue since
they do not rely on stochastic gradient updates, and they have the additional benefit of being
very efficient in parameter search with the provision that the parameter search space is not
significantly large [46].

The Cross Entropy Method (CEM) is a commonly used evolutionary algorithm due to
its quick convergence and easy implementation [48]. The standard algorithm searches for
parameters by randomly sampling a batch of parameters from a random distribution (typ-
ically a gaussian distribution) parameterized by an initial set of means x and variances ..
Then, it evaluates the fitness of each sample based on a user-defined optimization objective,

and updates the p and X using the top performing set of samples in the sampled set [48].

13



This technique can be easily applied to a MDP for policy optimization by using a variant

of argmax, V™ (sg) as the optimization objective [46, 48].

3.2 Context Aware Policy Selection

To allow for adaptive computing with our policies, we must formulate a meta-policy which

utilizes a policy selector that selects the optimal policy from a set of candidate policies,

Tt = argmaXE[Z (s, m(ay))]. (3.12)

& t=0

In particular, we are selecting the parameterization

0" = arggnaxE[Z Yor(se, mo(s¢))] (3.13)

t=0

Since we are focusing on the case where a set of optimal parameters for various pa-
rameterizations (models) of the policy 7 have been learned to reasonable extents and are
available to deploy, we call this set of optimal parameters ©. Owing to the type of model
used, each parameterization 6* € O has an associated cost to query during run time and this
project aims to learn a stochastic policy selector that regularizes the computational expense
associated with the usage of a parameterization at a given time and state. We drop * from 6*
in regards to our candidate policies for the remainder of this document since we provided
optimal s for each parameterization. To this end, we incorporate the expense of using a
policy with a certain parameterization p(6) into the original cost expression. Ignoring the

slight abuse of notation, the reward function is augmented as:
7 =r(sy, m) —wp(h) (3.14)

Here, p(.) is used to weigh the computational cost of using a parameterization 6, and w is

scaling factor on p(#) that is used to trade computational costs with task costs. We now try

14



to obtain a state-adaptive meta-policy II with 6; ~ II(x,), (in effect, a policy over policies)
at time ¢ using the mapping II dependent on the current state. Now to select an optimal
policy at each state that is also aware of the resources it is using, the optimization problem

requires solving the following:

max E[) ~~'7] (3.15)
t=0

and then we find the optimal meta-policy I1*:

I = arg;nax E[Z Y1 (s, s (s¢) — Y wp(I(s))] (3.16)

t=0

Note that for this formulation, the parameterizations in © and 7 vary between environ-

ment, as different environments have different relationships between reward and complex-

ity.
3.3 Experiment Set Up

In order to demonstrate that we can achieve the optimal meta-policy with a more directed
approach, we ran preliminary feasibility studies using the Mars Rover simulator with a
policy set © of two path planners (See Chapter 4). For simplicity, we created a 4 layer con-
volutional network policy selection model. We then trained it using a supervised learning
approach using data collected from other experiments.

With verification that it is possible to beat cost-reward performance of individual poli-
cies, we implement a reinforcement learning method for training a generalizable meta-

policy and run the experiments on several OpenAl Gym Environments (See Chapter 5)
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CHAPTER 4
PRELIMINARY MARS ROVER EXPERIMENTS

4.1 Preface

For this section, I would like to acknowledge and thank Hemanth Sarabu for his work in

conducting these experiments and collecting the results.

4.2 On-board Optimization-based Kinematic Settling (OBKS)

For path planning with the Mars Rover [20], use of approximate clearance techniques un-
surprisingly introduces varying levels of conservatism into pose prediction and clearance
evaluation algorithms [49]. When used in path planning for collision-checking, algorithms
such as Approximate Clearance Evaluation (ACE) is seen to perform better than the state-
of-the-art algorithm GESTALT [50, 49] that rejects all paths, including feasible ones that
allow the rover to straddle small obstacles and traverse over undulating terrain. By deter-
mining a tighter interval on possible states that the rover can occupy, ACE is able reduce
this conservatism. It is important to note that the conservatism manifests as false-rejections
of candidate paths when used in a motion-primitive path planner. In order to reduce the rate
of false-rejections, a more sophisticated algorithm is necessary such that the confidence in-
terval may be further reduced.

High-Performance Spaceflight Computing (HPSC) opens up a variety of avenues to
explore owing to the availability of increased computational capabilities. We developed an
iterative algorithm for on-board computation that is very much in the vein of those used
in ground rover simulation software at JPL [20, 21]. The algorithm named Optimization-
Based Kinematic Settling (OBKS) solves a local optimization problem to minimize contact

between terrain and rover wheels. It is modelled as a least-squares problem subject to pose
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constraints on joint angles as determined by rover design limits. As the solution yielded by
OBKS is expected to be close to the exact pose of the rover for a given location in a height
map, the interval of uncertainty is smaller hence, reducing the intrinsic conservatism of the

path planner in comparison with ACE.
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Figure 4.1: Monte Carlo estimates of success rates (left) and query time (right) of ACE and
OBKS for random placement on height maps of varying rock abundance (% CFA). A random
placement is considered a success if the collision-checking algorithm returns that the location in
the map is safe for traversal.

Although the time per query of ACE is lower than that of OBKS (seen in Figure 4.1),
the increase in success rate during random placement (seen in Figure 4.1) allows the time
taken to generate a path for a 20m traversal to be significantly lower for OBKS in relatively
complex terrain (Cumulative Fractional Area greater than 7%). As a consequence of lower
conservatism, the OBKS planner is also able to generate paths with lower path inefficiency
(seen in Figure 4.2). This algorithm has been implemented on an Nvidia Jetson TX?2 board

using Ceres solver [51] for Athena Rover and runs with a mean query time of 13.7 ms.
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Figure 4.2: Monte Carlo estimates of success rates (left), path generation times (middle), and path
inefficiency (right) for an ACE-based planner and an OBKS-based planner for 20m traversals on
height maps of varying CFA. A traversal is considered a success if the planner is able to generate a
path from the start location to the goal location in the map.
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4.3 Mars Rover Path Planning

In this section, we conduct a feasibility study for the formulation of our meta-policy and
study this only in the context of computation. Development of OBKS (See section 4.2)
for on-board computation on future rover missions provided insight into the algorithm’s
strengths and weaknesses upon utilization on terrains of varying complexity. While in
CFAs greater than 7% the arc-primitive path planner using OBKS outperformed the same
planner using ACE for collision-checking, the latter demonstrated an advantage in path
generation time with no detriment to path inefficiencies for lower CFAs.

Thus, we developed a supervised learning based meta-policy to select the optimal plan-
ner for a given state of the JPL. Mars rover and its environment. The learned policy is
required to select a planner such the path generation time for planner is minimized with a
controlled trade-off in probability of success.

We instantiated the meta-policy selector as a 4 layer convolutional neural network
which operates on Depth Elevation Maps (DEM) maps as inputs. The model was trained
using a supervised learning approach on over 7000 DEM maps spanning 30m x 30m and
varying CFAs (1%, 3%, 5%, 7%, 10%, 12%, 15%, and 20%) to achieve mean test ac cura-

cies of 81% and 92% on success prediction and path time generation respectively.
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Figure 4.3: Comparison of path inefficiency (left) and path generation time (right) for planner
using OBKS, ACE and meta-policy selector that greedily switches between the two.

Preliminary results (summarized in Figure 4.3) indicate that the policy selector is indeed
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able to select the optimal planner to minimize path generation time (and as a result, path

inefficiency due to strong correlation between the two quantities).
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CHAPTER §
CONTEXT-AWARE ADAPTIVE POLICY SELECTION

5.1 Training a policy set

Before we are able to train our policy selector for our Gym benchmarks, we need to pre-
train a set of policy networks of varying costs and performance. To achieve this, we imple-
mented an optimized version of PPO2 [45] and trained a batch of baseline policies ranging
from linear policies to multi-layer perceptron policies of height 64 and depth 3 on a set of
candidate environments. The hyperparameters for training are shown in Table A.1.
Among the results, we observed that for the environments listed in Table 5.1, we were

able to see a distinct correlation between each policy’s shape and its reward.

Environment Description Max episode Reward
steps Threshold
HumanoidBulletEnv-v0 Make a three-dimensional bipedal 1000 N/A

robot walk forward as fast as
possible, without falling over.

HalfCheetahBulletEnv-vO0 Make a two-dimensional cheetah 1000 3000
robot robot run as fast as
possible.

HopperBulletEnv-v0 Make a two-dimensional one-legged 1000 2500
robot hop forward as fast as
possible.

Table 5.1: Pybullet Environment Descriptions

In Figure 5.1, we illustrate the energy cost (measured in floating operations per model
forward pass) with relation to the average episode return for running the policy. With this,
can can create a useful visual measure for evaluating the performance-cost margins of a
learned meta-policy in comparison to our baselines. See table B.1 for the precise values of

each of the baseline policies.
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Figure 5.1: Top: Plots of average episode reward versus computational cost (number of FLOPs
per forward pass). Bottom: Plots of logarithmic linear regression of reward vs. cost points with
bounded regions for superior policies (blue) and sub-optimal policies (red).

5.2 Results

Because training the policy selector using a policy gradient method leads to unstable results,
we opted to train the policy using Cross Entropy Method, and since this planner does not
actually need to decide the action to run, we are able to keep the parameter space small and
converge very quickly. The implementation of our CAAPS algorithm is shown in Section
A3.

The policy selectors that we train all have a single layer of depth num _policies x 4, and
a head which outputs the score of each policy. For policy selection, we take the one-hot
max value of the selector output. The results of our experiments are shown below in Figure

5.2, and the numerical values are shown in Table B.2.
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Figure 5.2: Plots CAAPS meta-policy performance versus energy cost, plotted over bounded
evaluation regions for superior policy (blue) and sub-optimal policy

5.3 Discussion

In Figure 5.2, we plot three CAAPS policies trained with varying cost scaling factors w
for each test environment. Here, we can observe that the w parameter provides us with the
freedom of tuning the amortized energy usage, as scaling the cost to be larger discourages
the planner from selecting expensive policies.

Additionally, we observe that each of the the Half-Cheetah and Hopper meta-policies
performed worse than the baselines they were derived from. We hypothesize that this neg-
ative performance can occur from having non-robust candidate policies, or from having
candidate policies which disagree on the optimal action. With the former, we argue that if
the individual policies do not generalize to the possible states in the environment, and if the
state space which each policy generalizes to has significant variation, then the individual
candidate policies may plan trajectories that end in particular states that will lead to catas-
trophic results for other policies. Alternatively, we argue that a similar catastrophic failure
can occur by learning a meta-policy that oscillates between different candidate policies that
disagree on the optimal trajectories. In such situation, the process of oscillating between
the two competing trajectories will invalidate each of their intended results.

However, regarding the final Humanoid environment, we can say with confidence that
we were able to learn a set of parameters to form a meta-policy which was at the minimum
able to reproduce the cost-performance margins of our baselines. Notably, we see here

that we are even able to learn a set of parameters which resulted in higher than baseline
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performance with respect to their energy cost. We believe that the positive results shown

here illustrate potential for the methodology outlined in our work.
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CHAPTER 6
CONCLUSION

6.1 Conclusion

In Machine Learning, we can quickly observe how the trade-off between a model’s perfor-
mance and its computational complexity is significant. However, many other research areas
have found adaptive computational methods to mitigate this trade off by reducing the com-
putational complexity of a model for easy inputs. Meanwhile, little prior work exists for
performing such reductions in optimal control, despite the benefits of freeing up compute
power in resource constrained physical systems. Our work here proposes a novel method
for reducing the computational power used by optimal control policies, and we show that
in certain cases with stochastic policies that we can both reduce the computational load
while generally maintaining the optimal performance of our policy. Importantly, in our
experiments we highlight the importance of learning a policy-selector which selects from
a set of candidate policies which are both, robust and similar. With our preliminary results,

we pave the way for further work in adaptive computation for robotics and optimal control.

6.2 Future Work

First, as we have shown with the results in the Hopper and Half-Cheetah environments,
there is much work to be done in improving the performance of our methodology. We
previously mentioned the potential failure points which can lead to a meta-policy outputting
sub-optimal trajectories, which include policy dissimilarity and policy oscillation, and it
will be worthwhile to explore these failure points in further detail. Specifically, work should

be done in regards to:

1. Developing metrics for describing the similarity between a set of policies in order to
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illustrate potential issues with oscillating between sets of policies.

2. Modifying our test environment with random state initializations to learn policies

which generalize to a broader subset of the state space.

3. Alternatively to 2., implement various robust adversarial training methods in order to

create sets of policies which generalize to a broader subset of the state-space.

4. Increasing the complexity of the policy selector in order to describe the likelihood of

success for each candidate policy to a more accurate degree.

5. Enforcing similarity of our candidate policy set by training cheap policies using im-
itation learning methods on a single complex policy, as opposed to training each

policy separately.

6. Using a form of Long-Short Term Memory Network [52] for our meta-policy, and
inducing an artificial cost on switching policies in order to minimize oscillating be-

haviors.

Additionally, as indicted by our results with learning a policy selector for the Humanoid
environment, we have shown that there potential for adaptive policy selection. From here, it
will be worth exploring more complex implementations of the policy selection architecture.

With this, further experiments can include:

7. Forming the meta-policy into a cascading structure, similar to the structures dis-

cussed in Section 2.1.1.

8. Including a desired amortized computation budget as an input to the policy selector
and learning adaptive meta-policies constrained to the inputted budget as opposed to

learning a single meta-policy constrained by our cost function scaled by w.

9. Exploring methods for training our policy selector that are alternative to evolutionary

algorithms, such as hybrid evolutionary policy gradients. [53]
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APPENDIX A
IMPLEMENTATION DETAILS

Parameter Pybullet Environments
discounting factor 0.99
entropy coefficient 0.0

learning rate 3x107*
value coefficient 0.5
max gradient norm 0.5
lambda 0.95
policy cliprange 0.2
value cliprange 0.2
num optimization epochs 10
frames per update 32000
num minibatches per update 32
total updates 600

Table A.1: PPO Hyperparameters used to train HalfCheetahBulletEnv-vO0,
HopperBulletEnv-v0, and HumanoidBulletEnv-vO0 policies

Parameter Pybullet Environments
num samples 1000
num elite 20
num rollouts per sample 10
num optimization epochs 100
initial parameter variance 10
initial parameter mean 0

Table A.2: CrossEntropyMethod Hyperparameters used to train
HalfCheetahBulletEnv-v0, HopperBulletEnv-v0, and HumanoidBulletEnv-v0 policy
selectors. See Section A.1 for CrossEntropyMethod implementation.
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Implementation Repo

PPO Policy https://github.com/ajliu/torchrl
Implementations
CAAPS https://github.com/ajliu/caaps

Table A.3: Links to implementation code

28


https://github.com/ajliu/torchrl
https://github.com/ajliu/caaps

A.1 Algorithm

Algorithm 1: Initializing cost function p(*)
Data: O
Result: p(*)
for 0 € © do
| 0] < [In(FLOPS () )]
end
¢ < ¢/ max(c)
Function p(0) : float is
| return c[f)];
end
return p(*);

As we see in 5.1, the relation ship between cost and reward is exponential. Therefore,

when defining our cost function we linearize this relationship by taking the log of the cost.

Algorithm 2: Train policy selector using CEM
Data: I, p(*), w, n
Result: II*
< 0;
Y+ 1;
fori:=/ tondo
fitness < []
Os < H,
for j:=1to 100 do
0 = SAMPLE (i, X);
fitness [5] < E[>_,2 77 (51, Ty, (s0) (51)) — Y'wp(lgy (s1))]
QHS []] <— 0,
end
elite + 0s[ArgSort (fitness) ]
1 < Mean (elite) ;
Y« Var (elite) ;

end
return II,

Here, we implement a basic Cross Entropy optimizer which samples rollouts of the en-
vironment to calculate 3.16. We found that training using standard reinforcement learning

algorithms quickly failed due to the instability of the policy selector while switching be-
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tween different actions. See Table A.2 for hyperparameters used for CrossEntropyMethod

runs.
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APPENDIX B
RESULTS

HalfCheetahBulletEnv-v0O

Policy Reward Num FLOPS Shape

Linear 1706 312 ]

Small 2264 4096 [64]

Medium 2614 12288 [64, 64]

Large 2982 20480 [64, 64, 64]

HopperBulletEnv-v0

Policy Reward Num FLOPS Shape

Linear 569 90 ]

Small 1394 2304 [64]

Medium 2150 10496 [64, 64]

Large 2541 18688 [64, 64, 64]
HumanoidBulletEnv-v0

Policy Reward Num FLOPS Shape

Small 370 7808 [64]

Medium 1398 16000 [64, 64]

Large 1941 24192 [64, 64, 64]

Table B.1: Baseline Policy results
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HumanoidBulletEnv-v0

Reward Num FLOPS Selector Flops
CAAPS(w=5) 941 8512.51 1128
CAAPS(w=3) 1678 14892.288 1128
CAAPS(w=1) 1955 21570.56 1128

HalfCheetahBulletEnv-v0

Reward Num FLOPS Selector Flops
CAAPS(w=4) 877 841.76 960
CAAPS(w=1) 754 7589.68 960
CAAPS(w=0.5) 914 14090.24 960

HopperBulletEnv-v0

Reward Num FLOPS Selector Flops
CAAPS(w=3) 1051 1735.02 608
CAAPS(w=2) 1895 9410.01 608
CAAPS(w=1) 1988 13918.93 608
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